1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/fm/fs/zfs.h>
  29 #include <sys/spa.h>
  30 #include <sys/txg.h>
  31 #include <sys/spa_impl.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/zio_impl.h>
  34 #include <sys/zio_compress.h>
  35 #include <sys/zio_checksum.h>
  36 #include <sys/dmu_objset.h>
  37 #include <sys/arc.h>
  38 #include <sys/ddt.h>
  39 #include <sys/blkptr.h>
  40 #include <sys/zfeature.h>
  41 
  42 /*
  43  * ==========================================================================
  44  * I/O type descriptions
  45  * ==========================================================================
  46  */
  47 const char *zio_type_name[ZIO_TYPES] = {
  48         "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
  49         "zio_ioctl"
  50 };
  51 
  52 /*
  53  * ==========================================================================
  54  * I/O kmem caches
  55  * ==========================================================================
  56  */
  57 kmem_cache_t *zio_cache;
  58 kmem_cache_t *zio_link_cache;
  59 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  60 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  61 
  62 #ifdef _KERNEL
  63 extern vmem_t *zio_alloc_arena;
  64 #endif
  65 
  66 /*
  67  * The following actions directly effect the spa's sync-to-convergence logic.
  68  * The values below define the sync pass when we start performing the action.
  69  * Care should be taken when changing these values as they directly impact
  70  * spa_sync() performance. Tuning these values may introduce subtle performance
  71  * pathologies and should only be done in the context of performance analysis.
  72  * These tunables will eventually be removed and replaced with #defines once
  73  * enough analysis has been done to determine optimal values.
  74  *
  75  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
  76  * regular blocks are not deferred.
  77  */
  78 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
  79 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
  80 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
  81 
  82 /*
  83  * An allocating zio is one that either currently has the DVA allocate
  84  * stage set or will have it later in its lifetime.
  85  */
  86 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
  87 
  88 boolean_t       zio_requeue_io_start_cut_in_line = B_TRUE;
  89 
  90 #ifdef ZFS_DEBUG
  91 int zio_buf_debug_limit = 16384;
  92 #else
  93 int zio_buf_debug_limit = 0;
  94 #endif
  95 
  96 void
  97 zio_init(void)
  98 {
  99         size_t c;
 100         vmem_t *data_alloc_arena = NULL;
 101 
 102 #ifdef _KERNEL
 103         data_alloc_arena = zio_alloc_arena;
 104 #endif
 105         zio_cache = kmem_cache_create("zio_cache",
 106             sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 107         zio_link_cache = kmem_cache_create("zio_link_cache",
 108             sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 109 
 110         /*
 111          * For small buffers, we want a cache for each multiple of
 112          * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
 113          * for each quarter-power of 2.  For large buffers, we want
 114          * a cache for each multiple of PAGESIZE.
 115          */
 116         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 117                 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
 118                 size_t p2 = size;
 119                 size_t align = 0;
 120                 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
 121 
 122                 while (p2 & (p2 - 1))
 123                         p2 &= p2 - 1;
 124 
 125 #ifndef _KERNEL
 126                 /*
 127                  * If we are using watchpoints, put each buffer on its own page,
 128                  * to eliminate the performance overhead of trapping to the
 129                  * kernel when modifying a non-watched buffer that shares the
 130                  * page with a watched buffer.
 131                  */
 132                 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
 133                         continue;
 134 #endif
 135                 if (size <= 4 * SPA_MINBLOCKSIZE) {
 136                         align = SPA_MINBLOCKSIZE;
 137                 } else if (IS_P2ALIGNED(size, PAGESIZE)) {
 138                         align = PAGESIZE;
 139                 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
 140                         align = p2 >> 2;
 141                 }
 142 
 143                 if (align != 0) {
 144                         char name[36];
 145                         (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
 146                         zio_buf_cache[c] = kmem_cache_create(name, size,
 147                             align, NULL, NULL, NULL, NULL, NULL, cflags);
 148 
 149                         /*
 150                          * Since zio_data bufs do not appear in crash dumps, we
 151                          * pass KMC_NOTOUCH so that no allocator metadata is
 152                          * stored with the buffers.
 153                          */
 154                         (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
 155                         zio_data_buf_cache[c] = kmem_cache_create(name, size,
 156                             align, NULL, NULL, NULL, NULL, data_alloc_arena,
 157                             cflags | KMC_NOTOUCH);
 158                 }
 159         }
 160 
 161         while (--c != 0) {
 162                 ASSERT(zio_buf_cache[c] != NULL);
 163                 if (zio_buf_cache[c - 1] == NULL)
 164                         zio_buf_cache[c - 1] = zio_buf_cache[c];
 165 
 166                 ASSERT(zio_data_buf_cache[c] != NULL);
 167                 if (zio_data_buf_cache[c - 1] == NULL)
 168                         zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
 169         }
 170 
 171         zio_inject_init();
 172 }
 173 
 174 void
 175 zio_fini(void)
 176 {
 177         size_t c;
 178         kmem_cache_t *last_cache = NULL;
 179         kmem_cache_t *last_data_cache = NULL;
 180 
 181         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 182                 if (zio_buf_cache[c] != last_cache) {
 183                         last_cache = zio_buf_cache[c];
 184                         kmem_cache_destroy(zio_buf_cache[c]);
 185                 }
 186                 zio_buf_cache[c] = NULL;
 187 
 188                 if (zio_data_buf_cache[c] != last_data_cache) {
 189                         last_data_cache = zio_data_buf_cache[c];
 190                         kmem_cache_destroy(zio_data_buf_cache[c]);
 191                 }
 192                 zio_data_buf_cache[c] = NULL;
 193         }
 194 
 195         kmem_cache_destroy(zio_link_cache);
 196         kmem_cache_destroy(zio_cache);
 197 
 198         zio_inject_fini();
 199 }
 200 
 201 /*
 202  * ==========================================================================
 203  * Allocate and free I/O buffers
 204  * ==========================================================================
 205  */
 206 
 207 /*
 208  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
 209  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
 210  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
 211  * excess / transient data in-core during a crashdump.
 212  */
 213 void *
 214 zio_buf_alloc(size_t size)
 215 {
 216         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 217 
 218         ASSERT3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 219 
 220         return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
 221 }
 222 
 223 /*
 224  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
 225  * crashdump if the kernel panics.  This exists so that we will limit the amount
 226  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
 227  * of kernel heap dumped to disk when the kernel panics)
 228  */
 229 void *
 230 zio_data_buf_alloc(size_t size)
 231 {
 232         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 233 
 234         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 235 
 236         return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
 237 }
 238 
 239 void
 240 zio_buf_free(void *buf, size_t size)
 241 {
 242         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 243 
 244         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 245 
 246         kmem_cache_free(zio_buf_cache[c], buf);
 247 }
 248 
 249 void
 250 zio_data_buf_free(void *buf, size_t size)
 251 {
 252         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 253 
 254         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 255 
 256         kmem_cache_free(zio_data_buf_cache[c], buf);
 257 }
 258 
 259 /*
 260  * ==========================================================================
 261  * Push and pop I/O transform buffers
 262  * ==========================================================================
 263  */
 264 static void
 265 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
 266         zio_transform_func_t *transform)
 267 {
 268         zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
 269 
 270         zt->zt_orig_data = zio->io_data;
 271         zt->zt_orig_size = zio->io_size;
 272         zt->zt_bufsize = bufsize;
 273         zt->zt_transform = transform;
 274 
 275         zt->zt_next = zio->io_transform_stack;
 276         zio->io_transform_stack = zt;
 277 
 278         zio->io_data = data;
 279         zio->io_size = size;
 280 }
 281 
 282 static void
 283 zio_pop_transforms(zio_t *zio)
 284 {
 285         zio_transform_t *zt;
 286 
 287         while ((zt = zio->io_transform_stack) != NULL) {
 288                 if (zt->zt_transform != NULL)
 289                         zt->zt_transform(zio,
 290                             zt->zt_orig_data, zt->zt_orig_size);
 291 
 292                 if (zt->zt_bufsize != 0)
 293                         zio_buf_free(zio->io_data, zt->zt_bufsize);
 294 
 295                 zio->io_data = zt->zt_orig_data;
 296                 zio->io_size = zt->zt_orig_size;
 297                 zio->io_transform_stack = zt->zt_next;
 298 
 299                 kmem_free(zt, sizeof (zio_transform_t));
 300         }
 301 }
 302 
 303 /*
 304  * ==========================================================================
 305  * I/O transform callbacks for subblocks and decompression
 306  * ==========================================================================
 307  */
 308 static void
 309 zio_subblock(zio_t *zio, void *data, uint64_t size)
 310 {
 311         ASSERT(zio->io_size > size);
 312 
 313         if (zio->io_type == ZIO_TYPE_READ)
 314                 bcopy(zio->io_data, data, size);
 315 }
 316 
 317 static void
 318 zio_decompress(zio_t *zio, void *data, uint64_t size)
 319 {
 320         if (zio->io_error == 0 &&
 321             zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
 322             zio->io_data, data, zio->io_size, size) != 0)
 323                 zio->io_error = SET_ERROR(EIO);
 324 }
 325 
 326 /*
 327  * ==========================================================================
 328  * I/O parent/child relationships and pipeline interlocks
 329  * ==========================================================================
 330  */
 331 /*
 332  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
 333  *        continue calling these functions until they return NULL.
 334  *        Otherwise, the next caller will pick up the list walk in
 335  *        some indeterminate state.  (Otherwise every caller would
 336  *        have to pass in a cookie to keep the state represented by
 337  *        io_walk_link, which gets annoying.)
 338  */
 339 zio_t *
 340 zio_walk_parents(zio_t *cio)
 341 {
 342         zio_link_t *zl = cio->io_walk_link;
 343         list_t *pl = &cio->io_parent_list;
 344 
 345         zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
 346         cio->io_walk_link = zl;
 347 
 348         if (zl == NULL)
 349                 return (NULL);
 350 
 351         ASSERT(zl->zl_child == cio);
 352         return (zl->zl_parent);
 353 }
 354 
 355 zio_t *
 356 zio_walk_children(zio_t *pio)
 357 {
 358         zio_link_t *zl = pio->io_walk_link;
 359         list_t *cl = &pio->io_child_list;
 360 
 361         zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
 362         pio->io_walk_link = zl;
 363 
 364         if (zl == NULL)
 365                 return (NULL);
 366 
 367         ASSERT(zl->zl_parent == pio);
 368         return (zl->zl_child);
 369 }
 370 
 371 zio_t *
 372 zio_unique_parent(zio_t *cio)
 373 {
 374         zio_t *pio = zio_walk_parents(cio);
 375 
 376         VERIFY(zio_walk_parents(cio) == NULL);
 377         return (pio);
 378 }
 379 
 380 void
 381 zio_add_child(zio_t *pio, zio_t *cio)
 382 {
 383         zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
 384 
 385         /*
 386          * Logical I/Os can have logical, gang, or vdev children.
 387          * Gang I/Os can have gang or vdev children.
 388          * Vdev I/Os can only have vdev children.
 389          * The following ASSERT captures all of these constraints.
