Print this page
Possibility to physically reserve space without writing leaf blocks
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/sys/dmu.h
+++ new/usr/src/uts/common/fs/zfs/sys/dmu.h
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 27 * Copyright 2013 DEY Storage Systems, Inc.
28 28 * Copyright 2014 HybridCluster. All rights reserved.
29 29 */
30 30
31 31 /* Portions Copyright 2010 Robert Milkowski */
32 32
33 33 #ifndef _SYS_DMU_H
34 34 #define _SYS_DMU_H
35 35
36 36 /*
37 37 * This file describes the interface that the DMU provides for its
38 38 * consumers.
39 39 *
40 40 * The DMU also interacts with the SPA. That interface is described in
41 41 * dmu_spa.h.
42 42 */
43 43
44 44 #include <sys/inttypes.h>
45 45 #include <sys/types.h>
46 46 #include <sys/param.h>
47 47 #include <sys/cred.h>
48 48 #include <sys/time.h>
49 49 #include <sys/fs/zfs.h>
50 50
51 51 #ifdef __cplusplus
52 52 extern "C" {
53 53 #endif
54 54
55 55 struct uio;
56 56 struct xuio;
57 57 struct page;
58 58 struct vnode;
59 59 struct spa;
60 60 struct zilog;
61 61 struct zio;
62 62 struct blkptr;
63 63 struct zap_cursor;
64 64 struct dsl_dataset;
65 65 struct dsl_pool;
66 66 struct dnode;
67 67 struct drr_begin;
68 68 struct drr_end;
69 69 struct zbookmark_phys;
70 70 struct spa;
71 71 struct nvlist;
72 72 struct arc_buf;
73 73 struct zio_prop;
74 74 struct sa_handle;
75 75
76 76 typedef struct objset objset_t;
77 77 typedef struct dmu_tx dmu_tx_t;
78 78 typedef struct dsl_dir dsl_dir_t;
79 79
80 80 typedef enum dmu_object_byteswap {
81 81 DMU_BSWAP_UINT8,
82 82 DMU_BSWAP_UINT16,
83 83 DMU_BSWAP_UINT32,
84 84 DMU_BSWAP_UINT64,
85 85 DMU_BSWAP_ZAP,
86 86 DMU_BSWAP_DNODE,
87 87 DMU_BSWAP_OBJSET,
88 88 DMU_BSWAP_ZNODE,
89 89 DMU_BSWAP_OLDACL,
90 90 DMU_BSWAP_ACL,
91 91 /*
92 92 * Allocating a new byteswap type number makes the on-disk format
93 93 * incompatible with any other format that uses the same number.
94 94 *
95 95 * Data can usually be structured to work with one of the
96 96 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
97 97 */
98 98 DMU_BSWAP_NUMFUNCS
99 99 } dmu_object_byteswap_t;
100 100
101 101 #define DMU_OT_NEWTYPE 0x80
102 102 #define DMU_OT_METADATA 0x40
103 103 #define DMU_OT_BYTESWAP_MASK 0x3f
104 104
105 105 /*
106 106 * Defines a uint8_t object type. Object types specify if the data
107 107 * in the object is metadata (boolean) and how to byteswap the data
108 108 * (dmu_object_byteswap_t).
109 109 */
110 110 #define DMU_OT(byteswap, metadata) \
111 111 (DMU_OT_NEWTYPE | \
112 112 ((metadata) ? DMU_OT_METADATA : 0) | \
113 113 ((byteswap) & DMU_OT_BYTESWAP_MASK))
114 114
115 115 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
116 116 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
117 117 (ot) < DMU_OT_NUMTYPES)
118 118
119 119 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
120 120 ((ot) & DMU_OT_METADATA) : \
121 121 dmu_ot[(ot)].ot_metadata)
122 122
123 123 /*
124 124 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
125 125 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
126 126 * is repurposed for embedded BPs.
