new usr/ src/ common/ zf s/ zf eat ur e_common. c 1 new usr/ src/ common/ zf s/ zf eat ur e_common. c 2

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 216 "COmJOyenIfl|eSySt€‘m|ImtS", "fllesystemllmts"Y
6709 Tue Cct 28 11:57:18 2014 217 "Fil esystem and snapshot limts.", B TRUE, B FALSE, B_FALSE,
new usr/ src/ common/ zf s/ zf eat ur e_common. c 218 filesystemlimts_deps);
Possibility to physically reserve space without witing | eaf blocks
LEEE R R R R EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREREEEEEEEEESE] 220 Zfeatul’e_regi Ster(SPA_FEATURE_E’\BEuID_DATA,
__unchanged_portion_onitted_ 221 "com del phi x: enbedded_dat a", "enbedded_data",
222 "Bl ocks which conpress very well use even |ess space.",
157 void 223 B_FALSE, B_TRUE, B TRUE, NULL);
158 zpool _feature_init(void)
159 { 225 zf eat ur e_r egi st er (SPA_FEATURE_SPACE_RESERVATI ON,
160 zf eat ure_r egi st er (SPA_FEATURE_ASYNC_DESTROY, 226 "org. nexenta: space_reservation", "space_reservation",
161 "com del phi x: async_destroy", "async_destroy", 227 "Possibility to physically reserve space on disk", B_FALSE, B _FALSE,
162 "Destroy filesystens asynchronously.", B_TRUE, B_FALSE, 228 B_FALSE, NULL);
163 B_FALSE, NULL); 229 #endif /* | codereview */
230 }
165 zf eat ure_r egi st er (SPA_FEATURE_EMPTY_BPOBJ,
166 "com del phi x: enpty_bpobj ", "enpty_bpobj",
167 "Snapshots use | ess space.", B_TRUE, B_FALSE,
168 B _FALSE, NULL);
170 zf eat ure_regi st er (SPA_FEATURE_LZ4_COWPRESS,
171 "org.illunos:|z4_conpress™, "lz4_conpress",
172 "LZ4 conpression algorithmsupport."”, B FALSE, B FALSE,
173 B_TRUE, NULL);
175 zf eat ure_regi ster(SPA_FEATURE_MJLTI _VDEV_CRASH_DUMP,
176 "com joyent:nulti_vdev_crash_dunp", "multi_vdev_crash_dunmp",
177 "Crash dunps to nmultiple vdev pools.", B_FALSE, B_FALSE,
178 B_FALSE, NULL);
180 zf eat ur e_r egi st er (SPA_FEATURE_SPACEVAP_HI STOGRAM
181 "com del phi x: spacenmap_hi st ograni, "spacemap_hi st ograni',
182 " Spacemaps nai ntain space histogranms.", B _TRUE, B_FALSE,
183 B_FALSE, NULL);
185 zf eat ure_r egi st er (SPA_FEATURE_ENABLED TXG,
186 "com del phi x: enabl ed_t xg", "enabl ed_t xg",
187 "Record txg at which a feature is enabled", B_TRUE, B_FALSE,
188 B _FALSE, NULL);
190 static spa_feature_t hole_birth_deps[] = { SPA_FEATURE ENABLED TXG
191 SPA_FEATURE_NONE };
192 zf eat ure_r egi st er (SPA_FEATURE_HOLE_BI RTH,
193 "com del phi x: hol e_birth", "hole_birth",
194 "Retain hole birth txg for nore precise zfs send",
195 B_FALSE, B_TRUE, B_TRUE, hol e_birth_deps);
197 zf eat ure_r egi st er (SPA_FEATURE_EXTENSI BLE_DATASET,
198 "com del phi x: ext ensi bl e_dat aset", "extensi bl e_dataset",
199 "Enhanced dataset functionality, used by other features.",
200 B _FALSE, B FALSE, B FALSE, NULL);
202 static const spa_feature_t bookmarks_deps[] = {
203 SPA_FEATURE_EXTENSI BLE_DATASET,
204 SPA_FEATURE_NONE
205 }s
206 zf eat ur e_r egi st er (SPA_FEATURE_BOOKMARKS,
207 "com del phi x: booknar ks", "bookmarks",
208 "\"zfs bookmark\" command",
209 B TRUE, B _FALSE, B_FALSE, bookmarks_deps);
211 static const spa_feature_t filesystemlimts_deps[] = {
212 SPA_FEATURE_EXTENSI BLE_DATASET,
213 SPA_FEATURE_NONE
214 ;

s
215 zfeature_regi ster(SPA_FEATURE_FS SS LIMT,

new usr/ src/ common/ zf s/ zf eat ur e_common. h

R R R R

2706 Tue Cct 28 11:57:18 2014
new usr/src/ common/ zf s/ zf eat ur e_common. h
Possibility to physically reserve space without witing | eaf blocks
* ok ok ok ok

B R R R)

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
*/

22 /*
23 * Copyright (c) 2013 by Del phix. Al rights reserved.
24 * Copyright (c) 2013 by Saso Kisel kov. Al rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.
*/

28 #ifndef _ZFEATURE_COVMON_H
29 #define _ZFEATURE_COMMON_H
31 #include <sys/fs/zfs.h>

32 #include <sys/inttypes. h>
33 #include <sys/types. h>

35 #ifdef __cplusplus

36 extern "C' {

37 #endif

39 struct zfeature_info;

41 typedef enum spa_feature {

42 SPA_FEATURE_NONE = -1,

43 SPA_FEATURE_ASYNC_DESTROY,

44 SPA_FEATURE_EMPTY_BPOBJ,

45 SPA_FEATURE_LZ4_COVWPRESS,

46 SPA_FEATURE_MULTI _VDEV_CRASH_DUMP,
a7 SPA_FEATURE_SPACEVAP_HI STOGRAM
48 SPA_FEATURE_ENABLED_TXG

49 SPA FEATURE_HOLE BI RTH,

50 SPA_FEATURE_EXTENSI BLE_DATASET,
51 SPA_FEATURE_EMBEDDED_DATA,

52 SPA_FEATURE_BOOKMARKS,

53 SPA FEATURE_FS SS LIMT,

54 SPA_FEATURE_SPACE_RESERVATI ON,
55 #endif /* | codereview */

56 SPA_FEATURES

57 } spa_feature_t;
59 #define SPA FEATURE_DI SABLED (-1ULL)

61 typedef struct zfeature_info {

new usr/ src/ common/ zf s/ zf eat ur e_common. h

62 spa_feature_t fi_feature;

63 const char *fi_unaneg; /* User-facing feature name */

64 const char *fi _guid; /* On-disk feature identifier */

65 const char *fi_desc; /* Feature description */

66 bool ean_t fi_can_readonly; /* Can open pool readonly w o support? */
67 bool ean_t fi_nos; /* |Is the feature necessary to read the MOS? */
68 /* Activate this feature at the same time it is enabled */

69 bool ean_t fi_activate_on_enabl e;

70 /* array of dependencies, term nated by SPA FEATURE_NONE */

71 const spa_feature_t *fi_depends;

72 } zfeature_info_t;

74 typedef int (zfeature_func_t)(zfeature_info_t *, void *);

76 #define ZFS_FEATURE_DEBUG

78 extern zfeature_info_t spa_feature_tabl e[SPA_ FEATURES];

80 extern boolean_t zfeature_is_valid_guid(const char *);

82 extern bool ean_t zfeature_is_supported(const char *);

83 extern int zfeature_|l ookup_nane(const char *, spa_feature_t *);
84 extern bool ean_t zfeature_depends_on(spa_feature_t, spa_feature_t);
86 extern void zpool _feature_init(void);

88 #ifdef _ cplusplus

90 }#endif

92 #endif /* _ZFEATURE_COWMON H */

new usr/src/uts/comon/fs/zfs/dbuf.c

R R R R

79384 Tue Cct 28 11:57:18 2014
new usr/src/uts/comon/fs/zfs/dbuf.c
Possibility to physically reserve space without witing | eaf blocks

R R R R R

__unchanged_portion_onitted_

1023 dbuf _dirty_record_t *
1024 dbuf _zero_dirty(dmu_buf _impl _t *db, dmu_tx_t *tx)

1025 {

1026 ASSERT(db- >db_obj set != NULL);

1028 return (dbuf_dirty(db, tx, B_TRUE));
1029 }

1031 dbuf _dirty_record_t *
1032 dbuf _dirty(dmu_buf _i mpl _t *db, dmu_tx_t *tx, boolean_t zero_write)
1024 dbuf _dirty(dmu_buf _inmpl _t *db, drmu_tx_t *tx)

1033 {

1034 dnode_t *dn;

1035 obj set _t *os;

1036 dbuf _dirty_record_t **drp, *dr;

1037 int drop_struct_l ock = FALSE;

1038 bool ean_t do_free_accounting = B_FALSE;

1039 int txgoff = tx->tx_txg & TXG MASK;

1041 ASSERT(tx->tx_txg != 0);

1042 ASSERT(! ref count _i s_zer o(&db->db_hol ds)) ;

1043 DMJ_TX_DI RTY_BUF(t x, db);

1045 DB_DNODE_ENTER(db) ;

1046 dn" = DB_DNODE(db);

1047 *

1048 * Shouldn’t dirty a regular buffer in syncing context. Private
1049 * objects may be dirtied in syncing context, but only if they
1050 * were already pre-dirtied in open context.

1051 *

1052 ASSERT(! dmu_t x_i s_synci ng(tx) ||

1053 BP_I S _HOLE(dn->dn_obj set - >0s_r oot bp) ||

1054 DMJ_OBJECT_| S_SPEC! AL(dn- >dn_obj ect) [

1055 dn->dn_obj set - >0s_ds| _dat aset == NULL);

1056 /*

1057 * W neke this assert for private objects as well, but after we
1058 * check if we're already dirty. They are allowed to re-dirty
1059 * in syncing context.

1060 */

1061 ASSERT(dn- >dn_obj ect == DMJ_META_DNODE_OBJECT | |

1062 dn->dn_dirtyctx == DN_UNDI RTIED || dn->dn_dirtyctx ==

1063 (dnu_tx_i s_syncing(tx) ? DN_DI RTY_SYNC : DN_DI RTY_OPEN));
1065 mut ex_ent er (&db->db_nt x) ;

1066 /*

1067 * XXX meke this true for indirects too? The problemis that
1068 * transactions created with dmu_tx_create_assigned() from
1069 * syncing context don’t bother hol ding ahead.

1070 */

1071 ASSERT(db->db_level =0 ||

1072 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1073 db->db_state == DB_NOFI LL);

1075 mut ex_ent er (&dn- >dn_nt x) ;

1076 /*

1077 * Don't set dirtyctx to SYNCif we're just nodifying this as we
1078 * initialize the objset.

1079 */

1080 if (dn->dn_dirtyctx == DN_UNDI RTI ED &&

new usr/src/uts/comon/fs/zfs/dbuf.c

1081
1082
1083
1084
1085
1086
1087

1089
1090

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

1117
1118
1119
1120
1121
1122

1124
1125
1126
1127
1128
1129

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

1143

1145
1146

I BP_I S_HOLE(dn->dn Obj set->o0s_rootbp)) {
“dn->dn _dirtyctx =
(dnu_t x_i s_syncing(tx) ? DN_ DIRTY SYNC : DN_DI RTY_CPEN);
ASSERT(dn->dn_dirtyctx_firstset == NULL);
dn->dn_dirtyctx_firstset = knmem alloc(1, KM SLEEP);

}
mut ex_exi t (&dn->dn_nt x) ;

if (db- >db bl ki d == DMJ_SPI LL_BLKI D)
dn->dn_| have _spiTl = B_TRUE,

*

* |f this buffer is already dirty, we're done.
*/

drp = &db->db_|I ast dlrty,
ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
db->db. db Obj ect == DMJ_META_DNGCDE_OBJECT) ;
while ((dr = *¥drp) != NULL & dr->dr_txg > tx->tx_txg)
drp = &dr->dr next
if (dr & dr->dr_txg == tx->tx_txg) {
DB_DNODE_EXI T(db) ;

if (db->db | evel == 0 & db->db bl kid != DMJ BONUS BLKI D) {
/*

* |f this buffer has already been witten out,
* we now need to reset its state.
*/
dbuf _unoverride(dr);
i f (db->db.db_object != DNU) META_DNODE_OBJECT &&
db->db_state != DB_NOFILL)
arc_buf _t haw(db- >db_buf);

}
mut ex_exi t (&db->db_nt x) ;
return (dr);

}

*

* Only valid if not already dirty.
*/

ASSERT(dn- >dn_obj ect == |l
dn->dn_dirtyctx == DN_UNDI RTI ED || dn->dn d|rtyctx ==
(dnu_tx_is synung(tx) ? DN_DI RTY_SYNC : DN _DI RTY. (PEN))

ASSERT3U(dn- >dn_nl evel s, >, db->db_| evel);
ASSERT((dn->dn_phys->dn_nl evel s == 0 && db->db_| evel == 0) ||
dn- >dn_phys->dn_nl evel s > db->db_| evel ||
dn->dn_next _nl evel s[txgoff] > db->db_| evel ||
dn->dn_next _nl evel s[(tx->tx_txg-1) & TXG MASK]
dn->dn_next _nl evel s[(tx->tx_txg-2) & TXG_MASK]

> db->db_l evel ||
> db->db_l evel);
We should only be dirtying in syncing context if it's the

nbs or we're initializing the os or it’s a special object.
However, we are allowed to dirty in syncing context provided

we al ready dirtied it in open context. Hence we nust neke

this assertion only if we're not already dirty.

* ok ok ok kb ¥

os = dn->dn_obj set;

ASSERT(! dmu_t x_i s_synci ng(tx) || DMJU_OBJECT_I S_SPECI AL(dn->dn_object) ||
0s->0s_ds| _dataset == NULL || BP_I'S HOLE(o0s->0s_rootbp));

ASSERT(db- >db. db_si ze 1= 0)

dprintf_dbuf (db, "size=%Ix\n", (u_longlong_t)db->db.db_size);
if (db->db_blkid !'= DMJ_BONUS_BLKI D) {
/*

new usr/src/uts/comon/fs/zfs/dbuf.c

1147
1148
1149
1150
1151
1152
1153
1154
1155

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

}
/*

* If this buffer

* Update the accounting.

* Note: we delay "free accounting” until after we drop
* the db_ntx. This keeps us from grabbi ng other |ocks
* (and possibly deadl ocki ng) in bp_get_dsize() while

* aI so hol ding the db_nt

dnode_w I luse_space(dn, db->db. db_size, tx);
do_free_accounting = dbuf_bl ock_freeabl e(db);

is dirty in an old transaction group we need

* to make a copy of it so that the changes we make in this
* transaction group won't |eak out when we sync the ol der txg.
*/

dr = knmem zalloc(5| zeof (dbuf _dirty_record_t), KM SLEEP);
dr->dr_zero_wite = zero_wite;
#endif /* | codereview */
>db_l evel == 0) {
void *data_ol d = db->db_buf;

if (db-

} else

if (db->db_state != DB_NOFILL) {
i f (db->db_bl kid == DMJ_BONUS_BLKI D) {

dbuf _fix_ol d_data(db, tx->tx_txg);
dat a_ol d = db->db. db_dat a;

} else if (db->db.db_object T= DIVU_I\/ETA_DNODE_GBJECT) {

Rel ease the data buffer fromthe cache so
that we can nodify it wthout inpacting
possi bl e other users of this cached data

bl ock. Note that indirect blocks and
private objects are not released until the
syncing state (since they are only nodified
then).

-~
* ok k ok ok *

*/
arc_rel ease(db->db_buf, db);
dbuf _fix_ol d_data(db, tx->tx_txg);
data_ol d = db->db_buf;

}
ASSERT(data_old = NULL);

}
dr->dt.dl.dr_data = data_ol d;

{

mut ex_init(&r->dt.di.dr_ntx, NULL, MUTEX DEFAULT, NULL);
list_create(&dr->dt.di.dr_children,

si zeof (dbuf_dirty_record_t),

of f set of (dbuf _dirty_record_t, dr_dirty_node));

}
if (db->db_blkid != DMJ_BONUS_BLKI D && os->0s_dsl| _dataset != NULL)
dr->dr_accounted = db->db. db_si ze;

dr->dr

_dbuf = db;

dr->dr_txg = tx->tx_txg;

dr->dr_next = *drp;

*drp = dr;

/*

* We coul d have been freed_in_flight between the dbuf_noread
* and dbuf _dirty. W win, as though the dbuf_noread() had

* happened after the free.

|f (db->db_l evel == 0 && db->db_bl kid ! = DMJ_BONUS_BLKI D &&

db- >db_ b|k|d = DMJ_SPI LL_BLKI D) {

mut ex_ent er (&dn->dn_nt x) ;

if (dn->dn_free ranges[txgoff] I'= NULL) {
range_tree_cl ear (dn->dn_free_ranges[txgoff],

db- >db_bl ki d, 1);

new usr/src/uts/comon/fs/zfs/dbuf.c

1213
1214
1215
1216

1218
1219
1220
1221
1222
1223

1225

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

1252
1253
1254
1255

1257
1258
1259
1260

1262
1263
1264
1265

1267
1268

1270
1271
1272
1273
1274
1275
1276
1277
1278

mut ex_exi t (&n- >dn_nt x) ;

db-
}
/*
* This buf

/
dbuf _add_re
db->db_dirt

ASSERT3U(db-

mut ex_exi t (

if (db->db_

db->db_

>db_freed_i n_flight

:FNSE

fer is now part of this txg

f(db, (void *)(uintptr_t)tx->tx_txg);
yent += 1;

>db_dirtycnt, <=, 3);

&db->db_nt x) ;

bl ki d == DMJ_BONUS BLKI D | |

bl ki d == DMJ_SPI LL_BLKI D)

mut ex enter(&dn ->dn mx)

ASSERT(!|'i st

lis

dno
ret|
} elseif (
bl k
int
/*
*
*
*
*
*
*
&/
ddt
}

if (! RWWR TE_HELD(&n->dn_struct
rw_ent er (&dn- >dn_struct

dro
}
if (db->db
dno
}

{

link_acti ve(&dr— >dr_dirty_node));

t_insert_tail(&n->dn_dirty_ records[txgoff] dr);
mut ex_exi t (&n- >dn_nt x) ;

de setdlrty(dn tx);
DB_DNODE_EXI T(db

urn (dr);

do_free account i ng)

{
ptr_t *bp = db->db_bl kptr;
64_t willfree = (bp & !'BP_I' S HOLE(bp)) ?
bp_get _dsi ze(os->0s_spa, bp) : db->db. db_si ze;

This is only a guess -- if the dbuf is dirty
we don’t know how nmuch
space it will use on disk yet. W should

in a previous txg,

really have the str

uct

_rwock to access

db_bl kptr, but since this is just a guess,
it’s K if we get an odd answer.

_prefetch(os->0s_spa,
dnode_wi | | use_space(dn,

p_struct _| ock = TRUE;

| evel ==

bp) ;
-wllfree, tx);

_rwock)) {
_rw ock, RW READER);

)
de_new_bl ki d(dn db->db_bl kid, tx, drop_struct_|ock);
ASSERT(dn->dn_maxbl ki d >= db->db_bl ki d) ;

if (db->db_| evel +1 < dn->dn_n| evels) {

buf _impl _t *parent = db->db_parent;
f dirty record_t *di;
parent _hel d = FALSE;

dnu
dbu
int

if

}
i f

ASSERTSU(db >db_| evel +1, ==,

di

(db->db_parent == NULL ||

db- >db_parent == dn->dn_dbuf) {

int epbs = dn->dn_i ndbl kshi ft - SPA BLKPTRSHI FT;

parent = dbuf_hol d_| evel (dn, db->db_| evel +1,
db- >db bl kid >> epbs, FTAG);

1= NULL);

= TRUE

ASSERT(p arent
parent _| heId

(drop_struct_| ock)

rw_exit(&dn->dn_struct_rw ock);

= dbuf _dirty(parent,

t X,

parent->db_| evel) ;
B_FALSE) ;

new usr/src/uts/comon/fs/zfs/dbuf.c 5 new usr/src/uts/comon/fs/zfs/dbuf.c
1155 di = dbuf _di rty(parent tx); 1444 ASSERT(db- >db. db_obj ect != DMJ_META_DNODE_OBJECT | |
1279 if (parent hel d 1445 drmu_t x_private_ok(tx));
1280 dbuf rel e(parent, FTAG;
1447 dbuf _nor ead(db);
1282 mut ex_ent er (&db->db_nt x) ; 1448 (void) dbuf dlrty(db tx, B_FALSE);
1283 /* 1449 }
1284 * Since we’ve dropped the nmutex, it’s possible that
1285 * dbuf _undirty() mght have changed this out fromunder us.
1286 */ 1452 voi d
1287 if (db->db_last_dirty == dr || 1453 dmu_buf_wi Il _zero_fill (dmu_buf _t *db_fake, dnu_tx_t *tx)
1288 dn- >dn_obj ect == DMJ META DNODE_OBJECT) { 1454 {
1289 r'rutex_enter(&dl >dt.di.dr_ntx); 1455 dmu_buf _i npl _t *db = (dnu_buf _inpl _t *)db_fake;
1290 ASSERT3U(di - >dr _txg, ==, tx->tx_txg);
1291 ASSERT(!l'ist_link_active(&r->dr_dirty_node)); 1457 ASSERT(db- >db_bl kid ! = DMJ_BONUS_BLKI D) ;
1292 list_insert_tail (&di->dt.di.dr_children, dr); 1458 ASSERT(tx->tx_txg != O)
1293 mut ex_exi t (&di ->dt. di.dr_ntx); 1459 ASSERT(db->db_| evel ==
1294 dr->dr_parent = di; 1460 ASSERT(! ref count _i s_zer o(&db >db_hol ds));
1295 }
1296 mut ex_exi t (&lb->db_nt x) ; 1462 ASSERT(db- >db. db_obj ect != DMJ_META DNODE OBJECT | |
1297 } else { 1463 dmu_t x_private_ok(tx));
1298 ASSERT(db- >db_| evel +1 == dn->dn_nl evel s);
1299 ASSERT(db->db_bl kid < dn->dn_nbl kptr); 1465 dbuf _nor ead(db) ;
1300 ASSERT(db- >db_par ent == NULL || db- >db _parent == dn->dn_dbuf); 1466 (void) dbuf_zero_dirty(db, tx);
1301 nmut ex enter(&dn >dn_| mx 1325 (voi d) dbuf _dirty(db, tx);
1302 ASSERT(!list_link acti ve(&dr— >dr _dirty_node)); 1467 }
1303 list_insert_tail (&n->dn_dirty_recor ds[txgoff] dr); ______unchanged_portion_omtted_
1304 mut ex_exi t (&n->dn_nt x) ;
1305 if (drop_struct_lock) 1523 /*
1306 rw_exi t (&n->dn_struct _rw ock); 1524 * Directly assign a provided arc buf to a given dbuf if it’s not referenced
1307 } 1525 * by anybody except our caller. OQherw se copy arcbuf’s contents to dbuf.
1526 */
1309 dnode_setdirty(dn, tx); 1527 void
1310 DB_DNODE_EXI T(db) ; 1528 dbuf _assi gn_ar cbuf (dmu_buf _i npl _t *db, arc_buf_t *buf, dnu_tx_t *tx)
1311 return (dr); 1529 {
1312 } 1530 ASSERT(! ref count _i s_zer o(&lb->db_hol ds)) ;
__unchanged_portion_onitted_ 1531 ASSERT(db->db_bl kid != DNU) BONUS_BLKI D) ;
1532 ASSERT(db->db_| evel == 0)
1407 void 1533 ASSERT(DBUF_GET_BUFC TYPE(db) == ARC_BUFC_DATA);
1408 dmu_buf_wi Il _dirty(dmu_buf _t *db_fake, dnu_tx_t *tx) 1534 ASSERT(buf T= NULL);
1409 { 1535 ASSERT(ar c_buf _si ze(buf) == db->db. db_si ze);
1410 drmu_buf _inpl _t *db = (dnu_buf _i npl _t *)db_f ake; 1536 ASSERT(tx->tx_txg != 0);
1411 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH,
1538 arc_return_buf (buf, db);
1413 ASSERT(tx->tx_txg != 0); 1539 ASSERT(arc_rel eased(buf))
1414 ASSERT(!refcount _is zero(&db >db_hol ds));
1541 mut ex_ent er (&db->db_nt x) ;
1416 DB_DNODE_ENTER(db) ;
1417 i f(RWWRI TE_HELD(&DB ,_DNODE(db) - >dn_st ruct _rw ock)) 1543 while (db->db_state == DB _READ || db->db_state == DB_FILL)
1418 rf | = DB_RF_HAVESTRUCT; 1544 cv_wai t (&db- >db _changed, &db->db_nt x) ;
1419 DB_DNODE_EXI T(db);
1420 (voi d) dbuf read(db NULL, rf); 1546 ASSERT(db- >db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1421 (void) dbuf_dirty(db, tx, B_FALSE);
1298 (voi d) dbuf_dirty(db, tx); 1548 if (db->db_state == DB_CACHED &&
1422 } 1549 ref count count(&db >db_holds) - 1 > db->db_dirtycnt) {
__unchanged_portion_omtted_ 1550 mut ex_exi t (&db- >db_nt x) ;
1551 (void) dbuf _dirty(db, tx, B _FALSE);
1434 void 1410 (void) dbuf_dirty(db, tx);
1435 dmu_buf _wi Il _fill (dmu_buf _t *db_fake, dmu_tx_t *tx) 1552 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1436 { 1553 VERI FY(ar c_buf _renove_ref (buf, db));
1437 drmu_buf _inpl _t *db = (dnu_buf _i npl _t *)db_f ake; 1554 Xui o_st at _wbuf _copi ed();
1555 return;
1439 ASSERT(db->db_bl ki d ! = DMJ_BONUS_BLKI D) ; 1556 }
1440 ASSERT(tx->tx_txg != 0);
1441 ASSERT(db- >db_| evel == 0); 1558 xui o_st at _wbuf nocopy()
1442 ASSERT(!refcount _is zero(&db >db_hol ds)); 1559 if (db->db_state == DB C‘ACHED) {
1560 dbuf dirty record_t *dr = db->db_last_dirty;

new usr/src/uts/comon/fs/zfs/dbuf.c

1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1441
1583
1584 }

ASSERT(db- >db_buf != NULL);
if (dr !'= NULL && dr->dr_txg == tx- >tx _txg) {
ASSERT(dr->dt.dl.dr_data == db->db_buf);
if (larc rel eased(db->db_buf))
ASSERT(dr->dt.dl.dr_override_state ==
DR_OVERRI DDEN) ;
arc_rel ease(db->db_buf, db);

}
dr->dt.dl.dr_data = buf;
VERI FY(ar c_buf _renove_ref (db->db_buf, db));
} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
arc_rel ease(db->db_buf, db);
VERI FY(ar c_buf _renove ref(db >db_buf, db));

}
db->db_buf = NULL

}

ASSERT(db- >db_buf == NULL);

dbuf _set data(db buf);
db->db_state = DB_FILL;

mut ex_exi t (&b- >db mx)

(void) dbuf_dirty(db, tx, B_FALSE);
(void) dbuf_dirty(db, tx)
dmu_buf _fill _done(&db- >db, tx);

__unchanged_portion_omtted_

2779 /

* Issue |/Oto commit a dirty buffer to disk. */

2780 static void
2781 dbuf _write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)

2782 {
2783
2784
2785
2786
2787
2788
2789
2790
2791

2793
2794
2795

2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811

2813
2814
2815
2816
2817

dnu_buf _i npl _t *db = dr->dr_dbuf;
dnode_t *dn;

obj set _t *os;

drmu_buf _i npl _t *parent = db->db_parent;
uint64_t txg = tx->tx_txg;

zbookmar k_phys_t zb;

zio_prop_t zp;

zio_t *zio;

int wp_flag =

DB_DNODE_ENTER(db) ;
dn = DB_DNODE(db) ;
os = dn->dn_obj set;

if (db->db_state != DB _NOFILL) {
if (db->db_level > 0 || dn->dn_type == DMJ_OT_DNODE) {
/*
* Private object buffers are rel eased here rather

* than in dbuf_dirty() since they are only nodified

* in the syncing context and we don’t want the
* overhead of neking nultiple copies of the data.
*

if (BP_I'S HOLE(db->db_bl kptr)) {
ar c_buf _t haw(dat a) ;

} else {
dbuf _rel ease_bp(db);

}

}

if (parent != dn->dn_dbuf) {
/* Qur parent is an indirect block. */

/* W have a dirty parent that has been scheduled for wite.

ASSERT(parent && parent->db_dat a_pendi ng) ;
/* Qur parent’s buffer is one |level closer to the dnode. */

*/

new usr/src/uts/comon/fs/zfs/dbuf.c 8

2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834

2836
2837
2838

2840
2841
2842

2844
2845
2846

2848
2849

2851
2852

2854
2855
2856
2857
2858
2859

2861
2862
2863
2864
2865
2866
2867
2868

2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883

ASSERT(db- >db_| evel == parent->db_| evel -1);
/ *

* We're about to nodify our parent’s db_data by nodifying
*/our bl ock pointer, so the parent nust be rel eased.
*
ASSERT(ar c_r el eased(parent - >db_buf));
zi o = parent->db_dat a_pendi ng->dr_zi o;
} else {

/* Qur parent is the dnode itself. */

ASSERT((db->db_I| evel == dn->dn_phys->dn_nl evel s-1 &&
db->db bl kid != DMU_SPILL _BLKID) ||
(db->db_bl kid == DMU_SPI LL_BLKI D &&

if (db->db_blkid != DMJ SPI LL_BLKI D)

ASSERT3P(db- >db_bl kptr, ==,
&dn- >dn_phys->dn_ bl kptr[db >db_bl ki d]);
zi o = dn->dn_zi o;

db->db_l evel == 0));

}

ASSERT(db->db_| evel == 0 || data == db->db_buf);
ASSERT3U(db- >db_bl kptr->bl k_birth, <=, txg);
ASSERT(zi 0) ;

SET_BOOKMARK(&b, o0s->o0s_dsl _dataset ?
0s->0s_dsl| _dat aset - >ds_obj ect : DMJ_META OBJSET,
db- >db. db_obj ect, db->db_I| evel, db->db_bl ki d);

if (db- >db bIkld == DMJ_SPI LL_BLKI D)
flag = Wp_ SPILL;
wp_f 1l ag |— (db->db_state == DB _NOFILL) ? WP_NOFILL : O;

dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
DB_DNODE_EXI T(db);

if (dr->dr_zero_wite) {
zp. zp_zero_wite = B_TRUE;

if (!spa_feature_is_active(os->0s_spa, SPA FEATURE_SPACE_ RESERVA
{

spa_f eature_i ncr(0s->0s_spa,
SPA_FEATURE_SPACE_RESERVATI ON, tx);

}
}
#endi f /* | codereview */
if (db->db_l evel == 0 &&
dr->dt.dl.dr_override_state == DR_OVERRI DDEN) {
/*

* The BP for this block has been provided by open context
*/(by dmu_sync() or dmu_buf_write_enbedded()).
*
void *contents = (data != NULL) ? data->b_data : NULL;
dr->dr_zio = zio_wite(zio, os->0s_spa, txg,
db->db_ bI kptr, contents, db->db.db_size, &zp,
dbuf_write override ready NULL, dbuf_write_override_done,
dr, ZI O PRIORI TY_ASYNC WRI TE, ZI O FLAG MJSTSUCCEED, &zb);
nmut ex enter(&db >db_nt x) ;
dr->dt.dl.dr_override_state = DR _NOT_OVERRI DDEN;
zio_ wite overri de(dr— >dr _zi o, &dr->dt.dl.dr_overridden_by,
dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwite);
mut ex_exi t (&b->db_nt x) ;
} else if (db->db_state == DB NCFILL) {
ASSERT(zp. zp_ checksum ZI O_CHECKSUM OFF | |
zp. zp_| checksum ZI O_CHECKSUM NOPARI TY) ;
dr->dr_zio = zio wr|te(2|o 0s->0S_spa, txg,
db->db_bl kptr, NULL, db->db.db_size, &zp,

new usr/src/uts/comon/fs/zfs/dbuf.c 9

2884 dbuf _write_nofill _ready, NULL, dbuf_wite_nofill_done, db,
2885 Z1 O_PRI ORI TY_ASYNC_WRI TE,

2886 ZI O_FLAG MUSTSUCCEED | ZI O FLAG NODATA, &zb)

2887 } else {

2888 ASSERT(ar ¢ reI eased(data));

2889 dr->dr_zio = arc_wite(zio, os->0s_spa, txg,

2890 db->db_bl kptr, data, DBUF_|S_L2CACHEABLE(db),

2891 DBUF_|' S_L2COVPRESSI BLE(db) &zp dbuf _wite ready,
2892 dbuf _write_physdone, dbuf_wite_done, d

2893 ZI O PRI ORI TY_ASYNC WRI TE, ~ ZI O_FLAG | NUSTSUCCEED &zh) ;
2894

2895 }

new usr/src/uts/comon/fs/zfs/dmu.c

R R R R

49077 Tue Cct 28 11:57:19 2014
new usr/src/uts/ comon/fs/zfs/dm.c
Possibility to physically reserve space without witing | eaf blocks

R R R R R

__unchanged_portion_onitted_

812 void

813 dmu_write_zero(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
814 {

815 dmu_buf _t **dbp;

816 int nunbufs, i;

818 VERI FY(0 == dmu_buf _hol d_array(os, object, offset, size,
819 FALSE, FTAG &nunbufs, &dbp)) ;

821 for (i =0; i < nunbufs; i++) {

822 dnu_buf _t *db = dbp[i];

824 dmu_buf _wi Il _zero_fill(db, tx);

826 menset (db- >db_data, 0, db->db_size);

828 dnmu_buf _fill_done(db, tx);

829 }

831 drmu_buf _rel e_array(dbp, nunbufs, FTAG;

832 }

834 void

835 #endif /* | coder evi ew */

836 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,

837 const void *buf, dmu_tx_t *tx)

838 {

839 dnmu_buf _t **dbp;

840 int nunbufs, i:

842 if (size == 0)

843 return;

845 VERI FY(0 == dmu_buf _hol d_array(os, object, offset, size,
846 FALSE, FTAG &numbufs, &dbp));

848 for (i =0; i < nunbufs; i++) {

849 int tocpy;

850 int bufoff;

851 dmu_buf _t *db = dbp[i];

853 ASSERT(si ze > 0);

855 bufoff = offset - db->db_offset;

856 tocpy = (int)M N(db->db_size - bufoff, size);
858 ASSERT(i == 0 || i == nunbufs-1 || tocpy == db->db_size);
860 if (tocpy == db->db_size)

861 dmu_buf _wilT_fill(db, tx);

862 el se

863 dmu_buf _will _dirty(db, tx);

865 bcopy(buf, (char *)db->db_data + bufoff, tocpy);
867 if (tocpy == db->db_si ze)

868 dmu_| buf f||| _done(db, tx);

870 of fset += tocpy;

dm

new usr/src/uts/comon/fs/zfs/dm.c

871 si ze -= to

872 buf (char *)buf + tocpy;

873 }

874 dmu_buf _rel e_array(dbp, nunmbufs, FTAG;

875 }

877 void

878 dmu_preal | oc(objset _t *os, uint64_t object, uint64_t offset, uint64_t size,
879 dmu_tx_t *tx)

880 {

881 drmu_buf _t **dbp;

882 int nunbufs, i;

884 if (size == 0)

885 return;

887 VERI FY(0 == dmu_buf _hol d_array(os, object, offset, size,
888 FALSE, FTAG &nunbufs, &dbp));

890 for (i =0; i < nunbufs; i++) {

891 dnu_buf _t *db = dbp[i];

893 dmu_buf _wi Il _not _fill(db, tx);

894 }

895 dmu_buf _rel e_array(dbp, nunmbufs, FTAG;

896 }

898 void

899 dmu_write_enbedded(objset_t *os, uint64_t object, uint64_t offset,
900 void *data, uint8_t etype, uint8_t conp, int unconpressed_size,
901 int conpressed_size, int byteorder, dmu_tx_t *tx)

902 {

903 drmu_buf _t *db;

905 ASSERT3U(et ype, <, NUM BP_EMBEDDED TYPES);

906 ASSERT3U(conp, <, ZI O COVPRESS FUNCTI ONS) ;

907 VERI FYO(dnu_buf _hol d_nor ead(o0s, object, offset,

908 FTAG &db));

910 drmu_buf _write_enbedded(db,

911 data, (bp_enbedded_type_t)etype, (enum zi o_conpress)conp,
912 unconpressed size, conpressed_size, byteorder, tx);
914 drmu_buf _rel e(db, FTAQ;

915 }

917 /*

918 * DMJ support for xuio

919 */

920 kstat_t *xui o_ksp = NULL;

922 int

923 drmu_xui o_i ni t(xuio_t *xuio, int nblk)

924 {

925 dmu_xui o_t *priv;

926 uio_t *uio = &xui 0->xu_ui o0;

928 ui 0->ui o_i ovent = nbl k;

929 ui o->uio_iov = knmem zal | oc(nbl k * sizeof (iovec_t), KM SLEEP);
931 priv = kmem zal | oc(si zeof (dnu_xuio_t), KM SLEEP);

932 priv->cnt = nblk;

933 priv->bufs = knem zal |l oc(nbl k * sizeof (arc_buf_t *), KM SLEEP);
934 priv->iovp = ui 0->ui o_iov;

935 XUl O XUZC PRI V(xuio) = priv;

new usr/src/uts/ comon/fs/zfs/dm.c 3 new usr/src/uts/ comon/fs/zfs/dmu.c
937 if (XU O XUZC RW xui o) == U O_READ) 1003 ASSERT(i < priv->cnt);
938 XUl OSTAT_| NCR(xui ost at _onl oan_r buf, nbl k) ; 1004 priv->bufs[i1] = NULL;
939 el se 1005 }
940 XUl OSTAT_| NCR(xui ost at _onl oan_wbuf, nbl k) ;
1007 static void
942 return (0); 1008 xui o_stat_init(void)
943 } 1009 {
1010 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "msc"
945 void 1011 KSTAT_TYPE_NAMED, si zeof (xul o_stats) / si zeof (kstat _naned_t),
946 drmu_xui o_fi ni (xuio_t *xuio0) 1012 KSTAT_FLAG VI RTUAL) ;
947 { 1013 if (xuio_ksp !'= NULL) {
948 dmu_xuio_t *priv = XU O _XUZC PRI V(xui 0) ; 1014 xui o_ksp->ks_data = &xuio_stats;
949 int nblk = priv->cnt; 1015 kst at _i nstal T(xui o_ksp);
1016 }
951 kmem free(priv->iovp, nblk * sizeof (iovec_t)); 1017 }
952 kmem free(priv->bufs, nblk * sizeof (arc_buf_t *));
953 kmem free(priv, sizeof (dmu_xuio_t)); 1019 static void
1020 xui o_stat_fini(void)
955 if (XU O XUZC RW xuio) == U O READ) 1021 {
956 XUl OSTAT_I NCR(xui ost at _onl oan_r buf, -nblk); 1022 if (xuio_ksp !'= NULL) {
957 el se 1023 kst at _del et e(xui o_ksp);
958 XUl OSTAT_I NCR(xui ost at _onl oan_wbuf, -nbl k) ; 1024 xui 0_ksp = NULL;
959 } 1025 1
1026 }
961 /*
962 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 1028 voi d
963 * and increase priv->next by 1. 1029 xui o_st at _wbuf _copi ed()
964 */ 1030 {
965 int 1031 XUl OSTAT_BUMP(xui ost at _wbuf _copi ed) ;
966 dmu_xui o_add(xui o_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1032 }
967 {
968 struct i ovec *iov; 1034 voi d
969 uio_t *uio = &xui 0->xu ui o; 1035 xui o_st at _wbuf _nocopy()
970 dmu_xuio_t *priv = XU O_ XUZC PRI V(xui 0) ; 1036 {
971 int i = priv->next++; 1037 XUl OSTAT_BUMP(xui ost at _wbuf _nocopy) ;
1038 }
973 ASSERT(i < priv->cnt);
974 ASSERT(of f + n <= arc_buf_size(abuf)); 1040 #ifdef _KERNEL
975 iov = uio->uio_iov + i; 1041 static int
976 i ov->i ov_base = (char *)abuf->b_data + off; 1042 dmu_read_ui o_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
977 iov->iov_len = n; 1043 {
978 priv->bufs[i] = abuf; 1044 dmu_buf _t **dbp;
979 return (0); 1045 int nunbufs, i, err;
980 } 1046 Xui o_t *xuio = NULL;
982 int 1048 /*
983 dmu_xui o_cnt (xui o_t *xui o) 1049 * NB: we could do this block-at-a-time, but it's nice
984 { 1050 * to be reading in parallel.
985 dmu_xui o_t *priv = XU O_XUZC_PRI V(xui 0) ; 1051 *
986 return (priv->cnt); 1052 err = dmu_buf _hol d_array_by_dnode(dn, uio->uio_loffset, size,
987 } 1053 TRUE, FTAG &nunbufs, &dbp, 0);
1054 if (err)
989 arc_buf _t * 1055 return (err);
990 dru_xui o_ar cbuf (xuio_t *xuio, int i)
991 { 1057 if (uio->uio_extflg == U O XU O
992 drmu_xuio_t *priv = XU O _XUZC PRI V(xui 0) ; 1058 Xuio = (xuio_t *)uio;
994 ASSERT(i < priv->cnt); 1060 for (i =0; i < nunbufs; i++) {
995 return (priv->bufs[i]); 1061 int tocpy;
996 } 1062 int bufoff;
1063 dmu_buf _t *db = dbp[i];
998 void
999 dmu_xui o_cl ear(xuio_t *xuio, int i) 1065 ASSERT(si ze > 0);
1000 {
1001 drmu_xuio_t *priv = XU O _XUZC PRI V(xui 0); 1067 buf of f = ui 0->uio_|l offset - db->db_of fset;
1068 tocpy = (int)MN(db->db_size - bufoff, size);

new usr/src/uts/comon/fs/zfs/dmu.c

1070
1071
1072
1073
1074
1075
1076
1077
1078

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

1091
1092
1093

1095
1096

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

if (xuio) {
dmu_buf _i npl _t *dbi = (dnu_buf _inpl_t *)db
arc_buf _t *dbuf _abuf = dbi->db_buf;
arc_buf _t *abuf = dbuf_| oan_arcbuf (dbi);
err = drmu_xui o_add(xui o, abuf, bufoff, tocpy);
if (terr) {
ui o->uio_resid -= tocpy;
ui o->ui o_| of fset += tocpy;

}

if (abuf == dbuf_abuf)
XUl OSTAT_BUMP(xui ost at _r buf _nocopy) ;
el se
XUl OSTAT_BUMP(xui ost at _r buf _copi ed) ;
} else {
err = uionove((char *)db->db_data + bufoff, tocpy,
U O _READ, uio0);

}
i1f (err)
br eak;

size -= tocpy;
}
dmu_buf _rel e_array(dbp, nunmbufs, FTAG;

return (err);

Read 'size' bytes into the uio buffer.
From obj ect zdb->db_obj ect .
Starting at offset uio->uio_|offset.

If the caller already has a dbuf in the target object
(e.g. its bonus buffer), this routine is faster than dnmu_read_uio(),
because we don’t have to find the dnode_t for the object.

* Ok Ok ok H R ¥ O

*/
int
drmu_r ead_ui o_dbuf (dnu_buf _t *zdb, uio_t *uio, uint64_t size)

1109 {

1110
1111
1112

1114
1115

1117
1118
1119
1120

1122
1123

1125
1126
1127
1128
1129
1130
1131

dmu_buf _i npl _t *db = (dnu_buf _inpl _t *)zdb;
dnode_t *dn;
int err;

if (size == 0)
return (0);

DB_DNODE_ENTER(db) ;

dn = DB_DNCDE(db) ;

err = dmu_read_ui o_dnode(dn, uio, size);
DB_DNODE_EXI T(db)

return (err);

Read 'size' bytes into the uio buffer.
From the specified object
Starting at offset uio->uio_|offset.

* ok Ok ok

x|
i nt
dmu_r ead_ui o(obj set _t *os, uint64_t object, uio_t *uio, uint64_t size)

1132 {

1133
1134

dnode_t *dn;
int err;

new usr/src/uts/comon/fs/zfs/dm.c

1136
1137

1139
1140
1141
1143
1145

1147
1148 }

if (size == 0)
return (0);

err = dnode_hol d(os, object, FTAG &dn);
if (err)

return (err);
err = dmu_read_ui o_dnode(dn, uio, size);
dnode_rel e(dn, FTAQ;

return (err);

1150 static int
1151 dmu_wri te_ui o_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dnu_tx_t *tx)

1152 {
1153
1154
1155
1156

1158
1159
1160
1161

1163
1164
1165
1166

1168

1170
1171

1173

1175
1176
1177
1178

1180
1181
1182
1183
1184
1185
1186
1187

1189
1190

1192
1193

1195
1196

1198
1199
1200 }

drmu_buf _t **dbp;

int nunbufs;
int err = 0;
int i;

err = dnu_buf _hol d_array_by_dnode(dn, uio->uio_|offset, size,
FALSE, FTAG &nunbufs, &dbp, DMJ_READ PREFETCH);
if (err)
return (err);

for (i = 0; i < nunbufs; i++) {
int tocpy;
int bufoff;
dmu_buf _t *db = dbp[i];
ASSERT(si ze > 0);

buf of f = ui 0->uio_| of fset - db->db_of fset;
tocpy = (int)M N(db->db_size - bufoff, size);

ASSERT(i == 0 || i == nunbufs-1 || tocpy == db->db_si ze);

if (tocpy == db->db_size)
dmu_buf _wi IT_fill (db, tx);

dmu_buf will dirty(db, tx)

el se

XXX ui onmove coul d bl ock forever (eg. nfs-backed
pages). There needs to be a uiol ockdown() function
to lock the pages in nmenory, so that uionove won't
bl ock.

* ok ok k%

*

/

err = uionove((char *)db->db_data + bufoff, tocpy,
U O WITE, uio);

if (tocpy == db->db_si ze)
dmu_buf _fill_done(db, tx);

if (err)
br eak;

size -= tocpy;

}

drmu_buf _rel e_array(dbp, nunbufs, FTAG;
return (err);

new usr/src/uts/comon/fs/zfs/dmu.c 7

1202 /*

1203 * Wite 'size' bytes fromthe uio buffer.

1204 * To object zdb->db_object.

1205 * Starting at offset uio->uio_|offset.

1206 *

1207 * If the caller already has a dbuf in the target object
1208 * (e.g. its bonus buffer), this routine is faster than dmu_wite_uio(),
1209 * because we don't have to find the dnode_t for the object.
1210 */

1211 int

1212 dmu_write_ui o_dbuf (dmu_buf _t *zdb, uio_t *uio, uint64_t size,
1213 dmu_tx_t *tx)

1214 {

1215 dnu_buf _i npl _t *db = (dmu_buf _inpl _t *)zdb;

1216 dnode_t *dn;

1217 int err;

1219 if (size == 0)

1220 return (0);

1222 DB_DNODE_ENTER(db) ;

1223 dn"= DB_DNCDE(db) ;

1224 err = dnu_wite_ui o_dnode(dn, uio, size, tx);

1225 DB_ DNODE EXI T(db) ;

1227 return (err);

1228 }

1230 /*

1231 * Wite 'size' bytes fromthe uio buffer.

1232 * To the specified object.

1233 * Starting at offset uio->uio_|offset.

1234 */

1235 int

1236 dmu_write_ui o(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1237 dmu_t x_t *tx)

1238 {

1239 dnode_t *dn;

1240 int err;

1242 if (size == 0)

1243 return (0);

1245 err = dnode_hol d(os, object, FTAG &dn);
1246 if (err)

1247 return (err);

1249 err = dnu_wite_uio_dnode(dn, uio, size, tx);
1251 dnode_rel e(dn, FTAG;

1253 return (err);

1254 }

1256 int

1257 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1258 page_t *pp, dnu_tx_t *tx)

1259 {

1260 dnmu_buf _t **dbp;

1261 int nunbufs, i:

1262 int err;

1264 if (size == 0)

1265 return (0);

new usr/src/uts/comon/fs/zfs/dmu.c

1267 err = dmu_buf _hol d_array(os, object, offset, size,

1268 FALSE FTAG &nunbufs, &dbp);

1269 if (err)

1270 return (err);

1272 for (i = 0; i < nunbufs; i++) {

1273 int tocpy, copied, thiscpy;

1274 int bufoff;

1275 dnu_buf _t *db = dbp[i];

1276 caddr_t va;

1278 ASSERT(si ze > 0);

1279 ASSERT3U(db- >db_si ze, >=, PACESI ZE);

1281 buf of f = offset - db->db_of fset;

1282 tocpy = (int)MN(db->db_size - bufoff, size);

1284 ASSERT(i == 0 || i == nunbufs-1 || tocpy == db->db_si ze);
1286 if (tocpy == db->db_size)

1287 dmu_buf _wi T _fill(db, tx);

1288 el se

1289 dmu_buf _will _dirty(db, tx);

1291 for (copied = 0; copied < tocpy; copied += PACESI ZE) {
1292 ASSERTSU(pp- >p_of fset, ==, db->db_offset + bufoff);
1293 t hi scpy = M N(PAGESI ZE, tocpy - copied);

1294 va = zfs_map_page(pp, S _READ);

1295 bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1296 zf s_unmap_page(pp, va);

1297 pp = pp->p_next;

1298 buf of f += PAGESI ZE;

1299 }

1301 if (tocpy == db->db_size)

1302 dmu_ “buf _filT_done(db, tx);

1304 of fset += tocpy;

1305 size -= tocpy;

1306 1

1307 dmu_buf _rel e_array(dbp, nunbufs, FTAG;

1308 return (err);

1309 }

1310 #endi f

1312 /*

1313 * Allocate a | oaned anonynous arc buffer.

1314

1315 arc_buf _t *
1316 dmu_r equest _ar cbuf (dmu_buf _t *handl e, int size)

1317 {

1318 drmu_buf _inpl _t *db = (dnu_buf _i npl _t *)handl e;
1320 return (arc_|l oan_buf (db->db_obj set->0s_spa, size));
1321 }

1323 /*

1324 * Free a loaned arc buffer.

1325 */

1326 void

1327 dmu_return_archuf (arc_buf _t *buf)

1328 {

1329 arc_return_buf (buf, FTAG;

1330 VERI FY(ar c_buf _renove ref(buf FTAG));

1331 }

new usr/src/uts/comon/fs/zfs/dmu.c

1333 /*

1334 * Wen possible directly assign passed | oaned arc buffer to a dbuf.
1335 * If this is not possible copy the contents of passed arc buf via
1336 * dnu_write().

1337 */

1338 void

1339 dnu_assi gn_ar cbuf (dmu_buf _t *handl e, uint64_t offset, arc_buf_t *buf,
1340 dmu_tx_t *tx)

1341 {

1342 drmu_buf _i npl _t *dbuf = (dnu_buf _i npl _t *)handl e;

1343 dnode_t *dn;

1344 drmu_buf |an t *d

1345 uint32_t blksz = (UI nt32_t)arc_buf_size(buf);

1346 uint64_t blkid;

1348 DB_DNCDE_ENTER(dbuf) ;

1349 dn = DB_DNODE(dbuf);

1350 rw enter(&dn >dn_struct_rw ock, RW READER);

1351 bl ki d dbuf _whi chbl ock(dn, of fset);

1352 VERI FY((db —dbuf _hol d(dn, bl ki d, FTAG)) 1= NULL);

1353 rw_exi t (&n->dn_struct _rw ock);

1354 DB_DNODE_EXI T(dbuf)

1356 /*

1357 * We can only assign if the offset is aligned, the arc buf is the
1358 * same size as the dbuf, and the dbuf is not netadata. It
1359 * can’'t be netadata because the | oaned arc buf comes fromthe
1360 * user-data kmem arena.

1361 *

1362 if (offset == db->db.db_of fset && bl ksz == db->db. db_si ze &&
1363 DBUF_GET_BUFC _TYPE(db) == ARC BUFC DATA) {

1364 dbuf _assi gn_ arcbuf(db buf, tx);

1365 dbuf _rel e(db, FTAQ;

1366 } else {

1367 obj set _t *os;

1368 ui nt 64_t obj ect;

1370 DB_DNODE_ENTER(dbuf) ;

1371 dn = DB_DNODE(dbuf);

1372 os = dn- >dn _obj set;

1373 obj ect = dn->dn Obj ect;

1374 DB_DNODE_EXI T(dbuf) ;

1376 dbuf _rel e(db, FTAQ;

1377 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1378 dnu_return arcbuf(buf)

1379 XUI OSTAT_BUMP(xui ost at _wbuf _copi ed) ;

1380 1

1381 }

1383 typedef struct {

1384 dbuf _dirty_record_t *dsa_dr;

1385 drm_sync_cb_t *dsa_done;

1386 zgd_t *dsa_zgd;

1387 dmu_t x_t *dsa_t x;

1388 } dnu_sync_arg_t;

1390 /* ARGSUSED */
1391 static void
1392 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)

1393 {
1394
1395
1396

1398

dmu_sync_arg_t *dsa = varg;
dmu_buf _t *db = dsa->dsa_zgd- >zgd_db;
bl kptr_t *bp = zi o->i o_bp;

if (zio->io_error == 0) {

new usr/src/uts/comon/fs/zfs/dm.c

1399 if (BP_IS_HOLE(bp)) {

1400 /*

1401 * A block of zeros may conpress to a hole, but the
1402 * block size still needs to be known for replay.
1403 */

1404 BP_SET_LSI ZE(bp, db->db_si ze);

1405 } else if (!BP_I'S EMBEDDED(bp)) {

1406 ASSERT(BP_GET_LEVEL(bp) == 0);

1407 bp->bl k_fill = 1;

1408

1409 1

1410 }

1412 static void

1413 dmu_sync_l ate_arrival _ready(zio_t *zio)

1414 {

1415 dmu_sync_ready(zio, NULL, zio->io_private);

1416 }

1418 /* ARGSUSED */

1419 static void

1420 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)

1421 {

1422 dmu_sync_arg_t *dsa = varg;

1423 dbuf _dirty_record_t *dr = dsa->dsa_dr;

1424 dmu_buf _i npl _t *db = dr->dr_dbuf;

1426 mut ex_ent er (&db- >db_nt x) ;

1427 ASSERT(dr->dt.dl.dr_override_state == DR_I N.DMJ_SYNC);

1428 if (zio->io_error == 0)

1429 dr->dt.dl.dr_nopwite = !!(zio->io_flags & ZI O FLAG NOPWRI TE) ;
1430 if (dr->dt.d|.dr_nopvwite) {

1431 bl kptr_t *bp = zi o->i o_bp;

1432 bl kptr_t *bp_orig = &zio->io_bp orig;

1433 uint8_t chksum = BP_GET_CHECKSUM bp_ori g);
1435 ASSERT(BP_EQUAL(bp, bp_orig));

1436 ASSERT(zi 0- >i o_prop. zp_conpress ! = ZI O COWPRESS_OCFF) ;
1437 ASSERT(zi o_checksum t abl e[chksuni . ci _dedup) ;
1438 }

1439 dr->dt.dl.dr_overridden_by = *zi o->i o_bp

1440 dr->dt.dl.dr_override_state = DR_OVERRI DDEN

1441 dr->dt.dl.dr_copies = zi o->i o_prop.zp_copi es;

1442 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))

1443 BP_ZERQ(&dr - >dt . dl . dr _overri dden_by);

1444 } else {

1445 dr->dt.dl.dr_override_state = DR_NOT_OVERRI DDEN;
1446 1

1447 cv_broadcast (&db- >db_changed) ;

1448 mut ex_exi t (&db->db_nt x) ;

1450 dsa- >dsa_done(dsa->dsa_zgd, zio->io_error);

1452 kmem free(dsa, sizeof (*dsa));

1453 }

1455 static void

1456 dnmu_sync_| ate_arrival _done(zio_t *zio)

1457 {

1458 bl kptr_t *bp = zio->i o_bp;

1459 dmu_sync_arg_t *dsa = zio-> o _private;

1460 bl kptr_t *bp_orig = &zio->io_bp_orig;

1462 if (zio->o_error == 0 && ! BP_I S_HOLE(bp)) {

1463 /*

1464 * |f we didn't allocate a new block (i.e. ZI O FLAG NOPVRI TE)

11

d

new usr/src/uts/ comon/fs/zfs/dm.c
1465 * then there is nothing to do here. Otherw se, free the
1466 * newy allocated block in this txg.
1467 */
1468 if (zio->io_flags & ZI O FLAG NOPWRI TE) {
1469 ASSERT(BP_EQUAL(bp, bp_orig));
1470 } else {
1471 ASSERT(BP_I S_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1472 ASSERT(zi 0- > 0_bp->bl'k_birth == zi0->i 0_txg);
1473 ASSERT(zi 0->i 0_txg > spa_synci ng_t xg(zi o->i 0_spa));
1474 zio_free(zio->o_spa, zio->io_txg, zio->io_bp);
1475 }
1476 }
1478 drmu_t x_commi t (dsa- >dsa_t x) ;
1480 dsa- >dsa_done(dsa->dsa_zgd, zio->io_error);
1482 kmem free(dsa, sizeof (*dsa));
1483 }
1485 static int
1486 dmu_sync_late_arrival (zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zg
1487 zio_prop_t *zp, zbookmark_phys_t *zb)
1488 {
1489 dmu_sync_arg_t *dsa;
1490 dmu_tx_t *tx;
1492 tx = dmu_tx_create(os);
1493 drm_tx hol d _space(tx, zgd->zgd_db->db_si ze);
1494 if (dmu_tx_assign(tx, TXGWAIT) !=0) {
1495 drmu_t x_abort (tx);
1496 /* Make zl _get _ data do txg_wai ted_synced() */
1497 return (SET_ERROR(EIO));
1498 }
1500 dsa = knem al | oc(si zeof (dmu_sync_arg_t), KM SLEEP);
1501 dsa->dsa_dr = NULL;
1502 dsa- >dsa_done = done;
1503 dsa->dsa_zgd = zgd;
1504 dsa->dsa_tx = tx;
1506 zio_nowait(zio_wite(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1507 zgd- >zgd_db->db_dat a, zgd->zgd_db->db_si ze, zp,
1508 dmu_sync_l ate_arrival _ready, NULL, dnu_sync_late_arrival _done, dsa,
1509 ZI O_PRI ORI TY_SYNC_ WRI TE, ZI O FLAG CANFAIL, zb))
1511 return (0);
1512 }
1514 /*
1515 * Intent |og support: sync the block associated with db to disk.
1516 * N.B. and XXX: the caller is responsible for naking sure that the
1517 * data isn’t changing while dnu_sync() is witing it.
1518 *
1519 * Return val ues:
1520 *
1521 * EEXI ST: this txg has already been synced, so there’'s nothing to do.
1522 * The caller should not log the wite.
1523 *
1524 * ENCENT: the bl ock was dbuf _free_range()’d, so there’s nothing to do.
1525 * The cal ler should not log the wi te.
1526 *
1527 * EALREADY: this block is already in the process of being synced.
1528 * The caller should track its progress (sonmehow).
1529 *
*

1530

EIO could not do the 1/Q

new usr/src/uts/comon/fs/zfs/dm.c 12
1531 * The call er should do a txg_wait_synced().