 390          */
 391         ASSERT(cio->io_child_type <= pio->io_child_type);
 392 
 393         zl->zl_parent = pio;
 394         zl->zl_child = cio;
 395 
 396         mutex_enter(&cio->io_lock);
 397         mutex_enter(&pio->io_lock);
 398 
 399         ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
 400 
 401         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
 402                 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
 403 
 404         list_insert_head(&pio->io_child_list, zl);
 405         list_insert_head(&cio->io_parent_list, zl);
 406 
 407         pio->io_child_count++;
 408         cio->io_parent_count++;
 409 
 410         mutex_exit(&pio->io_lock);
 411         mutex_exit(&cio->io_lock);
 412 }
 413 
 414 static void
 415 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
 416 {
 417         ASSERT(zl->zl_parent == pio);
 418         ASSERT(zl->zl_child == cio);
 419 
 420         mutex_enter(&cio->io_lock);
 421         mutex_enter(&pio->io_lock);
 422 
 423         list_remove(&pio->io_child_list, zl);
 424         list_remove(&cio->io_parent_list, zl);
 425 
 426         pio->io_child_count--;
 427         cio->io_parent_count--;
 428 
 429         mutex_exit(&pio->io_lock);
 430         mutex_exit(&cio->io_lock);
 431 
 432         kmem_cache_free(zio_link_cache, zl);
 433 }
 434 
 435 static boolean_t
 436 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
 437 {
 438         uint64_t *countp = &zio->io_children[child][wait];
 439         boolean_t waiting = B_FALSE;
 440 
 441         mutex_enter(&zio->io_lock);
 442         ASSERT(zio->io_stall == NULL);
 443         if (*countp != 0) {
 444                 zio->io_stage >>= 1;
 445                 zio->io_stall = countp;
 446                 waiting = B_TRUE;
 447         }
 448         mutex_exit(&zio->io_lock);
 449 
 450         return (waiting);
 451 }
 452 
 453 static void
 454 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
 455 {
 456         uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
 457         int *errorp = &pio->io_child_error[zio->io_child_type];
 458 
 459         mutex_enter(&pio->io_lock);
 460         if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 461                 *errorp = zio_worst_error(*errorp, zio->io_error);
 462         pio->io_reexecute |= zio->io_reexecute;
 463         ASSERT3U(*countp, >, 0);
 464 
 465         (*countp)--;
 466 
 467         if (*countp == 0 && pio->io_stall == countp) {
 468                 pio->io_stall = NULL;
 469                 mutex_exit(&pio->io_lock);
 470                 zio_execute(pio);
 471         } else {
 472                 mutex_exit(&pio->io_lock);
 473         }
 474 }
 475 
 476 static void
 477 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
 478 {
 479         if (zio->io_child_error[c] != 0 && zio->io_error == 0)
 480                 zio->io_error = zio->io_child_error[c];
 481 }
 482 
 483 /*
 484  * ==========================================================================
 485  * Create the various types of I/O (read, write, free, etc)
 486  * ==========================================================================
 487  */
 488 static zio_t *
 489 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 490     void *data, uint64_t size, zio_done_func_t *done, void *private,
 491     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
 492     vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
 493     enum zio_stage stage, enum zio_stage pipeline)
 494 {
 495         zio_t *zio;
 496 
 497         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 498         ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
 499         ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
 500 
 501         ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
 502         ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
 503         ASSERT(vd || stage == ZIO_STAGE_OPEN);
 504 
 505         zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
 506         bzero(zio, sizeof (zio_t));
 507 
 508         mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
 509         cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
 510 
 511         list_create(&zio->io_parent_list, sizeof (zio_link_t),
 512             offsetof(zio_link_t, zl_parent_node));
 513         list_create(&zio->io_child_list, sizeof (zio_link_t),
 514             offsetof(zio_link_t, zl_child_node));
 515 
 516         if (vd != NULL)
 517                 zio->io_child_type = ZIO_CHILD_VDEV;
 518         else if (flags & ZIO_FLAG_GANG_CHILD)
 519                 zio->io_child_type = ZIO_CHILD_GANG;
 520         else if (flags & ZIO_FLAG_DDT_CHILD)
 521                 zio->io_child_type = ZIO_CHILD_DDT;
 522         else
 523                 zio->io_child_type = ZIO_CHILD_LOGICAL;
 524 
 525         if (bp != NULL) {
 526                 zio->io_bp = (blkptr_t *)bp;
 527                 zio->io_bp_copy = *bp;
 528                 zio->io_bp_orig = *bp;
 529                 if (type != ZIO_TYPE_WRITE ||
 530                     zio->io_child_type == ZIO_CHILD_DDT)
 531                         zio->io_bp = &zio->io_bp_copy;        /* so caller can free */
 532                 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
 533                         zio->io_logical = zio;
 534                 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
 535                         pipeline |= ZIO_GANG_STAGES;
 536         }
 537 
 538         zio->io_spa = spa;
 539         zio->io_txg = txg;
 540         zio->io_done = done;
 541         zio->io_private = private;
 542         zio->io_type = type;
 543         zio->io_priority = priority;
 544         zio->io_vd = vd;
 545         zio->io_offset = offset;
 546         zio->io_orig_data = zio->io_data = data;
 547         zio->io_orig_size = zio->io_size = size;
 548         zio->io_orig_flags = zio->io_flags = flags;
 549         zio->io_orig_stage = zio->io_stage = stage;
 550         zio->io_orig_pipeline = zio->io_pipeline = pipeline;
 551 
 552         zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
 553         zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
 554 
 555         if (zb != NULL)
 556                 zio->io_bookmark = *zb;
 557 
 558         if (pio != NULL) {
 559                 if (zio->io_logical == NULL)
 560                         zio->io_logical = pio->io_logical;
 561                 if (zio->io_child_type == ZIO_CHILD_GANG)
 562                         zio->io_gang_leader = pio->io_gang_leader;
 563                 zio_add_child(pio, zio);
 564         }
 565 
 566         return (zio);
 567 }
 568 
 569 static void
 570 zio_destroy(zio_t *zio)
 571 {
 572         list_destroy(&zio->io_parent_list);
 573         list_destroy(&zio->io_child_list);
 574         mutex_destroy(&zio->io_lock);
 575         cv_destroy(&zio->io_cv);
 576         kmem_cache_free(zio_cache, zio);
 577 }
 578 
 579 zio_t *
 580 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
 581     void *private, enum zio_flag flags)
 582 {
 583         zio_t *zio;
 584 
 585         zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 586             ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 587             ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
 588 
 589         return (zio);
 590 }
 591 
 592 zio_t *
 593 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
 594 {
 595         return (zio_null(NULL, spa, NULL, done, private, flags));
 596 }
 597 
 598 zio_t *
 599 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
 600     void *data, uint64_t size, zio_done_func_t *done, void *private,
 601     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
 602 {
 603         zio_t *zio;
 604 
 605         zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
 606             data, size, done, private,
 607             ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
 608             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 609             ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
 610 
 611         return (zio);
 612 }
 613 
 614 zio_t *
 615 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
 616     void *data, uint64_t size, const zio_prop_t *zp,
 617     zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
 618     void *private,
 619     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
 620 {
 621         zio_t *zio;
 622 
 623         ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
 624             zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
 625             zp->zp_compress >= ZIO_COMPRESS_OFF &&
 626             zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
 627             DMU_OT_IS_VALID(zp->zp_type) &&
 628             zp->zp_level < 32 &&
 629             zp->zp_copies > 0 &&
 630             zp->zp_copies <= spa_max_replication(spa));
 631 
 632         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 633             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 634             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 635             ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
 636 
 637         zio->io_ready = ready;
 638         zio->io_physdone = physdone;
 639         zio->io_prop = *zp;
 640 
 641         /*
 642          * Data can be NULL if we are going to call zio_write_override() to
 643          * provide the already-allocated BP.  But we may need the data to
 644          * verify a dedup hit (if requested).  In this case, don't try to
 645          * dedup (just take the already-allocated BP verbatim).
 646          */
 647         if (data == NULL && zio->io_prop.zp_dedup_verify) {
 648                 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
 649         }
 650 
 651         return (zio);
 652 }
 653 
 654 zio_t *
 655 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
 656     uint64_t size, zio_done_func_t *done, void *private,
 657     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
 658 {
 659         zio_t *zio;
 660 
 661         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 662             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 663             ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
 664 
 665         return (zio);
 666 }
 667 
 668 void
 669 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
 670 {
 671         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 672         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
 673         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
 674         ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
 675 
 676         /*
 677          * We must reset the io_prop to match the values that existed
 678          * when the bp was first written by dmu_sync() keeping in mind
 679          * that nopwrite and dedup are mutually exclusive.
 680          */
 681         zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
 682         zio->io_prop.zp_nopwrite = nopwrite;
 683         zio->io_prop.zp_copies = copies;
 684         zio->io_bp_override = bp;
 685 }
 686 
 687 void
 688 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
 689 {
 690 
 691         /*
 692          * The check for EMBEDDED is a performance optimization.  We
 693          * process the free here (by ignoring it) rather than
 694          * putting it on the list and then processing it in zio_free_sync().
 695          */
 696         if (BP_IS_EMBEDDED(bp))
 697                 return;
 698         metaslab_check_free(spa, bp);
 699 
 700         /*
 701          * Frees that are for the currently-syncing txg, are not going to be
 702          * deferred, and which will not need to do a read (i.e. not GANG or
 703          * DEDUP), can be processed immediately.  Otherwise, put them on the
 704          * in-memory list for later processing.
 705          */
 706         if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
 707             txg != spa->spa_syncing_txg ||
 708             spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
 709                 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
 710         } else {
 711                 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
 712         }
 713 }
 714 
 715 zio_t *
 716 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 717     enum zio_flag flags)
 718 {
 719         zio_t *zio;
 720         enum zio_stage stage = ZIO_FREE_PIPELINE;
 721 
 722         ASSERT(!BP_IS_HOLE(bp));
 723         ASSERT(spa_syncing_txg(spa) == txg);
 724         ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
 725 
 726         if (BP_IS_EMBEDDED(bp))
 727                 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
 728 
 729         metaslab_check_free(spa, bp);
 730         arc_freed(spa, bp);
 731 
 732         /*
 733          * GANG and DEDUP blocks can induce a read (for the gang block header,
 734          * or the DDT), so issue them asynchronously so that this thread is
 735          * not tied up.
 736          */
 737         if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
 738                 stage |= ZIO_STAGE_ISSUE_ASYNC;
 739 
 740         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 741             NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
 742             NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
 743 
 744         return (zio);
 745 }
 746 
 747 zio_t *
 748 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 749     zio_done_func_t *done, void *private, enum zio_flag flags)
 750 {
 751         zio_t *zio;
 752 
 753         dprintf_bp(bp, "claiming in txg %llu", txg);
 754 
 755         if (BP_IS_EMBEDDED(bp))
 756                 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
 757 
 758         /*
 759          * A claim is an allocation of a specific block.  Claims are needed
 760          * to support immediate writes in the intent log.  The issue is that
 761          * immediate writes contain committed data, but in a txg that was
 762          * *not* committed.  Upon opening the pool after an unclean shutdown,
 763          * the intent log claims all blocks that contain immediate write data
 764          * so that the SPA knows they're in use.
 765          *
 766          * All claims *must* be resolved in the first txg -- before the SPA
 767          * starts allocating blocks -- so that nothing is allocated twice.
 768          * If txg == 0 we just verify that the block is claimable.
 769          */
 770         ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
 771         ASSERT(txg == spa_first_txg(spa) || txg == 0);
 772         ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));       /* zdb(1M) */
 773 
 774         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 775             done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
 776             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
 777 
 778         return (zio);
 779 }
 780 
 781 zio_t *
 782 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
 783     zio_done_func_t *done, void *private, enum zio_flag flags)
 784 {
 785         zio_t *zio;
 786         int c;
 787 
 788         if (vd->vdev_children == 0) {
 789                 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 790                     ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 791                     ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
 792 
 793                 zio->io_cmd = cmd;
 794         } else {
 795                 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
 796 
 797                 for (c = 0; c < vd->vdev_children; c++)
 798                         zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
 799                             done, private, flags));
 800         }
 801 
 802         return (zio);
 803 }
 804 
 805 zio_t *
 806 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 807     void *data, int checksum, zio_done_func_t *done, void *private,
 808     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
 809 {
 810         zio_t *zio;
 811 
 812         ASSERT(vd->vdev_children == 0);
 813         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 814             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 815         ASSERT3U(offset + size, <=, vd->vdev_psize);
 816 
 817         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 818             ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
 819             NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
 820 
 821         zio->io_prop.zp_checksum = checksum;
 822 
 823         return (zio);
 824 }
 825 
 826 zio_t *
 827 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 828     void *data, int checksum, zio_done_func_t *done, void *private,
 829     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
 830 {
 831         zio_t *zio;
 832 
 833         ASSERT(vd->vdev_children == 0);
 834         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 835             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 836         ASSERT3U(offset + size, <=, vd->vdev_psize);
 837 
 838         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 839             ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
 840             NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
 841 
 842         zio->io_prop.zp_checksum = checksum;
 843 
 844         if (zio_checksum_table[checksum].ci_eck) {
 845                 /*
 846                  * zec checksums are necessarily destructive -- they modify
 847                  * the end of the write buffer to hold the verifier/checksum.
 848                  * Therefore, we must make a local copy in case the data is
 849                  * being written to multiple places in parallel.
 850                  */
 851                 void *wbuf = zio_buf_alloc(size);
 852                 bcopy(data, wbuf, size);
 853                 zio_push_transform(zio, wbuf, size, size, NULL);
 854         }
 855 
 856         return (zio);
 857 }
 858 
 859 /*
 860  * Create a child I/O to do some work for us.
 861  */
 862 zio_t *
 863 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
 864         void *data, uint64_t size, int type, zio_priority_t priority,
 865         enum zio_flag flags, zio_done_func_t *done, void *private)
 866 {
 867         enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
 868         zio_t *zio;
 869 
 870         ASSERT(vd->vdev_parent ==
 871             (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
 872 
 873         if (type == ZIO_TYPE_READ && bp != NULL) {
 874                 /*
 875                  * If we have the bp, then the child should perform the
 876                  * checksum and the parent need not.  This pushes error
 877                  * detection as close to the leaves as possible and
 878                  * eliminates redundant checksums in the interior nodes.
