
new/usr/src/common/zfs/zfeature_common.c 1

**
 6709 Tue Oct 28 11:57:18 2014
new/usr/src/common/zfs/zfeature_common.c
Possibility to physically reserve space without writing leaf blocks
**
______unchanged_portion_omitted_

157 void
158 zpool_feature_init(void)
159 {
160 zfeature_register(SPA_FEATURE_ASYNC_DESTROY,
161 "com.delphix:async_destroy", "async_destroy",
162 "Destroy filesystems asynchronously.", B_TRUE, B_FALSE,
163 B_FALSE, NULL);

165 zfeature_register(SPA_FEATURE_EMPTY_BPOBJ,
166 "com.delphix:empty_bpobj", "empty_bpobj",
167 "Snapshots use less space.", B_TRUE, B_FALSE,
168 B_FALSE, NULL);

170 zfeature_register(SPA_FEATURE_LZ4_COMPRESS,
171 "org.illumos:lz4_compress", "lz4_compress",
172 "LZ4 compression algorithm support.", B_FALSE, B_FALSE,
173 B_TRUE, NULL);

175 zfeature_register(SPA_FEATURE_MULTI_VDEV_CRASH_DUMP,
176 "com.joyent:multi_vdev_crash_dump", "multi_vdev_crash_dump",
177 "Crash dumps to multiple vdev pools.", B_FALSE, B_FALSE,
178 B_FALSE, NULL);

180 zfeature_register(SPA_FEATURE_SPACEMAP_HISTOGRAM,
181 "com.delphix:spacemap_histogram", "spacemap_histogram",
182 "Spacemaps maintain space histograms.", B_TRUE, B_FALSE,
183 B_FALSE, NULL);

185 zfeature_register(SPA_FEATURE_ENABLED_TXG,
186 "com.delphix:enabled_txg", "enabled_txg",
187 "Record txg at which a feature is enabled", B_TRUE, B_FALSE,
188 B_FALSE, NULL);

190 static spa_feature_t hole_birth_deps[] = { SPA_FEATURE_ENABLED_TXG,
191 SPA_FEATURE_NONE };
192 zfeature_register(SPA_FEATURE_HOLE_BIRTH,
193 "com.delphix:hole_birth", "hole_birth",
194 "Retain hole birth txg for more precise zfs send",
195 B_FALSE, B_TRUE, B_TRUE, hole_birth_deps);

197 zfeature_register(SPA_FEATURE_EXTENSIBLE_DATASET,
198 "com.delphix:extensible_dataset", "extensible_dataset",
199 "Enhanced dataset functionality, used by other features.",
200 B_FALSE, B_FALSE, B_FALSE, NULL);

202 static const spa_feature_t bookmarks_deps[] = {
203 SPA_FEATURE_EXTENSIBLE_DATASET,
204 SPA_FEATURE_NONE
205 };
206 zfeature_register(SPA_FEATURE_BOOKMARKS,
207 "com.delphix:bookmarks", "bookmarks",
208 "\"zfs bookmark\" command",
209 B_TRUE, B_FALSE, B_FALSE, bookmarks_deps);

211 static const spa_feature_t filesystem_limits_deps[] = {
212 SPA_FEATURE_EXTENSIBLE_DATASET,
213 SPA_FEATURE_NONE
214 };
215 zfeature_register(SPA_FEATURE_FS_SS_LIMIT,

new/usr/src/common/zfs/zfeature_common.c 2

216 "com.joyent:filesystem_limits", "filesystem_limits",
217 "Filesystem and snapshot limits.", B_TRUE, B_FALSE, B_FALSE,
218 filesystem_limits_deps);

220 zfeature_register(SPA_FEATURE_EMBEDDED_DATA,
221 "com.delphix:embedded_data", "embedded_data",
222 "Blocks which compress very well use even less space.",
223 B_FALSE, B_TRUE, B_TRUE, NULL);

225 zfeature_register(SPA_FEATURE_SPACE_RESERVATION,
226 "org.nexenta:space_reservation", "space_reservation",
227 "Possibility to physically reserve space on disk", B_FALSE, B_FALSE,
228 B_FALSE, NULL);
229 #endif /* ! codereview */
230 }

new/usr/src/common/zfs/zfeature_common.h 1

**
 2706 Tue Oct 28 11:57:18 2014
new/usr/src/common/zfs/zfeature_common.h
Possibility to physically reserve space without writing leaf blocks
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 */

28 #ifndef _ZFEATURE_COMMON_H
29 #define _ZFEATURE_COMMON_H

31 #include <sys/fs/zfs.h>
32 #include <sys/inttypes.h>
33 #include <sys/types.h>

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 struct zfeature_info;

41 typedef enum spa_feature {
42 SPA_FEATURE_NONE = -1,
43 SPA_FEATURE_ASYNC_DESTROY,
44 SPA_FEATURE_EMPTY_BPOBJ,
45 SPA_FEATURE_LZ4_COMPRESS,
46 SPA_FEATURE_MULTI_VDEV_CRASH_DUMP,
47 SPA_FEATURE_SPACEMAP_HISTOGRAM,
48 SPA_FEATURE_ENABLED_TXG,
49 SPA_FEATURE_HOLE_BIRTH,
50 SPA_FEATURE_EXTENSIBLE_DATASET,
51 SPA_FEATURE_EMBEDDED_DATA,
52 SPA_FEATURE_BOOKMARKS,
53 SPA_FEATURE_FS_SS_LIMIT,
54 SPA_FEATURE_SPACE_RESERVATION,
55 #endif /* ! codereview */
56 SPA_FEATURES
57 } spa_feature_t;

59 #define SPA_FEATURE_DISABLED (-1ULL)

61 typedef struct zfeature_info {

new/usr/src/common/zfs/zfeature_common.h 2

62 spa_feature_t fi_feature;
63 const char *fi_uname; /* User-facing feature name */
64 const char *fi_guid; /* On-disk feature identifier */
65 const char *fi_desc; /* Feature description */
66 boolean_t fi_can_readonly; /* Can open pool readonly w/o support? */
67 boolean_t fi_mos; /* Is the feature necessary to read the MOS? */
68 /* Activate this feature at the same time it is enabled */
69 boolean_t fi_activate_on_enable;
70 /* array of dependencies, terminated by SPA_FEATURE_NONE */
71 const spa_feature_t *fi_depends;
72 } zfeature_info_t;

74 typedef int (zfeature_func_t)(zfeature_info_t *, void *);

76 #define ZFS_FEATURE_DEBUG

78 extern zfeature_info_t spa_feature_table[SPA_FEATURES];

80 extern boolean_t zfeature_is_valid_guid(const char *);

82 extern boolean_t zfeature_is_supported(const char *);
83 extern int zfeature_lookup_name(const char *, spa_feature_t *);
84 extern boolean_t zfeature_depends_on(spa_feature_t, spa_feature_t);

86 extern void zpool_feature_init(void);

88 #ifdef __cplusplus
89 }
90 #endif

92 #endif /* _ZFEATURE_COMMON_H */

new/usr/src/uts/common/fs/zfs/dbuf.c 1

**
 79384 Tue Oct 28 11:57:18 2014
new/usr/src/uts/common/fs/zfs/dbuf.c
Possibility to physically reserve space without writing leaf blocks
**
______unchanged_portion_omitted_

1023 dbuf_dirty_record_t *
1024 dbuf_zero_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1025 {
1026 ASSERT(db->db_objset != NULL);

1028 return (dbuf_dirty(db, tx, B_TRUE));
1029 }

1031 dbuf_dirty_record_t *
1032 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx, boolean_t zero_write)
1024 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1033 {
1034 dnode_t *dn;
1035 objset_t *os;
1036 dbuf_dirty_record_t **drp, *dr;
1037 int drop_struct_lock = FALSE;
1038 boolean_t do_free_accounting = B_FALSE;
1039 int txgoff = tx->tx_txg & TXG_MASK;

1041 ASSERT(tx->tx_txg != 0);
1042 ASSERT(!refcount_is_zero(&db->db_holds));
1043 DMU_TX_DIRTY_BUF(tx, db);

1045 DB_DNODE_ENTER(db);
1046 dn = DB_DNODE(db);
1047 /*
1048 * Shouldn’t dirty a regular buffer in syncing context. Private
1049 * objects may be dirtied in syncing context, but only if they
1050 * were already pre-dirtied in open context.
1051 */
1052 ASSERT(!dmu_tx_is_syncing(tx) ||
1053 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1054 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1055 dn->dn_objset->os_dsl_dataset == NULL);
1056 /*
1057 * We make this assert for private objects as well, but after we
1058 * check if we’re already dirty. They are allowed to re-dirty
1059 * in syncing context.
1060 */
1061 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1062 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1063 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));

1065 mutex_enter(&db->db_mtx);
1066 /*
1067 * XXX make this true for indirects too? The problem is that
1068 * transactions created with dmu_tx_create_assigned() from
1069 * syncing context don’t bother holding ahead.
1070 */
1071 ASSERT(db->db_level != 0 ||
1072 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1073 db->db_state == DB_NOFILL);

1075 mutex_enter(&dn->dn_mtx);
1076 /*
1077 * Don’t set dirtyctx to SYNC if we’re just modifying this as we
1078 * initialize the objset.
1079 */
1080 if (dn->dn_dirtyctx == DN_UNDIRTIED &&

new/usr/src/uts/common/fs/zfs/dbuf.c 2

1081 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1082 dn->dn_dirtyctx =
1083 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1084 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1085 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1086 }
1087 mutex_exit(&dn->dn_mtx);

1089 if (db->db_blkid == DMU_SPILL_BLKID)
1090 dn->dn_have_spill = B_TRUE;

1092 /*
1093 * If this buffer is already dirty, we’re done.
1094 */
1095 drp = &db->db_last_dirty;
1096 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1097 db->db.db_object == DMU_META_DNODE_OBJECT);
1098 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1099 drp = &dr->dr_next;
1100 if (dr && dr->dr_txg == tx->tx_txg) {
1101 DB_DNODE_EXIT(db);

1103 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1104 /*
1105 * If this buffer has already been written out,
1106 * we now need to reset its state.
1107 */
1108 dbuf_unoverride(dr);
1109 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1110 db->db_state != DB_NOFILL)
1111 arc_buf_thaw(db->db_buf);
1112 }
1113 mutex_exit(&db->db_mtx);
1114 return (dr);
1115 }

1117 /*
1118 * Only valid if not already dirty.
1119 */
1120 ASSERT(dn->dn_object == 0 ||
1121 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1122 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));

1124 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1125 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1126 dn->dn_phys->dn_nlevels > db->db_level ||
1127 dn->dn_next_nlevels[txgoff] > db->db_level ||
1128 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1129 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);

1131 /*
1132 * We should only be dirtying in syncing context if it’s the
1133 * mos or we’re initializing the os or it’s a special object.
1134 * However, we are allowed to dirty in syncing context provided
1135 * we already dirtied it in open context. Hence we must make
1136 * this assertion only if we’re not already dirty.
1137 */
1138 os = dn->dn_objset;
1139 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1140 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1141 ASSERT(db->db.db_size != 0);

1143 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);

1145 if (db->db_blkid != DMU_BONUS_BLKID) {
1146 /*

new/usr/src/uts/common/fs/zfs/dbuf.c 3

1147 * Update the accounting.
1148 * Note: we delay "free accounting" until after we drop
1149 * the db_mtx. This keeps us from grabbing other locks
1150 * (and possibly deadlocking) in bp_get_dsize() while
1151 * also holding the db_mtx.
1152 */
1153 dnode_willuse_space(dn, db->db.db_size, tx);
1154 do_free_accounting = dbuf_block_freeable(db);
1155 }

1157 /*
1158 * If this buffer is dirty in an old transaction group we need
1159 * to make a copy of it so that the changes we make in this
1160 * transaction group won’t leak out when we sync the older txg.
1161 */
1162 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1163 dr->dr_zero_write = zero_write;
1164 #endif /* ! codereview */
1165 if (db->db_level == 0) {
1166 void *data_old = db->db_buf;

1168 if (db->db_state != DB_NOFILL) {
1169 if (db->db_blkid == DMU_BONUS_BLKID) {
1170 dbuf_fix_old_data(db, tx->tx_txg);
1171 data_old = db->db.db_data;
1172 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1173 /*
1174 * Release the data buffer from the cache so
1175 * that we can modify it without impacting
1176 * possible other users of this cached data
1177 * block. Note that indirect blocks and
1178 * private objects are not released until the
1179 * syncing state (since they are only modified
1180 * then).
1181 */
1182 arc_release(db->db_buf, db);
1183 dbuf_fix_old_data(db, tx->tx_txg);
1184 data_old = db->db_buf;
1185 }
1186 ASSERT(data_old != NULL);
1187 }
1188 dr->dt.dl.dr_data = data_old;
1189 } else {
1190 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1191 list_create(&dr->dt.di.dr_children,
1192 sizeof (dbuf_dirty_record_t),
1193 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1194 }
1195 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1196 dr->dr_accounted = db->db.db_size;
1197 dr->dr_dbuf = db;
1198 dr->dr_txg = tx->tx_txg;
1199 dr->dr_next = *drp;
1200 *drp = dr;

1202 /*
1203 * We could have been freed_in_flight between the dbuf_noread
1204 * and dbuf_dirty. We win, as though the dbuf_noread() had
1205 * happened after the free.
1206 */
1207 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1208 db->db_blkid != DMU_SPILL_BLKID) {
1209 mutex_enter(&dn->dn_mtx);
1210 if (dn->dn_free_ranges[txgoff] != NULL) {
1211 range_tree_clear(dn->dn_free_ranges[txgoff],
1212 db->db_blkid, 1);

new/usr/src/uts/common/fs/zfs/dbuf.c 4

1213 }
1214 mutex_exit(&dn->dn_mtx);
1215 db->db_freed_in_flight = FALSE;
1216 }

1218 /*
1219 * This buffer is now part of this txg
1220 */
1221 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1222 db->db_dirtycnt += 1;
1223 ASSERT3U(db->db_dirtycnt, <=, 3);

1225 mutex_exit(&db->db_mtx);

1227 if (db->db_blkid == DMU_BONUS_BLKID ||
1228 db->db_blkid == DMU_SPILL_BLKID) {
1229 mutex_enter(&dn->dn_mtx);
1230 ASSERT(!list_link_active(&dr->dr_dirty_node));
1231 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1232 mutex_exit(&dn->dn_mtx);
1233 dnode_setdirty(dn, tx);
1234 DB_DNODE_EXIT(db);
1235 return (dr);
1236 } else if (do_free_accounting) {
1237 blkptr_t *bp = db->db_blkptr;
1238 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1239 bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1240 /*
1241 * This is only a guess -- if the dbuf is dirty
1242 * in a previous txg, we don’t know how much
1243 * space it will use on disk yet. We should
1244 * really have the struct_rwlock to access
1245 * db_blkptr, but since this is just a guess,
1246 * it’s OK if we get an odd answer.
1247 */
1248 ddt_prefetch(os->os_spa, bp);
1249 dnode_willuse_space(dn, -willfree, tx);
1250 }

