1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
  24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  25  */
  26 
  27 /* Portions Copyright 2007 Jeremy Teo */
  28 /* Portions Copyright 2010 Robert Milkowski */
  29 
  30 #include <sys/types.h>
  31 #include <sys/param.h>
  32 #include <sys/time.h>
  33 #include <sys/systm.h>
  34 #include <sys/sysmacros.h>
  35 #include <sys/resource.h>
  36 #include <sys/vfs.h>
  37 #include <sys/vfs_opreg.h>
  38 #include <sys/vnode.h>
  39 #include <sys/file.h>
  40 #include <sys/stat.h>
  41 #include <sys/kmem.h>
  42 #include <sys/taskq.h>
  43 #include <sys/uio.h>
  44 #include <sys/vmsystm.h>
  45 #include <sys/atomic.h>
  46 #include <sys/vm.h>
  47 #include <vm/seg_vn.h>
  48 #include <vm/pvn.h>
  49 #include <vm/as.h>
  50 #include <vm/kpm.h>
  51 #include <vm/seg_kpm.h>
  52 #include <sys/mman.h>
  53 #include <sys/pathname.h>
  54 #include <sys/cmn_err.h>
  55 #include <sys/errno.h>
  56 #include <sys/unistd.h>
  57 #include <sys/zfs_dir.h>
  58 #include <sys/zfs_acl.h>
  59 #include <sys/zfs_ioctl.h>
  60 #include <sys/fs/zfs.h>
  61 #include <sys/dmu.h>
  62 #include <sys/dmu_objset.h>
  63 #include <sys/spa.h>
  64 #include <sys/txg.h>
  65 #include <sys/dbuf.h>
  66 #include <sys/zap.h>
  67 #include <sys/sa.h>
  68 #include <sys/dirent.h>
  69 #include <sys/policy.h>
  70 #include <sys/sunddi.h>
  71 #include <sys/filio.h>
  72 #include <sys/sid.h>
  73 #include "fs/fs_subr.h"
  74 #include <sys/zfs_ctldir.h>
  75 #include <sys/zfs_fuid.h>
  76 #include <sys/zfs_sa.h>
  77 #include <sys/dnlc.h>
  78 #include <sys/zfs_rlock.h>
  79 #include <sys/extdirent.h>
  80 #include <sys/kidmap.h>
  81 #include <sys/cred.h>
  82 #include <sys/attr.h>
  83 
  84 /*
  85  * Programming rules.
  86  *
  87  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
  88  * properly lock its in-core state, create a DMU transaction, do the work,
  89  * record this work in the intent log (ZIL), commit the DMU transaction,
  90  * and wait for the intent log to commit if it is a synchronous operation.
  91  * Moreover, the vnode ops must work in both normal and log replay context.
  92  * The ordering of events is important to avoid deadlocks and references
  93  * to freed memory.  The example below illustrates the following Big Rules:
  94  *
  95  *  (1) A check must be made in each zfs thread for a mounted file system.
  96  *      This is done avoiding races using ZFS_ENTER(zfsvfs).
  97  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
  98  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
  99  *      can return EIO from the calling function.
 100  *
 101  *  (2) VN_RELE() should always be the last thing except for zil_commit()
 102  *      (if necessary) and ZFS_EXIT(). This is for 3 reasons:
 103  *      First, if it's the last reference, the vnode/znode
 104  *      can be freed, so the zp may point to freed memory.  Second, the last
 105  *      reference will call zfs_zinactive(), which may induce a lot of work --
 106  *      pushing cached pages (which acquires range locks) and syncing out
 107  *      cached atime changes.  Third, zfs_zinactive() may require a new tx,
 108  *      which could deadlock the system if you were already holding one.
 109  *      If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
 110  *
 111  *  (3) All range locks must be grabbed before calling dmu_tx_assign(),
 112  *      as they can span dmu_tx_assign() calls.
 113  *
 114  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
 115  *      dmu_tx_assign().  This is critical because we don't want to block
 116  *      while holding locks.
 117  *
 118  *      If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
 119  *      reduces lock contention and CPU usage when we must wait (note that if
 120  *      throughput is constrained by the storage, nearly every transaction
 121  *      must wait).
 122  *
 123  *      Note, in particular, that if a lock is sometimes acquired before
 124  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
 125  *      to use a non-blocking assign can deadlock the system.  The scenario:
 126  *
 127  *      Thread A has grabbed a lock before calling dmu_tx_assign().
 128  *      Thread B is in an already-assigned tx, and blocks for this lock.
 129  *      Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
 130  *      forever, because the previous txg can't quiesce until B's tx commits.
 131  *
 132  *      If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
 133  *      then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
 134  *      calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
 135  *      to indicate that this operation has already called dmu_tx_wait().
 136  *      This will ensure that we don't retry forever, waiting a short bit
 137  *      each time.
 138  *
 139  *  (5) If the operation succeeded, generate the intent log entry for it
 140  *      before dropping locks.  This ensures that the ordering of events
 141  *      in the intent log matches the order in which they actually occurred.
 142  *      During ZIL replay the zfs_log_* functions will update the sequence
 143  *      number to indicate the zil transaction has replayed.
 144  *
 145  *  (6) At the end of each vnode op, the DMU tx must always commit,
 146  *      regardless of whether there were any errors.
 147  *
 148  *  (7) After dropping all locks, invoke zil_commit(zilog, foid)
 149  *      to ensure that synchronous semantics are provided when necessary.
 150  *
 151  * In general, this is how things should be ordered in each vnode op:
 152  *
 153  *      ZFS_ENTER(zfsvfs);              // exit if unmounted
 154  * top:
 155  *      zfs_dirent_lock(&dl, ...)   // lock directory entry (may VN_HOLD())
 156  *      rw_enter(...);                  // grab any other locks you need
 157  *      tx = dmu_tx_create(...);        // get DMU tx
 158  *      dmu_tx_hold_*();                // hold each object you might modify
 159  *      error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
 160  *      if (error) {
 161  *              rw_exit(...);           // drop locks
 162  *              zfs_dirent_unlock(dl);  // unlock directory entry
 163  *              VN_RELE(...);           // release held vnodes
 164  *              if (error == ERESTART) {
 165  *                      waited = B_TRUE;
 166  *                      dmu_tx_wait(tx);
 167  *                      dmu_tx_abort(tx);
 168  *                      goto top;
 169  *              }
 170  *              dmu_tx_abort(tx);       // abort DMU tx
 171  *              ZFS_EXIT(zfsvfs);       // finished in zfs
 172  *              return (error);         // really out of space
 173  *      }
 174  *      error = do_real_work();         // do whatever this VOP does
 175  *      if (error == 0)
 176  *              zfs_log_*(...);         // on success, make ZIL entry
 177  *      dmu_tx_commit(tx);              // commit DMU tx -- error or not
 178  *      rw_exit(...);                   // drop locks
 179  *      zfs_dirent_unlock(dl);          // unlock directory entry
 180  *      VN_RELE(...);                   // release held vnodes
 181  *      zil_commit(zilog, foid);        // synchronous when necessary
 182  *      ZFS_EXIT(zfsvfs);               // finished in zfs
 183  *      return (error);                 // done, report error
 184  */
 185 
 186 /* ARGSUSED */
 187 static int
 188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
 189 {
 190         znode_t *zp = VTOZ(*vpp);
 191         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 192 
 193         ZFS_ENTER(zfsvfs);
 194         ZFS_VERIFY_ZP(zp);
 195 
 196         if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
 197             ((flag & FAPPEND) == 0)) {
 198                 ZFS_EXIT(zfsvfs);
 199                 return (SET_ERROR(EPERM));
 200         }
 201 
 202         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 203             ZTOV(zp)->v_type == VREG &&
 204             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
 205                 if (fs_vscan(*vpp, cr, 0) != 0) {
 206                         ZFS_EXIT(zfsvfs);
 207                         return (SET_ERROR(EACCES));
 208                 }
 209         }
 210 
 211         /* Keep a count of the synchronous opens in the znode */
 212         if (flag & (FSYNC | FDSYNC))
 213                 atomic_inc_32(&zp->z_sync_cnt);
 214 
 215         ZFS_EXIT(zfsvfs);
 216         return (0);
 217 }
 218 
 219 /* ARGSUSED */
 220 static int
 221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
 222     caller_context_t *ct)
 223 {
 224         znode_t *zp = VTOZ(vp);
 225         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 226 
 227         /*
 228          * Clean up any locks held by this process on the vp.
 229          */
 230         cleanlocks(vp, ddi_get_pid(), 0);
 231         cleanshares(vp, ddi_get_pid());
 232 
 233         ZFS_ENTER(zfsvfs);
 234         ZFS_VERIFY_ZP(zp);
 235 
 236         /* Decrement the synchronous opens in the znode */
 237         if ((flag & (FSYNC | FDSYNC)) && (count == 1))
 238                 atomic_dec_32(&zp->z_sync_cnt);
 239 
 240         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 241             ZTOV(zp)->v_type == VREG &&
 242             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
 243                 VERIFY(fs_vscan(vp, cr, 1) == 0);
 244 
 245         ZFS_EXIT(zfsvfs);
 246         return (0);
 247 }
 248 
 249 /*
 250  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
 251  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
 252  */
 253 static int
 254 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
 255 {
 256         znode_t *zp = VTOZ(vp);
 257         uint64_t noff = (uint64_t)*off; /* new offset */
 258         uint64_t file_sz;
 259         int error;
 260         boolean_t hole;
 261 
 262         file_sz = zp->z_size;
 263         if (noff >= file_sz)  {
 264                 return (SET_ERROR(ENXIO));
 265         }
 266 
 267         if (cmd == _FIO_SEEK_HOLE)
 268                 hole = B_TRUE;
 269         else
 270                 hole = B_FALSE;
 271 
 272         error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
 273 
 274         if (error == ESRCH)
 275                 return (SET_ERROR(ENXIO));
 276 
 277         /*
 278          * We could find a hole that begins after the logical end-of-file,
 279          * because dmu_offset_next() only works on whole blocks.  If the
 280          * EOF falls mid-block, then indicate that the "virtual hole"
 281          * at the end of the file begins at the logical EOF, rather than
 282          * at the end of the last block.
 283          */
 284         if (noff > file_sz) {
 285                 ASSERT(hole);
 286                 noff = file_sz;
 287         }
 288 
 289         if (noff < *off)
 290                 return (error);
 291         *off = noff;
 292         return (error);
 293 }
 294 
 295 /* ARGSUSED */
 296 static int
 297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
 298     int *rvalp, caller_context_t *ct)
 299 {
 300         offset_t off;
 301         int error;
 302         zfsvfs_t *zfsvfs;
 303         znode_t *zp;
 304 
 305         switch (com) {
 306         case _FIOFFS:
 307                 return (zfs_sync(vp->v_vfsp, 0, cred));
 308 
 309                 /*
 310                  * The following two ioctls are used by bfu.  Faking out,
 311                  * necessary to avoid bfu errors.
 312                  */
 313         case _FIOGDIO:
 314         case _FIOSDIO:
 315                 return (0);
 316 
 317         case _FIO_SEEK_DATA:
 318         case _FIO_SEEK_HOLE:
 319                 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
 320                         return (SET_ERROR(EFAULT));
 321 
 322                 zp = VTOZ(vp);
 323                 zfsvfs = zp->z_zfsvfs;
 324                 ZFS_ENTER(zfsvfs);
 325                 ZFS_VERIFY_ZP(zp);
 326 
 327                 /* offset parameter is in/out */
 328                 error = zfs_holey(vp, com, &off);
 329                 ZFS_EXIT(zfsvfs);
 330                 if (error)
 331                         return (error);
 332                 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
 333                         return (SET_ERROR(EFAULT));
 334                 return (0);
 335         }
 336         return (SET_ERROR(ENOTTY));
 337 }
 338 
 339 /*
 340  * Utility functions to map and unmap a single physical page.  These
 341  * are used to manage the mappable copies of ZFS file data, and therefore
 342  * do not update ref/mod bits.
 343  */
 344 caddr_t
 345 zfs_map_page(page_t *pp, enum seg_rw rw)
 346 {
 347         if (kpm_enable)
 348                 return (hat_kpm_mapin(pp, 0));
 349         ASSERT(rw == S_READ || rw == S_WRITE);
 350         return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
 351             (caddr_t)-1));
 352 }
 353 
 354 void
 355 zfs_unmap_page(page_t *pp, caddr_t addr)
 356 {
 357         if (kpm_enable) {
 358                 hat_kpm_mapout(pp, 0, addr);
 359         } else {
 360                 ppmapout(addr);
 361         }
 362 }
 363 
 364 /*
 365  * When a file is memory mapped, we must keep the IO data synchronized
 366  * between the DMU cache and the memory mapped pages.  What this means:
 367  *
 368  * On Write:    If we find a memory mapped page, we write to *both*
 369  *              the page and the dmu buffer.
 370  */
 371 static void
 372 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
 373 {
 374         int64_t off;
 375 
 376         off = start & PAGEOFFSET;
 377         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 378                 page_t *pp;
 379                 uint64_t nbytes = MIN(PAGESIZE - off, len);
 380 
 381                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 382                         caddr_t va;
 383 
 384                         va = zfs_map_page(pp, S_WRITE);
 385                         (void) dmu_read(os, oid, start+off, nbytes, va+off,
 386                             DMU_READ_PREFETCH);
 387                         zfs_unmap_page(pp, va);
 388                         page_unlock(pp);
 389                 }
 390                 len -= nbytes;
 391                 off = 0;
 392         }
 393 }
 394 
 395 /*
 396  * When a file is memory mapped, we must keep the IO data synchronized
 397  * between the DMU cache and the memory mapped pages.  What this means:
 398  *
 399  * On Read:     We "read" preferentially from memory mapped pages,
 400  *              else we default from the dmu buffer.
 401  *
 402  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
 403  *       the file is memory mapped.
 404  */
 405 static int
 406 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
 407 {
 408         znode_t *zp = VTOZ(vp);
 409         int64_t start, off;
 410         int len = nbytes;
 411         int error = 0;
 412 
 413         start = uio->uio_loffset;
 414         off = start & PAGEOFFSET;
 415         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 416                 page_t *pp;
 417                 uint64_t bytes = MIN(PAGESIZE - off, len);
 418 
 419                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 420                         caddr_t va;
 421 
 422                         va = zfs_map_page(pp, S_READ);
 423                         error = uiomove(va + off, bytes, UIO_READ, uio);
 424                         zfs_unmap_page(pp, va);
 425                         page_unlock(pp);
 426                 } else {
 427                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 428                             uio, bytes);
 429                 }
 430                 len -= bytes;
 431                 off = 0;
 432                 if (error)
 433                         break;
 434         }
 435         return (error);
 436 }
 437 
 438 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
 439 
 440 /*
 441  * Read bytes from specified file into supplied buffer.
 442  *
 443  *      IN:     vp      - vnode of file to be read from.
 444  *              uio     - structure supplying read location, range info,
 445  *                        and return buffer.
 446  *              ioflag  - SYNC flags; used to provide FRSYNC semantics.
 447  *              cr      - credentials of caller.
 448  *              ct      - caller context
 449  *
 450  *      OUT:    uio     - updated offset and range, buffer filled.
 451  *
 452  *      RETURN: 0 on success, error code on failure.
 453  *
 454  * Side Effects:
 455  *      vp - atime updated if byte count > 0
 456  */
 457 /* ARGSUSED */
 458 static int
 459 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 460 {
 461         znode_t         *zp = VTOZ(vp);
 462         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 463         ssize_t         n, nbytes;
 464         int             error = 0;
 465         rl_t            *rl;
 466         xuio_t          *xuio = NULL;
 467 
 468         ZFS_ENTER(zfsvfs);
 469         ZFS_VERIFY_ZP(zp);
 470 
 471         if (zp->z_pflags & ZFS_AV_QUARANTINED) {
 472                 ZFS_EXIT(zfsvfs);
 473                 return (SET_ERROR(EACCES));
 474         }
 475 
 476         /*
 477          * Validate file offset
 478          */
 479         if (uio->uio_loffset < (offset_t)0) {
 480                 ZFS_EXIT(zfsvfs);
 481                 return (SET_ERROR(EINVAL));
 482         }
 483 
 484         /*
 485          * Fasttrack empty reads
 486          */
 487         if (uio->uio_resid == 0) {
 488                 ZFS_EXIT(zfsvfs);
 489                 return (0);
 490         }
 491 
 492         /*
 493          * Check for mandatory locks
 494          */
 495         if (MANDMODE(zp->z_mode)) {
 496                 if (error = chklock(vp, FREAD,
 497                     uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
 498                         ZFS_EXIT(zfsvfs);
 499                         return (error);
 500                 }
 501         }
 502 
 503         /*
 504          * If we're in FRSYNC mode, sync out this znode before reading it.
 505          */
 506         if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 507                 zil_commit(zfsvfs->z_log, zp->z_id);
 508 
 509         /*
 510          * Lock the range against changes.
 511          */
 512         rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
 513 
 514         /*
 515          * If we are reading past end-of-file we can skip
 516          * to the end; but we might still need to set atime.
 517          */
 518         if (uio->uio_loffset >= zp->z_size) {
 519                 error = 0;
 520                 goto out;
 521         }
 522 
 523         ASSERT(uio->uio_loffset < zp->z_size);
 524         n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
 525 
 526         if ((uio->uio_extflg == UIO_XUIO) &&
 527             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
 528                 int nblk;
 529                 int blksz = zp->z_blksz;
 530                 uint64_t offset = uio->uio_loffset;
 531 
 532                 xuio = (xuio_t *)uio;
 533                 if ((ISP2(blksz))) {
 534                         nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
 535                             blksz)) / blksz;
 536                 } else {
 537                         ASSERT(offset + n <= blksz);
 538                         nblk = 1;
 539                 }
 540                 (void) dmu_xuio_init(xuio, nblk);
 541 
 542                 if (vn_has_cached_data(vp)) {
 543                         /*
 544                          * For simplicity, we always allocate a full buffer
 545                          * even if we only expect to read a portion of a block.
 546                          */
 547                         while (--nblk >= 0) {
 548                                 (void) dmu_xuio_add(xuio,
 549                                     dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 550                                     blksz), 0, blksz);
 551                         }
 552                 }
 553         }
 554 
 555         while (n > 0) {
 556                 nbytes = MIN(n, zfs_read_chunk_size -
 557                     P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
 558 
 559                 if (vn_has_cached_data(vp)) {
 560                         error = mappedread(vp, nbytes, uio);
 561                 } else {
 562                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 563                             uio, nbytes);
 564                 }
 565                 if (error) {
 566                         /* convert checksum errors into IO errors */
 567                         if (error == ECKSUM)
 568                                 error = SET_ERROR(EIO);
 569                         break;
 570                 }
 571 
 572                 n -= nbytes;
 573         }
 574 out:
 575         zfs_range_unlock(rl);
 576 
 577         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
 578         ZFS_EXIT(zfsvfs);
 579         return (error);
 580 }
 581 
 582 /*
 583  * Write the bytes to a file.
 584  *
 585  *      IN:     vp      - vnode of file to be written to.
 586  *              uio     - structure supplying write location, range info,
 587  *                        and data buffer.
 588  *              ioflag  - FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
 589  *                        set if in append mode.
 590  *              cr      - credentials of caller.
 591  *              ct      - caller context (NFS/CIFS fem monitor only)
 592  *
 593  *      OUT:    uio     - updated offset and range.
 594  *
 595  *      RETURN: 0 on success, error code on failure.
 596  *
 597  * Timestamps:
 598  *      vp - ctime|mtime updated if byte count > 0
 599  */
 600 
 601 /* ARGSUSED */
 602 static int
 603 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 604 {
 605         znode_t         *zp = VTOZ(vp);
 606         rlim64_t        limit = uio->uio_llimit;
 607         ssize_t         start_resid = uio->uio_resid;
 608         ssize_t         tx_bytes;
 609         uint64_t        end_size;
 610         dmu_tx_t        *tx;
 611         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 612         zilog_t         *zilog;
 613         offset_t        woff;
 614         ssize_t         n, nbytes;
 615         rl_t            *rl;
 616         int             max_blksz = zfsvfs->z_max_blksz;
 617         int             error = 0;
 618         arc_buf_t       *abuf;
 619         iovec_t         *aiov = NULL;
 620         xuio_t          *xuio = NULL;
 621         int             i_iov = 0;
 622         int             iovcnt = uio->uio_iovcnt;
 623         iovec_t         *iovp = uio->uio_iov;
 624         int             write_eof;
 625         int             count = 0;
 626         sa_bulk_attr_t  bulk[4];
 627         uint64_t        mtime[2], ctime[2];
 628 
 629         /*
 630          * Fasttrack empty write
 631          */
 632         n = start_resid;
 633         if (n == 0)
 634                 return (0);
 635 
 636         if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
 637                 limit = MAXOFFSET_T;
 638 
 639         ZFS_ENTER(zfsvfs);
 640         ZFS_VERIFY_ZP(zp);
 641 
 642         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
 643         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
 644         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 645             &zp->z_size, 8);
 646         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 647             &zp->z_pflags, 8);
 648 
 649         /*
 650          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
 651          * callers might not be able to detect properly that we are read-only,
 652          * so check it explicitly here.