 879                  */
 880                 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
 881                 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
 882         }
 883 
 884         if (vd->vdev_children == 0)
 885                 offset += VDEV_LABEL_START_SIZE;
 886 
 887         flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
 888 
 889         /*
 890          * If we've decided to do a repair, the write is not speculative --
 891          * even if the original read was.
 892          */
 893         if (flags & ZIO_FLAG_IO_REPAIR)
 894                 flags &= ~ZIO_FLAG_SPECULATIVE;
 895 
 896         zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
 897             done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
 898             ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
 899 
 900         zio->io_physdone = pio->io_physdone;
 901         if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
 902                 zio->io_logical->io_phys_children++;
 903 
 904         return (zio);
 905 }
 906 
 907 zio_t *
 908 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
 909         int type, zio_priority_t priority, enum zio_flag flags,
 910         zio_done_func_t *done, void *private)
 911 {
 912         zio_t *zio;
 913 
 914         ASSERT(vd->vdev_ops->vdev_op_leaf);
 915 
 916         zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
 917             data, size, done, private, type, priority,
 918             flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
 919             vd, offset, NULL,
 920             ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
 921 
 922         return (zio);
 923 }
 924 
 925 void
 926 zio_flush(zio_t *zio, vdev_t *vd)
 927 {
 928         zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
 929             NULL, NULL,
 930             ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
 931 }
 932 
 933 void
 934 zio_shrink(zio_t *zio, uint64_t size)
 935 {
 936         ASSERT(zio->io_executor == NULL);
 937         ASSERT(zio->io_orig_size == zio->io_size);
 938         ASSERT(size <= zio->io_size);
 939 
 940         /*
 941          * We don't shrink for raidz because of problems with the
 942          * reconstruction when reading back less than the block size.
 943          * Note, BP_IS_RAIDZ() assumes no compression.
 944          */
 945         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 946         if (!BP_IS_RAIDZ(zio->io_bp))
 947                 zio->io_orig_size = zio->io_size = size;
 948 }
 949 
 950 /*
 951  * ==========================================================================
 952  * Prepare to read and write logical blocks
 953  * ==========================================================================
 954  */
 955 
 956 static int
 957 zio_read_bp_init(zio_t *zio)
 958 {
 959         blkptr_t *bp = zio->io_bp;
 960 
 961         if (!BP_IS_EMBEDDED(bp) && BP_GET_PROP_RESERVATION(bp)) {
 962                 memset(zio->io_orig_data, 0, zio->io_orig_size);
 963                 zio->io_pipeline = ZIO_INTERLOCK_STAGES;
 964                 return (ZIO_PIPELINE_CONTINUE);
 965         }
 966 
 967         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
 968             zio->io_child_type == ZIO_CHILD_LOGICAL &&
 969             !(zio->io_flags & ZIO_FLAG_RAW)) {
 970                 uint64_t psize =
 971                     BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
 972                 void *cbuf = zio_buf_alloc(psize);
 973 
 974                 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
 975         }
 976 
 977         if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
 978                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
 979                 decode_embedded_bp_compressed(bp, zio->io_data);
 980         } else {
 981                 ASSERT(!BP_IS_EMBEDDED(bp));
 982         }
 983 
 984         if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
 985                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 986 
 987         if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
 988                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 989 
 990         if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
 991                 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
 992 
 993         return (ZIO_PIPELINE_CONTINUE);
 994 }
 995 
 996 static int
 997 zio_write_bp_init(zio_t *zio)
 998 {
 999         spa_t *spa = zio->io_spa;
1000         zio_prop_t *zp = &zio->io_prop;
1001         enum zio_compress compress = zp->zp_compress;
1002         enum zio_checksum checksum = zp->zp_checksum;
1003         uint8_t dedup = zp->zp_dedup;
1004         blkptr_t *bp = zio->io_bp;
1005         uint64_t lsize = zio->io_size;
1006         uint64_t psize = lsize;
1007         int pass = 1;
1008 
1009         /*
1010          * If our children haven't all reached the ready stage,
1011          * wait for them and then repeat this pipeline stage.
1012          */
1013         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1014             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1015                 return (ZIO_PIPELINE_STOP);
1016 
1017         if (!IO_IS_ALLOCATING(zio))
1018                 return (ZIO_PIPELINE_CONTINUE);
1019 
1020         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1021 
1022         if (zp->zp_zero_write && !(zio->io_pipeline & ZIO_GANG_STAGES)) {
1023                 dedup = B_FALSE;
1024                 compress = ZIO_COMPRESS_OFF;
1025                 checksum = ZIO_CHECKSUM_OFF;
1026         }
1027 
1028         if (zio->io_bp_override) {
1029                 ASSERT(bp->blk_birth != zio->io_txg);
1030                 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1031 
1032                 *bp = *zio->io_bp_override;
1033                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1034 
1035                 if (BP_IS_EMBEDDED(bp))
1036                         return (ZIO_PIPELINE_CONTINUE);
1037 
1038                 /*
1039                  * If we've been overridden and nopwrite is set then
1040                  * set the flag accordingly to indicate that a nopwrite
1041                  * has already occurred.
1042                  */
1043                 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1044                         ASSERT(!zp->zp_dedup);
1045                         zio->io_flags |= ZIO_FLAG_NOPWRITE;
1046                         return (ZIO_PIPELINE_CONTINUE);
1047                 }
1048 
1049                 ASSERT(!zp->zp_nopwrite);
1050 
1051                 if (BP_IS_HOLE(bp) || !dedup)
1052                         return (ZIO_PIPELINE_CONTINUE);
1053 
1054                 ASSERT(zio_checksum_table[checksum].ci_dedup ||
1055                     zp->zp_dedup_verify);
1056 
1057                 if (BP_GET_CHECKSUM(bp) == checksum) {
1058                         BP_SET_DEDUP(bp, 1);
1059                         zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1060                         return (ZIO_PIPELINE_CONTINUE);
1061                 }
1062                 zio->io_bp_override = NULL;
1063                 BP_ZERO(bp);
1064         }
1065 
1066         if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1067                 /*
1068                  * We're rewriting an existing block, which means we're
1069                  * working on behalf of spa_sync().  For spa_sync() to
1070                  * converge, it must eventually be the case that we don't
1071                  * have to allocate new blocks.  But compression changes
1072                  * the blocksize, which forces a reallocate, and makes
1073                  * convergence take longer.  Therefore, after the first
1074                  * few passes, stop compressing to ensure convergence.
1075                  */
1076                 pass = spa_sync_pass(spa);
1077 
1078                 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1079                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1080                 ASSERT(!BP_GET_DEDUP(bp));
1081 
1082                 if (pass >= zfs_sync_pass_dont_compress)
1083                         compress = ZIO_COMPRESS_OFF;
1084 
1085                 /* Make sure someone doesn't change their mind on overwrites */
1086                 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1087                     spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1088         }
1089 
1090         if (compress != ZIO_COMPRESS_OFF) {
1091                 void *cbuf = zio_buf_alloc(lsize);
1092                 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1093                 if (psize == 0 || psize == lsize) {
1094                         compress = ZIO_COMPRESS_OFF;
1095                         zio_buf_free(cbuf, lsize);
1096                 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1097                     zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1098                     spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1099                         encode_embedded_bp_compressed(bp,
1100                             cbuf, compress, lsize, psize);
1101                         BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1102                         BP_SET_TYPE(bp, zio->io_prop.zp_type);
1103                         BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1104                         zio_buf_free(cbuf, lsize);
1105                         bp->blk_birth = zio->io_txg;
1106                         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1107                         ASSERT(spa_feature_is_active(spa,
1108                             SPA_FEATURE_EMBEDDED_DATA));
1109                         return (ZIO_PIPELINE_CONTINUE);
1110                 } else {
1111                         /*
1112                          * Round up compressed size to MINBLOCKSIZE and
1113                          * zero the tail.
1114                          */
1115                         size_t rounded =
1116                             P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1117                         if (rounded > psize) {
1118                                 bzero((char *)cbuf + psize, rounded - psize);
1119                                 psize = rounded;
1120                         }
1121                         if (psize == lsize) {
1122                                 compress = ZIO_COMPRESS_OFF;
1123                                 zio_buf_free(cbuf, lsize);
1124                         } else {
1125                                 zio_push_transform(zio, cbuf,
1126                                     psize, lsize, NULL);
1127                         }
1128                 }
1129         }
1130 
1131         /*
1132          * The final pass of spa_sync() must be all rewrites, but the first
1133          * few passes offer a trade-off: allocating blocks defers convergence,
1134          * but newly allocated blocks are sequential, so they can be written
1135          * to disk faster.  Therefore, we allow the first few passes of
1136          * spa_sync() to allocate new blocks, but force rewrites after that.
1137          * There should only be a handful of blocks after pass 1 in any case.
1138          */
1139         if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1140             BP_GET_PSIZE(bp) == psize &&
1141             pass >= zfs_sync_pass_rewrite) {
1142                 ASSERT(psize != 0);
1143                 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1144                 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1145                 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1146         } else {
1147                 BP_ZERO(bp);
1148                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1149         }
1150 
1151         if (psize == 0) {
1152                 if (zio->io_bp_orig.blk_birth != 0 &&
1153                     spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1154                         BP_SET_LSIZE(bp, lsize);
1155                         BP_SET_TYPE(bp, zp->zp_type);
1156                         BP_SET_LEVEL(bp, zp->zp_level);
1157                         BP_SET_BIRTH(bp, zio->io_txg, 0);
1158                 }
1159                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1160         } else {
1161                 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1162                 BP_SET_LSIZE(bp, lsize);
1163                 BP_SET_TYPE(bp, zp->zp_type);
1164                 BP_SET_LEVEL(bp, zp->zp_level);
1165                 BP_SET_PSIZE(bp, psize);
1166                 BP_SET_COMPRESS(bp, compress);
1167                 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1168                 BP_SET_DEDUP(bp, zp->zp_dedup);
1169                 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1170                 if (zp->zp_zero_write  && !(zio->io_pipeline & ZIO_GANG_STAGES)) {
1171                         boolean_t need_allocate = B_FALSE;
1172                         if (zio->io_pipeline & ZIO_STAGE_DVA_ALLOCATE)
1173                                 need_allocate = B_TRUE;
1174                         zio->io_pipeline = ZIO_INTERLOCK_STAGES;
1175                         if (need_allocate)
1176                                 zio->io_pipeline |= ZIO_STAGE_DVA_ALLOCATE;
1177                         BP_SET_PROP_RESERVATION(bp, 1);
1178                 } else {
1179                         BP_SET_PROP_RESERVATION(bp, 0);
1180                 }
1181                 if (zp->zp_dedup) {
1182                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1183                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1184                         zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1185                 }
1186                 if (zp->zp_nopwrite) {
1187                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1188                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1189                         zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1190                 }
1191         }
1192 
1193         return (ZIO_PIPELINE_CONTINUE);
1194 }
1195 
1196 static int
1197 zio_free_bp_init(zio_t *zio)
1198 {
1199         blkptr_t *bp = zio->io_bp;
1200 
1201         if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1202                 if (BP_GET_DEDUP(bp))
1203                         zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1204         }
1205 
1206         return (ZIO_PIPELINE_CONTINUE);
1207 }
1208 
1209 /*
1210  * ==========================================================================
1211  * Execute the I/O pipeline
1212  * ==========================================================================
1213  */
1214 
1215 static void
1216 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1217 {
1218         spa_t *spa = zio->io_spa;
1219         zio_type_t t = zio->io_type;
1220         int flags = (cutinline ? TQ_FRONT : 0);
1221 
1222         /*
1223          * If we're a config writer or a probe, the normal issue and
1224          * interrupt threads may all be blocked waiting for the config lock.
1225          * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1226          */
1227         if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1228                 t = ZIO_TYPE_NULL;
1229 
1230         /*
1231          * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1232          */
1233         if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1234                 t = ZIO_TYPE_NULL;
1235 
1236         /*
1237          * If this is a high priority I/O, then use the high priority taskq if
1238          * available.
1239          */
1240         if (zio->io_priority == ZIO_PRIORITY_NOW &&
1241             spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1242                 q++;
1243 
1244         ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1245 
1246         /*
1247          * NB: We are assuming that the zio can only be dispatched
1248          * to a single taskq at a time.  It would be a grievous error
1249          * to dispatch the zio to another taskq at the same time.
