1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/dbuf.h> 28 #include <sys/dnode.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/spa.h> 36 #include <sys/zio.h> 37 #include <sys/dmu_zfetch.h> 38 #include <sys/range_tree.h> 39 40 static kmem_cache_t *dnode_cache; 41 /* 42 * Define DNODE_STATS to turn on statistic gathering. By default, it is only 43 * turned on when DEBUG is also defined. 44 */ 45 #ifdef DEBUG 46 #define DNODE_STATS 47 #endif /* DEBUG */ 48 49 #ifdef DNODE_STATS 50 #define DNODE_STAT_ADD(stat) ((stat)++) 51 #else 52 #define DNODE_STAT_ADD(stat) /* nothing */ 53 #endif /* DNODE_STATS */ 54 55 static dnode_phys_t dnode_phys_zero; 56 57 int zfs_default_bs = SPA_MINBLOCKSHIFT; 58 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 59 60 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 61 62 static int 63 dbuf_compare(const void *x1, const void *x2) 64 { 65 const dmu_buf_impl_t *d1 = x1; 66 const dmu_buf_impl_t *d2 = x2; 67 68 if (d1->db_level < d2->db_level) { 69 return (-1); 70 } 71 if (d1->db_level > d2->db_level) { 72 return (1); 73 } 74 75 if (d1->db_blkid < d2->db_blkid) { 76 return (-1); 77 } 78 if (d1->db_blkid > d2->db_blkid) { 79 return (1); 80 } 81 82 if (d1->db_state < d2->db_state) { 83 return (-1); 84 } 85 if (d1->db_state > d2->db_state) { 86 return (1); 87 } 88 89 ASSERT3S(d1->db_state, !=, DB_SEARCH); 90 ASSERT3S(d2->db_state, !=, DB_SEARCH); 91 92 if ((uintptr_t)d1 < (uintptr_t)d2) { 93 return (-1); 94 } 95 if ((uintptr_t)d1 > (uintptr_t)d2) { 96 return (1); 97 } 98 return (0); 99 } 100 101 /* ARGSUSED */ 102 static int 103 dnode_cons(void *arg, void *unused, int kmflag) 104 { 105 dnode_t *dn = arg; 106 int i; 107 108 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 109 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 110 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 111 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 112 113 /* 114 * Every dbuf has a reference, and dropping a tracked reference is 115 * O(number of references), so don't track dn_holds. 116 */ 117 refcount_create_untracked(&dn->dn_holds); 118 refcount_create(&dn->dn_tx_holds); 119 list_link_init(&dn->dn_link); 120 121 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 122 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 123 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 124 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 125 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 126 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 127 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 128 129 for (i = 0; i < TXG_SIZE; i++) { 130 list_link_init(&dn->dn_dirty_link[i]); 131 dn->dn_free_ranges[i] = NULL; 132 list_create(&dn->dn_dirty_records[i], 133 sizeof (dbuf_dirty_record_t), 134 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 135 } 136 137 dn->dn_allocated_txg = 0; 138 dn->dn_free_txg = 0; 139 dn->dn_assigned_txg = 0; 140 dn->dn_dirtyctx = 0; 141 dn->dn_dirtyctx_firstset = NULL; 142 dn->dn_bonus = NULL; 143 dn->dn_have_spill = B_FALSE; 144 dn->dn_zio = NULL; 145 dn->dn_oldused = 0; 146 dn->dn_oldflags = 0; 147 dn->dn_olduid = 0; 148 dn->dn_oldgid = 0; 149 dn->dn_newuid = 0; 150 dn->dn_newgid = 0; 151 dn->dn_id_flags = 0; 152 153 dn->dn_dbufs_count = 0; 154 dn->dn_unlisted_l0_blkid = 0; 155 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 156 offsetof(dmu_buf_impl_t, db_link)); 157 158 dn->dn_moved = 0; 159 return (0); 160 } 161 162 /* ARGSUSED */ 163 static void 164 dnode_dest(void *arg, void *unused) 165 { 166 int i; 167 dnode_t *dn = arg; 168 169 rw_destroy(&dn->dn_struct_rwlock); 170 mutex_destroy(&dn->dn_mtx); 171 mutex_destroy(&dn->dn_dbufs_mtx); 172 cv_destroy(&dn->dn_notxholds); 173 refcount_destroy(&dn->dn_holds); 174 refcount_destroy(&dn->dn_tx_holds); 175 ASSERT(!list_link_active(&dn->dn_link)); 176 177 for (i = 0; i < TXG_SIZE; i++) { 178 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 179 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 180 list_destroy(&dn->dn_dirty_records[i]); 181 ASSERT0(dn->dn_next_nblkptr[i]); 182 ASSERT0(dn->dn_next_nlevels[i]); 183 ASSERT0(dn->dn_next_indblkshift[i]); 184 ASSERT0(dn->dn_next_bonustype[i]); 185 ASSERT0(dn->dn_rm_spillblk[i]); 186 ASSERT0(dn->dn_next_bonuslen[i]); 187 ASSERT0(dn->dn_next_blksz[i]); 188 } 189 190 ASSERT0(dn->dn_allocated_txg); 191 ASSERT0(dn->dn_free_txg); 192 ASSERT0(dn->dn_assigned_txg); 193 ASSERT0(dn->dn_dirtyctx); 194 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 195 ASSERT3P(dn->dn_bonus, ==, NULL); 196 ASSERT(!dn->dn_have_spill); 197 ASSERT3P(dn->dn_zio, ==, NULL); 198 ASSERT0(dn->dn_oldused); 199 ASSERT0(dn->dn_oldflags); 200 ASSERT0(dn->dn_olduid); 201 ASSERT0(dn->dn_oldgid); 202 ASSERT0(dn->dn_newuid); 203 ASSERT0(dn->dn_newgid); 204 ASSERT0(dn->dn_id_flags); 205 206 ASSERT0(dn->dn_dbufs_count); 207 ASSERT0(dn->dn_unlisted_l0_blkid); 208 avl_destroy(&dn->dn_dbufs); 209 } 210 211 void 212 dnode_init(void) 213 { 214 ASSERT(dnode_cache == NULL); 215 dnode_cache = kmem_cache_create("dnode_t", 216 sizeof (dnode_t), 217 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 218 kmem_cache_set_move(dnode_cache, dnode_move); 219 } 220 221 void 222 dnode_fini(void) 223 { 224 kmem_cache_destroy(dnode_cache); 225 dnode_cache = NULL; 226 } 227 228 229 #ifdef ZFS_DEBUG 230 void 231 dnode_verify(dnode_t *dn) 232 { 233 int drop_struct_lock = FALSE; 234 235 ASSERT(dn->dn_phys); 236 ASSERT(dn->dn_objset); 237 ASSERT(dn->dn_handle->dnh_dnode == dn); 238 239 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 240 241 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 242 return; 243 244 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 245 rw_enter(&dn->dn_struct_rwlock, RW_READER); 246 drop_struct_lock = TRUE; 247 } 248 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 249 int i; 250 ASSERT3U(dn->dn_indblkshift, >=, 0); 251 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 252 if (dn->dn_datablkshift) { 253 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 254 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 255 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 256 } 257 ASSERT3U(dn->dn_nlevels, <=, 30); 258 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 259 ASSERT3U(dn->dn_nblkptr, >=, 1); 260 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 261 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 262 ASSERT3U(dn->dn_datablksz, ==, 263 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 264 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 265 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 266 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 267 for (i = 0; i < TXG_SIZE; i++) { 268 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 269 } 270 } 271 if (dn->dn_phys->dn_type != DMU_OT_NONE) 272 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 273 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 274 if (dn->dn_dbuf != NULL) { 275 ASSERT3P(dn->dn_phys, ==, 276 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 277 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 278 } 279 if (drop_struct_lock) 280 rw_exit(&dn->dn_struct_rwlock); 281 } 282 #endif 283 284 void 285 dnode_byteswap(dnode_phys_t *dnp) 286 { 287 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 288 int i; 289 290 if (dnp->dn_type == DMU_OT_NONE) { 291 bzero(dnp, sizeof (dnode_phys_t)); 292 return; 293 } 294 295 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 296 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 297 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 298 dnp->dn_used = BSWAP_64(dnp->dn_used); 299 300 /* 301 * dn_nblkptr is only one byte, so it's OK to read it in either 302 * byte order. We can't read dn_bouslen. 