1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83
84 /*
85 * Programming rules.
86 *
87 * Each vnode op performs some logical unit of work. To do this, the ZPL must
88 * properly lock its in-core state, create a DMU transaction, do the work,
89 * record this work in the intent log (ZIL), commit the DMU transaction,
90 * and wait for the intent log to commit if it is a synchronous operation.
91 * Moreover, the vnode ops must work in both normal and log replay context.
92 * The ordering of events is important to avoid deadlocks and references
93 * to freed memory. The example below illustrates the following Big Rules:
94 *
95 * (1) A check must be made in each zfs thread for a mounted file system.
96 * This is done avoiding races using ZFS_ENTER(zfsvfs).
97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
99 * can return EIO from the calling function.
100 *
101 * (2) VN_RELE() should always be the last thing except for zil_commit()
102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
103 * First, if it's the last reference, the vnode/znode
104 * can be freed, so the zp may point to freed memory. Second, the last
105 * reference will call zfs_zinactive(), which may induce a lot of work --
106 * pushing cached pages (which acquires range locks) and syncing out
107 * cached atime changes. Third, zfs_zinactive() may require a new tx,
108 * which could deadlock the system if you were already holding one.
109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110 *
111 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
112 * as they can span dmu_tx_assign() calls.
113 *
114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
115 * dmu_tx_assign(). This is critical because we don't want to block
116 * while holding locks.
117 *
118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
119 * reduces lock contention and CPU usage when we must wait (note that if
120 * throughput is constrained by the storage, nearly every transaction
121 * must wait).
122 *
123 * Note, in particular, that if a lock is sometimes acquired before
124 * the tx assigns, and sometimes after (e.g. z_lock), then failing
125 * to use a non-blocking assign can deadlock the system. The scenario:
126 *
127 * Thread A has grabbed a lock before calling dmu_tx_assign().
128 * Thread B is in an already-assigned tx, and blocks for this lock.
129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
130 * forever, because the previous txg can't quiesce until B's tx commits.
131 *
132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
134 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
135 * to indicate that this operation has already called dmu_tx_wait().
136 * This will ensure that we don't retry forever, waiting a short bit
137 * each time.
138 *
139 * (5) If the operation succeeded, generate the intent log entry for it
140 * before dropping locks. This ensures that the ordering of events
141 * in the intent log matches the order in which they actually occurred.
142 * During ZIL replay the zfs_log_* functions will update the sequence
143 * number to indicate the zil transaction has replayed.
144 *
145 * (6) At the end of each vnode op, the DMU tx must always commit,
146 * regardless of whether there were any errors.
147 *
148 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
149 * to ensure that synchronous semantics are provided when necessary.
150 *
151 * In general, this is how things should be ordered in each vnode op:
152 *
153 * ZFS_ENTER(zfsvfs); // exit if unmounted
154 * top:
155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
156 * rw_enter(...); // grab any other locks you need
157 * tx = dmu_tx_create(...); // get DMU tx
158 * dmu_tx_hold_*(); // hold each object you might modify
159 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
160 * if (error) {
161 * rw_exit(...); // drop locks
162 * zfs_dirent_unlock(dl); // unlock directory entry
163 * VN_RELE(...); // release held vnodes
164 * if (error == ERESTART) {
165 * waited = B_TRUE;
166 * dmu_tx_wait(tx);
167 * dmu_tx_abort(tx);
168 * goto top;
169 * }
170 * dmu_tx_abort(tx); // abort DMU tx
171 * ZFS_EXIT(zfsvfs); // finished in zfs
172 * return (error); // really out of space
173 * }
174 * error = do_real_work(); // do whatever this VOP does
175 * if (error == 0)
176 * zfs_log_*(...); // on success, make ZIL entry
177 * dmu_tx_commit(tx); // commit DMU tx -- error or not
178 * rw_exit(...); // drop locks
179 * zfs_dirent_unlock(dl); // unlock directory entry
180 * VN_RELE(...); // release held vnodes
181 * zil_commit(zilog, foid); // synchronous when necessary
182 * ZFS_EXIT(zfsvfs); // finished in zfs
183 * return (error); // done, report error
184 */
185
186 /* ARGSUSED */
187 static int
188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
189 {
190 znode_t *zp = VTOZ(*vpp);
191 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
192
193 ZFS_ENTER(zfsvfs);
194 ZFS_VERIFY_ZP(zp);
195
196 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
197 ((flag & FAPPEND) == 0)) {
198 ZFS_EXIT(zfsvfs);
199 return (SET_ERROR(EPERM));
200 }
201
202 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
203 ZTOV(zp)->v_type == VREG &&
204 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
205 if (fs_vscan(*vpp, cr, 0) != 0) {
206 ZFS_EXIT(zfsvfs);
207 return (SET_ERROR(EACCES));
208 }
209 }
210
211 /* Keep a count of the synchronous opens in the znode */
212 if (flag & (FSYNC | FDSYNC))
213 atomic_inc_32(&zp->z_sync_cnt);
214
215 ZFS_EXIT(zfsvfs);
216 return (0);
217 }
218
219 /* ARGSUSED */
220 static int
221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
222 caller_context_t *ct)
223 {
224 znode_t *zp = VTOZ(vp);
225 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
226
227 /*
228 * Clean up any locks held by this process on the vp.
229 */
230 cleanlocks(vp, ddi_get_pid(), 0);
231 cleanshares(vp, ddi_get_pid());
232
233 ZFS_ENTER(zfsvfs);
234 ZFS_VERIFY_ZP(zp);
235
236 /* Decrement the synchronous opens in the znode */
237 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
238 atomic_dec_32(&zp->z_sync_cnt);
239
240 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
241 ZTOV(zp)->v_type == VREG &&
242 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
243 VERIFY(fs_vscan(vp, cr, 1) == 0);
244
245 ZFS_EXIT(zfsvfs);
246 return (0);
247 }
248
249 /*
250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
252 */
253 static int
254 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
255 {
256 znode_t *zp = VTOZ(vp);
257 uint64_t noff = (uint64_t)*off; /* new offset */
258 uint64_t file_sz;
259 int error;
260 boolean_t hole;
261
262 file_sz = zp->z_size;
263 if (noff >= file_sz) {
264 return (SET_ERROR(ENXIO));
265 }
266
267 if (cmd == _FIO_SEEK_HOLE)
268 hole = B_TRUE;
269 else
270 hole = B_FALSE;
271
272 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
273
274 if (error == ESRCH)
275 return (SET_ERROR(ENXIO));
276
277 /*
278 * We could find a hole that begins after the logical end-of-file,
279 * because dmu_offset_next() only works on whole blocks. If the
280 * EOF falls mid-block, then indicate that the "virtual hole"
281 * at the end of the file begins at the logical EOF, rather than
282 * at the end of the last block.
283 */
284 if (noff > file_sz) {
285 ASSERT(hole);
286 noff = file_sz;
287 }
288
289 if (noff < *off)
290 return (error);
291 *off = noff;
292 return (error);
293 }
294
295 /* ARGSUSED */
296 static int
297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
298 int *rvalp, caller_context_t *ct)
299 {
300 offset_t off;
301 int error;
302 zfsvfs_t *zfsvfs;
303 znode_t *zp;
304
305 switch (com) {
306 case _FIOFFS:
307 return (zfs_sync(vp->v_vfsp, 0, cred));
308
309 /*
310 * The following two ioctls are used by bfu. Faking out,
311 * necessary to avoid bfu errors.
312 */
313 case _FIOGDIO:
314 case _FIOSDIO:
315 return (0);
316
317 case _FIO_SEEK_DATA:
318 case _FIO_SEEK_HOLE:
319 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
320 return (SET_ERROR(EFAULT));
321
322 zp = VTOZ(vp);
323 zfsvfs = zp->z_zfsvfs;
324 ZFS_ENTER(zfsvfs);
325 ZFS_VERIFY_ZP(zp);
326
327 /* offset parameter is in/out */
328 error = zfs_holey(vp, com, &off);
329 ZFS_EXIT(zfsvfs);
330 if (error)
331 return (error);
332 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
333 return (SET_ERROR(EFAULT));
334 return (0);
335 }
336 return (SET_ERROR(ENOTTY));
337 }
338
339 /*
340 * Utility functions to map and unmap a single physical page. These
341 * are used to manage the mappable copies of ZFS file data, and therefore
342 * do not update ref/mod bits.
343 */
344 caddr_t
345 zfs_map_page(page_t *pp, enum seg_rw rw)
346 {
347 if (kpm_enable)
348 return (hat_kpm_mapin(pp, 0));
349 ASSERT(rw == S_READ || rw == S_WRITE);
350 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
351 (caddr_t)-1));
352 }
353
354 void
355 zfs_unmap_page(page_t *pp, caddr_t addr)
356 {
357 if (kpm_enable) {
358 hat_kpm_mapout(pp, 0, addr);
359 } else {
360 ppmapout(addr);
361 }
362 }
363
364 /*
365 * When a file is memory mapped, we must keep the IO data synchronized
366 * between the DMU cache and the memory mapped pages. What this means:
367 *
368 * On Write: If we find a memory mapped page, we write to *both*
369 * the page and the dmu buffer.
370 */
371 static void
372 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
373 {
374 int64_t off;
375
376 off = start & PAGEOFFSET;
377 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
378 page_t *pp;
379 uint64_t nbytes = MIN(PAGESIZE - off, len);
380
381 if (pp = page_lookup(vp, start, SE_SHARED)) {
382 caddr_t va;
383
384 va = zfs_map_page(pp, S_WRITE);
385 (void) dmu_read(os, oid, start+off, nbytes, va+off,
386 DMU_READ_PREFETCH);
387 zfs_unmap_page(pp, va);
388 page_unlock(pp);
389 }
390 len -= nbytes;
391 off = 0;
392 }
393 }
394
395 /*
396 * When a file is memory mapped, we must keep the IO data synchronized
397 * between the DMU cache and the memory mapped pages. What this means:
398 *
399 * On Read: We "read" preferentially from memory mapped pages,
400 * else we default from the dmu buffer.
401 *
402 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
403 * the file is memory mapped.
404 */
405 static int
406 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
407 {
408 znode_t *zp = VTOZ(vp);
409 int64_t start, off;
410 int len = nbytes;
411 int error = 0;
412
413 start = uio->uio_loffset;
414 off = start & PAGEOFFSET;
415 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
416 page_t *pp;
417 uint64_t bytes = MIN(PAGESIZE - off, len);
418
419 if (pp = page_lookup(vp, start, SE_SHARED)) {
420 caddr_t va;
421
422 va = zfs_map_page(pp, S_READ);
423 error = uiomove(va + off, bytes, UIO_READ, uio);
424 zfs_unmap_page(pp, va);
425 page_unlock(pp);
426 } else {
427 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
428 uio, bytes);
429 }
430 len -= bytes;
431 off = 0;
432 if (error)
433 break;
434 }
435 return (error);
436 }
437
438 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
439
440 /*
441 * Read bytes from specified file into supplied buffer.
442 *
443 * IN: vp - vnode of file to be read from.
444 * uio - structure supplying read location, range info,
445 * and return buffer.
446 * ioflag - SYNC flags; used to provide FRSYNC semantics.
447 * cr - credentials of caller.
448 * ct - caller context
449 *
450 * OUT: uio - updated offset and range, buffer filled.
451 *
452 * RETURN: 0 on success, error code on failure.
453 *
454 * Side Effects:
455 * vp - atime updated if byte count > 0
456 */
457 /* ARGSUSED */
458 static int
459 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
460 {
461 znode_t *zp = VTOZ(vp);
462 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
463 ssize_t n, nbytes;
464 int error = 0;
465 rl_t *rl;
466 xuio_t *xuio = NULL;
467
468 ZFS_ENTER(zfsvfs);
469 ZFS_VERIFY_ZP(zp);
470
471 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
472 ZFS_EXIT(zfsvfs);
473 return (SET_ERROR(EACCES));
474 }
475
476 /*
477 * Validate file offset
478 */
479 if (uio->uio_loffset < (offset_t)0) {
480 ZFS_EXIT(zfsvfs);
481 return (SET_ERROR(EINVAL));
482 }
483
484 /*
485 * Fasttrack empty reads
486 */
487 if (uio->uio_resid == 0) {
488 ZFS_EXIT(zfsvfs);
489 return (0);
490 }
491
492 /*
493 * Check for mandatory locks
494 */
495 if (MANDMODE(zp->z_mode)) {
496 if (error = chklock(vp, FREAD,
497 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
498 ZFS_EXIT(zfsvfs);
499 return (error);
500 }
501 }
502
503 /*
504 * If we're in FRSYNC mode, sync out this znode before reading it.
505 */
506 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
507 zil_commit(zfsvfs->z_log, zp->z_id);
508
509 /*
510 * Lock the range against changes.
511 */
512 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
513
514 /*
515 * If we are reading past end-of-file we can skip
516 * to the end; but we might still need to set atime.
517 */
518 if (uio->uio_loffset >= zp->z_size) {
519 error = 0;
520 goto out;
521 }
522
523 ASSERT(uio->uio_loffset < zp->z_size);
524 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
525
526 if ((uio->uio_extflg == UIO_XUIO) &&
527 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
528 int nblk;
529 int blksz = zp->z_blksz;
530 uint64_t offset = uio->uio_loffset;
531
532 xuio = (xuio_t *)uio;
533 if ((ISP2(blksz))) {
534 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
535 blksz)) / blksz;
536 } else {
537 ASSERT(offset + n <= blksz);
538 nblk = 1;
539 }
540 (void) dmu_xuio_init(xuio, nblk);
541
542 if (vn_has_cached_data(vp)) {
543 /*
544 * For simplicity, we always allocate a full buffer
545 * even if we only expect to read a portion of a block.
546 */
547 while (--nblk >= 0) {
548 (void) dmu_xuio_add(xuio,
549 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
550 blksz), 0, blksz);
551 }
552 }
553 }
554
555 while (n > 0) {
556 nbytes = MIN(n, zfs_read_chunk_size -
557 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
558
559 if (vn_has_cached_data(vp)) {
560 error = mappedread(vp, nbytes, uio);
561 } else {
562 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
563 uio, nbytes);
564 }
565 if (error) {
566 /* convert checksum errors into IO errors */
567 if (error == ECKSUM)
568 error = SET_ERROR(EIO);
569 break;
570 }
571
572 n -= nbytes;
573 }
574 out:
575 zfs_range_unlock(rl);
576
577 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
578 ZFS_EXIT(zfsvfs);
579 return (error);
580 }
581
582 /*
583 * Write the bytes to a file.
584 *
585 * IN: vp - vnode of file to be written to.
586 * uio - structure supplying write location, range info,
587 * and data buffer.
588 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
589 * set if in append mode.
590 * cr - credentials of caller.
591 * ct - caller context (NFS/CIFS fem monitor only)
592 *
593 * OUT: uio - updated offset and range.
594 *
595 * RETURN: 0 on success, error code on failure.
596 *
597 * Timestamps:
598 * vp - ctime|mtime updated if byte count > 0
599 */
600
601 /* ARGSUSED */
602 static int
603 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
604 {
605 znode_t *zp = VTOZ(vp);
606 rlim64_t limit = uio->uio_llimit;
607 ssize_t start_resid = uio->uio_resid;
608 ssize_t tx_bytes;
609 uint64_t end_size;
610 dmu_tx_t *tx;
611 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
612 zilog_t *zilog;
613 offset_t woff;
614 ssize_t n, nbytes;
615 rl_t *rl;
616 int max_blksz = zfsvfs->z_max_blksz;
617 int error = 0;
618 arc_buf_t *abuf;
619 iovec_t *aiov = NULL;
620 xuio_t *xuio = NULL;
621 int i_iov = 0;
622 int iovcnt = uio->uio_iovcnt;
623 iovec_t *iovp = uio->uio_iov;
624 int write_eof;
625 int count = 0;
626 sa_bulk_attr_t bulk[4];
627 uint64_t mtime[2], ctime[2];
628
629 /*
630 * Fasttrack empty write
631 */
632 n = start_resid;
633 if (n == 0)
634 return (0);
635
636 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
637 limit = MAXOFFSET_T;
638
639 ZFS_ENTER(zfsvfs);
640 ZFS_VERIFY_ZP(zp);
641
642 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
643 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
644 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
645 &zp->z_size, 8);
646 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
647 &zp->z_pflags, 8);
648
649 /*
650 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
651 * callers might not be able to detect properly that we are read-only,
652 * so check it explicitly here.
653 */
654 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
655 ZFS_EXIT(zfsvfs);
656 return (SET_ERROR(EROFS));
657 }
658
659 /*
660 * If immutable or not appending then return EPERM
661 */
662 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
663 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
664 (uio->uio_loffset < zp->z_size))) {
665 ZFS_EXIT(zfsvfs);
666 return (SET_ERROR(EPERM));
667 }
668
669 zilog = zfsvfs->z_log;
670
671 /*
672 * Validate file offset
673 */
674 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
675 if (woff < 0) {
676 ZFS_EXIT(zfsvfs);
677 return (SET_ERROR(EINVAL));
678 }
679
680 /*
681 * Check for mandatory locks before calling zfs_range_lock()
682 * in order to prevent a deadlock with locks set via fcntl().
683 */
684 if (MANDMODE((mode_t)zp->z_mode) &&
685 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
686 ZFS_EXIT(zfsvfs);
687 return (error);
688 }
689
690 /*
691 * Pre-fault the pages to ensure slow (eg NFS) pages
692 * don't hold up txg.
693 * Skip this if uio contains loaned arc_buf.
694 */
695 if ((uio->uio_extflg == UIO_XUIO) &&
696 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
697 xuio = (xuio_t *)uio;
698 else
699 uio_prefaultpages(MIN(n, max_blksz), uio);
700
701 /*
702 * If in append mode, set the io offset pointer to eof.
703 */
704 if (ioflag & FAPPEND) {
705 /*
706 * Obtain an appending range lock to guarantee file append
707 * semantics. We reset the write offset once we have the lock.
708 */
709 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
710 woff = rl->r_off;
711 if (rl->r_len == UINT64_MAX) {
712 /*
713 * We overlocked the file because this write will cause
714 * the file block size to increase.
715 * Note that zp_size cannot change with this lock held.
716 */
717 woff = zp->z_size;
718 }
719 uio->uio_loffset = woff;
720 } else {
721 /*
722 * Note that if the file block size will change as a result of
723 * this write, then this range lock will lock the entire file
724 * so that we can re-write the block safely.
725 */
726 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
727 }
728
729 if (woff >= limit) {
730 zfs_range_unlock(rl);
731 ZFS_EXIT(zfsvfs);
732 return (SET_ERROR(EFBIG));
733 }
734
735 if ((woff + n) > limit || woff > (limit - n))
736 n = limit - woff;
737
738 /* Will this write extend the file length? */
739 write_eof = (woff + n > zp->z_size);
740
741 end_size = MAX(zp->z_size, woff + n);
742
743 /*
744 * Write the file in reasonable size chunks. Each chunk is written
745 * in a separate transaction; this keeps the intent log records small
746 * and allows us to do more fine-grained space accounting.