127 127 */
128 128 #define DMU_OT_HAS_FILL(ot) \
129 129 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
130 130
131 131 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
132 132 ((ot) & DMU_OT_BYTESWAP_MASK) : \
133 133 dmu_ot[(ot)].ot_byteswap)
134 134
135 135 typedef enum dmu_object_type {
136 136 DMU_OT_NONE,
137 137 /* general: */
138 138 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
139 139 DMU_OT_OBJECT_ARRAY, /* UINT64 */
140 140 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
141 141 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
142 142 DMU_OT_BPOBJ, /* UINT64 */
143 143 DMU_OT_BPOBJ_HDR, /* UINT64 */
144 144 /* spa: */
145 145 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
146 146 DMU_OT_SPACE_MAP, /* UINT64 */
147 147 /* zil: */
148 148 DMU_OT_INTENT_LOG, /* UINT64 */
149 149 /* dmu: */
150 150 DMU_OT_DNODE, /* DNODE */
151 151 DMU_OT_OBJSET, /* OBJSET */
152 152 /* dsl: */
153 153 DMU_OT_DSL_DIR, /* UINT64 */
154 154 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
155 155 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
156 156 DMU_OT_DSL_PROPS, /* ZAP */
157 157 DMU_OT_DSL_DATASET, /* UINT64 */
158 158 /* zpl: */
159 159 DMU_OT_ZNODE, /* ZNODE */
160 160 DMU_OT_OLDACL, /* Old ACL */
161 161 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
162 162 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
163 163 DMU_OT_MASTER_NODE, /* ZAP */
164 164 DMU_OT_UNLINKED_SET, /* ZAP */
165 165 /* zvol: */
166 166 DMU_OT_ZVOL, /* UINT8 */
167 167 DMU_OT_ZVOL_PROP, /* ZAP */
168 168 /* other; for testing only! */
169 169 DMU_OT_PLAIN_OTHER, /* UINT8 */
170 170 DMU_OT_UINT64_OTHER, /* UINT64 */
171 171 DMU_OT_ZAP_OTHER, /* ZAP */
172 172 /* new object types: */
173 173 DMU_OT_ERROR_LOG, /* ZAP */
174 174 DMU_OT_SPA_HISTORY, /* UINT8 */
175 175 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
176 176 DMU_OT_POOL_PROPS, /* ZAP */
177 177 DMU_OT_DSL_PERMS, /* ZAP */
178 178 DMU_OT_ACL, /* ACL */
179 179 DMU_OT_SYSACL, /* SYSACL */
180 180 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
181 181 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
182 182 DMU_OT_NEXT_CLONES, /* ZAP */
183 183 DMU_OT_SCAN_QUEUE, /* ZAP */
184 184 DMU_OT_USERGROUP_USED, /* ZAP */
185 185 DMU_OT_USERGROUP_QUOTA, /* ZAP */
186 186 DMU_OT_USERREFS, /* ZAP */
187 187 DMU_OT_DDT_ZAP, /* ZAP */
188 188 DMU_OT_DDT_STATS, /* ZAP */
189 189 DMU_OT_SA, /* System attr */
190 190 DMU_OT_SA_MASTER_NODE, /* ZAP */
191 191 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
192 192 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
193 193 DMU_OT_SCAN_XLATE, /* ZAP */
194 194 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
195 195 DMU_OT_DEADLIST, /* ZAP */
196 196 DMU_OT_DEADLIST_HDR, /* UINT64 */
197 197 DMU_OT_DSL_CLONES, /* ZAP */
198 198 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
199 199 /*
200 200 * Do not allocate new object types here. Doing so makes the on-disk
201 201 * format incompatible with any other format that uses the same object
202 202 * type number.
203 203 *
204 204 * When creating an object which does not have one of the above types
205 205 * use the DMU_OTN_* type with the correct byteswap and metadata
206 206 * values.
