1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/zfeature.h> 78 #include <sys/dnlc.h> 79 #include <sys/zfs_rlock.h> 80 #include <sys/extdirent.h> 81 #include <sys/kidmap.h> 82 #include <sys/cred.h> 83 #include <sys/attr.h> 84 85 /* 86 * Programming rules. 87 * 88 * Each vnode op performs some logical unit of work. To do this, the ZPL must 89 * properly lock its in-core state, create a DMU transaction, do the work, 90 * record this work in the intent log (ZIL), commit the DMU transaction, 91 * and wait for the intent log to commit if it is a synchronous operation. 92 * Moreover, the vnode ops must work in both normal and log replay context. 93 * The ordering of events is important to avoid deadlocks and references 94 * to freed memory. The example below illustrates the following Big Rules: 95 * 96 * (1) A check must be made in each zfs thread for a mounted file system. 97 * This is done avoiding races using ZFS_ENTER(zfsvfs). 98 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 99 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 100 * can return EIO from the calling function. 101 * 102 * (2) VN_RELE() should always be the last thing except for zil_commit() 103 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 104 * First, if it's the last reference, the vnode/znode 105 * can be freed, so the zp may point to freed memory. Second, the last 106 * reference will call zfs_zinactive(), which may induce a lot of work -- 107 * pushing cached pages (which acquires range locks) and syncing out 108 * cached atime changes. Third, zfs_zinactive() may require a new tx, 109 * which could deadlock the system if you were already holding one. 110 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 111 * 112 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 113 * as they can span dmu_tx_assign() calls. 114 * 115 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 116 * dmu_tx_assign(). This is critical because we don't want to block 117 * while holding locks. 118 * 119 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 120 * reduces lock contention and CPU usage when we must wait (note that if 121 * throughput is constrained by the storage, nearly every transaction 122 * must wait). 123 * 124 * Note, in particular, that if a lock is sometimes acquired before 125 * the tx assigns, and sometimes after (e.g. z_lock), then failing 126 * to use a non-blocking assign can deadlock the system. The scenario: 127 * 128 * Thread A has grabbed a lock before calling dmu_tx_assign(). 129 * Thread B is in an already-assigned tx, and blocks for this lock. 130 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 131 * forever, because the previous txg can't quiesce until B's tx commits. 132 * 133 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 134 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 135 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 136 * to indicate that this operation has already called dmu_tx_wait(). 137 * This will ensure that we don't retry forever, waiting a short bit 138 * each time. 139 * 140 * (5) If the operation succeeded, generate the intent log entry for it 141 * before dropping locks. This ensures that the ordering of events 142 * in the intent log matches the order in which they actually occurred. 143 * During ZIL replay the zfs_log_* functions will update the sequence 144 * number to indicate the zil transaction has replayed. 145 * 146 * (6) At the end of each vnode op, the DMU tx must always commit, 147 * regardless of whether there were any errors. 148 * 149 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 150 * to ensure that synchronous semantics are provided when necessary. 151 * 152 * In general, this is how things should be ordered in each vnode op: 153 * 154 * ZFS_ENTER(zfsvfs); // exit if unmounted 155 * top: 156 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 157 * rw_enter(...); // grab any other locks you need 158 * tx = dmu_tx_create(...); // get DMU tx 159 * dmu_tx_hold_*(); // hold each object you might modify 160 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 161 * if (error) { 162 * rw_exit(...); // drop locks 163 * zfs_dirent_unlock(dl); // unlock directory entry 164 * VN_RELE(...); // release held vnodes 165 * if (error == ERESTART) { 166 * waited = B_TRUE; 167 * dmu_tx_wait(tx); 168 * dmu_tx_abort(tx); 169 * goto top; 170 * } 171 * dmu_tx_abort(tx); // abort DMU tx 172 * ZFS_EXIT(zfsvfs); // finished in zfs 173 * return (error); // really out of space 174 * } 175 * error = do_real_work(); // do whatever this VOP does 176 * if (error == 0) 177 * zfs_log_*(...); // on success, make ZIL entry 178 * dmu_tx_commit(tx); // commit DMU tx -- error or not 179 * rw_exit(...); // drop locks 180 * zfs_dirent_unlock(dl); // unlock directory entry 181 * VN_RELE(...); // release held vnodes 182 * zil_commit(zilog, foid); // synchronous when necessary 183 * ZFS_EXIT(zfsvfs); // finished in zfs 184 * return (error); // done, report error 185 */ 186 187 /* ARGSUSED */ 188 static int 189 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 190 { 191 znode_t *zp = VTOZ(*vpp); 192 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 193 194 ZFS_ENTER(zfsvfs); 195 ZFS_VERIFY_ZP(zp); 196 197 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 198 ((flag & FAPPEND) == 0)) { 199 ZFS_EXIT(zfsvfs); 200 return (SET_ERROR(EPERM)); 201 } 202 203 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 204 ZTOV(zp)->v_type == VREG && 205 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 206 if (fs_vscan(*vpp, cr, 0) != 0) { 207 ZFS_EXIT(zfsvfs); 208 return (SET_ERROR(EACCES)); 209 } 210 } 211 212 /* Keep a count of the synchronous opens in the znode */ 213 if (flag & (FSYNC | FDSYNC)) 214 atomic_inc_32(&zp->z_sync_cnt); 215 216 ZFS_EXIT(zfsvfs); 217 return (0); 218 } 219 220 /* ARGSUSED */ 221 static int 222 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 223 caller_context_t *ct) 224 { 225 znode_t *zp = VTOZ(vp); 226 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 227 228 /* 229 * Clean up any locks held by this process on the vp. 230 */ 231 cleanlocks(vp, ddi_get_pid(), 0); 232 cleanshares(vp, ddi_get_pid()); 233 234 ZFS_ENTER(zfsvfs); 235 ZFS_VERIFY_ZP(zp); 236 237 /* Decrement the synchronous opens in the znode */ 238 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 239 atomic_dec_32(&zp->z_sync_cnt); 240 241 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 242 ZTOV(zp)->v_type == VREG && 243 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 244 VERIFY(fs_vscan(vp, cr, 1) == 0); 245 246 ZFS_EXIT(zfsvfs); 247 return (0); 248 } 249 250 /* 251 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 252 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 253 */ 254 static int 255 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 256 { 257 znode_t *zp = VTOZ(vp); 258 uint64_t noff = (uint64_t)*off; /* new offset */ 259 uint64_t file_sz; 260 int error; 261 boolean_t hole; 262 263 file_sz = zp->z_size; 264 if (noff >= file_sz) { 265 return (SET_ERROR(ENXIO)); 266 } 267 268 if (cmd == _FIO_SEEK_HOLE) 269 hole = B_TRUE; 270 else 271 hole = B_FALSE; 272 273 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 274 275 if (error == ESRCH) 276 return (SET_ERROR(ENXIO)); 277 278 /* 279 * We could find a hole that begins after the logical end-of-file, 280 * because dmu_offset_next() only works on whole blocks. If the 281 * EOF falls mid-block, then indicate that the "virtual hole" 282 * at the end of the file begins at the logical EOF, rather than 283 * at the end of the last block. 284 */ 285 if (noff > file_sz) { 286 ASSERT(hole); 287 noff = file_sz; 288 } 289 290 if (noff < *off) 291 return (error); 292 *off = noff; 293 return (error); 294 } 295 296 297 static int zfs_zero_write(vnode_t *vp, uint64_t size, cred_t *cr, 298 caller_context_t *ct); 299 300 /* ARGSUSED */ 301 static int 302 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 303 int *rvalp, caller_context_t *ct) 304 { 305 offset_t off; 306 int error; 307 zfsvfs_t *zfsvfs; 308 znode_t *zp; 309 uint64_t size; 310 311 switch (com) { 312 case _FIOFFS: 313 return (zfs_sync(vp->v_vfsp, 0, cred)); 314 315 /* 316 * The following two ioctls are used by bfu. Faking out, 317 * necessary to avoid bfu errors. 318 */ 319 case _FIOGDIO: 320 case _FIOSDIO: 321 return (0); 322 323 case _FIO_SEEK_DATA: 324 case _FIO_SEEK_HOLE: 325 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 326 return (SET_ERROR(EFAULT)); 327 328 zp = VTOZ(vp); 329 zfsvfs = zp->z_zfsvfs; 330 ZFS_ENTER(zfsvfs); 331 ZFS_VERIFY_ZP(zp); 332 333 /* offset parameter is in/out */ 334 error = zfs_holey(vp, com, &off); 335 ZFS_EXIT(zfsvfs); 336 if (error) 337 return (error); 338 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 339 return (SET_ERROR(EFAULT)); 340 return (0); 341 case _FIO_RESERVE_SPACE: 342 if (ddi_copyin((void *)data, &size, sizeof (size), flag)) 343 return (EFAULT); 344 error = zfs_zero_write(vp, size, cred, ct); 345 return (error); 346 } 347 return (SET_ERROR(ENOTTY)); 348 } 349 350 /* 351 * Utility functions to map and unmap a single physical page. These 352 * are used to manage the mappable copies of ZFS file data, and therefore 353 * do not update ref/mod bits. 354 */ 355 caddr_t 356 zfs_map_page(page_t *pp, enum seg_rw rw) 357 { 358 if (kpm_enable) 359 return (hat_kpm_mapin(pp, 0)); 360 ASSERT(rw == S_READ || rw == S_WRITE); 361 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 362 (caddr_t)-1)); 363 } 364 365 void 366 zfs_unmap_page(page_t *pp, caddr_t addr) 367 { 368 if (kpm_enable) { 369 hat_kpm_mapout(pp, 0, addr); 370 } else { 371 ppmapout(addr); 372 } 373 } 374 375 /* 376 * When a file is memory mapped, we must keep the IO data synchronized 377 * between the DMU cache and the memory mapped pages. What this means: 378 * 379 * On Write: If we find a memory mapped page, we write to *both* 380 * the page and the dmu buffer. 381 */ 382 static void 383 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 384 { 385 int64_t off; 386 387 off = start & PAGEOFFSET; 388 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 389 page_t *pp; 390 uint64_t nbytes = MIN(PAGESIZE - off, len); 391 392 if (pp = page_lookup(vp, start, SE_SHARED)) { 393 caddr_t va; 394 395 va = zfs_map_page(pp, S_WRITE); 396 (void) dmu_read(os, oid, start+off, nbytes, va+off, 397 DMU_READ_PREFETCH); 398 zfs_unmap_page(pp, va); 399 page_unlock(pp); 400 } 401 len -= nbytes; 402 off = 0; 403 } 404 } 405 406 /* 407 * When a file is memory mapped, we must keep the IO data synchronized 408 * between the DMU cache and the memory mapped pages. What this means: 409 * 410 * On Read: We "read" preferentially from memory mapped pages, 411 * else we default from the dmu buffer. 412 * 413 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 414 * the file is memory mapped. 415 */ 416 static int 417 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 418 { 419 znode_t *zp = VTOZ(vp); 420 int64_t start, off; 421 int len = nbytes; 422 int error = 0; 423 424 start = uio->uio_loffset; 425 off = start & PAGEOFFSET; 426 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 427 page_t *pp; 428 uint64_t bytes = MIN(PAGESIZE - off, len); 429 430 if (pp = page_lookup(vp, start, SE_SHARED)) { 431 caddr_t va; 432 433 va = zfs_map_page(pp, S_READ); 434 error = uiomove(va + off, bytes, UIO_READ, uio); 435 zfs_unmap_page(pp, va); 436 page_unlock(pp); 437 } else { 438 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 439 uio, bytes); 440 } 441 len -= bytes; 442 off = 0; 443 if (error) 444 break; 445 } 446 return (error); 447 } 448 449 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 450 451 /* 452 * Read bytes from specified file into supplied buffer. 453 * 454 * IN: vp - vnode of file to be read from. 455 * uio - structure supplying read location, range info, 456 * and return buffer. 457 * ioflag - SYNC flags; used to provide FRSYNC semantics. 458 * cr - credentials of caller. 459 * ct - caller context 460 * 461 * OUT: uio - updated offset and range, buffer filled. 462 * 463 * RETURN: 0 on success, error code on failure. 464 * 465 * Side Effects: 466 * vp - atime updated if byte count > 0 467 */ 468 /* ARGSUSED */ 469 static int 470 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 471 { 472 znode_t *zp = VTOZ(vp); 473 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 474 ssize_t n, nbytes; 475 int error = 0; 476 rl_t *rl; 477 xuio_t *xuio = NULL; 478 479 ZFS_ENTER(zfsvfs); 480 ZFS_VERIFY_ZP(zp); 481 482 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 483 ZFS_EXIT(zfsvfs); 484 return (SET_ERROR(EACCES)); 485 } 486 487 /* 488 * Validate file offset 489 */ 490 if (uio->uio_loffset < (offset_t)0) { 491 ZFS_EXIT(zfsvfs); 492 return (SET_ERROR(EINVAL)); 493 } 494 495 /* 496 * Fasttrack empty reads 497 */ 498 if (uio->uio_resid == 0) { 499 ZFS_EXIT(zfsvfs); 500 return (0); 501 } 502 503 /* 504 * Check for mandatory locks 505 */ 506 if (MANDMODE(zp->z_mode)) { 507 if (error = chklock(vp, FREAD, 508 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 509 ZFS_EXIT(zfsvfs); 510 return (error); 511 } 512 } 513 514 /* 515 * If we're in FRSYNC mode, sync out this znode before reading it. 516 */ 517 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 518 zil_commit(zfsvfs->z_log, zp->z_id); 519 520 /* 521 * Lock the range against changes. 522 */ 523 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 524 525 /* 526 * If we are reading past end-of-file we can skip 527 * to the end; but we might still need to set atime. 528 */ 529 if (uio->uio_loffset >= zp->z_size) { 530 error = 0; 531 goto out; 532 } 533 534 ASSERT(uio->uio_loffset < zp->z_size); 535 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 536 537 if ((uio->uio_extflg == UIO_XUIO) && 538 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 539 int nblk; 540 int blksz = zp->z_blksz; 541 uint64_t offset = uio->uio_loffset; 542 543 xuio = (xuio_t *)uio; 544 if ((ISP2(blksz))) { 545 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 546 blksz)) / blksz; 547 } else { 548 ASSERT(offset + n <= blksz); 549 nblk = 1; 550 } 551 (void) dmu_xuio_init(xuio, nblk); 552 553 if (vn_has_cached_data(vp)) { 554 /* 555 * For simplicity, we always allocate a full buffer 556 * even if we only expect to read a portion of a block. 557 */ 558 while (--nblk >= 0) { 559 (void) dmu_xuio_add(xuio, 560 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 561 blksz), 0, blksz); 562 } 563 } 564 } 565 566 while (n > 0) { 567 nbytes = MIN(n, zfs_read_chunk_size - 568 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 569 570 if (vn_has_cached_data(vp)) { 571 error = mappedread(vp, nbytes, uio); 572 } else { 573 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 574 uio, nbytes); 575 } 576 if (error) { 577 /* convert checksum errors into IO errors */ 578 if (error == ECKSUM) 579 error = SET_ERROR(EIO); 580 break; 581 } 582 583 n -= nbytes; 584 } 585 out: 586 zfs_range_unlock(rl); 587 588 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 589 ZFS_EXIT(zfsvfs); 590 return (error); 591 } 592 593 /* 594 * Write the bytes to a file. 595 * 596 * IN: vp - vnode of file to be written to. 597 * uio - structure supplying write location, range info, 598 * and data buffer. 599 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 600 * set if in append mode. 601 * cr - credentials of caller. 602 * ct - caller context (NFS/CIFS fem monitor only) 603 * 604 * OUT: uio - updated offset and range. 605 * 606 * RETURN: 0 on success, error code on failure. 607 * 608 * Timestamps: 609 * vp - ctime|mtime updated if byte count > 0 610 */ 611 612 /* ARGSUSED */ 613 static int 614 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 615 { 616 znode_t *zp = VTOZ(vp); 617 rlim64_t limit = uio->uio_llimit; 618 ssize_t start_resid = uio->uio_resid; 619 ssize_t tx_bytes; 620 uint64_t end_size; 621 dmu_tx_t *tx; 622 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 623 zilog_t *zilog; 624 offset_t woff; 625 ssize_t n, nbytes; 626 rl_t *rl; 627 int max_blksz = zfsvfs->z_max_blksz; 628 int error = 0; 629 arc_buf_t *abuf; 630 iovec_t *aiov = NULL; 631 xuio_t *xuio = NULL; 632 int i_iov = 0; 633 int iovcnt = uio->uio_iovcnt; 634 iovec_t *iovp = uio->uio_iov; 635 int write_eof; 636 int count = 0; 637 sa_bulk_attr_t bulk[4]; 638 uint64_t mtime[2], ctime[2]; 639 640 /* 641 * Fasttrack empty write 642 */ 643 n = start_resid; 644 if (n == 0) 645 return (0); 646 647 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 648 limit = MAXOFFSET_T; 649 650 ZFS_ENTER(zfsvfs); 651 ZFS_VERIFY_ZP(zp); 652 653 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 654 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 655 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 656 &zp->z_size, 8); 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 658 &zp->z_pflags, 8); 659 660 /* 661 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 662 * callers might not be able to detect properly that we are read-only, 663 * so check it explicitly here. 664 */ 665 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 666 ZFS_EXIT(zfsvfs); 667 return (SET_ERROR(EROFS)); 668 } 669 670 /* 671 * If immutable or not appending then return EPERM 672 */ 673 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 674 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 675 (uio->uio_loffset < zp->z_size))) { 676 ZFS_EXIT(zfsvfs); 677 return (SET_ERROR(EPERM)); 678 } 679 680 zilog = zfsvfs->z_log; 681 682 /* 683 * Validate file offset 684 */ 685 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 686 if (woff < 0) { 687 ZFS_EXIT(zfsvfs); 688 return (SET_ERROR(EINVAL)); 689 } 690 691 /* 692 * Check for mandatory locks before calling zfs_range_lock() 693 * in order to prevent a deadlock with locks set via fcntl(). 694 */ 695 if (MANDMODE((mode_t)zp->z_mode) && 696 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 697 ZFS_EXIT(zfsvfs); 698 return (error); 699 } 700 701 /* 702 * Pre-fault the pages to ensure slow (eg NFS) pages 703 * don't hold up txg. 704 * Skip this if uio contains loaned arc_buf. 705 */ 706 if ((uio->uio_extflg == UIO_XUIO) && 707 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 708 xuio = (xuio_t *)uio; 709 else 710 uio_prefaultpages(MIN(n, max_blksz), uio); 711 712 /* 713 * If in append mode, set the io offset pointer to eof. 714 */ 715 if (ioflag & FAPPEND) { 716 /* 717 * Obtain an appending range lock to guarantee file append 718 * semantics. We reset the write offset once we have the lock. 719 */ 720 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 721 woff = rl->r_off; 722 if (rl->r_len == UINT64_MAX) { 723 /* 724 * We overlocked the file because this write will cause 725 * the file block size to increase. 