747 */
748 while (n > 0) {
749 abuf = NULL;
750 woff = uio->uio_loffset;
751 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
752 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
753 if (abuf != NULL)
754 dmu_return_arcbuf(abuf);
755 error = SET_ERROR(EDQUOT);
756 break;
757 }
758
759 if (xuio && abuf == NULL) {
760 ASSERT(i_iov < iovcnt);
761 aiov = &iovp[i_iov];
762 abuf = dmu_xuio_arcbuf(xuio, i_iov);
763 dmu_xuio_clear(xuio, i_iov);
764 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
765 iovec_t *, aiov, arc_buf_t *, abuf);
766 ASSERT((aiov->iov_base == abuf->b_data) ||
767 ((char *)aiov->iov_base - (char *)abuf->b_data +
768 aiov->iov_len == arc_buf_size(abuf)));
769 i_iov++;
770 } else if (abuf == NULL && n >= max_blksz &&
771 woff >= zp->z_size &&
772 P2PHASE(woff, max_blksz) == 0 &&
773 zp->z_blksz == max_blksz) {
774 /*
775 * This write covers a full block. "Borrow" a buffer
776 * from the dmu so that we can fill it before we enter
777 * a transaction. This avoids the possibility of
778 * holding up the transaction if the data copy hangs
779 * up on a pagefault (e.g., from an NFS server mapping).
780 */
781 size_t cbytes;
782
783 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
784 max_blksz);
785 ASSERT(abuf != NULL);
786 ASSERT(arc_buf_size(abuf) == max_blksz);
787 if (error = uiocopy(abuf->b_data, max_blksz,
788 UIO_WRITE, uio, &cbytes)) {
789 dmu_return_arcbuf(abuf);
790 break;
791 }
792 ASSERT(cbytes == max_blksz);
793 }
794
795 /*
796 * Start a transaction.
797 */
798 tx = dmu_tx_create(zfsvfs->z_os);
799 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
800 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
801 zfs_sa_upgrade_txholds(tx, zp);
802 error = dmu_tx_assign(tx, TXG_WAIT);
803 if (error) {
804 dmu_tx_abort(tx);
805 if (abuf != NULL)
806 dmu_return_arcbuf(abuf);
807 break;
808 }
809
810 /*
811 * If zfs_range_lock() over-locked we grow the blocksize
812 * and then reduce the lock range. This will only happen
813 * on the first iteration since zfs_range_reduce() will
814 * shrink down r_len to the appropriate size.
815 */
816 if (rl->r_len == UINT64_MAX) {
817 uint64_t new_blksz;
818
819 if (zp->z_blksz > max_blksz) {
820 ASSERT(!ISP2(zp->z_blksz));
821 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
822 } else {
823 new_blksz = MIN(end_size, max_blksz);
824 }
825 zfs_grow_blocksize(zp, new_blksz, tx);
826 zfs_range_reduce(rl, woff, n);
827 }
828
829 /*
830 * XXX - should we really limit each write to z_max_blksz?
831 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
832 */
833 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
834
835 if (abuf == NULL) {
836 tx_bytes = uio->uio_resid;
837 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
838 uio, nbytes, tx);
839 tx_bytes -= uio->uio_resid;
840 } else {
841 tx_bytes = nbytes;
842 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
843 /*
844 * If this is not a full block write, but we are
845 * extending the file past EOF and this data starts
846 * block-aligned, use assign_arcbuf(). Otherwise,
847 * write via dmu_write().
848 */
849 if (tx_bytes < max_blksz && (!write_eof ||
850 aiov->iov_base != abuf->b_data)) {
851 ASSERT(xuio);
852 dmu_write(zfsvfs->z_os, zp->z_id, woff,
853 aiov->iov_len, aiov->iov_base, tx);
854 dmu_return_arcbuf(abuf);
855 xuio_stat_wbuf_copied();
856 } else {
857 ASSERT(xuio || tx_bytes == max_blksz);
858 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
859 woff, abuf, tx);
860 }
861 ASSERT(tx_bytes <= uio->uio_resid);
862 uioskip(uio, tx_bytes);
863 }
864 if (tx_bytes && vn_has_cached_data(vp)) {
865 update_pages(vp, woff,
866 tx_bytes, zfsvfs->z_os, zp->z_id);
867 }
868
869 /*
870 * If we made no progress, we're done. If we made even
871 * partial progress, update the znode and ZIL accordingly.
872 */
873 if (tx_bytes == 0) {
874 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
875 (void *)&zp->z_size, sizeof (uint64_t), tx);
876 dmu_tx_commit(tx);
877 ASSERT(error != 0);
878 break;
879 }
880
881 /*
882 * Clear Set-UID/Set-GID bits on successful write if not
883 * privileged and at least one of the excute bits is set.
884 *
885 * It would be nice to to this after all writes have
886 * been done, but that would still expose the ISUID/ISGID
887 * to another app after the partial write is committed.
888 *
889 * Note: we don't call zfs_fuid_map_id() here because
890 * user 0 is not an ephemeral uid.
891 */
892 mutex_enter(&zp->z_acl_lock);
893 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
894 (S_IXUSR >> 6))) != 0 &&
895 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
896 secpolicy_vnode_setid_retain(cr,
897 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
898 uint64_t newmode;
899 zp->z_mode &= ~(S_ISUID | S_ISGID);
900 newmode = zp->z_mode;
901 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
902 (void *)&newmode, sizeof (uint64_t), tx);
903 }
904 mutex_exit(&zp->z_acl_lock);
905
906 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
907 B_TRUE);
908
909 /*
910 * Update the file size (zp_size) if it has changed;
911 * account for possible concurrent updates.
912 */
913 while ((end_size = zp->z_size) < uio->uio_loffset) {
914 (void) atomic_cas_64(&zp->z_size, end_size,
915 uio->uio_loffset);
916 ASSERT(error == 0);
917 }
918 /*
919 * If we are replaying and eof is non zero then force
920 * the file size to the specified eof. Note, there's no
921 * concurrency during replay.
922 */
923 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
924 zp->z_size = zfsvfs->z_replay_eof;
925
926 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
927
928 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
929 dmu_tx_commit(tx);
930
931 if (error != 0)
932 break;
933 ASSERT(tx_bytes == nbytes);
934 n -= nbytes;
935
936 if (!xuio && n > 0)
937 uio_prefaultpages(MIN(n, max_blksz), uio);
938 }
939
940 zfs_range_unlock(rl);
941
942 /*
943 * If we're in replay mode, or we made no progress, return error.
944 * Otherwise, it's at least a partial write, so it's successful.
945 */
946 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
947 ZFS_EXIT(zfsvfs);
948 return (error);
949 }
950
951 if (ioflag & (FSYNC | FDSYNC) ||
952 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
953 zil_commit(zilog, zp->z_id);
954
955 ZFS_EXIT(zfsvfs);
956 return (0);
957 }
958
959 void
960 zfs_get_done(zgd_t *zgd, int error)
961 {
962 znode_t *zp = zgd->zgd_private;
963 objset_t *os = zp->z_zfsvfs->z_os;
964
965 if (zgd->zgd_db)
966 dmu_buf_rele(zgd->zgd_db, zgd);
967
968 zfs_range_unlock(zgd->zgd_rl);
969
970 /*
971 * Release the vnode asynchronously as we currently have the
972 * txg stopped from syncing.
973 */
974 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
975
976 if (error == 0 && zgd->zgd_bp)
977 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
978
979 kmem_free(zgd, sizeof (zgd_t));
980 }
981
982 #ifdef DEBUG
983 static int zil_fault_io = 0;
984 #endif
985
986 /*
987 * Get data to generate a TX_WRITE intent log record.
988 */
989 int
990 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
991 {
992 zfsvfs_t *zfsvfs = arg;
993 objset_t *os = zfsvfs->z_os;
994 znode_t *zp;
995 uint64_t object = lr->lr_foid;
996 uint64_t offset = lr->lr_offset;
997 uint64_t size = lr->lr_length;
998 blkptr_t *bp = &lr->lr_blkptr;
999 dmu_buf_t *db;
1000 zgd_t *zgd;
1001 int error = 0;
1002
1003 ASSERT(zio != NULL);
1004 ASSERT(size != 0);
1005
1006 /*
1007 * Nothing to do if the file has been removed
1008 */
1009 if (zfs_zget(zfsvfs, object, &zp) != 0)
1010 return (SET_ERROR(ENOENT));
1011 if (zp->z_unlinked) {
1012 /*
1013 * Release the vnode asynchronously as we currently have the
1014 * txg stopped from syncing.
1015 */
1016 VN_RELE_ASYNC(ZTOV(zp),
1017 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1018 return (SET_ERROR(ENOENT));
1019 }
1020
1021 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1022 zgd->zgd_zilog = zfsvfs->z_log;
1023 zgd->zgd_private = zp;
1024
1025 /*
1026 * Write records come in two flavors: immediate and indirect.
1027 * For small writes it's cheaper to store the data with the
1028 * log record (immediate); for large writes it's cheaper to
1029 * sync the data and get a pointer to it (indirect) so that
1030 * we don't have to write the data twice.
1031 */
1032 if (buf != NULL) { /* immediate write */
1033 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1034 /* test for truncation needs to be done while range locked */
1035 if (offset >= zp->z_size) {
1036 error = SET_ERROR(ENOENT);
1037 } else {
1038 error = dmu_read(os, object, offset, size, buf,
1039 DMU_READ_NO_PREFETCH);
1040 }
1041 ASSERT(error == 0 || error == ENOENT);
1042 } else { /* indirect write */
1043 /*
1044 * Have to lock the whole block to ensure when it's
1045 * written out and it's checksum is being calculated
1046 * that no one can change the data. We need to re-check
1047 * blocksize after we get the lock in case it's changed!
1048 */
1049 for (;;) {
1050 uint64_t blkoff;
1051 size = zp->z_blksz;
1052 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1053 offset -= blkoff;
1054 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1055 RL_READER);
1056 if (zp->z_blksz == size)
1057 break;
1058 offset += blkoff;
1059 zfs_range_unlock(zgd->zgd_rl);
1060 }
1061 /* test for truncation needs to be done while range locked */
1062 if (lr->lr_offset >= zp->z_size)
1063 error = SET_ERROR(ENOENT);
1064 #ifdef DEBUG
1065 if (zil_fault_io) {
1066 error = SET_ERROR(EIO);
1067 zil_fault_io = 0;
1068 }
1069 #endif
1070 if (error == 0)
1071 error = dmu_buf_hold(os, object, offset, zgd, &db,
1072 DMU_READ_NO_PREFETCH);
1073
1074 if (error == 0) {
1075 blkptr_t *obp = dmu_buf_get_blkptr(db);
1076 if (obp) {
1077 ASSERT(BP_IS_HOLE(bp));
1078 *bp = *obp;
1079 }
1080
1081 zgd->zgd_db = db;
1082 zgd->zgd_bp = bp;
1083
1084 ASSERT(db->db_offset == offset);
1085 ASSERT(db->db_size == size);
1086
1087 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1088 zfs_get_done, zgd);
1089 ASSERT(error || lr->lr_length <= zp->z_blksz);
1090
1091 /*
1092 * On success, we need to wait for the write I/O
1093 * initiated by dmu_sync() to complete before we can
1094 * release this dbuf. We will finish everything up
1095 * in the zfs_get_done() callback.
1096 */
1097 if (error == 0)
1098 return (0);
1099
1100 if (error == EALREADY) {
1101 lr->lr_common.lrc_txtype = TX_WRITE2;
1102 error = 0;
1103 }
1104 }
1105 }
1106
1107 zfs_get_done(zgd, error);
1108
1109 return (error);
1110 }
1111
1112 /*ARGSUSED*/
1113 static int
1114 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1115 caller_context_t *ct)
1116 {
1117 znode_t *zp = VTOZ(vp);
1118 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1119 int error;
1120
1121 ZFS_ENTER(zfsvfs);
1122 ZFS_VERIFY_ZP(zp);
1123
1124 if (flag & V_ACE_MASK)
1125 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1126 else
1127 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1128
1129 ZFS_EXIT(zfsvfs);
1130 return (error);
1131 }
1132
1133 /*
1134 * If vnode is for a device return a specfs vnode instead.
1135 */
1136 static int
1137 specvp_check(vnode_t **vpp, cred_t *cr)
1138 {
1139 int error = 0;
1140
1141 if (IS_DEVVP(*vpp)) {
1142 struct vnode *svp;
1143
1144 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1145 VN_RELE(*vpp);
1146 if (svp == NULL)
1147 error = SET_ERROR(ENOSYS);
1148 *vpp = svp;
1149 }
1150 return (error);
1151 }
1152
1153
1154 /*
1155 * Lookup an entry in a directory, or an extended attribute directory.
1156 * If it exists, return a held vnode reference for it.
1157 *
1158 * IN: dvp - vnode of directory to search.
1159 * nm - name of entry to lookup.
1160 * pnp - full pathname to lookup [UNUSED].
1161 * flags - LOOKUP_XATTR set if looking for an attribute.
1162 * rdir - root directory vnode [UNUSED].
1163 * cr - credentials of caller.
1164 * ct - caller context
1165 * direntflags - directory lookup flags
1166 * realpnp - returned pathname.
1167 *
1168 * OUT: vpp - vnode of located entry, NULL if not found.
1169 *
1170 * RETURN: 0 on success, error code on failure.
1171 *
1172 * Timestamps:
1173 * NA
1174 */
1175 /* ARGSUSED */
1176 static int
1177 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1178 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1179 int *direntflags, pathname_t *realpnp)
1180 {
1181 znode_t *zdp = VTOZ(dvp);
1182 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1183 int error = 0;
1184
1185 /* fast path */
1186 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1187
1188 if (dvp->v_type != VDIR) {
1189 return (SET_ERROR(ENOTDIR));
1190 } else if (zdp->z_sa_hdl == NULL) {
1191 return (SET_ERROR(EIO));
1192 }
1193
1194 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1195 error = zfs_fastaccesschk_execute(zdp, cr);
1196 if (!error) {
1197 *vpp = dvp;
1198 VN_HOLD(*vpp);
1199 return (0);
1200 }
1201 return (error);
1202 } else {
1203 vnode_t *tvp = dnlc_lookup(dvp, nm);
1204
1205 if (tvp) {
1206 error = zfs_fastaccesschk_execute(zdp, cr);
1207 if (error) {
1208 VN_RELE(tvp);
1209 return (error);
1210 }
1211 if (tvp == DNLC_NO_VNODE) {
1212 VN_RELE(tvp);
1213 return (SET_ERROR(ENOENT));
1214 } else {
1215 *vpp = tvp;
1216 return (specvp_check(vpp, cr));
1217 }
1218 }
1219 }
1220 }
1221
1222 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1223
1224 ZFS_ENTER(zfsvfs);
1225 ZFS_VERIFY_ZP(zdp);
1226
1227 *vpp = NULL;
1228
1229 if (flags & LOOKUP_XATTR) {
1230 /*
1231 * If the xattr property is off, refuse the lookup request.
1232 */
1233 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1234 ZFS_EXIT(zfsvfs);
1235 return (SET_ERROR(EINVAL));
1236 }
1237
1238 /*
1239 * We don't allow recursive attributes..
1240 * Maybe someday we will.
1241 */
1242 if (zdp->z_pflags & ZFS_XATTR) {
1243 ZFS_EXIT(zfsvfs);
1244 return (SET_ERROR(EINVAL));
1245 }
1246
1247 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1248 ZFS_EXIT(zfsvfs);
1249 return (error);
1250 }
1251
1252 /*
1253 * Do we have permission to get into attribute directory?
1254 */
1255
1256 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1257 B_FALSE, cr)) {
1258 VN_RELE(*vpp);
1259 *vpp = NULL;
1260 }
1261
1262 ZFS_EXIT(zfsvfs);
1263 return (error);
1264 }
1265
1266 if (dvp->v_type != VDIR) {
1267 ZFS_EXIT(zfsvfs);
1268 return (SET_ERROR(ENOTDIR));
1269 }
1270
1271 /*
1272 * Check accessibility of directory.
1273 */
1274
1275 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1276 ZFS_EXIT(zfsvfs);
1277 return (error);
1278 }
1279
1280 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1281 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1282 ZFS_EXIT(zfsvfs);
1283 return (SET_ERROR(EILSEQ));
1284 }
1285
1286 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1287 if (error == 0)
1288 error = specvp_check(vpp, cr);
1289
1290 ZFS_EXIT(zfsvfs);
1291 return (error);
1292 }
1293
1294 /*
1295 * Attempt to create a new entry in a directory. If the entry
1296 * already exists, truncate the file if permissible, else return
1297 * an error. Return the vp of the created or trunc'd file.
1298 *
1299 * IN: dvp - vnode of directory to put new file entry in.
1300 * name - name of new file entry.
1301 * vap - attributes of new file.
1302 * excl - flag indicating exclusive or non-exclusive mode.
1303 * mode - mode to open file with.
1304 * cr - credentials of caller.
1305 * flag - large file flag [UNUSED].
1306 * ct - caller context
1307 * vsecp - ACL to be set
1308 *
1309 * OUT: vpp - vnode of created or trunc'd entry.
1310 *
1311 * RETURN: 0 on success, error code on failure.
1312 *
1313 * Timestamps:
1314 * dvp - ctime|mtime updated if new entry created
1315 * vp - ctime|mtime always, atime if new
1316 */
1317
1318 /* ARGSUSED */
1319 static int
1320 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1321 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1322 vsecattr_t *vsecp)
1323 {
1324 znode_t *zp, *dzp = VTOZ(dvp);
1325 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1326 zilog_t *zilog;
1327 objset_t *os;
1328 zfs_dirlock_t *dl;
1329 dmu_tx_t *tx;
1330 int error;
1331 ksid_t *ksid;
1332 uid_t uid;
1333 gid_t gid = crgetgid(cr);
1334 zfs_acl_ids_t acl_ids;
1335 boolean_t fuid_dirtied;
1336 boolean_t have_acl = B_FALSE;
1337 boolean_t waited = B_FALSE;
1338
1339 /*
1340 * If we have an ephemeral id, ACL, or XVATTR then
1341 * make sure file system is at proper version
1342 */
1343
1344 ksid = crgetsid(cr, KSID_OWNER);
1345 if (ksid)
1346 uid = ksid_getid(ksid);
1347 else
1348 uid = crgetuid(cr);
1349
1350 if (zfsvfs->z_use_fuids == B_FALSE &&
1351 (vsecp || (vap->va_mask & AT_XVATTR) ||
1352 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1353 return (SET_ERROR(EINVAL));
1354
1355 ZFS_ENTER(zfsvfs);
1356 ZFS_VERIFY_ZP(dzp);
1357 os = zfsvfs->z_os;
1358 zilog = zfsvfs->z_log;
1359
1360 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1361 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1362 ZFS_EXIT(zfsvfs);
1363 return (SET_ERROR(EILSEQ));
1364 }
1365
1366 if (vap->va_mask & AT_XVATTR) {
1367 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1368 crgetuid(cr), cr, vap->va_type)) != 0) {
1369 ZFS_EXIT(zfsvfs);
1370 return (error);
1371 }
1372 }
1373 top:
1374 *vpp = NULL;
1375
1376 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1377 vap->va_mode &= ~VSVTX;
1378
1379 if (*name == '\0') {
1380 /*
1381 * Null component name refers to the directory itself.