1252 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1253 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1254 drop_struct_lock = TRUE;
1255 }

1257 if (db->db_level == 0) {
1258 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1259 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1260 }

1262 if (db->db_level+1 < dn->dn_nlevels) {
1263 dmu_buf_impl_t *parent = db->db_parent;
1264 dbuf_dirty_record_t *di;
1265 int parent_held = FALSE;

1267 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1268 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;

1270 parent = dbuf_hold_level(dn, db->db_level+1,
1271 db->db_blkid >> epbs, FTAG);
1272 ASSERT(parent != NULL);
1273 parent_held = TRUE;
1274 }
1275 if (drop_struct_lock)
1276 rw_exit(&dn->dn_struct_rwlock);
1277 ASSERT3U(db->db_level+1, ==, parent->db_level);
1278 di = dbuf_dirty(parent, tx, B_FALSE);

new/usr/src/uts/common/fs/zfs/dbuf.c 5

1155 di = dbuf_dirty(parent, tx);
1279 if (parent_held)
1280 dbuf_rele(parent, FTAG);

1282 mutex_enter(&db->db_mtx);
1283 /*
1284 * Since we’ve dropped the mutex, it’s possible that
1285 * dbuf_undirty() might have changed this out from under us.
1286 */
1287 if (db->db_last_dirty == dr ||
1288 dn->dn_object == DMU_META_DNODE_OBJECT) {
1289 mutex_enter(&di->dt.di.dr_mtx);
1290 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1291 ASSERT(!list_link_active(&dr->dr_dirty_node));
1292 list_insert_tail(&di->dt.di.dr_children, dr);
1293 mutex_exit(&di->dt.di.dr_mtx);
1294 dr->dr_parent = di;
1295 }
1296 mutex_exit(&db->db_mtx);
1297 } else {
1298 ASSERT(db->db_level+1 == dn->dn_nlevels);
1299 ASSERT(db->db_blkid < dn->dn_nblkptr);
1300 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1301 mutex_enter(&dn->dn_mtx);
1302 ASSERT(!list_link_active(&dr->dr_dirty_node));
1303 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1304 mutex_exit(&dn->dn_mtx);
1305 if (drop_struct_lock)
1306 rw_exit(&dn->dn_struct_rwlock);
1307 }

1309 dnode_setdirty(dn, tx);
1310 DB_DNODE_EXIT(db);
1311 return (dr);
1312 }
______unchanged_portion_omitted_

1407 void
1408 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1409 {
1410 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1411 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;

1413 ASSERT(tx->tx_txg != 0);
1414 ASSERT(!refcount_is_zero(&db->db_holds));

1416 DB_DNODE_ENTER(db);
1417 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1418 rf |= DB_RF_HAVESTRUCT;
1419 DB_DNODE_EXIT(db);
1420 (void) dbuf_read(db, NULL, rf);
1421 (void) dbuf_dirty(db, tx, B_FALSE);
1298 (void) dbuf_dirty(db, tx);
1422 }
______unchanged_portion_omitted_

1434 void
1435 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1436 {
1437 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

1439 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1440 ASSERT(tx->tx_txg != 0);
1441 ASSERT(db->db_level == 0);
1442 ASSERT(!refcount_is_zero(&db->db_holds));

new/usr/src/uts/common/fs/zfs/dbuf.c 6

1444 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1445 dmu_tx_private_ok(tx));

1447 dbuf_noread(db);
1448 (void) dbuf_dirty(db, tx, B_FALSE);
1449 }

1452 void
1453 dmu_buf_will_zero_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1454 {
1455 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

1457 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1458 ASSERT(tx->tx_txg != 0);
1459 ASSERT(db->db_level == 0);
1460 ASSERT(!refcount_is_zero(&db->db_holds));

1462 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1463 dmu_tx_private_ok(tx));

1465 dbuf_noread(db);
1466 (void) dbuf_zero_dirty(db, tx);
1325 (void) dbuf_dirty(db, tx);
1467 }
______unchanged_portion_omitted_

1523 /*
1524 * Directly assign a provided arc buf to a given dbuf if it’s not referenced
1525 * by anybody except our caller. Otherwise copy arcbuf’s contents to dbuf.
1526 */
1527 void
1528 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1529 {
1530 ASSERT(!refcount_is_zero(&db->db_holds));
1531 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1532 ASSERT(db->db_level == 0);
1533 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1534 ASSERT(buf != NULL);
1535 ASSERT(arc_buf_size(buf) == db->db.db_size);
1536 ASSERT(tx->tx_txg != 0);

1538 arc_return_buf(buf, db);
1539 ASSERT(arc_released(buf));

1541 mutex_enter(&db->db_mtx);

1543 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1544 cv_wait(&db->db_changed, &db->db_mtx);

1546 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);

1548 if (db->db_state == DB_CACHED &&
1549 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1550 mutex_exit(&db->db_mtx);
1551 (void) dbuf_dirty(db, tx, B_FALSE);
1410 (void) dbuf_dirty(db, tx);
1552 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1553 VERIFY(arc_buf_remove_ref(buf, db));
1554 xuio_stat_wbuf_copied();
1555 return;
1556 }

1558 xuio_stat_wbuf_nocopy();
1559 if (db->db_state == DB_CACHED) {
1560 dbuf_dirty_record_t *dr = db->db_last_dirty;

new/usr/src/uts/common/fs/zfs/dbuf.c 7

1562 ASSERT(db->db_buf != NULL);
1563 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1564 ASSERT(dr->dt.dl.dr_data == db->db_buf);
1565 if (!arc_released(db->db_buf)) {
1566 ASSERT(dr->dt.dl.dr_override_state ==
1567 DR_OVERRIDDEN);
1568 arc_release(db->db_buf, db);
1569 }
1570 dr->dt.dl.dr_data = buf;
1571 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1572 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1573 arc_release(db->db_buf, db);
1574 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1575 }
1576 db->db_buf = NULL;
1577 }
1578 ASSERT(db->db_buf == NULL);
1579 dbuf_set_data(db, buf);
1580 db->db_state = DB_FILL;
1581 mutex_exit(&db->db_mtx);
1582 (void) dbuf_dirty(db, tx, B_FALSE);
1441 (void) dbuf_dirty(db, tx);
1583 dmu_buf_fill_done(&db->db, tx);
1584 }
______unchanged_portion_omitted_

2779 /* Issue I/O to commit a dirty buffer to disk. */
2780 static void
2781 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2782 {
2783 dmu_buf_impl_t *db = dr->dr_dbuf;
2784 dnode_t *dn;
2785 objset_t *os;
2786 dmu_buf_impl_t *parent = db->db_parent;
2787 uint64_t txg = tx->tx_txg;
2788 zbookmark_phys_t zb;
2789 zio_prop_t zp;
2790 zio_t *zio;
2791 int wp_flag = 0;

2793 DB_DNODE_ENTER(db);
2794 dn = DB_DNODE(db);
2795 os = dn->dn_objset;

2797 if (db->db_state != DB_NOFILL) {
2798 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2799 /*
2800 * Private object buffers are released here rather
2801 * than in dbuf_dirty() since they are only modified
2802 * in the syncing context and we don’t want the
2803 * overhead of making multiple copies of the data.
2804 */
2805 if (BP_IS_HOLE(db->db_blkptr)) {
2806 arc_buf_thaw(data);
2807 } else {
2808 dbuf_release_bp(db);
2809 }
2810 }
2811 }

2813 if (parent != dn->dn_dbuf) {
2814 /* Our parent is an indirect block. */
2815 /* We have a dirty parent that has been scheduled for write. */
2816 ASSERT(parent && parent->db_data_pending);
2817 /* Our parent’s buffer is one level closer to the dnode. */

new/usr/src/uts/common/fs/zfs/dbuf.c 8

2818 ASSERT(db->db_level == parent->db_level-1);
2819 /*
2820 * We’re about to modify our parent’s db_data by modifying
2821 * our block pointer, so the parent must be released.
2822 */
2823 ASSERT(arc_released(parent->db_buf));
2824 zio = parent->db_data_pending->dr_zio;
2825 } else {
2826 /* Our parent is the dnode itself. */
2827 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2828 db->db_blkid != DMU_SPILL_BLKID) ||
2829 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2830 if (db->db_blkid != DMU_SPILL_BLKID)
2831 ASSERT3P(db->db_blkptr, ==,
2832 &dn->dn_phys->dn_blkptr[db->db_blkid]);
2833 zio = dn->dn_zio;
2834 }

2836 ASSERT(db->db_level == 0 || data == db->db_buf);
2837 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2838 ASSERT(zio);

2840 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2841 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2842 db->db.db_object, db->db_level, db->db_blkid);

2844 if (db->db_blkid == DMU_SPILL_BLKID)
2845 wp_flag = WP_SPILL;
2846 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;

2848 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2849 DB_DNODE_EXIT(db);

2851 if (dr->dr_zero_write) {
2852 zp.zp_zero_write = B_TRUE;

2854 if (!spa_feature_is_active(os->os_spa, SPA_FEATURE_SPACE_RESERVA
2855 {
2856 spa_feature_incr(os->os_spa,
2857 SPA_FEATURE_SPACE_RESERVATION, tx);
2858 }
2859 }

2861 #endif /* ! codereview */
2862 if (db->db_level == 0 &&
2863 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2864 /*
2865 * The BP for this block has been provided by open context
2866 * (by dmu_sync() or dmu_buf_write_embedded()).
2867 */
2868 void *contents = (data != NULL) ? data->b_data : NULL;

2870 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2871 db->db_blkptr, contents, db->db.db_size, &zp,
2872 dbuf_write_override_ready, NULL, dbuf_write_override_done,
2873 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2874 mutex_enter(&db->db_mtx);
2875 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2876 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2877 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2878 mutex_exit(&db->db_mtx);
2879 } else if (db->db_state == DB_NOFILL) {
2880 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2881 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2882 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2883 db->db_blkptr, NULL, db->db.db_size, &zp,

new/usr/src/uts/common/fs/zfs/dbuf.c 9

2884 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2885 ZIO_PRIORITY_ASYNC_WRITE,
2886 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2887 } else {
2888 ASSERT(arc_released(data));
2889 dr->dr_zio = arc_write(zio, os->os_spa, txg,
2890 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2891 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2892 dbuf_write_physdone, dbuf_write_done, db,
2893 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2894 }
2895 }

new/usr/src/uts/common/fs/zfs/dmu.c 1

**
 49077 Tue Oct 28 11:57:19 2014
new/usr/src/uts/common/fs/zfs/dmu.c
Possibility to physically reserve space without writing leaf blocks
**
______unchanged_portion_omitted_

812 void
813 dmu_write_zero(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dm
814 {
815 dmu_buf_t **dbp;
816 int numbufs, i;

818 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
819 FALSE, FTAG, &numbufs, &dbp));

821 for (i = 0; i < numbufs; i++) {
822 dmu_buf_t *db = dbp[i];

824 dmu_buf_will_zero_fill(db, tx);

826 memset(db->db_data, 0, db->db_size);

828 dmu_buf_fill_done(db, tx);
829 }

831 dmu_buf_rele_array(dbp, numbufs, FTAG);
832 }

834 void
835 #endif /* ! codereview */
836 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
837 const void *buf, dmu_tx_t *tx)
838 {
839 dmu_buf_t **dbp;
840 int numbufs, i;

842 if (size == 0)
843 return;

845 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
846 FALSE, FTAG, &numbufs, &dbp));

848 for (i = 0; i < numbufs; i++) {
849 int tocpy;
850 int bufoff;
851 dmu_buf_t *db = dbp[i];

853 ASSERT(size > 0);

855 bufoff = offset - db->db_offset;
856 tocpy = (int)MIN(db->db_size - bufoff, size);

858 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);

860 if (tocpy == db->db_size)
861 dmu_buf_will_fill(db, tx);
862 else
863 dmu_buf_will_dirty(db, tx);

865 bcopy(buf, (char *)db->db_data + bufoff, tocpy);

867 if (tocpy == db->db_size)
868 dmu_buf_fill_done(db, tx);

870 offset += tocpy;

new/usr/src/uts/common/fs/zfs/dmu.c 2

871 size -= tocpy;
872 buf = (char *)buf + tocpy;
873 }
874 dmu_buf_rele_array(dbp, numbufs, FTAG);
875 }

877 void
878 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
879 dmu_tx_t *tx)
880 {
881 dmu_buf_t **dbp;
882 int numbufs, i;

884 if (size == 0)
885 return;

887 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
888 FALSE, FTAG, &numbufs, &dbp));

890 for (i = 0; i < numbufs; i++) {
891 dmu_buf_t *db = dbp[i];

893 dmu_buf_will_not_fill(db, tx);
894 }
895 dmu_buf_rele_array(dbp, numbufs, FTAG);
896 }

898 void
899 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
900 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
901 int compressed_size, int byteorder, dmu_tx_t *tx)
902 {
903 dmu_buf_t *db;

905 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
906 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
907 VERIFY0(dmu_buf_hold_noread(os, object, offset,
908 FTAG, &db));

910 dmu_buf_write_embedded(db,
911 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
912 uncompressed_size, compressed_size, byteorder, tx);

914 dmu_buf_rele(db, FTAG);
915 }

917 /*
918 * DMU support for xuio
919 */
920 kstat_t *xuio_ksp = NULL;

922 int
923 dmu_xuio_init(xuio_t *xuio, int nblk)
924 {
925 dmu_xuio_t *priv;
926 uio_t *uio = &xuio->xu_uio;

928 uio->uio_iovcnt = nblk;
929 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);

931 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
932 priv->cnt = nblk;
933 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
934 priv->iovp = uio->uio_iov;
935 XUIO_XUZC_PRIV(xuio) = priv;

new/usr/src/uts/common/fs/zfs/dmu.c 3

937 if (XUIO_XUZC_RW(xuio) == UIO_READ)
938 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
939 else
940 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);

942 return (0);
943 }

945 void
946 dmu_xuio_fini(xuio_t *xuio)
947 {
948 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
949 int nblk = priv->cnt;

951 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
952 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
953 kmem_free(priv, sizeof (dmu_xuio_t));

955 if (XUIO_XUZC_RW(xuio) == UIO_READ)
956 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
957 else
958 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
959 }

961 /*
962 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
963 * and increase priv->next by 1.
964 */
965 int
966 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
967 {
968 struct iovec *iov;
969 uio_t *uio = &xuio->xu_uio;
970 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
971 int i = priv->next++;

973 ASSERT(i < priv->cnt);
974 ASSERT(off + n <= arc_buf_size(abuf));
975 iov = uio->uio_iov + i;
976 iov->iov_base = (char *)abuf->b_data + off;
977 iov->iov_len = n;
978 priv->bufs[i] = abuf;
979 return (0);
980 }

982 int
983 dmu_xuio_cnt(xuio_t *xuio)
984 {
985 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
986 return (priv->cnt);
987 }