1532 *

1533 0: the 1/0 has been initiated.

1534 * The call er should log this blkptr in the done call back.
1535 * It is possible that the I/Owll fail, in which case

1536 * the error will be reported to the done cal | back and

1537 * propagated to pio from zi o_done().

1538 */

1539 int

1540 dmu_sync(zio_t *pio, uint64_t txg, dnu_sync_cb_t *done, zgd_t *zgd)
1541 {

1542 bl kptr_t *bp = zgd- >zgd bp;

1543 dmu_buf _i npl _t *db = (dnu_| buf _inpl_t *)zgd->zgd_db;

1544 obj set _t *os = db->db_obj set;

1545 dsl _dat aset _t *ds = os->os_ds|_dat aset ;

1546 dbuf _dirty_record_t *dr;

1547 dmu_sync_arg_t *dsa;

1548 zbookmar k_phys_t zb;

1549 zio_prop_t zp;

1550 dnode_t *dn;

1552 ASSERT(pio != NULL)

1553 ASSERT(txg !'= 0);

1555] SET_BOOKMARK(&b, ds->ds_obj ect

1556 db->db. db_obj ect, db->db_| Ievel db- >db_bl ki d) ;

1558 DB_DNODE_ENTER(db) ;

1559 dn" = DB_DNODE(db);

1560 dmu_write_poli cy(os dn, db->db_| evel, WP_DMJ SYNC, &zp);

1561 DB_DNODE_EXI T(db) ;

1563 *

1564 * |f we're frozen (running ziltest), we always need to generate a bp.
1565 */

1566 if (txg > spa_freeze_txg(os->0s_spa))

1567 return (dmu_sync_l ate_arrival (pio, os, done, zgd, &zp, &zb));
1569 /*

1570 * Grabbing db_ntx now provides a barrier between dbuf_sync_| eaf ()
1571 * and us. |If we determine that this txg is not yet syncing,

1572 * but it begins to sync a nonent |ater, that’'s OK because the
1573 * sync thread will block in dbuf_sync_l eaf () until we drop db_ntx.
1574 */

1575 mut ex_ent er (&db->db_nt x) ;

1577 if (txg <= spa_l ast_synced_t xg(os->0s_spa)) {

1578 /*

1579 * This txg has already synced. There's nothing to do.
1580 */

1581 mut ex_exi t (&b->db_nt x) ;

1582 return (SET_ERROR(EEXI ST))

1583 }

1585 if (txg <= spa_syncing_txg(os->0s_spa)) {

1586 /*

1587 * This txg is currently syncing, so we can't nmess with
1588 * the dirty record anynore; just wite a new | og bl ock.
1589 */

1590 mut ex_exi t (&db->db_nt x) ;

1591 return (dmu_sync_late_ arrival (pio, os, done, zgd, &p, &zb));
1592 }

1594 dr = db->db_l ast _dirty;

1595 while (dr && dr->dr_txg != txg)

1596 dr = dr->dr_next;

new usr/src/uts/comon/fs/zfs/dmu.c 13

1598
1599
1600
1601
1602
1603
1604
1605

1607

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

1636
1637
1638

1640
1641
1642
1643
1644

1646
1647
1648
1649
1650

1652
1653

1655
1656
1657
1658
1659
1660

1662

}

i nt
drmu_obj ect _set _bl ocksi ze(obj set _t *os, uint64_t object,

{

if (dr == NULL) {
/ *

* There’s no dr for this dbuf, so it nust have been freed.
* There’s no need to log wites to freed bl ocks, so we’'re done.
)

mut ex_exi t (&db->db_nt x) ;
return (SET_ERROR(ENCENT));
}

ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);

/
Assune the on-disk data is X, the current syncing data is Y,

and the current in-nenory data is Z (currently in dmu_sync).

X and Z are identical but Y is has been nodified. Normally,

when X and Z are the same we will performa nopwite but if Y

is different we nust disable nopwite since the resulting wite
of Y to disk can free the block containing X. If we allowed a
nopwite to occur the block pointing to Z would reference a freed
bl ock. Since this is a rare case we sinplify this by disabling
nopwite if the current dmu_sync-ing dbuf has been nodified in

* a previous transaction.

*

E I T I

if (dr->dr_next)
zp.zp_nopwite = B_FALSE;

ASSERT(dr->dr_txg == txg);
if (dr->dt.dl.dr_override_state == DR_IN DMJ_SYNC ||
dr->dt.dl.dr_override_state == DR_OVERRI DDEN) {
/*
* We have already issued a sync wite for this buffer,
* or this buffer has already been synced. It could not
* have been dirtied since, or we would have cleared the state.
*
/
mut ex_exi t (&b->db_nt x) ;
return (SET_ERROR(EALREADY))

}

ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRI DDEN) ;
dr->dt.dl.dr_override_state = DR I N_DMJ_SYNC,
mut ex_exi t (&db->db_nt x) ;

dsa = knem al | oc(3| zeof (dmu_sync_arg_t),
dsa->dsa_dr = dr;

dsa- >dsa_done = done;

dsa->dsa_zgd = zgd;

dsa->dsa_t x = NULL;

KM _SLEEP) ;

zio_nowait(arc_wite(pio, os->o0s_spa, txg,
bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
DBUF_|I S_L2COVPRESSI BLE(db), &p, dnu_sync_| ready,
NULL, dmu_sync_done, dsa, Zl O _PRI ORI TY_SYNC_WRI TE,
Z1 O_FLAG_CANFAI L, &Zb))

return (0);

uint64_t size, int ibs,
dmu_t x_t *tx)

dnode_t *dn;
int err;
err = dnode_hol d(os,

obj ect, FTAG &dn);

new usr/src/uts/comon/fs/zfs/dm.c

1663 if (err)

1664 return (err);

1665 err = dnode_set_bl ksz(dn, size, ibs, tx);

1666 dnode_rel e(dn, FTAQ;

1667 return (err);

1668 }

1670 void

1671 dmu_obj ect _set_checksun{ obj set _t *os, uint64_t object, uint8_t checksum
1672 dmu_t x_t *tx)

1673 {

1674 dnode_t *dn;

1676 /*

1677 * Send streans include each object’s checksum function. This
1678 * check ensures that the receiving system can understand the
1679 * checksum function transnmitted.

1680 */

1681 ASSERT3U(checksum <, ZI O CHECKSUM LEGACY_FUNCTI ONS) ;

1683 VERI FYO(dnode_hol d(os, object, FTAG &dn));

1684 ASSERT3U(checksum <, ZI O CHECKSUM FUNCTI ONS) ;

1685 dn->dn_checksum = checksum

1686 dnode_setdirty(dn, tx);

1687 dnode_rel e(dn, FTAG;

1688 }

1690 void

1691 dnu_obj ect _set conpress(obj set_t *os, uint64_t object, uint8_t conpress,
1692 dmu_tx_t *tx)

1693 {

1694 dnode_t *dn;

1696 /*

1697 * Send streans include each object’s conpression function. This
1698 * check ensures that the receiving system can understand the
1699 * conpression function transmtted.

1700 */

1701 ASSERT3U(conpress, <, ZI O COWRESS_LEGACY_FUNCTI ONS) ;

1703 VERI FYO(dnode_hol d(os, object, FTAG &dn));

1704 dn- >dn_conpress = conpress;

1705 dnode_setdirty(dn, tx);

1706 dnode_rel e(dn, FTAQ;

1707 }

1709 int zfs_ndconp_di sable = 0;

1711 /*

1712 * \Wen the "redundant _netadata" property is set to "nmpst", only indirect
1713 * blocks of this level and higher will have an additional ditto bl ock.
1714 */

1715 int zfs_redundant _netadata_nost_ditto_l evel = 2;

1717 void

1718 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t
1719 {

1720 dmu_obj ect _type_t type = dn ? dn->dn_type : DMJ OT_OBJSET,;
1721 boolean_t isnmd = (level > 0 || DMJ COT IS METADATA(type) ||

1722 wp & WP_SPILL));

1723 enum zi o_checksum checksum = o0s->0s_checksum

1724 enum zi o_conpress conpress = 0S->0S_COnpress;

1725 enum zi o_checksum dedup_checksum = os->o0s_dedup_checksum

1726 bool ean_t dedup = B_FALSE;

1727 bool ean_t nopwite = B_FALSE;

1728 bool ean_t dedup_verify = os->os_dedup_verify;

*zp)

new usr/src/uts/comon/fs/zfs/dmu.c 15

1729

1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744

1746
1747
1748
1749
1750
1751
1752

1754
1755
1756
1757
1758
1759
1760
1761
1762
1763

1765
1766
1767
1768
1769
1770
1771
1772

1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784

1786
1787
1788

1790
1791
1792
1793
1794

int copies = o0s->0s_copi es;

/*
* We naintain different wite policies for each of the follow ng
* types of data:
* 1. netadata
* 2. preallocated blocks (i.e. level-0 blocks of a dunp device)
* 3. all other level 0 blocks
*
f (isnmd) {
/*
* XXX -- we shoul d design a conpression algorithm

* that specializes in arrays of bps.
)

bool ean_t |z4_ac = spa_feature_is_active(os->0s_spa,
SPA_FEATURE_LZ4_COWPRESS) ;

if (zfs_mdconp_di sabl e) {

conpress = ZI O COWPRESS_EMPTY;
} elseif (1z4_ ac) {

conpress = ZI O COWRESS_LZ4;
} else {

conpress = ZI O COWRESS_LZJB;
}

/
Met adat a al ways gets checksumred. |If the data
checksumis multi-bit correctable, and it’s not a
ZBT-styl e checksum then it’s suitable for netadata
as well. Oherw se, the netadata checksum defaults
* to fletcher4.
*/
if (zio_checksumtable[checksun].ci_correctable <1 ||

zi 0_checksum t abl e[checksuni . ci _eck)

“checksum = ZI O_CHECKSUM FLETCHER 4;

* ok kb ok

if (os->o0s_redundant_netadata == ZFS_REDUNDANT_NETADATA_ALL |l
(os->o0s_redundant _net adata ==
ZFS_REDUNDANT NETADATA MOST &&

(level >= zfs_redundant netadata_nost_ditto

L)

evel ||
DMU_OT_I S_METADATA(type) || (wp & WP_SPIL)

N
)

copi es++;
} else if (wp & WP NOZILL) {
ASSERT(l evel == 0);
/*
* |f we're witing preallocated bl ocks, we aren’t actually
* witing themso don’t set any policy properties. These
* blocks are currently only used by an external subsystem
* outside of zfs (i.e. dunp) and not witten by the zio
* pi peline.
*
conpress = ZI O COWRESS CFF;
checksum = ZI O_CHECKSUM NOPARI TY;
} else {
conpress = zi o_conpress_sel ect (dn->dn_conpress, conpress);

checksum = (dedup_checksum == ZI O CHECKSUM CFF) ?
zi o_checksum sel ect (dn->dn_checksum checksum
dedup_checksum

/*

* Determne dedup setting. |If we are in dnu_sync(),
* we won’t actually dedup now because that’s all

* done in syncing context; but we do want to use the
* dedup checkum If the checksumis not strong

new usr/src/uts/comon/fs/zfs/dm.c

1795
1796
1797
1798
1799
1800
1801
1802

1804
1805
1806
1807
1808
1809
1810
1811
1812

1814
1815
1816
1817
1818
1819
1820
1821
1822
1823

* enough to ensure unique signatures, force
* dedup_verify.
*
/
if (dedup checksum I'= ZI O CHECKSUM OFF) {
= (wp & WP_DMJ SYNC) ? B_FALSE : B TRUE
i f (I zio checksum t abl e[checksun] . ci dedup)

dedup_verify = B _TRUE
}
/*
* Enable nopwite if we have a cryptographically secure
: checksum t hat has no known collisions (i.e. SHA-256)

and conpression is enabled. W don't enable nopwite if
* dedup is enabled as the two features are mutual |y excl usive.
*
/
nopwite = (!dedup && zi o_checksum t abl e[checksuni.ci _dedup &&
conpress != ZI O COWRESS_OFF && zfs_nopwrite_enabl ed);
}

zp->zp_checksum = checksum
Zp->Zp_conpress = conpress;

zZp->zp_type = (wp & WP_SPI LL) ? dn->dn_bonustype : type;
zp->zp_l evel = level;

zp->zp_copies = M N(copi es, spa_nax_replication(os->0s_spa));
zp->zp_dedup = dedup;

zp->zp_dedup_verify = dedup && dedup_verify;

zZp->zp_nopwite = nopwite;

zp->zp_zero_wite = B _FALSE

#endif /* | codereview */
1824 }

1826 in

1827

1828 {

1829
1830

1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

1851
1852

1854
1855

1857
1858

1860

}

voi d

t
dmu_of f set _next (obj set _t *os, uint64_t object, boolean_t hole, uint64_t *off)

dnode_t *dn;
int i, err;

err = dnode_hol d(os, object, FTAG &dn);
if (err)
return (err);
/*
* Sync any current changes before
* we go trundling through the bl ock pointers.
*/
for (i =0; i < TXGSIZE, i++)
if (list_link_active(&n->dn_dirty_link[i]))
br eak;

}
if (i !'= TXGSIZE) {
dnode_rel e(dn, FTAG;
t xg_wai t _synced(dnu_obj set _pool (os), 0);
err = dnode_hol d(os, object, FTAG &dn);
if (err)
return (err);

}

err = dnode_next _of fset(dn, (hole ? DNODE_FIND HOLE : 0), off, 1, 1, 0);
dnode_rel e(dn, FTAQ;

return (err);

drmu_obj ect _i nf o_from dnode(dnode_t *dn, dnu_object_info_t *doi)
1859 {

dnode_phys_t *dnp;

16

new usr/src/uts/ comon/fs/zfs/dm.c 17 new usr/src/uts/comon/fs/zfs/dm.c
1927 {
1862 rw_enter (&n->dn_struct _rw ock, RW READER); 1928 drmu_buf _inpl _t *db = (dnu_buf _i npl _t *)db_f ake;
1863 mut ex_ent er (&n->dn_nt x); 1929 dnode_t *dn;
1865 dnp = dn->dn_phys; 1931 DB_DNODE ENTER(db)
1932 dn = DB_DNODE(db);
1867 doi - >doi _dat a_bl ock_si ze = dn >dn_dat abl ksz;
1868 doi - >doi _net adat a_bl ock_si ze = dn->dn_i ndbl kshift ? 1934 *bl ksi ze = dn->dn_dat abl ksz;
1869 1ULL << dn->dn_i ndblkshift : 0; 1935 /* add 1 for dnode space */
1870 doi - >doi _type = dn->dn_type; 1936 *nbl k512 = ((DN_USED_BYTES(dn->dn_phys) + SPA M NBLOCKSI ZE/ 2) >>
1871 doi - >doi _bonus_type = dn->dn_bonustype; 1937 SPA_M NBLOCKSHI FT) + 1;
1872 doi - >doi _bonus_si ze = dn->dn_bonusl en; 1938 DB_DNODE_EXI T(db) ;
1873 doi - >doi _i ndirection = dn->dn_nl evel s; 1939 }
1874 doi - >doi _checksum = dn->dn_checksum
1875 doi - >doi _conpress = dn->dn_conpress; 1941 void
1876 doi - >doi _nbl kptr = dn->dn_nbl kptr; 1942 byt eswap_ui nt64_array(void *vbuf, size_t size)
1877 doi - >doi _physi cal _bl ocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1943 {
1878 doi - >doi _max_of fset = (dn->dn_nmaxblkid * 1) * dn->dn_dat abl ksz; 1944 uint64_t *buf = vbuf;
1879 doi ->doi _filT_count = 0; 1945 size_t count = size >> 3;
1880 for (int"i =0; i < dnp->dn_nblkptr; i++) 1946 int i;
1881 doi ->doi _fill_count += BP_GET_FILL(&np->dn_bl kptr[i]);
1948 ASSERT((size & 7) == 0);
1883 mut ex_exi t (&dn->dn_nt x) ;
1884 rw_exit (&dn->dn_struct rvsA ock) ; 1950 for (i =0; i < count; i++)
1885 } 1951 buf[i] = BSWAP_64(buf[i]);
1952 }
1887 /*
1888 * Get information on a DMJ object. 1954 void
1889 * If doi is NULL, just indicates whether the object exists. 1955 byt eswap_ui nt32_array(voi d *vbuf, size_t size)
1890 */ 1956 {
1891 int 1957 uint32_t *buf = vbuf;
1892 dmu_obj ect _i nfo(obj set _t *os, uint64_t object, dnu_object_info_t *doi) 1958 size_t count = size >> 2;
1893 { 1959 int i;
1894 dnode_t *dn;
1895 int err = dnode_hol d(os, object, FTAG &dn); 1961 ASSERT((size & 3) == 0);
1897 if (err) 1963 for (i =0; i < count; i++)
1898 return (err); 1964 buf[i] = BSWAP_32(buf[i]);
1965 }
1900 if (doi != NULL)
1901 dnu_obj ect _i nf o_from dnode(dn, doi); 1967 void
1968 byt eswap_ui nt16_array(void *vbuf, size_t size)
1903 dnode_rel e(dn, FTAQ; 1969 {
1904 return (0); 1970 uint16_t *buf = vbuf;
1905 } 1971 size_t count = size >> 1;
1972 int i;
1907 /*
1908 * As above, but faster; can be used when you have a held dbuf in hand. 1974 ASSERT((size & 1) == 0);
1909 */
1910 void 1976 for (i =0; i < count; i++)
1911 dmu_obj ect _i nfo_from db(dmu_buf _t *db_fake, dmu_object_info_t *doi) 1977 buf[i] = BSWAP_16(buf[i]);
1912 { 1978 }
1913 dmu_buf _i npl _t *db = (dnu_buf _i npl _t *)db_f ake;
1980 /* ARGSUSED */
1915 DB_DNODE_ENTER(db) ; 1981 void
1916 drmu_obj ect _i nf o_f rom dnode(DB_DNODE(db), doi); 1982 byteswap_ui nt8_array(voi d *vbuf, size_t size)
1917 DB_DNODE_EXI T(db) ; 1983 {
1918 } 1984 }
1920 /* 1986 void
1921 * Faster still when you only care about the size. 1987 dmu_i nit (voi d)
1922 * This is specifically optimzed for zfs_getattr(). 1988 {
1923 */ 1989 zfs_dbgmsg_init();
1924 void 1990 sa_cache_init();
1925 dmu_obj ect _si ze _fromdb(dmu_buf _t *db_fake, uint32_t *blksize, 1991 xuio_stat_init();
1926 u_l onglong_t *nbl k512) 1992 drmu_obj set _init();

new usr/src/uts/comon/fs/zfs/dmu.c 19

1993 dnode_init();

1994 dbuf _init();

1995 zfetch_init();
1996 l2arc_init();

1997 arc_init();

1998 }

2000 void

2001 dmu_fi ni (void)

2002 {

2003 arc_fini(); /* arc depends on |2arc, so arc must go first */
2004 l2arc_fini();

2005 zfetch_fini()

2006 dbuf _fini();

2007 dnode_fini();

2008 dmu_obj set _fini();
2009 xuio_stat_fini();
2010 sa_cache_fini();
2011 zfs_dbgnsg_fini();

2012 }

new usr/src/uts/comon/ fs/zfs/dnode. c

R R R R

55122 Tue Cct 28 11:57:19 2014
new usr/src/uts/ comon/fs/zfs/dnode. c
Possibility to physically reserve space without witing | eaf blocks

R R R R R

__unchanged_portion_onitted_

1238 voi d

1239 dnode_setdirty(dnode_t *dn, dnu_tx_t *tx)

1240 {

1241 obj set _t *os = dn->dn_obj set;

1242 uint64_t txg = tx->tx_txg;

1244 if (DMJU_OBJECT_I S_SPECI AL(dn->dn_object)) {

1245 dsl _dat aset _dirty(os->o0s_dsl _dataset, tx);

1246 return;

1247 }

1249 DNCDE_VERI FY(dn) ;

1251 #ifdef ZFS_DEBUG

1252 mut ex_ent er (&dn- >dn_nt x) ;

1253 ASSERT(dn- >dn_phys->dn type || dn->dn_al |l ocated_txg);
1254 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1255 mut ex_exi t (&dn->dn_nt x) ;

1256 #endif

1258 /*

1259 * Determne old uid/gid when necessary

1260 */

1261 drmu_obj set _userquot a_get _i ds(dn, B_TRUE, tx);

1263 nmut ex_ent er (&o0s->0s_| ock) ;

1265 /*

1266 * |f we are already nmarked dirty, we' re done.

1267 */

1268 if (list_link_active(&n->dn_dirty_link[txg & TXG MASK])) {
1269 mut ex_exi t (&os->o0s_| ock) ;

1270 return;

1271 1

1273 ASSERT(!refcount _i s_zero(&dn->dn_hol ds) ||

1274 lavl _i s_enpty(&In->dn_dbufs));

1275 ASSERT(dn- >dn dat abl ksz = 0);

1276 ASSERTO(dn- >dn_next _bonusl en[txg&TXG MASK]) ;

1277 ASSERTO(dn- >dn_next _bl ksz[t xg&TXG_MASK]) ;

1278 ASSERTO(dn- >dn_next _bonust ype[t xg&TXG | MASK])

1280 dprintf_ds(os->o0s_dsl| _dataset, "obj=%lu txg=%1lu\n",
1281 dn->dn_obj ect, txg);

1283 if (dn->dn_free_txg > 0 & dn->dn_free_txg <= txg) {
1284 list_insert_tail (&os->o0s_free_dnodes[txg&TXG MASK],
1285 } else {

1286 list_insert_tail (&os->o0s_dirty_dnodes[txg&TXG MASK] ,
1287 1

1289 mut ex_exi t (&os->os_| ock) ;

1291

1292 The dnode nmaintains a hold on its containing dbuf as

*
1293 * long as there are holds on it. Each instantiated child
1294 * dbuf maintains a hold on the dnode. When the last child
1295 * drops its hold, the dnode will drop its hold on the

1296 * containing dbuf. W add a "dirty hold" here so that the

dn);
dn);

new usr/src/uts/comon/ fs/ zfs/dnode. c

1297 * dnode will hang around after we finish processing its
1298 * children.

1299 */

1300 VERI FY(dnode_add_ref (dn, (void *)(uintptr_t)tx->tx_txg));
1302 (void) dbuf_dirty(dn->dn_dbuf, tx, B_FALSE);

1302 (voi d) dbuf _dirty(dn->dn_dbuf, tx);

1304 dsl _dat aset _dirty(os->o0s_dsl _dataset, tx);

1305 }

__unchanged_portion_onitted_

1409 /* read-hol ding callers nust not
1410 void

1411 dnode_new bl ki d(dnode_t *dn, uint
1412 {

rely on the lock being continuously held */

64_t blkid, dmu_tx_t *tx, bool ean_t

have_r ead)

1413 uint64_t txgoff = tx->tx_txg & TXG MASK;

1414 int epbs, new_nlevels;

1415 uint64_t sz;

1417 ASSERT(bl kid !'= DMJ_BONUS_BLKI D) ;

1419 ASSERT(have_read ?

1420 RW READ_HELD(&dn- >dn_struct _rw ock) :

1421 RWWRI TE_HELD(&dn- >dn_st ruct _rw ock));

1423 /*

1424 * if we have a read-1ock, check to see if we need to do any work
1425 * before upgrading to a wite-I|ock.

1426 */

1427 if (have_read) {

1428 if (blkid <= dn->dn_maxbl ki d)

1429 return;

1431 if (!'rw_tryupgrade(&dn->dn_struct_rw ock)) {

1432 rw_exit(&dIn->dn_struct_rw ock);

1433 rw_ent er (&n->dn_struct _rw ock, RWWRI TER);
1434 }

1435 1

1437 if (blkid <= dn->dn_maxbl ki d)

1438 goto out;

1440 dn->dn_maxbl kid = bl ki d;

1442 /*

1443 * Conpute the nunber of |evels necessary to support the new maxbl ki d.
1444 */

1445 new_nl evel s =

1446 epbs = dn- >dn |ndb| kshift - SPA_BLKPTRSHI FT;

1447 for (sz = dn->dn_nbl kptr;

1448 sz <= blkid & sz >= dn->dn_nbl kptr; sz <<= epbs)

1449 new_nl evel s++;

1451 if (new_nlevels > dn->dn_nl evel s)

1452 int old_nlevels = dn->dn_nl evel s;

1453 dmu_buf _i npl _t *db;

1454 list_t *list;

1455 dbufﬁdlrtyirecordft *new, *dr, *dr_next;

1457 dn->dn_nl evel s = new_nl evel s;

1459 ASSERT3U(new_nl evel s, >, dn->dn_next_nlevel s[txgoff]);
1460 dn- >dn_next _nl evel s[txgoff] = new_nl evels;

1462 /* dirty the left indirects */

new usr/src/uts/comon/ fs/zfs/dnode. c

1463
1464
1465
1465
1466

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

1487
1488
1489

1490 }

db = dbuf_hol d_| evel (dn, old_nlevels, 0, FTAG;
ASSERT(db ! = NULL)

new = dbuf _dirty(db, tx, B_FALSE);

new = dbuf _dirty(db, tx);

dbuf _rel e(db, FTAG;

/* transfer the dirty records to the new indirect */
mut ex_ent er (&dn->dn_nt x) ;
mut ex_ent er (&ew >dt . di . dr_ntx);
list = &n->dn_dirty_records[txgoff];
for (dr = list_head(list); dr; dr = dr_next) {
dr_next = list_next(&n->dn_dirty_records[txgoff], dr);
if (dr->dr_dbuf->db_|l evel != new nlevels-1 &&
dr - >dr _dbuf ->db_bl kid ! = DMJ_BONUS_BLKI D &&
dr - >dr _dbuf ->db_bl kid != DMJ_SPI LL_BLKI D) {
ASSERT(dr - >dr _dbuf ->db_l evel == ol d_nlevels-1);
l'ist_renpve(&dn->dn_dirty_records[txgoff], dr);
list_insert_tail (&ew >dt.di.dr_children, dr);
dr->dr_parent = new,

}

mut ex_exi t (&ew >dt. di . dr_ntx);
mut ex_exi t (&n->dn_nt x) ;

if (have_read)

rw_downgr ade(&n->dn_struct _rw ock);

__unchanged_portion_omtted_

new usr/src/uts/comon/fs/zfs/sys/dbuf.h

R R R R

10506 Tue Cct 28 11:57:19 2014
new usr/src/uts/comon/ fs/zfs/sys/dbuf.h
Possibility to physically reserve space without witing | eaf blocks
* ok ok ok ok

B R R R)

____unchanged_portion_onitted_

101 typedef struct dbuf_dirty_record {
102 /* link on our parents dirty list */

103 list_node_t dr_dirty_node;

105 /* transaction group this data will sync in */

106 uint64_t dr_txg;

108 /* zio of outstanding wite 10 */

109 zio_t *dr_zio;

111 /* pointer back to our dbuf */

112 struct dmu_buf _i npl *dr_dbuf;

114 /* pointer to next dirty record */

115 struct dbuf_dirty_record *dr_next;

117 /* pointer to parent dirty record */

118 struct dbuf _dirty_record *dr_parent;

120 /* How nuch space was changed to dsl_pool _dirty_space() for this? */
121 unsi gned int dr_accounted;

123 union dirty_types {

124 struct dirty_indirect {

126 /* protect access to list */

127 kmut ex_t dr_ntx;

129 /* Qur list of dirty children */

130 list_t dr_children;

131 }odi;

132 struct dirty_leaf {

134 /*

135 * dr_data is set when we dirty the buffer
136 * so that we can retain the pointer even if it
137 * gets CONd in a subsequent transaction group.
138 *

139 arc_buf _t *dr_data;

140 bl kptr_t dr_overridden_by;

141 override_states_t dr_override_state;

142 uint8_t dr_copies;

143 bool ean_t dr_nopwite;

144 }odig

145 } odt;

147 bool ean_t dr_zero_wite;

148 #endif /* ! codereview */
149 } dbuf _dirty_record_t;

151 typedef struct dnu_buf _inpl {
/*

152

153 * The foll owing nenbers are i mutable, with the exception of
154 * db.db_data, which is protected by db_ntx.

155 */

157 /* the publicly visible structure */

158 drmu_buf _t db;

new usr/src/uts/comon/ fs/zfs/sys/dbuf.h

160
161

163
164
165
166

168
169
170
171
172
173
174
175
176

178
179
180
181

183
184

186
187
188
189
190

192
193
194
195
196
197
198

200
201

203
204
205
206

208
209
210
211
212
213

215
216

218
219

221
222

224
225

/* the objset we belong to */
struct obj set *db_obj set;

*

* handle to safely access the dnode we belong to (NULL when evicted)
/
struct dnode_handl e *db_dnode_handl e;

/
our parent buffer; if the dnode points to us directly,
db_parent == db_dnode_handl e- >dnh_dnode- >dn_dbuf
only accessed by sync thread ???
(NULL when evi cted)
May change from NULL to non-NULL under the protection of db_ntx
* (see dbuf _check_bl kptr())

*

/
struct dmu_buf _i npl *db_parent;

* ok kb ko

/*
* link for hash table of all dmu_buf_inpl_t’'s
*

struct dnu_buf _i npl *db_hash_next;

/* our block number */
uint64_t db_bl ki d;

/*

* Pointer to the bl kptr_t which points to us. May be NULL if we
* don’t have one yet. (NULL when evicted)

*/

bl kptr_t *db_bl kptr;

db_l evel ==0, since the dnodes are stored in a file.

/*

* Qur indirection level. Data buffers have db_| evel ==0.
* Indirect buffers which point to data buffers have

* db_l evel ==1. etc. Buffers which contain dnodes have
*

*/

uint8_t db_level;

/* db_ntx protects the nenbers bel ow */
kmut ex_t db_nt x;
/*
* Current state of the buffer
*
/
dbuf _states_t db_state;
/*
* Refcount accessed by dnu_buf_{hold,rele}.
* |f nonzero, the buffer can’t be destroyed.
* Protected by db_ntx.
*
/
refcount _t db_hol ds;

/* buffer holding our data */
arc_buf _t *db_buf;

kcondvar _t db_changed;
dbuf _dirty_record_t *db_data_pendi ng;

/* pointer to nobst recent dirty record for this buffer */
dbuf _dirty_record_t *db_last_dirty;

/*

* Qur link on the owner dnodes’s dn_dbufs Iist.

new usr/src/uts/ comon/fs/zfs/sys/dbuf.h 3

226
227
228

230

232
233
234
235

237
238

240
241

243
244
245
246
247
248
249
250

255
256
257
258

262
263
264
265
266

270
271

273
274

278
279
280
281
282
283
284
285
286
146
287
288
289
290

* Protected by its dn_dbufs_ntx.

&/

avl _node_t db_li nk;

/* Data which is unique to data (leaf) blocks: */

/* stuff we store for the user (see dmu_buf_set_user) */
voi d *db_user_ptr;

voi d **db_user dat a _ptr_ptr;

drmu_buf _evict_func_t *db_evi ct _func;

uint8_t db_i medi ate_evict;
uint8_t db_freed_in_flight;

uint8_ t db_dirtycnt;
} dmu_buf _i npl _t;

/* Note: the dbuf hash table is exposed only for the nmdb nodule */
#def i ne DBUF_MJUTEXES 256
#defi ne DBUF_HASH MUTEX(h, idx) (& h)->hash_mutexes[(idx) & (DBUF_MJTEXES-1)])
typedef struct dbuf_hash_table {

uint64_t hash tabl e_mask;

drmu_buf _i npl _t **hash_t abl e;

knutex_t hash_nut exes[DBUF_ MJTEXES]
} dbuf _hash_table_t;

ui nt 64_t dbuf _whi chbl ock(struct dnode *di, uint64_t offset);
drmu_buf _i npl _t *dbuf _create_tlib(struct dnode *dn,

_ char *data);
voi d dbuf _create_bonus(struct dnode *dn);

int dbuf sp|II set _bl ksz(dmu_buf _t *db, uint64_t blksz, dnmu_tx_t *tx);

voi d dbuf_spi | T_hold(struct dnode *dn, dmu_buf _inpl _t **dbp, void *tag);

voi d dbuf _rmspill(struct dnode *dn, dmu_tx_t *tx);

drmu_buf _i npl _t *dbuf _hol d(struct dnode *dn, uint64_t blkid, void *tag);

dmu_buf _i npl _t *dbuf _hol d_| evel (st ruct dnode *dn, int Ievel ui nt 64_t bl ki d,
void *tag);

i nt dbuf_hol d_i mpl (struct dnode *dn,
void *tag, dmu_buf _inpl_t **dbp);

uint8 t level, uint64_t blkid, int create,

voi d dbuf _prefetch(struct dnode *dn, uint64_t blkid, zio_priority_t prio);
voi d dbuf _add_ref (dnu_buf _i npl _t *db,
ui nt 64_t dbuf_ref count (dmu_buf i npl _

void *tag);
t *db);

voi d dbuf _rel e(dmu_buf _inpl _t *db, void *tag);
voi d dbuf _rel e_and_unl ock(dmu_buf _i npl _t *db, void *tag);

dmu_buf _i npl _t *dbuf _find(struct dnode *dn, uint8_t level, uint64_t blkid);
i nt dbuf _read(dnu_buf nrp _t *db, zio_t *zio, uint32_t flags);
void dmu_buf _will _not _fill (dnu buf _t *db, dnu _tx_t *tx);
void dmu_buf “wil |l _filT(dmu_buf_t *db, dmu_tx_t *TX);
void dmu_buf _wi |l _zero_filT(dmu_buf_t *db, dmu_tx_t *tx);
#endif /* | codereview */
void dnu_buf _fill_done(dnu_buf_t *db, dnu_tx_t *tx);
voi d dbuf_assi gn_ar cbuf (dmu_buf _i npl _t *db, arc_buf _t *buf, dmu_tx_t *tx);
dbuf _dirty_record_t *dbuf _dirty(dnu_buf _inpl_t *db, dmu_tx_t *tx, bool ean_t zero
dbuf _dirty _record_t *dbuf_zero_dirty(dm_buf _inpl t *db, dmu tx t *tx);
dbuf _dirty record_t *dbuf _dirty(dnmu_buf inpl_t *db, dnmu_tx_t *tx);
arc_buf _t *dbuf _| oan_ar cbuf (dru_buf _i npl _t *db) ;
void dmu_buf wite _enbedded(dnmu_buf _t *dbuf , void *dat a,

bp_enbedded_type_t etype, enum zio conpr ess conp,

int unconpressed_size, int conpressed_size, int byteorder, dnmu_tx_t *tx);

new usr/src/uts/comon/ fs/zfs/sys/dbuf.h

292
293

295
296
297
298

300
301

303

305
306
307
308
309

311
312

314

316
317

319
320
321
322

324
325
326
327

329
330
331

333

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

356

voi d dbuf _cl ear (dmu_buf _i npl _t *db);
voi d dbuf _evi ct (dmu_buf _i npl _t *db);

voi d dbuf_setdirty(dmu_buf _inmpl _t *db, dmu_tx_t *tx);
voi d dbuf _unoverride(dbuf _dirty record_t *dr);

voi d dbuf _sync_list(list_t *list, dmu_tx_t *tx);

voi d dbuf _rel ease_bp(dmu_buf _i npl _t *db);

voi d dbuf _free_range(struct dnode *dn,
struct dmu_tx *);

uint64_t start, uint64_t end,

voi d dbuf _new_si ze(dmu_buf _inpl _t *db, int size, dnu_tx_t *tx);
#def i ne DB_DNODE(_db)
#def i ne DB_DNODE_LOCK(_db)

((_db) - >db_dnode_handl e- >dnh_dnode)
((
#def i ne DB_DNODE_ENTER(_db) (z
(z
(!

db) - >db_dnode_handl e- >dnh_zr | ock)
_add(&DB_DNCDE L(I:K(db)))
r emove(&DB_DNCODE_LOCK

#defi ne DB_DNODE_EXI T(_db) db)))
_is_zero(&DB_DNCDE LOCK(_db)))

#def i ne DB_DNODE_HELD(_db)

voi d dbuf _init(void);
voi d dbuf _fini(void);

ﬂ__
_I

bool ean_t dbuf _i s_net adat a(drmu_buf _i npl _t *db);

#defi ne DBUF_GET_BUFC TYPE(_db) \
(dbuf _i s_net adat a(_db) ? ARC_BUFC_METADATA :

#defi ne DBUF_|I S_CACHEABLE(_db)
((_db) ->db_obj set->o0s_pri mary_cache == ZFS CACHE _ALL ||
(dbuf _i s_net adat a(_db) &&
((_db)->db_obj set->o0s_pri mary_cache == ZFS_CACHE_METADATA)))

#defi ne DBUF_|I S_L2CACHEABLE(_db)
((_db) ->db_obj set - >0s_secondary_cache == ZFS_CACHE ALL ||
(dbuf _i s_net adat a(_db) &&
((_db)->db_obj set ->0s_secondary_cache == ZFS_CACHE_METADATA)))

ARC_BUFC_DATA)

#def i ne DBUF_I S_L2COVPRESSI BLE(_db)
((_db) ->db_obj set ->0s_conpress ! = ZI O COWPRESS_OFF | |
(dbuf _i s_net adat a(_db) && zfs_ndconp_di sabl e == B_FALSE))

#i fdef ZFS DEBUG

/*

* There should be a ## between the string literal
* clear that we're joining two strings together,
* support that preprocessor token.

*

#define dprintf_dbuf(dbuf, fnmt, ...) do { \
if (zfs_flags & ZFS DEBUG DPRI NTF) { \
char __db_buf[32]; \
ui nt 64_t db_obj = (dbuf) >db. db_obj ect; \
if (__db_obj == DMJ_META_DNODE_OBJECT) \
(voi d) strcpy(__db_buf, "mdn"); \

and fnt, to make it
but gcc does not

el se \
(void) snprintf(__db_buf, sizeof (
(u_longlong_t)__db Obj) \
dprlntf _ds((dbuf)->db_obj set - >0s dsi _dat aset, \
"obj =% |vl=% blkid=%Id " fnt, "\
__db_buf, (dbuf)->db_level, \
(u_l ongl ong_t) (dbuf) - >db_bl ki d,

\
_NOTE(OO}\ISTCO\ID) } while (0)

__db_buf), "%1d", \

__ VA ARGS_); \

#define dprintf_dbuf_bp(db, bp, fnt, .) do { \

———

new usr/src/uts/comon/fs/zfs/sys/dbuf.h

357 if (zfs_flags & ZFS_DEBUG_DPRI NTF)

358 char *_"bl kbuf = kmem al | oc(BP_SPRI NTF_LEN, KM SLEEP);
359 snprintf_bl kptr(__bl kbuf, BP_SPRI NTF_LEN, bp)

360 dprintf_dbuf (db, fnmt " %\ n", VA ARGS__, bI kbuf);
361 kmem free(__bl kbuf, BP_SPRI NTF "LEN);

362

363 _NOTE(CONSTCOND) } while (0)

365 #defi ne DBUF_VERI FY(db) dbuf_verify(db)

367 tel se

369 #define dprintf_dbuf(db, fnt, ...)

370 #define dprintf_dbuf_bp(db, bp, fm, ...)

371 #define DBUF_VERI FY(db)

373 #endi f

376 #ifdef _ cplusplus

377 }

__unchanged_portion_omtted_

——— e — —

new usr/src/uts/comon/fs/zfs/sys/dnu. h

R R R R

29810 Tue Cct 28 11:57:19 2014
new usr/src/uts/comon/ fs/zfs/sys/dnu. h
Possibility to physically reserve space without witing | eaf blocks

R R R R R

__unchanged_portion_onitted_
294 typedef void dmu_buf _evict_func_t(struct dmu_buf *db, void *user_ptr);

296 /*

297 * The names of zap entries in the D RECTORY_OBJECT of the MOS.
298 */

299 #define DMJ_POOL_DI RECTORY_OBJECT 1

300 #define DMJ_POOL_CONFI G "config"

301 #define DMJ_POOL_FEATURES FOR WRI TE "features_for_wite"
302 #define DMJ_POOL_FEATURES_FOR_READ "features_for_read"
303 #define DMJ_POOL_FEATURE_DESCRI PTIONS "feature_descriptions"
304 #define DMJ_POOL_FEATURE_ENABLED TXG "feature_enabl ed_t xg"
305 #define DMJ_POOL_ROOT_DATASET "root _dat aset”

306 #define DMJ_PQOOL_SYNC BPOBJ "sync_bplist"

307 #define DMJ_POOL_ERRLOG SCRUB "errlog_scrub"

308 #define DMJ_POOL_ERRLOG LAST "errlog_last"

309 #define DMJ _POOL_SPARES "spares”
310 #define DMJ_POOL_DEFLATE "defl ate"
311 #define DMJ_POOL_H STORY "hi story"

312 #defi ne DMJ_POOL_PROPS " pool _props"

313 #defi ne DMJ_POOL_L2CACHE "] 2cache"

314 #define DMJ_POOL_TMP_USERREFS "tnp_userrefs"”
315 #define DMJ_POOL_DDT " DDT- %- %- %"
316 #define DMJ_POOL_DDT_STATS "DDT-statistics"
317 #define DMJ_POOL_CREATI ON_VERSI ON "creation_version"
318 #define DMJ_POOL_SCAN "scan"

319 #define DMJ_POOL_FREE BPOBJ "free_bpobj"

320 #define DMJ_POOL_BPTREE_OBJ "bptree_obj"

321 #define DMJ_POOL_EMPTY_BPOBJ "enpty_bpobj "

323 /*

324 * Allocate an object fromthis objset. The range of object nunbers

325 * available is (0, DN_.MAX_OBJECT). Object 0 is the neta-dnode.

326 *

327 * The transaction nust be assigned to a txg. The newy allocated

328 * object will be "held" in the transaction (ie. you can nodify the

329 * newy allocated object in this transaction).

330 *

331 * dnu_object_alloc() chooses an object and returns it in *objectp.

332 *

333 * dnu_object_clain() allocates a specific object nunmber. |f that

334 * nunber is already allocated, it fails and returns EEXI ST.

335 *

336 * Return O on success, or ENOSPC or EEXI ST as specified above.

337 */

338 uint64_t dmu_object_all oc(objset_t *os, dnu_object_type_t ot,

339 int bl ocksize, dnu_object_type_t bonus _type, int bonus Ien dmu_t x_t *tx);
340 int dmu_object _cl ai m(objset_t *os, uint64_t object, dmu_object_type_t ot,
341 int bl ocksize, dmu_object_type_t bonus_type, i nt bonus_l en, dmu_tx_t *tx);
342 int dmu_object_reclain(objset_t *os, uint64_t object, dmu_object_type_t ot,
343 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
345 [*

346 * Free an object fromthis objset.

347 *

348 * The object’s data will be freed as well (ie. you don't need to call

349 * dnu_free(object, 0, -1, tx)).

350 *

351 * The object need not be held in the transaction.

352 *

new usr/src/uts/comon/fs/zfs/sys/dnu. h

353
354
355
356
357
358
359
360
361

363
364
365
366
367
368
369
370
371
372
373
374
375

377
378
379
380
381
382
383
384
385
386
387
388
389

391
392
393
394
395
396

398
399
400
401
402
403

405
406
407
408

410
411
412
413
414
415

417
418

If there are any holds on this object’s buffers (vi
or tx holds on the object (via dnu_tx_hol d_obj ect ()
free it; it fails and returns EBUSY.

a dnu_buf _hol d()),
), you can not

If the object is not allocated, it fails and returns ENCENT.

Return O on success, or EBUSY or ENCENT as specified above.

B

int dmu_obj ect _free(objset_t *os, uint64_t object,

/

dnmu_tx_t *tx);

Find the next allocated or free object.

The objectp paraneter is in-out. It will be updated to be the next
obj ect which is allocated. Ignore objects which have not been

nodi fi ed since txg.

XXX Can only be called on a objset with no dirty data.

Returns O on success, or ENCENT if there are no nore objects.

* Ok kR kR kb % b
-~

int dmu_obj ect _next(objset_t *os, uint64_t *objectp,
boolean_t hol e, uint64_t txg)

Set the data bl ocksize for an object.

The obj ect cannot have any bl ocks allcated beyond the first. |If
the first block is allocated already, the new size nust be greater
than the current block size. |f these conditions are not net,
ENOTSUP wi || be returned.

Returns 0 on success, or EBUSY if there are any holds on the object
contents, or ENOTSUP as described above.

* ok Ok ok o k% ok
-~

int dmu_obj ect _set_bl ocksi ze(obj set _t *os, uint64_t object,
int ibs, dmu_tx_ t *tx);

uint64_t size,

/*

* Set the checksum property on a dnode. The new checksum al gorithm will

* apply to all newly witten bl ocks; existing blocks will not be affected.
*/

voi d dnu_obj ect _set _checksun{objset_t *os, uint64_t object, uint8_t checksum

dmu_tx_t *tx);
/*
* Set the conpress property on a dnode. The new conpression algorithmwll
* apply to all newly witten bl ocks; existing blocks will not be affected.
*
voi d dnu_obj ect _set _conpress(objset_t *os, uint64_t object, uint8_t conpress,

dmu_tx_t *tx);

voi d

dmu_wri t e_enbedded(obj set _t *os, uint64_t object, uint64_t offset,

void *data, uint8_t etype, uint8_t conp, int unconpressed_size,
int conpressed_size, int byteorder, dnu_tx_t *tx);
/*
* Decide how to wite a block: checksum conpression, nunber of copies, etc.
*/
#defi ne WP_NOFI LL Ox1
#defi ne WP_DMJ_SYNC 0x2
#define WP_SPILL 0x4
void dnu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,

struct zio_prop *zp);

new usr/src/uts/comon/fs/zfs/sys/dnu. h

419 [*

420 * The bonus data is accessed nore or less like a regular buffer.

421 * You nust dnu_bonus_hold() to get the buffer, which will give you a
422 * dmu_buf _t with db_offset==-1ULL, and db_size = the size of the bonus
423 * data. As with any normal buffer, you nust call dnmu_buf_read() to
424 * read db_data, dmu_buf_will dlrty() before modi fying it, and the
425 * object nust be held in an assi gned transaction before cal | i ng

426 * dmu_buf _will _dirty. You nmay use dmu_buf_set_user() on the bonus
427 * buffer as well. You nust release your hold with dnu_buf_rele().
428 =

429 * Returns ENOENT, EIO, or O.

430 */

431 int dmu_bonus_hol d(obj set _t *0s, uint64_t object, void *tag, dmu_buf_t **);
432 int drmu_bonus_max(void

433 int dmu_set_bonus(dmu_| buf _t *,int, dmu_tx_t *);

434 int dnu_set_bonustype(dnu_buf _t *, dmu_object_type_ t, dmu_tx_t *);
435 dnu_obj ect _type_t dnu_get bonustype(drru buf _t *);

436 int dmu_rmspilT(objset_t *, uint64_t, dmu_tx_t *);

438 [*

439 * Special spill buffer support used by "SA" franmework

440 */

442 int dmu_spill_hol d_by_bonus(dmu_buf _t *bonus, void *tag, dmu_buf_t **dbp);
443 int dnu spl I'1 “hol d_by_dnode(struct dnode *dn, uint32_t flags,

444 voi d tag, dmu_buf _t **dbp);

445 int dmu_spill_hol d_existing(dmu_buf _t *bonus, void *tag, dmu_buf_t **dbp);

447 [*

448 * (otain the DMJ buffer fromthe specified object which contains the
449 * gspecified offset. dmu_buf_hold() puts a "hold" on the buffer, so
450 * that it will remain in menory. You nust release the hold with

451 * dmu_buf _rele(). You musn’t access the dmu_buf _t after rel easing your
452 * hold. You nust have a hold on any dnu_buf_t* you pass to the DMJ.
453 *

454 * You nust call dmu_buf_read, dmu_buf_wll _dirty, or dmu_buf_will_fill
455 * on the returned buffer before reading or witing the buffer’s

456 * db_data. The comments for those routines describe what particul ar
457 * operations are valid after calling them

458 *

459 */The obj ect number nmust be a valid, allocated object nunber.

460 *

461 int dnu_buf _hol d(objset_t *os, uint64_t object, uint64_t offset,

462 void *tag, dmu_buf _t **, int flags);

463 void dmu_buf _add_ref (dmu_buf _t *db, void* tag);
464 void dmu_buf _rel e(dmu_buf_t *db, void *tag);
465 uint64_t dmu_buf _refcount (dmu_buf _t *db);

467 | *

468 * dmu_buf _hol d_array holds the DMJ buffers which contain all bytes in a
469 * range of an object. A pointer to an array of dmu_buf_t*'s is

470 * returned (in *dbpp).

471 *

472 * dmu_buf _rele_array rel eases the hold on an array of dmu_buf_t*'s, and
473 * frees the array. The hold on the array of buffers MJIST be rel eased
474 * with dnu_buf _rele_array. You can NOT rel ease the hold on each buffer
475 * individually with dmu_buf_rele.

476 */

477 int dmu_buf_hol d_array_by_bonus(dnu_buf_t *db, uint64_t offset,

478 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);

479 void dnu_buf _rel e_array(drm_buf_t ** int nunbufs, void *tag);

481 [*

482 * Returns NULL on success, or the existing user ptr if it’s already
483 * been set.

484 *

new usr/src/uts/comon/fs/zfs/sys/dnu. h

485 * user_ptr is for use by the user and can be obtained via dnmu_buf_get_user().
486 *

487 * user_data_ptr_ptr should be NULL, or a pointer to a pointer which

488 * will be set to db->db_data when you are allowed to access it. Note

489 * that db->db_data (the pointer) can change when you do dmu_buf _read(),

490 * dnu_buf _tryupgrade(), dmu_buf _will _dirty(), or dmu_buf _will _fill().

491 * *user_data_ptr_ptr will be set to the new val ue when it changes.

492 *

493 * If non-NULL, pageout func will be called when this buffer is being

494 * excised fromthe cache, so that you can clean up the data structure

495 * pointed to by user_ptr.

496 *

497 * dnu_evict _user() will call the pageout func for all buffers in a

498 * objset with a given pageout func.

499 */

500 void *dru_buf _set user(dr'ru buf _t *db, void *user_ptr, void *user_data_ptr_ptr,
501 dmu_buf _evi ct _func_t *pageout func)

502 /*

503 * set_user_ie is the sane as set_user, but request inmmediate eviction
504 * when hold count goes to zero.
*

505

506 voi d *dmu_buf _set _user_ie(dnu_buf _t *db, void *user_ptr,

507 void *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func);
508 void *dmu_buf _updat e_user (dnu_buf _t *db_fake, void *old_user_ptr,
509 void *user_ptr, void *user _data_ptr_ptr,

510 dmu_buf _evict_func_t *pageout _func);

511 void dnu_evict_user(objset_t *os, dmu_ buf _evict_func_t *func);

513 /*

514 * Returns the user_ptr set with dmu_buf_set_user(), or NULL if not set.
515 */

516 voi d *dmu_buf _get _user (dnu_buf _t *db);

518 /*

519 * Returns the bl kptr associated with this dbuf, or NULL if not set.
520 */

521 struct bl kptr *dmu_buf _get bl kptr(dnu_buf _t *db);

523 /| *

524 * Indicate that you are going to nodify the buffer’s data (db_data).
525 *

526 * The transaction (tx) nust be assigned to a txg (ie. you ve called
527 * dmu_tx_assign()). The buffer’s object nust be held in the tx

528 * (ie. you've called dnu_tx_hol d_object (tx, db->db_object)).

529 */

530 void dnu_buf _will _dirty(dnu_buf_t *db, dmu_tx_t *tx);

532 /*

533 * Tells if the given dbuf is freeable.

534 */

535 bool ean_t dnu_buf _freeabl e(dmu_buf _t *);

537 I*

538 * You nust create a transaction, then hold the objects which you will
539 * (or might) nodify as part of this transaction. Then you nust assign
540 * the transaction to a transaction group. Once the transaction has
541 * been assigned, you can nodify buffers which belong to held objects as
542 * part of this transaction. You can’t nodify buffers before the

543 * transaction has been assigned; you can’t nodify buffers which don't
544 * belong to objects which this transaction holds; you can’t hold

545 * objects once the transaction has been assigned. You may hold an
546 * object which you are going to free (wth dmu_object _free()), but you
547 * don't have to.

548 *

549 * You can abort the transaction before it has been assigned.

550 *

new usr/src/uts/comon/fs/zfs/sys/dnu. h

551 * Note that you may hold buffers (w th dmu_buf_hold) at any tine,
552 * regardl ess of transaction state.

553 */

555 #define DMJ_NEW OBJECT (-1ULL)
556 #define DMJ_OBJECT_END (-1ULL)

558 drmu_tx_t *dnu_t x_create(objset_t *os);

559 void dnu_tx_hold_wite(dnmu_tx_t *tx, uint64_t object, uint64_t off, int len);

560 void dnmu_tx_hold _free(dmu_tx_t *tx, uint64_t object, uint64_t off,
561 uinté4_t len);

562 void dnu_tx_hol d zap(dr'ru tx_t *tx, uint64_t object, int add, const char *nane);

563 voi d drmu_t x_hol d_bonus(dmu_tx_t *tx, uint64_t object);
564 void dnmu_tx_hold_spill(dmi_tx_t *tx, uint64_t object);

565 void dmu_tx_hol d_sa(dmu_tx_t *tx, struct sa_handl e *hdl, bool ean_t may_grow);

566 voi d drmu_tx_hol d_sa_creat e(dmu_| tx _t *tx, int total _size);
567 void dmu_tx abort(dnu tx_t *tx);

568 int dmu_tx_assign(dmu_tx_t *tx, enumtxg_how txg_how);
569 void drmu_tx_wait(dmu_tx_t *tx);

570 void dnu_tx_conm't(dnu tx_t *tx);

571 void dnu_tx_nark_netfree(dmu_tx_t *tx);

573 | *

574 * To register a commit callback, dnu_tx_callback_register() nust be called.
575 *

576 * dcb_data is a pointer to caller private data that is passed on as a

577 * callback paraneter. The caller is responsible for properly allocating and
578 * freeing it.

579 *

580 * \WWen registering a callback, the transaction nust be already created, but
581 * it cannot be committed or aborted. It can be assigned to a txg or not.
582 *

583 * The callback will be called after the transaction has been safely witten
584 * to stable storage and will also be called if the dmu_tx is aborted.

585 * If there is any error which prevents the transaction from being conmitted to
586 * disk, the callback will be called with a value of error != 0.

587 */

588 typedef void dmu_tx_call back_func_t(void *dcb_data, int error);

590 void dmu_tx_cal | back_register(dnu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,

591 voi d *dcb_dat a);

593 /*

594 * Free up the data blocks for a defined range of a file. |If sizeis
595 * -1, the range fromoffset to end-of-file is freed.

596 */

597 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
598 “uint64_t size, dmu_tx_t *tx);

599 int drmu_free_|l ong_ range(obJ set _t *os, uint64_t object, uint64_t offset,
600 uint64_t size);

601 int dnu_free_| ong_obj ect(obj set _t *os, uint64_t object);

603 /*

604 * Conveni ence functions.

605 *

606 * Canfail routines will return O on success, or an errno if there is a
607 * nonrecoverable I/O error.

608 */

609 #defi ne DMJ_READ PREFETCH 0 /* prefetch */

610 #define DMJ READ NO PREFETCH 1 /* don't prefetch */

611 int dnu read(obJ set_t *os, uint64_t object, uint64_t offset, uint64_t size,
612 void *buf, uint 32_t flags);

613 void dnu_write(obj set_t *os, uint64_t object, uint64_t offset, uint64_t size,

614 const void *buf, dnu_tx_t *tx);
615 void dmu_wite_zero(objset_t *os, uint64_t object, uint64_t offset, uint64_t
616 #endif /* ! codereview */

new usr/src/uts/comon/fs/zfs/sys/dnu. h 6
617 void dnu_preal | oc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
618 dmu_tx_t *tx);

619 int drmu_read_uio(objset t *os, uint64_t object, struct uio *uio, uint64_t size);
620 int dmu_read_ui o_dbuf (dmu_buf _t *zdb, struct uio *uio, uint64_t size);

621 int dmu_wite_ui o(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
622 dmu_tx_t *tx);

623 int dmu_write_uio_dbuf (dmu_buf _t *zdb, struct uio *uio, uint64_t size,

624 dmu_tx_t *tx);

625 int dmu_wite_pages(objset_t *os, uint64_t object, uint64_t offset,

626 uint64_t size, struct page *pp, dmu_tx_t *tx);

627 struct arc_buf *dmu _request _arcbuf (dmu_buf _t *handl e, int size);

628 void dnu_return_arcbuf (struct arc_buf *buf);

629 voi d dnu_assi gn_arcbuf (dnu_buf _t *handl e, uint64_t offset, struct arc_buf *buf,
630 dmu_tx_t *tx);

631 int dmu_xuio_init(struct xuio *uio, int niov);

632 void dnu_xuio_fini(struct xuio *uio);

633 int dnu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,

634 size_t n);

635 int dnu_xuio_cnt(struct xuio *uio);

636 struct arc_buf *dmu_xuio arcbuf(struct Xuio *uio, int i);

637 void dnu_xui o_cl ear(struct Xuio *uio, int i);

638 void xui o_stat_wbuf_copied();

639 void xuio_stat_wbuf _nocopy();

641 extern int zfs_prefetch_disable;

643 /[*

644 * Asynchronously try to read in the data.

645 */

646 void dnu_prefetch(objset_t *os, uint64_t object, uint64_t offset,

647 uint64_t len);

649 typedef struct dmu_object_info {

650 /* Al sizes are in bytes unless otherwi se indicated. */

651 uint32_t doi _data_bl ock_si ze;

652 uint32_t doi _net adat a_bl ock_si ze;

653 dmu_obj ect _type_t doi _type;

654 dmu_obj ect _type_t doi _bonus_type;

655 uint64_t doi _bonus_si ze;

656 uint8_t doi _indirection; /* 2 = dnode->i ndirect->data */
657 uint8_t doi _checksum

658 ui nt8_t doi _conpress;

659 uint8_t doi _nbl kptr;

660 uint8_t doi _pad[4];

661 ui nt 64_t doi _physi cal _bl ocks_512; /* data + netadata, 512b bl ks */
662 uint64_t doi _nmax_of fset;

663 uint64_t doi _fill_count; /* nunber of non-enpty bl ocks */

664 } dmu_object_info_t;
666 typedef void arc_byteswap_func_t(void *buf, size_t size);

668 typedef struct dnu_object_type_info {

669 drmu_obj ect _byt eswap_t ot _byt eswap;
670 bool ean_t ot _net adat a;
671 char *ot _nane;

672 } dmu_obj ect _type_info_t;

674 typedef struct dmu_object_byteswap_info {
675 arc_byt eswap_func_t *ob_func;
676 char *ob_nane;
677 } dmu_obj ect _byteswap_info_t;

679 extern const dmu_object_type_info_t dnu_ot[DMJ_OT_NUMIYPES] ;

680 extern const dnu_obj ect _byteswap_i nfo_t dmu_ot _byt eswap[DMJ_BSWAP_NUMFUNCS] ;

682 /*

new usr/src/uts/comon/fs/zfs/sys/dnu. h

683 * Get information on a DWMJ object.