207 207 *
208 208 * The DMU_OTN_* types do not have entries in the dmu_ot table,
209 209 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
210 210 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
211 211 * and DMU_OTN_* types).
212 212 */
213 213 DMU_OT_NUMTYPES,
214 214
215 215 /*
216 216 * Names for valid types declared with DMU_OT().
217 217 */
218 218 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
219 219 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
220 220 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
221 221 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
222 222 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
223 223 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
224 224 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
225 225 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
226 226 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
227 227 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
228 228 } dmu_object_type_t;
229 229
230 230 typedef enum txg_how {
231 231 TXG_WAIT = 1,
232 232 TXG_NOWAIT,
233 233 TXG_WAITED,
234 234 } txg_how_t;
235 235
236 236 void byteswap_uint64_array(void *buf, size_t size);
237 237 void byteswap_uint32_array(void *buf, size_t size);
238 238 void byteswap_uint16_array(void *buf, size_t size);
239 239 void byteswap_uint8_array(void *buf, size_t size);
240 240 void zap_byteswap(void *buf, size_t size);
241 241 void zfs_oldacl_byteswap(void *buf, size_t size);
242 242 void zfs_acl_byteswap(void *buf, size_t size);
243 243 void zfs_znode_byteswap(void *buf, size_t size);
244 244
245 245 #define DS_FIND_SNAPSHOTS (1<<0)
246 246 #define DS_FIND_CHILDREN (1<<1)
247 247
248 248 /*
249 249 * The maximum number of bytes that can be accessed as part of one
250 250 * operation, including metadata.
251 251 */
252 252 #define DMU_MAX_ACCESS (10<<20) /* 10MB */
253 253 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
254 254
255 255 #define DMU_USERUSED_OBJECT (-1ULL)
256 256 #define DMU_GROUPUSED_OBJECT (-2ULL)
257 257
258 258 /*
259 259 * artificial blkids for bonus buffer and spill blocks
260 260 */
261 261 #define DMU_BONUS_BLKID (-1ULL)
262 262 #define DMU_SPILL_BLKID (-2ULL)
263 263 /*
264 264 * Public routines to create, destroy, open, and close objsets.
265 265 */
266 266 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
267 267 int dmu_objset_own(const char *name, dmu_objset_type_t type,
268 268 boolean_t readonly, void *tag, objset_t **osp);
269 269 void dmu_objset_rele(objset_t *os, void *tag);
270 270 void dmu_objset_disown(objset_t *os, void *tag);
271 271 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
272 272
273 273 void dmu_objset_evict_dbufs(objset_t *os);
274 274 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
275 275 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
276 276 int dmu_objset_clone(const char *name, const char *origin);
277 277 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
278 278 struct nvlist *errlist);
279 279 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
280 280 int dmu_objset_snapshot_tmp(const char *, const char *, int);
281 281 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
282 282 int flags);
283 283 void dmu_objset_byteswap(void *buf, size_t size);
284 284 int dsl_dataset_rename_snapshot(const char *fsname,
285 285 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
286 286
287 287 typedef struct dmu_buf {
288 288 uint64_t db_object; /* object that this buffer is part of */
289 289 uint64_t db_offset; /* byte offset in this object */
290 290 uint64_t db_size; /* size of buffer in bytes */
291 291 void *db_data; /* data in buffer */
292 292 } dmu_buf_t;
293 293
294 294 typedef void dmu_buf_evict_func_t(struct dmu_buf *db, void *user_ptr);
295 295
296 296 /*
297 297 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
298 298 */
299 299 #define DMU_POOL_DIRECTORY_OBJECT 1
300 300 #define DMU_POOL_CONFIG "config"
301 301 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
302 302 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
303 303 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
304 304 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
305 305 #define DMU_POOL_ROOT_DATASET "root_dataset"
306 306 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
307 307 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
308 308 #define DMU_POOL_ERRLOG_LAST "errlog_last"
309 309 #define DMU_POOL_SPARES "spares"
310 310 #define DMU_POOL_DEFLATE "deflate"
311 311 #define DMU_POOL_HISTORY "history"
312 312 #define DMU_POOL_PROPS "pool_props"
313 313 #define DMU_POOL_L2CACHE "l2cache"
314 314 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
315 315 #define DMU_POOL_DDT "DDT-%s-%s-%s"
316 316 #define DMU_POOL_DDT_STATS "DDT-statistics"
317 317 #define DMU_POOL_CREATION_VERSION "creation_version"
318 318 #define DMU_POOL_SCAN "scan"
319 319 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
320 320 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
321 321 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
322 322
323 323 /*
324 324 * Allocate an object from this objset. The range of object numbers
325 325 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
326 326 *
327 327 * The transaction must be assigned to a txg. The newly allocated
328 328 * object will be "held" in the transaction (ie. you can modify the
329 329 * newly allocated object in this transaction).