989 arc_buf_t *
990 dmu_xuio_arcbuf(xuio_t *xuio, int i)
991 {
992 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);

994 ASSERT(i < priv->cnt);
995 return (priv->bufs[i]);
996 }

998 void
999 dmu_xuio_clear(xuio_t *xuio, int i)
1000 {
1001 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);

new/usr/src/uts/common/fs/zfs/dmu.c 4

1003 ASSERT(i < priv->cnt);
1004 priv->bufs[i] = NULL;
1005 }

1007 static void
1008 xuio_stat_init(void)
1009 {
1010 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1011 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1012 KSTAT_FLAG_VIRTUAL);
1013 if (xuio_ksp != NULL) {
1014 xuio_ksp->ks_data = &xuio_stats;
1015 kstat_install(xuio_ksp);
1016 }
1017 }

1019 static void
1020 xuio_stat_fini(void)
1021 {
1022 if (xuio_ksp != NULL) {
1023 kstat_delete(xuio_ksp);
1024 xuio_ksp = NULL;
1025 }
1026 }

1028 void
1029 xuio_stat_wbuf_copied()
1030 {
1031 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1032 }

1034 void
1035 xuio_stat_wbuf_nocopy()
1036 {
1037 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1038 }

1040 #ifdef _KERNEL
1041 static int
1042 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1043 {
1044 dmu_buf_t **dbp;
1045 int numbufs, i, err;
1046 xuio_t *xuio = NULL;

1048 /*
1049 * NB: we could do this block-at-a-time, but it’s nice
1050 * to be reading in parallel.
1051 */
1052 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1053 TRUE, FTAG, &numbufs, &dbp, 0);
1054 if (err)
1055 return (err);

1057 if (uio->uio_extflg == UIO_XUIO)
1058 xuio = (xuio_t *)uio;

1060 for (i = 0; i < numbufs; i++) {
1061 int tocpy;
1062 int bufoff;
1063 dmu_buf_t *db = dbp[i];

1065 ASSERT(size > 0);

1067 bufoff = uio->uio_loffset - db->db_offset;
1068 tocpy = (int)MIN(db->db_size - bufoff, size);

new/usr/src/uts/common/fs/zfs/dmu.c 5

1070 if (xuio) {
1071 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1072 arc_buf_t *dbuf_abuf = dbi->db_buf;
1073 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1074 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1075 if (!err) {
1076 uio->uio_resid -= tocpy;
1077 uio->uio_loffset += tocpy;
1078 }

1080 if (abuf == dbuf_abuf)
1081 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1082 else
1083 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1084 } else {
1085 err = uiomove((char *)db->db_data + bufoff, tocpy,
1086 UIO_READ, uio);
1087 }
1088 if (err)
1089 break;

1091 size -= tocpy;
1092 }
1093 dmu_buf_rele_array(dbp, numbufs, FTAG);

1095 return (err);
1096 }

1098 /*
1099 * Read ’size’ bytes into the uio buffer.
1100 * From object zdb->db_object.
1101 * Starting at offset uio->uio_loffset.
1102 *
1103 * If the caller already has a dbuf in the target object
1104 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1105 * because we don’t have to find the dnode_t for the object.
1106 */
1107 int
1108 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1109 {
1110 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1111 dnode_t *dn;
1112 int err;

1114 if (size == 0)
1115 return (0);

1117 DB_DNODE_ENTER(db);
1118 dn = DB_DNODE(db);
1119 err = dmu_read_uio_dnode(dn, uio, size);
1120 DB_DNODE_EXIT(db);

1122 return (err);
1123 }

1125 /*
1126 * Read ’size’ bytes into the uio buffer.
1127 * From the specified object
1128 * Starting at offset uio->uio_loffset.
1129 */
1130 int
1131 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1132 {
1133 dnode_t *dn;
1134 int err;

new/usr/src/uts/common/fs/zfs/dmu.c 6

1136 if (size == 0)
1137 return (0);

1139 err = dnode_hold(os, object, FTAG, &dn);
1140 if (err)
1141 return (err);

1143 err = dmu_read_uio_dnode(dn, uio, size);

1145 dnode_rele(dn, FTAG);

1147 return (err);
1148 }

1150 static int
1151 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1152 {
1153 dmu_buf_t **dbp;
1154 int numbufs;
1155 int err = 0;
1156 int i;

1158 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1159 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1160 if (err)
1161 return (err);

1163 for (i = 0; i < numbufs; i++) {
1164 int tocpy;
1165 int bufoff;
1166 dmu_buf_t *db = dbp[i];

1168 ASSERT(size > 0);

1170 bufoff = uio->uio_loffset - db->db_offset;
1171 tocpy = (int)MIN(db->db_size - bufoff, size);

1173 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);

1175 if (tocpy == db->db_size)
1176 dmu_buf_will_fill(db, tx);
1177 else
1178 dmu_buf_will_dirty(db, tx);

1180 /*
1181 * XXX uiomove could block forever (eg. nfs-backed
1182 * pages). There needs to be a uiolockdown() function
1183 * to lock the pages in memory, so that uiomove won’t
1184 * block.
1185 */
1186 err = uiomove((char *)db->db_data + bufoff, tocpy,
1187 UIO_WRITE, uio);

1189 if (tocpy == db->db_size)
1190 dmu_buf_fill_done(db, tx);

1192 if (err)
1193 break;

1195 size -= tocpy;
1196 }

1198 dmu_buf_rele_array(dbp, numbufs, FTAG);
1199 return (err);
1200 }

new/usr/src/uts/common/fs/zfs/dmu.c 7

1202 /*
1203 * Write ’size’ bytes from the uio buffer.
1204 * To object zdb->db_object.
1205 * Starting at offset uio->uio_loffset.
1206 *
1207 * If the caller already has a dbuf in the target object
1208 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1209 * because we don’t have to find the dnode_t for the object.
1210 */
1211 int
1212 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1213 dmu_tx_t *tx)
1214 {
1215 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1216 dnode_t *dn;
1217 int err;

1219 if (size == 0)
1220 return (0);

1222 DB_DNODE_ENTER(db);
1223 dn = DB_DNODE(db);
1224 err = dmu_write_uio_dnode(dn, uio, size, tx);
1225 DB_DNODE_EXIT(db);

1227 return (err);
1228 }

1230 /*
1231 * Write ’size’ bytes from the uio buffer.
1232 * To the specified object.
1233 * Starting at offset uio->uio_loffset.
1234 */
1235 int
1236 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1237 dmu_tx_t *tx)
1238 {
1239 dnode_t *dn;
1240 int err;

1242 if (size == 0)
1243 return (0);

1245 err = dnode_hold(os, object, FTAG, &dn);
1246 if (err)
1247 return (err);

1249 err = dmu_write_uio_dnode(dn, uio, size, tx);

1251 dnode_rele(dn, FTAG);

1253 return (err);
1254 }

1256 int
1257 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1258 page_t *pp, dmu_tx_t *tx)
1259 {
1260 dmu_buf_t **dbp;
1261 int numbufs, i;
1262 int err;

1264 if (size == 0)
1265 return (0);

new/usr/src/uts/common/fs/zfs/dmu.c 8

1267 err = dmu_buf_hold_array(os, object, offset, size,
1268 FALSE, FTAG, &numbufs, &dbp);
1269 if (err)
1270 return (err);

1272 for (i = 0; i < numbufs; i++) {
1273 int tocpy, copied, thiscpy;
1274 int bufoff;
1275 dmu_buf_t *db = dbp[i];
1276 caddr_t va;

1278 ASSERT(size > 0);
1279 ASSERT3U(db->db_size, >=, PAGESIZE);

1281 bufoff = offset - db->db_offset;
1282 tocpy = (int)MIN(db->db_size - bufoff, size);

1284 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);

1286 if (tocpy == db->db_size)
1287 dmu_buf_will_fill(db, tx);
1288 else
1289 dmu_buf_will_dirty(db, tx);

1291 for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1292 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1293 thiscpy = MIN(PAGESIZE, tocpy - copied);
1294 va = zfs_map_page(pp, S_READ);
1295 bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1296 zfs_unmap_page(pp, va);
1297 pp = pp->p_next;
1298 bufoff += PAGESIZE;
1299 }

1301 if (tocpy == db->db_size)
1302 dmu_buf_fill_done(db, tx);

1304 offset += tocpy;
1305 size -= tocpy;
1306 }
1307 dmu_buf_rele_array(dbp, numbufs, FTAG);
1308 return (err);
1309 }
1310 #endif

1312 /*
1313 * Allocate a loaned anonymous arc buffer.
1314 */
1315 arc_buf_t *
1316 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1317 {
1318 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;

1320 return (arc_loan_buf(db->db_objset->os_spa, size));
1321 }

1323 /*
1324 * Free a loaned arc buffer.
1325 */
1326 void
1327 dmu_return_arcbuf(arc_buf_t *buf)
1328 {
1329 arc_return_buf(buf, FTAG);
1330 VERIFY(arc_buf_remove_ref(buf, FTAG));
1331 }

new/usr/src/uts/common/fs/zfs/dmu.c 9

1333 /*
1334 * When possible directly assign passed loaned arc buffer to a dbuf.
1335 * If this is not possible copy the contents of passed arc buf via
1336 * dmu_write().
1337 */
1338 void
1339 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1340 dmu_tx_t *tx)
1341 {
1342 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1343 dnode_t *dn;
1344 dmu_buf_impl_t *db;
1345 uint32_t blksz = (uint32_t)arc_buf_size(buf);
1346 uint64_t blkid;

1348 DB_DNODE_ENTER(dbuf);
1349 dn = DB_DNODE(dbuf);
1350 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1351 blkid = dbuf_whichblock(dn, offset);
1352 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1353 rw_exit(&dn->dn_struct_rwlock);
1354 DB_DNODE_EXIT(dbuf);

1356 /*
1357 * We can only assign if the offset is aligned, the arc buf is the
1358 * same size as the dbuf, and the dbuf is not metadata. It
1359 * can’t be metadata because the loaned arc buf comes from the
1360 * user-data kmem arena.
1361 */
1362 if (offset == db->db.db_offset && blksz == db->db.db_size &&
1363 DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1364 dbuf_assign_arcbuf(db, buf, tx);
1365 dbuf_rele(db, FTAG);
1366 } else {
1367 objset_t *os;
1368 uint64_t object;

1370 DB_DNODE_ENTER(dbuf);
1371 dn = DB_DNODE(dbuf);
1372 os = dn->dn_objset;
1373 object = dn->dn_object;
1374 DB_DNODE_EXIT(dbuf);

1376 dbuf_rele(db, FTAG);
1377 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1378 dmu_return_arcbuf(buf);
1379 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1380 }
1381 }

1383 typedef struct {
1384 dbuf_dirty_record_t *dsa_dr;
1385 dmu_sync_cb_t *dsa_done;
1386 zgd_t *dsa_zgd;
1387 dmu_tx_t *dsa_tx;
1388 } dmu_sync_arg_t;

1390 /* ARGSUSED */
1391 static void
1392 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1393 {
1394 dmu_sync_arg_t *dsa = varg;
1395 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1396 blkptr_t *bp = zio->io_bp;

1398 if (zio->io_error == 0) {

new/usr/src/uts/common/fs/zfs/dmu.c 10

1399 if (BP_IS_HOLE(bp)) {
1400 /*
1401 * A block of zeros may compress to a hole, but the
1402 * block size still needs to be known for replay.
1403 */
1404 BP_SET_LSIZE(bp, db->db_size);
1405 } else if (!BP_IS_EMBEDDED(bp)) {
1406 ASSERT(BP_GET_LEVEL(bp) == 0);
1407 bp->blk_fill = 1;
1408 }
1409 }
1410 }

1412 static void
1413 dmu_sync_late_arrival_ready(zio_t *zio)
1414 {
1415 dmu_sync_ready(zio, NULL, zio->io_private);
1416 }

1418 /* ARGSUSED */
1419 static void
1420 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1421 {
1422 dmu_sync_arg_t *dsa = varg;
1423 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1424 dmu_buf_impl_t *db = dr->dr_dbuf;

1426 mutex_enter(&db->db_mtx);
1427 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1428 if (zio->io_error == 0) {
1429 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1430 if (dr->dt.dl.dr_nopwrite) {
1431 blkptr_t *bp = zio->io_bp;
1432 blkptr_t *bp_orig = &zio->io_bp_orig;
1433 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);

1435 ASSERT(BP_EQUAL(bp, bp_orig));
1436 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1437 ASSERT(zio_checksum_table[chksum].ci_dedup);
1438 }
1439 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1440 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1441 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1442 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1443 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1444 } else {
1445 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1446 }
1447 cv_broadcast(&db->db_changed);
1448 mutex_exit(&db->db_mtx);

1450 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);

1452 kmem_free(dsa, sizeof (*dsa));
1453 }

1455 static void
1456 dmu_sync_late_arrival_done(zio_t *zio)
1457 {
1458 blkptr_t *bp = zio->io_bp;
1459 dmu_sync_arg_t *dsa = zio->io_private;
1460 blkptr_t *bp_orig = &zio->io_bp_orig;

1462 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1463 /*
1464 * If we didn’t allocate a new block (i.e. ZIO_FLAG_NOPWRITE)

new/usr/src/uts/common/fs/zfs/dmu.c 11

1465 * then there is nothing to do here. Otherwise, free the
1466 * newly allocated block in this txg.
1467 */
1468 if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1469 ASSERT(BP_EQUAL(bp, bp_orig));
1470 } else {
1471 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1472 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1473 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1474 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1475 }
1476 }

1478 dmu_tx_commit(dsa->dsa_tx);

1480 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);

1482 kmem_free(dsa, sizeof (*dsa));
1483 }

1485 static int
1486 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1487 zio_prop_t *zp, zbookmark_phys_t *zb)
1488 {
1489 dmu_sync_arg_t *dsa;
1490 dmu_tx_t *tx;

1492 tx = dmu_tx_create(os);
1493 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1494 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1495 dmu_tx_abort(tx);
1496 /* Make zl_get_data do txg_waited_synced() */
1497 return (SET_ERROR(EIO));
1498 }

1500 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1501 dsa->dsa_dr = NULL;
1502 dsa->dsa_done = done;
1503 dsa->dsa_zgd = zgd;
1504 dsa->dsa_tx = tx;

1506 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1507 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1508 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1509 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));

1511 return (0);
1512 }

1514 /*
1515 * Intent log support: sync the block associated with db to disk.
1516 * N.B. and XXX: the caller is responsible for making sure that the
1517 * data isn’t changing while dmu_sync() is writing it.
1518 *
1519 * Return values:
1520 *
1521 * EEXIST: this txg has already been synced, so there’s nothing to do.
1522 * The caller should not log the write.
1523 *
1524 * ENOENT: the block was dbuf_free_range()’d, so there’s nothing to do.
1525 * The caller should not log the write.
1526 *
1527 * EALREADY: this block is already in the process of being synced.
1528 * The caller should track its progress (somehow).
1529 *
1530 * EIO: could not do the I/O.