1382 */
1383 VN_HOLD(dvp);
1384 zp = dzp;
1385 dl = NULL;
1386 error = 0;
1387 } else {
1388 /* possible VN_HOLD(zp) */
1389 int zflg = 0;
1390
1391 if (flag & FIGNORECASE)
1392 zflg |= ZCILOOK;
1393
1394 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1395 NULL, NULL);
1396 if (error) {
1397 if (have_acl)
1398 zfs_acl_ids_free(&acl_ids);
1399 if (strcmp(name, "..") == 0)
1400 error = SET_ERROR(EISDIR);
1401 ZFS_EXIT(zfsvfs);
1402 return (error);
1403 }
1404 }
1405
1406 if (zp == NULL) {
1407 uint64_t txtype;
1408
1409 /*
1410 * Create a new file object and update the directory
1411 * to reference it.
1412 */
1413 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1414 if (have_acl)
1415 zfs_acl_ids_free(&acl_ids);
1416 goto out;
1417 }
1418
1419 /*
1420 * We only support the creation of regular files in
1421 * extended attribute directories.
1422 */
1423
1424 if ((dzp->z_pflags & ZFS_XATTR) &&
1425 (vap->va_type != VREG)) {
1426 if (have_acl)
1427 zfs_acl_ids_free(&acl_ids);
1428 error = SET_ERROR(EINVAL);
1429 goto out;
1430 }
1431
1432 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1433 cr, vsecp, &acl_ids)) != 0)
1434 goto out;
1435 have_acl = B_TRUE;
1436
1437 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1438 zfs_acl_ids_free(&acl_ids);
1439 error = SET_ERROR(EDQUOT);
1440 goto out;
1441 }
1442
1443 tx = dmu_tx_create(os);
1444
1445 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1446 ZFS_SA_BASE_ATTR_SIZE);
1447
1448 fuid_dirtied = zfsvfs->z_fuid_dirty;
1449 if (fuid_dirtied)
1450 zfs_fuid_txhold(zfsvfs, tx);
1451 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1452 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1453 if (!zfsvfs->z_use_sa &&
1454 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1455 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1456 0, acl_ids.z_aclp->z_acl_bytes);
1457 }
1458 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1459 if (error) {
1460 zfs_dirent_unlock(dl);
1461 if (error == ERESTART) {
1462 waited = B_TRUE;
1463 dmu_tx_wait(tx);
1464 dmu_tx_abort(tx);
1465 goto top;
1466 }
1467 zfs_acl_ids_free(&acl_ids);
1468 dmu_tx_abort(tx);
1469 ZFS_EXIT(zfsvfs);
1470 return (error);
1471 }
1472 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1473
1474 if (fuid_dirtied)
1475 zfs_fuid_sync(zfsvfs, tx);
1476
1477 (void) zfs_link_create(dl, zp, tx, ZNEW);
1478 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1479 if (flag & FIGNORECASE)
1480 txtype |= TX_CI;
1481 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1482 vsecp, acl_ids.z_fuidp, vap);
1483 zfs_acl_ids_free(&acl_ids);
1484 dmu_tx_commit(tx);
1485 } else {
1486 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1487
1488 if (have_acl)
1489 zfs_acl_ids_free(&acl_ids);
1490 have_acl = B_FALSE;
1491
1492 /*
1493 * A directory entry already exists for this name.
1494 */
1495 /*
1496 * Can't truncate an existing file if in exclusive mode.
1497 */
1498 if (excl == EXCL) {
1499 error = SET_ERROR(EEXIST);
1500 goto out;
1501 }
1502 /*
1503 * Can't open a directory for writing.
1504 */
1505 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1506 error = SET_ERROR(EISDIR);
1507 goto out;
1508 }
1509 /*
1510 * Verify requested access to file.
1511 */
1512 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1513 goto out;
1514 }
1515
1516 mutex_enter(&dzp->z_lock);
1517 dzp->z_seq++;
1518 mutex_exit(&dzp->z_lock);
1519
1520 /*
1521 * Truncate regular files if requested.
1522 */
1523 if ((ZTOV(zp)->v_type == VREG) &&
1524 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1525 /* we can't hold any locks when calling zfs_freesp() */
1526 zfs_dirent_unlock(dl);
1527 dl = NULL;
1528 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1529 if (error == 0) {
1530 vnevent_create(ZTOV(zp), ct);
1531 }
1532 }
1533 }
1534 out:
1535
1536 if (dl)
1537 zfs_dirent_unlock(dl);
1538
1539 if (error) {
1540 if (zp)
1541 VN_RELE(ZTOV(zp));
1542 } else {
1543 *vpp = ZTOV(zp);
1544 error = specvp_check(vpp, cr);
1545 }
1546
1547 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1548 zil_commit(zilog, 0);
1549
1550 ZFS_EXIT(zfsvfs);
1551 return (error);
1552 }
1553
1554 /*
1555 * Remove an entry from a directory.
1556 *
1557 * IN: dvp - vnode of directory to remove entry from.
1558 * name - name of entry to remove.
1559 * cr - credentials of caller.
1560 * ct - caller context
1561 * flags - case flags
1562 *
1563 * RETURN: 0 on success, error code on failure.
1564 *
1565 * Timestamps:
1566 * dvp - ctime|mtime
1567 * vp - ctime (if nlink > 0)
1568 */
1569
1570 uint64_t null_xattr = 0;
1571
1572 /*ARGSUSED*/
1573 static int
1574 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1575 int flags)
1576 {
1577 znode_t *zp, *dzp = VTOZ(dvp);
1578 znode_t *xzp;
1579 vnode_t *vp;
1580 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1581 zilog_t *zilog;
1582 uint64_t acl_obj, xattr_obj;
1583 uint64_t xattr_obj_unlinked = 0;
1584 uint64_t obj = 0;
1585 zfs_dirlock_t *dl;
1586 dmu_tx_t *tx;
1587 boolean_t may_delete_now, delete_now = FALSE;
1588 boolean_t unlinked, toobig = FALSE;
1589 uint64_t txtype;
1590 pathname_t *realnmp = NULL;
1591 pathname_t realnm;
1592 int error;
1593 int zflg = ZEXISTS;
1594 boolean_t waited = B_FALSE;
1595
1596 ZFS_ENTER(zfsvfs);
1597 ZFS_VERIFY_ZP(dzp);
1598 zilog = zfsvfs->z_log;
1599
1600 if (flags & FIGNORECASE) {
1601 zflg |= ZCILOOK;
1602 pn_alloc(&realnm);
1603 realnmp = &realnm;
1604 }
1605
1606 top:
1607 xattr_obj = 0;
1608 xzp = NULL;
1609 /*
1610 * Attempt to lock directory; fail if entry doesn't exist.
1611 */
1612 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1613 NULL, realnmp)) {
1614 if (realnmp)
1615 pn_free(realnmp);
1616 ZFS_EXIT(zfsvfs);
1617 return (error);
1618 }
1619
1620 vp = ZTOV(zp);
1621
1622 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1623 goto out;
1624 }
1625
1626 /*
1627 * Need to use rmdir for removing directories.
1628 */
1629 if (vp->v_type == VDIR) {
1630 error = SET_ERROR(EPERM);
1631 goto out;
1632 }
1633
1634 vnevent_remove(vp, dvp, name, ct);
1635
1636 if (realnmp)
1637 dnlc_remove(dvp, realnmp->pn_buf);
1638 else
1639 dnlc_remove(dvp, name);
1640
1641 mutex_enter(&vp->v_lock);
1642 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1643 mutex_exit(&vp->v_lock);
1644
1645 /*
1646 * We may delete the znode now, or we may put it in the unlinked set;
1647 * it depends on whether we're the last link, and on whether there are
1648 * other holds on the vnode. So we dmu_tx_hold() the right things to
1649 * allow for either case.
1650 */
1651 obj = zp->z_id;
1652 tx = dmu_tx_create(zfsvfs->z_os);
1653 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1654 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1655 zfs_sa_upgrade_txholds(tx, zp);
1656 zfs_sa_upgrade_txholds(tx, dzp);
1657 if (may_delete_now) {
1658 toobig =
1659 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1660 /* if the file is too big, only hold_free a token amount */
1661 dmu_tx_hold_free(tx, zp->z_id, 0,
1662 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1663 }
1664
1665 /* are there any extended attributes? */
1666 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1667 &xattr_obj, sizeof (xattr_obj));
1668 if (error == 0 && xattr_obj) {
1669 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1670 ASSERT0(error);
1671 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1672 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1673 }
1674
1675 mutex_enter(&zp->z_lock);
1676 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1677 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1678 mutex_exit(&zp->z_lock);
1679
1680 /* charge as an update -- would be nice not to charge at all */
1681 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1682
1683 /*
1684 * Mark this transaction as typically resulting in a net free of
1685 * space, unless object removal will be delayed indefinitely
1686 * (due to active holds on the vnode due to the file being open).
1687 */
1688 if (may_delete_now)
1689 dmu_tx_mark_netfree(tx);
1690
1691 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1692 if (error) {
1693 zfs_dirent_unlock(dl);
1694 VN_RELE(vp);
1695 if (xzp)
1696 VN_RELE(ZTOV(xzp));
1697 if (error == ERESTART) {
1698 waited = B_TRUE;
1699 dmu_tx_wait(tx);
1700 dmu_tx_abort(tx);
1701 goto top;
1702 }
1703 if (realnmp)
1704 pn_free(realnmp);
1705 dmu_tx_abort(tx);
1706 ZFS_EXIT(zfsvfs);
1707 return (error);
1708 }
1709
1710 /*
1711 * Remove the directory entry.
1712 */
1713 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1714
1715 if (error) {
1716 dmu_tx_commit(tx);
1717 goto out;
1718 }
1719
1720 if (unlinked) {
1721 /*
1722 * Hold z_lock so that we can make sure that the ACL obj
1723 * hasn't changed. Could have been deleted due to
1724 * zfs_sa_upgrade().
1725 */
1726 mutex_enter(&zp->z_lock);
1727 mutex_enter(&vp->v_lock);
1728 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1729 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1730 delete_now = may_delete_now && !toobig &&
1731 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1732 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1733 acl_obj;
1734 mutex_exit(&vp->v_lock);
1735 }
1736
1737 if (delete_now) {
1738 if (xattr_obj_unlinked) {
1739 ASSERT3U(xzp->z_links, ==, 2);
1740 mutex_enter(&xzp->z_lock);
1741 xzp->z_unlinked = 1;
1742 xzp->z_links = 0;
1743 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1744 &xzp->z_links, sizeof (xzp->z_links), tx);
1745 ASSERT3U(error, ==, 0);
1746 mutex_exit(&xzp->z_lock);
1747 zfs_unlinked_add(xzp, tx);
1748
1749 if (zp->z_is_sa)
1750 error = sa_remove(zp->z_sa_hdl,
1751 SA_ZPL_XATTR(zfsvfs), tx);
1752 else
1753 error = sa_update(zp->z_sa_hdl,
1754 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1755 sizeof (uint64_t), tx);
1756 ASSERT0(error);
1757 }
1758 mutex_enter(&vp->v_lock);
1759 vp->v_count--;
1760 ASSERT0(vp->v_count);
1761 mutex_exit(&vp->v_lock);
1762 mutex_exit(&zp->z_lock);
1763 zfs_znode_delete(zp, tx);
1764 } else if (unlinked) {
1765 mutex_exit(&zp->z_lock);
1766 zfs_unlinked_add(zp, tx);
1767 }
1768
1769 txtype = TX_REMOVE;
1770 if (flags & FIGNORECASE)
1771 txtype |= TX_CI;
1772 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1773
1774 dmu_tx_commit(tx);
1775 out:
1776 if (realnmp)
1777 pn_free(realnmp);
1778
1779 zfs_dirent_unlock(dl);
1780
1781 if (!delete_now)
1782 VN_RELE(vp);
1783 if (xzp)
1784 VN_RELE(ZTOV(xzp));
1785
1786 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1787 zil_commit(zilog, 0);
1788
1789 ZFS_EXIT(zfsvfs);
1790 return (error);
1791 }
1792
1793 /*
1794 * Create a new directory and insert it into dvp using the name
1795 * provided. Return a pointer to the inserted directory.
1796 *
1797 * IN: dvp - vnode of directory to add subdir to.
1798 * dirname - name of new directory.
1799 * vap - attributes of new directory.
1800 * cr - credentials of caller.
1801 * ct - caller context
1802 * flags - case flags
1803 * vsecp - ACL to be set
1804 *
1805 * OUT: vpp - vnode of created directory.
1806 *
1807 * RETURN: 0 on success, error code on failure.
1808 *
1809 * Timestamps:
1810 * dvp - ctime|mtime updated
1811 * vp - ctime|mtime|atime updated
1812 */
1813 /*ARGSUSED*/
1814 static int
1815 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1816 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1817 {
1818 znode_t *zp, *dzp = VTOZ(dvp);
1819 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1820 zilog_t *zilog;
1821 zfs_dirlock_t *dl;
1822 uint64_t txtype;
1823 dmu_tx_t *tx;
1824 int error;
1825 int zf = ZNEW;
1826 ksid_t *ksid;
1827 uid_t uid;
1828 gid_t gid = crgetgid(cr);
1829 zfs_acl_ids_t acl_ids;
1830 boolean_t fuid_dirtied;
1831 boolean_t waited = B_FALSE;
1832
1833 ASSERT(vap->va_type == VDIR);
1834
1835 /*
1836 * If we have an ephemeral id, ACL, or XVATTR then
1837 * make sure file system is at proper version
1838 */
1839
1840 ksid = crgetsid(cr, KSID_OWNER);
1841 if (ksid)
1842 uid = ksid_getid(ksid);
1843 else
1844 uid = crgetuid(cr);
1845 if (zfsvfs->z_use_fuids == B_FALSE &&
1846 (vsecp || (vap->va_mask & AT_XVATTR) ||
1847 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1848 return (SET_ERROR(EINVAL));
1849
1850 ZFS_ENTER(zfsvfs);
1851 ZFS_VERIFY_ZP(dzp);
1852 zilog = zfsvfs->z_log;
1853
1854 if (dzp->z_pflags & ZFS_XATTR) {
1855 ZFS_EXIT(zfsvfs);
1856 return (SET_ERROR(EINVAL));
1857 }
1858
1859 if (zfsvfs->z_utf8 && u8_validate(dirname,
1860 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1861 ZFS_EXIT(zfsvfs);
1862 return (SET_ERROR(EILSEQ));
1863 }
1864 if (flags & FIGNORECASE)
1865 zf |= ZCILOOK;
1866
1867 if (vap->va_mask & AT_XVATTR) {
1868 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1869 crgetuid(cr), cr, vap->va_type)) != 0) {
1870 ZFS_EXIT(zfsvfs);
1871 return (error);
1872 }
1873 }
1874
1875 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1876 vsecp, &acl_ids)) != 0) {
1877 ZFS_EXIT(zfsvfs);
1878 return (error);
1879 }
1880 /*
1881 * First make sure the new directory doesn't exist.
1882 *
1883 * Existence is checked first to make sure we don't return
1884 * EACCES instead of EEXIST which can cause some applications
1885 * to fail.
1886 */
1887 top:
1888 *vpp = NULL;
1889
1890 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1891 NULL, NULL)) {
1892 zfs_acl_ids_free(&acl_ids);
1893 ZFS_EXIT(zfsvfs);
1894 return (error);
1895 }
1896
1897 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1898 zfs_acl_ids_free(&acl_ids);
1899 zfs_dirent_unlock(dl);
1900 ZFS_EXIT(zfsvfs);
1901 return (error);
1902 }
1903
1904 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1905 zfs_acl_ids_free(&acl_ids);
1906 zfs_dirent_unlock(dl);
1907 ZFS_EXIT(zfsvfs);
1908 return (SET_ERROR(EDQUOT));
1909 }
1910
1911 /*
1912 * Add a new entry to the directory.
1913 */
1914 tx = dmu_tx_create(zfsvfs->z_os);
1915 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1916 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1917 fuid_dirtied = zfsvfs->z_fuid_dirty;
1918 if (fuid_dirtied)
1919 zfs_fuid_txhold(zfsvfs, tx);
1920 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1921 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1922 acl_ids.z_aclp->z_acl_bytes);
1923 }
1924
1925 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1926 ZFS_SA_BASE_ATTR_SIZE);
1927
1928 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1929 if (error) {
1930 zfs_dirent_unlock(dl);
1931 if (error == ERESTART) {
1932 waited = B_TRUE;
1933 dmu_tx_wait(tx);
1934 dmu_tx_abort(tx);
1935 goto top;
1936 }
1937 zfs_acl_ids_free(&acl_ids);
1938 dmu_tx_abort(tx);
1939 ZFS_EXIT(zfsvfs);
1940 return (error);
1941 }
1942
1943 /*
1944 * Create new node.
1945 */
1946 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1947
1948 if (fuid_dirtied)
1949 zfs_fuid_sync(zfsvfs, tx);
1950
1951 /*
1952 * Now put new name in parent dir.
1953 */
1954 (void) zfs_link_create(dl, zp, tx, ZNEW);
1955
1956 *vpp = ZTOV(zp);
1957
1958 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1959 if (flags & FIGNORECASE)
1960 txtype |= TX_CI;
1961 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1962 acl_ids.z_fuidp, vap);
1963
1964 zfs_acl_ids_free(&acl_ids);
1965
1966 dmu_tx_commit(tx);
1967
1968 zfs_dirent_unlock(dl);
1969
1970 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1971 zil_commit(zilog, 0);
1972
1973 ZFS_EXIT(zfsvfs);
1974 return (0);
1975 }
1976
1977 /*
1978 * Remove a directory subdir entry. If the current working
1979 * directory is the same as the subdir to be removed, the
1980 * remove will fail.
1981 *
1982 * IN: dvp - vnode of directory to remove from.
1983 * name - name of directory to be removed.
1984 * cwd - vnode of current working directory.
1985 * cr - credentials of caller.
1986 * ct - caller context
1987 * flags - case flags
1988 *
1989 * RETURN: 0 on success, error code on failure.