684 *

685 * Return O on success or ENCENT if object is not allocated.

686 *

687 * |f doi is NULL, just indicates whether the object exists.

688 */

689 int dnu_object_info(objset_t *os, uint64_t object, dnu_object_info_t *doi);
690 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
691 voi d dnu_obj ect _i nfo_from dnode(struct dnode *dn, dnu_object_info_t *doi);
692 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
693 voi d drmu_obj ect _i nfo_from db(dnu_buf _t *db, dmu_object_info_t *doi);

694 /*

695 * Like dmu_object_info_fromdb, but faster still when you only care about
696 * the size. This is specifically optimzed for zfs_getattr().

697 */

698 voi d dmu_obj ect _si ze_fromdb(dmu_buf _t *db, uint32_t *blksi ze,

699 u_l ongl ong_t *nbl k512);

701 typedef struct dmu_objset_stats {

702 uint64_t dds_numclones; /* nunber of clones of this */

703 uint64_t dds_creation_txg;

704 uint64_t dds_guid;

705 drmu_obj set _type_t dds_type;

706 uint8_t dds_is_snapshot;

707 uint8_t dds_inconsistent;

708 char dds_ori gi n[MAXNAVELEN] ;

709 } dmu_obj set_stats_t;

711 [*

712 * Cet stats on a dataset.

713 =/

714 void drmu_obj set _fast_stat(objset_t *os, dnu_objset_stats_t *stat);

716 [*

717 * Add entries to the nvlist for all the objset’s properties. See

718 * zfs_prop_table[] and zfs(1lm) for details on the properties.

719 *

720 voi d dnu_obj set _stats(objset_t *os, struct nvlist *nv);

722 | *

723 * Get the space usage statistics for statvfs().

724 *

725 * refdbytes is the anount of space "referenced" by this objset.

726 * availbytes is the anpbunt of space available to this objset, taking
727 * into account quotas & reservations, assumng that no other objsets
728 * use the space first. These values correspond to the 'referenced and
729 * ’avail able’ properties, described in the zfs(1n) nanpage.

730 *

731 * usedobjs and availobjs are the nunber of objects currently allocated,
732 * and avail abl e.

733 */

734 voi d dnmu_obj set _space(objset _t *os, uint64_t *refdbytesp, uint64_t *avail bytesp,
735 uint64_t *usedobjsp, uint64_t *avail objsp);

737 |*

738 * The fsid_guid is a 56-bit ID that can change to avoid collisions.

739 * (Contrast with the ds_guid which is a 64-bit IDthat will never

740 * change, so there is a small probability that it will collide.)

741 */

742 uint64_t dnu_objset_fsid_guid(objset_t *os);

744 | *

745 * Get the [cnjtine for an objset’s snapshot dir

746 */

747 timestruc_t dmu_obj set_snap_cnti ne(objset_t *os);

new usr/src/uts/comon/ fs/zfs/sys/dnu. h

749

751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

767
768
769
770
771
772

774
775
776
777

779
780
781
782
783
784
785
786
787
788

790
791
792
793
794
795
796
797
798
799

801
802

804
805
806
807
808
809

811
812
813
814

i nt dmu_obj set _i s_snapshot (obj set _t *os);

extern struct spa *dmu_obj set _spa(objset_t *os);

extern struct zilog *dnu_objset_zil (objset_t *os);

extern struct dsl_pool *dmu_obj set_pool (objset_t *os);

extern struct dsl_dataset *dnu_objset _ds(objset_t *os);

extern void dmu_obj set _nanme(objset_t *os, char *buf);

extern dnu_obj set _type_t dnmu_obj set_type(objset_t *os);

extern uint64_t dnu_objset_id(objset_t *os);

extern zfs_sync_type_t dnu_obj set _syncprop(objset_t *os);

extern zfs_|l ogbias_op_t dnu_obj set | ogbi as(objset_t *os);

extern int dmu_snapshot _|ist_next (objset_t *os, int nanelen, char *nane,
uint64_t *id, uint64_t *offp, boolean_t *case_conflict);

extern int dmu_snapshot _real nane(objset_t *os, char *name, char *real,
int maxlen, boolean_t *conflict);

extern int dmu_dir_list_next(objset_t *os, int nanel en, char *nane,
uint64_t *idp, uint64_t *offp);

typedef int objset_used_cb_t (dmu_object_type_t bonustype,
voi d *bonus, uint64_t *userp, uint64_t *groupp);

extern void dmu_obj set_regi ster_type(dmu_objset_type_t ost,
obj set _used_cb_t *cb);

extern void dnu_obj set _set _user (objset_t *os, void *user_ptr);

extern voi d *dmu_obj set _get _user (obj set _t *os);

/*

* Return the txg nunber for the given assigned transaction.
*/

uint64_t drmu_tx_get_txg(dmu_tx_t *tx);

/*

* Synchronous write.

* |If a parent zio is provided this function initiates a wite on the
* provided buffer as a child of the parent zio.

* In the absence of a parent zio, the wite is conpleted synchronously.
* At wite conpletion, blk is filled with the bp of the witten bl ock.
* Note that while the data covered by this function will be on stable
* storage when the wite conpletes this new data does not becone a

* permanent part of the file until the associated transaction commits.
*/

/*

* {zfs, zvol , ztest}_get _done() args

*

typedef struct zgd {

struct zilog *zgd_zi |l og;
struct bl kptr *zgd_bp;
dmu_buf _t *zgd_db;
struct rl *zgd_rl;
voi d *zgd_private;
} zgd_t;
typedef void dmu_sync_cb_t(zgd_t *arg, int error);

int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);

/*

* Find the next hole or data block in file starting at *off

* Return found offset in *off. Return ESRCH for end of file.

*/

int dmu_of fset _next(objset_t *os, uint64_t object, boolean_t hole,
uint64_t *off);

/*

* Initial setup and final teardown.

*/

extern void dmu_init(void);

new usr/src/uts/comon/fs/zfs/sys/dnu. h

815 extern void dmu_fini(void);

817 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
818 uint64_t object, uint64_t offset, int len);

819 void dnu_traverse_objset(objset_t *os, uint64_t txg_start,

820 dmu_traverse_cb_t cb, void *arg);

822 int dnu_diff(const char *tosnap_name, const char *fromsnap_nane,

823 struct vnode *vp, offset_t *offp);

825 /* CRC64 table */

826 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form*/
827 extern uint64_t zfs_crc64_tabl e[256];

829 extern int zfs_ndconp_di sabl e;

831 #ifdef __cplusplus

832 }

833 #endi f

835

#endif /* _SYS DMJ H */

new usr/src/uts/comon/ fs/zfs/sys/spa.h

R R R R

32347 Tue Cct

28 11:57:19 2014

new usr/src/uts/comon/ fs/zfs/sys/spa.h

Possibility to physically reserve space without witing |

B R R R)

__unchanged_portion_onitted_

316
317
318
319
320
321
322
323

325
326

328
329

331
332
333
334

336
337

339
340
341
342
343
344
345
346
347

349
350
351
352
353
354
355
356

358
359

361
362

364
365
366
367
368
369
370

372
373

eaf bl ocks
* ok ok ok ok

/*
* Macros to get and set fields in a bp or DVA
*
/
#defi ne DVA_GET_ASI ZE(dva) \

BF64_GET_SB((dva) - >dva_word[0],
DVA_SET_ASI ZE(dva, Xx) \
BF64_SET_SB((dva)->dva_word[0],
SPA_M NBLOCKSHI FT, 0, X)

0, SPA _ASI ZEBI TS, SPA_M NBLOCKSHI FT, 0)
#def i ne
0, SPA _ASI ZEBI TS, \

#defi ne DVA_CET_GRI D(dva) BF64_GET((dva)->dva_word[0], 24, 8)
#defi ne DVA_SET_GRI D(dva, X) BF64_SET((dva)->dva_word[0], 24, 8, Xx)
#def i ne DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32)
#defi ne DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x)

#def i ne DVA_GET_OFFSET(dva) \
BF64_GET_SB((dva)->dva_word[1],
DVA_SET_OFFSET(dva, x) \

BF64_SET_SB((dva) - Sdva _word[1],

DVA_GET_GANG dva) BF64_GET((dva)->dva_word[1],
DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1],

BP_GET_LSI ZE(bp) \
(BP_I S_EMBEDDED(bp) ? \
(BPE_GET_ETYPE(bp) == BP_EMBEDDED TYPE _DATA ? BPE_GET_LSI ZE(bp) : 0): \
BF64_GET_SB((bp) - >bl k_prop, 0, SPA_LSIZEBITS, SPA_M NBLOCKSHI FT, 1))
BP_SET_LSI ZE(bp, x) do { \
ASSERT(! BP_I S_EMBEDDED(bp)) ; \
BF64_SET_SB((bp) - >bl k_pr op,
0, SPA_LSIZEBI TS, SPA_M NBLOCKSHI FT, 1, x); \
_NOTE(CONSTCOND) } while (0)

0, 63, SPA_M NBLOCKSHI FT, 0)
#def i ne
0, 63, SPA_M NBLOCKSHI FT, 0, x)

#defi ne
#defi ne

63, 1)
63, 1, X)

#defi ne

#defi ne

#def i ne BP_GET_PSI ZE(bp) \
(BP_IS_ ENBEDDED(bp) ?20:\
BF64_GET_SB((bp) - >bl k prop,

#define BP_SET_PSI ZE(bp, x) o {
ASSERT(! BP_| S_EMBEDDED(bp)) \
BF64_SET_SB((bp) - >bl k_prop, \

16, SPA_PSI ZEBI TS, SPA_M NBLOCKSHI FT, 1, x); \

_NOTE(CONSTCOND) } whil e (0)

16, SPA_PSI ZEBI TS, SPA_M NBLOCKSHI FT, 1))
\

#def i ne BP_GET_COVPRESS(bp) BF64_GET((bp) - >bl k_prop, 32, 7)
#def i ne BP_SET_COMPRESS(bp, x) BF64_SET((bp) - >bl k_prop, 32, 7, x)
#def i ne BP_| S_EMBEDDED(bp) BF64_GET((bp) - >bl k_prop, 39, 1)
#defi ne BP_SET_EMBEDDED(bp, x) BF64_SET((bp) - >bl k_prop, 39, 1, x)

#def i ne BP_GET_CHECKSUM bp) \
(BP_I S_EMBEDDED(bp) ? ZI O CHECKSUM OFF : \

BF64_CET((bp) - >bl k_prop, 40, 8))

#defi ne BP_SET_CHECKSUM bp, x) do { \
ASSERT(! BP_| S_EMBEDDED(bp)); \
BF64_SET((bp)->bl k_prop, 40, 8, x); \

_NOTE(CONSTCOND) '} whi | e (0)

#def i ne BP_GET_TYPE(bp)
#define BP_SET_TYPE(bp, Xx)

BF64_CGET((bp) - >bl k_prop, 48, 8)
BF64_SET((bp) - >bl k_prop, 48, 8, x)

new usr/src/uts/comon/fs/zfs/sys/spa.h

375
376

378
379

381
382
383

385
386

388
389
390

392
393
394
395
396
397

399

401
402
403
404
405

407
408
409

411
412
413
414
415

417
418
419
420
421

423
424
425

427
428
429
430
431
432

434
435
436
437
438

440

#def i ne BP_GET_LEVEL(bp)
#defi ne BP_SET_LEVEL(bp, x)

BF64_GET((bp) - >bl k_prop, 56, 5)
BF64_SET((bp) - >bl k_prop, 56, 5, x)

)

\

#def i ne BP_GET_PROP_RESERVATI ON(bp) BF64_GET((bp) - >bl k_prop, 61, 1
#def i ne BP_SET_PROP_RESERVATI ON(bp, x) BF64_SET((bp) - >bl k_prop, 61, 1,
#endif /* | codereview */
#def i ne BP_GET_DEDUP(bp) BF64_GET((bp) - >bl k_prop, 62, 1)
#def i ne BP_SET_DEDUP(bp, x) BF64_SET((bp) - >bl k_prop, 62, 1, x)
#defi ne BP_GET_BYTEORDER(bp) BF64_GET((bp)->bl k_prop, 63, 1)
#def i ne BP_SET_BYTEORDER(bp, x) BF64_SET((bp) - >bl k_prop, 63, 1, x)
#def i ne BP_PHYSI CAL_BI RTH(bp) \
(BP_I'S EMBEDDED(bp) ? 0 : \
(bp) - >bl k_phys_birth 2 (bp) >pbl k_phys_birth : (bp)->bl k_birth)
#defi ne BP_SET_BI RTH(bp, |ogical, physical) \
{ \
ASSERT(! BP_I S_EMBEDDED(bp)) ; \
(bp) - >bl k_| b|rth—(|0|cal) \
(bp) - >bl k_phys_birth = ((Iogl cal) == (physical) ? 0 : (physical));
}
#define BP_GET_FILL(bp) (BP_IS_EMBEDDED(bp) ? 1 : (bp)->blk_fill)
#def i ne BP_GET_ASI ZE(bp) \
(BP_I'S_EMBEDDED(bp) ? 0 : \
DVA_GET_ASI ZE(& bp) - >bl k_dva[0]) +
DVA_GET_ASI ZE(&(bp) - >bl k_dva[1]) +
DVA_GET_ASI ZE(&(bp) - >bl k_dva[2]))
#def i ne BP_GET_UCSI ZE(bp) \
((BP_GET_LEVEL(bp) > 0 || DNU OT_| S_METADATA(BP_GET_TYPE(bp))) ? \
BP_GET_PSI ZE(bp) : BP_GET_LSI ZE(bp))
#def i ne BP_GET_NDVAS(bp) \
(BP_I S_EMBEDDED(bp) ? 0 : \
' DVA_GET_ASI ZE(& bp) - >bl k_dva[0]) \
11 DVA_GET_ASI ZE(& bp) - >bl k_dva[1]) \
11 DVA_GET_ASI ZE(& bp) - >bl k_dva[2]))
#def i ne BP_COUNT_GANG(bp) \
(BP_I'S_ENMBEDDED(bp) ? 0
(DVA_GET_| &(bp) - >bl k_dva[0]) + \
DVA GET_GANG(&(bp) - >bl k_dva[1]) + \
DVA_GET_GANG(&(bp) - >bl k_dva[2])))
#defi ne DVA_EQUAL(dval, dva2) \
((dval) - >dva word[l] == (dva2)->dva_word[1] && \
(dval)->dva_word[0] == (dva2)->dva_word[0])
#defi ne BP_EQUAL(bpl, bp2) \
(BP_PHYSI CAL_BI RTH(bp1) == BP_PHYSI CAL_BIRTH(bp2) && |
(bpI)->bl k_birth == (bp2)->blk_birth & \
DVA_EQUAL(&(bpl) - bl k _dva[0], &(bp2)->blk_dva[0]) && \
DVA_EQUAL(& bp1) - >bl k_dva[1], &(bp2)->blk_dva[1l]) && \
DVA_EQUAL(& bpl) - >bl k_dva[2], & bp2)->blk_dva[2]))
#define ZI O CHECKSUM EQUAL(zc1, zc2) \
(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
((zcl).zc_word[1] - (zc2).zc_word[1]) | \
((zcl).zc_word[2] - (zc2).zc_word[2]) | \
((zcl).zc_word[3] - (zc2).zc_word[3])))
#define DVA_I'S_VALI D(dva) (DVA_GET_ASI ZE(dva) != 0)

X)

new usr/src/uts/comon/ fs/zfs/sys/spa.h

442 #define ZI O SET_CHECKSUM zcp, w0, wl, W2, w3)

\
443 { \
444 (zcp)->zc_word[0] = wO; \
445 (zcp)->zc_word[1] = wi; \
446 (zcp)->zc_word[2] = w2; \
447 (zcp)->zc_word[3] = wB; \
448 }
450 #define BP_| DENTI TY(bp) (ASSERT(! BP_| S EMBEDDED(bp)), &(bp)->bl k_dva[0])
451 #define BP_I S_GANG bp)
452 (BP_I'S_EMBEDDED(bp) ? B_ FALSE DVA_GET_GANG(BP_| DENTI TY(bp)))
453 #define DVA_I'S_EMPTY(dva) “((dva)->dva_word[0] == OULL &&
454 (dva) - >dva_word[1] == OULL)

455 #define BP IS HOLE(bp) \
456 (! BP_I S_EMBEDDED(bp) && DVA | S_EMPTY(BP_I DENTI TY(bp)))

458 /* BP_I S_RAI DZ(bp) assumes no bl ock conpression */
459 #define BP_I S_RAI DZ(bp) (DVA_GET_ASI ZE(&(bp) - >bl k_dva[0]) >\

460 BP_GET_PSI ZE(bp))
462 #define BP_ZERQ(bp) \
463 { \
464 (bp) - >bl k_dva[0] . dva_word[0] = O; \
465 (bp) - >bl k_dva[0] . dva_word[1] = O; \
466 (bp) - >bl k_dva[1] . dva_word[0] = O0; \
467 (bp)->bl k_dva[1] . dva_word[1] = O; \
468 (bp) ->bl k_dva[2] . dva_word[0] = O; \
469 (bp)->bl k_dva[2].dva_word[1] = O; \
470 (bp)->bl k_prop = 0; \
471 (bp) ->bl k_pad[0] = 0; \
472 (bp) - >bl k_pad[1] = O; \
473 (bp) ->bl k_phys_birth = 0; \
474 (bp)->bl k_birth = 0; \
475 (bp)->bl k_fill = 0; \
476 ZI O SET_CHECKSUM &(bp) - >bl k_cksum 0, 0, 0, 0); \
477 }

479 #ifdef _BI G ENDI AN

480 #define ZFS_HOST_BYTEORDER (ouLL)

481 #el se

482 #define ZFS_HOST_BYTEORDER (1uLL)

483 #endi f

485 #define BP_SHOULD BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS HOST BYTEORDER)

487 #define BP_SPRINTF_LEN 320

489 /*
490 * Thls macro all ows code sharing between zfs, |ibzpool, and ndb.
491 = func is either snprintf() or mdb_snprintf().

492 * 'ws’' (whitespace) can be ’ for single-line format, "\n’ for multi-line.
493 */

494 ?define SNPRI NTF_BLKPTR(func, ws, buf, size, bp, type, checksum conpress) \
495

496 static const char *copynama[] =

497 { "zero", "single", "double", "triple" };

498 int len = O;

499 int copies = 0;

500

501 if (bp == NULL) {

502 len += func(buf + len, size - len, "<NULL>");

503 } else if (BP_IS HOLE(bp)) {

504 len += func(buf + len, size - len, "<hole>");

505 if (bp->blk blrth>0) {

506 len += func(buf + len, size - len,

P

new usr/src/uts/comon/ fs/zfs/sys/spa.h

507 " birth=%1u \
508 (u_l Ionglongt)bp >bl k_birth); \
509 } \
510 } else if (BP_IS_EMBEDDED(bp)) { \
511 len = func(buf + len, size - len, \
512 "EMBEDDED [L% | u %] et=%u % " \
513 "size=%1|xL/% | xP birth=%1IuL" \
514 (u | ongl ong_t) BP_GET_LEVEL(bp) t
515

516 (| nt)BPE GET_ETYPE(bp) , \
517 conpr ess, \
518 (u_l ongl ong_t) BPE_GET_LSI ZE(bp), \
519 (u_l ongl ong_t) BPE_GET_PSI ZE(bp) , \
520 (u_l ongl ong_t) bp->bl k_birth); \
521 } else { \
522 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
523 const dva_t *dva = &bp->bl k_dva[d]; \
524 if (DVA_I'S_VALID(dva)) \
525 copi es++; \
526 len += func(buf + len, size - len, \
527 "DVA[%] =<% | u: % | x: % | x>%", d, \
528 (u_l ongl ong_t) DVA_ GET_VDEV(dva) \
529 (u_l ongl ong_t) DVA GET_OFFSET(dva) \
530 (u_l ongl ong_t) DVA_GET_ASI ZE(dva), \
531 ws) ; \
532 } \
533 if (BP_IS_GANG bp) && \
534 DVA GET_ASI ZE(&p- >bl k_dva[2]) <= \
535 DVA_GET_ASI ZE(&p->bl k_dva[1]) / 2) \
536 copi es--; \
537 len += func(buf + len, size - len, \
538 "[L%Iu %] % % % % % Y%" \
539 "size=%I|xL/%|xP birth=%1uL/% I uP fill=%1Iu%" \
540 "cksumr% | x: % | x: % | x: % | x", \
541 (u_l ongl ong_t) BP_CGET_LEVEL(bp), \
542 type, \
543 checksum \
544 conpr ess, \
545 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
546 BP_I'S GANG(bp) ? "gang" : "contiguous", \
547 BP_GET_DEDUP(bp) ? "dedup" : "unique", \
548 copynane[copi es] , \
549 ws, \
550 (u_l ongl ong_t) BP_CGET_LSI ZE(bp) , \
551 (u_l ongl ong_t) BP_CGET_PSI ZE(bp) , \
552 (u_l ongl ong_t) bp->bl k_bi rth, \
553 (u_l ongl ong_t) BP_PHYSI CAL_BI RTH(bp) , \
554 (u | ongl ong_t) BP_GET_FI LL(bp), \
555 ws, \
556 (u_l ongl ong_t) bp->bl k_cksum zc_word[0], \
557 (u_l ongl ong_t) bp- >bl k_cksum zc_word[1], \
558 (u_l ongl ong_t) bp->bl k_cksum zc_wor d[2], \
559) (u_l ongl ong_t) bp->bl k_cksum zc_word[3]); t
560

561 ASSERT(| en < size); \
562 }

564 #include <sys/dnu. h>

566 #define BP_GET_BUFC TYPE(bp)

567 ((UBP_GET. _LEVEL(bp) > 0) || (DMJ OT_I'S METADATA(BP_GET TYPE(bp)))) 2\
568 ARC_BUFC_METADATA : ARC BUFC_DATA)

570 typedef enum spa_inport_type {

571 SPA | MPORT_EXI STI NG,

572 SPA | MPORT_ASSEMBLE

new usr/src/uts/comon/ fs/zfs/sys/spa.h

573 } spa_inport_type_t;

575 /* state manipul ation functions */

576 extern int spa_open(const char *pool, spa_t **, void *tag);

577 extern int spa_open_rew nd(const char *pool, spa_t **, void *tag,

578 nvliist_t *policy, nvlist_t **config);

579 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
580 size_t buflen);

581 extern int spa_create(const char *pool, nvlist_t *config, nvlist_t *props,
582 nvlist_t *zplprops);

583 extern int spa_inport_rootpool (char *devpath, char *devid);

584 extern int spa_inport(const char *pool, nvlist_t *config, nvlist_t *props,
585 uint64_t flags);

586 extern nvlist_t *spa_tryinport(nvlist_t *tryconfig);

587 extern int spa_destroy(char *pool);

588 extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
589 bool ean_t hardforce);

590 extern int spa_reset(char *pool);

591 extern void spa_async_request(spa_t *spa, int flag);

592 extern void spa_async_unrequest (spa_t *spa, int flag);

593 extern void spa_async_suspend(spa_t *spa);

594 extern void spa_async_resune(spa_t *spa);

595 extern spa_t *spa_inject_addref(char *pool);

596 extern void spa_inject_delref(spa_t *spa);

597 extern void spa_scan_stat_init(spa_t *spa);

598 extern int spa_scan_get_stats(spa_t *spa, pool _scan_stat_t *ps);

600 #define SPA_ASYNC CONFI G_UPDATE 0x01

601 #define SPA_ASYNC REMOVE 0x02

602 #define SPA_ASYNC_PROBE 0x04

603 #define SPA_ASYNC RESI LVER DONE 0x08

604 #define SPA_ASYNC RESI LVER 0x10

605 #define SPA_ASYNC_ AUTCOEXPAND 0x20

606 #define SPA_ASYNC REMOVE_DONE 0x40

607 #define SPA_ASYNC REMOVE_STOP 0x80

609 /*

610 * Controls the behavior of spa_vdev_renove().

611 */

612 #defi ne SPA_REMOVE_UNSPARE 0x01

613 #defi ne SPA_REMOVE_DONE 0x02

615 /* devi ce mani pul ation */

616 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);

617 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
618 int replacing);

619 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,

620 int replace_done);

621 extern int spa_vdev_renove(spa_t *spa, uint64_t guid, boolean_t unspare);
622 extern bool ean_t spa_vdev_renove_active(spa_t *spa);

623 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
624 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
625 extern int spa_vdev_split_mirror(spa_t *spa, char *newnane, nvlist_t *config,
626 nvlist_t *props, boolean_t exp);

628 /* spare state (which is global across all pools) */

629 extern void spa_spare_add(vdev_t *vd);

630 extern void spa_spare_renpve(vdev_t *vd);

631 extern bool ean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
632 extern void spa_spare_activate(vdev_t *vd);

634 /* L2ARC state (which is global across all pools) */

635 extern void spa_| 2cache_add(vdev_t *vd);

636 extern void spa_|l 2cache_renove(vdev_t *vd);

637 extern bool ean_t spa_l 2cache_exi sts(uint64_t guid, uint64_t *pool);

638 extern void spa_l 2cache_activate(vdev_t *vd);

new usr/src/uts/comon/ fs/zfs/sys/spa.h

639

641
642
643

645
646
647

extern void spa_|l 2cache_drop(spa_t *spa);

/* scanning */
extern int spa_scan(spa_t *spa, pool _scan_func_t func);
extern int spa_scan_stop(spa_t *spa);

/* spa syncing */
extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMJ use */
extern void spa_sync_al |l pool s(void);

649 /* spa nanmespace gl obal nutex */

650 extern kmutex_t spa_nanespace_| ock;

652 /*

653 * SPA configuration functions in spa_config.c

654 */

656 #define SPA_CONFI G UPDATE POOL 0

657 #define SPA_CONFI G_UPDATE_VDEVS 1

659 extern void spa_config_sync(spa_t *, bool ean_t, boolean_t);
660 extern void spa_config_| oad(void);

661 extern nvlist_t *spa_all_configs(uint64_t *);

662 extern void spa_config_set(spa_t *spa, nvlist_t *config);
663 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
664 int getstats);

665 extern void spa_config_update(spa_t *spa, int what);

667 [*

668 * M scel |l aneous SPA routines in spa_misc.c

669 */

671 /* Nanespace mani pul ation */

672
673
674
675

677
678
679
680

682
683
684
685
686
687
688
689
690
691
692

694
695
696
697
698

700
701
702
703
704

extern spa_t *spa_l ookup(const char *nane);

extern spa_t *spa_add(const char *nane, nvlist_t *config, const char *altroot);
extern void spa_renove(spa_t *spa);

extern spa_t *spa_next(spa_t *prev);

/* Refcount functions */

extern void spa_open_ref(spa_t *spa, void *tag);
extern void spa_cl ose(spa_t *spa, void *tag);
extern bool ean_t spa_refcount_zero(spa_t *spa);

#def i ne SCL_NONE 0x00

#defi ne SCL_CONFI G 0x01

#defi ne SCL_STATE 0x02

#define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
#define SCL_ALLOC 0x08

#define SCL_ZI O 0x10

#def i ne SCL_FREE 0x20

#def i ne SCL_VDEV 0x40

#defi ne SCL_LOCKS 7

#define SCL_ALL (1 << SCL_LOCKS) -

» (a 1)

#define SCL_STATE ALL (SCL_STATE | SCL_L2ARC | SCL_ZI O

/* Pool configuration |ocks */

extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw.t rw);
extern void spa_config_enter(spa_t *spa, int |locks, void *tag, krw.t rw;
extern void spa_config_exit(spa_t *spa, int |ocks, void *tag);

extern int spa_config_held(spa_t *spa, int |ocks, krwt rw);

/* Pool vdev add/renove |ock */

extern uint64_t spa_vdev_enter(spa_t *spa);

extern uint64_t spa_vdev_config_enter(spa_t *spa);

extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
int error, char *tag);

new usr/src/uts/comon/ fs/zfs/sys/spa.h

705

707
708
709

711
712
713
714
715
716
717

719
720
721

723
724

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

762
763
764
765
766
767
768
769
770

extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);

/* Pool vdev state change |ock */
extern void spa_vdev_state_enter(spa_t *spa, int oplock);
extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);

/* Log state */

typedef enum spa_|l og_state {
SPA_LOG _UNKNOWN = 0,
SPA_LOG M SSI NG,
SPA_LOG CLEAR,
SPA_LOG_GOOD,

} spa_log_state_t;

/* unknown | og state */
/* mssing log(s) */
/* clear the log(s) */
/* log(s) are good */

extern spa_l og_state_t spa_get_|og_ stat e(spa_t *spa);
extern void spa_set I og_stat e(spa t *spa, spa_log_state_t state);
extern int spa_offline_log(spa_t *spa);

/* Log cl aimcallback */
extern void spa_claimnotify(zio_t *zio);

/* Accessor functions */

extern bool ean_t spa_shutting_down(spa_t *spa);
extern struct dsl_pool *spa_get_dsl (spa_t *spa);
extern boolean_t spa_is_initializing(spa_t *spa);
extern bl kptr_t *spa_get_rootbl kptr(spa_t *spa);
extern void spa_set_rootbl kptr(spa_t *spa, const blkptr_t *bp);
extern void spa_altroot(spa_t *, char *, size_t);
extern int spa_sync_pass(spa_t *spa);

extern char *spa_nanme(spa_t *spa);

extern uint64_t spa_guid(spa_t *spa);

extern uint64_t spa_|l oad_gui d(spa_t *spa);

extern uint64_t spa_l ast_synced_t xg(spa_t *spa);
extern uint64_t spa_first_txg(spa_t *spa);

extern uint64_t spa_syncing_txg(spa_t *spa);

extern uint64_t spa_version(spa_t *spa);

extern pool state t spa_state(spa_t *spa);

extern spa_load_state_t spa_l oad_state(spa_t *spa);
extern uint64_t spa_freeze_txg(spa_t *spa);

extern uint64_t spa_get_asize(spa_t *spa, uint64_t |size);
extern uint64_t spa_get_dspace(spa_t *spa);

extern uint64_t spa_get_sl op_space(spa_t *spa);
extern voi d spa_updat e_dspace(spa_t *spa);

extern uint64_t spa_version(spa_t *spa);

extern bool ean_t spa_defl ate(spa_t *spa);

extern nmetaslab_class_t *spa_normal _class(spa_t *spa);
extern nmetaslab_class_t *spa_l og_class(spa_t *spa);
extern int spa_max_replication(spa_t *spa);

extern int spa_prev_software_version(spa_t *spa);
extern int spa_busy(void);

extern uint8_t spa_get_fail node(spa_t *spa);

extern bool ean_t spa_suspended(spa_t *spa);

extern uint64_t spa_bootfs(spa_t *spa);

extern uint64_t spa_del egation(spa_t *spa);

extern objset_t *spa_neta_objset(spa_t *spa);
extern uint64_t spa_deadman_synctine(spa_t *spa);

/* M scel | aneous support routines */

extern void spa_activate_nps_feature(spa_t *spa, const char *feature,
dmu_tx_t *tx);

extern void spa_ deact i vat e_nos _feature(spa_t *spa, const char *feature);

extern int spa_rename(const char *ol dnane, const char *newnane);

extern spa_t *spa_by_guid(uint64_t pool _gui d, uint64_t device_guid);

extern bool ean_t spa_gui d_exi sts(uint64_t pool _guid, uint64_t device_guid);

extern char *spa_strdup(const char *)
extern void spa_strfree(char *);

new usr/src/uts/comon/ fs/zfs/sys/spa.h

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

789
790

792

794
795
796
797
798
799
800
801
802
803
804
805

807
808
809
810
811
812
813
814
815
816
817
818
819
820

822
823
824

826
827
828
829

831
832
833
834
835

extern uint64_t spa_get_randon(uint64_t range);
extern uint64_t spa_generate_guid(spa_t *spa);
extern void snprintf_bl kptr(char *buf, size_t buflen, const blkptr_t *bp);
extern void spa_freeze(spa_t *spa);
extern int spa_change_gui d(spa_t *spa);
extern void spa_upgrade(spa_t *spa, uint64_t version);
extern void spa_evict_all (void);
extern vdev_t *spa_l ookup_by_gui d(spa_t *spa, uint64_t guid,
bool ean_t | 2cache);
extern bool ean_t spa_has_spare(spa_t *, uint64_t guid);
extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
extern bool ean_t spa_has_sl ogs(spa_t *spa);
extern bool ean_t spa_is_root(spa_t *spa);
extern bool ean_t spa_writeabl e(spa_t *spa
extern bool ean_t spa_has_pendi ng_synct ask(spa t *spa);

extern int spa_node(spa_t *spa);
extern uint64_t strtonun{const char *str, char **nptr);

extern char *spa_his_ievent_table[];

extern void spa_history_create_obj(spa_t *spa, dnmu_tx_t *tx);

extern int spa_history get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
char *his_buf);

extern int spa_history log(spa_t *spa, const char *his_buf);

extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);

extern voi d spa_history_| og_version(spa_t *spa, const char *operation);

extern void spa_history_l og_internal (spa t *spa, const char *operation,
dmu_tx_t *tx, const char *fnt, .

extern void spa_| hi st ory_log_inter nal ds(struct dsl _dataset *ds, const char *op,
dmu_tx_t *tx, const char *fnt, .

extern voi d spa_| hi st ory_log_inter nal dd(dsl dir_t *dd, const char *operation,
dmu_tx_t *tx, const char *fnt, ...);

/* error handling */

struct zbookmar k_phys;

extern void spa_log_error(spa_t *spa, zio_t *zio);

extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
zio_t *zio, uint64_t stateoroffset, uint64_t |length);

extern void zfs_post_renove(spa_t *spa, vdev_t *vd);

extern void zfs_post_state_change(spa_t *spa, vdev_t *vd);

extern void zfs_post_autorepl ace(spa_t *spa, vdev_t *vd);

extern uint64_t spa_get_errlog_size(spa_t *spa);

extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);

extern void spa_errlog_rotate(spa_t *spa);

extern void spa_errlog_drain(spa_t *spa);

extern void spa_errlog_sync(spa_t *spa, uint64_t txg);

extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);

/* vdev cache */
extern voi d vdev_cache_stat_init(void);
extern voi d vdev_cache_stat_fini (void);

/* Initialization and term nation */
extern void spa_init(int flags);
extern void spa_fini(void);

extern void spa_boot_init();

/* properties */

extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);

extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);

extern voi d spa_prop_cl ear_boot f s(spa_t *spa uint64_t obj, dmu_tx_t *tx);
extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);

new usr/src/uts/comon/ fs/zfs/sys/spa.h

837 /* asynchronous event notification */
838 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, const char *nane);

840 #ifdef ZFS_DEBUG

841 #define dprlntf _bp(bp, fnt, ...) do { \
842 if (zfs_flags & ZFS_DEBUG DPRI NTF) { \
843 char *__bl kbuf kmem al | oc(BP_SPRI NTF_LEN, KM SLEEP); \
844 snprintf_bl kptr(_bl kbuf, BP_SPRI NTF_LEN, (bp)); \
845 dprintf(fmt " 9%\n", VA ARGS__, bl kbuf) ; \
846 kmem free(__bl kbuf, BP_SPRI NTF_LEN); \
847 1\

848 _NOTE(CONSTCOND) } while (0)

849 #el se

850 #define dprintf_bp(bp, fnmt, ...)

851 #endi f

853 extern bool ean_t spa_debug_enabl ed(spa_t *spa);
854 #define spa_dbgnmsg(spa,)

\
855 { \
856 if (spa_debug_enabl ed(spa)) \
857 zfs_dbgnsg(__VA _ARGS_); \
858 }
860 extern int spa_node_gl obal ; /* node, e.g. FREAD | FWRITE */
862 #ifdef __ cplusplus
863 }
864 #endi f

866 #endif /* _SYS SPA H */

new usr/src/uts/comon/fs/zfs/sys/zio.h

R R R R

18191 Tue Cct 28 11:57:19 2014
new usr/src/uts/comon/fs/zfs/sys/zio.h
Possibility to physically reserve space without witing | eaf blocks

R R R R R

__unchanged_portion_onitted_

283 #define ZB_DESTROYED OBJSET (-1ULL)

285 #define ZB_ROOT_OBJECT (ouLL)

286 #define ZB_ROOT_LEVEL (-1LL)

287 #define ZB_ROOT_BLKI D (ouLL)

289 #define ZB ZI L_OBJECT (ouLL)

290 #define ZB ZI L_LEVEL (-2LL)

292 #define ZB_|S ZERQ(zb) \
293 ((zb)->zb_objset == 0 && (zb)->zb_object == 0 && \
294 (zb)->zb_l evel == && (zb)->zb_blkid == 0)

295 #define ZB_ | S_ROOT(zb) \

296 ((zb)->zb_obj ect == ZB ROOT_OBJECT && \

297 (zb)->zb_l evel == ZB_ROOT_LEVEL && \

298 (zb)->zb_bl kid == ZB ROOT_BLKI D)

300 typedef struct zio_prop {

301 enum zi o_checksum zp_checksum

302 enum zi o_conpr ess Zp_conpr ess;

303 dmu_obj ect _type_t zp_type;

304 uint8_t zp_|l evel ;

305 ui nt 8_t zZp_copi es;

306 bool ean_t zp_dedup;

307 bool ean_t zp_dedup_verify;
308 bool ean_t zp_nopwrite;

309 bool ean_t zZp_zero_wite;

310 #endif /* | codereview */
311 } zio_prop_t;

313 typedef struct zio_cksumreport zio_cksumreport_t;
315 typedef void zio_cksumfinish_f(zio_cksumreport_t *rep,

316 const void *good_data);
317 typedef void zio_cksumfree_f(void *cbdata, size_t size);

319 struct zi o_bad_cksum /* defined in zio_checksumh */

320 struct dnode_phys;

322 struct zio_cksumreport

323 struct zio_cksumreport *zcr_next;

324 nvlist_t *zcr_ereport;

325 nvlist_t *zcr_detector;

326 voi d *zcr _chdat a;

327 size_t zcr _cbi nf o; /* passed to zcr_free() */
328 ui nt 64_t zcer_align;

329 ui nt 64_t zcr _| engt h;

330 zi o_cksum fini sh_f *zcr _finish;
331 zi o_cksum free_f *zcr_free;
333 /* internal use only */

334 struct zio_bad_cksum *zcr _cki nf o;
335 };

337 typedef void zio_vsd_cksumreport_f(zio_t *zio, zio_cksumreport_t
338 void *arg);

340 zio_vsd_cksumreport_f zio_vsd_default_cksumreport;

/* information fromfailure */

*zcr,

new usr/src/uts/comon/fs/zfs/sys/zio.h

342 typedef struct zio_vsd_ops {

343 zi o_done_func_t *vsd_free;

344 zio_vsd_cksumreport _f *vsd_cksumreport;
345 } zio_vsd_ops_t;

347 typedef struct zio_gang_node {

348 zi o_gbh_phys_t *gn

gbh;
349 struct zi o_gang_node *gn_chi I d[SPA_GBH_NBLKPTRS] ;

350 } zio_gang_node_t;

352 typedef zio_t *zio_gang_issue_func_t(zio_t *zio, blkptr_t *bp,
353 zi 0_gang_node_t *gn, void *data);

355 typedef void zio_transformfunc_t(zio_t *zio, void *data, uint64_t size);

357 typedef struct zio_transform {

358 voi d *zt_orig_data;
359 ui nt 64_t zt _orig_size;
360 ui nt 64_t zt _buf si ze;
361 zio_transformfunc_t *zt _transform
362 struct zio_transform *zt _next;

363 } zio_transformt;
365 typedef int zio_pipe_stage_t(zio_t *zio);

367 /*
368 * The io_reexecute flags are distinct fromio_flags because the child nust
369 * be able to propagate themto the parent. The normal io_flags are |ocal
370 * to the zio, not protected by any |ock, and not nodifiable by children;
371 * the reexecute flags are protected by io_|lock, nodifiable by children,
372 * and al ways propagated -- even when ZI O FLAG DONT_PROPAGATE is set.

373 */

374 #define ZI O REEXECUTE_NOW 0x01

375 #define ZI O REEXECUTE_SUSPEND 0x02

377 typedef struct zio_link {

378 zio_t *z| _parent;
379 zio_t *zI _chil d;
380 I'ist_node_t _parent _node;

381 i st_node_t zl _chi |l d_node;
382 } zio_link_t;

384 struct zio {

385 /* Core information about this 1/0 */
386 zbookmar k_phys_t i o_bookmar k;
387 zi o_prop_t i 0_prop;

388 zio_type_t io type

389 enum zio_child io_ch I _type;

390 int i 0_t ;

391 zio_priority_t io_priority;

392 ui nt 8_t i 0_reexecute;

393 uint8_t i o_state[Zl O WAI T_TYPES] ;
394 ui nt 64_t i 0_txg;

395 spa_t *i o_spa;

396 bl kptr_t *i o_bp;

397 bl kptr_t *io_bp_overri de;

398 bl kptr_t i 0_bp_copy;

399 list_t io_parent_|ist;

400 list t io_child_list;

401 zio_link_t *io_wal k_I'ink;

402 zio_t *jo_|l ogi cal ;

403 zio_transformt *io_transformstack;
405 /* Call back info */

406 zi o_done_func_t *io_ready;

407 zi o_done_func_t *i o_physdone;

new usr/src/uts/comon/fs/zfs/sys/zio.h

408 zi o_done_func_t *io_done;

409 voi d *jo_private;

410 int64_t i o_prev_space_del ta; /* DMJ private */
411 bl kptr_t io_bp_orig;

413 /* Data represented by this |/0 */

414 voi d *i o_dat a;

415 voi d *io_ _orig_dat a;

416 ui nt 64_t i o_size;

417 ui nt 64_t io_orig_size;

419 /* Stuff for the vdev stack */

420 vdev_t *io_vd;

421 voi d *j o_vsd

422 const zio_vsd_ops_t *io_vsd_ops;

424 ui nt64_t io_offset;

425 hrtime_t i o_timestanp;

426 avl _node_t i 0_queue_node;

428 I* 10 nternal pi peline state */

429 enum zio_fl ag io_flags;

430 enum zi o_st age io_stage;

431 enum zi o_stage io_pipeline;

432 enum zi o_fl ag io_orig_flags;

433 enum zi o_stage io_orig_stage;

434 enum zi o_stage io_orig_pipeline;

435 int io_error;

436 int io_child_error[Zl O CH LD TYPES];

437 ui nt 64_t i o_children[zl O CH'LD_TYPES|[Zl O WAl T_TYPES] ;
438 ui nt 64_t i o_child_count;

439 ui nt 64_t i o_phys_chil dren;

440 ui nt 64_t i o_parent _count;

441 ui nt 64_t *io_stall;

442 zio_t *i o_gang_| eader;

443 zi 0_gang_node_t *io_gang_tree;

444 voi d *i o_executor;

445 voi d *io_waiter;

446 kmut ex_t i o_|l ock;

447 kcondvar _t io_cv;

449 /* FMA state */

450 zi o_cksumreport _t *io_cksumreport;

451 ui nt 64_t i0_ena;

453 /* Taskq dispatching state */

454 taskqg_ent _t io_tgent;

455 };

457 extern zio_t *zio_null(zio_t *pio, spa_t *spa, vdev_t *vd,

458 zi o_done_func_t *done, void *private, enumzio_flag flags);

460 extern zio_t *zio_root(spa_t *spa,

461 zi o_done_func_t *done, void *private, enumzio_flag flags);

463 extern zio_t *zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, void
464 uint64_t size, zio_done func_t *done, void *private,

465 zio_priori ty_t priority, enumzio_flag flags, const zbookmark_phys_t *zb);
467 extern zio_t *zio_wite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
468 void *data, uint64_t size, const zio_prop_t *zp,

469 zi o_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
470 void *private,

471 zio_priority_t priority, enumzio_flag flags, const zbookmark_phys_t

473 extern zio_t *zio_rewite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t

new usr/src/uts/comon/fs/zfs/sys/zio.h

474 void *data, uint64_t size, zio_done_func_t *done, void *private,
475 zio_priority t priority, enumzio_flag flags, zbookmark_phys_t *zb);

477 extern void zio_wite_override(zio_t *zio, blkptr_t *bp, int copies,
478 bool ean_t nopwrite);

480 extern void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp);

482 extern zio_t *zio_claim(zio_t *pio, spa_t *spa, uint64_t txg,

483 const bl kptr_t *bp,

484 zi o_done_func_t *done, void *private, enum zio_flag flags);

486 extern zio_t *zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cnd,
487 zi o_done_func_t *done, void *private, enum zio_flag flags);

489 extern zio_t *zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset,
490 uint64_t size, void *data, int checksum

491 zi o_done_func_t *done, void *private, zio_priority t priority,
492 enum zio_flag flags, bool ean_t | abel s);

494 extern zio_t *zio_wite_phys(zio_t *pio, vdev_t *vd, uint64_t offset,
495 uint64_t size, void *data, int checksum

496 zi o_done_func_t *done, void *private, zio_priority_ t priority,
497 enum zio_flag flags, boolean_t I|abels);

499 extern zio_t *zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg,
500 const blkptr_t *bp, enumzio_flag flags);

502 extern int zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp,
503 bl kptr_t *old_bp, uint64_t size, bool ean_t use_slog);

504 extern void zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp);
505 extern void zio_flush(zio_t *zio, vdev_t *vd);

506 extern void zio_shrink(zio_t *zio, uint64_t size);

508 extern int zio_wait(zio_t *zio);

509 extern void zio_nowait(zio_t *zio);
510 extern void zio_execute(zio_t *zio);
511 extern void zio_interrupt(zio_t *zio);

513 extern zio_t *zio_wal k_parents(zio_t *cio);

514 extern zio_t *zio_wal k_children(zio_t *pio);

515 extern zio_t *zio_unique_parent(zio_t *cio);

516 extern void zio_add_child(zio_t *pio, zio_t *cio);

518 extern void *zio_buf_alloc(size_t size);

519 extern void zio_buf_free(void *buf, size_t size);

520 extern void *zio_data_buf_alloc(size_t size);

521 extern void zio_data_buf_free(void *buf, size_t size);
523 extern void zio_resubmt_stage_async(void *);

525 extern zio_t *zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd,

526 uint64_t offset, void *data, uint64_t size, int type,

527 zio_priority_t pri ority, enumzio_flag flags,

528 zi o_done_func_t *done, void *private);

530 extern zio_t *zio_vdev_del egated_i o(vdev_t *vd, uint64_t offset,
531 void *data, uint64_t size, int type, zio_priority_t priority,
532 enum zio_flag flags, zio_done_func_t *done, void *private);

534 extern void zio_vdev_i o_bypass(zio_t *zio);
535 extern void zio_vdev_io_reissue(zio_t *zio);
536 extern void zio_vdev_io_redone(zio_t *zio);

538 extern void zio_checksumverified(zio_t *zio);
539 extern int zio_worst_error(int el, int e2);

new usr/src/uts/comon/fs/zfs/sys/zio.h

541 extern enum zi o_checksum zi o_checksum sel ect (enum zi o_checksum chi |l d,

542 enum zi o_checksum parent);

543 extern enum zi o_checksum zi o_checksum dedup_sel ect (spa_t *spa,

544 enum zi o_checksum chi |l d, enum zi o_checksum parent);

545 extern enum zi o_conpress zi o_conpress_sel ect (enum zi o_conpress child,

546 enum zi o_conpress parent);

548 extern void zio_suspend(spa_t *spa, zio_t *zio);

549 extern int zio_resune(spa_t *spa);

550 extern void zio_resune_wait(spa_t *spa);

552 [*

553 * Initial setup and teardown.

554 */

555 extern void zio_init(void);

556 extern void zio_fini(void);

558 /*

559 * Fault injection

560 */

561 struct zinject_record;

562 extern uint32_t zio_injection_enabl ed;

563 extern int zio_inject_fault(char *name, int flags, int *id,

564 struct zinject_record *record);

565 extern int zio_inject_list_next(int *id, char *name, size_t buflen,

566 struct zinject_record *record);

567 extern int zio_clear_fault(int id);

568 extern void zio_handl e_panic_injection(spa_t *spa, char *tag, uint64_t type);
569 extern int zio_handle_fault_injection(zio_t *zio, int error);

570 extern int zio_handl e_device_injection(vdev_t *vd, zio_t *zio, int error);
571 extern int zio_handle_|l abel _injection(zio_t *zio, int error);

572 extern void zio_handl e_ignored_wites(zio_t *zio);

573 extern uint64_t zio_handle_io_delay(zio_t *zio);

575 | *

576 * Checksum ereport functions

577 */

578 extern void zfs_ereport_start_checksun(spa_t *spa, vdev_t *vd, struct zio *zio,
579 uint64_t offset, uint64_t length, void *arg, struct zio_bad_cksum *info);
580 extern void zfs_ereport_finish_checksun{zi o_cksumreport_t *report,

581 const void *good_data, const void *bad_data, boolean_t drop_if_identical);
583 extern void zfs_ereport_send_interi mchecksun(zi o_cksumreport_t *report);
584 extern void zfs_ereport_free_checksun{zi o_cksumreport_t *report);

586 /* |f we have the good data in hand, this function can be used */

587 extern void zfs_ereport_post _checksun{spa_t *spa, vdev_t *vd,

588 struct zio *zio, uint64_t offset, uint64_t |ength,

589 const void *good_data, const void *bad_data, struct zio_bad_cksum *info);
591 /* Called fromspa_sync(), but primarily an injection handler */

592 extern void spa_handl e_ignored_wites(spa_t *spa);

594 /* zbookmar k_phys functions */

595 bool ean_t zbookmark_i s_before(const struct dnode_phys *dnp,

596 const zbookmark_phys_t *zbl, const zbookmark_phys_t *zb2);

598 #ifdef __ cplusplus

599 }

600 #endi f

602

#endif /* _ZIOH*/

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

R R R R

135331 Tue Cct

28 11:57:20 2014

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

Possi bi

lity to physically reserve space without witing | eaf blocks
* ok ok ok ok

B R R R)

1/*

24 *
*

/*
28 [*

30 #i
31 #i
32 #i
33 #i
34 #i
35 #i
36 #i
37 #i
38 #i
39 #i
40 #i
41 #i
42 #i
43 #i
44 #i
45 #i
46 #i
47 #i
48 #i
49 #i
50 #i
51 #i
52 #i
53 #i
54 #i
55 #i
56 #i
57 #i
58 #i
59 #i
60 #i
61 #i

[y
N
L T
~

Copyri ght 2014 Nexenta Systens, Inc. Al
/

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END
Copyright (c) 2005, 2010, Oracle and/or its affiliates. All

Copyright (c) 2012, 2014 by Del phix. Al rights reserved.
rights reserved.

rights reserved.

Portions Copyright 2007 Jereny Teo */
Portions Copyright 2010 Robert M I kowski */

ncl ude <sys/types. h>
ncl ude <sys/param h>
ncl ude <sys/tine. h>

ncl ude <sys/systm h>
ncl ude <sys/sysmacros. h>
ncl ude <sys/resource. h>
ncl ude <sys/vfs. h>

ncl ude <sys/vfs_opreg. h>
ncl ude <sys/vnode. h>
ncl ude <sys/file.h>

ncl ude <sys/stat.h>

ncl ude <sys/knem h>

ncl ude <sys/taskg. h>
ncl ude <sys/uio. h>

ncl ude <sys/vnsystm h>
ncl ude <sys/atomic. h>
ncl ude <sys/vm h>

ncl ude <vni seg_vn. h>
ncl ude <vnf pvn. h>

ncl ude <vnf as. h>

ncl ude <vn kpm h>

ncl ude <vnif seg_kpm h>
ncl ude <sys/ mman. h>

ncl ude <sys/ pat hnanme. h>
ncl ude <sys/cmm_err. h>
ncl ude <sys/errno. h>
ncl ude <sys/unistd. h>
ncl ude <sys/zfs_dir.h>
ncl ude <sys/zfs_acl.h>
ncl ude <sys/zfs_ioctl.h>
ncl ude <sys/fs/zfs.h>
ncl ude <sys/dmu. h>

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

#i ncl ude <sys/dmu_obj set. h>

#i ncl ude <sys/spa. h>

#i ncl ude <sys/txg. h>

#i ncl ude <sys/ dbuf. h>

#i ncl ude <sys/zap. h>

#i ncl ude <sys/sa. h>

#i ncl ude <sys/dirent. h>

#i ncl ude <sys/policy. h>

#i ncl ude <sys/sunddi . h>

#i ncl ude <sys/filio.h>

#i ncl ude <sys/sid. h>

#i nclude "fs/fs_subr.h"

#i ncl ude <sys/zfs_ctldir.h>

#i ncl ude <sys/zfs_fuid. h>

#i ncl ude <sys/zfs_sa. h>

#i ncl ude <sys/zfeature. h>

#endif /* | codereview */

#i ncl ude <sys/dnlc. h>

#i ncl ude <sys/zfs_rlock. h>

#i ncl ude <sys/extdirent.h>

#i ncl ude <sys/ ki dnmap. h>

#i ncl ude <sys/cred. h>

#i ncl ude <sys/attr.h>

/*

* Progranm ng rules

*

* Each vnode op perforns sone |ogical unit of work. To do this, the ZPL nust
* properly lock its in-core state, create a DMJ transaction, do the work
* record this work in the intent log (ZIL), commt the DMJ transaction

* and wait for the intent log to commit if it is a synchronous operation
* Moreover, the vnode ops nmust work in both normal and | og replay context
* The ordering of events is inportant to avoid deadl ocks and references

* to freed nmenory. The exanple belowillustrates the follow ng Big Rules
*

* (1) A check nust be nade in each zfs thread for a nounted file system
u This is done avoiding races using ZFS _ENTER(zf svfs)

* A ZFS_EXI T(zfsvfs) is needed before all returns. Any znodes

* must be checked wth ZFS_VERI FY_ZP(zp). Both of these macros

* can return EIO fromthe calling function

*

* (2) VN_RELE() should always be the last thing except for zil_commt()
* (if necessary) and ZFS_EXIT(). This is for 3 reasons

&3 First, if it’s the last reference, the vnode/ znode

* can be freed, so the zp may point to freed menory. Second, the |ast
* reference will call zfs_zinactive(), which may induce a | ot of work --
* pushi ng cached pages (whi ch acquires range | ocks) and syncing out
* cached atine changes. Third, zfs_zinactive() may require a new tx
* whi ch coul d deadl ock the systemif you were already hol di ng one

* If you nust call VN_RELE() within a tx then use VN RELE_ASYNC().

*

* (3) Al range |ocks nust be grabbed before calling dmu_tx_assign()

* as they can span dnu_tx_assign() calls

*

* (4) If ZPL locks are held, pass TXG NOMIT as the second argunent to

* dmu_t x_assign(). This is critical because we don’t want to bl ock
* whi I e hol di ng | ocks

*

* If no ZPL | ocks are held (aside from ZFS_ENTER()), use TXGWAIT. This
* reduces | ock contention and CPU usage when we nust wait (note that if
* t hroughput is constrained by the storage, nearly every transaction
* must wait)

*

& Note, in particular, that if a lock is sonetines acquired before

* the tx assigns, and sonetinmes after (e.g. z_lock), then failing

* to use a non-bl ocki ng assign can deadl ock the system The scenari o:

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

128 *

129 * Thread A has grabbed a | ock before calling dmu_tx_assign().

130 * Thread B is in an al ready-assigned tx, and blocks for this Iock.

131 * Thread A calls dnu_tx_assi gn(TXG_WAI T) and bl ocks in txg_wait_open()
132 * forever, because the previous txg can’t quiesce until B's tx commits.
133 *

134 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG NOMIT,
135 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
136 * calls to dnu_tx_assign(), pass TXG WAI TED rat her than TXG NOMI T,
137 * to indicate that this operation has already called dmu_tx_wait().
138 * This will ensure that we don't retry forever, waiting a short bit
139 * each tinme.

140 *

141 * (5) If the operation succeeded, generate the intent log entry for it
142 * bef ore dropping locks. This ensures that the ordering of events
143 * in the intent 1 og matches the order in which they actually occurred.
144 * During ZIL replay the zfs_log_* functions will update the sequence
145 * nunber to indicate the zil transaction has repl ayed.

146 *

147 * (6) At the end of each vnode op, the DMJ tx nust always commit,

148 * regardl ess of whether there were any errors.

149 *

150 * (7) After dropping all |ocks, invoke zil_comit(zilog, foid)

151 * to ensure that synchronous semantics are provi ded when necessary.
152 *

153 * In general, this is how things should be ordered in each vnode op:

154 *

155 * ZFS_ENTER(zf svfs); /1l exit if unnmounted

156 * top:

157 * zfs_dirent _lock(&dl, ...) /1 lock directory entry (may VN _HOLD())
158 * rw enter(.)s /1 grab any other |ocks you need
159 * tx dmu_t x create(. /1 get DMJ tx

160 * dmu_t x_| hold _*(); /1 hol d each Obj ect you might nodify
161 * error = dnu_tx_assign(tx, waited ? TXG WAI TED : TXG NOMIT);

162 * if (error) {

163 * rwexit(...); /1 drop |ocks

164 * zfs_dirent unl ock(dl); // unlock directory entry

165 * VN_RELE(. /'l rel ease hel d vnodes

166 * if (error == ERESTART) {

167 * wai ted = B_TRUE;

168 * drmu_t x_wai t (tx);

169 * dmu_t x_abort (tx);

%;(1) :) goto top;

172 * dmu_t x_abort (tx); /1 abort DMJ tx

173 * ZFS EXI T(zfsvfs); /1 finished in zfs

174 = return (error); /1l really out of space

175 * 1

176 * error = do_real _work(); /1 do whatever this VOP does

177 * if (error == 0)

178 * zfs_log_*(...); /1 on success, make ZIL entry

179 * drmu_t x_commi t (tx); // commit DMJtx -- error or not
180 * rwexit(...); /1 drop | ocks

181 * zfs dirent_unl ock(dl); /1 unlock directory entry

182 * VN RELE(...); /'l rel ease hel d vnodes

183 * ziT, comnt(2| log, foid); /1 synchronous when necessary

184 * ZFS_EXI T(zf svfs); [/l finished in zfs

185 * return (error); /1 done, report error

186 */

188 /* ARGSUSED */

189 static int

190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)

191 {

192 znode_t *zp = VTQZ(*vpp);

193 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

195 ZFS_ENTER(zf svfs);

196 ZFS_VERI FY_ZP(zp);

198 ((fl g & FWRI TE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 ((flag & FAPPEND) == 0)) [

200 ZFS_EXI T(zf svfs);

201 return (SET_ERRCR(EPERV)) ;

202 }

204 if (!zfs_has_ctldi r(zp) && zp->z_zfsvfs->z_vscan &&
205 ZTOV(zp) - >v_type == VREG &&

206 ! (zp->z_pflags & ZFS_AV QJARANTINED) && zp->z_size > 0) {
207 if (fs_vscan(*vpp, cr, 0) I=

208 ZFS_EXI T(zfsvfs)

209 return (SET_ERRCR(EACCES)) ;

210 }

211 }

213 /* Keep a count of the synchronous opens in the znode */
214 if (flag & (FSYNC | FDSYNC))

215 atom c_i nc_32(&p->z_sync_cnt);

217 ZFS_EXI T(zf svfs);

218 return (0);

219 }

221 /* ARGSUSED */

222 static int

223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
224 cal | er_context_t *ct)

225 {

226 znode_t *zp = VTOZ(vp);

227 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

229 /*

230 * Clean up any |locks held by this process on the vp.
231 */

232 cl eanl ocks(vp, ddi _get_pid(), 0);

233 cl eanshares(vp, ddi_get_pid());

235 ZFS_ENTER(zf svfs);

236 ZFS_VERI FY_ZP(zp);

238 /* Decrenent the synchronous opens in the znode */

239 if ((flag & (FSYNC | FDSYNC)) && (count == 1))

240 atom c_dec_32(&zp->z_sync_cnt);

242 if (!zfs_has_ctldi r(zp) && zp->z_zfsvfs->z_vscan &&
243 ZTOV(zp) - >v_type == VREG &&

244 ! (zp->z_pflags & ZFS_AV QJARANTI NED) && zp->z_size > 0)
245 VERI FY(fs_vscan(vp, cr, 1) == 0);

247 ZFS_EXI T(zf svfs);

248 return (0);

249 }

251 /*

252 * Lseek support for finding holes (c == _FI O SEEK_HOLE) and
253 * data (cnmd == _FI O SEEK DATA). "off" is an in/out paraneter.
254 */

255 static int

256 zfs_hol ey(vnode_t *vp, int cnd, offset_t *off)

257 {

258 znode_t *zp = VTCZ(p);

259 uint64_t noff = (ui nt 64 _t)*off; /* new offset */

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

260 uint6d_t file_sz;

261 int error;

262 bool ean_t hol e;

264 file_sz = zp->z_si ze;

265 if (noff >= file_sz) {

266 return (SET_ERROR(ENXI O));

267 }

269 if (cmd == _FI O _SEEK_HOLE)

270 hol e = B_TRUE;

271 el se

272 hol e = B_FALSE;

274 error = dnu_of f set _next (zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
276 if (error == ESRCH)

277 return (SET_ERROR(ENXIO));

279 /*

280 * We could find a hole that begins after the |ogical end-of-file,
281 * because dnu_of fset_next() only works on whol e blocks. |If the
282 * EOF falls md-block, then indicate that the "virtual hole"
283 * at the end of the file begins at the logical EOF, rather than
284 * at the end of the |ast block.

