1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dbuf.h> 32 #include <sys/dnode.h> 33 #include <sys/zfs_context.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dmu_traverse.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/dsl_dir.h> 38 #include <sys/dsl_pool.h> 39 #include <sys/dsl_synctask.h> 40 #include <sys/dsl_prop.h> 41 #include <sys/dmu_zfetch.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zio_compress.h> 46 #include <sys/sa.h> 47 #ifdef _KERNEL 48 #include <sys/vmsystm.h> 49 #include <sys/zfs_znode.h> 50 #endif 51 52 /* 53 * Enable/disable nopwrite feature. 54 */ 55 int zfs_nopwrite_enabled = 1; 56 57 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 58 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 59 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 60 { DMU_BSWAP_UINT64, TRUE, "object array" }, 61 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 62 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 63 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 64 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 65 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 66 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 67 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 68 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 69 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 70 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 71 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 72 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 74 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 75 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 76 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 77 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 78 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 79 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 81 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 82 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 83 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 84 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 85 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 86 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 87 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 88 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 89 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 90 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 91 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 92 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 93 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 94 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 95 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 96 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 97 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 98 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 99 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 100 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 101 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 102 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 103 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 104 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 106 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 107 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 108 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 109 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 111 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 112 }; 113 114 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 115 { byteswap_uint8_array, "uint8" }, 116 { byteswap_uint16_array, "uint16" }, 117 { byteswap_uint32_array, "uint32" }, 118 { byteswap_uint64_array, "uint64" }, 119 { zap_byteswap, "zap" }, 120 { dnode_buf_byteswap, "dnode" }, 121 { dmu_objset_byteswap, "objset" }, 122 { zfs_znode_byteswap, "znode" }, 123 { zfs_oldacl_byteswap, "oldacl" }, 124 { zfs_acl_byteswap, "acl" } 125 }; 126 127 int 128 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 129 void *tag, dmu_buf_t **dbp, int flags) 130 { 131 dnode_t *dn; 132 uint64_t blkid; 133 dmu_buf_impl_t *db; 134 int err; 135 int db_flags = DB_RF_CANFAIL; 136 137 if (flags & DMU_READ_NO_PREFETCH) 138 db_flags |= DB_RF_NOPREFETCH; 139 140 err = dnode_hold(os, object, FTAG, &dn); 141 if (err) 142 return (err); 143 blkid = dbuf_whichblock(dn, offset); 144 rw_enter(&dn->dn_struct_rwlock, RW_READER); 145 db = dbuf_hold(dn, blkid, tag); 146 rw_exit(&dn->dn_struct_rwlock); 147 if (db == NULL) { 148 err = SET_ERROR(EIO); 149 } else { 150 err = dbuf_read(db, NULL, db_flags); 151 if (err) { 152 dbuf_rele(db, tag); 153 db = NULL; 154 } 155 } 156 157 dnode_rele(dn, FTAG); 158 *dbp = &db->db; /* NULL db plus first field offset is NULL */ 159 return (err); 160 } 161 162 int 163 dmu_bonus_max(void) 164 { 165 return (DN_MAX_BONUSLEN); 166 } 167 168 int 169 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 170 { 171 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 172 dnode_t *dn; 173 int error; 174 175 DB_DNODE_ENTER(db); 176 dn = DB_DNODE(db); 177 178 if (dn->dn_bonus != db) { 179 error = SET_ERROR(EINVAL); 180 } else if (newsize < 0 || newsize > db_fake->db_size) { 181 error = SET_ERROR(EINVAL); 182 } else { 183 dnode_setbonuslen(dn, newsize, tx); 184 error = 0; 185 } 186 187 DB_DNODE_EXIT(db); 188 return (error); 189 } 190 191 int 192 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 193 { 194 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 195 dnode_t *dn; 196 int error; 197 198 DB_DNODE_ENTER(db); 199 dn = DB_DNODE(db); 200 201 if (!DMU_OT_IS_VALID(type)) { 202 error = SET_ERROR(EINVAL); 203 } else if (dn->dn_bonus != db) { 204 error = SET_ERROR(EINVAL); 205 } else { 206 dnode_setbonus_type(dn, type, tx); 207 error = 0; 208 } 209 210 DB_DNODE_EXIT(db); 211 return (error); 212 } 213 214 dmu_object_type_t 215 dmu_get_bonustype(dmu_buf_t *db_fake) 216 { 217 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 218 dnode_t *dn; 219 dmu_object_type_t type; 220 221 DB_DNODE_ENTER(db); 222 dn = DB_DNODE(db); 223 type = dn->dn_bonustype; 224 DB_DNODE_EXIT(db); 225 226 return (type); 227 } 228 229 int 230 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 231 { 232 dnode_t *dn; 233 int error; 234 235 error = dnode_hold(os, object, FTAG, &dn); 236 dbuf_rm_spill(dn, tx); 237 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 238 dnode_rm_spill(dn, tx); 239 rw_exit(&dn->dn_struct_rwlock); 240 dnode_rele(dn, FTAG); 241 return (error); 242 } 243 244 /* 245 * returns ENOENT, EIO, or 0. 