new/usr/src/uts/common/fs/zfs/dmu.c 12

1531 * The caller should do a txg_wait_synced().
1532 *
1533 * 0: the I/O has been initiated.
1534 * The caller should log this blkptr in the done callback.
1535 * It is possible that the I/O will fail, in which case
1536 * the error will be reported to the done callback and
1537 * propagated to pio from zio_done().
1538 */
1539 int
1540 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1541 {
1542 blkptr_t *bp = zgd->zgd_bp;
1543 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1544 objset_t *os = db->db_objset;
1545 dsl_dataset_t *ds = os->os_dsl_dataset;
1546 dbuf_dirty_record_t *dr;
1547 dmu_sync_arg_t *dsa;
1548 zbookmark_phys_t zb;
1549 zio_prop_t zp;
1550 dnode_t *dn;

1552 ASSERT(pio != NULL);
1553 ASSERT(txg != 0);

1555 SET_BOOKMARK(&zb, ds->ds_object,
1556 db->db.db_object, db->db_level, db->db_blkid);

1558 DB_DNODE_ENTER(db);
1559 dn = DB_DNODE(db);
1560 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1561 DB_DNODE_EXIT(db);

1563 /*
1564 * If we’re frozen (running ziltest), we always need to generate a bp.
1565 */
1566 if (txg > spa_freeze_txg(os->os_spa))
1567 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));

1569 /*
1570 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1571 * and us. If we determine that this txg is not yet syncing,
1572 * but it begins to sync a moment later, that’s OK because the
1573 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1574 */
1575 mutex_enter(&db->db_mtx);

1577 if (txg <= spa_last_synced_txg(os->os_spa)) {
1578 /*
1579 * This txg has already synced. There’s nothing to do.
1580 */
1581 mutex_exit(&db->db_mtx);
1582 return (SET_ERROR(EEXIST));
1583 }

1585 if (txg <= spa_syncing_txg(os->os_spa)) {
1586 /*
1587 * This txg is currently syncing, so we can’t mess with
1588 * the dirty record anymore; just write a new log block.
1589 */
1590 mutex_exit(&db->db_mtx);
1591 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1592 }

1594 dr = db->db_last_dirty;
1595 while (dr && dr->dr_txg != txg)
1596 dr = dr->dr_next;

new/usr/src/uts/common/fs/zfs/dmu.c 13

1598 if (dr == NULL) {
1599 /*
1600 * There’s no dr for this dbuf, so it must have been freed.
1601 * There’s no need to log writes to freed blocks, so we’re done.
1602 */
1603 mutex_exit(&db->db_mtx);
1604 return (SET_ERROR(ENOENT));
1605 }

1607 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);

1609 /*
1610 * Assume the on-disk data is X, the current syncing data is Y,
1611 * and the current in-memory data is Z (currently in dmu_sync).
1612 * X and Z are identical but Y is has been modified. Normally,
1613 * when X and Z are the same we will perform a nopwrite but if Y
1614 * is different we must disable nopwrite since the resulting write
1615 * of Y to disk can free the block containing X. If we allowed a
1616 * nopwrite to occur the block pointing to Z would reference a freed
1617 * block. Since this is a rare case we simplify this by disabling
1618 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1619 * a previous transaction.
1620 */
1621 if (dr->dr_next)
1622 zp.zp_nopwrite = B_FALSE;

1624 ASSERT(dr->dr_txg == txg);
1625 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1626 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1627 /*
1628 * We have already issued a sync write for this buffer,
1629 * or this buffer has already been synced. It could not
1630 * have been dirtied since, or we would have cleared the state.
1631 */
1632 mutex_exit(&db->db_mtx);
1633 return (SET_ERROR(EALREADY));
1634 }

1636 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1637 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1638 mutex_exit(&db->db_mtx);

1640 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1641 dsa->dsa_dr = dr;
1642 dsa->dsa_done = done;
1643 dsa->dsa_zgd = zgd;
1644 dsa->dsa_tx = NULL;

1646 zio_nowait(arc_write(pio, os->os_spa, txg,
1647 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1648 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1649 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1650 ZIO_FLAG_CANFAIL, &zb));

1652 return (0);
1653 }

1655 int
1656 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1657 dmu_tx_t *tx)
1658 {
1659 dnode_t *dn;
1660 int err;

1662 err = dnode_hold(os, object, FTAG, &dn);

new/usr/src/uts/common/fs/zfs/dmu.c 14

1663 if (err)
1664 return (err);
1665 err = dnode_set_blksz(dn, size, ibs, tx);
1666 dnode_rele(dn, FTAG);
1667 return (err);
1668 }

1670 void
1671 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1672 dmu_tx_t *tx)
1673 {
1674 dnode_t *dn;

1676 /*
1677 * Send streams include each object’s checksum function. This
1678 * check ensures that the receiving system can understand the
1679 * checksum function transmitted.
1680 */
1681 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);

1683 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1684 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1685 dn->dn_checksum = checksum;
1686 dnode_setdirty(dn, tx);
1687 dnode_rele(dn, FTAG);
1688 }

1690 void
1691 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1692 dmu_tx_t *tx)
1693 {
1694 dnode_t *dn;

1696 /*
1697 * Send streams include each object’s compression function. This
1698 * check ensures that the receiving system can understand the
1699 * compression function transmitted.
1700 */
1701 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);

1703 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1704 dn->dn_compress = compress;
1705 dnode_setdirty(dn, tx);
1706 dnode_rele(dn, FTAG);
1707 }

1709 int zfs_mdcomp_disable = 0;

1711 /*
1712 * When the "redundant_metadata" property is set to "most", only indirect
1713 * blocks of this level and higher will have an additional ditto block.
1714 */
1715 int zfs_redundant_metadata_most_ditto_level = 2;

1717 void
1718 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1719 {
1720 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1721 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1722 (wp & WP_SPILL));
1723 enum zio_checksum checksum = os->os_checksum;
1724 enum zio_compress compress = os->os_compress;
1725 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1726 boolean_t dedup = B_FALSE;
1727 boolean_t nopwrite = B_FALSE;
1728 boolean_t dedup_verify = os->os_dedup_verify;

new/usr/src/uts/common/fs/zfs/dmu.c 15

1729 int copies = os->os_copies;

1731 /*
1732 * We maintain different write policies for each of the following
1733 * types of data:
1734 * 1. metadata
1735 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1736 * 3. all other level 0 blocks
1737 */
1738 if (ismd) {
1739 /*
1740 * XXX -- we should design a compression algorithm
1741 * that specializes in arrays of bps.
1742 */
1743 boolean_t lz4_ac = spa_feature_is_active(os->os_spa,
1744 SPA_FEATURE_LZ4_COMPRESS);

1746 if (zfs_mdcomp_disable) {
1747 compress = ZIO_COMPRESS_EMPTY;
1748 } else if (lz4_ac) {
1749 compress = ZIO_COMPRESS_LZ4;
1750 } else {
1751 compress = ZIO_COMPRESS_LZJB;
1752 }

1754 /*
1755 * Metadata always gets checksummed. If the data
1756 * checksum is multi-bit correctable, and it’s not a
1757 * ZBT-style checksum, then it’s suitable for metadata
1758 * as well. Otherwise, the metadata checksum defaults
1759 * to fletcher4.
1760 */
1761 if (zio_checksum_table[checksum].ci_correctable < 1 ||
1762 zio_checksum_table[checksum].ci_eck)
1763 checksum = ZIO_CHECKSUM_FLETCHER_4;

1765 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1766 (os->os_redundant_metadata ==
1767 ZFS_REDUNDANT_METADATA_MOST &&
1768 (level >= zfs_redundant_metadata_most_ditto_level ||
1769 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1770 copies++;
1771 } else if (wp & WP_NOFILL) {
1772 ASSERT(level == 0);

1774 /*
1775 * If we’re writing preallocated blocks, we aren’t actually
1776 * writing them so don’t set any policy properties. These
1777 * blocks are currently only used by an external subsystem
1778 * outside of zfs (i.e. dump) and not written by the zio
1779 * pipeline.
1780 */
1781 compress = ZIO_COMPRESS_OFF;
1782 checksum = ZIO_CHECKSUM_NOPARITY;
1783 } else {
1784 compress = zio_compress_select(dn->dn_compress, compress);

1786 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1787 zio_checksum_select(dn->dn_checksum, checksum) :
1788 dedup_checksum;

1790 /*
1791 * Determine dedup setting. If we are in dmu_sync(),
1792 * we won’t actually dedup now because that’s all
1793 * done in syncing context; but we do want to use the
1794 * dedup checkum. If the checksum is not strong

new/usr/src/uts/common/fs/zfs/dmu.c 16

1795 * enough to ensure unique signatures, force
1796 * dedup_verify.
1797 */
1798 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1799 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1800 if (!zio_checksum_table[checksum].ci_dedup)
1801 dedup_verify = B_TRUE;
1802 }

1804 /*
1805 * Enable nopwrite if we have a cryptographically secure
1806 * checksum that has no known collisions (i.e. SHA-256)
1807 * and compression is enabled. We don’t enable nopwrite if
1808 * dedup is enabled as the two features are mutually exclusive.
1809 */
1810 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1811 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1812 }

1814 zp->zp_checksum = checksum;
1815 zp->zp_compress = compress;
1816 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1817 zp->zp_level = level;
1818 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1819 zp->zp_dedup = dedup;
1820 zp->zp_dedup_verify = dedup && dedup_verify;
1821 zp->zp_nopwrite = nopwrite;
1822 zp->zp_zero_write = B_FALSE;
1823 #endif /* ! codereview */
1824 }

1826 int
1827 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1828 {
1829 dnode_t *dn;
1830 int i, err;

1832 err = dnode_hold(os, object, FTAG, &dn);
1833 if (err)
1834 return (err);
1835 /*
1836 * Sync any current changes before
1837 * we go trundling through the block pointers.
1838 */
1839 for (i = 0; i < TXG_SIZE; i++) {
1840 if (list_link_active(&dn->dn_dirty_link[i]))
1841 break;
1842 }
1843 if (i != TXG_SIZE) {
1844 dnode_rele(dn, FTAG);
1845 txg_wait_synced(dmu_objset_pool(os), 0);
1846 err = dnode_hold(os, object, FTAG, &dn);
1847 if (err)
1848 return (err);
1849 }

1851 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1852 dnode_rele(dn, FTAG);

1854 return (err);
1855 }

1857 void
1858 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1859 {
1860 dnode_phys_t *dnp;

new/usr/src/uts/common/fs/zfs/dmu.c 17

1862 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1863 mutex_enter(&dn->dn_mtx);

1865 dnp = dn->dn_phys;

1867 doi->doi_data_block_size = dn->dn_datablksz;
1868 doi->doi_metadata_block_size = dn->dn_indblkshift ?
1869 1ULL << dn->dn_indblkshift : 0;
1870 doi->doi_type = dn->dn_type;
1871 doi->doi_bonus_type = dn->dn_bonustype;
1872 doi->doi_bonus_size = dn->dn_bonuslen;
1873 doi->doi_indirection = dn->dn_nlevels;
1874 doi->doi_checksum = dn->dn_checksum;
1875 doi->doi_compress = dn->dn_compress;
1876 doi->doi_nblkptr = dn->dn_nblkptr;
1877 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1878 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1879 doi->doi_fill_count = 0;
1880 for (int i = 0; i < dnp->dn_nblkptr; i++)
1881 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);

1883 mutex_exit(&dn->dn_mtx);
1884 rw_exit(&dn->dn_struct_rwlock);
1885 }

1887 /*
1888 * Get information on a DMU object.
1889 * If doi is NULL, just indicates whether the object exists.
1890 */
1891 int
1892 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1893 {
1894 dnode_t *dn;
1895 int err = dnode_hold(os, object, FTAG, &dn);

1897 if (err)
1898 return (err);

1900 if (doi != NULL)
1901 dmu_object_info_from_dnode(dn, doi);

1903 dnode_rele(dn, FTAG);
1904 return (0);
1905 }

1907 /*
1908 * As above, but faster; can be used when you have a held dbuf in hand.
1909 */
1910 void
1911 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1912 {
1913 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

1915 DB_DNODE_ENTER(db);
1916 dmu_object_info_from_dnode(DB_DNODE(db), doi);
1917 DB_DNODE_EXIT(db);
1918 }

1920 /*
1921 * Faster still when you only care about the size.
1922 * This is specifically optimized for zfs_getattr().
1923 */
1924 void
1925 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1926 u_longlong_t *nblk512)

new/usr/src/uts/common/fs/zfs/dmu.c 18

1927 {
1928 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1929 dnode_t *dn;

1931 DB_DNODE_ENTER(db);
1932 dn = DB_DNODE(db);

1934 *blksize = dn->dn_datablksz;
1935 /* add 1 for dnode space */
1936 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1937 SPA_MINBLOCKSHIFT) + 1;
1938 DB_DNODE_EXIT(db);
1939 }

1941 void
1942 byteswap_uint64_array(void *vbuf, size_t size)
1943 {
1944 uint64_t *buf = vbuf;
1945 size_t count = size >> 3;
1946 int i;

1948 ASSERT((size & 7) == 0);

1950 for (i = 0; i < count; i++)
1951 buf[i] = BSWAP_64(buf[i]);
1952 }

1954 void
1955 byteswap_uint32_array(void *vbuf, size_t size)
1956 {
1957 uint32_t *buf = vbuf;
1958 size_t count = size >> 2;
1959 int i;

1961 ASSERT((size & 3) == 0);

1963 for (i = 0; i < count; i++)
1964 buf[i] = BSWAP_32(buf[i]);
1965 }

1967 void
1968 byteswap_uint16_array(void *vbuf, size_t size)
1969 {
1970 uint16_t *buf = vbuf;
1971 size_t count = size >> 1;
1972 int i;

1974 ASSERT((size & 1) == 0);

1976 for (i = 0; i < count; i++)
1977 buf[i] = BSWAP_16(buf[i]);
1978 }

1980 /* ARGSUSED */
1981 void
1982 byteswap_uint8_array(void *vbuf, size_t size)
1983 {
1984 }

1986 void
1987 dmu_init(void)
1988 {
1989 zfs_dbgmsg_init();
1990 sa_cache_init();
1991 xuio_stat_init();
1992 dmu_objset_init();

new/usr/src/uts/common/fs/zfs/dmu.c 19

1993 dnode_init();
1994 dbuf_init();
1995 zfetch_init();
1996 l2arc_init();
1997 arc_init();
1998 }

2000 void
2001 dmu_fini(void)
2002 {
2003 arc_fini(); /* arc depends on l2arc, so arc must go first */
2004 l2arc_fini();
2005 zfetch_fini();
2006 dbuf_fini();
2007 dnode_fini();
2008 dmu_objset_fini();
2009 xuio_stat_fini();
2010 sa_cache_fini();
2011 zfs_dbgmsg_fini();
2012 }

new/usr/src/uts/common/fs/zfs/dnode.c 1

**
 55122 Tue Oct 28 11:57:19 2014
new/usr/src/uts/common/fs/zfs/dnode.c
Possibility to physically reserve space without writing leaf blocks
**
______unchanged_portion_omitted_