726 * Note that zp_size cannot change with this lock held. 727 */ 728 woff = zp->z_size; 729 } 730 uio->uio_loffset = woff; 731 } else { 732 /* 733 * Note that if the file block size will change as a result of 734 * this write, then this range lock will lock the entire file 735 * so that we can re-write the block safely. 736 */ 737 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 738 } 739 740 if (woff >= limit) { 741 zfs_range_unlock(rl); 742 ZFS_EXIT(zfsvfs); 743 return (SET_ERROR(EFBIG)); 744 } 745 746 if ((woff + n) > limit || woff > (limit - n)) 747 n = limit - woff; 748 749 /* Will this write extend the file length? */ 750 write_eof = (woff + n > zp->z_size); 751 752 end_size = MAX(zp->z_size, woff + n); 753 754 /* 755 * Write the file in reasonable size chunks. Each chunk is written 756 * in a separate transaction; this keeps the intent log records small 757 * and allows us to do more fine-grained space accounting. 758 */ 759 while (n > 0) { 760 abuf = NULL; 761 woff = uio->uio_loffset; 762 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 763 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 764 if (abuf != NULL) 765 dmu_return_arcbuf(abuf); 766 error = SET_ERROR(EDQUOT); 767 break; 768 } 769 770 if (xuio && abuf == NULL) { 771 ASSERT(i_iov < iovcnt); 772 aiov = &iovp[i_iov]; 773 abuf = dmu_xuio_arcbuf(xuio, i_iov); 774 dmu_xuio_clear(xuio, i_iov); 775 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 776 iovec_t *, aiov, arc_buf_t *, abuf); 777 ASSERT((aiov->iov_base == abuf->b_data) || 778 ((char *)aiov->iov_base - (char *)abuf->b_data + 779 aiov->iov_len == arc_buf_size(abuf))); 780 i_iov++; 781 } else if (abuf == NULL && n >= max_blksz && 782 woff >= zp->z_size && 783 P2PHASE(woff, max_blksz) == 0 && 784 zp->z_blksz == max_blksz) { 785 /* 786 * This write covers a full block. "Borrow" a buffer 787 * from the dmu so that we can fill it before we enter 788 * a transaction. This avoids the possibility of 789 * holding up the transaction if the data copy hangs 790 * up on a pagefault (e.g., from an NFS server mapping). 791 */ 792 size_t cbytes; 793 794 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 795 max_blksz); 796 ASSERT(abuf != NULL); 797 ASSERT(arc_buf_size(abuf) == max_blksz); 798 if (error = uiocopy(abuf->b_data, max_blksz, 799 UIO_WRITE, uio, &cbytes)) { 800 dmu_return_arcbuf(abuf); 801 break; 802 } 803 ASSERT(cbytes == max_blksz); 804 } 805 806 /* 807 * Start a transaction. 808 */ 809 tx = dmu_tx_create(zfsvfs->z_os); 810 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 811 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 812 zfs_sa_upgrade_txholds(tx, zp); 813 error = dmu_tx_assign(tx, TXG_WAIT); 814 if (error) { 815 dmu_tx_abort(tx); 816 if (abuf != NULL) 817 dmu_return_arcbuf(abuf); 818 break; 819 } 820 821 /* 822 * If zfs_range_lock() over-locked we grow the blocksize 823 * and then reduce the lock range. This will only happen 824 * on the first iteration since zfs_range_reduce() will 825 * shrink down r_len to the appropriate size. 826 */ 827 if (rl->r_len == UINT64_MAX) { 828 uint64_t new_blksz; 829 830 if (zp->z_blksz > max_blksz) { 831 ASSERT(!ISP2(zp->z_blksz)); 832 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 833 } else { 834 new_blksz = MIN(end_size, max_blksz); 835 } 836 zfs_grow_blocksize(zp, new_blksz, tx); 837 zfs_range_reduce(rl, woff, n); 838 } 839 840 /* 841 * XXX - should we really limit each write to z_max_blksz? 842 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 843 */ 844 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 845 846 if (abuf == NULL) { 847 tx_bytes = uio->uio_resid; 848 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 849 uio, nbytes, tx); 850 tx_bytes -= uio->uio_resid; 851 } else { 852 tx_bytes = nbytes; 853 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 854 /* 855 * If this is not a full block write, but we are 856 * extending the file past EOF and this data starts 857 * block-aligned, use assign_arcbuf(). Otherwise, 858 * write via dmu_write(). 859 */ 860 if (tx_bytes < max_blksz && (!write_eof || 861 aiov->iov_base != abuf->b_data)) { 862 ASSERT(xuio); 863 dmu_write(zfsvfs->z_os, zp->z_id, woff, 864 aiov->iov_len, aiov->iov_base, tx); 865 dmu_return_arcbuf(abuf); 866 xuio_stat_wbuf_copied(); 867 } else { 868 ASSERT(xuio || tx_bytes == max_blksz); 869 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 870 woff, abuf, tx); 871 } 872 ASSERT(tx_bytes <= uio->uio_resid); 873 uioskip(uio, tx_bytes); 874 } 875 if (tx_bytes && vn_has_cached_data(vp)) { 876 update_pages(vp, woff, 877 tx_bytes, zfsvfs->z_os, zp->z_id); 878 } 879 880 /* 881 * If we made no progress, we're done. If we made even 882 * partial progress, update the znode and ZIL accordingly. 883 */ 884 if (tx_bytes == 0) { 885 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 886 (void *)&zp->z_size, sizeof (uint64_t), tx); 887 dmu_tx_commit(tx); 888 ASSERT(error != 0); 889 break; 890 } 891 892 /* 893 * Clear Set-UID/Set-GID bits on successful write if not 894 * privileged and at least one of the excute bits is set. 895 * 896 * It would be nice to to this after all writes have 897 * been done, but that would still expose the ISUID/ISGID 898 * to another app after the partial write is committed. 899 * 900 * Note: we don't call zfs_fuid_map_id() here because 901 * user 0 is not an ephemeral uid. 902 */ 903 mutex_enter(&zp->z_acl_lock); 904 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 905 (S_IXUSR >> 6))) != 0 && 906 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 907 secpolicy_vnode_setid_retain(cr, 908 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 909 uint64_t newmode; 910 zp->z_mode &= ~(S_ISUID | S_ISGID); 911 newmode = zp->z_mode; 912 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 913 (void *)&newmode, sizeof (uint64_t), tx); 914 } 915 mutex_exit(&zp->z_acl_lock); 916 917 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 918 B_TRUE); 919 920 /* 921 * Update the file size (zp_size) if it has changed; 922 * account for possible concurrent updates. 923 */ 924 while ((end_size = zp->z_size) < uio->uio_loffset) { 925 (void) atomic_cas_64(&zp->z_size, end_size, 926 uio->uio_loffset); 927 ASSERT(error == 0); 928 } 929 /* 930 * If we are replaying and eof is non zero then force 931 * the file size to the specified eof. Note, there's no 932 * concurrency during replay. 933 */ 934 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 935 zp->z_size = zfsvfs->z_replay_eof; 936 937 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 938 939 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 940 dmu_tx_commit(tx); 941 942 if (error != 0) 943 break; 944 ASSERT(tx_bytes == nbytes); 945 n -= nbytes; 946 947 if (!xuio && n > 0) 948 uio_prefaultpages(MIN(n, max_blksz), uio); 949 } 950 951 zfs_range_unlock(rl); 952 953 /* 954 * If we're in replay mode, or we made no progress, return error. 955 * Otherwise, it's at least a partial write, so it's successful. 956 */ 957 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 958 ZFS_EXIT(zfsvfs); 959 return (error); 960 } 961 962 if (ioflag & (FSYNC | FDSYNC) || 963 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 964 zil_commit(zilog, zp->z_id); 965 966 ZFS_EXIT(zfsvfs); 967 return (0); 968 } 969 970 #define ZFS_RESERVE_CHUNK (2 * 1024 * 1024) 971 /* ARGSUSED */ 972 static int 973 zfs_zero_write(vnode_t *vp, uint64_t size, cred_t *cr, caller_context_t *ct) 974 { 975 znode_t *zp = VTOZ(vp); 976 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 977 int count = 0; 978 sa_bulk_attr_t bulk[4]; 979 uint64_t mtime[2], ctime[2]; 980 rl_t *rl; 981 int error = 0; 982 dmu_tx_t *tx = NULL; 983 uint64_t end_size; 984 uint64_t pos = 0; 985 986 if (zp->z_size > 0) 987 return (EFBIG); 988 if (size == 0) 989 return (0); 990 991 ZFS_ENTER(zfsvfs); 992 ZFS_VERIFY_ZP(zp); 993 994 if (!spa_feature_is_enabled(zfsvfs->z_os->os_spa, 995 SPA_FEATURE_SPACE_RESERVATION)) 996 { 997 ZFS_EXIT(zfsvfs); 998 return (ENOTSUP); 999 } 1000 1001 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 1002 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 1003 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1004 &zp->z_size, 8); 1005 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1006 &zp->z_pflags, 8); 1007 1008 /* 1009 * If immutable or not appending then return EPERM 1010 */ 1011 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY))) { 1012 ZFS_EXIT(zfsvfs); 1013 return (EPERM); 1014 } 1015 1016 rl = zfs_range_lock(zp, 0, size, RL_WRITER); 1017 1018 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 1019 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 1020 error = EDQUOT; 1021 goto out; 1022 } 1023 1024 while (pos < size) { 1025 uint64_t length = size - pos; 1026 length = MIN(length, ZFS_RESERVE_CHUNK); 1027 again: 1028 tx = dmu_tx_create(zfsvfs->z_os); 1029 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1030 dmu_tx_hold_write(tx, zp->z_id, pos, length); 1031 zfs_sa_upgrade_txholds(tx, zp); 1032 error = dmu_tx_assign(tx, TXG_NOWAIT); 1033 if (error) { 1034 if (error == ERESTART) { 1035 dmu_tx_wait(tx); 1036 dmu_tx_abort(tx); 1037 goto again; 1038 } 1039 dmu_tx_abort(tx); 1040 goto out; 1041 } 1042 1043 if (pos == 0) 1044 zfs_grow_blocksize(zp, MIN(size, zfsvfs->z_max_blksz), tx); 1045 dmu_write_zero(zfsvfs->z_os, zp->z_id, pos, length, tx); 1046 1047 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1048 1049 pos += length; 1050 while ((end_size = zp->z_size) < pos) 1051 (void) atomic_cas_64(&zp->z_size, end_size, pos); 1052 1053 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1054 1055 dmu_tx_commit(tx); 1056 if (error) 1057 goto out; 1058 } 1059 out: 1060 zfs_range_unlock(rl); 1061 ZFS_EXIT(zfsvfs); 1062 1063 return (error); 1064 } 1065 1066 void 1067 zfs_get_done(zgd_t *zgd, int error) 1068 { 1069 znode_t *zp = zgd->zgd_private; 1070 objset_t *os = zp->z_zfsvfs->z_os; 1071 1072 if (zgd->zgd_db) 1073 dmu_buf_rele(zgd->zgd_db, zgd); 1074 1075 zfs_range_unlock(zgd->zgd_rl); 1076 1077 /* 1078 * Release the vnode asynchronously as we currently have the 1079 * txg stopped from syncing. 1080 */ 1081 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1082 1083 if (error == 0 && zgd->zgd_bp) 1084 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1085 1086 kmem_free(zgd, sizeof (zgd_t)); 1087 } 1088 1089 #ifdef DEBUG 1090 static int zil_fault_io = 0; 1091 #endif 1092 1093 /* 1094 * Get data to generate a TX_WRITE intent log record. 1095 */ 1096 int 1097 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1098 { 1099 zfsvfs_t *zfsvfs = arg; 1100 objset_t *os = zfsvfs->z_os; 1101 znode_t *zp; 1102 uint64_t object = lr->lr_foid; 1103 uint64_t offset = lr->lr_offset; 1104 uint64_t size = lr->lr_length; 1105 blkptr_t *bp = &lr->lr_blkptr; 1106 dmu_buf_t *db; 1107 zgd_t *zgd; 1108 int error = 0; 1109 1110 ASSERT(zio != NULL); 1111 ASSERT(size != 0); 1112 1113 /* 1114 * Nothing to do if the file has been removed 1115 */ 1116 if (zfs_zget(zfsvfs, object, &zp) != 0) 1117 return (SET_ERROR(ENOENT)); 1118 if (zp->z_unlinked) { 1119 /* 1120 * Release the vnode asynchronously as we currently have the 1121 * txg stopped from syncing. 1122 */ 1123 VN_RELE_ASYNC(ZTOV(zp), 1124 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1125 return (SET_ERROR(ENOENT)); 1126 } 1127 1128 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1129 zgd->zgd_zilog = zfsvfs->z_log; 1130 zgd->zgd_private = zp; 1131 1132 /* 1133 * Write records come in two flavors: immediate and indirect. 1134 * For small writes it's cheaper to store the data with the 1135 * log record (immediate); for large writes it's cheaper to 1136 * sync the data and get a pointer to it (indirect) so that 1137 * we don't have to write the data twice. 1138 */ 1139 if (buf != NULL) { /* immediate write */ 1140 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1141 /* test for truncation needs to be done while range locked */ 1142 if (offset >= zp->z_size) { 1143 error = SET_ERROR(ENOENT); 1144 } else { 1145 error = dmu_read(os, object, offset, size, buf, 1146 DMU_READ_NO_PREFETCH); 1147 } 1148 ASSERT(error == 0 || error == ENOENT); 1149 } else { /* indirect write */ 1150 /* 1151 * Have to lock the whole block to ensure when it's 1152 * written out and it's checksum is being calculated 1153 * that no one can change the data. We need to re-check 1154 * blocksize after we get the lock in case it's changed! 1155 */ 1156 for (;;) { 1157 uint64_t blkoff; 1158 size = zp->z_blksz; 1159 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1160 offset -= blkoff; 1161 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1162 RL_READER); 1163 if (zp->z_blksz == size) 1164 break; 1165 offset += blkoff; 1166 zfs_range_unlock(zgd->zgd_rl); 1167 } 1168 /* test for truncation needs to be done while range locked */ 1169 if (lr->lr_offset >= zp->z_size) 1170 error = SET_ERROR(ENOENT); 1171 #ifdef DEBUG 1172 if (zil_fault_io) { 1173 error = SET_ERROR(EIO); 1174 zil_fault_io = 0; 1175 } 1176 #endif 1177 if (error == 0) 1178 error = dmu_buf_hold(os, object, offset, zgd, &db, 1179 DMU_READ_NO_PREFETCH); 1180 1181 if (error == 0) { 1182 blkptr_t *obp = dmu_buf_get_blkptr(db); 1183 if (obp) { 1184 ASSERT(BP_IS_HOLE(bp)); 1185 *bp = *obp; 1186 } 1187 1188 zgd->zgd_db = db; 1189 zgd->zgd_bp = bp; 1190 1191 ASSERT(db->db_offset == offset); 1192 ASSERT(db->db_size == size); 1193 1194 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1195 zfs_get_done, zgd); 1196 ASSERT(error || lr->lr_length <= zp->z_blksz); 1197 1198 /* 1199 * On success, we need to wait for the write I/O 1200 * initiated by dmu_sync() to complete before we can 1201 * release this dbuf. We will finish everything up 1202 * in the zfs_get_done() callback. 1203 */ 1204 if (error == 0) 1205 return (0); 1206 1207 if (error == EALREADY) { 1208 lr->lr_common.lrc_txtype = TX_WRITE2; 1209 error = 0; 1210 } 1211 } 1212 } 1213 1214 zfs_get_done(zgd, error); 1215 1216 return (error); 1217 } 1218 1219 /*ARGSUSED*/ 1220 static int 1221 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1222 caller_context_t *ct) 1223 { 1224 znode_t *zp = VTOZ(vp); 1225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1226 int error; 1227 1228 ZFS_ENTER(zfsvfs); 1229 ZFS_VERIFY_ZP(zp); 1230 1231 if (flag & V_ACE_MASK) 1232 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1233 else 1234 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1235 1236 ZFS_EXIT(zfsvfs); 1237 return (error); 1238 } 1239 1240 /* 1241 * If vnode is for a device return a specfs vnode instead. 1242 */ 1243 static int 1244 specvp_check(vnode_t **vpp, cred_t *cr) 1245 { 1246 int error = 0; 1247 1248 if (IS_DEVVP(*vpp)) { 1249 struct vnode *svp; 1250 1251 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1252 VN_RELE(*vpp); 1253 if (svp == NULL) 1254 error = SET_ERROR(ENOSYS); 1255 *vpp = svp; 1256 } 1257 return (error); 1258 } 1259 1260 1261 /* 1262 * Lookup an entry in a directory, or an extended attribute directory. 1263 * If it exists, return a held vnode reference for it. 1264 * 1265 * IN: dvp - vnode of directory to search. 1266 * nm - name of entry to lookup. 1267 * pnp - full pathname to lookup [UNUSED]. 1268 * flags - LOOKUP_XATTR set if looking for an attribute. 1269 * rdir - root directory vnode [UNUSED]. 1270 * cr - credentials of caller. 1271 * ct - caller context 1272 * direntflags - directory lookup flags 1273 * realpnp - returned pathname. 1274 * 1275 * OUT: vpp - vnode of located entry, NULL if not found. 1276 * 1277 * RETURN: 0 on success, error code on failure. 1278 * 1279 * Timestamps: 1280 * NA 1281 */ 1282 /* ARGSUSED */ 1283 static int 1284 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1285 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1286 int *direntflags, pathname_t *realpnp) 1287 { 1288 znode_t *zdp = VTOZ(dvp); 1289 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1290 int error = 0; 1291 1292 /* fast path */ 1293 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1294 1295 if (dvp->v_type != VDIR) { 1296 return (SET_ERROR(ENOTDIR)); 1297 } else if (zdp->z_sa_hdl == NULL) { 1298 return (SET_ERROR(EIO)); 1299 } 1300 1301 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1302 error = zfs_fastaccesschk_execute(zdp, cr); 1303 if (!error) { 1304 *vpp = dvp; 1305 VN_HOLD(*vpp); 1306 return (0); 1307 } 1308 return (error); 1309 } else { 1310 vnode_t *tvp = dnlc_lookup(dvp, nm); 1311 1312 if (tvp) { 1313 error = zfs_fastaccesschk_execute(zdp, cr); 1314 if (error) { 1315 VN_RELE(tvp); 1316 return (error); 1317 } 1318 if (tvp == DNLC_NO_VNODE) { 1319 VN_RELE(tvp); 1320 return (SET_ERROR(ENOENT)); 1321 } else { 1322 *vpp = tvp; 1323 return (specvp_check(vpp, cr)); 1324 } 1325 } 1326 } 1327 } 1328 1329 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1330 1331 ZFS_ENTER(zfsvfs); 1332 ZFS_VERIFY_ZP(zdp); 1333 1334 *vpp = NULL; 1335 1336 if (flags & LOOKUP_XATTR) { 1337 /* 1338 * If the xattr property is off, refuse the lookup request. 1339 */ 1340 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1341 ZFS_EXIT(zfsvfs); 1342 return (SET_ERROR(EINVAL)); 1343 } 1344 1345 /* 1346 * We don't allow recursive attributes.. 1347 * Maybe someday we will. 1348 */ 1349 if (zdp->z_pflags & ZFS_XATTR) { 1350 ZFS_EXIT(zfsvfs); 1351 return (SET_ERROR(EINVAL)); 1352 } 1353 1354 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1355 ZFS_EXIT(zfsvfs); 1356 return (error); 1357 } 1358 1359 /* 1360 * Do we have permission to get into attribute directory? 1361 */ 1362 1363 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1364 B_FALSE, cr)) { 1365 VN_RELE(*vpp); 1366 *vpp = NULL; 1367 } 1368 1369 ZFS_EXIT(zfsvfs); 1370 return (error); 1371 } 1372 1373 if (dvp->v_type != VDIR) { 1374 ZFS_EXIT(zfsvfs); 1375 return (SET_ERROR(ENOTDIR)); 1376 } 1377 1378 /* 1379 * Check accessibility of directory. 1380 */ 1381 1382 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1383 ZFS_EXIT(zfsvfs); 1384 return (error); 1385 } 1386 1387 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1388 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1389 ZFS_EXIT(zfsvfs); 1390 return (SET_ERROR(EILSEQ)); 1391 } 1392 1393 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1394 if (error == 0) 1395 error = specvp_check(vpp, cr); 1396 1397 ZFS_EXIT(zfsvfs); 1398 return (error); 1399 } 1400 1401 /* 1402 * Attempt to create a new entry in a directory. If the entry 1403 * already exists, truncate the file if permissible, else return 1404 * an error. Return the vp of the created or trunc'd file. 1405 * 1406 * IN: dvp - vnode of directory to put new file entry in. 1407 * name - name of new file entry. 