285 */

286 if (noff > file_sz) {

287 ASSERT(hol e) ;

288 noff = file_sz;

289 }

291 if (noff < *off)

292 return (error);

293 *of f = noff;

294 return (error);

295 }

298 static int zfs_zero_wite(vnode_t *vp, uint64_t size, cred_t

299 call er_context _t *ct);

301 #endif /* ! codereview */
302 /* ARGSUSED */
303 static int

*cr,

304 zfs_ioctl(vnode_t *vp, int com intptr_t data, int flag, cred_t *cred,

305 int *rvalp, caller_context_t *ct)

306 {

307 of fset _t off;

308 int error;

309 zfsvfs_t *zfsvfs;

310 znode_t *zp;

311 uint64_t size;

312 #endif /* ! codereview */

314 switch (com {

315 case _FI OFFS:

316 return (zfs_sync(vp->v_vfsp, 0, cred));
318 /*

319 * The following two ioctls are used by bfu.
320 * necessary to avoid bfu errors.

321 */

322 case _FIOGDI O

323 case _FIOSD O

324 return (0);

Faki ng out,

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

326 case _FlI O SEEK_DATA:

327 case _Fl O SEEK HOLE:

328 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
329 return (SET_ERROR(EFAULT));

331 zp = VTQZ(vp);

332 zfsvfs = zp->z_zfsvfs;

333 ZFS_ENTER(zf svfs);

334 ZFS_VERI FY_ZP(zp);

336 /* offset paraneter is in/out */

337 error = zfs_holey(vp, com &off);

338 ZFS_EXI T(zfsvfs);

339 if (error)

340 return (error);

341 if (ddi _copyout(&off, (void *)data, sizeof (off), flag))
342 return (SET_ERROR(EFAULT));

343 return (0);

344 case _Fl O RESERVE SPACE:

345 if (ddi _copyin((void *)data, &size, sizeof (size), flag))
346 return (EFAULT);

347 error = zfs_zero_wite(vp, size, cred, ct);

348 return (error);

349 #endif /* | codereview */

350

351 return (SET_ERROR(ENOTTY));

352 }

354 [*

355 * Utility functions to map and unmap a single physical page. These

356 * are used to nanage the nappabl e copies of ZFS file data, and therefore

357 * do not update ref/nod bits.
*/

358

359 caddr_t

360 zfs_map_page(page_t *pp, enum seg_rw rw

361

362 if (kpm_enabl e)

363 return (hat_kpm mapi n(pp, 0));

364 ASSERT(rw == S READ || rw == S WRI TE) ;

365 return (ppmapi n(pp, PROT_READ | ((rw == S WRITE) ? PROT_WRI TE :
366 (caddr_t)-1));

367 }

369 void

370 {zfs_unrrap_page(page_t *pp, caddr_t addr)

371

372 if (kpm_enabl e)

373 hat _kpm mapout (pp, 0, addr);

374 } else {

375 ppmepout (addr) ;

376 }

377 }

379 /[*

380 * Wen a file is nenory nmapped, we nust keep the 10 data synchronized
381 * between the DMJ cache and the nenory nmapped pages. Wat this neans:
382 *

383 * On Wite: If we find a nenory nepped page, we wite to *both*
384 * the page and the dnu buffer.

385 */

386 static void

387 updat e_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)

388 {
389 int64_t off;

391 off = start & PAGEOFFSET;

0),

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

SE_SHARED)) {

TE);
oi d, start+off

What this neans:

SE_SHARED)) {

error = uionove(va + off, bytes, U O READ, uio);

error = dnu_read_ui o_dbuf (sa_get _db(zp->z_sa_hdl),

392 (start & PAGEMASK; len > 0; start += PAGESIZE) {
393 page_t *pp;

394 uint64_t nbytes = M N(PAGESI ZE - off, len);
396 if (pp = page Iookup(vp, start,

397 va;

399 va = zfs_map_page(pp, S WR

400 (voi d) dnu_read(os,

401 DMU_READ PREFETCH) ;

402 zf s_unmap_page(pp, va);

403 page_unl ock(pp);

404 }

405 len -= nbytes;

406 off = 0;

407 }

408 }

410 /*

411 * \Wen a file is nenory mapped, we nust keep the | O data synchronized
412 * between the DMJ cache and the nenory napped pages.

413 *

414 * On Read: We "read" preferentially from nmenory mapped pages,
415 * el se we default fromthe dmu buffer.

416 *

417 * NOTE: W will always "break up" the 10 into PAGESI ZE ui onpbves when
418 * the file is nenory mapped.

419 */

420 static int

421 mappedread(vnode_t *vp, int nbytes, uio_t *uio)

422 {

423 znode_t *zp = VTQZ(vp);

424 int64_t start, off;

425 int len = nbytes;

426 int error = 0;

428 start = uio->uio_|of fset;

429 off = start & PAGEOFFSET,;

430 for (start & PAGEMASK; len > 0; start += PACESIZE) {
431 page_t *pp;

432 uint64_t bytes = M N(PAGESI ZE - off, len);
434 if (pp = page | ookup(vp, start,

435 _t va;

437 a = zf s_map_page(pp, S READ);

438

439 zfs unrmp page(pp, va);

440 page_unl ock(pp);

441 } else {

442

443 ui o, bytes);

444 }

445 len -= bytes

446 off =0

447 if (error

448 br eak

449

450 return (error);

451 }

453 of fset _t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
455 [*

456 * Read bytes from specified file into supplied buffer.

457

*

nbytes, va+off,

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

458 = I'N: vp - vnode of file to be read from

459 * ui o - structure supplying read |ocation, range info,
460 * and return buffer.

461 * ioflag - SYNC flags; used to provide FRSYNC senanti cs.
462 * cr - credentials of caller.

463 * ct - caller context

464 =

465 * QUT: ui o - updated offset and range, buffer filled.

466 *

467 * RETURN: 0 on success, error code on failure.

468 *

469 * Side Effects:

470 * vp - atinme updated if byte count > 0

471 */

472 | * ARGSUSED */

473 static int

474 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
475 {

476 znode_t *zp = VTQZ(vp);

477 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

478 ssi ze_t n, nbytes;

479 int error = 0;

480 rl_t *rl;

481 Xui o_t *xui o = NULL;

483 ZFS_ENTER(zf svfs);

484 ZFS_VERI FY_ZP(zp);

486 if (zp- >z pr ags & ZFS_AV_QUARANTI NED) {

487 S_EXI T(zfsvfs);

488 ret urn (SEI'_ERRO?(EACCES)) ;

489 1

491 /*

492 * Validate file offset

493 *

494 if (uio->uio_loffset < (offset_t)0) {

495 ZFS_EXI T(zfsvfs);

496 return (SET_ERROR(EI NVAL));

497 1

499 /*

500 * Fasttrack enpty reads

501 *

502 if (uio->uio_resid == 0)

503 ZFS_EXI T(zf svf s)

504 return (0);

505 }

507 /*

508 * Check for mandatory | ocks

509 */

510 i f (MANDMODE(zp->z_node))

511 if (error = chkl ock(vp FREAD,

512 ui 0->ui o_| of fset, uio->uio_resid, uio->uio_frode, ct)) {
513 ZFS_EXI T(zf svf S);

514 return (error);

515 }

516 }

518 /*

519 * |f we're in FRSYNC node, sync out this znode before reading it.
520 */

521 if (ioflag & FRSYNC || zfsvfs->z_os->0s_sync == ZFS_SYNC_ALVAYS)
522 zil _comm t(zfsvfs->z_log, zp->z_id);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

524 /*

525 * Lock the range agai nst changes.

526 */

527 rl = zfs_range_|l ock(zp, uio->uio_|offset, uio->uio_resid, RL_READER);
529 /*

530 * |f we are reading past end-of-file we can skip

531 * to the end; but we mght still need to set atine.

532 *

533 f (uio->uio_|loffset >= zp->z_size) {

534 error = 0;

535 goto out;

536 }

538 ASSERT(ui 0->ui o_| of fset < zp->z_size);

539 n = M N(uio->uio_resid, zp->z_size - uio->uio_|loffset);

541 if ((uio->uio_extflg == UOXUO &&

542 (((xuio_t *)U| 0) - >xu_type == Ul OTYPE_ZEROCOPY)) {

543 int nblk

544 int blksz = zp->z_bl ksz;

545 uint64_t offset = uio->uio_|loffset;

547 XUui o = (xuio_t *)uio;

548 if ((ISPZ(blksz))) {

549 = (P2ROUNDUP(of fset + n, bl ksz) - P2ALI G\N(of f set,
550 bI ksz)) / blksz;

551 } else {

552 ASSERT(offset + n <= blksz);

558 nbl k = 1;

554 }

555 (voi d) dmu_xui o_init(xuio, nblk);

557 if (vn_has_cached_data(vp)) {

558 /*

559 * For sinplicity, we always allocate a full
560 */even if we only expect to read a portion of a bl ock.
561 *

562 while (--nblk >= 0)

563 (voi d) dmu_xui o_add(xui o

564 dru_r equest arcbuf(sa get _db(zp->z_sa_hdl),
565 bl ksz), 0, blksz);

566 }

567 }

568 }

570 while (n > 0)

571 nbytes = M N(n, zfs_read_chunk_size -

572 P2PHASE(ui 0->ui o_| of fset, zfs_read_chunk_size));
574 if (vn_has_cached_data(vp))

575 error = mappedread(vp, nbytes, uio);

576 } else {

577 error = dnu_read_ui o_dbuf (sa_get _db(zp->z_sa_hdl),
578 ui o, nbytes);

579 }

580 if (error) {

581 /* convert checksumerrors into IO errors */
582 if (error == ECKSUM

583 error = SET_ERROR(EI O ;

584 break;

585 }

587 n -= nbytes;

588 1

589 out:

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

590 zfs_range_unl ock(rl);

592 ZFS_ACCESSTI ME_STAMP(zf svfs, zp);

593 ZFS_EXI T(zfsvfs);

594 return (error);

595 }

597 /| *

598 * Wite the bytes to a file.

599 *

600 * I'N: vp - vnode of file to be witten to.

601 * ui o - structure supplying wite location, range info,
602 * and data buffer.

603 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
604 * set if in append node.

605 * cr - credentials of caller.

606 * ct - caller context (NFS/CIFS femnonitor only)
607 *

608 * QUT: ui o - updated of fset and range.

609 *

610 * RETURN: O on success, error code on failure.

611 *

612 * Ti mest anps:

613 * vp - ctine|ntine updated if byte count > 0

614 */

616 /* ARGSUSED */
617 static int

10

618 zfs_wite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)

619 {

620 znode_t *zp = VTQZ(vp);

621 rlinmbd_t I|mt:U|o>u|oII|mt
622 ssi ze_t start_resid = uio->uio_resid;
623 ssi ze_t tx_bytes;

624 ui nt 64_t end _si ze;

625 dmu_tx_t *tx

626 zfsvfs_t *zf svfs = zp->z_zfsvfs;
627 zilog_t *zil og;

628 of fset _t wof f ;

629 ssi ze_t n, nbyt es;

630 rl_t *rl;

631 int max_bl ksz = zfsvfs->z_max_bl ksz;
632 int error = 0;

633 arc_buf _t *abuf ;

634 i ovec_t *ai ov = NULL;

635 Xui o_t *xui 0 = NULL;

636 int i _iov = 0;

637 int iovent = uio->uio_iovent;
638 i ovec_t *iovp = uio->uio_iov;

639 int wite_eof;

640 int count = O;

641 sa_bul k_attr_t bul k[4];

642 ui nt 64_t ntime[2], cting[2];

644 /*

645 * Fasttrack enpty wite

646 */

647 n = start_resid;

648 if (n==0)

649 return (0);

651 if (limt == RLIMA_INFINITY || limt > MAXOFFSET_T)
652 limt = MAXOFFSET_T;

654 ZFS_ENTER(zf svfs);

655 ZFS VERI FY_ZP(zp):

657
658
659
660
661
662

664
665
666
667
668
669
670
671
672

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

SA_ADD_BULK_ATTR(bul k, count, SA ZPL_Mrl ME(zf svfs), NULL, &ntine, 16)

SA_ADD BULK_ATTR(bul k, count, SA_ZPL_CTI ME(zfsvfs), NULL, &ctine, 16);

SA_ADD_BULK _ATTR(bul k, count, SA_ZPL_SI ZE(zf svfs), NULL,
&p->z_si ze, 8);

SA_ADD BULK_ATTR(bul k, count, SA ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, 8);

/*

* In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our

674
675
676
677
678
679
680
681
682

684

686
687
688
689
690
691
692
693

695
696
697
698
699
700
701
702
703

705
706
707
708
709
710
711
712
713
714

716
717
718
719
720
721

* callers mght not be able to detect properly that we are read-only,

* so check it explicitly here.
*
if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) ({
ZFS_EXI T(zf svfs);
return (SET_ERROR(ERCFS));

}
/*

* |f inmmutable or not appending then return EPERM

*

f ((zp->z_pflags & (ZFS_| MUTABLE | ZFS_READONLY)) ||
((zp->z_pflags & ZFS_APPENDONLY) && T(ioflag & FAPPEND) &&
(uio->uio_loffset < zp->z_size))) {

ZFS_EXI T(zfsvfs);
return (SET_ERROR(EPERM));
}

zilog = zfsvfs->z_| og;

/*
* Validate file offset
*/

wof f = ioflag & FAPPEND ? zp->z_size :
if (woff < 0)

ZFS_EXI T(zf svfs);

return (SET_ERROR(EINVAL));

ui o->ui o_| of f set;

}

*

* Check for nandatory |ocks before calling zfs_range_| ock()

* in order to prevent a deadl ock with |ocks set via fentl ().

*

/
i f (MANDMODE((node_t) zp->z_node) &&
(error = chkl ock(vp, FWRITE, woff, n, uio->uio_fnode, ct)) != 0)

ZFS_EXI T(zfsvfs);
return (error);

}

/*

* Pre-fault the pages to ensure slow (eg NFS) pages

* don’t hold up txg.

* Skip this if uio contains |oaned arc_buf.

*/
if ((uio->uio_extflg = UIOXUIO) &&
(((xuio_t *)m 0) - >xu _type == Ul OTYPE_ZEROCOPY))

Xuio = (xuio_t *)uio;

el se
ui o_pref aul t pages(M N(n, max_bl ksz), uio);

/*
* |f in append node, set the io offset pointer to eof.
*/

if (ioflag & FAPPEND) {
/*

* (btain an appending range | ock to guarantee file append

{

11

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 12

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

744
745
746
747
748

750
751

753
754

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

774
775
776
777
778
779
780
781
782
783
784
785
786
787

* semantics. W reset the wite offset once we have the | ock.
*
/
rl = zfs _range_| ock(zp, 0, n, RL_APPEND);
wof f = rl->r_of f;
if (rl->r_len == U NT64_MAX) {
/*

* We overlocked the file because this wite will cause
* the file block size to increase.

* Note that zp_size cannot change with this | ock held.
*/

wof f = zp->z_si ze;

}
ui 0->ui o_| of fset = woff;

} else {
/*
* Note that if the file block size will change as a result of
* this wite, then this range lock will lock the entire file
* so that we can re-wite the block safely.
*/

rl = zfs_range_l ock(zp, woff, n, RL_WRITER);
}

if (woff >=1limit) {
zfs_range_unl ock(rl);
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EFBIQ);
}

if ((woff +n) >limt || woff > (linit - n))
n=1limt - woff;

/* WII this wrlte extend the file length? */
wite_eof = (woff + n > zp->z_size);

end_size = MAX(zp->z_size, woff + n);
*

* Wite the file in reasonable size chunks. Each chunk is witten
* in a separate transaction; this keeps the intent |og records snall
* and allows us to do nore fine-grained space accounting.

*

while (n > 0)

abuf = NULL;

wof f = ui 0->ui o_| of f set;

if (zfs_owner_overquota(zfsvfs, zp, B_FALSE)

zfs_owner _overquota(zfsvfs, zp, B _TRUE)) {
if (abuf !'= NULL)
drmu_r et ur n_ar cbuf (abuf);

error = SET_ERROR(EDQUOT) ;
br eak;

}

if (xuio &% abuf == NULL) {
ASSERT(i _iov < iovent);
aiov = & ovp[i_iov];
abuf = dmu_xui o_ar chuf (xuio, i_iov);
drmu_xui o_clear (xui o, i_iov);
DTRACE PROBES(Zfs cp_wite, int, i_iov,
iovec_t *, aiov, arc_| buf _t *, abuf)
ASSERT((ai ov->i ov_| base == abuf - >b_dat a) ||
(char *)aiov->i ov_base - (char *)abuf->b _data +
aiov->iov_l en == arc_buf _si ze(abuf)));
i _iov++;
} else if (abuf == NULL & & n >= max_bl ksz &&
wof f >= zp->z_size &&
P2PHASE(wof f, max_bl ksz) == 0 &&

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

788
789
790
791
792
793
794
795
796

798
799
800
801
802
803
804
805
806
807
808

810
811
812
813
814
815
816
817
818
819
820
821
822
823

825
826
827
828
829
830
831
832

834
835
836
837
838
839
840
841
842

844
845
846
847
848

850
851
852
853

13
zp->z_bl ksz == max_bl ksz) {
/*
* This wite covers a full block. "Borrow' a buffer
* fromthe dnu so that we can fill it before we enter
* a transaction. This avoids the possibility of
* holding up the transaction if the data copy hangs
* up on a pagefault (e.g., froman NFS server mapping).
*

size_t chytes;

abuf = dnmu_request _arcbuf (sa_get _db(zp->z_sa_hdl),
max_bl ksz);
ASSERT(abuf != NULL);
ASSERT(arc buf S|ze(abuf) == max_bl ksz) ;
if (error = uiocopy(abuf->b data, max bI ksz,
U O WRITE, uio, &chytes)) {
dmu_return_ar cbuf (abuf);
br eak;

}
) ASSERT(cbyt es == max_bl ksz) ;

/*
* Start a transaction.
*/

tx = dmu_tx_create(zfsvfs->z_os);
dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B FALSE);
dmu_tx_hold_wite(tx, zp->z_id, woff, MN(n, max_bl ksz));
zfs_sa upgrade t xhol ds(t x, zp)|
error dmu_t x_assign(tx, TXG WAIT);
if (error) {

drmu_t x_abort (tx);

if (abuf != NULL)

dmu_r et ur n_ar cbuf (abuf);

break;
}
/*
* |f zfs_range_l ock() over-locked we grow the bl ocksize
: and then reduce the lock range. This will only happen

on the first iteration since zfs_range_reduce() will
* shrink down r_len to the appropriate size.

*/

if (rl->r_len == U NT64_MAX) {

ui nt64t new_bl ksz;

if (zp->z_blksz > max_bl ksz) {

ASSERT(! | SP2(zp->z_bl ksz));

new bl ksz = M N(end_si ze, SPA MAXBLOCKSI ZE) ;
} else {

new_bl ksz = M N(end_si ze, max_bl ksz);

}
zfs_grow_bl ocksi ze(zp, new_ bl ksz, tx);
zfs_range_reduce(rl, woff, n);

}

/*
* XXX - should we really limt each wite to z_max_bl ksz?
* Perhaps we shoul d use SPA MAXBLOCKSI ZE chunks?
*
/

nbytes = M N(n, max_bl ksz - P2PHASE(wof f, nmax_bl ksz));

if (abuf == NULL)
ytes = ui o->uio_resid;
error = dmu_wite_uio dbuf(sa get _db(zp->z_sa_hdl),
uio, nbytes, tx);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

884
885
886
887
888
889
890
891
892
893
894

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

tx_bytes -= uio->uio_resid;
} else {
tx_bytes = nbytes;
;ASSERT(xui o == NULL || tx_bytes == aiov->iov_len);
*

* |f this is not a full block wite, but we are
* extending the file past EOF and this data starts
* bl ock-aligned, use assign_arcbuf(). Oherwi se,
* write via dmu_write().
*

/

if (tx_bytes < max_blksz && (!wite_eof ||
ai ov->i ov_base ! = abuf->b_data)) {
ASSERT(xui 0) ;
dmu_write(zfsvfs->z_os, zp->z_id, woff,
ai ov->i ov_| en, aiov->iov_base, tx);
dmu_r et ur n_ar cbuf (abuf);
xui o_st at _wbuf _copi ed();
} else {
ASSERT(xui o || tx_bytes == max_bl ksz);
dmu_assi gn_ar cbuf (sa_get _db(zp->z_sa hdl)
“wof f, abuf, tx);

}
ASSERT(t x_bytes <= uio->uio_resid);
ui oski p(ui o, tx_bytes);

}
if (tx_bytes & vn_has_cached_data(vp)) {
updat e_pages(vp, woff,
tx_bytes, zfsvfs- >z _0s, zp->z_id);

}

/*

* |f we nmade no progress, we're done. |f we nmade even

* partial progress, update the znode and ZI L accordingly.
*/

if (tx_bytes == 0) {
(void) sa_update(zp->z_sa_hdl, SA ZPL_SI ZE(zf svfs),
(void *)&zp->z_size, sizeof (uint64_t), tx);
dmu_t x_conm t (tx);
ASSERT(error !'= 0);

break;

}
/*
* Clear Set-U D Set-AD bits on successful wite if not
* privileged and at |east one of the excute bits is set.
*
* It would be nice to to this after all wites have
* been done, but that would still expose the |ISU D/|SG D
* to another app after the partial wite is commtted.
*
* Note: we don’t call zfs_fuid_map_id() here because
* user 0 is not an epheneral uid
*/
nmut ex_ent er (&p->z_acl _| ock);
if ((zp->z_node & (S IXUSR | (S_I XUSR >> 3) |

(S IXUSR >> 6))) != 0 &&

(zp->z_rmode & (S ISUD| SISAD)) !=0 &&

secpol i cy_vnode_setid_retai n(cr,

| =

(zp->z_mode & S_| SUI D) 0 & zp->z_uid == 0) !'=0) {
ui nt 64_t newnode;
zp->z_node &= ~(SISUD| SISGD);

newnbde = zp->z_node;

(void) sa_update(zp->z_sa_hdl, SA ZPL_ MODE(zfsvfs),
(voi d *) &ewnpde, si zeof (UI nt64_t), tx);

mut ex_exi t (&p->z_acl _I| ock);

14

15

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

921 zfs_tstanp_updat e_setup(zp, CONTENT_MODI FI ED, ntine, ctine,
922 B_TRUE);

924 /*

925 * Update the file size (zp_size) if it has changed;
926 * account for possible concurrent updates.

927

928 v\hlle ((end_size = zp->z_size) < uio->uio_loffset) {
929 (void) atom c_cas_64(&zp->z_size, end_size,

930 ui o->uio_Toffset);

931 ASSERT(error == 0)

932 }

933 /*

934 * If we are replaying and eof is non zero then force
935 * the file size to the specified eof. Note, there’s no
936 * concurrency during replay.

937 */

938 if (zfsvfs->z_replay & zfsvfs->z_replay_eof != 0)

939 zp->z_size = zfsvfs->z_repl ay_eof;

941 error = sa_bul k_updat e(zp->z_sa_hdl, bul k, count, tx);
943 zfs_log_wite(zilog, tx, TX WRITE, zp, woff, tx_bytes, ioflag);
944 dnmu_t x_commi t (tx);

946 if (error I:O)

947 bre

948 ASSERT(t x_ byt es == = nbytes);

949 n -= nbytes;

951 if (!Ixuio & n > 0)

952 ui o_prefaul t pages(M N(n, max_bl ksz), uio);

953 }

955 zfs_range_unl ock(rl);

957 /*

958 * If we're in replay node, or we nmade no progress, return error.
959 * Gtherwise, it’'s at Ieast a partial wite, so it’s successful.
960 *

961 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {

962 ZFS_EXI T(zf svfs);

963 return (error);

964 }

966 if (ioflag & (FSYNC | FDSYNC) ||

967 zf svfs->z_o0s->0s_sync == ZFS_SYNC_ALVAYS)

968 zil _commit(zilog, zp->z_id);

970 ZFS_EXI T(zfsvfs);

971 return (0);

972 }

974 #define ZFS_RESERVE _CHUNK (2 * 1024 * 1024)

975 /* ARGSUSED */

976 static int

977 zfs_zero_wite(vnode_t *vp, uint64_t size, cred_t *cr, caller_context_t *ct)
978 {

979 znode_t *zp = VTOZ(p);

980 zfsvfs_t *zf svfs = zp->z_zfsvfs;

981 int count = 0;

982 sa_bul k_attr_t bul k[4];

983 ui nt 64_t ntime[2], ctime[2];

984 rl_t *rl;

985 int error = 0;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

986
987
988

990
991
992
993

995
996

998
999
1000
1001
1002
1003

1005
1006
1007
1008
1009
1010

1012
1013
1014
1015
1016
1017
1018

1020

1022
1023
1024
1025
1026

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

1047
1048
1049

1051

agai n:

dmu_t x_t *tx = NULL;
ui nt 64_t end_si ze;
ui nt 64_t pos = 0;

if (zp->z_size > 0)
return (EFBI G ;
if (size ==
return (0);

ZFS_ENTER(zf svfs);
ZFS_VERI FY_ZP(zp);

if (!spa_feature_is_enabl ed(zfsvfs->z_os->0s_spa,
SPA_FEATURE_SPACE_RESERVATI ON))

{

ZFS_EXI T(zf svfs);

return (ENOTSUP);
}
SA_ADD BULK_ATTR(bul k, count, SA ZPL_MII ME(zf svfs),
SA_ADD BULK_ATTR(bul k, count, SA_ZPL_CTI ME(zf svfs),
SA_ADD_BULK_ATTR(bul k, count, SA ZPL_SI ZE(zfsvfs), NULL,

& p->z_size, 8);

SA_ADD_BULK ATTR(bul k, count, SA ZPL_FLAGS(zfsvfs), NULL,

&zp->z_pflags, 8);

/*

* |f inmmutable or not appending then return EPERM

*

if ((zp->z_pflags & (ZFS_| MUTABLE | ZFS_READONLY))) {
ZFS_EXI T(zfsvfs);
return (EPERV;

}

rl = zfs_range_l ock(zp, 0, size, RL_WRI TER);

if (zfs_owner_overquot a(zfsvfs,

zf s_owner overquota(zfsvfs zp,

error = EDQUCT;
got o out

zp, B_FALSE) ||
B_TRUE)) {

}

while (pos < size) {
uint64_t length = size - pos
length = MN(l ength, ZFS_ RESERVE = CHUNK) ;

tx = dmu_tx_create(zfsvfs->z_os);

dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B FALSE);

dmu_tx_hol d_write(tx, zp->z_id, pos, |length);
zfs_sa upgrade t xhol ds(tx, zp);
error dmu_t x_assi gn(tx, TXG_NO/\AI T);
if (error) {
if (error == ERESTART) {
dmu_t x_wai t (tx);
dmu_t x_abort (tx);
got o agai n;
dmu_t x_abort (tx);
goto out;
}
if (pos == 0)
zfs_grow bl ocksi ze(zp, M N(si ze,

dmu_write_zero(zfsvfs->z_os, zp->z_id, pos, |ength,

zfs_t st anp_updat e_set up(zp,

CONTENT_MODI FI ED, nti ne,

16

NULL, &ntinme, 16);
NULL, &ctime, 16);

zfsvfs->z_max_bl ksz), t

tx);
ctine, B.TR

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1053 pos += | ength;

1054 while ((end_size = zp->z_size) < pos)

1055 (void) atom c_cas_64(&zp->z_size, end_size, pos);
1057 error = sa_bul k_updat e(zp->z_sa_hdl, bulk, count, tx);
1059 dmu_t x_commi t (tx);

1060 if (error)

1061 goto out;

1062 1

1063 out:

1064 zfs_range_unl ock(rl);

1065 ZFS_EXI T(zf svfs);

1067 return (error);

1068 }

1070 #endif /* ! codereview */

1071 void

1072 zfs_get_done(zgd_t *zgd, int error)

1073 {

1074 znode_t *zp = zgd->zgd_pri vate;

1075 obj set _t *os = zp->z_zfsvfs->z_os;

1077 if (zgd- >zgd db)

1078 drmu_buf _rel e(zgd->zgd_db, zgd);

1080 zfs_range_unl ock(zgd->zgd_rl);

1082 /*

1083 * Rel ease the vnode asynchronously as we currently have the
1084 * txg stopped from syncing.

1085 */

1086 VN_RELE_ASYNC(ZTOV(zp), dsl_pool _vnrel e_taskq(dmu_objset_pool (0s)));
1088 if (error == 0 && zgd->zgd_bp)

1089 zi | _add_bl ock(zgd->zgd_zil og, zgd->zgd_bp);
1091 kmem free(zgd, sizeof (zgd_t));

1092 }

1094 #ifdef DEBUG

1095 static int zil_fault_io = O;

1096 #endi f

1098 /*

1099 * Get data to generate a TX WRITE intent |og record.

1100 */

1101 int

1102 zfs_get_data(void *arg, Ir_wite_t *Ir, char *buf, zio_t *zio)
1103 {

1104 zfsvfs_t *zfsvfs = arg;

1105 obj set _t *os = zfsvfs->z_os;

1106 znode_t *zp;

1107 uint64_t object = Ir->lr_foid;

1108 uint64_t offset = Ir->lr_offset;

1109 uint64_t size = Ir->lr_|ength;

1110 bl kptr_t *bp = & r->Ir_bl kptr;

1111 drmu_buf _t *db;

1112 zgd_t *zgd;

1113 int error = 0;

1115 ASSERT(zio != NULL);

1116 ASSERT(si ze != 0);

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

1133
1134
1135

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

/*
* Nothing to do if the file has been renoved
*
/
if (zfs_zget(zfsvfs, object, &p) != 0)
return (SET_ERROR(ENCENT));
if (zp- >z_un| i nked) {
/*
* Rel ease the vnode asynchronously as we currently have the
* txg stopped from syncing.
*/
VN_RELE_ASYNC(ZTOV(zp) ,
dsl _pool _vnrel e taskq(dnu obj set _pool (0s)));
return (SET_ERROR(ENCENT));
}
zgd = (zgd_t *)knen1zal|0c(5|zeof (zgd_t), KM SLEEP);
zgd->zgd_zil og = zfsvfs->z_l og;
zgd->zgd_private = zp;
/*
* Wite records cone in two flavors: inmediate and indirect.
* For small wites it’s cheaper to store the data with the
* log record (imediate); for large wites it’s cheaper to
* sync the data and get a pointer to it (indirect) so that
*/vve don’t have to wite the data twice.
if (buf !'= NULL) { /* imediate wite */
zgd->zgd_rl = zfs_range_|l ock(zp, offset, size, RL_READER);
/* test for truncation needs to be done while range | ocked */
if (offset >= zp >z_size) {
error = SET_ERROR(ENCENT) ;
} else {
error = dnu_read(os, object, offset, size, buf,
DMJ_READ_NO_PREFETCH) ;
}
ASSERT(error == 0 || error == ENCENT);
} else {//* indirect wite */
*
* Have to lock the whole block to ensure when it’s
* witten out and it’s checksumis being cal cul ated
* that no one can change the data. W need to re-check
* bl ocksize after we get the lock in case it’s changed!
*
/
for (;;) {
uint64_t bl kof f
size = zp->z_bl ksz;
bl kof f = 1 SP2(size) ? P2PHASE(of fset, size) of f set;
of fset -= bl koff;
zgd->zgd_r|l = zfs_range_l ock(zp, offset, size,
RL_READER) ;
if (zp->z_blksz == size)
break;
of fset += bl koff;
) zfs_range_unl ock(zgd->zgd_rl)
/* test for truncation needs to be done while range | ocked */
if (lr->lr_ offset >= zp->z_si ze)
error = SET_ERROR(ENCENT) ;
#i f def DEBUG
if (zil_fault_io) {
error = SET_ERROR(EI O ;
zil _fault_io = 0;
}
#endi f
if (error == 0)
error = dmu_buf _hol d(os, object, offset, zgd, &db,

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1184

1186
1187
1188
1189
1190
1191

1193
1194

1196
1197

1199
1200
1201

1203
1204
1205
1206
1207
1208
1209
1210

1212
1213
1214
1215
1216
1217

1219

1221
1222 }

DMU_READ_NO_PREFETCH) ;

if (error == 0) {
bl kptr_t *obp = dmu_buf _get _bl kptr(db);

if (obp) {
ASSERT(BP_I S_HOLE(bp)) ;
*bp = *obp

}

zgd- >zgd_db = db;

zgd- >zgd_bp = bp;

ASSERT(db- >db_of f set == offset);
ASSERT(db->db_si ze == si ze);

error = dnu_sync(zio, Ir->lr_common.lrc_txg,
zfs_get_done, zgd);

ASSERT(error || Ir->r_length <= zp->z_bl ksz);

/

rel ease this dbuf.
in the zfs_get_done() call back.

* Ok ok k k ok

if (error == 0)
return (0);

if (errolr == EALREADY)

{
r->lr_common. |rc_txtype = TX_WRl TE2;
error = 0;

}
zfs_get _done(zgd, error);

return (error);

1224 | * ARGSUSED*/
1225 static int
1226 zfs_access(vnode_t *vp, int node, int flag, cred_t *cr,

1227
1228 {
1229
1230
1231

1233
1234

1236
1237
1238
1239

1241
1242
1243 }

1245 /*

cal l er_context t *ct)

znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error;

ZFS_ENTER(zf svfs);
ZFS_VERI FY_ZP(zp)

if (flag & V_ACE MASK)

error = zfs_zaccess(zp, node, flag, B_FALSE, cr);
el se

error = zfs_zaccess_rwx(zp, node, flag, cr);

ZFS_EXI T(zfsvfs);
return (error);

1246 * If vnode is for a device return a specfs vnode instead.

1247 */

1248 static int
1249 specvp_check(vnode_t **vpp, cred_t *cr)

On success, we need to wait for the wite 1/0
initiated by dmu_sync() to conplete before we can
We will finish everything up

19

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1250 {
1251

1253
1254

1256
1257
1258
1259
1260
1261
1262
1263 }

1266 /
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287 /

® Ok Sk ok 3k b Ok Ok b Rk ko ok Ok Ok %

*
*

int error = 0;

if (IS_DEVWP(*vpp))

{
struct vnode *svp;

svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
VN_RELE(*vpp) ;
if (svp == NULL)
error = SET_ERROR(ENOSYS);
*Vpp = svp;

}
return (error);

Lookup an entry in a directory, or an extended attribute directory.
If it exists, return a held vnode reference for it.
I'N: dvp - vnode of directory to search.
nm - name of entry to | ookup.
pnp - full pathname to | ookup [UNUSED) .
flags - LOOKUP_XATTR set if looking for an attribute.
rdir - root directory vnode [UNUSED) .
cr - credentials of caller.
ct - caller context
direntflags - directory |ookup flags
real pnp - returned pathnane.
QUT: vpp - vnode of located entry, NULL if not found.
RETURN: O on success, error code on failure.
Ti mest anps:
NA
ARGSUSED */

1288 static int

1289 zfs_l ookup(vnode_t *dvp, char *nm vnode_t **vpp, struct pathnanme *pnp,
int
int *direntflags, pathname_t *real pnp)

1290
1291
1292 {
1293
1294
1295

1297
1298

1300
1301
1302
1303
1304

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

flags, vnode_t *rdir, cred_t *cr,

cal ler_context_t *ct,

znode_t *zdp = VTQZ(dvp);
zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
int error = 0;

/* fast path */
if (I (flags & (LOOKUP_XATTR | FI GNORECASE))) {

if (dvp->v_type !'= VDIR) {
return (SET_ERROR(ENOIDIR));
} else if (zdp->z_sa_hdl == NULL) {
return (SET_ERROR(EIO));

}
if (nn{0] ==0 || (nn{0] =="." && nn{1] == "'\0")) {
error = zfs_fastaccesschk_execute(zdp, cr);
if (terror) {
*vpp = dvp
VN_HOLIX(* vpp) ;
return (0);

}
return (error);
} else {
vnode_t *tvp = dnl c_| ookup(dvp, nm;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 21 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 22

1317 if (tvp) { 1383 /*
1318 error = zfs_fastaccesschk_execute(zdp, cr); 1384 * Check accessibility of directory.
1319 if (error) { 1385 */
1320 VN_RELE(tvp);
1321 return (error); 1387 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1322 } 1388 ZFS_EXI T(zfsvfs);
1323 if (tvp == DNLC_NO_VNODE) { 1389 return (error);
1324 VN_RELE(tvp); 1390 }
1325 return (SET_ERROR(ENCENT));
1326 } else { 1392 if (zfsvfs->z_utf8 & u8_validate(nm strlen(nm,
1327 *vpp = tvp; 1393 NULL, UB_VALI DATE ENTI RE, &error) < 0)
1328 return (specvp_check(vpp, cr)); 1394 ZFS_EXI T(zfsvfs);
1329 } 1395 return (SET_ERROR(EILSEQ);
1330 } 1396 }
1331 }
1332 } 1398 error = zfs_dirlook(zdp, nm vpp, flags, direntflags, real pnp);
1399 if (error == 0)
1334 DTRACE_PROBE2(zfs__fastpath__l ookup__miss, vnode_t *, dvp, char *, nnm; 1400 error = specvp_check(vpp, cr);
1336 ZFS_ENTER(zf svfs); 1402 ZFS_EXI T(zfsvfs);
1337 ZFS_VERI FY_ZP(zdp) ; 1403 return (error);
1404 }
1339 *vpp = NULL;
1406 /*
1341 if (flags & LOOKUP_XATTR) { 1407 * Attenpt to create a new entry in a directory. If the entry
1342 /% 1408 * already exists, truncate the file if perm ssible, else return
1343 * If the xattr property is off, refuse the |ookup request. 1409 * an error. Return the vp of the created or trunc'd file.
1344 */ 1410 *
1345 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1411 * I'N: dvp - vnode of directory to put new file entry in.
1346 ZFS_EXI T(zf svfs); 1412 * name - name of new file entry.
1347 return (SET_ERROR(EI NVAL)); 1413 * vap - attributes of new file.
1348 } 1414 * excl - flag indicating exclusive or non-exclusive node.
1415 * node - node to open file with.
1350 /* 1416 * cr - credentials of caller.
1351 * W don’t allow recursive attributes.. 1417 * flag - large file flag [UNUSED] .
1352 * Maybe soneday we will. 1418 * ct - caller context
1353 */ 1419 * vsecp - ACL to be set
1354 if (zdp->z_pflags & ZFS XATTR) { 1420 *
1355 ZFS_EXI T(zf svfs); 1421 * QUT: vpp - vnode of created or trunc’'d entry.
1356 return (SET_ERROR(ElI NVAL)); 1422 *
1357 } 1423 * RETURN: O on success, error code on failure.
1424 *
1359 if (error = zfs_get_xattrdir(VToz(dvp), vpp, cr, flags)) { 1425 * Ti mest anps:
1360 ZFS_EXI T(zfsvfs); 1426 * dvp - ctine|ntime updated if new entry created
1361 return (error); 1427 * vp - ctime|ntinme always, atime if new
1362 } 1428 */
1364 /* 1430 /* ARGSUSED */
1365 * Do we have permission to get into attribute directory? 1431 static int
1366 */ 1432 zfs_create(vnode_t *dvp, char *nanme, vattr_t *vap, vcexcl_t excl,
1433 int node, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1368 if (error = zfs_zaccess(VTQZ(*vpp), ACE_EXECUTE, O, 1434 vsecattr_t *vsecp)
1369 B FALSE, cr)) { 1435 {
1370 VN_RELE(*vpp) ; 1436 znode_t *zp, *dzp = VTIQZ(dvp);
1371 *vpp = NULL; 1437 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1372 } 1438 zil og_t *zil og;
1439 obj set _t *0s;
1374 ZFS_EXI T(zfsvfs); 1440 zfs_dirlock_t *dl ;
1375 return (error); 1441 drmu_t x_t *tX;
1376 } 1442 int error;
1443 ksid_t *ksi d;
1378 if (dvp->v_type != VDR { 1444 uid_t ui d;
1379 ZFS_EXI T(zf svfs); 1445 gid_t gid = crgetgid(cr);
1380 return (SET_ERROR(ENOTDIR)); 1446 zfs_acl _ids_t acl _i ds;

1381 } 1447 bool ean_t fuid dirtied;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1448
1449

1451
1452
1453
1454

1456
1457
1458
1459
1460

1462
1463
1464
1465

1467
1468
1469
1470

1472
1473
1474
1475
1476

1478
1479
1480
1481
1482
1483
1484
1485
1486

1488
1489

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501

1503
1504

1506
1507
1508
1509
1510
1511
1512
1513

top:

bool ean_t have_acl = B_FALSE;
bool ean_t wai ted = B_FALSE;

*

* |f we have an epheneral id, ACL, or XVATTR then
* make sure file systemis at proper version
*

/

ksid = crgetsid(cr, KSID_OMER);
if (ksid)

uid = ksid_getid(ksid);
el se

uid = crgetuid(cr);

if (zfsvfs->z_use_fuids == B_FALSE &&
(vsecp || (vap->va_mask & AT_XVATTR) ||
I'S EPHEMERAL(uid) | IS EPHENERAL(gl d)))
return (SET_ERROR(EINVAL));

ZFS_ENTER(zf svfs);
ZFS_VERI FY_ZP(dzp)
os = zfsvfs->z_os;
zilog = zf svfs->z_| 0g;

if (zfsvfs->z_utf8 && u8_validate(nanme, strlen(nane),
NULL, U8_VALI DATE ENTIRE, &error) < 0) {
ZFS_EXI T(zf svfs);
return (SET_ERROR(EILSEQ);
}

if (vap->va_mask & AT_XVATTR)
if ((error = secpolicy_xvattr((xvattr_t
crgetuid(cr), cr, vap->va_type)) !=
ZFS_EXI T(zfsvfs);
return (error);

*)va|
0) {

}
*vypp = NULL;

if ((vap->va_node & VSVTX) && secpolicy_vnode_stky_ nodify(cr))
VTX;

vap- >va_node & ~VS

if (*nan}e ="'\0") {

* Null conponent name refers to the directory itself.
*/

dl = NULL
error = 0;
} else {
/* p055| bl e VN _HOLD(zp) */
int zflg = 0;

if (flag & FI GNORECASE)
zflg | = ZCl LOCK;

error = zfs_dirent_l ock(&dl, dzp, nane, &zp, zflg,

NULL, NULL)
if (error) {
if (have_acl)
zfs_acl _ids free(&acl _ids);
if (strcrrp(narre "..") == 0)
error = SET. ERRCR(EI SDIR);
ZFS_EXI T(zfsvfs);

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

1514
1515
1516

1518
1519

1521
1522
1523
1524
1525
1526
1527
1528
1529

1531
1532
1533
1534

1536
1537
1538
1539
1540
1541
1542

1544
1545
1546
1547

1549
1550
1551
1552
1553

1655

1557
1558

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579

}

return (error);

if (zp == NULL) {

uint64_t txtype;

/*

* Create a new file object and update the directory
* to reference it.

*/

if (error = zfs_zaccess(dzp, ACE_ADD FILE, 0, B FALSE, cr)) {

if (have_acl)
zfs_acl _ids_free(&acl _ids);
goto out;

}

/*

* We only support the creation of regular files in
* extended attribute directories.

*/

if ((dzp->z_pflags & ZFS_XATTR) &&
(vap->va_type != VREG) {
if (have_acl)
zfs_acl _ids_free(&acl _ids);
error = SET_ERROR(EINVAL) ;

goto out;
}
if (!'have_acl && (error = zfs_acl _ids_create(dzp, O,
cr, vsecp, &acl_ids)) !=0)
oto out;

g
have_acl = B_TRUE

if (zfs_acl _ids_overquota(zfsvfs, &acl_ids)) {
zfs acl _ids_free(&acl _ids);
error = SET_ERROR(EDQUOT) ;
goto out;

}

tx = drmu_tx_create(os);

vap,

dmu_t x_hol d_sa_create(tx, acl_ids.z_acl p->z_acl _bytes +

ZFS_SA BASE ATTR Sl ZE) ;

fuid_ dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhol d(zfsvfs, tx)
dnu_t x_hol d_zap(tx, dzp->z_id, TRUE, nane);
dmu_t x_hol d_sa(tx, dzp->z_sa_| hdl B_FALSE);
if (1zfsvfs->z_use_sa &&
acl _ids.z_acl p->z_acl _bytes > ZFS ACE _SPACE) {
“dmu_tx_hol d_write(tx, DMJ_NEW OBJECT,
0, acl_ids.z_acl p->z_acl _bytes);

}
error = dmu_tx_assign(tx, waited ? TXG WAI TED : TXG NOWMAIT);

if (error) {
zfs_dirent _unl ock(dl);
if (error == ERESTART) {
wai ted = B_TRUE;
dmu_t x_wai t (tx);
dmu_t x_abort (tx);
goto top;

}
zfs_acl _ids_free(&acl _ids);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1580
1581
1582
1583
1584

1586
1587

1589
1590
1591
1592
1593
1594
1595
1596
1597
1598

1600
1601
1602

1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626

1628
1629
1630

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645

dmu_t x_abort (tx);
ZFS_EXI T(zfsvfs);
return (error);

}
zfs_nknode(dzp, vap, tx, cr, 0, &p, &acl_ids);

if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);

(void) zfs_link_create(dl, zp, tx, ZNEW;
txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
if (flag & FI GNORECASE)
txtype | = TX C;
zfs_log_create(zilog, tx, txtype, dzp, zp, nane,
vsecp, acl _ids.z_fuidp, vap);
zfs_acl _ids_free(&acl _ids);
dmu_t x_comm t (tx);
} else {
int aflags = (flag & FAPPEND) ? V_APPEND : O;

if (have_acl)
zfs_acl _ids_free(&acl _ids);
have_acl = B_FALSE;

/*
* Adirectory entry already exists for this nane.
*
/*/
* Can’t truncate an existing file if in exclusive node.
*/
if (excl == EXCL) {
error = SET_ERROR(EEXI ST) ;
goto out;
/*

* Can't open a directory for witing.
*

if ((ZTOV(zp)->v_type == VDIR) && (npde & S_IWRITE)) {
error = SET_ERROR(EI SDIR);
goto out;

/*
* Verify requested access to file.
*

if (nmode & (error = zfs_zaccess_rwx(zp, node, aflags, cr))) {
goto out;
}

nmut ex_ent er (&dzp->z_| ock) ;
dzp->z_seq++;
mut ex_exi t (&zp->z_| ock);

/*
* Truncate regular files if requested.
*/

if ((ZTOV(zp)->v_type == VREG &&
(vap->va_nask & AT_SI ZE) && (vap->va_size == 0)) {
/* we can’t hold any | ocks when calling zfs_freesp() */
zfs_dirent _unl ock(dl);
dl = NULL;
error = zfs_freesp(zp, 0, O, node, TRUE);
if (error == 0)
vnevent _create(ZTOV(zp), ct);
}

25

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1646 out:

1648 if (dl)

1649 zfs_dirent _unl ock(dl);

1651 if (error) {

1652 if (zp)

1653 VN_RELE(ZTOV(zp));

1654 } else {

1655 *vpp = ZTOV(zp);

1656 error = specvp_check(vpp, cr);
1657 }

1659 if (zfsvfs->z_o0s->0s_sync == ZFS_SYNC_ALWAYS)
1660 zil _commt(zilog, 0);

1662 ZFS_EXI T(zfsvfs);

1663 return (error);

1664 }

1666 /*

1667 * Renopve an entry froma directory.

1668 *

1669 * I'N: dvp - vnode of directory to renpve entry from
1670 * name - nane of entry to renove.
1671 * cr - credentials of caller.
1672 * ct - caller context

1673 * flags - case flags

1674 *

1675 * RETURN: O on success, error code on failure.
1676 *

1677 * Ti mest anps:

1678 * dvp - ctine|ntinme

1679 * vp - ctime (if nlink > 0)

1680 */

1682 uint64_t null_xattr = 0;

1684 /* ARGSUSED*/

1685 static int

1686 zfs_renove(vnode_t *dvp, char *nane, cred_t *cr, caller_context_t
1687 int flags)

1688 {

1689 znode_t *zp, *dzp = VTQOZ(dvp);
1690 znode_t *Xzp;

1691 vnode_t *vp;

1692 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1693 zil og_t *zil og;

1694 ui nt 64_t acl _obj, xattr_obj;

1695 ui nt 64_t xattr_obj _unlinked = 0;
1696 ui nt 64_t obj = 0;

1697 zfs_dirl ock_t *dl ;

1698 dmu_t x_t *tX;

1699 bool ean_t nmay_del et e_now, del ete_now = FALSE;
1700 bool ean_t unl i nked, toobig = FALSE;
1701 ui nt 64_t t xt ype;

1702 pat hnane_t *real nnp = NULL;

1703 pat hnanme_t real nm

1704 I nt error;

1705 int zfl g = ZEXI STS;

1706 bool ean_t wai ted = B_FALSE;

1708 ZFS_ENTER(zf svfs);

1709 ZFS_VERI FY_ZP(dzp)

1710 zilog = zfsvfs->z_| og;

*ct,

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 27 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 28
1712 if (fl ags & FI GNORECASE) { 1778 error = sa_|l ookup(zp->z_sa_hdl, SA ZPL_XATTR(zfsvfs),
1713 g | = ZC LOCK; 1779 &xattr Obj si zeof (xattr_ob]));
1714 pn_al | oc(& eal nm; 1780 if (error == 0 & xattr_obj) {
1715 real nnp = &real nm 1781 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1716 } 1782 ASSERTO(error);
1783 drmu_t x_hol d sa(tx zp->z_sa_hdl, B_TRUE);
1718 top: 1784 dmu_t x_hol d_sa(tx, xzp->z_sa_hdl, B FALSE);
1719 xattr_obj = 0O; 1785 }
1720 xzp = NULL;
1721 I* 1787 mut ex_ent er (&p->z_| ock) ;
1722 * Attenpt to lock directory; fail if entry doesn’t exist. 1788 if ((acl_obj = zfs_external _acl(zp)) != 0 & nay_del et e_now)
1723 */ 1789 dmu_t x_hol d_free(tx, acl_obj, 0, DMJ OBJECT_END);
1724 if (error = zfs_dirent_| ock(&dl, dzp, nane, &p, zflg, 1790 mut ex_exi t (&p->z_| ock) ;
1725 NULL, real nnp)) {
1726 if (real nmp) 1792 /* charge as an update -- would be nice not to charge at all */
1727 pn_free(real nnp); 1793 drmu_t x_hol d_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1728 ZFS_EXI T(zf svfs);
1729 return (error); 1795 /*
1730 } 1796 * Mark this transaction as typically resulting in a net free of
1797 * space, unless object renpval will be delayed indefinitely
1732 vp = ZTOV(zp); 1798 * (due to active holds on the vnode due to the file being open).
1799 */
1734 if (error = zfs_zaccess_del ete(dzp, zp, cr)) { 1800 if (may_del et e_now)
1735) goto out; 1801 dmu_t x_mark_netfree(tx);
1736
1803 error = dnu_tx_assign(tx, waited ? TXG WAI TED : TXG NOMIT);
1738 /* 1804 if (error) {
1739 * Need to use rndir for renoving directories. 1805 zfs_dirent _unl ock(dl);
1740 */ 1806 VN_RELE(vp);
1741 if (vp->v_type == VDIR) { 1807 if (xzp)
1742 error = SET_ERROR(EPERM ; 1808 VN_RELE(ZTOV(xzp)) ;
1743 goto out; 1809 if (error == ERESTART) {
1744 } 1810 wai ted = B_TRUE;
1811 dmu_t x_wai t (tx);
1746 vnevent _renove(vp, dvp, nanme, ct); 1812 drmu_t x_abort (tx);
1813 goto top;
1748 if (real nnp) 1814
1749 dnl c_renpve(dvp, real nnp->pn_buf); 1815 if (real nnp)
1750 el se 1816 pn_free(real nnp);
1751 dnl c_renove(dvp, nane); 1817 drmu_t x_abort (tx);
1818 ZFS_EXI T(zfsvfs);
1753 nmut ex_ent er (&p->v_| ock); 1819 return (error);
1754 may_del ete_now = vp->v_count == 1 && !vn_has_cached_dat a(vp); 1820 }
1755 mut ex_exi t (&p->v_| ock);
1822 /*
1757 /* 1823 * Renpve the directory entry.
1758 * W& may del ete the znode now, or we nay put it in the unlinked set; 1824 */
1759 * it depends on whether we're the last link, and on whether there are 1825 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1760 * other holds on the vnode. So we dmu_tx_hold() the right things to
1761 * allow for either case. 1827 if (error) {
1762 */ 1828 dnu_t x_commi t (tx);
1763 obj = zp->z_id; 1829 goto out;
1764 tx = dnu_tx create(zf svfs->z_o0s); 1830 }
1765 drm _tx_hol d_zap(tx, dzp->z_id, FALSE, nane) ;
1766 dmu_t x_hol d_sa(tx, zp->z_sa hdI B_FALSE); 1832 if (unlinked) {
1767 zf s_sa_upgrade_t xhol ds(tX, zp); 1833 /*
1768 zf s_sa_upgrade_t xhol ds(t x, dzp); 1834 * Hold z_lock so that we can nake sure that the ACL obj
1769 if (may_del et e_now) { 1835 * hasn’t changed. Could have been del eted due to
1770 toobig = 1836 * zfs_sa_upgrade().
1771 zp->z_si ze > zp->z_bl ksz * DMJ_MAX_DELETEBLKCNT; 1837 */
1772 /* if the file is too big, only hold free a token amount */ 1838 mut ex_ent er (&p->z_| ock) ;
1773 dmu_t x_hol d_free(tx, zp->z_id, O, 1839 mut ex_ent er (& p->v_| ock);
1774 (toobi g ? DMJ_MAX_ACCESS : DNU_(BJECT_END)); 1840 (void) sa_l ookup(zp->z_sa_hdl, SA ZPL_XATTR(zfsvfs),
1775 } 1841 & at tr_obj _unl i nked, sizeof (xattr_obj_unlinked));
1842 del ete_now = may_del ete_now && !toobig &&
1777 /* are there any extended attributes? */ 1843 vp->v_count == 1 & !vn_has_cached_dat a(vp) &&

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1844
1845
1846
1847

1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859

1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

1881
1882
1883
1884

1886
1887
1888
1889

1891

1893
1894
1895
1896

1898
1899

1901
1902
1903

1905
1906
1907
1908
1909

out :

* Ok Ok ok %

xattr Obj == xattr_obj _unlinked && zfs_external
acl _obj ;
mut ex_exi t (&p->v_| ock) ;

}

if (delete_now) {

if (xattr_obj_unlinked) {
ASSERT3U(xzp->z_l i nks, ==, 2)
mut ex_ent er (&zp->z_| ock) ;
xzp->z_unl i nked = 1;
xzp->z_links = 0;
error = sa_update(xzp- >z_sa_hdl,

& zp->z_li nks,

ASSERT3U(error, ==,
mut ex eX|t(&xzp >z Iock)
zfs_unl i nked_add(xzp, tx)

if (zp->z_is_sa)
error = sa_renove(zp->z_sa_hdl,
SA ZPL_XATTR(zfsvfs), tx);

el se
error = sa_update(zp->z_sa_hdl,
SA ZPL_XATTR(zf svfs), &nul I_xattr,
si zeof (uint64_t), tx);
ASSERTO(error);

mut ex_ent er (& p->v_| ock) ;

vp->v_count - -

ASSERTO(vp->v_count);

mut ex_exi t (&p->v Iock)

mut ex_exi t (& p->z_| ock) ;

zfs_znode_del et e(zp, tx)
} else if (unlinked)

mut ex_exi t (&p->z_| ock);

zfs_unlinked_add(zp, tx);
}

txtype = TX_REMOVE;
if (flags & FlI GNORECASE)
txtype | = TX C;
zfs_l og_| rerrove(zllog, tx, txtype, dzp, name, obj);

drmu_t x_commi t (tx);

if (real nnp)
pn_free(real nnp);

zfs_dirent _unl ock(dl);

if (!delete_now
VN_RELE(vp);

if (xzp)
VN_RELE(ZTOV(xzp)) ;

if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALWAYS)
zil _commt(zilog, 0);

ZFS_EXI T(zfsvfs);
return (error);

Create a new directory and insert it into dvp using the name
provi ded.

Return a pointer to the inserted directory.

I'N: dvp - vnode of directory to add subdir to.

_acl (zp)

SA ZPL_LI NKS(zf svfs)
Si zeof (xzp->z_links), tx);

29

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

1945

1947
1948
1949
1950

1952
1953
1954
1955
1956
1957
1958
1959
1960

1962
1963
1964

1966
1967
1968
1969

1971
1972
1973
1974
1975

® ok Sk Ok ok R bk ok ok % ok ¥

*/

di rname - nanme of new directory

vap - attributes of new directory.
cr - credentials of caller.

ct - caller context

flags - case flags

vsecp - ACL to be set

QUT: vpp - vnode of created directory.