1238 void
1239 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1240 {
1241 objset_t *os = dn->dn_objset;
1242 uint64_t txg = tx->tx_txg;

1244 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1245 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1246 return;
1247 }

1249 DNODE_VERIFY(dn);

1251 #ifdef ZFS_DEBUG
1252 mutex_enter(&dn->dn_mtx);
1253 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1254 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1255 mutex_exit(&dn->dn_mtx);
1256 #endif

1258 /*
1259 * Determine old uid/gid when necessary
1260 */
1261 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);

1263 mutex_enter(&os->os_lock);

1265 /*
1266 * If we are already marked dirty, we’re done.
1267 */
1268 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1269 mutex_exit(&os->os_lock);
1270 return;
1271 }

1273 ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1274 !avl_is_empty(&dn->dn_dbufs));
1275 ASSERT(dn->dn_datablksz != 0);
1276 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1277 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1278 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);

1280 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1281 dn->dn_object, txg);

1283 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1284 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1285 } else {
1286 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1287 }

1289 mutex_exit(&os->os_lock);

1291 /*
1292 * The dnode maintains a hold on its containing dbuf as
1293 * long as there are holds on it. Each instantiated child
1294 * dbuf maintains a hold on the dnode. When the last child
1295 * drops its hold, the dnode will drop its hold on the
1296 * containing dbuf. We add a "dirty hold" here so that the

new/usr/src/uts/common/fs/zfs/dnode.c 2

1297 * dnode will hang around after we finish processing its
1298 * children.
1299 */
1300 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));

1302 (void) dbuf_dirty(dn->dn_dbuf, tx, B_FALSE);
1302 (void) dbuf_dirty(dn->dn_dbuf, tx);

1304 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1305 }
______unchanged_portion_omitted_

1409 /* read-holding callers must not rely on the lock being continuously held */
1410 void
1411 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1412 {
1413 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1414 int epbs, new_nlevels;
1415 uint64_t sz;

1417 ASSERT(blkid != DMU_BONUS_BLKID);

1419 ASSERT(have_read ?
1420 RW_READ_HELD(&dn->dn_struct_rwlock) :
1421 RW_WRITE_HELD(&dn->dn_struct_rwlock));

1423 /*
1424 * if we have a read-lock, check to see if we need to do any work
1425 * before upgrading to a write-lock.
1426 */
1427 if (have_read) {
1428 if (blkid <= dn->dn_maxblkid)
1429 return;

1431 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1432 rw_exit(&dn->dn_struct_rwlock);
1433 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1434 }
1435 }

1437 if (blkid <= dn->dn_maxblkid)
1438 goto out;

1440 dn->dn_maxblkid = blkid;

1442 /*
1443 * Compute the number of levels necessary to support the new maxblkid.
1444 */
1445 new_nlevels = 1;
1446 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1447 for (sz = dn->dn_nblkptr;
1448 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1449 new_nlevels++;

1451 if (new_nlevels > dn->dn_nlevels) {
1452 int old_nlevels = dn->dn_nlevels;
1453 dmu_buf_impl_t *db;
1454 list_t *list;
1455 dbuf_dirty_record_t *new, *dr, *dr_next;

1457 dn->dn_nlevels = new_nlevels;

1459 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1460 dn->dn_next_nlevels[txgoff] = new_nlevels;

1462 /* dirty the left indirects */

new/usr/src/uts/common/fs/zfs/dnode.c 3

1463 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1464 ASSERT(db != NULL);
1465 new = dbuf_dirty(db, tx, B_FALSE);
1465 new = dbuf_dirty(db, tx);
1466 dbuf_rele(db, FTAG);

1468 /* transfer the dirty records to the new indirect */
1469 mutex_enter(&dn->dn_mtx);
1470 mutex_enter(&new->dt.di.dr_mtx);
1471 list = &dn->dn_dirty_records[txgoff];
1472 for (dr = list_head(list); dr; dr = dr_next) {
1473 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1474 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1475 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1476 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1477 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1478 list_remove(&dn->dn_dirty_records[txgoff], dr);
1479 list_insert_tail(&new->dt.di.dr_children, dr);
1480 dr->dr_parent = new;
1481 }
1482 }
1483 mutex_exit(&new->dt.di.dr_mtx);
1484 mutex_exit(&dn->dn_mtx);
1485 }

1487 out:
1488 if (have_read)
1489 rw_downgrade(&dn->dn_struct_rwlock);
1490 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/dbuf.h 1

**
 10506 Tue Oct 28 11:57:19 2014
new/usr/src/uts/common/fs/zfs/sys/dbuf.h
Possibility to physically reserve space without writing leaf blocks
**
______unchanged_portion_omitted_

101 typedef struct dbuf_dirty_record {
102 /* link on our parents dirty list */
103 list_node_t dr_dirty_node;

105 /* transaction group this data will sync in */
106 uint64_t dr_txg;

108 /* zio of outstanding write IO */
109 zio_t *dr_zio;

111 /* pointer back to our dbuf */
112 struct dmu_buf_impl *dr_dbuf;

114 /* pointer to next dirty record */
115 struct dbuf_dirty_record *dr_next;

117 /* pointer to parent dirty record */
118 struct dbuf_dirty_record *dr_parent;

120 /* How much space was changed to dsl_pool_dirty_space() for this? */
121 unsigned int dr_accounted;

123 union dirty_types {
124 struct dirty_indirect {

126 /* protect access to list */
127 kmutex_t dr_mtx;

129 /* Our list of dirty children */
130 list_t dr_children;
131 } di;
132 struct dirty_leaf {

134 /*
135 * dr_data is set when we dirty the buffer
136 * so that we can retain the pointer even if it
137 * gets COW’d in a subsequent transaction group.
138 */
139 arc_buf_t *dr_data;
140 blkptr_t dr_overridden_by;
141 override_states_t dr_override_state;
142 uint8_t dr_copies;
143 boolean_t dr_nopwrite;
144 } dl;
145 } dt;

147 boolean_t dr_zero_write;
148 #endif /* ! codereview */
149 } dbuf_dirty_record_t;

151 typedef struct dmu_buf_impl {
152 /*
153 * The following members are immutable, with the exception of
154 * db.db_data, which is protected by db_mtx.
155 */

157 /* the publicly visible structure */
158 dmu_buf_t db;

new/usr/src/uts/common/fs/zfs/sys/dbuf.h 2

160 /* the objset we belong to */
161 struct objset *db_objset;

163 /*
164 * handle to safely access the dnode we belong to (NULL when evicted)
165 */
166 struct dnode_handle *db_dnode_handle;

168 /*
169 * our parent buffer; if the dnode points to us directly,
170 * db_parent == db_dnode_handle->dnh_dnode->dn_dbuf
171 * only accessed by sync thread ???
172 * (NULL when evicted)
173 * May change from NULL to non-NULL under the protection of db_mtx
174 * (see dbuf_check_blkptr())
175 */
176 struct dmu_buf_impl *db_parent;

178 /*
179 * link for hash table of all dmu_buf_impl_t’s
180 */
181 struct dmu_buf_impl *db_hash_next;

183 /* our block number */
184 uint64_t db_blkid;

186 /*
187 * Pointer to the blkptr_t which points to us. May be NULL if we
188 * don’t have one yet. (NULL when evicted)
189 */
190 blkptr_t *db_blkptr;

192 /*
193 * Our indirection level. Data buffers have db_level==0.
194 * Indirect buffers which point to data buffers have
195 * db_level==1. etc. Buffers which contain dnodes have
196 * db_level==0, since the dnodes are stored in a file.
197 */
198 uint8_t db_level;

200 /* db_mtx protects the members below */
201 kmutex_t db_mtx;

203 /*
204 * Current state of the buffer
205 */
206 dbuf_states_t db_state;

208 /*
209 * Refcount accessed by dmu_buf_{hold,rele}.
210 * If nonzero, the buffer can’t be destroyed.
211 * Protected by db_mtx.
212 */
213 refcount_t db_holds;

215 /* buffer holding our data */
216 arc_buf_t *db_buf;

218 kcondvar_t db_changed;
219 dbuf_dirty_record_t *db_data_pending;

221 /* pointer to most recent dirty record for this buffer */
222 dbuf_dirty_record_t *db_last_dirty;

224 /*
225 * Our link on the owner dnodes’s dn_dbufs list.

new/usr/src/uts/common/fs/zfs/sys/dbuf.h 3

226 * Protected by its dn_dbufs_mtx.
227 */
228 avl_node_t db_link;

230 /* Data which is unique to data (leaf) blocks: */

232 /* stuff we store for the user (see dmu_buf_set_user) */
233 void *db_user_ptr;
234 void **db_user_data_ptr_ptr;
235 dmu_buf_evict_func_t *db_evict_func;

237 uint8_t db_immediate_evict;
238 uint8_t db_freed_in_flight;

240 uint8_t db_dirtycnt;
241 } dmu_buf_impl_t;

243 /* Note: the dbuf hash table is exposed only for the mdb module */
244 #define DBUF_MUTEXES 256
245 #define DBUF_HASH_MUTEX(h, idx) (&(h)->hash_mutexes[(idx) & (DBUF_MUTEXES-1)])
246 typedef struct dbuf_hash_table {
247 uint64_t hash_table_mask;
248 dmu_buf_impl_t **hash_table;
249 kmutex_t hash_mutexes[DBUF_MUTEXES];
250 } dbuf_hash_table_t;

253 uint64_t dbuf_whichblock(struct dnode *di, uint64_t offset);

255 dmu_buf_impl_t *dbuf_create_tlib(struct dnode *dn, char *data);
256 void dbuf_create_bonus(struct dnode *dn);
257 int dbuf_spill_set_blksz(dmu_buf_t *db, uint64_t blksz, dmu_tx_t *tx);
258 void dbuf_spill_hold(struct dnode *dn, dmu_buf_impl_t **dbp, void *tag);

260 void dbuf_rm_spill(struct dnode *dn, dmu_tx_t *tx);

262 dmu_buf_impl_t *dbuf_hold(struct dnode *dn, uint64_t blkid, void *tag);
263 dmu_buf_impl_t *dbuf_hold_level(struct dnode *dn, int level, uint64_t blkid,
264 void *tag);
265 int dbuf_hold_impl(struct dnode *dn, uint8_t level, uint64_t blkid, int create,
266 void *tag, dmu_buf_impl_t **dbp);

268 void dbuf_prefetch(struct dnode *dn, uint64_t blkid, zio_priority_t prio);

270 void dbuf_add_ref(dmu_buf_impl_t *db, void *tag);
271 uint64_t dbuf_refcount(dmu_buf_impl_t *db);

273 void dbuf_rele(dmu_buf_impl_t *db, void *tag);
274 void dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag);

276 dmu_buf_impl_t *dbuf_find(struct dnode *dn, uint8_t level, uint64_t blkid);

278 int dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags);
279 void dmu_buf_will_not_fill(dmu_buf_t *db, dmu_tx_t *tx);
280 void dmu_buf_will_fill(dmu_buf_t *db, dmu_tx_t *tx);
281 void dmu_buf_will_zero_fill(dmu_buf_t *db, dmu_tx_t *tx);
282 #endif /* ! codereview */
283 void dmu_buf_fill_done(dmu_buf_t *db, dmu_tx_t *tx);
284 void dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx);
285 dbuf_dirty_record_t *dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx, boolean_t zero
286 dbuf_dirty_record_t *dbuf_zero_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
146 dbuf_dirty_record_t *dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
287 arc_buf_t *dbuf_loan_arcbuf(dmu_buf_impl_t *db);
288 void dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
289 bp_embedded_type_t etype, enum zio_compress comp,
290 int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx);

new/usr/src/uts/common/fs/zfs/sys/dbuf.h 4

292 void dbuf_clear(dmu_buf_impl_t *db);
293 void dbuf_evict(dmu_buf_impl_t *db);

295 void dbuf_setdirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
296 void dbuf_unoverride(dbuf_dirty_record_t *dr);
297 void dbuf_sync_list(list_t *list, dmu_tx_t *tx);
298 void dbuf_release_bp(dmu_buf_impl_t *db);

300 void dbuf_free_range(struct dnode *dn, uint64_t start, uint64_t end,
301 struct dmu_tx *);

303 void dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx);

305 #define DB_DNODE(_db) ((_db)->db_dnode_handle->dnh_dnode)
306 #define DB_DNODE_LOCK(_db) ((_db)->db_dnode_handle->dnh_zrlock)
307 #define DB_DNODE_ENTER(_db) (zrl_add(&DB_DNODE_LOCK(_db)))
308 #define DB_DNODE_EXIT(_db) (zrl_remove(&DB_DNODE_LOCK(_db)))
309 #define DB_DNODE_HELD(_db) (!zrl_is_zero(&DB_DNODE_LOCK(_db)))

311 void dbuf_init(void);
312 void dbuf_fini(void);

314 boolean_t dbuf_is_metadata(dmu_buf_impl_t *db);

316 #define DBUF_GET_BUFC_TYPE(_db) \
317 (dbuf_is_metadata(_db) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)

319 #define DBUF_IS_CACHEABLE(_db) \
320 ((_db)->db_objset->os_primary_cache == ZFS_CACHE_ALL || \
321 (dbuf_is_metadata(_db) && \
322 ((_db)->db_objset->os_primary_cache == ZFS_CACHE_METADATA)))

324 #define DBUF_IS_L2CACHEABLE(_db) \
325 ((_db)->db_objset->os_secondary_cache == ZFS_CACHE_ALL || \
326 (dbuf_is_metadata(_db) && \
327 ((_db)->db_objset->os_secondary_cache == ZFS_CACHE_METADATA)))

329 #define DBUF_IS_L2COMPRESSIBLE(_db) \
330 ((_db)->db_objset->os_compress != ZIO_COMPRESS_OFF || \
331 (dbuf_is_metadata(_db) && zfs_mdcomp_disable == B_FALSE))

333 #ifdef ZFS_DEBUG

335 /*
336 * There should be a ## between the string literal and fmt, to make it
337 * clear that we’re joining two strings together, but gcc does not
338 * support that preprocessor token.
339 */
340 #define dprintf_dbuf(dbuf, fmt, ...) do { \
341 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
342 char __db_buf[32]; \
343 uint64_t __db_obj = (dbuf)->db.db_object; \
344 if (__db_obj == DMU_META_DNODE_OBJECT) \
345 (void) strcpy(__db_buf, "mdn"); \
346 else \
347 (void) snprintf(__db_buf, sizeof (__db_buf), "%lld", \
348 (u_longlong_t)__db_obj); \
349 dprintf_ds((dbuf)->db_objset->os_dsl_dataset, \
350 "obj=%s lvl=%u blkid=%lld " fmt, \
351 __db_buf, (dbuf)->db_level, \
352 (u_longlong_t)(dbuf)->db_blkid, __VA_ARGS__); \
353 } \
354 _NOTE(CONSTCOND) } while (0)