1408 * vap - attributes of new file. 1409 * excl - flag indicating exclusive or non-exclusive mode. 1410 * mode - mode to open file with. 1411 * cr - credentials of caller. 1412 * flag - large file flag [UNUSED]. 1413 * ct - caller context 1414 * vsecp - ACL to be set 1415 * 1416 * OUT: vpp - vnode of created or trunc'd entry. 1417 * 1418 * RETURN: 0 on success, error code on failure. 1419 * 1420 * Timestamps: 1421 * dvp - ctime|mtime updated if new entry created 1422 * vp - ctime|mtime always, atime if new 1423 */ 1424 1425 /* ARGSUSED */ 1426 static int 1427 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1428 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1429 vsecattr_t *vsecp) 1430 { 1431 znode_t *zp, *dzp = VTOZ(dvp); 1432 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1433 zilog_t *zilog; 1434 objset_t *os; 1435 zfs_dirlock_t *dl; 1436 dmu_tx_t *tx; 1437 int error; 1438 ksid_t *ksid; 1439 uid_t uid; 1440 gid_t gid = crgetgid(cr); 1441 zfs_acl_ids_t acl_ids; 1442 boolean_t fuid_dirtied; 1443 boolean_t have_acl = B_FALSE; 1444 boolean_t waited = B_FALSE; 1445 1446 /* 1447 * If we have an ephemeral id, ACL, or XVATTR then 1448 * make sure file system is at proper version 1449 */ 1450 1451 ksid = crgetsid(cr, KSID_OWNER); 1452 if (ksid) 1453 uid = ksid_getid(ksid); 1454 else 1455 uid = crgetuid(cr); 1456 1457 if (zfsvfs->z_use_fuids == B_FALSE && 1458 (vsecp || (vap->va_mask & AT_XVATTR) || 1459 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1460 return (SET_ERROR(EINVAL)); 1461 1462 ZFS_ENTER(zfsvfs); 1463 ZFS_VERIFY_ZP(dzp); 1464 os = zfsvfs->z_os; 1465 zilog = zfsvfs->z_log; 1466 1467 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1468 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1469 ZFS_EXIT(zfsvfs); 1470 return (SET_ERROR(EILSEQ)); 1471 } 1472 1473 if (vap->va_mask & AT_XVATTR) { 1474 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1475 crgetuid(cr), cr, vap->va_type)) != 0) { 1476 ZFS_EXIT(zfsvfs); 1477 return (error); 1478 } 1479 } 1480 top: 1481 *vpp = NULL; 1482 1483 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1484 vap->va_mode &= ~VSVTX; 1485 1486 if (*name == '\0') { 1487 /* 1488 * Null component name refers to the directory itself. 1489 */ 1490 VN_HOLD(dvp); 1491 zp = dzp; 1492 dl = NULL; 1493 error = 0; 1494 } else { 1495 /* possible VN_HOLD(zp) */ 1496 int zflg = 0; 1497 1498 if (flag & FIGNORECASE) 1499 zflg |= ZCILOOK; 1500 1501 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1502 NULL, NULL); 1503 if (error) { 1504 if (have_acl) 1505 zfs_acl_ids_free(&acl_ids); 1506 if (strcmp(name, "..") == 0) 1507 error = SET_ERROR(EISDIR); 1508 ZFS_EXIT(zfsvfs); 1509 return (error); 1510 } 1511 } 1512 1513 if (zp == NULL) { 1514 uint64_t txtype; 1515 1516 /* 1517 * Create a new file object and update the directory 1518 * to reference it. 1519 */ 1520 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1521 if (have_acl) 1522 zfs_acl_ids_free(&acl_ids); 1523 goto out; 1524 } 1525 1526 /* 1527 * We only support the creation of regular files in 1528 * extended attribute directories. 1529 */ 1530 1531 if ((dzp->z_pflags & ZFS_XATTR) && 1532 (vap->va_type != VREG)) { 1533 if (have_acl) 1534 zfs_acl_ids_free(&acl_ids); 1535 error = SET_ERROR(EINVAL); 1536 goto out; 1537 } 1538 1539 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1540 cr, vsecp, &acl_ids)) != 0) 1541 goto out; 1542 have_acl = B_TRUE; 1543 1544 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1545 zfs_acl_ids_free(&acl_ids); 1546 error = SET_ERROR(EDQUOT); 1547 goto out; 1548 } 1549 1550 tx = dmu_tx_create(os); 1551 1552 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1553 ZFS_SA_BASE_ATTR_SIZE); 1554 1555 fuid_dirtied = zfsvfs->z_fuid_dirty; 1556 if (fuid_dirtied) 1557 zfs_fuid_txhold(zfsvfs, tx); 1558 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1559 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1560 if (!zfsvfs->z_use_sa && 1561 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1562 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1563 0, acl_ids.z_aclp->z_acl_bytes); 1564 } 1565 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1566 if (error) { 1567 zfs_dirent_unlock(dl); 1568 if (error == ERESTART) { 1569 waited = B_TRUE; 1570 dmu_tx_wait(tx); 1571 dmu_tx_abort(tx); 1572 goto top; 1573 } 1574 zfs_acl_ids_free(&acl_ids); 1575 dmu_tx_abort(tx); 1576 ZFS_EXIT(zfsvfs); 1577 return (error); 1578 } 1579 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1580 1581 if (fuid_dirtied) 1582 zfs_fuid_sync(zfsvfs, tx); 1583 1584 (void) zfs_link_create(dl, zp, tx, ZNEW); 1585 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1586 if (flag & FIGNORECASE) 1587 txtype |= TX_CI; 1588 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1589 vsecp, acl_ids.z_fuidp, vap); 1590 zfs_acl_ids_free(&acl_ids); 1591 dmu_tx_commit(tx); 1592 } else { 1593 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1594 1595 if (have_acl) 1596 zfs_acl_ids_free(&acl_ids); 1597 have_acl = B_FALSE; 1598 1599 /* 1600 * A directory entry already exists for this name. 1601 */ 1602 /* 1603 * Can't truncate an existing file if in exclusive mode. 1604 */ 1605 if (excl == EXCL) { 1606 error = SET_ERROR(EEXIST); 1607 goto out; 1608 } 1609 /* 1610 * Can't open a directory for writing. 1611 */ 1612 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1613 error = SET_ERROR(EISDIR); 1614 goto out; 1615 } 1616 /* 1617 * Verify requested access to file. 1618 */ 1619 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1620 goto out; 1621 } 1622 1623 mutex_enter(&dzp->z_lock); 1624 dzp->z_seq++; 1625 mutex_exit(&dzp->z_lock); 1626 1627 /* 1628 * Truncate regular files if requested. 1629 */ 1630 if ((ZTOV(zp)->v_type == VREG) && 1631 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1632 /* we can't hold any locks when calling zfs_freesp() */ 1633 zfs_dirent_unlock(dl); 1634 dl = NULL; 1635 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1636 if (error == 0) { 1637 vnevent_create(ZTOV(zp), ct); 1638 } 1639 } 1640 } 1641 out: 1642 1643 if (dl) 1644 zfs_dirent_unlock(dl); 1645 1646 if (error) { 1647 if (zp) 1648 VN_RELE(ZTOV(zp)); 1649 } else { 1650 *vpp = ZTOV(zp); 1651 error = specvp_check(vpp, cr); 1652 } 1653 1654 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1655 zil_commit(zilog, 0); 1656 1657 ZFS_EXIT(zfsvfs); 1658 return (error); 1659 } 1660 1661 /* 1662 * Remove an entry from a directory. 1663 * 1664 * IN: dvp - vnode of directory to remove entry from. 1665 * name - name of entry to remove. 1666 * cr - credentials of caller. 1667 * ct - caller context 1668 * flags - case flags 1669 * 1670 * RETURN: 0 on success, error code on failure. 1671 * 1672 * Timestamps: 1673 * dvp - ctime|mtime 1674 * vp - ctime (if nlink > 0) 1675 */ 1676 1677 uint64_t null_xattr = 0; 1678 1679 /*ARGSUSED*/ 1680 static int 1681 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1682 int flags) 1683 { 1684 znode_t *zp, *dzp = VTOZ(dvp); 1685 znode_t *xzp; 1686 vnode_t *vp; 1687 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1688 zilog_t *zilog; 1689 uint64_t acl_obj, xattr_obj; 1690 uint64_t xattr_obj_unlinked = 0; 1691 uint64_t obj = 0; 1692 zfs_dirlock_t *dl; 1693 dmu_tx_t *tx; 1694 boolean_t may_delete_now, delete_now = FALSE; 1695 boolean_t unlinked, toobig = FALSE; 1696 uint64_t txtype; 1697 pathname_t *realnmp = NULL; 1698 pathname_t realnm; 1699 int error; 1700 int zflg = ZEXISTS; 1701 boolean_t waited = B_FALSE; 1702 1703 ZFS_ENTER(zfsvfs); 1704 ZFS_VERIFY_ZP(dzp); 1705 zilog = zfsvfs->z_log; 1706 1707 if (flags & FIGNORECASE) { 1708 zflg |= ZCILOOK; 1709 pn_alloc(&realnm); 1710 realnmp = &realnm; 1711 } 1712 1713 top: 1714 xattr_obj = 0; 1715 xzp = NULL; 1716 /* 1717 * Attempt to lock directory; fail if entry doesn't exist. 1718 */ 1719 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1720 NULL, realnmp)) { 1721 if (realnmp) 1722 pn_free(realnmp); 1723 ZFS_EXIT(zfsvfs); 1724 return (error); 1725 } 1726 1727 vp = ZTOV(zp); 1728 1729 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1730 goto out; 1731 } 1732 1733 /* 1734 * Need to use rmdir for removing directories. 1735 */ 1736 if (vp->v_type == VDIR) { 1737 error = SET_ERROR(EPERM); 1738 goto out; 1739 } 1740 1741 vnevent_remove(vp, dvp, name, ct); 1742 1743 if (realnmp) 1744 dnlc_remove(dvp, realnmp->pn_buf); 1745 else 1746 dnlc_remove(dvp, name); 1747 1748 mutex_enter(&vp->v_lock); 1749 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1750 mutex_exit(&vp->v_lock); 1751 1752 /* 1753 * We may delete the znode now, or we may put it in the unlinked set; 1754 * it depends on whether we're the last link, and on whether there are 1755 * other holds on the vnode. So we dmu_tx_hold() the right things to 1756 * allow for either case. 1757 */ 1758 obj = zp->z_id; 1759 tx = dmu_tx_create(zfsvfs->z_os); 1760 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1761 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1762 zfs_sa_upgrade_txholds(tx, zp); 1763 zfs_sa_upgrade_txholds(tx, dzp); 1764 if (may_delete_now) { 1765 toobig = 1766 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1767 /* if the file is too big, only hold_free a token amount */ 1768 dmu_tx_hold_free(tx, zp->z_id, 0, 1769 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1770 } 1771 1772 /* are there any extended attributes? */ 1773 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1774 &xattr_obj, sizeof (xattr_obj)); 1775 if (error == 0 && xattr_obj) { 1776 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1777 ASSERT0(error); 1778 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1779 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1780 } 1781 1782 mutex_enter(&zp->z_lock); 1783 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1784 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1785 mutex_exit(&zp->z_lock); 1786 1787 /* charge as an update -- would be nice not to charge at all */ 1788 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1789 1790 /* 1791 * Mark this transaction as typically resulting in a net free of 1792 * space, unless object removal will be delayed indefinitely 1793 * (due to active holds on the vnode due to the file being open). 1794 */ 1795 if (may_delete_now) 1796 dmu_tx_mark_netfree(tx); 1797 1798 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1799 if (error) { 1800 zfs_dirent_unlock(dl); 1801 VN_RELE(vp); 1802 if (xzp) 1803 VN_RELE(ZTOV(xzp)); 1804 if (error == ERESTART) { 1805 waited = B_TRUE; 1806 dmu_tx_wait(tx); 1807 dmu_tx_abort(tx); 1808 goto top; 1809 } 1810 if (realnmp) 1811 pn_free(realnmp); 1812 dmu_tx_abort(tx); 1813 ZFS_EXIT(zfsvfs); 1814 return (error); 1815 } 1816 1817 /* 1818 * Remove the directory entry. 1819 */ 1820 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1821 1822 if (error) { 1823 dmu_tx_commit(tx); 1824 goto out; 1825 } 1826 1827 if (unlinked) { 1828 /* 1829 * Hold z_lock so that we can make sure that the ACL obj 1830 * hasn't changed. Could have been deleted due to 1831 * zfs_sa_upgrade(). 1832 */ 1833 mutex_enter(&zp->z_lock); 1834 mutex_enter(&vp->v_lock); 1835 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1836 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1837 delete_now = may_delete_now && !toobig && 1838 vp->v_count == 1 && !vn_has_cached_data(vp) && 1839 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1840 acl_obj; 1841 mutex_exit(&vp->v_lock); 1842 } 1843 1844 if (delete_now) { 1845 if (xattr_obj_unlinked) { 1846 ASSERT3U(xzp->z_links, ==, 2); 1847 mutex_enter(&xzp->z_lock); 1848 xzp->z_unlinked = 1; 1849 xzp->z_links = 0; 1850 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1851 &xzp->z_links, sizeof (xzp->z_links), tx); 1852 ASSERT3U(error, ==, 0); 1853 mutex_exit(&xzp->z_lock); 1854 zfs_unlinked_add(xzp, tx); 1855 1856 if (zp->z_is_sa) 1857 error = sa_remove(zp->z_sa_hdl, 1858 SA_ZPL_XATTR(zfsvfs), tx); 1859 else 1860 error = sa_update(zp->z_sa_hdl, 1861 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1862 sizeof (uint64_t), tx); 1863 ASSERT0(error); 1864 } 1865 mutex_enter(&vp->v_lock); 1866 vp->v_count--; 1867 ASSERT0(vp->v_count); 1868 mutex_exit(&vp->v_lock); 1869 mutex_exit(&zp->z_lock); 1870 zfs_znode_delete(zp, tx); 1871 } else if (unlinked) { 1872 mutex_exit(&zp->z_lock); 1873 zfs_unlinked_add(zp, tx); 1874 } 1875 1876 txtype = TX_REMOVE; 1877 if (flags & FIGNORECASE) 1878 txtype |= TX_CI; 1879 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1880 1881 dmu_tx_commit(tx); 1882 out: 1883 if (realnmp) 1884 pn_free(realnmp); 1885 1886 zfs_dirent_unlock(dl); 1887 1888 if (!delete_now) 1889 VN_RELE(vp); 1890 if (xzp) 1891 VN_RELE(ZTOV(xzp)); 1892 1893 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1894 zil_commit(zilog, 0); 1895 1896 ZFS_EXIT(zfsvfs); 1897 return (error); 1898 } 1899 1900 /* 1901 * Create a new directory and insert it into dvp using the name 1902 * provided. Return a pointer to the inserted directory. 1903 * 1904 * IN: dvp - vnode of directory to add subdir to. 1905 * dirname - name of new directory. 1906 * vap - attributes of new directory. 1907 * cr - credentials of caller. 1908 * ct - caller context 1909 * flags - case flags 1910 * vsecp - ACL to be set 1911 * 1912 * OUT: vpp - vnode of created directory. 1913 * 1914 * RETURN: 0 on success, error code on failure. 1915 * 1916 * Timestamps: 1917 * dvp - ctime|mtime updated 1918 * vp - ctime|mtime|atime updated 1919 */ 1920 /*ARGSUSED*/ 1921 static int 1922 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1923 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1924 { 1925 znode_t *zp, *dzp = VTOZ(dvp); 1926 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1927 zilog_t *zilog; 1928 zfs_dirlock_t *dl; 1929 uint64_t txtype; 1930 dmu_tx_t *tx; 1931 int error; 1932 int zf = ZNEW; 1933 ksid_t *ksid; 1934 uid_t uid; 1935 gid_t gid = crgetgid(cr); 1936 zfs_acl_ids_t acl_ids; 1937 boolean_t fuid_dirtied; 1938 boolean_t waited = B_FALSE; 1939 1940 ASSERT(vap->va_type == VDIR); 1941 1942 /* 1943 * If we have an ephemeral id, ACL, or XVATTR then 1944 * make sure file system is at proper version 1945 */ 1946 1947 ksid = crgetsid(cr, KSID_OWNER); 1948 if (ksid) 1949 uid = ksid_getid(ksid); 1950 else 1951 uid = crgetuid(cr); 1952 if (zfsvfs->z_use_fuids == B_FALSE && 1953 (vsecp || (vap->va_mask & AT_XVATTR) || 1954 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1955 return (SET_ERROR(EINVAL)); 1956 1957 ZFS_ENTER(zfsvfs); 1958 ZFS_VERIFY_ZP(dzp); 1959 zilog = zfsvfs->z_log; 1960 1961 if (dzp->z_pflags & ZFS_XATTR) { 1962 ZFS_EXIT(zfsvfs); 1963 return (SET_ERROR(EINVAL)); 1964 } 1965 1966 if (zfsvfs->z_utf8 && u8_validate(dirname, 1967 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1968 ZFS_EXIT(zfsvfs); 1969 return (SET_ERROR(EILSEQ)); 1970 } 1971 if (flags & FIGNORECASE) 1972 zf |= ZCILOOK; 1973 1974 if (vap->va_mask & AT_XVATTR) { 1975 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1976 crgetuid(cr), cr, vap->va_type)) != 0) { 1977 ZFS_EXIT(zfsvfs); 1978 return (error); 1979 } 1980 } 1981 1982 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1983 vsecp, &acl_ids)) != 0) { 1984 ZFS_EXIT(zfsvfs); 1985 return (error); 1986 } 1987 /* 1988 * First make sure the new directory doesn't exist. 1989 * 1990 * Existence is checked first to make sure we don't return 1991 * EACCES instead of EEXIST which can cause some applications 1992 * to fail. 1993 */ 1994 top: 1995 *vpp = NULL; 1996 1997 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1998 NULL, NULL)) { 1999 zfs_acl_ids_free(&acl_ids); 2000 ZFS_EXIT(zfsvfs); 2001 return (error); 2002 } 2003 2004 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 2005 zfs_acl_ids_free(&acl_ids); 2006 zfs_dirent_unlock(dl); 2007 ZFS_EXIT(zfsvfs); 2008 return (error); 2009 } 2010 2011 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 2012 zfs_acl_ids_free(&acl_ids); 2013 zfs_dirent_unlock(dl); 2014 ZFS_EXIT(zfsvfs); 2015 return (SET_ERROR(EDQUOT)); 2016 } 2017 2018 /* 2019 * Add a new entry to the directory. 2020 */ 2021 tx = dmu_tx_create(zfsvfs->z_os); 2022 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 2023 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2024 fuid_dirtied = zfsvfs->z_fuid_dirty; 2025 if (fuid_dirtied) 2026 zfs_fuid_txhold(zfsvfs, tx); 2027 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2028 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2029 acl_ids.z_aclp->z_acl_bytes); 2030 } 2031 2032 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 2033 ZFS_SA_BASE_ATTR_SIZE); 2034 2035 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2036 if (error) { 2037 zfs_dirent_unlock(dl); 2038 if (error == ERESTART) { 2039 waited = B_TRUE; 2040 dmu_tx_wait(tx); 2041 dmu_tx_abort(tx); 2042 goto top; 2043 } 2044 zfs_acl_ids_free(&acl_ids); 2045 dmu_tx_abort(tx); 2046 ZFS_EXIT(zfsvfs); 2047 return (error); 2048 } 2049 2050 /* 2051 * Create new node. 2052 */ 2053 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2054 2055 if (fuid_dirtied) 2056 zfs_fuid_sync(zfsvfs, tx); 2057 2058 /* 2059 * Now put new name in parent dir. 2060 */ 2061 (void) zfs_link_create(dl, zp, tx, ZNEW); 2062 2063 *vpp = ZTOV(zp); 2064 2065 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2066 if (flags & FIGNORECASE) 2067 txtype |= TX_CI; 2068 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2069 acl_ids.z_fuidp, vap); 2070 2071 zfs_acl_ids_free(&acl_ids); 2072 2073 dmu_tx_commit(tx); 2074 2075 zfs_dirent_unlock(dl); 2076 2077 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2078 zil_commit(zilog, 0); 2079 2080 ZFS_EXIT(zfsvfs); 2081 return (0); 2082 } 2083 2084 /* 2085 * Remove a directory subdir entry. If the current working 2086 * directory is the same as the subdir to be removed, the 2087 * remove will fail. 2088 * 2089 * IN: dvp - vnode of directory to remove from. 2090 * name - name of directory to be removed. 2091 * cwd - vnode of current working directory. 2092 * cr - credentials of caller. 2093 * ct - caller context 2094 * flags - case flags 2095 * 2096 * RETURN: 0 on success, error code on failure. 2097 * 2098 * Timestamps: 2099 * dvp - ctime|mtime updated 2100 */ 2101 /*ARGSUSED*/ 2102 static int 2103 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2104 caller_context_t *ct, int flags) 2105 { 2106 znode_t *dzp = VTOZ(dvp); 2107 znode_t *zp; 2108 vnode_t *vp; 2109 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2110 zilog_t *zilog; 2111 zfs_dirlock_t *dl; 2112 dmu_tx_t *tx; 2113 int error; 2114 int zflg = ZEXISTS; 2115 boolean_t waited = B_FALSE; 2116 2117 ZFS_ENTER(zfsvfs); 2118 ZFS_VERIFY_ZP(dzp); 2119 zilog = zfsvfs->z_log; 2120 2121 if (flags & FIGNORECASE) 2122 zflg |= ZCILOOK; 2123 top: 2124 zp = NULL; 2125 2126 /* 2127 * Attempt to lock directory; fail if entry doesn't exist. 