1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 60 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 61 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 62 { DMU_BSWAP_UINT64, TRUE, "object array" }, 63 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 64 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 65 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 66 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 67 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 68 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 69 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 70 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 71 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 72 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 74 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 75 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 76 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 77 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 78 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 79 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 82 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 83 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 84 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 85 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 86 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 87 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 88 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 89 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 90 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 91 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 92 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 93 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 94 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 95 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 96 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 97 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 98 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 99 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 100 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 101 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 102 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 103 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 104 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 106 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 107 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 108 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 109 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 111 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 112 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 113 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 114 }; 115 116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 117 { byteswap_uint8_array, "uint8" }, 118 { byteswap_uint16_array, "uint16" }, 119 { byteswap_uint32_array, "uint32" }, 120 { byteswap_uint64_array, "uint64" }, 121 { zap_byteswap, "zap" }, 122 { dnode_buf_byteswap, "dnode" }, 123 { dmu_objset_byteswap, "objset" }, 124 { zfs_znode_byteswap, "znode" }, 125 { zfs_oldacl_byteswap, "oldacl" }, 126 { zfs_acl_byteswap, "acl" } 127 }; 128 129 int 130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 131 void *tag, dmu_buf_t **dbp) 132 { 133 dnode_t *dn; 134 uint64_t blkid; 135 dmu_buf_impl_t *db; 136 int err; 137 138 err = dnode_hold(os, object, FTAG, &dn); 139 if (err) 140 return (err); 141 blkid = dbuf_whichblock(dn, offset); 142 rw_enter(&dn->dn_struct_rwlock, RW_READER); 143 db = dbuf_hold(dn, blkid, tag); 144 rw_exit(&dn->dn_struct_rwlock); 145 dnode_rele(dn, FTAG); 146 147 if (db == NULL) { 148 *dbp = NULL; 149 return (SET_ERROR(EIO)); 150 } 151 152 *dbp = &db->db; 153 return (err); 154 } 155 156 int 157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 158 void *tag, dmu_buf_t **dbp, int flags) 159 { 160 int err; 161 int db_flags = DB_RF_CANFAIL; 162 163 if (flags & DMU_READ_NO_PREFETCH) 164 db_flags |= DB_RF_NOPREFETCH; 165 166 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 167 if (err == 0) { 168 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 169 err = dbuf_read(db, NULL, db_flags); 170 if (err != 0) { 171 dbuf_rele(db, tag); 172 *dbp = NULL; 173 } 174 } 175 176 return (err); 177 } 178 179 int 180 dmu_bonus_max(void) 181 { 182 return (DN_MAX_BONUSLEN); 183 } 184 185 int 186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 187 { 188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 189 dnode_t *dn; 190 int error; 191 192 DB_DNODE_ENTER(db); 193 dn = DB_DNODE(db); 194 195 if (dn->dn_bonus != db) { 196 error = SET_ERROR(EINVAL); 197 } else if (newsize < 0 || newsize > db_fake->db_size) { 198 error = SET_ERROR(EINVAL); 199 } else { 200 dnode_setbonuslen(dn, newsize, tx); 201 error = 0; 202 } 203 204 DB_DNODE_EXIT(db); 205 return (error); 206 } 207 208 int 209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 210 { 211 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 212 dnode_t *dn; 213 int error; 214 215 DB_DNODE_ENTER(db); 216 dn = DB_DNODE(db); 217 218 if (!DMU_OT_IS_VALID(type)) { 219 error = SET_ERROR(EINVAL); 220 } else if (dn->dn_bonus != db) { 221 error = SET_ERROR(EINVAL); 222 } else { 223 dnode_setbonus_type(dn, type, tx); 224 error = 0; 225 } 226 227 DB_DNODE_EXIT(db); 228 return (error); 229 } 230 231 dmu_object_type_t 232 dmu_get_bonustype(dmu_buf_t *db_fake) 233 { 234 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 235 dnode_t *dn; 236 dmu_object_type_t type; 237 238 DB_DNODE_ENTER(db); 239 dn = DB_DNODE(db); 240 type = dn->dn_bonustype; 241 DB_DNODE_EXIT(db); 242 243 return (type); 244 } 245 246 int 247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 248 { 249 dnode_t *dn; 250 int error; 251 252 error = dnode_hold(os, object, FTAG, &dn); 253 dbuf_rm_spill(dn, tx); 254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 255 dnode_rm_spill(dn, tx); 256 rw_exit(&dn->dn_struct_rwlock); 257 dnode_rele(dn, FTAG); 258 return (error); 259 } 260 261 /* 262 * returns ENOENT, EIO, or 0. 