303 */ 304 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 305 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 306 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 307 buf64[i] = BSWAP_64(buf64[i]); 308 309 /* 310 * OK to check dn_bonuslen for zero, because it won't matter if 311 * we have the wrong byte order. This is necessary because the 312 * dnode dnode is smaller than a regular dnode. 313 */ 314 if (dnp->dn_bonuslen != 0) { 315 /* 316 * Note that the bonus length calculated here may be 317 * longer than the actual bonus buffer. This is because 318 * we always put the bonus buffer after the last block 319 * pointer (instead of packing it against the end of the 320 * dnode buffer). 321 */ 322 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 323 size_t len = DN_MAX_BONUSLEN - off; 324 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 325 dmu_object_byteswap_t byteswap = 326 DMU_OT_BYTESWAP(dnp->dn_bonustype); 327 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 328 } 329 330 /* Swap SPILL block if we have one */ 331 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 332 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t)); 333 334 } 335 336 void 337 dnode_buf_byteswap(void *vbuf, size_t size) 338 { 339 dnode_phys_t *buf = vbuf; 340 int i; 341 342 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 343 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 344 345 size >>= DNODE_SHIFT; 346 for (i = 0; i < size; i++) { 347 dnode_byteswap(buf); 348 buf++; 349 } 350 } 351 352 void 353 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 354 { 355 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 356 357 dnode_setdirty(dn, tx); 358 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 359 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - 360 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 361 dn->dn_bonuslen = newsize; 362 if (newsize == 0) 363 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 364 else 365 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 366 rw_exit(&dn->dn_struct_rwlock); 367 } 368 369 void 370 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 371 { 372 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 373 dnode_setdirty(dn, tx); 374 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 375 dn->dn_bonustype = newtype; 376 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 377 rw_exit(&dn->dn_struct_rwlock); 378 } 379 380 void 381 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 382 { 383 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 384 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 385 dnode_setdirty(dn, tx); 386 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 387 dn->dn_have_spill = B_FALSE; 388 } 389 390 static void 391 dnode_setdblksz(dnode_t *dn, int size) 392 { 393 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 394 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 395 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 396 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 397 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 398 dn->dn_datablksz = size; 399 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 400 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 401 } 402 403 static dnode_t * 404 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 405 uint64_t object, dnode_handle_t *dnh) 406 { 407 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 408 409 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 410 dn->dn_moved = 0; 411 412 /* 413 * Defer setting dn_objset until the dnode is ready to be a candidate 414 * for the dnode_move() callback. 415 */ 416 dn->dn_object = object; 417 dn->dn_dbuf = db; 418 dn->dn_handle = dnh; 419 dn->dn_phys = dnp; 420 421 if (dnp->dn_datablkszsec) { 422 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 423 } else { 424 dn->dn_datablksz = 0; 425 dn->dn_datablkszsec = 0; 426 dn->dn_datablkshift = 0; 427 } 428 dn->dn_indblkshift = dnp->dn_indblkshift; 429 dn->dn_nlevels = dnp->dn_nlevels; 430 dn->dn_type = dnp->dn_type; 431 dn->dn_nblkptr = dnp->dn_nblkptr; 432 dn->dn_checksum = dnp->dn_checksum; 433 dn->dn_compress = dnp->dn_compress; 434 dn->dn_bonustype = dnp->dn_bonustype; 435 dn->dn_bonuslen = dnp->dn_bonuslen; 436 dn->dn_maxblkid = dnp->dn_maxblkid; 437 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 438 dn->dn_id_flags = 0; 439 440 dmu_zfetch_init(&dn->dn_zfetch, dn); 441 442 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 443 444 mutex_enter(&os->os_lock); 445 list_insert_head(&os->os_dnodes, dn); 446 membar_producer(); 447 /* 448 * Everything else must be valid before assigning dn_objset makes the 449 * dnode eligible for dnode_move(). 450 */ 451 dn->dn_objset = os; 452 mutex_exit(&os->os_lock); 453 454 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 455 return (dn); 456 } 457 458 /* 459 * Caller must be holding the dnode handle, which is released upon return. 460 */ 461 static void 462 dnode_destroy(dnode_t *dn) 463 { 464 objset_t *os = dn->dn_objset; 465 466 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 467 468 mutex_enter(&os->os_lock); 469 POINTER_INVALIDATE(&dn->dn_objset); 470 list_remove(&os->os_dnodes, dn); 471 mutex_exit(&os->os_lock); 472 473 /* the dnode can no longer move, so we can release the handle */ 474 zrl_remove(&dn->dn_handle->dnh_zrlock); 475 476 dn->dn_allocated_txg = 0; 477 dn->dn_free_txg = 0; 478 dn->dn_assigned_txg = 0; 479 480 dn->dn_dirtyctx = 0; 481 if (dn->dn_dirtyctx_firstset != NULL) { 482 kmem_free(dn->dn_dirtyctx_firstset, 1); 483 dn->dn_dirtyctx_firstset = NULL; 484 } 485 if (dn->dn_bonus != NULL) { 486 mutex_enter(&dn->dn_bonus->db_mtx); 487 dbuf_evict(dn->dn_bonus); 488 dn->dn_bonus = NULL; 489 } 490 dn->dn_zio = NULL; 491 492 dn->dn_have_spill = B_FALSE; 493 dn->dn_oldused = 0; 494 dn->dn_oldflags = 0; 495 dn->dn_olduid = 0; 496 dn->dn_oldgid = 0; 497 dn->dn_newuid = 0; 498 dn->dn_newgid = 0; 499 dn->dn_id_flags = 0; 500 dn->dn_unlisted_l0_blkid = 0; 501 502 dmu_zfetch_rele(&dn->dn_zfetch); 503 kmem_cache_free(dnode_cache, dn); 504 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 505 } 506 507 void 508 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 509 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 510 { 511 int i; 512 513 if (blocksize == 0) 514 blocksize = 1 << zfs_default_bs; 515 else if (blocksize > SPA_MAXBLOCKSIZE) 516 blocksize = SPA_MAXBLOCKSIZE; 517 else 518 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 519 520 if (ibs == 0) 521 ibs = zfs_default_ibs; 522 523 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 524 525 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, 526 dn->dn_object, tx->tx_txg, blocksize, ibs); 527 528 ASSERT(dn->dn_type == DMU_OT_NONE); 529 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 530 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 531 ASSERT(ot != DMU_OT_NONE); 532 ASSERT(DMU_OT_IS_VALID(ot)); 533 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 534 (bonustype == DMU_OT_SA && bonuslen == 0) || 535 (bonustype != DMU_OT_NONE && bonuslen != 0)); 536 ASSERT(DMU_OT_IS_VALID(bonustype)); 537 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 