356 #define dprintf_dbuf_bp(db, bp, fmt, ...) do { \

new/usr/src/uts/common/fs/zfs/sys/dbuf.h 5

357 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
358 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
359 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, bp); \
360 dprintf_dbuf(db, fmt " %s\n", __VA_ARGS__, __blkbuf); \
361 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
362 } \
363 _NOTE(CONSTCOND) } while (0)

365 #define DBUF_VERIFY(db) dbuf_verify(db)

367 #else

369 #define dprintf_dbuf(db, fmt, ...)
370 #define dprintf_dbuf_bp(db, bp, fmt, ...)
371 #define DBUF_VERIFY(db)

373 #endif

376 #ifdef __cplusplus
377 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/dmu.h 1

**
 29810 Tue Oct 28 11:57:19 2014
new/usr/src/uts/common/fs/zfs/sys/dmu.h
Possibility to physically reserve space without writing leaf blocks
**
______unchanged_portion_omitted_

294 typedef void dmu_buf_evict_func_t(struct dmu_buf *db, void *user_ptr);

296 /*
297 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
298 */
299 #define DMU_POOL_DIRECTORY_OBJECT 1
300 #define DMU_POOL_CONFIG "config"
301 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
302 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
303 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
304 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
305 #define DMU_POOL_ROOT_DATASET "root_dataset"
306 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
307 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
308 #define DMU_POOL_ERRLOG_LAST "errlog_last"
309 #define DMU_POOL_SPARES "spares"
310 #define DMU_POOL_DEFLATE "deflate"
311 #define DMU_POOL_HISTORY "history"
312 #define DMU_POOL_PROPS "pool_props"
313 #define DMU_POOL_L2CACHE "l2cache"
314 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
315 #define DMU_POOL_DDT "DDT-%s-%s-%s"
316 #define DMU_POOL_DDT_STATS "DDT-statistics"
317 #define DMU_POOL_CREATION_VERSION "creation_version"
318 #define DMU_POOL_SCAN "scan"
319 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
320 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
321 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"

323 /*
324 * Allocate an object from this objset. The range of object numbers
325 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
326 *
327 * The transaction must be assigned to a txg. The newly allocated
328 * object will be "held" in the transaction (ie. you can modify the
329 * newly allocated object in this transaction).
330 *
331 * dmu_object_alloc() chooses an object and returns it in *objectp.
332 *
333 * dmu_object_claim() allocates a specific object number. If that
334 * number is already allocated, it fails and returns EEXIST.
335 *
336 * Return 0 on success, or ENOSPC or EEXIST as specified above.
337 */
338 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
339 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
340 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
341 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
342 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
343 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);

345 /*
346 * Free an object from this objset.
347 *
348 * The object’s data will be freed as well (ie. you don’t need to call
349 * dmu_free(object, 0, -1, tx)).
350 *
351 * The object need not be held in the transaction.
352 *

new/usr/src/uts/common/fs/zfs/sys/dmu.h 2

353 * If there are any holds on this object’s buffers (via dmu_buf_hold()),
354 * or tx holds on the object (via dmu_tx_hold_object()), you can not
355 * free it; it fails and returns EBUSY.
356 *
357 * If the object is not allocated, it fails and returns ENOENT.
358 *
359 * Return 0 on success, or EBUSY or ENOENT as specified above.
360 */
361 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);

363 /*
364 * Find the next allocated or free object.
365 *
366 * The objectp parameter is in-out. It will be updated to be the next
367 * object which is allocated. Ignore objects which have not been
368 * modified since txg.
369 *
370 * XXX Can only be called on a objset with no dirty data.
371 *
372 * Returns 0 on success, or ENOENT if there are no more objects.
373 */
374 int dmu_object_next(objset_t *os, uint64_t *objectp,
375 boolean_t hole, uint64_t txg);

377 /*
378 * Set the data blocksize for an object.
379 *
380 * The object cannot have any blocks allcated beyond the first. If
381 * the first block is allocated already, the new size must be greater
382 * than the current block size. If these conditions are not met,
383 * ENOTSUP will be returned.
384 *
385 * Returns 0 on success, or EBUSY if there are any holds on the object
386 * contents, or ENOTSUP as described above.
387 */
388 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
389 int ibs, dmu_tx_t *tx);

391 /*
392 * Set the checksum property on a dnode. The new checksum algorithm will
393 * apply to all newly written blocks; existing blocks will not be affected.
394 */
395 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
396 dmu_tx_t *tx);

398 /*
399 * Set the compress property on a dnode. The new compression algorithm will
400 * apply to all newly written blocks; existing blocks will not be affected.
401 */
402 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
403 dmu_tx_t *tx);

405 void
406 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
407 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
408 int compressed_size, int byteorder, dmu_tx_t *tx);

410 /*
411 * Decide how to write a block: checksum, compression, number of copies, etc.
412 */
413 #define WP_NOFILL 0x1
414 #define WP_DMU_SYNC 0x2
415 #define WP_SPILL 0x4

417 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
418 struct zio_prop *zp);

new/usr/src/uts/common/fs/zfs/sys/dmu.h 3

419 /*
420 * The bonus data is accessed more or less like a regular buffer.
421 * You must dmu_bonus_hold() to get the buffer, which will give you a
422 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
423 * data. As with any normal buffer, you must call dmu_buf_read() to
424 * read db_data, dmu_buf_will_dirty() before modifying it, and the
425 * object must be held in an assigned transaction before calling
426 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
427 * buffer as well. You must release your hold with dmu_buf_rele().
428 *
429 * Returns ENOENT, EIO, or 0.
430 */
431 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
432 int dmu_bonus_max(void);
433 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
434 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
435 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
436 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);

438 /*
439 * Special spill buffer support used by "SA" framework
440 */

442 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
443 int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
444 void *tag, dmu_buf_t **dbp);
445 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);

447 /*
448 * Obtain the DMU buffer from the specified object which contains the
449 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
450 * that it will remain in memory. You must release the hold with
451 * dmu_buf_rele(). You musn’t access the dmu_buf_t after releasing your
452 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
453 *
454 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
455 * on the returned buffer before reading or writing the buffer’s
456 * db_data. The comments for those routines describe what particular
457 * operations are valid after calling them.
458 *
459 * The object number must be a valid, allocated object number.
460 */
461 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
462 void *tag, dmu_buf_t **, int flags);
463 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
464 void dmu_buf_rele(dmu_buf_t *db, void *tag);
465 uint64_t dmu_buf_refcount(dmu_buf_t *db);

467 /*
468 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
469 * range of an object. A pointer to an array of dmu_buf_t*’s is
470 * returned (in *dbpp).
471 *
472 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*’s, and
473 * frees the array. The hold on the array of buffers MUST be released
474 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
475 * individually with dmu_buf_rele.
476 */
477 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
478 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);
479 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);

481 /*
482 * Returns NULL on success, or the existing user ptr if it’s already
483 * been set.
484 *

new/usr/src/uts/common/fs/zfs/sys/dmu.h 4

485 * user_ptr is for use by the user and can be obtained via dmu_buf_get_user().
486 *
487 * user_data_ptr_ptr should be NULL, or a pointer to a pointer which
488 * will be set to db->db_data when you are allowed to access it. Note
489 * that db->db_data (the pointer) can change when you do dmu_buf_read(),
490 * dmu_buf_tryupgrade(), dmu_buf_will_dirty(), or dmu_buf_will_fill().
491 * *user_data_ptr_ptr will be set to the new value when it changes.
492 *
493 * If non-NULL, pageout func will be called when this buffer is being
494 * excised from the cache, so that you can clean up the data structure
495 * pointed to by user_ptr.
496 *
497 * dmu_evict_user() will call the pageout func for all buffers in a
498 * objset with a given pageout func.
499 */
500 void *dmu_buf_set_user(dmu_buf_t *db, void *user_ptr, void *user_data_ptr_ptr,
501 dmu_buf_evict_func_t *pageout_func);
502 /*
503 * set_user_ie is the same as set_user, but request immediate eviction
504 * when hold count goes to zero.
505 */
506 void *dmu_buf_set_user_ie(dmu_buf_t *db, void *user_ptr,
507 void *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func);
508 void *dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr,
509 void *user_ptr, void *user_data_ptr_ptr,
510 dmu_buf_evict_func_t *pageout_func);
511 void dmu_evict_user(objset_t *os, dmu_buf_evict_func_t *func);

513 /*
514 * Returns the user_ptr set with dmu_buf_set_user(), or NULL if not set.
515 */
516 void *dmu_buf_get_user(dmu_buf_t *db);

518 /*
519 * Returns the blkptr associated with this dbuf, or NULL if not set.
520 */
521 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);

523 /*
524 * Indicate that you are going to modify the buffer’s data (db_data).
525 *
526 * The transaction (tx) must be assigned to a txg (ie. you’ve called
527 * dmu_tx_assign()). The buffer’s object must be held in the tx
528 * (ie. you’ve called dmu_tx_hold_object(tx, db->db_object)).
529 */
530 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);

532 /*
533 * Tells if the given dbuf is freeable.
534 */
535 boolean_t dmu_buf_freeable(dmu_buf_t *);

537 /*
538 * You must create a transaction, then hold the objects which you will
539 * (or might) modify as part of this transaction. Then you must assign
540 * the transaction to a transaction group. Once the transaction has
541 * been assigned, you can modify buffers which belong to held objects as
542 * part of this transaction. You can’t modify buffers before the
543 * transaction has been assigned; you can’t modify buffers which don’t
544 * belong to objects which this transaction holds; you can’t hold
545 * objects once the transaction has been assigned. You may hold an
546 * object which you are going to free (with dmu_object_free()), but you
547 * don’t have to.
548 *
549 * You can abort the transaction before it has been assigned.
550 *

new/usr/src/uts/common/fs/zfs/sys/dmu.h 5

551 * Note that you may hold buffers (with dmu_buf_hold) at any time,
552 * regardless of transaction state.
553 */

555 #define DMU_NEW_OBJECT (-1ULL)
556 #define DMU_OBJECT_END (-1ULL)

558 dmu_tx_t *dmu_tx_create(objset_t *os);
559 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
560 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
561 uint64_t len);
562 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
563 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
564 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
565 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
566 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
567 void dmu_tx_abort(dmu_tx_t *tx);
568 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
569 void dmu_tx_wait(dmu_tx_t *tx);
570 void dmu_tx_commit(dmu_tx_t *tx);
571 void dmu_tx_mark_netfree(dmu_tx_t *tx);

573 /*
574 * To register a commit callback, dmu_tx_callback_register() must be called.
575 *
576 * dcb_data is a pointer to caller private data that is passed on as a
577 * callback parameter. The caller is responsible for properly allocating and
578 * freeing it.
579 *
580 * When registering a callback, the transaction must be already created, but
581 * it cannot be committed or aborted. It can be assigned to a txg or not.
582 *
583 * The callback will be called after the transaction has been safely written
584 * to stable storage and will also be called if the dmu_tx is aborted.
585 * If there is any error which prevents the transaction from being committed to
586 * disk, the callback will be called with a value of error != 0.
587 */
588 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);

590 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
591 void *dcb_data);

593 /*
594 * Free up the data blocks for a defined range of a file. If size is
595 * -1, the range from offset to end-of-file is freed.
596 */
597 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
598 uint64_t size, dmu_tx_t *tx);
599 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
600 uint64_t size);
601 int dmu_free_long_object(objset_t *os, uint64_t object);

603 /*
604 * Convenience functions.
605 *
606 * Canfail routines will return 0 on success, or an errno if there is a
607 * nonrecoverable I/O error.
608 */
609 #define DMU_READ_PREFETCH 0 /* prefetch */
610 #define DMU_READ_NO_PREFETCH 1 /* don’t prefetch */
611 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
612 void *buf, uint32_t flags);
613 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
614 const void *buf, dmu_tx_t *tx);
615 void dmu_write_zero(objset_t *os, uint64_t object, uint64_t offset, uint64_t siz
616 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/sys/dmu.h 6

617 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
618 dmu_tx_t *tx);
619 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
620 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
621 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
622 dmu_tx_t *tx);
623 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
624 dmu_tx_t *tx);
625 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
626 uint64_t size, struct page *pp, dmu_tx_t *tx);
627 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
628 void dmu_return_arcbuf(struct arc_buf *buf);
629 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
630 dmu_tx_t *tx);
631 int dmu_xuio_init(struct xuio *uio, int niov);
632 void dmu_xuio_fini(struct xuio *uio);
633 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
634 size_t n);
635 int dmu_xuio_cnt(struct xuio *uio);
636 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
637 void dmu_xuio_clear(struct xuio *uio, int i);
638 void xuio_stat_wbuf_copied();
639 void xuio_stat_wbuf_nocopy();

641 extern int zfs_prefetch_disable;

643 /*
644 * Asynchronously try to read in the data.
645 */
646 void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
647 uint64_t len);

649 typedef struct dmu_object_info {
650 /* All sizes are in bytes unless otherwise indicated. */
651 uint32_t doi_data_block_size;
652 uint32_t doi_metadata_block_size;
653 dmu_object_type_t doi_type;
654 dmu_object_type_t doi_bonus_type;
655 uint64_t doi_bonus_size;
656 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
657 uint8_t doi_checksum;
658 uint8_t doi_compress;
659 uint8_t doi_nblkptr;
660 uint8_t doi_pad[4];
661 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
662 uint64_t doi_max_offset;
663 uint64_t doi_fill_count; /* number of non-empty blocks */
664 } dmu_object_info_t;

666 typedef void arc_byteswap_func_t(void *buf, size_t size);

668 typedef struct dmu_object_type_info {
669 dmu_object_byteswap_t ot_byteswap;
670 boolean_t ot_metadata;
671 char *ot_name;
672 } dmu_object_type_info_t;

674 typedef struct dmu_object_byteswap_info {
675 arc_byteswap_func_t *ob_func;
676 char *ob_name;
677 } dmu_object_byteswap_info_t;

679 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
680 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];

682 /*

new/usr/src/uts/common/fs/zfs/sys/dmu.h 7

683 * Get information on a DMU object.
684 *
685 * Return 0 on success or ENOENT if object is not allocated.
686 *
687 * If doi is NULL, just indicates whether the object exists.
688 */
689 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
690 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
691 void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
692 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
693 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
694 /*
695 * Like dmu_object_info_from_db, but faster still when you only care about
696 * the size. This is specifically optimized for zfs_getattr().
697 */
698 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
699 u_longlong_t *nblk512);

701 typedef struct dmu_objset_stats {
702 uint64_t dds_num_clones; /* number of clones of this */
703 uint64_t dds_creation_txg;
704 uint64_t dds_guid;
705 dmu_objset_type_t dds_type;
706 uint8_t dds_is_snapshot;
707 uint8_t dds_inconsistent;
708 char dds_origin[MAXNAMELEN];
709 } dmu_objset_stats_t;