246 */ 247 int 248 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 249 { 250 dnode_t *dn; 251 dmu_buf_impl_t *db; 252 int error; 253 254 error = dnode_hold(os, object, FTAG, &dn); 255 if (error) 256 return (error); 257 258 rw_enter(&dn->dn_struct_rwlock, RW_READER); 259 if (dn->dn_bonus == NULL) { 260 rw_exit(&dn->dn_struct_rwlock); 261 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 262 if (dn->dn_bonus == NULL) 263 dbuf_create_bonus(dn); 264 } 265 db = dn->dn_bonus; 266 267 /* as long as the bonus buf is held, the dnode will be held */ 268 if (refcount_add(&db->db_holds, tag) == 1) { 269 VERIFY(dnode_add_ref(dn, db)); 270 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 271 } 272 273 /* 274 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 275 * hold and incrementing the dbuf count to ensure that dnode_move() sees 276 * a dnode hold for every dbuf. 277 */ 278 rw_exit(&dn->dn_struct_rwlock); 279 280 dnode_rele(dn, FTAG); 281 282 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 283 284 *dbp = &db->db; 285 return (0); 286 } 287 288 /* 289 * returns ENOENT, EIO, or 0. 290 * 291 * This interface will allocate a blank spill dbuf when a spill blk 292 * doesn't already exist on the dnode. 293 * 294 * if you only want to find an already existing spill db, then 295 * dmu_spill_hold_existing() should be used. 296 */ 297 int 298 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 299 { 300 dmu_buf_impl_t *db = NULL; 301 int err; 302 303 if ((flags & DB_RF_HAVESTRUCT) == 0) 304 rw_enter(&dn->dn_struct_rwlock, RW_READER); 305 306 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 307 308 if ((flags & DB_RF_HAVESTRUCT) == 0) 309 rw_exit(&dn->dn_struct_rwlock); 310 311 ASSERT(db != NULL); 312 err = dbuf_read(db, NULL, flags); 313 if (err == 0) 314 *dbp = &db->db; 315 else 316 dbuf_rele(db, tag); 317 return (err); 318 } 319 320 int 321 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 322 { 323 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 324 dnode_t *dn; 325 int err; 326 327 DB_DNODE_ENTER(db); 328 dn = DB_DNODE(db); 329 330 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 331 err = SET_ERROR(EINVAL); 332 } else { 333 rw_enter(&dn->dn_struct_rwlock, RW_READER); 334 335 if (!dn->dn_have_spill) { 336 err = SET_ERROR(ENOENT); 337 } else { 338 err = dmu_spill_hold_by_dnode(dn, 339 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 340 } 341 342 rw_exit(&dn->dn_struct_rwlock); 343 } 344 345 DB_DNODE_EXIT(db); 346 return (err); 347 } 348 349 int 350 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 351 { 352 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 353 dnode_t *dn; 354 int err; 355 356 DB_DNODE_ENTER(db); 357 dn = DB_DNODE(db); 358 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 359 DB_DNODE_EXIT(db); 360 361 return (err); 362 } 363 364 /* 365 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 366 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 367 * and can induce severe lock contention when writing to several files 368 * whose dnodes are in the same block. 369 */ 370 static int 371 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 372 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 373 { 374 dmu_buf_t **dbp; 375 uint64_t blkid, nblks, i; 376 uint32_t dbuf_flags; 377 int err; 378 zio_t *zio; 379 380 ASSERT(length <= DMU_MAX_ACCESS); 381 382 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 383 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 384 dbuf_flags |= DB_RF_NOPREFETCH; 385 386 rw_enter(&dn->dn_struct_rwlock, RW_READER); 387 if (dn->dn_datablkshift) { 388 int blkshift = dn->dn_datablkshift; 389 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 390 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 391 } else { 392 if (offset + length > dn->dn_datablksz) { 393 zfs_panic_recover("zfs: accessing past end of object " 394 "%llx/%llx (size=%u access=%llu+%llu)", 395 (longlong_t)dn->dn_objset-> 396 os_dsl_dataset->ds_object, 397 (longlong_t)dn->dn_object, dn->dn_datablksz, 398 (longlong_t)offset, (longlong_t)length); 399 rw_exit(&dn->dn_struct_rwlock); 400 return (SET_ERROR(EIO)); 401 } 402 nblks = 1; 403 } 404 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 405 406 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 407 blkid = dbuf_whichblock(dn, offset); 408 for (i = 0; i < nblks; i++) { 409 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 410 if (db == NULL) { 411 rw_exit(&dn->dn_struct_rwlock); 412 dmu_buf_rele_array(dbp, nblks, tag); 413 zio_nowait(zio); 414 return (SET_ERROR(EIO)); 415 } 416 /* initiate async i/o */ 417 if (read) { 418 (void) dbuf_read(db, zio, dbuf_flags); 419 } 420 dbp[i] = &db->db; 421 } 422 rw_exit(&dn->dn_struct_rwlock); 423 424 /* wait for async i/o */ 425 err = zio_wait(zio); 426 if (err) { 427 dmu_buf_rele_array(dbp, nblks, tag); 428 return (err); 429 } 430 431 /* wait for other io to complete */ 432 if (read) { 433 for (i = 0; i < nblks; i++) { 434 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 435 mutex_enter(&db->db_mtx); 436 while (db->db_state == DB_READ || 437 db->db_state == DB_FILL) 438 cv_wait(&db->db_changed, &db->db_mtx); 439 if (db->db_state == DB_UNCACHED) 440 err = SET_ERROR(EIO); 441 mutex_exit(&db->db_mtx); 442 if (err) { 443 dmu_buf_rele_array(dbp, nblks, tag); 444 return (err); 445 } 446 } 447 } 448 449 *numbufsp = nblks; 450 *dbpp = dbp; 451 return (0); 452 } 453 454 static int 455 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 456 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 457 { 458 dnode_t *dn; 459 int err; 460 461 err = dnode_hold(os, object, FTAG, &dn); 462 if (err) 463 return (err); 464 465 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 466 numbufsp, dbpp, DMU_READ_PREFETCH); 467 468 dnode_rele(dn, FTAG); 469 470 return (err); 471 } 472 473 int 474 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 475 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 476 { 477 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 478 dnode_t *dn; 479 int err; 480 481 DB_DNODE_ENTER(db); 482 dn = DB_DNODE(db); 483 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 484 numbufsp, dbpp, DMU_READ_PREFETCH); 485 DB_DNODE_EXIT(db); 486 487 return (err); 488 } 489 490 void 491 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 492 { 493 int i; 494 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 495 496 if (numbufs == 0) 497 return; 498 499 for (i = 0; i < numbufs; i++) { 500 if (dbp[i]) 501 dbuf_rele(dbp[i], tag); 502 } 503 504 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 505 } 506 507 /* 508 * Issue prefetch i/os for the given blocks. 