1990 *
1991 * Timestamps:
1992 * dvp - ctime|mtime updated
1993 */
1994 /*ARGSUSED*/
1995 static int
1996 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1997 caller_context_t *ct, int flags)
1998 {
1999 znode_t *dzp = VTOZ(dvp);
2000 znode_t *zp;
2001 vnode_t *vp;
2002 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2003 zilog_t *zilog;
2004 zfs_dirlock_t *dl;
2005 dmu_tx_t *tx;
2006 int error;
2007 int zflg = ZEXISTS;
2008 boolean_t waited = B_FALSE;
2009
2010 ZFS_ENTER(zfsvfs);
2011 ZFS_VERIFY_ZP(dzp);
2012 zilog = zfsvfs->z_log;
2013
2014 if (flags & FIGNORECASE)
2015 zflg |= ZCILOOK;
2016 top:
2017 zp = NULL;
2018
2019 /*
2020 * Attempt to lock directory; fail if entry doesn't exist.
2021 */
2022 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2023 NULL, NULL)) {
2024 ZFS_EXIT(zfsvfs);
2025 return (error);
2026 }
2027
2028 vp = ZTOV(zp);
2029
2030 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2031 goto out;
2032 }
2033
2034 if (vp->v_type != VDIR) {
2035 error = SET_ERROR(ENOTDIR);
2036 goto out;
2037 }
2038
2039 if (vp == cwd) {
2040 error = SET_ERROR(EINVAL);
2041 goto out;
2042 }
2043
2044 vnevent_rmdir(vp, dvp, name, ct);
2045
2046 /*
2047 * Grab a lock on the directory to make sure that noone is
2048 * trying to add (or lookup) entries while we are removing it.
2049 */
2050 rw_enter(&zp->z_name_lock, RW_WRITER);
2051
2052 /*
2053 * Grab a lock on the parent pointer to make sure we play well
2054 * with the treewalk and directory rename code.
2055 */
2056 rw_enter(&zp->z_parent_lock, RW_WRITER);
2057
2058 tx = dmu_tx_create(zfsvfs->z_os);
2059 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2060 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2061 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2062 zfs_sa_upgrade_txholds(tx, zp);
2063 zfs_sa_upgrade_txholds(tx, dzp);
2064 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2065 if (error) {
2066 rw_exit(&zp->z_parent_lock);
2067 rw_exit(&zp->z_name_lock);
2068 zfs_dirent_unlock(dl);
2069 VN_RELE(vp);
2070 if (error == ERESTART) {
2071 waited = B_TRUE;
2072 dmu_tx_wait(tx);
2073 dmu_tx_abort(tx);
2074 goto top;
2075 }
2076 dmu_tx_abort(tx);
2077 ZFS_EXIT(zfsvfs);
2078 return (error);
2079 }
2080
2081 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2082
2083 if (error == 0) {
2084 uint64_t txtype = TX_RMDIR;
2085 if (flags & FIGNORECASE)
2086 txtype |= TX_CI;
2087 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2088 }
2089
2090 dmu_tx_commit(tx);
2091
2092 rw_exit(&zp->z_parent_lock);
2093 rw_exit(&zp->z_name_lock);
2094 out:
2095 zfs_dirent_unlock(dl);
2096
2097 VN_RELE(vp);
2098
2099 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2100 zil_commit(zilog, 0);
2101
2102 ZFS_EXIT(zfsvfs);
2103 return (error);
2104 }
2105
2106 /*
2107 * Read as many directory entries as will fit into the provided
2108 * buffer from the given directory cursor position (specified in
2109 * the uio structure).
2110 *
2111 * IN: vp - vnode of directory to read.
2112 * uio - structure supplying read location, range info,
2113 * and return buffer.
2114 * cr - credentials of caller.
2115 * ct - caller context
2116 * flags - case flags
2117 *
2118 * OUT: uio - updated offset and range, buffer filled.
2119 * eofp - set to true if end-of-file detected.
2120 *
2121 * RETURN: 0 on success, error code on failure.
2122 *
2123 * Timestamps:
2124 * vp - atime updated
2125 *
2126 * Note that the low 4 bits of the cookie returned by zap is always zero.
2127 * This allows us to use the low range for "special" directory entries:
2128 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2129 * we use the offset 2 for the '.zfs' directory.
2130 */
2131 /* ARGSUSED */
2132 static int
2133 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2134 caller_context_t *ct, int flags)
2135 {
2136 znode_t *zp = VTOZ(vp);
2137 iovec_t *iovp;
2138 edirent_t *eodp;
2139 dirent64_t *odp;
2140 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2141 objset_t *os;
2142 caddr_t outbuf;
2143 size_t bufsize;
2144 zap_cursor_t zc;
2145 zap_attribute_t zap;
2146 uint_t bytes_wanted;
2147 uint64_t offset; /* must be unsigned; checks for < 1 */
2148 uint64_t parent;
2149 int local_eof;
2150 int outcount;
2151 int error;
2152 uint8_t prefetch;
2153 boolean_t check_sysattrs;
2154
2155 ZFS_ENTER(zfsvfs);
2156 ZFS_VERIFY_ZP(zp);
2157
2158 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2159 &parent, sizeof (parent))) != 0) {
2160 ZFS_EXIT(zfsvfs);
2161 return (error);
2162 }
2163
2164 /*
2165 * If we are not given an eof variable,
2166 * use a local one.
2167 */
2168 if (eofp == NULL)
2169 eofp = &local_eof;
2170
2171 /*
2172 * Check for valid iov_len.
2173 */
2174 if (uio->uio_iov->iov_len <= 0) {
2175 ZFS_EXIT(zfsvfs);
2176 return (SET_ERROR(EINVAL));
2177 }
2178
2179 /*
2180 * Quit if directory has been removed (posix)
2181 */
2182 if ((*eofp = zp->z_unlinked) != 0) {
2183 ZFS_EXIT(zfsvfs);
2184 return (0);
2185 }
2186
2187 error = 0;
2188 os = zfsvfs->z_os;
2189 offset = uio->uio_loffset;
2190 prefetch = zp->z_zn_prefetch;
2191
2192 /*
2193 * Initialize the iterator cursor.
2194 */
2195 if (offset <= 3) {
2196 /*
2197 * Start iteration from the beginning of the directory.
2198 */
2199 zap_cursor_init(&zc, os, zp->z_id);
2200 } else {
2201 /*
2202 * The offset is a serialized cursor.
2203 */
2204 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2205 }
2206
2207 /*
2208 * Get space to change directory entries into fs independent format.
2209 */
2210 iovp = uio->uio_iov;
2211 bytes_wanted = iovp->iov_len;
2212 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2213 bufsize = bytes_wanted;
2214 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2215 odp = (struct dirent64 *)outbuf;
2216 } else {
2217 bufsize = bytes_wanted;
2218 outbuf = NULL;
2219 odp = (struct dirent64 *)iovp->iov_base;
2220 }
2221 eodp = (struct edirent *)odp;
2222
2223 /*
2224 * If this VFS supports the system attribute view interface; and
2225 * we're looking at an extended attribute directory; and we care
2226 * about normalization conflicts on this vfs; then we must check
2227 * for normalization conflicts with the sysattr name space.
2228 */
2229 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2230 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2231 (flags & V_RDDIR_ENTFLAGS);
2232
2233 /*
2234 * Transform to file-system independent format
2235 */
2236 outcount = 0;
2237 while (outcount < bytes_wanted) {
2238 ino64_t objnum;
2239 ushort_t reclen;
2240 off64_t *next = NULL;
2241
2242 /*
2243 * Special case `.', `..', and `.zfs'.
2244 */
2245 if (offset == 0) {
2246 (void) strcpy(zap.za_name, ".");
2247 zap.za_normalization_conflict = 0;
2248 objnum = zp->z_id;
2249 } else if (offset == 1) {
2250 (void) strcpy(zap.za_name, "..");
2251 zap.za_normalization_conflict = 0;
2252 objnum = parent;
2253 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2254 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2255 zap.za_normalization_conflict = 0;
2256 objnum = ZFSCTL_INO_ROOT;
2257 } else {
2258 /*
2259 * Grab next entry.
2260 */
2261 if (error = zap_cursor_retrieve(&zc, &zap)) {
2262 if ((*eofp = (error == ENOENT)) != 0)
2263 break;
2264 else
2265 goto update;
2266 }
2267
2268 if (zap.za_integer_length != 8 ||
2269 zap.za_num_integers != 1) {
2270 cmn_err(CE_WARN, "zap_readdir: bad directory "
2271 "entry, obj = %lld, offset = %lld\n",
2272 (u_longlong_t)zp->z_id,
2273 (u_longlong_t)offset);
2274 error = SET_ERROR(ENXIO);
2275 goto update;
2276 }
2277
2278 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2279 /*
2280 * MacOS X can extract the object type here such as:
2281 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2282 */
2283
2284 if (check_sysattrs && !zap.za_normalization_conflict) {
2285 zap.za_normalization_conflict =
2286 xattr_sysattr_casechk(zap.za_name);
2287 }
2288 }
2289
2290 if (flags & V_RDDIR_ACCFILTER) {
2291 /*
2292 * If we have no access at all, don't include
2293 * this entry in the returned information
2294 */
2295 znode_t *ezp;
2296 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2297 goto skip_entry;
2298 if (!zfs_has_access(ezp, cr)) {
2299 VN_RELE(ZTOV(ezp));
2300 goto skip_entry;
2301 }
2302 VN_RELE(ZTOV(ezp));
2303 }
2304
2305 if (flags & V_RDDIR_ENTFLAGS)
2306 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2307 else
2308 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2309
2310 /*
2311 * Will this entry fit in the buffer?
2312 */
2313 if (outcount + reclen > bufsize) {
2314 /*
2315 * Did we manage to fit anything in the buffer?
2316 */
2317 if (!outcount) {
2318 error = SET_ERROR(EINVAL);
2319 goto update;
2320 }
2321 break;
2322 }
2323 if (flags & V_RDDIR_ENTFLAGS) {
2324 /*
2325 * Add extended flag entry:
2326 */
2327 eodp->ed_ino = objnum;
2328 eodp->ed_reclen = reclen;
2329 /* NOTE: ed_off is the offset for the *next* entry */
2330 next = &(eodp->ed_off);
2331 eodp->ed_eflags = zap.za_normalization_conflict ?
2332 ED_CASE_CONFLICT : 0;
2333 (void) strncpy(eodp->ed_name, zap.za_name,
2334 EDIRENT_NAMELEN(reclen));
2335 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2336 } else {
2337 /*
2338 * Add normal entry:
2339 */
2340 odp->d_ino = objnum;
2341 odp->d_reclen = reclen;
2342 /* NOTE: d_off is the offset for the *next* entry */
2343 next = &(odp->d_off);
2344 (void) strncpy(odp->d_name, zap.za_name,
2345 DIRENT64_NAMELEN(reclen));
2346 odp = (dirent64_t *)((intptr_t)odp + reclen);
2347 }
2348 outcount += reclen;
2349
2350 ASSERT(outcount <= bufsize);
2351
2352 /* Prefetch znode */
2353 if (prefetch)
2354 dmu_prefetch(os, objnum, 0, 0);
2355
2356 skip_entry:
2357 /*
2358 * Move to the next entry, fill in the previous offset.
2359 */
2360 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2361 zap_cursor_advance(&zc);
2362 offset = zap_cursor_serialize(&zc);
2363 } else {
2364 offset += 1;
2365 }
2366 if (next)
2367 *next = offset;
2368 }
2369 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2370
2371 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2372 iovp->iov_base += outcount;
2373 iovp->iov_len -= outcount;
2374 uio->uio_resid -= outcount;
2375 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2376 /*
2377 * Reset the pointer.
2378 */
2379 offset = uio->uio_loffset;
2380 }
2381
2382 update:
2383 zap_cursor_fini(&zc);
2384 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2385 kmem_free(outbuf, bufsize);
2386
2387 if (error == ENOENT)
2388 error = 0;
2389
2390 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2391
2392 uio->uio_loffset = offset;
2393 ZFS_EXIT(zfsvfs);
2394 return (error);
2395 }
2396
2397 ulong_t zfs_fsync_sync_cnt = 4;
2398
2399 static int
2400 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2401 {
2402 znode_t *zp = VTOZ(vp);
2403 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2404
2405 /*
2406 * Regardless of whether this is required for standards conformance,
2407 * this is the logical behavior when fsync() is called on a file with
2408 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2409 * going to be pushed out as part of the zil_commit().
2410 */
2411 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2412 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2413 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2414
2415 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2416
2417 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2418 ZFS_ENTER(zfsvfs);
2419 ZFS_VERIFY_ZP(zp);
2420 zil_commit(zfsvfs->z_log, zp->z_id);
2421 ZFS_EXIT(zfsvfs);
2422 }
2423 return (0);
2424 }
2425
2426
2427 /*
2428 * Get the requested file attributes and place them in the provided
2429 * vattr structure.
2430 *
2431 * IN: vp - vnode of file.
2432 * vap - va_mask identifies requested attributes.
2433 * If AT_XVATTR set, then optional attrs are requested
2434 * flags - ATTR_NOACLCHECK (CIFS server context)
2435 * cr - credentials of caller.
2436 * ct - caller context
2437 *
2438 * OUT: vap - attribute values.
2439 *
2440 * RETURN: 0 (always succeeds).
2441 */
2442 /* ARGSUSED */
2443 static int
2444 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2445 caller_context_t *ct)
2446 {
2447 znode_t *zp = VTOZ(vp);
2448 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2449 int error = 0;
2450 uint64_t links;
2451 uint64_t mtime[2], ctime[2];
2452 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2453 xoptattr_t *xoap = NULL;
2454 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2455 sa_bulk_attr_t bulk[2];
2456 int count = 0;
2457
2458 ZFS_ENTER(zfsvfs);
2459 ZFS_VERIFY_ZP(zp);
2460
2461 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2462
2463 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2464 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2465
2466 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2467 ZFS_EXIT(zfsvfs);
2468 return (error);
2469 }
2470
2471 /*
2472 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2473 * Also, if we are the owner don't bother, since owner should
2474 * always be allowed to read basic attributes of file.
2475 */
2476 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2477 (vap->va_uid != crgetuid(cr))) {
2478 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2479 skipaclchk, cr)) {
2480 ZFS_EXIT(zfsvfs);
2481 return (error);
2482 }
2483 }
2484
2485 /*
2486 * Return all attributes. It's cheaper to provide the answer
2487 * than to determine whether we were asked the question.
2488 */
2489
2490 mutex_enter(&zp->z_lock);
2491 vap->va_type = vp->v_type;
2492 vap->va_mode = zp->z_mode & MODEMASK;
2493 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2494 vap->va_nodeid = zp->z_id;
2495 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2496 links = zp->z_links + 1;
2497 else
2498 links = zp->z_links;
2499 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2500 vap->va_size = zp->z_size;
2501 vap->va_rdev = vp->v_rdev;
2502 vap->va_seq = zp->z_seq;
2503
2504 /*
2505 * Add in any requested optional attributes and the create time.
2506 * Also set the corresponding bits in the returned attribute bitmap.
2507 */
2508 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2509 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2510 xoap->xoa_archive =
2511 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2512 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2513 }
2514
2515 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2516 xoap->xoa_readonly =
2517 ((zp->z_pflags & ZFS_READONLY) != 0);
2518 XVA_SET_RTN(xvap, XAT_READONLY);
2519 }
2520
2521 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2522 xoap->xoa_system =
2523 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2524 XVA_SET_RTN(xvap, XAT_SYSTEM);
2525 }
2526
2527 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2528 xoap->xoa_hidden =
2529 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2530 XVA_SET_RTN(xvap, XAT_HIDDEN);
2531 }
2532
2533 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2534 xoap->xoa_nounlink =
2535 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2536 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2537 }
2538
2539 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2540 xoap->xoa_immutable =
2541 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2542 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2543 }
2544
2545 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2546 xoap->xoa_appendonly =
2547 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2548 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2549 }
2550
2551 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2552 xoap->xoa_nodump =
2553 ((zp->z_pflags & ZFS_NODUMP) != 0);
2554 XVA_SET_RTN(xvap, XAT_NODUMP);
2555 }
2556
2557 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2558 xoap->xoa_opaque =
2559 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2560 XVA_SET_RTN(xvap, XAT_OPAQUE);
2561 }
2562
2563 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2564 xoap->xoa_av_quarantined =
2565 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2566 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2567 }
2568
2569 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2570 xoap->xoa_av_modified =
2571 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2572 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2573 }
2574
2575 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2576 vp->v_type == VREG) {
2577 zfs_sa_get_scanstamp(zp, xvap);
2578 }
2579
2580 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2581 uint64_t times[2];
2582
2583 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2584 times, sizeof (times));
2585 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2586 XVA_SET_RTN(xvap, XAT_CREATETIME);
2587 }
2588
2589 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2590 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2591 XVA_SET_RTN(xvap, XAT_REPARSE);
2592 }
2593 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2594 xoap->xoa_generation = zp->z_gen;
2595 XVA_SET_RTN(xvap, XAT_GEN);
2596 }
2597
2598 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2599 xoap->xoa_offline =
2600 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2601 XVA_SET_RTN(xvap, XAT_OFFLINE);
2602 }
2603
2604 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2605 xoap->xoa_sparse =
2606 ((zp->z_pflags & ZFS_SPARSE) != 0);
2607 XVA_SET_RTN(xvap, XAT_SPARSE);
2608 }
2609 }
2610
2611 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2612 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2613 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2614
2615 mutex_exit(&zp->z_lock);
2616
2617 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2618
2619 if (zp->z_blksz == 0) {
2620 /*
2621 * Block size hasn't been set; suggest maximal I/O transfers.
2622 */
2623 vap->va_blksize = zfsvfs->z_max_blksz;
2624 }
2625
2626 ZFS_EXIT(zfsvfs);
2627 return (0);
2628 }
2629
2630 /*
2631 * Set the file attributes to the values contained in the
2632 * vattr structure.
2633 *
2634 * IN: vp - vnode of file to be modified.
2635 * vap - new attribute values.
2636 * If AT_XVATTR set, then optional attrs are being set
2637 * flags - ATTR_UTIME set if non-default time values provided.
2638 * - ATTR_NOACLCHECK (CIFS context only).
2639 * cr - credentials of caller.
2640 * ct - caller context
2641 *
2642 * RETURN: 0 on success, error code on failure.
2643 *
2644 * Timestamps:
2645 * vp - ctime updated, mtime updated if size changed.