711 /*
712 * Get stats on a dataset.
713 */
714 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);

716 /*
717 * Add entries to the nvlist for all the objset’s properties. See
718 * zfs_prop_table[] and zfs(1m) for details on the properties.
719 */
720 void dmu_objset_stats(objset_t *os, struct nvlist *nv);

722 /*
723 * Get the space usage statistics for statvfs().
724 *
725 * refdbytes is the amount of space "referenced" by this objset.
726 * availbytes is the amount of space available to this objset, taking
727 * into account quotas & reservations, assuming that no other objsets
728 * use the space first. These values correspond to the ’referenced’ and
729 * ’available’ properties, described in the zfs(1m) manpage.
730 *
731 * usedobjs and availobjs are the number of objects currently allocated,
732 * and available.
733 */
734 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
735 uint64_t *usedobjsp, uint64_t *availobjsp);

737 /*
738 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
739 * (Contrast with the ds_guid which is a 64-bit ID that will never
740 * change, so there is a small probability that it will collide.)
741 */
742 uint64_t dmu_objset_fsid_guid(objset_t *os);

744 /*
745 * Get the [cm]time for an objset’s snapshot dir
746 */
747 timestruc_t dmu_objset_snap_cmtime(objset_t *os);

new/usr/src/uts/common/fs/zfs/sys/dmu.h 8

749 int dmu_objset_is_snapshot(objset_t *os);

751 extern struct spa *dmu_objset_spa(objset_t *os);
752 extern struct zilog *dmu_objset_zil(objset_t *os);
753 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
754 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
755 extern void dmu_objset_name(objset_t *os, char *buf);
756 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
757 extern uint64_t dmu_objset_id(objset_t *os);
758 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
759 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
760 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
761 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
762 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
763 int maxlen, boolean_t *conflict);
764 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
765 uint64_t *idp, uint64_t *offp);

767 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
768 void *bonus, uint64_t *userp, uint64_t *groupp);
769 extern void dmu_objset_register_type(dmu_objset_type_t ost,
770 objset_used_cb_t *cb);
771 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
772 extern void *dmu_objset_get_user(objset_t *os);

774 /*
775 * Return the txg number for the given assigned transaction.
776 */
777 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);

779 /*
780 * Synchronous write.
781 * If a parent zio is provided this function initiates a write on the
782 * provided buffer as a child of the parent zio.
783 * In the absence of a parent zio, the write is completed synchronously.
784 * At write completion, blk is filled with the bp of the written block.
785 * Note that while the data covered by this function will be on stable
786 * storage when the write completes this new data does not become a
787 * permanent part of the file until the associated transaction commits.
788 */

790 /*
791 * {zfs,zvol,ztest}_get_done() args
792 */
793 typedef struct zgd {
794 struct zilog *zgd_zilog;
795 struct blkptr *zgd_bp;
796 dmu_buf_t *zgd_db;
797 struct rl *zgd_rl;
798 void *zgd_private;
799 } zgd_t;

801 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
802 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);

804 /*
805 * Find the next hole or data block in file starting at *off
806 * Return found offset in *off. Return ESRCH for end of file.
807 */
808 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
809 uint64_t *off);

811 /*
812 * Initial setup and final teardown.
813 */
814 extern void dmu_init(void);

new/usr/src/uts/common/fs/zfs/sys/dmu.h 9

815 extern void dmu_fini(void);

817 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
818 uint64_t object, uint64_t offset, int len);
819 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
820 dmu_traverse_cb_t cb, void *arg);

822 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
823 struct vnode *vp, offset_t *offp);

825 /* CRC64 table */
826 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
827 extern uint64_t zfs_crc64_table[256];

829 extern int zfs_mdcomp_disable;

831 #ifdef __cplusplus
832 }
833 #endif

835 #endif /* _SYS_DMU_H */

new/usr/src/uts/common/fs/zfs/sys/spa.h 1

**
 32347 Tue Oct 28 11:57:19 2014
new/usr/src/uts/common/fs/zfs/sys/spa.h
Possibility to physically reserve space without writing leaf blocks
**
______unchanged_portion_omitted_

316 /*
317 * Macros to get and set fields in a bp or DVA.
318 */
319 #define DVA_GET_ASIZE(dva) \
320 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
321 #define DVA_SET_ASIZE(dva, x) \
322 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
323 SPA_MINBLOCKSHIFT, 0, x)

325 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
326 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)

328 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32)
329 #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x)

331 #define DVA_GET_OFFSET(dva) \
332 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
333 #define DVA_SET_OFFSET(dva, x) \
334 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)

336 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
337 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)

339 #define BP_GET_LSIZE(bp) \
340 (BP_IS_EMBEDDED(bp) ? \
341 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
342 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
343 #define BP_SET_LSIZE(bp, x) do { \
344 ASSERT(!BP_IS_EMBEDDED(bp)); \
345 BF64_SET_SB((bp)->blk_prop, \
346 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
347 _NOTE(CONSTCOND) } while (0)

349 #define BP_GET_PSIZE(bp) \
350 (BP_IS_EMBEDDED(bp) ? 0 : \
351 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
352 #define BP_SET_PSIZE(bp, x) do { \
353 ASSERT(!BP_IS_EMBEDDED(bp)); \
354 BF64_SET_SB((bp)->blk_prop, \
355 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
356 _NOTE(CONSTCOND) } while (0)

358 #define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 7)
359 #define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 7, x)

361 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1)
362 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x)

364 #define BP_GET_CHECKSUM(bp) \
365 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
366 BF64_GET((bp)->blk_prop, 40, 8))
367 #define BP_SET_CHECKSUM(bp, x) do { \
368 ASSERT(!BP_IS_EMBEDDED(bp)); \
369 BF64_SET((bp)->blk_prop, 40, 8, x); \
370 _NOTE(CONSTCOND) } while (0)

372 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
373 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)

new/usr/src/uts/common/fs/zfs/sys/spa.h 2

375 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
376 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)

378 #define BP_GET_PROP_RESERVATION(bp) BF64_GET((bp)->blk_prop, 61, 1)
379 #define BP_SET_PROP_RESERVATION(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)

381 #endif /* ! codereview */
382 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
383 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)

385 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1)
386 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)

388 #define BP_PHYSICAL_BIRTH(bp) \
389 (BP_IS_EMBEDDED(bp) ? 0 : \
390 (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)

392 #define BP_SET_BIRTH(bp, logical, physical) \
393 { \
394 ASSERT(!BP_IS_EMBEDDED(bp)); \
395 (bp)->blk_birth = (logical); \
396 (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
397 }

399 #define BP_GET_FILL(bp) (BP_IS_EMBEDDED(bp) ? 1 : (bp)->blk_fill)

401 #define BP_GET_ASIZE(bp) \
402 (BP_IS_EMBEDDED(bp) ? 0 : \
403 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
404 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
405 DVA_GET_ASIZE(&(bp)->blk_dva[2]))

407 #define BP_GET_UCSIZE(bp) \
408 ((BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) ? \
409 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))

411 #define BP_GET_NDVAS(bp) \
412 (BP_IS_EMBEDDED(bp) ? 0 : \
413 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
414 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
415 !!DVA_GET_ASIZE(&(bp)->blk_dva[2]))

417 #define BP_COUNT_GANG(bp) \
418 (BP_IS_EMBEDDED(bp) ? 0 : \
419 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
420 DVA_GET_GANG(&(bp)->blk_dva[1]) + \
421 DVA_GET_GANG(&(bp)->blk_dva[2])))

423 #define DVA_EQUAL(dva1, dva2) \
424 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
425 (dva1)->dva_word[0] == (dva2)->dva_word[0])

427 #define BP_EQUAL(bp1, bp2) \
428 (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \
429 (bp1)->blk_birth == (bp2)->blk_birth && \
430 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
431 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
432 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))

434 #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \
435 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
436 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \
437 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \
438 ((zc1).zc_word[3] - (zc2).zc_word[3])))

440 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)

new/usr/src/uts/common/fs/zfs/sys/spa.h 3

442 #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \
443 { \
444 (zcp)->zc_word[0] = w0; \
445 (zcp)->zc_word[1] = w1; \
446 (zcp)->zc_word[2] = w2; \
447 (zcp)->zc_word[3] = w3; \
448 }

450 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
451 #define BP_IS_GANG(bp) \
452 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
453 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \
454 (dva)->dva_word[1] == 0ULL)
455 #define BP_IS_HOLE(bp) \
456 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))

458 /* BP_IS_RAIDZ(bp) assumes no block compression */
459 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
460 BP_GET_PSIZE(bp))

462 #define BP_ZERO(bp) \
463 { \
464 (bp)->blk_dva[0].dva_word[0] = 0; \
465 (bp)->blk_dva[0].dva_word[1] = 0; \
466 (bp)->blk_dva[1].dva_word[0] = 0; \
467 (bp)->blk_dva[1].dva_word[1] = 0; \
468 (bp)->blk_dva[2].dva_word[0] = 0; \
469 (bp)->blk_dva[2].dva_word[1] = 0; \
470 (bp)->blk_prop = 0; \
471 (bp)->blk_pad[0] = 0; \
472 (bp)->blk_pad[1] = 0; \
473 (bp)->blk_phys_birth = 0; \
474 (bp)->blk_birth = 0; \
475 (bp)->blk_fill = 0; \
476 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
477 }

479 #ifdef _BIG_ENDIAN
480 #define ZFS_HOST_BYTEORDER (0ULL)
481 #else
482 #define ZFS_HOST_BYTEORDER (1ULL)
483 #endif

485 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)

487 #define BP_SPRINTF_LEN 320

489 /*
490 * This macro allows code sharing between zfs, libzpool, and mdb.
491 * ’func’ is either snprintf() or mdb_snprintf().
492 * ’ws’ (whitespace) can be ’ ’ for single-line format, ’\n’ for multi-line.
493 */
494 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
495 { \
496 static const char *copyname[] = \
497 { "zero", "single", "double", "triple" }; \
498 int len = 0; \
499 int copies = 0; \
500 \
501 if (bp == NULL) { \
502 len += func(buf + len, size - len, "<NULL>"); \
503 } else if (BP_IS_HOLE(bp)) { \
504 len += func(buf + len, size - len, "<hole>"); \
505 if (bp->blk_birth > 0) { \
506 len += func(buf + len, size - len, \

new/usr/src/uts/common/fs/zfs/sys/spa.h 4

507 " birth=%lluL", \
508 (u_longlong_t)bp->blk_birth); \
509 } \
510 } else if (BP_IS_EMBEDDED(bp)) { \
511 len = func(buf + len, size - len, \
512 "EMBEDDED [L%llu %s] et=%u %s " \
513 "size=%llxL/%llxP birth=%lluL", \
514 (u_longlong_t)BP_GET_LEVEL(bp), \
515 type, \
516 (int)BPE_GET_ETYPE(bp), \
517 compress, \
518 (u_longlong_t)BPE_GET_LSIZE(bp), \
519 (u_longlong_t)BPE_GET_PSIZE(bp), \
520 (u_longlong_t)bp->blk_birth); \
521 } else { \
522 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
523 const dva_t *dva = &bp->blk_dva[d]; \
524 if (DVA_IS_VALID(dva)) \
525 copies++; \
526 len += func(buf + len, size - len, \
527 "DVA[%d]=<%llu:%llx:%llx>%c", d, \
528 (u_longlong_t)DVA_GET_VDEV(dva), \
529 (u_longlong_t)DVA_GET_OFFSET(dva), \
530 (u_longlong_t)DVA_GET_ASIZE(dva), \
531 ws); \
532 } \
533 if (BP_IS_GANG(bp) && \
534 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \
535 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \
536 copies--; \
537 len += func(buf + len, size - len, \
538 "[L%llu %s] %s %s %s %s %s %s%c" \
539 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \
540 "cksum=%llx:%llx:%llx:%llx", \
541 (u_longlong_t)BP_GET_LEVEL(bp), \
542 type, \
543 checksum, \
544 compress, \
545 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
546 BP_IS_GANG(bp) ? "gang" : "contiguous", \
547 BP_GET_DEDUP(bp) ? "dedup" : "unique", \
548 copyname[copies], \
549 ws, \
550 (u_longlong_t)BP_GET_LSIZE(bp), \
551 (u_longlong_t)BP_GET_PSIZE(bp), \
552 (u_longlong_t)bp->blk_birth, \
553 (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \
554 (u_longlong_t)BP_GET_FILL(bp), \
555 ws, \
556 (u_longlong_t)bp->blk_cksum.zc_word[0], \
557 (u_longlong_t)bp->blk_cksum.zc_word[1], \
558 (u_longlong_t)bp->blk_cksum.zc_word[2], \
559 (u_longlong_t)bp->blk_cksum.zc_word[3]); \
560 } \
561 ASSERT(len < size); \
562 }

564 #include <sys/dmu.h>

566 #define BP_GET_BUFC_TYPE(bp) \
567 (((BP_GET_LEVEL(bp) > 0) || (DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))) ? \
568 ARC_BUFC_METADATA : ARC_BUFC_DATA)

570 typedef enum spa_import_type {
571 SPA_IMPORT_EXISTING,
572 SPA_IMPORT_ASSEMBLE

new/usr/src/uts/common/fs/zfs/sys/spa.h 5

573 } spa_import_type_t;

575 /* state manipulation functions */
576 extern int spa_open(const char *pool, spa_t **, void *tag);
577 extern int spa_open_rewind(const char *pool, spa_t **, void *tag,
578 nvlist_t *policy, nvlist_t **config);
579 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
580 size_t buflen);
581 extern int spa_create(const char *pool, nvlist_t *config, nvlist_t *props,
582 nvlist_t *zplprops);
583 extern int spa_import_rootpool(char *devpath, char *devid);
584 extern int spa_import(const char *pool, nvlist_t *config, nvlist_t *props,
585 uint64_t flags);
586 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
587 extern int spa_destroy(char *pool);
588 extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
589 boolean_t hardforce);
590 extern int spa_reset(char *pool);
591 extern void spa_async_request(spa_t *spa, int flag);
592 extern void spa_async_unrequest(spa_t *spa, int flag);
593 extern void spa_async_suspend(spa_t *spa);
594 extern void spa_async_resume(spa_t *spa);
595 extern spa_t *spa_inject_addref(char *pool);
596 extern void spa_inject_delref(spa_t *spa);
597 extern void spa_scan_stat_init(spa_t *spa);
598 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);

600 #define SPA_ASYNC_CONFIG_UPDATE 0x01
601 #define SPA_ASYNC_REMOVE 0x02
602 #define SPA_ASYNC_PROBE 0x04
603 #define SPA_ASYNC_RESILVER_DONE 0x08
604 #define SPA_ASYNC_RESILVER 0x10
605 #define SPA_ASYNC_AUTOEXPAND 0x20
606 #define SPA_ASYNC_REMOVE_DONE 0x40
607 #define SPA_ASYNC_REMOVE_STOP 0x80