538 ASSERT(dn->dn_type == DMU_OT_NONE); 539 ASSERT0(dn->dn_maxblkid); 540 ASSERT0(dn->dn_allocated_txg); 541 ASSERT0(dn->dn_assigned_txg); 542 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 543 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); 544 ASSERT(avl_is_empty(&dn->dn_dbufs)); 545 546 for (i = 0; i < TXG_SIZE; i++) { 547 ASSERT0(dn->dn_next_nblkptr[i]); 548 ASSERT0(dn->dn_next_nlevels[i]); 549 ASSERT0(dn->dn_next_indblkshift[i]); 550 ASSERT0(dn->dn_next_bonuslen[i]); 551 ASSERT0(dn->dn_next_bonustype[i]); 552 ASSERT0(dn->dn_rm_spillblk[i]); 553 ASSERT0(dn->dn_next_blksz[i]); 554 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 555 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 556 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 557 } 558 559 dn->dn_type = ot; 560 dnode_setdblksz(dn, blocksize); 561 dn->dn_indblkshift = ibs; 562 dn->dn_nlevels = 1; 563 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 564 dn->dn_nblkptr = 1; 565 else 566 dn->dn_nblkptr = 1 + 567 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 568 dn->dn_bonustype = bonustype; 569 dn->dn_bonuslen = bonuslen; 570 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 571 dn->dn_compress = ZIO_COMPRESS_INHERIT; 572 dn->dn_dirtyctx = 0; 573 574 dn->dn_free_txg = 0; 575 if (dn->dn_dirtyctx_firstset) { 576 kmem_free(dn->dn_dirtyctx_firstset, 1); 577 dn->dn_dirtyctx_firstset = NULL; 578 } 579 580 dn->dn_allocated_txg = tx->tx_txg; 581 dn->dn_id_flags = 0; 582 583 dnode_setdirty(dn, tx); 584 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 585 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 586 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 587 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 588 } 589 590 void 591 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 592 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 593 { 594 int nblkptr; 595 596 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 597 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE); 598 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 599 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 600 ASSERT(tx->tx_txg != 0); 601 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 602 (bonustype != DMU_OT_NONE && bonuslen != 0) || 603 (bonustype == DMU_OT_SA && bonuslen == 0)); 604 ASSERT(DMU_OT_IS_VALID(bonustype)); 605 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 606 607 /* clean up any unreferenced dbufs */ 608 dnode_evict_dbufs(dn); 609 610 dn->dn_id_flags = 0; 611 612 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 613 dnode_setdirty(dn, tx); 614 if (dn->dn_datablksz != blocksize) { 615 /* change blocksize */ 616 ASSERT(dn->dn_maxblkid == 0 && 617 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 618 dnode_block_freed(dn, 0))); 619 dnode_setdblksz(dn, blocksize); 620 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 621 } 622 if (dn->dn_bonuslen != bonuslen) 623 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 624 625 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 626 nblkptr = 1; 627 else 628 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 629 if (dn->dn_bonustype != bonustype) 630 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 631 if (dn->dn_nblkptr != nblkptr) 632 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 633 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 634 dbuf_rm_spill(dn, tx); 635 dnode_rm_spill(dn, tx); 636 } 637 rw_exit(&dn->dn_struct_rwlock); 638 639 /* change type */ 640 dn->dn_type = ot; 641 642 /* change bonus size and type */ 643 mutex_enter(&dn->dn_mtx); 644 dn->dn_bonustype = bonustype; 645 dn->dn_bonuslen = bonuslen; 646 dn->dn_nblkptr = nblkptr; 647 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 648 dn->dn_compress = ZIO_COMPRESS_INHERIT; 649 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 650 651 /* fix up the bonus db_size */ 652 if (dn->dn_bonus) { 653 dn->dn_bonus->db.db_size = 654 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); 655 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 656 } 657 658 dn->dn_allocated_txg = tx->tx_txg; 659 mutex_exit(&dn->dn_mtx); 660 } 661 662 #ifdef DNODE_STATS 663 static struct { 664 uint64_t dms_dnode_invalid; 665 uint64_t dms_dnode_recheck1; 666 uint64_t dms_dnode_recheck2; 667 uint64_t dms_dnode_special; 668 uint64_t dms_dnode_handle; 669 uint64_t dms_dnode_rwlock; 670 uint64_t dms_dnode_active; 671 } dnode_move_stats; 672 #endif /* DNODE_STATS */ 673 674 static void 675 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 676 { 677 int i; 678 679 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 680 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 681 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 682 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 683 684 /* Copy fields. */ 685 ndn->dn_objset = odn->dn_objset; 686 ndn->dn_object = odn->dn_object; 687 ndn->dn_dbuf = odn->dn_dbuf; 688 ndn->dn_handle = odn->dn_handle; 689 ndn->dn_phys = odn->dn_phys; 690 ndn->dn_type = odn->dn_type; 691 ndn->dn_bonuslen = odn->dn_bonuslen; 692 ndn->dn_bonustype = odn->dn_bonustype; 693 ndn->dn_nblkptr = odn->dn_nblkptr; 694 ndn->dn_checksum = odn->dn_checksum; 695 ndn->dn_compress = odn->dn_compress; 696 ndn->dn_nlevels = odn->dn_nlevels; 697 ndn->dn_indblkshift = odn->dn_indblkshift; 698 ndn->dn_datablkshift = odn->dn_datablkshift; 699 ndn->dn_datablkszsec = odn->dn_datablkszsec; 700 ndn->dn_datablksz = odn->dn_datablksz; 701 ndn->dn_maxblkid = odn->dn_maxblkid; 702 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 703 sizeof (odn->dn_next_nblkptr)); 704 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 705 sizeof (odn->dn_next_nlevels)); 706 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 707 sizeof (odn->dn_next_indblkshift)); 708 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 709 sizeof (odn->dn_next_bonustype)); 710 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 711 sizeof (odn->dn_rm_spillblk)); 712 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 713 sizeof (odn->dn_next_bonuslen)); 714 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 715 sizeof (odn->dn_next_blksz)); 716 for (i = 0; i < TXG_SIZE; i++) { 717 list_move_tail(&ndn->dn_dirty_records[i], 718 &odn->dn_dirty_records[i]); 719 } 720 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 721 sizeof (odn->dn_free_ranges)); 722 ndn->dn_allocated_txg = odn->dn_allocated_txg; 723 ndn->dn_free_txg = odn->dn_free_txg; 724 ndn->dn_assigned_txg = odn->dn_assigned_txg; 725 ndn->dn_dirtyctx = odn->dn_dirtyctx; 726 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 727 ASSERT(refcount_count(&odn->dn_tx_holds) == 0); 728 refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 729 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 730 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 731 ndn->dn_dbufs_count = odn->dn_dbufs_count; 732 ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid; 733 ndn->dn_bonus = odn->dn_bonus; 734 ndn->dn_have_spill = odn->dn_have_spill; 735 ndn->dn_zio = odn->dn_zio; 736 ndn->dn_oldused = odn->dn_oldused; 737 ndn->dn_oldflags = odn->dn_oldflags; 738 ndn->dn_olduid = odn->dn_olduid; 739 ndn->dn_oldgid = odn->dn_oldgid; 740 ndn->dn_newuid = odn->dn_newuid; 741 ndn->dn_newgid = odn->dn_newgid; 742 ndn->dn_id_flags = odn->dn_id_flags; 743 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 744 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 745 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 746 ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt; 747 ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail; 748 749 /* 750 * Update back pointers. Updating the handle fixes the back pointer of 751 * every descendant dbuf as well as the bonus dbuf. 752 */ 753 ASSERT(ndn->dn_handle->dnh_dnode == odn); 754 ndn->dn_handle->dnh_dnode = ndn; 755 if (ndn->dn_zfetch.zf_dnode == odn) { 756 ndn->dn_zfetch.zf_dnode = ndn; 757 } 758 759 /* 760 * Invalidate the original dnode by clearing all of its back pointers. 