2646 */
2647 /* ARGSUSED */
2648 static int
2649 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2650 caller_context_t *ct)
2651 {
2652 znode_t *zp = VTOZ(vp);
2653 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2654 zilog_t *zilog;
2655 dmu_tx_t *tx;
2656 vattr_t oldva;
2657 xvattr_t tmpxvattr;
2658 uint_t mask = vap->va_mask;
2659 uint_t saved_mask = 0;
2660 int trim_mask = 0;
2661 uint64_t new_mode;
2662 uint64_t new_uid, new_gid;
2663 uint64_t xattr_obj;
2664 uint64_t mtime[2], ctime[2];
2665 znode_t *attrzp;
2666 int need_policy = FALSE;
2667 int err, err2;
2668 zfs_fuid_info_t *fuidp = NULL;
2669 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2670 xoptattr_t *xoap;
2671 zfs_acl_t *aclp;
2672 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2673 boolean_t fuid_dirtied = B_FALSE;
2674 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2675 int count = 0, xattr_count = 0;
2676
2677 if (mask == 0)
2678 return (0);
2679
2680 if (mask & AT_NOSET)
2681 return (SET_ERROR(EINVAL));
2682
2683 ZFS_ENTER(zfsvfs);
2684 ZFS_VERIFY_ZP(zp);
2685
2686 zilog = zfsvfs->z_log;
2687
2688 /*
2689 * Make sure that if we have ephemeral uid/gid or xvattr specified
2690 * that file system is at proper version level
2691 */
2692
2693 if (zfsvfs->z_use_fuids == B_FALSE &&
2694 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2695 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2696 (mask & AT_XVATTR))) {
2697 ZFS_EXIT(zfsvfs);
2698 return (SET_ERROR(EINVAL));
2699 }
2700
2701 if (mask & AT_SIZE && vp->v_type == VDIR) {
2702 ZFS_EXIT(zfsvfs);
2703 return (SET_ERROR(EISDIR));
2704 }
2705
2706 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2707 ZFS_EXIT(zfsvfs);
2708 return (SET_ERROR(EINVAL));
2709 }
2710
2711 /*
2712 * If this is an xvattr_t, then get a pointer to the structure of
2713 * optional attributes. If this is NULL, then we have a vattr_t.
2714 */
2715 xoap = xva_getxoptattr(xvap);
2716
2717 xva_init(&tmpxvattr);
2718
2719 /*
2720 * Immutable files can only alter immutable bit and atime
2721 */
2722 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2723 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2724 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2725 ZFS_EXIT(zfsvfs);
2726 return (SET_ERROR(EPERM));
2727 }
2728
2729 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2730 ZFS_EXIT(zfsvfs);
2731 return (SET_ERROR(EPERM));
2732 }
2733
2734 /*
2735 * Verify timestamps doesn't overflow 32 bits.
2736 * ZFS can handle large timestamps, but 32bit syscalls can't
2737 * handle times greater than 2039. This check should be removed
2738 * once large timestamps are fully supported.
2739 */
2740 if (mask & (AT_ATIME | AT_MTIME)) {
2741 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2742 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2743 ZFS_EXIT(zfsvfs);
2744 return (SET_ERROR(EOVERFLOW));
2745 }
2746 }
2747
2748 top:
2749 attrzp = NULL;
2750 aclp = NULL;
2751
2752 /* Can this be moved to before the top label? */
2753 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2754 ZFS_EXIT(zfsvfs);
2755 return (SET_ERROR(EROFS));
2756 }
2757
2758 /*
2759 * First validate permissions
2760 */
2761
2762 if (mask & AT_SIZE) {
2763 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2764 if (err) {
2765 ZFS_EXIT(zfsvfs);
2766 return (err);
2767 }
2768 /*
2769 * XXX - Note, we are not providing any open
2770 * mode flags here (like FNDELAY), so we may
2771 * block if there are locks present... this
2772 * should be addressed in openat().
2773 */
2774 /* XXX - would it be OK to generate a log record here? */
2775 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2776 if (err) {
2777 ZFS_EXIT(zfsvfs);
2778 return (err);
2779 }
2780
2781 if (vap->va_size == 0)
2782 vnevent_truncate(ZTOV(zp), ct);
2783 }
2784
2785 if (mask & (AT_ATIME|AT_MTIME) ||
2786 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2787 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2788 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2789 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2790 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2791 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2792 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2793 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2794 skipaclchk, cr);
2795 }
2796
2797 if (mask & (AT_UID|AT_GID)) {
2798 int idmask = (mask & (AT_UID|AT_GID));
2799 int take_owner;
2800 int take_group;
2801
2802 /*
2803 * NOTE: even if a new mode is being set,
2804 * we may clear S_ISUID/S_ISGID bits.
2805 */
2806
2807 if (!(mask & AT_MODE))
2808 vap->va_mode = zp->z_mode;
2809
2810 /*
2811 * Take ownership or chgrp to group we are a member of
2812 */
2813
2814 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2815 take_group = (mask & AT_GID) &&
2816 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2817
2818 /*
2819 * If both AT_UID and AT_GID are set then take_owner and
2820 * take_group must both be set in order to allow taking
2821 * ownership.
2822 *
2823 * Otherwise, send the check through secpolicy_vnode_setattr()
2824 *
2825 */
2826
2827 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2828 ((idmask == AT_UID) && take_owner) ||
2829 ((idmask == AT_GID) && take_group)) {
2830 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2831 skipaclchk, cr) == 0) {
2832 /*
2833 * Remove setuid/setgid for non-privileged users
2834 */
2835 secpolicy_setid_clear(vap, cr);
2836 trim_mask = (mask & (AT_UID|AT_GID));
2837 } else {
2838 need_policy = TRUE;
2839 }
2840 } else {
2841 need_policy = TRUE;
2842 }
2843 }
2844
2845 mutex_enter(&zp->z_lock);
2846 oldva.va_mode = zp->z_mode;
2847 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2848 if (mask & AT_XVATTR) {
2849 /*
2850 * Update xvattr mask to include only those attributes
2851 * that are actually changing.
2852 *
2853 * the bits will be restored prior to actually setting
2854 * the attributes so the caller thinks they were set.
2855 */
2856 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2857 if (xoap->xoa_appendonly !=
2858 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2859 need_policy = TRUE;
2860 } else {
2861 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2862 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2863 }
2864 }
2865
2866 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2867 if (xoap->xoa_nounlink !=
2868 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2869 need_policy = TRUE;
2870 } else {
2871 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2872 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2873 }
2874 }
2875
2876 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2877 if (xoap->xoa_immutable !=
2878 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2879 need_policy = TRUE;
2880 } else {
2881 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2882 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2883 }
2884 }
2885
2886 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2887 if (xoap->xoa_nodump !=
2888 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2889 need_policy = TRUE;
2890 } else {
2891 XVA_CLR_REQ(xvap, XAT_NODUMP);
2892 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2893 }
2894 }
2895
2896 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2897 if (xoap->xoa_av_modified !=
2898 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2899 need_policy = TRUE;
2900 } else {
2901 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2902 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2903 }
2904 }
2905
2906 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2907 if ((vp->v_type != VREG &&
2908 xoap->xoa_av_quarantined) ||
2909 xoap->xoa_av_quarantined !=
2910 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2911 need_policy = TRUE;
2912 } else {
2913 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2914 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2915 }
2916 }
2917
2918 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2919 mutex_exit(&zp->z_lock);
2920 ZFS_EXIT(zfsvfs);
2921 return (SET_ERROR(EPERM));
2922 }
2923
2924 if (need_policy == FALSE &&
2925 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2926 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2927 need_policy = TRUE;
2928 }
2929 }
2930
2931 mutex_exit(&zp->z_lock);
2932
2933 if (mask & AT_MODE) {
2934 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2935 err = secpolicy_setid_setsticky_clear(vp, vap,
2936 &oldva, cr);
2937 if (err) {
2938 ZFS_EXIT(zfsvfs);
2939 return (err);
2940 }
2941 trim_mask |= AT_MODE;
2942 } else {
2943 need_policy = TRUE;
2944 }
2945 }
2946
2947 if (need_policy) {
2948 /*
2949 * If trim_mask is set then take ownership
2950 * has been granted or write_acl is present and user
2951 * has the ability to modify mode. In that case remove
2952 * UID|GID and or MODE from mask so that
2953 * secpolicy_vnode_setattr() doesn't revoke it.
2954 */
2955
2956 if (trim_mask) {
2957 saved_mask = vap->va_mask;
2958 vap->va_mask &= ~trim_mask;
2959 }
2960 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2961 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2962 if (err) {
2963 ZFS_EXIT(zfsvfs);
2964 return (err);
2965 }
2966
2967 if (trim_mask)
2968 vap->va_mask |= saved_mask;
2969 }
2970
2971 /*
2972 * secpolicy_vnode_setattr, or take ownership may have
2973 * changed va_mask
2974 */
2975 mask = vap->va_mask;
2976
2977 if ((mask & (AT_UID | AT_GID))) {
2978 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2979 &xattr_obj, sizeof (xattr_obj));
2980
2981 if (err == 0 && xattr_obj) {
2982 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2983 if (err)
2984 goto out2;
2985 }
2986 if (mask & AT_UID) {
2987 new_uid = zfs_fuid_create(zfsvfs,
2988 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2989 if (new_uid != zp->z_uid &&
2990 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2991 if (attrzp)
2992 VN_RELE(ZTOV(attrzp));
2993 err = SET_ERROR(EDQUOT);
2994 goto out2;
2995 }
2996 }
2997
2998 if (mask & AT_GID) {
2999 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3000 cr, ZFS_GROUP, &fuidp);
3001 if (new_gid != zp->z_gid &&
3002 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3003 if (attrzp)
3004 VN_RELE(ZTOV(attrzp));
3005 err = SET_ERROR(EDQUOT);
3006 goto out2;
3007 }
3008 }
3009 }
3010 tx = dmu_tx_create(zfsvfs->z_os);
3011
3012 if (mask & AT_MODE) {
3013 uint64_t pmode = zp->z_mode;
3014 uint64_t acl_obj;
3015 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3016
3017 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3018 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3019 err = SET_ERROR(EPERM);
3020 goto out;
3021 }
3022
3023 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3024 goto out;
3025
3026 mutex_enter(&zp->z_lock);
3027 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3028 /*
3029 * Are we upgrading ACL from old V0 format
3030 * to V1 format?
3031 */
3032 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3033 zfs_znode_acl_version(zp) ==
3034 ZFS_ACL_VERSION_INITIAL) {
3035 dmu_tx_hold_free(tx, acl_obj, 0,
3036 DMU_OBJECT_END);
3037 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3038 0, aclp->z_acl_bytes);
3039 } else {
3040 dmu_tx_hold_write(tx, acl_obj, 0,
3041 aclp->z_acl_bytes);
3042 }
3043 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3044 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3045 0, aclp->z_acl_bytes);
3046 }
3047 mutex_exit(&zp->z_lock);
3048 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3049 } else {
3050 if ((mask & AT_XVATTR) &&
3051 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3052 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3053 else
3054 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3055 }
3056
3057 if (attrzp) {
3058 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3059 }
3060
3061 fuid_dirtied = zfsvfs->z_fuid_dirty;
3062 if (fuid_dirtied)
3063 zfs_fuid_txhold(zfsvfs, tx);
3064
3065 zfs_sa_upgrade_txholds(tx, zp);
3066
3067 err = dmu_tx_assign(tx, TXG_WAIT);
3068 if (err)
3069 goto out;
3070
3071 count = 0;
3072 /*
3073 * Set each attribute requested.
3074 * We group settings according to the locks they need to acquire.
3075 *
3076 * Note: you cannot set ctime directly, although it will be
3077 * updated as a side-effect of calling this function.
3078 */
3079
3080
3081 if (mask & (AT_UID|AT_GID|AT_MODE))
3082 mutex_enter(&zp->z_acl_lock);
3083 mutex_enter(&zp->z_lock);
3084
3085 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3086 &zp->z_pflags, sizeof (zp->z_pflags));
3087
3088 if (attrzp) {
3089 if (mask & (AT_UID|AT_GID|AT_MODE))
3090 mutex_enter(&attrzp->z_acl_lock);
3091 mutex_enter(&attrzp->z_lock);
3092 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3093 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3094 sizeof (attrzp->z_pflags));
3095 }
3096
3097 if (mask & (AT_UID|AT_GID)) {
3098
3099 if (mask & AT_UID) {
3100 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3101 &new_uid, sizeof (new_uid));
3102 zp->z_uid = new_uid;
3103 if (attrzp) {
3104 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3105 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3106 sizeof (new_uid));
3107 attrzp->z_uid = new_uid;
3108 }
3109 }
3110
3111 if (mask & AT_GID) {
3112 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3113 NULL, &new_gid, sizeof (new_gid));
3114 zp->z_gid = new_gid;
3115 if (attrzp) {
3116 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3117 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3118 sizeof (new_gid));
3119 attrzp->z_gid = new_gid;
3120 }
3121 }
3122 if (!(mask & AT_MODE)) {
3123 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3124 NULL, &new_mode, sizeof (new_mode));
3125 new_mode = zp->z_mode;
3126 }
3127 err = zfs_acl_chown_setattr(zp);
3128 ASSERT(err == 0);
3129 if (attrzp) {
3130 err = zfs_acl_chown_setattr(attrzp);
3131 ASSERT(err == 0);
3132 }
3133 }
3134
3135 if (mask & AT_MODE) {
3136 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3137 &new_mode, sizeof (new_mode));
3138 zp->z_mode = new_mode;
3139 ASSERT3U((uintptr_t)aclp, !=, NULL);
3140 err = zfs_aclset_common(zp, aclp, cr, tx);
3141 ASSERT0(err);
3142 if (zp->z_acl_cached)
3143 zfs_acl_free(zp->z_acl_cached);
3144 zp->z_acl_cached = aclp;
3145 aclp = NULL;
3146 }
3147
3148
3149 if (mask & AT_ATIME) {
3150 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3151 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3152 &zp->z_atime, sizeof (zp->z_atime));
3153 }
3154
3155 if (mask & AT_MTIME) {
3156 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3157 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3158 mtime, sizeof (mtime));
3159 }
3160
3161 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3162 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3163 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3164 NULL, mtime, sizeof (mtime));
3165 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3166 &ctime, sizeof (ctime));
3167 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3168 B_TRUE);
3169 } else if (mask != 0) {
3170 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3171 &ctime, sizeof (ctime));
3172 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3173 B_TRUE);
3174 if (attrzp) {
3175 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3176 SA_ZPL_CTIME(zfsvfs), NULL,
3177 &ctime, sizeof (ctime));
3178 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3179 mtime, ctime, B_TRUE);
3180 }
3181 }
3182 /*
3183 * Do this after setting timestamps to prevent timestamp
3184 * update from toggling bit
3185 */
3186
3187 if (xoap && (mask & AT_XVATTR)) {
3188
3189 /*
3190 * restore trimmed off masks
3191 * so that return masks can be set for caller.
3192 */
3193
3194 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3195 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3196 }
3197 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3198 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3199 }
3200 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3201 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3202 }
3203 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3204 XVA_SET_REQ(xvap, XAT_NODUMP);
3205 }
3206 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3207 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3208 }
3209 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3210 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3211 }
3212
3213 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3214 ASSERT(vp->v_type == VREG);
3215
3216 zfs_xvattr_set(zp, xvap, tx);
3217 }
3218
3219 if (fuid_dirtied)
3220 zfs_fuid_sync(zfsvfs, tx);
3221
3222 if (mask != 0)
3223 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3224
3225 mutex_exit(&zp->z_lock);
3226 if (mask & (AT_UID|AT_GID|AT_MODE))
3227 mutex_exit(&zp->z_acl_lock);
3228
3229 if (attrzp) {
3230 if (mask & (AT_UID|AT_GID|AT_MODE))
3231 mutex_exit(&attrzp->z_acl_lock);
3232 mutex_exit(&attrzp->z_lock);
3233 }
3234 out:
3235 if (err == 0 && attrzp) {
3236 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3237 xattr_count, tx);
3238 ASSERT(err2 == 0);
3239 }
3240
3241 if (attrzp)
3242 VN_RELE(ZTOV(attrzp));
3243
3244 if (aclp)
3245 zfs_acl_free(aclp);
3246
3247 if (fuidp) {
3248 zfs_fuid_info_free(fuidp);
3249 fuidp = NULL;
3250 }
3251
3252 if (err) {
3253 dmu_tx_abort(tx);
3254 if (err == ERESTART)
3255 goto top;
3256 } else {
3257 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3258 dmu_tx_commit(tx);
3259 }
3260
3261 out2:
3262 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3263 zil_commit(zilog, 0);
3264
3265 ZFS_EXIT(zfsvfs);
3266 return (err);
3267 }
3268
3269 typedef struct zfs_zlock {
3270 krwlock_t *zl_rwlock; /* lock we acquired */
3271 znode_t *zl_znode; /* znode we held */
3272 struct zfs_zlock *zl_next; /* next in list */
3273 } zfs_zlock_t;
3274
3275 /*
3276 * Drop locks and release vnodes that were held by zfs_rename_lock().
3277 */
3278 static void
3279 zfs_rename_unlock(zfs_zlock_t **zlpp)
3280 {
3281 zfs_zlock_t *zl;
3282
3283 while ((zl = *zlpp) != NULL) {
3284 if (zl->zl_znode != NULL)
3285 VN_RELE(ZTOV(zl->zl_znode));
3286 rw_exit(zl->zl_rwlock);
3287 *zlpp = zl->zl_next;
3288 kmem_free(zl, sizeof (*zl));
3289 }
3290 }
3291
3292 /*
3293 * Search back through the directory tree, using the ".." entries.
3294 * Lock each directory in the chain to prevent concurrent renames.
3295 * Fail any attempt to move a directory into one of its own descendants.
3296 * XXX - z_parent_lock can overlap with map or grow locks
3297 */
3298 static int
3299 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3300 {
3301 zfs_zlock_t *zl;
3302 znode_t *zp = tdzp;
3303 uint64_t rootid = zp->z_zfsvfs->z_root;
3304 uint64_t oidp = zp->z_id;
3305 krwlock_t *rwlp = &szp->z_parent_lock;
3306 krw_t rw = RW_WRITER;
3307
3308 /*
3309 * First pass write-locks szp and compares to zp->z_id.
3310 * Later passes read-lock zp and compare to zp->z_parent.
3311 */
3312 do {
3313 if (!rw_tryenter(rwlp, rw)) {
3314 /*
3315 * Another thread is renaming in this path.
3316 * Note that if we are a WRITER, we don't have any
3317 * parent_locks held yet.
3318 */
3319 if (rw == RW_READER && zp->z_id > szp->z_id) {
3320 /*
3321 * Drop our locks and restart
3322 */
3323 zfs_rename_unlock(&zl);
3324 *zlpp = NULL;
3325 zp = tdzp;
3326 oidp = zp->z_id;
3327 rwlp = &szp->z_parent_lock;
3328 rw = RW_WRITER;
3329 continue;
3330 } else {
3331 /*
3332 * Wait for other thread to drop its locks
3333 */
3334 rw_enter(rwlp, rw);
3335 }
3336 }
3337
3338 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3339 zl->zl_rwlock = rwlp;
3340 zl->zl_znode = NULL;
3341 zl->zl_next = *zlpp;
3342 *zlpp = zl;
3343
3344 if (oidp == szp->z_id) /* We're a descendant of szp */
3345 return (SET_ERROR(EINVAL));
3346
3347 if (oidp == rootid) /* We've hit the top */
3348 return (0);
3349
3350 if (rw == RW_READER) { /* i.e. not the first pass */
3351 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3352 if (error)
3353 return (error);
3354 zl->zl_znode = zp;
3355 }
3356 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3357 &oidp, sizeof (oidp));
3358 rwlp = &zp->z_parent_lock;
3359 rw = RW_READER;
3360
3361 } while (zp->z_id != sdzp->z_id);
3362
3363 return (0);
3364 }
3365
3366 /*
3367 * Move an entry from the provided source directory to the target
3368 * directory. Change the entry name as indicated.