 653          */
 654         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
 655                 ZFS_EXIT(zfsvfs);
 656                 return (SET_ERROR(EROFS));
 657         }
 658 
 659         /*
 660          * If immutable or not appending then return EPERM
 661          */
 662         if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
 663             ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
 664             (uio->uio_loffset < zp->z_size))) {
 665                 ZFS_EXIT(zfsvfs);
 666                 return (SET_ERROR(EPERM));
 667         }
 668 
 669         zilog = zfsvfs->z_log;
 670 
 671         /*
 672          * Validate file offset
 673          */
 674         woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
 675         if (woff < 0) {
 676                 ZFS_EXIT(zfsvfs);
 677                 return (SET_ERROR(EINVAL));
 678         }
 679 
 680         /*
 681          * Check for mandatory locks before calling zfs_range_lock()
 682          * in order to prevent a deadlock with locks set via fcntl().
 683          */
 684         if (MANDMODE((mode_t)zp->z_mode) &&
 685             (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
 686                 ZFS_EXIT(zfsvfs);
 687                 return (error);
 688         }
 689 
 690         /*
 691          * Pre-fault the pages to ensure slow (eg NFS) pages
 692          * don't hold up txg.
 693          * Skip this if uio contains loaned arc_buf.
 694          */
 695         if ((uio->uio_extflg == UIO_XUIO) &&
 696             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
 697                 xuio = (xuio_t *)uio;
 698         else
 699                 uio_prefaultpages(MIN(n, max_blksz), uio);
 700 
 701         /*
 702          * If in append mode, set the io offset pointer to eof.
 703          */
 704         if (ioflag & FAPPEND) {
 705                 /*
 706                  * Obtain an appending range lock to guarantee file append
 707                  * semantics.  We reset the write offset once we have the lock.
 708                  */
 709                 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
 710                 woff = rl->r_off;
 711                 if (rl->r_len == UINT64_MAX) {
 712                         /*
 713                          * We overlocked the file because this write will cause
 714                          * the file block size to increase.
 715                          * Note that zp_size cannot change with this lock held.
 716                          */
 717                         woff = zp->z_size;
 718                 }
 719                 uio->uio_loffset = woff;
 720         } else {
 721                 /*
 722                  * Note that if the file block size will change as a result of
 723                  * this write, then this range lock will lock the entire file
 724                  * so that we can re-write the block safely.
 725                  */
 726                 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
 727         }
 728 
 729         if (woff >= limit) {
 730                 zfs_range_unlock(rl);
 731                 ZFS_EXIT(zfsvfs);
 732                 return (SET_ERROR(EFBIG));
 733         }
 734 
 735         if ((woff + n) > limit || woff > (limit - n))
 736                 n = limit - woff;
 737 
 738         /* Will this write extend the file length? */
 739         write_eof = (woff + n > zp->z_size);
 740 
 741         end_size = MAX(zp->z_size, woff + n);
 742 
 743         /*
 744          * Write the file in reasonable size chunks.  Each chunk is written
 745          * in a separate transaction; this keeps the intent log records small
 746          * and allows us to do more fine-grained space accounting.
 747          */
 748         while (n > 0) {
 749                 abuf = NULL;
 750                 woff = uio->uio_loffset;
 751                 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
 752                     zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
 753                         if (abuf != NULL)
 754                                 dmu_return_arcbuf(abuf);
 755                         error = SET_ERROR(EDQUOT);
 756                         break;
 757                 }
 758 
 759                 if (xuio && abuf == NULL) {
 760                         ASSERT(i_iov < iovcnt);
 761                         aiov = &iovp[i_iov];
 762                         abuf = dmu_xuio_arcbuf(xuio, i_iov);
 763                         dmu_xuio_clear(xuio, i_iov);
 764                         DTRACE_PROBE3(zfs_cp_write, int, i_iov,
 765                             iovec_t *, aiov, arc_buf_t *, abuf);
 766                         ASSERT((aiov->iov_base == abuf->b_data) ||
 767                             ((char *)aiov->iov_base - (char *)abuf->b_data +
 768                             aiov->iov_len == arc_buf_size(abuf)));
 769                         i_iov++;
 770                 } else if (abuf == NULL && n >= max_blksz &&
 771                     woff >= zp->z_size &&
 772                     P2PHASE(woff, max_blksz) == 0 &&
 773                     zp->z_blksz == max_blksz) {
 774                         /*
 775                          * This write covers a full block.  "Borrow" a buffer
 776                          * from the dmu so that we can fill it before we enter
 777                          * a transaction.  This avoids the possibility of
 778                          * holding up the transaction if the data copy hangs
 779                          * up on a pagefault (e.g., from an NFS server mapping).
 780                          */
 781                         size_t cbytes;
 782 
 783                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 784                             max_blksz);
 785                         ASSERT(abuf != NULL);
 786                         ASSERT(arc_buf_size(abuf) == max_blksz);
 787                         if (error = uiocopy(abuf->b_data, max_blksz,
 788                             UIO_WRITE, uio, &cbytes)) {
 789                                 dmu_return_arcbuf(abuf);
 790                                 break;
 791                         }
 792                         ASSERT(cbytes == max_blksz);
 793                 }
 794 
 795                 /*
 796                  * Start a transaction.
 797                  */
 798                 tx = dmu_tx_create(zfsvfs->z_os);
 799                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 800                 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
 801                 zfs_sa_upgrade_txholds(tx, zp);
 802                 error = dmu_tx_assign(tx, TXG_WAIT);
 803                 if (error) {
 804                         dmu_tx_abort(tx);
 805                         if (abuf != NULL)
 806                                 dmu_return_arcbuf(abuf);
 807                         break;
 808                 }
 809 
 810                 /*
 811                  * If zfs_range_lock() over-locked we grow the blocksize
 812                  * and then reduce the lock range.  This will only happen
 813                  * on the first iteration since zfs_range_reduce() will
 814                  * shrink down r_len to the appropriate size.
 815                  */
 816                 if (rl->r_len == UINT64_MAX) {
 817                         uint64_t new_blksz;
 818 
 819                         if (zp->z_blksz > max_blksz) {
 820                                 ASSERT(!ISP2(zp->z_blksz));
 821                                 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
 822                         } else {
 823                                 new_blksz = MIN(end_size, max_blksz);
 824                         }
 825                         zfs_grow_blocksize(zp, new_blksz, tx);
 826                         zfs_range_reduce(rl, woff, n);
 827                 }
 828 
 829                 /*
 830                  * XXX - should we really limit each write to z_max_blksz?
 831                  * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
 832                  */
 833                 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
 834 
 835                 if (abuf == NULL) {
 836                         tx_bytes = uio->uio_resid;
 837                         error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 838                             uio, nbytes, tx);
 839                         tx_bytes -= uio->uio_resid;
 840                 } else {
 841                         tx_bytes = nbytes;
 842                         ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
 843                         /*
 844                          * If this is not a full block write, but we are
 845                          * extending the file past EOF and this data starts
 846                          * block-aligned, use assign_arcbuf().  Otherwise,
 847                          * write via dmu_write().
 848                          */
 849                         if (tx_bytes < max_blksz && (!write_eof ||
 850                             aiov->iov_base != abuf->b_data)) {
 851                                 ASSERT(xuio);
 852                                 dmu_write(zfsvfs->z_os, zp->z_id, woff,
 853                                     aiov->iov_len, aiov->iov_base, tx);
 854                                 dmu_return_arcbuf(abuf);
 855                                 xuio_stat_wbuf_copied();
 856                         } else {
 857                                 ASSERT(xuio || tx_bytes == max_blksz);
 858                                 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
 859                                     woff, abuf, tx);
 860                         }
 861                         ASSERT(tx_bytes <= uio->uio_resid);
 862                         uioskip(uio, tx_bytes);
 863                 }
 864                 if (tx_bytes && vn_has_cached_data(vp)) {
 865                         update_pages(vp, woff,
 866                             tx_bytes, zfsvfs->z_os, zp->z_id);
 867                 }
 868 
 869                 /*
 870                  * If we made no progress, we're done.  If we made even
 871                  * partial progress, update the znode and ZIL accordingly.
 872                  */
 873                 if (tx_bytes == 0) {
 874                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
 875                             (void *)&zp->z_size, sizeof (uint64_t), tx);
 876                         dmu_tx_commit(tx);
 877                         ASSERT(error != 0);
 878                         break;
 879                 }
 880 
 881                 /*
 882                  * Clear Set-UID/Set-GID bits on successful write if not
 883                  * privileged and at least one of the excute bits is set.
 884                  *
 885                  * It would be nice to to this after all writes have
 886                  * been done, but that would still expose the ISUID/ISGID
 887                  * to another app after the partial write is committed.
 888                  *
 889                  * Note: we don't call zfs_fuid_map_id() here because
 890                  * user 0 is not an ephemeral uid.
 891                  */
 892                 mutex_enter(&zp->z_acl_lock);
 893                 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
 894                     (S_IXUSR >> 6))) != 0 &&
 895                     (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
 896                     secpolicy_vnode_setid_retain(cr,
 897                     (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
 898                         uint64_t newmode;
 899                         zp->z_mode &= ~(S_ISUID | S_ISGID);
 900                         newmode = zp->z_mode;
 901                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
 902                             (void *)&newmode, sizeof (uint64_t), tx);
 903                 }
 904                 mutex_exit(&zp->z_acl_lock);
 905 
 906                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
 907                     B_TRUE);
 908 
 909                 /*
 910                  * Update the file size (zp_size) if it has changed;
 911                  * account for possible concurrent updates.
 912                  */
 913                 while ((end_size = zp->z_size) < uio->uio_loffset) {
 914                         (void) atomic_cas_64(&zp->z_size, end_size,
 915                             uio->uio_loffset);
 916                         ASSERT(error == 0);
 917                 }
 918                 /*
 919                  * If we are replaying and eof is non zero then force
 920                  * the file size to the specified eof. Note, there's no
 921                  * concurrency during replay.
 922                  */
 923                 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
 924                         zp->z_size = zfsvfs->z_replay_eof;
 925 
 926                 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
 927 
 928                 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
 929                 dmu_tx_commit(tx);
 930 
 931                 if (error != 0)
 932                         break;
 933                 ASSERT(tx_bytes == nbytes);
 934                 n -= nbytes;
 935 
 936                 if (!xuio && n > 0)
 937                         uio_prefaultpages(MIN(n, max_blksz), uio);
 938         }
 939 
 940         zfs_range_unlock(rl);
 941 
 942         /*
 943          * If we're in replay mode, or we made no progress, return error.
 944          * Otherwise, it's at least a partial write, so it's successful.
 945          */
 946         if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
 947                 ZFS_EXIT(zfsvfs);
 948                 return (error);
 949         }
 950 
 951         if (ioflag & (FSYNC | FDSYNC) ||
 952             zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 953                 zil_commit(zilog, zp->z_id);
 954 
 955         ZFS_EXIT(zfsvfs);
 956         return (0);
 957 }
 958 
 959 void
 960 zfs_get_done(zgd_t *zgd, int error)
 961 {
 962         znode_t *zp = zgd->zgd_private;
 963         objset_t *os = zp->z_zfsvfs->z_os;
 964 
 965         if (zgd->zgd_db)
 966                 dmu_buf_rele(zgd->zgd_db, zgd);
 967 
 968         zfs_range_unlock(zgd->zgd_rl);
 969 
 970         /*
 971          * Release the vnode asynchronously as we currently have the
 972          * txg stopped from syncing.
 973          */
 974         VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
 975 
 976         if (error == 0 && zgd->zgd_bp)
 977                 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
 978 
 979         kmem_free(zgd, sizeof (zgd_t));
 980 }
 981 
 982 #ifdef DEBUG
 983 static int zil_fault_io = 0;
 984 #endif
 985 
 986 /*
 987  * Get data to generate a TX_WRITE intent log record.
 988  */
 989 int
 990 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
 991 {
 992         zfsvfs_t *zfsvfs = arg;
 993         objset_t *os = zfsvfs->z_os;
 994         znode_t *zp;
 995         uint64_t object = lr->lr_foid;
 996         uint64_t offset = lr->lr_offset;
 997         uint64_t size = lr->lr_length;
 998         blkptr_t *bp = &lr->lr_blkptr;
 999         dmu_buf_t *db;
1000         zgd_t *zgd;
1001         int error = 0;
1002 
1003         ASSERT(zio != NULL);
1004         ASSERT(size != 0);
1005 
1006         /*
1007          * Nothing to do if the file has been removed
1008          */
1009         if (zfs_zget(zfsvfs, object, &zp) != 0)
1010                 return (SET_ERROR(ENOENT));
1011         if (zp->z_unlinked) {
1012                 /*
1013                  * Release the vnode asynchronously as we currently have the
1014                  * txg stopped from syncing.
1015                  */
1016                 VN_RELE_ASYNC(ZTOV(zp),
1017                     dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1018                 return (SET_ERROR(ENOENT));
1019         }
1020 
1021         zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1022         zgd->zgd_zilog = zfsvfs->z_log;
1023         zgd->zgd_private = zp;
1024 
1025         /*
1026          * Write records come in two flavors: immediate and indirect.
1027          * For small writes it's cheaper to store the data with the
1028          * log record (immediate); for large writes it's cheaper to
1029          * sync the data and get a pointer to it (indirect) so that
1030          * we don't have to write the data twice.
1031          */
1032         if (buf != NULL) { /* immediate write */
1033                 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1034                 /* test for truncation needs to be done while range locked */
1035                 if (offset >= zp->z_size) {
1036                         error = SET_ERROR(ENOENT);
1037                 } else {
1038                         error = dmu_read(os, object, offset, size, buf,
1039                             DMU_READ_NO_PREFETCH);
1040                 }
1041                 ASSERT(error == 0 || error == ENOENT);
1042         } else { /* indirect write */
1043                 /*
1044                  * Have to lock the whole block to ensure when it's
1045                  * written out and it's checksum is being calculated
1046                  * that no one can change the data. We need to re-check
1047                  * blocksize after we get the lock in case it's changed!
1048                  */
1049                 for (;;) {
1050                         uint64_t blkoff;
1051                         size = zp->z_blksz;
1052                         blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1053                         offset -= blkoff;
1054                         zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1055                             RL_READER);
1056                         if (zp->z_blksz == size)
1057                                 break;
1058                         offset += blkoff;
1059                         zfs_range_unlock(zgd->zgd_rl);
1060                 }
1061                 /* test for truncation needs to be done while range locked */
1062                 if (lr->lr_offset >= zp->z_size)
1063                         error = SET_ERROR(ENOENT);
1064 #ifdef DEBUG
1065                 if (zil_fault_io) {
1066                         error = SET_ERROR(EIO);
1067                         zil_fault_io = 0;
1068                 }
1069 #endif
1070                 if (error == 0)
1071                         error = dmu_buf_hold(os, object, offset, zgd, &db,
1072                             DMU_READ_NO_PREFETCH);
1073 
1074                 if (error == 0) {
1075                         blkptr_t *obp = dmu_buf_get_blkptr(db);
1076                         if (obp) {
1077                                 ASSERT(BP_IS_HOLE(bp));
1078                                 *bp = *obp;
1079                         }
1080 
1081                         zgd->zgd_db = db;
1082                         zgd->zgd_bp = bp;
1083 
1084                         ASSERT(db->db_offset == offset);
1085                         ASSERT(db->db_size == size);
1086 
1087                         error = dmu_sync(zio, lr->lr_common.lrc_txg,
1088                             zfs_get_done, zgd);
1089                         ASSERT(error || lr->lr_length <= zp->z_blksz);
1090 
1091                         /*
1092                          * On success, we need to wait for the write I/O
1093                          * initiated by dmu_sync() to complete before we can
1094                          * release this dbuf.  We will finish everything up
1095                          * in the zfs_get_done() callback.
1096                          */
1097                         if (error == 0)
1098                                 return (0);
1099 
1100                         if (error == EALREADY) {
1101                                 lr->lr_common.lrc_txtype = TX_WRITE2;
1102                                 error = 0;
1103                         }
1104                 }
1105         }
1106 
1107         zfs_get_done(zgd, error);
1108 
1109         return (error);
1110 }
1111 
1112 /*ARGSUSED*/
1113 static int
1114 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1115     caller_context_t *ct)
1116 {
1117         znode_t *zp = VTOZ(vp);
1118         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1119         int error;
1120 
1121         ZFS_ENTER(zfsvfs);
1122         ZFS_VERIFY_ZP(zp);
1123 
1124         if (flag & V_ACE_MASK)
1125                 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1126         else
1127                 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1128 
1129         ZFS_EXIT(zfsvfs);
1130         return (error);
1131 }
1132 
1133 /*
1134  * If vnode is for a device return a specfs vnode instead.
1135  */
1136 static int
1137 specvp_check(vnode_t **vpp, cred_t *cr)
1138 {
1139         int error = 0;
1140 
1141         if (IS_DEVVP(*vpp)) {
1142                 struct vnode *svp;
1143 
1144                 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1145                 VN_RELE(*vpp);
1146                 if (svp == NULL)
1147                         error = SET_ERROR(ENOSYS);
1148                 *vpp = svp;
1149         }
1150         return (error);
1151 }
1152 
1153 
1154 /*
1155  * Lookup an entry in a directory, or an extended attribute directory.
1156  * If it exists, return a held vnode reference for it.
1157  *
1158  *      IN:     dvp     - vnode of directory to search.
1159  *              nm      - name of entry to lookup.
1160  *              pnp     - full pathname to lookup [UNUSED].
1161  *              flags   - LOOKUP_XATTR set if looking for an attribute.
1162  *              rdir    - root directory vnode [UNUSED].
1163  *              cr      - credentials of caller.
1164  *              ct      - caller context
1165  *              direntflags - directory lookup flags
1166  *              realpnp - returned pathname.
1167  *
1168  *      OUT:    vpp     - vnode of located entry, NULL if not found.
1169  *
1170  *      RETURN: 0 on success, error code on failure.
1171  *
1172  * Timestamps:
1173  *      NA
1174  */
1175 /* ARGSUSED */
1176 static int
1177 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1178     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1179     int *direntflags, pathname_t *realpnp)
1180 {
1181         znode_t *zdp = VTOZ(dvp);
1182         zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1183         int     error = 0;
1184 
1185         /* fast path */
1186         if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1187 
1188                 if (dvp->v_type != VDIR) {
1189                         return (SET_ERROR(ENOTDIR));
1190                 } else if (zdp->z_sa_hdl == NULL) {
1191                         return (SET_ERROR(EIO));
1192                 }
1193 
1194                 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1195                         error = zfs_fastaccesschk_execute(zdp, cr);
1196                         if (!error) {
1197                                 *vpp = dvp;
1198                                 VN_HOLD(*vpp);
1199                                 return (0);
1200                         }
1201                         return (error);
1202                 } else {
1203                         vnode_t *tvp = dnlc_lookup(dvp, nm);
1204 
1205                         if (tvp) {
1206                                 error = zfs_fastaccesschk_execute(zdp, cr);
1207                                 if (error) {
1208                                         VN_RELE(tvp);
1209                                         return (error);
1210                                 }
1211                                 if (tvp == DNLC_NO_VNODE) {
1212                                         VN_RELE(tvp);
1213                                         return (SET_ERROR(ENOENT));
1214                                 } else {
1215                                         *vpp = tvp;
1216                                         return (specvp_check(vpp, cr));
1217                                 }
1218                         }
1219                 }
1220         }
1221 
1222         DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1223 
1224         ZFS_ENTER(zfsvfs);
1225         ZFS_VERIFY_ZP(zdp);
1226 
1227         *vpp = NULL;
1228 
1229         if (flags & LOOKUP_XATTR) {
1230                 /*
1231                  * If the xattr property is off, refuse the lookup request.
1232                  */
1233                 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1234                         ZFS_EXIT(zfsvfs);
1235                         return (SET_ERROR(EINVAL));
1236                 }
1237 
1238                 /*
1239                  * We don't allow recursive attributes..
1240                  * Maybe someday we will.
1241                  */
1242                 if (zdp->z_pflags & ZFS_XATTR) {
1243                         ZFS_EXIT(zfsvfs);
1244                         return (SET_ERROR(EINVAL));
1245                 }
1246 
1247                 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1248                         ZFS_EXIT(zfsvfs);
1249                         return (error);
1250                 }
1251 
1252                 /*
1253                  * Do we have permission to get into attribute directory?