330 330 *
331 331 * dmu_object_alloc() chooses an object and returns it in *objectp.
332 332 *
333 333 * dmu_object_claim() allocates a specific object number. If that
334 334 * number is already allocated, it fails and returns EEXIST.
335 335 *
336 336 * Return 0 on success, or ENOSPC or EEXIST as specified above.
337 337 */
338 338 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
339 339 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
340 340 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
341 341 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
342 342 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
343 343 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
344 344
345 345 /*
346 346 * Free an object from this objset.
347 347 *
348 348 * The object's data will be freed as well (ie. you don't need to call
349 349 * dmu_free(object, 0, -1, tx)).
350 350 *
351 351 * The object need not be held in the transaction.
352 352 *
353 353 * If there are any holds on this object's buffers (via dmu_buf_hold()),
354 354 * or tx holds on the object (via dmu_tx_hold_object()), you can not
355 355 * free it; it fails and returns EBUSY.
356 356 *
357 357 * If the object is not allocated, it fails and returns ENOENT.
358 358 *
359 359 * Return 0 on success, or EBUSY or ENOENT as specified above.
360 360 */
361 361 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
362 362
363 363 /*
364 364 * Find the next allocated or free object.
365 365 *
366 366 * The objectp parameter is in-out. It will be updated to be the next
367 367 * object which is allocated. Ignore objects which have not been
368 368 * modified since txg.
369 369 *
370 370 * XXX Can only be called on a objset with no dirty data.
371 371 *
372 372 * Returns 0 on success, or ENOENT if there are no more objects.
373 373 */
374 374 int dmu_object_next(objset_t *os, uint64_t *objectp,
375 375 boolean_t hole, uint64_t txg);
376 376
377 377 /*
378 378 * Set the data blocksize for an object.
379 379 *
380 380 * The object cannot have any blocks allcated beyond the first. If
381 381 * the first block is allocated already, the new size must be greater
382 382 * than the current block size. If these conditions are not met,
383 383 * ENOTSUP will be returned.
384 384 *
385 385 * Returns 0 on success, or EBUSY if there are any holds on the object
386 386 * contents, or ENOTSUP as described above.
387 387 */
388 388 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
389 389 int ibs, dmu_tx_t *tx);
390 390
391 391 /*
392 392 * Set the checksum property on a dnode. The new checksum algorithm will
393 393 * apply to all newly written blocks; existing blocks will not be affected.
394 394 */
395 395 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
396 396 dmu_tx_t *tx);
397 397
398 398 /*
399 399 * Set the compress property on a dnode. The new compression algorithm will
400 400 * apply to all newly written blocks; existing blocks will not be affected.
401 401 */
402 402 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
403 403 dmu_tx_t *tx);
404 404
405 405 void
406 406 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
407 407 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
408 408 int compressed_size, int byteorder, dmu_tx_t *tx);
409 409
410 410 /*
411 411 * Decide how to write a block: checksum, compression, number of copies, etc.