1250          */
1251         ASSERT(zio->io_tqent.tqent_next == NULL);
1252         spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1253             flags, &zio->io_tqent);
1254 }
1255 
1256 static boolean_t
1257 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1258 {
1259         kthread_t *executor = zio->io_executor;
1260         spa_t *spa = zio->io_spa;
1261 
1262         for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1263                 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1264                 uint_t i;
1265                 for (i = 0; i < tqs->stqs_count; i++) {
1266                         if (taskq_member(tqs->stqs_taskq[i], executor))
1267                                 return (B_TRUE);
1268                 }
1269         }
1270 
1271         return (B_FALSE);
1272 }
1273 
1274 static int
1275 zio_issue_async(zio_t *zio)
1276 {
1277         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1278 
1279         return (ZIO_PIPELINE_STOP);
1280 }
1281 
1282 void
1283 zio_interrupt(zio_t *zio)
1284 {
1285         zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1286 }
1287 
1288 /*
1289  * Execute the I/O pipeline until one of the following occurs:
1290  *
1291  *      (1) the I/O completes
1292  *      (2) the pipeline stalls waiting for dependent child I/Os
1293  *      (3) the I/O issues, so we're waiting for an I/O completion interrupt
1294  *      (4) the I/O is delegated by vdev-level caching or aggregation
1295  *      (5) the I/O is deferred due to vdev-level queueing
1296  *      (6) the I/O is handed off to another thread.
1297  *
1298  * In all cases, the pipeline stops whenever there's no CPU work; it never
1299  * burns a thread in cv_wait().
1300  *
1301  * There's no locking on io_stage because there's no legitimate way
1302  * for multiple threads to be attempting to process the same I/O.
1303  */
1304 static zio_pipe_stage_t *zio_pipeline[];
1305 
1306 void
1307 zio_execute(zio_t *zio)
1308 {
1309         zio->io_executor = curthread;
1310 
1311         while (zio->io_stage < ZIO_STAGE_DONE) {
1312                 enum zio_stage pipeline = zio->io_pipeline;
1313                 enum zio_stage stage = zio->io_stage;
1314                 int rv;
1315 
1316                 ASSERT(!MUTEX_HELD(&zio->io_lock));
1317                 ASSERT(ISP2(stage));
1318                 ASSERT(zio->io_stall == NULL);
1319 
1320                 do {
1321                         stage <<= 1;
1322                 } while ((stage & pipeline) == 0);
1323 
1324                 ASSERT(stage <= ZIO_STAGE_DONE);
1325 
1326                 /*
1327                  * If we are in interrupt context and this pipeline stage
1328                  * will grab a config lock that is held across I/O,
1329                  * or may wait for an I/O that needs an interrupt thread
1330                  * to complete, issue async to avoid deadlock.
1331                  *
1332                  * For VDEV_IO_START, we cut in line so that the io will
1333                  * be sent to disk promptly.
1334                  */
1335                 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1336                     zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1337                         boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1338                             zio_requeue_io_start_cut_in_line : B_FALSE;
1339                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1340                         return;
1341                 }
1342 
1343                 zio->io_stage = stage;
1344                 rv = zio_pipeline[highbit64(stage) - 1](zio);
1345 
1346                 if (rv == ZIO_PIPELINE_STOP)
1347                         return;
1348 
1349                 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1350         }
1351 }
1352 
1353 /*
1354  * ==========================================================================
1355  * Initiate I/O, either sync or async
1356  * ==========================================================================
1357  */
1358 int
1359 zio_wait(zio_t *zio)
1360 {
1361         int error;
1362 
1363         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1364         ASSERT(zio->io_executor == NULL);
1365 
1366         zio->io_waiter = curthread;
1367 
1368         zio_execute(zio);
1369 
1370         mutex_enter(&zio->io_lock);
1371         while (zio->io_executor != NULL)
1372                 cv_wait(&zio->io_cv, &zio->io_lock);
1373         mutex_exit(&zio->io_lock);
1374 
1375         error = zio->io_error;
1376         zio_destroy(zio);
1377 
1378         return (error);
1379 }
1380 
1381 void
1382 zio_nowait(zio_t *zio)
1383 {
1384         ASSERT(zio->io_executor == NULL);
1385 
1386         if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1387             zio_unique_parent(zio) == NULL) {
1388                 /*
1389                  * This is a logical async I/O with no parent to wait for it.
1390                  * We add it to the spa_async_root_zio "Godfather" I/O which
1391                  * will ensure they complete prior to unloading the pool.
1392                  */
1393                 spa_t *spa = zio->io_spa;
1394 
1395                 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1396         }
1397 
1398         zio_execute(zio);
1399 }
1400 
1401 /*
1402  * ==========================================================================
1403  * Reexecute or suspend/resume failed I/O
1404  * ==========================================================================
1405  */
1406 
1407 static void
1408 zio_reexecute(zio_t *pio)
1409 {
1410         zio_t *cio, *cio_next;
1411 
1412         ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1413         ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1414         ASSERT(pio->io_gang_leader == NULL);
1415         ASSERT(pio->io_gang_tree == NULL);
1416 
1417         pio->io_flags = pio->io_orig_flags;
1418         pio->io_stage = pio->io_orig_stage;
1419         pio->io_pipeline = pio->io_orig_pipeline;
1420         pio->io_reexecute = 0;
1421         pio->io_flags |= ZIO_FLAG_REEXECUTED;
1422         pio->io_error = 0;
1423         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1424                 pio->io_state[w] = 0;
1425         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1426                 pio->io_child_error[c] = 0;
1427 
1428         if (IO_IS_ALLOCATING(pio))
1429                 BP_ZERO(pio->io_bp);
1430 
1431         /*
1432          * As we reexecute pio's children, new children could be created.
1433          * New children go to the head of pio's io_child_list, however,
1434          * so we will (correctly) not reexecute them.  The key is that
1435          * the remainder of pio's io_child_list, from 'cio_next' onward,
1436          * cannot be affected by any side effects of reexecuting 'cio'.
1437          */
1438         for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1439                 cio_next = zio_walk_children(pio);
1440                 mutex_enter(&pio->io_lock);
1441                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1442                         pio->io_children[cio->io_child_type][w]++;
1443                 mutex_exit(&pio->io_lock);
1444                 zio_reexecute(cio);
1445         }
1446 
1447         /*
1448          * Now that all children have been reexecuted, execute the parent.
1449          * We don't reexecute "The Godfather" I/O here as it's the
1450          * responsibility of the caller to wait on him.
1451          */
1452         if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1453                 zio_execute(pio);
1454 }
1455 
1456 void
1457 zio_suspend(spa_t *spa, zio_t *zio)
1458 {
1459         if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1460                 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1461                     "failure and the failure mode property for this pool "
1462                     "is set to panic.", spa_name(spa));
1463 
1464         zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1465 
1466         mutex_enter(&spa->spa_suspend_lock);
1467 
1468         if (spa->spa_suspend_zio_root == NULL)
1469                 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1470                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1471                     ZIO_FLAG_GODFATHER);
1472 
1473         spa->spa_suspended = B_TRUE;
1474 
1475         if (zio != NULL) {
1476                 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1477                 ASSERT(zio != spa->spa_suspend_zio_root);
1478                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1479                 ASSERT(zio_unique_parent(zio) == NULL);
1480                 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1481                 zio_add_child(spa->spa_suspend_zio_root, zio);
1482         }
1483 
1484         mutex_exit(&spa->spa_suspend_lock);
1485 }
1486 
1487 int
1488 zio_resume(spa_t *spa)
1489 {
1490         zio_t *pio;
1491 
1492         /*
1493          * Reexecute all previously suspended i/o.
1494          */
1495         mutex_enter(&spa->spa_suspend_lock);
1496         spa->spa_suspended = B_FALSE;
1497         cv_broadcast(&spa->spa_suspend_cv);
1498         pio = spa->spa_suspend_zio_root;
1499         spa->spa_suspend_zio_root = NULL;
1500         mutex_exit(&spa->spa_suspend_lock);
1501 
1502         if (pio == NULL)
1503                 return (0);
1504 
1505         zio_reexecute(pio);
1506         return (zio_wait(pio));
1507 }
1508 
1509 void
1510 zio_resume_wait(spa_t *spa)
1511 {
1512         mutex_enter(&spa->spa_suspend_lock);
1513         while (spa_suspended(spa))
1514                 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1515         mutex_exit(&spa->spa_suspend_lock);
1516 }
1517 
1518 /*
1519  * ==========================================================================
1520  * Gang blocks.
1521  *
1522  * A gang block is a collection of small blocks that looks to the DMU
1523  * like one large block.  When zio_dva_allocate() cannot find a block
1524  * of the requested size, due to either severe fragmentation or the pool
1525  * being nearly full, it calls zio_write_gang_block() to construct the
1526  * block from smaller fragments.
1527  *
1528  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1529  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1530  * an indirect block: it's an array of block pointers.  It consumes
1531  * only one sector and hence is allocatable regardless of fragmentation.
1532  * The gang header's bps point to its gang members, which hold the data.
1533  *
1534  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1535  * as the verifier to ensure uniqueness of the SHA256 checksum.
1536  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1537  * not the gang header.  This ensures that data block signatures (needed for
1538  * deduplication) are independent of how the block is physically stored.
1539  *
1540  * Gang blocks can be nested: a gang member may itself be a gang block.
1541  * Thus every gang block is a tree in which root and all interior nodes are
1542  * gang headers, and the leaves are normal blocks that contain user data.
1543  * The root of the gang tree is called the gang leader.
1544  *
1545  * To perform any operation (read, rewrite, free, claim) on a gang block,
1546  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1547  * in the io_gang_tree field of the original logical i/o by recursively
1548  * reading the gang leader and all gang headers below it.  This yields
1549  * an in-core tree containing the contents of every gang header and the
1550  * bps for every constituent of the gang block.
1551  *
1552  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1553  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1554  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1555  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1556  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1557  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1558  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1559  * of the gang header plus zio_checksum_compute() of the data to update the
1560  * gang header's blk_cksum as described above.
1561  *
1562  * The two-phase assemble/issue model solves the problem of partial failure --
1563  * what if you'd freed part of a gang block but then couldn't read the
1564  * gang header for another part?  Assembling the entire gang tree first
1565  * ensures that all the necessary gang header I/O has succeeded before
1566  * starting the actual work of free, claim, or write.  Once the gang tree
1567  * is assembled, free and claim are in-memory operations that cannot fail.
1568  *
1569  * In the event that a gang write fails, zio_dva_unallocate() walks the
1570  * gang tree to immediately free (i.e. insert back into the space map)
1571  * everything we've allocated.  This ensures that we don't get ENOSPC
1572  * errors during repeated suspend/resume cycles due to a flaky device.
1573  *
1574  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1575  * the gang tree, we won't modify the block, so we can safely defer the free
1576  * (knowing that the block is still intact).  If we *can* assemble the gang
1577  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1578  * each constituent bp and we can allocate a new block on the next sync pass.
1579  *
1580  * In all cases, the gang tree allows complete recovery from partial failure.
1581  * ==========================================================================
1582  */
1583 
1584 static zio_t *
1585 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1586 {
1587         if (gn != NULL)
1588                 return (pio);
1589 
1590         return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1591             NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1592             &pio->io_bookmark));
1593 }
1594 
1595 zio_t *
1596 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1597 {
1598         zio_t *zio;
1599 
1600         if (gn != NULL) {
1601                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1602                     gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1603                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1604                 /*
1605                  * As we rewrite each gang header, the pipeline will compute
1606                  * a new gang block header checksum for it; but no one will
1607                  * compute a new data checksum, so we do that here.  The one
1608                  * exception is the gang leader: the pipeline already computed
1609                  * its data checksum because that stage precedes gang assembly.
1610                  * (Presently, nothing actually uses interior data checksums;
1611                  * this is just good hygiene.)
1612                  */
1613                 if (gn != pio->io_gang_leader->io_gang_tree) {
1614                         zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1615                             data, BP_GET_PSIZE(bp));
1616                 }
1617                 /*
1618                  * If we are here to damage data for testing purposes,
1619                  * leave the GBH alone so that we can detect the damage.