1254                  */
1255 
1256                 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1257                     B_FALSE, cr)) {
1258                         VN_RELE(*vpp);
1259                         *vpp = NULL;
1260                 }
1261 
1262                 ZFS_EXIT(zfsvfs);
1263                 return (error);
1264         }
1265 
1266         if (dvp->v_type != VDIR) {
1267                 ZFS_EXIT(zfsvfs);
1268                 return (SET_ERROR(ENOTDIR));
1269         }
1270 
1271         /*
1272          * Check accessibility of directory.
1273          */
1274 
1275         if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1276                 ZFS_EXIT(zfsvfs);
1277                 return (error);
1278         }
1279 
1280         if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1281             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1282                 ZFS_EXIT(zfsvfs);
1283                 return (SET_ERROR(EILSEQ));
1284         }
1285 
1286         error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1287         if (error == 0)
1288                 error = specvp_check(vpp, cr);
1289 
1290         ZFS_EXIT(zfsvfs);
1291         return (error);
1292 }
1293 
1294 /*
1295  * Attempt to create a new entry in a directory.  If the entry
1296  * already exists, truncate the file if permissible, else return
1297  * an error.  Return the vp of the created or trunc'd file.
1298  *
1299  *      IN:     dvp     - vnode of directory to put new file entry in.
1300  *              name    - name of new file entry.
1301  *              vap     - attributes of new file.
1302  *              excl    - flag indicating exclusive or non-exclusive mode.
1303  *              mode    - mode to open file with.
1304  *              cr      - credentials of caller.
1305  *              flag    - large file flag [UNUSED].
1306  *              ct      - caller context
1307  *              vsecp   - ACL to be set
1308  *
1309  *      OUT:    vpp     - vnode of created or trunc'd entry.
1310  *
1311  *      RETURN: 0 on success, error code on failure.
1312  *
1313  * Timestamps:
1314  *      dvp - ctime|mtime updated if new entry created
1315  *       vp - ctime|mtime always, atime if new
1316  */
1317 
1318 /* ARGSUSED */
1319 static int
1320 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1321     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1322     vsecattr_t *vsecp)
1323 {
1324         znode_t         *zp, *dzp = VTOZ(dvp);
1325         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1326         zilog_t         *zilog;
1327         objset_t        *os;
1328         zfs_dirlock_t   *dl;
1329         dmu_tx_t        *tx;
1330         int             error;
1331         ksid_t          *ksid;
1332         uid_t           uid;
1333         gid_t           gid = crgetgid(cr);
1334         zfs_acl_ids_t   acl_ids;
1335         boolean_t       fuid_dirtied;
1336         boolean_t       have_acl = B_FALSE;
1337         boolean_t       waited = B_FALSE;
1338 
1339         /*
1340          * If we have an ephemeral id, ACL, or XVATTR then
1341          * make sure file system is at proper version
1342          */
1343 
1344         ksid = crgetsid(cr, KSID_OWNER);
1345         if (ksid)
1346                 uid = ksid_getid(ksid);
1347         else
1348                 uid = crgetuid(cr);
1349 
1350         if (zfsvfs->z_use_fuids == B_FALSE &&
1351             (vsecp || (vap->va_mask & AT_XVATTR) ||
1352             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1353                 return (SET_ERROR(EINVAL));
1354 
1355         ZFS_ENTER(zfsvfs);
1356         ZFS_VERIFY_ZP(dzp);
1357         os = zfsvfs->z_os;
1358         zilog = zfsvfs->z_log;
1359 
1360         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1361             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1362                 ZFS_EXIT(zfsvfs);
1363                 return (SET_ERROR(EILSEQ));
1364         }
1365 
1366         if (vap->va_mask & AT_XVATTR) {
1367                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1368                     crgetuid(cr), cr, vap->va_type)) != 0) {
1369                         ZFS_EXIT(zfsvfs);
1370                         return (error);
1371                 }
1372         }
1373 top:
1374         *vpp = NULL;
1375 
1376         if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1377                 vap->va_mode &= ~VSVTX;
1378 
1379         if (*name == '\0') {
1380                 /*
1381                  * Null component name refers to the directory itself.
1382                  */
1383                 VN_HOLD(dvp);
1384                 zp = dzp;
1385                 dl = NULL;
1386                 error = 0;
1387         } else {
1388                 /* possible VN_HOLD(zp) */
1389                 int zflg = 0;
1390 
1391                 if (flag & FIGNORECASE)
1392                         zflg |= ZCILOOK;
1393 
1394                 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1395                     NULL, NULL);
1396                 if (error) {
1397                         if (have_acl)
1398                                 zfs_acl_ids_free(&acl_ids);
1399                         if (strcmp(name, "..") == 0)
1400                                 error = SET_ERROR(EISDIR);
1401                         ZFS_EXIT(zfsvfs);
1402                         return (error);
1403                 }
1404         }
1405 
1406         if (zp == NULL) {
1407                 uint64_t txtype;
1408 
1409                 /*
1410                  * Create a new file object and update the directory
1411                  * to reference it.
1412                  */
1413                 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1414                         if (have_acl)
1415                                 zfs_acl_ids_free(&acl_ids);
1416                         goto out;
1417                 }
1418 
1419                 /*
1420                  * We only support the creation of regular files in
1421                  * extended attribute directories.
1422                  */
1423 
1424                 if ((dzp->z_pflags & ZFS_XATTR) &&
1425                     (vap->va_type != VREG)) {
1426                         if (have_acl)
1427                                 zfs_acl_ids_free(&acl_ids);
1428                         error = SET_ERROR(EINVAL);
1429                         goto out;
1430                 }
1431 
1432                 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1433                     cr, vsecp, &acl_ids)) != 0)
1434                         goto out;
1435                 have_acl = B_TRUE;
1436 
1437                 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1438                         zfs_acl_ids_free(&acl_ids);
1439                         error = SET_ERROR(EDQUOT);
1440                         goto out;
1441                 }
1442 
1443                 tx = dmu_tx_create(os);
1444 
1445                 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1446                     ZFS_SA_BASE_ATTR_SIZE);
1447 
1448                 fuid_dirtied = zfsvfs->z_fuid_dirty;
1449                 if (fuid_dirtied)
1450                         zfs_fuid_txhold(zfsvfs, tx);
1451                 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1452                 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1453                 if (!zfsvfs->z_use_sa &&
1454                     acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1455                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1456                             0, acl_ids.z_aclp->z_acl_bytes);
1457                 }
1458                 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1459                 if (error) {
1460                         zfs_dirent_unlock(dl);
1461                         if (error == ERESTART) {
1462                                 waited = B_TRUE;
1463                                 dmu_tx_wait(tx);
1464                                 dmu_tx_abort(tx);
1465                                 goto top;
1466                         }
1467                         zfs_acl_ids_free(&acl_ids);
1468                         dmu_tx_abort(tx);
1469                         ZFS_EXIT(zfsvfs);
1470                         return (error);
1471                 }
1472                 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1473 
1474                 if (fuid_dirtied)
1475                         zfs_fuid_sync(zfsvfs, tx);
1476 
1477                 (void) zfs_link_create(dl, zp, tx, ZNEW);
1478                 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1479                 if (flag & FIGNORECASE)
1480                         txtype |= TX_CI;
1481                 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1482                     vsecp, acl_ids.z_fuidp, vap);
1483                 zfs_acl_ids_free(&acl_ids);
1484                 dmu_tx_commit(tx);
1485         } else {
1486                 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1487 
1488                 if (have_acl)
1489                         zfs_acl_ids_free(&acl_ids);
1490                 have_acl = B_FALSE;
1491 
1492                 /*
1493                  * A directory entry already exists for this name.
1494                  */
1495                 /*
1496                  * Can't truncate an existing file if in exclusive mode.
1497                  */
1498                 if (excl == EXCL) {
1499                         error = SET_ERROR(EEXIST);
1500                         goto out;
1501                 }
1502                 /*
1503                  * Can't open a directory for writing.
1504                  */
1505                 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1506                         error = SET_ERROR(EISDIR);
1507                         goto out;
1508                 }
1509                 /*
1510                  * Verify requested access to file.
1511                  */
1512                 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1513                         goto out;
1514                 }
1515 
1516                 mutex_enter(&dzp->z_lock);
1517                 dzp->z_seq++;
1518                 mutex_exit(&dzp->z_lock);
1519 
1520                 /*
1521                  * Truncate regular files if requested.
1522                  */
1523                 if ((ZTOV(zp)->v_type == VREG) &&
1524                     (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1525                         /* we can't hold any locks when calling zfs_freesp() */
1526                         zfs_dirent_unlock(dl);
1527                         dl = NULL;
1528                         error = zfs_freesp(zp, 0, 0, mode, TRUE);
1529                         if (error == 0) {
1530                                 vnevent_create(ZTOV(zp), ct);
1531                         }
1532                 }
1533         }
1534 out:
1535 
1536         if (dl)
1537                 zfs_dirent_unlock(dl);
1538 
1539         if (error) {
1540                 if (zp)
1541                         VN_RELE(ZTOV(zp));
1542         } else {
1543                 *vpp = ZTOV(zp);
1544                 error = specvp_check(vpp, cr);
1545         }
1546 
1547         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1548                 zil_commit(zilog, 0);
1549 
1550         ZFS_EXIT(zfsvfs);
1551         return (error);
1552 }
1553 
1554 /*
1555  * Remove an entry from a directory.
1556  *
1557  *      IN:     dvp     - vnode of directory to remove entry from.
1558  *              name    - name of entry to remove.
1559  *              cr      - credentials of caller.
1560  *              ct      - caller context
1561  *              flags   - case flags
1562  *
1563  *      RETURN: 0 on success, error code on failure.
1564  *
1565  * Timestamps:
1566  *      dvp - ctime|mtime
1567  *       vp - ctime (if nlink > 0)
1568  */
1569 
1570 uint64_t null_xattr = 0;
1571 
1572 /*ARGSUSED*/
1573 static int
1574 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1575     int flags)
1576 {
1577         znode_t         *zp, *dzp = VTOZ(dvp);
1578         znode_t         *xzp;
1579         vnode_t         *vp;
1580         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1581         zilog_t         *zilog;
1582         uint64_t        acl_obj, xattr_obj;
1583         uint64_t        xattr_obj_unlinked = 0;
1584         uint64_t        obj = 0;
1585         zfs_dirlock_t   *dl;
1586         dmu_tx_t        *tx;
1587         boolean_t       may_delete_now, delete_now = FALSE;
1588         boolean_t       unlinked, toobig = FALSE;
1589         uint64_t        txtype;
1590         pathname_t      *realnmp = NULL;
1591         pathname_t      realnm;
1592         int             error;
1593         int             zflg = ZEXISTS;
1594         boolean_t       waited = B_FALSE;
1595 
1596         ZFS_ENTER(zfsvfs);
1597         ZFS_VERIFY_ZP(dzp);
1598         zilog = zfsvfs->z_log;
1599 
1600         if (flags & FIGNORECASE) {
1601                 zflg |= ZCILOOK;
1602                 pn_alloc(&realnm);
1603                 realnmp = &realnm;
1604         }
1605 
1606 top:
1607         xattr_obj = 0;
1608         xzp = NULL;
1609         /*
1610          * Attempt to lock directory; fail if entry doesn't exist.
1611          */
1612         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1613             NULL, realnmp)) {
1614                 if (realnmp)
1615                         pn_free(realnmp);
1616                 ZFS_EXIT(zfsvfs);
1617                 return (error);
1618         }
1619 
1620         vp = ZTOV(zp);
1621 
1622         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1623                 goto out;
1624         }
1625 
1626         /*
1627          * Need to use rmdir for removing directories.
1628          */
1629         if (vp->v_type == VDIR) {
1630                 error = SET_ERROR(EPERM);
1631                 goto out;
1632         }
1633 
1634         vnevent_remove(vp, dvp, name, ct);
1635 
1636         if (realnmp)
1637                 dnlc_remove(dvp, realnmp->pn_buf);
1638         else
1639                 dnlc_remove(dvp, name);
1640 
1641         mutex_enter(&vp->v_lock);
1642         may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1643         mutex_exit(&vp->v_lock);
1644 
1645         /*
1646          * We may delete the znode now, or we may put it in the unlinked set;
1647          * it depends on whether we're the last link, and on whether there are
1648          * other holds on the vnode.  So we dmu_tx_hold() the right things to
1649          * allow for either case.
1650          */
1651         obj = zp->z_id;
1652         tx = dmu_tx_create(zfsvfs->z_os);
1653         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1654         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1655         zfs_sa_upgrade_txholds(tx, zp);
1656         zfs_sa_upgrade_txholds(tx, dzp);
1657         if (may_delete_now) {
1658                 toobig =
1659                     zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1660                 /* if the file is too big, only hold_free a token amount */
1661                 dmu_tx_hold_free(tx, zp->z_id, 0,
1662                     (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1663         }
1664 
1665         /* are there any extended attributes? */
1666         error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1667             &xattr_obj, sizeof (xattr_obj));
1668         if (error == 0 && xattr_obj) {
1669                 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1670                 ASSERT0(error);
1671                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1672                 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1673         }
1674 
1675         mutex_enter(&zp->z_lock);
1676         if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1677                 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1678         mutex_exit(&zp->z_lock);
1679 
1680         /* charge as an update -- would be nice not to charge at all */
1681         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1682 
1683         /*
1684          * Mark this transaction as typically resulting in a net free of
1685          * space, unless object removal will be delayed indefinitely
1686          * (due to active holds on the vnode due to the file being open).
1687          */
1688         if (may_delete_now)
1689                 dmu_tx_mark_netfree(tx);
1690 
1691         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1692         if (error) {
1693                 zfs_dirent_unlock(dl);
1694                 VN_RELE(vp);
1695                 if (xzp)
1696                         VN_RELE(ZTOV(xzp));
1697                 if (error == ERESTART) {
1698                         waited = B_TRUE;
1699                         dmu_tx_wait(tx);
1700                         dmu_tx_abort(tx);
1701                         goto top;
1702                 }
1703                 if (realnmp)
1704                         pn_free(realnmp);
1705                 dmu_tx_abort(tx);
1706                 ZFS_EXIT(zfsvfs);
1707                 return (error);
1708         }
1709 
1710         /*
1711          * Remove the directory entry.
1712          */
1713         error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1714 
1715         if (error) {
1716                 dmu_tx_commit(tx);
1717                 goto out;
1718         }
1719 
1720         if (unlinked) {
1721                 /*
1722                  * Hold z_lock so that we can make sure that the ACL obj
1723                  * hasn't changed.  Could have been deleted due to
1724                  * zfs_sa_upgrade().
1725                  */
1726                 mutex_enter(&zp->z_lock);
1727                 mutex_enter(&vp->v_lock);
1728                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1729                     &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1730                 delete_now = may_delete_now && !toobig &&
1731                     vp->v_count == 1 && !vn_has_cached_data(vp) &&
1732                     xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1733                     acl_obj;
1734                 mutex_exit(&vp->v_lock);
1735         }
1736 
1737         if (delete_now) {
1738                 if (xattr_obj_unlinked) {
1739                         ASSERT3U(xzp->z_links, ==, 2);
1740                         mutex_enter(&xzp->z_lock);
1741                         xzp->z_unlinked = 1;
1742                         xzp->z_links = 0;
1743                         error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1744                             &xzp->z_links, sizeof (xzp->z_links), tx);
1745                         ASSERT3U(error,  ==,  0);
1746                         mutex_exit(&xzp->z_lock);
1747                         zfs_unlinked_add(xzp, tx);
1748 
1749                         if (zp->z_is_sa)
1750                                 error = sa_remove(zp->z_sa_hdl,
1751                                     SA_ZPL_XATTR(zfsvfs), tx);
1752                         else
1753                                 error = sa_update(zp->z_sa_hdl,
1754                                     SA_ZPL_XATTR(zfsvfs), &null_xattr,
1755                                     sizeof (uint64_t), tx);
1756                         ASSERT0(error);
1757                 }
1758                 mutex_enter(&vp->v_lock);
1759                 vp->v_count--;
1760                 ASSERT0(vp->v_count);
1761                 mutex_exit(&vp->v_lock);
1762                 mutex_exit(&zp->z_lock);
1763                 zfs_znode_delete(zp, tx);
1764         } else if (unlinked) {
1765                 mutex_exit(&zp->z_lock);
1766                 zfs_unlinked_add(zp, tx);
1767         }
1768 
1769         txtype = TX_REMOVE;
1770         if (flags & FIGNORECASE)
1771                 txtype |= TX_CI;
1772         zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1773 
1774         dmu_tx_commit(tx);
1775 out:
1776         if (realnmp)
1777                 pn_free(realnmp);
1778 
1779         zfs_dirent_unlock(dl);
1780 
1781         if (!delete_now)
1782                 VN_RELE(vp);
1783         if (xzp)
1784                 VN_RELE(ZTOV(xzp));
1785 
1786         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1787                 zil_commit(zilog, 0);
1788 
1789         ZFS_EXIT(zfsvfs);
1790         return (error);
1791 }
1792 
1793 /*
1794  * Create a new directory and insert it into dvp using the name
1795  * provided.  Return a pointer to the inserted directory.
1796  *
1797  *      IN:     dvp     - vnode of directory to add subdir to.
1798  *              dirname - name of new directory.
1799  *              vap     - attributes of new directory.
1800  *              cr      - credentials of caller.
1801  *              ct      - caller context
1802  *              flags   - case flags
1803  *              vsecp   - ACL to be set
1804  *
1805  *      OUT:    vpp     - vnode of created directory.
1806  *
1807  *      RETURN: 0 on success, error code on failure.
1808  *
1809  * Timestamps:
1810  *      dvp - ctime|mtime updated
1811  *       vp - ctime|mtime|atime updated
1812  */
1813 /*ARGSUSED*/
1814 static int
1815 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1816     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1817 {
1818         znode_t         *zp, *dzp = VTOZ(dvp);
1819         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1820         zilog_t         *zilog;
1821         zfs_dirlock_t   *dl;
1822         uint64_t        txtype;
1823         dmu_tx_t        *tx;
1824         int             error;
1825         int             zf = ZNEW;
1826         ksid_t          *ksid;
1827         uid_t           uid;
1828         gid_t           gid = crgetgid(cr);
1829         zfs_acl_ids_t   acl_ids;
1830         boolean_t       fuid_dirtied;
1831         boolean_t       waited = B_FALSE;
1832 
1833         ASSERT(vap->va_type == VDIR);
1834 
1835         /*
1836          * If we have an ephemeral id, ACL, or XVATTR then
1837          * make sure file system is at proper version
1838          */
1839 
1840         ksid = crgetsid(cr, KSID_OWNER);
1841         if (ksid)
1842                 uid = ksid_getid(ksid);
1843         else
1844                 uid = crgetuid(cr);
1845         if (zfsvfs->z_use_fuids == B_FALSE &&
1846             (vsecp || (vap->va_mask & AT_XVATTR) ||
1847             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1848                 return (SET_ERROR(EINVAL));
1849 
1850         ZFS_ENTER(zfsvfs);
1851         ZFS_VERIFY_ZP(dzp);
1852         zilog = zfsvfs->z_log;
1853 
1854         if (dzp->z_pflags & ZFS_XATTR) {
1855                 ZFS_EXIT(zfsvfs);
1856                 return (SET_ERROR(EINVAL));
1857         }
1858 
1859         if (zfsvfs->z_utf8 && u8_validate(dirname,
1860             strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1861                 ZFS_EXIT(zfsvfs);
1862                 return (SET_ERROR(EILSEQ));
1863         }
1864         if (flags & FIGNORECASE)
1865                 zf |= ZCILOOK;
1866 
1867         if (vap->va_mask & AT_XVATTR) {
1868                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1869                     crgetuid(cr), cr, vap->va_type)) != 0) {
1870                         ZFS_EXIT(zfsvfs);
1871                         return (error);
1872                 }
1873         }
1874 
1875         if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1876             vsecp, &acl_ids)) != 0) {
1877                 ZFS_EXIT(zfsvfs);
1878                 return (error);
1879         }
1880         /*
1881          * First make sure the new directory doesn't exist.
1882          *
1883          * Existence is checked first to make sure we don't return
1884          * EACCES instead of EEXIST which can cause some applications
1885          * to fail.
1886          */
1887 top:
1888         *vpp = NULL;
1889 
1890         if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1891             NULL, NULL)) {
1892                 zfs_acl_ids_free(&acl_ids);
1893                 ZFS_EXIT(zfsvfs);
1894                 return (error);
1895         }
1896 
1897         if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1898                 zfs_acl_ids_free(&acl_ids);
1899                 zfs_dirent_unlock(dl);
1900                 ZFS_EXIT(zfsvfs);
1901                 return (error);
1902         }
1903 
1904         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1905                 zfs_acl_ids_free(&acl_ids);
1906                 zfs_dirent_unlock(dl);
1907                 ZFS_EXIT(zfsvfs);
1908                 return (SET_ERROR(EDQUOT));
1909         }
1910 
1911         /*
1912          * Add a new entry to the directory.