412 412 */
413 413 #define WP_NOFILL 0x1
414 414 #define WP_DMU_SYNC 0x2
415 415 #define WP_SPILL 0x4
416 416
417 417 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
418 418 struct zio_prop *zp);
419 419 /*
420 420 * The bonus data is accessed more or less like a regular buffer.
421 421 * You must dmu_bonus_hold() to get the buffer, which will give you a
422 422 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
423 423 * data. As with any normal buffer, you must call dmu_buf_read() to
424 424 * read db_data, dmu_buf_will_dirty() before modifying it, and the
425 425 * object must be held in an assigned transaction before calling
426 426 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
427 427 * buffer as well. You must release your hold with dmu_buf_rele().
428 428 *
429 429 * Returns ENOENT, EIO, or 0.
430 430 */
431 431 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
432 432 int dmu_bonus_max(void);
433 433 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
434 434 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
435 435 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
436 436 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
437 437
438 438 /*
439 439 * Special spill buffer support used by "SA" framework
440 440 */
441 441
442 442 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
443 443 int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
444 444 void *tag, dmu_buf_t **dbp);
445 445 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
446 446
447 447 /*
448 448 * Obtain the DMU buffer from the specified object which contains the
449 449 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
450 450 * that it will remain in memory. You must release the hold with
451 451 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your
452 452 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
453 453 *
454 454 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
455 455 * on the returned buffer before reading or writing the buffer's
456 456 * db_data. The comments for those routines describe what particular
457 457 * operations are valid after calling them.
458 458 *
459 459 * The object number must be a valid, allocated object number.
460 460 */
461 461 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
462 462 void *tag, dmu_buf_t **, int flags);
463 463 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
464 464 void dmu_buf_rele(dmu_buf_t *db, void *tag);
465 465 uint64_t dmu_buf_refcount(dmu_buf_t *db);
466 466
467 467 /*
468 468 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
469 469 * range of an object. A pointer to an array of dmu_buf_t*'s is
470 470 * returned (in *dbpp).
471 471 *
472 472 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
473 473 * frees the array. The hold on the array of buffers MUST be released
474 474 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
475 475 * individually with dmu_buf_rele.
476 476 */
477 477 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
478 478 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);
479 479 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
480 480
481 481 /*
482 482 * Returns NULL on success, or the existing user ptr if it's already
483 483 * been set.
484 484 *
485 485 * user_ptr is for use by the user and can be obtained via dmu_buf_get_user().
486 486 *
487 487 * user_data_ptr_ptr should be NULL, or a pointer to a pointer which
488 488 * will be set to db->db_data when you are allowed to access it. Note
489 489 * that db->db_data (the pointer) can change when you do dmu_buf_read(),
490 490 * dmu_buf_tryupgrade(), dmu_buf_will_dirty(), or dmu_buf_will_fill().
491 491 * *user_data_ptr_ptr will be set to the new value when it changes.
492 492 *
493 493 * If non-NULL, pageout func will be called when this buffer is being
494 494 * excised from the cache, so that you can clean up the data structure
495 495 * pointed to by user_ptr.
496 496 *
497 497 * dmu_evict_user() will call the pageout func for all buffers in a
498 498 * objset with a given pageout func.
499 499 */
500 500 void *dmu_buf_set_user(dmu_buf_t *db, void *user_ptr, void *user_data_ptr_ptr,
501 501 dmu_buf_evict_func_t *pageout_func);
502 502 /*
503 503 * set_user_ie is the same as set_user, but request immediate eviction
504 504 * when hold count goes to zero.
505 505 */
506 506 void *dmu_buf_set_user_ie(dmu_buf_t *db, void *user_ptr,
507 507 void *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func);
508 508 void *dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr,
509 509 void *user_ptr, void *user_data_ptr_ptr,
510 510 dmu_buf_evict_func_t *pageout_func);
511 511 void dmu_evict_user(objset_t *os, dmu_buf_evict_func_t *func);
512 512
513 513 /*
514 514 * Returns the user_ptr set with dmu_buf_set_user(), or NULL if not set.