509 * 510 * Note: The assumption is that we *know* these blocks will be needed 511 * almost immediately. Therefore, the prefetch i/os will be issued at 512 * ZIO_PRIORITY_SYNC_READ 513 * 514 * Note: indirect blocks and other metadata will be read synchronously, 515 * causing this function to block if they are not already cached. 516 */ 517 void 518 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 519 { 520 dnode_t *dn; 521 uint64_t blkid; 522 int nblks, err; 523 524 if (zfs_prefetch_disable) 525 return; 526 527 if (len == 0) { /* they're interested in the bonus buffer */ 528 dn = DMU_META_DNODE(os); 529 530 if (object == 0 || object >= DN_MAX_OBJECT) 531 return; 532 533 rw_enter(&dn->dn_struct_rwlock, RW_READER); 534 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 535 dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ); 536 rw_exit(&dn->dn_struct_rwlock); 537 return; 538 } 539 540 /* 541 * XXX - Note, if the dnode for the requested object is not 542 * already cached, we will do a *synchronous* read in the 543 * dnode_hold() call. The same is true for any indirects. 544 */ 545 err = dnode_hold(os, object, FTAG, &dn); 546 if (err != 0) 547 return; 548 549 rw_enter(&dn->dn_struct_rwlock, RW_READER); 550 if (dn->dn_datablkshift) { 551 int blkshift = dn->dn_datablkshift; 552 nblks = (P2ROUNDUP(offset + len, 1 << blkshift) - 553 P2ALIGN(offset, 1 << blkshift)) >> blkshift; 554 } else { 555 nblks = (offset < dn->dn_datablksz); 556 } 557 558 if (nblks != 0) { 559 blkid = dbuf_whichblock(dn, offset); 560 for (int i = 0; i < nblks; i++) 561 dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ); 562 } 563 564 rw_exit(&dn->dn_struct_rwlock); 565 566 dnode_rele(dn, FTAG); 567 } 568 569 /* 570 * Get the next "chunk" of file data to free. We traverse the file from 571 * the end so that the file gets shorter over time (if we crashes in the 572 * middle, this will leave us in a better state). We find allocated file 573 * data by simply searching the allocated level 1 indirects. 574 * 575 * On input, *start should be the first offset that does not need to be 576 * freed (e.g. "offset + length"). On return, *start will be the first 577 * offset that should be freed. 578 */ 579 static int 580 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 581 { 582 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 583 /* bytes of data covered by a level-1 indirect block */ 584 uint64_t iblkrange = 585 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 586 587 ASSERT3U(minimum, <=, *start); 588 589 if (*start - minimum <= iblkrange * maxblks) { 590 *start = minimum; 591 return (0); 592 } 593 ASSERT(ISP2(iblkrange)); 594 595 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 596 int err; 597 598 /* 599 * dnode_next_offset(BACKWARDS) will find an allocated L1 600 * indirect block at or before the input offset. We must 601 * decrement *start so that it is at the end of the region 602 * to search. 603 */ 604 (*start)--; 605 err = dnode_next_offset(dn, 606 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 607 608 /* if there are no indirect blocks before start, we are done */ 609 if (err == ESRCH) { 610 *start = minimum; 611 break; 612 } else if (err != 0) { 613 return (err); 614 } 615 616 /* set start to the beginning of this L1 indirect */ 617 *start = P2ALIGN(*start, iblkrange); 618 } 619 if (*start < minimum) 620 *start = minimum; 621 return (0); 622 } 623 624 static int 625 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 626 uint64_t length) 627 { 628 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 629 int err; 630 631 if (offset >= object_size) 632 return (0); 633 634 if (length == DMU_OBJECT_END || offset + length > object_size) 635 length = object_size - offset; 636 637 while (length != 0) { 638 uint64_t chunk_end, chunk_begin; 639 640 chunk_end = chunk_begin = offset + length; 641 642 /* move chunk_begin backwards to the beginning of this chunk */ 643 err = get_next_chunk(dn, &chunk_begin, offset); 644 if (err) 645 return (err); 646 ASSERT3U(chunk_begin, >=, offset); 647 ASSERT3U(chunk_begin, <=, chunk_end); 648 649 dmu_tx_t *tx = dmu_tx_create(os); 650 dmu_tx_hold_free(tx, dn->dn_object, 651 chunk_begin, chunk_end - chunk_begin); 652 err = dmu_tx_assign(tx, TXG_WAIT); 653 if (err) { 654 dmu_tx_abort(tx); 655 return (err); 656 } 657 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 658 dmu_tx_commit(tx); 659 660 length -= chunk_end - chunk_begin; 661 } 662 return (0); 663 } 664 665 int 666 dmu_free_long_range(objset_t *os, uint64_t object, 667 uint64_t offset, uint64_t length) 668 { 669 dnode_t *dn; 670 int err; 671 672 err = dnode_hold(os, object, FTAG, &dn); 673 if (err != 0) 674 return (err); 675 err = dmu_free_long_range_impl(os, dn, offset, length); 676 677 /* 678 * It is important to zero out the maxblkid when freeing the entire 679 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 680 * will take the fast path, and (b) dnode_reallocate() can verify 681 * that the entire file has been freed. 