1620                  */
1621                 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1622                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1623         } else {
1624                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1625                     data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1626                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1627         }
1628 
1629         return (zio);
1630 }
1631 
1632 /* ARGSUSED */
1633 zio_t *
1634 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1635 {
1636         return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1637             ZIO_GANG_CHILD_FLAGS(pio)));
1638 }
1639 
1640 /* ARGSUSED */
1641 zio_t *
1642 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1643 {
1644         return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1645             NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1646 }
1647 
1648 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1649         NULL,
1650         zio_read_gang,
1651         zio_rewrite_gang,
1652         zio_free_gang,
1653         zio_claim_gang,
1654         NULL
1655 };
1656 
1657 static void zio_gang_tree_assemble_done(zio_t *zio);
1658 
1659 static zio_gang_node_t *
1660 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1661 {
1662         zio_gang_node_t *gn;
1663 
1664         ASSERT(*gnpp == NULL);
1665 
1666         gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1667         gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1668         *gnpp = gn;
1669 
1670         return (gn);
1671 }
1672 
1673 static void
1674 zio_gang_node_free(zio_gang_node_t **gnpp)
1675 {
1676         zio_gang_node_t *gn = *gnpp;
1677 
1678         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1679                 ASSERT(gn->gn_child[g] == NULL);
1680 
1681         zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1682         kmem_free(gn, sizeof (*gn));
1683         *gnpp = NULL;
1684 }
1685 
1686 static void
1687 zio_gang_tree_free(zio_gang_node_t **gnpp)
1688 {
1689         zio_gang_node_t *gn = *gnpp;
1690 
1691         if (gn == NULL)
1692                 return;
1693 
1694         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1695                 zio_gang_tree_free(&gn->gn_child[g]);
1696 
1697         zio_gang_node_free(gnpp);
1698 }
1699 
1700 static void
1701 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1702 {
1703         zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1704 
1705         ASSERT(gio->io_gang_leader == gio);
1706         ASSERT(BP_IS_GANG(bp));
1707 
1708         zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1709             SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1710             gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1711 }
1712 
1713 static void
1714 zio_gang_tree_assemble_done(zio_t *zio)
1715 {
1716         zio_t *gio = zio->io_gang_leader;
1717         zio_gang_node_t *gn = zio->io_private;
1718         blkptr_t *bp = zio->io_bp;
1719 
1720         ASSERT(gio == zio_unique_parent(zio));
1721         ASSERT(zio->io_child_count == 0);
1722 
1723         if (zio->io_error)
1724                 return;
1725 
1726         if (BP_SHOULD_BYTESWAP(bp))
1727                 byteswap_uint64_array(zio->io_data, zio->io_size);
1728 
1729         ASSERT(zio->io_data == gn->gn_gbh);
1730         ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1731         ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1732 
1733         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1734                 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1735                 if (!BP_IS_GANG(gbp))
1736                         continue;
1737                 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1738         }
1739 }
1740 
1741 static void
1742 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1743 {
1744         zio_t *gio = pio->io_gang_leader;
1745         zio_t *zio;
1746 
1747         ASSERT(BP_IS_GANG(bp) == !!gn);
1748         ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1749         ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1750 
1751         /*
1752          * If you're a gang header, your data is in gn->gn_gbh.
1753          * If you're a gang member, your data is in 'data' and gn == NULL.
1754          */
1755         zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1756 
1757         if (gn != NULL) {
1758                 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1759 
1760                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1761                         blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1762                         if (BP_IS_HOLE(gbp))
1763                                 continue;
1764                         zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1765                         data = (char *)data + BP_GET_PSIZE(gbp);
1766                 }
1767         }
1768 
1769         if (gn == gio->io_gang_tree)
1770                 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1771 
1772         if (zio != pio)
1773                 zio_nowait(zio);
1774 }
1775 
1776 static int
1777 zio_gang_assemble(zio_t *zio)
1778 {
1779         blkptr_t *bp = zio->io_bp;
1780 
1781         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1782         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1783 
1784         zio->io_gang_leader = zio;
1785 
1786         zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1787 
1788         return (ZIO_PIPELINE_CONTINUE);
1789 }
1790 
1791 static int
1792 zio_gang_issue(zio_t *zio)
1793 {
1794         blkptr_t *bp = zio->io_bp;
1795 
1796         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1797                 return (ZIO_PIPELINE_STOP);
1798 
1799         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1800         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1801 
1802         if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1803                 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1804         else
1805                 zio_gang_tree_free(&zio->io_gang_tree);
1806 
1807         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1808 
1809         return (ZIO_PIPELINE_CONTINUE);
1810 }
1811 
1812 static void
1813 zio_write_gang_member_ready(zio_t *zio)
1814 {
1815         zio_t *pio = zio_unique_parent(zio);
1816         zio_t *gio = zio->io_gang_leader;
1817         dva_t *cdva = zio->io_bp->blk_dva;
1818         dva_t *pdva = pio->io_bp->blk_dva;
1819         uint64_t asize;
1820 
1821         if (BP_IS_HOLE(zio->io_bp))
1822                 return;
1823 
1824         ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1825 
1826         ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1827         ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1828         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1829         ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1830         ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1831 
1832         mutex_enter(&pio->io_lock);
1833         for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1834                 ASSERT(DVA_GET_GANG(&pdva[d]));
1835                 asize = DVA_GET_ASIZE(&pdva[d]);
1836                 asize += DVA_GET_ASIZE(&cdva[d]);
1837                 DVA_SET_ASIZE(&pdva[d], asize);
1838         }
1839         mutex_exit(&pio->io_lock);
1840 }
1841 
1842 static int
1843 zio_write_gang_block(zio_t *pio)
1844 {
1845         spa_t *spa = pio->io_spa;
1846         blkptr_t *bp = pio->io_bp;
1847         zio_t *gio = pio->io_gang_leader;
1848         zio_t *zio;
1849         zio_gang_node_t *gn, **gnpp;
1850         zio_gbh_phys_t *gbh;
1851         uint64_t txg = pio->io_txg;
1852         uint64_t resid = pio->io_size;
1853         uint64_t lsize;
1854         int copies = gio->io_prop.zp_copies;
1855         int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1856         zio_prop_t zp;
1857         int error;
1858 
1859         error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1860             bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1861             METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1862         if (error) {
1863                 pio->io_error = error;
1864                 return (ZIO_PIPELINE_CONTINUE);
1865         }
1866 
1867         if (pio == gio) {
1868                 gnpp = &gio->io_gang_tree;
1869         } else {
1870                 gnpp = pio->io_private;
1871                 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1872         }
1873 
1874         gn = zio_gang_node_alloc(gnpp);
1875         gbh = gn->gn_gbh;
1876         bzero(gbh, SPA_GANGBLOCKSIZE);
1877 
1878         /*
1879          * Create the gang header.
1880          */
1881         zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1882             pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1883 
1884         /*
1885          * Create and nowait the gang children.
1886          */
1887         for (int g = 0; resid != 0; resid -= lsize, g++) {
1888                 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1889                     SPA_MINBLOCKSIZE);
1890                 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1891 
1892                 zp.zp_checksum = gio->io_prop.zp_checksum;
1893                 zp.zp_compress = ZIO_COMPRESS_OFF;
1894                 zp.zp_type = DMU_OT_NONE;
1895                 zp.zp_level = 0;
1896                 zp.zp_copies = gio->io_prop.zp_copies;
1897                 zp.zp_dedup = B_FALSE;
1898                 zp.zp_dedup_verify = B_FALSE;
1899                 zp.zp_zero_write = B_FALSE;
1900                 zp.zp_nopwrite = B_FALSE;
1901 
1902                 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1903                     (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1904                     zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1905                     pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1906                     &pio->io_bookmark));
1907         }
1908 
1909         /*
1910          * Set pio's pipeline to just wait for zio to finish.
1911          */
1912         pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1913 
1914         zio_nowait(zio);
1915 
1916         return (ZIO_PIPELINE_CONTINUE);
1917 }
1918 
1919 /*
1920  * The zio_nop_write stage in the pipeline determines if allocating
1921  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1922  * such as SHA256, we can compare the checksums of the new data and the old
1923  * to determine if allocating a new block is required.  The nopwrite
1924  * feature can handle writes in either syncing or open context (i.e. zil
1925  * writes) and as a result is mutually exclusive with dedup.
1926  */
1927 static int
1928 zio_nop_write(zio_t *zio)
1929 {
1930         blkptr_t *bp = zio->io_bp;
1931         blkptr_t *bp_orig = &zio->io_bp_orig;
1932         zio_prop_t *zp = &zio->io_prop;
1933 
1934         ASSERT(BP_GET_LEVEL(bp) == 0);
1935         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1936         ASSERT(zp->zp_nopwrite);
1937         ASSERT(!zp->zp_dedup);
1938         ASSERT(zio->io_bp_override == NULL);
1939         ASSERT(IO_IS_ALLOCATING(zio));
1940 
1941         /*
1942          * Check to see if the original bp and the new bp have matching
1943          * characteristics (i.e. same checksum, compression algorithms, etc).
1944          * If they don't then just continue with the pipeline which will
1945          * allocate a new bp.
1946          */
1947         if (BP_IS_HOLE(bp_orig) ||
1948             !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1949             BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1950             BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1951             BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1952             zp->zp_copies != BP_GET_NDVAS(bp_orig))
1953                 return (ZIO_PIPELINE_CONTINUE);
1954 
1955         /*
1956          * If the checksums match then reset the pipeline so that we
1957          * avoid allocating a new bp and issuing any I/O.