263 */ 264 int 265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 266 { 267 dnode_t *dn; 268 dmu_buf_impl_t *db; 269 int error; 270 271 error = dnode_hold(os, object, FTAG, &dn); 272 if (error) 273 return (error); 274 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 if (dn->dn_bonus == NULL) { 277 rw_exit(&dn->dn_struct_rwlock); 278 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 279 if (dn->dn_bonus == NULL) 280 dbuf_create_bonus(dn); 281 } 282 db = dn->dn_bonus; 283 284 /* as long as the bonus buf is held, the dnode will be held */ 285 if (refcount_add(&db->db_holds, tag) == 1) { 286 VERIFY(dnode_add_ref(dn, db)); 287 atomic_inc_32(&dn->dn_dbufs_count); 288 } 289 290 /* 291 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 292 * hold and incrementing the dbuf count to ensure that dnode_move() sees 293 * a dnode hold for every dbuf. 294 */ 295 rw_exit(&dn->dn_struct_rwlock); 296 297 dnode_rele(dn, FTAG); 298 299 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 300 301 *dbp = &db->db; 302 return (0); 303 } 304 305 /* 306 * returns ENOENT, EIO, or 0. 307 * 308 * This interface will allocate a blank spill dbuf when a spill blk 309 * doesn't already exist on the dnode. 310 * 311 * if you only want to find an already existing spill db, then 312 * dmu_spill_hold_existing() should be used. 313 */ 314 int 315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 316 { 317 dmu_buf_impl_t *db = NULL; 318 int err; 319 320 if ((flags & DB_RF_HAVESTRUCT) == 0) 321 rw_enter(&dn->dn_struct_rwlock, RW_READER); 322 323 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 324 325 if ((flags & DB_RF_HAVESTRUCT) == 0) 326 rw_exit(&dn->dn_struct_rwlock); 327 328 ASSERT(db != NULL); 329 err = dbuf_read(db, NULL, flags); 330 if (err == 0) 331 *dbp = &db->db; 332 else 333 dbuf_rele(db, tag); 334 return (err); 335 } 336 337 int 338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 339 { 340 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 341 dnode_t *dn; 342 int err; 343 344 DB_DNODE_ENTER(db); 345 dn = DB_DNODE(db); 346 347 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 348 err = SET_ERROR(EINVAL); 349 } else { 350 rw_enter(&dn->dn_struct_rwlock, RW_READER); 351 352 if (!dn->dn_have_spill) { 353 err = SET_ERROR(ENOENT); 354 } else { 355 err = dmu_spill_hold_by_dnode(dn, 356 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 357 } 358 359 rw_exit(&dn->dn_struct_rwlock); 360 } 361 362 DB_DNODE_EXIT(db); 363 return (err); 364 } 365 366 int 367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 368 { 369 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 370 dnode_t *dn; 371 int err; 372 373 DB_DNODE_ENTER(db); 374 dn = DB_DNODE(db); 375 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 376 DB_DNODE_EXIT(db); 377 378 return (err); 379 } 380 381 /* 382 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 383 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 384 * and can induce severe lock contention when writing to several files 385 * whose dnodes are in the same block. 386 */ 387 static int 388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 389 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 390 { 391 dmu_buf_t **dbp; 392 uint64_t blkid, nblks, i; 393 uint32_t dbuf_flags; 394 int err; 395 zio_t *zio; 396 397 ASSERT(length <= DMU_MAX_ACCESS); 398 399 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 400 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 401 dbuf_flags |= DB_RF_NOPREFETCH; 402 403 rw_enter(&dn->dn_struct_rwlock, RW_READER); 404 if (dn->dn_datablkshift) { 405 int blkshift = dn->dn_datablkshift; 406 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 407 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 408 } else { 409 if (offset + length > dn->dn_datablksz) { 410 zfs_panic_recover("zfs: accessing past end of object " 411 "%llx/%llx (size=%u access=%llu+%llu)", 412 (longlong_t)dn->dn_objset-> 413 os_dsl_dataset->ds_object, 414 (longlong_t)dn->dn_object, dn->dn_datablksz, 415 (longlong_t)offset, (longlong_t)length); 416 rw_exit(&dn->dn_struct_rwlock); 417 return (SET_ERROR(EIO)); 418 } 419 nblks = 1; 420 } 421 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 422 423 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 424 blkid = dbuf_whichblock(dn, offset); 425 for (i = 0; i < nblks; i++) { 426 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 427 if (db == NULL) { 428 rw_exit(&dn->dn_struct_rwlock); 429 dmu_buf_rele_array(dbp, nblks, tag); 430 zio_nowait(zio); 431 return (SET_ERROR(EIO)); 432 } 433 /* initiate async i/o */ 434 if (read) { 435 (void) dbuf_read(db, zio, dbuf_flags); 436 } 437 dbp[i] = &db->db; 438 } 439 rw_exit(&dn->dn_struct_rwlock); 440 441 /* wait for async i/o */ 442 err = zio_wait(zio); 443 if (err) { 444 dmu_buf_rele_array(dbp, nblks, tag); 445 return (err); 446 } 447 448 /* wait for other io to complete */ 449 if (read) { 450 for (i = 0; i < nblks; i++) { 451 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 452 mutex_enter(&db->db_mtx); 453 while (db->db_state == DB_READ || 454 db->db_state == DB_FILL) 455 cv_wait(&db->db_changed, &db->db_mtx); 456 if (db->db_state == DB_UNCACHED) 457 err = SET_ERROR(EIO); 458 mutex_exit(&db->db_mtx); 459 if (err) { 460 dmu_buf_rele_array(dbp, nblks, tag); 461 return (err); 462 } 463 } 464 } 465 466 *numbufsp = nblks; 467 *dbpp = dbp; 468 return (0); 469 } 470 471 static int 472 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 473 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 474 { 475 dnode_t *dn; 476 int err; 477 478 err = dnode_hold(os, object, FTAG, &dn); 479 if (err) 480 return (err); 481 482 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 483 numbufsp, dbpp, DMU_READ_PREFETCH); 484 485 dnode_rele(dn, FTAG); 486 487 return (err); 488 } 489 490 int 491 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 492 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 493 { 494 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 495 dnode_t *dn; 496 int err; 497 498 DB_DNODE_ENTER(db); 499 dn = DB_DNODE(db); 500 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 501 numbufsp, dbpp, DMU_READ_PREFETCH); 502 DB_DNODE_EXIT(db); 503 504 return (err); 505 } 506 507 void 508 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 509 { 510 int i; 511 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 512 513 if (numbufs == 0) 514 return; 515 516 for (i = 0; i < numbufs; i++) { 517 if (dbp[i]) 518 dbuf_rele(dbp[i], tag); 519 } 520 521 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 522 } 523 524 /* 525 * Issue prefetch i/os for the given blocks. 526 * 527 * Note: The assumption is that we *know* these blocks will be needed 528 * almost immediately. Therefore, the prefetch i/os will be issued at 529 * ZIO_PRIORITY_SYNC_READ 530 * 531 * Note: indirect blocks and other metadata will be read synchronously, 532 * causing this function to block if they are not already cached. 