RETURN: 0 on success, error code on failure.

Ti mest anps:

dvp - ctine|nti
vp - ctine|nti

me updat ed
me| ati me updat ed

/ * ARGSUSED* /
static int

zfs_nkdir(vnode_t *dvp, char *dirnane,

{

vattr_t *vap, vnode_t **vpp,

call er_context _t *ct, int flags, vsecattr_t *vsecp)

znode_t *zp, *dzp = VTIQZ(dvp);
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zil og;

zfs_dirlock_t *dl;

ui nt 64_t txtype

dmu_t x_t *tX;

int error;

int zf = ZNEW

ksid_t ;
uid_t ui d;

gid_t gid = crgetgid(cr);
zfs_acl _ids_t acl _i ds;

bool ean_t fuid dirti ed;

bool ean_t wai ted = B_FALSE;

ASSERT(vap->va_type == VDI R);

/*
* |If we have an epheneral id, ACL, or XVATTR then
* make sure file systemis at proper version

ksid = crgetsid(cr,
if (ksid)
uid = ksid_getid(ksid);

KSI D_OMKER) ;

el se
uid = crgetui d(cr);
if (zfsvfs->z_use_fuids == B_FALSE &&
(vsecp || (vap->va_mask & AT_XVATTR) ||
'S EPHEMERAL(ui d) | |S_EPHEVERAL(gid)))
return (SET_ERROR(EINVAL));

ZFS_ENTER(zf svfs);
ZFS_VERI FY_ZP(dzp) ;
zilog = zfsvfs- >z_| og;

if (dzp->z_pflags & ZFS_XATTR) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EI NVAL));
}

if (zfsvfs->z_utf8 && u8_validate(dirnane,
strlen(dirname), NULL, US_VALI DATE_ENTI RE, &error) < 0)
ZFS_EXI T(zf svfs);
return (SET_ERROR(EILSEQ);

cred_t

30

*cr,

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 31 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 32
1976 if (flags & FlI GNORECASE) 2042 zfs_dirent _unl ock(dl);
1977 zf | = ZQ LOXK; 2043 if (error == ERESTART) {
2044 wai ted = B_TRUE;
1979 if (vap->va_mask & AT_XVATTR) { 2045 dmu_t x_wai t (tx);
1980 if ((error = secpolicy_xvattr((xvattr_t *)vap, 2046 dmu_t x_abort (tx);
1981 crgetuid(cr), cr, vap->va_type)) !'= 0) { 2047 goto top;
1982 ZFS EXI T(zfsvfs); 2048 }
1983 return (error); 2049 zfs_acl _ids_free(&acl _ids);
1984 } 2050 dnu_t x_abort (tx);
1985 } 2051 ZFS_EXI T(zf svfs);
2052 return (error);
1987 if ((error = zfs_acl _ids_create(dzp, 0, vap, cr, 2053 }
1988 vsecp, &acl_ids)) !'= 0)
1989 ZFS_EXI T(zf svfs); 2055 /*
1990 return (error); 2056 * Create new node.
1991 } 2057 td
1992 /* 2058 zfs_nknode(dzp, vap, tx, cr, 0, &p, &acl_ids);
1993 * First nake sure the new directory doesn’t exist.
1994 * 2060 if (fuid_dirtied)
1995 * Existence is checked first to nake sure we don’t return 2061 zfs_fuid_sync(zfsvfs, tx);
1996 * EACCES instead of EEXI ST which can cause sone applications
1997 * to fail. 2063 /*
1998 */ 2064 * Now put new nane in parent dir.
1999 top: 2065 *
2000 *vpp = NULL; 2066 (void) zfs_link_create(dl, zp, tx, ZNEW;
2002 if (error = zfs_dirent_| ock(&dl, dzp, dirnane, &zp, zf, 2068 *vpp = ZTOV(zp);
2003 NULL, NULL)) {
2004 zfs_acl _ids_free(&acl _ids); 2070 txtype = zfs_log_create_txtype(Z D R vsecp, vap);
2005 ZFS_EXI T(zf svfs); 2071 if (flags & Fl GNORECASE)
2006 return (error); 2072 txtype | = TX C;
2007 } 2073 zfs_log_create(zilog, tx, txtype, dzp, zp, dirnanme, vsecp,
2074 acl _ids. z_fuidp, vap);
2009 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDI RECTORY, 0, B _FALSE, cr)) {
2010 zfs_acl _ids_free(&acl _ids); 2076 zfs_acl _ids_free(&acl _ids);
2011 zfs_dirent _unl ock(dl);
2012 ZFS_EXI T(zfsvfs); 2078 dmu_t x_commi t (tx);
2013 return (error);
2014 } 2080 zf s_dirent _unl ock(dl);
2016 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 2082 if (zfsvfs->z_o0s->0s_sync == ZFS_SYNC_ALWAYS)
2017 zfs_acl _ids_free(&acl _ids); 2083 zil _commit(zilog, 0);
2018 zfs_dirent _unl ock(dl);
2019 ZFS _EXI T(zFsvfs); 2085 ZFS_EXI T(zfsvfs);
2020 return (SET_ERROR(EDQUQT)); 2086 return (0);
2021 } 2087 }
2023 I* 2089 /*
2024 * Add a new entry to the directory. 2090 * Renpbve a directory subdir entry. |If the current working
2025 */ 2091 * directory is the same as the subdir to be renoved, the
2026 tx = dnu_t x_create(zfsvfs->z_os); 2092 * renove will fail.
2027 drmu_t x_hol d_zap(tx, dzp->z_id, TRUE, dirnane); 2093 *
2028 drmu_t x_hol d_zap(tx, DMJ_NEW OBJECT, FALSE, NULL); 2094 * I'N: dvp - vnode of directory to renpve from
2029 fuid_dirtied = zfsvfs->z_fuid_dirty; 2095 * nane - nane of directory to be renpved.
2030 if (fuid_dirtied) 2096 * cwd - vnode of current working directory.
2031 zfs_fuid_txhol d(zfsvfs, tx); 2097 * cr - credentials of caller.
2032 if (!zfsvfs->z_use_sa &% acl _ids.z_acl p->z_acl _bytes > ZFS ACE _SPACE) { 2098 * ct - caller context
2033 dnu_t x_hol d_write(tx, DMJ_NEW OBJECT, O, 2099 * flags - case flags
2034 acl _ids. z_acl p->z_acl _bytes); 2100 *
2035 } 2101 * RETURN: 0 on success, error code on failure.
2102 *
2037 dmu_t x_hol d_sa_create(tx, acl_ids.z_acl p->z_acl _bytes + 2103 * Ti nmest anps:
2038 ZFS_SA BASE_ATTR SI ZE) ; 2104 * dvp - ctine|ntinme updated
2105 */
2040 error = dnu_tx_assign(tx, waited ? TXG WAI TED : TXG NOWAIT); 2106 /* ARGSUSED*/
2041 if (error) { 2107 static int

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2108 zfs_rndir(vnode_t *dvp, char *nanme, vnode_t *cwd, cred_t *cr,

2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120

2122
2123
2124

2126
2127
2128
2129

2131
2132
2133
2134
2135
2136
2137
2138

2140

2142
2143
2144

2146
2147
2148
2149

2151
2152
2153
2154

2156

2158
2159
2160
2161
2162

2164
2165
2166
2167
2168

2170
2171
2172
2173

{

top:

call er_context _t *ct, int flags)

znode_t *dzp VTQZ(dvp);
znode_t zp;

vnode_t *vp;

zf svf s _t *zfsvfs = dzp->z_zfsvfs;
zil og *zil og;

zfs d|r|ockt *dl ;

drmu_t x_t *tX;

int error;

int zfl g = ZEXI STS

bool ean_t wai ted = B_FALSE;

ZFS_ENTER(zf svfs);
ZFS VER FY_ZP(dzp);
zilog = zfsvfs- >z_| 0g;

if (flags & FI GNORECASE)
zflg | = ZC LOOK;

zp = NULL;
/*
* Attenpt to lock directory; fail if entry doesn’t exist.
*/

if (error = zfs dirent _lock(&dl, dzp, nanme, &zp, zflg,
NULL, NULL)Y
ZFS_EXI T(zf svfs);
return (error);

}
vp = ZTOV(zp);

if (error = zfs_zaccess_del ete(dzp, zp, cr)) {
goto out;
}

if (vp->v_type !'= VDIR) {
error = SET_ERROR(ENOTDI R) ;
goto out;

}

if (vp == cwd) {
error = SET_ERROR(EI NVAL) ;
goto out;

}
vnevent _rndir(vp, dvp, nane, ct);

/*

* Gab a lock on the directory to make sure that noone is

* trying to add (or |ookup) entries while we are renoving it.
*/

rw_enter (&p->z_nane_| ock, RWWRI TER);

/*

* Grab a lock on the parent pointer to make sure we play well
* with the treewal k and directory renane code.

*/

rw_enter (&p->z_parent _| ock, RWWR TER);

tx = dnu_tx_create(zfsvfs->z_os);

drm tx_hol d_zap(tx, dzp->z_id, FALSE, nane);

drmu_t x_hol d_sa(tx, zp->z_sa_| hdI B FALSE)

dmu_t x_hol d_zap(tx, zfsvfs->z unllnkedobj, FALSE, NULL);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191

2193

2195
2196
2197
2198
2199
2200

2202

2204
2205
2206
2207

2209

2211
2212

2214
2215
2216

2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239

zfs_sa_upgrade_t xhol ds(tx, zp);
zf s_sa_upgrade_t xhol ds(tx, dzp);

error = dmu_tx_assign(tx, waited ? TXG WAITED : TXG NOWAIT);

if (error) {

rw_exit(&p->z parent I ock) ;

rw_exit(&p->z_name_| ock);

zfs_dirent _unl ock(dl);

VN_RELE(vp);

if (error == ERESTART) {
waited = B_TRUE;
drmu_t x_wai t (tx);
dmu_t x_abort (tx);
goto top;

dmu_t x_abort (tx);
ZFS_EXI T(zf svfs)
return (error);

}
error = zfs_link_destroy(dl, zp, tx, zflg, NULL)

if (error == 0)
uint64_t txtype = TX RMDIR;
if (flags & Fl GNORECASE)
txtype | = TX

Cl;
zfs_l og_renove(zilog, tx, txtype, dzp, nanme, ZFS _NO OBJECT);

}
dmu_t x_commi t (tx);

rw_exit(&p->z_parent_| ock);
rw_exit(&p->z_name_| ock);

out :

® Ok ok ok F R Ok O R R kb ok ok ok % b ¥ b ¥

zfs_dirent_unl ock(dl);
VN_RELE(vp) ;

if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALWAYS)
zil _commt(zilog, 0);

ZFS_EXI T(zfsvfs);
return (error);

Read as many directory entries as will fit into the provided
buffer fromthe given directory cursor position (specified in
the uio structure).

I'N: vp - vnode of directory to read.
ui o - structure supplying read |ocation, range info,
and return buffer.
cr - credentials of caller.
ct - caller context
flags - case flags
QUT: ui o - updated offset and range, buffer filled.
eof p - set to true if end-of-file detected.

RETURN: 0 on success, error code on failure.

Ti mest anps:
vp - atinme updated

Note that the low 4 bits of the cookie returned by zap is always zero.
This allows us to use the | ow range for "special" directory entries:

34

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2240
2241
2242

* W use O for '.’', and 1 for If this is the root of the fil esystem
* we use the offset 2 for the '.zfs' directory.
*/

2243 |* ARGSUSED */
2244 static int
2245 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,

2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265

2267
2268

2270
2271
2272
2273
2274

2276
2277
2278
2279
2280
2281

2283
2284
2285
2286
2287
2288
2289

2291
2292
2293
2294
2295
2296
2297

2299
2300
2301
2302

2304
2305

{

caller_context_t *ct, int flags)

znode_t *zp = VTQZ(vp);

i ovec_t *jovp;

edirent _t *eodp;

dirent64_t *odp;

zfsvfs_t *zfsvfs = zp->z_zfsvfs;
obj set _t *0s;

caddr _t out buf ;

size_t buf si ze;

zap_cursor_t zc;

zap_attribute_t zap;

uint_t byt es_want ed;

ui nt 64_t offset; /* nust be unsigned; checks for < 1 */
ui nt 64_t parent;

int | ocal _eof;

int out count ;

int error;

ui nt 8_t prefetch;

bool ean_t check_sysattrs;

ZFS_ENTER(zfsvfs);
ZFS_VERI FY_ZP(zp);

if ((error = sa_l ookup(zp->z_sa_hdl, SA ZPL_PARENT(zfsvfs),
&parent, sizeof (parent))) !'= 0) {
ZFS_EXI T(zf svfs)
return (error);

}

*
* |f we are not given an eof variable,
* use a | ocal one.
*/
if (eofp == NULL)
eof p = &l ocal _eof;

*

* Check for valid iov_len
*
/

if (uio->uio_iov->iov_len <= 0) {
ZFS_EXI T(zf svfs);
return (SET_ERROR(EINVAL));
}

/*

* Quit if directory has been renmpbved (posix)
*

/

if ((*eofp = zp->z_unlinked) !'= 0) {
ZFS_EXI T(zf svfs);
return (0);

}

error = 0;

os = zfsvfs->z_os;

of fset = ui o->uio_| of fset;
prefetch = zp->z_zn_prefetch;

/*
* Initialize the iterator cursor.

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317

2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333

2335
2336
2337
2338
2339
2340
2341
2342
2343

2345
2346
2347
2348
2349
2350
2351
2352

2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371

*/
if (offset <= 3) {
/*

* Start iteration fromthe beginning of the directory.
*/
zap_cursor_init(&c, os, zp->z_id);
} else {
*

* The offset is a serialized cursor.
&/

zap_cursor_init_serialized(&c, os, zp->z_id, offset);

}

/*
* CGet space to change directory entries into fs independent format.
*/

iovp = uio->uio_iov;
byt es_want ed = i ovp->i ov_| en;
if (uio->uio_segflg !'= U O SYSSPACE || uio->uio_iovent !'= 1) {
buf si ze = bytes_want ed;
out buf = knem al | oc(bufsize, KM SLEEP);
odp = (struct dirent64 *)outbuf;
} else {
buf si ze = bytes_want ed;
out buf = NULL;
odp = (struct dirent64 *)iovp->i ov_base;

}
eodp = (struct edirent *)odp;

* If this VFS supports the systemattribute view interface; and
* we're | ooking at an extended attribute directory; and we care
* about nornalization conflicts on this vfs; then we nust check
* for normalization conflicts with the sysattr nanme space.
*/
check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR VI EWB)
(vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
(flags & V_RDDI R_ENTFLAGS);

/*
* Transformto file-systemindependent format
*/

outcount = O;

whil e (outcount < bytes_wanted) {
ino64_t obj num
ushort_t reclen;
of f64_t *next = NULL;

*

* Special case ‘.’, ‘..’, and ‘.zfs’.
*/
if (offset == 0) {

(void) strcpy(zap.za_nane, ".");

zap. za_nornal i zati on_conflict = 0
obj num = zp->z_i d;

} else if (offset ==
(voi d) strcpy(zap.za_nane, ")
zap. za_nornal i zati on_conflict = 0
obj num = parent;

} else if (offset == 2 & & zfs_show ctldir(zp)) {
(void) strcpy(zap.za_nanme, ZFS_CTLDI R_NAME);
zap.za_nornalization_conflict = 0
obj num = ZFSCTL_| NO_ROOT;

} else {

/*

* Grab next entry.

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 37 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 38
2372 */ 2438 */
2373 if (error = zap_cursor_retrieve(&zc, &zap)) { 2439 eodp->ed_i no = obj num
2374 if ((*eofp = (error == ENCENT)) 0) 2440 eodp->ed_reclen = reclen;
2375 br eak; 2441 /* NOTE: ed_off is the offset for the *next* entry */
2376 el se 2442 next = &(eodp- >ed _off);
2377 got o updat e; 2443 eodp- >ed efl ags = zap.za_nornalization_conflict ?
2378 } 2444 ED_CASE_CONFLICT : 0;
2445 (voi d) st rncpy(eodp- >ed nane, zap.za_nane,
2380 if (zap.za_integer_length != 8 || 2446 EDI RENT_NAMELEN(r eclen)) ;
2381 zap. za_num.integers != 1) { 2447 eodp = (edirent_t *)((int ptr_t)eodp + reclen);
2382 cmm_err (CE_WARN, "zap_readdir: bad directory " 2448 } else {
2383 "entry, obj = %ld, offset = %ld\n", 2449 u
2384 (u_longlong_t)zp->z_id, 2450 * Add normal entry:
2385 (u_l ongl ong_t) of fset); 2451 */
2386 error = SET_ERROR(ENXI O ; 2452 odp->d_i no = obj num
2387 got o updat €; 2453 odp->d_reclen = recle
2388 } 2454 /* NOTE d_off is the offset for the *next* entry */
2455 next &(odp->d_of f);
2390 obj num = ZFS_DI RENT_OBJ(zap. za_first_integer); 2456 (voi d) strncpy(odp- >d nanme, zap.za_nane,
2391 15 2457 Dl RENT64_NAMVELEN(T ecl en)) ;
2392 * MacOS X can extract the object type here such as: 2458 odp = (dirent64_t *)((intptr t)odp + reclen);
2393 * uint8_t type = ZFS_DI RENT_TYPE(zap. za_first_integer); 2459 }
2394 &/ 2460 out count += reclen;
2396 if (check_sysattrs && !zap.za_nornalization_conflict) { 2462 ASSERT(out count <= buf si ze);
2397 zap. za_nornalization_conflict =
2398 xattr_sysattr_casechk(zap. za_nane); 2464 /* Prefetch znode */
2399 } 2465 if (prefetch)
2400 } 2466 dmu_prefetch(os, objnum 0, 0);
2402 if (flags & V_RDDI R_ACCFILTER) { 2468 skip_entry:
2403 I * 2469 /*
2404 * |f we have no access at all, don't include 2470 * Move to the next entry, fill in the previous offset.
2405 * this entry in the returned i nformation 2471 */
2406 */ 2472 if (offset > 2 || (offset == 2 && !zfs_show ctldir(zp))) {
2407 znode *ezp; 2473 zap_cursor _advance(&zc) ;
2408 if (zfs zget (zp->z_zfsvfs, objnum &ezp) != 0) 2474 of fset = zap_cursor_serialize(&zc);
2409 goto skip_entry; 2475 } else {
2410 if (!zfs_has_access(ezp, cr)) { 2476 of fset += 1;
2411 VN_RELE(ZTOV(ezp)) ; 2477 }
2412 goto skip_entry; 2478 i1f (next)
2413 } 2479 *next = offset;
2414 VN_RELE(ZTOV(ezp)); 2480 }
2415 1 2481 zp->z_zn_prefetch = B_FALSE; /* a |ookup will re-enable pre-fetching */
2417 if (flags & V_RDDI R_ENTFLAGS) 2483 if (uio->uio_segflg == U O SYSSPACE && ui 0->uio_iovent == 1) {
2418 recl en = EDI RENT_RECLEN(strl en(zap.za_nane)); 2484 i ovp- >i ov_base += outcount;
2419 el se 2485 iovp->iov_|len -= outcount;
2420 reclen = DI RENT64_RECLEN(strl en(zap.za_nane)); 2486 ui 0->uio_resid -= outcount;
2487 } else if (error = uionove(outbuf, (long)outcount, U O READ, uio)) {
2422 /* 2488 /*
2423 * WIIl this entry fit in the buffer? 2489 * Reset the pointer.
2424 */ 2490 */
2425 if (outcount + reclen > bufsize) { 2491 of fset = uio->uio_|offset;
2426 /* 2492 }
2427 * Did we nanage to fit anything in the buffer?
2428 */ 2494 updat e:
2429 if (loutcount) { 2495 zap_cursor _fini(&zc);
2430 error = SET_ERROR(EI NVAL) ; 2496 if (uio->uio_segflg !'= U O SYSSPACE || uio->uio_iovcnt != 1)
2431 got o updat e; 2497 kmem f ree(out buf, bufsize);
2432
2433 br eak; 2499 if (error == ENCENT)
2434 } 2500 error = 0;
2435 if (flags & V_RDDI R ENTFLAGS) {
2436 /* 2502 ZFS_ACCESSTI ME_STAMP(zf svfs, zp);
2437 * Add extended flag entry:

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 39

2504
2505
2506
2507

2509

2511
2512
2513
2514
2515

2517
2518
2519
2520
2521
2522
2523
2524
2525

2527

2529
2530
2531
2532
2533
2534
2535
2536

2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568

}

ui o->ui o_| of fset = offset;
ZFS_EXI T(zf svfs);
return (error);

ulong_t zfs_fsync_sync_cnt = 4;

static int
zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
{

znode_t *zp = VTQZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;

/
Regardl ess of whether this is required for standards confornance,
this is the | ogical behavior when fsync() is called on a file with
dirty pages. W use B_ASYNC since the ZIL transactions are already
going to be pushed out as part of the zil_commit().

/

* ok kb F ok

if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
(vp->v_type == VREG && ! (I S_SWAPVP(vp)))
(voi d) VOP_PUTPACGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);

(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);

if (zfsvfs->z_os->0s_sync != ZFS SYNC_DI SABLED) {
ZFS_ENTER(zf svfs);
ZFS_VERI FY_ZP(zp) ;
zi| _commit(zfsvfs->z_log, zp->z_id);
ZFS_EXI T(zfsvfs);

}
return (0);

}

/*

* Get the requested file attributes and place themin the provi ded
* vattr structure.

*

* I'N: vp - vnode of file.

* vap - va_mask identifies requested attributes.

* I f AT_XVATTR set, then optional attrs are requested
* flags - ATTR_NOACLCHECK (Cl FS server context)

* cr - credentials of caller.

* ct - caller context

*

* QUT: vap - attribute val ues.

*

* RETURN: 0 (al ways succeeds).

*/

/* ARGSUSED */

static int

zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,

{

caller_context_t *ct)

znode_t *zp = VTQZ(vp);

zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error = 0;

uint64_t |inks;

uint64_t ntime[2], ctinme[2];
xvattr_t *xvap = (xvattr_t *)vap;
xoptattr_t *xoap = NULL;

bool ean_t ski pacl chk = (flags & ATTR_NOACLCHECK) ? B _TRUE : B_FALSE;
sa_bul k_attr_t bul k[2];

int count = O;

/* vap may be an xvattr_t * */

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 40
2570 ZFS_ENTER(zf svfs);

2571 ZFS_VERI FY_ZP(zp);

2573 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &ap->va_gid);

2575 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_MIl ME(zf svfs), NULL, &nrtinme, 16);
2576 SA_ADD_BULK_ATTR(bul k, count, SA_ZPL_CTI ME(zfsvfs), NULL, &ctine, 16);
2578 if ((error = sa_bul k_| ookup(zp->z_sa_hdl, bulk, count)) !=0) {
2579 ZFS_EXI T(zf svfs);

2580 return (error);

2581 }

2583 /*

2584 * If ACL is trivial don't bother |ooking for ACE READ ATTRI BUTES.
2585 * Also, if we are the owner don’t bother, since owner should
2586 * always be allowed to read basic attributes of file.

2587 */

2588 if (!(zp->z_pflags & ZFS ACL_TRIVIAL) &&

2589 (vap->va_uid !'= crgetuid(cr))) {

2590 if (error = zfs_zaccess(zp, ACE_READ ATTRI BUTES, O,

2591 ski pacl chk, cr)) {

2592 ZFS_EXI T(zfsvfs);

2593 return (error);

2594 }

2595 }

2597 /*

2598 * Return all attributes. It’s cheaper to provide the answer
2599 * than to determ ne whether we were asked the question.

2600 */

2602 mut ex_ent er (&p->z_| ock) ;

2603 vap->va_type = vp->v_type;

2604 vap->va_node = zp->z_npde & MODEMASK;

2605 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;

2606 vap- >va_nodei d = zp->z_id;

2607 if ((vp->v_flag & VROOT) && zfs_show ctldir(zp))

2608 links = zp->z_links + 1;

2609 el se

2610 links = zp->z_links;

2611 vap->va_nlink = MN(links, UNTI32_MAX); /* nlink_t limt! */

2612 vap->va_si ze = zp->z_si ze;

2613 vap->va_rdev = vp->v_rdev;

2614 vap->va_seq = zp->z_seq;

2616 /*

2617 * Add in any requested optional attributes and the create tine.
2618 * Also set the corresponding bits in the returned attribute bitnap.
2619 */

2620 if ((xoap = xva_getxoptattr(xvap)) != NULL & zfsvfs->z_use_fuids) {
2621 if (XVA_I SSET_REQ(xvap, XAT_ARCH VE)) {

2622 xoap- >xoa_ar chive =

2623 ((zp->z_pflags & ZFS_ARCHI VE) != 0);

2624 XVA_SET_RTN(xvap, XAT_ARCHI VE);

2625 }

2627 i f (XVA_I SSET_REQ xvap, XAT_READONLY)) {

2628 xoap- >xoa_r eadonly =

2629 ((zp->z_pflags & ZFS READONLY) != 0);

2630 XVA_SET RTN(xvap, XAT READONLY);

2631 }

2633 if (XVA_I SSET_REQ(xvap, XAT_SYSTEM) ({

2634 Xoap- >xoa_system =

2635 ((zp->z_pflags & ZFS_SYSTEM != 0);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 41 new usr/src/uts/comon/ fs/zfs/zfs_vnops.c 42
2636 XVA_SET_RTN(xvap, XAT_SYSTEM; 2702 xoap- >xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2637 } 2703 XVA SET_RTN(xvap, XAT REPARSE);
2704 }
2639 if (XVA_I SSET_REQ(xvap, XAT_H DDEN)) { 2705 1f (XVA_I SSET_REQ(xvap, XAT_GEN)) {
2640 xoap- >xoa_hi dden = 2706 xoap- >xoa_generation = zp->z_gen;
2641 ((zp->z_pflags & ZFS H DDEN) != 0); 2707 XVA_SET_RTN(xvap, XAT_GEN);
2642 XVA_SET_RTN({xvap, XAT_HI DDEN); 2708 }
2643 }
2710 if (XVA_I SSET_REQ(xvap, XAT_OFFLINE)) {
2645 if (XVA_I SSET_REQ xvap, XAT_NOUNLINK)) { 2711 xoap->xoa_offline =
2646 xoap- >xoa_nounl i nk = 2712 ((zp->z_pflags & ZFS OFFLINE) != 0);
2647 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2713 XVA_SET_RTN(xvap, XAT_OFFLI NE);
2648 XVA_SET_RTN(xvap, XAT_NOUNLI NK) ; 2714 }
2649 }
2716 i f (XVA | SSET_REQ(xvap, XAT SPARSE)) {
2651 if (XVA_I SSET_REQ(xvap, XAT_| NMJTABLE)) { 2717 xoap- >xoa_sparse =
2652 xoap- >xoa_i mmut abl e = 2718 ((zp->z_pflags & ZFS SPARSE) != 0);
2653 ((zp->z_pflags & ZFS_| MUTABLE) != 0); 2719 XVA_SET_RTN(xvap, XAT_SPARSE);
2654 XVA_SET _RTN(xvap, XAT | MVUTABLE); 2720 }
2655 } 2721 }
2657 if (XVA_I SSET_REQ(xvap, XAT_APPENDONLY)) { 2723 ZFS_TI ME_DECODE(&ap->va_atine, zp->z_atine);
2658 xoap- >xoa_appendonly = 2724 ZFS_TI ME_DECODE(& ap->va_ntinme, ntine);
2659 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2725 ZFS_TI ME_DECODE(& ap- >va_ctine, ctine);
2660 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2661 } 2727 mut ex_exi t (&p->z_l ock);
2663 if (XVA_| SSET_REQ xvap, XAT_NODUWP)) { 2729 sa_obj ect _size(zp->z_sa_hdl, &vap->va_bl ksi ze, &vap->va_nbl ocks);
2664 xoap- >xoa_nodunp =
2665 ((zp->z_pflags & ZFS_NODUWP) != 0); 2731 if (zp->z_blksz == 0) {
2666 XVA_SET_RTN(xvap, XAT_NODUMP) ; 2732 /*
2667 } 2733 * Block size hasn't been set; suggest maximal 1/0O transfers.
2734 *
2669 if (XVA_| SSET_REQ xvap, XAT_OPAQUE)) { 2735 vap- >va_bl ksi ze = zfsvfs->z_max_bl ksz;
2670 Xxoap- >xoa_opaque = 2736 }
2671 ((zp->z_pflags & ZFS OPAQUE) != 0);
2672 XVA_SET_RTN(xvap, XAT_OPAQUE); 2738 ZFS_EXI T(zfsvfs);
2673 } 2739 return (0);
2740 }
2675 if (XVA | SSET_REQ(xvap, XAT AV QUARANTl NED)) {
2676 xoap- >xoa_av_quar antined = 2742 | *
2677 ((zp->z_pflags & ZFS_AV_QUARANTI NED) != 0); 2743 * Set the file attributes to the values contained in the
2678 XVA_SET_RTN(xvap, XAT_AV_QUARANTI NED) ; 2744 * vattr structure.
2679 1 2745 *
2746 * I'N: vp - vnode of file to be nodified.
2681 if (XVA_| SSET_REQ xvap, XAT_AV_MODI FIED)) { 2747 * vap - new attribute val ues.
2682 xoap- >xoa_av_nodi fied = 2748 * I f AT_XVATTR set, then optional attrs are being set
2683 ((zp->z_pflags & ZFS AV_MODI FIED) != 0); 2749 * flags - ATTR_UTI ME set if non-default time val ues provided.
2684 XVA_SET_RTN(xvap, XAT_AV_MODI FI ED) ; 2750 * - ATTR_NOACLCHECK (ClI FS context only).
2685 } 2751 * cr - credentials of caller.
2752 * ct - caller context
2687 if (XVA | SSET_REQ(xvap, XAT_AV_SCANSTAWP) && 2753 *
2688 vp->v_type == VREG { 2754 * RETURN: 0 on success, error code on failure.
2689 zfs_sa_get _scanstanp(zp, xvap); 2755 *
2690 } 2756 * Ti mest anps:
2757 * vp - ctine updated, ntime updated if size changed.
2692 if (XVA | SSET_REQ xvap, XAT_CREATETIME)) { 2758 */
2693 uinté4_t times[2]; 2759 /* ARGSUSED */
2760 static int
2695 (void) sa_l ookup(zp->z_sa_hdl, SA ZPL_CRTI ME(zfsvfs), 2761 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2696 times, sizeof (tines)); 2762 cal l er_context_t *ct)
2697 ZFS_TI NE_DECCDE(&xoap >xo0a_createtine, tines); 2763 {
2698 XVA_SET_RTN(xvap, XAT_CREATETI ME) ; 2764 znode_t *zp = VTOZ(vp)
2699 } 2765 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2766 zil og_t *zil og;
2701 i f (XVA_I SSET_REQ xvap, XAT_REPARSE)) { 2767 dmu_tx_t *tx;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787

2789
2790

2792
2793

2795
2796

2798

2800
2801
2802
2803

2805
2806
2807
2808
2809
2810
2811

2813
2814
2815
2816

2818
2819
2820
2821

2823
2824
2825
2826
2827

2829
2831

2832
2833

vattr_t ol dva;

xvattr_t tmpxvattr;

uint_t mask = vap->va_nask;
uint_t saved_mask = 0;

int trimmask = 0O;

ui nt 64_t new_node;

ui nt 64_t new_ui d, new gid;

ui nt 64_t xattr_obj;

ui nt 64_t ntime[2], cting[2];
znode_t *attrzp;

int need_pol i cy = FALSE;
int err, err2;

zfs_fuid_info_t *fuidp = NULL;
xvattr_t *xvap = (xvattr_t *)vap;
xoptattr_t *xoap,

zfs_acl _t *acl p

bool ean_t ski pacl chk ’— (flags & ATTR_NOACLCHECK) ? B_TRUE :

43

/* vap may be an xvattr_t * */

B_FALSE;

bool ean_t fuid dirtied = B_FALSE;
sa_bulk_attr_t bulk[7], xattr_bul k[7];
int count = 0, xattr_count = O;
if (mask == 0)

return (0);

if (mask & AT_NOSET)
return (SET_ERROR(EI NVAL));

ZFS_ENTER(zf svfs) ;
ZFS_VERI FY_ZP(zp);

zilog = zfsvfs->z_| og;

/*
* Make sure that

if we have epheneral

uid/gid or xvattr specified

* that file systemis at proper version |evel

*/

if (zfsvfs->z_use_fuids == B _FALSE &&
(((mask & AT _UID) && | S EPHEMERAL(vap->va _uid)) ||
((mask & AT GID) && |'S EPHEMERAL(vap->va gid)) ||

(mask & AT_XVATTR))) {
ZFS_EXI T(zfsvfs);
) return(SEI’ ERRO?(EINVAL));

if (mask & AT_SIZE && vp->v_type ==
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EISDIR));
}

if (mask & AT_SIZE && vp->v_type !=
ZFS_EXI T(zf svfs);
return (SET_ERROR(EI NVAL));

}

*

* If this is an xvattr_t, then get
* optional attributes. |If thisis
*/

xoap = xva_get xoptattr(xvap);

xva_i nit (& npxvattr);
/*

VDIR) {

VREG && vp->v_type !'= VFIFO {

a pointer to the structure of
NULL, then we have a vattr_t.

* Imutable files can only alter immutable bit and atine

*/

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2834
2835
2836
2837
2838
2839

2841
2842
2843
2844

2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858

2860
2861
2862

2864
2865
2866
2867
2868

2870
2871
2872

2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891

2893
2894
2895

2897
2898
2899

top:

if ((zp >z_pflags & ZFS_| MUTABLE) &&
(mask™ & (AT_SI ZE| AT_UI D| AT_G D| AT_MTII ME| AT_MODE)

((rrask & AT_XVATTR) && XVA_| SSET_REQ xvap,

ZFS_EXI T(zfsvfs);
return (SET_ERROR(EPERM);

if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
ZFS_EXI T(zfsvfs);
return (SET_ ERRO?(EPERI\/));

Verify tinestanps doesn’t overflow 32 bits.

ZFS can handl e | arge tinestanps,

but 32bit syscalls can't

once |arge tinmestanps are fully supported.
/

attrzp = NULL;
aclp = NULL;

(mask & (AT_ATIME |
if (((mask & AT_ATI
((mask & AT_MTI

ZFS_EXI T(zf

return (SET_

*
*
*
* handle times greater than 2039.
*
*
f

AT_MTI ME))

T(z

ME) && TI MESPEC_OVERFLOWN &vap- >va_ati me
ME) && TI MESPEC_OVERFLOW &vap->va_nti me
svfs);

ERR(P(EOVERFLOW) ;

/* Can this be noved to before the top | abel ? */

if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) ({
ZFS_EXI T(zfsvfs);
return (SET_ERROR(ERCFS));

}
| *

* First validate perm ssions
&/

if (mask & AT_SIZE) {

err = zfs_zaccess(zp,

if (err)

ACE_V\RI TE_DATA, 0,

{
ZFS_EXI T(zfsvfs);

return (err);

—~—

*

* XXX - Not we are not
* node flags here (1ike FNDELAY),
* block if there are |ocks present...
*

provi di ng any open
SO we nay
this

shoul d be addressed in openat ().

*/

/* XXX - would it be OK to generate a |log record here? */
err = zfs_freesp(zp, :

if (err)

vap->va_si ze, 0, 0, FALSE)

{
ZFS_EXI T(zf svfs);

return (err);

}

if (vap->va_size == 0)
vnevent _truncate(ZTOV(zp), ct);

}

if (mask & (AT_ATI ME| AT_MII MVE)

|
((mask & AT_XVATTR) && (XVA | SSET_REQ xvap,

XAT_HI DDEN) ||

XVA_| SSET_REQ(xvap, XAT_READONLY) ||

Thi s check shoul d be renoved

ski pacl chk, cr);

XAT _ CR)EAlTlETl ME)))) {

ne))
ne)))

44

[
{

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 45

2900
2901
2902
2903
2904
2905
2906
2907

2909
2910
2911
2912

2914
2915
2916
2917

2919
2920

2922
2923
2924

2926
2927
2928

2930
2931
2932
2933
2934
2935
2936
2937

2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955

2957
2958
2959
2960
2961
2962
2963
2964
2965

XVA_| SSET_REQ(xvap,
XVA_| SSET_REQ xvap,
XVA_| SSET_REQ xvap,
XVA_| SSET_REQ xvap,
XVA_| SSET_REQ xvap,

XAT_ARCHI VE) |
XAT_CFFLI NE) |
XAT_SPARSE) | |
XAT_CREATETI ME) | |
XAT_SYSTEM))))

need_policy = zfs_zaccess(zp, ACE_WR TE_ATTRI BUTES, O,

ski pacl chk,
}

cr);

if (mask & (AT_UID AT G D))

int i dmask

= (magk & (AT_UD|AT_GD));

int t ake_owner;
int t ake_group;

| *

* NOTE: even if a new node is being set,
* we may clear S ISUD S ISEA@D bits.
*

/

if (!(mask & AT_MODE))
vap- >va_node = zp->z_node;

| *

* Take ownership or chgrp to group we are a nenber of
*/

take_owner = (mask & AT_UI D) && (vap->va_uid == crgetuid(cr));
take_group = (mask & AT_G D) &&
zfs_groupnenber (zf svfs, vap->va_gid, cr);

owner shi p.

* Ok ok ok ok ok ok ok

/

If both AT_U D and AT_G D are set then take_owner and
take_group nust both be set in order to allow taking

O herwi se, send the check through secpolicy_vnode_setattr()

if (((|drmsk == (AT_U D AT_G D)) && take_owner && take_group) ||
((idmask == AT_UID) &% take_owner) |]

((idmask ==

AT_G D) && take_group))

{
if (zfs_zaccess(zp, ACE_ WRI TE_OWNER, O,
ski pacl chk, cr) == 0) {
/*

} else {

} else {

* Renpve setuid/setgid for non-privileged users

*

/

secpolicy_setid_clear(vap, cr);
trimmsk = (mask & (AT_U D AT_GD));

need_policy = TRUE

need_policy = TRUE

}
}

mut ex_ent er (&p->z_| ock) ;
ol dva. va_npde = zp->z_nvode;

zfs_fuid_map_ids(zp, cr,
if (mask & AT_XVATTR) {

| *

&ol dva. va_ui d, &ol dva. va_gid);

* Update xvattr mask to include only those attributes
* that are actually changing.
*
*

the bits will

be restored prior to actually setting

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976

2978
2979
2980
2981
2982
2983
2984
2985
2986

2988
2989
2990
2991
2992
2993
2994
2995
2996

2998
2999
3000
3001
3002
3003
3004
3005
3006

3008
3009
3010
3011
3012
3013
3014
3015
3016

3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028

3030
3031

* the attributes so the caller thinks they were set.
=

if (XVA I SSET_REQ xvap, XAT_APPENDONLY)) {
i f (xoap->xoa_appendonly !=
((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
need_pol i cy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_APPENDONLY);
XVA_SET_REQ(& npxvattr, XAT_APPENDONLY) ;

}

if (XVA_I SSET_REQ(xvap, XAT_NOUNLINK)) {
i f (xoap->xoa_nounlink !=
((zp->z pflags & ZFS NOUNLINK) = 0)) {
need_pol icy = TRUE;
} else {
XVA CLR REQ(xvap, XAT_NOUNLI NK);
XVA_SET_REQ(& nmpxvat t1, XAT_NOUNLI NK)

}

if (XVA | SSET_REQ xvap, XAT | MMUTABLE)) {
i f (xoap->xoa_immutable !=
((zp->z_pflags & ZFS_ | MUTABLE) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_| MVUTABLE);
XVA_SET_REQ(& mpxvattr, XAT IMVUTABLE)

}

if (XVA_| SSET_REQ xvap, XAT_NODUWP)) {
i f (xoap->xoa nodun"p =
((zp->z pflags ZFS_NODUMWP) !'= 0)) {
need_pol i cy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_NODUMP) ;
XVA_SET_REQ(& mpxvattr, XAT NCDUMD);

}

if (XVA | SSET_REQ xvap, XAT_AV_MDI FI ED)) {
i f (xoap->xoa_av_nodified !=
((zp->z_pflags & ZFS_AV_MDI FIED) != 0)) {
need_pol i cy = TRUE;
} else {
XVA CLR REQ(xvap, XAT_ AV_MODI Fl ED);
XVA_SET_REQ & npxvattr, XAT_AV_MODI Fl ED) ;

}

if (XVA_I SSET_REQ xvap, XAT_AV QUARANTl NED)) {
if ((vp->v_type != VREG &&
xoap- >xoa_av_quarantined) ||
xoap- >xo0a_av_quarantined !=
((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
need_policy = TRUE;
} else {
XVA CLR REQ(xvap, XAT AV_QUARANTI NED);
XVA_SET_REQ(& nmpxvattr, XAT_AV_QUARANT| NED) :

}

if (XVA | SSET_REQ(xvap, XAT REPARSE)) {
mut ex_exi t (&p->z_l ock);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 47

3032
3033
3034

3036
3037
3038
3039
3040
3041

3043

3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057

3059
3060
3061
3062
3063
3064
3065
3066

3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

3079
3080
3081

3083
3084
3085
3086
3087

3089
3090
3091

3093
3094
3095
3096
3097

ZFS_EXI T(zfsvfs);
return (SET_ERROR(EPERM);
}

if (need_policy == FALSE &&
(XVA_| SSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
XVA_TSSET_REQ(xvap, XAT_GPAQUE))) {
“need_pol icy = TRUE;

}
mut ex_exi t (&p->z_l ock);

if (mask & AT_MODE) {
if (zfs_zaccess(zp, ACE_WRI TE_ACL, 0, skipaclchk, cr) == 0) {
err = secpolicy_setid_setsticky_clear(vp, vap,
&ol dva, cr);
if (err) {
ZFS_EXI T(zf svfs);
return (err);

}

trimmask | = AT_MODE;
} else {

need_policy = TRUE;
}

}

if (need/_pol icy) {
*
* |f trimmask is set then take ownership
has been granted or wite_acl is present and user
has the ability to nodify node. In that case renove
U D GdD and or MODE from mask so that
secpol i cy_vnode_setattr() doesn't revoke it.
/

* ok kb ok

if (trimmask) {
saved_mask = vap->va_nmask;
vap->va_mask &= ~tri m mask;

err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
(int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
if (err) {
ZFS_EXI T(zf svfs);
return (err);

}

if (trimmask)
vap- >va_mask | = saved_mask;

}

/*

* secpolicy_vnode_setattr, or take ownership may have
* changed va_mask

*/

mask = vap->va_nask;

if ((mask & (AT_UD| AT_AD))) {
err = sa_|l ookup(zp->z_sa_hdl, SA ZPL_XATTR(zfsvfs),
& attr_obj, sizeof (xattr_obj));

if (err == 0 && xattr_obj) {
err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
if (err)
goto out 2;

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108

3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122

3124
3125
3126
3127

3129
3130
3131
3132
3133

3135
3136

3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163

}
tx

48

if (mask & AT UID) {
new uid = zfs_fuid _create(zfsvfs,
“(uint64_t)vap->va_uid, cr, ZFS OMNER, &f uidp);
if (newuid != zp->z_uid 8&
zfs_fuid_overquota(zfsvfs, B _FALSE, new uid)) {
Tif (attrzp)
VN_RELE(ZTOV(attrzp));
err = SET_ERROR(EDQUOT) ;
goto 0ut2

}

if (mask & AT_A D) {
new gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
cr, ZFS GROUP, &f ui dp);
if (new gid!= zp->z_gid &&
zfs_fui d_over quot a(zfsvfs B TRUE, new gid)) {
if (attrzp)
VN_RELE(ZTOV(attrzp));
err = SET_ERROR(EDQUOT) ;
goto 0ut2

}

= dnu_t x_creat e(zfsvfs->z_os);

if (mask & AT_MODE) {

} else {

uint64_t pnode = zp->z_node;
uint64_t acl _obj ;
new_node = (pnode & S_IFMI) | (vap->va_node & ~S_| FMI);

if (zp->z_zfsvfs->z_acl _node == ZFS_ACL_RESTRI CTED &&
1 (zp->z pflags & ZFS_ACL TRIVIAL)) {
err = SET_ERROR(EPERM) ;
goto out;

}

if (err = zfs_acl _chnod_setattr(zp, &aclp, new_npde))
goto out;

mut ex_ent er (&p->z_| ock) ;
if (!zp->z_is_sa && ((acl _obj = zfs_external _acl(zp)) != 0)) {
/*

* Are we upgrading ACL fromold VO fornmat
* to V1 format?
*/
if (zfsvfs->z_version >= ZPL VERSI ON_FUI D &&
zfs_znode_acl _version(zp) ==
ZFS_ACL_VERSI ON_I NI TI AL) " {
“dmu_t x_hol d_free(tx, acl_obj, 0,
DMJ_OBJECT_END) ;
drmu_t x_hol d_write(tx, DMJ NEW OBJECT,
0, acl p->z_acl _bytes);
} else {
dmu_t x_hold_write(tx, acl_obj, O,
acl p->z_acl _bytes);

}
} else if (!zp->z_is_sa & acl p->z_acl _bytes > ZFS_ACE_SPACE) {
dmu_t x_hol d_write(tx, DMJ_NEW OBJECT,
0, acl p->z_acl _bytes);

nmut ex_exi t (&p->z_l ock);
dnu_t x_hol d_sa(tx, zp->z_sa_hdl, B TRUE);

if ((mask & AT_XVATTR) &&
XVA | SSET_REQ(xvap, XAT_AV_SCANSTAMP))

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 49

3164
3165
3166
3167

3169
3170
3171

3173
3174
3175

3177

3179
3180
3181

3183
3184
3185
3186
3187
3188
3189
3190

3193
3194
3195

3197
3198

3200
3201
3202
3203
3204
3205
3206
3207

3209

3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221

3223
3224
3225
3226
3227
3228
3229

dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B TRUE);
el se
dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B FALSE);
}
if (attrzp) {
dmu_t x_hol d_sa(tx, attrzp->z_sa_hdl, B_FALSE);
}

fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)

zfs_fuid_txhold(zfsvfs, tx);
zf s_sa_upgrade_t xhol ds(tx, zp);

err = dnu_tx_assign(tx, TXG WAIT);

if (err)

goto out;
count = O;
/*

* Set each attribute requested.
We group settings according to the |ocks they need to acquire.

Not e: you cannot set ctime directly, although it will be
updated as a side-effect of calling this function.
/

* ok kb

if (mask & (AT_UI Dl AT_G D AT_MODE))
mut ex_ent er (& p->z_acl _| ock);
mut ex_ent er (&p->z_1 ock) ;

SA_ADD_BULK_ATTR(bul k, count, SA ZPL_FLAGS(zfsvfs), NULL,
& p->z_pflags, sizeof (zp->z_pflags));

if (attrzp) {
if (mask & (AT_U D| AT_G D] AT_MODE))
mut ex_enter (&attrzp->z_acl _| ock);
nmut ex_enter(&ttrzp->z_| ock);
SA ADD BULK_ATTR(xattr_bul k, xattr_count,
SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
sizeof (attrzp->z pflags));

}
if (mask & (AT_U D AT_G D)) {

if (mask & AT_UID) {
SA_ADD_BULK_ATTR(bul k, count, SA ZPL_U D(zfsvfs), NULL,
&new_ui d, sizeof (new_uid));
zp->z_uid = newwd
if (attrzp)
SA _ADD BULK_ATTR(xattr_bul k, xattr_count,
SA ZPL_U D zfsvfs), NULL, &new_uid,
sizeof (new_uid));
attrzp->z_uid = new_ui d;

}

if (mask & AT A D) {
SA ADD BULK_ATTR(bul k, count, SA ZPL G D(zfsvfs),
NULL, &new /. gid, si zeof (new gid));
zp->z_gi d = new /_gi d;
if (attrzp)
SA_ADD BULK_ATTR(xattr_bul k, xattr_count,
SA_ZPL_G D(zf svfs), NULL &new_gi d,

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245

3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258

3261
3262
3263
3264
3265

3267
3268
3269
3270
3271

3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295

si zeof (new gid));
attrzp->z_gid = new gid

}

}
if (!(mask & AT_MODE)) {
SA_ADD_BULK_ATTR(bul k, count, SA ZPL_MODE(zf svfs),
NULL, &new node, sizeof (new node));
new_node = zp->z m)de;

err = zfs_acl _chown_setattr(zp);

ASSERT(err == 0);

if (attrzp) {
err = zfs_acl _chown_setattr(attrzp);
ASSERT(err == 0);

}

if (mask & AT_MODE) {
SA_ADD_BULK_ATTR(bul k, count, SA ZPL_MODE(zfsvfs), NULL,
&new node, sizeof (new_node));
zp->z_node = new_node;

ASSERT3U((u| ntptr_t)aclp, !'=, NULL);
err = zfs_acl set_common(zp, aclp, cr, tx);
ASSERTO(err);

if (zp->z_acl _cached)

zfs_acl _free(zp->z_acl _cached);
zp->z_acl _cached = acl p;
acl p = NULL;

if (mask & AT_ATIME) {
ZFS_TI ME_ENCCDE(& ap- >va_atinme, zp->z_atine);
SA ADD BULK_ATTR(bul k, count, SA ZPL_ATI I\/E(zfsvfs) NULL,
& p->z_atime, sizeof (zp->z_atine));

}

if (mask & AT_MTI ME) {
ZFS_TI ME_ENCODE(& ap->va_ntine, ntine);
SA _ADD BULK_ATTR(bul k, count, SA ZPL NWINE(zfsvfs), NULL,
minme, sizeof (ntime));

}

/* XXX - shouldn’t this be done *before* the ATI ME/ MIl ME checks? */
if (mask & AT_SIZE && ! (mask & AT_MIIME)) {
SA ADD_BULK_ATTR(bul k, count, SA ZPL_MrI ME(zf svfs),
NULL, ntinme, si zeof (nti ne))
SA ADD BULK_ATTR(bul k, count, SA ZPL_CTI ME(zf svfs), NULL,
&ctime, sizeof (cti ne));
zfs_tstanp_updat e_setup(zp, CONTENT_MODI FIED, ntine, ctine,
B _TRUE);
} else if (mask != 0 {
SA_ADD BULK_ATTR(bul k, count, SA ZPL_CTI ME(zf svfs), NULL,
&ctime, sizeof (ctinme));
zfs_tstanp_updat e_setup(zp, STATE CHANGED, ntine, ctine,
B _TRUE);
if (attrzp) {
SA ADD_BULK_ATTR(xattr_bul k, xattr_count,
SA_ZPL_CTI ME(zf svfs), NULL,
&cti me, sizeof (cti me))
zfs_tstanp_update_: setup(attrzp, STATE_CHANGED,
ntime, ctime, B_TRUE);

—~—
*

* Do this after setting ti mestanps to prevent tinmestanp

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3296
3297

3299

3301
3302
3303
3304

3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323

3325
3326

3328
3329

3331
3332

3334
3335

3337
3338
3339

3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351

3353
3354

3356
3357

3359
3360
3361

out :

* update fromtoggling bit
&/

if (xoap && (mask & AT_XVATTR)) {

/*
* restore trimed of f nasks

51

* so that return masks can be set for caller.

*/

if (XVA_I SSET_REQ &t mpxvattr,

XVA_SET_REQ(xvap, XAT_

}
1 f (XVA_| SSET_REQ & npxvattr,
XVA_SET_REQ(xvap, XAT_|

}
1f (XVA_| SSET_REQ & npxvattr,
XVA_SET_REQ xvap, XAT

}
1f (XVA_| SSET_REQ(& npxvattr,

XVA_SET_REQ(xvap, XAT_NODUMP

}
1f (XVA_| SSET_REQ & npxvattr,
XVA_SET_REQ(xvap, XAT_

}

1f (XVA_| SSET_REQ & npxvattr,
XVA_SET_REQ(xvap, XAT_

}

XAT_APPENDONLY)) {
APPENDONLY) ;

XAT_NOUNLI NK)) {
NOUNLI NK) ;

XAT_| MWUTABLE)) {
| MVOTABLE) ;

XAT_NO)D_UNP)) {

XAT_AV_MODI FI ED)) {
AV_NODI FI ED) ;

XAT_AV. QJARANTI NED)) {
AV_QUARANTI NED) ;

if (XVA_I SSET_REQ(xvap, XAT_AV_SCANSTAMP))

ASSERT(vp->v_type ==

zfs_xvattr_set(zp, xvap, tx);

}

if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);

if (mask !'= 0)

zfs_log_setattr(zilog, tx, TX_

mut ex_exi t (& p->z_| ock);
if (mask & (AT_U D| AT_G D AT_MODE))
mut ex_exi t (&p->z_acl _I| ock);

if (attrzp) {

VREG) ;

SETATTR, zp, vap, mask, fuidp);

it (mask & (AT_Ul D| AT_G D| AT_MODE))

mutex_exit(&attrzp->z
mut ex_exit(&attrzp->z_| ock);

}

if (err == 0 & attrzp)
err2 = sa_bul k_update(attrzp->z_sa_hdl,

xattr_count, tx);

ASSERT(err2 == 0);

}

if (attrzp)
VN_RELE(ZTOV(attrzp));

if (aclp)
zfs_acl _free(acl p);

if (fui dp) {

zfs_fuid_info_free(fuidp);
fuidp = NULL;

_acl _l ock);

xattr_bul k,

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

3362 }

3364 if (err) {

3365 dnmu_t x_abort (tx);

3366 if (err == ERESTART)

3367 goto top;

3368 } else {

3369 err2 = sa_bul k update(zp >z_sa_hdl, bulk, count, tx);
3370 dmu_t x_commi t (tx

3371 }

3373 out 2:

3374 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALVWAYS)

3375 zi| _commit(zilog, O);

3377 ZFS_EXI T(zfsvfs);

3378 return (err);

3379 }

3381 typedef struct zfs_zlock {

3382 krw ock_t *zl _rw ock; /* lock we acquired */
3383 znode_t *zI _znode; /* znode we held */

3384 struct zfs_zlock *zl _next; /* next in list */

3385 } zfs_zlock_t;

3387 /*

3388 * Drop |locks and rel ease vnodes that were held by zfs_rename_| ock().
3389 */

3390 static void

3391 zfs_renanme_unl ock(zfs_zlock_t **zl pp)

3392 {

3393 zfs_zlock_t *zl;

3395 while ((zl = *zlpp) !'= NULL) {

3396 if (zI >zl _znode != NULL)

3397 VN_RELE(ZTOV(zI - >z| _znode)) ;

3398 rw eX|t(zI >z| _rw ock);

3399 *zIpp = zl ->zl _next;

3400 kmem free(zl, sizeof (*zl));

3401 }

3402 }

3404 /*

3405 * Search back through the directory tree, using the ".." entries.
3406 * Lock each directory in the chain to prevent concurrent renanes.
3407 * Fail any attenpt to nobve a directory into one of its own descendants.
3408 * XXX - z_parent_lock can overlap with map or grow | ocks

3409 */

3410 static int

3411 {zfs_renane_l ock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zl pp)
3412

3413 zfs_zl ock_t *zl;

3414 znode_t *zp tdzp;

3415 ui nt 64_t rootid = zp->z_zfsvfs->z_root;

3416 ui nt 64_t oidp = zp->z_id;

3417 krw ock_t *rwl p = &zp->z_parent _| ock;

3418 krw_t rw = RWWRI TER;

3420 /*

3421 * First pass wite-locks szp and conpares to zp->z_id.
3422 * Later passes read-lock zp and conpare to zp->z_parent.
3423 */

3424 do {

3425 if ('rw_tryenter(rwp, rw)) {

3426 /*

3427 * Another thread is renaming in this path.

52

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448

3450
3451
3452
3453
3454

3456
3457

3459
3460

3462
3463
3464
3465
3466
3467
3468
3469
3470
3471

3473

3475
3476

3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493

B T A

Note that if we are a WRITER, we don’t have any

parent _| ocks held yet.
*
/

if (rw =/= RW READER && zp->z_id > szp->z_id) {
*

* Drop our |ocks and restart
*
/
zfs_rename_unl ock(&zl);
*zl pp = NULL;
zp = tdzp;)
oildp = zp->z_id;
rwp = &zp->z parent | ock;
rw = RWWR TER;

continue;
} else {
/*
* Wait for other thread to drop its |ocks
*
/
rw enter(rwp, rw;
}
}
zl = kmem al | oc(si zeof (*zl), KM SLEEP);
zl ->zl _rwock = rw p;
zl - >zl _znode = NULL;
zl ->z| _next = *zl pp;
*zlpp = zl;

if (oidp == szp->z_id)
return (SET ERROR(EI NVAL))

if (oidp == rootid) /* W’ve hit the top */
return (0);
if (rw == RWREADER) { /* i.e. not the first pass */
int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
if (error)
return (error);
z|l ->z| _znode = zp;
}
(voi d) sa_l ookup(zp->z_sa_hdl, SA ZPL_PARENT(zp->z_zfsvfs),
&oi dp, sizeof (oidp));
rwp = &p->z_parent_| ock;

rw = RW READER

} while (zp->z_id

return (0);

Move an entry fromthe
directory. Change the

I'N: sdvp -
snm -
tdvp -
tnm -
cr -
ct -
flags -

RETURN: 0 on success,

Ti mest anps:

I'= sdzp->z_id);

provi ded source directory to the target

entry name as indicated.

Source directory containing the "old entry".
ad entry nane.

Target directory to contain the "new entry".

New entry nane.
credentials of caller.
cal | er context

case flags

error code on failure.

sdvp, tdvp - ctine|ntime updated

/* We're a descendant of szp */

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3494

*/

3495 /* ARGSUSED* /
3496 static int

3497 zfs_renanme(vnode_t *sdvp,

3498

3499 {

3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511

3513
3514
3515

3517
3518
3519
3520
3521

3523
3524

3526
3527
3528
3529
3530
3531
3532
3533

3535
3536
3537
3538
3539

3541
3542

3544
3545
3546
3547

3549
3550
3551
3552
3553
3554
3555
3556
3557

3559

top:

char *snm vnode_t *tdvp, char *tnm cred_t

caller_context_t *ct, int flags)
znode_t *tdzp, *szp, *tzp;
znode_t *sdzp = VTQZ(sdvp);
zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
zil og_t *zil og;
vnode_t *real vp;
zfs_dirlock_t *sdl, *tdl;
drmu_t x_t *tX;
zfs_zl ock_t *zl;
int cnp, serr, terr;
int error = 0;
int zflg = 0;
bool ean_t wai ted = B_FALSE;

ZFS_ENTER(zf svfs);
ZFS_VERI FY ZP(sdzp)
zilog = zfsvfs->z_| og;

/*
* Make sure we have the real vp for the target directory.
*/
if (VOP_REALVP(tdvp, & ealvp, ct) == 0)
tdvp = real vp;
tdzp = VIQZ(tdvp);

ZFS VERI FY_ZP(t dzp);

*

* We check z_zfsvfs rather than v_vfsp here,
* ctldir appear to have the same v_vfsp.

|f (tdzp->z_zfsvfs = zfsvfs || zfsctl
ZFS_EXI T(zfsvfs);

return (SEI'_ERRO?(EXDEV));

_is_node(tdvp)) {

}

if (zfsvfs->z_utf8 && u8_validate(tnm
strien(tnm, NULL, US_VALIDATE ENTIRE, &error) < 0) {
ZFS_EXI T(zfsvfs);
return (SET_ ERRCR(El LSEQ)) ;

}

if (flags & FI GNORECASE)
zflg | = ZC LOOK;

szp = NULL;
tzp = NULL;
zl = NULL;
/*

*cr,

* This is to prevent the creation of links into attribute space
* by renanming a linked file into/outof an attribute directory.
* See the comment in zfs_link() for why this is considered bad.
*

/
if ((tdzp->z_pflags & ZFS_XATTR)
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EI NVAL));

I= (sdzp->z_pflags & ZFS XATTR)) {

54

because snapshots and the

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 55

3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574

3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618

3620
3621
3622
3623
3624
3625

*
*
*
*

c
} else {
/*

/*

*

Lock source and target directory entries. To prevent deadl ock,

a |l ock ordering nust be defined. W lock the directory with

the snallest object id first, or if it’s atie, the one with
the lexically first nane.