515 515 */
516 516 void *dmu_buf_get_user(dmu_buf_t *db);
517 517
518 518 /*
519 519 * Returns the blkptr associated with this dbuf, or NULL if not set.
520 520 */
521 521 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
522 522
523 523 /*
524 524 * Indicate that you are going to modify the buffer's data (db_data).
525 525 *
526 526 * The transaction (tx) must be assigned to a txg (ie. you've called
527 527 * dmu_tx_assign()). The buffer's object must be held in the tx
528 528 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
529 529 */
530 530 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
531 531
532 532 /*
533 533 * Tells if the given dbuf is freeable.
534 534 */
535 535 boolean_t dmu_buf_freeable(dmu_buf_t *);
536 536
537 537 /*
538 538 * You must create a transaction, then hold the objects which you will
539 539 * (or might) modify as part of this transaction. Then you must assign
540 540 * the transaction to a transaction group. Once the transaction has
541 541 * been assigned, you can modify buffers which belong to held objects as
542 542 * part of this transaction. You can't modify buffers before the
543 543 * transaction has been assigned; you can't modify buffers which don't
544 544 * belong to objects which this transaction holds; you can't hold
545 545 * objects once the transaction has been assigned. You may hold an
546 546 * object which you are going to free (with dmu_object_free()), but you
547 547 * don't have to.
548 548 *
549 549 * You can abort the transaction before it has been assigned.
550 550 *
551 551 * Note that you may hold buffers (with dmu_buf_hold) at any time,
552 552 * regardless of transaction state.
553 553 */
554 554
555 555 #define DMU_NEW_OBJECT (-1ULL)
556 556 #define DMU_OBJECT_END (-1ULL)
557 557
558 558 dmu_tx_t *dmu_tx_create(objset_t *os);
559 559 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
560 560 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
561 561 uint64_t len);
562 562 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
563 563 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
564 564 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
565 565 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
566 566 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
567 567 void dmu_tx_abort(dmu_tx_t *tx);
568 568 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
569 569 void dmu_tx_wait(dmu_tx_t *tx);
570 570 void dmu_tx_commit(dmu_tx_t *tx);
571 571 void dmu_tx_mark_netfree(dmu_tx_t *tx);
572 572
573 573 /*
574 574 * To register a commit callback, dmu_tx_callback_register() must be called.
575 575 *
576 576 * dcb_data is a pointer to caller private data that is passed on as a
577 577 * callback parameter. The caller is responsible for properly allocating and
578 578 * freeing it.
579 579 *
580 580 * When registering a callback, the transaction must be already created, but
581 581 * it cannot be committed or aborted. It can be assigned to a txg or not.
582 582 *
583 583 * The callback will be called after the transaction has been safely written
584 584 * to stable storage and will also be called if the dmu_tx is aborted.
585 585 * If there is any error which prevents the transaction from being committed to
586 586 * disk, the callback will be called with a value of error != 0.
587 587 */
588 588 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
589 589
590 590 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
591 591 void *dcb_data);
592 592
593 593 /*
594 594 * Free up the data blocks for a defined range of a file. If size is
595 595 * -1, the range from offset to end-of-file is freed.
596 596 */
597 597 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
598 598 uint64_t size, dmu_tx_t *tx);
599 599 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
600 600 uint64_t size);
601 601 int dmu_free_long_object(objset_t *os, uint64_t object);
602 602
603 603 /*
604 604 * Convenience functions.
↓ open down ↓ |
604 lines elided |
↑ open up ↑ |
605 605 *
606 606 * Canfail routines will return 0 on success, or an errno if there is a
607 607 * nonrecoverable I/O error.