1958          */
1959         if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1960                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1961                 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1962                 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1963                 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1964                 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1965                     sizeof (uint64_t)) == 0);
1966 
1967                 *bp = *bp_orig;
1968                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1969                 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1970         }
1971 
1972         return (ZIO_PIPELINE_CONTINUE);
1973 }
1974 
1975 /*
1976  * ==========================================================================
1977  * Dedup
1978  * ==========================================================================
1979  */
1980 static void
1981 zio_ddt_child_read_done(zio_t *zio)
1982 {
1983         blkptr_t *bp = zio->io_bp;
1984         ddt_entry_t *dde = zio->io_private;
1985         ddt_phys_t *ddp;
1986         zio_t *pio = zio_unique_parent(zio);
1987 
1988         mutex_enter(&pio->io_lock);
1989         ddp = ddt_phys_select(dde, bp);
1990         if (zio->io_error == 0)
1991                 ddt_phys_clear(ddp);    /* this ddp doesn't need repair */
1992         if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1993                 dde->dde_repair_data = zio->io_data;
1994         else
1995                 zio_buf_free(zio->io_data, zio->io_size);
1996         mutex_exit(&pio->io_lock);
1997 }
1998 
1999 static int
2000 zio_ddt_read_start(zio_t *zio)
2001 {
2002         blkptr_t *bp = zio->io_bp;
2003 
2004         ASSERT(BP_GET_DEDUP(bp));
2005         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2006         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2007 
2008         if (zio->io_child_error[ZIO_CHILD_DDT]) {
2009                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2010                 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2011                 ddt_phys_t *ddp = dde->dde_phys;
2012                 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2013                 blkptr_t blk;
2014 
2015                 ASSERT(zio->io_vsd == NULL);
2016                 zio->io_vsd = dde;
2017 
2018                 if (ddp_self == NULL)
2019                         return (ZIO_PIPELINE_CONTINUE);
2020 
2021                 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2022                         if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2023                                 continue;
2024                         ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2025                             &blk);
2026                         zio_nowait(zio_read(zio, zio->io_spa, &blk,
2027                             zio_buf_alloc(zio->io_size), zio->io_size,
2028                             zio_ddt_child_read_done, dde, zio->io_priority,
2029                             ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2030                             &zio->io_bookmark));
2031                 }
2032                 return (ZIO_PIPELINE_CONTINUE);
2033         }
2034 
2035         zio_nowait(zio_read(zio, zio->io_spa, bp,
2036             zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2037             ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2038 
2039         return (ZIO_PIPELINE_CONTINUE);
2040 }
2041 
2042 static int
2043 zio_ddt_read_done(zio_t *zio)
2044 {
2045         blkptr_t *bp = zio->io_bp;
2046 
2047         if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2048                 return (ZIO_PIPELINE_STOP);
2049 
2050         ASSERT(BP_GET_DEDUP(bp));
2051         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2052         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2053 
2054         if (zio->io_child_error[ZIO_CHILD_DDT]) {
2055                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2056                 ddt_entry_t *dde = zio->io_vsd;
2057                 if (ddt == NULL) {
2058                         ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2059                         return (ZIO_PIPELINE_CONTINUE);
2060                 }
2061                 if (dde == NULL) {
2062                         zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2063                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2064                         return (ZIO_PIPELINE_STOP);
2065                 }
2066                 if (dde->dde_repair_data != NULL) {
2067                         bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2068                         zio->io_child_error[ZIO_CHILD_DDT] = 0;
2069                 }
2070                 ddt_repair_done(ddt, dde);
2071                 zio->io_vsd = NULL;
2072         }
2073 
2074         ASSERT(zio->io_vsd == NULL);
2075 
2076         return (ZIO_PIPELINE_CONTINUE);
2077 }
2078 
2079 static boolean_t
2080 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2081 {
2082         spa_t *spa = zio->io_spa;
2083 
2084         /*
2085          * Note: we compare the original data, not the transformed data,
2086          * because when zio->io_bp is an override bp, we will not have
2087          * pushed the I/O transforms.  That's an important optimization
2088          * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2089          */
2090         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2091                 zio_t *lio = dde->dde_lead_zio[p];
2092 
2093                 if (lio != NULL) {
2094                         return (lio->io_orig_size != zio->io_orig_size ||
2095                             bcmp(zio->io_orig_data, lio->io_orig_data,
2096                             zio->io_orig_size) != 0);
2097                 }
2098         }
2099 
2100         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2101                 ddt_phys_t *ddp = &dde->dde_phys[p];
2102 
2103                 if (ddp->ddp_phys_birth != 0) {
2104                         arc_buf_t *abuf = NULL;
2105                         uint32_t aflags = ARC_WAIT;
2106                         blkptr_t blk = *zio->io_bp;
2107                         int error;
2108 
2109                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2110 
2111                         ddt_exit(ddt);
2112 
2113                         error = arc_read(NULL, spa, &blk,
2114                             arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2115                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2116                             &aflags, &zio->io_bookmark);
2117 
2118                         if (error == 0) {
2119                                 if (arc_buf_size(abuf) != zio->io_orig_size ||
2120                                     bcmp(abuf->b_data, zio->io_orig_data,
2121                                     zio->io_orig_size) != 0)
2122                                         error = SET_ERROR(EEXIST);
2123                                 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2124                         }
2125 
2126                         ddt_enter(ddt);
2127                         return (error != 0);
2128                 }
2129         }
2130 
2131         return (B_FALSE);
2132 }
2133 
2134 static void
2135 zio_ddt_child_write_ready(zio_t *zio)
2136 {
2137         int p = zio->io_prop.zp_copies;
2138         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2139         ddt_entry_t *dde = zio->io_private;
2140         ddt_phys_t *ddp = &dde->dde_phys[p];
2141         zio_t *pio;
2142 
2143         if (zio->io_error)
2144                 return;
2145 
2146         ddt_enter(ddt);
2147 
2148         ASSERT(dde->dde_lead_zio[p] == zio);
2149 
2150         ddt_phys_fill(ddp, zio->io_bp);
2151 
2152         while ((pio = zio_walk_parents(zio)) != NULL)
2153                 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2154 
2155         ddt_exit(ddt);
2156 }
2157 
2158 static void
2159 zio_ddt_child_write_done(zio_t *zio)
2160 {
2161         int p = zio->io_prop.zp_copies;
2162         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2163         ddt_entry_t *dde = zio->io_private;
2164         ddt_phys_t *ddp = &dde->dde_phys[p];
2165 
2166         ddt_enter(ddt);
2167 
2168         ASSERT(ddp->ddp_refcnt == 0);
2169         ASSERT(dde->dde_lead_zio[p] == zio);
2170         dde->dde_lead_zio[p] = NULL;
2171 
2172         if (zio->io_error == 0) {
2173                 while (zio_walk_parents(zio) != NULL)
2174                         ddt_phys_addref(ddp);
2175         } else {
2176                 ddt_phys_clear(ddp);
2177         }
2178 
2179         ddt_exit(ddt);
2180 }
2181 
2182 static void
2183 zio_ddt_ditto_write_done(zio_t *zio)
2184 {
2185         int p = DDT_PHYS_DITTO;
2186         zio_prop_t *zp = &zio->io_prop;
2187         blkptr_t *bp = zio->io_bp;
2188         ddt_t *ddt = ddt_select(zio->io_spa, bp);
2189         ddt_entry_t *dde = zio->io_private;
2190         ddt_phys_t *ddp = &dde->dde_phys[p];
2191         ddt_key_t *ddk = &dde->dde_key;
2192 
2193         ddt_enter(ddt);
2194 
2195         ASSERT(ddp->ddp_refcnt == 0);
2196         ASSERT(dde->dde_lead_zio[p] == zio);
2197         dde->dde_lead_zio[p] = NULL;
2198 
2199         if (zio->io_error == 0) {
2200                 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2201                 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2202                 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2203                 if (ddp->ddp_phys_birth != 0)
2204                         ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2205                 ddt_phys_fill(ddp, bp);
2206         }
2207 
2208         ddt_exit(ddt);
2209 }
2210 
2211 static int
2212 zio_ddt_write(zio_t *zio)
2213 {
2214         spa_t *spa = zio->io_spa;
2215         blkptr_t *bp = zio->io_bp;
2216         uint64_t txg = zio->io_txg;
2217         zio_prop_t *zp = &zio->io_prop;
2218         int p = zp->zp_copies;
2219         int ditto_copies;
2220         zio_t *cio = NULL;
2221         zio_t *dio = NULL;
2222         ddt_t *ddt = ddt_select(spa, bp);
2223         ddt_entry_t *dde;
2224         ddt_phys_t *ddp;
2225 
2226         ASSERT(BP_GET_DEDUP(bp));
2227         ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2228         ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2229 
2230         ddt_enter(ddt);
2231         dde = ddt_lookup(ddt, bp, B_TRUE);
2232         ddp = &dde->dde_phys[p];
2233 
2234         if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2235                 /*
2236                  * If we're using a weak checksum, upgrade to a strong checksum
2237                  * and try again.  If we're already using a strong checksum,
2238                  * we can't resolve it, so just convert to an ordinary write.
2239                  * (And automatically e-mail a paper to Nature?)
2240                  */
2241                 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2242                         zp->zp_checksum = spa_dedup_checksum(spa);
2243                         zio_pop_transforms(zio);
2244                         zio->io_stage = ZIO_STAGE_OPEN;
2245                         BP_ZERO(bp);
2246                 } else {
2247                         zp->zp_dedup = B_FALSE;
2248                 }
2249                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2250                 ddt_exit(ddt);
2251                 return (ZIO_PIPELINE_CONTINUE);
2252         }
2253 
2254         ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2255         ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2256 
2257         if (ditto_copies > ddt_ditto_copies_present(dde) &&
2258             dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2259                 zio_prop_t czp = *zp;
2260 
2261                 czp.zp_copies = ditto_copies;
2262 
2263                 /*
2264                  * If we arrived here with an override bp, we won't have run
2265                  * the transform stack, so we won't have the data we need to
2266                  * generate a child i/o.  So, toss the override bp and restart.
2267                  * This is safe, because using the override bp is just an
2268                  * optimization; and it's rare, so the cost doesn't matter.
2269                  */
2270                 if (zio->io_bp_override) {
2271                         zio_pop_transforms(zio);
2272                         zio->io_stage = ZIO_STAGE_OPEN;
2273                         zio->io_pipeline = ZIO_WRITE_PIPELINE;
2274                         zio->io_bp_override = NULL;
2275                         BP_ZERO(bp);
2276                         ddt_exit(ddt);
2277                         return (ZIO_PIPELINE_CONTINUE);
2278                 }
2279 
2280                 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2281                     zio->io_orig_size, &czp, NULL, NULL,
2282                     zio_ddt_ditto_write_done, dde, zio->io_priority,
2283                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2284 
2285                 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2286                 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2287         }
2288 
2289         if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2290                 if (ddp->ddp_phys_birth != 0)
2291                         ddt_bp_fill(ddp, bp, txg);
2292                 if (dde->dde_lead_zio[p] != NULL)
2293                         zio_add_child(zio, dde->dde_lead_zio[p]);
2294                 else
2295                         ddt_phys_addref(ddp);
2296         } else if (zio->io_bp_override) {
2297                 ASSERT(bp->blk_birth == txg);
2298                 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2299                 ddt_phys_fill(ddp, bp);
2300                 ddt_phys_addref(ddp);
2301         } else {
2302                 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2303                     zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2304                     zio_ddt_child_write_done, dde, zio->io_priority,
2305                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2306 
2307                 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2308                 dde->dde_lead_zio[p] = cio;
2309         }
2310 
2311         ddt_exit(ddt);
2312 
2313         if (cio)
2314                 zio_nowait(cio);
2315         if (dio)
2316                 zio_nowait(dio);
2317 
2318         return (ZIO_PIPELINE_CONTINUE);
2319 }
2320 
2321 ddt_entry_t *freedde; /* for debugging */
2322 
2323 static int
2324 zio_ddt_free(zio_t *zio)
2325 {
2326         spa_t *spa = zio->io_spa;
2327         blkptr_t *bp = zio->io_bp;
2328         ddt_t *ddt = ddt_select(spa, bp);
2329         ddt_entry_t *dde;
2330         ddt_phys_t *ddp;
2331 
2332         ASSERT(BP_GET_DEDUP(bp));
2333         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2334 
2335         ddt_enter(ddt);
2336         freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2337         ddp = ddt_phys_select(dde, bp);
2338         ddt_phys_decref(ddp);
2339         ddt_exit(ddt);
2340 
2341         return (ZIO_PIPELINE_CONTINUE);
2342 }
2343 
2344 /*
2345  * ==========================================================================
2346  * Allocate and free blocks
2347  * ==========================================================================
2348  */
2349 static int
2350 zio_dva_allocate(zio_t *zio)
2351 {
2352         spa_t *spa = zio->io_spa;
2353         metaslab_class_t *mc = spa_normal_class(spa);
2354         blkptr_t *bp = zio->io_bp;
2355         int error;
2356         int flags = 0;
2357 
2358         if (zio->io_gang_leader == NULL) {
2359                 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2360                 zio->io_gang_leader = zio;
2361         }
2362 
2363         ASSERT(BP_IS_HOLE(bp));
2364         ASSERT0(BP_GET_NDVAS(bp));
2365         ASSERT3U(zio->io_prop.zp_copies, >, 0);
2366         ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2367         ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2368 
2369         /*
2370          * The dump device does not support gang blocks so allocation on
2371          * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2372          * the "fast" gang feature.
2373          */
2374         flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2375         flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2376             METASLAB_GANG_CHILD : 0;
2377         error = metaslab_alloc(spa, mc, zio->io_size, bp,
2378             zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2379 
2380         if (error) {
2381                 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2382                     "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2383                     error);
2384                 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2385                         return (zio_write_gang_block(zio));
2386                 zio->io_error = error;
2387         }
2388 
2389         return (ZIO_PIPELINE_CONTINUE);
2390 }
2391 
2392 static int
2393 zio_dva_free(zio_t *zio)
2394 {
2395         metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2396 
2397         return (ZIO_PIPELINE_CONTINUE);
2398 }
2399 
2400 static int
2401 zio_dva_claim(zio_t *zio)
2402 {
2403         int error;
2404 
2405         error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2406         if (error)
2407                 zio->io_error = error;
2408 
2409         return (ZIO_PIPELINE_CONTINUE);
2410 }
2411 
2412 /*
2413  * Undo an allocation.  This is used by zio_done() when an I/O fails
2414  * and we want to give back the block we just allocated.
2415  * This handles both normal blocks and gang blocks.
2416  */
2417 static void
2418 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2419 {
2420         ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2421         ASSERT(zio->io_bp_override == NULL);
2422 
2423         if (!BP_IS_HOLE(bp))
2424                 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2425 
2426         if (gn != NULL) {
2427                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2428                         zio_dva_unallocate(zio, gn->gn_child[g],
2429                             &gn->gn_gbh->zg_blkptr[g]);
2430                 }
2431         }
2432 }
2433 
2434 /*
2435  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2436  */
2437 int
2438 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2439     uint64_t size, boolean_t use_slog)
2440 {
2441         int error = 1;
2442 
2443         ASSERT(txg > spa_syncing_txg(spa));
2444 
2445         /*
2446          * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2447          * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2448          * when allocating them.
2449          */
2450         if (use_slog) {
2451                 error = metaslab_alloc(spa, spa_log_class(spa), size,
2452                     new_bp, 1, txg, old_bp,
2453                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2454         }
2455 
2456         if (error) {
2457                 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2458                     new_bp, 1, txg, old_bp,
2459                     METASLAB_HINTBP_AVOID);
2460         }
2461 
2462         if (error == 0) {
2463                 BP_SET_LSIZE(new_bp, size);
2464                 BP_SET_PSIZE(new_bp, size);
2465                 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2466                 BP_SET_CHECKSUM(new_bp,
2467                     spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2468                     ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2469                 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2470                 BP_SET_LEVEL(new_bp, 0);
2471                 BP_SET_DEDUP(new_bp, 0);
2472                 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2473         }
2474 
2475         return (error);
2476 }
2477 
2478 /*
2479  * Free an intent log block.