682 */ 683 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 684 dn->dn_maxblkid = 0; 685 686 dnode_rele(dn, FTAG); 687 return (err); 688 } 689 690 int 691 dmu_free_long_object(objset_t *os, uint64_t object) 692 { 693 dmu_tx_t *tx; 694 int err; 695 696 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 697 if (err != 0) 698 return (err); 699 700 tx = dmu_tx_create(os); 701 dmu_tx_hold_bonus(tx, object); 702 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 703 err = dmu_tx_assign(tx, TXG_WAIT); 704 if (err == 0) { 705 err = dmu_object_free(os, object, tx); 706 dmu_tx_commit(tx); 707 } else { 708 dmu_tx_abort(tx); 709 } 710 711 return (err); 712 } 713 714 int 715 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 716 uint64_t size, dmu_tx_t *tx) 717 { 718 dnode_t *dn; 719 int err = dnode_hold(os, object, FTAG, &dn); 720 if (err) 721 return (err); 722 ASSERT(offset < UINT64_MAX); 723 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 724 dnode_free_range(dn, offset, size, tx); 725 dnode_rele(dn, FTAG); 726 return (0); 727 } 728 729 int 730 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 731 void *buf, uint32_t flags) 732 { 733 dnode_t *dn; 734 dmu_buf_t **dbp; 735 int numbufs, err; 736 737 err = dnode_hold(os, object, FTAG, &dn); 738 if (err) 739 return (err); 740 741 /* 742 * Deal with odd block sizes, where there can't be data past the first 743 * block. If we ever do the tail block optimization, we will need to 744 * handle that here as well. 745 */ 746 if (dn->dn_maxblkid == 0) { 747 int newsz = offset > dn->dn_datablksz ? 0 : 748 MIN(size, dn->dn_datablksz - offset); 749 bzero((char *)buf + newsz, size - newsz); 750 size = newsz; 751 } 752 753 while (size > 0) { 754 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 755 int i; 756 757 /* 758 * NB: we could do this block-at-a-time, but it's nice 759 * to be reading in parallel. 760 */ 761 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 762 TRUE, FTAG, &numbufs, &dbp, flags); 763 if (err) 764 break; 765 766 for (i = 0; i < numbufs; i++) { 767 int tocpy; 768 int bufoff; 769 dmu_buf_t *db = dbp[i]; 770 771 ASSERT(size > 0); 772 773 bufoff = offset - db->db_offset; 774 tocpy = (int)MIN(db->db_size - bufoff, size); 775 776 bcopy((char *)db->db_data + bufoff, buf, tocpy); 777 778 offset += tocpy; 779 size -= tocpy; 780 buf = (char *)buf + tocpy; 781 } 782 dmu_buf_rele_array(dbp, numbufs, FTAG); 783 } 784 dnode_rele(dn, FTAG); 785 return (err); 786 } 787 788 void 789 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 790 const void *buf, dmu_tx_t *tx) 791 { 792 dmu_buf_t **dbp; 793 int numbufs, i; 794 795 if (size == 0) 796 return; 797 798 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 799 FALSE, FTAG, &numbufs, &dbp)); 800 801 for (i = 0; i < numbufs; i++) { 802 int tocpy; 803 int bufoff; 804 dmu_buf_t *db = dbp[i]; 805 806 ASSERT(size > 0); 807 808 bufoff = offset - db->db_offset; 809 tocpy = (int)MIN(db->db_size - bufoff, size); 810 811 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 812 813 if (tocpy == db->db_size) 814 dmu_buf_will_fill(db, tx); 815 else 816 dmu_buf_will_dirty(db, tx); 817 818 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 819 820 if (tocpy == db->db_size) 821 dmu_buf_fill_done(db, tx); 822 823 offset += tocpy; 824 size -= tocpy; 825 buf = (char *)buf + tocpy; 826 } 827 dmu_buf_rele_array(dbp, numbufs, FTAG); 828 } 829 830 void 831 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 832 dmu_tx_t *tx) 833 { 834 dmu_buf_t **dbp; 835 int numbufs, i; 836 837 if (size == 0) 838 return; 839 840 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 841 FALSE, FTAG, &numbufs, &dbp)); 842 843 for (i = 0; i < numbufs; i++) { 844 dmu_buf_t *db = dbp[i]; 845 846 dmu_buf_will_not_fill(db, tx); 847 } 848 dmu_buf_rele_array(dbp, numbufs, FTAG); 849 } 850 851 /* 852 * DMU support for xuio 853 */ 854 kstat_t *xuio_ksp = NULL; 855 856 int 857 dmu_xuio_init(xuio_t *xuio, int nblk) 858 { 859 dmu_xuio_t *priv; 860 uio_t *uio = &xuio->xu_uio; 861 862 uio->uio_iovcnt = nblk; 863 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 864 865 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 866 priv->cnt = nblk; 867 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 868 priv->iovp = uio->uio_iov; 869 XUIO_XUZC_PRIV(xuio) = priv; 870 871 if (XUIO_XUZC_RW(xuio) == UIO_READ) 872 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 873 else 874 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 875 876 return (0); 877 } 878 879 void 880 dmu_xuio_fini(xuio_t *xuio) 881 { 882 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 883 int nblk = priv->cnt; 884 885 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 886 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 887 kmem_free(priv, sizeof (dmu_xuio_t)); 888 889 if (XUIO_XUZC_RW(xuio) == UIO_READ) 890 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 891 else 892 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 893 } 894 895 /* 896 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 897 * and increase priv->next by 1. 898 */ 899 int 900 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 901 { 902 struct iovec *iov; 903 uio_t *uio = &xuio->xu_uio; 904 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 905 int i = priv->next++; 906 907 ASSERT(i < priv->cnt); 908 ASSERT(off + n <= arc_buf_size(abuf)); 909 iov = uio->uio_iov + i; 910 iov->iov_base = (char *)abuf->b_data + off; 911 iov->iov_len = n; 912 priv->bufs[i] = abuf; 913 return (0); 914 } 915 916 int 917 dmu_xuio_cnt(xuio_t *xuio) 918 { 919 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 920 return (priv->cnt); 921 } 922 923 arc_buf_t * 924 dmu_xuio_arcbuf(xuio_t *xuio, int i) 925 { 926 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 927 928 ASSERT(i < priv->cnt); 929 return (priv->bufs[i]); 930 } 931 932 void 933 dmu_xuio_clear(xuio_t *xuio, int i) 934 { 935 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 936 937 ASSERT(i < priv->cnt); 938 priv->bufs[i] = NULL; 939 } 940 941 static void 942 xuio_stat_init(void) 943 { 944 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 945 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 946 KSTAT_FLAG_VIRTUAL); 947 if (xuio_ksp != NULL) { 948 xuio_ksp->ks_data = &xuio_stats; 949 kstat_install(xuio_ksp); 950 } 951 } 952 953 static void 954 xuio_stat_fini(void) 955 { 956 if (xuio_ksp != NULL) { 957 kstat_delete(xuio_ksp); 958 xuio_ksp = NULL; 959 } 960 } 961 962 void 963 xuio_stat_wbuf_copied() 964 { 965 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 966 } 967 968 void 969 xuio_stat_wbuf_nocopy() 970 { 971 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 972 } 973 974 #ifdef _KERNEL 975 int 976 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 977 { 978 dmu_buf_t **dbp; 979 int numbufs, i, err; 980 xuio_t *xuio = NULL; 981 982 /* 983 * NB: we could do this block-at-a-time, but it's nice 984 * to be reading in parallel. 