*

if (sdzp->z_id < tdzp->z_id) {
cnp = -1;
} elseif (sdzp >z_id > tdzp->z_id) {

* First conpare the two name arguments w thout
* consi dering any case fol ding.
)

int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) ;
cnp = u8_strcnmp(snm tnm 0, nofold, U8_UNI CODE_LATEST, &error);

ASSERT(error == 0 || !zfsvfs->z_utf8);
if (Crm =0) {
* POSI X: "If the old argunment and the new ar gunent

* both refer to links to the same existing file,
* the renane() function shall return successfully
* and performno other action."

*/

ZFS_EXI T(zfsvfs);
return (0);

—~—

* ok ok ok Ok ok Ok ok % ok % ok % ok % ok k%

If the file systemis case-folding, then we may
have sonme nore checking to do. A case-folding file
systemis either supporting m xed case sensitivity
access or is conpletely case-insensitive. Note
that the file systemis always case preserving.

In mxed sensitivity nbde case sensitive behavior
is the default. FlI GNORECASE nust be used to
explicitly request case insensitive behavior.

If the source and target nanes provided differ only
by case (e.g., a request to renane 'tim to 'Tim),
we will treat this as a special case in the
case-insensitive node: as long as the source name
is an exact match, we will allow this to proceed as
a nane- change request.

if ((zfsvfs->z_case == ZFS CASE_I NSENSI TI VE | |
(zfsvfs->z_case == ZFS_CASE_M XED &&
flags & FI GNORECASE)) &&
u8_strcnmp(snm tnm 0, zfsvfs->z_norm US_UN CODE_LATEST,
&error) == 0) {

/*

* case preserving rename request, require exact
* nane mat ches

*/

zfl g | = ZCl EXACT;

zflg & ~ZCl LOOK;

If the source and destination directories are the sane, we shoul d

* grab the z_nanme_|l ock of that directory only once.

*/
if (sdzp == tdzp)
zf

{
g | = ZHAVELOCK;

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

3626
3627

3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640

3642
3643
3644
3645
3646
3647
3648
3649
3650

3652
3653

3655
3656
3657
3658
3659
3660
3661
3662

3664
3665

3667
3668
3669
3670
3671

3673
3674
3675
3676
3677
3678

3680
3681

3683
3684
3685
3686
3687
3688
3689
3690

rw_ent er (&dzp->z_nane_| ock, RW READER);

}
if (cnmp < 0) {
serr = zfs_dirent_l ock(&sdl, sdzp, snm &szp,
ZEXISTS | zflg, NULL, NULL);
terr = zfs_dirent_l ock(&tdl,
tdzp, tnm & zp, ZRENAM NG | zflg, NULL, NULL);
} else {
terr = zfs_dirent _| ock(&tdl,
tdzp, tnm &tzp, zflg, NULL NULL) ;
serr = zfs_dirent_| ock(&sdl,
sdzp, snm &szp, ZEX STS| ZRENAM NG | zfl g,
NULL, NULL)
}

if (serr) {
/'k
* Source entry invalid or not there.
*

/
if (Iterr) {
zfs_dirent _unl ock(tdl);
if (tzp)
VN_RELE(ZTOV(t zp));
}

if (sdzp == tdzp)
rw_exit(&sdzp->z_nane_| ock);

if (strcrrp(snm ot 0)
serr = SET. ERRO?(El NVAL) ;

ZFS_EXI T(zfsvfs);

return (serr);

}

i1f (terr) {
zfs_dirent _unl ock(sdl);
VN_RELE(ZTOV(szp));

if (sdzp == tdzp)
rw_exit(&dzp->z_nane_| ock);

if (strenp(tnm "..") == 0)
terr = SET ERRO?(EI NVAL) ;

ZFS_EXI T(zf svi s);

return (terr);

Miust have wite access at the source to renopve the old entry
and wite access at the target to create the new entry.

Note that if target and source are the sane, this can be
done in a single check.

/

* ok K ok k%

if (error = zfs_zaccess_renane(sdzp, szp, tdzp, tzp, cr))
goto out;

if (ZTOJ;szp)->v_type == VDIR) {

* Check to make sure renane is valid.
* Can’t do a nove like this: /usr/a/b to /usr/a/b/c/d
*
/
if (error = zfs_renane_| ock(szp, tdzp, sdzp, &zl))
goto out;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719

3721
3722
3723

3725
3726
3727
3728
3729
3730
3731

3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745

3747
3748
3749
3750
3751
3752
3753
3754

3756
3757

/*
* Does target exist?
*
/
if (tzp) {
/*
* Source and target nust be the sane type.
*/
if (ZTCN(szp) >v_type == VDIR) {
if (ZTOV(tzp)->v_type != VDR {
error = SET_ERROR(ENOTDI R) ;
goto out;
}
} else {
if (ZTOV(tzp)->v_type == VDIR) {
error = SET_ERROR(EI SDIR);
goto out;
}
}
/*
* PCSI X dictates that when the source and target
* entries refer to the same file object, renanme
* must do nothing and exit without error.
*
/
if (szp->z_id == tzp->z_id) {
error = 0;
goto out;
}
}
vnevent _renane_src(ZTOV(szp), sdvp, snm ct);
if (tzp)
vnevent _renanme_dest (ZTOV(t zp), tdvp, tnm ct);
/*

* notify the target directory if it is not the sanme
* as source directory.
*

if (tdvp != sdvp) {
vnevent _renane_dest _dir(tdvp, ct);
}

tx = dnu_tx_create(zfsvfs->z_os);

drmu_t x_hol d_sa(tx, szp->z_sa_hdl, B_FALSE);

dmu_t x_hol d_sa(tx, sdzp->z_sa_hdl, B _FALSE);

dmu_t x_hol d_zap(tx, sdzp->z_id, FALSE, snn);

dmu_t x_hol d_zap(tx, tdzp->z_id, TRUE, tnmn);

if (sdzp 1= tdzp) {
dmu_t x_hol d_sa(tx, tdzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_t xhol ds(tx, tdzp);

}

if (tzp) {
dmu_t x_hol d_sa(tx, tzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_t xhol ds(tx, tzp);

}

zfs_sa_upgrade_t xhol ds(tx, szp);
drmu_t x_ hold _zap(tx, zfsvfs->z unllnkedobJ FALSE, NULL);

error = dnu_tx_assign(tx, waited ? TXG_V\AI TED : TXG_NOWAIT);

if (error) {
if (zI !'= NULL)
zfs_rename_unl ock(&zl);
zfs_dirent_unl ock(sdl);
zfs_dirent _unl ock(tdl);

if (sdzp == tdzp)
rw_exit(&sdzp->z_nane_| ock);

57

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 58
3759 VN_RELE(ZTOV(szp));

3760 if (tzp)

3761 VN_RELE(ZTOV(tzp));

3762 if (error == ERESTART) {

3763 waited = B_TRUE;

3764 dmu_t x_wai t (tx);

3765 dmu_t x_abort (tx);

3766 goto top;

3767

3768 dmu_t x_abort (tx);

3769 ZFS_EXI T(zf svfs)

3770 return (error);

3771 }

3773 if (tzp) /* Attenpt to renpbve the existing target */

3774 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);

3776 if (error == 0) {

3777 error = zfs_link_create(tdl, szp, tx, ZRENAM NG ;

3778 if (error ==

3779 szp->z_pflags | = ZFS_AV_MODI Fl ED;

3781 error = sa_update(szp->z_sa_hdl, SA ZPL_FLAGS(zfsvfs),
3782 (void *)&szp->z_pflags, si zeof (uint64_t), tx);
3783 ASSERTO(error);

3785 error = zfs_link_destroy(sdl, szp, tx, ZRENAM NG NULL);
3786 if (error ==

3787 zfs_log_rename(zilog, tx, TX RENAME |

3788 (flags & FIGNORECASE ? TX Cl : 0), sdzp,
3789 sdl ->dl _name, tdzp, tdl->dl _nanme, szp);
3791 /*

3792 * Update path information for the target vnode
3793 */

3794 vn_r enanepat h(tdvp, ZTOV(szp), tnm

3795 strien(tnm);

3796 } else {

3797 /*

3798 * At this point, we have successfully created
3799 * the target name, but have failed to renmove
3800 * the source name. Since the create was done
3801 * with the ZRENAM NG fl ag, there are

3802 * conplications; for one, the link count is
3803 * wrong. The easiest way to deal with this
3804 * is to renbve the newy created target, and
3805 * return the original error. This nust

3806 * succeed; fortunately, it is very unlikely to
3807 * fail, since we just created it.

3808 */

3809 VERI FY3U(zfs_link_destroy(tdl, szp, tx,

3810 ZRENAM NG, NULL), ==, 0);

3811 }

3812 }

3813 }

3815 dmu_t x_commi t (tx);

3816 out:

3817 if (zl !'= NULL)

3818 zf s_renanme_unl ock(&zl);

3820 zfs_dirent_unl ock(sdl);

3821 zfs_dirent _unl ock(tdl);

3823 if (sdzp == tdzp)

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 59

3824 rw_exit (&sdzp->z_nane_| ock);

3827 VN_RELE(ZTOV(szp));

3828 if (tzp

3829 VN_RELE(ZTOV(t zp));

3831 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALWAYS)
3832 zil _commit(zilog, 0);

3834 ZFS_EXI T(zfsvfs);

3835 return (error);

3836 }

3838 /*

3839 * Insert the indicated synbolic reference entry into the directory.
3840 *

3841 * I'N: dvp - Directory to contain new synbolic Iink.
3842 * I'i nk - Name for new synlink entry.
3843 * vap - Attributes of new entry.
3844 * cr - credentials of caller.

3845 * ct - caller context

3846 * flags - case flags

3847 *

3848 * RETURN: O on success, error code on failure.
3849 *

3850 * Timestanps:

3851 * dvp - ctine|ntine updated

3852 */

3853 /* ARGSUSED*/
3854 static int
3855 zfs_synlink(vnode_t *dvp, char *nanme, vattr_t *vap, char *link, cred_t *cr,

3856 caller_context_t *ct, int flags)

3857 {

3858 znode_t *zp, *dzp = VTQZ(dvp);
3859 zfs_dirlock_t *dl ;

3860 dmu_t x_t *tX;

3861 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3862 zil og_t *zil og;

3863 ui nt 64_t len = strlen(link);

3864 int error;

3865 int zflg = ZNEW

3866 zfs_acl _ids_t acl _i ds;

3867 bool ean_t fuid dirti ed;

3868 ui nt 64_t txtype = TX_ SYMLI NK;

3869 bool ean_t wai ted = B_FALSE;

3871 ASSERT(vap->va_type == VLNK);

3873 ZFS_ENTER(zf svfs);

3874 ZFS_VER FY_ZP(dzp)

3875 zilog = zfsvfs->z Iog;

3877 if (zfsvfs->z_utf8 && u8_validate(narme, strlen(nane),
3878 NULL, US_VALI DATE ENTIRE, &error) < 0) {
3879 ZFS_EXI T(zfsvfs);

3880 return (SET_ERROR(EI LSEQ):

3881 }

3882 if (flags & Fl GNORECASE)

3883 zflg | = ZQ LOXK;

3885 if (Ien > MAXPATHLEN) {

3886 ZFS_EXI T(zfsvfs);

3887 return (SET_ERROR(ENAMETOOLONG)) ;

3888 }

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904

3906
3907
3908
3909
3910
3911

3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945

3947
3948
3949
3950
3951

3953
3954

top:

if ((error = zfs_acl _ids_create(dzp, O,
vap, cr, NULL, &acl _ids)) !'=0) {
ZFS_EXI T(zfsvfs);
return (error);

}

/*
* Attenpt to lock directory; fail if entry al
*/

60

ready exists.

error = zfs_dirent _| ock(&dl, dzp, nane, &zp, zflg, NULL, NULL);

if (error) {
zfs_acl _ids_free(&acl _ids);
ZFS_EXI T(zfsvfs);
return (error);

}

if (error = zfs_zaccess(dzp, ACE _ADD FILE, O,
zfs_acl _ids_free(&acl _ids);
zfs_di rent _unl ock(dl);
ZFS_EXI T(zfsvfs);
return (error);

}

if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
zfs_acl _ids_free(&acl _ids);
zfs_dirent_unl ock(dl);
ZFS_EXI T(zfsvis);
return (SET_ ERRCR(EDQJOT));

tx = dnu_tx_create(zfsvfs->z_os);

fuid_dirtied = zfsvfs->z_fuid_dirty;

dmu_tx_hol d erte(tx DMJ_NEW OBJECT, 0, MAX(1,

dmu_t x_hol d_zap(tx, dzp->z_id, TRUE, nama)

dmu_t x_hol d_sa_create(tx, acl_ids.z_aclp->z_ac
“ZFS_SA BASE_ATTR SI ZE + len);

drmu_t x_hol d_sa(tx, dzp->z_sa_hdl, B _FALSE);

if (1zfsvfs->z_use_sa & acl _i ds. z_acl p->z_acl

dnu_t x_hol d_write(tx, DMJ_NEW OBJECT
acl _ids. z_acl p->z_acl _bytes);

}
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
error = dnu_tx_assign(tx, waited ? TXG WAI TED :
if (error) {
zfs_dirent _unl ock(dl);
if (error == ERESTART) {
wai ted = B_TRUE;
drmu_t x_wai t (tx);
dmu_t x_abort (tx);
goto top;

}

zfs_acl _ids_free(&acl _ids);
dmu_t x_abort (tx);

ZFS_EXI T(zf svfs);

return (error);

}

/*

* Create a new object for the synlink.

* for version 4 ZPL datsets the symink wll
*/

B_FALSE, cr)) {

len));

| _bytes +

_bytes > ZFS ACE_SPACE) {

TXG_NOWAI T) ;

be an SA attribute

zfs_nknode(dzp, vap, tx, cr, 0, &p, &acl _ids);

if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 61

3956 nmut ex_ent er (&zp->z_| ock) ;

3957 if (zp->z_is_sa)

3958 error = sa_update(zp->z_sa_hdl, SA ZPL_SYM.I NK(zfsvfs),
3959 link, len, tx);

3960 el se

3961 zfs_sa_symink(zp, link, len, tx);

3962 mut ex_exi t (&p->z_l ock);

3964 zp->z_size = |en;

3965 (void) sa_update(zp->z_sa_hdl, SA ZPL_SI ZE(zfsvfs),
3966 & p->z_size, sizeof (zp->z_size), tx);

3967 /*

3968 * |Insert the new object into the directory.

3969 */

3970 (void) zfs_link_create(dl, zp, tx, ZNEW;

3972 if (flags & Fl GNORECASE)

3973 txtype | = TX C;

3974 zfs_log_sym ink(zilog, tx, txtype, dzp, zp, nanme, link);
3976 zfs_acl _ids_free(&acl _ids);

3978 drmu_t x_commi t (tx);

3980 zfs_dirent_unl ock(dl);

3982 VN_RELE(ZTOV(zp));

3984 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALVAYS)

3985 zi | _commi t (zil og, ;

3987 ZFS_EXI T(zfsvfs);

3988 return (error);

3989 }

3991 /*

3992 * Return, in the buffer contained in the provided uio structure,
3993 * the synbolic path referred to by vp.

3994 *

3995 * I'N: vp - vnode of synbolic |ink.

3996 * ui o - structure to contain the link path.
3997 * cr - credentials of caller.

3998 * ct - caller context

3999 *

4000 * QUT: ui o - structure containing the link path.
4001 *

4002 * RETURN: O on success, error code on failure.

4003 *

4004 * Tinestanps:

4005 * vp - atinme updated

4006 */

4007 /* ARGSUSED */

4008 static int

4009 {zf s_readl i nk(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4010

4011 znode_t *zp = VTQZ(vp);

4012 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

4013 int error;

4015 ZFS_ENTER(zf svfs);

4016 ZFS_VERI FY_ZP(zp):;

4018 mut ex_ent er (&p->z_| ock);

4019 if (zp->z_is_sa)

4020 error = sa_l ookup_ui o(zp->z_sa_hdl,

4021 SA ZPL_SYM.I NK(zfsvfs), uio);

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

62

4022 el se

4023 error = zfs_sa_readlink(zp, uio);
4024 mut ex_exi t (&p->z_l ock);

4026 ZFS_ACCESSTI ME_STAMP(zf svfs, zp);

4028 ZFS_EXI T(zf svfs);

4029 return (error);

4030 }

4032 | *

4033 * Insert a new entry into directory tdvp referencing svp.
4034 *

4035 * I'N: tdvp - Directory to contain new entry.
4036 * svp - vnode of new entry.

4037 * name - nane of new entry.

4038 * cr - credentials of caller.
4039 * ct - caller context

4040 *

4041 * RETURN: 0 on success, error code on failure.
4042 *

4043 * Ti mest anps:

4044 * tdvp - ctine|ntinme updated

4045 * svp - ctinme updated

4046 */

4047 /* ARGSUSED */

4048 static int

4049 zfs_link(vnode_t *tdvp, vnode_t *svp, char *nanme, cred_t *cr,
4050 caller_context_t *ct, int flags)

4051 {

4052 znode_t *dzp = VTOZ(tdvp);

4053 znode_t *tzp, *szp;

4054 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4055 zilog_t *zil og;

4056 zfs_dirlock_t *dl;

4057 drmu_t x_t *tX;

4058 vnode_t *real vp;

4059 int error;

4060 int zf = ZNEW

4061 ui nt 64_t parent;

4062 uid_t owner ;

4063 bool ean_t wai ted = B_FALSE;

4065 ASSERT(t dvp->v_type == VDI R);

4067 ZFS_ENTER(zf svfs);

4068 ZFS_VERI FY_ZP(dzp) ;

4069 zilog = zfsvfs->z_| og;

4071 if (VOP_REALVP(svp, &realvp, ct) == 0)

4072 svp = real vp;

4074 *

4075 * PCSI X dictates that we return EPERM here.
4076 * Better choices include ENOTSUP or EI SDI R
4077 */

4078 if (svp->v_type == VDIR) {

4079 ZFS_EXI T(zf svfs);

4080 return (SET_ERROR(EPERM);

4081 }

4083 szp = VIOQZ(svp);

4084 ZFS_VERI FY_ZP(szp);

4086 /*

4087 * We check z_zfsvfs rather than v_vfsp here,

because snapshots and the

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

4088
4089
4090
4091
4092
4093

4095

4097
4098
4099
4100
4101
4102
4103
4104
4105

4107
4108
4109
4110
4111
4112
4113

4115
4116
4117
4118
4119
4120
4121
4122
4123
4124

4127
4128
4129
4130
4131

4133
4134
4135
4136

4138
4139
4140
4141
4142
4143
4144
4145
4146

4148
4149
4150
4151
4152
4153

* ctldir appear to have the sane v_vfsp.
S

if (szp->z_zfsvfs = zfsvfs || zfsctl_is_node(svp)) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EXDEV));

/* Prevent links to .zfs/shares files */

if ((error = sa_l ookup(szp->z_sa_hdl, SA ZPL_PARENT(zfsvfs),
&parent, sizeof (uint64_t))) != 0) {
ZFS_EXI T(zfsvfs);
return (error);

if (parent == zfsvfs->z shares_dir) {
ZFS_EXI T(zf svfs)
return (SET_ERROR(EPERM);

if (zfsvfs->z_utf8 && u8_vali date(nane,
strien(nane), NULL, U8B_VALIDATE ENTIRE, &error) < 0) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EILSEQ);

}
if (flags & FI GNORECASE)
| = ZC LOXK;

We do not support |inks between attributes and non-attributes

into "normal" file space in order to circunvent restrictions

*
*
* because of the potential security risk of creating |inks
*
* inposed in attribute space.

*

if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {

ZFS_EXI T(zf svfs);
return (SET_ERROR(EI NVAL));

owner = zfs_fuid_nmap_id(zfsvfs, szp->z_uid, cr, ZFS OMNNER);

if (owner != crgetuid(cr) &% secpolicy_| basi ¢ Ilnk(cr) I= 0) {
ZFS_EXI T(zfsvfs);
return (SEI'_ERRO?(EPERM)) ;

}

if (error = zfs_zaccess(dzp, ACE ADD FILE, 0, B FALSE, cr)) {
ZFS_EXI T(zfsvfs);
return (error);

/*
* Attenpt to lock directory; fail if entry already exists.
*/

error = zfs_dirent_| ock(&l, dzp, nane, & zp, zf, NULL, NULL);

if (error)
ZFS_EXI T(zf svfs)
return (error);

}

tx = dmu_t x_create(zfsvfs->z_os);

drmu_t x_hol d_sa(tx, szp->z_sa_hdl, B _FALSE);

dmu_t x_hol d_zap(tx, dzp->z_id, TRUE, nane) ;

zf s_sa_upgrade_t xhol ds(tx, szp);

zfs_sa_upgrade_t xhol ds(tx, dzp);

error = dnu_tx_assign(tx, waited ? TXG WAI TED : TXG NOMAIT);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165

4167

4169
4170
4171
4172
4173
4174

4176
4178

4180
4181
4182

4184
4185

4187
4188
4189

4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202

4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219

if (error == 0) {
uint64_t txtype = TX LINK;
if (flags & FlI GNORECASE)

if (error == 0)

* Ok ok ok Rk OF % R % bk b ko

zfs_dirent _unl ock(dl);
if (error == ERESTART) ({

wai ted = B_TRUE;
dmu_t x_wai t (tx);
drmu_t x_abort (tx);
goto top;

}

dnu_t x_abort (tx);
ZFS_EXI T(zf svfs);
return (error);

zfs_link_create(dl, szp, tx, 0);

txtype |= TX_C;

zfs_log_link(zilog, tx, txtype, dzp, szp, nane);

drmu_t x_commi t (tx);

zfs_dirent_unl ock(dl);
{
_link(svp, ct);

if (zfsvfs->z_o0s->0s_sync == ZFS_SYNC_ALWAYS)
il_commt(zilog, 0);

ZFS_EXI T(zfsvfs);
return (error);

is used when the file system has been force

It just drops the pages.

putapage(vnodet *vp, page_t *pp, u_offset _t *offp,

*lenp, int flags, cred_t *cr)

pvn_write_done(pp, B_INVAL| B_FORCE| B_ERROR);

Push a page out to disk, klustering if possible.

- file to push page to.
- page to push.

- additional flags.

- credentials of caller.

- start of range pushed.
- len of range pushed.

RETURN: 0 on success, error code on failure.

callers nust have |ocked the page to be pushed. On
the page (and all other pages in the kluster) nust be

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 65 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 66
4220 */ 4286 ASSERT3U(| en, <=, PAGESI ZE);
4221 /* ARGSUSED */ 4287 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4222 static int 4288 zf s_unmap_page(pp, va);
4223 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4289 } else {
4224 size_t *lenp, int flags, cred_t *cr) 4290 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4225 { 4291 }
4226 znode_t *zp = VIQZ(vp);
4227 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4293 if (err ==0) {
4228 dmu_t x_t *tX; 4294 uinté4_t ntinme[2], ctinme[2];
4229 u_of fset _t of f, koff; 4295 sa_bulk_attr_t bui k[3];
4230 size_t len, klen; 4296 int count = O;
4231 int err;
4298 SA_ADD_BULK ATTR(bul k, count, SA ZPL_MII ME(zfsvfs), NULL,
4233 of f = pp->p_offset; 4299 &ntine, 1
4234 | en = PAGESI ZE; 4300 SA_ADD_ BULK ATTR(bul k, count, SA ZPL_CTI ME(zf svfs), NULL,
4235 /* 4301 &cti me, 16);
4236 * |f our blocksize is bigger than the page size, try to kluster 4302 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_FLAGS(zfsvfs), NULL,
4237 * nultiple pages so that we wite a full block (thus avoiding 4303 & p->z_pflags, 8);
4238 * a read-nodify-wite). 4304 zfs_tstanp_updat e_setup(zp, CONTENT_MODI FI ED, ntine, ctine,
4239 */ 4305 B_TRUE) ;
4240 if (off < zp->z_size &% zp->z_bl ksz > PAGESI ZE) { 4306 zfs_log_wite(zfsvfs->z_log, tx, TX WRITE, zp, off, len, 0);
4241 kl en = P2ROUNDUP((ul ong_t)zp->z_bl ksz, PAGESI ZE); 4307 }
4242 kof f = I SP2(kl en) ? P2ALI G\(off, (u_offset_t)klen) : O; 4308 drmu_t x_commi t (tx);
4243 ASSERT(kof f <= zp->z_si ze);
4244 if (koff + klen > zp->z_si ze) 4310 out:
4245 kl en = P2ROUNDUP(zp- >z_si ze - koff, (uint64_t)PACESI ZE); 4311 pvn_write_done(pp, (err ? B_.ERROR: 0) | flags);
4246 pp = pvn_wite_kluster(vp, pp, &off, & en, koff, klen, flags); 4312 1f (offp)
4247 } 4313 *of fp = of f;
4248 ASSERT3U(bt op(l en), ==, btopr(len)); 4314 if (lenp)
4315 *lenp = len;
4250 /*
4251 * Can’'t push pages past end-of-file. 4317 return (err);
4252] 4318 }
4253 if (off >= zp->z_size) {
4254 /* ignore all pages */ 4320 /*
4255 err = 0; 4321 * Copy the portion of the file indicated frompages into the file.
4256 goto out; 4322 * The pages are stored in a page |list attached to the files vnode.
4257 } else |f (off + len > zp->z_size) { 4323 *
4258 int npages = btopr(zp->z_size - off); 4324 * I'N: vp - vnode of file to push page data to.
4259 page_t *trunc; 4325 * of f - positionin file to put data.
4326 * len - anount of data to wite.
4261 page_| i st _break(&pp, & runc, npages); 4327 * flags - flags to control the operation.
4262 /* ignore pages past end of file */ 4328 * cr - credentials of caller.
4263 if (trunc) 4329 * ct - caller context.
4264 pvn_write_done(trunc, flags); 4330 *
4265 len = zp->z_size - off; 4331 * RETURN: O on success, error code on failure.
4266 } 4332 *
4333 * Ti mest anps:
4268 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4334 * vp - ctine|ntine updated
4269 zf s_owner _over quot a(zf svfs, zp, B_TRUE)) { 4335 */
4270 err = SET_ERROR(EDQUOT) ; 4336 /* ARGSUSED*/
4271 goto out; 4337 static int
4272 } 4338 zfs_put page(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4273 tx = dnu_tx_create(zfsvfs->z_os); 4339 cal ler_context_t *ct)
4274 dmu_tx_hold_wite(tx, zp->z_id, off, len); 4340 {
4341 znode_t *zp = VTOZ(p);
4276 dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B FALSE); 4342 zfsvfs_t *zf svfs = zp->z_zfsvfs;
4277 zfs_ _sa _upgrade_t xhol ds(tXx, zp); 4343 page_t *pp;
4278 err = dmu_t x_assi gn(tx, TXGﬁV\AI T); 4344 size_t io_len;
4279 if (err 1=0) { 4345 u_of fset _t io_off;
4280 drmu_t x_abort (tx); 4346 uint_t bl ksz;
4281 goto out; 4347 rl_t *rl;
4282 } 4348 int error = 0;
4284 if (zp->z_blksz <= PAGESI ZE) { 4350 ZFS_ENTER(zf svfs);
4285 caddr _t va = zfs_map_page(pp, S_READ); 4351 ZFS_VERI FY_ZP(zp);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 67 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 68
4418 }
4353 /* 4419 out:
4354 * There’'s nothing to do if no data is cached. 4420 zfs_range_unl ock(rl);
4355 */ 4421 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->0s_sync == ZFS_SYNC_ALWAYS)
4356 if (!vn_has_cached_data(vp)) { 4422 zi| _commit(zfsvfs->z_log, zp->z_id);
4357 ZFS_EXI T(zf svfs); 4423 ZFS_EXI T(zfsvfs);
4358 return (0); 4424 return (error);
4359 } 4425 }
4361 /* 4427 | * ARGSUSED*/
4362 * Align this request to the file block size in case we kluster. 4428 void
4363 * XXX - this can result in pretty aggresive |ocking, which can 4429 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4364 * inpact sinultanious read/wite access. One option mght be 4430 {
4365 * to break up Iong requests (len == 0) into bl ock-by-bl ock 4431 znode_t *zp = VTQZ(vp);
4366 * operations to get narrower |ocking. 4432 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4367 */ 4433 int error;
4368 bl ksz = zp->z_bl ksz;
4369 if (1SP2(blksz)) 4435 rw_ent er (&f svfs->z_teardown_i nactive_| ock, RW READER);
4370 1o_off = P2ALI GN_TYPED(of f, bl ksz, u_offset_t); 4436 if (zp->z_sa_hdl == NULL) {
4371 el se 4437 /*
4372 io_off = 0; 4438 * The fs has been unnounted, or we did a
4373 if (len >0 & 1SP2(bl ksz)) 4439 * suspend/resune and this file no | onger exists.
4374 io_len = P2ROUNDUP_TYPED(l en + (off - io_off), blksz, size_t); 4440 */
4375 el se 4441 if (vn_has_cached_data(vp)) {
4376 io_len = 0; 4442 (voi d) pvn_vplist_dirty(vp, 0, zfs_null _putapage,
4443 B I NVAL, cr);
4378 if (io_len == 0) { 4444 }
4379 /*
4380 * Search the entire vp list for pages >= io_off. 4446 mut ex_ent er (& p->z_| ock);
4381 */ 4447 mut ex_ent er (& p->v_| ock);
4382 rl = zfs_range_|l ock(zp, io_off, U NT64_MAX, RL_WRI TER); 4448 ASSERT(vp->Vv_ count == 1);
4383 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4449 vp->v_count = O;
4384 goto out; 4450 mut ex_exi t (&p->v_| ock);
4385 } 4451 mut ex_exi t (& p->z_| ock);
4386 rl = zfs_range_l ock(zp, io_off, io_len, RL_WRI TER); 4452 rw_exit(&zfsvfs->z_tear down i nactive_| ock);
4453 zfs_znode_free(zp);
4388 if (off > zp->z_size) { 4454 return;
4389 /* past end of file */ 4455 }
4390 zfs_range_unl ock(rl);
4391 ZFS EXI T(zfsvfs); 4457 /*
4392 return (0); 4458 * Attenpt to push any data in the page cache. |If this fails
4393 } 4459 * we will get kicked out later in zfs_zinactive().
4460 */
4395 len = MN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4461 if (vn_has_cached_data(vp)) {
4462 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_|NVAL| B_ASYNC,
4397 for (off = io_off; io_off < off + len; io_off +=io0 Ien) { 4463 cr);
4398 if ((Flags & B_INVAL) || ((ags & B _ASYNO) == 0)) { 4464 }
4399 pp = page_l ookup(vp, io_off,
4400 (flags & (B INVAL | B FREE)) ? SE EXCL : SE SHARED); 4466 if (zp->z_atine_dirty & zp->z_unlinked == 0)
4401 } else { 4467 dnu_tx_t *tx = dnu_tx_create(zfsvfs->z_os);
4402 pp = page_| ookup_nowai t (vp, io_off,
4403 (flags & B_FREE) ? SE EXCL : SE_SHARED); 4469 dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B_FALSE);
4404 } 4470 zfs_sa upgrade txhol ds(tx, zp);
4471 error = dnu_tx_assign(tx, TXG_V\AI T);
4406 if (pp !'= NULL && pvn_getdirty(pp, flags)) { 4472 if (error)
4407 int err; 4473 drmu_t x_abort (tx);
4474 } else {
4409 /* 4475 nut ex_ent er (&p->z_| ock) ;
4410 * Found a dirty page to push 4476 (void) sa_update(zp->z_sa_hdl, SA ZPL_ATI ME(zf svfs),
4411 */ 4477 (void *)&p->z_atinme, sizeof (zp->z_atine), tx);
4412 err = zfs_putapage(vp, pp, & o_off, & o_len, flags, cr); 4478 zp->z_atime_dirty = O;
4413 if (err) 4479 nut ex_exi t (&p->z_l ock);
4414 error = err; 4480 dmu_t x_conmi t (tx);
4415 } else { 4481 }
4416 io_len = PAGESI ZE; 4482 }
4417 }

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

4484
4485
4486

4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506

4508
4509
4510
4511
4512
4513
4514
4515
4516
4517

4519
4520

4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534

4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549

zfs_zinactive(zp);
rw_exit (&fsvfs->z_teardown_i nactive_l ock);

}
/*
* Bounds-check the seek operation.
*
* I'N: vp - vnode seeking within
* oof f - old file offset
* nof f p - pointer to new file offset
* ct - caller context
*
* RETURN: O on success, EINVAL if new of fset invalid.
*

/* ARGSUSED */

static int

zfs_seek(vnode_t *vp, offset_t ooff,
cal | er_context_t *ct)

of fset_t *noffp,

{
if (vp->v_type == VDIR)
return (0);
return ((*noffp < 0 || *noffp > MAXCFFSET_T) ? EINVAL : 0);
}
/*
* Pre-filter the generic locking function to trap attenpts to place
* a mandatory | ock on a nenory napped file.
*
/
static int
zfs_frlock(vnode_t *vp, int cnd, flock64_t *bfp, int flag, offset_t offset,
flk_cal I back_t *flk_cbp, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zf svfs);
ZFS_VERI FY_ZP(zp);
/*
* W are following the UFS semantics with respect to nmapcnt
* here: If we see that the file is mapped al ready, then we wll
* return an error, but we don’t worry about races between this
* function and zfs_map().
*
if (zp->z_mapcnt > 0 &% MANDMODE(zp->z_node)) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EAGAIN));
}
ZFS_EXI T(zfsvfs);
return (fs_frlock(vp, cnd, bfp, flag, offset, flk_cbp, cr, ct));
}
/*
* |f we can't find a page in the cache, we will create a new page
* and fill it with file data. For efficiency, we may try to fill
* nmultiple pages at once (klustering) to fill up the supplied page
* list. Note that the pages to be filled are held with an excl usive
* lock to prevent access by other threads while they are being filled.
*
static int

zfs_fill page(vnode_t *vp, u_offset_t off,
caddr _t addr, page_t *pl[],
{

znode_t *zp = VTQZ(vp);
page_t *pp, *cur_pp
obj set _t *os = zp->z_zfsvfs->z_os;

struct seg *seg,
size_t plsz, enumseg_rw rw

69

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

4550
4551
4552

4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575

4577
4578
4579
4580
4581
4582

4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598

4600
4601
4602
4603
4604
4605
4606

4608
4609

4611
4612
4613
4614
4615

* Ok Ok Ok %

u_offset_t io_off,
size_t io_len;
int err;

total;
if (plsz == PAGESI ZE || zp->z_bl ksz <= PAGESI ZE) {
/*

* W& only have a single page, don’t bother klustering
*

io_off = off;
io_len = PAGESI ZE;
pp = page_create_va(vp, io_off, io_len,
PG EXCL | PG WAIT, seg, addr);
} else {
/*

* Try to find enough pages to fill the page Iist
*/

pp = pvn_read_kluster(vp, off, seg, addr,
& o Ten, off, plsz, 0);

& o_of f,

%f (pp :7*NULL) {

* The page al ready exists, nothing to do here.
*/

*pl = NULL;

return (0);

}

*

* Fill the pages in the kluster.

*/

cur_pp = pp; .

for (total = io_off + io_len;
caddr_t va;

io_off < total; io_off += PAGESIZE)

ASSERT3U(i o_of f, ==, cur_pp- >p offset)
va = zfs _map_ page(cur pp, S WRI
err = dmu_read(os, zp->z_id,
DMJ_READ_PREFETCH) ;

zf s_unmap_page(cur_pp, va);
if (err)

/* On error, toss the entire kluster */

pvn_read_done(pp, B_ERROR);

/* convert checksumerrors into |Oerrors */

if (err == ECKSUM

err = SET_ERROR(EIO);
return (err);

io_ off PACESI ZE, va

Cur_pp = cur_pp->p_next;

I in the page |ist array fromthe kluster starting
mthe desired offset ‘off’.
the page list will always be null

_"'I'I

term nat ed.

pvn_plist_init(pp, pl, plsz, off, io_len, rw;
ASSERT(pl == NULL || (*pl)->p_offset == off);

return (0);

Return pointers to the pages for the file region [off, off + len]
inthe pl array. |If plsz is greater than len, this function may
al so return page pointers fromafter the specified region

(i.e. the region [off, off + plsz]). These additional pages are

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646

4648
4649
4650
4651
4652
4653
4654
4655

4657
4658

4660
4661

4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/*

only returned if they are already in the cache, or were created as
part of a klustered read.

I'N: vp - vnode of file to get data from
of f - positionin file to get data from
len - anount of data to retrieve.
pl sz - length of provided page |ist.
seg - segment to obtain pages for.
addr - virtual address of fault.
rw - node of created pages.
cr - credentials of caller.
ct - caller context.

QUT: protp - protection node of created pages.
pl - list of pages created.

RETURN: O on success, error code on failure.

Ti mest anps:

vp - atime updated

ARGSUSED */

static int
zfs_get page(vnode_t *vp, offset_t off, size_t len, uint_t *protp,

page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
enum seg_rw rw, cred_t *cr, caller_context_t *ct)

znode_t *zp = VTOZ(p);
zfsvfs_t *zfsvfs = zp->z _zfsvfs;
page_t **pl0 = pl;
I nt err = 0;
/* we do our own caching, faultahead is unnecessary */
if (pl == NULL)
return (0);
else if (Ien > plsz)
len = plsz;
el se

| en = P2ROUNDUP(| en, PACESI ZE);
ASSERT(pl sz >= len);

ZFS_ENTER(zf svfs);
ZFS_VERI FY_ZP(zp);

if (protp)
*protp = PROT_ALL;
/*
* Loop through the requested range [off, off + len) |ooking
* for pages. If we don't find a page, we will need to create
* a new page and fill it with data fromthe file.
*

while (len > 0) {
if (*pl = page_| ookup(vp, off, SE SHARED))
*(pl +1) = NULL;

else if (err = zfs_fill page(vp, off, seg, addr, pl, plsz,

goto out;
while (*pl) {
ASSERT3U((* pI) >p of fset, ==, off);
of f += PAGESI Z
addr += PAGESI ZE
if (len > 0) {
ASSERT3U(| en, >=, PACESI ZE);
| en -= PAGESI ZE;

}
ASSERT3U(pl sz, >=, PAGESI ZE);

71

rw)

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

4682 pl sz -= PAGESI ZE;

4683 pl ++;

4684 }

4685 }

4687 /*

4688 * Fill out the page array with any pages already in the cache.
4689 *

4690 while (plsz > 0 &&

4691 (*pl ++ = page_| ookup_nowai t (vp, off, SE SHARED))) {
4692 of f += PAGESI ZE,

4693 pl sz -= PAGESI ZE;

4694 }

4695 out:

4696 if (err) {

4697 /*

4698 * Rel ease any pages we have previously | ocked.
4699 */

4700 while (pl > pl0)

4701 page_unl ock(*--pl);

4702 } else {

4703 ZFS_ACCESSTI ME_STAWP(zf svfs, zp);

4704 1

4706 *pl = NULL;

4708 ZFS_EXI T(zf svfs);

4709 return (err);

4710 }

4712 | *

4713 * Request a nenory map for a section of a f|| This code interacts
4714 * with commpn code and the VM systemas follo

4715 *

4716 * - common code calls nmmap(), which ends up in smrap_conmon()
4717 * - this calls VOP_MAP(), which takes you into (say) zfs

4718 * - zfs_map() calls as_map(), passing segvn_create() as the call back
4719 * - segvn_create() creates the new segnent and calls VOP_ADDVAP()
4720 * - zfs_addmap() updates z_napcnt

4721 */

4722 | * ARGSUSED* /

4723 static int

4724 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4725 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4726 cal l er_context_t *ct)

4727 {

4728 znode_t *zp = VTQOZ(vp);

4729 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

4730 segvn_crargs_t vn_a;

4731 int error;

4733 ZFS_ENTER(zf svfs);

4734 ZFS_VERI FY_ZP(zp);

4736 if ((prot & PROT_WRI TE) && (zp->z_pflags &

4737 (ZFS_I| MUTABLE | ZFS READONLY | ZFS_APPENDONLY))) {
4738 ZFS_EXI T(zfsvfs);

4739 return (SET_ERROR(EPERV));

4740 }

4742 if ((prot & (PROT_READ | PROT_EXEC)) &&

4743 (zp->z_pflags & ZFS_AV_QUARANTI NED)) {

4744 ZFS EXI T(zfsvfs);

4745 return (SEI'_ERRO?(EACCES)) ;

4746 1

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 73 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 74

4748 if (vp->v_flag & VNOVAP) { 4814 * |ast page is pushed. The problemoccurs when the msync() call is omtted,
4749 ZFS_EXI T(zf svfs); 4815 * which by far the npst conmon case:
4750 return (SET_ERROR(ENOSYS)); 4816 *
4751 } 4817 * open()
4818 * map()
4753 if (off <0 || len > MAXOFFSET_T - off) { 4819 * <nmodi fy menory>
4754 ZFS_EXI T(zfsvfs); 4820 * munmap()
4755 return (SET_ERROR(ENXI O)); 4821 * cl ose()
4756 } 4822 * <tine | apse>
4823 * put page() via fsflush
4758 if (vp->v_type != VREG) { 4824 *
4759 ZFS_EXI T(zfsvfs); 4825 * |f we wait until fsflush to come along, we can have a nodification tine that
4760 return (SET_ERROR(ENCDEV)); 4826 * is sonme arbitrary point in the future. |In order to prevent this in the
4761 } 4827 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRI TE) mapping is
4828 * torn down.
4763 /* 4829 */
4764 * |f file is |ocked, disallow napping. 4830 /* ARGSUSED */
4765 */ 4831 static int
4766 if (MANDMODE(zp->z_npde) && vn_has_fl ocks(vp)) { 4832 zfs_del map(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4767 ZFS_EXI T(zfsvfs); 4833 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4768 return (SET_ERROR(EAGAIN)); 4834 cal l er _context_t *ct)
4769 } 4835 {
4836 uint64_t pages = btopr(len);
4771 as_r angel ock(as);
4772 error = choose_addr(as, addrp, len, off, ADDR VACALIGN, flags); 4838 ASSERT3U(VTOZ(vp) - >z_mapcnt, >=, pages);
4773 if (error '=0) { 4839 atom c_add_64(&VTOZ(vp) - >z_mapcnt, -pages);
4774 as_r angeunl ock(as);
4775 ZFS_EXI T(zf svfs); 4841 if ((flags & MAP_SHARED) && (prot & PROT_WRI TE) &&
4776 return (error); 4842 vn_has_cached_dat a(vp))
4777 } 4843 (voi d) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4779 vn_a.vp = vp; 4845 return (0);
4780 vn_a.offset = (u_offset_t)off; 4846 }
4781 vn_a.type = flags & MAP_TYPE;
4782 vn_a.prot = prot; 4848 [*
4783 vn_a. maxprot = rmxprot; 4849 * Free or allocate space in a file. Currently, this function only
4784 vn_a.cred = cr; 4850 * supports the ‘F_FREESP conmand. However, this command i s sonewhat
4785 vn_a.anp = NULL; 4851 * misnanmed, as its functionality includes the ability to allocate as
4786 vn_a.flags = flags & ~MAP_TYPE; 4852 * well as free space.
4787 vn_a.szc = 0; 4853 *
4788 vn_a.lgrp_ rrempollcyflags = 0; 4854 * I'N: vp - vnode of file to free data in.
4855 * cnd - action to take (only F_FREESP supported).
4790 error = as_nmap(as, *addrp, |en, segvn_create, &vn_a); 4856 * bf p - section of file to free/alloc.
4857 * flag - current file open node fl ags.
4792 as_rangeunl ock(as); 4858 * offset - current file offset.
4793 ZFS_EXI T(zfsvfs); 4859 * cr - credentials of caller [UNUSED].
4794 return (error); 4860 * ct - caller context.
4795 } 4861 *
4862 * RETURN: O on success, error code on failure.
4797 |* ARGSUSED */ 4863 *
4798 static int 4864 * Ti mest anps:
4799 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4865 * vp - ctine|ntinme updated
4800 size_t len, uchar_t prot, uchar_t nmaxprot, uint_t flags, cred_t *cr, 4866 */
4801 cal l er_context_t *ct) 4867 /* ARGSUSED */
4802 { 4868 static int
4803 uint64_t pages = btopr(len); 4869 zfs_space(vnode_t *vp, int cnd, flock64_t *bfp, int flag,
4870 offset t offset, cred_t *cr, caller_context_t *ct)
4805 atom c_add_64(&TOZ(vp) - >z_mapcnt, pages); 4871 {
4806 return (0); 4872 znode_t *zp = VTOZ(vp)
4807 } 4873 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4874 ui nt 64_t off, len;
4809 /* 4875 int error;
4810 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4811 * nore accurate ntine for the associated file. Since we don’t have a way of 4877 ZFS_ENTER(zf svfs) ;
4812 * detecting when the data was actually nodified, we have to resort to 4878 ZFS_VERI FY_ZP(zp);
4813 * heuristics. If an explicit nsync() is done, then we mark the ntime when the

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

4880 if (cnd !'= F_FREESP) {

4881 ZFS_EXI T(zfsvfs);

4882 return (SET_ERROR(EINVAL));

4883 }

4885 /*

4886 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4887 * callers mght not be able to detect properly that we are read-only,
4888 * so check it explicitly here.

4889 */

4890 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) ({
4891 ZFS_EXI T(zfsvfs);

4892 return (SET_ERROR(ERCFS));

4893 }

4895 if (error = convoff(vp, bfp, 0, offset)) {
4896 ZFS_EXI T(zfsvfs);

4897 return (error);

4898 1

4900 if (bfp->_len < 0)

4901 ZFS_EXI T(zf svfs);

4902 return (SET_ERROR(EI NVAL));

4903 }

4905 off = bfp->l_start;

4906 len = bfp->l_len; /* 0 means fromoff to end of file */
4908 error = zfs_freesp(zp, off, len, flag, TRUE);
4910 if (error == 0 & off == 0 & & len == 0)

4911 vnevent _truncat e(ZTOV(zp), ct);

4913 ZFS_EXI T(zfsvfs);

4914 return (error);

4915 }

4917 | * ARGSUSED*/

4918 static int

4919 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4920 {

4921 znode_t *zp = VIQZ(vp);

4922 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

4923 ui nt 32_t gen;

4924 ui nt 64_t gen64;

4925 ui nt 64_t object = zp->z_id;

4926 zfid_short_t *zfid,;

4927 int size, i, error;

4929 ZFS_ENTER(zf svfs);

4930 ZFS_VERI FY_ZP(zp);

4932 if ((error = sa_lookup(zp->z_sa_hdl, SA ZPL_GEN(zfsvfs),
4933 &gen64, sizeof (uint64_t))) != 0) {

4934 ZFS_EXI T(zfsvfs);

4935 return (error);

4936 1

4938 gen = (uint32_t)gen64;

4940 size = (zfsvfs->z_parent != zfsvfs) ? LONG FID LEN : SHORT_FID LEN;
4941 if (fidp->fid_len < size) {

4942 fidp->fid_|len = size;

4943 ZFS EXI T(zfsvfs);

4944 return (SET_ERROR(ENCSPC)) :

4945 }

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

4947
4949

4951
4952

4954
4955
4956
4957
4958

4960
4961
4962

4964

4966
4967

4969
4970
4971
4972

4974
4975
4976

4978
4979
4980
4981
4982
4983
4984
4985

4987
4988
4989
4990

4992
4993
4994

4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

}

zfid

(zfid_short_t *)fidp;

zfid->zf _len = size;

for

(i

= 0 f
zfid->zf _object[i]

< sizeof (zfid->zf_object); i++)
= (uint8_t)(object >> (8 * i));

/* Mist have a non-zero generation nunber to distinguish from.zfs */
if (gen == 0

for

(

gen—l
;i < sizeof (zfid->zf_gen); i++)
Zfld >zf _gen[i] —(U|nt8t)(gen >>(8* i));

if (size == LONG FID LEN) {

}

ui nt 64_t
zfid_long_t

obj setid = dnu_obj set _i d(zfsvfs->z_os);

*z1fid
zIfid = (zfid long t *)fidp;

for (i =0; i < sizeof (zlfid->zf_setid); i++)
zl fid->zf _setid[i] = (uint8_t)(objsetid >> (8 * i));

/* XXX - this should be the generation nunber for the objset
for (i =0; i < sizeof (zlfid->zf_setgen); i++)
zI fid->zf_setgen[i] = 0;

ZFS_EXI T(zfsvfs);
rn (0);

retu

static int

zf s_pat hconf (vnode_t *vp,

{

int cmd, ulong_t *valp, cred_t *cr,

cal | er_context_t *ct)

znode_t *zp,
zfsvfs_t

*Xzp;
*zfsvfs;

zfs_dirlock_t *dl;

int

error;

switch (cnd) {
_PC_LI NK_MAX:

case

case

case

*val p = ULONG MAX;
return (0);

_PC_FI LESI ZEBI TS

*valp = 64;
return (0);

_PC_XATTR_EXI STS

zp = ViQz(vp);
zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zf svfs);
ZFS_VERI FY_ZP(zp);
*valp = 0;
error = zfs_dirent _lock(&dl, zp, zp,
ZXATTR | ZEXI STS | ZSHARED NULL NLLL)

if (error ==

zfs_dirent _unl ock(dl);

if (lzfs_dil rerrpty(xzp))

*valp = 1,

VN_RELE(ZTOV(xzp))
} else if (error == ENCENT) {

/*

* If there aren’t extended attributes, it’'s the

76

*/

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

5012 * same as having zero of them

5013 */

5014 error = 0;

5015 }

5016 ZFS_EXI T(zfsvfs);

5017 return (error);

5019 case _PC_SATTR _ENABLED:

5020 case _PC_SATTR EXI STS:

5021 *val p = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR VI EWE) &&
5022 (vp->v_type == VREG || vp->v_type == VDI R);

5023 return (0);

5025 case _PC_ACCESS FI LTERI NG

5026 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS FILTER) &&
5027 vp->v_type == VDI R

5028 return (0);

5030 case PC ACL_ENABLED:

5031 *val p = _ACL_ACE_ENABLED;

5032 return (0);

5034 case PC M N HOLE S| ZE

5035 *val p = (ul ong_t) SPA_M NBLOCKSI ZE

5036 return (0);

5038 case _PC_TI MESTAMP_RESOLUTI ON:

5039 /* nanosecond tinestanp resol ution */

5040 *val p = 1L;

5041 return (0);

5043 defaul t:

5044 return (fs_pathconf(vp, cnd, valp, cr, ct));

5045 }

5046 }

5048 /* ARGSUSED*/

5049 static int

5050 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5051 call er_context_t *ct)

5052 {

5053 znode_t *zp = VTOZ(vp);

5054 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

5055 int error;

5056 bool ean_t ski pacl chk = (flag & ATTR_NOACLCHECK) ? B _TRUE : B _FALSE;
5058 ZFS_ENTER(zf svfs);

5059 ZFS_ VERI FY_ZP(zp) ;

5060 error = zfs_getacl(zp, vsecp, skipaclchk, cr);

5061 ZFS_EXI T(zfsvfs);

5063 return (error);

5064 }

5066 /* ARGSUSED*/

5067 static int

5068 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5069 cal ler_context_t *ct)

5070 {

5071 znode_t *zp = VTOZ(vp

5072 zfsvfs_t *zfsvfs = zp- 5z _zfsvfs;

5073 int error;

5074 bool ean_t ski pacl chk = (flag & ATTR NOACLCHECK) ? B_TRUE : B_FALSE;
5075 zilog_t *zilog = zfsvfs->z_| og;

5077 ZFS_ENTER(zf svfs);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

5078 ZFS_VERI FY_ZP(zp);

5080 error = zfs_setacl (zp, vsecp, skipaclchk, cr);

5082 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALWAYS)

5083 zil _commit(zilog, 0);

5085 ZFS_EXI T(zf svfs);

5086 return (error);

5087 }

5089 /*

5090 * The smallest read we nay consider to | oan out an arcbuf.
5091 * This nust be a power of

5092 */

5093 int zcr_blksz_mn = (1 << 10); /* 1K */

5094 /*

5095 * If set to less than the file block size, allow |oaning out of an
5096 * arcbuf for a partial block read. This nust be a power of 2.
5097 */

5098 int zcr_blksz_max = (1 << 17); [* 128K */

5100 /* ARGSUSED*/

5101 static int

5102 zfs_reqzcbuf(vnode_t *vp, enumuio_rwioflag, xuio_t *xuio, cred_t *cr,
5103 caller_context_t *ct)

5104 {

5105 znode_t *zp = VTOZ(p);

5106 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

5107 int max_bl ksz = zfsvfs- >z_max_b| ksz;

5108 uio_t *uio = &xui 0- >XU_ui 0;

5109 ssize_t size = uio->uio_resid,;

5110 of fset _t offset = uio->uio_|loffset;

5111 int blksz;

5112 int fullblk, i;

5113 arc_buf _t *abuf;

5114 ssi ze_t maxsi ze;

5115 int preanble, postanble;

5117 i f (xuio->xu_type != U OTYPE ZEROCOPY)

5118 return (SET_ERROR(EINVAL));

5120 ZFS_ENTER(zf svfs);

5121 ZFS_VERI FY_ZP(zp):

5122 switch (ioflag) {

5123 case U O W TE:

5124 =

5125 * Loan out an arc_buf for wite if wite size is bigger than
5126 * max_bl ksz, and the file's block size is also max_bl ksz
5127 */

5128 bl ksz = max_bl ksz;

5129 if (size < blksz || zp->z_blksz != blksz) {
5130 ZFS_EXI T(zf svfs);

5131 return (SET_ ERRCR(EI NVAL)) ;

5132 }

5133 /*

5134 * Caller requests buffers for wite before know ng where the
3ilE)5 * wite offset mght be (e.g. NFS TCP write).
5136 */

5137 if (offset == -1) {

5138 preanble = 0;

5139 } else {

5140 preanmbl e = P2PHASE(of f set, bl ksz);
5141 I f (preanble)

5142 preanble = blksz - preanble;
5143 size -= preanbl g;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 79

5144
5145

5147
5148

5150
5151
5152
5153
5154
5155

5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168

5170
5171
5172
5173
5174
5175

5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200

5202
5203
5204

5206
5207
5208
5209

}
}
post anbl e = P2PHASE(si ze, bl ksz);
si ze -= postanbl e;

fullblk = size / blksz;
(void) drmu_xuio |n|t(xwo
preanble != 0) + fullblk + (postanble != 0));
DTRACE_PROBE3(zf s_ reqzcbuf _align, int, preanble,
int, postanble, int
(preanble = O) + fullblk + (postanble !'= 0));

/*

* Have to fix iov base/len for partial buffers. They
* currently represent full arc_buf’s.