2480  */
2481 void
2482 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2483 {
2484         ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2485         ASSERT(!BP_IS_GANG(bp));
2486 
2487         zio_free(spa, txg, bp);
2488 }
2489 
2490 /*
2491  * ==========================================================================
2492  * Read and write to physical devices
2493  * ==========================================================================
2494  */
2495 static int
2496 zio_vdev_io_start(zio_t *zio)
2497 {
2498         vdev_t *vd = zio->io_vd;
2499         uint64_t align;
2500         spa_t *spa = zio->io_spa;
2501 
2502         ASSERT(zio->io_error == 0);
2503         ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2504 
2505         if (vd == NULL) {
2506                 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2507                         spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2508 
2509                 /*
2510                  * The mirror_ops handle multiple DVAs in a single BP.
2511                  */
2512                 return (vdev_mirror_ops.vdev_op_io_start(zio));
2513         }
2514 
2515         /*
2516          * We keep track of time-sensitive I/Os so that the scan thread
2517          * can quickly react to certain workloads.  In particular, we care
2518          * about non-scrubbing, top-level reads and writes with the following
2519          * characteristics:
2520          *      - synchronous writes of user data to non-slog devices
2521          *      - any reads of user data
2522          * When these conditions are met, adjust the timestamp of spa_last_io
2523          * which allows the scan thread to adjust its workload accordingly.
2524          */
2525         if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2526             vd == vd->vdev_top && !vd->vdev_islog &&
2527             zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2528             zio->io_txg != spa_syncing_txg(spa)) {
2529                 uint64_t old = spa->spa_last_io;
2530                 uint64_t new = ddi_get_lbolt64();
2531                 if (old != new)
2532                         (void) atomic_cas_64(&spa->spa_last_io, old, new);
2533         }
2534 
2535         align = 1ULL << vd->vdev_top->vdev_ashift;
2536 
2537         if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
2538             P2PHASE(zio->io_size, align) != 0) {
2539                 /* Transform logical writes to be a full physical block size. */
2540                 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2541                 char *abuf = zio_buf_alloc(asize);
2542                 ASSERT(vd == vd->vdev_top);
2543                 if (zio->io_type == ZIO_TYPE_WRITE) {
2544                         bcopy(zio->io_data, abuf, zio->io_size);
2545                         bzero(abuf + zio->io_size, asize - zio->io_size);
2546                 }
2547                 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2548         }
2549 
2550         /*
2551          * If this is not a physical io, make sure that it is properly aligned
2552          * before proceeding.
2553          */
2554         if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2555                 ASSERT0(P2PHASE(zio->io_offset, align));
2556                 ASSERT0(P2PHASE(zio->io_size, align));
2557         } else {
2558                 /*
2559                  * For physical writes, we allow 512b aligned writes and assume
2560                  * the device will perform a read-modify-write as necessary.
2561                  */
2562                 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2563                 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2564         }
2565 
2566         VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2567 
2568         /*
2569          * If this is a repair I/O, and there's no self-healing involved --
2570          * that is, we're just resilvering what we expect to resilver --
2571          * then don't do the I/O unless zio's txg is actually in vd's DTL.
2572          * This prevents spurious resilvering with nested replication.
2573          * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2574          * A is out of date, we'll read from C+D, then use the data to
2575          * resilver A+B -- but we don't actually want to resilver B, just A.
2576          * The top-level mirror has no way to know this, so instead we just
2577          * discard unnecessary repairs as we work our way down the vdev tree.
2578          * The same logic applies to any form of nested replication:
2579          * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2580          */
2581         if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2582             !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2583             zio->io_txg != 0 &&      /* not a delegated i/o */
2584             !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2585                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2586                 zio_vdev_io_bypass(zio);
2587                 return (ZIO_PIPELINE_CONTINUE);
2588         }
2589 
2590         if (vd->vdev_ops->vdev_op_leaf &&
2591             (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2592 
2593                 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2594                         return (ZIO_PIPELINE_CONTINUE);
2595 
2596                 if ((zio = vdev_queue_io(zio)) == NULL)
2597                         return (ZIO_PIPELINE_STOP);
2598 
2599                 if (!vdev_accessible(vd, zio)) {
2600                         zio->io_error = SET_ERROR(ENXIO);
2601                         zio_interrupt(zio);
2602                         return (ZIO_PIPELINE_STOP);
2603                 }
2604         }
2605 
2606         return (vd->vdev_ops->vdev_op_io_start(zio));
2607 }
2608 
2609 static int
2610 zio_vdev_io_done(zio_t *zio)
2611 {
2612         vdev_t *vd = zio->io_vd;
2613         vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2614         boolean_t unexpected_error = B_FALSE;
2615 
2616         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2617                 return (ZIO_PIPELINE_STOP);
2618 
2619         ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2620 
2621         if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2622 
2623                 vdev_queue_io_done(zio);
2624 
2625                 if (zio->io_type == ZIO_TYPE_WRITE)
2626                         vdev_cache_write(zio);
2627 
2628                 if (zio_injection_enabled && zio->io_error == 0)
2629                         zio->io_error = zio_handle_device_injection(vd,
2630                             zio, EIO);
2631 
2632                 if (zio_injection_enabled && zio->io_error == 0)
2633                         zio->io_error = zio_handle_label_injection(zio, EIO);
2634 
2635                 if (zio->io_error) {
2636                         if (!vdev_accessible(vd, zio)) {
2637                                 zio->io_error = SET_ERROR(ENXIO);
2638                         } else {
2639                                 unexpected_error = B_TRUE;
2640                         }
2641                 }
2642         }
2643 
2644         ops->vdev_op_io_done(zio);
2645 
2646         if (unexpected_error)
2647                 VERIFY(vdev_probe(vd, zio) == NULL);
2648 
2649         return (ZIO_PIPELINE_CONTINUE);
2650 }
2651 
2652 /*
2653  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2654  * disk, and use that to finish the checksum ereport later.
2655  */
2656 static void
2657 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2658     const void *good_buf)
2659 {
2660         /* no processing needed */
2661         zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2662 }
2663 
2664 /*ARGSUSED*/
2665 void
2666 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2667 {
2668         void *buf = zio_buf_alloc(zio->io_size);
2669 
2670         bcopy(zio->io_data, buf, zio->io_size);
2671 
2672         zcr->zcr_cbinfo = zio->io_size;
2673         zcr->zcr_cbdata = buf;
2674         zcr->zcr_finish = zio_vsd_default_cksum_finish;
2675         zcr->zcr_free = zio_buf_free;
2676 }
2677 
2678 static int
2679 zio_vdev_io_assess(zio_t *zio)
2680 {
2681         vdev_t *vd = zio->io_vd;
2682 
2683         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2684                 return (ZIO_PIPELINE_STOP);
2685 
2686         if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2687                 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2688 
2689         if (zio->io_vsd != NULL) {
2690                 zio->io_vsd_ops->vsd_free(zio);
2691                 zio->io_vsd = NULL;
2692         }
2693 
2694         if (zio_injection_enabled && zio->io_error == 0)
2695                 zio->io_error = zio_handle_fault_injection(zio, EIO);
2696 
2697         /*
2698          * If the I/O failed, determine whether we should attempt to retry it.
2699          *
2700          * On retry, we cut in line in the issue queue, since we don't want
2701          * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2702          */
2703         if (zio->io_error && vd == NULL &&
2704             !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2705                 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));  /* not a leaf */
2706                 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));   /* not a leaf */
2707                 zio->io_error = 0;
2708                 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2709                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2710                 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2711                 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2712                     zio_requeue_io_start_cut_in_line);
2713                 return (ZIO_PIPELINE_STOP);
2714         }
2715 
2716         /*
2717          * If we got an error on a leaf device, convert it to ENXIO
2718          * if the device is not accessible at all.
2719          */
2720         if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2721             !vdev_accessible(vd, zio))
2722                 zio->io_error = SET_ERROR(ENXIO);
2723 
2724         /*
2725          * If we can't write to an interior vdev (mirror or RAID-Z),
2726          * set vdev_cant_write so that we stop trying to allocate from it.
2727          */
2728         if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2729             vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2730                 vd->vdev_cant_write = B_TRUE;
2731         }
2732 
2733         if (zio->io_error)
2734                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2735 
2736         if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2737             zio->io_physdone != NULL) {
2738                 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2739                 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2740                 zio->io_physdone(zio->io_logical);
2741         }
2742 
2743         return (ZIO_PIPELINE_CONTINUE);
2744 }
2745 
2746 void
2747 zio_vdev_io_reissue(zio_t *zio)
2748 {
2749         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2750         ASSERT(zio->io_error == 0);
2751 
2752         zio->io_stage >>= 1;
2753 }
2754 
2755 void
2756 zio_vdev_io_redone(zio_t *zio)
2757 {
2758         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2759 
2760         zio->io_stage >>= 1;
2761 }
2762 
2763 void
2764 zio_vdev_io_bypass(zio_t *zio)
2765 {
2766         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2767         ASSERT(zio->io_error == 0);
2768 
2769         zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2770         zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2771 }
2772 
2773 /*
2774  * ==========================================================================
2775  * Generate and verify checksums
2776  * ==========================================================================
2777  */
2778 static int
2779 zio_checksum_generate(zio_t *zio)
2780 {
2781         blkptr_t *bp = zio->io_bp;
2782         enum zio_checksum checksum;
2783 
2784         if (bp == NULL) {
2785                 /*
2786                  * This is zio_write_phys().
2787                  * We're either generating a label checksum, or none at all.
2788                  */
2789                 checksum = zio->io_prop.zp_checksum;
2790 
2791                 if (checksum == ZIO_CHECKSUM_OFF)
2792                         return (ZIO_PIPELINE_CONTINUE);
2793 
2794                 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2795         } else {
2796                 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2797                         ASSERT(!IO_IS_ALLOCATING(zio));
2798                         checksum = ZIO_CHECKSUM_GANG_HEADER;
2799                 } else {
2800                         checksum = BP_GET_CHECKSUM(bp);
2801                 }
2802         }
2803 
2804         zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2805 
2806         return (ZIO_PIPELINE_CONTINUE);
2807 }
2808 
2809 static int
2810 zio_checksum_verify(zio_t *zio)
2811 {
2812         zio_bad_cksum_t info;
2813         blkptr_t *bp = zio->io_bp;
2814         int error;
2815 
2816         ASSERT(zio->io_vd != NULL);
2817 
2818         if (bp == NULL) {
2819                 /*
2820                  * This is zio_read_phys().
2821                  * We're either verifying a label checksum, or nothing at all.
2822                  */
2823                 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2824                         return (ZIO_PIPELINE_CONTINUE);
2825 
2826                 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2827         }
2828 
2829         if ((error = zio_checksum_error(zio, &info)) != 0) {
2830                 zio->io_error = error;
2831                 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2832                         zfs_ereport_start_checksum(zio->io_spa,
2833                             zio->io_vd, zio, zio->io_offset,
2834                             zio->io_size, NULL, &info);
2835                 }
2836         }
2837 
2838         return (ZIO_PIPELINE_CONTINUE);
2839 }
2840 
2841 /*
2842  * Called by RAID-Z to ensure we don't compute the checksum twice.
2843  */
2844 void
2845 zio_checksum_verified(zio_t *zio)
2846 {
2847         zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2848 }
2849 
2850 /*
2851  * ==========================================================================
2852  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2853  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
2854  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2855  * indicate errors that are specific to one I/O, and most likely permanent.
2856  * Any other error is presumed to be worse because we weren't expecting it.
2857  * ==========================================================================
2858  */
2859 int
2860 zio_worst_error(int e1, int e2)
2861 {
2862         static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2863         int r1, r2;
2864 
2865         for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2866                 if (e1 == zio_error_rank[r1])
2867                         break;
2868 
2869         for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2870                 if (e2 == zio_error_rank[r2])
2871                         break;
2872 
2873         return (r1 > r2 ? e1 : e2);
2874 }
2875 
2876 /*
2877  * ==========================================================================
2878  * I/O completion
2879  * ==========================================================================
2880  */
2881 static int
2882 zio_ready(zio_t *zio)
2883 {
2884         blkptr_t *bp = zio->io_bp;
2885         zio_t *pio, *pio_next;
2886 
2887         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2888             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2889                 return (ZIO_PIPELINE_STOP);
2890 
2891         if (zio->io_ready) {
2892                 ASSERT(IO_IS_ALLOCATING(zio));
2893                 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2894                     (zio->io_flags & ZIO_FLAG_NOPWRITE));
2895                 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2896 
2897                 zio->io_ready(zio);
2898         }
2899 
2900         if (bp != NULL && bp != &zio->io_bp_copy)
2901                 zio->io_bp_copy = *bp;
2902 
2903         if (zio->io_error)
2904                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2905 
2906         mutex_enter(&zio->io_lock);
2907         zio->io_state[ZIO_WAIT_READY] = 1;
2908         pio = zio_walk_parents(zio);
2909         mutex_exit(&zio->io_lock);
2910 
2911         /*
2912          * As we notify zio's parents, new parents could be added.