761 */ 762 odn->dn_dbuf = NULL; 763 odn->dn_handle = NULL; 764 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 765 offsetof(dmu_buf_impl_t, db_link)); 766 odn->dn_dbufs_count = 0; 767 odn->dn_unlisted_l0_blkid = 0; 768 odn->dn_bonus = NULL; 769 odn->dn_zfetch.zf_dnode = NULL; 770 771 /* 772 * Set the low bit of the objset pointer to ensure that dnode_move() 773 * recognizes the dnode as invalid in any subsequent callback. 774 */ 775 POINTER_INVALIDATE(&odn->dn_objset); 776 777 /* 778 * Satisfy the destructor. 779 */ 780 for (i = 0; i < TXG_SIZE; i++) { 781 list_create(&odn->dn_dirty_records[i], 782 sizeof (dbuf_dirty_record_t), 783 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 784 odn->dn_free_ranges[i] = NULL; 785 odn->dn_next_nlevels[i] = 0; 786 odn->dn_next_indblkshift[i] = 0; 787 odn->dn_next_bonustype[i] = 0; 788 odn->dn_rm_spillblk[i] = 0; 789 odn->dn_next_bonuslen[i] = 0; 790 odn->dn_next_blksz[i] = 0; 791 } 792 odn->dn_allocated_txg = 0; 793 odn->dn_free_txg = 0; 794 odn->dn_assigned_txg = 0; 795 odn->dn_dirtyctx = 0; 796 odn->dn_dirtyctx_firstset = NULL; 797 odn->dn_have_spill = B_FALSE; 798 odn->dn_zio = NULL; 799 odn->dn_oldused = 0; 800 odn->dn_oldflags = 0; 801 odn->dn_olduid = 0; 802 odn->dn_oldgid = 0; 803 odn->dn_newuid = 0; 804 odn->dn_newgid = 0; 805 odn->dn_id_flags = 0; 806 807 /* 808 * Mark the dnode. 809 */ 810 ndn->dn_moved = 1; 811 odn->dn_moved = (uint8_t)-1; 812 } 813 814 #ifdef _KERNEL 815 /*ARGSUSED*/ 816 static kmem_cbrc_t 817 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 818 { 819 dnode_t *odn = buf, *ndn = newbuf; 820 objset_t *os; 821 int64_t refcount; 822 uint32_t dbufs; 823 824 /* 825 * The dnode is on the objset's list of known dnodes if the objset 826 * pointer is valid. We set the low bit of the objset pointer when 827 * freeing the dnode to invalidate it, and the memory patterns written 828 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 829 * A newly created dnode sets the objset pointer last of all to indicate 830 * that the dnode is known and in a valid state to be moved by this 831 * function. 832 */ 833 os = odn->dn_objset; 834 if (!POINTER_IS_VALID(os)) { 835 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid); 836 return (KMEM_CBRC_DONT_KNOW); 837 } 838 839 /* 840 * Ensure that the objset does not go away during the move. 841 */ 842 rw_enter(&os_lock, RW_WRITER); 843 if (os != odn->dn_objset) { 844 rw_exit(&os_lock); 845 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1); 846 return (KMEM_CBRC_DONT_KNOW); 847 } 848 849 /* 850 * If the dnode is still valid, then so is the objset. We know that no 851 * valid objset can be freed while we hold os_lock, so we can safely 852 * ensure that the objset remains in use. 853 */ 854 mutex_enter(&os->os_lock); 855 856 /* 857 * Recheck the objset pointer in case the dnode was removed just before 858 * acquiring the lock. 859 */ 860 if (os != odn->dn_objset) { 861 mutex_exit(&os->os_lock); 862 rw_exit(&os_lock); 863 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2); 864 return (KMEM_CBRC_DONT_KNOW); 865 } 866 867 /* 868 * At this point we know that as long as we hold os->os_lock, the dnode 869 * cannot be freed and fields within the dnode can be safely accessed. 870 * The objset listing this dnode cannot go away as long as this dnode is 871 * on its list. 872 */ 873 rw_exit(&os_lock); 874 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 875 mutex_exit(&os->os_lock); 876 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special); 877 return (KMEM_CBRC_NO); 878 } 879 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 880 881 /* 882 * Lock the dnode handle to prevent the dnode from obtaining any new 883 * holds. This also prevents the descendant dbufs and the bonus dbuf 884 * from accessing the dnode, so that we can discount their holds. The 885 * handle is safe to access because we know that while the dnode cannot 886 * go away, neither can its handle. Once we hold dnh_zrlock, we can 887 * safely move any dnode referenced only by dbufs. 888 */ 889 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 890 mutex_exit(&os->os_lock); 891 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle); 892 return (KMEM_CBRC_LATER); 893 } 894 895 /* 896 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 897 * We need to guarantee that there is a hold for every dbuf in order to 898 * determine whether the dnode is actively referenced. Falsely matching 899 * a dbuf to an active hold would lead to an unsafe move. It's possible 900 * that a thread already having an active dnode hold is about to add a 901 * dbuf, and we can't compare hold and dbuf counts while the add is in 902 * progress. 903 */ 904 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 905 zrl_exit(&odn->dn_handle->dnh_zrlock); 906 mutex_exit(&os->os_lock); 907 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock); 908 return (KMEM_CBRC_LATER); 909 } 910 911 /* 912 * A dbuf may be removed (evicted) without an active dnode hold. In that 913 * case, the dbuf count is decremented under the handle lock before the 914 * dbuf's hold is released. This order ensures that if we count the hold 915 * after the dbuf is removed but before its hold is released, we will 916 * treat the unmatched hold as active and exit safely. If we count the 917 * hold before the dbuf is removed, the hold is discounted, and the 918 * removal is blocked until the move completes. 919 */ 920 refcount = refcount_count(&odn->dn_holds); 921 ASSERT(refcount >= 0); 922 dbufs = odn->dn_dbufs_count; 923 924 /* We can't have more dbufs than dnode holds. */ 925 ASSERT3U(dbufs, <=, refcount); 926 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 927 uint32_t, dbufs); 928 929 if (refcount > dbufs) { 930 rw_exit(&odn->dn_struct_rwlock); 931 zrl_exit(&odn->dn_handle->dnh_zrlock); 932 mutex_exit(&os->os_lock); 933 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active); 934 return (KMEM_CBRC_LATER); 935 } 936 937 rw_exit(&odn->dn_struct_rwlock); 938 939 /* 940 * At this point we know that anyone with a hold on the dnode is not 941 * actively referencing it. The dnode is known and in a valid state to 942 * move. We're holding the locks needed to execute the critical section. 943 */ 944 dnode_move_impl(odn, ndn); 945 946 list_link_replace(&odn->dn_link, &ndn->dn_link); 947 /* If the dnode was safe to move, the refcount cannot have changed. */ 948 ASSERT(refcount == refcount_count(&ndn->dn_holds)); 949 ASSERT(dbufs == ndn->dn_dbufs_count); 950 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 951 mutex_exit(&os->os_lock); 952 953 return (KMEM_CBRC_YES); 954 } 955 #endif /* _KERNEL */ 956 957 void 958 dnode_special_close(dnode_handle_t *dnh) 959 { 960 dnode_t *dn = dnh->dnh_dnode; 961 962 /* 963 * Wait for final references to the dnode to clear. This can 964 * only happen if the arc is asyncronously evicting state that 965 * has a hold on this dnode while we are trying to evict this 966 * dnode. 