533 */ 534 void 535 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 536 { 537 dnode_t *dn; 538 uint64_t blkid; 539 int nblks, err; 540 541 if (zfs_prefetch_disable) 542 return; 543 544 if (len == 0) { /* they're interested in the bonus buffer */ 545 dn = DMU_META_DNODE(os); 546 547 if (object == 0 || object >= DN_MAX_OBJECT) 548 return; 549 550 rw_enter(&dn->dn_struct_rwlock, RW_READER); 551 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 552 dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ); 553 rw_exit(&dn->dn_struct_rwlock); 554 return; 555 } 556 557 /* 558 * XXX - Note, if the dnode for the requested object is not 559 * already cached, we will do a *synchronous* read in the 560 * dnode_hold() call. The same is true for any indirects. 561 */ 562 err = dnode_hold(os, object, FTAG, &dn); 563 if (err != 0) 564 return; 565 566 rw_enter(&dn->dn_struct_rwlock, RW_READER); 567 if (dn->dn_datablkshift) { 568 int blkshift = dn->dn_datablkshift; 569 nblks = (P2ROUNDUP(offset + len, 1 << blkshift) - 570 P2ALIGN(offset, 1 << blkshift)) >> blkshift; 571 } else { 572 nblks = (offset < dn->dn_datablksz); 573 } 574 575 if (nblks != 0) { 576 blkid = dbuf_whichblock(dn, offset); 577 for (int i = 0; i < nblks; i++) 578 dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ); 579 } 580 581 rw_exit(&dn->dn_struct_rwlock); 582 583 dnode_rele(dn, FTAG); 584 } 585 586 /* 587 * Get the next "chunk" of file data to free. We traverse the file from 588 * the end so that the file gets shorter over time (if we crashes in the 589 * middle, this will leave us in a better state). We find allocated file 590 * data by simply searching the allocated level 1 indirects. 591 * 592 * On input, *start should be the first offset that does not need to be 593 * freed (e.g. "offset + length"). On return, *start will be the first 594 * offset that should be freed. 595 */ 596 static int 597 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 598 { 599 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 600 /* bytes of data covered by a level-1 indirect block */ 601 uint64_t iblkrange = 602 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 603 604 ASSERT3U(minimum, <=, *start); 605 606 if (*start - minimum <= iblkrange * maxblks) { 607 *start = minimum; 608 return (0); 609 } 610 ASSERT(ISP2(iblkrange)); 611 612 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 613 int err; 614 615 /* 616 * dnode_next_offset(BACKWARDS) will find an allocated L1 617 * indirect block at or before the input offset. We must 618 * decrement *start so that it is at the end of the region 619 * to search. 620 */ 621 (*start)--; 622 err = dnode_next_offset(dn, 623 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 624 625 /* if there are no indirect blocks before start, we are done */ 626 if (err == ESRCH) { 627 *start = minimum; 628 break; 629 } else if (err != 0) { 630 return (err); 631 } 632 633 /* set start to the beginning of this L1 indirect */ 634 *start = P2ALIGN(*start, iblkrange); 635 } 636 if (*start < minimum) 637 *start = minimum; 638 return (0); 639 } 640 641 static int 642 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 643 uint64_t length) 644 { 645 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 646 int err; 647 648 if (offset >= object_size) 649 return (0); 650 651 if (length == DMU_OBJECT_END || offset + length > object_size) 652 length = object_size - offset; 653 654 while (length != 0) { 655 uint64_t chunk_end, chunk_begin; 656 657 chunk_end = chunk_begin = offset + length; 658 659 /* move chunk_begin backwards to the beginning of this chunk */ 660 err = get_next_chunk(dn, &chunk_begin, offset); 661 if (err) 662 return (err); 663 ASSERT3U(chunk_begin, >=, offset); 664 ASSERT3U(chunk_begin, <=, chunk_end); 665 666 dmu_tx_t *tx = dmu_tx_create(os); 667 dmu_tx_hold_free(tx, dn->dn_object, 668 chunk_begin, chunk_end - chunk_begin); 669 670 /* 671 * Mark this transaction as typically resulting in a net 672 * reduction in space used. 673 */ 674 dmu_tx_mark_netfree(tx); 675 err = dmu_tx_assign(tx, TXG_WAIT); 676 if (err) { 677 dmu_tx_abort(tx); 678 return (err); 679 } 680 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 681 dmu_tx_commit(tx); 682 683 length -= chunk_end - chunk_begin; 684 } 685 return (0); 686 } 687 688 int 689 dmu_free_long_range(objset_t *os, uint64_t object, 690 uint64_t offset, uint64_t length) 691 { 692 dnode_t *dn; 693 int err; 694 695 err = dnode_hold(os, object, FTAG, &dn); 696 if (err != 0) 697 return (err); 698 err = dmu_free_long_range_impl(os, dn, offset, length); 699 700 /* 701 * It is important to zero out the maxblkid when freeing the entire 702 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 703 * will take the fast path, and (b) dnode_reallocate() can verify 704 * that the entire file has been freed. 705 */ 706 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 707 dn->dn_maxblkid = 0; 708 709 dnode_rele(dn, FTAG); 710 return (err); 711 } 712 713 int 714 dmu_free_long_object(objset_t *os, uint64_t object) 715 { 716 dmu_tx_t *tx; 717 int err; 718 719 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 720 if (err != 0) 721 return (err); 722 723 tx = dmu_tx_create(os); 724 dmu_tx_hold_bonus(tx, object); 725 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 726 dmu_tx_mark_netfree(tx); 727 err = dmu_tx_assign(tx, TXG_WAIT); 728 if (err == 0) { 729 err = dmu_object_free(os, object, tx); 730 dmu_tx_commit(tx); 731 } else { 732 dmu_tx_abort(tx); 733 } 734 735 return (err); 736 } 737 738 int 739 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 740 uint64_t size, dmu_tx_t *tx) 741 { 742 dnode_t *dn; 743 int err = dnode_hold(os, object, FTAG, &dn); 744 if (err) 745 return (err); 746 ASSERT(offset < UINT64_MAX); 747 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 748 dnode_free_range(dn, offset, size, tx); 749 dnode_rele(dn, FTAG); 750 return (0); 751 } 752 753 int 754 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 755 void *buf, uint32_t flags) 756 { 757 dnode_t *dn; 758 dmu_buf_t **dbp; 759 int numbufs, err; 760 761 err = dnode_hold(os, object, FTAG, &dn); 762 if (err) 763 return (err); 764 765 /* 766 * Deal with odd block sizes, where there can't be data past the first 767 * block. If we ever do the tail block optimization, we will need to 768 * handle that here as well. 769 */ 770 if (dn->dn_maxblkid == 0) { 771 int newsz = offset > dn->dn_datablksz ? 0 : 772 MIN(size, dn->dn_datablksz - offset); 773 bzero((char *)buf + newsz, size - newsz); 774 size = newsz; 775 } 776 777 while (size > 0) { 778 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 779 int i; 780 781 /* 782 * NB: we could do this block-at-a-time, but it's nice 783 * to be reading in parallel. 