1913          */
1914         tx = dmu_tx_create(zfsvfs->z_os);
1915         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1916         dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1917         fuid_dirtied = zfsvfs->z_fuid_dirty;
1918         if (fuid_dirtied)
1919                 zfs_fuid_txhold(zfsvfs, tx);
1920         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1921                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1922                     acl_ids.z_aclp->z_acl_bytes);
1923         }
1924 
1925         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1926             ZFS_SA_BASE_ATTR_SIZE);
1927 
1928         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1929         if (error) {
1930                 zfs_dirent_unlock(dl);
1931                 if (error == ERESTART) {
1932                         waited = B_TRUE;
1933                         dmu_tx_wait(tx);
1934                         dmu_tx_abort(tx);
1935                         goto top;
1936                 }
1937                 zfs_acl_ids_free(&acl_ids);
1938                 dmu_tx_abort(tx);
1939                 ZFS_EXIT(zfsvfs);
1940                 return (error);
1941         }
1942 
1943         /*
1944          * Create new node.
1945          */
1946         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1947 
1948         if (fuid_dirtied)
1949                 zfs_fuid_sync(zfsvfs, tx);
1950 
1951         /*
1952          * Now put new name in parent dir.
1953          */
1954         (void) zfs_link_create(dl, zp, tx, ZNEW);
1955 
1956         *vpp = ZTOV(zp);
1957 
1958         txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1959         if (flags & FIGNORECASE)
1960                 txtype |= TX_CI;
1961         zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1962             acl_ids.z_fuidp, vap);
1963 
1964         zfs_acl_ids_free(&acl_ids);
1965 
1966         dmu_tx_commit(tx);
1967 
1968         zfs_dirent_unlock(dl);
1969 
1970         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1971                 zil_commit(zilog, 0);
1972 
1973         ZFS_EXIT(zfsvfs);
1974         return (0);
1975 }
1976 
1977 /*
1978  * Remove a directory subdir entry.  If the current working
1979  * directory is the same as the subdir to be removed, the
1980  * remove will fail.
1981  *
1982  *      IN:     dvp     - vnode of directory to remove from.
1983  *              name    - name of directory to be removed.
1984  *              cwd     - vnode of current working directory.
1985  *              cr      - credentials of caller.
1986  *              ct      - caller context
1987  *              flags   - case flags
1988  *
1989  *      RETURN: 0 on success, error code on failure.
1990  *
1991  * Timestamps:
1992  *      dvp - ctime|mtime updated
1993  */
1994 /*ARGSUSED*/
1995 static int
1996 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1997     caller_context_t *ct, int flags)
1998 {
1999         znode_t         *dzp = VTOZ(dvp);
2000         znode_t         *zp;
2001         vnode_t         *vp;
2002         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
2003         zilog_t         *zilog;
2004         zfs_dirlock_t   *dl;
2005         dmu_tx_t        *tx;
2006         int             error;
2007         int             zflg = ZEXISTS;
2008         boolean_t       waited = B_FALSE;
2009 
2010         ZFS_ENTER(zfsvfs);
2011         ZFS_VERIFY_ZP(dzp);
2012         zilog = zfsvfs->z_log;
2013 
2014         if (flags & FIGNORECASE)
2015                 zflg |= ZCILOOK;
2016 top:
2017         zp = NULL;
2018 
2019         /*
2020          * Attempt to lock directory; fail if entry doesn't exist.
2021          */
2022         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2023             NULL, NULL)) {
2024                 ZFS_EXIT(zfsvfs);
2025                 return (error);
2026         }
2027 
2028         vp = ZTOV(zp);
2029 
2030         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2031                 goto out;
2032         }
2033 
2034         if (vp->v_type != VDIR) {
2035                 error = SET_ERROR(ENOTDIR);
2036                 goto out;
2037         }
2038 
2039         if (vp == cwd) {
2040                 error = SET_ERROR(EINVAL);
2041                 goto out;
2042         }
2043 
2044         vnevent_rmdir(vp, dvp, name, ct);
2045 
2046         /*
2047          * Grab a lock on the directory to make sure that noone is
2048          * trying to add (or lookup) entries while we are removing it.
2049          */
2050         rw_enter(&zp->z_name_lock, RW_WRITER);
2051 
2052         /*
2053          * Grab a lock on the parent pointer to make sure we play well
2054          * with the treewalk and directory rename code.
2055          */
2056         rw_enter(&zp->z_parent_lock, RW_WRITER);
2057 
2058         tx = dmu_tx_create(zfsvfs->z_os);
2059         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2060         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2061         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2062         zfs_sa_upgrade_txholds(tx, zp);
2063         zfs_sa_upgrade_txholds(tx, dzp);
2064         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2065         if (error) {
2066                 rw_exit(&zp->z_parent_lock);
2067                 rw_exit(&zp->z_name_lock);
2068                 zfs_dirent_unlock(dl);
2069                 VN_RELE(vp);
2070                 if (error == ERESTART) {
2071                         waited = B_TRUE;
2072                         dmu_tx_wait(tx);
2073                         dmu_tx_abort(tx);
2074                         goto top;
2075                 }
2076                 dmu_tx_abort(tx);
2077                 ZFS_EXIT(zfsvfs);
2078                 return (error);
2079         }
2080 
2081         error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2082 
2083         if (error == 0) {
2084                 uint64_t txtype = TX_RMDIR;
2085                 if (flags & FIGNORECASE)
2086                         txtype |= TX_CI;
2087                 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2088         }
2089 
2090         dmu_tx_commit(tx);
2091 
2092         rw_exit(&zp->z_parent_lock);
2093         rw_exit(&zp->z_name_lock);
2094 out:
2095         zfs_dirent_unlock(dl);
2096 
2097         VN_RELE(vp);
2098 
2099         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2100                 zil_commit(zilog, 0);
2101 
2102         ZFS_EXIT(zfsvfs);
2103         return (error);
2104 }
2105 
2106 /*
2107  * Read as many directory entries as will fit into the provided
2108  * buffer from the given directory cursor position (specified in
2109  * the uio structure).
2110  *
2111  *      IN:     vp      - vnode of directory to read.
2112  *              uio     - structure supplying read location, range info,
2113  *                        and return buffer.
2114  *              cr      - credentials of caller.
2115  *              ct      - caller context
2116  *              flags   - case flags
2117  *
2118  *      OUT:    uio     - updated offset and range, buffer filled.
2119  *              eofp    - set to true if end-of-file detected.
2120  *
2121  *      RETURN: 0 on success, error code on failure.
2122  *
2123  * Timestamps:
2124  *      vp - atime updated
2125  *
2126  * Note that the low 4 bits of the cookie returned by zap is always zero.
2127  * This allows us to use the low range for "special" directory entries:
2128  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2129  * we use the offset 2 for the '.zfs' directory.
2130  */
2131 /* ARGSUSED */
2132 static int
2133 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2134     caller_context_t *ct, int flags)
2135 {
2136         znode_t         *zp = VTOZ(vp);
2137         iovec_t         *iovp;
2138         edirent_t       *eodp;
2139         dirent64_t      *odp;
2140         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2141         objset_t        *os;
2142         caddr_t         outbuf;
2143         size_t          bufsize;
2144         zap_cursor_t    zc;
2145         zap_attribute_t zap;
2146         uint_t          bytes_wanted;
2147         uint64_t        offset; /* must be unsigned; checks for < 1 */
2148         uint64_t        parent;
2149         int             local_eof;
2150         int             outcount;
2151         int             error;
2152         uint8_t         prefetch;
2153         boolean_t       check_sysattrs;
2154 
2155         ZFS_ENTER(zfsvfs);
2156         ZFS_VERIFY_ZP(zp);
2157 
2158         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2159             &parent, sizeof (parent))) != 0) {
2160                 ZFS_EXIT(zfsvfs);
2161                 return (error);
2162         }
2163 
2164         /*
2165          * If we are not given an eof variable,
2166          * use a local one.
2167          */
2168         if (eofp == NULL)
2169                 eofp = &local_eof;
2170 
2171         /*
2172          * Check for valid iov_len.
2173          */
2174         if (uio->uio_iov->iov_len <= 0) {
2175                 ZFS_EXIT(zfsvfs);
2176                 return (SET_ERROR(EINVAL));
2177         }
2178 
2179         /*
2180          * Quit if directory has been removed (posix)
2181          */
2182         if ((*eofp = zp->z_unlinked) != 0) {
2183                 ZFS_EXIT(zfsvfs);
2184                 return (0);
2185         }
2186 
2187         error = 0;
2188         os = zfsvfs->z_os;
2189         offset = uio->uio_loffset;
2190         prefetch = zp->z_zn_prefetch;
2191 
2192         /*
2193          * Initialize the iterator cursor.
2194          */
2195         if (offset <= 3) {
2196                 /*
2197                  * Start iteration from the beginning of the directory.
2198                  */
2199                 zap_cursor_init(&zc, os, zp->z_id);
2200         } else {
2201                 /*
2202                  * The offset is a serialized cursor.
2203                  */
2204                 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2205         }
2206 
2207         /*
2208          * Get space to change directory entries into fs independent format.
2209          */
2210         iovp = uio->uio_iov;
2211         bytes_wanted = iovp->iov_len;
2212         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2213                 bufsize = bytes_wanted;
2214                 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2215                 odp = (struct dirent64 *)outbuf;
2216         } else {
2217                 bufsize = bytes_wanted;
2218                 outbuf = NULL;
2219                 odp = (struct dirent64 *)iovp->iov_base;
2220         }
2221         eodp = (struct edirent *)odp;
2222 
2223         /*
2224          * If this VFS supports the system attribute view interface; and
2225          * we're looking at an extended attribute directory; and we care
2226          * about normalization conflicts on this vfs; then we must check
2227          * for normalization conflicts with the sysattr name space.
2228          */
2229         check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2230             (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2231             (flags & V_RDDIR_ENTFLAGS);
2232 
2233         /*
2234          * Transform to file-system independent format
2235          */
2236         outcount = 0;
2237         while (outcount < bytes_wanted) {
2238                 ino64_t objnum;
2239                 ushort_t reclen;
2240                 off64_t *next = NULL;
2241 
2242                 /*
2243                  * Special case `.', `..', and `.zfs'.
2244                  */
2245                 if (offset == 0) {
2246                         (void) strcpy(zap.za_name, ".");
2247                         zap.za_normalization_conflict = 0;
2248                         objnum = zp->z_id;
2249                 } else if (offset == 1) {
2250                         (void) strcpy(zap.za_name, "..");
2251                         zap.za_normalization_conflict = 0;
2252                         objnum = parent;
2253                 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2254                         (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2255                         zap.za_normalization_conflict = 0;
2256                         objnum = ZFSCTL_INO_ROOT;
2257                 } else {
2258                         /*
2259                          * Grab next entry.
2260                          */
2261                         if (error = zap_cursor_retrieve(&zc, &zap)) {
2262                                 if ((*eofp = (error == ENOENT)) != 0)
2263                                         break;
2264                                 else
2265                                         goto update;
2266                         }
2267 
2268                         if (zap.za_integer_length != 8 ||
2269                             zap.za_num_integers != 1) {
2270                                 cmn_err(CE_WARN, "zap_readdir: bad directory "
2271                                     "entry, obj = %lld, offset = %lld\n",
2272                                     (u_longlong_t)zp->z_id,
2273                                     (u_longlong_t)offset);
2274                                 error = SET_ERROR(ENXIO);
2275                                 goto update;
2276                         }
2277 
2278                         objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2279                         /*
2280                          * MacOS X can extract the object type here such as:
2281                          * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2282                          */
2283 
2284                         if (check_sysattrs && !zap.za_normalization_conflict) {
2285                                 zap.za_normalization_conflict =
2286                                     xattr_sysattr_casechk(zap.za_name);
2287                         }
2288                 }
2289 
2290                 if (flags & V_RDDIR_ACCFILTER) {
2291                         /*
2292                          * If we have no access at all, don't include
2293                          * this entry in the returned information
2294                          */
2295                         znode_t *ezp;
2296                         if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2297                                 goto skip_entry;
2298                         if (!zfs_has_access(ezp, cr)) {
2299                                 VN_RELE(ZTOV(ezp));
2300                                 goto skip_entry;
2301                         }
2302                         VN_RELE(ZTOV(ezp));
2303                 }
2304 
2305                 if (flags & V_RDDIR_ENTFLAGS)
2306                         reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2307                 else
2308                         reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2309 
2310                 /*
2311                  * Will this entry fit in the buffer?
2312                  */
2313                 if (outcount + reclen > bufsize) {
2314                         /*
2315                          * Did we manage to fit anything in the buffer?
2316                          */
2317                         if (!outcount) {
2318                                 error = SET_ERROR(EINVAL);
2319                                 goto update;
2320                         }
2321                         break;
2322                 }
2323                 if (flags & V_RDDIR_ENTFLAGS) {
2324                         /*
2325                          * Add extended flag entry:
2326                          */
2327                         eodp->ed_ino = objnum;
2328                         eodp->ed_reclen = reclen;
2329                         /* NOTE: ed_off is the offset for the *next* entry */
2330                         next = &(eodp->ed_off);
2331                         eodp->ed_eflags = zap.za_normalization_conflict ?
2332                             ED_CASE_CONFLICT : 0;
2333                         (void) strncpy(eodp->ed_name, zap.za_name,
2334                             EDIRENT_NAMELEN(reclen));
2335                         eodp = (edirent_t *)((intptr_t)eodp + reclen);
2336                 } else {
2337                         /*
2338                          * Add normal entry:
2339                          */
2340                         odp->d_ino = objnum;
2341                         odp->d_reclen = reclen;
2342                         /* NOTE: d_off is the offset for the *next* entry */
2343                         next = &(odp->d_off);
2344                         (void) strncpy(odp->d_name, zap.za_name,
2345                             DIRENT64_NAMELEN(reclen));
2346                         odp = (dirent64_t *)((intptr_t)odp + reclen);
2347                 }
2348                 outcount += reclen;
2349 
2350                 ASSERT(outcount <= bufsize);
2351 
2352                 /* Prefetch znode */
2353                 if (prefetch)
2354                         dmu_prefetch(os, objnum, 0, 0);
2355 
2356         skip_entry:
2357                 /*
2358                  * Move to the next entry, fill in the previous offset.
2359                  */
2360                 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2361                         zap_cursor_advance(&zc);
2362                         offset = zap_cursor_serialize(&zc);
2363                 } else {
2364                         offset += 1;
2365                 }
2366                 if (next)
2367                         *next = offset;
2368         }
2369         zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2370 
2371         if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2372                 iovp->iov_base += outcount;
2373                 iovp->iov_len -= outcount;
2374                 uio->uio_resid -= outcount;
2375         } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2376                 /*
2377                  * Reset the pointer.
2378                  */
2379                 offset = uio->uio_loffset;
2380         }
2381 
2382 update:
2383         zap_cursor_fini(&zc);
2384         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2385                 kmem_free(outbuf, bufsize);
2386 
2387         if (error == ENOENT)
2388                 error = 0;
2389 
2390         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2391 
2392         uio->uio_loffset = offset;
2393         ZFS_EXIT(zfsvfs);
2394         return (error);
2395 }
2396 
2397 ulong_t zfs_fsync_sync_cnt = 4;
2398 
2399 static int
2400 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2401 {
2402         znode_t *zp = VTOZ(vp);
2403         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2404 
2405         /*
2406          * Regardless of whether this is required for standards conformance,
2407          * this is the logical behavior when fsync() is called on a file with
2408          * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2409          * going to be pushed out as part of the zil_commit().
2410          */
2411         if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2412             (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2413                 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2414 
2415         (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2416 
2417         if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2418                 ZFS_ENTER(zfsvfs);
2419                 ZFS_VERIFY_ZP(zp);
2420                 zil_commit(zfsvfs->z_log, zp->z_id);
2421                 ZFS_EXIT(zfsvfs);
2422         }
2423         return (0);
2424 }
2425 
2426 
2427 /*
2428  * Get the requested file attributes and place them in the provided
2429  * vattr structure.
2430  *
2431  *      IN:     vp      - vnode of file.
2432  *              vap     - va_mask identifies requested attributes.
2433  *                        If AT_XVATTR set, then optional attrs are requested
2434  *              flags   - ATTR_NOACLCHECK (CIFS server context)
2435  *              cr      - credentials of caller.
2436  *              ct      - caller context
2437  *
2438  *      OUT:    vap     - attribute values.
2439  *
2440  *      RETURN: 0 (always succeeds).
2441  */
2442 /* ARGSUSED */
2443 static int
2444 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2445     caller_context_t *ct)
2446 {
2447         znode_t *zp = VTOZ(vp);
2448         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2449         int     error = 0;
2450         uint64_t links;
2451         uint64_t mtime[2], ctime[2];
2452         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2453         xoptattr_t *xoap = NULL;
2454         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2455         sa_bulk_attr_t bulk[2];
2456         int count = 0;
2457 
2458         ZFS_ENTER(zfsvfs);
2459         ZFS_VERIFY_ZP(zp);
2460 
2461         zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2462 
2463         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2464         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2465 
2466         if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2467                 ZFS_EXIT(zfsvfs);
2468                 return (error);
2469         }
2470 
2471         /*
2472          * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2473          * Also, if we are the owner don't bother, since owner should
2474          * always be allowed to read basic attributes of file.
2475          */
2476         if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2477             (vap->va_uid != crgetuid(cr))) {
2478                 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2479                     skipaclchk, cr)) {
2480                         ZFS_EXIT(zfsvfs);
2481                         return (error);
2482                 }
2483         }
2484 
2485         /*
2486          * Return all attributes.  It's cheaper to provide the answer
2487          * than to determine whether we were asked the question.
2488          */
2489 
2490         mutex_enter(&zp->z_lock);
2491         vap->va_type = vp->v_type;
2492         vap->va_mode = zp->z_mode & MODEMASK;
2493         vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2494         vap->va_nodeid = zp->z_id;
2495         if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2496                 links = zp->z_links + 1;
2497         else
2498                 links = zp->z_links;
2499         vap->va_nlink = MIN(links, UINT32_MAX);      /* nlink_t limit! */
2500         vap->va_size = zp->z_size;
2501         vap->va_rdev = vp->v_rdev;
2502         vap->va_seq = zp->z_seq;
2503 
2504         /*
2505          * Add in any requested optional attributes and the create time.
2506          * Also set the corresponding bits in the returned attribute bitmap.
2507          */
2508         if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2509                 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2510                         xoap->xoa_archive =
2511                             ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2512                         XVA_SET_RTN(xvap, XAT_ARCHIVE);
2513                 }
2514 
2515                 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2516                         xoap->xoa_readonly =
2517                             ((zp->z_pflags & ZFS_READONLY) != 0);
2518                         XVA_SET_RTN(xvap, XAT_READONLY);
2519                 }
2520 
2521                 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2522                         xoap->xoa_system =
2523                             ((zp->z_pflags & ZFS_SYSTEM) != 0);
2524                         XVA_SET_RTN(xvap, XAT_SYSTEM);
2525                 }
2526 
2527                 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2528                         xoap->xoa_hidden =
2529                             ((zp->z_pflags & ZFS_HIDDEN) != 0);
2530                         XVA_SET_RTN(xvap, XAT_HIDDEN);
2531                 }
2532 
2533                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2534                         xoap->xoa_nounlink =
2535                             ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2536                         XVA_SET_RTN(xvap, XAT_NOUNLINK);
2537                 }
2538 
2539                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2540                         xoap->xoa_immutable =
2541                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2542                         XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2543                 }
2544 
2545                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2546                         xoap->xoa_appendonly =
2547                             ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2548                         XVA_SET_RTN(xvap, XAT_APPENDONLY);
2549                 }
2550 
2551                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2552                         xoap->xoa_nodump =
2553                             ((zp->z_pflags & ZFS_NODUMP) != 0);
2554                         XVA_SET_RTN(xvap, XAT_NODUMP);
2555                 }
2556 
2557                 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2558                         xoap->xoa_opaque =
2559                             ((zp->z_pflags & ZFS_OPAQUE) != 0);
2560                         XVA_SET_RTN(xvap, XAT_OPAQUE);
2561                 }
2562 
2563                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2564                         xoap->xoa_av_quarantined =
2565                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2566                         XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2567                 }
2568 
2569                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2570                         xoap->xoa_av_modified =
2571                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2572                         XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2573                 }
2574 
2575                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2576                     vp->v_type == VREG) {
2577                         zfs_sa_get_scanstamp(zp, xvap);
2578                 }
2579 
2580                 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2581                         uint64_t times[2];
2582 
2583                         (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2584                             times, sizeof (times));
2585                         ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2586                         XVA_SET_RTN(xvap, XAT_CREATETIME);
2587                 }
2588 
2589                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2590                         xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2591                         XVA_SET_RTN(xvap, XAT_REPARSE);
2592                 }
2593                 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2594                         xoap->xoa_generation = zp->z_gen;
2595                         XVA_SET_RTN(xvap, XAT_GEN);
2596                 }
2597 
2598                 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2599                         xoap->xoa_offline =
2600                             ((zp->z_pflags & ZFS_OFFLINE) != 0);
2601                         XVA_SET_RTN(xvap, XAT_OFFLINE);
2602                 }
2603 
2604                 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2605                         xoap->xoa_sparse =
2606                             ((zp->z_pflags & ZFS_SPARSE) != 0);
2607                         XVA_SET_RTN(xvap, XAT_SPARSE);
2608                 }
2609         }
2610 
2611         ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2612         ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2613         ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2614 
2615         mutex_exit(&zp->z_lock);
2616 
2617         sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2618 
2619         if (zp->z_blksz == 0) {
2620                 /*
2621                  * Block size hasn't been set; suggest maximal I/O transfers.