967 */ 968 while (refcount_count(&dn->dn_holds) > 0) 969 delay(1); 970 zrl_add(&dnh->dnh_zrlock); 971 dnode_destroy(dn); /* implicit zrl_remove() */ 972 zrl_destroy(&dnh->dnh_zrlock); 973 dnh->dnh_dnode = NULL; 974 } 975 976 dnode_t * 977 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 978 dnode_handle_t *dnh) 979 { 980 dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh); 981 dnh->dnh_dnode = dn; 982 zrl_init(&dnh->dnh_zrlock); 983 DNODE_VERIFY(dn); 984 return (dn); 985 } 986 987 static void 988 dnode_buf_pageout(dmu_buf_t *db, void *arg) 989 { 990 dnode_children_t *children_dnodes = arg; 991 int i; 992 int epb = db->db_size >> DNODE_SHIFT; 993 994 ASSERT(epb == children_dnodes->dnc_count); 995 996 for (i = 0; i < epb; i++) { 997 dnode_handle_t *dnh = &children_dnodes->dnc_children[i]; 998 dnode_t *dn; 999 1000 /* 1001 * The dnode handle lock guards against the dnode moving to 1002 * another valid address, so there is no need here to guard 1003 * against changes to or from NULL. 1004 */ 1005 if (dnh->dnh_dnode == NULL) { 1006 zrl_destroy(&dnh->dnh_zrlock); 1007 continue; 1008 } 1009 1010 zrl_add(&dnh->dnh_zrlock); 1011 dn = dnh->dnh_dnode; 1012 /* 1013 * If there are holds on this dnode, then there should 1014 * be holds on the dnode's containing dbuf as well; thus 1015 * it wouldn't be eligible for eviction and this function 1016 * would not have been called. 1017 */ 1018 ASSERT(refcount_is_zero(&dn->dn_holds)); 1019 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 1020 1021 dnode_destroy(dn); /* implicit zrl_remove() */ 1022 zrl_destroy(&dnh->dnh_zrlock); 1023 dnh->dnh_dnode = NULL; 1024 } 1025 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1026 epb * sizeof (dnode_handle_t)); 1027 } 1028 1029 /* 1030 * errors: 1031 * EINVAL - invalid object number. 1032 * EIO - i/o error. 1033 * succeeds even for free dnodes. 1034 */ 1035 int 1036 dnode_hold_impl(objset_t *os, uint64_t object, int flag, 1037 void *tag, dnode_t **dnp) 1038 { 1039 int epb, idx, err; 1040 int drop_struct_lock = FALSE; 1041 int type; 1042 uint64_t blk; 1043 dnode_t *mdn, *dn; 1044 dmu_buf_impl_t *db; 1045 dnode_children_t *children_dnodes; 1046 dnode_handle_t *dnh; 1047 1048 /* 1049 * If you are holding the spa config lock as writer, you shouldn't 1050 * be asking the DMU to do *anything* unless it's the root pool 1051 * which may require us to read from the root filesystem while 1052 * holding some (not all) of the locks as writer. 1053 */ 1054 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1055 (spa_is_root(os->os_spa) && 1056 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1057 1058 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { 1059 dn = (object == DMU_USERUSED_OBJECT) ? 1060 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); 1061 if (dn == NULL) 1062 return (SET_ERROR(ENOENT)); 1063 type = dn->dn_type; 1064 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1065 return (SET_ERROR(ENOENT)); 1066 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1067 return (SET_ERROR(EEXIST)); 1068 DNODE_VERIFY(dn); 1069 (void) refcount_add(&dn->dn_holds, tag); 1070 *dnp = dn; 1071 return (0); 1072 } 1073 1074 if (object == 0 || object >= DN_MAX_OBJECT) 1075 return (SET_ERROR(EINVAL)); 1076 1077 mdn = DMU_META_DNODE(os); 1078 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1079 1080 DNODE_VERIFY(mdn); 1081 1082 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1083 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1084 drop_struct_lock = TRUE; 1085 } 1086 1087 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t)); 1088 1089 db = dbuf_hold(mdn, blk, FTAG); 1090 if (drop_struct_lock) 1091 rw_exit(&mdn->dn_struct_rwlock); 1092 if (db == NULL) 1093 return (SET_ERROR(EIO)); 1094 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 1095 if (err) { 1096 dbuf_rele(db, FTAG); 1097 return (err); 1098 } 1099 1100 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1101 epb = db->db.db_size >> DNODE_SHIFT; 1102 1103 idx = object & (epb-1); 1104 1105 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1106 children_dnodes = dmu_buf_get_user(&db->db); 1107 if (children_dnodes == NULL) { 1108 int i; 1109 dnode_children_t *winner; 1110 children_dnodes = kmem_alloc(sizeof (dnode_children_t) + 1111 epb * sizeof (dnode_handle_t), KM_SLEEP); 1112 children_dnodes->dnc_count = epb; 1113 dnh = &children_dnodes->dnc_children[0]; 1114 for (i = 0; i < epb; i++) { 1115 zrl_init(&dnh[i].dnh_zrlock); 1116 dnh[i].dnh_dnode = NULL; 1117 } 1118 if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL, 1119 dnode_buf_pageout)) { 1120 1121 for (i = 0; i < epb; i++) { 1122 zrl_destroy(&dnh[i].dnh_zrlock); 1123 } 1124 1125 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1126 epb * sizeof (dnode_handle_t)); 1127 children_dnodes = winner; 1128 } 1129 } 1130 ASSERT(children_dnodes->dnc_count == epb); 1131 1132 dnh = &children_dnodes->dnc_children[idx]; 1133 zrl_add(&dnh->dnh_zrlock); 1134 if ((dn = dnh->dnh_dnode) == NULL) { 1135 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx; 1136 dnode_t *winner; 1137 1138 dn = dnode_create(os, phys, db, object, dnh); 1139 winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn); 1140 if (winner != NULL) { 1141 zrl_add(&dnh->dnh_zrlock); 1142 dnode_destroy(dn); /* implicit zrl_remove() */ 1143 dn = winner; 1144 } 1145 } 1146 1147 mutex_enter(&dn->dn_mtx); 1148 type = dn->dn_type; 1149 if (dn->dn_free_txg || 1150 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || 1151 ((flag & DNODE_MUST_BE_FREE) && 1152 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) { 1153 mutex_exit(&dn->dn_mtx); 1154 zrl_remove(&dnh->dnh_zrlock); 1155 dbuf_rele(db, FTAG); 1156 return (type == DMU_OT_NONE ? ENOENT : EEXIST); 1157 } 1158 mutex_exit(&dn->dn_mtx); 1159 1160 if (refcount_add(&dn->dn_holds, tag) == 1) 1161 dbuf_add_ref(db, dnh); 1162 /* Now we can rely on the hold to prevent the dnode from moving. */ 1163 zrl_remove(&dnh->dnh_zrlock); 1164 1165 DNODE_VERIFY(dn); 1166 ASSERT3P(dn->dn_dbuf, ==, db); 1167 ASSERT3U(dn->dn_object, ==, object); 1168 dbuf_rele(db, FTAG); 1169 1170 *dnp = dn; 1171 return (0); 1172 } 1173 1174 /* 1175 * Return held dnode if the object is allocated, NULL if not. 1176 */ 1177 int 1178 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1179 { 1180 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); 1181 } 1182 1183 /* 1184 * Can only add a reference if there is already at least one 1185 * reference on the dnode. Returns FALSE if unable to add a 1186 * new reference. 1187 */ 1188 boolean_t 1189 dnode_add_ref(dnode_t *dn, void *tag) 1190 { 1191 mutex_enter(&dn->dn_mtx); 1192 if (refcount_is_zero(&dn->dn_holds)) { 1193 mutex_exit(&dn->dn_mtx); 1194 return (FALSE); 1195 } 1196 VERIFY(1 < refcount_add(&dn->dn_holds, tag)); 1197 mutex_exit(&dn->dn_mtx); 1198 return (TRUE); 1199 } 1200 1201 void 1202 dnode_rele(dnode_t *dn, void *tag) 1203 { 1204 uint64_t refs; 1205 /* Get while the hold prevents the dnode from moving. */ 1206 dmu_buf_impl_t *db = dn->dn_dbuf; 1207 dnode_handle_t *dnh = dn->dn_handle; 1208 1209 mutex_enter(&dn->dn_mtx); 1210 refs = refcount_remove(&dn->dn_holds, tag); 1211 mutex_exit(&dn->dn_mtx); 1212 1213 /* 1214 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1215 * indirectly by dbuf_rele() while relying on the dnode handle to 1216 * prevent the dnode from moving, since releasing the last hold could 1217 * result in the dnode's parent dbuf evicting its dnode handles. For 1218 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1219 * other direct or indirect hold on the dnode must first drop the dnode 1220 * handle. 