3369 *
3370 * IN: sdvp - Source directory containing the "old entry".
3371 * snm - Old entry name.
3372 * tdvp - Target directory to contain the "new entry".
3373 * tnm - New entry name.
3374 * cr - credentials of caller.
3375 * ct - caller context
3376 * flags - case flags
3377 *
3378 * RETURN: 0 on success, error code on failure.
3379 *
3380 * Timestamps:
3381 * sdvp,tdvp - ctime|mtime updated
3382 */
3383 /*ARGSUSED*/
3384 static int
3385 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3386 caller_context_t *ct, int flags)
3387 {
3388 znode_t *tdzp, *szp, *tzp;
3389 znode_t *sdzp = VTOZ(sdvp);
3390 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3391 zilog_t *zilog;
3392 vnode_t *realvp;
3393 zfs_dirlock_t *sdl, *tdl;
3394 dmu_tx_t *tx;
3395 zfs_zlock_t *zl;
3396 int cmp, serr, terr;
3397 int error = 0;
3398 int zflg = 0;
3399 boolean_t waited = B_FALSE;
3400
3401 ZFS_ENTER(zfsvfs);
3402 ZFS_VERIFY_ZP(sdzp);
3403 zilog = zfsvfs->z_log;
3404
3405 /*
3406 * Make sure we have the real vp for the target directory.
3407 */
3408 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3409 tdvp = realvp;
3410
3411 tdzp = VTOZ(tdvp);
3412 ZFS_VERIFY_ZP(tdzp);
3413
3414 /*
3415 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3416 * ctldir appear to have the same v_vfsp.
3417 */
3418 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3419 ZFS_EXIT(zfsvfs);
3420 return (SET_ERROR(EXDEV));
3421 }
3422
3423 if (zfsvfs->z_utf8 && u8_validate(tnm,
3424 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3425 ZFS_EXIT(zfsvfs);
3426 return (SET_ERROR(EILSEQ));
3427 }
3428
3429 if (flags & FIGNORECASE)
3430 zflg |= ZCILOOK;
3431
3432 top:
3433 szp = NULL;
3434 tzp = NULL;
3435 zl = NULL;
3436
3437 /*
3438 * This is to prevent the creation of links into attribute space
3439 * by renaming a linked file into/outof an attribute directory.
3440 * See the comment in zfs_link() for why this is considered bad.
3441 */
3442 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3443 ZFS_EXIT(zfsvfs);
3444 return (SET_ERROR(EINVAL));
3445 }
3446
3447 /*
3448 * Lock source and target directory entries. To prevent deadlock,
3449 * a lock ordering must be defined. We lock the directory with
3450 * the smallest object id first, or if it's a tie, the one with
3451 * the lexically first name.
3452 */
3453 if (sdzp->z_id < tdzp->z_id) {
3454 cmp = -1;
3455 } else if (sdzp->z_id > tdzp->z_id) {
3456 cmp = 1;
3457 } else {
3458 /*
3459 * First compare the two name arguments without
3460 * considering any case folding.
3461 */
3462 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3463
3464 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3465 ASSERT(error == 0 || !zfsvfs->z_utf8);
3466 if (cmp == 0) {
3467 /*
3468 * POSIX: "If the old argument and the new argument
3469 * both refer to links to the same existing file,
3470 * the rename() function shall return successfully
3471 * and perform no other action."
3472 */
3473 ZFS_EXIT(zfsvfs);
3474 return (0);
3475 }
3476 /*
3477 * If the file system is case-folding, then we may
3478 * have some more checking to do. A case-folding file
3479 * system is either supporting mixed case sensitivity
3480 * access or is completely case-insensitive. Note
3481 * that the file system is always case preserving.
3482 *
3483 * In mixed sensitivity mode case sensitive behavior
3484 * is the default. FIGNORECASE must be used to
3485 * explicitly request case insensitive behavior.
3486 *
3487 * If the source and target names provided differ only
3488 * by case (e.g., a request to rename 'tim' to 'Tim'),
3489 * we will treat this as a special case in the
3490 * case-insensitive mode: as long as the source name
3491 * is an exact match, we will allow this to proceed as
3492 * a name-change request.
3493 */
3494 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3495 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3496 flags & FIGNORECASE)) &&
3497 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3498 &error) == 0) {
3499 /*
3500 * case preserving rename request, require exact
3501 * name matches
3502 */
3503 zflg |= ZCIEXACT;
3504 zflg &= ~ZCILOOK;
3505 }
3506 }
3507
3508 /*
3509 * If the source and destination directories are the same, we should
3510 * grab the z_name_lock of that directory only once.
3511 */
3512 if (sdzp == tdzp) {
3513 zflg |= ZHAVELOCK;
3514 rw_enter(&sdzp->z_name_lock, RW_READER);
3515 }
3516
3517 if (cmp < 0) {
3518 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3519 ZEXISTS | zflg, NULL, NULL);
3520 terr = zfs_dirent_lock(&tdl,
3521 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3522 } else {
3523 terr = zfs_dirent_lock(&tdl,
3524 tdzp, tnm, &tzp, zflg, NULL, NULL);
3525 serr = zfs_dirent_lock(&sdl,
3526 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3527 NULL, NULL);
3528 }
3529
3530 if (serr) {
3531 /*
3532 * Source entry invalid or not there.
3533 */
3534 if (!terr) {
3535 zfs_dirent_unlock(tdl);
3536 if (tzp)
3537 VN_RELE(ZTOV(tzp));
3538 }
3539
3540 if (sdzp == tdzp)
3541 rw_exit(&sdzp->z_name_lock);
3542
3543 if (strcmp(snm, "..") == 0)
3544 serr = SET_ERROR(EINVAL);
3545 ZFS_EXIT(zfsvfs);
3546 return (serr);
3547 }
3548 if (terr) {
3549 zfs_dirent_unlock(sdl);
3550 VN_RELE(ZTOV(szp));
3551
3552 if (sdzp == tdzp)
3553 rw_exit(&sdzp->z_name_lock);
3554
3555 if (strcmp(tnm, "..") == 0)
3556 terr = SET_ERROR(EINVAL);
3557 ZFS_EXIT(zfsvfs);
3558 return (terr);
3559 }
3560
3561 /*
3562 * Must have write access at the source to remove the old entry
3563 * and write access at the target to create the new entry.
3564 * Note that if target and source are the same, this can be
3565 * done in a single check.
3566 */
3567
3568 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3569 goto out;
3570
3571 if (ZTOV(szp)->v_type == VDIR) {
3572 /*
3573 * Check to make sure rename is valid.
3574 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3575 */
3576 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3577 goto out;
3578 }
3579
3580 /*
3581 * Does target exist?
3582 */
3583 if (tzp) {
3584 /*
3585 * Source and target must be the same type.
3586 */
3587 if (ZTOV(szp)->v_type == VDIR) {
3588 if (ZTOV(tzp)->v_type != VDIR) {
3589 error = SET_ERROR(ENOTDIR);
3590 goto out;
3591 }
3592 } else {
3593 if (ZTOV(tzp)->v_type == VDIR) {
3594 error = SET_ERROR(EISDIR);
3595 goto out;
3596 }
3597 }
3598 /*
3599 * POSIX dictates that when the source and target
3600 * entries refer to the same file object, rename
3601 * must do nothing and exit without error.
3602 */
3603 if (szp->z_id == tzp->z_id) {
3604 error = 0;
3605 goto out;
3606 }
3607 }
3608
3609 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3610 if (tzp)
3611 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3612
3613 /*
3614 * notify the target directory if it is not the same
3615 * as source directory.
3616 */
3617 if (tdvp != sdvp) {
3618 vnevent_rename_dest_dir(tdvp, ct);
3619 }
3620
3621 tx = dmu_tx_create(zfsvfs->z_os);
3622 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3623 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3624 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3625 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3626 if (sdzp != tdzp) {
3627 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3628 zfs_sa_upgrade_txholds(tx, tdzp);
3629 }
3630 if (tzp) {
3631 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3632 zfs_sa_upgrade_txholds(tx, tzp);
3633 }
3634
3635 zfs_sa_upgrade_txholds(tx, szp);
3636 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3637 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3638 if (error) {
3639 if (zl != NULL)
3640 zfs_rename_unlock(&zl);
3641 zfs_dirent_unlock(sdl);
3642 zfs_dirent_unlock(tdl);
3643
3644 if (sdzp == tdzp)
3645 rw_exit(&sdzp->z_name_lock);
3646
3647 VN_RELE(ZTOV(szp));
3648 if (tzp)
3649 VN_RELE(ZTOV(tzp));
3650 if (error == ERESTART) {
3651 waited = B_TRUE;
3652 dmu_tx_wait(tx);
3653 dmu_tx_abort(tx);
3654 goto top;
3655 }
3656 dmu_tx_abort(tx);
3657 ZFS_EXIT(zfsvfs);
3658 return (error);
3659 }
3660
3661 if (tzp) /* Attempt to remove the existing target */
3662 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3663
3664 if (error == 0) {
3665 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3666 if (error == 0) {
3667 szp->z_pflags |= ZFS_AV_MODIFIED;
3668
3669 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3670 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3671 ASSERT0(error);
3672
3673 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3674 if (error == 0) {
3675 zfs_log_rename(zilog, tx, TX_RENAME |
3676 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3677 sdl->dl_name, tdzp, tdl->dl_name, szp);
3678
3679 /*
3680 * Update path information for the target vnode
3681 */
3682 vn_renamepath(tdvp, ZTOV(szp), tnm,
3683 strlen(tnm));
3684 } else {
3685 /*
3686 * At this point, we have successfully created
3687 * the target name, but have failed to remove
3688 * the source name. Since the create was done
3689 * with the ZRENAMING flag, there are
3690 * complications; for one, the link count is
3691 * wrong. The easiest way to deal with this
3692 * is to remove the newly created target, and
3693 * return the original error. This must
3694 * succeed; fortunately, it is very unlikely to
3695 * fail, since we just created it.
3696 */
3697 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3698 ZRENAMING, NULL), ==, 0);
3699 }
3700 }
3701 }
3702
3703 dmu_tx_commit(tx);
3704 out:
3705 if (zl != NULL)
3706 zfs_rename_unlock(&zl);
3707
3708 zfs_dirent_unlock(sdl);
3709 zfs_dirent_unlock(tdl);
3710
3711 if (sdzp == tdzp)
3712 rw_exit(&sdzp->z_name_lock);
3713
3714
3715 VN_RELE(ZTOV(szp));
3716 if (tzp)
3717 VN_RELE(ZTOV(tzp));
3718
3719 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3720 zil_commit(zilog, 0);
3721
3722 ZFS_EXIT(zfsvfs);
3723 return (error);
3724 }
3725
3726 /*
3727 * Insert the indicated symbolic reference entry into the directory.
3728 *
3729 * IN: dvp - Directory to contain new symbolic link.
3730 * link - Name for new symlink entry.
3731 * vap - Attributes of new entry.
3732 * cr - credentials of caller.
3733 * ct - caller context
3734 * flags - case flags
3735 *
3736 * RETURN: 0 on success, error code on failure.
3737 *
3738 * Timestamps:
3739 * dvp - ctime|mtime updated
3740 */
3741 /*ARGSUSED*/
3742 static int
3743 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3744 caller_context_t *ct, int flags)
3745 {
3746 znode_t *zp, *dzp = VTOZ(dvp);
3747 zfs_dirlock_t *dl;
3748 dmu_tx_t *tx;
3749 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3750 zilog_t *zilog;
3751 uint64_t len = strlen(link);
3752 int error;
3753 int zflg = ZNEW;
3754 zfs_acl_ids_t acl_ids;
3755 boolean_t fuid_dirtied;
3756 uint64_t txtype = TX_SYMLINK;
3757 boolean_t waited = B_FALSE;
3758
3759 ASSERT(vap->va_type == VLNK);
3760
3761 ZFS_ENTER(zfsvfs);
3762 ZFS_VERIFY_ZP(dzp);
3763 zilog = zfsvfs->z_log;
3764
3765 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3766 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3767 ZFS_EXIT(zfsvfs);
3768 return (SET_ERROR(EILSEQ));
3769 }
3770 if (flags & FIGNORECASE)
3771 zflg |= ZCILOOK;
3772
3773 if (len > MAXPATHLEN) {
3774 ZFS_EXIT(zfsvfs);
3775 return (SET_ERROR(ENAMETOOLONG));
3776 }
3777
3778 if ((error = zfs_acl_ids_create(dzp, 0,
3779 vap, cr, NULL, &acl_ids)) != 0) {
3780 ZFS_EXIT(zfsvfs);
3781 return (error);
3782 }
3783 top:
3784 /*
3785 * Attempt to lock directory; fail if entry already exists.
3786 */
3787 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3788 if (error) {
3789 zfs_acl_ids_free(&acl_ids);
3790 ZFS_EXIT(zfsvfs);
3791 return (error);
3792 }
3793
3794 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3795 zfs_acl_ids_free(&acl_ids);
3796 zfs_dirent_unlock(dl);
3797 ZFS_EXIT(zfsvfs);
3798 return (error);
3799 }
3800
3801 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3802 zfs_acl_ids_free(&acl_ids);
3803 zfs_dirent_unlock(dl);
3804 ZFS_EXIT(zfsvfs);
3805 return (SET_ERROR(EDQUOT));
3806 }
3807 tx = dmu_tx_create(zfsvfs->z_os);
3808 fuid_dirtied = zfsvfs->z_fuid_dirty;
3809 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3810 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3811 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3812 ZFS_SA_BASE_ATTR_SIZE + len);
3813 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3814 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3815 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3816 acl_ids.z_aclp->z_acl_bytes);
3817 }
3818 if (fuid_dirtied)
3819 zfs_fuid_txhold(zfsvfs, tx);
3820 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3821 if (error) {
3822 zfs_dirent_unlock(dl);
3823 if (error == ERESTART) {
3824 waited = B_TRUE;
3825 dmu_tx_wait(tx);
3826 dmu_tx_abort(tx);
3827 goto top;
3828 }
3829 zfs_acl_ids_free(&acl_ids);
3830 dmu_tx_abort(tx);
3831 ZFS_EXIT(zfsvfs);
3832 return (error);
3833 }
3834
3835 /*
3836 * Create a new object for the symlink.
3837 * for version 4 ZPL datsets the symlink will be an SA attribute
3838 */
3839 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3840
3841 if (fuid_dirtied)
3842 zfs_fuid_sync(zfsvfs, tx);
3843
3844 mutex_enter(&zp->z_lock);
3845 if (zp->z_is_sa)
3846 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3847 link, len, tx);
3848 else
3849 zfs_sa_symlink(zp, link, len, tx);
3850 mutex_exit(&zp->z_lock);
3851
3852 zp->z_size = len;
3853 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3854 &zp->z_size, sizeof (zp->z_size), tx);
3855 /*
3856 * Insert the new object into the directory.
3857 */
3858 (void) zfs_link_create(dl, zp, tx, ZNEW);
3859
3860 if (flags & FIGNORECASE)
3861 txtype |= TX_CI;
3862 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3863
3864 zfs_acl_ids_free(&acl_ids);
3865
3866 dmu_tx_commit(tx);
3867
3868 zfs_dirent_unlock(dl);
3869
3870 VN_RELE(ZTOV(zp));
3871
3872 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3873 zil_commit(zilog, 0);
3874
3875 ZFS_EXIT(zfsvfs);
3876 return (error);
3877 }
3878
3879 /*
3880 * Return, in the buffer contained in the provided uio structure,
3881 * the symbolic path referred to by vp.
3882 *
3883 * IN: vp - vnode of symbolic link.
3884 * uio - structure to contain the link path.
3885 * cr - credentials of caller.
3886 * ct - caller context
3887 *
3888 * OUT: uio - structure containing the link path.
3889 *
3890 * RETURN: 0 on success, error code on failure.
3891 *
3892 * Timestamps:
3893 * vp - atime updated
3894 */
3895 /* ARGSUSED */
3896 static int
3897 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3898 {
3899 znode_t *zp = VTOZ(vp);
3900 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3901 int error;
3902
3903 ZFS_ENTER(zfsvfs);
3904 ZFS_VERIFY_ZP(zp);
3905
3906 mutex_enter(&zp->z_lock);
3907 if (zp->z_is_sa)
3908 error = sa_lookup_uio(zp->z_sa_hdl,
3909 SA_ZPL_SYMLINK(zfsvfs), uio);
3910 else
3911 error = zfs_sa_readlink(zp, uio);
3912 mutex_exit(&zp->z_lock);
3913
3914 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3915
3916 ZFS_EXIT(zfsvfs);
3917 return (error);
3918 }
3919
3920 /*
3921 * Insert a new entry into directory tdvp referencing svp.
3922 *
3923 * IN: tdvp - Directory to contain new entry.
3924 * svp - vnode of new entry.
3925 * name - name of new entry.
3926 * cr - credentials of caller.
3927 * ct - caller context
3928 *
3929 * RETURN: 0 on success, error code on failure.
3930 *
3931 * Timestamps:
3932 * tdvp - ctime|mtime updated
3933 * svp - ctime updated
3934 */
3935 /* ARGSUSED */
3936 static int
3937 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3938 caller_context_t *ct, int flags)
3939 {
3940 znode_t *dzp = VTOZ(tdvp);
3941 znode_t *tzp, *szp;
3942 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3943 zilog_t *zilog;
3944 zfs_dirlock_t *dl;
3945 dmu_tx_t *tx;
3946 vnode_t *realvp;
3947 int error;
3948 int zf = ZNEW;
3949 uint64_t parent;
3950 uid_t owner;
3951 boolean_t waited = B_FALSE;
3952
3953 ASSERT(tdvp->v_type == VDIR);
3954
3955 ZFS_ENTER(zfsvfs);
3956 ZFS_VERIFY_ZP(dzp);
3957 zilog = zfsvfs->z_log;
3958
3959 if (VOP_REALVP(svp, &realvp, ct) == 0)
3960 svp = realvp;
3961
3962 /*
3963 * POSIX dictates that we return EPERM here.
3964 * Better choices include ENOTSUP or EISDIR.
3965 */
3966 if (svp->v_type == VDIR) {
3967 ZFS_EXIT(zfsvfs);
3968 return (SET_ERROR(EPERM));
3969 }
3970
3971 szp = VTOZ(svp);
3972 ZFS_VERIFY_ZP(szp);
3973
3974 /*
3975 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3976 * ctldir appear to have the same v_vfsp.