2622                  */
2623                 vap->va_blksize = zfsvfs->z_max_blksz;
2624         }
2625 
2626         ZFS_EXIT(zfsvfs);
2627         return (0);
2628 }
2629 
2630 /*
2631  * Set the file attributes to the values contained in the
2632  * vattr structure.
2633  *
2634  *      IN:     vp      - vnode of file to be modified.
2635  *              vap     - new attribute values.
2636  *                        If AT_XVATTR set, then optional attrs are being set
2637  *              flags   - ATTR_UTIME set if non-default time values provided.
2638  *                      - ATTR_NOACLCHECK (CIFS context only).
2639  *              cr      - credentials of caller.
2640  *              ct      - caller context
2641  *
2642  *      RETURN: 0 on success, error code on failure.
2643  *
2644  * Timestamps:
2645  *      vp - ctime updated, mtime updated if size changed.
2646  */
2647 /* ARGSUSED */
2648 static int
2649 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2650     caller_context_t *ct)
2651 {
2652         znode_t         *zp = VTOZ(vp);
2653         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2654         zilog_t         *zilog;
2655         dmu_tx_t        *tx;
2656         vattr_t         oldva;
2657         xvattr_t        tmpxvattr;
2658         uint_t          mask = vap->va_mask;
2659         uint_t          saved_mask = 0;
2660         int             trim_mask = 0;
2661         uint64_t        new_mode;
2662         uint64_t        new_uid, new_gid;
2663         uint64_t        xattr_obj;
2664         uint64_t        mtime[2], ctime[2];
2665         znode_t         *attrzp;
2666         int             need_policy = FALSE;
2667         int             err, err2;
2668         zfs_fuid_info_t *fuidp = NULL;
2669         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2670         xoptattr_t      *xoap;
2671         zfs_acl_t       *aclp;
2672         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2673         boolean_t       fuid_dirtied = B_FALSE;
2674         sa_bulk_attr_t  bulk[7], xattr_bulk[7];
2675         int             count = 0, xattr_count = 0;
2676 
2677         if (mask == 0)
2678                 return (0);
2679 
2680         if (mask & AT_NOSET)
2681                 return (SET_ERROR(EINVAL));
2682 
2683         ZFS_ENTER(zfsvfs);
2684         ZFS_VERIFY_ZP(zp);
2685 
2686         zilog = zfsvfs->z_log;
2687 
2688         /*
2689          * Make sure that if we have ephemeral uid/gid or xvattr specified
2690          * that file system is at proper version level
2691          */
2692 
2693         if (zfsvfs->z_use_fuids == B_FALSE &&
2694             (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2695             ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2696             (mask & AT_XVATTR))) {
2697                 ZFS_EXIT(zfsvfs);
2698                 return (SET_ERROR(EINVAL));
2699         }
2700 
2701         if (mask & AT_SIZE && vp->v_type == VDIR) {
2702                 ZFS_EXIT(zfsvfs);
2703                 return (SET_ERROR(EISDIR));
2704         }
2705 
2706         if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2707                 ZFS_EXIT(zfsvfs);
2708                 return (SET_ERROR(EINVAL));
2709         }
2710 
2711         /*
2712          * If this is an xvattr_t, then get a pointer to the structure of
2713          * optional attributes.  If this is NULL, then we have a vattr_t.
2714          */
2715         xoap = xva_getxoptattr(xvap);
2716 
2717         xva_init(&tmpxvattr);
2718 
2719         /*
2720          * Immutable files can only alter immutable bit and atime
2721          */
2722         if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2723             ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2724             ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2725                 ZFS_EXIT(zfsvfs);
2726                 return (SET_ERROR(EPERM));
2727         }
2728 
2729         if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2730                 ZFS_EXIT(zfsvfs);
2731                 return (SET_ERROR(EPERM));
2732         }
2733 
2734         /*
2735          * Verify timestamps doesn't overflow 32 bits.
2736          * ZFS can handle large timestamps, but 32bit syscalls can't
2737          * handle times greater than 2039.  This check should be removed
2738          * once large timestamps are fully supported.
2739          */
2740         if (mask & (AT_ATIME | AT_MTIME)) {
2741                 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2742                     ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2743                         ZFS_EXIT(zfsvfs);
2744                         return (SET_ERROR(EOVERFLOW));
2745                 }
2746         }
2747 
2748 top:
2749         attrzp = NULL;
2750         aclp = NULL;
2751 
2752         /* Can this be moved to before the top label? */
2753         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2754                 ZFS_EXIT(zfsvfs);
2755                 return (SET_ERROR(EROFS));
2756         }
2757 
2758         /*
2759          * First validate permissions
2760          */
2761 
2762         if (mask & AT_SIZE) {
2763                 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2764                 if (err) {
2765                         ZFS_EXIT(zfsvfs);
2766                         return (err);
2767                 }
2768                 /*
2769                  * XXX - Note, we are not providing any open
2770                  * mode flags here (like FNDELAY), so we may
2771                  * block if there are locks present... this
2772                  * should be addressed in openat().
2773                  */
2774                 /* XXX - would it be OK to generate a log record here? */
2775                 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2776                 if (err) {
2777                         ZFS_EXIT(zfsvfs);
2778                         return (err);
2779                 }
2780 
2781                 if (vap->va_size == 0)
2782                         vnevent_truncate(ZTOV(zp), ct);
2783         }
2784 
2785         if (mask & (AT_ATIME|AT_MTIME) ||
2786             ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2787             XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2788             XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2789             XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2790             XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2791             XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2792             XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2793                 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2794                     skipaclchk, cr);
2795         }
2796 
2797         if (mask & (AT_UID|AT_GID)) {
2798                 int     idmask = (mask & (AT_UID|AT_GID));
2799                 int     take_owner;
2800                 int     take_group;
2801 
2802                 /*
2803                  * NOTE: even if a new mode is being set,
2804                  * we may clear S_ISUID/S_ISGID bits.
2805                  */
2806 
2807                 if (!(mask & AT_MODE))
2808                         vap->va_mode = zp->z_mode;
2809 
2810                 /*
2811                  * Take ownership or chgrp to group we are a member of
2812                  */
2813 
2814                 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2815                 take_group = (mask & AT_GID) &&
2816                     zfs_groupmember(zfsvfs, vap->va_gid, cr);
2817 
2818                 /*
2819                  * If both AT_UID and AT_GID are set then take_owner and
2820                  * take_group must both be set in order to allow taking
2821                  * ownership.
2822                  *
2823                  * Otherwise, send the check through secpolicy_vnode_setattr()
2824                  *
2825                  */
2826 
2827                 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2828                     ((idmask == AT_UID) && take_owner) ||
2829                     ((idmask == AT_GID) && take_group)) {
2830                         if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2831                             skipaclchk, cr) == 0) {
2832                                 /*
2833                                  * Remove setuid/setgid for non-privileged users
2834                                  */
2835                                 secpolicy_setid_clear(vap, cr);
2836                                 trim_mask = (mask & (AT_UID|AT_GID));
2837                         } else {
2838                                 need_policy =  TRUE;
2839                         }
2840                 } else {
2841                         need_policy =  TRUE;
2842                 }
2843         }
2844 
2845         mutex_enter(&zp->z_lock);
2846         oldva.va_mode = zp->z_mode;
2847         zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2848         if (mask & AT_XVATTR) {
2849                 /*
2850                  * Update xvattr mask to include only those attributes
2851                  * that are actually changing.
2852                  *
2853                  * the bits will be restored prior to actually setting
2854                  * the attributes so the caller thinks they were set.
2855                  */
2856                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2857                         if (xoap->xoa_appendonly !=
2858                             ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2859                                 need_policy = TRUE;
2860                         } else {
2861                                 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2862                                 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2863                         }
2864                 }
2865 
2866                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2867                         if (xoap->xoa_nounlink !=
2868                             ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2869                                 need_policy = TRUE;
2870                         } else {
2871                                 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2872                                 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2873                         }
2874                 }
2875 
2876                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2877                         if (xoap->xoa_immutable !=
2878                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2879                                 need_policy = TRUE;
2880                         } else {
2881                                 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2882                                 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2883                         }
2884                 }
2885 
2886                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2887                         if (xoap->xoa_nodump !=
2888                             ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2889                                 need_policy = TRUE;
2890                         } else {
2891                                 XVA_CLR_REQ(xvap, XAT_NODUMP);
2892                                 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2893                         }
2894                 }
2895 
2896                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2897                         if (xoap->xoa_av_modified !=
2898                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2899                                 need_policy = TRUE;
2900                         } else {
2901                                 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2902                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2903                         }
2904                 }
2905 
2906                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2907                         if ((vp->v_type != VREG &&
2908                             xoap->xoa_av_quarantined) ||
2909                             xoap->xoa_av_quarantined !=
2910                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2911                                 need_policy = TRUE;
2912                         } else {
2913                                 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2914                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2915                         }
2916                 }
2917 
2918                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2919                         mutex_exit(&zp->z_lock);
2920                         ZFS_EXIT(zfsvfs);
2921                         return (SET_ERROR(EPERM));
2922                 }
2923 
2924                 if (need_policy == FALSE &&
2925                     (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2926                     XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2927                         need_policy = TRUE;
2928                 }
2929         }
2930 
2931         mutex_exit(&zp->z_lock);
2932 
2933         if (mask & AT_MODE) {
2934                 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2935                         err = secpolicy_setid_setsticky_clear(vp, vap,
2936                             &oldva, cr);
2937                         if (err) {
2938                                 ZFS_EXIT(zfsvfs);
2939                                 return (err);
2940                         }
2941                         trim_mask |= AT_MODE;
2942                 } else {
2943                         need_policy = TRUE;
2944                 }
2945         }
2946 
2947         if (need_policy) {
2948                 /*
2949                  * If trim_mask is set then take ownership
2950                  * has been granted or write_acl is present and user
2951                  * has the ability to modify mode.  In that case remove
2952                  * UID|GID and or MODE from mask so that
2953                  * secpolicy_vnode_setattr() doesn't revoke it.
2954                  */
2955 
2956                 if (trim_mask) {
2957                         saved_mask = vap->va_mask;
2958                         vap->va_mask &= ~trim_mask;
2959                 }
2960                 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2961                     (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2962                 if (err) {
2963                         ZFS_EXIT(zfsvfs);
2964                         return (err);
2965                 }
2966 
2967                 if (trim_mask)
2968                         vap->va_mask |= saved_mask;
2969         }
2970 
2971         /*
2972          * secpolicy_vnode_setattr, or take ownership may have
2973          * changed va_mask
2974          */
2975         mask = vap->va_mask;
2976 
2977         if ((mask & (AT_UID | AT_GID))) {
2978                 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2979                     &xattr_obj, sizeof (xattr_obj));
2980 
2981                 if (err == 0 && xattr_obj) {
2982                         err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2983                         if (err)
2984                                 goto out2;
2985                 }
2986                 if (mask & AT_UID) {
2987                         new_uid = zfs_fuid_create(zfsvfs,
2988                             (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2989                         if (new_uid != zp->z_uid &&
2990                             zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2991                                 if (attrzp)
2992                                         VN_RELE(ZTOV(attrzp));
2993                                 err = SET_ERROR(EDQUOT);
2994                                 goto out2;
2995                         }
2996                 }
2997 
2998                 if (mask & AT_GID) {
2999                         new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3000                             cr, ZFS_GROUP, &fuidp);
3001                         if (new_gid != zp->z_gid &&
3002                             zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3003                                 if (attrzp)
3004                                         VN_RELE(ZTOV(attrzp));
3005                                 err = SET_ERROR(EDQUOT);
3006                                 goto out2;
3007                         }
3008                 }
3009         }
3010         tx = dmu_tx_create(zfsvfs->z_os);
3011 
3012         if (mask & AT_MODE) {
3013                 uint64_t pmode = zp->z_mode;
3014                 uint64_t acl_obj;
3015                 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3016 
3017                 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3018                     !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3019                         err = SET_ERROR(EPERM);
3020                         goto out;
3021                 }
3022 
3023                 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3024                         goto out;
3025 
3026                 mutex_enter(&zp->z_lock);
3027                 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3028                         /*
3029                          * Are we upgrading ACL from old V0 format
3030                          * to V1 format?
3031                          */
3032                         if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3033                             zfs_znode_acl_version(zp) ==
3034                             ZFS_ACL_VERSION_INITIAL) {
3035                                 dmu_tx_hold_free(tx, acl_obj, 0,
3036                                     DMU_OBJECT_END);
3037                                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3038                                     0, aclp->z_acl_bytes);
3039                         } else {
3040                                 dmu_tx_hold_write(tx, acl_obj, 0,
3041                                     aclp->z_acl_bytes);
3042                         }
3043                 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3044                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3045                             0, aclp->z_acl_bytes);
3046                 }
3047                 mutex_exit(&zp->z_lock);
3048                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3049         } else {
3050                 if ((mask & AT_XVATTR) &&
3051                     XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3052                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3053                 else
3054                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3055         }
3056 
3057         if (attrzp) {
3058                 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3059         }
3060 
3061         fuid_dirtied = zfsvfs->z_fuid_dirty;
3062         if (fuid_dirtied)
3063                 zfs_fuid_txhold(zfsvfs, tx);
3064 
3065         zfs_sa_upgrade_txholds(tx, zp);
3066 
3067         err = dmu_tx_assign(tx, TXG_WAIT);
3068         if (err)
3069                 goto out;
3070 
3071         count = 0;
3072         /*
3073          * Set each attribute requested.
3074          * We group settings according to the locks they need to acquire.
3075          *
3076          * Note: you cannot set ctime directly, although it will be
3077          * updated as a side-effect of calling this function.
3078          */
3079 
3080 
3081         if (mask & (AT_UID|AT_GID|AT_MODE))
3082                 mutex_enter(&zp->z_acl_lock);
3083         mutex_enter(&zp->z_lock);
3084 
3085         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3086             &zp->z_pflags, sizeof (zp->z_pflags));
3087 
3088         if (attrzp) {
3089                 if (mask & (AT_UID|AT_GID|AT_MODE))
3090                         mutex_enter(&attrzp->z_acl_lock);
3091                 mutex_enter(&attrzp->z_lock);
3092                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3093                     SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3094                     sizeof (attrzp->z_pflags));
3095         }
3096 
3097         if (mask & (AT_UID|AT_GID)) {
3098 
3099                 if (mask & AT_UID) {
3100                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3101                             &new_uid, sizeof (new_uid));
3102                         zp->z_uid = new_uid;
3103                         if (attrzp) {
3104                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3105                                     SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3106                                     sizeof (new_uid));
3107                                 attrzp->z_uid = new_uid;
3108                         }
3109                 }
3110 
3111                 if (mask & AT_GID) {
3112                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3113                             NULL, &new_gid, sizeof (new_gid));
3114                         zp->z_gid = new_gid;
3115                         if (attrzp) {
3116                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3117                                     SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3118                                     sizeof (new_gid));
3119                                 attrzp->z_gid = new_gid;
3120                         }
3121                 }
3122                 if (!(mask & AT_MODE)) {
3123                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3124                             NULL, &new_mode, sizeof (new_mode));
3125                         new_mode = zp->z_mode;
3126                 }
3127                 err = zfs_acl_chown_setattr(zp);
3128                 ASSERT(err == 0);
3129                 if (attrzp) {
3130                         err = zfs_acl_chown_setattr(attrzp);
3131                         ASSERT(err == 0);
3132                 }
3133         }
3134 
3135         if (mask & AT_MODE) {
3136                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3137                     &new_mode, sizeof (new_mode));
3138                 zp->z_mode = new_mode;
3139                 ASSERT3U((uintptr_t)aclp, !=, NULL);
3140                 err = zfs_aclset_common(zp, aclp, cr, tx);
3141                 ASSERT0(err);
3142                 if (zp->z_acl_cached)
3143                         zfs_acl_free(zp->z_acl_cached);
3144                 zp->z_acl_cached = aclp;
3145                 aclp = NULL;
3146         }
3147 
3148 
3149         if (mask & AT_ATIME) {
3150                 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3151                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3152                     &zp->z_atime, sizeof (zp->z_atime));
3153         }
3154 
3155         if (mask & AT_MTIME) {
3156                 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3157                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3158                     mtime, sizeof (mtime));
3159         }
3160 
3161         /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3162         if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3163                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3164                     NULL, mtime, sizeof (mtime));
3165                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3166                     &ctime, sizeof (ctime));
3167                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3168                     B_TRUE);
3169         } else if (mask != 0) {
3170                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3171                     &ctime, sizeof (ctime));
3172                 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3173                     B_TRUE);
3174                 if (attrzp) {
3175                         SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3176                             SA_ZPL_CTIME(zfsvfs), NULL,
3177                             &ctime, sizeof (ctime));
3178                         zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3179                             mtime, ctime, B_TRUE);
3180                 }
3181         }
3182         /*
3183          * Do this after setting timestamps to prevent timestamp
3184          * update from toggling bit
3185          */
3186 
3187         if (xoap && (mask & AT_XVATTR)) {
3188 
3189                 /*
3190                  * restore trimmed off masks
3191                  * so that return masks can be set for caller.
3192                  */
3193 
3194                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3195                         XVA_SET_REQ(xvap, XAT_APPENDONLY);
3196                 }
3197                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3198                         XVA_SET_REQ(xvap, XAT_NOUNLINK);
3199                 }
3200                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3201                         XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3202                 }
3203                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3204                         XVA_SET_REQ(xvap, XAT_NODUMP);
3205                 }
3206                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3207                         XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3208                 }
3209                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3210                         XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3211                 }
3212 
3213                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3214                         ASSERT(vp->v_type == VREG);
3215 
3216                 zfs_xvattr_set(zp, xvap, tx);
3217         }
3218 
3219         if (fuid_dirtied)
3220                 zfs_fuid_sync(zfsvfs, tx);
3221 
3222         if (mask != 0)
3223                 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3224 
3225         mutex_exit(&zp->z_lock);
3226         if (mask & (AT_UID|AT_GID|AT_MODE))
3227                 mutex_exit(&zp->z_acl_lock);
3228 
3229         if (attrzp) {
3230                 if (mask & (AT_UID|AT_GID|AT_MODE))
3231                         mutex_exit(&attrzp->z_acl_lock);
3232                 mutex_exit(&attrzp->z_lock);
3233         }
3234 out:
3235         if (err == 0 && attrzp) {
3236                 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3237                     xattr_count, tx);
3238                 ASSERT(err2 == 0);
3239         }
3240 
3241         if (attrzp)
3242                 VN_RELE(ZTOV(attrzp));
3243 
3244         if (aclp)
3245                 zfs_acl_free(aclp);
3246 
3247         if (fuidp) {
3248                 zfs_fuid_info_free(fuidp);
3249                 fuidp = NULL;
3250         }
3251 
3252         if (err) {
3253                 dmu_tx_abort(tx);
3254                 if (err == ERESTART)
3255                         goto top;
3256         } else {
3257                 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3258                 dmu_tx_commit(tx);
3259         }
3260 
3261 out2:
3262         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3263                 zil_commit(zilog, 0);
3264 
3265         ZFS_EXIT(zfsvfs);
3266         return (err);
3267 }
3268 
3269 typedef struct zfs_zlock {
3270         krwlock_t       *zl_rwlock;     /* lock we acquired */
3271         znode_t         *zl_znode;      /* znode we held */
3272         struct zfs_zlock *zl_next;      /* next in list */
3273 } zfs_zlock_t;
3274 
3275 /*
3276  * Drop locks and release vnodes that were held by zfs_rename_lock().
3277  */
3278 static void
3279 zfs_rename_unlock(zfs_zlock_t **zlpp)
3280 {
3281         zfs_zlock_t *zl;
3282 
3283         while ((zl = *zlpp) != NULL) {
3284                 if (zl->zl_znode != NULL)
3285                         VN_RELE(ZTOV(zl->zl_znode));
3286                 rw_exit(zl->zl_rwlock);
3287                 *zlpp = zl->zl_next;
3288                 kmem_free(zl, sizeof (*zl));
3289         }
3290 }
3291 
3292 /*
3293  * Search back through the directory tree, using the ".." entries.
3294  * Lock each directory in the chain to prevent concurrent renames.
3295  * Fail any attempt to move a directory into one of its own descendants.
3296  * XXX - z_parent_lock can overlap with map or grow locks
3297  */
3298 static int
3299 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3300 {
3301         zfs_zlock_t     *zl;
3302         znode_t         *zp = tdzp;
3303         uint64_t        rootid = zp->z_zfsvfs->z_root;
3304         uint64_t        oidp = zp->z_id;
3305         krwlock_t       *rwlp = &szp->z_parent_lock;
3306         krw_t           rw = RW_WRITER;
3307 
3308         /*
3309          * First pass write-locks szp and compares to zp->z_id.
3310          * Later passes read-lock zp and compare to zp->z_parent.
3311          */
3312         do {
3313                 if (!rw_tryenter(rwlp, rw)) {
3314                         /*
3315                          * Another thread is renaming in this path.
3316                          * Note that if we are a WRITER, we don't have any
3317                          * parent_locks held yet.
3318                          */
3319                         if (rw == RW_READER && zp->z_id > szp->z_id) {
3320                                 /*
3321                                  * Drop our locks and restart
3322                                  */
3323                                 zfs_rename_unlock(&zl);
3324                                 *zlpp = NULL;
3325                                 zp = tdzp;
3326                                 oidp = zp->z_id;
3327                                 rwlp = &szp->z_parent_lock;
3328                                 rw = RW_WRITER;
3329                                 continue;
3330                         } else {
3331                                 /*
3332                                  * Wait for other thread to drop its locks
3333                                  */
3334                                 rw_enter(rwlp, rw);
3335                         }
3336                 }
3337 
3338                 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3339                 zl->zl_rwlock = rwlp;
3340                 zl->zl_znode = NULL;
3341                 zl->zl_next = *zlpp;
3342                 *zlpp = zl;
3343 
3344                 if (oidp == szp->z_id)               /* We're a descendant of szp */
3345                         return (SET_ERROR(EINVAL));
3346 
3347                 if (oidp == rootid)             /* We've hit the top */
3348                         return (0);
3349 
3350                 if (rw == RW_READER) {          /* i.e. not the first pass */
3351                         int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3352                         if (error)
3353                                 return (error);
3354                         zl->zl_znode = zp;
3355                 }
3356                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3357                     &oidp, sizeof (oidp));
3358                 rwlp = &zp->z_parent_lock;
3359                 rw = RW_READER;
3360 
3361         } while (zp->z_id != sdzp->z_id);
3362 
3363         return (0);
3364 }
3365 
3366 /*
3367  * Move an entry from the provided source directory to the target
3368  * directory.  Change the entry name as indicated.
3369  *
3370  *      IN:     sdvp    - Source directory containing the "old entry".
3371  *              snm     - Old entry name.
3372  *              tdvp    - Target directory to contain the "new entry".
3373  *              tnm     - New entry name.
3374  *              cr      - credentials of caller.
3375  *              ct      - caller context
3376  *              flags   - case flags
3377  *
3378  *      RETURN: 0 on success, error code on failure.
3379  *
3380  * Timestamps:
3381  *      sdvp,tdvp - ctime|mtime updated
3382  */
3383 /*ARGSUSED*/
3384 static int
3385 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3386     caller_context_t *ct, int flags)
3387 {
3388         znode_t         *tdzp, *szp, *tzp;
3389         znode_t         *sdzp = VTOZ(sdvp);
3390         zfsvfs_t        *zfsvfs = sdzp->z_zfsvfs;
3391         zilog_t         *zilog;
3392         vnode_t         *realvp;
3393         zfs_dirlock_t   *sdl, *tdl;
3394         dmu_tx_t        *tx;
3395         zfs_zlock_t     *zl;
3396         int             cmp, serr, terr;
3397         int             error = 0;
3398         int             zflg = 0;
3399         boolean_t       waited = B_FALSE;
3400 
3401         ZFS_ENTER(zfsvfs);
3402         ZFS_VERIFY_ZP(sdzp);
3403         zilog = zfsvfs->z_log;
3404 
3405         /*
3406          * Make sure we have the real vp for the target directory.
3407          */
3408         if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3409                 tdvp = realvp;
3410 
3411         tdzp = VTOZ(tdvp);
3412         ZFS_VERIFY_ZP(tdzp);
3413 
3414         /*
3415          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3416          * ctldir appear to have the same v_vfsp.
3417          */
3418         if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3419                 ZFS_EXIT(zfsvfs);
3420                 return (SET_ERROR(EXDEV));
3421         }
3422 
3423         if (zfsvfs->z_utf8 && u8_validate(tnm,
3424             strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3425                 ZFS_EXIT(zfsvfs);
3426                 return (SET_ERROR(EILSEQ));
3427         }
3428 
3429         if (flags & FIGNORECASE)
3430                 zflg |= ZCILOOK;
3431 
3432 top:
3433         szp = NULL;
3434         tzp = NULL;
3435         zl = NULL;
3436 
3437         /*
3438          * This is to prevent the creation of links into attribute space
3439          * by renaming a linked file into/outof an attribute directory.
3440          * See the comment in zfs_link() for why this is considered bad.
3441          */
3442         if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3443                 ZFS_EXIT(zfsvfs);
3444                 return (SET_ERROR(EINVAL));
3445         }
3446 
3447         /*
3448          * Lock source and target directory entries.  To prevent deadlock,
3449          * a lock ordering must be defined.  We lock the directory with
3450          * the smallest object id first, or if it's a tie, the one with
3451          * the lexically first name.
3452          */
3453         if (sdzp->z_id < tdzp->z_id) {
3454                 cmp = -1;
3455         } else if (sdzp->z_id > tdzp->z_id) {
3456                 cmp = 1;
3457         } else {
3458                 /*
3459                  * First compare the two name arguments without
3460                  * considering any case folding.
3461                  */
3462                 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3463 
3464                 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3465                 ASSERT(error == 0 || !zfsvfs->z_utf8);
3466                 if (cmp == 0) {
3467                         /*
3468                          * POSIX: "If the old argument and the new argument
3469                          * both refer to links to the same existing file,
3470                          * the rename() function shall return successfully
3471                          * and perform no other action."
3472                          */
3473                         ZFS_EXIT(zfsvfs);
3474                         return (0);
3475                 }
3476                 /*
3477                  * If the file system is case-folding, then we may
3478                  * have some more checking to do.  A case-folding file
3479                  * system is either supporting mixed case sensitivity
3480                  * access or is completely case-insensitive.  Note
3481                  * that the file system is always case preserving.
3482                  *
3483                  * In mixed sensitivity mode case sensitive behavior
3484                  * is the default.  FIGNORECASE must be used to
3485                  * explicitly request case insensitive behavior.
3486                  *
3487                  * If the source and target names provided differ only
3488                  * by case (e.g., a request to rename 'tim' to 'Tim'),
3489                  * we will treat this as a special case in the
3490                  * case-insensitive mode: as long as the source name
3491                  * is an exact match, we will allow this to proceed as
3492                  * a name-change request.
3493                  */
3494                 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3495                     (zfsvfs->z_case == ZFS_CASE_MIXED &&
3496                     flags & FIGNORECASE)) &&
3497                     u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3498                     &error) == 0) {
3499                         /*
3500                          * case preserving rename request, require exact
3501                          * name matches
3502                          */
3503                         zflg |= ZCIEXACT;
3504                         zflg &= ~ZCILOOK;
3505                 }
3506         }
3507 
3508         /*
3509          * If the source and destination directories are the same, we should
3510          * grab the z_name_lock of that directory only once.
3511          */
3512         if (sdzp == tdzp) {
3513                 zflg |= ZHAVELOCK;
3514                 rw_enter(&sdzp->z_name_lock, RW_READER);
3515         }
3516 
3517         if (cmp < 0) {
3518                 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3519                     ZEXISTS | zflg, NULL, NULL);
3520                 terr = zfs_dirent_lock(&tdl,
3521                     tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3522         } else {
3523                 terr = zfs_dirent_lock(&tdl,
3524                     tdzp, tnm, &tzp, zflg, NULL, NULL);
3525                 serr = zfs_dirent_lock(&sdl,
3526                     sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3527                     NULL, NULL);
3528         }
3529 
3530         if (serr) {
3531                 /*
3532                  * Source entry invalid or not there.
3533                  */
3534                 if (!terr) {
3535                         zfs_dirent_unlock(tdl);
3536                         if (tzp)
3537                                 VN_RELE(ZTOV(tzp));
3538                 }
3539 
3540                 if (sdzp == tdzp)
3541                         rw_exit(&sdzp->z_name_lock);
3542 
3543                 if (strcmp(snm, "..") == 0)
3544                         serr = SET_ERROR(EINVAL);
3545                 ZFS_EXIT(zfsvfs);
3546                 return (serr);
3547         }
3548         if (terr) {
3549                 zfs_dirent_unlock(sdl);
3550                 VN_RELE(ZTOV(szp));
3551 
3552                 if (sdzp == tdzp)
3553                         rw_exit(&sdzp->z_name_lock);
3554 
3555                 if (strcmp(tnm, "..") == 0)
3556                         terr = SET_ERROR(EINVAL);
3557                 ZFS_EXIT(zfsvfs);
3558                 return (terr);
3559         }
3560 
3561         /*
3562          * Must have write access at the source to remove the old entry
3563          * and write access at the target to create the new entry.
3564          * Note that if target and source are the same, this can be
3565          * done in a single check.
3566          */
3567 
3568         if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3569                 goto out;
3570 
3571         if (ZTOV(szp)->v_type == VDIR) {
3572                 /*
3573                  * Check to make sure rename is valid.
3574                  * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3575                  */
3576                 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3577                         goto out;
3578         }
3579 
3580         /*
3581          * Does target exist?
3582          */
3583         if (tzp) {
3584                 /*
3585                  * Source and target must be the same type.
3586                  */
3587                 if (ZTOV(szp)->v_type == VDIR) {
3588                         if (ZTOV(tzp)->v_type != VDIR) {
3589                                 error = SET_ERROR(ENOTDIR);
3590                                 goto out;
3591                         }
3592                 } else {
3593                         if (ZTOV(tzp)->v_type == VDIR) {
3594                                 error = SET_ERROR(EISDIR);
3595                                 goto out;
3596                         }
3597                 }
3598                 /*
3599                  * POSIX dictates that when the source and target
3600                  * entries refer to the same file object, rename
3601                  * must do nothing and exit without error.
3602                  */
3603                 if (szp->z_id == tzp->z_id) {
3604                         error = 0;
3605                         goto out;
3606                 }
3607         }
3608 
3609         vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3610         if (tzp)
3611                 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3612 
3613         /*
3614          * notify the target directory if it is not the same
3615          * as source directory.
3616          */
3617         if (tdvp != sdvp) {
3618                 vnevent_rename_dest_dir(tdvp, ct);
3619         }
3620 
3621         tx = dmu_tx_create(zfsvfs->z_os);
3622         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3623         dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3624         dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3625         dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3626         if (sdzp != tdzp) {
3627                 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3628                 zfs_sa_upgrade_txholds(tx, tdzp);
3629         }
3630         if (tzp) {
3631                 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3632                 zfs_sa_upgrade_txholds(tx, tzp);
3633         }
3634 
3635         zfs_sa_upgrade_txholds(tx, szp);
3636         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3637         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3638         if (error) {
3639                 if (zl != NULL)
3640                         zfs_rename_unlock(&zl);
3641                 zfs_dirent_unlock(sdl);
3642                 zfs_dirent_unlock(tdl);
3643 
3644                 if (sdzp == tdzp)
3645                         rw_exit(&sdzp->z_name_lock);
3646 
3647                 VN_RELE(ZTOV(szp));
3648                 if (tzp)
3649                         VN_RELE(ZTOV(tzp));
3650                 if (error == ERESTART) {
3651                         waited = B_TRUE;
3652                         dmu_tx_wait(tx);
3653                         dmu_tx_abort(tx);
3654                         goto top;
3655                 }
3656                 dmu_tx_abort(tx);
3657                 ZFS_EXIT(zfsvfs);
3658                 return (error);
3659         }
3660 
3661         if (tzp)        /* Attempt to remove the existing target */
3662                 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3663 
3664         if (error == 0) {
3665                 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3666                 if (error == 0) {
3667                         szp->z_pflags |= ZFS_AV_MODIFIED;
3668 
3669                         error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3670                             (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3671                         ASSERT0(error);
3672 
3673                         error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3674                         if (error == 0) {
3675                                 zfs_log_rename(zilog, tx, TX_RENAME |
3676                                     (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3677                                     sdl->dl_name, tdzp, tdl->dl_name, szp);
3678 
3679                                 /*
3680                                  * Update path information for the target vnode
3681                                  */
3682                                 vn_renamepath(tdvp, ZTOV(szp), tnm,
3683                                     strlen(tnm));
3684                         } else {
3685                                 /*
3686                                  * At this point, we have successfully created
3687                                  * the target name, but have failed to remove
3688                                  * the source name.  Since the create was done
3689                                  * with the ZRENAMING flag, there are
3690                                  * complications; for one, the link count is
3691                                  * wrong.  The easiest way to deal with this
3692                                  * is to remove the newly created target, and
3693                                  * return the original error.  This must
3694                                  * succeed; fortunately, it is very unlikely to
3695                                  * fail, since we just created it.
3696                                  */
3697                                 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3698                                     ZRENAMING, NULL), ==, 0);
3699                         }
3700                 }
3701         }
3702 
3703         dmu_tx_commit(tx);
3704 out:
3705         if (zl != NULL)
3706                 zfs_rename_unlock(&zl);
3707 
3708         zfs_dirent_unlock(sdl);
3709         zfs_dirent_unlock(tdl);
3710 
3711         if (sdzp == tdzp)
3712                 rw_exit(&sdzp->z_name_lock);
3713 
3714 
3715         VN_RELE(ZTOV(szp));
3716         if (tzp)
3717                 VN_RELE(ZTOV(tzp));
3718 
3719         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3720                 zil_commit(zilog, 0);
3721 
3722         ZFS_EXIT(zfsvfs);
3723         return (error);
3724 }
3725 
3726 /*
3727  * Insert the indicated symbolic reference entry into the directory.
3728  *
3729  *      IN:     dvp     - Directory to contain new symbolic link.
3730  *              link    - Name for new symlink entry.
3731  *              vap     - Attributes of new entry.
3732  *              cr      - credentials of caller.
3733  *              ct      - caller context
3734  *              flags   - case flags
3735  *
3736  *      RETURN: 0 on success, error code on failure.
3737  *
3738  * Timestamps:
3739  *      dvp - ctime|mtime updated
3740  */
3741 /*ARGSUSED*/
3742 static int
3743 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3744     caller_context_t *ct, int flags)
3745 {
3746         znode_t         *zp, *dzp = VTOZ(dvp);
3747         zfs_dirlock_t   *dl;
3748         dmu_tx_t        *tx;
3749         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
3750         zilog_t         *zilog;
3751         uint64_t        len = strlen(link);
3752         int             error;
3753         int             zflg = ZNEW;
3754         zfs_acl_ids_t   acl_ids;
3755         boolean_t       fuid_dirtied;
3756         uint64_t        txtype = TX_SYMLINK;
3757         boolean_t       waited = B_FALSE;
3758 
3759         ASSERT(vap->va_type == VLNK);
3760 
3761         ZFS_ENTER(zfsvfs);
3762         ZFS_VERIFY_ZP(dzp);
3763         zilog = zfsvfs->z_log;
3764 
3765         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3766             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3767                 ZFS_EXIT(zfsvfs);
3768                 return (SET_ERROR(EILSEQ));
3769         }
3770         if (flags & FIGNORECASE)
3771                 zflg |= ZCILOOK;
3772 
3773         if (len > MAXPATHLEN) {
3774                 ZFS_EXIT(zfsvfs);
3775                 return (SET_ERROR(ENAMETOOLONG));
3776         }
3777 
3778         if ((error = zfs_acl_ids_create(dzp, 0,
3779             vap, cr, NULL, &acl_ids)) != 0) {
3780                 ZFS_EXIT(zfsvfs);
3781                 return (error);
3782         }
3783 top:
3784         /*
3785          * Attempt to lock directory; fail if entry already exists.
3786          */
3787         error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3788         if (error) {
3789                 zfs_acl_ids_free(&acl_ids);
3790                 ZFS_EXIT(zfsvfs);
3791                 return (error);
3792         }
3793 
3794         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3795                 zfs_acl_ids_free(&acl_ids);
3796                 zfs_dirent_unlock(dl);
3797                 ZFS_EXIT(zfsvfs);
3798                 return (error);
3799         }
3800 
3801         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3802                 zfs_acl_ids_free(&acl_ids);
3803                 zfs_dirent_unlock(dl);
3804                 ZFS_EXIT(zfsvfs);
3805                 return (SET_ERROR(EDQUOT));
3806         }
3807         tx = dmu_tx_create(zfsvfs->z_os);
3808         fuid_dirtied = zfsvfs->z_fuid_dirty;
3809         dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3810         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3811         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3812             ZFS_SA_BASE_ATTR_SIZE + len);
3813         dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3814         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3815                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3816                     acl_ids.z_aclp->z_acl_bytes);
3817         }
3818         if (fuid_dirtied)
3819                 zfs_fuid_txhold(zfsvfs, tx);
3820         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3821         if (error) {
3822                 zfs_dirent_unlock(dl);
3823                 if (error == ERESTART) {
3824                         waited = B_TRUE;
3825                         dmu_tx_wait(tx);
3826                         dmu_tx_abort(tx);
3827                         goto top;
3828                 }
3829                 zfs_acl_ids_free(&acl_ids);
3830                 dmu_tx_abort(tx);
3831                 ZFS_EXIT(zfsvfs);
3832                 return (error);
3833         }
3834 
3835         /*
3836          * Create a new object for the symlink.
3837          * for version 4 ZPL datsets the symlink will be an SA attribute
3838          */
3839         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3840 
3841         if (fuid_dirtied)
3842                 zfs_fuid_sync(zfsvfs, tx);
3843 
3844         mutex_enter(&zp->z_lock);
3845         if (zp->z_is_sa)
3846                 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3847                     link, len, tx);
3848         else
3849                 zfs_sa_symlink(zp, link, len, tx);
3850         mutex_exit(&zp->z_lock);
3851 
3852         zp->z_size = len;
3853         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3854             &zp->z_size, sizeof (zp->z_size), tx);
3855         /*
3856          * Insert the new object into the directory.
3857          */
3858         (void) zfs_link_create(dl, zp, tx, ZNEW);
3859 
3860         if (flags & FIGNORECASE)
3861                 txtype |= TX_CI;
3862         zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3863 
3864         zfs_acl_ids_free(&acl_ids);
3865 
3866         dmu_tx_commit(tx);
3867 
3868         zfs_dirent_unlock(dl);
3869 
3870         VN_RELE(ZTOV(zp));
3871 
3872         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3873                 zil_commit(zilog, 0);
3874 
3875         ZFS_EXIT(zfsvfs);
3876         return (error);
3877 }
3878 
3879 /*
3880  * Return, in the buffer contained in the provided uio structure,
3881  * the symbolic path referred to by vp.
3882  *
3883  *      IN:     vp      - vnode of symbolic link.
3884  *              uio     - structure to contain the link path.
3885  *              cr      - credentials of caller.
3886  *              ct      - caller context
3887  *
3888  *      OUT:    uio     - structure containing the link path.
3889  *
3890  *      RETURN: 0 on success, error code on failure.
3891  *
3892  * Timestamps:
3893  *      vp - atime updated
3894  */
3895 /* ARGSUSED */
3896 static int
3897 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3898 {
3899         znode_t         *zp = VTOZ(vp);
3900         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
3901         int             error;
3902 
3903         ZFS_ENTER(zfsvfs);
3904         ZFS_VERIFY_ZP(zp);
3905 
3906         mutex_enter(&zp->z_lock);
3907         if (zp->z_is_sa)
3908                 error = sa_lookup_uio(zp->z_sa_hdl,
3909                     SA_ZPL_SYMLINK(zfsvfs), uio);
3910         else
3911                 error = zfs_sa_readlink(zp, uio);
3912         mutex_exit(&zp->z_lock);
3913 
3914         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3915 
3916         ZFS_EXIT(zfsvfs);
3917         return (error);
3918 }
3919 
3920 /*
3921  * Insert a new entry into directory tdvp referencing svp.
3922  *
3923  *      IN:     tdvp    - Directory to contain new entry.
3924  *              svp     - vnode of new entry.
3925  *              name    - name of new entry.
3926  *              cr      - credentials of caller.
3927  *              ct      - caller context
3928  *
3929  *      RETURN: 0 on success, error code on failure.
3930  *
3931  * Timestamps:
3932  *      tdvp - ctime|mtime updated
3933  *       svp - ctime updated
3934  */
3935 /* ARGSUSED */
3936 static int
3937 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3938     caller_context_t *ct, int flags)
3939 {
3940         znode_t         *dzp = VTOZ(tdvp);
3941         znode_t         *tzp, *szp;
3942         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
3943         zilog_t         *zilog;
3944         zfs_dirlock_t   *dl;
3945         dmu_tx_t        *tx;
3946         vnode_t         *realvp;
3947         int             error;
3948         int             zf = ZNEW;
3949         uint64_t        parent;
3950         uid_t           owner;
3951         boolean_t       waited = B_FALSE;
3952 
3953         ASSERT(tdvp->v_type == VDIR);
3954 
3955         ZFS_ENTER(zfsvfs);
3956         ZFS_VERIFY_ZP(dzp);
3957         zilog = zfsvfs->z_log;
3958 
3959         if (VOP_REALVP(svp, &realvp, ct) == 0)
3960                 svp = realvp;
3961 
3962         /*
3963          * POSIX dictates that we return EPERM here.
3964          * Better choices include ENOTSUP or EISDIR.
3965          */
3966         if (svp->v_type == VDIR) {
3967                 ZFS_EXIT(zfsvfs);
3968                 return (SET_ERROR(EPERM));
3969         }
3970 
3971         szp = VTOZ(svp);
3972         ZFS_VERIFY_ZP(szp);
3973 
3974         /*
3975          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3976          * ctldir appear to have the same v_vfsp.
3977          */
3978         if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
3979                 ZFS_EXIT(zfsvfs);
3980                 return (SET_ERROR(EXDEV));
3981         }
3982 
3983         /* Prevent links to .zfs/shares files */
3984 
3985         if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3986             &parent, sizeof (uint64_t))) != 0) {
3987                 ZFS_EXIT(zfsvfs);
3988                 return (error);
3989         }
3990         if (parent == zfsvfs->z_shares_dir) {
3991                 ZFS_EXIT(zfsvfs);
3992                 return (SET_ERROR(EPERM));
3993         }
3994 
3995         if (zfsvfs->z_utf8 && u8_validate(name,
3996             strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3997                 ZFS_EXIT(zfsvfs);
3998                 return (SET_ERROR(EILSEQ));
3999         }
4000         if (flags & FIGNORECASE)
4001                 zf |= ZCILOOK;
4002 
4003         /*
4004          * We do not support links between attributes and non-attributes
4005          * because of the potential security risk of creating links
4006          * into "normal" file space in order to circumvent restrictions
4007          * imposed in attribute space.
4008          */
4009         if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4010                 ZFS_EXIT(zfsvfs);
4011                 return (SET_ERROR(EINVAL));
4012         }
4013 
4014 
4015         owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4016         if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4017                 ZFS_EXIT(zfsvfs);
4018                 return (SET_ERROR(EPERM));
4019         }
4020 
4021         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4022                 ZFS_EXIT(zfsvfs);
4023                 return (error);
4024         }
4025 
4026 top:
4027         /*
4028          * Attempt to lock directory; fail if entry already exists.
4029          */
4030         error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4031         if (error) {
4032                 ZFS_EXIT(zfsvfs);
4033                 return (error);
4034         }
4035 
4036         tx = dmu_tx_create(zfsvfs->z_os);
4037         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4038         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4039         zfs_sa_upgrade_txholds(tx, szp);
4040         zfs_sa_upgrade_txholds(tx, dzp);
4041         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4042         if (error) {
4043                 zfs_dirent_unlock(dl);
4044                 if (error == ERESTART) {
4045                         waited = B_TRUE;
4046                         dmu_tx_wait(tx);
4047                         dmu_tx_abort(tx);
4048                         goto top;
4049                 }
4050                 dmu_tx_abort(tx);
4051                 ZFS_EXIT(zfsvfs);
4052                 return (error);
4053         }
4054 
4055         error = zfs_link_create(dl, szp, tx, 0);
4056 
4057         if (error == 0) {
4058                 uint64_t txtype = TX_LINK;
4059                 if (flags & FIGNORECASE)
4060                         txtype |= TX_CI;
4061                 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4062         }
4063 
4064         dmu_tx_commit(tx);
4065 
4066         zfs_dirent_unlock(dl);
4067 
4068         if (error == 0) {
4069                 vnevent_link(svp, ct);
4070         }
4071 
4072         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4073                 zil_commit(zilog, 0);
4074 
4075         ZFS_EXIT(zfsvfs);
4076         return (error);
4077 }
4078 
4079 /*
4080  * zfs_null_putapage() is used when the file system has been force
4081  * unmounted. It just drops the pages.
4082  */
4083 /* ARGSUSED */
4084 static int
4085 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4086                 size_t *lenp, int flags, cred_t *cr)
4087 {
4088         pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4089         return (0);
4090 }
4091 
4092 /*
4093  * Push a page out to disk, klustering if possible.
4094  *
4095  *      IN:     vp      - file to push page to.
4096  *              pp      - page to push.
4097  *              flags   - additional flags.
4098  *              cr      - credentials of caller.
4099  *
4100  *      OUT:    offp    - start of range pushed.
4101  *              lenp    - len of range pushed.
4102  *
4103  *      RETURN: 0 on success, error code on failure.
4104  *
4105  * NOTE: callers must have locked the page to be pushed.  On
4106  * exit, the page (and all other pages in the kluster) must be
4107  * unlocked.
4108  */
4109 /* ARGSUSED */
4110 static int
4111 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4112                 size_t *lenp, int flags, cred_t *cr)
4113 {
4114         znode_t         *zp = VTOZ(vp);
4115         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4116         dmu_tx_t        *tx;
4117         u_offset_t      off, koff;
4118         size_t          len, klen;
4119         int             err;
4120 
4121         off = pp->p_offset;
4122         len = PAGESIZE;
4123         /*
4124          * If our blocksize is bigger than the page size, try to kluster
4125          * multiple pages so that we write a full block (thus avoiding
4126          * a read-modify-write).
4127          */
4128         if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4129                 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4130                 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4131                 ASSERT(koff <= zp->z_size);
4132                 if (koff + klen > zp->z_size)
4133                         klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4134                 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4135         }
4136         ASSERT3U(btop(len), ==, btopr(len));
4137 
4138         /*
4139          * Can't push pages past end-of-file.
4140          */
4141         if (off >= zp->z_size) {
4142                 /* ignore all pages */
4143                 err = 0;
4144                 goto out;
4145         } else if (off + len > zp->z_size) {
4146                 int npages = btopr(zp->z_size - off);
4147                 page_t *trunc;
4148 
4149                 page_list_break(&pp, &trunc, npages);
4150                 /* ignore pages past end of file */
4151                 if (trunc)
4152                         pvn_write_done(trunc, flags);
4153                 len = zp->z_size - off;
4154         }
4155 
4156         if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4157             zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4158                 err = SET_ERROR(EDQUOT);
4159                 goto out;
4160         }
4161         tx = dmu_tx_create(zfsvfs->z_os);
4162         dmu_tx_hold_write(tx, zp->z_id, off, len);
4163 
4164         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4165         zfs_sa_upgrade_txholds(tx, zp);
4166         err = dmu_tx_assign(tx, TXG_WAIT);
4167         if (err != 0) {
4168                 dmu_tx_abort(tx);
4169                 goto out;
4170         }
4171 
4172         if (zp->z_blksz <= PAGESIZE) {
4173                 caddr_t va = zfs_map_page(pp, S_READ);
4174                 ASSERT3U(len, <=, PAGESIZE);
4175                 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4176                 zfs_unmap_page(pp, va);
4177         } else {
4178                 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4179         }
4180 
4181         if (err == 0) {
4182                 uint64_t mtime[2], ctime[2];
4183                 sa_bulk_attr_t bulk[3];
4184                 int count = 0;
4185 
4186                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4187                     &mtime, 16);
4188                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4189                     &ctime, 16);
4190                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4191                     &zp->z_pflags, 8);
4192                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4193                     B_TRUE);
4194                 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4195         }
4196         dmu_tx_commit(tx);
4197 
4198 out:
4199         pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4200         if (offp)
4201                 *offp = off;
4202         if (lenp)
4203                 *lenp = len;
4204 
4205         return (err);
4206 }
4207 
4208 /*
4209  * Copy the portion of the file indicated from pages into the file.
4210  * The pages are stored in a page list attached to the files vnode.
4211  *
4212  *      IN:     vp      - vnode of file to push page data to.
4213  *              off     - position in file to put data.
4214  *              len     - amount of data to write.
4215  *              flags   - flags to control the operation.
4216  *              cr      - credentials of caller.
4217  *              ct      - caller context.
4218  *
4219  *      RETURN: 0 on success, error code on failure.
4220  *
4221  * Timestamps:
4222  *      vp - ctime|mtime updated
4223  */
4224 /*ARGSUSED*/
4225 static int
4226 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4227     caller_context_t *ct)
4228 {
4229         znode_t         *zp = VTOZ(vp);
4230         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4231         page_t          *pp;
4232         size_t          io_len;
4233         u_offset_t      io_off;
4234         uint_t          blksz;
4235         rl_t            *rl;
4236         int             error = 0;
4237 
4238         ZFS_ENTER(zfsvfs);
4239         ZFS_VERIFY_ZP(zp);
4240 
4241         /*
4242          * There's nothing to do if no data is cached.
4243          */
4244         if (!vn_has_cached_data(vp)) {
4245                 ZFS_EXIT(zfsvfs);
4246                 return (0);
4247         }
4248 
4249         /*
4250          * Align this request to the file block size in case we kluster.
4251          * XXX - this can result in pretty aggresive locking, which can
4252          * impact simultanious read/write access.  One option might be
4253          * to break up long requests (len == 0) into block-by-block
4254          * operations to get narrower locking.
4255          */
4256         blksz = zp->z_blksz;
4257         if (ISP2(blksz))
4258                 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4259         else
4260                 io_off = 0;
4261         if (len > 0 && ISP2(blksz))
4262                 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4263         else
4264                 io_len = 0;
4265 
4266         if (io_len == 0) {
4267                 /*
4268                  * Search the entire vp list for pages >= io_off.
4269                  */
4270                 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4271                 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4272                 goto out;
4273         }
4274         rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4275 
4276         if (off > zp->z_size) {
4277                 /* past end of file */
4278                 zfs_range_unlock(rl);
4279                 ZFS_EXIT(zfsvfs);
4280                 return (0);
4281         }
4282 
4283         len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4284 
4285         for (off = io_off; io_off < off + len; io_off += io_len) {
4286                 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4287                         pp = page_lookup(vp, io_off,
4288                             (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4289                 } else {
4290                         pp = page_lookup_nowait(vp, io_off,
4291                             (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4292                 }
4293 
4294                 if (pp != NULL && pvn_getdirty(pp, flags)) {
4295                         int err;
4296 
4297                         /*
4298                          * Found a dirty page to push
4299                          */
4300                         err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4301                         if (err)
4302                                 error = err;
4303                 } else {
4304                         io_len = PAGESIZE;
4305                 }
4306         }
4307 out:
4308         zfs_range_unlock(rl);
4309         if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4310                 zil_commit(zfsvfs->z_log, zp->z_id);
4311         ZFS_EXIT(zfsvfs);
4312         return (error);
4313 }
4314 
4315 /*ARGSUSED*/
4316 void
4317 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4318 {
4319         znode_t *zp = VTOZ(vp);
4320         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4321         int error;
4322 
4323         rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4324         if (zp->z_sa_hdl == NULL) {
4325                 /*
4326                  * The fs has been unmounted, or we did a
4327                  * suspend/resume and this file no longer exists.
4328                  */
4329                 if (vn_has_cached_data(vp)) {
4330                         (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4331                             B_INVAL, cr);
4332                 }
4333 
4334                 mutex_enter(&zp->z_lock);
4335                 mutex_enter(&vp->v_lock);
4336                 ASSERT(vp->v_count == 1);
4337                 vp->v_count = 0;
4338                 mutex_exit(&vp->v_lock);
4339                 mutex_exit(&zp->z_lock);
4340                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4341                 zfs_znode_free(zp);
4342                 return;
4343         }
4344 
4345         /*
4346          * Attempt to push any data in the page cache.  If this fails
4347          * we will get kicked out later in zfs_zinactive().
4348          */
4349         if (vn_has_cached_data(vp)) {
4350                 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4351                     cr);
4352         }
4353 
4354         if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4355                 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4356 
4357                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4358                 zfs_sa_upgrade_txholds(tx, zp);
4359                 error = dmu_tx_assign(tx, TXG_WAIT);
4360                 if (error) {
4361                         dmu_tx_abort(tx);
4362                 } else {
4363                         mutex_enter(&zp->z_lock);
4364                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4365                             (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4366                         zp->z_atime_dirty = 0;
4367                         mutex_exit(&zp->z_lock);
4368                         dmu_tx_commit(tx);
4369                 }
4370         }
4371 
4372         zfs_zinactive(zp);
4373         rw_exit(&zfsvfs->z_teardown_inactive_lock);
4374 }
4375 
4376 /*
4377  * Bounds-check the seek operation.
4378  *
4379  *      IN:     vp      - vnode seeking within
4380  *              ooff    - old file offset
4381  *              noffp   - pointer to new file offset
4382  *              ct      - caller context
4383  *
4384  *      RETURN: 0 on success, EINVAL if new offset invalid.
4385  */
4386 /* ARGSUSED */
4387 static int
4388 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4389     caller_context_t *ct)
4390 {
4391         if (vp->v_type == VDIR)
4392                 return (0);
4393         return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4394 }
4395 
4396 /*
4397  * Pre-filter the generic locking function to trap attempts to place
4398  * a mandatory lock on a memory mapped file.
4399  */
4400 static int
4401 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4402     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4403 {
4404         znode_t *zp = VTOZ(vp);
4405         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4406 
4407         ZFS_ENTER(zfsvfs);
4408         ZFS_VERIFY_ZP(zp);
4409 
4410         /*
4411          * We are following the UFS semantics with respect to mapcnt
4412          * here: If we see that the file is mapped already, then we will
4413          * return an error, but we don't worry about races between this
4414          * function and zfs_map().
4415          */
4416         if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4417                 ZFS_EXIT(zfsvfs);
4418                 return (SET_ERROR(EAGAIN));
4419         }
4420         ZFS_EXIT(zfsvfs);
4421         return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4422 }
4423 
4424 /*
4425  * If we can't find a page in the cache, we will create a new page
4426  * and fill it with file data.  For efficiency, we may try to fill
4427  * multiple pages at once (klustering) to fill up the supplied page
4428  * list.  Note that the pages to be filled are held with an exclusive
4429  * lock to prevent access by other threads while they are being filled.
4430  */
4431 static int
4432 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4433     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4434 {
4435         znode_t *zp = VTOZ(vp);
4436         page_t *pp, *cur_pp;
4437         objset_t *os = zp->z_zfsvfs->z_os;
4438         u_offset_t io_off, total;
4439         size_t io_len;
4440         int err;
4441 
4442         if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4443                 /*
4444                  * We only have a single page, don't bother klustering
4445                  */
4446                 io_off = off;
4447                 io_len = PAGESIZE;
4448                 pp = page_create_va(vp, io_off, io_len,
4449                     PG_EXCL | PG_WAIT, seg, addr);
4450         } else {
4451                 /*
4452                  * Try to find enough pages to fill the page list
4453                  */
4454                 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4455                     &io_len, off, plsz, 0);
4456         }
4457         if (pp == NULL) {
4458                 /*
4459                  * The page already exists, nothing to do here.
4460                  */
4461                 *pl = NULL;
4462                 return (0);
4463         }
4464 
4465         /*
4466          * Fill the pages in the kluster.
4467          */
4468         cur_pp = pp;
4469         for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4470                 caddr_t va;
4471 
4472                 ASSERT3U(io_off, ==, cur_pp->p_offset);
4473                 va = zfs_map_page(cur_pp, S_WRITE);
4474                 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4475                     DMU_READ_PREFETCH);
4476                 zfs_unmap_page(cur_pp, va);
4477                 if (err) {
4478                         /* On error, toss the entire kluster */
4479                         pvn_read_done(pp, B_ERROR);
4480                         /* convert checksum errors into IO errors */
4481                         if (err == ECKSUM)
4482                                 err = SET_ERROR(EIO);
4483                         return (err);
4484                 }
4485                 cur_pp = cur_pp->p_next;
4486         }
4487 
4488         /*
4489          * Fill in the page list array from the kluster starting
4490          * from the desired offset `off'.
4491          * NOTE: the page list will always be null terminated.
4492          */
4493         pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4494         ASSERT(pl == NULL || (*pl)->p_offset == off);
4495 
4496         return (0);
4497 }
4498 
4499 /*
4500  * Return pointers to the pages for the file region [off, off + len]
4501  * in the pl array.  If plsz is greater than len, this function may
4502  * also return page pointers from after the specified region
4503  * (i.e. the region [off, off + plsz]).  These additional pages are
4504  * only returned if they are already in the cache, or were created as
4505  * part of a klustered read.
4506  *
4507  *      IN:     vp      - vnode of file to get data from.
4508  *              off     - position in file to get data from.
4509  *              len     - amount of data to retrieve.
4510  *              plsz    - length of provided page list.
4511  *              seg     - segment to obtain pages for.
4512  *              addr    - virtual address of fault.
4513  *              rw      - mode of created pages.
4514  *              cr      - credentials of caller.
4515  *              ct      - caller context.
4516  *
4517  *      OUT:    protp   - protection mode of created pages.
4518  *              pl      - list of pages created.
4519  *
4520  *      RETURN: 0 on success, error code on failure.
4521  *
4522  * Timestamps:
4523  *      vp - atime updated
4524  */
4525 /* ARGSUSED */
4526 static int
4527 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4528     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4529     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4530 {
4531         znode_t         *zp = VTOZ(vp);
4532         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4533         page_t          **pl0 = pl;
4534         int             err = 0;
4535 
4536         /* we do our own caching, faultahead is unnecessary */
4537         if (pl == NULL)
4538                 return (0);
4539         else if (len > plsz)
4540                 len = plsz;
4541         else
4542                 len = P2ROUNDUP(len, PAGESIZE);
4543         ASSERT(plsz >= len);
4544 
4545         ZFS_ENTER(zfsvfs);
4546         ZFS_VERIFY_ZP(zp);
4547 
4548         if (protp)
4549                 *protp = PROT_ALL;
4550 
4551         /*
4552          * Loop through the requested range [off, off + len) looking
4553          * for pages.  If we don't find a page, we will need to create
4554          * a new page and fill it with data from the file.
4555          */
4556         while (len > 0) {
4557                 if (*pl = page_lookup(vp, off, SE_SHARED))
4558                         *(pl+1) = NULL;
4559                 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4560                         goto out;
4561                 while (*pl) {
4562                         ASSERT3U((*pl)->p_offset, ==, off);
4563                         off += PAGESIZE;
4564                         addr += PAGESIZE;
4565                         if (len > 0) {
4566                                 ASSERT3U(len, >=, PAGESIZE);
4567                                 len -= PAGESIZE;
4568                         }
4569                         ASSERT3U(plsz, >=, PAGESIZE);
4570                         plsz -= PAGESIZE;
4571                         pl++;
4572                 }
4573         }
4574 
4575         /*
4576          * Fill out the page array with any pages already in the cache.
4577          */
4578         while (plsz > 0 &&
4579             (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4580                         off += PAGESIZE;
4581                         plsz -= PAGESIZE;
4582         }
4583 out:
4584         if (err) {
4585                 /*
4586                  * Release any pages we have previously locked.
4587                  */
4588                 while (pl > pl0)
4589                         page_unlock(*--pl);
4590         } else {
4591                 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4592         }
4593 
4594         *pl = NULL;
4595 
4596         ZFS_EXIT(zfsvfs);
4597         return (err);
4598 }
4599 
4600 /*
4601  * Request a memory map for a section of a file.  This code interacts
4602  * with common code and the VM system as follows:
4603  *
4604  * - common code calls mmap(), which ends up in smmap_common()
4605  * - this calls VOP_MAP(), which takes you into (say) zfs
4606  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4607  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4608  * - zfs_addmap() updates z_mapcnt
4609  */
4610 /*ARGSUSED*/
4611 static int
4612 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4613     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4614     caller_context_t *ct)
4615 {
4616         znode_t *zp = VTOZ(vp);
4617         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4618         segvn_crargs_t  vn_a;
4619         int             error;
4620 
4621         ZFS_ENTER(zfsvfs);
4622         ZFS_VERIFY_ZP(zp);
4623 
4624         if ((prot & PROT_WRITE) && (zp->z_pflags &
4625             (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4626                 ZFS_EXIT(zfsvfs);
4627                 return (SET_ERROR(EPERM));
4628         }
4629 
4630         if ((prot & (PROT_READ | PROT_EXEC)) &&
4631             (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4632                 ZFS_EXIT(zfsvfs);
4633                 return (SET_ERROR(EACCES));
4634         }
4635 
4636         if (vp->v_flag & VNOMAP) {
4637                 ZFS_EXIT(zfsvfs);
4638                 return (SET_ERROR(ENOSYS));
4639         }
4640 
4641         if (off < 0 || len > MAXOFFSET_T - off) {
4642                 ZFS_EXIT(zfsvfs);
4643                 return (SET_ERROR(ENXIO));
4644         }
4645 
4646         if (vp->v_type != VREG) {
4647                 ZFS_EXIT(zfsvfs);
4648                 return (SET_ERROR(ENODEV));
4649         }
4650 
4651         /*
4652          * If file is locked, disallow mapping.