1221 */ 1222 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1223 1224 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1225 if (refs == 0 && db != NULL) { 1226 /* 1227 * Another thread could add a hold to the dnode handle in 1228 * dnode_hold_impl() while holding the parent dbuf. Since the 1229 * hold on the parent dbuf prevents the handle from being 1230 * destroyed, the hold on the handle is OK. We can't yet assert 1231 * that the handle has zero references, but that will be 1232 * asserted anyway when the handle gets destroyed. 1233 */ 1234 dbuf_rele(db, dnh); 1235 } 1236 } 1237 1238 void 1239 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1240 { 1241 objset_t *os = dn->dn_objset; 1242 uint64_t txg = tx->tx_txg; 1243 1244 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1245 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1246 return; 1247 } 1248 1249 DNODE_VERIFY(dn); 1250 1251 #ifdef ZFS_DEBUG 1252 mutex_enter(&dn->dn_mtx); 1253 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1254 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1255 mutex_exit(&dn->dn_mtx); 1256 #endif 1257 1258 /* 1259 * Determine old uid/gid when necessary 1260 */ 1261 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1262 1263 mutex_enter(&os->os_lock); 1264 1265 /* 1266 * If we are already marked dirty, we're done. 1267 */ 1268 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1269 mutex_exit(&os->os_lock); 1270 return; 1271 } 1272 1273 ASSERT(!refcount_is_zero(&dn->dn_holds) || 1274 !avl_is_empty(&dn->dn_dbufs)); 1275 ASSERT(dn->dn_datablksz != 0); 1276 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1277 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1278 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1279 1280 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1281 dn->dn_object, txg); 1282 1283 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) { 1284 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn); 1285 } else { 1286 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn); 1287 } 1288 1289 mutex_exit(&os->os_lock); 1290 1291 /* 1292 * The dnode maintains a hold on its containing dbuf as 1293 * long as there are holds on it. Each instantiated child 1294 * dbuf maintains a hold on the dnode. When the last child 1295 * drops its hold, the dnode will drop its hold on the 1296 * containing dbuf. We add a "dirty hold" here so that the 1297 * dnode will hang around after we finish processing its 1298 * children. 1299 */ 1300 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1301 1302 (void) dbuf_dirty(dn->dn_dbuf, tx, B_FALSE); 1303 1304 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1305 } 1306 1307 void 1308 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1309 { 1310 int txgoff = tx->tx_txg & TXG_MASK; 1311 1312 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg); 1313 1314 /* we should be the only holder... hopefully */ 1315 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */ 1316 1317 mutex_enter(&dn->dn_mtx); 1318 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1319 mutex_exit(&dn->dn_mtx); 1320 return; 1321 } 1322 dn->dn_free_txg = tx->tx_txg; 1323 mutex_exit(&dn->dn_mtx); 1324 1325 /* 1326 * If the dnode is already dirty, it needs to be moved from 1327 * the dirty list to the free list. 1328 */ 1329 mutex_enter(&dn->dn_objset->os_lock); 1330 if (list_link_active(&dn->dn_dirty_link[txgoff])) { 1331 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn); 1332 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn); 1333 mutex_exit(&dn->dn_objset->os_lock); 1334 } else { 1335 mutex_exit(&dn->dn_objset->os_lock); 1336 dnode_setdirty(dn, tx); 1337 } 1338 } 1339 1340 /* 1341 * Try to change the block size for the indicated dnode. This can only 1342 * succeed if there are no blocks allocated or dirty beyond first block 1343 */ 1344 int 1345 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1346 { 1347 dmu_buf_impl_t *db; 1348 int err; 1349 1350 if (size == 0) 1351 size = SPA_MINBLOCKSIZE; 1352 if (size > SPA_MAXBLOCKSIZE) 1353 size = SPA_MAXBLOCKSIZE; 1354 else 1355 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1356 1357 if (ibs == dn->dn_indblkshift) 1358 ibs = 0; 1359 1360 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1361 return (0); 1362 1363 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1364 1365 /* Check for any allocated blocks beyond the first */ 1366 if (dn->dn_maxblkid != 0) 1367 goto fail; 1368 1369 mutex_enter(&dn->dn_dbufs_mtx); 1370 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1371 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1372 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1373 db->db_blkid != DMU_SPILL_BLKID) { 1374 mutex_exit(&dn->dn_dbufs_mtx); 1375 goto fail; 1376 } 1377 } 1378 mutex_exit(&dn->dn_dbufs_mtx); 1379 1380 if (ibs && dn->dn_nlevels != 1) 1381 goto fail; 1382 1383 /* resize the old block */ 1384 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db); 1385 if (err == 0) 1386 dbuf_new_size(db, size, tx); 1387 else if (err != ENOENT) 1388 goto fail; 1389 1390 dnode_setdblksz(dn, size); 1391 dnode_setdirty(dn, tx); 1392 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1393 if (ibs) { 1394 dn->dn_indblkshift = ibs; 1395 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1396 } 1397 /* rele after we have fixed the blocksize in the dnode */ 1398 if (db) 1399 dbuf_rele(db, FTAG); 1400 1401 rw_exit(&dn->dn_struct_rwlock); 1402 return (0); 1403 1404 fail: 1405 rw_exit(&dn->dn_struct_rwlock); 1406 return (SET_ERROR(ENOTSUP)); 1407 } 1408 1409 /* read-holding callers must not rely on the lock being continuously held */ 1410 void 1411 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 1412 { 1413 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1414 int epbs, new_nlevels; 1415 uint64_t sz; 1416 1417 ASSERT(blkid != DMU_BONUS_BLKID); 1418 1419 ASSERT(have_read ? 1420 RW_READ_HELD(&dn->dn_struct_rwlock) : 1421 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1422 1423 /* 1424 * if we have a read-lock, check to see if we need to do any work 1425 * before upgrading to a write-lock. 1426 */ 1427 if (have_read) { 1428 if (blkid <= dn->dn_maxblkid) 1429 return; 1430 1431 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1432 rw_exit(&dn->dn_struct_rwlock); 1433 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1434 } 1435 } 1436 1437 if (blkid <= dn->dn_maxblkid) 1438 goto out; 1439 1440 dn->dn_maxblkid = blkid; 1441 1442 /* 1443 * Compute the number of levels necessary to support the new maxblkid. 