*

if (preanble) {
/* data begins in the mddle of the arc_buf */
abuf blzkdm.l_r equest _ar cbuf (sa_get _db(zp->z_sa_hdl),
sz);
ASSERT(abuf) ;
(voi d) dmu_xui o_add(xui o, abuf,
) bl ksz - preanble, preanble);

for (i =0; i < fullblk; i++)
abuf = dmu_request _arcbuf (sa_get _db(zp->z_sa_hdl),
bl k ;

sz);
ASSERT(abuf) ;
(voi d) dmu_xui o_add(xui o, abuf, 0, blksz);

}

if (postanble) {
/* data ends in the middle of the arc_buf */
abuf = dmu_request _arcbuf (sa_get _db(zp->z_sa_hdl),

bl ksz) ;
ASSERT(abuf) ;
(voi d) dmu_xui o_add(xui o, abuf, 0, postanble);
}
br eak;

case U O _READ:
/ *

* Loan out an arc_buf for read if the read size is larger than
* the current file block size. Block alignnent is not
*/considered. Partial arc_buf will be |oaned out for read.
bl ksz = zp->z_bl ksz;
if (blksz < zcr bl ksz_m’ n)
bl ksz = zcr_blksz_nmin;
if (blksz > zcr_bl ksz_max)
bl ksz = zcr_bl ksz_max;
/* avoid potential conplexity of dealing with it */
if (blksz > max_bl ksz) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EI NVAL));
}

maxsi ze = zp->z_size - uio->uio_|of fset;
if (size > maxsize)
si ze = naxsi ze;

if (size < blksz || vn_has_cached_data(vp)) {
ZFS EXI T(zfsvfs);
return (SET_ERROR(El NVAL)):

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

5210 br eak;

5211 defaul t:

5212 ZFS_EXI T(zf svfs);

5213 return (SET_ERROR(EI NVAL));

5214 }

5216 ui 0->uio_extflg = U O XU O

5217 XUl O_XUZC_RW xui 0) = ioflag;

5218 ZFS_EXI T(zfsvfs);

5219 return (0);

5220 }

5222 | * ARGSUSED*/

5223 static int

5224 zfs_retzcbuf (vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t
5225 {

5226 int i;

5227 arc_| buf _t *abuf ;

5228 int ioflag = XUl O_XUZC_RW xui 0) ;

5230 ASSERT(xui 0- >xu_t ype == Ul OTYPE_ZEROCOPY) ;

5232 i = dmu_xui o_cnt (xui0);

5233 while (i-- > 0)

5234 abuf = dnu_xui o_arcbuf (xuio, i);

5235 /*

5236 * if abuf == NULL, it nust be a wite buffer
5237 * that has been returned in zfs_wite().
5238 *

5239 if (abuf)

5240 drmu_return arcbuf(abuf)

5241 ASSERT(abuf || ioflag == U O WRI TE);
5242

5244 drmu_xui o_f i ni (xui 0);

5245 return (0);

5246 }

5248 [*

5249 * Predeclare these here so that the conpiler assunes that
5250 * this is an "old style" function declaration that does
5251 * not include argunents => we won't get type mismatch errors
5252 * in the initializations that follow

5253 */

5254 static int zfs_inval();

5255 static int zfs_isdir();

5257 static int

5258 zfs_inval ()

5259 {

5260 return (SET_ERROR(EI NVAL));

5261 }

5263 static int

5264 zfs_isdir()

5265 {

5266 return (SET_ERROR(EISDIR));

5267 }

5268 /*

5269 * Directory vnode operations tenplate

5270 */

5271 vnodeops_t *zfs_dvnodeops;

5272 const fs_operation_def_t zfs_dvnodeops_tenplate[] = {
5273 VOPNAME_OPEN, { .vop_open = zfs _open },
5274 VOPNAME_CLCSE, { .vop_close = zfs_close },
5275 VOPNAME_READ, { .error = zfs_isdir },

*ct)

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299

5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334

5336
5337
5338
5339
5340
5341

VOPNAME_WRI TE,
VOPNAME_| OCTL,
VOPNAVE_GETATTR,
VOPNAME_SETATTR,
VOPNAME_ACCESS,
VOPNAME_L OOKUP,
VOPNAVE_CREATE,
VOPNAME_REMOVE,
VOPNAME_LI NK,
VOPNAVE_RENAME,
VOPNAVE_MKDI R,
VOPNAME_RMDI R,
VOPNAME_READDI R,
VOPNAMVE_SYMLI NK,
VOPNAVE_FSYNC,
VOPNAME_| NACTI VE,
VOPNAME_FI D,
VOPNAVE_SEEK,
VOPNAVE_PATHCONF,
VOPNAME_GETSECATTR,
VOPNAVE_SETSECATTR,
VOPNAVE_VNEVENT,

.vop_create
.vop_renove = zfs_renove },
.vop_link = zfs_link },
.vop_renane = zfs_renane },
.vop_nkdir = zfs_nkdir },
.vop_rndir = i
.vop_readdir = zfs_readdir },
.vop_symink = zfs_symink },
.vop_fsync = zfs_fsync },

.vop_i nactive = zfs_inactive },
.vop_fid = zfs_fid },

.vop_seek = zfs_seek },

.vop_pat hconf = zfs_pathconf },
.vop_getsecattr = zfs_getsecattr }
.vop_setsecattr = zfs_setsecattr }
. vop_vnevent

.error = zfs_isdir },
.vop_ioctl = zfs_ioctl },
.vop_getattr = zfs_getattr },
.vop_setattr = zfs_setattr },
.vop_access =
.vop_| ookup = zfs_| ookup },

zfs_access },

zfs_create },

= zfs_rmdir },

= fs_vnevent support },

NULL, NULL

1%

/*
* Regular file vnode operations te
*/

vnodeops_t *zfs_fvnodeops;

const fs_operation_def_t zfs_fvnode
VOPNANE_OPEN,
VOPNAME_CLCSE,
VOPNANME_READ,
VOPNAME_W\RI TE,
VOPNAME_| OCTL,
VOPNAME_CETATTR,
VOPNAME_SETATTR
VOPNAME_ACCESS,
VOPNAME_LOOKUP,
VOPNAME_RENAME
VOPNAME_FSYNC,
VOPNAME_| NACTI VE,
VOPNANE_FI D,
VOPNAME_SEEK
VOPNANME_FRLOCK,
VOPNAME_SPACE
VOPNAVE_GETPAGE,
VOPNAME_PUTPACE,
VOPNANE_MAP,
VOPNAME_ADDNVAP,
VOPNAME_DEL VAP,
VOPNAME_ PATHCONF
VOPNAME_GETSECATTR,
VOPNAME_SETSECATTR,
VOPNAME_VNEVENT,
VOPNAME_REQZCBUF,
VOPNAME_RETZCBUF,

.vop_access
.vop_| ookup
. vop_renane
.vop_fsync = zfs_fsync },

.vop_i nactive = zfs_inactive },
.vop_fid = zfs_fid },

.vop_seek = zfs_seek },
.vop_frlock = zfs_frlock },
.vop_space = zfs_space },

.vop_get page = zfs_get page },
.vop_put page = zfs_put page },
.vop_map = zfs_map },

.vop_addmap = zfs_addmap },
.vop_del map = zfs_del map },
.vop_pat hconf = zfs_pathconf },
.vop_getsecattr = zfs_getsecattr }
.vop_setsecattr = zfs_setsecattr }
. vop_vnevent
. vop_r eqzcbuf
.vop_r et zcbuf

npl ate

ops_tenplate[] = {

.vop_open = zfs_open },
.vop_close = zfs_close },
.vop_read = zfs_read },

.vop_wite = zfs_wite },
.vop_ioctl = zfs_ioctl },
.vop_getattr = zfs_getattr },
.vop_setattr = zfs_setattr },

zfs_access },
zfs_| ookup },
zfs_renane },

= fs_vnevent _support }
zfs_reqzcbuf },
zfs_retzcbuf },

NULL, NUL L

B

/*

* Synbolic link vnode operations t
*/

vnodeops_t *zfs_synvnodeops;

const fs_operation_def_t zfs_synvno
VOPNAME_GETATTR, { .

enpl ate

deops_tenplate[] = {
vop_getattr = zfs_getattr },

81

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

5342
5343
5344
5345
5346
5347
5348
5349
5350
5351

5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367

5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407

VOPNAMVE_SETATTR,
VOPNAME_ACCESS,
VOPNAVE_RENAME,
VOPNANME_READLI NK,
VOPNANE_| NACTI VE,
VOPNAME_FI D,
VOPNAME_PATHCONF,
VOPNAME_VNEVENT,
NULL,

b3

| *

A A A A A A A A

NUL

.vop_setattr = zfs_setattr },
.vop_access = zfs_access },
.vop_renanme = zfs_renane },
.vop_readlink = zfs_readlink },
.vop_i nactive = zfs_inactive },
.vop_fid = zfs_fid },

.vop_pat hconf = zfs_pathconf },
. vop_vnevent

= fs_vnevent _support
L

* special share hidden files vnode operations tenplate
&/

vnodeops_t *zfs_sharevnodeops;

const fs_operation_def_t zfs_sharevnodeops_tenplate[] = {

VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
VOPNAME_ACCESS, { .vop_access = zfs_access },
VOPNAME_| NACT!I VE, { .vop_inactive = zfs_inactive },
VOPNAME_FI D, { .vop_fid = zfs_fid },
VOPNAME_ PATHCONF, { .vop_pathconf = zfs_pathconf },
VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }
VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }
VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent _support
NULL, NULL

§i5

/*

* Extended attribute directory vnode operations tenplate

*

* This tenplate is identical to the directory vnodes

* operation tenplate except for restricted operations:

* VOP_MKDI

* VOP_SYM.I NK()

*

* Note that there are other restrictions enbedded in:

u zfs_create() - restrict type to VREG

* zfs_link() - no links into/out of attribute space

* zf s_renane() - no noves into/out of attribute space

*/

vnodeops_t *zfs_xdvnodeops;

const fs_operation_def_t zfs_xdvnodeops_tenplate[] = {

VOPNAMVE_OPEN,
VOPNAMVE_CLOSE,
VOPNAME_| OCTL,
VOPNAME_GETATTR,
VOPNAMVE_SETATTR,
VOPNAMVE_ACCESS,
VOPNAVE_L OOKUP,
VOPNAME_CREATE,
VOPNAMVE_REMOVE,
VOPNAVE LI NK,
VOPNAME_RENANE,
VOPNAME_MKDI R,
VOPNAME_RVDI R
VOPNAVE_READDI R,
VOPNAVE_SYMLI NK,
VOPNAME_FSYNC,
VOPNAME_| NACTI VE,
VOPNAMVE_FI D,
VOPNAVE_SEEK,
VOPNANE_PATHCONF,
VOPNAME_GETSECATTR,
VOPNAVE_SETSECATTR,
VOPNAVE_VNEVENT,
NULL,

.vop_create
. vop_renove
.vop_link =
. vop_renane
.error = zfs_inval },
.vop_rmdir = zfs_rndir },
.vop_readdir = zfs_readdir },
.error = zfs_inval },
.vop_fsync = zfs_fsync },
.vop_i nactive = zfs_inactive },
.vop_fid = zfs_fid },
.vop_seek = zfs_seek },
. vop_pat hconf
.vop_getsecattr = zfs_getsecattr }
.vop_setsecattr = zfs_setsecattr }
. vop_vnevent
NULL

.vop_open = zfs_open },

.vop_close = zfs_close },
.vop_ioctl = zfs_ioctl },
.vop_getattr = zfs_getattr },
.vop_setattr = zfs_setattr },
.vop_access zfs_access },
.vop_| ookup = zfs_| ookup },

zfs_create },
zfs_renove },
fs_link },

zfs_renane },

NI n

= zfs_pathconf },

= fs_vnevent _support

b

b,

b,

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 83
5408 };

5410 /*

5411 * Error vnode operations tenplate

5412 */

5413 vnodeops_t *zfs_evnodeops;

5414 const fs_operation_def_t zfs_evnodeops_tenplate[] = {

5415 VOPNAME_| NACTI VE, { .vop_inactive = zfs_inactive },
5416 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5417 NULL, NULL

5418 };

new usr/src/uts/comon/fs/zfs/zio.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
93682 Tue COct 28 11:57:20 2014
new usr/src/uts/comon/fs/zfs/zio.c
Possibility to physically reserve space without witing | eaf blocks

R R R R R

__unchanged_portion_onitted_

950 /*

951 *

952 * Prepare to read and wite |ogical blocks
*

953

954 */

956 static int
957 zio_read_bp_init(zio_t *zio)

958 {

959 bl kptr_t *bp = zio->io_bp;

961 if (!BP_I'S EMBEDDED(bp) && BP_GET_PROP_RESERVATI ON(bp)) {

962 menset (zi 0->io_orig_data, 0, zio->io_orig_size);

963 zi 0->i o_pi pel i ne = ZI O_| NTERLOCK_STACES;

964 return (ZI O_PlI PELI NE_CONTI NUE) ;

965 1

967 #endi f /* I codereview */

968 f (BP_GET_COWPRESS(bp) != ZI O COWRESS_OFF &&

969 zio->io_child_type == ZI O CH LD LOG CAL &&

970 1 (zio->io_flags &ZIOFLAG > RAW) {

971 uint64_t psize =

972 BP_I S_EMBEDDED(bp) ? BPE_GET_PSI ZE(bp) BP_GET_PSI ZE(bp) ;
973 voi d *cbuf = zio_buf_all oc(psize);

975 zi o_push_transform(zi o, cbuf, psize, psize, zio_deconpress);
976 }

978 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE DATA)
979 zi 0- >i o_pi pel i ne = ZI O_| NTERLOCK_PI PELI NE;

980 decode_enbedded_bp_conpr essed(bp, zio->i o_data);

981 } else {

982 ASSERT(! BP_I S_EMBEDDED(bp)) ;

983 }

985 if (!DMU_OT_I'S METADATA(BP_GET TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
986 zio->io_flags |= ZI O FLAG _DONT_CACHE;

988 if (BP_CET_TYPE(bp) == DMJ_OT_DDT_ZAP)

989 zio->io_flags | = ZI O FLAG DONT_CACHE;

991 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZI O CH LD_LOG CAL)
992 zi 0- >i o_pi pel i ne = ZI O DDT_READ_PI PELI NE;

994 return (Zl O Pl PELI NE_CONTI NUE) ;

995 }

997 static int
998 zio_wite_bp_init(zio_t *zio)

999 {

1000 spa_t *spa = zio0->i0_spa;

1001 zio_prop_t *zp = &zi o->i o_prop;

1002 enum zi o_conpr ess conpress = zp->zp_conpress;
1003 enum zi o_checksum checksum = zp->zp_checksum
1004 uint8_t dedup = zp->zp_dedup;

1005 #endif /* | codereview */

1006 bl kptr_t *bp = zi o->i o_bp;

1007 ui nt 64_t IS|ze—Z|o >j o_si ze;

1008 uint64_t psize = Isize;

{

new usr/src/uts/comon/fs/zfs/zio.c

1009

1011
1012
1013
1014
1015
1016
1017

1019
1020

1022

1024
1025
1026
1027
1028

1030
1031
1032
1033

1035
1036

1038
1039

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

1052

1054
961
1055

1057
964
1058

1060

967
1061
1062
1063
1064
1065
1066
1067

1069
1070
1071

int pass = 1;

/*

* |f our children haven't all reached the ready stage,
* wait for themand then repeat this pipeline stage.
S
f

(zio_wait_for_children(zio, ZIOCH LD GANG ZI O WAI T_READY) ||
zio_wait_for_children(zio, ZI O CH LD LOG CAL, ZI O WAl T_READY))
return (Zl O_Pl PELI NE_STOP);

if (110.1S_ALLOCATI NG zi 0))
return (Zl O Pl PELI NE_CONTI NUE) ;

ASSERT(zi 0->i o_child_type != ZI O CH LD_DDT);

if (zp->zp_zer o_vwi te & ! (zio->i o_pipeline & ZI O GANG STAGES)) {
dedup = B FALSE;
conpress = ZI O COWRESS_CFF;
checksum = ZI O_CHECKSUM OFF;

}

#endif /* | codereview */
if (zio->o_bp_override) {
ASSERT(bp->bl k_birth !'= zio->io_txg);
ASSERT(BP_GET_DEDUP(zi 0->i 0_bp_override) == 0);

*bp = *zio->i o_bp_overri de;
zi 0->i o_pi pel ine = ZI O_| NTERLOCK_PI PELI NE;

if (BP_I S_EMBEDDED(bp))
return (Zl O_Pl PELI NE_CONTI NUE) ;

*

* |f we’ve been overridden and nopwite is set then

* set the flag accordingly to indicate that a nopwite
* has al ready occurred.

*

if (!BP_I S_HOLE(bp) && zp->zp_nopwite) {
ASSERT(! zp- >zp_dedup) ;
zio->io_flags |= Z1O_ FLAG NOPVRI TE;
return (ZI O_Pl PELI NE_CONTI NUE) ;

}

ASSERT(! zp->zp_nopwite);

if (BP_IS_HOLE(bp) || !dedup)

if (BP_IS_HOLE(bp) || !zp->zp_dedup)

return (Zl O_PI PELI NE_CONTI NUE) ;

ASSERT(zi o_checksum t abl e[checksunj . ci _dedup ||
ASSERT(zi o_checksum t abl e[zp- >zp_checksuni . ci _dedup ||
zp->zp_dedup_verify);

if (BP_GET_CHECKSUM bp) == checksun) {

if (BP_GET_CHECKSUM bp) == zp->zp_checksum {
BP_SET_DEDUP(bp, 1);
zi 0->i o_pi peline | = ZI O STAGE_DDT_WRI TE;
return (ZI O_Pl PELI NE_CONTI NUE) ;

zi 0->i o_bp_override = NULL;
BP_ZERQ(bp) ;

}

if (!BP_IS HOLE(bp) && bp->blk_birth == zio->io_txg) {
/ *

* We're rewiting an existing block, which neans we’'re

new usr/src/uts/comon/fs/zfs/zio.c

1072
1073
1074
1075
1076
1077
1078
1079

1081
1082
1083

1085
1086

1088
1089
1090
1091

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

1134
1135
1136
1137

}

wor ki ng on behal f of spa_sync(). For spa_sync() to
converge, it nust eventually be the case that we don't
have to allocate new bl ocks. But conpression changes
the bl ocksize, which forces a reallocate, and nekes
convergence take |onger. Therefore, after the first
few passes, stop conpressing to ensure convergence.

* ok kb ko

*/
pass = spa_sync_pass(spa);
ASSERT(zi 0->i 0o_txg == spa_synci ng_t xg(spa));
ASSERT(zi 0->i 0_chi | d_type == zZI O CH LD LOG CAL);
ASSERT(! BP_GET_DEDUP(bp)) ;

if (pass >= zfs_sync_pass_dont _conpress)
conpress = ZI O COWRESS_OFF;

/* Make sure soneone doesn’t change their mnd on overwites */

ASSERT(BP_I S_EMBEDDED(bp) || M N(zp->zp_copies + BP_I S_GANE bp),

spa_max_replication(spa)) == BP_GET_NDVAS(bp));

if (conpress != 7| O COWRESS _OFF) {

}

/*

* The final pass of spa_sync() nmust be all rewites, but the first

* few passes offer a trade-off: allocating blocks defers convergence,
* but newly allocated bl ocks are sequential, so they can be witten

void *cbuf = zio_buf_alloc(lsize);

psize = zio conpress “dat a(conpress zi 0->i o_data, cbuf, Isize);

i1f (psize == 0 || psize == |size)

conpress = ZI O COVWPRESS_OFF;
zi o_buf _free(cbuf, Isi ze);

} else if (Tzp- >zp_ dedup 8& psi ze <= BPE_PAYLOAD SI ZE &&
zp->zp_level == 0 &% ! DMJ_OT_HAS FI LL(zp->zp_type) &&
spa_feature_is_enabl ed(spa, SPA_FEATURE_EMBEDDED DATA)) {

encode_enbedded_bp_conpr essed(bp,
cbuf, conpress, |size, psize);
BPE_SET ETYPE(bp BP_ ENBEDDED TYPE = DATA) ;
BP_SET_TYPE(bp, zio->io_prop.zp_type);
BP_SET_LEVEL(bp, zio->io0_prop.zp_i evel)
zi o_buf free(cbuf I size);
bp- Sblk_birth = zio->i o_txg;
zi 0->i o_pi peline = ZI O | NTERLOCK_PI PELI NE;
ASSERT(spa_feature_is_active(spa,
SPA_FEATURE_ENMBEDDED_DATA)) ;
return (ZI O_Pl PELI NE_CONTI NUE) ;
} else {
/*

* Round up conpressed size to M NBLOCKSI ZE and
* zero the tail
*/

size_t rounded =
P2ROUNDUP(psi ze, (size_t)SPA_M NBLOCKSI ZE) ;
if (rounded > psize)
bzero((char *)cbuf + psize, rounded - psize);
psi ze = rounded;

}
if (psize == Isize) {
conpress = ZI O COVMPRESS_CFF;
zi o_buf _free(cbuf, Isize);
} else {
zi o_push_transforn{zio, cbuf,
psize, Isize, NULL);

new usr/src/uts/comon/fs/zfs/zio.c

1138 * to disk faster. Therefore, we allow the first few passes of
1139 * spa_sync() to allocate new bl ocks, but force rewites after that.
1140 */There shoul d only be a handful of blocks after pass 1 in any case.
1141 *

1142 if (!BP_IS_HOLE(bp) &&bp >bl k_birth == zio->o_txg &&

1143 BP_GET_PSI ZE(bp) == psize &&

1144 pass >= zfs_sync_pass_rewite) {

1145 ASSERT(psi ze = 0);

1146 enum zi o_st age gang_stages = zi0->i o_pi peline & ZI O GANG_STAGES;
1147 zi 0->i o_pi peline = ZI O REWRI TE_PI PELTNE | gang_st ages;
1148 zio-> o _flags | = ZI O FLAG | O REWRI TE;

1149 } else {

1150 BP_ZERQ(bp) ;

1151 zi 0->i o_pl pel ine = ZI O WRI TE_PI PELI NE;

1152 1

1154 if (psize == 0) {

1155 if (zio->o_bp_orig.blk_birth =0 &

1156 spa_feature_is_active(spa, SPA FEATURE HOLE BI RTH)) {
1157 BP_SET_LSI ZE(bp, |Isize);

1158 BP_SET_TYPE(bp, zp->zp_type);

1159 BP_SET_LEVEL(bp, zp->zp_level);

1160 BP_SET BI RTH(bp, zio->i0_txg, 0);

1161 }

1162 zi 0->i o_pi peline = ZI O_| NTERLOCK_PI PELI NE;

1163 } else {

1164 ASSERT(zp->zp_checksum ! = ZI O CHECKSUM GANG_HEADER) ;
1165 BP_SET_LSI ZE(bp, |size);

1166 BP_SET_TYPE(bp, zp->zp_type);

1167 BP_SET_LEVEL(bp, zp->zp_ Ievel)

1168 BP_SET_PSI ZE(bp, psize);

1169 BP_SET_COWPRESS(bp, conpress);

1170 BP_SET_CHECKSUM bp, zp->zp_checksun);

1171 BP_SET_DEDUP(bp, zp->zp_dedup);

1172 BP_SET_BYTEORDER(bp, ZFS HOST BYTECRDER)

1173 if (zp->zp_zero wite && !(zio- >| o_pi pel ine & ZI O GANG_STAGES))
1174 bool ean_t need_al | ocate = B_FALSE;

1175 if (zio->io_pipeline & ZI O STAGE_DVA_ALLCCATE)
1176 need_al | ocate = B_TRUE;

1177 zi 0->i o_pi peline = ZI O | NTERLOCK_STAGES;

1178 if (need_allocate)

1179 zi 0->i o_pi peline | = ZI O STAGE_DVA_ALLCCATE;
1180 BP_SET_PROP_RESERVATI ON(bp, 1);

1181 } else {

1182 BP_SET_PROP_RESERVATI ON(bp, 0);

1183 }

1184 #endif /* | codereview */

1185 if (zp- >zp dedup)

1186 ASSERT(zi 0->i 0_chi | d_type == ZI O CH LD LOG CAL) ;
1187 ASSERT(! (zio->T0_flags & Z O_FLAG | O_REWRI TE)) ;
1188 zi 0- >i o_pi pel i ne"= ZI O _DDT_WRI TE_PI PELI NE;

1189 }

1190 1f (zp->zp_nopwite) {

1191 ASSERT(zi 0->i o_chi |l d type == ZI O CH LD LOG CAL);
1192 ASSERT(! (zi 0->0_flags & ZI O FLAG | O REWRI TE)) ;
1193 zi 0->i o_pi pel ine | = ZI O_ STAGE_NOP_WRI TE;

1194 }

1195 }

1197 return (Zl O Pl PELI NE_CONTI NUE) ;

1198 }

1200 static int

1201 zio_free_bp_init(zio_t *zio)

1202 {

1203 bl kptr_t *bp = zi o->i o_bp;

new usr/src/uts/comon/fs/zfs/zio.c

1205 if (zio->o_child_type == ZI O CH LD LOd CAL) {

1206 i f (BP_GET_DEDUP(bp))

1207 zi 0->i o_pi pel i ne = ZI O DDT_FREE_PI PELI NE;

1208 }

1210 return (ZI O Pl PELI NE_CONTI NUE) ;

1211 }

1213 /*

1214 *

1215 * Execute the |/ O pipeline

1216 *

1217 */

1219 static void

1220 zio_taskqg_dispatch(zio_t *zio, zio_taskg_type_t g, boolean_t cutinline)
1221 {

1222 spa_t *spa = zio->io0_spa;

1223 zio_type_t t = zio->io_type;

1224 int flags = (cutinline ’>TQFRO\IT 0);

1226 I*

1227 * |f we're a config witer or a probe, the normal issue and
1228 * interrupt threads may all be blocked waiting for the config |ock.
1229 * In this case, select the otherw se-unused taskqg for ZlI O TYPE_NULL.
1230 */

1231 if (zio->o_flags & (ZI O FLAG CONFI G WRI TER | ZI O FLAG PROBE))
1232 t = ZI O_TYPE_NULL;

1234 /*

1235 * Asimlar issue exists for the L2ZARC wite thread until L2ARC 2.0.
1236 *

1237 if (t == ZIO_TYPE_WRI TE && zi 0->i 0_vd && zi 0->i o_vd- >vdev_aux)
1238 t = ZI O TYPE_NULL;

1240 *

1241 * |f this is a high priority 1/0O then use the high priority taskq if
1242 * avail abl e.

1243 */

1244 if (zio->io_priority == ZI O PRI ORI TY_NOW &&

1245 spa->spa_zio_taskq[t][qg + 1].stqgs_count != 0)

1246 q++;

1248 ASSERT3U(q, <, ZI O TASKQ TYPES);

1250 /*

1251 * NB: W are assuming that the zio can only be dispatched
1252 * to a single taskq at a tine. It would be a grievous error
1253 * to dispatch the zio to another taskq at the same tine.

1254 */

1255 ASSERT(zi 0->i o_tgent.tgent_next == NULL);

1256 spa_t askq_di spatch_ent (spa, t, q, (task func _t *)zio_execute, zio,
1257 flags, &zio->io_tgent);

1258 }

1260 static bool ean_t

1261 zio_taskq_nenber(zio_t *zio, zio_taskq_type_t q)

1262 {

1263 kt hread_t *executor = zi o->i o_executor;

1264 spa_t *spa = zio->io_spa;

1266 for (zio_type_t t = 0; t < ZIOTYPES;, t++)

1267 spa_taskgs_t *tgs = &spa->spa_zio_taskq[t][q];

1268 uint t i;

1269 for (i =0; i < tgs->stgs_count; i++) {

new usr/src/uts/comon/fs/zfs/zio.c

1270 if (taskq_l nenber(tqs >stqs_taskq[i], executor))
1271 return (B_TRUE);

1272 }

1273 }

1275 return (B_FALSE);

1276 }

1278 static int

1279 zio_i ssue_async(zio_t *zio)

1280 {

1281 zi o_taskq_di spatch(zi o, ZI O TASKQ | SSUE, B FALSE);

1283 return (Zl O_Pl PELI NE_STOP) ;

1284 }

1286 void

1287 zio_interrupt(zio_t *zio)

1288 {

1289 zi o_taskq_di spatch(zio, ZI O TASKQ | NTERRUPT, B_FALSE)

1290 }

1292 /*

1293 * Execute the 1/O pipeline until one of the follow ng occurs:

1294 *

1295 * (1) the 1/0 conpletes

1296 * (2) the pipeline stalls \Aaltlng for dependent child 1/Cs

1297 * (3) the 1/Oissues, so we're waiting for an |/ O conpletion interrupt
1298 * (4) the 1/Ois del egated by vdev-level caching or aggregation
1299 * (5) the 1/Ois deferred due to vdev-I|evel queueing

1300 * (6) the I/Ois handed off to another thread.

1301 *

1302 * In all cases, the pipeline stops whenever there’s no CPU work; it never
1303 * burns a thread in cv _wait().

1304 *

1305 * There's no |l ocking on io_stage because there’s no |l egitimte way
1306 * for nultiple threads to be attenpting to process the sanme |/Q
1307 */

1308 static zio_pipe_stage_t *zio_pipeline[];

1310 void

1311 zi o_execute(zio_t *zio)

1312 {

1313 zi 0->i o_executor = curthread;

1315 while (zio->i o_stage < ZI O STAGE_DONE) {

1316 enum zi o_st age pi peline = zio->i o_pipeline;

1317 enum zi o_stage stage = zi 0->i o_stage;

1318 int rv;

1320 ASSERT(! MUTEX_HELD(&zi 0- >i o_| ock)) ;

1321 ASSERT(| SPZ(st age));

1322 ASSERT(zi 0-> 0_stal | == NULL);

1324 do {

1325 stage <<= 1;

1326 } V\hlle((stage&mpellne) == 0);

1328 ASSERT(st age <= ZI O_STAGE_DONE) ;

1330 /*

1331 * |f we are in interrupt context and this pipeline stage
1332 * will grab a config lock that is held across I/Q
1333 * or may wait for an I1/O that needs an interrupt thread
1334 * to conplete, issue async to avoid deadl ock.

Hk335) *

new usr/src/uts/comon/fs/zfs/zio.c

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

1347
1348

1350
1351

1353
1354
1355

1357
1358
1359
1360
1361
1362
1363
1364
1365

1367
1368

1370
1372

1374
1375
1376
1377

1379
1380

1382
1383

1385
1386

1388

1390
1391
1392
1393
1394
1395
1396
1397

1399
1400

}

voi d

o=~

* For VDEV_| O _START, we cut in line so that the io wll
* be sent to disk pronptly.
*
/
if ((stage & ZI O_BLOCKI NG_STAGES) && zio->io_vd =
zi o_taskq_ nenber(2| o, ZIO TASKQI NTERRUPT)) {
bool ean_t cut = (stage == ZI O_STAGE_VDEV_| O START) ?
zio_requeue_i o_start_cut_in_line : B_FALSE
zi o_t askq_di spat ch(zi o, ZI O TASKQ | SSUE, cut);
return;

= NULL &&

}

ZIO >io0 _stage =

rv = zi o_pi pellne[hl ghb|t64(stage) - 1] (zio);

if (rv == ZI O_PI PELI NE_STOP)
return;

ASSERT(rv == ZI O_PI PELI NE_CONTI NUE) ;

Initiate 1/0O either sync or async

_wait(zio_t *zio)

int error;

ASSERT(zi 0- >i 0_stage == ZI O STAGE_OPEN) ;
ASSERT(zi 0- >i o_executor == NULL);

zi 0->i o_waiter = curthread,
zi 0_execut e(zio);
mut ex_ent er (&zi o- >i o_| ock) ;
whil e (zio->i o_executor != NULL)
cv_wait (&zi o->io_cv, &zio->io_lock);
mut ex_exi t (&zi o->i o_| ock) ;

error = zio->io_error;
zi o_destroy(zio);

return (error);

zio_nowait(zio_t *zio)
1387 {

ASSERT(zi 0- >i o_executor == NULL);

if (zio->io_child_type == ZIO CH LD LOG CAL &&
zi o_uni que_parent (zi o) == NULL) {
/*

* This is a logical async I/Owith no parent to wait for it.

* W add it to the spa_async_root_zio "Godfather" 1/O which
* will ensure they conplete prior to unloading the pool .
*

/

spa_t *spa = zi o->i o_spa;

zi o_add_chi | d(spa->spa_async_zi o_root [CPU_SEQ D], zio0);

new usr/src/uts/comon/fs/zfs/zio.c

1402
1403

1405
1406
1407
1408
1409

1411
1412

1414

1416
1417
1418
1419

1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

1432
1433

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

1451
1452
1453
1454
1455
1456
1457
1458

1460
1461

zi o_execute(zio);

Reexecute or suspend/resunme failed I/ O

* Ok Ok kK

static void
zi o_reexecute(zio_t *pio)
1413 {

}

voi d
zi o_suspend(spa_t *spa,

1462 {

1463
1464
1465
1466

zio_t *cio, *cio_next;

ASSERT(pi 0->i o_child_type == ZI O CH LD _LOG CAL) ;
ASSERT(pi 0->i 0o_orig_stage == ZI O STAGE_OPEN) ;
ASSERT(pi o- >i o_gang_| eader == NULL);

ASSERT(pi 0->i 0_gang_tree == NULL);

pio->io_flags = pio->io_orig_flags;

pi o->i o_stage = pi o->i o_orig_stage;

pi 0->i o_pi pel i ne = plo >ji o_ori g_pi peline;

pi 0->i o_r eexecute = O;

pi o->io_flags |= ZIO FLAG REEXECUTED;

pio->io_error = O;

for (int w=0; w< ZIOWIT_TYPES; w++)
pio->io_state[w] = 0;

for (int ¢ =0; ¢ <ZIOCHILDTYPES c++)
pio->io_child_error[c] = 0;

if (101 S_ALLOCATI NG pi o))
BP_ZERQ(pi 0- >1 0_bp) ;

As we reexecute pio’ s children, new children could be created.
New children go to the head of pio’s io_child_list, however,
so we wWill (correctly) not reexecute them The key is that
the renmainder of pio’s io_child_list, from’cio_next’ onward,
* cannot be affected by any side effects of reexecuting 'cio’.

*

/
for (cio = zio_wal k_children(pio); cio !'= NULL; cio = cio_next) {
ci o_next = zio_wal k_chi dren(pl 0);
mut ex_ent er (&pi o- >i 0_| ock) ;
for (int w=0; wc< ZIOV\AIT TYPES; w++)

pi 0->i 0 ch||dren[C|o >io_ child _type] [W] ++;

nmut ex_exi t (&pi o->i o_| ock) ;
zi o_reexecute(cio);

EE

*
* Now that all children have been reexecuted, execute the parent.
* W don’t reexecute "The Godfather" 1/O here as it's the

* responsibility of the caller to wait on him

*/

if (!(pio->io_flags & ZI O FLAG GODFATHER))
zi o_execut e(pi 0);

zio_t *zio)

if (spa_get_failnode(spa) == ZI O FAI LURE_MODE_PANI C)
fm pani c("Pool "%’ has encountered an uncorrectable /O "
"failure and the failure node property for this pool "
"is set to panic.", spa_nane(spa));

new usr/src/uts/comon/fs/zfs/zio.c

1468 zfs_ereport _post (FM EREPORT_ZFS | O FAI LURE, spa, NULL, NULL, 0, 0);
1470 mut ex_ent er (&spa- >spa_suspend_| ock) ;

1472 if (spa->spa_suspend_zio_root == NULL)

1473 spa- >spa_suspend_zi o_root = zio_root(spa, NULL, NULL,
1474 ZI O FLAG CANFAI L | ZI O FLAG_SPECULATI VE |

1475 ZI O_FLAG_GODFATHER) ;

1477 spa- >spa_suspended = B_TRUE;

1479 if (zio!= NULL) {

1480 ASSERT(! (zi o->i o_fl ags & ZI O FLAG GODFATHER)) ;

1481 ASSERT(zi o != spa->spa_ suspend zio_root);

1482 ASSERT(zi 0->i 0_chi | d_type == zI O CH LD_LOG CAL);

1483 ASSERT(zi o_uni que_parent (zi 0) == NULL);

1484 ASSERT(zi 0- >i o_stage == ZI O_STA(E_DO\IE) ;

1485 zi o_add_chi | d(spa- >spa_suspend_zi o_root, zio0);

1486 1

1488 nmut ex_exi t (&spa- >spa_suspend_| ock);

1489 }

1491 int

1492 zio_resune(spa_t *spa)

1493 {

1494 zio_t *pio;

1496 /*

1497 * Reexecute all previously suspended i/o.

1498 */

1499 mut ex_ent er (&spa- >spa_suspend_| ock) ;

1500 spa- >spa_suspended = B_FALSE;

1501 cv_broadcast (&pa- >spa_suspend_cv);

1502 pi 0 = spa->spa_suspend_zi o_root;

1503 spa- >spa_suspend_zi o_root = NULL;

1504 nmut ex_exi t (&spa- >spa_suspend_| ock);

1506 if (pio == NULL)

1507 return (0);

1509 zi o_r eexecut e(pi 0);

1510 return (zio_walt(pio));

1511 }

1513 voi d

1514 zio_resune_wait(spa_t *spa)

1515 {

1516 mut ex_ent er (&spa- >spa_suspend_| ock) ;

1517 whi |l e (spa_suspended(spa))

1518 cv_wai t (&spa- >spa_suspend_cv, &spa->spa_suspend_| ock);
1519 mut ex_exi t (&spa- >spa_suspend_| ock) ;

1520 }

1522 /*

1523 *

1524 * Gang bl ocks.

1525 *

1526 * A gang block is a collection of small blocks that |ooks to the DMJ
1527 * like one large block. Wen zio_dva_allocate() cannot find a bl ock
1528 * of the requested size, due to either severe fragnentation or the pool
1529 * being nearly full, it calls zio_wite_gang_block() to construct the
1530 * block fromsnaller fragnments.

1531 *

1532 * A gang bl ock consists of a gang header (zio_gbh_phys_t) and up to
1533 * three (SPA_GBH_NBLKPTRS) gang nenbers. The gang header is just |ike

new usr/src/uts/comon/fs/zfs/zio.c 10
1534 * an indirect block: it's an array of block pointers. It consunes

1535 * only one sector and hence is allocatable regardl ess of fragnentation.

1536 * The gang header’s bps point to its gang nenbers, which hold the data.

1537 *

1538 * Gang bl ocks are sel f-checksumm ng, using the bp's <vdev, offset, txg>

1539 * as the verifier to ensure uni queness of the SHA256 checksum

1540 * Critically, the gang bl ock bp’s bl k_cksumis the checksum of the data,

1541 * not the gang header. This ensures that data bl ock signatures (needed for
1542 * deduplication) are independent of how the block is physically stored.

1543 *

1544 * Gang bl ocks can be nested: a gang nenber nay itself be a gang bl ock.

1545 * Thus every gang block is a tree in which root and all interior nodes are
1546 * gang headers, and the | eaves are normal blocks that contain user data.

1547 * The root of the gang tree is called the gang | eader.

1548 *

1549 * To performany operation (read, rewite, free, clain) on a gang bl ock,

1550 * zio_gang_assenbl e() first assembles the gang tree (mnus data |eaves)

1551 * in the io_gang_tree field of the original logical i/o by recursively

1552 * reading the gang | eader and all gang headers below it. This yields

1553 * an in-core tree containing the contents of every gang header and the

1554 * bps for every constituent of the gang bl ock.

1555 *

1556 * Wth the gang tree now assenbl ed, zio_gang_issue() just wal ks the gang tree
1557 * and invokes a callback on each bp. To free a gang bl ock, zio_gang_issue()
1558 * calls zio_free_gang() -- a trivial wapper around zio_free() -- for each bp.
1559 * zio_claimgang() provides a simlarly trivial wapper for zio_clain().

1560 * zio_read_gang() is a wapper around zio_read() that omts readi ng gang
1561 * headers, since we already have those in io_gang_tree. zio_rewite_gang()
1562 * perforns a zio_rewite() of the data or, for gang headers, a zio_rewite()
1563 * of the gang header plus zio_checksum cor’rput e() of the data to updat e the
1564 * gang header’s bl k_cksum as descri bed above.

1565 *

1566 * The two-phase assenbl e/i ssue nodel solves the problemof partial failure --
1567 * what if you'd freed part of a gang bl ock but then couldn’t read the

1568 * gang header for another part? Assenbling the entire gang tree first

1569 * ensures that all the necessary gang header 1/0O has succeeded before

1570 * starting the actual work of free, claim or wite. Once the gang tree
1571 * is assenbled, free and claimare in-nmenory operations that cannot fail.
1572 *

1573 * In the event that a gang wite falls zi o_dva_unal | ocate() wal ks the

1574 * gang tree to |mTed| ately free (i. insert back into the space nmap)

1575 * everything we’ve allocated. This ensures that we don't get ENGSPC

1576 * errors during repeated suspend/resune cycles due to a flaky device.

1577 *

1578 * Gang rewites only happen during sync-to-convergence. |If we can't assenble
1579 * the gang tree, we won't nodify the block, so we can safely defer the free
1580 * (knowing that the block is still intact). |If we *can* assenble the gang
1581 * tree, then even if sonme of the rewites fail, zio_dva_unallocate() wll free
1582 * each constituent bp and we can allocate a new bl ock on the next sync pass.
1583 *

1584 * In all cases, the gang tree allows conplete recovery frompartial failure.
1585 *

1586 */

1588 static zio_t *
1589 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)

1590 {

1591 if (gn!= NULL)

1592 return (pio);

1594 return (zio_read(pio, pio->i o_spa, bp, data, BP_GET_PSI ZE(bp),
1595 NULL, NULL, pio->io_priority, ZI O GANG. CH LD) FLAGS(pi 0),
1596 &pi 0- >i o_bookmar k));

1597 }

1599 zio_t *

new usr/src/uts/comon/fs/zfs/zio.c 11

1600
1601
1602

1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

1633
1634

1636
1637
1638

zio_rewite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
{

zio_t *zio;

if (gn!= NULL) {
zio = zio_rewite(pio, pio->io_spa, pio->io_txg, bp,
gn- >gn_gbh, SPA GANGBLOCKSI ZE, NULL, NULL, pio->io_priority,
ZI O_GANG_CHI LD_FLAGS(pi 0), &pi 0->i0_ bookmar k) ;

-

—h ok ok % ok % R % Ok X
-

As we rewite each gang header, the pipeline will conpute

a new gang bl ock header checksumfor it; but no one wll
conpute a new data checksum so we do that here. The one
exception is the gang | eader: the pipeline already conputed
its data checksum because that stage precedes gang assenbly.
(Presently, nothing actually uses interior data checksuns;
this is just good hygiene.)

(gn !'= pio->io_gang_| eader->i o_gang_tree) {
zi o_checksum conput e(zi o, BP_GET_CHECKSUM bp) ,
data, BP_GET_PSI ZE(bp));

—~—

* ok ok ok

If we are here to damage data for testing purposes,
| eave the GBH al one so that we can detect the danmge.

if (pio->io_gang_| eader->io_flags & ZI O FLAG | NDUCE_DAMAGE)
zi 0->i o_pi pel i ne & ~ZI O_VDEV_| O_STAGES;
} else {
zio = zio_rewite(pio, pio-
data BP_GET_ P | ZE(bp) ,
ZI O_GANG_CHI LD _FLAGS(p

>i 0_spa, pio->io_txg, bp,
NULL, NULL, pio->io_priority,
|o) &pi o- >i o_booknar k) ;

}

return (zio);

}

/* ARGSUSED */
zio_t *
zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)

1639 {

1640
1641
1642

1644
1645
1646

return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
ZI O_GANG _CHI LD_FLAGS(pi0)));
}

/* ARGSUSED */
zio_t *

zio_claimgang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)

1647 {

1648
1649
1650

1652
1653
1654
1655
1656
1657
1658
1659

1661
1663

1664
1665

return (zio_claimpio, pio->io_spa, pio->io_txg, bp,
NULL, NULL, ZI O GANG CHI LD FLAGS(pio)));
}

static zio_gang_issue_func_t *zio_gang_i ssue_func[Zl O TYPES] = {
NULL,
zi o_r ead_gang,
zio_rewite_gang,
zi o_free_gang,
zi o_cl ai m_gang,
NULL
b

static void zio_gang_tree_assenbl e_done(zio_t *zio);

static zio_gang_node_t *
zi 0_gang_node_al | oc(zi o_gang_node_t **gnpp)

{

new usr/src/uts/comon/fs/zfs/zio.c 12

1666

zi 0_gang_node_t *gn;

1668 ASSERT(*gnpp == NULL);

1670 gn = kmem zal | oc(si zeof (*gn), KM SLEEP);

1671 gn->gn_gbh = zi o_buf _al | oc(SPA_GANGBLOCKSI ZE) ;

1672 *gnpp = gn;

1674 return (gn);

1675 }

1677 static void

1678 zi o_gang_node_free(zi o_gang_node_t **gnpp)

1679 {

1680 zi 0_gang_node_t *gn = *gnpp;

1682 (int g = 0; g < SPA_GBH_NBLKPTRS; g++)

1683 ASSERT(gn->gn_child[g] == NULL);

1685 zi o_buf _free(gn->gn_gbh, SPA GANGBLOCKSI ZE) ;

1686 kmem free(gn, sizeof (*gn));

1687 *gnpp = NULL;

1688 }

1690 static void

1691 zio_gang_tree_free(zi o_gang_node_t **gnpp)

1692 {

1693 zi 0_gang_node_t *gn = *gnpp;

1695 if (gn == NULL)

1696 return;

1698 (int g = 0; g < SPA_GBH_NBLKPTRS; g++)

1699 zio_gang_tree_free(&gn->gn_child[g]);

1701 zi o_gang_node_free(gnpp);

1702 }

1704 static void

1705 zi o_gang_tree_assenbl e(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1706 {

1707 zi 0_gang_node_t *gn = zi o_gang_node_al | oc(gnpp);

1709 ASSERT(gi 0->i 0 gang | eader == gio0);

1710 ASSERT(BP_I S _GANG(bp)) ;

1712 zi o_nowait(zio_read(gio, gio-> o_spa, bp, gn->gn_gbh,
1713 SPA_GANGBLOCKSI ZE, zi o_gang_tree_assenbl e_done, gn,
1714 gio->io_priority, ZI O GANG CH LD _FLAGS(gi 0), &gi 0o->i o_bookmark));
1715 }

1717 static void

1718 zi o_gang_tree_assenbl e_done(zio_t *zio)

1719 {

1720 zio_t *gio = zio->io_gang_| eader;

1721 zi 0_gang_node_t *gn = zio->io_private;

1722 bl kptr_t *bp = zi o->i o_bp;

1724 ASSERT(gi 0 == zi o_uni que_ parent(2| 0));

1725 ASSERT(zi 0->i 0_chil d_count == 0);

1727 if (zio->io_error)

1728 return;

1730 i f (BP_SHOULD BYTESWAP(bp))

1731 byt eswap_ui nt 64_array(zi o->i o_data, zio->io_size);

new usr/src/uts/comon/fs/zfs/zio.c

1733
1734
1735

1737
1738
1739
1740
1741
1742
1743 }

ASSERT(zi 0->i o_data == gn->gn_gbh);
ASSERT(zi 0- > 0_si ze == SPA GANGBLOCKSI ZE) ;
ASSERT(gn- >gn_gbh->zg_tail.zec_magi c == ZEC MAG O);

= 0; g < SPA GBH NBLKPTRS; g++)
kptr_t *gbp = &gn->gn_gbh->zg bl kptr[g];
(! BP_I S_GANG(gbp))
conti nue;
zi o_gang_tree_assenbl e(gi o, gbp, &n->gn_child[g]);

for (int g
I

1745 static void
1746 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)

1747 {
1748
1749

1751
1752
1753

1755
1756
1757
1758
1759

1761
1762

1764
1765
1766
1767
1768
1769
1770
1771

1773
1774

1776
1777
1778 }

zio_t gl = pi o->i 0_gang_| eader;
zio_t *zio
ASSERT(BP_| S GANG(bp) == !!gn);

ASSERT(BP_GET. CHECKSUN(bp) == BP CGET_CHECKSUM gi 0->i 0_bp));
ASSERT(BP_GET_LSI ZE(bp) == BP_GET_PSI ZE(bp) || gn == gio->i 0_gang_tree);

/*
* |f you're a gang header, your data is in gn->gn_gbh.
* |f you're a gang nenber, your data is in 'data’ and gn == NULL.

“f
zio = zio_gang_i ssue_func[gio->i o_type] (pio, bp, gn, data);

if (gn !'= NULL) {
ASSERT(gn->gn_gbh->zg_tail.zec_magi c == ZEC MAG O);

for (int g =0; g < SPA_GBH_NBLKPTRS; g++) {
bl kptr_t *g = &gn- >gn_gbh->zg_bl kptr[g];
if (BP_IS HCLE(gbp))
conti nue;

zi o_gang_tree_i ssue(zi 0, gn->gn_child[g], gbp, data);
data = (char *)data + BP_GET_PSI ZE(gbp);

}

if (gn == gio->io_gang_tree)
ASSERT3P((char *)gio->i o_data + gio->i o_size, ==, data);

if (zio!= pio)
zi o_nowai t (zi 0);

1780 static int
1781 zi o_gang_assenbl e(zi o_t *zi o)

1782 {
1783

1785
1786

1788
1790

1792
1793 }

bl kptr_t *bp = zi o->i o_bp;

ASSERT(BP_I S_GANG(bp) && zi o->i o_gang_| eader == NULL);
ASSERT(zi 0o->i o_child_type > ZI O CH LD _GANG) ;

zi 0->i o_gang_| eader = zio;
zi 0o_gang_tree_assenbl e(zio, bp, &zio->io_gang_tree);

return (Zl O_PI PELI NE_CONTI NUE) ;

1795 static int
1796 zi o_gang_i ssue(zio_t *zio)

1797 {

13

new usr/src/uts/comon/fs/zfs/zio.c

0, ZI O CH LD GANG ZI O WAl T_DONE))

== 0)

zi 0->1 0_gang_tree,

bp, zio->io_data);

BP_GET_NDVAS(pi 0- >i o bp))

d++) {

+ 1, spa_max_replication(spa));

1798 bl kptr_t *bp = zio->io_bp;

1800 if (zio_wait_for_children(zi

1801 return (Zl O_Pl PELI NE_STCP) ;

1803 ASSERT(BP_I S_GANG(bp) && zi o->i o_gang_| eader == zio);
1804 ASSERT(zi 0->i o_chil d_type > ZI O CH LD _GANG) ;
1806 if (zio->io_child_error[Zl O CH LD_GANG

1807 zi 0_gang_tree_i ssue(zio,

1808 el se

1809 zi o_gang_tree_free(&zio->i o_gang_tree);
1811 zi 0->i o_pi peline = ZI O_| NTERLOCK_PI PELI NE;
1813 return (Zl O_PI PELI NE_CONTI NUE) ;

1814 }

1816 static void

1817 zio_write_gang_nenber_ready(zio_t *zio)

1818 {

1819 zio_t *pio = zio_unique_parent(zio);

1820 zio_t *gio = zio->io_gang_| eader;

1821 dva_t *cdva = zi o->i o_bp->bl k dva

1822 dva_t *pdva = pi o->i o_bp->bl k_dva;

1823 ui nt64_t asize;

1825 if (BP_I'S_HOLE(zi o->i0_bp))

1826 return;

1828 ASSERT(BP_I S_ HOLE(&zi 0->i 0_bp_orig));

1830 ASSERT(zi 0->i o_child_type == ZI O_CH LD_GANG) ;
1831 ASSERT3U(zi 0- >i o_prop. zp_copi €s, ==, gi 0->i 0_prop.zp_copi es);
1832 ASSERT3U(zi 0- >i o_prop. zp_copi es, <=, BP_GET_NDVAS(zi o->I 0_bp));
1833 ASSERT3U(pi 0- >i 0_prop. zp_copi es, <=, BP_GET_NDVAS(pi o->i o_bp));
1834 ASSERT3U(BP_GET_NDVAS(zi 0- >i 0_bp), <=,

1836 mut ex_ent er (&pi 0- >i o_| ock) ;

1837 for (int d = 0; d<BPGE|'ND\/AS(Z|o >i o_bp);
1838 ASSERT(DVA_GET_GANG &pdva[d]));

1839 asize = DVA GET_ASI ZE(&dva[d])

1840 asi ze += DVA GET_ASI ZE(&cdva[d])

1841 DVA SET_ASI ZE(&pdva[d], asize);

1842

1843 nmut ex_exi t (&pi o->i o_| ock) ;

1844 }

1846 static int

1847 zio_write_gang_bl ock(zio_t *pio)

1848 {

1849 spa_t *spa = pio->i0_spa;

1850 bl kptr t *bp = pio->io_bp;

1851 zio_t *gio = pio->io_gang_| eader;

1852 zio_t *zio;

1853 zi 0o_gang_node_t *gn, **gnpp;

1854 zi o_gbh_phys_t *gbh;

1855 uint64_t txg = pio->io_txg;

1856 uint64_t resid = pio->io_size;

1857 uint64_t |size;

1858 int copies = gio->io_prop.zp_copies;

1859 int gbh_copies = M N(copi es

1860 zio_prop_t zp;

1861 int error;

1863 error = netaslab_all oc(spa, spa_nornal

_cl ass(spa),

SPA_GANGBLOCKSI ZE,

new usr/src/uts/comon/fs/zfs/zio.c 15
1864 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,

1865 METASLAB HI NTBP_FAVOR | METASLAB GANG HEADER) ;

1866 if (error) {

1867 pio->io_error = erro

1868 return (21O PIPELINE CCNTINUE

1869 }

1871 if (pio==gio) {

1872 gnpp = &gi 0->i 0_gang_tree;

1873 } else {

1874 gnpp = pio->io_private;

1875 ASSERT(pi 0->i o_ready == zio_write_gang_nenber_ready);

1876 }

1878 gn = zi o_gang_node_al | oc(gnpp) ;

1879 gbh = gn->gn_gbh;

1880 bzero(gbh SPA_GANGBLOCKSI ZE) ;

1882 /*

1883 * Create the gang header.

1884 */

1885 zio = zio_rewite(pio, spa, txg, bp, gbh, SPA GANGBLOCKSI ZE, NULL, NULL,
1886 pio-> o _priority, ZI O GANG CHI LD FLAGS(pi0), &pio->io_| bookmar k)
1888 I

1889 * Create and nowait the gang children.

1890 */

1891 for (int g = ; resid !'=0; resid -= Isize, g++) {

1892 Isize = PZROJNDUP(reS| d / (SPA_GBH_NBLKPTRS - @),

1893 SPA_M NBLOCKSI ZE) ;

1894 ASSERT(Tsi ze >= SPA_M NBLOCKSI ZE && | size <= resid);

1896 zp. zp_checksum = gi 0- >i o_prop. zp checksum

1897 zp. zp_conpress = ZI O COWRESS_COF

1898 zp. zp_type = DMJ_OT_NONE;

1899 zp. zp_l evel = 0;

1900 Zp. zp_copi es = gi 0->i 0_prop. zp_copi es;

1901 zp. zp_dedup = B_FALSE;

1902 zp. zp_dedup_verify = B _FALSE;

1903 Zp.zp_zero_wite = B_FALSE

1904 #endif /* ! codereview */

1905 zp.zp_nopwite = B_FALSE;

1907 zio_nowai t (zio_wite(zio, spa, txg, &gbh->zg_blkptr[g],

1908 (char *)plo >io_data + (pio->o_size - resid), I5|ze &zp,
1909 zio_wite_gang_menber _ready, NULL, NULL, &gn->gn_chi I d[g],
1910 pio->io _priority, ZI O GANG CHI LD_FLAGS(pi o),

1911 &pi 0- >i 0_bookmark)) ;

1912 }

1914 /*

1915 * Set pio’'s pipeline to just wait for zio to finish.

1916 */

1917 pi 0->i o_pi pel ine = ZI O_| NTERLOCK_PI PELI NE

1919 zi o_nowai t (zi 0);

1921 return (ZI O_Pl PELI NE_CONTI NUE) ;

1922 }

1924 /*

1925 * The zio_nop_wite stage in the pipeline determines if allocating

1926 * a new bp is necessary. By leveraging a cryptographically secure checksum
1927 * such as SHA256, we can conpare the checksuns of the new data and the ol d
1928 * to determine if allocating a new block is required. The nopwite

1929 * feature can handle wites in either syncing or open context (i.e. zil

new usr/src/uts/comon/fs/zfs/zio.c 16

1930
1931

* wites) and as a result is nutually exclusive wth dedup.

*/

1932 static int
1933 zio_nop_wite(zio_t *zio)
1934 {

1935
1936
1937

1939
1940
1941
1942
1943
1944

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

1972
1973
1974
1975

1977
1978

1980
1981
1982
1983
1984
1985
1986

1988
1989
1990
1991

1993
1994
1995

}
| *

* Dedup
&/

bl kptr_t *bp = zio bp
bl kptr_t *bp0|g io->io_bp_orig;
zio_prop_t *zp = &ZIO >i 0_prop;

ASSERT(BP_GET_LEVEL(bp) == 0);

ASSERT(! (Zi 0->i 0_f | ags & ZI O FLAG | O REWRI TE)) ;
ASSERT(zp- >zp_nopwrite);

ASSERT(! zp- >zp_dedup) ;

ASSERT(zi 0->i o_bp_override == NULL);
ASSERT(1 O | S ALLOCATI NG zi 0)) ;

/*
* Check to see if the original bp and the new bp have matching
* characteristics (i.e. same checksum conpression algorithnms, etc).
* |f they don’t then just continue with the pipeline which wll
* allocate a new bp.
*
/

if (BP_IS HOLE(bp_orig) ||
!'zi o_checksum t abl e[BP_GET_CHECKSUM bp)] . ci _dedup | |
BP_CGET_CHECKSUM bp) != BP_GET_CHECKSUM bp_orig) ||
BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
BP_GET _DEDUP(bp) !'= BP_ GET_DEDUP(bp_orig) ||
zp->zp_copi es ! = BP_GET_NDVAS(bp_orig))
return (Zl O_PI PELI NE_CONTI NUE) ;

/*

* |f the checksuns match then reset the pipeline so that we
* avoid allocating a new bp and issuing any 1/QO

*/

if (ZlI O_CHECKSUM EQUAL(bp->bl k_cksum bp_ori g->bl k_cksum) {
ASSERT(zi o_checksum t abl e[zp- >zp_checksunj . ci _dedup);
ASSERT3U(BP_GET_PSI ZE(bp), ==, BP_GET_PSI ZE(bp_ori g)
ASSERT3U(BP_GET_LSI ZE(bp), ==, BP_GET_LSI ZE(bp_ori g)
ASSERT(zp- >zp_conpress ! = ZI O COVPRESS_OFF) ;
ASSERT(benp(&p- >bl k_prop, &bp_ori g->bl k_pr op,
sizeof (uint64_t)) == 0);

);
)

*bp = *bp_orig;
zi 0->i o_pi pel ine = ZI O | NTERLOCK_PI PELI NE;
zio->io_flags | = ZI O FLAG NOPWRI TE;

}
return (Zl O_PI PELI NE_CONTI NUE) ;

static void
zi o_ddt _chil d_read_done(zio_t *zio)
1987 {

bl kptr_t *bp = zio->i o_bp;

ddt _entry_t *dde = zio->io_private;
ddt _phys_t *ddp;

zio_t *pio = zio_unique_parent(zio);

mut ex_ent er (&pi 0- >i o_| ock) ;
ddp = ddt _phys_sel ect (dde, bp);
if (zio->io_error == 0)

new usr/src/uts/comon/fs/zfs/zio.c

17

need repair */

{
ddp_sel f)
ddp,

o_si ze,

zio->io_priority,
ZI O_FLAG DONT_PROPAGATE,

ority,

DONE))

1996 ddt _phys_cl ear (ddp) ; /* this ddp doesn’t
1997 if (zio->o_error == 0 & dde->dde_repair_data == NULL)
1998 dde- >dde_repai r_data = zi o->i o_dat a;

1999 el se

2000 zi o_buf _free(zio->io_data, zio->io_size);

2001 mut ex_exi t (&pi o- >i o_| ock) ;

2002 }

2004 static int

2005 zio_ddt _read_start(zio_t *zio)

2006 {

2007 bl kptr_t *bp = zi o->i o_bp;

2009 ASSERT(BP_GET_DEDUP(bp)) ;

2010 ASSERT(BP_GET_PSI ZE(bp) * == zi 0- >i 0_si ze) ;

2011 ASSERT(zi 0->i 0_chil d_type == zI O CH LD _LOG CAL)

2013 if (zio->o_child_error[Zl OCH LD DDT]) {

2014 ddt _t *ddt = ddt_sel ect(zio->io_spa, bp);

2015 ddt _entry_t *dde = ddt_repair_start(ddt, bp);
2016 ddt _phys_t *ddp = dde- >dde _phys;

2017 ddt _phys_t *ddp_sel f = ddt_phys_sel ect (dde, bp);
2018 bl kptr_t bl k;

2020 ASSERT(zi 0->i 0_vsd == NULL);

2021 zi 0->i 0_vsd = dde;

2023 if (ddp_self == NULL)

2024 return (ZlI O_Pl PELI NE_CONTI NUE)

2026 for (int p =0; p < DDT_PHYS_TYPES; p++, ddp++)
2027 if (ddp >ddp_phys_birth == || ddp ==
2028 conti nue;

2029 ddt _bp_creat e(ddt - >ddt _checksum &dde- >dde_key,
2030 &bl k

2031 zi o_nowal t (zi o_read(zio, zio->io_spa, &blk,
2032 zi o_buf _al | oc(zi o->i o_size), zio->
2033 zi o_ddt _child_read_done, dde,

2034 ZI O_DDT_CHI LD_FLAGS(zi 0) |

2035 &zi 0- >i o_booknark));

2036 }

2037 return (ZI O_PI PELI NE_CONTI NUE) ;

2038 }

2040 zi o_nowai t (zi o_read(zio, zio->io_spa, bp,

2041 zio->i0_data, zio->io0_size, NULL, NULL, zio->io_pri
2042 ZI O DDT_CHI LD_FLAGS(zi o), 8zi 0->i o_bookmar k)) ;

2044 return (Zl O_Pl PELI NE_CONTI NUE) ;

2045 }

2047 static int

2048 zi o_ddt _read_done(zio_t *zio)

2049 {

2050 bl kptr_t *bp = zio->io_bp;

2052 if (zio_wait_for_children(zio, ZI O CH LD DDT, ZIO WAl T_
2053 return (ZI O_PlI PELI NE_STCP);

2055 ASSERT(BP_GET_ DEDUP(bp))

2056 ASSERT(BP_GET_PSI ZE(bp) == zi 0- >i 0_si ze) ;

2057 ASSERT(zi 0->i 0_chi |l d_type == zI O CH LD _LOG CAL)

2059 if (zio->o_child_error[Zl OCH LD DDT]) {

2060 ddt _t *ddt = ddt_sel ect(zio->io_spa, bp);

2061 ddt _entry_t *dde = zi o->i o_vsd;

new usr/src/uts/comon/fs/zfs/zio.c

2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077

2079

2081
2082

}

}

if (ddt == NULL) {
ASSERT(sp
return (ZIO

}

if (dde == NULL) {
zi 0->i o_stage =
zi o_t askq_di spat ch(zi o,
return (ZI O_PI PELI NE_STCP)

O_PI PELI NE_CONTI NUE) ;

}
1 f (dde->dde_repair_data != NULL) {
bcopy(dde- >dde_r epai r_dat a,

| oad_st at e(zi o- >i 0_spa)

zi 0->i o_dat a,

18

1= SPA_LOAD_NONE) ;

ZI O_STAGE_DDT_READ START >> 1;
ZI O TASKQ T SSUE, B FALSE)

zi 0->i 0_si ze);

zio->io_child error[ZIOCHI LD DDT] = O;

}
ddt _repai r_done(ddt,
zi 0->i 0_vsd = NULL;

dde) ;

ASSERT(zi 0->i o_vsd == NULL);

ret

urn (Zl O_PI PELI NE_CONTI NUE) ;

2084 static bool ean_t

2085 zio_ddt_collision(zio_t *zio,

2086 {

2087

2089
2090
2091
2092
2093
2094
2095
2096

2098
2099
2100
2101
2102
2103

2105
2106

2108
2109
2110
2111
2112

2114
2116

2118
2119
2120
2121

2123
2124
2125
2126
2127

ddt _t *ddt, ddt_entry_t
spa_t *spa = zio->i 0_spa;
/*
* Note: we conpare the original data, not the

*

*
*
*
for

}

for

because when zio->io_bp is an override bp,
pushed the I/Otransforms. That’s an inport
because ot herw se we'd conpress/encrypt all

(int p = DDT_PHYS_SINGLE; p <= DDT_PHYS TR
zio_t *Iio = dde->dde_| ead_zi o[p] ;

if (lio!'= NULL) {
return (lio->o_orig_size != zi
bcnp(zi o->i o_orig_data,

zio->io_orig_size) !=0);
}
(int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRI
ddt _phys_t *ddp = &dde- >dde _phys[p];

if (ddp->ddp_phys_birth = 0) {
arc_buf _t *abuf NULL;
uint32_t aflags = ARC WAIT;
bl kptr_t blk = *zi o->i o_bp;
int error;

ddt _bp_fill (ddp,
ddt _exi t (ddt);

error = arc_read(NULL, spa, &bl
arc_get buf _func, &abuf,
ZI O_FLAG_CANFAI L |
&afTags, &zi o- >i o_bookmark);

if (error == 0) {
if (arc_buf_size(abuf)
bcrmp(abuf - >b_dat a,
zio->io0_orig_size)
error

we wll not

*dde)

transfornmed data,

have

ant optim zation
drmu_sync() data twice.