784 */ 785 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 786 TRUE, FTAG, &numbufs, &dbp, flags); 787 if (err) 788 break; 789 790 for (i = 0; i < numbufs; i++) { 791 int tocpy; 792 int bufoff; 793 dmu_buf_t *db = dbp[i]; 794 795 ASSERT(size > 0); 796 797 bufoff = offset - db->db_offset; 798 tocpy = (int)MIN(db->db_size - bufoff, size); 799 800 bcopy((char *)db->db_data + bufoff, buf, tocpy); 801 802 offset += tocpy; 803 size -= tocpy; 804 buf = (char *)buf + tocpy; 805 } 806 dmu_buf_rele_array(dbp, numbufs, FTAG); 807 } 808 dnode_rele(dn, FTAG); 809 return (err); 810 } 811 812 void 813 dmu_write_zero(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) 814 { 815 dmu_buf_t **dbp; 816 int numbufs, i; 817 818 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 819 FALSE, FTAG, &numbufs, &dbp)); 820 821 for (i = 0; i < numbufs; i++) { 822 dmu_buf_t *db = dbp[i]; 823 824 dmu_buf_will_zero_fill(db, tx); 825 826 memset(db->db_data, 0, db->db_size); 827 828 dmu_buf_fill_done(db, tx); 829 } 830 831 dmu_buf_rele_array(dbp, numbufs, FTAG); 832 } 833 834 void 835 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 836 const void *buf, dmu_tx_t *tx) 837 { 838 dmu_buf_t **dbp; 839 int numbufs, i; 840 841 if (size == 0) 842 return; 843 844 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 845 FALSE, FTAG, &numbufs, &dbp)); 846 847 for (i = 0; i < numbufs; i++) { 848 int tocpy; 849 int bufoff; 850 dmu_buf_t *db = dbp[i]; 851 852 ASSERT(size > 0); 853 854 bufoff = offset - db->db_offset; 855 tocpy = (int)MIN(db->db_size - bufoff, size); 856 857 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 858 859 if (tocpy == db->db_size) 860 dmu_buf_will_fill(db, tx); 861 else 862 dmu_buf_will_dirty(db, tx); 863 864 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 865 866 if (tocpy == db->db_size) 867 dmu_buf_fill_done(db, tx); 868 869 offset += tocpy; 870 size -= tocpy; 871 buf = (char *)buf + tocpy; 872 } 873 dmu_buf_rele_array(dbp, numbufs, FTAG); 874 } 875 876 void 877 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 878 dmu_tx_t *tx) 879 { 880 dmu_buf_t **dbp; 881 int numbufs, i; 882 883 if (size == 0) 884 return; 885 886 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 887 FALSE, FTAG, &numbufs, &dbp)); 888 889 for (i = 0; i < numbufs; i++) { 890 dmu_buf_t *db = dbp[i]; 891 892 dmu_buf_will_not_fill(db, tx); 893 } 894 dmu_buf_rele_array(dbp, numbufs, FTAG); 895 } 896 897 void 898 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 899 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 900 int compressed_size, int byteorder, dmu_tx_t *tx) 901 { 902 dmu_buf_t *db; 903 904 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 905 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 906 VERIFY0(dmu_buf_hold_noread(os, object, offset, 907 FTAG, &db)); 908 909 dmu_buf_write_embedded(db, 910 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 911 uncompressed_size, compressed_size, byteorder, tx); 912 913 dmu_buf_rele(db, FTAG); 914 } 915 916 /* 917 * DMU support for xuio 918 */ 919 kstat_t *xuio_ksp = NULL; 920 921 int 922 dmu_xuio_init(xuio_t *xuio, int nblk) 923 { 924 dmu_xuio_t *priv; 925 uio_t *uio = &xuio->xu_uio; 926 927 uio->uio_iovcnt = nblk; 928 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 929 930 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 931 priv->cnt = nblk; 932 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 933 priv->iovp = uio->uio_iov; 934 XUIO_XUZC_PRIV(xuio) = priv; 935 936 if (XUIO_XUZC_RW(xuio) == UIO_READ) 937 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 938 else 939 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 940 941 return (0); 942 } 943 944 void 945 dmu_xuio_fini(xuio_t *xuio) 946 { 947 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 948 int nblk = priv->cnt; 949 950 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 951 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 952 kmem_free(priv, sizeof (dmu_xuio_t)); 953 954 if (XUIO_XUZC_RW(xuio) == UIO_READ) 955 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 956 else 957 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 958 } 959 960 /* 961 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 962 * and increase priv->next by 1. 963 */ 964 int 965 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 966 { 967 struct iovec *iov; 968 uio_t *uio = &xuio->xu_uio; 969 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 970 int i = priv->next++; 971 972 ASSERT(i < priv->cnt); 973 ASSERT(off + n <= arc_buf_size(abuf)); 974 iov = uio->uio_iov + i; 975 iov->iov_base = (char *)abuf->b_data + off; 976 iov->iov_len = n; 977 priv->bufs[i] = abuf; 978 return (0); 979 } 980 981 int 982 dmu_xuio_cnt(xuio_t *xuio) 983 { 984 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 985 return (priv->cnt); 986 } 987 988 arc_buf_t * 989 dmu_xuio_arcbuf(xuio_t *xuio, int i) 990 { 991 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 992 993 ASSERT(i < priv->cnt); 994 return (priv->bufs[i]); 995 } 996 997 void 998 dmu_xuio_clear(xuio_t *xuio, int i) 999 { 1000 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1001 1002 ASSERT(i < priv->cnt); 1003 priv->bufs[i] = NULL; 1004 } 1005 1006 static void 1007 xuio_stat_init(void) 1008 { 1009 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1010 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1011 KSTAT_FLAG_VIRTUAL); 1012 if (xuio_ksp != NULL) { 1013 xuio_ksp->ks_data = &xuio_stats; 1014 kstat_install(xuio_ksp); 1015 } 1016 } 1017 1018 static void 1019 xuio_stat_fini(void) 1020 { 1021 if (xuio_ksp != NULL) { 1022 kstat_delete(xuio_ksp); 1023 xuio_ksp = NULL; 1024 } 1025 } 1026 1027 void 1028 xuio_stat_wbuf_copied() 1029 { 1030 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1031 } 1032 1033 void 1034 xuio_stat_wbuf_nocopy() 1035 { 1036 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1037 } 1038 1039 #ifdef _KERNEL 1040 static int 1041 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1042 { 1043 dmu_buf_t **dbp; 1044 int numbufs, i, err; 1045 xuio_t *xuio = NULL; 1046 1047 /* 1048 * NB: we could do this block-at-a-time, but it's nice 1049 * to be reading in parallel. 