1444 */ 1445 new_nlevels = 1; 1446 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1447 for (sz = dn->dn_nblkptr; 1448 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1449 new_nlevels++; 1450 1451 if (new_nlevels > dn->dn_nlevels) { 1452 int old_nlevels = dn->dn_nlevels; 1453 dmu_buf_impl_t *db; 1454 list_t *list; 1455 dbuf_dirty_record_t *new, *dr, *dr_next; 1456 1457 dn->dn_nlevels = new_nlevels; 1458 1459 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1460 dn->dn_next_nlevels[txgoff] = new_nlevels; 1461 1462 /* dirty the left indirects */ 1463 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1464 ASSERT(db != NULL); 1465 new = dbuf_dirty(db, tx, B_FALSE); 1466 dbuf_rele(db, FTAG); 1467 1468 /* transfer the dirty records to the new indirect */ 1469 mutex_enter(&dn->dn_mtx); 1470 mutex_enter(&new->dt.di.dr_mtx); 1471 list = &dn->dn_dirty_records[txgoff]; 1472 for (dr = list_head(list); dr; dr = dr_next) { 1473 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1474 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1475 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1476 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1477 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1478 list_remove(&dn->dn_dirty_records[txgoff], dr); 1479 list_insert_tail(&new->dt.di.dr_children, dr); 1480 dr->dr_parent = new; 1481 } 1482 } 1483 mutex_exit(&new->dt.di.dr_mtx); 1484 mutex_exit(&dn->dn_mtx); 1485 } 1486 1487 out: 1488 if (have_read) 1489 rw_downgrade(&dn->dn_struct_rwlock); 1490 } 1491 1492 void 1493 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 1494 { 1495 dmu_buf_impl_t *db; 1496 uint64_t blkoff, blkid, nblks; 1497 int blksz, blkshift, head, tail; 1498 int trunc = FALSE; 1499 int epbs; 1500 1501 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1502 blksz = dn->dn_datablksz; 1503 blkshift = dn->dn_datablkshift; 1504 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1505 1506 if (len == DMU_OBJECT_END) { 1507 len = UINT64_MAX - off; 1508 trunc = TRUE; 1509 } 1510 1511 /* 1512 * First, block align the region to free: 1513 */ 1514 if (ISP2(blksz)) { 1515 head = P2NPHASE(off, blksz); 1516 blkoff = P2PHASE(off, blksz); 1517 if ((off >> blkshift) > dn->dn_maxblkid) 1518 goto out; 1519 } else { 1520 ASSERT(dn->dn_maxblkid == 0); 1521 if (off == 0 && len >= blksz) { 1522 /* 1523 * Freeing the whole block; fast-track this request. 1524 * Note that we won't dirty any indirect blocks, 1525 * which is fine because we will be freeing the entire 1526 * file and thus all indirect blocks will be freed 1527 * by free_children(). 1528 */ 1529 blkid = 0; 1530 nblks = 1; 1531 goto done; 1532 } else if (off >= blksz) { 1533 /* Freeing past end-of-data */ 1534 goto out; 1535 } else { 1536 /* Freeing part of the block. */ 1537 head = blksz - off; 1538 ASSERT3U(head, >, 0); 1539 } 1540 blkoff = off; 1541 } 1542 /* zero out any partial block data at the start of the range */ 1543 if (head) { 1544 ASSERT3U(blkoff + head, ==, blksz); 1545 if (len < head) 1546 head = len; 1547 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE, 1548 FTAG, &db) == 0) { 1549 caddr_t data; 1550 1551 /* don't dirty if it isn't on disk and isn't dirty */ 1552 if (db->db_last_dirty || 1553 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1554 rw_exit(&dn->dn_struct_rwlock); 1555 dmu_buf_will_dirty(&db->db, tx); 1556 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1557 data = db->db.db_data; 1558 bzero(data + blkoff, head); 1559 } 1560 dbuf_rele(db, FTAG); 1561 } 1562 off += head; 1563 len -= head; 1564 } 1565 1566 /* If the range was less than one block, we're done */ 1567 if (len == 0) 1568 goto out; 1569 1570 /* If the remaining range is past end of file, we're done */ 1571 if ((off >> blkshift) > dn->dn_maxblkid) 1572 goto out; 1573 1574 ASSERT(ISP2(blksz)); 1575 if (trunc) 1576 tail = 0; 1577 else 1578 tail = P2PHASE(len, blksz); 1579 1580 ASSERT0(P2PHASE(off, blksz)); 1581 /* zero out any partial block data at the end of the range */ 1582 if (tail) { 1583 if (len < tail) 1584 tail = len; 1585 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len), 1586 TRUE, FTAG, &db) == 0) { 1587 /* don't dirty if not on disk and not dirty */ 1588 if (db->db_last_dirty || 1589 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1590 rw_exit(&dn->dn_struct_rwlock); 1591 dmu_buf_will_dirty(&db->db, tx); 1592 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1593 bzero(db->db.db_data, tail); 1594 } 1595 dbuf_rele(db, FTAG); 1596 } 1597 len -= tail; 1598 } 1599 1600 /* If the range did not include a full block, we are done */ 1601 if (len == 0) 1602 goto out; 1603 1604 ASSERT(IS_P2ALIGNED(off, blksz)); 1605 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 1606 blkid = off >> blkshift; 1607 nblks = len >> blkshift; 1608 if (trunc) 1609 nblks += 1; 1610 1611 /* 1612 * Dirty the first and last indirect blocks, as they (and/or their 1613 * parents) will need to be written out if they were only 1614 * partially freed. Interior indirect blocks will be themselves freed, 1615 * by free_children(), so they need not be dirtied. Note that these 1616 * interior blocks have already been prefetched by dmu_tx_hold_free(). 1617 */ 1618 if (dn->dn_nlevels > 1) { 1619 uint64_t first, last; 1620 1621 first = blkid >> epbs; 1622 if (db = dbuf_hold_level(dn, 1, first, FTAG)) { 1623 dmu_buf_will_dirty(&db->db, tx); 1624 dbuf_rele(db, FTAG); 1625 } 1626 if (trunc) 1627 last = dn->dn_maxblkid >> epbs; 1628 else 1629 last = (blkid + nblks - 1) >> epbs; 1630 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) { 1631 dmu_buf_will_dirty(&db->db, tx); 1632 dbuf_rele(db, FTAG); 1633 } 1634 } 1635 1636 done: 1637 /* 1638 * Add this range to the dnode range list. 1639 * We will finish up this free operation in the syncing phase. 1640 */ 1641 mutex_enter(&dn->dn_mtx); 1642 int txgoff = tx->tx_txg & TXG_MASK; 1643 if (dn->dn_free_ranges[txgoff] == NULL) { 1644 dn->dn_free_ranges[txgoff] = 1645 range_tree_create(NULL, NULL, &dn->dn_mtx); 1646 } 1647 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 1648 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 1649 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 1650 blkid, nblks, tx->tx_txg); 1651 mutex_exit(&dn->dn_mtx); 1652 1653 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 1654 dnode_setdirty(dn, tx); 1655 out: 1656 1657 rw_exit(&dn->dn_struct_rwlock); 1658 } 1659 1660 static boolean_t 1661 dnode_spill_freed(dnode_t *dn) 1662 { 1663 int i; 1664 1665 mutex_enter(&dn->dn_mtx); 1666 for (i = 0; i < TXG_SIZE; i++) { 1667 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 1668 break; 1669 } 1670 mutex_exit(&dn->dn_mtx); 1671 return (i < TXG_SIZE); 1672 } 1673 1674 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 1675 uint64_t 1676 dnode_block_freed(dnode_t *dn, uint64_t blkid) 1677 { 1678 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 1679 int i; 1680 1681 if (blkid == DMU_BONUS_BLKID) 1682 return (FALSE); 1683 1684 /* 1685 * If we're in the process of opening the pool, dp will not be 1686 * set yet, but there shouldn't be anything dirty. 1687 */ 1688 if (dp == NULL) 1689 return (FALSE); 1690 1691 if (dn->dn_free_txg) 1692 return (TRUE); 1693 1694 if (blkid == DMU_SPILL_BLKID) 1695 return (dnode_spill_freed(dn)); 1696 1697 mutex_enter(&dn->dn_mtx); 1698 for (i = 0; i < TXG_SIZE; i++) { 1699 if (dn->dn_free_ranges[i] != NULL && 1700 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 1701 break; 1702 } 1703 mutex_exit(&dn->dn_mtx); 1704 return (i < TXG_SIZE); 1705 } 1706 1707 /* call from syncing context when we actually write/free space for this dnode */ 1708 void 1709 dnode_diduse_space(dnode_t *dn, int64_t delta) 1710 { 1711 uint64_t space; 1712 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 1713 dn, dn->dn_phys, 1714 (u_longlong_t)dn->dn_phys->dn_used, 1715 (longlong_t)delta); 1716 1717 mutex_enter(&dn->dn_mtx); 1718 space = DN_USED_BYTES(dn->dn_phys); 1719 if (delta > 0) { 1720 ASSERT3U(space + delta, >=, space); /* no overflow */ 1721 } else { 1722 ASSERT3U(space, >=, -delta); /* no underflow */ 1723 } 1724 space += delta; 1725 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 1726 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 1727 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 1728 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 1729 } else { 1730 dn->dn_phys->dn_used = space; 1731 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 1732 } 1733 mutex_exit(&dn->dn_mtx); 1734 } 1735 1736 /* 1737 * Call when we think we're going to write/free space in open context to track 1738 * the amount of memory in use by the currently open txg. 1739 */ 1740 void 1741 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx) 1742 { 1743 objset_t *os = dn->dn_objset; 1744 dsl_dataset_t *ds = os->os_dsl_dataset; 1745 int64_t aspace = spa_get_asize(os->os_spa, space); 1746 1747 if (ds != NULL) { 1748 dsl_dir_willuse_space(ds->ds_dir, aspace, tx); 1749 dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx); 1750 } 1751 1752 dmu_tx_willuse_space(tx, aspace); 1753 } 1754 1755 /* 1756 * Scans a block at the indicated "level" looking for a hole or data, 1757 * depending on 'flags'. 