4653          */
4654         if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4655                 ZFS_EXIT(zfsvfs);
4656                 return (SET_ERROR(EAGAIN));
4657         }
4658 
4659         as_rangelock(as);
4660         error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4661         if (error != 0) {
4662                 as_rangeunlock(as);
4663                 ZFS_EXIT(zfsvfs);
4664                 return (error);
4665         }
4666 
4667         vn_a.vp = vp;
4668         vn_a.offset = (u_offset_t)off;
4669         vn_a.type = flags & MAP_TYPE;
4670         vn_a.prot = prot;
4671         vn_a.maxprot = maxprot;
4672         vn_a.cred = cr;
4673         vn_a.amp = NULL;
4674         vn_a.flags = flags & ~MAP_TYPE;
4675         vn_a.szc = 0;
4676         vn_a.lgrp_mem_policy_flags = 0;
4677 
4678         error = as_map(as, *addrp, len, segvn_create, &vn_a);
4679 
4680         as_rangeunlock(as);
4681         ZFS_EXIT(zfsvfs);
4682         return (error);
4683 }
4684 
4685 /* ARGSUSED */
4686 static int
4687 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4688     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4689     caller_context_t *ct)
4690 {
4691         uint64_t pages = btopr(len);
4692 
4693         atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4694         return (0);
4695 }
4696 
4697 /*
4698  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4699  * more accurate mtime for the associated file.  Since we don't have a way of
4700  * detecting when the data was actually modified, we have to resort to
4701  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4702  * last page is pushed.  The problem occurs when the msync() call is omitted,
4703  * which by far the most common case:
4704  *
4705  *      open()
4706  *      mmap()
4707  *      <modify memory>
4708  *      munmap()
4709  *      close()
4710  *      <time lapse>
4711  *      putpage() via fsflush
4712  *
4713  * If we wait until fsflush to come along, we can have a modification time that
4714  * is some arbitrary point in the future.  In order to prevent this in the
4715  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4716  * torn down.
4717  */
4718 /* ARGSUSED */
4719 static int
4720 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4721     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4722     caller_context_t *ct)
4723 {
4724         uint64_t pages = btopr(len);
4725 
4726         ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4727         atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4728 
4729         if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4730             vn_has_cached_data(vp))
4731                 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4732 
4733         return (0);
4734 }
4735 
4736 /*
4737  * Free or allocate space in a file.  Currently, this function only
4738  * supports the `F_FREESP' command.  However, this command is somewhat
4739  * misnamed, as its functionality includes the ability to allocate as
4740  * well as free space.
4741  *
4742  *      IN:     vp      - vnode of file to free data in.
4743  *              cmd     - action to take (only F_FREESP supported).
4744  *              bfp     - section of file to free/alloc.
4745  *              flag    - current file open mode flags.
4746  *              offset  - current file offset.
4747  *              cr      - credentials of caller [UNUSED].
4748  *              ct      - caller context.
4749  *
4750  *      RETURN: 0 on success, error code on failure.
4751  *
4752  * Timestamps:
4753  *      vp - ctime|mtime updated
4754  */
4755 /* ARGSUSED */
4756 static int
4757 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4758     offset_t offset, cred_t *cr, caller_context_t *ct)
4759 {
4760         znode_t         *zp = VTOZ(vp);
4761         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4762         uint64_t        off, len;
4763         int             error;
4764 
4765         ZFS_ENTER(zfsvfs);
4766         ZFS_VERIFY_ZP(zp);
4767 
4768         if (cmd != F_FREESP) {
4769                 ZFS_EXIT(zfsvfs);
4770                 return (SET_ERROR(EINVAL));
4771         }
4772 
4773         /*
4774          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4775          * callers might not be able to detect properly that we are read-only,
4776          * so check it explicitly here.
4777          */
4778         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4779                 ZFS_EXIT(zfsvfs);
4780                 return (SET_ERROR(EROFS));
4781         }
4782 
4783         if (error = convoff(vp, bfp, 0, offset)) {
4784                 ZFS_EXIT(zfsvfs);
4785                 return (error);
4786         }
4787 
4788         if (bfp->l_len < 0) {
4789                 ZFS_EXIT(zfsvfs);
4790                 return (SET_ERROR(EINVAL));
4791         }
4792 
4793         off = bfp->l_start;
4794         len = bfp->l_len; /* 0 means from off to end of file */
4795 
4796         error = zfs_freesp(zp, off, len, flag, TRUE);
4797 
4798         if (error == 0 && off == 0 && len == 0)
4799                 vnevent_truncate(ZTOV(zp), ct);
4800 
4801         ZFS_EXIT(zfsvfs);
4802         return (error);
4803 }
4804 
4805 /*ARGSUSED*/
4806 static int
4807 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4808 {
4809         znode_t         *zp = VTOZ(vp);
4810         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4811         uint32_t        gen;
4812         uint64_t        gen64;
4813         uint64_t        object = zp->z_id;
4814         zfid_short_t    *zfid;
4815         int             size, i, error;
4816 
4817         ZFS_ENTER(zfsvfs);
4818         ZFS_VERIFY_ZP(zp);
4819 
4820         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4821             &gen64, sizeof (uint64_t))) != 0) {
4822                 ZFS_EXIT(zfsvfs);
4823                 return (error);
4824         }
4825 
4826         gen = (uint32_t)gen64;
4827 
4828         size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4829         if (fidp->fid_len < size) {
4830                 fidp->fid_len = size;
4831                 ZFS_EXIT(zfsvfs);
4832                 return (SET_ERROR(ENOSPC));
4833         }
4834 
4835         zfid = (zfid_short_t *)fidp;
4836 
4837         zfid->zf_len = size;
4838 
4839         for (i = 0; i < sizeof (zfid->zf_object); i++)
4840                 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4841 
4842         /* Must have a non-zero generation number to distinguish from .zfs */
4843         if (gen == 0)
4844                 gen = 1;
4845         for (i = 0; i < sizeof (zfid->zf_gen); i++)
4846                 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4847 
4848         if (size == LONG_FID_LEN) {
4849                 uint64_t        objsetid = dmu_objset_id(zfsvfs->z_os);
4850                 zfid_long_t     *zlfid;
4851 
4852                 zlfid = (zfid_long_t *)fidp;
4853 
4854                 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4855                         zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4856 
4857                 /* XXX - this should be the generation number for the objset */
4858                 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4859                         zlfid->zf_setgen[i] = 0;
4860         }
4861 
4862         ZFS_EXIT(zfsvfs);
4863         return (0);
4864 }
4865 
4866 static int
4867 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4868     caller_context_t *ct)
4869 {
4870         znode_t         *zp, *xzp;
4871         zfsvfs_t        *zfsvfs;
4872         zfs_dirlock_t   *dl;
4873         int             error;
4874 
4875         switch (cmd) {
4876         case _PC_LINK_MAX:
4877                 *valp = ULONG_MAX;
4878                 return (0);
4879 
4880         case _PC_FILESIZEBITS:
4881                 *valp = 64;
4882                 return (0);
4883 
4884         case _PC_XATTR_EXISTS:
4885                 zp = VTOZ(vp);
4886                 zfsvfs = zp->z_zfsvfs;
4887                 ZFS_ENTER(zfsvfs);
4888                 ZFS_VERIFY_ZP(zp);
4889                 *valp = 0;
4890                 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4891                     ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4892                 if (error == 0) {
4893                         zfs_dirent_unlock(dl);
4894                         if (!zfs_dirempty(xzp))
4895                                 *valp = 1;
4896                         VN_RELE(ZTOV(xzp));
4897                 } else if (error == ENOENT) {
4898                         /*
4899                          * If there aren't extended attributes, it's the
4900                          * same as having zero of them.
4901                          */
4902                         error = 0;
4903                 }
4904                 ZFS_EXIT(zfsvfs);
4905                 return (error);
4906 
4907         case _PC_SATTR_ENABLED:
4908         case _PC_SATTR_EXISTS:
4909                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4910                     (vp->v_type == VREG || vp->v_type == VDIR);
4911                 return (0);
4912 
4913         case _PC_ACCESS_FILTERING:
4914                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4915                     vp->v_type == VDIR;
4916                 return (0);
4917 
4918         case _PC_ACL_ENABLED:
4919                 *valp = _ACL_ACE_ENABLED;
4920                 return (0);
4921 
4922         case _PC_MIN_HOLE_SIZE:
4923                 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4924                 return (0);
4925 
4926         case _PC_TIMESTAMP_RESOLUTION:
4927                 /* nanosecond timestamp resolution */
4928                 *valp = 1L;
4929                 return (0);
4930 
4931         default:
4932                 return (fs_pathconf(vp, cmd, valp, cr, ct));
4933         }
4934 }
4935 
4936 /*ARGSUSED*/
4937 static int
4938 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4939     caller_context_t *ct)
4940 {
4941         znode_t *zp = VTOZ(vp);
4942         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4943         int error;
4944         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4945 
4946         ZFS_ENTER(zfsvfs);
4947         ZFS_VERIFY_ZP(zp);
4948         error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4949         ZFS_EXIT(zfsvfs);
4950 
4951         return (error);
4952 }
4953 
4954 /*ARGSUSED*/
4955 static int
4956 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4957     caller_context_t *ct)
4958 {
4959         znode_t *zp = VTOZ(vp);
4960         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4961         int error;
4962         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4963         zilog_t *zilog = zfsvfs->z_log;
4964 
4965         ZFS_ENTER(zfsvfs);
4966         ZFS_VERIFY_ZP(zp);
4967 
4968         error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4969 
4970         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4971                 zil_commit(zilog, 0);
4972 
4973         ZFS_EXIT(zfsvfs);
4974         return (error);
4975 }
4976 
4977 /*
4978  * The smallest read we may consider to loan out an arcbuf.
4979  * This must be a power of 2.
4980  */
4981 int zcr_blksz_min = (1 << 10);    /* 1K */
4982 /*
4983  * If set to less than the file block size, allow loaning out of an
4984  * arcbuf for a partial block read.  This must be a power of 2.
4985  */
4986 int zcr_blksz_max = (1 << 17);    /* 128K */
4987 
4988 /*ARGSUSED*/
4989 static int
4990 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4991     caller_context_t *ct)
4992 {
4993         znode_t *zp = VTOZ(vp);
4994         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4995         int max_blksz = zfsvfs->z_max_blksz;
4996         uio_t *uio = &xuio->xu_uio;
4997         ssize_t size = uio->uio_resid;
4998         offset_t offset = uio->uio_loffset;
4999         int blksz;
5000         int fullblk, i;
5001         arc_buf_t *abuf;
5002         ssize_t maxsize;
5003         int preamble, postamble;
5004 
5005         if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5006                 return (SET_ERROR(EINVAL));
5007 
5008         ZFS_ENTER(zfsvfs);
5009         ZFS_VERIFY_ZP(zp);
5010         switch (ioflag) {
5011         case UIO_WRITE:
5012                 /*
5013                  * Loan out an arc_buf for write if write size is bigger than
5014                  * max_blksz, and the file's block size is also max_blksz.
5015                  */
5016                 blksz = max_blksz;
5017                 if (size < blksz || zp->z_blksz != blksz) {
5018                         ZFS_EXIT(zfsvfs);
5019                         return (SET_ERROR(EINVAL));
5020                 }
5021                 /*
5022                  * Caller requests buffers for write before knowing where the
5023                  * write offset might be (e.g. NFS TCP write).
5024                  */
5025                 if (offset == -1) {
5026                         preamble = 0;
5027                 } else {
5028                         preamble = P2PHASE(offset, blksz);
5029                         if (preamble) {
5030                                 preamble = blksz - preamble;
5031                                 size -= preamble;
5032                         }
5033                 }
5034 
5035                 postamble = P2PHASE(size, blksz);
5036                 size -= postamble;
5037 
5038                 fullblk = size / blksz;
5039                 (void) dmu_xuio_init(xuio,
5040                     (preamble != 0) + fullblk + (postamble != 0));
5041                 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5042                     int, postamble, int,
5043                     (preamble != 0) + fullblk + (postamble != 0));
5044 
5045                 /*
5046                  * Have to fix iov base/len for partial buffers.  They
5047                  * currently represent full arc_buf's.
5048                  */
5049                 if (preamble) {
5050                         /* data begins in the middle of the arc_buf */
5051                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5052                             blksz);
5053                         ASSERT(abuf);
5054                         (void) dmu_xuio_add(xuio, abuf,
5055                             blksz - preamble, preamble);
5056                 }
5057 
5058                 for (i = 0; i < fullblk; i++) {
5059                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5060                             blksz);
5061                         ASSERT(abuf);
5062                         (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5063                 }
5064 
5065                 if (postamble) {
5066                         /* data ends in the middle of the arc_buf */
5067                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5068                             blksz);
5069                         ASSERT(abuf);
5070                         (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5071                 }
5072                 break;
5073         case UIO_READ:
5074                 /*
5075                  * Loan out an arc_buf for read if the read size is larger than
5076                  * the current file block size.  Block alignment is not
5077                  * considered.  Partial arc_buf will be loaned out for read.
5078                  */
5079                 blksz = zp->z_blksz;
5080                 if (blksz < zcr_blksz_min)
5081                         blksz = zcr_blksz_min;
5082                 if (blksz > zcr_blksz_max)
5083                         blksz = zcr_blksz_max;
5084                 /* avoid potential complexity of dealing with it */
5085                 if (blksz > max_blksz) {
5086                         ZFS_EXIT(zfsvfs);
5087                         return (SET_ERROR(EINVAL));
5088                 }
5089 
5090                 maxsize = zp->z_size - uio->uio_loffset;
5091                 if (size > maxsize)
5092                         size = maxsize;
5093 
5094                 if (size < blksz || vn_has_cached_data(vp)) {
5095                         ZFS_EXIT(zfsvfs);
5096                         return (SET_ERROR(EINVAL));
5097                 }
5098                 break;
5099         default:
5100                 ZFS_EXIT(zfsvfs);
5101                 return (SET_ERROR(EINVAL));
5102         }
5103 
5104         uio->uio_extflg = UIO_XUIO;
5105         XUIO_XUZC_RW(xuio) = ioflag;
5106         ZFS_EXIT(zfsvfs);
5107         return (0);
5108 }
5109 
5110 /*ARGSUSED*/
5111 static int
5112 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5113 {
5114         int i;
5115         arc_buf_t *abuf;
5116         int ioflag = XUIO_XUZC_RW(xuio);
5117 
5118         ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5119 
5120         i = dmu_xuio_cnt(xuio);
5121         while (i-- > 0) {
5122                 abuf = dmu_xuio_arcbuf(xuio, i);
5123                 /*
5124                  * if abuf == NULL, it must be a write buffer
5125                  * that has been returned in zfs_write().
5126                  */
5127                 if (abuf)
5128                         dmu_return_arcbuf(abuf);
5129                 ASSERT(abuf || ioflag == UIO_WRITE);
5130         }
5131 
5132         dmu_xuio_fini(xuio);
5133         return (0);
5134 }
5135 
5136 /*
5137  * Predeclare these here so that the compiler assumes that
5138  * this is an "old style" function declaration that does
5139  * not include arguments => we won't get type mismatch errors
5140  * in the initializations that follow.
5141  */
5142 static int zfs_inval();
5143 static int zfs_isdir();
5144 
5145 static int
5146 zfs_inval()
5147 {
5148         return (SET_ERROR(EINVAL));
5149 }
5150 
5151 static int
5152 zfs_isdir()
5153 {
5154         return (SET_ERROR(EISDIR));
5155 }
5156 /*
5157  * Directory vnode operations template
5158  */
5159 vnodeops_t *zfs_dvnodeops;
5160 const fs_operation_def_t zfs_dvnodeops_template[] = {
5161         VOPNAME_OPEN,           { .vop_open = zfs_open },
5162         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5163         VOPNAME_READ,           { .error = zfs_isdir },
5164         VOPNAME_WRITE,          { .error = zfs_isdir },
5165         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5166         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5167         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5168         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5169         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5170         VOPNAME_CREATE,         { .vop_create = zfs_create },
5171         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5172         VOPNAME_LINK,           { .vop_link = zfs_link },
5173         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5174         VOPNAME_MKDIR,          { .vop_mkdir = zfs_mkdir },
5175         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5176         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5177         VOPNAME_SYMLINK,        { .vop_symlink = zfs_symlink },
5178         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5179         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5180         VOPNAME_FID,            { .vop_fid = zfs_fid },
5181         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5182         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5183         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5184         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5185         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5186         NULL,                   NULL
5187 };
5188 
5189 /*
5190  * Regular file vnode operations template
5191  */
5192 vnodeops_t *zfs_fvnodeops;
5193 const fs_operation_def_t zfs_fvnodeops_template[] = {
5194         VOPNAME_OPEN,           { .vop_open = zfs_open },
5195         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5196         VOPNAME_READ,           { .vop_read = zfs_read },
5197         VOPNAME_WRITE,          { .vop_write = zfs_write },
5198         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5199         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5200         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5201         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5202         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5203         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5204         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5205         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5206         VOPNAME_FID,            { .vop_fid = zfs_fid },
5207         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5208         VOPNAME_FRLOCK,         { .vop_frlock = zfs_frlock },
5209         VOPNAME_SPACE,          { .vop_space = zfs_space },
5210         VOPNAME_GETPAGE,        { .vop_getpage = zfs_getpage },
5211         VOPNAME_PUTPAGE,        { .vop_putpage = zfs_putpage },
5212         VOPNAME_MAP,            { .vop_map = zfs_map },
5213         VOPNAME_ADDMAP,         { .vop_addmap = zfs_addmap },
5214         VOPNAME_DELMAP,         { .vop_delmap = zfs_delmap },
5215         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5216         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5217         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5218         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5219         VOPNAME_REQZCBUF,       { .vop_reqzcbuf = zfs_reqzcbuf },
5220         VOPNAME_RETZCBUF,       { .vop_retzcbuf = zfs_retzcbuf },
5221         NULL,                   NULL
5222 };
5223 
5224 /*
5225  * Symbolic link vnode operations template
5226  */
5227 vnodeops_t *zfs_symvnodeops;
5228 const fs_operation_def_t zfs_symvnodeops_template[] = {
5229         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5230         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5231         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5232         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5233         VOPNAME_READLINK,       { .vop_readlink = zfs_readlink },
5234         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5235         VOPNAME_FID,            { .vop_fid = zfs_fid },
5236         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5237         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5238         NULL,                   NULL
5239 };
5240 
5241 /*
5242  * special share hidden files vnode operations template
5243  */
5244 vnodeops_t *zfs_sharevnodeops;
5245 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5246         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5247         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5248         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5249         VOPNAME_FID,            { .vop_fid = zfs_fid },
5250         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5251         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5252         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5253         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5254         NULL,                   NULL
5255 };
5256 
5257 /*
5258  * Extended attribute directory vnode operations template
5259  *
5260  * This template is identical to the directory vnodes
5261  * operation template except for restricted operations:
5262  *      VOP_MKDIR()
5263  *      VOP_SYMLINK()
5264  *
5265  * Note that there are other restrictions embedded in:
5266  *      zfs_create()    - restrict type to VREG
5267  *      zfs_link()      - no links into/out of attribute space
5268  *      zfs_rename()    - no moves into/out of attribute space
5269  */
5270 vnodeops_t *zfs_xdvnodeops;
5271 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5272         VOPNAME_OPEN,           { .vop_open = zfs_open },
5273         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5274         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5275         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5276         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5277         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5278         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5279         VOPNAME_CREATE,         { .vop_create = zfs_create },
5280         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5281         VOPNAME_LINK,           { .vop_link = zfs_link },
5282         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5283         VOPNAME_MKDIR,          { .error = zfs_inval },
5284         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5285         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5286         VOPNAME_SYMLINK,        { .error = zfs_inval },
5287         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5288         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5289         VOPNAME_FID,            { .vop_fid = zfs_fid },
5290         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5291         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5292         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5293         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5294         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5295         NULL,                   NULL
5296 };
5297 
5298 /*
5299  * Error vnode operations template
5300  */
5301 vnodeops_t *zfs_evnodeops;
5302 const fs_operation_def_t zfs_evnodeops_template[] = {
5303         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5304         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5305         NULL,                   NULL
5306 };