2128 */ 2129 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2130 NULL, NULL)) { 2131 ZFS_EXIT(zfsvfs); 2132 return (error); 2133 } 2134 2135 vp = ZTOV(zp); 2136 2137 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2138 goto out; 2139 } 2140 2141 if (vp->v_type != VDIR) { 2142 error = SET_ERROR(ENOTDIR); 2143 goto out; 2144 } 2145 2146 if (vp == cwd) { 2147 error = SET_ERROR(EINVAL); 2148 goto out; 2149 } 2150 2151 vnevent_rmdir(vp, dvp, name, ct); 2152 2153 /* 2154 * Grab a lock on the directory to make sure that noone is 2155 * trying to add (or lookup) entries while we are removing it. 2156 */ 2157 rw_enter(&zp->z_name_lock, RW_WRITER); 2158 2159 /* 2160 * Grab a lock on the parent pointer to make sure we play well 2161 * with the treewalk and directory rename code. 2162 */ 2163 rw_enter(&zp->z_parent_lock, RW_WRITER); 2164 2165 tx = dmu_tx_create(zfsvfs->z_os); 2166 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2167 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2168 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2169 zfs_sa_upgrade_txholds(tx, zp); 2170 zfs_sa_upgrade_txholds(tx, dzp); 2171 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2172 if (error) { 2173 rw_exit(&zp->z_parent_lock); 2174 rw_exit(&zp->z_name_lock); 2175 zfs_dirent_unlock(dl); 2176 VN_RELE(vp); 2177 if (error == ERESTART) { 2178 waited = B_TRUE; 2179 dmu_tx_wait(tx); 2180 dmu_tx_abort(tx); 2181 goto top; 2182 } 2183 dmu_tx_abort(tx); 2184 ZFS_EXIT(zfsvfs); 2185 return (error); 2186 } 2187 2188 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2189 2190 if (error == 0) { 2191 uint64_t txtype = TX_RMDIR; 2192 if (flags & FIGNORECASE) 2193 txtype |= TX_CI; 2194 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2195 } 2196 2197 dmu_tx_commit(tx); 2198 2199 rw_exit(&zp->z_parent_lock); 2200 rw_exit(&zp->z_name_lock); 2201 out: 2202 zfs_dirent_unlock(dl); 2203 2204 VN_RELE(vp); 2205 2206 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2207 zil_commit(zilog, 0); 2208 2209 ZFS_EXIT(zfsvfs); 2210 return (error); 2211 } 2212 2213 /* 2214 * Read as many directory entries as will fit into the provided 2215 * buffer from the given directory cursor position (specified in 2216 * the uio structure). 2217 * 2218 * IN: vp - vnode of directory to read. 2219 * uio - structure supplying read location, range info, 2220 * and return buffer. 2221 * cr - credentials of caller. 2222 * ct - caller context 2223 * flags - case flags 2224 * 2225 * OUT: uio - updated offset and range, buffer filled. 2226 * eofp - set to true if end-of-file detected. 2227 * 2228 * RETURN: 0 on success, error code on failure. 2229 * 2230 * Timestamps: 2231 * vp - atime updated 2232 * 2233 * Note that the low 4 bits of the cookie returned by zap is always zero. 2234 * This allows us to use the low range for "special" directory entries: 2235 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2236 * we use the offset 2 for the '.zfs' directory. 2237 */ 2238 /* ARGSUSED */ 2239 static int 2240 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2241 caller_context_t *ct, int flags) 2242 { 2243 znode_t *zp = VTOZ(vp); 2244 iovec_t *iovp; 2245 edirent_t *eodp; 2246 dirent64_t *odp; 2247 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2248 objset_t *os; 2249 caddr_t outbuf; 2250 size_t bufsize; 2251 zap_cursor_t zc; 2252 zap_attribute_t zap; 2253 uint_t bytes_wanted; 2254 uint64_t offset; /* must be unsigned; checks for < 1 */ 2255 uint64_t parent; 2256 int local_eof; 2257 int outcount; 2258 int error; 2259 uint8_t prefetch; 2260 boolean_t check_sysattrs; 2261 2262 ZFS_ENTER(zfsvfs); 2263 ZFS_VERIFY_ZP(zp); 2264 2265 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2266 &parent, sizeof (parent))) != 0) { 2267 ZFS_EXIT(zfsvfs); 2268 return (error); 2269 } 2270 2271 /* 2272 * If we are not given an eof variable, 2273 * use a local one. 2274 */ 2275 if (eofp == NULL) 2276 eofp = &local_eof; 2277 2278 /* 2279 * Check for valid iov_len. 2280 */ 2281 if (uio->uio_iov->iov_len <= 0) { 2282 ZFS_EXIT(zfsvfs); 2283 return (SET_ERROR(EINVAL)); 2284 } 2285 2286 /* 2287 * Quit if directory has been removed (posix) 2288 */ 2289 if ((*eofp = zp->z_unlinked) != 0) { 2290 ZFS_EXIT(zfsvfs); 2291 return (0); 2292 } 2293 2294 error = 0; 2295 os = zfsvfs->z_os; 2296 offset = uio->uio_loffset; 2297 prefetch = zp->z_zn_prefetch; 2298 2299 /* 2300 * Initialize the iterator cursor. 2301 */ 2302 if (offset <= 3) { 2303 /* 2304 * Start iteration from the beginning of the directory. 2305 */ 2306 zap_cursor_init(&zc, os, zp->z_id); 2307 } else { 2308 /* 2309 * The offset is a serialized cursor. 2310 */ 2311 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2312 } 2313 2314 /* 2315 * Get space to change directory entries into fs independent format. 2316 */ 2317 iovp = uio->uio_iov; 2318 bytes_wanted = iovp->iov_len; 2319 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2320 bufsize = bytes_wanted; 2321 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2322 odp = (struct dirent64 *)outbuf; 2323 } else { 2324 bufsize = bytes_wanted; 2325 outbuf = NULL; 2326 odp = (struct dirent64 *)iovp->iov_base; 2327 } 2328 eodp = (struct edirent *)odp; 2329 2330 /* 2331 * If this VFS supports the system attribute view interface; and 2332 * we're looking at an extended attribute directory; and we care 2333 * about normalization conflicts on this vfs; then we must check 2334 * for normalization conflicts with the sysattr name space. 2335 */ 2336 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2337 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2338 (flags & V_RDDIR_ENTFLAGS); 2339 2340 /* 2341 * Transform to file-system independent format 2342 */ 2343 outcount = 0; 2344 while (outcount < bytes_wanted) { 2345 ino64_t objnum; 2346 ushort_t reclen; 2347 off64_t *next = NULL; 2348 2349 /* 2350 * Special case `.', `..', and `.zfs'. 2351 */ 2352 if (offset == 0) { 2353 (void) strcpy(zap.za_name, "."); 2354 zap.za_normalization_conflict = 0; 2355 objnum = zp->z_id; 2356 } else if (offset == 1) { 2357 (void) strcpy(zap.za_name, ".."); 2358 zap.za_normalization_conflict = 0; 2359 objnum = parent; 2360 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2361 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2362 zap.za_normalization_conflict = 0; 2363 objnum = ZFSCTL_INO_ROOT; 2364 } else { 2365 /* 2366 * Grab next entry. 2367 */ 2368 if (error = zap_cursor_retrieve(&zc, &zap)) { 2369 if ((*eofp = (error == ENOENT)) != 0) 2370 break; 2371 else 2372 goto update; 2373 } 2374 2375 if (zap.za_integer_length != 8 || 2376 zap.za_num_integers != 1) { 2377 cmn_err(CE_WARN, "zap_readdir: bad directory " 2378 "entry, obj = %lld, offset = %lld\n", 2379 (u_longlong_t)zp->z_id, 2380 (u_longlong_t)offset); 2381 error = SET_ERROR(ENXIO); 2382 goto update; 2383 } 2384 2385 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2386 /* 2387 * MacOS X can extract the object type here such as: 2388 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2389 */ 2390 2391 if (check_sysattrs && !zap.za_normalization_conflict) { 2392 zap.za_normalization_conflict = 2393 xattr_sysattr_casechk(zap.za_name); 2394 } 2395 } 2396 2397 if (flags & V_RDDIR_ACCFILTER) { 2398 /* 2399 * If we have no access at all, don't include 2400 * this entry in the returned information 2401 */ 2402 znode_t *ezp; 2403 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2404 goto skip_entry; 2405 if (!zfs_has_access(ezp, cr)) { 2406 VN_RELE(ZTOV(ezp)); 2407 goto skip_entry; 2408 } 2409 VN_RELE(ZTOV(ezp)); 2410 } 2411 2412 if (flags & V_RDDIR_ENTFLAGS) 2413 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2414 else 2415 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2416 2417 /* 2418 * Will this entry fit in the buffer? 2419 */ 2420 if (outcount + reclen > bufsize) { 2421 /* 2422 * Did we manage to fit anything in the buffer? 2423 */ 2424 if (!outcount) { 2425 error = SET_ERROR(EINVAL); 2426 goto update; 2427 } 2428 break; 2429 } 2430 if (flags & V_RDDIR_ENTFLAGS) { 2431 /* 2432 * Add extended flag entry: 2433 */ 2434 eodp->ed_ino = objnum; 2435 eodp->ed_reclen = reclen; 2436 /* NOTE: ed_off is the offset for the *next* entry */ 2437 next = &(eodp->ed_off); 2438 eodp->ed_eflags = zap.za_normalization_conflict ? 2439 ED_CASE_CONFLICT : 0; 2440 (void) strncpy(eodp->ed_name, zap.za_name, 2441 EDIRENT_NAMELEN(reclen)); 2442 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2443 } else { 2444 /* 2445 * Add normal entry: 2446 */ 2447 odp->d_ino = objnum; 2448 odp->d_reclen = reclen; 2449 /* NOTE: d_off is the offset for the *next* entry */ 2450 next = &(odp->d_off); 2451 (void) strncpy(odp->d_name, zap.za_name, 2452 DIRENT64_NAMELEN(reclen)); 2453 odp = (dirent64_t *)((intptr_t)odp + reclen); 2454 } 2455 outcount += reclen; 2456 2457 ASSERT(outcount <= bufsize); 2458 2459 /* Prefetch znode */ 2460 if (prefetch) 2461 dmu_prefetch(os, objnum, 0, 0); 2462 2463 skip_entry: 2464 /* 2465 * Move to the next entry, fill in the previous offset. 2466 */ 2467 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2468 zap_cursor_advance(&zc); 2469 offset = zap_cursor_serialize(&zc); 2470 } else { 2471 offset += 1; 2472 } 2473 if (next) 2474 *next = offset; 2475 } 2476 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2477 2478 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2479 iovp->iov_base += outcount; 2480 iovp->iov_len -= outcount; 2481 uio->uio_resid -= outcount; 2482 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2483 /* 2484 * Reset the pointer. 2485 */ 2486 offset = uio->uio_loffset; 2487 } 2488 2489 update: 2490 zap_cursor_fini(&zc); 2491 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2492 kmem_free(outbuf, bufsize); 2493 2494 if (error == ENOENT) 2495 error = 0; 2496 2497 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2498 2499 uio->uio_loffset = offset; 2500 ZFS_EXIT(zfsvfs); 2501 return (error); 2502 } 2503 2504 ulong_t zfs_fsync_sync_cnt = 4; 2505 2506 static int 2507 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2508 { 2509 znode_t *zp = VTOZ(vp); 2510 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2511 2512 /* 2513 * Regardless of whether this is required for standards conformance, 2514 * this is the logical behavior when fsync() is called on a file with 2515 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2516 * going to be pushed out as part of the zil_commit(). 2517 */ 2518 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2519 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2520 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2521 2522 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2523 2524 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2525 ZFS_ENTER(zfsvfs); 2526 ZFS_VERIFY_ZP(zp); 2527 zil_commit(zfsvfs->z_log, zp->z_id); 2528 ZFS_EXIT(zfsvfs); 2529 } 2530 return (0); 2531 } 2532 2533 2534 /* 2535 * Get the requested file attributes and place them in the provided 2536 * vattr structure. 2537 * 2538 * IN: vp - vnode of file. 2539 * vap - va_mask identifies requested attributes. 2540 * If AT_XVATTR set, then optional attrs are requested 2541 * flags - ATTR_NOACLCHECK (CIFS server context) 2542 * cr - credentials of caller. 2543 * ct - caller context 2544 * 2545 * OUT: vap - attribute values. 2546 * 2547 * RETURN: 0 (always succeeds). 2548 */ 2549 /* ARGSUSED */ 2550 static int 2551 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2552 caller_context_t *ct) 2553 { 2554 znode_t *zp = VTOZ(vp); 2555 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2556 int error = 0; 2557 uint64_t links; 2558 uint64_t mtime[2], ctime[2]; 2559 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2560 xoptattr_t *xoap = NULL; 2561 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2562 sa_bulk_attr_t bulk[2]; 2563 int count = 0; 2564 2565 ZFS_ENTER(zfsvfs); 2566 ZFS_VERIFY_ZP(zp); 2567 2568 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2569 2570 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2571 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2572 2573 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2574 ZFS_EXIT(zfsvfs); 2575 return (error); 2576 } 2577 2578 /* 2579 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2580 * Also, if we are the owner don't bother, since owner should 2581 * always be allowed to read basic attributes of file. 2582 */ 2583 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2584 (vap->va_uid != crgetuid(cr))) { 2585 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2586 skipaclchk, cr)) { 2587 ZFS_EXIT(zfsvfs); 2588 return (error); 2589 } 2590 } 2591 2592 /* 2593 * Return all attributes. It's cheaper to provide the answer 2594 * than to determine whether we were asked the question. 2595 */ 2596 2597 mutex_enter(&zp->z_lock); 2598 vap->va_type = vp->v_type; 2599 vap->va_mode = zp->z_mode & MODEMASK; 2600 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2601 vap->va_nodeid = zp->z_id; 2602 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2603 links = zp->z_links + 1; 2604 else 2605 links = zp->z_links; 2606 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2607 vap->va_size = zp->z_size; 2608 vap->va_rdev = vp->v_rdev; 2609 vap->va_seq = zp->z_seq; 2610 2611 /* 2612 * Add in any requested optional attributes and the create time. 2613 * Also set the corresponding bits in the returned attribute bitmap. 2614 */ 2615 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2616 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2617 xoap->xoa_archive = 2618 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2619 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2620 } 2621 2622 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2623 xoap->xoa_readonly = 2624 ((zp->z_pflags & ZFS_READONLY) != 0); 2625 XVA_SET_RTN(xvap, XAT_READONLY); 2626 } 2627 2628 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2629 xoap->xoa_system = 2630 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2631 XVA_SET_RTN(xvap, XAT_SYSTEM); 2632 } 2633 2634 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2635 xoap->xoa_hidden = 2636 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2637 XVA_SET_RTN(xvap, XAT_HIDDEN); 2638 } 2639 2640 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2641 xoap->xoa_nounlink = 2642 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2643 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2644 } 2645 2646 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2647 xoap->xoa_immutable = 2648 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2649 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2650 } 2651 2652 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2653 xoap->xoa_appendonly = 2654 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2655 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2656 } 2657 2658 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2659 xoap->xoa_nodump = 2660 ((zp->z_pflags & ZFS_NODUMP) != 0); 2661 XVA_SET_RTN(xvap, XAT_NODUMP); 2662 } 2663 2664 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2665 xoap->xoa_opaque = 2666 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2667 XVA_SET_RTN(xvap, XAT_OPAQUE); 2668 } 2669 2670 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2671 xoap->xoa_av_quarantined = 2672 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2673 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2674 } 2675 2676 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2677 xoap->xoa_av_modified = 2678 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2679 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2680 } 2681 2682 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2683 vp->v_type == VREG) { 2684 zfs_sa_get_scanstamp(zp, xvap); 2685 } 2686 2687 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2688 uint64_t times[2]; 2689 2690 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2691 times, sizeof (times)); 2692 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2693 XVA_SET_RTN(xvap, XAT_CREATETIME); 2694 } 2695 2696 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2697 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2698 XVA_SET_RTN(xvap, XAT_REPARSE); 2699 } 2700 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2701 xoap->xoa_generation = zp->z_gen; 2702 XVA_SET_RTN(xvap, XAT_GEN); 2703 } 2704 2705 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2706 xoap->xoa_offline = 2707 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2708 XVA_SET_RTN(xvap, XAT_OFFLINE); 2709 } 2710 2711 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2712 xoap->xoa_sparse = 2713 ((zp->z_pflags & ZFS_SPARSE) != 0); 2714 XVA_SET_RTN(xvap, XAT_SPARSE); 2715 } 2716 } 2717 2718 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2719 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2720 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2721 2722 mutex_exit(&zp->z_lock); 2723 2724 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2725 2726 if (zp->z_blksz == 0) { 2727 /* 2728 * Block size hasn't been set; suggest maximal I/O transfers. 2729 */ 2730 vap->va_blksize = zfsvfs->z_max_blksz; 2731 } 2732 2733 ZFS_EXIT(zfsvfs); 2734 return (0); 2735 } 2736 2737 /* 2738 * Set the file attributes to the values contained in the 2739 * vattr structure. 2740 * 2741 * IN: vp - vnode of file to be modified. 2742 * vap - new attribute values. 2743 * If AT_XVATTR set, then optional attrs are being set 2744 * flags - ATTR_UTIME set if non-default time values provided. 2745 * - ATTR_NOACLCHECK (CIFS context only). 2746 * cr - credentials of caller. 2747 * ct - caller context 2748 * 2749 * RETURN: 0 on success, error code on failure. 2750 * 2751 * Timestamps: 2752 * vp - ctime updated, mtime updated if size changed. 