985 */ 986 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 987 &numbufs, &dbp); 988 if (err) 989 return (err); 990 991 if (uio->uio_extflg == UIO_XUIO) 992 xuio = (xuio_t *)uio; 993 994 for (i = 0; i < numbufs; i++) { 995 int tocpy; 996 int bufoff; 997 dmu_buf_t *db = dbp[i]; 998 999 ASSERT(size > 0); 1000 1001 bufoff = uio->uio_loffset - db->db_offset; 1002 tocpy = (int)MIN(db->db_size - bufoff, size); 1003 1004 if (xuio) { 1005 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1006 arc_buf_t *dbuf_abuf = dbi->db_buf; 1007 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1008 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1009 if (!err) { 1010 uio->uio_resid -= tocpy; 1011 uio->uio_loffset += tocpy; 1012 } 1013 1014 if (abuf == dbuf_abuf) 1015 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1016 else 1017 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1018 } else { 1019 err = uiomove((char *)db->db_data + bufoff, tocpy, 1020 UIO_READ, uio); 1021 } 1022 if (err) 1023 break; 1024 1025 size -= tocpy; 1026 } 1027 dmu_buf_rele_array(dbp, numbufs, FTAG); 1028 1029 return (err); 1030 } 1031 1032 static int 1033 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1034 { 1035 dmu_buf_t **dbp; 1036 int numbufs; 1037 int err = 0; 1038 int i; 1039 1040 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1041 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1042 if (err) 1043 return (err); 1044 1045 for (i = 0; i < numbufs; i++) { 1046 int tocpy; 1047 int bufoff; 1048 dmu_buf_t *db = dbp[i]; 1049 1050 ASSERT(size > 0); 1051 1052 bufoff = uio->uio_loffset - db->db_offset; 1053 tocpy = (int)MIN(db->db_size - bufoff, size); 1054 1055 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1056 1057 if (tocpy == db->db_size) 1058 dmu_buf_will_fill(db, tx); 1059 else 1060 dmu_buf_will_dirty(db, tx); 1061 1062 /* 1063 * XXX uiomove could block forever (eg. nfs-backed 1064 * pages). There needs to be a uiolockdown() function 1065 * to lock the pages in memory, so that uiomove won't 1066 * block. 1067 */ 1068 err = uiomove((char *)db->db_data + bufoff, tocpy, 1069 UIO_WRITE, uio); 1070 1071 if (tocpy == db->db_size) 1072 dmu_buf_fill_done(db, tx); 1073 1074 if (err) 1075 break; 1076 1077 size -= tocpy; 1078 } 1079 1080 dmu_buf_rele_array(dbp, numbufs, FTAG); 1081 return (err); 1082 } 1083 1084 int 1085 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1086 dmu_tx_t *tx) 1087 { 1088 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1089 dnode_t *dn; 1090 int err; 1091 1092 if (size == 0) 1093 return (0); 1094 1095 DB_DNODE_ENTER(db); 1096 dn = DB_DNODE(db); 1097 err = dmu_write_uio_dnode(dn, uio, size, tx); 1098 DB_DNODE_EXIT(db); 1099 1100 return (err); 1101 } 1102 1103 int 1104 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1105 dmu_tx_t *tx) 1106 { 1107 dnode_t *dn; 1108 int err; 1109 1110 if (size == 0) 1111 return (0); 1112 1113 err = dnode_hold(os, object, FTAG, &dn); 1114 if (err) 1115 return (err); 1116 1117 err = dmu_write_uio_dnode(dn, uio, size, tx); 1118 1119 dnode_rele(dn, FTAG); 1120 1121 return (err); 1122 } 1123 1124 int 1125 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1126 page_t *pp, dmu_tx_t *tx) 1127 { 1128 dmu_buf_t **dbp; 1129 int numbufs, i; 1130 int err; 1131 1132 if (size == 0) 1133 return (0); 1134 1135 err = dmu_buf_hold_array(os, object, offset, size, 1136 FALSE, FTAG, &numbufs, &dbp); 1137 if (err) 1138 return (err); 1139 1140 for (i = 0; i < numbufs; i++) { 1141 int tocpy, copied, thiscpy; 1142 int bufoff; 1143 dmu_buf_t *db = dbp[i]; 1144 caddr_t va; 1145 1146 ASSERT(size > 0); 1147 ASSERT3U(db->db_size, >=, PAGESIZE); 1148 1149 bufoff = offset - db->db_offset; 1150 tocpy = (int)MIN(db->db_size - bufoff, size); 1151 1152 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1153 1154 if (tocpy == db->db_size) 1155 dmu_buf_will_fill(db, tx); 1156 else 1157 dmu_buf_will_dirty(db, tx); 1158 1159 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1160 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1161 thiscpy = MIN(PAGESIZE, tocpy - copied); 1162 va = zfs_map_page(pp, S_READ); 1163 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1164 zfs_unmap_page(pp, va); 1165 pp = pp->p_next; 1166 bufoff += PAGESIZE; 1167 } 1168 1169 if (tocpy == db->db_size) 1170 dmu_buf_fill_done(db, tx); 1171 1172 offset += tocpy; 1173 size -= tocpy; 1174 } 1175 dmu_buf_rele_array(dbp, numbufs, FTAG); 1176 return (err); 1177 } 1178 #endif 1179 1180 /* 1181 * Allocate a loaned anonymous arc buffer. 1182 */ 1183 arc_buf_t * 1184 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1185 { 1186 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1187 1188 return (arc_loan_buf(db->db_objset->os_spa, size)); 1189 } 1190 1191 /* 1192 * Free a loaned arc buffer. 1193 */ 1194 void 1195 dmu_return_arcbuf(arc_buf_t *buf) 1196 { 1197 arc_return_buf(buf, FTAG); 1198 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1199 } 1200 1201 /* 1202 * When possible directly assign passed loaned arc buffer to a dbuf. 1203 * If this is not possible copy the contents of passed arc buf via 1204 * dmu_write(). 