1758 * 1759 * If level > 0, then we are scanning an indirect block looking at its 1760 * pointers. If level == 0, then we are looking at a block of dnodes. 1761 * 1762 * If we don't find what we are looking for in the block, we return ESRCH. 1763 * Otherwise, return with *offset pointing to the beginning (if searching 1764 * forwards) or end (if searching backwards) of the range covered by the 1765 * block pointer we matched on (or dnode). 1766 * 1767 * The basic search algorithm used below by dnode_next_offset() is to 1768 * use this function to search up the block tree (widen the search) until 1769 * we find something (i.e., we don't return ESRCH) and then search back 1770 * down the tree (narrow the search) until we reach our original search 1771 * level. 1772 */ 1773 static int 1774 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 1775 int lvl, uint64_t blkfill, uint64_t txg) 1776 { 1777 dmu_buf_impl_t *db = NULL; 1778 void *data = NULL; 1779 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1780 uint64_t epb = 1ULL << epbs; 1781 uint64_t minfill, maxfill; 1782 boolean_t hole; 1783 int i, inc, error, span; 1784 1785 dprintf("probing object %llu offset %llx level %d of %u\n", 1786 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 1787 1788 hole = ((flags & DNODE_FIND_HOLE) != 0); 1789 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 1790 ASSERT(txg == 0 || !hole); 1791 1792 if (lvl == dn->dn_phys->dn_nlevels) { 1793 error = 0; 1794 epb = dn->dn_phys->dn_nblkptr; 1795 data = dn->dn_phys->dn_blkptr; 1796 } else { 1797 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl); 1798 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db); 1799 if (error) { 1800 if (error != ENOENT) 1801 return (error); 1802 if (hole) 1803 return (0); 1804 /* 1805 * This can only happen when we are searching up 1806 * the block tree for data. We don't really need to 1807 * adjust the offset, as we will just end up looking 1808 * at the pointer to this block in its parent, and its 1809 * going to be unallocated, so we will skip over it. 1810 */ 1811 return (SET_ERROR(ESRCH)); 1812 } 1813 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 1814 if (error) { 1815 dbuf_rele(db, FTAG); 1816 return (error); 1817 } 1818 data = db->db.db_data; 1819 } 1820 1821 1822 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 1823 db->db_blkptr->blk_birth <= txg || 1824 BP_IS_HOLE(db->db_blkptr))) { 1825 /* 1826 * This can only happen when we are searching up the tree 1827 * and these conditions mean that we need to keep climbing. 1828 */ 1829 error = SET_ERROR(ESRCH); 1830 } else if (lvl == 0) { 1831 dnode_phys_t *dnp = data; 1832 span = DNODE_SHIFT; 1833 ASSERT(dn->dn_type == DMU_OT_DNODE); 1834 1835 for (i = (*offset >> span) & (blkfill - 1); 1836 i >= 0 && i < blkfill; i += inc) { 1837 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 1838 break; 1839 *offset += (1ULL << span) * inc; 1840 } 1841 if (i < 0 || i == blkfill) 1842 error = SET_ERROR(ESRCH); 1843 } else { 1844 blkptr_t *bp = data; 1845 uint64_t start = *offset; 1846 span = (lvl - 1) * epbs + dn->dn_datablkshift; 1847 minfill = 0; 1848 maxfill = blkfill << ((lvl - 1) * epbs); 1849 1850 if (hole) 1851 maxfill--; 1852 else 1853 minfill++; 1854 1855 *offset = *offset >> span; 1856 for (i = BF64_GET(*offset, 0, epbs); 1857 i >= 0 && i < epb; i += inc) { 1858 if (BP_GET_FILL(&bp[i]) >= minfill && 1859 BP_GET_FILL(&bp[i]) <= maxfill && 1860 (hole || bp[i].blk_birth > txg)) 1861 break; 1862 if (inc > 0 || *offset > 0) 1863 *offset += inc; 1864 } 1865 *offset = *offset << span; 1866 if (inc < 0) { 1867 /* traversing backwards; position offset at the end */ 1868 ASSERT3U(*offset, <=, start); 1869 *offset = MIN(*offset + (1ULL << span) - 1, start); 1870 } else if (*offset < start) { 1871 *offset = start; 1872 } 1873 if (i < 0 || i >= epb) 1874 error = SET_ERROR(ESRCH); 1875 } 1876 1877 if (db) 1878 dbuf_rele(db, FTAG); 1879 1880 return (error); 1881 } 1882 1883 /* 1884 * Find the next hole, data, or sparse region at or after *offset. 1885 * The value 'blkfill' tells us how many items we expect to find 1886 * in an L0 data block; this value is 1 for normal objects, 1887 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 1888 * DNODES_PER_BLOCK when searching for sparse regions thereof. 1889 * 1890 * Examples: 1891 * 1892 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 1893 * Finds the next/previous hole/data in a file. 1894 * Used in dmu_offset_next(). 1895 * 1896 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 1897 * Finds the next free/allocated dnode an objset's meta-dnode. 1898 * Only finds objects that have new contents since txg (ie. 1899 * bonus buffer changes and content removal are ignored). 1900 * Used in dmu_object_next(). 1901 * 1902 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 1903 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 1904 * Used in dmu_object_alloc(). 1905 */ 1906 int 1907 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 1908 int minlvl, uint64_t blkfill, uint64_t txg) 1909 { 1910 uint64_t initial_offset = *offset; 1911 int lvl, maxlvl; 1912 int error = 0; 1913 1914 if (!(flags & DNODE_FIND_HAVELOCK)) 1915 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1916 1917 if (dn->dn_phys->dn_nlevels == 0) { 1918 error = SET_ERROR(ESRCH); 1919 goto out; 1920 } 1921 1922 if (dn->dn_datablkshift == 0) { 1923 if (*offset < dn->dn_datablksz) { 1924 if (flags & DNODE_FIND_HOLE) 1925 *offset = dn->dn_datablksz; 1926 } else { 1927 error = SET_ERROR(ESRCH); 1928 } 1929 goto out; 1930 } 1931 1932 maxlvl = dn->dn_phys->dn_nlevels; 1933 1934 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 1935 error = dnode_next_offset_level(dn, 1936 flags, offset, lvl, blkfill, txg); 1937 if (error != ESRCH) 1938 break; 1939 } 1940 1941 while (error == 0 && --lvl >= minlvl) { 1942 error = dnode_next_offset_level(dn, 1943 flags, offset, lvl, blkfill, txg); 1944 } 1945 1946 /* 1947 * There's always a "virtual hole" at the end of the object, even 1948 * if all BP's which physically exist are non-holes. 1949 */ 1950 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 1951 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 1952 error = 0; 1953 } 1954 1955 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 1956 initial_offset < *offset : initial_offset > *offset)) 1957 error = SET_ERROR(ESRCH); 1958 out: 1959 if (!(flags & DNODE_FIND_HAVELOCK)) 1960 rw_exit(&dn->dn_struct_rwlock); 1961 1962 return (error); 1963 }