3977 */
3978 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
3979 ZFS_EXIT(zfsvfs);
3980 return (SET_ERROR(EXDEV));
3981 }
3982
3983 /* Prevent links to .zfs/shares files */
3984
3985 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3986 &parent, sizeof (uint64_t))) != 0) {
3987 ZFS_EXIT(zfsvfs);
3988 return (error);
3989 }
3990 if (parent == zfsvfs->z_shares_dir) {
3991 ZFS_EXIT(zfsvfs);
3992 return (SET_ERROR(EPERM));
3993 }
3994
3995 if (zfsvfs->z_utf8 && u8_validate(name,
3996 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3997 ZFS_EXIT(zfsvfs);
3998 return (SET_ERROR(EILSEQ));
3999 }
4000 if (flags & FIGNORECASE)
4001 zf |= ZCILOOK;
4002
4003 /*
4004 * We do not support links between attributes and non-attributes
4005 * because of the potential security risk of creating links
4006 * into "normal" file space in order to circumvent restrictions
4007 * imposed in attribute space.
4008 */
4009 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4010 ZFS_EXIT(zfsvfs);
4011 return (SET_ERROR(EINVAL));
4012 }
4013
4014
4015 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4016 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4017 ZFS_EXIT(zfsvfs);
4018 return (SET_ERROR(EPERM));
4019 }
4020
4021 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4022 ZFS_EXIT(zfsvfs);
4023 return (error);
4024 }
4025
4026 top:
4027 /*
4028 * Attempt to lock directory; fail if entry already exists.
4029 */
4030 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4031 if (error) {
4032 ZFS_EXIT(zfsvfs);
4033 return (error);
4034 }
4035
4036 tx = dmu_tx_create(zfsvfs->z_os);
4037 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4038 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4039 zfs_sa_upgrade_txholds(tx, szp);
4040 zfs_sa_upgrade_txholds(tx, dzp);
4041 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4042 if (error) {
4043 zfs_dirent_unlock(dl);
4044 if (error == ERESTART) {
4045 waited = B_TRUE;
4046 dmu_tx_wait(tx);
4047 dmu_tx_abort(tx);
4048 goto top;
4049 }
4050 dmu_tx_abort(tx);
4051 ZFS_EXIT(zfsvfs);
4052 return (error);
4053 }
4054
4055 error = zfs_link_create(dl, szp, tx, 0);
4056
4057 if (error == 0) {
4058 uint64_t txtype = TX_LINK;
4059 if (flags & FIGNORECASE)
4060 txtype |= TX_CI;
4061 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4062 }
4063
4064 dmu_tx_commit(tx);
4065
4066 zfs_dirent_unlock(dl);
4067
4068 if (error == 0) {
4069 vnevent_link(svp, ct);
4070 }
4071
4072 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4073 zil_commit(zilog, 0);
4074
4075 ZFS_EXIT(zfsvfs);
4076 return (error);
4077 }
4078
4079 /*
4080 * zfs_null_putapage() is used when the file system has been force
4081 * unmounted. It just drops the pages.
4082 */
4083 /* ARGSUSED */
4084 static int
4085 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4086 size_t *lenp, int flags, cred_t *cr)
4087 {
4088 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4089 return (0);
4090 }
4091
4092 /*
4093 * Push a page out to disk, klustering if possible.
4094 *
4095 * IN: vp - file to push page to.
4096 * pp - page to push.
4097 * flags - additional flags.
4098 * cr - credentials of caller.
4099 *
4100 * OUT: offp - start of range pushed.
4101 * lenp - len of range pushed.
4102 *
4103 * RETURN: 0 on success, error code on failure.
4104 *
4105 * NOTE: callers must have locked the page to be pushed. On
4106 * exit, the page (and all other pages in the kluster) must be
4107 * unlocked.
4108 */
4109 /* ARGSUSED */
4110 static int
4111 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4112 size_t *lenp, int flags, cred_t *cr)
4113 {
4114 znode_t *zp = VTOZ(vp);
4115 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4116 dmu_tx_t *tx;
4117 u_offset_t off, koff;
4118 size_t len, klen;
4119 int err;
4120
4121 off = pp->p_offset;
4122 len = PAGESIZE;
4123 /*
4124 * If our blocksize is bigger than the page size, try to kluster
4125 * multiple pages so that we write a full block (thus avoiding
4126 * a read-modify-write).
4127 */
4128 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4129 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4130 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4131 ASSERT(koff <= zp->z_size);
4132 if (koff + klen > zp->z_size)
4133 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4134 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4135 }
4136 ASSERT3U(btop(len), ==, btopr(len));
4137
4138 /*
4139 * Can't push pages past end-of-file.
4140 */
4141 if (off >= zp->z_size) {
4142 /* ignore all pages */
4143 err = 0;
4144 goto out;
4145 } else if (off + len > zp->z_size) {
4146 int npages = btopr(zp->z_size - off);
4147 page_t *trunc;
4148
4149 page_list_break(&pp, &trunc, npages);
4150 /* ignore pages past end of file */
4151 if (trunc)
4152 pvn_write_done(trunc, flags);
4153 len = zp->z_size - off;
4154 }
4155
4156 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4157 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4158 err = SET_ERROR(EDQUOT);
4159 goto out;
4160 }
4161 tx = dmu_tx_create(zfsvfs->z_os);
4162 dmu_tx_hold_write(tx, zp->z_id, off, len);
4163
4164 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4165 zfs_sa_upgrade_txholds(tx, zp);
4166 err = dmu_tx_assign(tx, TXG_WAIT);
4167 if (err != 0) {
4168 dmu_tx_abort(tx);
4169 goto out;
4170 }
4171
4172 if (zp->z_blksz <= PAGESIZE) {
4173 caddr_t va = zfs_map_page(pp, S_READ);
4174 ASSERT3U(len, <=, PAGESIZE);
4175 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4176 zfs_unmap_page(pp, va);
4177 } else {
4178 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4179 }
4180
4181 if (err == 0) {
4182 uint64_t mtime[2], ctime[2];
4183 sa_bulk_attr_t bulk[3];
4184 int count = 0;
4185
4186 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4187 &mtime, 16);
4188 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4189 &ctime, 16);
4190 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4191 &zp->z_pflags, 8);
4192 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4193 B_TRUE);
4194 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4195 }
4196 dmu_tx_commit(tx);
4197
4198 out:
4199 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4200 if (offp)
4201 *offp = off;
4202 if (lenp)
4203 *lenp = len;
4204
4205 return (err);
4206 }
4207
4208 /*
4209 * Copy the portion of the file indicated from pages into the file.
4210 * The pages are stored in a page list attached to the files vnode.
4211 *
4212 * IN: vp - vnode of file to push page data to.
4213 * off - position in file to put data.
4214 * len - amount of data to write.
4215 * flags - flags to control the operation.
4216 * cr - credentials of caller.
4217 * ct - caller context.
4218 *
4219 * RETURN: 0 on success, error code on failure.
4220 *
4221 * Timestamps:
4222 * vp - ctime|mtime updated
4223 */
4224 /*ARGSUSED*/
4225 static int
4226 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4227 caller_context_t *ct)
4228 {
4229 znode_t *zp = VTOZ(vp);
4230 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4231 page_t *pp;
4232 size_t io_len;
4233 u_offset_t io_off;
4234 uint_t blksz;
4235 rl_t *rl;
4236 int error = 0;
4237
4238 ZFS_ENTER(zfsvfs);
4239 ZFS_VERIFY_ZP(zp);
4240
4241 /*
4242 * There's nothing to do if no data is cached.
4243 */
4244 if (!vn_has_cached_data(vp)) {
4245 ZFS_EXIT(zfsvfs);
4246 return (0);
4247 }
4248
4249 /*
4250 * Align this request to the file block size in case we kluster.
4251 * XXX - this can result in pretty aggresive locking, which can
4252 * impact simultanious read/write access. One option might be
4253 * to break up long requests (len == 0) into block-by-block
4254 * operations to get narrower locking.
4255 */
4256 blksz = zp->z_blksz;
4257 if (ISP2(blksz))
4258 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4259 else
4260 io_off = 0;
4261 if (len > 0 && ISP2(blksz))
4262 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4263 else
4264 io_len = 0;
4265
4266 if (io_len == 0) {
4267 /*
4268 * Search the entire vp list for pages >= io_off.
4269 */
4270 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4271 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4272 goto out;
4273 }
4274 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4275
4276 if (off > zp->z_size) {
4277 /* past end of file */
4278 zfs_range_unlock(rl);
4279 ZFS_EXIT(zfsvfs);
4280 return (0);
4281 }
4282
4283 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4284
4285 for (off = io_off; io_off < off + len; io_off += io_len) {
4286 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4287 pp = page_lookup(vp, io_off,
4288 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4289 } else {
4290 pp = page_lookup_nowait(vp, io_off,
4291 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4292 }
4293
4294 if (pp != NULL && pvn_getdirty(pp, flags)) {
4295 int err;
4296
4297 /*
4298 * Found a dirty page to push
4299 */
4300 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4301 if (err)
4302 error = err;
4303 } else {
4304 io_len = PAGESIZE;
4305 }
4306 }
4307 out:
4308 zfs_range_unlock(rl);
4309 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4310 zil_commit(zfsvfs->z_log, zp->z_id);
4311 ZFS_EXIT(zfsvfs);
4312 return (error);
4313 }
4314
4315 /*ARGSUSED*/
4316 void
4317 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4318 {
4319 znode_t *zp = VTOZ(vp);
4320 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4321 int error;
4322
4323 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4324 if (zp->z_sa_hdl == NULL) {
4325 /*
4326 * The fs has been unmounted, or we did a
4327 * suspend/resume and this file no longer exists.
4328 */
4329 if (vn_has_cached_data(vp)) {
4330 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4331 B_INVAL, cr);
4332 }
4333
4334 mutex_enter(&zp->z_lock);
4335 mutex_enter(&vp->v_lock);
4336 ASSERT(vp->v_count == 1);
4337 vp->v_count = 0;
4338 mutex_exit(&vp->v_lock);
4339 mutex_exit(&zp->z_lock);
4340 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4341 zfs_znode_free(zp);
4342 return;
4343 }
4344
4345 /*
4346 * Attempt to push any data in the page cache. If this fails
4347 * we will get kicked out later in zfs_zinactive().
4348 */
4349 if (vn_has_cached_data(vp)) {
4350 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4351 cr);
4352 }
4353
4354 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4355 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4356
4357 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4358 zfs_sa_upgrade_txholds(tx, zp);
4359 error = dmu_tx_assign(tx, TXG_WAIT);
4360 if (error) {
4361 dmu_tx_abort(tx);
4362 } else {
4363 mutex_enter(&zp->z_lock);
4364 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4365 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4366 zp->z_atime_dirty = 0;
4367 mutex_exit(&zp->z_lock);
4368 dmu_tx_commit(tx);
4369 }
4370 }
4371
4372 zfs_zinactive(zp);
4373 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4374 }
4375
4376 /*
4377 * Bounds-check the seek operation.
4378 *
4379 * IN: vp - vnode seeking within
4380 * ooff - old file offset
4381 * noffp - pointer to new file offset
4382 * ct - caller context
4383 *
4384 * RETURN: 0 on success, EINVAL if new offset invalid.
4385 */
4386 /* ARGSUSED */
4387 static int
4388 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4389 caller_context_t *ct)
4390 {
4391 if (vp->v_type == VDIR)
4392 return (0);
4393 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4394 }
4395
4396 /*
4397 * Pre-filter the generic locking function to trap attempts to place
4398 * a mandatory lock on a memory mapped file.
4399 */
4400 static int
4401 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4402 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4403 {
4404 znode_t *zp = VTOZ(vp);
4405 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4406
4407 ZFS_ENTER(zfsvfs);
4408 ZFS_VERIFY_ZP(zp);
4409
4410 /*
4411 * We are following the UFS semantics with respect to mapcnt
4412 * here: If we see that the file is mapped already, then we will
4413 * return an error, but we don't worry about races between this
4414 * function and zfs_map().
4415 */
4416 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4417 ZFS_EXIT(zfsvfs);
4418 return (SET_ERROR(EAGAIN));
4419 }
4420 ZFS_EXIT(zfsvfs);
4421 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4422 }
4423
4424 /*
4425 * If we can't find a page in the cache, we will create a new page
4426 * and fill it with file data. For efficiency, we may try to fill
4427 * multiple pages at once (klustering) to fill up the supplied page
4428 * list. Note that the pages to be filled are held with an exclusive
4429 * lock to prevent access by other threads while they are being filled.
4430 */
4431 static int
4432 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4433 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4434 {
4435 znode_t *zp = VTOZ(vp);
4436 page_t *pp, *cur_pp;
4437 objset_t *os = zp->z_zfsvfs->z_os;
4438 u_offset_t io_off, total;
4439 size_t io_len;
4440 int err;
4441
4442 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4443 /*
4444 * We only have a single page, don't bother klustering
4445 */
4446 io_off = off;
4447 io_len = PAGESIZE;
4448 pp = page_create_va(vp, io_off, io_len,
4449 PG_EXCL | PG_WAIT, seg, addr);
4450 } else {
4451 /*
4452 * Try to find enough pages to fill the page list
4453 */
4454 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4455 &io_len, off, plsz, 0);
4456 }
4457 if (pp == NULL) {
4458 /*
4459 * The page already exists, nothing to do here.
4460 */
4461 *pl = NULL;
4462 return (0);
4463 }
4464
4465 /*
4466 * Fill the pages in the kluster.
4467 */
4468 cur_pp = pp;
4469 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4470 caddr_t va;
4471
4472 ASSERT3U(io_off, ==, cur_pp->p_offset);
4473 va = zfs_map_page(cur_pp, S_WRITE);
4474 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4475 DMU_READ_PREFETCH);
4476 zfs_unmap_page(cur_pp, va);
4477 if (err) {
4478 /* On error, toss the entire kluster */
4479 pvn_read_done(pp, B_ERROR);
4480 /* convert checksum errors into IO errors */
4481 if (err == ECKSUM)
4482 err = SET_ERROR(EIO);
4483 return (err);
4484 }
4485 cur_pp = cur_pp->p_next;
4486 }
4487
4488 /*
4489 * Fill in the page list array from the kluster starting
4490 * from the desired offset `off'.
4491 * NOTE: the page list will always be null terminated.
4492 */
4493 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4494 ASSERT(pl == NULL || (*pl)->p_offset == off);
4495
4496 return (0);
4497 }
4498
4499 /*
4500 * Return pointers to the pages for the file region [off, off + len]
4501 * in the pl array. If plsz is greater than len, this function may
4502 * also return page pointers from after the specified region
4503 * (i.e. the region [off, off + plsz]). These additional pages are
4504 * only returned if they are already in the cache, or were created as
4505 * part of a klustered read.
4506 *
4507 * IN: vp - vnode of file to get data from.
4508 * off - position in file to get data from.
4509 * len - amount of data to retrieve.
4510 * plsz - length of provided page list.
4511 * seg - segment to obtain pages for.
4512 * addr - virtual address of fault.
4513 * rw - mode of created pages.
4514 * cr - credentials of caller.
4515 * ct - caller context.
4516 *
4517 * OUT: protp - protection mode of created pages.
4518 * pl - list of pages created.
4519 *
4520 * RETURN: 0 on success, error code on failure.
4521 *
4522 * Timestamps:
4523 * vp - atime updated
4524 */
4525 /* ARGSUSED */
4526 static int
4527 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4528 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4529 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4530 {
4531 znode_t *zp = VTOZ(vp);
4532 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4533 page_t **pl0 = pl;
4534 int err = 0;
4535
4536 /* we do our own caching, faultahead is unnecessary */
4537 if (pl == NULL)
4538 return (0);
4539 else if (len > plsz)
4540 len = plsz;
4541 else
4542 len = P2ROUNDUP(len, PAGESIZE);
4543 ASSERT(plsz >= len);
4544
4545 ZFS_ENTER(zfsvfs);
4546 ZFS_VERIFY_ZP(zp);
4547
4548 if (protp)
4549 *protp = PROT_ALL;
4550
4551 /*
4552 * Loop through the requested range [off, off + len) looking
4553 * for pages. If we don't find a page, we will need to create
4554 * a new page and fill it with data from the file.
4555 */
4556 while (len > 0) {
4557 if (*pl = page_lookup(vp, off, SE_SHARED))
4558 *(pl+1) = NULL;
4559 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4560 goto out;
4561 while (*pl) {
4562 ASSERT3U((*pl)->p_offset, ==, off);
4563 off += PAGESIZE;
4564 addr += PAGESIZE;
4565 if (len > 0) {
4566 ASSERT3U(len, >=, PAGESIZE);
4567 len -= PAGESIZE;
4568 }
4569 ASSERT3U(plsz, >=, PAGESIZE);
4570 plsz -= PAGESIZE;
4571 pl++;
4572 }
4573 }
4574
4575 /*
4576 * Fill out the page array with any pages already in the cache.
4577 */
4578 while (plsz > 0 &&
4579 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4580 off += PAGESIZE;
4581 plsz -= PAGESIZE;
4582 }
4583 out:
4584 if (err) {
4585 /*
4586 * Release any pages we have previously locked.
4587 */
4588 while (pl > pl0)
4589 page_unlock(*--pl);
4590 } else {
4591 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4592 }
4593
4594 *pl = NULL;
4595
4596 ZFS_EXIT(zfsvfs);
4597 return (err);
4598 }
4599
4600 /*
4601 * Request a memory map for a section of a file. This code interacts
4602 * with common code and the VM system as follows:
4603 *
4604 * - common code calls mmap(), which ends up in smmap_common()
4605 * - this calls VOP_MAP(), which takes you into (say) zfs
4606 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4607 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4608 * - zfs_addmap() updates z_mapcnt
4609 */
4610 /*ARGSUSED*/
4611 static int
4612 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4613 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4614 caller_context_t *ct)
4615 {
4616 znode_t *zp = VTOZ(vp);
4617 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4618 segvn_crargs_t vn_a;
4619 int error;
4620
4621 ZFS_ENTER(zfsvfs);
4622 ZFS_VERIFY_ZP(zp);
4623
4624 if ((prot & PROT_WRITE) && (zp->z_pflags &
4625 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4626 ZFS_EXIT(zfsvfs);
4627 return (SET_ERROR(EPERM));
4628 }
4629
4630 if ((prot & (PROT_READ | PROT_EXEC)) &&
4631 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4632 ZFS_EXIT(zfsvfs);
4633 return (SET_ERROR(EACCES));
4634 }
4635
4636 if (vp->v_flag & VNOMAP) {
4637 ZFS_EXIT(zfsvfs);
4638 return (SET_ERROR(ENOSYS));
4639 }
4640
4641 if (off < 0 || len > MAXOFFSET_T - off) {
4642 ZFS_EXIT(zfsvfs);
4643 return (SET_ERROR(ENXIO));
4644 }
4645
4646 if (vp->v_type != VREG) {
4647 ZFS_EXIT(zfsvfs);
4648 return (SET_ERROR(ENODEV));
4649 }
4650
4651 /*
4652 * If file is locked, disallow mapping.