1050 */ 1051 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1052 TRUE, FTAG, &numbufs, &dbp, 0); 1053 if (err) 1054 return (err); 1055 1056 if (uio->uio_extflg == UIO_XUIO) 1057 xuio = (xuio_t *)uio; 1058 1059 for (i = 0; i < numbufs; i++) { 1060 int tocpy; 1061 int bufoff; 1062 dmu_buf_t *db = dbp[i]; 1063 1064 ASSERT(size > 0); 1065 1066 bufoff = uio->uio_loffset - db->db_offset; 1067 tocpy = (int)MIN(db->db_size - bufoff, size); 1068 1069 if (xuio) { 1070 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1071 arc_buf_t *dbuf_abuf = dbi->db_buf; 1072 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1073 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1074 if (!err) { 1075 uio->uio_resid -= tocpy; 1076 uio->uio_loffset += tocpy; 1077 } 1078 1079 if (abuf == dbuf_abuf) 1080 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1081 else 1082 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1083 } else { 1084 err = uiomove((char *)db->db_data + bufoff, tocpy, 1085 UIO_READ, uio); 1086 } 1087 if (err) 1088 break; 1089 1090 size -= tocpy; 1091 } 1092 dmu_buf_rele_array(dbp, numbufs, FTAG); 1093 1094 return (err); 1095 } 1096 1097 /* 1098 * Read 'size' bytes into the uio buffer. 1099 * From object zdb->db_object. 1100 * Starting at offset uio->uio_loffset. 1101 * 1102 * If the caller already has a dbuf in the target object 1103 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1104 * because we don't have to find the dnode_t for the object. 1105 */ 1106 int 1107 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1108 { 1109 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1110 dnode_t *dn; 1111 int err; 1112 1113 if (size == 0) 1114 return (0); 1115 1116 DB_DNODE_ENTER(db); 1117 dn = DB_DNODE(db); 1118 err = dmu_read_uio_dnode(dn, uio, size); 1119 DB_DNODE_EXIT(db); 1120 1121 return (err); 1122 } 1123 1124 /* 1125 * Read 'size' bytes into the uio buffer. 1126 * From the specified object 1127 * Starting at offset uio->uio_loffset. 1128 */ 1129 int 1130 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1131 { 1132 dnode_t *dn; 1133 int err; 1134 1135 if (size == 0) 1136 return (0); 1137 1138 err = dnode_hold(os, object, FTAG, &dn); 1139 if (err) 1140 return (err); 1141 1142 err = dmu_read_uio_dnode(dn, uio, size); 1143 1144 dnode_rele(dn, FTAG); 1145 1146 return (err); 1147 } 1148 1149 static int 1150 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1151 { 1152 dmu_buf_t **dbp; 1153 int numbufs; 1154 int err = 0; 1155 int i; 1156 1157 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1158 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1159 if (err) 1160 return (err); 1161 1162 for (i = 0; i < numbufs; i++) { 1163 int tocpy; 1164 int bufoff; 1165 dmu_buf_t *db = dbp[i]; 1166 1167 ASSERT(size > 0); 1168 1169 bufoff = uio->uio_loffset - db->db_offset; 1170 tocpy = (int)MIN(db->db_size - bufoff, size); 1171 1172 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1173 1174 if (tocpy == db->db_size) 1175 dmu_buf_will_fill(db, tx); 1176 else 1177 dmu_buf_will_dirty(db, tx); 1178 1179 /* 1180 * XXX uiomove could block forever (eg. nfs-backed 1181 * pages). There needs to be a uiolockdown() function 1182 * to lock the pages in memory, so that uiomove won't 1183 * block. 1184 */ 1185 err = uiomove((char *)db->db_data + bufoff, tocpy, 1186 UIO_WRITE, uio); 1187 1188 if (tocpy == db->db_size) 1189 dmu_buf_fill_done(db, tx); 1190 1191 if (err) 1192 break; 1193 1194 size -= tocpy; 1195 } 1196 1197 dmu_buf_rele_array(dbp, numbufs, FTAG); 1198 return (err); 1199 } 1200 1201 /* 1202 * Write 'size' bytes from the uio buffer. 1203 * To object zdb->db_object. 1204 * Starting at offset uio->uio_loffset. 1205 * 1206 * If the caller already has a dbuf in the target object 1207 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1208 * because we don't have to find the dnode_t for the object. 1209 */ 1210 int 1211 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1212 dmu_tx_t *tx) 1213 { 1214 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1215 dnode_t *dn; 1216 int err; 1217 1218 if (size == 0) 1219 return (0); 1220 1221 DB_DNODE_ENTER(db); 1222 dn = DB_DNODE(db); 1223 err = dmu_write_uio_dnode(dn, uio, size, tx); 1224 DB_DNODE_EXIT(db); 1225 1226 return (err); 1227 } 1228 1229 /* 1230 * Write 'size' bytes from the uio buffer. 1231 * To the specified object. 1232 * Starting at offset uio->uio_loffset. 1233 */ 1234 int 1235 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1236 dmu_tx_t *tx) 1237 { 1238 dnode_t *dn; 1239 int err; 1240 1241 if (size == 0) 1242 return (0); 1243 1244 err = dnode_hold(os, object, FTAG, &dn); 1245 if (err) 1246 return (err); 1247 1248 err = dmu_write_uio_dnode(dn, uio, size, tx); 1249 1250 dnode_rele(dn, FTAG); 1251 1252 return (err); 1253 } 1254 1255 int 1256 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1257 page_t *pp, dmu_tx_t *tx) 1258 { 1259 dmu_buf_t **dbp; 1260 int numbufs, i; 1261 int err; 1262 1263 if (size == 0) 1264 return (0); 1265 1266 err = dmu_buf_hold_array(os, object, offset, size, 1267 FALSE, FTAG, &numbufs, &dbp); 1268 if (err) 1269 return (err); 1270 1271 for (i = 0; i < numbufs; i++) { 1272 int tocpy, copied, thiscpy; 1273 int bufoff; 1274 dmu_buf_t *db = dbp[i]; 1275 caddr_t va; 1276 1277 ASSERT(size > 0); 1278 ASSERT3U(db->db_size, >=, PAGESIZE); 1279 1280 bufoff = offset - db->db_offset; 1281 tocpy = (int)MIN(db->db_size - bufoff, size); 1282 1283 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1284 1285 if (tocpy == db->db_size) 1286 dmu_buf_will_fill(db, tx); 1287 else 1288 dmu_buf_will_dirty(db, tx); 1289 1290 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1291 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1292 thiscpy = MIN(PAGESIZE, tocpy - copied); 1293 va = zfs_map_page(pp, S_READ); 1294 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1295 zfs_unmap_page(pp, va); 1296 pp = pp->p_next; 1297 bufoff += PAGESIZE; 1298 } 1299 1300 if (tocpy == db->db_size) 1301 dmu_buf_fill_done(db, tx); 1302 1303 offset += tocpy; 1304 size -= tocpy; 1305 } 1306 dmu_buf_rele_array(dbp, numbufs, FTAG); 1307 return (err); 1308 } 1309 #endif 1310 1311 /* 1312 * Allocate a loaned anonymous arc buffer. 1313 */ 1314 arc_buf_t * 1315 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1316 { 1317 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1318 1319 return (arc_loan_buf(db->db_objset->os_spa, size)); 1320 } 1321 1322 /* 1323 * Free a loaned arc buffer. 1324 */ 1325 void 1326 dmu_return_arcbuf(arc_buf_t *buf) 1327 { 1328 arc_return_buf(buf, FTAG); 1329 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1330 } 1331 1332 /* 1333 * When possible directly assign passed loaned arc buffer to a dbuf. 1334 * If this is not possible copy the contents of passed arc buf via 1335 * dmu_write(). 1336 */ 1337 void 1338 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1339 dmu_tx_t *tx) 1340 { 1341 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1342 dnode_t *dn; 1343 dmu_buf_impl_t *db; 1344 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1345 uint64_t blkid; 1346 1347 DB_DNODE_ENTER(dbuf); 1348 dn = DB_DNODE(dbuf); 1349 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1350 blkid = dbuf_whichblock(dn, offset); 1351 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1352 rw_exit(&dn->dn_struct_rwlock); 1353 DB_DNODE_EXIT(dbuf); 1354 1355 /* 1356 * We can only assign if the offset is aligned, the arc buf is the 1357 * same size as the dbuf, and the dbuf is not metadata. It 1358 * can't be metadata because the loaned arc buf comes from the 1359 * user-data kmem arena. 1360 */ 1361 if (offset == db->db.db_offset && blksz == db->db.db_size && 1362 DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) { 1363 dbuf_assign_arcbuf(db, buf, tx); 1364 dbuf_rele(db, FTAG); 1365 } else { 1366 objset_t *os; 1367 uint64_t object; 1368 1369 DB_DNODE_ENTER(dbuf); 1370 dn = DB_DNODE(dbuf); 1371 os = dn->dn_objset; 1372 object = dn->dn_object; 1373 DB_DNODE_EXIT(dbuf); 1374 1375 dbuf_rele(db, FTAG); 1376 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1377 dmu_return_arcbuf(buf); 1378 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1379 } 1380 } 1381 1382 typedef struct { 1383 dbuf_dirty_record_t *dsa_dr; 1384 dmu_sync_cb_t *dsa_done; 1385 zgd_t *dsa_zgd; 1386 dmu_tx_t *dsa_tx; 1387 } dmu_sync_arg_t; 1388 1389 /* ARGSUSED */ 1390 static void 1391 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1392 { 1393 dmu_sync_arg_t *dsa = varg; 1394 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1395 blkptr_t *bp = zio->io_bp; 1396 1397 if (zio->io_error == 0) { 1398 if (BP_IS_HOLE(bp)) { 1399 /* 1400 * A block of zeros may compress to a hole, but the 1401 * block size still needs to be known for replay. 1402 */ 1403 BP_SET_LSIZE(bp, db->db_size); 1404 } else if (!BP_IS_EMBEDDED(bp)) { 1405 ASSERT(BP_GET_LEVEL(bp) == 0); 1406 bp->blk_fill = 1; 1407 } 1408 } 1409 } 1410 1411 static void 1412 dmu_sync_late_arrival_ready(zio_t *zio) 1413 { 1414 dmu_sync_ready(zio, NULL, zio->io_private); 1415 } 1416 1417 /* ARGSUSED */ 1418 static void 1419 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1420 { 1421 dmu_sync_arg_t *dsa = varg; 1422 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1423 dmu_buf_impl_t *db = dr->dr_dbuf; 1424 1425 mutex_enter(&db->db_mtx); 1426 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1427 if (zio->io_error == 0) { 1428 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1429 if (dr->dt.dl.dr_nopwrite) { 1430 blkptr_t *bp = zio->io_bp; 1431 blkptr_t *bp_orig = &zio->io_bp_orig; 1432 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1433 1434 ASSERT(BP_EQUAL(bp, bp_orig)); 1435 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1436 ASSERT(zio_checksum_table[chksum].ci_dedup); 1437 } 1438 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1439 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1440 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1441 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1442 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1443 } else { 1444 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1445 } 1446 cv_broadcast(&db->db_changed); 1447 mutex_exit(&db->db_mtx); 1448 1449 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1450 1451 kmem_free(dsa, sizeof (*dsa)); 1452 } 1453 1454 static void 1455 dmu_sync_late_arrival_done(zio_t *zio) 1456 { 1457 blkptr_t *bp = zio->io_bp; 1458 dmu_sync_arg_t *dsa = zio->io_private; 1459 blkptr_t *bp_orig = &zio->io_bp_orig; 1460 1461 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1462 /* 1463 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1464 * then there is nothing to do here. Otherwise, free the 1465 * newly allocated block in this txg. 1466 */ 1467 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1468 ASSERT(BP_EQUAL(bp, bp_orig)); 1469 } else { 1470 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1471 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1472 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1473 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1474 } 1475 } 1476 1477 dmu_tx_commit(dsa->dsa_tx); 1478 1479 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1480 1481 kmem_free(dsa, sizeof (*dsa)); 1482 } 1483 1484 static int 1485 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1486 zio_prop_t *zp, zbookmark_phys_t *zb) 1487 { 1488 dmu_sync_arg_t *dsa; 1489 dmu_tx_t *tx; 1490 1491 tx = dmu_tx_create(os); 1492 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1493 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1494 dmu_tx_abort(tx); 1495 /* Make zl_get_data do txg_waited_synced() */ 1496 return (SET_ERROR(EIO)); 1497 } 1498 1499 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1500 dsa->dsa_dr = NULL; 1501 dsa->dsa_done = done; 1502 dsa->dsa_zgd = zgd; 1503 dsa->dsa_tx = tx; 1504 1505 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1506 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1507 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa, 1508 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1509 1510 return (0); 1511 } 1512 1513 /* 1514 * Intent log support: sync the block associated with db to disk. 1515 * N.B. and XXX: the caller is responsible for making sure that the 1516 * data isn't changing while dmu_sync() is writing it. 1517 * 1518 * Return values: 1519 * 1520 * EEXIST: this txg has already been synced, so there's nothing to do. 1521 * The caller should not log the write. 1522 * 1523 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1524 * The caller should not log the write. 1525 * 1526 * EALREADY: this block is already in the process of being synced. 1527 * The caller should track its progress (somehow). 1528 * 1529 * EIO: could not do the I/O. 1530 * The caller should do a txg_wait_synced(). 1531 * 1532 * 0: the I/O has been initiated. 1533 * The caller should log this blkptr in the done callback. 1534 * It is possible that the I/O will fail, in which case 1535 * the error will be reported to the done callback and 1536 * propagated to pio from zio_done(). 1537 */ 1538 int 1539 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1540 { 1541 blkptr_t *bp = zgd->zgd_bp; 1542 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1543 objset_t *os = db->db_objset; 1544 dsl_dataset_t *ds = os->os_dsl_dataset; 1545 dbuf_dirty_record_t *dr; 1546 dmu_sync_arg_t *dsa; 1547 zbookmark_phys_t zb; 1548 zio_prop_t zp; 1549 dnode_t *dn; 1550 1551 ASSERT(pio != NULL); 1552 ASSERT(txg != 0); 1553 1554 SET_BOOKMARK(&zb, ds->ds_object, 1555 db->db.db_object, db->db_level, db->db_blkid); 1556 1557 DB_DNODE_ENTER(db); 1558 dn = DB_DNODE(db); 1559 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1560 DB_DNODE_EXIT(db); 1561 1562 /* 1563 * If we're frozen (running ziltest), we always need to generate a bp. 1564 */ 1565 if (txg > spa_freeze_txg(os->os_spa)) 1566 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1567 1568 /* 1569 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1570 * and us. If we determine that this txg is not yet syncing, 1571 * but it begins to sync a moment later, that's OK because the 1572 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1573 */ 1574 mutex_enter(&db->db_mtx); 1575 1576 if (txg <= spa_last_synced_txg(os->os_spa)) { 1577 /* 1578 * This txg has already synced. There's nothing to do. 1579 */ 1580 mutex_exit(&db->db_mtx); 1581 return (SET_ERROR(EEXIST)); 1582 } 1583 1584 if (txg <= spa_syncing_txg(os->os_spa)) { 1585 /* 1586 * This txg is currently syncing, so we can't mess with 1587 * the dirty record anymore; just write a new log block. 1588 */ 1589 mutex_exit(&db->db_mtx); 1590 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1591 } 1592 1593 dr = db->db_last_dirty; 1594 while (dr && dr->dr_txg != txg) 1595 dr = dr->dr_next; 1596 1597 if (dr == NULL) { 1598 /* 1599 * There's no dr for this dbuf, so it must have been freed. 1600 * There's no need to log writes to freed blocks, so we're done. 1601 */ 1602 mutex_exit(&db->db_mtx); 1603 return (SET_ERROR(ENOENT)); 1604 } 1605 1606 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1607 1608 /* 1609 * Assume the on-disk data is X, the current syncing data is Y, 1610 * and the current in-memory data is Z (currently in dmu_sync). 1611 * X and Z are identical but Y is has been modified. Normally, 1612 * when X and Z are the same we will perform a nopwrite but if Y 1613 * is different we must disable nopwrite since the resulting write 1614 * of Y to disk can free the block containing X. If we allowed a 1615 * nopwrite to occur the block pointing to Z would reference a freed 1616 * block. Since this is a rare case we simplify this by disabling 1617 * nopwrite if the current dmu_sync-ing dbuf has been modified in 1618 * a previous transaction. 1619 */ 1620 if (dr->dr_next) 1621 zp.zp_nopwrite = B_FALSE; 1622 1623 ASSERT(dr->dr_txg == txg); 1624 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1625 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1626 /* 1627 * We have already issued a sync write for this buffer, 1628 * or this buffer has already been synced. It could not 1629 * have been dirtied since, or we would have cleared the state. 1630 */ 1631 mutex_exit(&db->db_mtx); 1632 return (SET_ERROR(EALREADY)); 1633 } 1634 1635 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1636 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1637 mutex_exit(&db->db_mtx); 1638 1639 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1640 dsa->dsa_dr = dr; 1641 dsa->dsa_done = done; 1642 dsa->dsa_zgd = zgd; 1643 dsa->dsa_tx = NULL; 1644 1645 zio_nowait(arc_write(pio, os->os_spa, txg, 1646 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1647 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, 1648 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1649 ZIO_FLAG_CANFAIL, &zb)); 1650 1651 return (0); 1652 } 1653 1654 int 1655 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1656 dmu_tx_t *tx) 1657 { 1658 dnode_t *dn; 1659 int err; 1660 1661 err = dnode_hold(os, object, FTAG, &dn); 1662 if (err) 1663 return (err); 1664 err = dnode_set_blksz(dn, size, ibs, tx); 1665 dnode_rele(dn, FTAG); 1666 return (err); 1667 } 1668 1669 void 1670 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1671 dmu_tx_t *tx) 1672 { 1673 dnode_t *dn; 1674 1675 /* 1676 * Send streams include each object's checksum function. This 1677 * check ensures that the receiving system can understand the 1678 * checksum function transmitted. 1679 */ 1680 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1681 1682 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1683 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1684 dn->dn_checksum = checksum; 1685 dnode_setdirty(dn, tx); 1686 dnode_rele(dn, FTAG); 1687 } 1688 1689 void 1690 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1691 dmu_tx_t *tx) 1692 { 1693 dnode_t *dn; 1694 1695 /* 1696 * Send streams include each object's compression function. This 1697 * check ensures that the receiving system can understand the 1698 * compression function transmitted. 1699 */ 1700 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1701 1702 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1703 dn->dn_compress = compress; 1704 dnode_setdirty(dn, tx); 1705 dnode_rele(dn, FTAG); 1706 } 1707 1708 int zfs_mdcomp_disable = 0; 1709 1710 /* 1711 * When the "redundant_metadata" property is set to "most", only indirect 1712 * blocks of this level and higher will have an additional ditto block. 1713 */ 1714 int zfs_redundant_metadata_most_ditto_level = 2; 1715 1716 void 1717 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1718 { 1719 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1720 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1721 (wp & WP_SPILL)); 1722 enum zio_checksum checksum = os->os_checksum; 1723 enum zio_compress compress = os->os_compress; 1724 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1725 boolean_t dedup = B_FALSE; 1726 boolean_t nopwrite = B_FALSE; 1727 boolean_t dedup_verify = os->os_dedup_verify; 1728 int copies = os->os_copies; 1729 1730 /* 1731 * We maintain different write policies for each of the following 1732 * types of data: 1733 * 1. metadata 1734 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1735 * 3. all other level 0 blocks 1736 */ 1737 if (ismd) { 1738 /* 1739 * XXX -- we should design a compression algorithm 1740 * that specializes in arrays of bps. 1741 */ 1742 boolean_t lz4_ac = spa_feature_is_active(os->os_spa, 1743 SPA_FEATURE_LZ4_COMPRESS); 1744 1745 if (zfs_mdcomp_disable) { 1746 compress = ZIO_COMPRESS_EMPTY; 1747 } else if (lz4_ac) { 1748 compress = ZIO_COMPRESS_LZ4; 1749 } else { 1750 compress = ZIO_COMPRESS_LZJB; 1751 } 1752 1753 /* 1754 * Metadata always gets checksummed. If the data 1755 * checksum is multi-bit correctable, and it's not a 1756 * ZBT-style checksum, then it's suitable for metadata 1757 * as well. Otherwise, the metadata checksum defaults 1758 * to fletcher4. 1759 */ 1760 if (zio_checksum_table[checksum].ci_correctable < 1 || 1761 zio_checksum_table[checksum].ci_eck) 1762 checksum = ZIO_CHECKSUM_FLETCHER_4; 1763 1764 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1765 (os->os_redundant_metadata == 1766 ZFS_REDUNDANT_METADATA_MOST && 1767 (level >= zfs_redundant_metadata_most_ditto_level || 1768 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1769 copies++; 1770 } else if (wp & WP_NOFILL) { 1771 ASSERT(level == 0); 1772 1773 /* 1774 * If we're writing preallocated blocks, we aren't actually 1775 * writing them so don't set any policy properties. These 1776 * blocks are currently only used by an external subsystem 1777 * outside of zfs (i.e. dump) and not written by the zio 1778 * pipeline. 1779 */ 1780 compress = ZIO_COMPRESS_OFF; 1781 checksum = ZIO_CHECKSUM_NOPARITY; 1782 } else { 1783 compress = zio_compress_select(dn->dn_compress, compress); 1784 1785 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1786 zio_checksum_select(dn->dn_checksum, checksum) : 1787 dedup_checksum; 1788 1789 /* 1790 * Determine dedup setting. If we are in dmu_sync(), 1791 * we won't actually dedup now because that's all 1792 * done in syncing context; but we do want to use the 1793 * dedup checkum. If the checksum is not strong 1794 * enough to ensure unique signatures, force 1795 * dedup_verify. 1796 */ 1797 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1798 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1799 if (!zio_checksum_table[checksum].ci_dedup) 1800 dedup_verify = B_TRUE; 1801 } 1802 1803 /* 1804 * Enable nopwrite if we have a cryptographically secure 1805 * checksum that has no known collisions (i.e. SHA-256) 1806 * and compression is enabled. We don't enable nopwrite if 1807 * dedup is enabled as the two features are mutually exclusive. 1808 */ 1809 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1810 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1811 } 1812 1813 zp->zp_checksum = checksum; 1814 zp->zp_compress = compress; 1815 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1816 zp->zp_level = level; 1817 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1818 zp->zp_dedup = dedup; 1819 zp->zp_dedup_verify = dedup && dedup_verify; 1820 zp->zp_nopwrite = nopwrite; 1821 zp->zp_zero_write = B_FALSE; 1822 } 1823 1824 int 1825 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1826 { 1827 dnode_t *dn; 1828 int i, err; 1829 1830 err = dnode_hold(os, object, FTAG, &dn); 1831 if (err) 1832 return (err); 1833 /* 1834 * Sync any current changes before 1835 * we go trundling through the block pointers. 1836 */ 1837 for (i = 0; i < TXG_SIZE; i++) { 1838 if (list_link_active(&dn->dn_dirty_link[i])) 1839 break; 1840 } 1841 if (i != TXG_SIZE) { 1842 dnode_rele(dn, FTAG); 1843 txg_wait_synced(dmu_objset_pool(os), 0); 1844 err = dnode_hold(os, object, FTAG, &dn); 1845 if (err) 1846 return (err); 1847 } 1848 1849 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1850 dnode_rele(dn, FTAG); 1851 1852 return (err); 1853 } 1854 1855 void 1856 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1857 { 1858 dnode_phys_t *dnp; 1859 1860 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1861 mutex_enter(&dn->dn_mtx); 1862 1863 dnp = dn->dn_phys; 1864 1865 doi->doi_data_block_size = dn->dn_datablksz; 1866 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1867 1ULL << dn->dn_indblkshift : 0; 1868 doi->doi_type = dn->dn_type; 1869 doi->doi_bonus_type = dn->dn_bonustype; 1870 doi->doi_bonus_size = dn->dn_bonuslen; 1871 doi->doi_indirection = dn->dn_nlevels; 1872 doi->doi_checksum = dn->dn_checksum; 1873 doi->doi_compress = dn->dn_compress; 1874 doi->doi_nblkptr = dn->dn_nblkptr; 1875 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1876 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1877 doi->doi_fill_count = 0; 1878 for (int i = 0; i < dnp->dn_nblkptr; i++) 1879 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 1880 1881 mutex_exit(&dn->dn_mtx); 1882 rw_exit(&dn->dn_struct_rwlock); 1883 } 1884 1885 /* 1886 * Get information on a DMU object. 1887 * If doi is NULL, just indicates whether the object exists. 1888 */ 1889 int 1890 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1891 { 1892 dnode_t *dn; 1893 int err = dnode_hold(os, object, FTAG, &dn); 1894 1895 if (err) 1896 return (err); 1897 1898 if (doi != NULL) 1899 dmu_object_info_from_dnode(dn, doi); 1900 1901 dnode_rele(dn, FTAG); 1902 return (0); 1903 } 1904 1905 /* 1906 * As above, but faster; can be used when you have a held dbuf in hand. 1907 */ 1908 void 1909 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1910 { 1911 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1912 1913 DB_DNODE_ENTER(db); 1914 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1915 DB_DNODE_EXIT(db); 1916 } 1917 1918 /* 1919 * Faster still when you only care about the size. 1920 * This is specifically optimized for zfs_getattr(). 1921 */ 1922 void 1923 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1924 u_longlong_t *nblk512) 1925 { 1926 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1927 dnode_t *dn; 1928 1929 DB_DNODE_ENTER(db); 1930 dn = DB_DNODE(db); 1931 1932 *blksize = dn->dn_datablksz; 1933 /* add 1 for dnode space */ 1934 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1935 SPA_MINBLOCKSHIFT) + 1; 1936 DB_DNODE_EXIT(db); 1937 } 1938 1939 void 1940 byteswap_uint64_array(void *vbuf, size_t size) 1941 { 1942 uint64_t *buf = vbuf; 1943 size_t count = size >> 3; 1944 int i; 1945 1946 ASSERT((size & 7) == 0); 1947 1948 for (i = 0; i < count; i++) 1949 buf[i] = BSWAP_64(buf[i]); 1950 } 1951 1952 void 1953 byteswap_uint32_array(void *vbuf, size_t size) 1954 { 1955 uint32_t *buf = vbuf; 1956 size_t count = size >> 2; 1957 int i; 1958 1959 ASSERT((size & 3) == 0); 1960 1961 for (i = 0; i < count; i++) 1962 buf[i] = BSWAP_32(buf[i]); 1963 } 1964 1965 void 1966 byteswap_uint16_array(void *vbuf, size_t size) 1967 { 1968 uint16_t *buf = vbuf; 1969 size_t count = size >> 1; 1970 int i; 1971 1972 ASSERT((size & 1) == 0); 1973 1974 for (i = 0; i < count; i++) 1975 buf[i] = BSWAP_16(buf[i]); 1976 } 1977 1978 /* ARGSUSED */ 1979 void 1980 byteswap_uint8_array(void *vbuf, size_t size) 1981 { 1982 } 1983 1984 void 1985 dmu_init(void) 1986 { 1987 zfs_dbgmsg_init(); 1988 sa_cache_init(); 1989 xuio_stat_init(); 1990 dmu_objset_init(); 1991 dnode_init(); 1992 dbuf_init(); 1993 zfetch_init(); 1994 l2arc_init(); 1995 arc_init(); 1996 } 1997 1998 void 1999 dmu_fini(void) 2000 { 2001 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2002 l2arc_fini(); 2003 zfetch_fini(); 2004 dbuf_fini(); 2005 dnode_fini(); 2006 dmu_objset_fini(); 2007 xuio_stat_fini(); 2008 sa_cache_fini(); 2009 zfs_dbgmsg_fini(); 2010 }