608 608 */
609 609 #define DMU_READ_PREFETCH 0 /* prefetch */
610 610 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
611 611 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
612 612 void *buf, uint32_t flags);
613 613 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
614 614 const void *buf, dmu_tx_t *tx);
615 +void dmu_write_zero(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx);
615 616 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
616 617 dmu_tx_t *tx);
617 618 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
618 619 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
619 620 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
620 621 dmu_tx_t *tx);
621 622 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
622 623 dmu_tx_t *tx);
623 624 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
624 625 uint64_t size, struct page *pp, dmu_tx_t *tx);
625 626 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
626 627 void dmu_return_arcbuf(struct arc_buf *buf);
627 628 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
628 629 dmu_tx_t *tx);
629 630 int dmu_xuio_init(struct xuio *uio, int niov);
630 631 void dmu_xuio_fini(struct xuio *uio);
631 632 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
632 633 size_t n);
633 634 int dmu_xuio_cnt(struct xuio *uio);
634 635 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
635 636 void dmu_xuio_clear(struct xuio *uio, int i);
636 637 void xuio_stat_wbuf_copied();
637 638 void xuio_stat_wbuf_nocopy();
638 639
639 640 extern int zfs_prefetch_disable;
640 641
641 642 /*
642 643 * Asynchronously try to read in the data.
643 644 */
644 645 void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
645 646 uint64_t len);
646 647
647 648 typedef struct dmu_object_info {
648 649 /* All sizes are in bytes unless otherwise indicated. */
649 650 uint32_t doi_data_block_size;
650 651 uint32_t doi_metadata_block_size;
651 652 dmu_object_type_t doi_type;
652 653 dmu_object_type_t doi_bonus_type;
653 654 uint64_t doi_bonus_size;
654 655 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
655 656 uint8_t doi_checksum;
656 657 uint8_t doi_compress;
657 658 uint8_t doi_nblkptr;
658 659 uint8_t doi_pad[4];
659 660 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
660 661 uint64_t doi_max_offset;
661 662 uint64_t doi_fill_count; /* number of non-empty blocks */
662 663 } dmu_object_info_t;
663 664
664 665 typedef void arc_byteswap_func_t(void *buf, size_t size);
665 666
666 667 typedef struct dmu_object_type_info {
667 668 dmu_object_byteswap_t ot_byteswap;
668 669 boolean_t ot_metadata;
669 670 char *ot_name;
670 671 } dmu_object_type_info_t;
671 672
672 673 typedef struct dmu_object_byteswap_info {
673 674 arc_byteswap_func_t *ob_func;
674 675 char *ob_name;
675 676 } dmu_object_byteswap_info_t;
676 677
677 678 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
678 679 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
679 680
680 681 /*
681 682 * Get information on a DMU object.
682 683 *
683 684 * Return 0 on success or ENOENT if object is not allocated.
684 685 *
685 686 * If doi is NULL, just indicates whether the object exists.
686 687 */
687 688 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
688 689 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
689 690 void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
690 691 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
691 692 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
692 693 /*
693 694 * Like dmu_object_info_from_db, but faster still when you only care about
694 695 * the size. This is specifically optimized for zfs_getattr().
695 696 */
696 697 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
697 698 u_longlong_t *nblk512);
698 699
699 700 typedef struct dmu_objset_stats {
700 701 uint64_t dds_num_clones; /* number of clones of this */
701 702 uint64_t dds_creation_txg;
702 703 uint64_t dds_guid;
703 704 dmu_objset_type_t dds_type;
704 705 uint8_t dds_is_snapshot;
705 706 uint8_t dds_inconsistent;
706 707 char dds_origin[MAXNAMELEN];
707 708 } dmu_objset_stats_t;
708 709
709 710 /*
710 711 * Get stats on a dataset.
711 712 */
712 713 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
713 714
714 715 /*
715 716 * Add entries to the nvlist for all the objset's properties. See
716 717 * zfs_prop_table[] and zfs(1m) for details on the properties.
717 718 */
718 719 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
719 720
720 721 /*
721 722 * Get the space usage statistics for statvfs().