2753 */ 2754 /* ARGSUSED */ 2755 static int 2756 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2757 caller_context_t *ct) 2758 { 2759 znode_t *zp = VTOZ(vp); 2760 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2761 zilog_t *zilog; 2762 dmu_tx_t *tx; 2763 vattr_t oldva; 2764 xvattr_t tmpxvattr; 2765 uint_t mask = vap->va_mask; 2766 uint_t saved_mask = 0; 2767 int trim_mask = 0; 2768 uint64_t new_mode; 2769 uint64_t new_uid, new_gid; 2770 uint64_t xattr_obj; 2771 uint64_t mtime[2], ctime[2]; 2772 znode_t *attrzp; 2773 int need_policy = FALSE; 2774 int err, err2; 2775 zfs_fuid_info_t *fuidp = NULL; 2776 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2777 xoptattr_t *xoap; 2778 zfs_acl_t *aclp; 2779 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2780 boolean_t fuid_dirtied = B_FALSE; 2781 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2782 int count = 0, xattr_count = 0; 2783 2784 if (mask == 0) 2785 return (0); 2786 2787 if (mask & AT_NOSET) 2788 return (SET_ERROR(EINVAL)); 2789 2790 ZFS_ENTER(zfsvfs); 2791 ZFS_VERIFY_ZP(zp); 2792 2793 zilog = zfsvfs->z_log; 2794 2795 /* 2796 * Make sure that if we have ephemeral uid/gid or xvattr specified 2797 * that file system is at proper version level 2798 */ 2799 2800 if (zfsvfs->z_use_fuids == B_FALSE && 2801 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2802 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2803 (mask & AT_XVATTR))) { 2804 ZFS_EXIT(zfsvfs); 2805 return (SET_ERROR(EINVAL)); 2806 } 2807 2808 if (mask & AT_SIZE && vp->v_type == VDIR) { 2809 ZFS_EXIT(zfsvfs); 2810 return (SET_ERROR(EISDIR)); 2811 } 2812 2813 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2814 ZFS_EXIT(zfsvfs); 2815 return (SET_ERROR(EINVAL)); 2816 } 2817 2818 /* 2819 * If this is an xvattr_t, then get a pointer to the structure of 2820 * optional attributes. If this is NULL, then we have a vattr_t. 2821 */ 2822 xoap = xva_getxoptattr(xvap); 2823 2824 xva_init(&tmpxvattr); 2825 2826 /* 2827 * Immutable files can only alter immutable bit and atime 2828 */ 2829 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2830 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2831 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2832 ZFS_EXIT(zfsvfs); 2833 return (SET_ERROR(EPERM)); 2834 } 2835 2836 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2837 ZFS_EXIT(zfsvfs); 2838 return (SET_ERROR(EPERM)); 2839 } 2840 2841 /* 2842 * Verify timestamps doesn't overflow 32 bits. 2843 * ZFS can handle large timestamps, but 32bit syscalls can't 2844 * handle times greater than 2039. This check should be removed 2845 * once large timestamps are fully supported. 2846 */ 2847 if (mask & (AT_ATIME | AT_MTIME)) { 2848 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2849 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2850 ZFS_EXIT(zfsvfs); 2851 return (SET_ERROR(EOVERFLOW)); 2852 } 2853 } 2854 2855 top: 2856 attrzp = NULL; 2857 aclp = NULL; 2858 2859 /* Can this be moved to before the top label? */ 2860 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2861 ZFS_EXIT(zfsvfs); 2862 return (SET_ERROR(EROFS)); 2863 } 2864 2865 /* 2866 * First validate permissions 2867 */ 2868 2869 if (mask & AT_SIZE) { 2870 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2871 if (err) { 2872 ZFS_EXIT(zfsvfs); 2873 return (err); 2874 } 2875 /* 2876 * XXX - Note, we are not providing any open 2877 * mode flags here (like FNDELAY), so we may 2878 * block if there are locks present... this 2879 * should be addressed in openat(). 2880 */ 2881 /* XXX - would it be OK to generate a log record here? */ 2882 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2883 if (err) { 2884 ZFS_EXIT(zfsvfs); 2885 return (err); 2886 } 2887 2888 if (vap->va_size == 0) 2889 vnevent_truncate(ZTOV(zp), ct); 2890 } 2891 2892 if (mask & (AT_ATIME|AT_MTIME) || 2893 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2894 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2895 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2896 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2897 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2898 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2899 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2900 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2901 skipaclchk, cr); 2902 } 2903 2904 if (mask & (AT_UID|AT_GID)) { 2905 int idmask = (mask & (AT_UID|AT_GID)); 2906 int take_owner; 2907 int take_group; 2908 2909 /* 2910 * NOTE: even if a new mode is being set, 2911 * we may clear S_ISUID/S_ISGID bits. 2912 */ 2913 2914 if (!(mask & AT_MODE)) 2915 vap->va_mode = zp->z_mode; 2916 2917 /* 2918 * Take ownership or chgrp to group we are a member of 2919 */ 2920 2921 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2922 take_group = (mask & AT_GID) && 2923 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2924 2925 /* 2926 * If both AT_UID and AT_GID are set then take_owner and 2927 * take_group must both be set in order to allow taking 2928 * ownership. 2929 * 2930 * Otherwise, send the check through secpolicy_vnode_setattr() 2931 * 2932 */ 2933 2934 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2935 ((idmask == AT_UID) && take_owner) || 2936 ((idmask == AT_GID) && take_group)) { 2937 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2938 skipaclchk, cr) == 0) { 2939 /* 2940 * Remove setuid/setgid for non-privileged users 2941 */ 2942 secpolicy_setid_clear(vap, cr); 2943 trim_mask = (mask & (AT_UID|AT_GID)); 2944 } else { 2945 need_policy = TRUE; 2946 } 2947 } else { 2948 need_policy = TRUE; 2949 } 2950 } 2951 2952 mutex_enter(&zp->z_lock); 2953 oldva.va_mode = zp->z_mode; 2954 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2955 if (mask & AT_XVATTR) { 2956 /* 2957 * Update xvattr mask to include only those attributes 2958 * that are actually changing. 2959 * 2960 * the bits will be restored prior to actually setting 2961 * the attributes so the caller thinks they were set. 2962 */ 2963 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2964 if (xoap->xoa_appendonly != 2965 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2966 need_policy = TRUE; 2967 } else { 2968 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2969 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2970 } 2971 } 2972 2973 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2974 if (xoap->xoa_nounlink != 2975 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2976 need_policy = TRUE; 2977 } else { 2978 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2979 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2980 } 2981 } 2982 2983 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2984 if (xoap->xoa_immutable != 2985 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2986 need_policy = TRUE; 2987 } else { 2988 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2989 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2990 } 2991 } 2992 2993 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2994 if (xoap->xoa_nodump != 2995 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2996 need_policy = TRUE; 2997 } else { 2998 XVA_CLR_REQ(xvap, XAT_NODUMP); 2999 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 3000 } 3001 } 3002 3003 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 3004 if (xoap->xoa_av_modified != 3005 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 3006 need_policy = TRUE; 3007 } else { 3008 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 3009 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 3010 } 3011 } 3012 3013 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 3014 if ((vp->v_type != VREG && 3015 xoap->xoa_av_quarantined) || 3016 xoap->xoa_av_quarantined != 3017 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 3018 need_policy = TRUE; 3019 } else { 3020 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 3021 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 3022 } 3023 } 3024 3025 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 3026 mutex_exit(&zp->z_lock); 3027 ZFS_EXIT(zfsvfs); 3028 return (SET_ERROR(EPERM)); 3029 } 3030 3031 if (need_policy == FALSE && 3032 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 3033 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 3034 need_policy = TRUE; 3035 } 3036 } 3037 3038 mutex_exit(&zp->z_lock); 3039 3040 if (mask & AT_MODE) { 3041 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3042 err = secpolicy_setid_setsticky_clear(vp, vap, 3043 &oldva, cr); 3044 if (err) { 3045 ZFS_EXIT(zfsvfs); 3046 return (err); 3047 } 3048 trim_mask |= AT_MODE; 3049 } else { 3050 need_policy = TRUE; 3051 } 3052 } 3053 3054 if (need_policy) { 3055 /* 3056 * If trim_mask is set then take ownership 3057 * has been granted or write_acl is present and user 3058 * has the ability to modify mode. In that case remove 3059 * UID|GID and or MODE from mask so that 3060 * secpolicy_vnode_setattr() doesn't revoke it. 3061 */ 3062 3063 if (trim_mask) { 3064 saved_mask = vap->va_mask; 3065 vap->va_mask &= ~trim_mask; 3066 } 3067 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3068 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3069 if (err) { 3070 ZFS_EXIT(zfsvfs); 3071 return (err); 3072 } 3073 3074 if (trim_mask) 3075 vap->va_mask |= saved_mask; 3076 } 3077 3078 /* 3079 * secpolicy_vnode_setattr, or take ownership may have 3080 * changed va_mask 3081 */ 3082 mask = vap->va_mask; 3083 3084 if ((mask & (AT_UID | AT_GID))) { 3085 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3086 &xattr_obj, sizeof (xattr_obj)); 3087 3088 if (err == 0 && xattr_obj) { 3089 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3090 if (err) 3091 goto out2; 3092 } 3093 if (mask & AT_UID) { 3094 new_uid = zfs_fuid_create(zfsvfs, 3095 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3096 if (new_uid != zp->z_uid && 3097 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3098 if (attrzp) 3099 VN_RELE(ZTOV(attrzp)); 3100 err = SET_ERROR(EDQUOT); 3101 goto out2; 3102 } 3103 } 3104 3105 if (mask & AT_GID) { 3106 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3107 cr, ZFS_GROUP, &fuidp); 3108 if (new_gid != zp->z_gid && 3109 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3110 if (attrzp) 3111 VN_RELE(ZTOV(attrzp)); 3112 err = SET_ERROR(EDQUOT); 3113 goto out2; 3114 } 3115 } 3116 } 3117 tx = dmu_tx_create(zfsvfs->z_os); 3118 3119 if (mask & AT_MODE) { 3120 uint64_t pmode = zp->z_mode; 3121 uint64_t acl_obj; 3122 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3123 3124 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3125 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3126 err = SET_ERROR(EPERM); 3127 goto out; 3128 } 3129 3130 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3131 goto out; 3132 3133 mutex_enter(&zp->z_lock); 3134 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3135 /* 3136 * Are we upgrading ACL from old V0 format 3137 * to V1 format? 3138 */ 3139 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3140 zfs_znode_acl_version(zp) == 3141 ZFS_ACL_VERSION_INITIAL) { 3142 dmu_tx_hold_free(tx, acl_obj, 0, 3143 DMU_OBJECT_END); 3144 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3145 0, aclp->z_acl_bytes); 3146 } else { 3147 dmu_tx_hold_write(tx, acl_obj, 0, 3148 aclp->z_acl_bytes); 3149 } 3150 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3151 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3152 0, aclp->z_acl_bytes); 3153 } 3154 mutex_exit(&zp->z_lock); 3155 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3156 } else { 3157 if ((mask & AT_XVATTR) && 3158 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3159 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3160 else 3161 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3162 } 3163 3164 if (attrzp) { 3165 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3166 } 3167 3168 fuid_dirtied = zfsvfs->z_fuid_dirty; 3169 if (fuid_dirtied) 3170 zfs_fuid_txhold(zfsvfs, tx); 3171 3172 zfs_sa_upgrade_txholds(tx, zp); 3173 3174 err = dmu_tx_assign(tx, TXG_WAIT); 3175 if (err) 3176 goto out; 3177 3178 count = 0; 3179 /* 3180 * Set each attribute requested. 3181 * We group settings according to the locks they need to acquire. 3182 * 3183 * Note: you cannot set ctime directly, although it will be 3184 * updated as a side-effect of calling this function. 3185 */ 3186 3187 3188 if (mask & (AT_UID|AT_GID|AT_MODE)) 3189 mutex_enter(&zp->z_acl_lock); 3190 mutex_enter(&zp->z_lock); 3191 3192 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3193 &zp->z_pflags, sizeof (zp->z_pflags)); 3194 3195 if (attrzp) { 3196 if (mask & (AT_UID|AT_GID|AT_MODE)) 3197 mutex_enter(&attrzp->z_acl_lock); 3198 mutex_enter(&attrzp->z_lock); 3199 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3200 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3201 sizeof (attrzp->z_pflags)); 3202 } 3203 3204 if (mask & (AT_UID|AT_GID)) { 3205 3206 if (mask & AT_UID) { 3207 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3208 &new_uid, sizeof (new_uid)); 3209 zp->z_uid = new_uid; 3210 if (attrzp) { 3211 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3212 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3213 sizeof (new_uid)); 3214 attrzp->z_uid = new_uid; 3215 } 3216 } 3217 3218 if (mask & AT_GID) { 3219 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3220 NULL, &new_gid, sizeof (new_gid)); 3221 zp->z_gid = new_gid; 3222 if (attrzp) { 3223 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3224 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3225 sizeof (new_gid)); 3226 attrzp->z_gid = new_gid; 3227 } 3228 } 3229 if (!(mask & AT_MODE)) { 3230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3231 NULL, &new_mode, sizeof (new_mode)); 3232 new_mode = zp->z_mode; 3233 } 3234 err = zfs_acl_chown_setattr(zp); 3235 ASSERT(err == 0); 3236 if (attrzp) { 3237 err = zfs_acl_chown_setattr(attrzp); 3238 ASSERT(err == 0); 3239 } 3240 } 3241 3242 if (mask & AT_MODE) { 3243 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3244 &new_mode, sizeof (new_mode)); 3245 zp->z_mode = new_mode; 3246 ASSERT3U((uintptr_t)aclp, !=, NULL); 3247 err = zfs_aclset_common(zp, aclp, cr, tx); 3248 ASSERT0(err); 3249 if (zp->z_acl_cached) 3250 zfs_acl_free(zp->z_acl_cached); 3251 zp->z_acl_cached = aclp; 3252 aclp = NULL; 3253 } 3254 3255 3256 if (mask & AT_ATIME) { 3257 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3258 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3259 &zp->z_atime, sizeof (zp->z_atime)); 3260 } 3261 3262 if (mask & AT_MTIME) { 3263 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3264 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3265 mtime, sizeof (mtime)); 3266 } 3267 3268 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3269 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3270 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3271 NULL, mtime, sizeof (mtime)); 3272 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3273 &ctime, sizeof (ctime)); 3274 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3275 B_TRUE); 3276 } else if (mask != 0) { 3277 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3278 &ctime, sizeof (ctime)); 3279 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3280 B_TRUE); 3281 if (attrzp) { 3282 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3283 SA_ZPL_CTIME(zfsvfs), NULL, 3284 &ctime, sizeof (ctime)); 3285 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3286 mtime, ctime, B_TRUE); 3287 } 3288 } 3289 /* 3290 * Do this after setting timestamps to prevent timestamp 3291 * update from toggling bit 3292 */ 3293 3294 if (xoap && (mask & AT_XVATTR)) { 3295 3296 /* 3297 * restore trimmed off masks 3298 * so that return masks can be set for caller. 3299 */ 3300 3301 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3302 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3303 } 3304 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3305 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3306 } 3307 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3308 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3309 } 3310 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3311 XVA_SET_REQ(xvap, XAT_NODUMP); 3312 } 3313 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3314 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3315 } 3316 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3317 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3318 } 3319 3320 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3321 ASSERT(vp->v_type == VREG); 3322 3323 zfs_xvattr_set(zp, xvap, tx); 3324 } 3325 3326 if (fuid_dirtied) 3327 zfs_fuid_sync(zfsvfs, tx); 3328 3329 if (mask != 0) 3330 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3331 3332 mutex_exit(&zp->z_lock); 3333 if (mask & (AT_UID|AT_GID|AT_MODE)) 3334 mutex_exit(&zp->z_acl_lock); 3335 3336 if (attrzp) { 3337 if (mask & (AT_UID|AT_GID|AT_MODE)) 3338 mutex_exit(&attrzp->z_acl_lock); 3339 mutex_exit(&attrzp->z_lock); 3340 } 3341 out: 3342 if (err == 0 && attrzp) { 3343 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3344 xattr_count, tx); 3345 ASSERT(err2 == 0); 3346 } 3347 3348 if (attrzp) 3349 VN_RELE(ZTOV(attrzp)); 3350 3351 if (aclp) 3352 zfs_acl_free(aclp); 3353 3354 if (fuidp) { 3355 zfs_fuid_info_free(fuidp); 3356 fuidp = NULL; 3357 } 3358 3359 if (err) { 3360 dmu_tx_abort(tx); 3361 if (err == ERESTART) 3362 goto top; 3363 } else { 3364 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3365 dmu_tx_commit(tx); 3366 } 3367 3368 out2: 3369 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3370 zil_commit(zilog, 0); 3371 3372 ZFS_EXIT(zfsvfs); 3373 return (err); 3374 } 3375 3376 typedef struct zfs_zlock { 3377 krwlock_t *zl_rwlock; /* lock we acquired */ 3378 znode_t *zl_znode; /* znode we held */ 3379 struct zfs_zlock *zl_next; /* next in list */ 3380 } zfs_zlock_t; 3381 3382 /* 3383 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3384 */ 3385 static void 3386 zfs_rename_unlock(zfs_zlock_t **zlpp) 3387 { 3388 zfs_zlock_t *zl; 3389 3390 while ((zl = *zlpp) != NULL) { 3391 if (zl->zl_znode != NULL) 3392 VN_RELE(ZTOV(zl->zl_znode)); 3393 rw_exit(zl->zl_rwlock); 3394 *zlpp = zl->zl_next; 3395 kmem_free(zl, sizeof (*zl)); 3396 } 3397 } 3398 3399 /* 3400 * Search back through the directory tree, using the ".." entries. 3401 * Lock each directory in the chain to prevent concurrent renames. 3402 * Fail any attempt to move a directory into one of its own descendants. 3403 * XXX - z_parent_lock can overlap with map or grow locks 3404 */ 3405 static int 3406 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3407 { 3408 zfs_zlock_t *zl; 3409 znode_t *zp = tdzp; 3410 uint64_t rootid = zp->z_zfsvfs->z_root; 3411 uint64_t oidp = zp->z_id; 3412 krwlock_t *rwlp = &szp->z_parent_lock; 3413 krw_t rw = RW_WRITER; 3414 3415 /* 3416 * First pass write-locks szp and compares to zp->z_id. 3417 * Later passes read-lock zp and compare to zp->z_parent. 