1205 */ 1206 void 1207 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1208 dmu_tx_t *tx) 1209 { 1210 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1211 dnode_t *dn; 1212 dmu_buf_impl_t *db; 1213 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1214 uint64_t blkid; 1215 1216 DB_DNODE_ENTER(dbuf); 1217 dn = DB_DNODE(dbuf); 1218 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1219 blkid = dbuf_whichblock(dn, offset); 1220 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1221 rw_exit(&dn->dn_struct_rwlock); 1222 DB_DNODE_EXIT(dbuf); 1223 1224 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1225 dbuf_assign_arcbuf(db, buf, tx); 1226 dbuf_rele(db, FTAG); 1227 } else { 1228 objset_t *os; 1229 uint64_t object; 1230 1231 DB_DNODE_ENTER(dbuf); 1232 dn = DB_DNODE(dbuf); 1233 os = dn->dn_objset; 1234 object = dn->dn_object; 1235 DB_DNODE_EXIT(dbuf); 1236 1237 dbuf_rele(db, FTAG); 1238 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1239 dmu_return_arcbuf(buf); 1240 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1241 } 1242 } 1243 1244 typedef struct { 1245 dbuf_dirty_record_t *dsa_dr; 1246 dmu_sync_cb_t *dsa_done; 1247 zgd_t *dsa_zgd; 1248 dmu_tx_t *dsa_tx; 1249 } dmu_sync_arg_t; 1250 1251 /* ARGSUSED */ 1252 static void 1253 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1254 { 1255 dmu_sync_arg_t *dsa = varg; 1256 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1257 blkptr_t *bp = zio->io_bp; 1258 1259 if (zio->io_error == 0) { 1260 if (BP_IS_HOLE(bp)) { 1261 /* 1262 * A block of zeros may compress to a hole, but the 1263 * block size still needs to be known for replay. 1264 */ 1265 BP_SET_LSIZE(bp, db->db_size); 1266 } else { 1267 ASSERT(BP_GET_LEVEL(bp) == 0); 1268 bp->blk_fill = 1; 1269 } 1270 } 1271 } 1272 1273 static void 1274 dmu_sync_late_arrival_ready(zio_t *zio) 1275 { 1276 dmu_sync_ready(zio, NULL, zio->io_private); 1277 } 1278 1279 /* ARGSUSED */ 1280 static void 1281 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1282 { 1283 dmu_sync_arg_t *dsa = varg; 1284 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1285 dmu_buf_impl_t *db = dr->dr_dbuf; 1286 1287 mutex_enter(&db->db_mtx); 1288 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1289 if (zio->io_error == 0) { 1290 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1291 if (dr->dt.dl.dr_nopwrite) { 1292 blkptr_t *bp = zio->io_bp; 1293 blkptr_t *bp_orig = &zio->io_bp_orig; 1294 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1295 1296 ASSERT(BP_EQUAL(bp, bp_orig)); 1297 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1298 ASSERT(zio_checksum_table[chksum].ci_dedup); 1299 } 1300 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1301 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1302 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1303 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1304 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1305 } else { 1306 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1307 } 1308 cv_broadcast(&db->db_changed); 1309 mutex_exit(&db->db_mtx); 1310 1311 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1312 1313 kmem_free(dsa, sizeof (*dsa)); 1314 } 1315 1316 static void 1317 dmu_sync_late_arrival_done(zio_t *zio) 1318 { 1319 blkptr_t *bp = zio->io_bp; 1320 dmu_sync_arg_t *dsa = zio->io_private; 1321 blkptr_t *bp_orig = &zio->io_bp_orig; 1322 1323 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1324 /* 1325 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1326 * then there is nothing to do here. Otherwise, free the 1327 * newly allocated block in this txg. 1328 */ 1329 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1330 ASSERT(BP_EQUAL(bp, bp_orig)); 1331 } else { 1332 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1333 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1334 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1335 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1336 } 1337 } 1338 1339 dmu_tx_commit(dsa->dsa_tx); 1340 1341 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1342 1343 kmem_free(dsa, sizeof (*dsa)); 1344 } 1345 1346 static int 1347 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1348 zio_prop_t *zp, zbookmark_t *zb) 1349 { 1350 dmu_sync_arg_t *dsa; 1351 dmu_tx_t *tx; 1352 1353 tx = dmu_tx_create(os); 1354 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1355 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1356 dmu_tx_abort(tx); 1357 /* Make zl_get_data do txg_waited_synced() */ 1358 return (SET_ERROR(EIO)); 1359 } 1360 1361 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1362 dsa->dsa_dr = NULL; 1363 dsa->dsa_done = done; 1364 dsa->dsa_zgd = zgd; 1365 dsa->dsa_tx = tx; 1366 1367 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1368 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1369 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa, 1370 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1371 1372 return (0); 1373 } 1374 1375 /* 1376 * Intent log support: sync the block associated with db to disk. 1377 * N.B. and XXX: the caller is responsible for making sure that the 1378 * data isn't changing while dmu_sync() is writing it. 1379 * 1380 * Return values: 1381 * 1382 * EEXIST: this txg has already been synced, so there's nothing to do. 1383 * The caller should not log the write. 1384 * 1385 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1386 * The caller should not log the write. 1387 * 1388 * EALREADY: this block is already in the process of being synced. 1389 * The caller should track its progress (somehow). 1390 * 1391 * EIO: could not do the I/O. 1392 * The caller should do a txg_wait_synced(). 1393 * 1394 * 0: the I/O has been initiated. 1395 * The caller should log this blkptr in the done callback. 1396 * It is possible that the I/O will fail, in which case 1397 * the error will be reported to the done callback and 1398 * propagated to pio from zio_done(). 