722 723 *
723 724 * refdbytes is the amount of space "referenced" by this objset.
724 725 * availbytes is the amount of space available to this objset, taking
725 726 * into account quotas & reservations, assuming that no other objsets
726 727 * use the space first. These values correspond to the 'referenced' and
727 728 * 'available' properties, described in the zfs(1m) manpage.
728 729 *
729 730 * usedobjs and availobjs are the number of objects currently allocated,
730 731 * and available.
731 732 */
732 733 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
733 734 uint64_t *usedobjsp, uint64_t *availobjsp);
734 735
735 736 /*
736 737 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
737 738 * (Contrast with the ds_guid which is a 64-bit ID that will never
738 739 * change, so there is a small probability that it will collide.)
739 740 */
740 741 uint64_t dmu_objset_fsid_guid(objset_t *os);
741 742
742 743 /*
743 744 * Get the [cm]time for an objset's snapshot dir
744 745 */
745 746 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
746 747
747 748 int dmu_objset_is_snapshot(objset_t *os);
748 749
749 750 extern struct spa *dmu_objset_spa(objset_t *os);
750 751 extern struct zilog *dmu_objset_zil(objset_t *os);
751 752 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
752 753 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
753 754 extern void dmu_objset_name(objset_t *os, char *buf);
754 755 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
755 756 extern uint64_t dmu_objset_id(objset_t *os);
756 757 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
757 758 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
758 759 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
759 760 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
760 761 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
761 762 int maxlen, boolean_t *conflict);
762 763 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
763 764 uint64_t *idp, uint64_t *offp);
764 765
765 766 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
766 767 void *bonus, uint64_t *userp, uint64_t *groupp);
767 768 extern void dmu_objset_register_type(dmu_objset_type_t ost,
768 769 objset_used_cb_t *cb);
769 770 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
770 771 extern void *dmu_objset_get_user(objset_t *os);
771 772
772 773 /*
773 774 * Return the txg number for the given assigned transaction.
774 775 */
775 776 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
776 777
777 778 /*
778 779 * Synchronous write.
779 780 * If a parent zio is provided this function initiates a write on the
780 781 * provided buffer as a child of the parent zio.
781 782 * In the absence of a parent zio, the write is completed synchronously.
782 783 * At write completion, blk is filled with the bp of the written block.
783 784 * Note that while the data covered by this function will be on stable
784 785 * storage when the write completes this new data does not become a
785 786 * permanent part of the file until the associated transaction commits.
786 787 */
787 788
788 789 /*
789 790 * {zfs,zvol,ztest}_get_done() args
790 791 */
791 792 typedef struct zgd {
792 793 struct zilog *zgd_zilog;
793 794 struct blkptr *zgd_bp;
794 795 dmu_buf_t *zgd_db;
795 796 struct rl *zgd_rl;
796 797 void *zgd_private;
797 798 } zgd_t;
798 799
799 800 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
800 801 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
801 802
802 803 /*
803 804 * Find the next hole or data block in file starting at *off
804 805 * Return found offset in *off. Return ESRCH for end of file.
805 806 */
806 807 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
807 808 uint64_t *off);
808 809
809 810 /*
810 811 * Initial setup and final teardown.
811 812 */
812 813 extern void dmu_init(void);
813 814 extern void dmu_fini(void);
814 815
815 816 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
816 817 uint64_t object, uint64_t offset, int len);
817 818 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
818 819 dmu_traverse_cb_t cb, void *arg);
819 820
820 821 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
821 822 struct vnode *vp, offset_t *offp);
822 823
823 824 /* CRC64 table */
824 825 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
825 826 extern uint64_t zfs_crc64_table[256];
826 827
827 828 extern int zfs_mdcomp_disable;
828 829
829 830 #ifdef __cplusplus
830 831 }
831 832 #endif
832 833
833 834 #endif /* _SYS_DMU_H */
↓ open down ↓ |
209 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX