1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_send.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dbuf.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/sa.h> 42 #include <sys/sa_impl.h> 43 #include <sys/zfeature.h> 44 #include <sys/blkptr.h> 45 #include <sys/range_tree.h> 46 47 /* 48 * Number of times that zfs_free_range() took the slow path while doing 49 * a zfs receive. A nonzero value indicates a potential performance problem. 50 */ 51 uint64_t zfs_free_range_recv_miss; 52 53 static void dbuf_destroy(dmu_buf_impl_t *db); 54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 56 57 /* 58 * Global data structures and functions for the dbuf cache. 59 */ 60 static kmem_cache_t *dbuf_cache; 61 62 /* ARGSUSED */ 63 static int 64 dbuf_cons(void *vdb, void *unused, int kmflag) 65 { 66 dmu_buf_impl_t *db = vdb; 67 bzero(db, sizeof (dmu_buf_impl_t)); 68 69 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 70 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 71 refcount_create(&db->db_holds); 72 73 return (0); 74 } 75 76 /* ARGSUSED */ 77 static void 78 dbuf_dest(void *vdb, void *unused) 79 { 80 dmu_buf_impl_t *db = vdb; 81 mutex_destroy(&db->db_mtx); 82 cv_destroy(&db->db_changed); 83 refcount_destroy(&db->db_holds); 84 } 85 86 /* 87 * dbuf hash table routines 88 */ 89 static dbuf_hash_table_t dbuf_hash_table; 90 91 static uint64_t dbuf_hash_count; 92 93 static uint64_t 94 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 95 { 96 uintptr_t osv = (uintptr_t)os; 97 uint64_t crc = -1ULL; 98 99 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 100 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 101 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 102 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 103 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 104 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 105 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 106 107 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 108 109 return (crc); 110 } 111 112 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 113 114 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 115 ((dbuf)->db.db_object == (obj) && \ 116 (dbuf)->db_objset == (os) && \ 117 (dbuf)->db_level == (level) && \ 118 (dbuf)->db_blkid == (blkid)) 119 120 dmu_buf_impl_t * 121 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 122 { 123 dbuf_hash_table_t *h = &dbuf_hash_table; 124 objset_t *os = dn->dn_objset; 125 uint64_t obj = dn->dn_object; 126 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 127 uint64_t idx = hv & h->hash_table_mask; 128 dmu_buf_impl_t *db; 129 130 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 131 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 132 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 133 mutex_enter(&db->db_mtx); 134 if (db->db_state != DB_EVICTING) { 135 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 136 return (db); 137 } 138 mutex_exit(&db->db_mtx); 139 } 140 } 141 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 142 return (NULL); 143 } 144 145 /* 146 * Insert an entry into the hash table. If there is already an element 147 * equal to elem in the hash table, then the already existing element 148 * will be returned and the new element will not be inserted. 149 * Otherwise returns NULL. 150 */ 151 static dmu_buf_impl_t * 152 dbuf_hash_insert(dmu_buf_impl_t *db) 153 { 154 dbuf_hash_table_t *h = &dbuf_hash_table; 155 objset_t *os = db->db_objset; 156 uint64_t obj = db->db.db_object; 157 int level = db->db_level; 158 uint64_t blkid = db->db_blkid; 159 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 160 uint64_t idx = hv & h->hash_table_mask; 161 dmu_buf_impl_t *dbf; 162 163 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 164 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 165 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 166 mutex_enter(&dbf->db_mtx); 167 if (dbf->db_state != DB_EVICTING) { 168 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 169 return (dbf); 170 } 171 mutex_exit(&dbf->db_mtx); 172 } 173 } 174 175 mutex_enter(&db->db_mtx); 176 db->db_hash_next = h->hash_table[idx]; 177 h->hash_table[idx] = db; 178 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 179 atomic_inc_64(&dbuf_hash_count); 180 181 return (NULL); 182 } 183 184 /* 185 * Remove an entry from the hash table. It must be in the EVICTING state. 186 */ 187 static void 188 dbuf_hash_remove(dmu_buf_impl_t *db) 189 { 190 dbuf_hash_table_t *h = &dbuf_hash_table; 191 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 192 db->db_level, db->db_blkid); 193 uint64_t idx = hv & h->hash_table_mask; 194 dmu_buf_impl_t *dbf, **dbp; 195 196 /* 197 * We musn't hold db_mtx to maintain lock ordering: 198 * DBUF_HASH_MUTEX > db_mtx. 199 */ 200 ASSERT(refcount_is_zero(&db->db_holds)); 201 ASSERT(db->db_state == DB_EVICTING); 202 ASSERT(!MUTEX_HELD(&db->db_mtx)); 203 204 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 205 dbp = &h->hash_table[idx]; 206 while ((dbf = *dbp) != db) { 207 dbp = &dbf->db_hash_next; 208 ASSERT(dbf != NULL); 209 } 210 *dbp = db->db_hash_next; 211 db->db_hash_next = NULL; 212 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 213 atomic_dec_64(&dbuf_hash_count); 214 } 215 216 static arc_evict_func_t dbuf_do_evict; 217 218 static void 219 dbuf_evict_user(dmu_buf_impl_t *db) 220 { 221 ASSERT(MUTEX_HELD(&db->db_mtx)); 222 223 if (db->db_level != 0 || db->db_evict_func == NULL) 224 return; 225 226 if (db->db_user_data_ptr_ptr) 227 *db->db_user_data_ptr_ptr = db->db.db_data; 228 db->db_evict_func(&db->db, db->db_user_ptr); 229 db->db_user_ptr = NULL; 230 db->db_user_data_ptr_ptr = NULL; 231 db->db_evict_func = NULL; 232 } 233 234 boolean_t 235 dbuf_is_metadata(dmu_buf_impl_t *db) 236 { 237 if (db->db_level > 0) { 238 return (B_TRUE); 239 } else { 240 boolean_t is_metadata; 241 242 DB_DNODE_ENTER(db); 243 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 244 DB_DNODE_EXIT(db); 245 246 return (is_metadata); 247 } 248 } 249 250 void 251 dbuf_evict(dmu_buf_impl_t *db) 252 { 253 ASSERT(MUTEX_HELD(&db->db_mtx)); 254 ASSERT(db->db_buf == NULL); 255 ASSERT(db->db_data_pending == NULL); 256 257 dbuf_clear(db); 258 dbuf_destroy(db); 259 } 260 261 void 262 dbuf_init(void) 263 { 264 uint64_t hsize = 1ULL << 16; 265 dbuf_hash_table_t *h = &dbuf_hash_table; 266 int i; 267 268 /* 269 * The hash table is big enough to fill all of physical memory 270 * with an average 4K block size. The table will take up 271 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 272 */ 273 while (hsize * 4096 < physmem * PAGESIZE) 274 hsize <<= 1; 275 276 retry: 277 h->hash_table_mask = hsize - 1; 278 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 279 if (h->hash_table == NULL) { 280 /* XXX - we should really return an error instead of assert */ 281 ASSERT(hsize > (1ULL << 10)); 282 hsize >>= 1; 283 goto retry; 284 } 285 286 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 287 sizeof (dmu_buf_impl_t), 288 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 289 290 for (i = 0; i < DBUF_MUTEXES; i++) 291 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 292 } 293 294 void 295 dbuf_fini(void) 296 { 297 dbuf_hash_table_t *h = &dbuf_hash_table; 298 int i; 299 300 for (i = 0; i < DBUF_MUTEXES; i++) 301 mutex_destroy(&h->hash_mutexes[i]); 302 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 303 kmem_cache_destroy(dbuf_cache); 304 } 305 306 /* 307 * Other stuff. 308 */ 309 310 #ifdef ZFS_DEBUG 311 static void 312 dbuf_verify(dmu_buf_impl_t *db) 313 { 314 dnode_t *dn; 315 dbuf_dirty_record_t *dr; 316 317 ASSERT(MUTEX_HELD(&db->db_mtx)); 318 319 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 320 return; 321 322 ASSERT(db->db_objset != NULL); 323 DB_DNODE_ENTER(db); 324 dn = DB_DNODE(db); 325 if (dn == NULL) { 326 ASSERT(db->db_parent == NULL); 327 ASSERT(db->db_blkptr == NULL); 328 } else { 329 ASSERT3U(db->db.db_object, ==, dn->dn_object); 330 ASSERT3P(db->db_objset, ==, dn->dn_objset); 331 ASSERT3U(db->db_level, <, dn->dn_nlevels); 332 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 333 db->db_blkid == DMU_SPILL_BLKID || 334 !avl_is_empty(&dn->dn_dbufs)); 335 } 336 if (db->db_blkid == DMU_BONUS_BLKID) { 337 ASSERT(dn != NULL); 338 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 339 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 340 } else if (db->db_blkid == DMU_SPILL_BLKID) { 341 ASSERT(dn != NULL); 342 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 343 ASSERT0(db->db.db_offset); 344 } else { 345 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 346 } 347 348 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 349 ASSERT(dr->dr_dbuf == db); 350 351 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 352 ASSERT(dr->dr_dbuf == db); 353 354 /* 355 * We can't assert that db_size matches dn_datablksz because it 356 * can be momentarily different when another thread is doing 357 * dnode_set_blksz(). 358 */ 359 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 360 dr = db->db_data_pending; 361 /* 362 * It should only be modified in syncing context, so 363 * make sure we only have one copy of the data. 364 */ 365 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 366 } 367 368 /* verify db->db_blkptr */ 369 if (db->db_blkptr) { 370 if (db->db_parent == dn->dn_dbuf) { 371 /* db is pointed to by the dnode */ 372 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 373 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 374 ASSERT(db->db_parent == NULL); 375 else 376 ASSERT(db->db_parent != NULL); 377 if (db->db_blkid != DMU_SPILL_BLKID) 378 ASSERT3P(db->db_blkptr, ==, 379 &dn->dn_phys->dn_blkptr[db->db_blkid]); 380 } else { 381 /* db is pointed to by an indirect block */ 382 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 383 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 384 ASSERT3U(db->db_parent->db.db_object, ==, 385 db->db.db_object); 386 /* 387 * dnode_grow_indblksz() can make this fail if we don't 388 * have the struct_rwlock. XXX indblksz no longer 389 * grows. safe to do this now? 390 */ 391 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 392 ASSERT3P(db->db_blkptr, ==, 393 ((blkptr_t *)db->db_parent->db.db_data + 394 db->db_blkid % epb)); 395 } 396 } 397 } 398 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 399 (db->db_buf == NULL || db->db_buf->b_data) && 400 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 401 db->db_state != DB_FILL && !dn->dn_free_txg) { 402 /* 403 * If the blkptr isn't set but they have nonzero data, 404 * it had better be dirty, otherwise we'll lose that 405 * data when we evict this buffer. 406 */ 407 if (db->db_dirtycnt == 0) { 408 uint64_t *buf = db->db.db_data; 409 int i; 410 411 for (i = 0; i < db->db.db_size >> 3; i++) { 412 ASSERT(buf[i] == 0); 413 } 414 } 415 } 416 DB_DNODE_EXIT(db); 417 } 418 #endif 419 420 static void 421 dbuf_update_data(dmu_buf_impl_t *db) 422 { 423 ASSERT(MUTEX_HELD(&db->db_mtx)); 424 if (db->db_level == 0 && db->db_user_data_ptr_ptr) { 425 ASSERT(!refcount_is_zero(&db->db_holds)); 426 *db->db_user_data_ptr_ptr = db->db.db_data; 427 } 428 } 429 430 static void 431 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 432 { 433 ASSERT(MUTEX_HELD(&db->db_mtx)); 434 db->db_buf = buf; 435 if (buf != NULL) { 436 ASSERT(buf->b_data != NULL); 437 db->db.db_data = buf->b_data; 438 if (!arc_released(buf)) 439 arc_set_callback(buf, dbuf_do_evict, db); 440 dbuf_update_data(db); 441 } else { 442 dbuf_evict_user(db); 443 db->db.db_data = NULL; 444 if (db->db_state != DB_NOFILL) 445 db->db_state = DB_UNCACHED; 446 } 447 } 448 449 /* 450 * Loan out an arc_buf for read. Return the loaned arc_buf. 451 */ 452 arc_buf_t * 453 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 454 { 455 arc_buf_t *abuf; 456 457 mutex_enter(&db->db_mtx); 458 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 459 int blksz = db->db.db_size; 460 spa_t *spa = db->db_objset->os_spa; 461 462 mutex_exit(&db->db_mtx); 463 abuf = arc_loan_buf(spa, blksz); 464 bcopy(db->db.db_data, abuf->b_data, blksz); 465 } else { 466 abuf = db->db_buf; 467 arc_loan_inuse_buf(abuf, db); 468 dbuf_set_data(db, NULL); 469 mutex_exit(&db->db_mtx); 470 } 471 return (abuf); 472 } 473 474 uint64_t 475 dbuf_whichblock(dnode_t *dn, uint64_t offset) 476 { 477 if (dn->dn_datablkshift) { 478 return (offset >> dn->dn_datablkshift); 479 } else { 480 ASSERT3U(offset, <, dn->dn_datablksz); 481 return (0); 482 } 483 } 484 485 static void 486 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 487 { 488 dmu_buf_impl_t *db = vdb; 489 490 mutex_enter(&db->db_mtx); 491 ASSERT3U(db->db_state, ==, DB_READ); 492 /* 493 * All reads are synchronous, so we must have a hold on the dbuf 494 */ 495 ASSERT(refcount_count(&db->db_holds) > 0); 496 ASSERT(db->db_buf == NULL); 497 ASSERT(db->db.db_data == NULL); 498 if (db->db_level == 0 && db->db_freed_in_flight) { 499 /* we were freed in flight; disregard any error */ 500 arc_release(buf, db); 501 bzero(buf->b_data, db->db.db_size); 502 arc_buf_freeze(buf); 503 db->db_freed_in_flight = FALSE; 504 dbuf_set_data(db, buf); 505 db->db_state = DB_CACHED; 506 } else if (zio == NULL || zio->io_error == 0) { 507 dbuf_set_data(db, buf); 508 db->db_state = DB_CACHED; 509 } else { 510 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 511 ASSERT3P(db->db_buf, ==, NULL); 512 VERIFY(arc_buf_remove_ref(buf, db)); 513 db->db_state = DB_UNCACHED; 514 } 515 cv_broadcast(&db->db_changed); 516 dbuf_rele_and_unlock(db, NULL); 517 } 518 519 static void 520 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 521 { 522 dnode_t *dn; 523 zbookmark_phys_t zb; 524 uint32_t aflags = ARC_NOWAIT; 525 526 DB_DNODE_ENTER(db); 527 dn = DB_DNODE(db); 528 ASSERT(!refcount_is_zero(&db->db_holds)); 529 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 530 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 531 ASSERT(MUTEX_HELD(&db->db_mtx)); 532 ASSERT(db->db_state == DB_UNCACHED); 533 ASSERT(db->db_buf == NULL); 534 535 if (db->db_blkid == DMU_BONUS_BLKID) { 536 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 537 538 ASSERT3U(bonuslen, <=, db->db.db_size); 539 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 540 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 541 if (bonuslen < DN_MAX_BONUSLEN) 542 bzero(db->db.db_data, DN_MAX_BONUSLEN); 543 if (bonuslen) 544 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 545 DB_DNODE_EXIT(db); 546 dbuf_update_data(db); 547 db->db_state = DB_CACHED; 548 mutex_exit(&db->db_mtx); 549 return; 550 } 551 552 /* 553 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 554 * processes the delete record and clears the bp while we are waiting 555 * for the dn_mtx (resulting in a "no" from block_freed). 556 */ 557 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 558 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 559 BP_IS_HOLE(db->db_blkptr)))) { 560 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 561 562 DB_DNODE_EXIT(db); 563 dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa, 564 db->db.db_size, db, type)); 565 bzero(db->db.db_data, db->db.db_size); 566 db->db_state = DB_CACHED; 567 *flags |= DB_RF_CACHED; 568 mutex_exit(&db->db_mtx); 569 return; 570 } 571 572 DB_DNODE_EXIT(db); 573 574 db->db_state = DB_READ; 575 mutex_exit(&db->db_mtx); 576 577 if (DBUF_IS_L2CACHEABLE(db)) 578 aflags |= ARC_L2CACHE; 579 if (DBUF_IS_L2COMPRESSIBLE(db)) 580 aflags |= ARC_L2COMPRESS; 581 582 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 583 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 584 db->db.db_object, db->db_level, db->db_blkid); 585 586 dbuf_add_ref(db, NULL); 587 588 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 589 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 590 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 591 &aflags, &zb); 592 if (aflags & ARC_CACHED) 593 *flags |= DB_RF_CACHED; 594 } 595 596 int 597 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 598 { 599 int err = 0; 600 boolean_t havepzio = (zio != NULL); 601 boolean_t prefetch; 602 dnode_t *dn; 603 604 /* 605 * We don't have to hold the mutex to check db_state because it 606 * can't be freed while we have a hold on the buffer. 607 */ 608 ASSERT(!refcount_is_zero(&db->db_holds)); 609 610 if (db->db_state == DB_NOFILL) 611 return (SET_ERROR(EIO)); 612 613 DB_DNODE_ENTER(db); 614 dn = DB_DNODE(db); 615 if ((flags & DB_RF_HAVESTRUCT) == 0) 616 rw_enter(&dn->dn_struct_rwlock, RW_READER); 617 618 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 619 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 620 DBUF_IS_CACHEABLE(db); 621 622 mutex_enter(&db->db_mtx); 623 if (db->db_state == DB_CACHED) { 624 mutex_exit(&db->db_mtx); 625 if (prefetch) 626 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 627 db->db.db_size, TRUE); 628 if ((flags & DB_RF_HAVESTRUCT) == 0) 629 rw_exit(&dn->dn_struct_rwlock); 630 DB_DNODE_EXIT(db); 631 } else if (db->db_state == DB_UNCACHED) { 632 spa_t *spa = dn->dn_objset->os_spa; 633 634 if (zio == NULL) 635 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 636 dbuf_read_impl(db, zio, &flags); 637 638 /* dbuf_read_impl has dropped db_mtx for us */ 639 640 if (prefetch) 641 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 642 db->db.db_size, flags & DB_RF_CACHED); 643 644 if ((flags & DB_RF_HAVESTRUCT) == 0) 645 rw_exit(&dn->dn_struct_rwlock); 646 DB_DNODE_EXIT(db); 647 648 if (!havepzio) 649 err = zio_wait(zio); 650 } else { 651 /* 652 * Another reader came in while the dbuf was in flight 653 * between UNCACHED and CACHED. Either a writer will finish 654 * writing the buffer (sending the dbuf to CACHED) or the 655 * first reader's request will reach the read_done callback 656 * and send the dbuf to CACHED. Otherwise, a failure 657 * occurred and the dbuf went to UNCACHED. 658 */ 659 mutex_exit(&db->db_mtx); 660 if (prefetch) 661 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 662 db->db.db_size, TRUE); 663 if ((flags & DB_RF_HAVESTRUCT) == 0) 664 rw_exit(&dn->dn_struct_rwlock); 665 DB_DNODE_EXIT(db); 666 667 /* Skip the wait per the caller's request. */ 668 mutex_enter(&db->db_mtx); 669 if ((flags & DB_RF_NEVERWAIT) == 0) { 670 while (db->db_state == DB_READ || 671 db->db_state == DB_FILL) { 672 ASSERT(db->db_state == DB_READ || 673 (flags & DB_RF_HAVESTRUCT) == 0); 674 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 675 db, zio_t *, zio); 676 cv_wait(&db->db_changed, &db->db_mtx); 677 } 678 if (db->db_state == DB_UNCACHED) 679 err = SET_ERROR(EIO); 680 } 681 mutex_exit(&db->db_mtx); 682 } 683 684 ASSERT(err || havepzio || db->db_state == DB_CACHED); 685 return (err); 686 } 687 688 static void 689 dbuf_noread(dmu_buf_impl_t *db) 690 { 691 ASSERT(!refcount_is_zero(&db->db_holds)); 692 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 693 mutex_enter(&db->db_mtx); 694 while (db->db_state == DB_READ || db->db_state == DB_FILL) 695 cv_wait(&db->db_changed, &db->db_mtx); 696 if (db->db_state == DB_UNCACHED) { 697 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 698 spa_t *spa = db->db_objset->os_spa; 699 700 ASSERT(db->db_buf == NULL); 701 ASSERT(db->db.db_data == NULL); 702 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); 703 db->db_state = DB_FILL; 704 } else if (db->db_state == DB_NOFILL) { 705 dbuf_set_data(db, NULL); 706 } else { 707 ASSERT3U(db->db_state, ==, DB_CACHED); 708 } 709 mutex_exit(&db->db_mtx); 710 } 711 712 /* 713 * This is our just-in-time copy function. It makes a copy of 714 * buffers, that have been modified in a previous transaction 715 * group, before we modify them in the current active group. 716 * 717 * This function is used in two places: when we are dirtying a 718 * buffer for the first time in a txg, and when we are freeing 719 * a range in a dnode that includes this buffer. 720 * 721 * Note that when we are called from dbuf_free_range() we do 722 * not put a hold on the buffer, we just traverse the active 723 * dbuf list for the dnode. 724 */ 725 static void 726 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 727 { 728 dbuf_dirty_record_t *dr = db->db_last_dirty; 729 730 ASSERT(MUTEX_HELD(&db->db_mtx)); 731 ASSERT(db->db.db_data != NULL); 732 ASSERT(db->db_level == 0); 733 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 734 735 if (dr == NULL || 736 (dr->dt.dl.dr_data != 737 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 738 return; 739 740 /* 741 * If the last dirty record for this dbuf has not yet synced 742 * and its referencing the dbuf data, either: 743 * reset the reference to point to a new copy, 744 * or (if there a no active holders) 745 * just null out the current db_data pointer. 746 */ 747 ASSERT(dr->dr_txg >= txg - 2); 748 if (db->db_blkid == DMU_BONUS_BLKID) { 749 /* Note that the data bufs here are zio_bufs */ 750 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 751 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 752 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 753 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 754 int size = db->db.db_size; 755 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 756 spa_t *spa = db->db_objset->os_spa; 757 758 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); 759 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 760 } else { 761 dbuf_set_data(db, NULL); 762 } 763 } 764 765 void 766 dbuf_unoverride(dbuf_dirty_record_t *dr) 767 { 768 dmu_buf_impl_t *db = dr->dr_dbuf; 769 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 770 uint64_t txg = dr->dr_txg; 771 772 ASSERT(MUTEX_HELD(&db->db_mtx)); 773 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 774 ASSERT(db->db_level == 0); 775 776 if (db->db_blkid == DMU_BONUS_BLKID || 777 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 778 return; 779 780 ASSERT(db->db_data_pending != dr); 781 782 /* free this block */ 783 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 784 zio_free(db->db_objset->os_spa, txg, bp); 785 786 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 787 dr->dt.dl.dr_nopwrite = B_FALSE; 788 789 /* 790 * Release the already-written buffer, so we leave it in 791 * a consistent dirty state. Note that all callers are 792 * modifying the buffer, so they will immediately do 793 * another (redundant) arc_release(). Therefore, leave 794 * the buf thawed to save the effort of freezing & 795 * immediately re-thawing it. 796 */ 797 arc_release(dr->dt.dl.dr_data, db); 798 } 799 800 /* 801 * Evict (if its unreferenced) or clear (if its referenced) any level-0 802 * data blocks in the free range, so that any future readers will find 803 * empty blocks. 804 * 805 * This is a no-op if the dataset is in the middle of an incremental 806 * receive; see comment below for details. 807 */ 808 void 809 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 810 dmu_tx_t *tx) 811 { 812 dmu_buf_impl_t *db, *db_next, db_search; 813 uint64_t txg = tx->tx_txg; 814 avl_index_t where; 815 816 if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID)) 817 end_blkid = dn->dn_maxblkid; 818 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 819 820 db_search.db_level = 0; 821 db_search.db_blkid = start_blkid; 822 db_search.db_state = DB_SEARCH; 823 824 mutex_enter(&dn->dn_dbufs_mtx); 825 if (start_blkid >= dn->dn_unlisted_l0_blkid) { 826 /* There can't be any dbufs in this range; no need to search. */ 827 #ifdef DEBUG 828 db = avl_find(&dn->dn_dbufs, &db_search, &where); 829 ASSERT3P(db, ==, NULL); 830 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 831 ASSERT(db == NULL || db->db_level > 0); 832 #endif 833 mutex_exit(&dn->dn_dbufs_mtx); 834 return; 835 } else if (dmu_objset_is_receiving(dn->dn_objset)) { 836 /* 837 * If we are receiving, we expect there to be no dbufs in 838 * the range to be freed, because receive modifies each 839 * block at most once, and in offset order. If this is 840 * not the case, it can lead to performance problems, 841 * so note that we unexpectedly took the slow path. 842 */ 843 atomic_inc_64(&zfs_free_range_recv_miss); 844 } 845 846 db = avl_find(&dn->dn_dbufs, &db_search, &where); 847 ASSERT3P(db, ==, NULL); 848 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 849 850 for (; db != NULL; db = db_next) { 851 db_next = AVL_NEXT(&dn->dn_dbufs, db); 852 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 853 854 if (db->db_level != 0 || db->db_blkid > end_blkid) { 855 break; 856 } 857 ASSERT3U(db->db_blkid, >=, start_blkid); 858 859 /* found a level 0 buffer in the range */ 860 mutex_enter(&db->db_mtx); 861 if (dbuf_undirty(db, tx)) { 862 /* mutex has been dropped and dbuf destroyed */ 863 continue; 864 } 865 866 if (db->db_state == DB_UNCACHED || 867 db->db_state == DB_NOFILL || 868 db->db_state == DB_EVICTING) { 869 ASSERT(db->db.db_data == NULL); 870 mutex_exit(&db->db_mtx); 871 continue; 872 } 873 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 874 /* will be handled in dbuf_read_done or dbuf_rele */ 875 db->db_freed_in_flight = TRUE; 876 mutex_exit(&db->db_mtx); 877 continue; 878 } 879 if (refcount_count(&db->db_holds) == 0) { 880 ASSERT(db->db_buf); 881 dbuf_clear(db); 882 continue; 883 } 884 /* The dbuf is referenced */ 885 886 if (db->db_last_dirty != NULL) { 887 dbuf_dirty_record_t *dr = db->db_last_dirty; 888 889 if (dr->dr_txg == txg) { 890 /* 891 * This buffer is "in-use", re-adjust the file 892 * size to reflect that this buffer may 893 * contain new data when we sync. 894 */ 895 if (db->db_blkid != DMU_SPILL_BLKID && 896 db->db_blkid > dn->dn_maxblkid) 897 dn->dn_maxblkid = db->db_blkid; 898 dbuf_unoverride(dr); 899 } else { 900 /* 901 * This dbuf is not dirty in the open context. 902 * Either uncache it (if its not referenced in 903 * the open context) or reset its contents to 904 * empty. 905 */ 906 dbuf_fix_old_data(db, txg); 907 } 908 } 909 /* clear the contents if its cached */ 910 if (db->db_state == DB_CACHED) { 911 ASSERT(db->db.db_data != NULL); 912 arc_release(db->db_buf, db); 913 bzero(db->db.db_data, db->db.db_size); 914 arc_buf_freeze(db->db_buf); 915 } 916 917 mutex_exit(&db->db_mtx); 918 } 919 mutex_exit(&dn->dn_dbufs_mtx); 920 } 921 922 static int 923 dbuf_block_freeable(dmu_buf_impl_t *db) 924 { 925 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 926 uint64_t birth_txg = 0; 927 928 /* 929 * We don't need any locking to protect db_blkptr: 930 * If it's syncing, then db_last_dirty will be set 931 * so we'll ignore db_blkptr. 932 * 933 * This logic ensures that only block births for 934 * filled blocks are considered. 935 */ 936 ASSERT(MUTEX_HELD(&db->db_mtx)); 937 if (db->db_last_dirty && (db->db_blkptr == NULL || 938 !BP_IS_HOLE(db->db_blkptr))) { 939 birth_txg = db->db_last_dirty->dr_txg; 940 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 941 birth_txg = db->db_blkptr->blk_birth; 942 } 943 944 /* 945 * If this block don't exist or is in a snapshot, it can't be freed. 946 * Don't pass the bp to dsl_dataset_block_freeable() since we 947 * are holding the db_mtx lock and might deadlock if we are 948 * prefetching a dedup-ed block. 949 */ 950 if (birth_txg != 0) 951 return (ds == NULL || 952 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 953 else 954 return (B_FALSE); 955 } 956 957 void 958 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 959 { 960 arc_buf_t *buf, *obuf; 961 int osize = db->db.db_size; 962 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 963 dnode_t *dn; 964 965 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 966 967 DB_DNODE_ENTER(db); 968 dn = DB_DNODE(db); 969 970 /* XXX does *this* func really need the lock? */ 971 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 972 973 /* 974 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 975 * is OK, because there can be no other references to the db 976 * when we are changing its size, so no concurrent DB_FILL can 977 * be happening. 978 */ 979 /* 980 * XXX we should be doing a dbuf_read, checking the return 981 * value and returning that up to our callers 982 */ 983 dmu_buf_will_dirty(&db->db, tx); 984 985 /* create the data buffer for the new block */ 986 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); 987 988 /* copy old block data to the new block */ 989 obuf = db->db_buf; 990 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 991 /* zero the remainder */ 992 if (size > osize) 993 bzero((uint8_t *)buf->b_data + osize, size - osize); 994 995 mutex_enter(&db->db_mtx); 996 dbuf_set_data(db, buf); 997 VERIFY(arc_buf_remove_ref(obuf, db)); 998 db->db.db_size = size; 999 1000 if (db->db_level == 0) { 1001 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1002 db->db_last_dirty->dt.dl.dr_data = buf; 1003 } 1004 mutex_exit(&db->db_mtx); 1005 1006 dnode_willuse_space(dn, size-osize, tx); 1007 DB_DNODE_EXIT(db); 1008 } 1009 1010 void 1011 dbuf_release_bp(dmu_buf_impl_t *db) 1012 { 1013 objset_t *os = db->db_objset; 1014 1015 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1016 ASSERT(arc_released(os->os_phys_buf) || 1017 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1018 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1019 1020 (void) arc_release(db->db_buf, db); 1021 } 1022 1023 dbuf_dirty_record_t * 1024 dbuf_zero_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1025 { 1026 ASSERT(db->db_objset != NULL); 1027 1028 return (dbuf_dirty(db, tx, B_TRUE)); 1029 } 1030 1031 dbuf_dirty_record_t * 1032 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx, boolean_t zero_write) 1033 { 1034 dnode_t *dn; 1035 objset_t *os; 1036 dbuf_dirty_record_t **drp, *dr; 1037 int drop_struct_lock = FALSE; 1038 boolean_t do_free_accounting = B_FALSE; 1039 int txgoff = tx->tx_txg & TXG_MASK; 1040 1041 ASSERT(tx->tx_txg != 0); 1042 ASSERT(!refcount_is_zero(&db->db_holds)); 1043 DMU_TX_DIRTY_BUF(tx, db); 1044 1045 DB_DNODE_ENTER(db); 1046 dn = DB_DNODE(db); 1047 /* 1048 * Shouldn't dirty a regular buffer in syncing context. Private 1049 * objects may be dirtied in syncing context, but only if they 1050 * were already pre-dirtied in open context. 1051 */ 1052 ASSERT(!dmu_tx_is_syncing(tx) || 1053 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1054 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1055 dn->dn_objset->os_dsl_dataset == NULL); 1056 /* 1057 * We make this assert for private objects as well, but after we 1058 * check if we're already dirty. They are allowed to re-dirty 1059 * in syncing context. 1060 */ 1061 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1062 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1063 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1064 1065 mutex_enter(&db->db_mtx); 1066 /* 1067 * XXX make this true for indirects too? The problem is that 1068 * transactions created with dmu_tx_create_assigned() from 1069 * syncing context don't bother holding ahead. 1070 */ 1071 ASSERT(db->db_level != 0 || 1072 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1073 db->db_state == DB_NOFILL); 1074 1075 mutex_enter(&dn->dn_mtx); 1076 /* 1077 * Don't set dirtyctx to SYNC if we're just modifying this as we 1078 * initialize the objset. 1079 */ 1080 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1081 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1082 dn->dn_dirtyctx = 1083 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1084 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1085 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1086 } 1087 mutex_exit(&dn->dn_mtx); 1088 1089 if (db->db_blkid == DMU_SPILL_BLKID) 1090 dn->dn_have_spill = B_TRUE; 1091 1092 /* 1093 * If this buffer is already dirty, we're done. 1094 */ 1095 drp = &db->db_last_dirty; 1096 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1097 db->db.db_object == DMU_META_DNODE_OBJECT); 1098 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1099 drp = &dr->dr_next; 1100 if (dr && dr->dr_txg == tx->tx_txg) { 1101 DB_DNODE_EXIT(db); 1102 1103 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1104 /* 1105 * If this buffer has already been written out, 1106 * we now need to reset its state. 1107 */ 1108 dbuf_unoverride(dr); 1109 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1110 db->db_state != DB_NOFILL) 1111 arc_buf_thaw(db->db_buf); 1112 } 1113 mutex_exit(&db->db_mtx); 1114 return (dr); 1115 } 1116 1117 /* 1118 * Only valid if not already dirty. 1119 */ 1120 ASSERT(dn->dn_object == 0 || 1121 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1122 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1123 1124 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1125 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1126 dn->dn_phys->dn_nlevels > db->db_level || 1127 dn->dn_next_nlevels[txgoff] > db->db_level || 1128 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1129 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1130 1131 /* 1132 * We should only be dirtying in syncing context if it's the 1133 * mos or we're initializing the os or it's a special object. 1134 * However, we are allowed to dirty in syncing context provided 1135 * we already dirtied it in open context. Hence we must make 1136 * this assertion only if we're not already dirty. 1137 */ 1138 os = dn->dn_objset; 1139 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1140 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1141 ASSERT(db->db.db_size != 0); 1142 1143 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1144 1145 if (db->db_blkid != DMU_BONUS_BLKID) { 1146 /* 1147 * Update the accounting. 1148 * Note: we delay "free accounting" until after we drop 1149 * the db_mtx. This keeps us from grabbing other locks 1150 * (and possibly deadlocking) in bp_get_dsize() while 1151 * also holding the db_mtx. 1152 */ 1153 dnode_willuse_space(dn, db->db.db_size, tx); 1154 do_free_accounting = dbuf_block_freeable(db); 1155 } 1156 1157 /* 1158 * If this buffer is dirty in an old transaction group we need 1159 * to make a copy of it so that the changes we make in this 1160 * transaction group won't leak out when we sync the older txg. 1161 */ 1162 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1163 dr->dr_zero_write = zero_write; 1164 if (db->db_level == 0) { 1165 void *data_old = db->db_buf; 1166 1167 if (db->db_state != DB_NOFILL) { 1168 if (db->db_blkid == DMU_BONUS_BLKID) { 1169 dbuf_fix_old_data(db, tx->tx_txg); 1170 data_old = db->db.db_data; 1171 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1172 /* 1173 * Release the data buffer from the cache so 1174 * that we can modify it without impacting 1175 * possible other users of this cached data 1176 * block. Note that indirect blocks and 1177 * private objects are not released until the 1178 * syncing state (since they are only modified 1179 * then). 1180 */ 1181 arc_release(db->db_buf, db); 1182 dbuf_fix_old_data(db, tx->tx_txg); 1183 data_old = db->db_buf; 1184 } 1185 ASSERT(data_old != NULL); 1186 } 1187 dr->dt.dl.dr_data = data_old; 1188 } else { 1189 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1190 list_create(&dr->dt.di.dr_children, 1191 sizeof (dbuf_dirty_record_t), 1192 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1193 } 1194 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1195 dr->dr_accounted = db->db.db_size; 1196 dr->dr_dbuf = db; 1197 dr->dr_txg = tx->tx_txg; 1198 dr->dr_next = *drp; 1199 *drp = dr; 1200 1201 /* 1202 * We could have been freed_in_flight between the dbuf_noread 1203 * and dbuf_dirty. We win, as though the dbuf_noread() had 1204 * happened after the free. 1205 */ 1206 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1207 db->db_blkid != DMU_SPILL_BLKID) { 1208 mutex_enter(&dn->dn_mtx); 1209 if (dn->dn_free_ranges[txgoff] != NULL) { 1210 range_tree_clear(dn->dn_free_ranges[txgoff], 1211 db->db_blkid, 1); 1212 } 1213 mutex_exit(&dn->dn_mtx); 1214 db->db_freed_in_flight = FALSE; 1215 } 1216 1217 /* 1218 * This buffer is now part of this txg 1219 */ 1220 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1221 db->db_dirtycnt += 1; 1222 ASSERT3U(db->db_dirtycnt, <=, 3); 1223 1224 mutex_exit(&db->db_mtx); 1225 1226 if (db->db_blkid == DMU_BONUS_BLKID || 1227 db->db_blkid == DMU_SPILL_BLKID) { 1228 mutex_enter(&dn->dn_mtx); 1229 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1230 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1231 mutex_exit(&dn->dn_mtx); 1232 dnode_setdirty(dn, tx); 1233 DB_DNODE_EXIT(db); 1234 return (dr); 1235 } else if (do_free_accounting) { 1236 blkptr_t *bp = db->db_blkptr; 1237 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1238 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1239 /* 1240 * This is only a guess -- if the dbuf is dirty 1241 * in a previous txg, we don't know how much 1242 * space it will use on disk yet. We should 1243 * really have the struct_rwlock to access 1244 * db_blkptr, but since this is just a guess, 1245 * it's OK if we get an odd answer. 1246 */ 1247 ddt_prefetch(os->os_spa, bp); 1248 dnode_willuse_space(dn, -willfree, tx); 1249 } 1250 1251 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1252 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1253 drop_struct_lock = TRUE; 1254 } 1255 1256 if (db->db_level == 0) { 1257 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1258 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1259 } 1260 1261 if (db->db_level+1 < dn->dn_nlevels) { 1262 dmu_buf_impl_t *parent = db->db_parent; 1263 dbuf_dirty_record_t *di; 1264 int parent_held = FALSE; 1265 1266 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1267 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1268 1269 parent = dbuf_hold_level(dn, db->db_level+1, 1270 db->db_blkid >> epbs, FTAG); 1271 ASSERT(parent != NULL); 1272 parent_held = TRUE; 1273 } 1274 if (drop_struct_lock) 1275 rw_exit(&dn->dn_struct_rwlock); 1276 ASSERT3U(db->db_level+1, ==, parent->db_level); 1277 di = dbuf_dirty(parent, tx, B_FALSE); 1278 if (parent_held) 1279 dbuf_rele(parent, FTAG); 1280 1281 mutex_enter(&db->db_mtx); 1282 /* 1283 * Since we've dropped the mutex, it's possible that 1284 * dbuf_undirty() might have changed this out from under us. 1285 */ 1286 if (db->db_last_dirty == dr || 1287 dn->dn_object == DMU_META_DNODE_OBJECT) { 1288 mutex_enter(&di->dt.di.dr_mtx); 1289 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1290 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1291 list_insert_tail(&di->dt.di.dr_children, dr); 1292 mutex_exit(&di->dt.di.dr_mtx); 1293 dr->dr_parent = di; 1294 } 1295 mutex_exit(&db->db_mtx); 1296 } else { 1297 ASSERT(db->db_level+1 == dn->dn_nlevels); 1298 ASSERT(db->db_blkid < dn->dn_nblkptr); 1299 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1300 mutex_enter(&dn->dn_mtx); 1301 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1302 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1303 mutex_exit(&dn->dn_mtx); 1304 if (drop_struct_lock) 1305 rw_exit(&dn->dn_struct_rwlock); 1306 } 1307 1308 dnode_setdirty(dn, tx); 1309 DB_DNODE_EXIT(db); 1310 return (dr); 1311 } 1312 1313 /* 1314 * Undirty a buffer in the transaction group referenced by the given 1315 * transaction. Return whether this evicted the dbuf. 1316 */ 1317 static boolean_t 1318 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1319 { 1320 dnode_t *dn; 1321 uint64_t txg = tx->tx_txg; 1322 dbuf_dirty_record_t *dr, **drp; 1323 1324 ASSERT(txg != 0); 1325 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1326 ASSERT0(db->db_level); 1327 ASSERT(MUTEX_HELD(&db->db_mtx)); 1328 1329 /* 1330 * If this buffer is not dirty, we're done. 1331 */ 1332 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1333 if (dr->dr_txg <= txg) 1334 break; 1335 if (dr == NULL || dr->dr_txg < txg) 1336 return (B_FALSE); 1337 ASSERT(dr->dr_txg == txg); 1338 ASSERT(dr->dr_dbuf == db); 1339 1340 DB_DNODE_ENTER(db); 1341 dn = DB_DNODE(db); 1342 1343 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1344 1345 ASSERT(db->db.db_size != 0); 1346 1347 /* 1348 * Any space we accounted for in dp_dirty_* will be cleaned up by 1349 * dsl_pool_sync(). This is relatively rare so the discrepancy 1350 * is not a big deal. 1351 */ 1352 1353 *drp = dr->dr_next; 1354 1355 /* 1356 * Note that there are three places in dbuf_dirty() 1357 * where this dirty record may be put on a list. 1358 * Make sure to do a list_remove corresponding to 1359 * every one of those list_insert calls. 1360 */ 1361 if (dr->dr_parent) { 1362 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1363 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1364 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1365 } else if (db->db_blkid == DMU_SPILL_BLKID || 1366 db->db_level+1 == dn->dn_nlevels) { 1367 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1368 mutex_enter(&dn->dn_mtx); 1369 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1370 mutex_exit(&dn->dn_mtx); 1371 } 1372 DB_DNODE_EXIT(db); 1373 1374 if (db->db_state != DB_NOFILL) { 1375 dbuf_unoverride(dr); 1376 1377 ASSERT(db->db_buf != NULL); 1378 ASSERT(dr->dt.dl.dr_data != NULL); 1379 if (dr->dt.dl.dr_data != db->db_buf) 1380 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); 1381 } 1382 1383 if (db->db_level != 0) { 1384 mutex_destroy(&dr->dt.di.dr_mtx); 1385 list_destroy(&dr->dt.di.dr_children); 1386 } 1387 1388 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1389 1390 ASSERT(db->db_dirtycnt > 0); 1391 db->db_dirtycnt -= 1; 1392 1393 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1394 arc_buf_t *buf = db->db_buf; 1395 1396 ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); 1397 dbuf_set_data(db, NULL); 1398 VERIFY(arc_buf_remove_ref(buf, db)); 1399 dbuf_evict(db); 1400 return (B_TRUE); 1401 } 1402 1403 return (B_FALSE); 1404 } 1405 1406 void 1407 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1408 { 1409 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1410 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1411 1412 ASSERT(tx->tx_txg != 0); 1413 ASSERT(!refcount_is_zero(&db->db_holds)); 1414 1415 DB_DNODE_ENTER(db); 1416 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1417 rf |= DB_RF_HAVESTRUCT; 1418 DB_DNODE_EXIT(db); 1419 (void) dbuf_read(db, NULL, rf); 1420 (void) dbuf_dirty(db, tx, B_FALSE); 1421 } 1422 1423 void 1424 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1425 { 1426 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1427 1428 db->db_state = DB_NOFILL; 1429 1430 dmu_buf_will_fill(db_fake, tx); 1431 } 1432 1433 void 1434 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1435 { 1436 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1437 1438 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1439 ASSERT(tx->tx_txg != 0); 1440 ASSERT(db->db_level == 0); 1441 ASSERT(!refcount_is_zero(&db->db_holds)); 1442 1443 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1444 dmu_tx_private_ok(tx)); 1445 1446 dbuf_noread(db); 1447 (void) dbuf_dirty(db, tx, B_FALSE); 1448 } 1449 1450 1451 void 1452 dmu_buf_will_zero_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1453 { 1454 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1455 1456 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1457 ASSERT(tx->tx_txg != 0); 1458 ASSERT(db->db_level == 0); 1459 ASSERT(!refcount_is_zero(&db->db_holds)); 1460 1461 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1462 dmu_tx_private_ok(tx)); 1463 1464 dbuf_noread(db); 1465 (void) dbuf_zero_dirty(db, tx); 1466 } 1467 1468 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1469 /* ARGSUSED */ 1470 void 1471 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1472 { 1473 mutex_enter(&db->db_mtx); 1474 DBUF_VERIFY(db); 1475 1476 if (db->db_state == DB_FILL) { 1477 if (db->db_level == 0 && db->db_freed_in_flight) { 1478 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1479 /* we were freed while filling */ 1480 /* XXX dbuf_undirty? */ 1481 bzero(db->db.db_data, db->db.db_size); 1482 db->db_freed_in_flight = FALSE; 1483 } 1484 db->db_state = DB_CACHED; 1485 cv_broadcast(&db->db_changed); 1486 } 1487 mutex_exit(&db->db_mtx); 1488 } 1489 1490 void 1491 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1492 bp_embedded_type_t etype, enum zio_compress comp, 1493 int uncompressed_size, int compressed_size, int byteorder, 1494 dmu_tx_t *tx) 1495 { 1496 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1497 struct dirty_leaf *dl; 1498 dmu_object_type_t type; 1499 1500 DB_DNODE_ENTER(db); 1501 type = DB_DNODE(db)->dn_type; 1502 DB_DNODE_EXIT(db); 1503 1504 ASSERT0(db->db_level); 1505 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1506 1507 dmu_buf_will_not_fill(dbuf, tx); 1508 1509 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1510 dl = &db->db_last_dirty->dt.dl; 1511 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1512 data, comp, uncompressed_size, compressed_size); 1513 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1514 BP_SET_TYPE(&dl->dr_overridden_by, type); 1515 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1516 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1517 1518 dl->dr_override_state = DR_OVERRIDDEN; 1519 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1520 } 1521 1522 /* 1523 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1524 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1525 */ 1526 void 1527 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1528 { 1529 ASSERT(!refcount_is_zero(&db->db_holds)); 1530 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1531 ASSERT(db->db_level == 0); 1532 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1533 ASSERT(buf != NULL); 1534 ASSERT(arc_buf_size(buf) == db->db.db_size); 1535 ASSERT(tx->tx_txg != 0); 1536 1537 arc_return_buf(buf, db); 1538 ASSERT(arc_released(buf)); 1539 1540 mutex_enter(&db->db_mtx); 1541 1542 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1543 cv_wait(&db->db_changed, &db->db_mtx); 1544 1545 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1546 1547 if (db->db_state == DB_CACHED && 1548 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1549 mutex_exit(&db->db_mtx); 1550 (void) dbuf_dirty(db, tx, B_FALSE); 1551 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1552 VERIFY(arc_buf_remove_ref(buf, db)); 1553 xuio_stat_wbuf_copied(); 1554 return; 1555 } 1556 1557 xuio_stat_wbuf_nocopy(); 1558 if (db->db_state == DB_CACHED) { 1559 dbuf_dirty_record_t *dr = db->db_last_dirty; 1560 1561 ASSERT(db->db_buf != NULL); 1562 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1563 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1564 if (!arc_released(db->db_buf)) { 1565 ASSERT(dr->dt.dl.dr_override_state == 1566 DR_OVERRIDDEN); 1567 arc_release(db->db_buf, db); 1568 } 1569 dr->dt.dl.dr_data = buf; 1570 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1571 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1572 arc_release(db->db_buf, db); 1573 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1574 } 1575 db->db_buf = NULL; 1576 } 1577 ASSERT(db->db_buf == NULL); 1578 dbuf_set_data(db, buf); 1579 db->db_state = DB_FILL; 1580 mutex_exit(&db->db_mtx); 1581 (void) dbuf_dirty(db, tx, B_FALSE); 1582 dmu_buf_fill_done(&db->db, tx); 1583 } 1584 1585 /* 1586 * "Clear" the contents of this dbuf. This will mark the dbuf 1587 * EVICTING and clear *most* of its references. Unfortunately, 1588 * when we are not holding the dn_dbufs_mtx, we can't clear the 1589 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1590 * in this case. For callers from the DMU we will usually see: 1591 * dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy() 1592 * For the arc callback, we will usually see: 1593 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1594 * Sometimes, though, we will get a mix of these two: 1595 * DMU: dbuf_clear()->arc_clear_callback() 1596 * ARC: dbuf_do_evict()->dbuf_destroy() 1597 * 1598 * This routine will dissociate the dbuf from the arc, by calling 1599 * arc_clear_callback(), but will not evict the data from the ARC. 1600 */ 1601 void 1602 dbuf_clear(dmu_buf_impl_t *db) 1603 { 1604 dnode_t *dn; 1605 dmu_buf_impl_t *parent = db->db_parent; 1606 dmu_buf_impl_t *dndb; 1607 boolean_t dbuf_gone = B_FALSE; 1608 1609 ASSERT(MUTEX_HELD(&db->db_mtx)); 1610 ASSERT(refcount_is_zero(&db->db_holds)); 1611 1612 dbuf_evict_user(db); 1613 1614 if (db->db_state == DB_CACHED) { 1615 ASSERT(db->db.db_data != NULL); 1616 if (db->db_blkid == DMU_BONUS_BLKID) { 1617 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1618 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1619 } 1620 db->db.db_data = NULL; 1621 db->db_state = DB_UNCACHED; 1622 } 1623 1624 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1625 ASSERT(db->db_data_pending == NULL); 1626 1627 db->db_state = DB_EVICTING; 1628 db->db_blkptr = NULL; 1629 1630 DB_DNODE_ENTER(db); 1631 dn = DB_DNODE(db); 1632 dndb = dn->dn_dbuf; 1633 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1634 avl_remove(&dn->dn_dbufs, db); 1635 atomic_dec_32(&dn->dn_dbufs_count); 1636 membar_producer(); 1637 DB_DNODE_EXIT(db); 1638 /* 1639 * Decrementing the dbuf count means that the hold corresponding 1640 * to the removed dbuf is no longer discounted in dnode_move(), 1641 * so the dnode cannot be moved until after we release the hold. 1642 * The membar_producer() ensures visibility of the decremented 1643 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 1644 * release any lock. 1645 */ 1646 dnode_rele(dn, db); 1647 db->db_dnode_handle = NULL; 1648 } else { 1649 DB_DNODE_EXIT(db); 1650 } 1651 1652 if (db->db_buf) 1653 dbuf_gone = arc_clear_callback(db->db_buf); 1654 1655 if (!dbuf_gone) 1656 mutex_exit(&db->db_mtx); 1657 1658 /* 1659 * If this dbuf is referenced from an indirect dbuf, 1660 * decrement the ref count on the indirect dbuf. 1661 */ 1662 if (parent && parent != dndb) 1663 dbuf_rele(parent, db); 1664 } 1665 1666 static int 1667 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1668 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1669 { 1670 int nlevels, epbs; 1671 1672 *parentp = NULL; 1673 *bpp = NULL; 1674 1675 ASSERT(blkid != DMU_BONUS_BLKID); 1676 1677 if (blkid == DMU_SPILL_BLKID) { 1678 mutex_enter(&dn->dn_mtx); 1679 if (dn->dn_have_spill && 1680 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1681 *bpp = &dn->dn_phys->dn_spill; 1682 else 1683 *bpp = NULL; 1684 dbuf_add_ref(dn->dn_dbuf, NULL); 1685 *parentp = dn->dn_dbuf; 1686 mutex_exit(&dn->dn_mtx); 1687 return (0); 1688 } 1689 1690 if (dn->dn_phys->dn_nlevels == 0) 1691 nlevels = 1; 1692 else 1693 nlevels = dn->dn_phys->dn_nlevels; 1694 1695 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1696 1697 ASSERT3U(level * epbs, <, 64); 1698 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1699 if (level >= nlevels || 1700 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1701 /* the buffer has no parent yet */ 1702 return (SET_ERROR(ENOENT)); 1703 } else if (level < nlevels-1) { 1704 /* this block is referenced from an indirect block */ 1705 int err = dbuf_hold_impl(dn, level+1, 1706 blkid >> epbs, fail_sparse, NULL, parentp); 1707 if (err) 1708 return (err); 1709 err = dbuf_read(*parentp, NULL, 1710 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1711 if (err) { 1712 dbuf_rele(*parentp, NULL); 1713 *parentp = NULL; 1714 return (err); 1715 } 1716 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1717 (blkid & ((1ULL << epbs) - 1)); 1718 return (0); 1719 } else { 1720 /* the block is referenced from the dnode */ 1721 ASSERT3U(level, ==, nlevels-1); 1722 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1723 blkid < dn->dn_phys->dn_nblkptr); 1724 if (dn->dn_dbuf) { 1725 dbuf_add_ref(dn->dn_dbuf, NULL); 1726 *parentp = dn->dn_dbuf; 1727 } 1728 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1729 return (0); 1730 } 1731 } 1732 1733 static dmu_buf_impl_t * 1734 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1735 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1736 { 1737 objset_t *os = dn->dn_objset; 1738 dmu_buf_impl_t *db, *odb; 1739 1740 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1741 ASSERT(dn->dn_type != DMU_OT_NONE); 1742 1743 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1744 1745 db->db_objset = os; 1746 db->db.db_object = dn->dn_object; 1747 db->db_level = level; 1748 db->db_blkid = blkid; 1749 db->db_last_dirty = NULL; 1750 db->db_dirtycnt = 0; 1751 db->db_dnode_handle = dn->dn_handle; 1752 db->db_parent = parent; 1753 db->db_blkptr = blkptr; 1754 1755 db->db_user_ptr = NULL; 1756 db->db_user_data_ptr_ptr = NULL; 1757 db->db_evict_func = NULL; 1758 db->db_immediate_evict = 0; 1759 db->db_freed_in_flight = 0; 1760 1761 if (blkid == DMU_BONUS_BLKID) { 1762 ASSERT3P(parent, ==, dn->dn_dbuf); 1763 db->db.db_size = DN_MAX_BONUSLEN - 1764 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 1765 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1766 db->db.db_offset = DMU_BONUS_BLKID; 1767 db->db_state = DB_UNCACHED; 1768 /* the bonus dbuf is not placed in the hash table */ 1769 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1770 return (db); 1771 } else if (blkid == DMU_SPILL_BLKID) { 1772 db->db.db_size = (blkptr != NULL) ? 1773 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 1774 db->db.db_offset = 0; 1775 } else { 1776 int blocksize = 1777 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 1778 db->db.db_size = blocksize; 1779 db->db.db_offset = db->db_blkid * blocksize; 1780 } 1781 1782 /* 1783 * Hold the dn_dbufs_mtx while we get the new dbuf 1784 * in the hash table *and* added to the dbufs list. 1785 * This prevents a possible deadlock with someone 1786 * trying to look up this dbuf before its added to the 1787 * dn_dbufs list. 1788 */ 1789 mutex_enter(&dn->dn_dbufs_mtx); 1790 db->db_state = DB_EVICTING; 1791 if ((odb = dbuf_hash_insert(db)) != NULL) { 1792 /* someone else inserted it first */ 1793 kmem_cache_free(dbuf_cache, db); 1794 mutex_exit(&dn->dn_dbufs_mtx); 1795 return (odb); 1796 } 1797 avl_add(&dn->dn_dbufs, db); 1798 if (db->db_level == 0 && db->db_blkid >= 1799 dn->dn_unlisted_l0_blkid) 1800 dn->dn_unlisted_l0_blkid = db->db_blkid + 1; 1801 db->db_state = DB_UNCACHED; 1802 mutex_exit(&dn->dn_dbufs_mtx); 1803 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1804 1805 if (parent && parent != dn->dn_dbuf) 1806 dbuf_add_ref(parent, db); 1807 1808 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1809 refcount_count(&dn->dn_holds) > 0); 1810 (void) refcount_add(&dn->dn_holds, db); 1811 atomic_inc_32(&dn->dn_dbufs_count); 1812 1813 dprintf_dbuf(db, "db=%p\n", db); 1814 1815 return (db); 1816 } 1817 1818 static int 1819 dbuf_do_evict(void *private) 1820 { 1821 dmu_buf_impl_t *db = private; 1822 1823 if (!MUTEX_HELD(&db->db_mtx)) 1824 mutex_enter(&db->db_mtx); 1825 1826 ASSERT(refcount_is_zero(&db->db_holds)); 1827 1828 if (db->db_state != DB_EVICTING) { 1829 ASSERT(db->db_state == DB_CACHED); 1830 DBUF_VERIFY(db); 1831 db->db_buf = NULL; 1832 dbuf_evict(db); 1833 } else { 1834 mutex_exit(&db->db_mtx); 1835 dbuf_destroy(db); 1836 } 1837 return (0); 1838 } 1839 1840 static void 1841 dbuf_destroy(dmu_buf_impl_t *db) 1842 { 1843 ASSERT(refcount_is_zero(&db->db_holds)); 1844 1845 if (db->db_blkid != DMU_BONUS_BLKID) { 1846 /* 1847 * If this dbuf is still on the dn_dbufs list, 1848 * remove it from that list. 1849 */ 1850 if (db->db_dnode_handle != NULL) { 1851 dnode_t *dn; 1852 1853 DB_DNODE_ENTER(db); 1854 dn = DB_DNODE(db); 1855 mutex_enter(&dn->dn_dbufs_mtx); 1856 avl_remove(&dn->dn_dbufs, db); 1857 atomic_dec_32(&dn->dn_dbufs_count); 1858 mutex_exit(&dn->dn_dbufs_mtx); 1859 DB_DNODE_EXIT(db); 1860 /* 1861 * Decrementing the dbuf count means that the hold 1862 * corresponding to the removed dbuf is no longer 1863 * discounted in dnode_move(), so the dnode cannot be 1864 * moved until after we release the hold. 1865 */ 1866 dnode_rele(dn, db); 1867 db->db_dnode_handle = NULL; 1868 } 1869 dbuf_hash_remove(db); 1870 } 1871 db->db_parent = NULL; 1872 db->db_buf = NULL; 1873 1874 ASSERT(db->db.db_data == NULL); 1875 ASSERT(db->db_hash_next == NULL); 1876 ASSERT(db->db_blkptr == NULL); 1877 ASSERT(db->db_data_pending == NULL); 1878 1879 kmem_cache_free(dbuf_cache, db); 1880 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1881 } 1882 1883 void 1884 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio) 1885 { 1886 dmu_buf_impl_t *db = NULL; 1887 blkptr_t *bp = NULL; 1888 1889 ASSERT(blkid != DMU_BONUS_BLKID); 1890 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1891 1892 if (dnode_block_freed(dn, blkid)) 1893 return; 1894 1895 /* dbuf_find() returns with db_mtx held */ 1896 if (db = dbuf_find(dn, 0, blkid)) { 1897 /* 1898 * This dbuf is already in the cache. We assume that 1899 * it is already CACHED, or else about to be either 1900 * read or filled. 1901 */ 1902 mutex_exit(&db->db_mtx); 1903 return; 1904 } 1905 1906 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1907 if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 1908 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 1909 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1910 zbookmark_phys_t zb; 1911 1912 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1913 dn->dn_object, 0, blkid); 1914 1915 (void) arc_read(NULL, dn->dn_objset->os_spa, 1916 bp, NULL, NULL, prio, 1917 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1918 &aflags, &zb); 1919 } 1920 if (db) 1921 dbuf_rele(db, NULL); 1922 } 1923 } 1924 1925 /* 1926 * Returns with db_holds incremented, and db_mtx not held. 1927 * Note: dn_struct_rwlock must be held. 1928 */ 1929 int 1930 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1931 void *tag, dmu_buf_impl_t **dbp) 1932 { 1933 dmu_buf_impl_t *db, *parent = NULL; 1934 1935 ASSERT(blkid != DMU_BONUS_BLKID); 1936 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1937 ASSERT3U(dn->dn_nlevels, >, level); 1938 1939 *dbp = NULL; 1940 top: 1941 /* dbuf_find() returns with db_mtx held */ 1942 db = dbuf_find(dn, level, blkid); 1943 1944 if (db == NULL) { 1945 blkptr_t *bp = NULL; 1946 int err; 1947 1948 ASSERT3P(parent, ==, NULL); 1949 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1950 if (fail_sparse) { 1951 if (err == 0 && bp && BP_IS_HOLE(bp)) 1952 err = SET_ERROR(ENOENT); 1953 if (err) { 1954 if (parent) 1955 dbuf_rele(parent, NULL); 1956 return (err); 1957 } 1958 } 1959 if (err && err != ENOENT) 1960 return (err); 1961 db = dbuf_create(dn, level, blkid, parent, bp); 1962 } 1963 1964 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1965 arc_buf_add_ref(db->db_buf, db); 1966 if (db->db_buf->b_data == NULL) { 1967 dbuf_clear(db); 1968 if (parent) { 1969 dbuf_rele(parent, NULL); 1970 parent = NULL; 1971 } 1972 goto top; 1973 } 1974 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1975 } 1976 1977 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1978 1979 /* 1980 * If this buffer is currently syncing out, and we are are 1981 * still referencing it from db_data, we need to make a copy 1982 * of it in case we decide we want to dirty it again in this txg. 1983 */ 1984 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1985 dn->dn_object != DMU_META_DNODE_OBJECT && 1986 db->db_state == DB_CACHED && db->db_data_pending) { 1987 dbuf_dirty_record_t *dr = db->db_data_pending; 1988 1989 if (dr->dt.dl.dr_data == db->db_buf) { 1990 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1991 1992 dbuf_set_data(db, 1993 arc_buf_alloc(dn->dn_objset->os_spa, 1994 db->db.db_size, db, type)); 1995 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 1996 db->db.db_size); 1997 } 1998 } 1999 2000 (void) refcount_add(&db->db_holds, tag); 2001 dbuf_update_data(db); 2002 DBUF_VERIFY(db); 2003 mutex_exit(&db->db_mtx); 2004 2005 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2006 if (parent) 2007 dbuf_rele(parent, NULL); 2008 2009 ASSERT3P(DB_DNODE(db), ==, dn); 2010 ASSERT3U(db->db_blkid, ==, blkid); 2011 ASSERT3U(db->db_level, ==, level); 2012 *dbp = db; 2013 2014 return (0); 2015 } 2016 2017 dmu_buf_impl_t * 2018 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2019 { 2020 dmu_buf_impl_t *db; 2021 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 2022 return (err ? NULL : db); 2023 } 2024 2025 dmu_buf_impl_t * 2026 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2027 { 2028 dmu_buf_impl_t *db; 2029 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 2030 return (err ? NULL : db); 2031 } 2032 2033 void 2034 dbuf_create_bonus(dnode_t *dn) 2035 { 2036 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2037 2038 ASSERT(dn->dn_bonus == NULL); 2039 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2040 } 2041 2042 int 2043 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2044 { 2045 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2046 dnode_t *dn; 2047 2048 if (db->db_blkid != DMU_SPILL_BLKID) 2049 return (SET_ERROR(ENOTSUP)); 2050 if (blksz == 0) 2051 blksz = SPA_MINBLOCKSIZE; 2052 if (blksz > SPA_MAXBLOCKSIZE) 2053 blksz = SPA_MAXBLOCKSIZE; 2054 else 2055 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2056 2057 DB_DNODE_ENTER(db); 2058 dn = DB_DNODE(db); 2059 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2060 dbuf_new_size(db, blksz, tx); 2061 rw_exit(&dn->dn_struct_rwlock); 2062 DB_DNODE_EXIT(db); 2063 2064 return (0); 2065 } 2066 2067 void 2068 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2069 { 2070 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2071 } 2072 2073 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2074 void 2075 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2076 { 2077 int64_t holds = refcount_add(&db->db_holds, tag); 2078 ASSERT(holds > 1); 2079 } 2080 2081 /* 2082 * If you call dbuf_rele() you had better not be referencing the dnode handle 2083 * unless you have some other direct or indirect hold on the dnode. (An indirect 2084 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2085 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2086 * dnode's parent dbuf evicting its dnode handles. 2087 */ 2088 void 2089 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2090 { 2091 mutex_enter(&db->db_mtx); 2092 dbuf_rele_and_unlock(db, tag); 2093 } 2094 2095 void 2096 dmu_buf_rele(dmu_buf_t *db, void *tag) 2097 { 2098 dbuf_rele((dmu_buf_impl_t *)db, tag); 2099 } 2100 2101 /* 2102 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2103 * db_dirtycnt and db_holds to be updated atomically. 2104 */ 2105 void 2106 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2107 { 2108 int64_t holds; 2109 2110 ASSERT(MUTEX_HELD(&db->db_mtx)); 2111 DBUF_VERIFY(db); 2112 2113 /* 2114 * Remove the reference to the dbuf before removing its hold on the 2115 * dnode so we can guarantee in dnode_move() that a referenced bonus 2116 * buffer has a corresponding dnode hold. 2117 */ 2118 holds = refcount_remove(&db->db_holds, tag); 2119 ASSERT(holds >= 0); 2120 2121 /* 2122 * We can't freeze indirects if there is a possibility that they 2123 * may be modified in the current syncing context. 2124 */ 2125 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) 2126 arc_buf_freeze(db->db_buf); 2127 2128 if (holds == db->db_dirtycnt && 2129 db->db_level == 0 && db->db_immediate_evict) 2130 dbuf_evict_user(db); 2131 2132 if (holds == 0) { 2133 if (db->db_blkid == DMU_BONUS_BLKID) { 2134 mutex_exit(&db->db_mtx); 2135 2136 /* 2137 * If the dnode moves here, we cannot cross this barrier 2138 * until the move completes. 2139 */ 2140 DB_DNODE_ENTER(db); 2141 atomic_dec_32(&DB_DNODE(db)->dn_dbufs_count); 2142 DB_DNODE_EXIT(db); 2143 /* 2144 * The bonus buffer's dnode hold is no longer discounted 2145 * in dnode_move(). The dnode cannot move until after 2146 * the dnode_rele(). 2147 */ 2148 dnode_rele(DB_DNODE(db), db); 2149 } else if (db->db_buf == NULL) { 2150 /* 2151 * This is a special case: we never associated this 2152 * dbuf with any data allocated from the ARC. 2153 */ 2154 ASSERT(db->db_state == DB_UNCACHED || 2155 db->db_state == DB_NOFILL); 2156 dbuf_evict(db); 2157 } else if (arc_released(db->db_buf)) { 2158 arc_buf_t *buf = db->db_buf; 2159 /* 2160 * This dbuf has anonymous data associated with it. 2161 */ 2162 dbuf_set_data(db, NULL); 2163 VERIFY(arc_buf_remove_ref(buf, db)); 2164 dbuf_evict(db); 2165 } else { 2166 VERIFY(!arc_buf_remove_ref(db->db_buf, db)); 2167 2168 /* 2169 * A dbuf will be eligible for eviction if either the 2170 * 'primarycache' property is set or a duplicate 2171 * copy of this buffer is already cached in the arc. 2172 * 2173 * In the case of the 'primarycache' a buffer 2174 * is considered for eviction if it matches the 2175 * criteria set in the property. 2176 * 2177 * To decide if our buffer is considered a 2178 * duplicate, we must call into the arc to determine 2179 * if multiple buffers are referencing the same 2180 * block on-disk. If so, then we simply evict 2181 * ourselves. 2182 */ 2183 if (!DBUF_IS_CACHEABLE(db)) { 2184 if (db->db_blkptr != NULL && 2185 !BP_IS_HOLE(db->db_blkptr) && 2186 !BP_IS_EMBEDDED(db->db_blkptr)) { 2187 spa_t *spa = 2188 dmu_objset_spa(db->db_objset); 2189 blkptr_t bp = *db->db_blkptr; 2190 dbuf_clear(db); 2191 arc_freed(spa, &bp); 2192 } else { 2193 dbuf_clear(db); 2194 } 2195 } else if (arc_buf_eviction_needed(db->db_buf)) { 2196 dbuf_clear(db); 2197 } else { 2198 mutex_exit(&db->db_mtx); 2199 } 2200 } 2201 } else { 2202 mutex_exit(&db->db_mtx); 2203 } 2204 } 2205 2206 #pragma weak dmu_buf_refcount = dbuf_refcount 2207 uint64_t 2208 dbuf_refcount(dmu_buf_impl_t *db) 2209 { 2210 return (refcount_count(&db->db_holds)); 2211 } 2212 2213 void * 2214 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2215 dmu_buf_evict_func_t *evict_func) 2216 { 2217 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2218 user_data_ptr_ptr, evict_func)); 2219 } 2220 2221 void * 2222 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2223 dmu_buf_evict_func_t *evict_func) 2224 { 2225 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2226 2227 db->db_immediate_evict = TRUE; 2228 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2229 user_data_ptr_ptr, evict_func)); 2230 } 2231 2232 void * 2233 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 2234 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 2235 { 2236 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2237 ASSERT(db->db_level == 0); 2238 2239 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 2240 2241 mutex_enter(&db->db_mtx); 2242 2243 if (db->db_user_ptr == old_user_ptr) { 2244 db->db_user_ptr = user_ptr; 2245 db->db_user_data_ptr_ptr = user_data_ptr_ptr; 2246 db->db_evict_func = evict_func; 2247 2248 dbuf_update_data(db); 2249 } else { 2250 old_user_ptr = db->db_user_ptr; 2251 } 2252 2253 mutex_exit(&db->db_mtx); 2254 return (old_user_ptr); 2255 } 2256 2257 void * 2258 dmu_buf_get_user(dmu_buf_t *db_fake) 2259 { 2260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2261 ASSERT(!refcount_is_zero(&db->db_holds)); 2262 2263 return (db->db_user_ptr); 2264 } 2265 2266 boolean_t 2267 dmu_buf_freeable(dmu_buf_t *dbuf) 2268 { 2269 boolean_t res = B_FALSE; 2270 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2271 2272 if (db->db_blkptr) 2273 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2274 db->db_blkptr, db->db_blkptr->blk_birth); 2275 2276 return (res); 2277 } 2278 2279 blkptr_t * 2280 dmu_buf_get_blkptr(dmu_buf_t *db) 2281 { 2282 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2283 return (dbi->db_blkptr); 2284 } 2285 2286 static void 2287 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2288 { 2289 /* ASSERT(dmu_tx_is_syncing(tx) */ 2290 ASSERT(MUTEX_HELD(&db->db_mtx)); 2291 2292 if (db->db_blkptr != NULL) 2293 return; 2294 2295 if (db->db_blkid == DMU_SPILL_BLKID) { 2296 db->db_blkptr = &dn->dn_phys->dn_spill; 2297 BP_ZERO(db->db_blkptr); 2298 return; 2299 } 2300 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2301 /* 2302 * This buffer was allocated at a time when there was 2303 * no available blkptrs from the dnode, or it was 2304 * inappropriate to hook it in (i.e., nlevels mis-match). 2305 */ 2306 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2307 ASSERT(db->db_parent == NULL); 2308 db->db_parent = dn->dn_dbuf; 2309 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2310 DBUF_VERIFY(db); 2311 } else { 2312 dmu_buf_impl_t *parent = db->db_parent; 2313 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2314 2315 ASSERT(dn->dn_phys->dn_nlevels > 1); 2316 if (parent == NULL) { 2317 mutex_exit(&db->db_mtx); 2318 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2319 (void) dbuf_hold_impl(dn, db->db_level+1, 2320 db->db_blkid >> epbs, FALSE, db, &parent); 2321 rw_exit(&dn->dn_struct_rwlock); 2322 mutex_enter(&db->db_mtx); 2323 db->db_parent = parent; 2324 } 2325 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2326 (db->db_blkid & ((1ULL << epbs) - 1)); 2327 DBUF_VERIFY(db); 2328 } 2329 } 2330 2331 static void 2332 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2333 { 2334 dmu_buf_impl_t *db = dr->dr_dbuf; 2335 dnode_t *dn; 2336 zio_t *zio; 2337 2338 ASSERT(dmu_tx_is_syncing(tx)); 2339 2340 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2341 2342 mutex_enter(&db->db_mtx); 2343 2344 ASSERT(db->db_level > 0); 2345 DBUF_VERIFY(db); 2346 2347 /* Read the block if it hasn't been read yet. */ 2348 if (db->db_buf == NULL) { 2349 mutex_exit(&db->db_mtx); 2350 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2351 mutex_enter(&db->db_mtx); 2352 } 2353 ASSERT3U(db->db_state, ==, DB_CACHED); 2354 ASSERT(db->db_buf != NULL); 2355 2356 DB_DNODE_ENTER(db); 2357 dn = DB_DNODE(db); 2358 /* Indirect block size must match what the dnode thinks it is. */ 2359 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2360 dbuf_check_blkptr(dn, db); 2361 DB_DNODE_EXIT(db); 2362 2363 /* Provide the pending dirty record to child dbufs */ 2364 db->db_data_pending = dr; 2365 2366 mutex_exit(&db->db_mtx); 2367 dbuf_write(dr, db->db_buf, tx); 2368 2369 zio = dr->dr_zio; 2370 mutex_enter(&dr->dt.di.dr_mtx); 2371 dbuf_sync_list(&dr->dt.di.dr_children, tx); 2372 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2373 mutex_exit(&dr->dt.di.dr_mtx); 2374 zio_nowait(zio); 2375 } 2376 2377 static void 2378 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2379 { 2380 arc_buf_t **datap = &dr->dt.dl.dr_data; 2381 dmu_buf_impl_t *db = dr->dr_dbuf; 2382 dnode_t *dn; 2383 objset_t *os; 2384 uint64_t txg = tx->tx_txg; 2385 2386 ASSERT(dmu_tx_is_syncing(tx)); 2387 2388 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2389 2390 mutex_enter(&db->db_mtx); 2391 /* 2392 * To be synced, we must be dirtied. But we 2393 * might have been freed after the dirty. 2394 */ 2395 if (db->db_state == DB_UNCACHED) { 2396 /* This buffer has been freed since it was dirtied */ 2397 ASSERT(db->db.db_data == NULL); 2398 } else if (db->db_state == DB_FILL) { 2399 /* This buffer was freed and is now being re-filled */ 2400 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 2401 } else { 2402 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 2403 } 2404 DBUF_VERIFY(db); 2405 2406 DB_DNODE_ENTER(db); 2407 dn = DB_DNODE(db); 2408 2409 if (db->db_blkid == DMU_SPILL_BLKID) { 2410 mutex_enter(&dn->dn_mtx); 2411 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 2412 mutex_exit(&dn->dn_mtx); 2413 } 2414 2415 /* 2416 * If this is a bonus buffer, simply copy the bonus data into the 2417 * dnode. It will be written out when the dnode is synced (and it 2418 * will be synced, since it must have been dirty for dbuf_sync to 2419 * be called). 2420 */ 2421 if (db->db_blkid == DMU_BONUS_BLKID) { 2422 dbuf_dirty_record_t **drp; 2423 2424 ASSERT(*datap != NULL); 2425 ASSERT0(db->db_level); 2426 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 2427 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 2428 DB_DNODE_EXIT(db); 2429 2430 if (*datap != db->db.db_data) { 2431 zio_buf_free(*datap, DN_MAX_BONUSLEN); 2432 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2433 } 2434 db->db_data_pending = NULL; 2435 drp = &db->db_last_dirty; 2436 while (*drp != dr) 2437 drp = &(*drp)->dr_next; 2438 ASSERT(dr->dr_next == NULL); 2439 ASSERT(dr->dr_dbuf == db); 2440 *drp = dr->dr_next; 2441 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2442 ASSERT(db->db_dirtycnt > 0); 2443 db->db_dirtycnt -= 1; 2444 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2445 return; 2446 } 2447 2448 os = dn->dn_objset; 2449 2450 /* 2451 * This function may have dropped the db_mtx lock allowing a dmu_sync 2452 * operation to sneak in. As a result, we need to ensure that we 2453 * don't check the dr_override_state until we have returned from 2454 * dbuf_check_blkptr. 2455 */ 2456 dbuf_check_blkptr(dn, db); 2457 2458 /* 2459 * If this buffer is in the middle of an immediate write, 2460 * wait for the synchronous IO to complete. 2461 */ 2462 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 2463 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 2464 cv_wait(&db->db_changed, &db->db_mtx); 2465 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 2466 } 2467 2468 if (db->db_state != DB_NOFILL && 2469 dn->dn_object != DMU_META_DNODE_OBJECT && 2470 refcount_count(&db->db_holds) > 1 && 2471 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 2472 *datap == db->db_buf) { 2473 /* 2474 * If this buffer is currently "in use" (i.e., there 2475 * are active holds and db_data still references it), 2476 * then make a copy before we start the write so that 2477 * any modifications from the open txg will not leak 2478 * into this write. 2479 * 2480 * NOTE: this copy does not need to be made for 2481 * objects only modified in the syncing context (e.g. 2482 * DNONE_DNODE blocks). 2483 */ 2484 int blksz = arc_buf_size(*datap); 2485 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2486 *datap = arc_buf_alloc(os->os_spa, blksz, db, type); 2487 bcopy(db->db.db_data, (*datap)->b_data, blksz); 2488 } 2489 db->db_data_pending = dr; 2490 2491 mutex_exit(&db->db_mtx); 2492 2493 dbuf_write(dr, *datap, tx); 2494 2495 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2496 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 2497 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 2498 DB_DNODE_EXIT(db); 2499 } else { 2500 /* 2501 * Although zio_nowait() does not "wait for an IO", it does 2502 * initiate the IO. If this is an empty write it seems plausible 2503 * that the IO could actually be completed before the nowait 2504 * returns. We need to DB_DNODE_EXIT() first in case 2505 * zio_nowait() invalidates the dbuf. 2506 */ 2507 DB_DNODE_EXIT(db); 2508 zio_nowait(dr->dr_zio); 2509 } 2510 } 2511 2512 void 2513 dbuf_sync_list(list_t *list, dmu_tx_t *tx) 2514 { 2515 dbuf_dirty_record_t *dr; 2516 2517 while (dr = list_head(list)) { 2518 if (dr->dr_zio != NULL) { 2519 /* 2520 * If we find an already initialized zio then we 2521 * are processing the meta-dnode, and we have finished. 2522 * The dbufs for all dnodes are put back on the list 2523 * during processing, so that we can zio_wait() 2524 * these IOs after initiating all child IOs. 2525 */ 2526 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 2527 DMU_META_DNODE_OBJECT); 2528 break; 2529 } 2530 list_remove(list, dr); 2531 if (dr->dr_dbuf->db_level > 0) 2532 dbuf_sync_indirect(dr, tx); 2533 else 2534 dbuf_sync_leaf(dr, tx); 2535 } 2536 } 2537 2538 /* ARGSUSED */ 2539 static void 2540 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 2541 { 2542 dmu_buf_impl_t *db = vdb; 2543 dnode_t *dn; 2544 blkptr_t *bp = zio->io_bp; 2545 blkptr_t *bp_orig = &zio->io_bp_orig; 2546 spa_t *spa = zio->io_spa; 2547 int64_t delta; 2548 uint64_t fill = 0; 2549 int i; 2550 2551 ASSERT3P(db->db_blkptr, ==, bp); 2552 2553 DB_DNODE_ENTER(db); 2554 dn = DB_DNODE(db); 2555 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 2556 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 2557 zio->io_prev_space_delta = delta; 2558 2559 if (bp->blk_birth != 0) { 2560 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 2561 BP_GET_TYPE(bp) == dn->dn_type) || 2562 (db->db_blkid == DMU_SPILL_BLKID && 2563 BP_GET_TYPE(bp) == dn->dn_bonustype) || 2564 BP_IS_EMBEDDED(bp)); 2565 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 2566 } 2567 2568 mutex_enter(&db->db_mtx); 2569 2570 #ifdef ZFS_DEBUG 2571 if (db->db_blkid == DMU_SPILL_BLKID) { 2572 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2573 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2574 db->db_blkptr == &dn->dn_phys->dn_spill); 2575 } 2576 #endif 2577 2578 if (db->db_level == 0) { 2579 mutex_enter(&dn->dn_mtx); 2580 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2581 db->db_blkid != DMU_SPILL_BLKID) 2582 dn->dn_phys->dn_maxblkid = db->db_blkid; 2583 mutex_exit(&dn->dn_mtx); 2584 2585 if (dn->dn_type == DMU_OT_DNODE) { 2586 dnode_phys_t *dnp = db->db.db_data; 2587 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2588 i--, dnp++) { 2589 if (dnp->dn_type != DMU_OT_NONE) 2590 fill++; 2591 } 2592 } else { 2593 if (BP_IS_HOLE(bp)) { 2594 fill = 0; 2595 } else { 2596 fill = 1; 2597 } 2598 } 2599 } else { 2600 blkptr_t *ibp = db->db.db_data; 2601 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2602 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 2603 if (BP_IS_HOLE(ibp)) 2604 continue; 2605 fill += BP_GET_FILL(ibp); 2606 } 2607 } 2608 DB_DNODE_EXIT(db); 2609 2610 if (!BP_IS_EMBEDDED(bp)) 2611 bp->blk_fill = fill; 2612 2613 mutex_exit(&db->db_mtx); 2614 } 2615 2616 /* 2617 * The SPA will call this callback several times for each zio - once 2618 * for every physical child i/o (zio->io_phys_children times). This 2619 * allows the DMU to monitor the progress of each logical i/o. For example, 2620 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 2621 * block. There may be a long delay before all copies/fragments are completed, 2622 * so this callback allows us to retire dirty space gradually, as the physical 2623 * i/os complete. 2624 */ 2625 /* ARGSUSED */ 2626 static void 2627 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 2628 { 2629 dmu_buf_impl_t *db = arg; 2630 objset_t *os = db->db_objset; 2631 dsl_pool_t *dp = dmu_objset_pool(os); 2632 dbuf_dirty_record_t *dr; 2633 int delta = 0; 2634 2635 dr = db->db_data_pending; 2636 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 2637 2638 /* 2639 * The callback will be called io_phys_children times. Retire one 2640 * portion of our dirty space each time we are called. Any rounding 2641 * error will be cleaned up by dsl_pool_sync()'s call to 2642 * dsl_pool_undirty_space(). 2643 */ 2644 delta = dr->dr_accounted / zio->io_phys_children; 2645 dsl_pool_undirty_space(dp, delta, zio->io_txg); 2646 } 2647 2648 /* ARGSUSED */ 2649 static void 2650 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2651 { 2652 dmu_buf_impl_t *db = vdb; 2653 blkptr_t *bp_orig = &zio->io_bp_orig; 2654 blkptr_t *bp = db->db_blkptr; 2655 objset_t *os = db->db_objset; 2656 dmu_tx_t *tx = os->os_synctx; 2657 dbuf_dirty_record_t **drp, *dr; 2658 2659 ASSERT0(zio->io_error); 2660 ASSERT(db->db_blkptr == bp); 2661 2662 /* 2663 * For nopwrites and rewrites we ensure that the bp matches our 2664 * original and bypass all the accounting. 2665 */ 2666 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 2667 ASSERT(BP_EQUAL(bp, bp_orig)); 2668 } else { 2669 dsl_dataset_t *ds = os->os_dsl_dataset; 2670 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 2671 dsl_dataset_block_born(ds, bp, tx); 2672 } 2673 2674 mutex_enter(&db->db_mtx); 2675 2676 DBUF_VERIFY(db); 2677 2678 drp = &db->db_last_dirty; 2679 while ((dr = *drp) != db->db_data_pending) 2680 drp = &dr->dr_next; 2681 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2682 ASSERT(dr->dr_dbuf == db); 2683 ASSERT(dr->dr_next == NULL); 2684 *drp = dr->dr_next; 2685 2686 #ifdef ZFS_DEBUG 2687 if (db->db_blkid == DMU_SPILL_BLKID) { 2688 dnode_t *dn; 2689 2690 DB_DNODE_ENTER(db); 2691 dn = DB_DNODE(db); 2692 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2693 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2694 db->db_blkptr == &dn->dn_phys->dn_spill); 2695 DB_DNODE_EXIT(db); 2696 } 2697 #endif 2698 2699 if (db->db_level == 0) { 2700 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2701 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2702 if (db->db_state != DB_NOFILL) { 2703 if (dr->dt.dl.dr_data != db->db_buf) 2704 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, 2705 db)); 2706 else if (!arc_released(db->db_buf)) 2707 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2708 } 2709 } else { 2710 dnode_t *dn; 2711 2712 DB_DNODE_ENTER(db); 2713 dn = DB_DNODE(db); 2714 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2715 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 2716 if (!BP_IS_HOLE(db->db_blkptr)) { 2717 int epbs = 2718 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2719 ASSERT3U(db->db_blkid, <=, 2720 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 2721 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2722 db->db.db_size); 2723 if (!arc_released(db->db_buf)) 2724 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2725 } 2726 DB_DNODE_EXIT(db); 2727 mutex_destroy(&dr->dt.di.dr_mtx); 2728 list_destroy(&dr->dt.di.dr_children); 2729 } 2730 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2731 2732 cv_broadcast(&db->db_changed); 2733 ASSERT(db->db_dirtycnt > 0); 2734 db->db_dirtycnt -= 1; 2735 db->db_data_pending = NULL; 2736 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 2737 } 2738 2739 static void 2740 dbuf_write_nofill_ready(zio_t *zio) 2741 { 2742 dbuf_write_ready(zio, NULL, zio->io_private); 2743 } 2744 2745 static void 2746 dbuf_write_nofill_done(zio_t *zio) 2747 { 2748 dbuf_write_done(zio, NULL, zio->io_private); 2749 } 2750 2751 static void 2752 dbuf_write_override_ready(zio_t *zio) 2753 { 2754 dbuf_dirty_record_t *dr = zio->io_private; 2755 dmu_buf_impl_t *db = dr->dr_dbuf; 2756 2757 dbuf_write_ready(zio, NULL, db); 2758 } 2759 2760 static void 2761 dbuf_write_override_done(zio_t *zio) 2762 { 2763 dbuf_dirty_record_t *dr = zio->io_private; 2764 dmu_buf_impl_t *db = dr->dr_dbuf; 2765 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 2766 2767 mutex_enter(&db->db_mtx); 2768 if (!BP_EQUAL(zio->io_bp, obp)) { 2769 if (!BP_IS_HOLE(obp)) 2770 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 2771 arc_release(dr->dt.dl.dr_data, db); 2772 } 2773 mutex_exit(&db->db_mtx); 2774 2775 dbuf_write_done(zio, NULL, db); 2776 } 2777 2778 /* Issue I/O to commit a dirty buffer to disk. */ 2779 static void 2780 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 2781 { 2782 dmu_buf_impl_t *db = dr->dr_dbuf; 2783 dnode_t *dn; 2784 objset_t *os; 2785 dmu_buf_impl_t *parent = db->db_parent; 2786 uint64_t txg = tx->tx_txg; 2787 zbookmark_phys_t zb; 2788 zio_prop_t zp; 2789 zio_t *zio; 2790 int wp_flag = 0; 2791 2792 DB_DNODE_ENTER(db); 2793 dn = DB_DNODE(db); 2794 os = dn->dn_objset; 2795 2796 if (db->db_state != DB_NOFILL) { 2797 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 2798 /* 2799 * Private object buffers are released here rather 2800 * than in dbuf_dirty() since they are only modified 2801 * in the syncing context and we don't want the 2802 * overhead of making multiple copies of the data. 2803 */ 2804 if (BP_IS_HOLE(db->db_blkptr)) { 2805 arc_buf_thaw(data); 2806 } else { 2807 dbuf_release_bp(db); 2808 } 2809 } 2810 } 2811 2812 if (parent != dn->dn_dbuf) { 2813 /* Our parent is an indirect block. */ 2814 /* We have a dirty parent that has been scheduled for write. */ 2815 ASSERT(parent && parent->db_data_pending); 2816 /* Our parent's buffer is one level closer to the dnode. */ 2817 ASSERT(db->db_level == parent->db_level-1); 2818 /* 2819 * We're about to modify our parent's db_data by modifying 2820 * our block pointer, so the parent must be released. 2821 */ 2822 ASSERT(arc_released(parent->db_buf)); 2823 zio = parent->db_data_pending->dr_zio; 2824 } else { 2825 /* Our parent is the dnode itself. */ 2826 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 2827 db->db_blkid != DMU_SPILL_BLKID) || 2828 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 2829 if (db->db_blkid != DMU_SPILL_BLKID) 2830 ASSERT3P(db->db_blkptr, ==, 2831 &dn->dn_phys->dn_blkptr[db->db_blkid]); 2832 zio = dn->dn_zio; 2833 } 2834 2835 ASSERT(db->db_level == 0 || data == db->db_buf); 2836 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 2837 ASSERT(zio); 2838 2839 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 2840 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 2841 db->db.db_object, db->db_level, db->db_blkid); 2842 2843 if (db->db_blkid == DMU_SPILL_BLKID) 2844 wp_flag = WP_SPILL; 2845 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 2846 2847 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 2848 DB_DNODE_EXIT(db); 2849 2850 if (dr->dr_zero_write) { 2851 zp.zp_zero_write = B_TRUE; 2852 2853 if (!spa_feature_is_active(os->os_spa, SPA_FEATURE_SPACE_RESERVATION)) 2854 { 2855 spa_feature_incr(os->os_spa, 2856 SPA_FEATURE_SPACE_RESERVATION, tx); 2857 } 2858 } 2859 2860 if (db->db_level == 0 && 2861 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2862 /* 2863 * The BP for this block has been provided by open context 2864 * (by dmu_sync() or dmu_buf_write_embedded()). 2865 */ 2866 void *contents = (data != NULL) ? data->b_data : NULL; 2867 2868 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2869 db->db_blkptr, contents, db->db.db_size, &zp, 2870 dbuf_write_override_ready, NULL, dbuf_write_override_done, 2871 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2872 mutex_enter(&db->db_mtx); 2873 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 2874 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 2875 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 2876 mutex_exit(&db->db_mtx); 2877 } else if (db->db_state == DB_NOFILL) { 2878 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 2879 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 2880 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2881 db->db_blkptr, NULL, db->db.db_size, &zp, 2882 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db, 2883 ZIO_PRIORITY_ASYNC_WRITE, 2884 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 2885 } else { 2886 ASSERT(arc_released(data)); 2887 dr->dr_zio = arc_write(zio, os->os_spa, txg, 2888 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), 2889 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready, 2890 dbuf_write_physdone, dbuf_write_done, db, 2891 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2892 } 2893 }