3418 */ 3419 do { 3420 if (!rw_tryenter(rwlp, rw)) { 3421 /* 3422 * Another thread is renaming in this path. 3423 * Note that if we are a WRITER, we don't have any 3424 * parent_locks held yet. 3425 */ 3426 if (rw == RW_READER && zp->z_id > szp->z_id) { 3427 /* 3428 * Drop our locks and restart 3429 */ 3430 zfs_rename_unlock(&zl); 3431 *zlpp = NULL; 3432 zp = tdzp; 3433 oidp = zp->z_id; 3434 rwlp = &szp->z_parent_lock; 3435 rw = RW_WRITER; 3436 continue; 3437 } else { 3438 /* 3439 * Wait for other thread to drop its locks 3440 */ 3441 rw_enter(rwlp, rw); 3442 } 3443 } 3444 3445 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3446 zl->zl_rwlock = rwlp; 3447 zl->zl_znode = NULL; 3448 zl->zl_next = *zlpp; 3449 *zlpp = zl; 3450 3451 if (oidp == szp->z_id) /* We're a descendant of szp */ 3452 return (SET_ERROR(EINVAL)); 3453 3454 if (oidp == rootid) /* We've hit the top */ 3455 return (0); 3456 3457 if (rw == RW_READER) { /* i.e. not the first pass */ 3458 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3459 if (error) 3460 return (error); 3461 zl->zl_znode = zp; 3462 } 3463 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3464 &oidp, sizeof (oidp)); 3465 rwlp = &zp->z_parent_lock; 3466 rw = RW_READER; 3467 3468 } while (zp->z_id != sdzp->z_id); 3469 3470 return (0); 3471 } 3472 3473 /* 3474 * Move an entry from the provided source directory to the target 3475 * directory. Change the entry name as indicated. 3476 * 3477 * IN: sdvp - Source directory containing the "old entry". 3478 * snm - Old entry name. 3479 * tdvp - Target directory to contain the "new entry". 3480 * tnm - New entry name. 3481 * cr - credentials of caller. 3482 * ct - caller context 3483 * flags - case flags 3484 * 3485 * RETURN: 0 on success, error code on failure. 3486 * 3487 * Timestamps: 3488 * sdvp,tdvp - ctime|mtime updated 3489 */ 3490 /*ARGSUSED*/ 3491 static int 3492 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3493 caller_context_t *ct, int flags) 3494 { 3495 znode_t *tdzp, *szp, *tzp; 3496 znode_t *sdzp = VTOZ(sdvp); 3497 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3498 zilog_t *zilog; 3499 vnode_t *realvp; 3500 zfs_dirlock_t *sdl, *tdl; 3501 dmu_tx_t *tx; 3502 zfs_zlock_t *zl; 3503 int cmp, serr, terr; 3504 int error = 0; 3505 int zflg = 0; 3506 boolean_t waited = B_FALSE; 3507 3508 ZFS_ENTER(zfsvfs); 3509 ZFS_VERIFY_ZP(sdzp); 3510 zilog = zfsvfs->z_log; 3511 3512 /* 3513 * Make sure we have the real vp for the target directory. 3514 */ 3515 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3516 tdvp = realvp; 3517 3518 tdzp = VTOZ(tdvp); 3519 ZFS_VERIFY_ZP(tdzp); 3520 3521 /* 3522 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3523 * ctldir appear to have the same v_vfsp. 3524 */ 3525 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3526 ZFS_EXIT(zfsvfs); 3527 return (SET_ERROR(EXDEV)); 3528 } 3529 3530 if (zfsvfs->z_utf8 && u8_validate(tnm, 3531 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3532 ZFS_EXIT(zfsvfs); 3533 return (SET_ERROR(EILSEQ)); 3534 } 3535 3536 if (flags & FIGNORECASE) 3537 zflg |= ZCILOOK; 3538 3539 top: 3540 szp = NULL; 3541 tzp = NULL; 3542 zl = NULL; 3543 3544 /* 3545 * This is to prevent the creation of links into attribute space 3546 * by renaming a linked file into/outof an attribute directory. 3547 * See the comment in zfs_link() for why this is considered bad. 3548 */ 3549 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3550 ZFS_EXIT(zfsvfs); 3551 return (SET_ERROR(EINVAL)); 3552 } 3553 3554 /* 3555 * Lock source and target directory entries. To prevent deadlock, 3556 * a lock ordering must be defined. We lock the directory with 3557 * the smallest object id first, or if it's a tie, the one with 3558 * the lexically first name. 3559 */ 3560 if (sdzp->z_id < tdzp->z_id) { 3561 cmp = -1; 3562 } else if (sdzp->z_id > tdzp->z_id) { 3563 cmp = 1; 3564 } else { 3565 /* 3566 * First compare the two name arguments without 3567 * considering any case folding. 3568 */ 3569 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3570 3571 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3572 ASSERT(error == 0 || !zfsvfs->z_utf8); 3573 if (cmp == 0) { 3574 /* 3575 * POSIX: "If the old argument and the new argument 3576 * both refer to links to the same existing file, 3577 * the rename() function shall return successfully 3578 * and perform no other action." 3579 */ 3580 ZFS_EXIT(zfsvfs); 3581 return (0); 3582 } 3583 /* 3584 * If the file system is case-folding, then we may 3585 * have some more checking to do. A case-folding file 3586 * system is either supporting mixed case sensitivity 3587 * access or is completely case-insensitive. Note 3588 * that the file system is always case preserving. 3589 * 3590 * In mixed sensitivity mode case sensitive behavior 3591 * is the default. FIGNORECASE must be used to 3592 * explicitly request case insensitive behavior. 3593 * 3594 * If the source and target names provided differ only 3595 * by case (e.g., a request to rename 'tim' to 'Tim'), 3596 * we will treat this as a special case in the 3597 * case-insensitive mode: as long as the source name 3598 * is an exact match, we will allow this to proceed as 3599 * a name-change request. 3600 */ 3601 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3602 (zfsvfs->z_case == ZFS_CASE_MIXED && 3603 flags & FIGNORECASE)) && 3604 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3605 &error) == 0) { 3606 /* 3607 * case preserving rename request, require exact 3608 * name matches 3609 */ 3610 zflg |= ZCIEXACT; 3611 zflg &= ~ZCILOOK; 3612 } 3613 } 3614 3615 /* 3616 * If the source and destination directories are the same, we should 3617 * grab the z_name_lock of that directory only once. 3618 */ 3619 if (sdzp == tdzp) { 3620 zflg |= ZHAVELOCK; 3621 rw_enter(&sdzp->z_name_lock, RW_READER); 3622 } 3623 3624 if (cmp < 0) { 3625 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3626 ZEXISTS | zflg, NULL, NULL); 3627 terr = zfs_dirent_lock(&tdl, 3628 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3629 } else { 3630 terr = zfs_dirent_lock(&tdl, 3631 tdzp, tnm, &tzp, zflg, NULL, NULL); 3632 serr = zfs_dirent_lock(&sdl, 3633 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3634 NULL, NULL); 3635 } 3636 3637 if (serr) { 3638 /* 3639 * Source entry invalid or not there. 3640 */ 3641 if (!terr) { 3642 zfs_dirent_unlock(tdl); 3643 if (tzp) 3644 VN_RELE(ZTOV(tzp)); 3645 } 3646 3647 if (sdzp == tdzp) 3648 rw_exit(&sdzp->z_name_lock); 3649 3650 if (strcmp(snm, "..") == 0) 3651 serr = SET_ERROR(EINVAL); 3652 ZFS_EXIT(zfsvfs); 3653 return (serr); 3654 } 3655 if (terr) { 3656 zfs_dirent_unlock(sdl); 3657 VN_RELE(ZTOV(szp)); 3658 3659 if (sdzp == tdzp) 3660 rw_exit(&sdzp->z_name_lock); 3661 3662 if (strcmp(tnm, "..") == 0) 3663 terr = SET_ERROR(EINVAL); 3664 ZFS_EXIT(zfsvfs); 3665 return (terr); 3666 } 3667 3668 /* 3669 * Must have write access at the source to remove the old entry 3670 * and write access at the target to create the new entry. 3671 * Note that if target and source are the same, this can be 3672 * done in a single check. 3673 */ 3674 3675 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3676 goto out; 3677 3678 if (ZTOV(szp)->v_type == VDIR) { 3679 /* 3680 * Check to make sure rename is valid. 3681 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3682 */ 3683 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3684 goto out; 3685 } 3686 3687 /* 3688 * Does target exist? 3689 */ 3690 if (tzp) { 3691 /* 3692 * Source and target must be the same type. 3693 */ 3694 if (ZTOV(szp)->v_type == VDIR) { 3695 if (ZTOV(tzp)->v_type != VDIR) { 3696 error = SET_ERROR(ENOTDIR); 3697 goto out; 3698 } 3699 } else { 3700 if (ZTOV(tzp)->v_type == VDIR) { 3701 error = SET_ERROR(EISDIR); 3702 goto out; 3703 } 3704 } 3705 /* 3706 * POSIX dictates that when the source and target 3707 * entries refer to the same file object, rename 3708 * must do nothing and exit without error. 3709 */ 3710 if (szp->z_id == tzp->z_id) { 3711 error = 0; 3712 goto out; 3713 } 3714 } 3715 3716 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3717 if (tzp) 3718 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3719 3720 /* 3721 * notify the target directory if it is not the same 3722 * as source directory. 3723 */ 3724 if (tdvp != sdvp) { 3725 vnevent_rename_dest_dir(tdvp, ct); 3726 } 3727 3728 tx = dmu_tx_create(zfsvfs->z_os); 3729 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3730 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3731 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3732 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3733 if (sdzp != tdzp) { 3734 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3735 zfs_sa_upgrade_txholds(tx, tdzp); 3736 } 3737 if (tzp) { 3738 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3739 zfs_sa_upgrade_txholds(tx, tzp); 3740 } 3741 3742 zfs_sa_upgrade_txholds(tx, szp); 3743 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3744 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3745 if (error) { 3746 if (zl != NULL) 3747 zfs_rename_unlock(&zl); 3748 zfs_dirent_unlock(sdl); 3749 zfs_dirent_unlock(tdl); 3750 3751 if (sdzp == tdzp) 3752 rw_exit(&sdzp->z_name_lock); 3753 3754 VN_RELE(ZTOV(szp)); 3755 if (tzp) 3756 VN_RELE(ZTOV(tzp)); 3757 if (error == ERESTART) { 3758 waited = B_TRUE; 3759 dmu_tx_wait(tx); 3760 dmu_tx_abort(tx); 3761 goto top; 3762 } 3763 dmu_tx_abort(tx); 3764 ZFS_EXIT(zfsvfs); 3765 return (error); 3766 } 3767 3768 if (tzp) /* Attempt to remove the existing target */ 3769 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3770 3771 if (error == 0) { 3772 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3773 if (error == 0) { 3774 szp->z_pflags |= ZFS_AV_MODIFIED; 3775 3776 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3777 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3778 ASSERT0(error); 3779 3780 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3781 if (error == 0) { 3782 zfs_log_rename(zilog, tx, TX_RENAME | 3783 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3784 sdl->dl_name, tdzp, tdl->dl_name, szp); 3785 3786 /* 3787 * Update path information for the target vnode 3788 */ 3789 vn_renamepath(tdvp, ZTOV(szp), tnm, 3790 strlen(tnm)); 3791 } else { 3792 /* 3793 * At this point, we have successfully created 3794 * the target name, but have failed to remove 3795 * the source name. Since the create was done 3796 * with the ZRENAMING flag, there are 3797 * complications; for one, the link count is 3798 * wrong. The easiest way to deal with this 3799 * is to remove the newly created target, and 3800 * return the original error. This must 3801 * succeed; fortunately, it is very unlikely to 3802 * fail, since we just created it. 3803 */ 3804 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3805 ZRENAMING, NULL), ==, 0); 3806 } 3807 } 3808 } 3809 3810 dmu_tx_commit(tx); 3811 out: 3812 if (zl != NULL) 3813 zfs_rename_unlock(&zl); 3814 3815 zfs_dirent_unlock(sdl); 3816 zfs_dirent_unlock(tdl); 3817 3818 if (sdzp == tdzp) 3819 rw_exit(&sdzp->z_name_lock); 3820 3821 3822 VN_RELE(ZTOV(szp)); 3823 if (tzp) 3824 VN_RELE(ZTOV(tzp)); 3825 3826 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3827 zil_commit(zilog, 0); 3828 3829 ZFS_EXIT(zfsvfs); 3830 return (error); 3831 } 3832 3833 /* 3834 * Insert the indicated symbolic reference entry into the directory. 3835 * 3836 * IN: dvp - Directory to contain new symbolic link. 3837 * link - Name for new symlink entry. 3838 * vap - Attributes of new entry. 3839 * cr - credentials of caller. 3840 * ct - caller context 3841 * flags - case flags 3842 * 3843 * RETURN: 0 on success, error code on failure. 3844 * 3845 * Timestamps: 3846 * dvp - ctime|mtime updated 3847 */ 3848 /*ARGSUSED*/ 3849 static int 3850 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3851 caller_context_t *ct, int flags) 3852 { 3853 znode_t *zp, *dzp = VTOZ(dvp); 3854 zfs_dirlock_t *dl; 3855 dmu_tx_t *tx; 3856 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3857 zilog_t *zilog; 3858 uint64_t len = strlen(link); 3859 int error; 3860 int zflg = ZNEW; 3861 zfs_acl_ids_t acl_ids; 3862 boolean_t fuid_dirtied; 3863 uint64_t txtype = TX_SYMLINK; 3864 boolean_t waited = B_FALSE; 3865 3866 ASSERT(vap->va_type == VLNK); 3867 3868 ZFS_ENTER(zfsvfs); 3869 ZFS_VERIFY_ZP(dzp); 3870 zilog = zfsvfs->z_log; 3871 3872 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3873 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3874 ZFS_EXIT(zfsvfs); 3875 return (SET_ERROR(EILSEQ)); 3876 } 3877 if (flags & FIGNORECASE) 3878 zflg |= ZCILOOK; 3879 3880 if (len > MAXPATHLEN) { 3881 ZFS_EXIT(zfsvfs); 3882 return (SET_ERROR(ENAMETOOLONG)); 3883 } 3884 3885 if ((error = zfs_acl_ids_create(dzp, 0, 3886 vap, cr, NULL, &acl_ids)) != 0) { 3887 ZFS_EXIT(zfsvfs); 3888 return (error); 3889 } 3890 top: 3891 /* 3892 * Attempt to lock directory; fail if entry already exists. 3893 */ 3894 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3895 if (error) { 3896 zfs_acl_ids_free(&acl_ids); 3897 ZFS_EXIT(zfsvfs); 3898 return (error); 3899 } 3900 3901 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3902 zfs_acl_ids_free(&acl_ids); 3903 zfs_dirent_unlock(dl); 3904 ZFS_EXIT(zfsvfs); 3905 return (error); 3906 } 3907 3908 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3909 zfs_acl_ids_free(&acl_ids); 3910 zfs_dirent_unlock(dl); 3911 ZFS_EXIT(zfsvfs); 3912 return (SET_ERROR(EDQUOT)); 3913 } 3914 tx = dmu_tx_create(zfsvfs->z_os); 3915 fuid_dirtied = zfsvfs->z_fuid_dirty; 3916 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3917 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3918 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3919 ZFS_SA_BASE_ATTR_SIZE + len); 3920 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3921 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3922 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3923 acl_ids.z_aclp->z_acl_bytes); 3924 } 3925 if (fuid_dirtied) 3926 zfs_fuid_txhold(zfsvfs, tx); 3927 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3928 if (error) { 3929 zfs_dirent_unlock(dl); 3930 if (error == ERESTART) { 3931 waited = B_TRUE; 3932 dmu_tx_wait(tx); 3933 dmu_tx_abort(tx); 3934 goto top; 3935 } 3936 zfs_acl_ids_free(&acl_ids); 3937 dmu_tx_abort(tx); 3938 ZFS_EXIT(zfsvfs); 3939 return (error); 3940 } 3941 3942 /* 3943 * Create a new object for the symlink. 3944 * for version 4 ZPL datsets the symlink will be an SA attribute 3945 */ 3946 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3947 3948 if (fuid_dirtied) 3949 zfs_fuid_sync(zfsvfs, tx); 3950 3951 mutex_enter(&zp->z_lock); 3952 if (zp->z_is_sa) 3953 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3954 link, len, tx); 3955 else 3956 zfs_sa_symlink(zp, link, len, tx); 3957 mutex_exit(&zp->z_lock); 3958 3959 zp->z_size = len; 3960 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3961 &zp->z_size, sizeof (zp->z_size), tx); 3962 /* 3963 * Insert the new object into the directory. 3964 */ 3965 (void) zfs_link_create(dl, zp, tx, ZNEW); 3966 3967 if (flags & FIGNORECASE) 3968 txtype |= TX_CI; 3969 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3970 3971 zfs_acl_ids_free(&acl_ids); 3972 3973 dmu_tx_commit(tx); 3974 3975 zfs_dirent_unlock(dl); 3976 3977 VN_RELE(ZTOV(zp)); 3978 3979 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3980 zil_commit(zilog, 0); 3981 3982 ZFS_EXIT(zfsvfs); 3983 return (error); 3984 } 3985 3986 /* 3987 * Return, in the buffer contained in the provided uio structure, 3988 * the symbolic path referred to by vp. 3989 * 3990 * IN: vp - vnode of symbolic link. 3991 * uio - structure to contain the link path. 3992 * cr - credentials of caller. 3993 * ct - caller context 3994 * 3995 * OUT: uio - structure containing the link path. 3996 * 3997 * RETURN: 0 on success, error code on failure. 3998 * 3999 * Timestamps: 4000 * vp - atime updated 4001 */ 4002 /* ARGSUSED */ 4003 static int 4004 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 4005 { 4006 znode_t *zp = VTOZ(vp); 4007 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4008 int error; 4009 4010 ZFS_ENTER(zfsvfs); 4011 ZFS_VERIFY_ZP(zp); 4012 4013 mutex_enter(&zp->z_lock); 4014 if (zp->z_is_sa) 4015 error = sa_lookup_uio(zp->z_sa_hdl, 4016 SA_ZPL_SYMLINK(zfsvfs), uio); 4017 else 4018 error = zfs_sa_readlink(zp, uio); 4019 mutex_exit(&zp->z_lock); 4020 4021 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4022 4023 ZFS_EXIT(zfsvfs); 4024 return (error); 4025 } 4026 4027 /* 4028 * Insert a new entry into directory tdvp referencing svp. 4029 * 4030 * IN: tdvp - Directory to contain new entry. 4031 * svp - vnode of new entry. 4032 * name - name of new entry. 4033 * cr - credentials of caller. 4034 * ct - caller context 4035 * 4036 * RETURN: 0 on success, error code on failure. 4037 * 4038 * Timestamps: 4039 * tdvp - ctime|mtime updated 4040 * svp - ctime updated 4041 */ 4042 /* ARGSUSED */ 4043 static int 4044 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4045 caller_context_t *ct, int flags) 4046 { 4047 znode_t *dzp = VTOZ(tdvp); 4048 znode_t *tzp, *szp; 4049 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4050 zilog_t *zilog; 4051 zfs_dirlock_t *dl; 4052 dmu_tx_t *tx; 4053 vnode_t *realvp; 4054 int error; 4055 int zf = ZNEW; 4056 uint64_t parent; 4057 uid_t owner; 4058 boolean_t waited = B_FALSE; 4059 4060 ASSERT(tdvp->v_type == VDIR); 4061 4062 ZFS_ENTER(zfsvfs); 4063 ZFS_VERIFY_ZP(dzp); 4064 zilog = zfsvfs->z_log; 4065 4066 if (VOP_REALVP(svp, &realvp, ct) == 0) 4067 svp = realvp; 4068 4069 /* 4070 * POSIX dictates that we return EPERM here. 4071 * Better choices include ENOTSUP or EISDIR. 4072 */ 4073 if (svp->v_type == VDIR) { 4074 ZFS_EXIT(zfsvfs); 4075 return (SET_ERROR(EPERM)); 4076 } 4077 4078 szp = VTOZ(svp); 4079 ZFS_VERIFY_ZP(szp); 4080 4081 /* 4082 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4083 * ctldir appear to have the same v_vfsp. 4084 */ 4085 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4086 ZFS_EXIT(zfsvfs); 4087 return (SET_ERROR(EXDEV)); 4088 } 4089 4090 /* Prevent links to .zfs/shares files */ 4091 4092 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4093 &parent, sizeof (uint64_t))) != 0) { 4094 ZFS_EXIT(zfsvfs); 4095 return (error); 4096 } 4097 if (parent == zfsvfs->z_shares_dir) { 4098 ZFS_EXIT(zfsvfs); 4099 return (SET_ERROR(EPERM)); 4100 } 4101 4102 if (zfsvfs->z_utf8 && u8_validate(name, 4103 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4104 ZFS_EXIT(zfsvfs); 4105 return (SET_ERROR(EILSEQ)); 4106 } 4107 if (flags & FIGNORECASE) 4108 zf |= ZCILOOK; 4109 4110 /* 4111 * We do not support links between attributes and non-attributes 4112 * because of the potential security risk of creating links 4113 * into "normal" file space in order to circumvent restrictions 4114 * imposed in attribute space. 4115 */ 4116 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4117 ZFS_EXIT(zfsvfs); 4118 return (SET_ERROR(EINVAL)); 4119 } 4120 4121 4122 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4123 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4124 ZFS_EXIT(zfsvfs); 4125 return (SET_ERROR(EPERM)); 4126 } 4127 4128 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4129 ZFS_EXIT(zfsvfs); 4130 return (error); 4131 } 4132 4133 top: 4134 /* 4135 * Attempt to lock directory; fail if entry already exists. 