4653 */
4654 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4655 ZFS_EXIT(zfsvfs);
4656 return (SET_ERROR(EAGAIN));
4657 }
4658
4659 as_rangelock(as);
4660 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4661 if (error != 0) {
4662 as_rangeunlock(as);
4663 ZFS_EXIT(zfsvfs);
4664 return (error);
4665 }
4666
4667 vn_a.vp = vp;
4668 vn_a.offset = (u_offset_t)off;
4669 vn_a.type = flags & MAP_TYPE;
4670 vn_a.prot = prot;
4671 vn_a.maxprot = maxprot;
4672 vn_a.cred = cr;
4673 vn_a.amp = NULL;
4674 vn_a.flags = flags & ~MAP_TYPE;
4675 vn_a.szc = 0;
4676 vn_a.lgrp_mem_policy_flags = 0;
4677
4678 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4679
4680 as_rangeunlock(as);
4681 ZFS_EXIT(zfsvfs);
4682 return (error);
4683 }
4684
4685 /* ARGSUSED */
4686 static int
4687 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4688 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4689 caller_context_t *ct)
4690 {
4691 uint64_t pages = btopr(len);
4692
4693 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4694 return (0);
4695 }
4696
4697 /*
4698 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4699 * more accurate mtime for the associated file. Since we don't have a way of
4700 * detecting when the data was actually modified, we have to resort to
4701 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4702 * last page is pushed. The problem occurs when the msync() call is omitted,
4703 * which by far the most common case:
4704 *
4705 * open()
4706 * mmap()
4707 * <modify memory>
4708 * munmap()
4709 * close()
4710 * <time lapse>
4711 * putpage() via fsflush
4712 *
4713 * If we wait until fsflush to come along, we can have a modification time that
4714 * is some arbitrary point in the future. In order to prevent this in the
4715 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4716 * torn down.
4717 */
4718 /* ARGSUSED */
4719 static int
4720 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4721 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4722 caller_context_t *ct)
4723 {
4724 uint64_t pages = btopr(len);
4725
4726 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4727 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4728
4729 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4730 vn_has_cached_data(vp))
4731 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4732
4733 return (0);
4734 }
4735
4736 /*
4737 * Free or allocate space in a file. Currently, this function only
4738 * supports the `F_FREESP' command. However, this command is somewhat
4739 * misnamed, as its functionality includes the ability to allocate as
4740 * well as free space.
4741 *
4742 * IN: vp - vnode of file to free data in.
4743 * cmd - action to take (only F_FREESP supported).
4744 * bfp - section of file to free/alloc.
4745 * flag - current file open mode flags.
4746 * offset - current file offset.
4747 * cr - credentials of caller [UNUSED].
4748 * ct - caller context.
4749 *
4750 * RETURN: 0 on success, error code on failure.
4751 *
4752 * Timestamps:
4753 * vp - ctime|mtime updated
4754 */
4755 /* ARGSUSED */
4756 static int
4757 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4758 offset_t offset, cred_t *cr, caller_context_t *ct)
4759 {
4760 znode_t *zp = VTOZ(vp);
4761 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4762 uint64_t off, len;
4763 int error;
4764
4765 ZFS_ENTER(zfsvfs);
4766 ZFS_VERIFY_ZP(zp);
4767
4768 if (cmd != F_FREESP) {
4769 ZFS_EXIT(zfsvfs);
4770 return (SET_ERROR(EINVAL));
4771 }
4772
4773 /*
4774 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4775 * callers might not be able to detect properly that we are read-only,
4776 * so check it explicitly here.
4777 */
4778 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4779 ZFS_EXIT(zfsvfs);
4780 return (SET_ERROR(EROFS));
4781 }
4782
4783 if (error = convoff(vp, bfp, 0, offset)) {
4784 ZFS_EXIT(zfsvfs);
4785 return (error);
4786 }
4787
4788 if (bfp->l_len < 0) {
4789 ZFS_EXIT(zfsvfs);
4790 return (SET_ERROR(EINVAL));
4791 }
4792
4793 off = bfp->l_start;
4794 len = bfp->l_len; /* 0 means from off to end of file */
4795
4796 error = zfs_freesp(zp, off, len, flag, TRUE);
4797
4798 if (error == 0 && off == 0 && len == 0)
4799 vnevent_truncate(ZTOV(zp), ct);
4800
4801 ZFS_EXIT(zfsvfs);
4802 return (error);
4803 }
4804
4805 /*ARGSUSED*/
4806 static int
4807 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4808 {
4809 znode_t *zp = VTOZ(vp);
4810 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4811 uint32_t gen;
4812 uint64_t gen64;
4813 uint64_t object = zp->z_id;
4814 zfid_short_t *zfid;
4815 int size, i, error;
4816
4817 ZFS_ENTER(zfsvfs);
4818 ZFS_VERIFY_ZP(zp);
4819
4820 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4821 &gen64, sizeof (uint64_t))) != 0) {
4822 ZFS_EXIT(zfsvfs);
4823 return (error);
4824 }
4825
4826 gen = (uint32_t)gen64;
4827
4828 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4829 if (fidp->fid_len < size) {
4830 fidp->fid_len = size;
4831 ZFS_EXIT(zfsvfs);
4832 return (SET_ERROR(ENOSPC));
4833 }
4834
4835 zfid = (zfid_short_t *)fidp;
4836
4837 zfid->zf_len = size;
4838
4839 for (i = 0; i < sizeof (zfid->zf_object); i++)
4840 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4841
4842 /* Must have a non-zero generation number to distinguish from .zfs */
4843 if (gen == 0)
4844 gen = 1;
4845 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4846 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4847
4848 if (size == LONG_FID_LEN) {
4849 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4850 zfid_long_t *zlfid;
4851
4852 zlfid = (zfid_long_t *)fidp;
4853
4854 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4855 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4856
4857 /* XXX - this should be the generation number for the objset */
4858 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4859 zlfid->zf_setgen[i] = 0;
4860 }
4861
4862 ZFS_EXIT(zfsvfs);
4863 return (0);
4864 }
4865
4866 static int
4867 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4868 caller_context_t *ct)
4869 {
4870 znode_t *zp, *xzp;
4871 zfsvfs_t *zfsvfs;
4872 zfs_dirlock_t *dl;
4873 int error;
4874
4875 switch (cmd) {
4876 case _PC_LINK_MAX:
4877 *valp = ULONG_MAX;
4878 return (0);
4879
4880 case _PC_FILESIZEBITS:
4881 *valp = 64;
4882 return (0);
4883
4884 case _PC_XATTR_EXISTS:
4885 zp = VTOZ(vp);
4886 zfsvfs = zp->z_zfsvfs;
4887 ZFS_ENTER(zfsvfs);
4888 ZFS_VERIFY_ZP(zp);
4889 *valp = 0;
4890 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4891 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4892 if (error == 0) {
4893 zfs_dirent_unlock(dl);
4894 if (!zfs_dirempty(xzp))
4895 *valp = 1;
4896 VN_RELE(ZTOV(xzp));
4897 } else if (error == ENOENT) {
4898 /*
4899 * If there aren't extended attributes, it's the
4900 * same as having zero of them.
4901 */
4902 error = 0;
4903 }
4904 ZFS_EXIT(zfsvfs);
4905 return (error);
4906
4907 case _PC_SATTR_ENABLED:
4908 case _PC_SATTR_EXISTS:
4909 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4910 (vp->v_type == VREG || vp->v_type == VDIR);
4911 return (0);
4912
4913 case _PC_ACCESS_FILTERING:
4914 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4915 vp->v_type == VDIR;
4916 return (0);
4917
4918 case _PC_ACL_ENABLED:
4919 *valp = _ACL_ACE_ENABLED;
4920 return (0);
4921
4922 case _PC_MIN_HOLE_SIZE:
4923 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4924 return (0);
4925
4926 case _PC_TIMESTAMP_RESOLUTION:
4927 /* nanosecond timestamp resolution */
4928 *valp = 1L;
4929 return (0);
4930
4931 default:
4932 return (fs_pathconf(vp, cmd, valp, cr, ct));
4933 }
4934 }
4935
4936 /*ARGSUSED*/
4937 static int
4938 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4939 caller_context_t *ct)
4940 {
4941 znode_t *zp = VTOZ(vp);
4942 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4943 int error;
4944 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4945
4946 ZFS_ENTER(zfsvfs);
4947 ZFS_VERIFY_ZP(zp);
4948 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4949 ZFS_EXIT(zfsvfs);
4950
4951 return (error);
4952 }
4953
4954 /*ARGSUSED*/
4955 static int
4956 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4957 caller_context_t *ct)
4958 {
4959 znode_t *zp = VTOZ(vp);
4960 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4961 int error;
4962 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4963 zilog_t *zilog = zfsvfs->z_log;
4964
4965 ZFS_ENTER(zfsvfs);
4966 ZFS_VERIFY_ZP(zp);
4967
4968 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4969
4970 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4971 zil_commit(zilog, 0);
4972
4973 ZFS_EXIT(zfsvfs);
4974 return (error);
4975 }
4976
4977 /*
4978 * The smallest read we may consider to loan out an arcbuf.
4979 * This must be a power of 2.
4980 */
4981 int zcr_blksz_min = (1 << 10); /* 1K */
4982 /*
4983 * If set to less than the file block size, allow loaning out of an
4984 * arcbuf for a partial block read. This must be a power of 2.
4985 */
4986 int zcr_blksz_max = (1 << 17); /* 128K */
4987
4988 /*ARGSUSED*/
4989 static int
4990 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4991 caller_context_t *ct)
4992 {
4993 znode_t *zp = VTOZ(vp);
4994 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4995 int max_blksz = zfsvfs->z_max_blksz;
4996 uio_t *uio = &xuio->xu_uio;
4997 ssize_t size = uio->uio_resid;
4998 offset_t offset = uio->uio_loffset;
4999 int blksz;
5000 int fullblk, i;
5001 arc_buf_t *abuf;
5002 ssize_t maxsize;
5003 int preamble, postamble;
5004
5005 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5006 return (SET_ERROR(EINVAL));
5007
5008 ZFS_ENTER(zfsvfs);
5009 ZFS_VERIFY_ZP(zp);
5010 switch (ioflag) {
5011 case UIO_WRITE:
5012 /*
5013 * Loan out an arc_buf for write if write size is bigger than
5014 * max_blksz, and the file's block size is also max_blksz.
5015 */
5016 blksz = max_blksz;
5017 if (size < blksz || zp->z_blksz != blksz) {
5018 ZFS_EXIT(zfsvfs);
5019 return (SET_ERROR(EINVAL));
5020 }
5021 /*
5022 * Caller requests buffers for write before knowing where the
5023 * write offset might be (e.g. NFS TCP write).
5024 */
5025 if (offset == -1) {
5026 preamble = 0;
5027 } else {
5028 preamble = P2PHASE(offset, blksz);
5029 if (preamble) {
5030 preamble = blksz - preamble;
5031 size -= preamble;
5032 }
5033 }
5034
5035 postamble = P2PHASE(size, blksz);
5036 size -= postamble;
5037
5038 fullblk = size / blksz;
5039 (void) dmu_xuio_init(xuio,
5040 (preamble != 0) + fullblk + (postamble != 0));
5041 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5042 int, postamble, int,
5043 (preamble != 0) + fullblk + (postamble != 0));
5044
5045 /*
5046 * Have to fix iov base/len for partial buffers. They
5047 * currently represent full arc_buf's.
5048 */
5049 if (preamble) {
5050 /* data begins in the middle of the arc_buf */
5051 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5052 blksz);
5053 ASSERT(abuf);
5054 (void) dmu_xuio_add(xuio, abuf,
5055 blksz - preamble, preamble);
5056 }
5057
5058 for (i = 0; i < fullblk; i++) {
5059 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5060 blksz);
5061 ASSERT(abuf);
5062 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5063 }
5064
5065 if (postamble) {
5066 /* data ends in the middle of the arc_buf */
5067 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5068 blksz);
5069 ASSERT(abuf);
5070 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5071 }
5072 break;
5073 case UIO_READ:
5074 /*
5075 * Loan out an arc_buf for read if the read size is larger than
5076 * the current file block size. Block alignment is not
5077 * considered. Partial arc_buf will be loaned out for read.
5078 */
5079 blksz = zp->z_blksz;
5080 if (blksz < zcr_blksz_min)
5081 blksz = zcr_blksz_min;
5082 if (blksz > zcr_blksz_max)
5083 blksz = zcr_blksz_max;
5084 /* avoid potential complexity of dealing with it */
5085 if (blksz > max_blksz) {
5086 ZFS_EXIT(zfsvfs);
5087 return (SET_ERROR(EINVAL));
5088 }
5089
5090 maxsize = zp->z_size - uio->uio_loffset;
5091 if (size > maxsize)
5092 size = maxsize;
5093
5094 if (size < blksz || vn_has_cached_data(vp)) {
5095 ZFS_EXIT(zfsvfs);
5096 return (SET_ERROR(EINVAL));
5097 }
5098 break;
5099 default:
5100 ZFS_EXIT(zfsvfs);
5101 return (SET_ERROR(EINVAL));
5102 }
5103
5104 uio->uio_extflg = UIO_XUIO;
5105 XUIO_XUZC_RW(xuio) = ioflag;
5106 ZFS_EXIT(zfsvfs);
5107 return (0);
5108 }
5109
5110 /*ARGSUSED*/
5111 static int
5112 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5113 {
5114 int i;
5115 arc_buf_t *abuf;
5116 int ioflag = XUIO_XUZC_RW(xuio);
5117
5118 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5119
5120 i = dmu_xuio_cnt(xuio);
5121 while (i-- > 0) {
5122 abuf = dmu_xuio_arcbuf(xuio, i);
5123 /*
5124 * if abuf == NULL, it must be a write buffer
5125 * that has been returned in zfs_write().
5126 */
5127 if (abuf)
5128 dmu_return_arcbuf(abuf);
5129 ASSERT(abuf || ioflag == UIO_WRITE);
5130 }
5131
5132 dmu_xuio_fini(xuio);
5133 return (0);
5134 }
5135
5136 /*
5137 * Predeclare these here so that the compiler assumes that
5138 * this is an "old style" function declaration that does
5139 * not include arguments => we won't get type mismatch errors
5140 * in the initializations that follow.
5141 */
5142 static int zfs_inval();
5143 static int zfs_isdir();
5144
5145 static int
5146 zfs_inval()
5147 {
5148 return (SET_ERROR(EINVAL));
5149 }
5150
5151 static int
5152 zfs_isdir()
5153 {
5154 return (SET_ERROR(EISDIR));
5155 }
5156 /*
5157 * Directory vnode operations template
5158 */
5159 vnodeops_t *zfs_dvnodeops;
5160 const fs_operation_def_t zfs_dvnodeops_template[] = {
5161 VOPNAME_OPEN, { .vop_open = zfs_open },
5162 VOPNAME_CLOSE, { .vop_close = zfs_close },
5163 VOPNAME_READ, { .error = zfs_isdir },
5164 VOPNAME_WRITE, { .error = zfs_isdir },
5165 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5166 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5167 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5168 VOPNAME_ACCESS, { .vop_access = zfs_access },
5169 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5170 VOPNAME_CREATE, { .vop_create = zfs_create },
5171 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5172 VOPNAME_LINK, { .vop_link = zfs_link },
5173 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5174 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5175 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5176 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5177 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5178 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5179 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5180 VOPNAME_FID, { .vop_fid = zfs_fid },
5181 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5182 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5183 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5184 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5185 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5186 NULL, NULL
5187 };
5188
5189 /*
5190 * Regular file vnode operations template
5191 */
5192 vnodeops_t *zfs_fvnodeops;
5193 const fs_operation_def_t zfs_fvnodeops_template[] = {
5194 VOPNAME_OPEN, { .vop_open = zfs_open },
5195 VOPNAME_CLOSE, { .vop_close = zfs_close },
5196 VOPNAME_READ, { .vop_read = zfs_read },
5197 VOPNAME_WRITE, { .vop_write = zfs_write },
5198 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5199 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5200 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5201 VOPNAME_ACCESS, { .vop_access = zfs_access },
5202 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5203 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5204 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5205 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5206 VOPNAME_FID, { .vop_fid = zfs_fid },
5207 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5208 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5209 VOPNAME_SPACE, { .vop_space = zfs_space },
5210 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5211 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5212 VOPNAME_MAP, { .vop_map = zfs_map },
5213 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5214 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5215 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5216 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5217 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5218 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5219 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5220 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5221 NULL, NULL
5222 };
5223
5224 /*
5225 * Symbolic link vnode operations template
5226 */
5227 vnodeops_t *zfs_symvnodeops;
5228 const fs_operation_def_t zfs_symvnodeops_template[] = {
5229 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5230 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5231 VOPNAME_ACCESS, { .vop_access = zfs_access },
5232 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5233 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5234 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5235 VOPNAME_FID, { .vop_fid = zfs_fid },
5236 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5237 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5238 NULL, NULL
5239 };
5240
5241 /*
5242 * special share hidden files vnode operations template
5243 */
5244 vnodeops_t *zfs_sharevnodeops;
5245 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5246 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5247 VOPNAME_ACCESS, { .vop_access = zfs_access },
5248 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5249 VOPNAME_FID, { .vop_fid = zfs_fid },
5250 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5251 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5252 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5253 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5254 NULL, NULL
5255 };
5256
5257 /*
5258 * Extended attribute directory vnode operations template
5259 *
5260 * This template is identical to the directory vnodes
5261 * operation template except for restricted operations:
5262 * VOP_MKDIR()
5263 * VOP_SYMLINK()
5264 *
5265 * Note that there are other restrictions embedded in:
5266 * zfs_create() - restrict type to VREG
5267 * zfs_link() - no links into/out of attribute space
5268 * zfs_rename() - no moves into/out of attribute space
5269 */
5270 vnodeops_t *zfs_xdvnodeops;
5271 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5272 VOPNAME_OPEN, { .vop_open = zfs_open },
5273 VOPNAME_CLOSE, { .vop_close = zfs_close },
5274 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5275 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5276 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5277 VOPNAME_ACCESS, { .vop_access = zfs_access },
5278 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5279 VOPNAME_CREATE, { .vop_create = zfs_create },
5280 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5281 VOPNAME_LINK, { .vop_link = zfs_link },
5282 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5283 VOPNAME_MKDIR, { .error = zfs_inval },
5284 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5285 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5286 VOPNAME_SYMLINK, { .error = zfs_inval },
5287 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5288 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5289 VOPNAME_FID, { .vop_fid = zfs_fid },
5290 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5291 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5292 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5293 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5294 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5295 NULL, NULL
5296 };
5297
5298 /*
5299 * Error vnode operations template
5300 */
5301 vnodeops_t *zfs_evnodeops;
5302 const fs_operation_def_t zfs_evnodeops_template[] = {
5303 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5304 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5305 NULL, NULL
5306 };