1399 */ 1400 int 1401 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1402 { 1403 blkptr_t *bp = zgd->zgd_bp; 1404 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1405 objset_t *os = db->db_objset; 1406 dsl_dataset_t *ds = os->os_dsl_dataset; 1407 dbuf_dirty_record_t *dr; 1408 dmu_sync_arg_t *dsa; 1409 zbookmark_t zb; 1410 zio_prop_t zp; 1411 dnode_t *dn; 1412 1413 ASSERT(pio != NULL); 1414 ASSERT(txg != 0); 1415 1416 SET_BOOKMARK(&zb, ds->ds_object, 1417 db->db.db_object, db->db_level, db->db_blkid); 1418 1419 DB_DNODE_ENTER(db); 1420 dn = DB_DNODE(db); 1421 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1422 DB_DNODE_EXIT(db); 1423 1424 /* 1425 * If we're frozen (running ziltest), we always need to generate a bp. 1426 */ 1427 if (txg > spa_freeze_txg(os->os_spa)) 1428 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1429 1430 /* 1431 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1432 * and us. If we determine that this txg is not yet syncing, 1433 * but it begins to sync a moment later, that's OK because the 1434 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1435 */ 1436 mutex_enter(&db->db_mtx); 1437 1438 if (txg <= spa_last_synced_txg(os->os_spa)) { 1439 /* 1440 * This txg has already synced. There's nothing to do. 1441 */ 1442 mutex_exit(&db->db_mtx); 1443 return (SET_ERROR(EEXIST)); 1444 } 1445 1446 if (txg <= spa_syncing_txg(os->os_spa)) { 1447 /* 1448 * This txg is currently syncing, so we can't mess with 1449 * the dirty record anymore; just write a new log block. 1450 */ 1451 mutex_exit(&db->db_mtx); 1452 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1453 } 1454 1455 dr = db->db_last_dirty; 1456 while (dr && dr->dr_txg != txg) 1457 dr = dr->dr_next; 1458 1459 if (dr == NULL) { 1460 /* 1461 * There's no dr for this dbuf, so it must have been freed. 1462 * There's no need to log writes to freed blocks, so we're done. 1463 */ 1464 mutex_exit(&db->db_mtx); 1465 return (SET_ERROR(ENOENT)); 1466 } 1467 1468 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1469 1470 /* 1471 * Assume the on-disk data is X, the current syncing data is Y, 1472 * and the current in-memory data is Z (currently in dmu_sync). 1473 * X and Z are identical but Y is has been modified. Normally, 1474 * when X and Z are the same we will perform a nopwrite but if Y 1475 * is different we must disable nopwrite since the resulting write 1476 * of Y to disk can free the block containing X. If we allowed a 1477 * nopwrite to occur the block pointing to Z would reference a freed 1478 * block. Since this is a rare case we simplify this by disabling 1479 * nopwrite if the current dmu_sync-ing dbuf has been modified in 1480 * a previous transaction. 1481 */ 1482 if (dr->dr_next) 1483 zp.zp_nopwrite = B_FALSE; 1484 1485 ASSERT(dr->dr_txg == txg); 1486 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1487 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1488 /* 1489 * We have already issued a sync write for this buffer, 1490 * or this buffer has already been synced. It could not 1491 * have been dirtied since, or we would have cleared the state. 1492 */ 1493 mutex_exit(&db->db_mtx); 1494 return (SET_ERROR(EALREADY)); 1495 } 1496 1497 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1498 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1499 mutex_exit(&db->db_mtx); 1500 1501 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1502 dsa->dsa_dr = dr; 1503 dsa->dsa_done = done; 1504 dsa->dsa_zgd = zgd; 1505 dsa->dsa_tx = NULL; 1506 1507 zio_nowait(arc_write(pio, os->os_spa, txg, 1508 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1509 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, 1510 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1511 ZIO_FLAG_CANFAIL, &zb)); 1512 1513 return (0); 1514 } 1515 1516 int 1517 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1518 dmu_tx_t *tx) 1519 { 1520 dnode_t *dn; 1521 int err; 1522 1523 err = dnode_hold(os, object, FTAG, &dn); 1524 if (err) 1525 return (err); 1526 err = dnode_set_blksz(dn, size, ibs, tx); 1527 dnode_rele(dn, FTAG); 1528 return (err); 1529 } 1530 1531 void 1532 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1533 dmu_tx_t *tx) 1534 { 1535 dnode_t *dn; 1536 1537 /* XXX assumes dnode_hold will not get an i/o error */ 1538 (void) dnode_hold(os, object, FTAG, &dn); 1539 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1540 dn->dn_checksum = checksum; 1541 dnode_setdirty(dn, tx); 1542 dnode_rele(dn, FTAG); 1543 } 1544 1545 void 1546 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1547 dmu_tx_t *tx) 1548 { 1549 dnode_t *dn; 1550 1551 /* XXX assumes dnode_hold will not get an i/o error */ 1552 (void) dnode_hold(os, object, FTAG, &dn); 1553 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1554 dn->dn_compress = compress; 1555 dnode_setdirty(dn, tx); 1556 dnode_rele(dn, FTAG); 1557 } 1558 1559 int zfs_mdcomp_disable = 0; 1560 1561 /* 1562 * When the "redundant_metadata" property is set to "most", only indirect 1563 * blocks of this level and higher will have an additional ditto block. 1564 */ 1565 int zfs_redundant_metadata_most_ditto_level = 2; 1566 1567 void 1568 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1569 { 1570 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1571 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1572 (wp & WP_SPILL)); 1573 enum zio_checksum checksum = os->os_checksum; 1574 enum zio_compress compress = os->os_compress; 1575 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1576 boolean_t dedup = B_FALSE; 1577 boolean_t nopwrite = B_FALSE; 1578 boolean_t dedup_verify = os->os_dedup_verify; 1579 int copies = os->os_copies; 1580 1581 /* 1582 * We maintain different write policies for each of the following 1583 * types of data: 1584 * 1. metadata 1585 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1586 * 3. all other level 0 blocks 1587 */ 1588 if (ismd) { 1589 /* 1590 * XXX -- we should design a compression algorithm 1591 * that specializes in arrays of bps. 1592 */ 1593 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1594 ZIO_COMPRESS_LZJB; 1595 1596 /* 1597 * Metadata always gets checksummed. If the data 1598 * checksum is multi-bit correctable, and it's not a 1599 * ZBT-style checksum, then it's suitable for metadata 1600 * as well. Otherwise, the metadata checksum defaults 1601 * to fletcher4. 1602 */ 1603 if (zio_checksum_table[checksum].ci_correctable < 1 || 1604 zio_checksum_table[checksum].ci_eck) 1605 checksum = ZIO_CHECKSUM_FLETCHER_4; 1606 1607 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1608 (os->os_redundant_metadata == 1609 ZFS_REDUNDANT_METADATA_MOST && 1610 (level >= zfs_redundant_metadata_most_ditto_level || 1611 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1612 copies++; 1613 } else if (wp & WP_NOFILL) { 1614 ASSERT(level == 0); 1615 1616 /* 1617 * If we're writing preallocated blocks, we aren't actually 1618 * writing them so don't set any policy properties. These 1619 * blocks are currently only used by an external subsystem 1620 * outside of zfs (i.e. dump) and not written by the zio 1621 * pipeline. 