4136 */ 4137 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4138 if (error) { 4139 ZFS_EXIT(zfsvfs); 4140 return (error); 4141 } 4142 4143 tx = dmu_tx_create(zfsvfs->z_os); 4144 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4145 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4146 zfs_sa_upgrade_txholds(tx, szp); 4147 zfs_sa_upgrade_txholds(tx, dzp); 4148 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4149 if (error) { 4150 zfs_dirent_unlock(dl); 4151 if (error == ERESTART) { 4152 waited = B_TRUE; 4153 dmu_tx_wait(tx); 4154 dmu_tx_abort(tx); 4155 goto top; 4156 } 4157 dmu_tx_abort(tx); 4158 ZFS_EXIT(zfsvfs); 4159 return (error); 4160 } 4161 4162 error = zfs_link_create(dl, szp, tx, 0); 4163 4164 if (error == 0) { 4165 uint64_t txtype = TX_LINK; 4166 if (flags & FIGNORECASE) 4167 txtype |= TX_CI; 4168 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4169 } 4170 4171 dmu_tx_commit(tx); 4172 4173 zfs_dirent_unlock(dl); 4174 4175 if (error == 0) { 4176 vnevent_link(svp, ct); 4177 } 4178 4179 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4180 zil_commit(zilog, 0); 4181 4182 ZFS_EXIT(zfsvfs); 4183 return (error); 4184 } 4185 4186 /* 4187 * zfs_null_putapage() is used when the file system has been force 4188 * unmounted. It just drops the pages. 4189 */ 4190 /* ARGSUSED */ 4191 static int 4192 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4193 size_t *lenp, int flags, cred_t *cr) 4194 { 4195 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4196 return (0); 4197 } 4198 4199 /* 4200 * Push a page out to disk, klustering if possible. 4201 * 4202 * IN: vp - file to push page to. 4203 * pp - page to push. 4204 * flags - additional flags. 4205 * cr - credentials of caller. 4206 * 4207 * OUT: offp - start of range pushed. 4208 * lenp - len of range pushed. 4209 * 4210 * RETURN: 0 on success, error code on failure. 4211 * 4212 * NOTE: callers must have locked the page to be pushed. On 4213 * exit, the page (and all other pages in the kluster) must be 4214 * unlocked. 4215 */ 4216 /* ARGSUSED */ 4217 static int 4218 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4219 size_t *lenp, int flags, cred_t *cr) 4220 { 4221 znode_t *zp = VTOZ(vp); 4222 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4223 dmu_tx_t *tx; 4224 u_offset_t off, koff; 4225 size_t len, klen; 4226 int err; 4227 4228 off = pp->p_offset; 4229 len = PAGESIZE; 4230 /* 4231 * If our blocksize is bigger than the page size, try to kluster 4232 * multiple pages so that we write a full block (thus avoiding 4233 * a read-modify-write). 4234 */ 4235 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4236 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4237 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4238 ASSERT(koff <= zp->z_size); 4239 if (koff + klen > zp->z_size) 4240 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4241 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4242 } 4243 ASSERT3U(btop(len), ==, btopr(len)); 4244 4245 /* 4246 * Can't push pages past end-of-file. 4247 */ 4248 if (off >= zp->z_size) { 4249 /* ignore all pages */ 4250 err = 0; 4251 goto out; 4252 } else if (off + len > zp->z_size) { 4253 int npages = btopr(zp->z_size - off); 4254 page_t *trunc; 4255 4256 page_list_break(&pp, &trunc, npages); 4257 /* ignore pages past end of file */ 4258 if (trunc) 4259 pvn_write_done(trunc, flags); 4260 len = zp->z_size - off; 4261 } 4262 4263 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4264 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4265 err = SET_ERROR(EDQUOT); 4266 goto out; 4267 } 4268 tx = dmu_tx_create(zfsvfs->z_os); 4269 dmu_tx_hold_write(tx, zp->z_id, off, len); 4270 4271 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4272 zfs_sa_upgrade_txholds(tx, zp); 4273 err = dmu_tx_assign(tx, TXG_WAIT); 4274 if (err != 0) { 4275 dmu_tx_abort(tx); 4276 goto out; 4277 } 4278 4279 if (zp->z_blksz <= PAGESIZE) { 4280 caddr_t va = zfs_map_page(pp, S_READ); 4281 ASSERT3U(len, <=, PAGESIZE); 4282 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4283 zfs_unmap_page(pp, va); 4284 } else { 4285 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4286 } 4287 4288 if (err == 0) { 4289 uint64_t mtime[2], ctime[2]; 4290 sa_bulk_attr_t bulk[3]; 4291 int count = 0; 4292 4293 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4294 &mtime, 16); 4295 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4296 &ctime, 16); 4297 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4298 &zp->z_pflags, 8); 4299 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4300 B_TRUE); 4301 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4302 } 4303 dmu_tx_commit(tx); 4304 4305 out: 4306 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4307 if (offp) 4308 *offp = off; 4309 if (lenp) 4310 *lenp = len; 4311 4312 return (err); 4313 } 4314 4315 /* 4316 * Copy the portion of the file indicated from pages into the file. 4317 * The pages are stored in a page list attached to the files vnode. 4318 * 4319 * IN: vp - vnode of file to push page data to. 4320 * off - position in file to put data. 4321 * len - amount of data to write. 4322 * flags - flags to control the operation. 4323 * cr - credentials of caller. 4324 * ct - caller context. 4325 * 4326 * RETURN: 0 on success, error code on failure. 4327 * 4328 * Timestamps: 4329 * vp - ctime|mtime updated 4330 */ 4331 /*ARGSUSED*/ 4332 static int 4333 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4334 caller_context_t *ct) 4335 { 4336 znode_t *zp = VTOZ(vp); 4337 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4338 page_t *pp; 4339 size_t io_len; 4340 u_offset_t io_off; 4341 uint_t blksz; 4342 rl_t *rl; 4343 int error = 0; 4344 4345 ZFS_ENTER(zfsvfs); 4346 ZFS_VERIFY_ZP(zp); 4347 4348 /* 4349 * There's nothing to do if no data is cached. 4350 */ 4351 if (!vn_has_cached_data(vp)) { 4352 ZFS_EXIT(zfsvfs); 4353 return (0); 4354 } 4355 4356 /* 4357 * Align this request to the file block size in case we kluster. 4358 * XXX - this can result in pretty aggresive locking, which can 4359 * impact simultanious read/write access. One option might be 4360 * to break up long requests (len == 0) into block-by-block 4361 * operations to get narrower locking. 4362 */ 4363 blksz = zp->z_blksz; 4364 if (ISP2(blksz)) 4365 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4366 else 4367 io_off = 0; 4368 if (len > 0 && ISP2(blksz)) 4369 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4370 else 4371 io_len = 0; 4372 4373 if (io_len == 0) { 4374 /* 4375 * Search the entire vp list for pages >= io_off. 4376 */ 4377 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4378 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4379 goto out; 4380 } 4381 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4382 4383 if (off > zp->z_size) { 4384 /* past end of file */ 4385 zfs_range_unlock(rl); 4386 ZFS_EXIT(zfsvfs); 4387 return (0); 4388 } 4389 4390 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4391 4392 for (off = io_off; io_off < off + len; io_off += io_len) { 4393 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4394 pp = page_lookup(vp, io_off, 4395 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4396 } else { 4397 pp = page_lookup_nowait(vp, io_off, 4398 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4399 } 4400 4401 if (pp != NULL && pvn_getdirty(pp, flags)) { 4402 int err; 4403 4404 /* 4405 * Found a dirty page to push 4406 */ 4407 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4408 if (err) 4409 error = err; 4410 } else { 4411 io_len = PAGESIZE; 4412 } 4413 } 4414 out: 4415 zfs_range_unlock(rl); 4416 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4417 zil_commit(zfsvfs->z_log, zp->z_id); 4418 ZFS_EXIT(zfsvfs); 4419 return (error); 4420 } 4421 4422 /*ARGSUSED*/ 4423 void 4424 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4425 { 4426 znode_t *zp = VTOZ(vp); 4427 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4428 int error; 4429 4430 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4431 if (zp->z_sa_hdl == NULL) { 4432 /* 4433 * The fs has been unmounted, or we did a 4434 * suspend/resume and this file no longer exists. 4435 */ 4436 if (vn_has_cached_data(vp)) { 4437 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4438 B_INVAL, cr); 4439 } 4440 4441 mutex_enter(&zp->z_lock); 4442 mutex_enter(&vp->v_lock); 4443 ASSERT(vp->v_count == 1); 4444 vp->v_count = 0; 4445 mutex_exit(&vp->v_lock); 4446 mutex_exit(&zp->z_lock); 4447 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4448 zfs_znode_free(zp); 4449 return; 4450 } 4451 4452 /* 4453 * Attempt to push any data in the page cache. If this fails 4454 * we will get kicked out later in zfs_zinactive(). 4455 */ 4456 if (vn_has_cached_data(vp)) { 4457 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4458 cr); 4459 } 4460 4461 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4462 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4463 4464 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4465 zfs_sa_upgrade_txholds(tx, zp); 4466 error = dmu_tx_assign(tx, TXG_WAIT); 4467 if (error) { 4468 dmu_tx_abort(tx); 4469 } else { 4470 mutex_enter(&zp->z_lock); 4471 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4472 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4473 zp->z_atime_dirty = 0; 4474 mutex_exit(&zp->z_lock); 4475 dmu_tx_commit(tx); 4476 } 4477 } 4478 4479 zfs_zinactive(zp); 4480 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4481 } 4482 4483 /* 4484 * Bounds-check the seek operation. 4485 * 4486 * IN: vp - vnode seeking within 4487 * ooff - old file offset 4488 * noffp - pointer to new file offset 4489 * ct - caller context 4490 * 4491 * RETURN: 0 on success, EINVAL if new offset invalid. 4492 */ 4493 /* ARGSUSED */ 4494 static int 4495 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4496 caller_context_t *ct) 4497 { 4498 if (vp->v_type == VDIR) 4499 return (0); 4500 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4501 } 4502 4503 /* 4504 * Pre-filter the generic locking function to trap attempts to place 4505 * a mandatory lock on a memory mapped file. 4506 */ 4507 static int 4508 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4509 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4510 { 4511 znode_t *zp = VTOZ(vp); 4512 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4513 4514 ZFS_ENTER(zfsvfs); 4515 ZFS_VERIFY_ZP(zp); 4516 4517 /* 4518 * We are following the UFS semantics with respect to mapcnt 4519 * here: If we see that the file is mapped already, then we will 4520 * return an error, but we don't worry about races between this 4521 * function and zfs_map(). 4522 */ 4523 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4524 ZFS_EXIT(zfsvfs); 4525 return (SET_ERROR(EAGAIN)); 4526 } 4527 ZFS_EXIT(zfsvfs); 4528 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4529 } 4530 4531 /* 4532 * If we can't find a page in the cache, we will create a new page 4533 * and fill it with file data. For efficiency, we may try to fill 4534 * multiple pages at once (klustering) to fill up the supplied page 4535 * list. Note that the pages to be filled are held with an exclusive 4536 * lock to prevent access by other threads while they are being filled. 4537 */ 4538 static int 4539 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4540 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4541 { 4542 znode_t *zp = VTOZ(vp); 4543 page_t *pp, *cur_pp; 4544 objset_t *os = zp->z_zfsvfs->z_os; 4545 u_offset_t io_off, total; 4546 size_t io_len; 4547 int err; 4548 4549 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4550 /* 4551 * We only have a single page, don't bother klustering 4552 */ 4553 io_off = off; 4554 io_len = PAGESIZE; 4555 pp = page_create_va(vp, io_off, io_len, 4556 PG_EXCL | PG_WAIT, seg, addr); 4557 } else { 4558 /* 4559 * Try to find enough pages to fill the page list 4560 */ 4561 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4562 &io_len, off, plsz, 0); 4563 } 4564 if (pp == NULL) { 4565 /* 4566 * The page already exists, nothing to do here. 4567 */ 4568 *pl = NULL; 4569 return (0); 4570 } 4571 4572 /* 4573 * Fill the pages in the kluster. 4574 */ 4575 cur_pp = pp; 4576 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4577 caddr_t va; 4578 4579 ASSERT3U(io_off, ==, cur_pp->p_offset); 4580 va = zfs_map_page(cur_pp, S_WRITE); 4581 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4582 DMU_READ_PREFETCH); 4583 zfs_unmap_page(cur_pp, va); 4584 if (err) { 4585 /* On error, toss the entire kluster */ 4586 pvn_read_done(pp, B_ERROR); 4587 /* convert checksum errors into IO errors */ 4588 if (err == ECKSUM) 4589 err = SET_ERROR(EIO); 4590 return (err); 4591 } 4592 cur_pp = cur_pp->p_next; 4593 } 4594 4595 /* 4596 * Fill in the page list array from the kluster starting 4597 * from the desired offset `off'. 4598 * NOTE: the page list will always be null terminated. 4599 */ 4600 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4601 ASSERT(pl == NULL || (*pl)->p_offset == off); 4602 4603 return (0); 4604 } 4605 4606 /* 4607 * Return pointers to the pages for the file region [off, off + len] 4608 * in the pl array. If plsz is greater than len, this function may 4609 * also return page pointers from after the specified region 4610 * (i.e. the region [off, off + plsz]). These additional pages are 4611 * only returned if they are already in the cache, or were created as 4612 * part of a klustered read. 4613 * 4614 * IN: vp - vnode of file to get data from. 4615 * off - position in file to get data from. 4616 * len - amount of data to retrieve. 4617 * plsz - length of provided page list. 4618 * seg - segment to obtain pages for. 4619 * addr - virtual address of fault. 4620 * rw - mode of created pages. 4621 * cr - credentials of caller. 4622 * ct - caller context. 4623 * 4624 * OUT: protp - protection mode of created pages. 4625 * pl - list of pages created. 4626 * 4627 * RETURN: 0 on success, error code on failure. 4628 * 4629 * Timestamps: 4630 * vp - atime updated 4631 */ 4632 /* ARGSUSED */ 4633 static int 4634 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4635 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4636 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4637 { 4638 znode_t *zp = VTOZ(vp); 4639 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4640 page_t **pl0 = pl; 4641 int err = 0; 4642 4643 /* we do our own caching, faultahead is unnecessary */ 4644 if (pl == NULL) 4645 return (0); 4646 else if (len > plsz) 4647 len = plsz; 4648 else 4649 len = P2ROUNDUP(len, PAGESIZE); 4650 ASSERT(plsz >= len); 4651 4652 ZFS_ENTER(zfsvfs); 4653 ZFS_VERIFY_ZP(zp); 4654 4655 if (protp) 4656 *protp = PROT_ALL; 4657 4658 /* 4659 * Loop through the requested range [off, off + len) looking 4660 * for pages. If we don't find a page, we will need to create 4661 * a new page and fill it with data from the file. 4662 */ 4663 while (len > 0) { 4664 if (*pl = page_lookup(vp, off, SE_SHARED)) 4665 *(pl+1) = NULL; 4666 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4667 goto out; 4668 while (*pl) { 4669 ASSERT3U((*pl)->p_offset, ==, off); 4670 off += PAGESIZE; 4671 addr += PAGESIZE; 4672 if (len > 0) { 4673 ASSERT3U(len, >=, PAGESIZE); 4674 len -= PAGESIZE; 4675 } 4676 ASSERT3U(plsz, >=, PAGESIZE); 4677 plsz -= PAGESIZE; 4678 pl++; 4679 } 4680 } 4681 4682 /* 4683 * Fill out the page array with any pages already in the cache. 4684 */ 4685 while (plsz > 0 && 4686 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4687 off += PAGESIZE; 4688 plsz -= PAGESIZE; 4689 } 4690 out: 4691 if (err) { 4692 /* 4693 * Release any pages we have previously locked. 4694 */ 4695 while (pl > pl0) 4696 page_unlock(*--pl); 4697 } else { 4698 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4699 } 4700 4701 *pl = NULL; 4702 4703 ZFS_EXIT(zfsvfs); 4704 return (err); 4705 } 4706 4707 /* 4708 * Request a memory map for a section of a file. This code interacts 4709 * with common code and the VM system as follows: 4710 * 4711 * - common code calls mmap(), which ends up in smmap_common() 4712 * - this calls VOP_MAP(), which takes you into (say) zfs 4713 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4714 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4715 * - zfs_addmap() updates z_mapcnt 4716 */ 4717 /*ARGSUSED*/ 4718 static int 4719 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4720 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4721 caller_context_t *ct) 4722 { 4723 znode_t *zp = VTOZ(vp); 4724 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4725 segvn_crargs_t vn_a; 4726 int error; 4727 4728 ZFS_ENTER(zfsvfs); 4729 ZFS_VERIFY_ZP(zp); 4730 4731 if ((prot & PROT_WRITE) && (zp->z_pflags & 4732 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4733 ZFS_EXIT(zfsvfs); 4734 return (SET_ERROR(EPERM)); 4735 } 4736 4737 if ((prot & (PROT_READ | PROT_EXEC)) && 4738 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4739 ZFS_EXIT(zfsvfs); 4740 return (SET_ERROR(EACCES)); 4741 } 4742 4743 if (vp->v_flag & VNOMAP) { 4744 ZFS_EXIT(zfsvfs); 4745 return (SET_ERROR(ENOSYS)); 4746 } 4747 4748 if (off < 0 || len > MAXOFFSET_T - off) { 4749 ZFS_EXIT(zfsvfs); 4750 return (SET_ERROR(ENXIO)); 4751 } 4752 4753 if (vp->v_type != VREG) { 4754 ZFS_EXIT(zfsvfs); 4755 return (SET_ERROR(ENODEV)); 4756 } 4757 4758 /* 4759 * If file is locked, disallow mapping. 4760 */ 4761 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4762 ZFS_EXIT(zfsvfs); 4763 return (SET_ERROR(EAGAIN)); 4764 } 4765 4766 as_rangelock(as); 4767 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4768 if (error != 0) { 4769 as_rangeunlock(as); 4770 ZFS_EXIT(zfsvfs); 4771 return (error); 4772 } 4773 4774 vn_a.vp = vp; 4775 vn_a.offset = (u_offset_t)off; 4776 vn_a.type = flags & MAP_TYPE; 4777 vn_a.prot = prot; 4778 vn_a.maxprot = maxprot; 4779 vn_a.cred = cr; 4780 vn_a.amp = NULL; 4781 vn_a.flags = flags & ~MAP_TYPE; 4782 vn_a.szc = 0; 4783 vn_a.lgrp_mem_policy_flags = 0; 4784 4785 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4786 4787 as_rangeunlock(as); 4788 ZFS_EXIT(zfsvfs); 4789 return (error); 4790 } 4791 4792 /* ARGSUSED */ 4793 static int 4794 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4795 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4796 caller_context_t *ct) 4797 { 4798 uint64_t pages = btopr(len); 4799 4800 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4801 return (0); 4802 } 4803 4804 /* 4805 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4806 * more accurate mtime for the associated file. Since we don't have a way of 4807 * detecting when the data was actually modified, we have to resort to 4808 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4809 * last page is pushed. The problem occurs when the msync() call is omitted, 4810 * which by far the most common case: 4811 * 4812 * open() 4813 * mmap() 4814 * <modify memory> 4815 * munmap() 4816 * close() 4817 * <time lapse> 4818 * putpage() via fsflush 4819 * 4820 * If we wait until fsflush to come along, we can have a modification time that 4821 * is some arbitrary point in the future. In order to prevent this in the 4822 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4823 * torn down. 4824 */ 4825 /* ARGSUSED */ 4826 static int 4827 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4828 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4829 caller_context_t *ct) 4830 { 4831 uint64_t pages = btopr(len); 4832 4833 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4834 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4835 4836 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4837 vn_has_cached_data(vp)) 4838 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4839 4840 return (0); 4841 } 4842 4843 /* 4844 * Free or allocate space in a file. Currently, this function only 4845 * supports the `F_FREESP' command. However, this command is somewhat 4846 * misnamed, as its functionality includes the ability to allocate as 4847 * well as free space. 