PLE; p++) {

o->io_orig_size ||

lio->o0_orig_data,

PLE;, p++) {

&bl k, ddp->ddp_phys_birth);

k,

ZI O PRI CRI TY_SYNC_READ,
Zlo FLAG_SPECULATT VE,

= zio->io_orig_size ||
zi 0->i o_orig_data,
I—o)

= SET_ERROR(EEXI ST) ;

new usr/src/uts/comon/fs/zfs/zio.c 19 new usr/src/uts/comon/fs/zfs/zio.c 20

2128 VERI FY(ar c_buf _renove_ref (abuf, &abuf)); 2194 ddt _entry_t *dde = zi o->io_private;
2129 } 2195 ddt _phys_t *ddp = &dde->dde_phys|[p];
2196 ddt _key_t *ddk = &dde->dde_key;
2131 ddt _enter (ddt);
2132 return (error !'= 0); 2198 ddt _enter (ddt);
2133 }
2134 } 2200 ASSERT(ddp- >ddp_refcnt == 0)
2201 ASSERT(dde- >dde_| ead_. ZI o[p] == zio);
2136 return (B_FALSE); 2202 dde- >dde_| ead_zi o[p] = NULL;
2137 }
2204 if (zio->o_error == 0) {
2139 static void 2205 ASSERT(ZI O_CHECKSUM EQUAL (bp- >bl k_cksum ddk->ddk_cksun) ;
2140 zio_ddt_child_wite_ready(zio_t *zio) 2206 ASSERT(zp->zp_copi es < SPA DVAS_PER_BP);
2141 { 2207 ASSERT(zp- >zp_copi es == BP_GET_NDVAS(bp) - BP_I'S_GANG bp));
2142 int p = zio-> o_prop.zp_copies; 2208 if (ddp->ddp_phys birth !="0)
2143 ddt _t *ddt = ddt_sel ect (zi o->i o_spa, zio->io_bp); 2209 ddt _phys_free(ddt, ddk, ddp, zio->io_txg);
2144 ddt _entry_t *dde = zi o->io_private; 2210 ddt _phys_fil I (ddp, bp);
2145 ddt _phys_t *ddp = &dde->dde_phys|[p]; 2211 }
2146 zio_t *pio;
2213 ddt _exi t(ddt);
2148 if (zio->io_error) 2214 }
2149 return;
2216 static int
2151 ddt _enter(ddt); 2217 zio_ddt_wite(zio_t *zio)
2218 {
2153 ASSERT(dde- >dde_| ead_zi o[p] == zio0); 2219 spa_t *spa = zio->i0_spa;
2220 bl kptr_t *bp = zio->io_bp;
2155 ddt _phys_fill (ddp, zio->io_bp); 2221 uint64_t txg = zio->io_txg;
2222 zio_prop_t *zp = &zio->i o_prop;
2157 while ((pio = zio_walk_parents(zio)) != NULL) 2223 int p = zp->zp_copi es;
2158 ddt _bp_fiTl (ddp, pio->io_bp, zio->io_txg); 2224 int ditto_copies;
2225 zio_t *cio = NULL;
2160 ddt _exi t (ddt); 2226 zio_t *dio = NULL;
2161 } 2227 ddt _t *ddt = ddt_sel ect(spa, bp);
2228 ddt _entry_t *dde;
2163 static void 2229 ddt _phys_t *ddp;
2164 zio_ddt_child_wite_done(zio_t *zio)
2165 { 2231 ASSERT(BP_GET_DEDUP(bp)) ;
2166 int p = zio-> o_prop.zp_copies; 2232 ASSERT(BP_GET_CHECKSUM bp) == zp->zp_checksum;
2167 ddt _t *ddt = ddt_sel ect (zi o->i o_spa, zio->io_bp); 2233 ASSERT(BP_I S HOLE(bp) || zio->io_bp_override);
2168 ddt _entry_t *dde = zio->io_private;
2169 ddt _phys_t *ddp = &dde->dde_phys[p]; 2235 ddt _enter (ddt);
2236 dde = ddt_| ookup(ddt, bp, B_TRUE);
2171 ddt _enter(ddt); 2237 ddp = &dde->dde_phys[p];
2173 ASSERT(ddp- >ddp_refcnt == 0); 2239 if (zp- >zp_dedup_veri fy && zio_ddt_collision(zio, ddt, dde)) {
2174 ASSERT(dde- >dde_| ead_zi o[p] == zio); 2240 1=
2175 dde- >dde_l| ead_zi o[p] = NULL; 2241 * If we're using a weak checksum upgrade to a strong checksum
2242 * and try again. |If we're already using a strong checksum
2177 if (zio->io_error == 0) { 2243 * we can’'t resolve it, so just convert to an ordinary wite.
2178 while (zio_wal k_parents(zio) != NULL) 2244 * (And automatically e-nmail a paper to Nature?)
2179 ddt _phys_addr ef (ddp) ; 2245 *
2180 } else { 2246 if (!zio_checksumtable[zp->zp_checksuni.ci_dedup) {
2181 ddt _phys_cl ear (ddp) ; 2247 zp->zp_checksum = spa_dedup_checksun{ spa) ;
2182 } 2248 zi o_pop_transforns(zio);
2249 zi 0->i o_stage = ZI O _STAGE_OPEN,
2184 ddt _exit (ddt); 2250 BP_ZERQ(bp) ;
2185 } 2251 } else {
2252 zp->zp_dedup = B_FALSE;
2187 static void 2253 }
2188 zio_ddt _ditto_wite_done(zio_t *zio) 2254 zi 0->i o_pi peline = ZI O WRI TE_PI PELI NE;
2189 { 2255 ddt _exit(ddt);
2190 int p = DDT_PHYS DI TTG 2256 return (ZI O_Pl PELI NE_CONTI NUE) ;
2191 zi o_prop_t *zp = &zi o- >| o_prop; 2257 }
2192 bl kptr_t *bp = zi 0->i o_bp;

2193 ddt _t *ddt = ddt_sel ect(zi o->i 0o_spa, bp); 2259 ditto_copies = ddt_ditto_copi es_needed(ddt, dde, ddp);

new usr/src/uts/comon/fs/zfs/zio.c

21

2260 ASSERT(di tto_copi es < SPA DVAS_PER BP);

2262 if (ditto_copies > ddt_ditto_copi es_present (dde) &&

2263 dde- >dde_| ead_zi o[DDT_PHYS_DI TTQ == NULL) {

2264 zio_prop_t czp = *zp;

2266 czp.zp_copies = ditto_copi es;

2268 /*

2269 * If we arrived here with an override bp, we won’t have run
2270 * the transformstack, so we won’t have the data we need to
2271 * generate a child ilo. So, toss the override bp and restart.
2272 * This is safe, because using the override bp is just an
2273 * optimzation; and it’'s rare, so the cost doesn’'t matter.
2274 */

2275 if (zio->o_bp_override) {

2276 zi o_pop_transforns(zio);

2277 zi 0->i o_stage = ZI O_ STAGE OPEN

2278 zi 0->i o_pi pel ine = ZI O WRI TE_| Pl PELI NE;

2279 zi 0->i o_bp_ overrl de = NULL;

2280 BP_ZERO(b

2281 ddt _exi t (dd t),

2282 return (Zl O_Pl PELI NE_CONTI NUE) ;

2283 }

2285 dio = zio_wite(zio, spa, txg, bp, zio->io_orig_data,

2286 zio->o_orig_size, &czp, NULL, NULL,

2287 zio_ddt _ditto_wite_done, dde, zio->io_priority,

2288 ZI O_DDT_CHI LD _FLAGS(zi 0), &zi 0->i o_bookmark);

2290 zi o_push_transform(di o, zio->io_data, zio->io_size, 0, NULL);
2291 dde- >dde_| ead_zi o[DDT_PHYS_DI TTQ = di o;

2292 }

2294 if (ddp->ddp_phys_birth != 0 || dde->dde_l ead_zio[p] != NULL) {
2295 if (ddp->ddp_phys_birth = 0)

2296 ddt _bp_fill (ddp, bp, txg);

2297 if (dde->dde_l ead_zio[p] != NULL)

2298 zi o_add_chil d(zi o, dde->dde_|ead_zio[p]);

2299 el se

2300 ddt _phys_addr ef (ddp) ;

2301 } else if (zio->io_bp_ override) {

2302 ASSERT(bp- >bl k_birth == txg);

2303 ASSERT(BP_EQUAL(bp, zio->io_bp_override));

2304 ddt _phys_fill (ddp, bp);

2305 ddt _phys_addr ef (ddp) ;

2306 } else {

2307 cio = zio_wite(zio, spa, txg, bp, zio->io_orig_data,

2308 zio->o_orig_size, zp, zio_ddt_child_wite_ready, NULL,
2309 zio_ddt _chiid_wite_done, dde, zio->o_priority,

2310 ZI O_DDT_CHI LD _FLAGS(zi 0), &zi o->i o_bookmark);

2312 zi o_push_transform(cio, zio->i o_data, zio->io_size, 0, NULL);
2313 dde- >dde_| ead_zi o[p] = cio;

2314 }

2316 ddt _exit(ddt);

2318 if (cio)

2319 zi o_nowai t (ci 0);

2320 if (dio)

2321 zi o_nowai t (di 0);

2323 return (Zl O_Pl PELI NE_CONTI NUE) ;

2324 }

new usr/src/uts/comon/fs/zfs/zio.c
2326 ddt_entry_t *freedde; /* for debugging */

2328 static int
2329 zio_ddt _free(zio_t *zio)

2330 {

2331 spa_t *spa = zio->i0_spa;

2332 bl kptr_t *bp = zi o->i o_bp;

2333 ddt _t *ddt ddt _sel ect (spa, bp);

2334 ddt “entry_t *dde;

2335 ddt _phys_t *ddp;

2337 ASSERT(BP_GET_DEDUP(bp))

2338 ASSERT(zi 0->i o_child_type == ZI O CH LD _LOG CAL);

2340 ddt _ent er(ddt);

2341 freedde = dde = ddt_| ookup(ddt, bp, B_TRUE);

2342 ddp = ddt_phys_sel ect (dde, bp);

2343 ddt _phys_decref (ddp);

2344 ddt _exi t (ddt);

2346 return (ZI O_Pl PELI NE_CONTI NUE) ;

2347 }

2349 | *

2350 *

2351 * Allocate and free bl ocks

2352 *

2353 */

2354 static int

2355 zio_dva_al l ocate(zio_t *zio)

2356 {

2357 spa_t *spa = zio->io_spa;

2358 netasl ab_class_t *nt = spa_normal _cl ass(spa);

2359 bl kptr_t *bp = zio->io_bp;

2360 int error;

2361 int flags = 0;

2363 if (zio->io_gang_| eader == NULL) {

2364 ASSERT(zi 0->i o_chil d_type > ZI O_CH LD_GANG) ;

2365 zi 0->i 0_gang_l eader = zio;

2366 }

2368 ASSERT(BP_I S_HOLE(bp)) ;

2369 ASSERTO(BP_GET_NDVAS(bp)) :

2370 ASSERT3U(zi 0- >i o_prop. zp_copi es, >, 0);

2371 ASSERT3U(zi 0->i o_prop. zp_ copl es, <=, spa_max_replication(spa));
2372 ASSERT3U(zi 0- >i o_si ze, ==, G:‘l' PSI ZE(bp));

2374 /*

2375 * The dunp devi ce does not support gang bl ocks so allocation on
2376 * behal f of the dunp device (i.e. ZI O FLAG NODATA) nust avoid
2377 * the "fast" gang feature.

2378 */

2379 flags |= (zio o_flags & ZI O FLAG NODATA) ? METASLAB_GANG AVO D : O;
2380 flags |-(Z|o fIags&ZIOFLAGGM\IGCHILD) ?

2381 METASLAB GANG CH LD : O;

2382 error = netaslab_all oc(spa, nc, zio->io_size, bp,

2383 zi 0- >i o_prop. zp_copi es, zio->io_txg, NULL, flags);

2385 if (error) {

2386 spa_dbgnmsg(spa, "%: netaslab allocation failure: zio %,
2387 "size %lu, error %", spa_nane(spa), zio, zio->io_size,
2388 error);

2389 if (error == ENOSPC && zi 0->i 0_size > SPA_M NBLOCKSI ZE)
2390 return (zio_wite_gang_bl ock(zio));

2391 zio->o_error = error;

22

new usr/src/uts/comon/fs/zfs/zio.c

23

2392 }

2394 return (Zl O Pl PELI NE_CONTI NUE) ;

2395 }

2397 static int

2398 zio_dva_free(zio_t *zio)

2399 {

2400 net asl ab_free(zi o->i o_spa, zio->o_bp, zio->o_txg, B FALSE);
2402 return (ZI O Pl PELI NE_CONTI NUE) ;

2403 }

2405 static int

2406 zio_dva_clain{zio_t *zio)

2407 {

2408 int error;

2410 error = netasl ab_cl ai n{ zi o->i o_spa, zio->io_bp, zio->io0_txg);
2411 if (error)

2412 zio->o_error = error;

2414 return (ZI O Pl PELI NE_CONTI NUE) ;

2415 }

2417 | *

2418 * Undo an allocation. This is used by zio_done() when an I/O fails
2419 * and we want to give back the block we just allocated.

2420 * This handl es both nornal bl ocks and gang bl ocks.

2421 */

2422 static void

2423 zio_dva_unal l ocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2424 {

2425 ASSERT(bp->bl k_birth == zio->o_txg || BP_I'S HOLE(bp));

2426 ASSERT(zi 0->i 0_bp_override == NULL);

2428 if (!BP_IS_HOLE(bp))

2429 nmet asl ab_free(zio->i o_spa, bp, bp->blk_birth, B TRUE);
2431 if (gn!= NULL) {

2432 for (int g = 0; g < SPA_GBH NBLKPTRS; g++) {

2433 zi o_dva_unal | ocate(zio, gn->gn_child[g],

2434 &gn->gn_gbh->zg_bl kptr[g]);

2435 }

2436 }

2437 }

2439 [*

2440 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2441 */

2442 int

2443 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *ol d_bp,
2444 uint64_t size, bool ean_t use_sl og)

2445 {

2446 int error = 1;

2448 ASSERT(txg > spa_synci ng_t xg(spa));

2450 /*

2451 * ZIL bl ocks are always contiguous (i.e. not gang bl ocks) so we
2452 * set the METASLAB_GANG AVAO D flag so that they don't "fast gang"
2453 * when al l ocating them

2454 */

2455 if (use_slog) {

2456 error = netasl ab_al |l oc(spa, spa_l og_cl ass(spa), size,
2457 new_bp, 1, txg, old_bp,

new usr/src/uts/comon/fs/zfs/zio.c

2458 METASLAB_HI NTBP_AVO D | METASLAB_GANG AVQ D) ;

2459 1

2461 if (error) {

2462 error = netaslab_all oc(spa spa_normal _cl ass(spa), size,
2463 new bp, 1, txg, old_bp,

2464 METASLAB_HI NTBP_AVO D) ;

2465 }

2467 if (error == 0)

2468 BP_SET_LSI ZE(new_bp, si ze)

2469 BP_SET_PSI ZE(new_bp, size);

2470 BP_SET_COMPRESS(new bp, ZlI O_COMPRESS_OFF) ;

2471 BP_SET_CHECKSUM new_bp,

2472 spa_versi on(spa) >= SPA VERSION SLIM ZI L

2473 ? ZI O CHECKSUM ZI LO& : ZI O CHECKSUM ZI LOG) ;

2474 BP_SET_TYPE(new_bp, DMJ OT_| NTENT_LOG) ;

2475 BP_SET_LEVEL(new bp, 0);

2476 BP_SET_DEDUP(new bp, 0);

2477 BP_SET_BYTEORDER(new_bp, ZFS HOST BYTECRDER) ;

2478 }

2480 return (error);

2481 }

2483 [*

2484 * Free an intent |og bl ock.

2485 */

2486 void

2487 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)

2488 {

2489 ASSERT(BP_GET_TYPE(bp) == DMJ_OT_|I NTENT_LQG);

2490 ASSERT(! BP_I S_GANG(bp)) ;

2492 zio_free(spa, txg, bp);

2493 }

2495 [*

2496 *

2497 * Read and wite to physical devices

2498 *

2499 */

2500 static int

2501 zio_vdev_io_start(zio_t *zio)

2502 {

2503 vdev_t *vd = zio->i o0_vd;

2504 uint64_t align;

2505 spa_t *spa = zio->io0_spa;

2507 ASSERT(zi o->i o_error == 0);

2508 ASSERT(zi 0->i o_child error[ZI O CHI LD _VDEV] == 0);

2510 if (vd == NULL) {

2511 if (!(zio->o_flags & ZI O FLAG CONFI G WRI TER))

2512 spa_config_enter(spa, SCL_ZI O zio, RWREADER);
2514 /*

2515 * The mirror_ops handle nultiple DVAs in a single BP.
2516 */

2517 return (vdev_mirror_ops.vdev_op_io_start(zio));

2518 1

2520 /*

2521 * Ve keep track of time-sensitive 1/0s so that the scan thread
2522 * can quickly react to certain workloads. |In particular, we care
2523 * about non-scrubbing, top-level reads and wites with the fol | ow ng

24

new usr/src/uts/comon/fs/zfs/zio.c 25

2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538

2540

2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553

2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569

2571

2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589

* characteristics:
* - synchronous wites of user data to non-slog devices
* - any reads of user data
* When these conditions are nmet, adjust the tinmestanp of spa_last_io
* which allows the scan thread to adjust its workload accordingly.
*
/

if (!(zio->io_flags & ZI O FLAG SCAN THREAD) & zio->io_bp != NULL &

vd == vd->vdev_top &% !vd->vdev_islog &&
zi 0->i o_bookmark. zb_obj set != DMJ_META OBJSET &&
zio->io_txg != spa_syncing_ txg(spa)) {

uint64_t old = spa->spa_l ast_io;

uint64_t new = ddi _get Ibolt 64()

if (old !'= new

(void) atom c_cas_64(&spa->spa_|l ast_io, old, new;

}
align = 1ULL << vd->vdev_top->vdev_ashift;

if (I(zio->io flags & ZI O FLAG PHYSI CAL) &&
P2PHASE(zi o- > o_si ze, align) != 0)
/* Transformlogical wites to be a full phyS| cal block size. */
uint64_t asize = P2ROUNDUP(zi o->i o_si ze, align);
char *abuf = zio_buf_all oc(asize);
ASSERT(vd == vd->vdev_t op);
if (zio->io_type == ZI O TYPE_WRI TE)
bcopy(zi o->i o_data, abuf, zio->io_size);
bzero(abuf + zio->io_size, asize - zio->io_size);

}
zi o_push_transform(zio, abuf, asize, asize, zio_subblock);

}

*

* |f this is not a physical io, neke sure that it is properly aligned
* before proceedi ng.
*

/

if (!(zio-> o0 flags & ZI O FLAG PHYSI CAL)) {
ASSERTO(P2PHASE(zi o- >i o_of f set, align))
ASSERTO(P2PHASE(zi o- >i 0_si ze, al i gn));
} else {
/*

* For physical wites, we allow 512b aligned wites and assune
* the device will performa read-nodify-wite as necessary.
)
ASSERTO(P2PHASE(zi 0- >i 0_of f set, SPA M NBLOCKSI ZE)) ;
ASSERTO(P2PHASE(zi o- >i o_si ze, SPA M NBLOCKSI ZE)) ;

}
VERI FY(zio-> o_type != ZIO TYPE WRITE || spa_witeabl e(spa));

/
If this is arepair 1/O and there’'s no self-healing involved --
that is, we're just resilvering what we expect to resilver --
then don’t do the I/Ounless zio's txg is actually in vd s DTL.
This prevents spurious resilvering with nested replication.

For exanple, given a mrror of mrrors, (A+B)+(C+D), if only

A is out of date, we'll read from C+D, then use the data to
resilver A+B -- but we don’t actually want to resilver B, just A
The top-level mrror has no way to know this, so instead we just
di scard unnecessary repairs as we work our way down the vdev tree.
The sane | ogic applies to any formof nested replication:

ditto + mrror, RAID-Z + replacing, etc. This covers themall.

* ok k ok % ok k Ok F ok ko

*

/

if ((zio->o_flags & ZI O FLAG | O REPAIR) &&
'(zio->io_flags & ZI O FLAG SELF_HEAL) &&
zio->io txg !'= 0 & /* not a delegated ilo */
lvdev_dt| _contai ns(vd, DTL_PARTIAL, zio->io_txg, 1)) {

new usr/src/uts/comon/fs/zfs/zio.c

2590
2591
2592
2593

2595
2596

2598
2599

2601
2602

2604
2605
2606
2607
2608
2609

2611
2612 }

26

ASSERT(zi 0->i o_type == ZI O_TYPE_WRI TE) ;
zi o_vdev_i o_bypass(zi o)
return (ZI O_Pl PELI NE CI»WINUE

}

if (vd->vdev_ops->vdev_op_| eaf &&
(zio->o_type == ZIO TYPE_READ || zio->io_type == ZIO TYPE WRI TE)) {

if (zio->o_type == ZI O TYPE_READ && vdev_cache_read(zi o))
return (ZI O_Pl PELI NE_CONTI NUE) ;

if ((zio = vdev_queue_io(zio)) == NULL)
return (ZI O_PI PELI NE_STOP);

if (!vdev_accessi bl e(vd, zio)) {
zio->io_error SET_ERROR(ENXI O) ;

zio |nterrupt(2|o
return (Zl O Pl PELI NE . STOP) ;

}

return (vd->vdev_ops->vdev_op_io_start(zio));

2614 static int
2615 zi o_vdev_i o_done(zio_t *zio)

2616 {
2617
2618
2619

2621
2622

2624
2626
2628

2630
2631

2633
2634
2635

2637
2638

2640
2641
2642
2643
2644
2645
2646
2647

2649

2651
2652

2654
2655 }

vdev_t *vd = zio->io_vd;
vdev_ops_t *ops = vd ? vd- >vdev _ops : &dev_mrror_ops;
bool ean_t unexpected_error = B_FALSE;

if (zio_wait_for_children(zio, ZI O CH LD VDEV, ZI O WAI T_DONE))
return (ZI O_PlI PELI NE_STCP);

ASSERT(zi 0->i o_type == ZI O TYPE_READ || zio->io_type == ZI O TYPE_WRI TE);
if (vd !'= NULL && vd->vdev_ops->vdev_op_| eaf) {
vdev_queue_i o_done(zi o) ;

if (zio->io_type == ZI O TYPE_WRI TE)
vdev_cache_write(zio);

if (zio_injection_ enabled &% zio->io0_error ==
zio->o_error = zi o_handl e_device_i nj ectlon(vd,
zio, EIO;

if (zio_injection_ enabled &% zio->o_error == 0)
zio->i o_error = zio_handl e_| abel _i nj ectlon(2|o, EIO;

if (zio->io_error)
if (!vdev_accessibl e(vd zio)) {
zi0->io_error = SET_ERROR(ENXI O);

} else {
unexpected_error = B_TRUE;
}

}
ops->vdev_op_i o_done(zi 0);

if (unexpected_error)
VERI FY(vdev_probe(vd, zio) == NULL);

return (Zl O_PI PELI NE_CONTI NUE) ;

new usr/src/uts/comon/fs/zfs/zio.c 27

2657 [*

2658 * For non-raidz ZIOs, we can just copy aside the bad data read fromthe
2659 * disk, and use that to finish the checksumereport |ater.

2660 */

2661 static void

2662 zi o_vsd_defaul t _cksum finish(zio_cksumreport_t *zcr

2663 const void *good_buf)

2664 {

2665 /* no processing needed */

2666 zfs_ereport _finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B _FALSE);
2667 }

2669 /* ARGSUSED*/

2670 void

2671 zio_vsd_default_cksumreport(zio_t *zio, zio_cksumreport_t *zcr, void *ignored)
2672 {

2673 voi d *buf = zio_buf_alloc(zio->io_size)

2675 bcopy(zi o->i o_data, buf, zio->io_size)

2677 zcr->zcr _chinfo = zi o->i o_si ze;

2678 zcr->zcr_cbdata = buf;

2679 zcr->zcer_finish = zio_vsd_defaul t_cksumfinish

2680 zcr->zer_free = zi o_buf _free;

2681 }

2683 static int

2684 zi o_vdev_i 0_assess(zio_t *zio)

2685 {

2686 vdev_t *vd = zio->io_vd

2688 if (zio_wait_for_children(zio, ZI O CH LD VDEV, ZI O WAI T_DONE))

2689 return (ZI O_PlI PELI NE_STCP);

2691 if (vd == NULL && !(zio->i o flags & ZI O FLAG CONFI G WRI TER))

2692 spa_config_exit(zio-> o_spa, SCL_ZIO zio)

2694 if (zio->o_vsd !'= NULL)

2695 zi 0->i o_vsd _ops- >vsd _free(zio);

2696 zi 0->i o_vsd = NULL

2697 }

2699 if (zio_injection_enabled & zio->io_error == 0)

2700 zio->io_error = zio_handl e_fault |n]ect|0n(2|o EIO;

2702 /*

2703 * If the 1/0O failed, determ ne whether we should attenpt to retry it
2704 *

2705 * Onretry, we cut inline in the issue queue, since we don’t want
2706 * conpressi on/ checksummi ng/ etc. work to prevent our (cheap) IO reissue
2707 *

2708 if (zio->io_error & vd == NULL &&

2709 I'(zio->o_flags & (Zl O FLAG DONT_RETRY | Z1 O FLAG | O RETRY))) {
2710 ASSERT(! (zi 0->i 0_fTags & ZI O FLAG DONT_QUEUE)); 7* not a leaf */
2711 ASSERT(! (zi 0->i 0 flags & ZIO FLAG | O BYPASS)); /* not a |leaf */
2712 zio->o_error =

2713 zio->io_flags |= IO FLAG | O_RETRY |

2714 ZI O_FLAG DONT_CACHE |~ zI O FLAG_DONT_AGGREGATE;

2715 zi 0->i 0_stage = ZI O STAGE VDEV_| O START >> 1;

2716 zi o_t askq_ dlspatch(2|o Z1 O _TASKQ | SSUE,

2717 zi o_requeue_io_start_cut_in_line);

2718 return (ZI O_PlI PELI NE_STCP) ;

2719 }

2721 /*

new usr/src/uts/comon/fs/zfs/zio.c 28
2722 * |f we got an error on a |eaf device, convert it to ENXIO
2723 * if the device is not accessible at al

2724 */

2725 if (zio->io_error & vd != NULL && vd->vdev_ops->vdev_op_| eaf &&
2726 I vdev acceSS|bIe(vd zi 0))

2727 zio->o_error = SET_ERROR(ENXI O ;

2729 /*

2730 * |f we can't wite to an interior vdev (mrror or RAID 2)
2731 * set vdev_cant_wite so that we stop trying to allocate fromit.
2732 */

2733 if (zio->io_error == ENXIO & zi 0->i o_type == ZI O TYPE_WRI TE &&
2734 vd !'= NULL && !vd->vdev_ops->vdev_op_l eaf) {

2735 vd->vdev_cant _wite = B _TRUE

2736 }

2738 if (zio->io_error)

2739 zi 0->i o_pi peline = ZI O_| NTERLOCK_PI PELI NE;

2741 if (vd != NULL && vd->vdev_ops->vdev_op_| eaf &&

2742 zi 0- >i o_physdone != NULL)

2743 ASSERT(! (zio->i 0_flags & ZI O FLAG DELEGATED)) ;

2744 ASSERT(zi 0- >i o_chi | d_type == ~ZI O CHI LD_VDEV) ;

2745 zi 0- >i o_physdone(zi o->i o_| ogi cal);

2746 }

2748 return (Zl O Pl PELI NE_CONTI NUE) ;

2749 }

2751 void

2752 zio_vdev_io_reissue(zio_t *zio)

2753 {

2754 ASSERT(zi 0- >i o_stage == ZI O STAGE_VDEV_| O_START) ;

2755 ASSERT(zi o->i o_error == 0);

2757 zi 0->io_stage >>= 1

2758 }

2760 void

2761 zi o_vdev_i o_redone(zio_t *zio)

2762 {

2763 ASSERT(zi 0- >i o_stage == ZI O_STAGE_VDEV_| O_DONE) ;

2765 zi 0->i 0o_stage >>= 1

2766 }

2768 void

2769 zi o_vdev_i o_bypass(zio_t *zio)

2770 {

2771 ASSERT(zi 0- >i o_stage == Z| O STAGE_VDEV_| O_START)

2772 ASSERT(zi o->i o_error == 0)

2774 zi o->io_fl ags |— ZI O_FLAG | O_BYPASS;

2775 zi 0->i 0_stage = ZI O STAGE_VDEV_| O ASSESS >> 1;

2776 }

2778 | *

2779 %

2780 * Generate and verify checksuns

2781 *

2782 */

2783 static int

2784 zi o_checksum generate(zio_t *zio)

2785 {

2786 bl kptr_t *bp = zio->io_bp

2787 enum zi o_checksum checksum

new usr/src/uts/comon/fs/zfs/zio.c

2789
2790
2791
2792
2793
2794

2796
2797

2799
2800
2801
2802
2803
2804
2805
2806
2807

2809

2811
2812 }

if (bp =, NULL) {

* This is zio_wite_phys().
* \We're either generating a |abel

*/

checksum = zi o->i o_prop. zp_checksum

checksum or none at all.

if (checksum == ZI O CHECKSUM OFF)
return (ZI O_Pl PELI NE_CONTI NUE) ;

ASSERT(checksum == ZI O CHECKSUM LABEL)
} else {

if (BP_IS_GANG(bp) && zio->io_child_type == ZI O CH LD_GANG) {
ASSERT(! 1 O | S ALLOCATI NG zi 0))
checksum = ZI O_CHECKSUM GANG_HEADER;

} else {
checksum = BP_CGET_CHECKSUM bp) ;

}

}

zi o_checksum conput e(zi o, checksum zio->io_data, zio->io_size);

return (Zl O_PI PELI NE_CONTI NUE) ;

2814 static int
2815 zi o_checksum verify(zio_t *zio)

2816 {

2817 zi 0o_bad_cksumt info;

2818 bl kptr_t *bp = zi o->i o_bp;

2819 int error;

2821 ASSERT(zi 0->i o_vd != NULL);

2823 if (bp == NULL) {

2824 /*

2825 * This is zio_read_phys().

2826 * We're either verifying a | abel checksum or nothing at all.
2827 */

2828 if (zio->io_prop.zp_checksum == Z| O CHECKSUM OFF)
2829 return (ZI O_PI PELI NE_CONTI NUE) ;

2831 ASSERT(zi 0->i o_prop. zp_checksum == ZI O CHECKSUM LABEL) ;
2832 }

2834 if ((error = zio checksumerror(zio & nfo)) !'=0) {
2835 zio->io_error = erro

2836 if (!(zio->io_flags & ZI O_FLAG_SPECULATI VE)) {
2837 zfs_ereport_start_checksun(zi o- >i o_spa,
2838 zio->io_vd, zio, zio-> o_offset,

2839 zi 0->i o_si ze, NULL, & nfo);

2840 }

2841 }

2843 return (Zl O Pl PELI NE_CONTI NUE) ;

2844 }

2846 [*

2847 * Called by RAID-Z to ensure we don’t conpute the checksumtw ce.
2848 */

2849 void

2850 zi o_checksumverified(zio_t *zio)

2851 {

2852 zi 0->i 0_pi pel i ne & ~ZI O STAGE_CHECKSUM VERI FY

2853 }

29

new usr/src/uts/comon/fs/zfs/zio.c

2855 [*

2856 *

2857 * Error rank. Error are ranked in the order 0, ENXIOQ ECKSUM EIQ, other.
2858 * An error of 0 indicates success. ENXIO indicates whol e-device failure,
2859 * which nay be transient (e.g. unplugged) or permanent. ECKSUM and EI O
2860 * indicate errors that are specific to one 1/O and nost |ikely permanent.
2861 * Any other error is presumed to be worse because we weren’'t expecting it.
2862 *

2863 */

2864 int

2865 zio_worst_error(int el, int e2)

2866 {

2867 static int zio_error_rank[] = { 0, ENXIO, ECKSUM EIO };

2868 int r1, r2;

2870 (rl =0; rl < sizeof (zio_error_rank) / sizeof (int); rl++)
2871 if (el == zio_error_rank[r1])

2872 break;

2874 (r2 =0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2875 if (e2 == zio_error_rank[r2])

2876 break;

2878 return (rl1 >r2 ? el : e2);

2879 }

2881 /*

2882 *

2883 * |/0O conpletion

2884 *

2885 */

2886 static int

2887 zio_ready(zio_t *zio)

2888 {

2889 bl kptr t *bp = zi 0->i o_bp;

2890 zio_t *pio, *pio_next;

2892 if (zio_wait_for_children(zio, ZI O CH LD GANG ZI O WAI T_READY) ||
2893 zio_wait_for_children(zio, ZI O CH LD DDT, ZI O WAI T_READY))
2894 return (ZI O Pl PELI NE_STOP);

2896 if (zio->io_ready)

2897 ASSERT(1 0 | S ALLOCATI NG(zi 0))

2898 ASSERT(bp->bl k_birth == zi 0->i 0_txg || BP_I'S HOLE(bp) ||
2899 (zio- >|of|ags & ZI O FLAG NOPVRI TE)) ;

2900 ASSERT(zi 0- > 0o_chi | dren[ZI O CHI LD_GANG| [ZI O WAI T_READY] == 0);
2902 zi 0->i o_ready(zio);

2903 }

2905 if (bp !'= NULL && bp != &zi 0->i o_bp_copy)

2906 zi 0->i 0_bp_copy = *bp;

2908 if (zio->io_error)

2909 zi 0->i o_pi peline = ZI O_| NTERLOCK_PI PELI NE;

2911 nmut ex_ent er (&zi o- >i o_| ock) ;

2912 zio->o_state[ZIO WAI T_| READY] =1

2913 pio = zio_wal k_parents(zio);

2914 mut ex_exi t (&zi o->i o_| ock) ;

2916 /*

2917 * As we notify zio' s parents, new parents coul d be added.

2918 * New parents go to the head of zio's io_parent_list, however,
2919 * so we will (correctly) not notify them The remai nder of zio's

new usr/src/uts/comon/fs/zfs/zio.c

31

2920 * io_parent_list, from'pio_next’ onward, cannot change because
2921 * all parents must wait for us to be done before they can be done.
2922 */

2923 for (; pio !'= NULL; pio = pio_next) {

2924 pi o_next = zio_wal k_parents(zio);

2925 zio notlfy parent (pio, zio, ZIOV\AI T_READY) ;

2926 }

2928 if (zio->io_flags & ZI O FLAG NODATA) {

2929 if (BP_I'S_GANG bp)

2930 Zio-> 0 flags & ~ZI O FLAG NCDATA;

2931 } else {

2932 ASSERT((ui ntptr_t)zio->i o_data < SPA_MAXBLOCKSI ZE) ;
2933 zi 0->i o_pi pel i ne & ~ZI O_VDEV_| O_STAGES;

2934 }

2935 }

2937 if (zio_injection_enabled &&

2938 zi 0->i 0_spa- >spa_synci ng_t xg == zi 0->i 0_t xg)

2939 zi o_handl e_i gnored_wri tes(zio);

2941 return (Zl O Pl PELI NE_CONTI NUE) ;

2942 }

2944 static int

2945 zi o_done(zio_t *zio)

2946 {

2947 spa_t *spa = zio->io_spa;

2948 zio_t *lio = zio->io_logical;

2949 bl kptr_t *bp = zi 0->i 0_bp;

2950 vdev_t *vd = zio->i o_vd;

2951 uint64_t psize = zio->io_size;

2952 zio_t *pio, *pio_next;

2954 /*

2955 * If our children haven't all conpleted,

2956 *lwai t for themand then repeat this pipeline stage.

2957 *

2958 if (zio_wait_for_children(zio, ZI O CH LD VDEV, ZI O WAI T_DONE) ||
2959 zio_wait_for_children(zio, ZI O CH LD GANG ZI O WAIT_DONE) ||
2960 zio_wait_for_children(zio, ZI O CH LD DDT, ZIO WAIT_DONE) ||
2961 zio_wait_for_children(zio, ZIO CH LD LOG CAL, ZI O WAI T_DONE))
2962 return (ZI O_PlI PELI NE_STOP);

2964 for (int ¢ = 0; ¢ < ZIOCH LD_TYPES; c++)

2965 for (int w=0; w< ZIOWAIT_TYPES; wt+)

2966 ASSERT(zi 0->i o_children[c][w == 0);

2968 if (bp !'= NULL && !BP_I S_ENMBEDDED(bp)) {

2969 ASSERT(bp->bl k_pad[0] == 0);

2970 ASSERT(bp- >bl k_pad[1] == 0);

2971 ASSERT(bchp(bp &zi o->i o_bp_copy, si zeof (bI kptr_t)) == 0 ||
2972 bp == zio_uni que_ par ent (zi 0) - >i o_bp

2973 if (zio->o_type == ZIO TYPE WRI TE && ! BP_ | S_HOLE(bp) &&
2974 zi 0->i 0_bp_override == NULL &&

2975 I(zio->o0_flags & ZI O FLAG | O REPAIR)) {

2976 ASSERT(! BP_SHOULD_BYTESWAP(bp)) ;

2977 ASSERT3U(zi o->i o_prop. zp_copi es, <=, BP_GET_NDVAS(bp));
2978 ASSERT(BP_COUNT_GANG(bp) == 0 ||

2979 (BP_COUNT_GANG bp) == BP_GET_NDVAS(bp)));
2980 }

2981 if (zio->o_flags & ZI O FLAG NOPWRI TE)

2982 VERI FY(BP_EQUAL(bp, &zio->io_bp_orig));

2983 }

2985 /*

new usr/src/uts/comon/fs/zfs/zio.c 32
2986 * |f there were child vdev/gang/ddt errors, they apply to us now.
2987 */

2988 zio_inherit_child_errors(zio, ZI O CH LD _VDEV);

2989 zio_inherit_child_errors(zio, ZI O CH LD GANG;

2990 zio_inherit_child_errors(zio, ZI O CH LD _DDT);

2992 /*

2993 * |f the 1/Oon the transformed data was successful, generate any
2994 * checksumreports now while we still have the transformed data.
2995 */

2996 if (zio->o_error == {

2997 while (zio-> o_cksumreport != NULL)

2998 zi o_cksumreport_t *zcr = zio->i o_cksumreport;

2999 uinté4_t align = zcr->zcr_align;

3000 uint64_t asize = P2ROUNDUP(psize, align);

3001 char *abuf = zio->io_data;

3003 if (asize != psize) {

3004 abuf = zio_buf_all oc(asi ze);

3005 bcopy(zi o->i o_data, abuf, psize);

3006 bzero(abuf + psize, asize - psize);

3007 }

3009 zi 0->i o_cksum report = zcr->zcr_next;

3010 zcr->zcer_next = NULL;

3011 zcr->zer_finish(zcr, abuf);

3012 zfs_ereport_free_checksun(zcr);

3014 if (asize != psize)

3015 zi o_buf _free(abuf, asize);

3016 }

3017 1

3019 zi o_pop_transforns(zio); /* note: may set zio->io_error */
3021 vdev_st at _updat e(zi o, psize);

3023 if (zio->io_error) {

3024 /*

3025 * If this I/Ois attached to a particul ar vdev,

3026 * generate an error nessage describing the 1/O failure

3027 * at the block level. W ignore these errors if the

3028 * device is currently unavail abl e.

3029 *

3030 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3031 zfs_ereport_post (FM EREPORT_ZFS IO, spa, vd, zio, 0, 0);
3033 if ((zio->io_error == EIO || !(zio->io_flags &

3034 (Z1 O FLAG_ SPECULATI VE | ZI O FLAG DONT_PROPAGATE))) &&
3035 zio == lio) {

3036 /*

3037 * For logical 1/Orequests, tell the SPAto |log the
3038 * error and generate a |ogical data ereport.

3039 */

3040 spa_l og_error(spa, zio);

3041 zfs_ereport_post (FM_ EREPCRT ZFS_DATA, spa, NULL, zio,
3042 -o, ;

3043 }

3044 }

3046 if (zio->o_error & zio == 1lio) {

3047 /*

3048 * Determ ne whether zio should be reexecuted. This will
3049 * propagate all the way to the root via zio_notify_parent().
3050 */

3051 ASSERT(vd == NULL && bp != NULL);

new usr/src/uts/comon/fs/zfs/zio.c

3052

3054
3055
3056
3057
3058
3059
3060

3062
3063
3064
3065
3066
3067
3068

3070
3071

3073
3074
3075
3076
3077
3078
3079
3080

3082
3083
3084
3085
3086
3087
3088

3090
3091
3092
3093

3095

3097
3098
3099
3100
3101
3102

3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117

ASSERT(zi 0->i o_chil d_type == ZIO CH LD _LOG CAL);
if (101S ALLOCATING zi0) &&
!(zio->io_flags & ZI O FLAG CANFAIL)) {
if (zio->o_error !'= ENGSPC)
zi 0->i o_reexecute | = ZI O REEXECUTE_NOW
el se
zi 0->i o_reexecute | = ZI O REEXECUTE_SUSPEND;

if ((zio->io_type == ZI O TYPE_READ | |
zi 0->i o_type == ZI O TYPE_FREE) &&
!(zio->io_flags & ZI O FLAG SCAN THREAD) &&
zio->io_error == ENXI O &&
spa_l oad_state(spa) == SPA LOAD NONE &&
spa_get _ fail node(spa) != ZI' O FAI LURE_MODE_CONTI NUE)
Zi 0->i 0_reexecute | = ZlI O REEXECUTE SUSPEND;

if (!(zio->o_flags & ZI O FLAG CANFAI L) && !zio->i o_reexecute)
zi 0->i o_reexecute | = ZI O REEXECUTE_SUSPEND;

Here is a possibly good place to attenpt to do

ei ther conbinatorial reconstruction or error correction
based on checksunms. It also m ght be a good place

to send out prelimnary ereports before we suspend
processi ng.

* ok ok ok F ok F

-

*
* If there were logical child errors, they apply to us now.
* We defer this until now to avoid conflating |ogical child
* errors with errors that happened to the zio itself when
* updating vdev stats and reporting FMA events above.
*

/

zio_inherit_child_errors(zio, ZIOCH LD LOJ CAL)

if ((zio->o_error || zio->io_reexecute) &&
101S ALLCmT|I\K-:(ZIO) && zi 0->i 0_gang_| eader == zio
I(zio->io_flags & (Zl O FLAG I O_REWRI TE | ZI O_FLAG NGDV\RITE)))

zi o_dva_unal | ocat e(zi o, zio->i 0_gang_tree, bp);
zi o_gang_tree_free(&zio->i o_gang_tree);

/*
* Godfather 1/0s shoul d never suspend.
S
if ((zio->o_flags & Zl O FLAG GODFATHER) &&
(zi 0->i o_reexecute & ZI O REEXECUTE_SUSPEND))
zi 0->i o_reexecute = 0;

if (zio->io_reexecute) {
/
This is a logical I/Othat wants to reexecute.

Reexecute is top-down. Wen an i/o fails, if it’s not
the root, it sinply notifies its parent and sticks around.

does the sane. This percolates all the way up to the root.
The root i/o will reexecute or suspend the entire tree.

Thi s approach ensures that zio_reexecute() honors
all the original i/o dependency rel ationships, e.g.
parents not executing until children are ready.

R T T

The parent, seeing that it still has children in zio_done(),

new usr/src/uts/comon/fs/zfs/zio.c

3118
3120

3122
3123
3124

3126
3127
3128
3129
3130
3131
3132
3133
3134
3135

3137
3138
3139
3140
3141
3142

3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170

3172
3173
3174

3176
3177
3178
3179
3180
3181
3182
3183

ASSERT(zi 0->i o_chil d_type == ZIO CH LD _LOG CAL);
zi 0- >i 0_gang_| eader = NULL;
ock);

|
T EXJVE] = 1;
ock);

mut ex_ent er (&zi o->i o
zio->i0 state[ZIOV\AI
mut ex_exi t (&zi o->i o_|

/*
* "The Godfather" I/O nonitors its children but is

* not a true parent to them It will track themthrough
* the pipeline but severs its ties whenever they get into
* trouble (e.g. suspended). This allows "The Godfather"

* |/Oto return status without bl ocking.

_wal k_parents(zio); pio != NULL; pio = pio_ne
nk_t *zI = zi o->i o_wal k_I i nk;
xt = zio_wal k_parents(zio);

if ((pio->io_flags & ZI O FLAG GODFATHER) &&
(zi o->i o_reexecute & ZI O REEXECUTE _SUSPEND)) {
zi o_renove_child(pio, zio, zl);
zio_notify _parent(pio, zio, Z O_V\AI T_DONE) ;

if ((pio zi o_uni que_parent(zio)) !'= NULL) {
/

*

* We're not aroot i/o, so there’'s nothing to do

* but notify our parent. Don't propagate errors

* upward since we haven't permanently failed yet.

*

/
ASSERT(! (zi 0->i o_flags & ZI O FLAG GODFATHER)) ;
zio->io_flags | = Zl O FLAG DONT_PROPAGATE;
zio_notify_| parent (pi o, zio, Zl O WA T_DONE);

} else if (zio->i 0 _reexecute & ZIO REEXECUTE SUSPEND) {
/*

* W'd fail again if we reexecuted now, so suspend

* until conditions inprove (e.g. device comes onli
*/
zi o_suspend(spa, zio);
} else {
/*

34

xt) {

ne).

* Reexecution is potentially a huge ampbunt of work.

* Hand it off to the otherw se-unused cl ai mtaskq.
*/
ASSERT(zi 0- >i o_tgent.tgent_next == NULL);
spa_t askq_di spatch_ent (spa, ZI O TYPE_CLAIM
ZI O_TASKQ_ | SSUE, (task_func_t *)zio_reexecute,
0, &zio->io_tgent);

}
return (Zl O_Pl PELI NE_STCP);
}

ASSERT(zi 0o->i o_child_count == 0);
ASSERT(zi 0->i o_r eexecute == 0);
ASSERT(zi 0->i o_error == 0 || (zio->o_flags & ZI O FLAG CANFAIL));

/*
* Report any checksumerrors, since the I/Ois conplete.
*/

while (zio-> o_cksumreport !'= NULL) {
zi o_cksumreport_t *zcr = zio->i o_cksumreport;
zi 0->i o_cksum | report = zcr->zcr_next;
zcr->zcr_next = NULL;
zcr->zer_finish(zcr, NULL);

zi o,

new usr/src/uts/comon/fs/zfs/zio.c

3184
3185

3187
3188
3189
3190
3191
3192
3193

3195
3196
3197

3199
3200
3201
3202
3203
3204

3206
3207
3208
3209
3210
3211
3212
3213

3215
3216 }

3218 /
3219
3220
3221
3222

zfs_ereport_free_checksum(zcr);

}

/*
* It is the responsibility of the done callback to ensure that this
* particular zio is no |longer discoverable for adoption, and as
* such, cannot acquire any new parents.
*/
if (zio->io_done)
zi 0- >i o_done(zi 0);

mut ex_ent er (&zi 0- >i o_| ock) ;
zi0->i o_state[ZI O WAI T_DONE] = 1;
mut ex_exi t (&1 o->i o_| ock);

for (pio = zio_wal k_parents(zio); pio != NULL; pio = pio_next) {
Z|0I|nkt *zI = zio->i o_wal k_| i nk;
pi o_next = zio_wal k parents(z io);
zio_renove_child(pio, zio, zl);

) zi o_notify_parent(pio, zio, ZI O WAI T_DONE) ;

if (zio->o_waiter !'= NULL) {
mut ex_ent er (&zi 0- >i o_| ock) ;
zi 0->i o_executor = NULL;
cv_broadcast (&zi o->i 0_cv);
mut ex_exi t (&zi o->i o_| ock) ;

} else {

) zi o_destroy(zio);

return (Zl O Pl PELI NE_STOP);

*
*

* | /O pipeline definition
*

*/

3223 static zio_pipe_stage_t *zio_pipeline[] = {
NULL

3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245

zio_read_bp_init,
zio_free_bp_init,
zi 0_i ssue_async,
zio_wite_bp_init,
zi o_checksum generate,
zio_nop_wite,

zi o_ddt _read_start,
zi o_ddt _read_done,
zio_ddt_wite,

zi o_ddt _free,

zi 0_gang_assenbl e,
zi 0_gang_i ssue,

zi o_dva_al |l ocat e,
zio_dva_free,

zi o_dva_cl aim

zi o_r eady,
zio_vdev_io_start,
zi o_vdev_i o_done,
zi o_vdev_i 0_assess,
zi o_checksum veri fy,
zi o_done

3246 };

3248 /

* dnp is the dnode for zbl->zb_object */

3249 bool ean_t

35

new usr/src/uts/comon/fs/zfs/zio.c

3250 zbookmark_i s_bef ore(const dnode_phys_t *dnp, const zbookmark_phys_t *zbl,

3251
3252 {
3253

3255
3256

3258
3259
3260

3262
3263

3265
3266

3268
3269
3270
3271
3272

3274
3275
3276
3277
3278
3279
3280
3281 }

const zbookmar k_phys_t *zb2)

uint64_t zblnext LO, zb2thisobj;
ASSERT(zb1l->zb_obj set == zb2->zb_obj set);
ASSERT(zb2->zb_| evel == 0);

/* The Obj set phys t isn't before anything. */
if (dnp == NUL
return (B_FALSE;

zblnextLO = (zbl->zb_blkid + 1) <<
((zbl->zb_l evel) * (dnp->dn_i ndbl kshift - SPA BLKPTRSHI FT));

zb2t hi sobj = zb2->zb_object ? zb2->zb_object :
zb2->zb_bl ki d << (DNODE_BLOCK_SHI FT - DNODE_SHI FT);

if (zbl->zb_object == DMJ META DNODE_CBJECT) {
uint64_t nextobj = zblnextLO *
(dnp- >dn_dat abl kszsec << SPA M NBLOCKSHI FT) >> DNODE_SHI FT;
return (nextobj <= zb2thisobj);

}
if (zbl->zb_object < zb2thisobj)
return (B_TRUE);
if (zbl->zb_object > zb2t hi sobj)
return (B_FALSE);
) META_DNODE_OBJECT)

if (zb2->zb_object == DMJ
return (B_FALSE);
return (zblnextLO <= zb2->zb_bl ki d);

36

new usr/src/uts/comon/sys/filio.h

R R R R

4410 Tue COct 28 11:57:20 2014
new usr/src/uts/comon/sys/filio.h
Possibility to physically reserve space without witing | eaf blocks
* ok ok ok ok

B R R R)

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

15 * |f applicable, add the follow ng below this CODL HEADER, wth the

16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved.

23 * Use is subject to license terns.

24 */

26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
27 |* Al Rights Reserved *

29 /*

30 * University Copyright- Copyright (c) 1982, 1986, 1988

31 * The Regents of the University of California

32 * Al Rights Reserved

33 *

34 * University Acknow edgnent- Portions of this document are derived from
35 * software devel oped by the University of California, Berkeley, and its
36 * contributors.

37 */

39 #ifndef _SYS FILIOH

40 #define _SYS_FILIOH

42 #pragne ident " %YW % % %E% SM "

44 | *

45 * General file ioctl definitions.

46 */

48 #include <sys/ioccom h>

50 #ifdef _ cplusplus

51 extern "C' {

52 #endif

54 #define FI OCLEX ot 1) /* set exclusive use on fd */
55 #define FI ONCLEX g f, 2 /* renove exclusive use */
56 /* another local */

57 #define FI ONREAD _IOR(f', 127, int) /* get # bytes to read */
58 #define FI ONBI O _lown’f', 126, int) /* set/clear non-blocking i/o */
59 #define FI QASYNC o’ f', 125, int) /* set/clear async i/o */
60 #define FI OSETOMNN _ITON f7, 124, int) /* set owner */

61 #define FI OGETOMNN _ITOR('f', 123, int) /* get owner */

new usr/src/uts/comon/sys/filio.h

63 /*

64 * ioctl’s for Online: DiskSuite.
65 * WARNI NG -

66 * in future OS rel eases.

67 */

68 #define _FIOLFS 1 f, 64)
69 #define _FIOLFSS _1qf', 65)
70 #define _FI OFFS _1Qf', 66)
71 #define _FI QAl FI OCOBSOLETE67
72 #define ~FI COBSOLETE67 _I1Q('f', 67)
73 #define _FI OSATI ME 1 fr, 68)
74 #define _FIOSDI O 1 f, 69)
75 #define _FI OGDI O g f, 70)
76 #define _FIO O TQrfr, 71)
77 #define _FI O SLOG o, 72)
78 #define _FI O SLOGK 1t 73)
79 #define _FI OLOGRESET 1ot 74)
81 /*

82 * Contract-private ioctl()

83 */

84 #define _Fl QO SBUSY 1Qfr, 75)
85 #define _FIODIRECTIO _1Q('f', 76)
86 #define _FI OTUNE ot 77)
88 /*

89 * WARNING These 'f’ ioctls are

90 * It currently defines 78-86.
*/

93 /*
94 * Internal Logging UFS

*/
96 #define _FIOLOGENABLE _IQ('f’,
97 #define _FIOLOGDI SABLE _I1Q('f’,

99 /*
* File system snapshot

the support for these ioctls may be withdrawn

e systemlock */

e system | ock status */
file systemflush */

get allocation info is */
obsol ete and unsupported */
set atime */

set delayed io */

get delayed io */

i node open */

di sksuite/ufs protocol */
di sksui te/ufs protocol */
di sksui te/ufs protocol */

fil
fil

— e~ —

I

net wor ker/ ufs protocol */
directio */
tuning */

—~—
B

al so defined in sys/fs/cachefs_fs.h

87)
88)

- —

/* | oggi ng/ ufs protocol */
/* 1 oggi ng/ ufs protocol */

ioctls (see sys/fs/ufs_snap.h)

FI OSNAPSHOTCREATE_MULTI ,

89) /* create a snapshot */
90) /* del ete a snapshot */
SBSI ZE

91)

92)

93) /* set |ufs_debug */

94) /* set a lufs error */
95) /* get lufs tranaction stats */

101 * (there is another snapshot ioctl,
102 * defined farther down in this file.
103 */

104 #define _FI OSNAPSHOTCREATE 1
105 #define _FI OSNAPSHOTDELETE _1a
107 /*

108 * Return the current superblock of size
109 *

110 #define _FI OGETSUPERBLOCK ot
112 /*

113 * Contract private ioctl

114 *

115 #define _FI OGETMAXPHYS 1ot
117 /*

118 * TSufs support

119 */

120 #define _FI O SET_LUFS_DEBUG o f
121 #define _FI O SET_LUFS ERROR 1o f
122 #define _FI O GET_TOP_STATS 1o f
124 /*

125 * create a snapshot with multiple backing files
126 */

127 #define _FI OSNAPSHOTCREATE_MULTI

1o, 96)

new usr/src/uts/comon/sys/filio.h

129 /*
130 * handl e | seek SEEK DATA and SEEK HOLE for holey file know edge
131 */

132 #define _FI O SEEK_DATA _Qf', 97) /* SEEK_DATA */

133 #define _FI O SEEK_HOLE _lorf', 98) /* SEEK_HOLE */

135 /*

136 * boot archive conpression

137 */

138 #define _FI O COWRESSED 1o f', 99) /* mark file as conpressed */
139 #define _FlI O RESERVE SPACE _1QC’f', 100) /* Reserve space */

140 #endif /* ! codereview */
142 #ifdef _ cplusplus

143 }

144 #endi f

146 #endif /* _SYS FILIOH */