1622 */ 1623 compress = ZIO_COMPRESS_OFF; 1624 checksum = ZIO_CHECKSUM_NOPARITY; 1625 } else { 1626 compress = zio_compress_select(dn->dn_compress, compress); 1627 1628 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1629 zio_checksum_select(dn->dn_checksum, checksum) : 1630 dedup_checksum; 1631 1632 /* 1633 * Determine dedup setting. If we are in dmu_sync(), 1634 * we won't actually dedup now because that's all 1635 * done in syncing context; but we do want to use the 1636 * dedup checkum. If the checksum is not strong 1637 * enough to ensure unique signatures, force 1638 * dedup_verify. 1639 */ 1640 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1641 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1642 if (!zio_checksum_table[checksum].ci_dedup) 1643 dedup_verify = B_TRUE; 1644 } 1645 1646 /* 1647 * Enable nopwrite if we have a cryptographically secure 1648 * checksum that has no known collisions (i.e. SHA-256) 1649 * and compression is enabled. We don't enable nopwrite if 1650 * dedup is enabled as the two features are mutually exclusive. 1651 */ 1652 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1653 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1654 } 1655 1656 zp->zp_checksum = checksum; 1657 zp->zp_compress = compress; 1658 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1659 zp->zp_level = level; 1660 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1661 zp->zp_dedup = dedup; 1662 zp->zp_dedup_verify = dedup && dedup_verify; 1663 zp->zp_nopwrite = nopwrite; 1664 } 1665 1666 int 1667 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1668 { 1669 dnode_t *dn; 1670 int i, err; 1671 1672 err = dnode_hold(os, object, FTAG, &dn); 1673 if (err) 1674 return (err); 1675 /* 1676 * Sync any current changes before 1677 * we go trundling through the block pointers. 1678 */ 1679 for (i = 0; i < TXG_SIZE; i++) { 1680 if (list_link_active(&dn->dn_dirty_link[i])) 1681 break; 1682 } 1683 if (i != TXG_SIZE) { 1684 dnode_rele(dn, FTAG); 1685 txg_wait_synced(dmu_objset_pool(os), 0); 1686 err = dnode_hold(os, object, FTAG, &dn); 1687 if (err) 1688 return (err); 1689 } 1690 1691 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1692 dnode_rele(dn, FTAG); 1693 1694 return (err); 1695 } 1696 1697 void 1698 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1699 { 1700 dnode_phys_t *dnp; 1701 1702 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1703 mutex_enter(&dn->dn_mtx); 1704 1705 dnp = dn->dn_phys; 1706 1707 doi->doi_data_block_size = dn->dn_datablksz; 1708 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1709 1ULL << dn->dn_indblkshift : 0; 1710 doi->doi_type = dn->dn_type; 1711 doi->doi_bonus_type = dn->dn_bonustype; 1712 doi->doi_bonus_size = dn->dn_bonuslen; 1713 doi->doi_indirection = dn->dn_nlevels; 1714 doi->doi_checksum = dn->dn_checksum; 1715 doi->doi_compress = dn->dn_compress; 1716 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1717 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1718 doi->doi_fill_count = 0; 1719 for (int i = 0; i < dnp->dn_nblkptr; i++) 1720 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1721 1722 mutex_exit(&dn->dn_mtx); 1723 rw_exit(&dn->dn_struct_rwlock); 1724 } 1725 1726 /* 1727 * Get information on a DMU object. 1728 * If doi is NULL, just indicates whether the object exists. 1729 */ 1730 int 1731 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1732 { 1733 dnode_t *dn; 1734 int err = dnode_hold(os, object, FTAG, &dn); 1735 1736 if (err) 1737 return (err); 1738 1739 if (doi != NULL) 1740 dmu_object_info_from_dnode(dn, doi); 1741 1742 dnode_rele(dn, FTAG); 1743 return (0); 1744 } 1745 1746 /* 1747 * As above, but faster; can be used when you have a held dbuf in hand. 1748 */ 1749 void 1750 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1751 { 1752 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1753 1754 DB_DNODE_ENTER(db); 1755 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1756 DB_DNODE_EXIT(db); 1757 } 1758 1759 /* 1760 * Faster still when you only care about the size. 1761 * This is specifically optimized for zfs_getattr(). 1762 */ 1763 void 1764 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1765 u_longlong_t *nblk512) 1766 { 1767 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1768 dnode_t *dn; 1769 1770 DB_DNODE_ENTER(db); 1771 dn = DB_DNODE(db); 1772 1773 *blksize = dn->dn_datablksz; 1774 /* add 1 for dnode space */ 1775 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1776 SPA_MINBLOCKSHIFT) + 1; 1777 DB_DNODE_EXIT(db); 1778 } 1779 1780 void 1781 byteswap_uint64_array(void *vbuf, size_t size) 1782 { 1783 uint64_t *buf = vbuf; 1784 size_t count = size >> 3; 1785 int i; 1786 1787 ASSERT((size & 7) == 0); 1788 1789 for (i = 0; i < count; i++) 1790 buf[i] = BSWAP_64(buf[i]); 1791 } 1792 1793 void 1794 byteswap_uint32_array(void *vbuf, size_t size) 1795 { 1796 uint32_t *buf = vbuf; 1797 size_t count = size >> 2; 1798 int i; 1799 1800 ASSERT((size & 3) == 0); 1801 1802 for (i = 0; i < count; i++) 1803 buf[i] = BSWAP_32(buf[i]); 1804 } 1805 1806 void 1807 byteswap_uint16_array(void *vbuf, size_t size) 1808 { 1809 uint16_t *buf = vbuf; 1810 size_t count = size >> 1; 1811 int i; 1812 1813 ASSERT((size & 1) == 0); 1814 1815 for (i = 0; i < count; i++) 1816 buf[i] = BSWAP_16(buf[i]); 1817 } 1818 1819 /* ARGSUSED */ 1820 void 1821 byteswap_uint8_array(void *vbuf, size_t size) 1822 { 1823 } 1824 1825 void 1826 dmu_init(void) 1827 { 1828 zfs_dbgmsg_init(); 1829 sa_cache_init(); 1830 xuio_stat_init(); 1831 dmu_objset_init(); 1832 dnode_init(); 1833 dbuf_init(); 1834 zfetch_init(); 1835 l2arc_init(); 1836 arc_init(); 1837 } 1838 1839 void 1840 dmu_fini(void) 1841 { 1842 arc_fini(); /* arc depends on l2arc, so arc must go first */ 1843 l2arc_fini(); 1844 zfetch_fini(); 1845 dbuf_fini(); 1846 dnode_fini(); 1847 dmu_objset_fini(); 1848 xuio_stat_fini(); 1849 sa_cache_fini(); 1850 zfs_dbgmsg_fini(); 1851 }