4848 * 4849 * IN: vp - vnode of file to free data in. 4850 * cmd - action to take (only F_FREESP supported). 4851 * bfp - section of file to free/alloc. 4852 * flag - current file open mode flags. 4853 * offset - current file offset. 4854 * cr - credentials of caller [UNUSED]. 4855 * ct - caller context. 4856 * 4857 * RETURN: 0 on success, error code on failure. 4858 * 4859 * Timestamps: 4860 * vp - ctime|mtime updated 4861 */ 4862 /* ARGSUSED */ 4863 static int 4864 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4865 offset_t offset, cred_t *cr, caller_context_t *ct) 4866 { 4867 znode_t *zp = VTOZ(vp); 4868 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4869 uint64_t off, len; 4870 int error; 4871 4872 ZFS_ENTER(zfsvfs); 4873 ZFS_VERIFY_ZP(zp); 4874 4875 if (cmd != F_FREESP) { 4876 ZFS_EXIT(zfsvfs); 4877 return (SET_ERROR(EINVAL)); 4878 } 4879 4880 /* 4881 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4882 * callers might not be able to detect properly that we are read-only, 4883 * so check it explicitly here. 4884 */ 4885 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4886 ZFS_EXIT(zfsvfs); 4887 return (SET_ERROR(EROFS)); 4888 } 4889 4890 if (error = convoff(vp, bfp, 0, offset)) { 4891 ZFS_EXIT(zfsvfs); 4892 return (error); 4893 } 4894 4895 if (bfp->l_len < 0) { 4896 ZFS_EXIT(zfsvfs); 4897 return (SET_ERROR(EINVAL)); 4898 } 4899 4900 off = bfp->l_start; 4901 len = bfp->l_len; /* 0 means from off to end of file */ 4902 4903 error = zfs_freesp(zp, off, len, flag, TRUE); 4904 4905 if (error == 0 && off == 0 && len == 0) 4906 vnevent_truncate(ZTOV(zp), ct); 4907 4908 ZFS_EXIT(zfsvfs); 4909 return (error); 4910 } 4911 4912 /*ARGSUSED*/ 4913 static int 4914 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4915 { 4916 znode_t *zp = VTOZ(vp); 4917 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4918 uint32_t gen; 4919 uint64_t gen64; 4920 uint64_t object = zp->z_id; 4921 zfid_short_t *zfid; 4922 int size, i, error; 4923 4924 ZFS_ENTER(zfsvfs); 4925 ZFS_VERIFY_ZP(zp); 4926 4927 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4928 &gen64, sizeof (uint64_t))) != 0) { 4929 ZFS_EXIT(zfsvfs); 4930 return (error); 4931 } 4932 4933 gen = (uint32_t)gen64; 4934 4935 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4936 if (fidp->fid_len < size) { 4937 fidp->fid_len = size; 4938 ZFS_EXIT(zfsvfs); 4939 return (SET_ERROR(ENOSPC)); 4940 } 4941 4942 zfid = (zfid_short_t *)fidp; 4943 4944 zfid->zf_len = size; 4945 4946 for (i = 0; i < sizeof (zfid->zf_object); i++) 4947 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4948 4949 /* Must have a non-zero generation number to distinguish from .zfs */ 4950 if (gen == 0) 4951 gen = 1; 4952 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4953 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4954 4955 if (size == LONG_FID_LEN) { 4956 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4957 zfid_long_t *zlfid; 4958 4959 zlfid = (zfid_long_t *)fidp; 4960 4961 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4962 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4963 4964 /* XXX - this should be the generation number for the objset */ 4965 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4966 zlfid->zf_setgen[i] = 0; 4967 } 4968 4969 ZFS_EXIT(zfsvfs); 4970 return (0); 4971 } 4972 4973 static int 4974 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4975 caller_context_t *ct) 4976 { 4977 znode_t *zp, *xzp; 4978 zfsvfs_t *zfsvfs; 4979 zfs_dirlock_t *dl; 4980 int error; 4981 4982 switch (cmd) { 4983 case _PC_LINK_MAX: 4984 *valp = ULONG_MAX; 4985 return (0); 4986 4987 case _PC_FILESIZEBITS: 4988 *valp = 64; 4989 return (0); 4990 4991 case _PC_XATTR_EXISTS: 4992 zp = VTOZ(vp); 4993 zfsvfs = zp->z_zfsvfs; 4994 ZFS_ENTER(zfsvfs); 4995 ZFS_VERIFY_ZP(zp); 4996 *valp = 0; 4997 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4998 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4999 if (error == 0) { 5000 zfs_dirent_unlock(dl); 5001 if (!zfs_dirempty(xzp)) 5002 *valp = 1; 5003 VN_RELE(ZTOV(xzp)); 5004 } else if (error == ENOENT) { 5005 /* 5006 * If there aren't extended attributes, it's the 5007 * same as having zero of them. 5008 */ 5009 error = 0; 5010 } 5011 ZFS_EXIT(zfsvfs); 5012 return (error); 5013 5014 case _PC_SATTR_ENABLED: 5015 case _PC_SATTR_EXISTS: 5016 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5017 (vp->v_type == VREG || vp->v_type == VDIR); 5018 return (0); 5019 5020 case _PC_ACCESS_FILTERING: 5021 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 5022 vp->v_type == VDIR; 5023 return (0); 5024 5025 case _PC_ACL_ENABLED: 5026 *valp = _ACL_ACE_ENABLED; 5027 return (0); 5028 5029 case _PC_MIN_HOLE_SIZE: 5030 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5031 return (0); 5032 5033 case _PC_TIMESTAMP_RESOLUTION: 5034 /* nanosecond timestamp resolution */ 5035 *valp = 1L; 5036 return (0); 5037 5038 default: 5039 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5040 } 5041 } 5042 5043 /*ARGSUSED*/ 5044 static int 5045 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5046 caller_context_t *ct) 5047 { 5048 znode_t *zp = VTOZ(vp); 5049 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5050 int error; 5051 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5052 5053 ZFS_ENTER(zfsvfs); 5054 ZFS_VERIFY_ZP(zp); 5055 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5056 ZFS_EXIT(zfsvfs); 5057 5058 return (error); 5059 } 5060 5061 /*ARGSUSED*/ 5062 static int 5063 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5064 caller_context_t *ct) 5065 { 5066 znode_t *zp = VTOZ(vp); 5067 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5068 int error; 5069 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5070 zilog_t *zilog = zfsvfs->z_log; 5071 5072 ZFS_ENTER(zfsvfs); 5073 ZFS_VERIFY_ZP(zp); 5074 5075 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5076 5077 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5078 zil_commit(zilog, 0); 5079 5080 ZFS_EXIT(zfsvfs); 5081 return (error); 5082 } 5083 5084 /* 5085 * The smallest read we may consider to loan out an arcbuf. 5086 * This must be a power of 2. 5087 */ 5088 int zcr_blksz_min = (1 << 10); /* 1K */ 5089 /* 5090 * If set to less than the file block size, allow loaning out of an 5091 * arcbuf for a partial block read. This must be a power of 2. 5092 */ 5093 int zcr_blksz_max = (1 << 17); /* 128K */ 5094 5095 /*ARGSUSED*/ 5096 static int 5097 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5098 caller_context_t *ct) 5099 { 5100 znode_t *zp = VTOZ(vp); 5101 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5102 int max_blksz = zfsvfs->z_max_blksz; 5103 uio_t *uio = &xuio->xu_uio; 5104 ssize_t size = uio->uio_resid; 5105 offset_t offset = uio->uio_loffset; 5106 int blksz; 5107 int fullblk, i; 5108 arc_buf_t *abuf; 5109 ssize_t maxsize; 5110 int preamble, postamble; 5111 5112 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5113 return (SET_ERROR(EINVAL)); 5114 5115 ZFS_ENTER(zfsvfs); 5116 ZFS_VERIFY_ZP(zp); 5117 switch (ioflag) { 5118 case UIO_WRITE: 5119 /* 5120 * Loan out an arc_buf for write if write size is bigger than 5121 * max_blksz, and the file's block size is also max_blksz. 5122 */ 5123 blksz = max_blksz; 5124 if (size < blksz || zp->z_blksz != blksz) { 5125 ZFS_EXIT(zfsvfs); 5126 return (SET_ERROR(EINVAL)); 5127 } 5128 /* 5129 * Caller requests buffers for write before knowing where the 5130 * write offset might be (e.g. NFS TCP write). 5131 */ 5132 if (offset == -1) { 5133 preamble = 0; 5134 } else { 5135 preamble = P2PHASE(offset, blksz); 5136 if (preamble) { 5137 preamble = blksz - preamble; 5138 size -= preamble; 5139 } 5140 } 5141 5142 postamble = P2PHASE(size, blksz); 5143 size -= postamble; 5144 5145 fullblk = size / blksz; 5146 (void) dmu_xuio_init(xuio, 5147 (preamble != 0) + fullblk + (postamble != 0)); 5148 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5149 int, postamble, int, 5150 (preamble != 0) + fullblk + (postamble != 0)); 5151 5152 /* 5153 * Have to fix iov base/len for partial buffers. They 5154 * currently represent full arc_buf's. 5155 */ 5156 if (preamble) { 5157 /* data begins in the middle of the arc_buf */ 5158 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5159 blksz); 5160 ASSERT(abuf); 5161 (void) dmu_xuio_add(xuio, abuf, 5162 blksz - preamble, preamble); 5163 } 5164 5165 for (i = 0; i < fullblk; i++) { 5166 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5167 blksz); 5168 ASSERT(abuf); 5169 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5170 } 5171 5172 if (postamble) { 5173 /* data ends in the middle of the arc_buf */ 5174 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5175 blksz); 5176 ASSERT(abuf); 5177 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5178 } 5179 break; 5180 case UIO_READ: 5181 /* 5182 * Loan out an arc_buf for read if the read size is larger than 5183 * the current file block size. Block alignment is not 5184 * considered. Partial arc_buf will be loaned out for read. 5185 */ 5186 blksz = zp->z_blksz; 5187 if (blksz < zcr_blksz_min) 5188 blksz = zcr_blksz_min; 5189 if (blksz > zcr_blksz_max) 5190 blksz = zcr_blksz_max; 5191 /* avoid potential complexity of dealing with it */ 5192 if (blksz > max_blksz) { 5193 ZFS_EXIT(zfsvfs); 5194 return (SET_ERROR(EINVAL)); 5195 } 5196 5197 maxsize = zp->z_size - uio->uio_loffset; 5198 if (size > maxsize) 5199 size = maxsize; 5200 5201 if (size < blksz || vn_has_cached_data(vp)) { 5202 ZFS_EXIT(zfsvfs); 5203 return (SET_ERROR(EINVAL)); 5204 } 5205 break; 5206 default: 5207 ZFS_EXIT(zfsvfs); 5208 return (SET_ERROR(EINVAL)); 5209 } 5210 5211 uio->uio_extflg = UIO_XUIO; 5212 XUIO_XUZC_RW(xuio) = ioflag; 5213 ZFS_EXIT(zfsvfs); 5214 return (0); 5215 } 5216 5217 /*ARGSUSED*/ 5218 static int 5219 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5220 { 5221 int i; 5222 arc_buf_t *abuf; 5223 int ioflag = XUIO_XUZC_RW(xuio); 5224 5225 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5226 5227 i = dmu_xuio_cnt(xuio); 5228 while (i-- > 0) { 5229 abuf = dmu_xuio_arcbuf(xuio, i); 5230 /* 5231 * if abuf == NULL, it must be a write buffer 5232 * that has been returned in zfs_write(). 5233 */ 5234 if (abuf) 5235 dmu_return_arcbuf(abuf); 5236 ASSERT(abuf || ioflag == UIO_WRITE); 5237 } 5238 5239 dmu_xuio_fini(xuio); 5240 return (0); 5241 } 5242 5243 /* 5244 * Predeclare these here so that the compiler assumes that 5245 * this is an "old style" function declaration that does 5246 * not include arguments => we won't get type mismatch errors 5247 * in the initializations that follow. 5248 */ 5249 static int zfs_inval(); 5250 static int zfs_isdir(); 5251 5252 static int 5253 zfs_inval() 5254 { 5255 return (SET_ERROR(EINVAL)); 5256 } 5257 5258 static int 5259 zfs_isdir() 5260 { 5261 return (SET_ERROR(EISDIR)); 5262 } 5263 /* 5264 * Directory vnode operations template 5265 */ 5266 vnodeops_t *zfs_dvnodeops; 5267 const fs_operation_def_t zfs_dvnodeops_template[] = { 5268 VOPNAME_OPEN, { .vop_open = zfs_open }, 5269 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5270 VOPNAME_READ, { .error = zfs_isdir }, 5271 VOPNAME_WRITE, { .error = zfs_isdir }, 5272 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5273 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5274 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5275 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5276 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5277 VOPNAME_CREATE, { .vop_create = zfs_create }, 5278 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5279 VOPNAME_LINK, { .vop_link = zfs_link }, 5280 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5281 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5282 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5283 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5284 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5285 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5286 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5287 VOPNAME_FID, { .vop_fid = zfs_fid }, 5288 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5289 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5290 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5291 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5292 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5293 NULL, NULL 5294 }; 5295 5296 /* 5297 * Regular file vnode operations template 5298 */ 5299 vnodeops_t *zfs_fvnodeops; 5300 const fs_operation_def_t zfs_fvnodeops_template[] = { 5301 VOPNAME_OPEN, { .vop_open = zfs_open }, 5302 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5303 VOPNAME_READ, { .vop_read = zfs_read }, 5304 VOPNAME_WRITE, { .vop_write = zfs_write }, 5305 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5306 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5307 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5308 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5309 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5310 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5311 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5312 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5313 VOPNAME_FID, { .vop_fid = zfs_fid }, 5314 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5315 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5316 VOPNAME_SPACE, { .vop_space = zfs_space }, 5317 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5318 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5319 VOPNAME_MAP, { .vop_map = zfs_map }, 5320 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5321 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5322 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5323 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5324 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5325 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5326 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5327 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5328 NULL, NULL 5329 }; 5330 5331 /* 5332 * Symbolic link vnode operations template 5333 */ 5334 vnodeops_t *zfs_symvnodeops; 5335 const fs_operation_def_t zfs_symvnodeops_template[] = { 5336 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5337 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5338 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5339 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5340 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5341 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5342 VOPNAME_FID, { .vop_fid = zfs_fid }, 5343 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5344 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5345 NULL, NULL 5346 }; 5347 5348 /* 5349 * special share hidden files vnode operations template 5350 */ 5351 vnodeops_t *zfs_sharevnodeops; 5352 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5353 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5354 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5355 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5356 VOPNAME_FID, { .vop_fid = zfs_fid }, 5357 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5358 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5359 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5360 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5361 NULL, NULL 5362 }; 5363 5364 /* 5365 * Extended attribute directory vnode operations template 5366 * 5367 * This template is identical to the directory vnodes 5368 * operation template except for restricted operations: 5369 * VOP_MKDIR() 5370 * VOP_SYMLINK() 5371 * 5372 * Note that there are other restrictions embedded in: 5373 * zfs_create() - restrict type to VREG 5374 * zfs_link() - no links into/out of attribute space 5375 * zfs_rename() - no moves into/out of attribute space 5376 */ 5377 vnodeops_t *zfs_xdvnodeops; 5378 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5379 VOPNAME_OPEN, { .vop_open = zfs_open }, 5380 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5381 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5382 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5383 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5384 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5385 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5386 VOPNAME_CREATE, { .vop_create = zfs_create }, 5387 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5388 VOPNAME_LINK, { .vop_link = zfs_link }, 5389 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5390 VOPNAME_MKDIR, { .error = zfs_inval }, 5391 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5392 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5393 VOPNAME_SYMLINK, { .error = zfs_inval }, 5394 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5395 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5396 VOPNAME_FID, { .vop_fid = zfs_fid }, 5397 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5398 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5399 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5400 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5401 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5402 NULL, NULL 5403 }; 5404 5405 /* 5406 * Error vnode operations template 5407 */ 5408 vnodeops_t *zfs_evnodeops; 5409 const fs_operation_def_t zfs_evnodeops_template[] = { 5410 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5411 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5412 NULL, NULL 5413 };