2913          * New parents go to the head of zio's io_parent_list, however,
2914          * so we will (correctly) not notify them.  The remainder of zio's
2915          * io_parent_list, from 'pio_next' onward, cannot change because
2916          * all parents must wait for us to be done before they can be done.
2917          */
2918         for (; pio != NULL; pio = pio_next) {
2919                 pio_next = zio_walk_parents(zio);
2920                 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2921         }
2922 
2923         if (zio->io_flags & ZIO_FLAG_NODATA) {
2924                 if (BP_IS_GANG(bp)) {
2925                         zio->io_flags &= ~ZIO_FLAG_NODATA;
2926                 } else {
2927                         ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2928                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2929                 }
2930         }
2931 
2932         if (zio_injection_enabled &&
2933             zio->io_spa->spa_syncing_txg == zio->io_txg)
2934                 zio_handle_ignored_writes(zio);
2935 
2936         return (ZIO_PIPELINE_CONTINUE);
2937 }
2938 
2939 static int
2940 zio_done(zio_t *zio)
2941 {
2942         spa_t *spa = zio->io_spa;
2943         zio_t *lio = zio->io_logical;
2944         blkptr_t *bp = zio->io_bp;
2945         vdev_t *vd = zio->io_vd;
2946         uint64_t psize = zio->io_size;
2947         zio_t *pio, *pio_next;
2948 
2949         /*
2950          * If our children haven't all completed,
2951          * wait for them and then repeat this pipeline stage.
2952          */
2953         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2954             zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2955             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2956             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2957                 return (ZIO_PIPELINE_STOP);
2958 
2959         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2960                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2961                         ASSERT(zio->io_children[c][w] == 0);
2962 
2963         if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
2964                 ASSERT(bp->blk_pad[0] == 0);
2965                 ASSERT(bp->blk_pad[1] == 0);
2966                 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2967                     (bp == zio_unique_parent(zio)->io_bp));
2968                 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2969                     zio->io_bp_override == NULL &&
2970                     !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2971                         ASSERT(!BP_SHOULD_BYTESWAP(bp));
2972                         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2973                         ASSERT(BP_COUNT_GANG(bp) == 0 ||
2974                             (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2975                 }
2976                 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2977                         VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2978         }
2979 
2980         /*
2981          * If there were child vdev/gang/ddt errors, they apply to us now.
2982          */
2983         zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2984         zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2985         zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2986 
2987         /*
2988          * If the I/O on the transformed data was successful, generate any
2989          * checksum reports now while we still have the transformed data.
2990          */
2991         if (zio->io_error == 0) {
2992                 while (zio->io_cksum_report != NULL) {
2993                         zio_cksum_report_t *zcr = zio->io_cksum_report;
2994                         uint64_t align = zcr->zcr_align;
2995                         uint64_t asize = P2ROUNDUP(psize, align);
2996                         char *abuf = zio->io_data;
2997 
2998                         if (asize != psize) {
2999                                 abuf = zio_buf_alloc(asize);
3000                                 bcopy(zio->io_data, abuf, psize);
3001                                 bzero(abuf + psize, asize - psize);
3002                         }
3003 
3004                         zio->io_cksum_report = zcr->zcr_next;
3005                         zcr->zcr_next = NULL;
3006                         zcr->zcr_finish(zcr, abuf);
3007                         zfs_ereport_free_checksum(zcr);
3008 
3009                         if (asize != psize)
3010                                 zio_buf_free(abuf, asize);
3011                 }
3012         }
3013 
3014         zio_pop_transforms(zio);        /* note: may set zio->io_error */
3015 
3016         vdev_stat_update(zio, psize);
3017 
3018         if (zio->io_error) {
3019                 /*
3020                  * If this I/O is attached to a particular vdev,
3021                  * generate an error message describing the I/O failure
3022                  * at the block level.  We ignore these errors if the
3023                  * device is currently unavailable.
3024                  */
3025                 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3026                         zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3027 
3028                 if ((zio->io_error == EIO || !(zio->io_flags &
3029                     (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3030                     zio == lio) {
3031                         /*
3032                          * For logical I/O requests, tell the SPA to log the
3033                          * error and generate a logical data ereport.
3034                          */
3035                         spa_log_error(spa, zio);
3036                         zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3037                             0, 0);
3038                 }
3039         }
3040 
3041         if (zio->io_error && zio == lio) {
3042                 /*
3043                  * Determine whether zio should be reexecuted.  This will
3044                  * propagate all the way to the root via zio_notify_parent().
3045                  */
3046                 ASSERT(vd == NULL && bp != NULL);
3047                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3048 
3049                 if (IO_IS_ALLOCATING(zio) &&
3050                     !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3051                         if (zio->io_error != ENOSPC)
3052                                 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3053                         else
3054                                 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3055                 }
3056 
3057                 if ((zio->io_type == ZIO_TYPE_READ ||
3058                     zio->io_type == ZIO_TYPE_FREE) &&
3059                     !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3060                     zio->io_error == ENXIO &&
3061                     spa_load_state(spa) == SPA_LOAD_NONE &&
3062                     spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3063                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3064 
3065                 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3066                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3067 
3068                 /*
3069                  * Here is a possibly good place to attempt to do
3070                  * either combinatorial reconstruction or error correction
3071                  * based on checksums.  It also might be a good place
3072                  * to send out preliminary ereports before we suspend
3073                  * processing.
3074                  */
3075         }
3076 
3077         /*
3078          * If there were logical child errors, they apply to us now.
3079          * We defer this until now to avoid conflating logical child
3080          * errors with errors that happened to the zio itself when
3081          * updating vdev stats and reporting FMA events above.
3082          */
3083         zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3084 
3085         if ((zio->io_error || zio->io_reexecute) &&
3086             IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3087             !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3088                 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3089 
3090         zio_gang_tree_free(&zio->io_gang_tree);
3091 
3092         /*
3093          * Godfather I/Os should never suspend.
3094          */
3095         if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3096             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3097                 zio->io_reexecute = 0;
3098 
3099         if (zio->io_reexecute) {
3100                 /*
3101                  * This is a logical I/O that wants to reexecute.
3102                  *
3103                  * Reexecute is top-down.  When an i/o fails, if it's not
3104                  * the root, it simply notifies its parent and sticks around.
3105                  * The parent, seeing that it still has children in zio_done(),
3106                  * does the same.  This percolates all the way up to the root.
3107                  * The root i/o will reexecute or suspend the entire tree.
3108                  *
3109                  * This approach ensures that zio_reexecute() honors
3110                  * all the original i/o dependency relationships, e.g.
3111                  * parents not executing until children are ready.
3112                  */
3113                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3114 
3115                 zio->io_gang_leader = NULL;
3116 
3117                 mutex_enter(&zio->io_lock);
3118                 zio->io_state[ZIO_WAIT_DONE] = 1;
3119                 mutex_exit(&zio->io_lock);
3120 
3121                 /*
3122                  * "The Godfather" I/O monitors its children but is
3123                  * not a true parent to them. It will track them through
3124                  * the pipeline but severs its ties whenever they get into
3125                  * trouble (e.g. suspended). This allows "The Godfather"
3126                  * I/O to return status without blocking.
3127                  */
3128                 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3129                         zio_link_t *zl = zio->io_walk_link;
3130                         pio_next = zio_walk_parents(zio);
3131 
3132                         if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3133                             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3134                                 zio_remove_child(pio, zio, zl);
3135                                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3136                         }
3137                 }
3138 
3139                 if ((pio = zio_unique_parent(zio)) != NULL) {
3140                         /*
3141                          * We're not a root i/o, so there's nothing to do
3142                          * but notify our parent.  Don't propagate errors
3143                          * upward since we haven't permanently failed yet.
3144                          */
3145                         ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3146                         zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3147                         zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3148                 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3149                         /*
3150                          * We'd fail again if we reexecuted now, so suspend
3151                          * until conditions improve (e.g. device comes online).
3152                          */
3153                         zio_suspend(spa, zio);
3154                 } else {
3155                         /*
3156                          * Reexecution is potentially a huge amount of work.
3157                          * Hand it off to the otherwise-unused claim taskq.
3158                          */
3159                         ASSERT(zio->io_tqent.tqent_next == NULL);
3160                         spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3161                             ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3162                             0, &zio->io_tqent);
3163                 }
3164                 return (ZIO_PIPELINE_STOP);
3165         }
3166 
3167         ASSERT(zio->io_child_count == 0);
3168         ASSERT(zio->io_reexecute == 0);
3169         ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3170 
3171         /*
3172          * Report any checksum errors, since the I/O is complete.
3173          */
3174         while (zio->io_cksum_report != NULL) {
3175                 zio_cksum_report_t *zcr = zio->io_cksum_report;
3176                 zio->io_cksum_report = zcr->zcr_next;
3177                 zcr->zcr_next = NULL;
3178                 zcr->zcr_finish(zcr, NULL);
3179                 zfs_ereport_free_checksum(zcr);
3180         }
3181 
3182         /*
3183          * It is the responsibility of the done callback to ensure that this
3184          * particular zio is no longer discoverable for adoption, and as
3185          * such, cannot acquire any new parents.
3186          */
3187         if (zio->io_done)
3188                 zio->io_done(zio);
3189 
3190         mutex_enter(&zio->io_lock);
3191         zio->io_state[ZIO_WAIT_DONE] = 1;
3192         mutex_exit(&zio->io_lock);
3193 
3194         for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3195                 zio_link_t *zl = zio->io_walk_link;
3196                 pio_next = zio_walk_parents(zio);
3197                 zio_remove_child(pio, zio, zl);
3198                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3199         }
3200 
3201         if (zio->io_waiter != NULL) {
3202                 mutex_enter(&zio->io_lock);
3203                 zio->io_executor = NULL;
3204                 cv_broadcast(&zio->io_cv);
3205                 mutex_exit(&zio->io_lock);
3206         } else {
3207                 zio_destroy(zio);
3208         }
3209 
3210         return (ZIO_PIPELINE_STOP);
3211 }
3212 
3213 /*
3214  * ==========================================================================
3215  * I/O pipeline definition
3216  * ==========================================================================
3217  */
3218 static zio_pipe_stage_t *zio_pipeline[] = {
3219         NULL,
3220         zio_read_bp_init,
3221         zio_free_bp_init,
3222         zio_issue_async,
3223         zio_write_bp_init,
3224         zio_checksum_generate,
3225         zio_nop_write,
3226         zio_ddt_read_start,
3227         zio_ddt_read_done,
3228         zio_ddt_write,
3229         zio_ddt_free,
3230         zio_gang_assemble,
3231         zio_gang_issue,
3232         zio_dva_allocate,
3233         zio_dva_free,
3234         zio_dva_claim,
3235         zio_ready,
3236         zio_vdev_io_start,
3237         zio_vdev_io_done,
3238         zio_vdev_io_assess,
3239         zio_checksum_verify,
3240         zio_done
3241 };
3242 
3243 /* dnp is the dnode for zb1->zb_object */
3244 boolean_t
3245 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3246     const zbookmark_phys_t *zb2)
3247 {
3248         uint64_t zb1nextL0, zb2thisobj;
3249 
3250         ASSERT(zb1->zb_objset == zb2->zb_objset);
3251         ASSERT(zb2->zb_level == 0);
3252 
3253         /* The objset_phys_t isn't before anything. */
3254         if (dnp == NULL)
3255                 return (B_FALSE);
3256 
3257         zb1nextL0 = (zb1->zb_blkid + 1) <<
3258             ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3259 
3260         zb2thisobj = zb2->zb_object ? zb2->zb_object :
3261             zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3262 
3263         if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3264                 uint64_t nextobj = zb1nextL0 *
3265                     (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3266                 return (nextobj <= zb2thisobj);
3267         }
3268 
3269         if (zb1->zb_object < zb2thisobj)
3270                 return (B_TRUE);
3271         if (zb1->zb_object > zb2thisobj)
3272                 return (B_FALSE);
3273         if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3274                 return (B_FALSE);
3275         return (zb1nextL0 <= zb2->zb_blkid);
3276 }