609 /*
610 * Controls the behavior of spa_vdev_remove().
611 */
612 #define SPA_REMOVE_UNSPARE 0x01
613 #define SPA_REMOVE_DONE 0x02

615 /* device manipulation */
616 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
617 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
618 int replacing);
619 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
620 int replace_done);
621 extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare);
622 extern boolean_t spa_vdev_remove_active(spa_t *spa);
623 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
624 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
625 extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
626 nvlist_t *props, boolean_t exp);

628 /* spare state (which is global across all pools) */
629 extern void spa_spare_add(vdev_t *vd);
630 extern void spa_spare_remove(vdev_t *vd);
631 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
632 extern void spa_spare_activate(vdev_t *vd);

634 /* L2ARC state (which is global across all pools) */
635 extern void spa_l2cache_add(vdev_t *vd);
636 extern void spa_l2cache_remove(vdev_t *vd);
637 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
638 extern void spa_l2cache_activate(vdev_t *vd);

new/usr/src/uts/common/fs/zfs/sys/spa.h 6

639 extern void spa_l2cache_drop(spa_t *spa);

641 /* scanning */
642 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
643 extern int spa_scan_stop(spa_t *spa);

645 /* spa syncing */
646 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
647 extern void spa_sync_allpools(void);

649 /* spa namespace global mutex */
650 extern kmutex_t spa_namespace_lock;

652 /*
653 * SPA configuration functions in spa_config.c
654 */

656 #define SPA_CONFIG_UPDATE_POOL 0
657 #define SPA_CONFIG_UPDATE_VDEVS 1

659 extern void spa_config_sync(spa_t *, boolean_t, boolean_t);
660 extern void spa_config_load(void);
661 extern nvlist_t *spa_all_configs(uint64_t *);
662 extern void spa_config_set(spa_t *spa, nvlist_t *config);
663 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
664 int getstats);
665 extern void spa_config_update(spa_t *spa, int what);

667 /*
668 * Miscellaneous SPA routines in spa_misc.c
669 */

671 /* Namespace manipulation */
672 extern spa_t *spa_lookup(const char *name);
673 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
674 extern void spa_remove(spa_t *spa);
675 extern spa_t *spa_next(spa_t *prev);

677 /* Refcount functions */
678 extern void spa_open_ref(spa_t *spa, void *tag);
679 extern void spa_close(spa_t *spa, void *tag);
680 extern boolean_t spa_refcount_zero(spa_t *spa);

682 #define SCL_NONE 0x00
683 #define SCL_CONFIG 0x01
684 #define SCL_STATE 0x02
685 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
686 #define SCL_ALLOC 0x08
687 #define SCL_ZIO 0x10
688 #define SCL_FREE 0x20
689 #define SCL_VDEV 0x40
690 #define SCL_LOCKS 7
691 #define SCL_ALL ((1 << SCL_LOCKS) - 1)
692 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)

694 /* Pool configuration locks */
695 extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw);
696 extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw);
697 extern void spa_config_exit(spa_t *spa, int locks, void *tag);
698 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);

700 /* Pool vdev add/remove lock */
701 extern uint64_t spa_vdev_enter(spa_t *spa);
702 extern uint64_t spa_vdev_config_enter(spa_t *spa);
703 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
704 int error, char *tag);

new/usr/src/uts/common/fs/zfs/sys/spa.h 7

705 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);

707 /* Pool vdev state change lock */
708 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
709 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);

711 /* Log state */
712 typedef enum spa_log_state {
713 SPA_LOG_UNKNOWN = 0, /* unknown log state */
714 SPA_LOG_MISSING, /* missing log(s) */
715 SPA_LOG_CLEAR, /* clear the log(s) */
716 SPA_LOG_GOOD, /* log(s) are good */
717 } spa_log_state_t;

719 extern spa_log_state_t spa_get_log_state(spa_t *spa);
720 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
721 extern int spa_offline_log(spa_t *spa);

723 /* Log claim callback */
724 extern void spa_claim_notify(zio_t *zio);

726 /* Accessor functions */
727 extern boolean_t spa_shutting_down(spa_t *spa);
728 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
729 extern boolean_t spa_is_initializing(spa_t *spa);
730 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
731 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
732 extern void spa_altroot(spa_t *, char *, size_t);
733 extern int spa_sync_pass(spa_t *spa);
734 extern char *spa_name(spa_t *spa);
735 extern uint64_t spa_guid(spa_t *spa);
736 extern uint64_t spa_load_guid(spa_t *spa);
737 extern uint64_t spa_last_synced_txg(spa_t *spa);
738 extern uint64_t spa_first_txg(spa_t *spa);
739 extern uint64_t spa_syncing_txg(spa_t *spa);
740 extern uint64_t spa_version(spa_t *spa);
741 extern pool_state_t spa_state(spa_t *spa);
742 extern spa_load_state_t spa_load_state(spa_t *spa);
743 extern uint64_t spa_freeze_txg(spa_t *spa);
744 extern uint64_t spa_get_asize(spa_t *spa, uint64_t lsize);
745 extern uint64_t spa_get_dspace(spa_t *spa);
746 extern uint64_t spa_get_slop_space(spa_t *spa);
747 extern void spa_update_dspace(spa_t *spa);
748 extern uint64_t spa_version(spa_t *spa);
749 extern boolean_t spa_deflate(spa_t *spa);
750 extern metaslab_class_t *spa_normal_class(spa_t *spa);
751 extern metaslab_class_t *spa_log_class(spa_t *spa);
752 extern int spa_max_replication(spa_t *spa);
753 extern int spa_prev_software_version(spa_t *spa);
754 extern int spa_busy(void);
755 extern uint8_t spa_get_failmode(spa_t *spa);
756 extern boolean_t spa_suspended(spa_t *spa);
757 extern uint64_t spa_bootfs(spa_t *spa);
758 extern uint64_t spa_delegation(spa_t *spa);
759 extern objset_t *spa_meta_objset(spa_t *spa);
760 extern uint64_t spa_deadman_synctime(spa_t *spa);

762 /* Miscellaneous support routines */
763 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
764 dmu_tx_t *tx);
765 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
766 extern int spa_rename(const char *oldname, const char *newname);
767 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
768 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
769 extern char *spa_strdup(const char *);
770 extern void spa_strfree(char *);

new/usr/src/uts/common/fs/zfs/sys/spa.h 8

771 extern uint64_t spa_get_random(uint64_t range);
772 extern uint64_t spa_generate_guid(spa_t *spa);
773 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
774 extern void spa_freeze(spa_t *spa);
775 extern int spa_change_guid(spa_t *spa);
776 extern void spa_upgrade(spa_t *spa, uint64_t version);
777 extern void spa_evict_all(void);
778 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
779 boolean_t l2cache);
780 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
781 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
782 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
783 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
784 extern boolean_t spa_has_slogs(spa_t *spa);
785 extern boolean_t spa_is_root(spa_t *spa);
786 extern boolean_t spa_writeable(spa_t *spa);
787 extern boolean_t spa_has_pending_synctask(spa_t *spa);

789 extern int spa_mode(spa_t *spa);
790 extern uint64_t strtonum(const char *str, char **nptr);

792 extern char *spa_his_ievent_table[];

794 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
795 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
796 char *his_buf);
797 extern int spa_history_log(spa_t *spa, const char *his_buf);
798 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
799 extern void spa_history_log_version(spa_t *spa, const char *operation);
800 extern void spa_history_log_internal(spa_t *spa, const char *operation,
801 dmu_tx_t *tx, const char *fmt, ...);
802 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
803 dmu_tx_t *tx, const char *fmt, ...);
804 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
805 dmu_tx_t *tx, const char *fmt, ...);

807 /* error handling */
808 struct zbookmark_phys;
809 extern void spa_log_error(spa_t *spa, zio_t *zio);
810 extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
811 zio_t *zio, uint64_t stateoroffset, uint64_t length);
812 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
813 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd);
814 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
815 extern uint64_t spa_get_errlog_size(spa_t *spa);
816 extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
817 extern void spa_errlog_rotate(spa_t *spa);
818 extern void spa_errlog_drain(spa_t *spa);
819 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
820 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);

822 /* vdev cache */
823 extern void vdev_cache_stat_init(void);
824 extern void vdev_cache_stat_fini(void);

826 /* Initialization and termination */
827 extern void spa_init(int flags);
828 extern void spa_fini(void);
829 extern void spa_boot_init();

831 /* properties */
832 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
833 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
834 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
835 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);

new/usr/src/uts/common/fs/zfs/sys/spa.h 9

837 /* asynchronous event notification */
838 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, const char *name);

840 #ifdef ZFS_DEBUG
841 #define dprintf_bp(bp, fmt, ...) do { \
842 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
843 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
844 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
845 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
846 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
847 } \
848 _NOTE(CONSTCOND) } while (0)
849 #else
850 #define dprintf_bp(bp, fmt, ...)
851 #endif

853 extern boolean_t spa_debug_enabled(spa_t *spa);
854 #define spa_dbgmsg(spa, ...) \
855 { \
856 if (spa_debug_enabled(spa)) \
857 zfs_dbgmsg(__VA_ARGS__); \
858 }

860 extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */

862 #ifdef __cplusplus
863 }
864 #endif

866 #endif /* _SYS_SPA_H */

new/usr/src/uts/common/fs/zfs/sys/zio.h 1

**
 18191 Tue Oct 28 11:57:19 2014
new/usr/src/uts/common/fs/zfs/sys/zio.h
Possibility to physically reserve space without writing leaf blocks
**
______unchanged_portion_omitted_

283 #define ZB_DESTROYED_OBJSET (-1ULL)

285 #define ZB_ROOT_OBJECT (0ULL)
286 #define ZB_ROOT_LEVEL (-1LL)
287 #define ZB_ROOT_BLKID (0ULL)

289 #define ZB_ZIL_OBJECT (0ULL)
290 #define ZB_ZIL_LEVEL (-2LL)

292 #define ZB_IS_ZERO(zb) \
293 ((zb)->zb_objset == 0 && (zb)->zb_object == 0 && \
294 (zb)->zb_level == 0 && (zb)->zb_blkid == 0)
295 #define ZB_IS_ROOT(zb) \
296 ((zb)->zb_object == ZB_ROOT_OBJECT && \
297 (zb)->zb_level == ZB_ROOT_LEVEL && \
298 (zb)->zb_blkid == ZB_ROOT_BLKID)

300 typedef struct zio_prop {
301 enum zio_checksum zp_checksum;
302 enum zio_compress zp_compress;
303 dmu_object_type_t zp_type;
304 uint8_t zp_level;
305 uint8_t zp_copies;
306 boolean_t zp_dedup;
307 boolean_t zp_dedup_verify;
308 boolean_t zp_nopwrite;
309 boolean_t zp_zero_write;
310 #endif /* ! codereview */
311 } zio_prop_t;

313 typedef struct zio_cksum_report zio_cksum_report_t;

315 typedef void zio_cksum_finish_f(zio_cksum_report_t *rep,
316 const void *good_data);
317 typedef void zio_cksum_free_f(void *cbdata, size_t size);

319 struct zio_bad_cksum; /* defined in zio_checksum.h */
320 struct dnode_phys;

322 struct zio_cksum_report {
323 struct zio_cksum_report *zcr_next;
324 nvlist_t *zcr_ereport;
325 nvlist_t *zcr_detector;
326 void *zcr_cbdata;
327 size_t zcr_cbinfo; /* passed to zcr_free() */
328 uint64_t zcr_align;
329 uint64_t zcr_length;
330 zio_cksum_finish_f *zcr_finish;
331 zio_cksum_free_f *zcr_free;

333 /* internal use only */
334 struct zio_bad_cksum *zcr_ckinfo; /* information from failure */
335 };

337 typedef void zio_vsd_cksum_report_f(zio_t *zio, zio_cksum_report_t *zcr,
338 void *arg);

340 zio_vsd_cksum_report_f zio_vsd_default_cksum_report;

new/usr/src/uts/common/fs/zfs/sys/zio.h 2

342 typedef struct zio_vsd_ops {
343 zio_done_func_t *vsd_free;
344 zio_vsd_cksum_report_f *vsd_cksum_report;
345 } zio_vsd_ops_t;

347 typedef struct zio_gang_node {
348 zio_gbh_phys_t *gn_gbh;
349 struct zio_gang_node *gn_child[SPA_GBH_NBLKPTRS];
350 } zio_gang_node_t;

352 typedef zio_t *zio_gang_issue_func_t(zio_t *zio, blkptr_t *bp,
353 zio_gang_node_t *gn, void *data);

355 typedef void zio_transform_func_t(zio_t *zio, void *data, uint64_t size);

357 typedef struct zio_transform {
358 void *zt_orig_data;
359 uint64_t zt_orig_size;
360 uint64_t zt_bufsize;
361 zio_transform_func_t *zt_transform;
362 struct zio_transform *zt_next;
363 } zio_transform_t;

365 typedef int zio_pipe_stage_t(zio_t *zio);

367 /*
368 * The io_reexecute flags are distinct from io_flags because the child must
369 * be able to propagate them to the parent. The normal io_flags are local
370 * to the zio, not protected by any lock, and not modifiable by children;
371 * the reexecute flags are protected by io_lock, modifiable by children,
372 * and always propagated -- even when ZIO_FLAG_DONT_PROPAGATE is set.
373 */
374 #define ZIO_REEXECUTE_NOW 0x01
375 #define ZIO_REEXECUTE_SUSPEND 0x02

377 typedef struct zio_link {
378 zio_t *zl_parent;
379 zio_t *zl_child;
380 list_node_t zl_parent_node;
381 list_node_t zl_child_node;
382 } zio_link_t;

384 struct zio {
385 /* Core information about this I/O */
386 zbookmark_phys_t io_bookmark;
387 zio_prop_t io_prop;
388 zio_type_t io_type;
389 enum zio_child io_child_type;
390 int io_cmd;
391 zio_priority_t io_priority;
392 uint8_t io_reexecute;
393 uint8_t io_state[ZIO_WAIT_TYPES];
394 uint64_t io_txg;
395 spa_t *io_spa;
396 blkptr_t *io_bp;
397 blkptr_t *io_bp_override;
398 blkptr_t io_bp_copy;
399 list_t io_parent_list;
400 list_t io_child_list;
401 zio_link_t *io_walk_link;
402 zio_t *io_logical;
403 zio_transform_t *io_transform_stack;

405 /* Callback info */
406 zio_done_func_t *io_ready;
407 zio_done_func_t *io_physdone;

new/usr/src/uts/common/fs/zfs/sys/zio.h 3

408 zio_done_func_t *io_done;
409 void *io_private;
410 int64_t io_prev_space_delta; /* DMU private */
411 blkptr_t io_bp_orig;

413 /* Data represented by this I/O */
414 void *io_data;
415 void *io_orig_data;
416 uint64_t io_size;
417 uint64_t io_orig_size;

419 /* Stuff for the vdev stack */
420 vdev_t *io_vd;
421 void *io_vsd;
422 const zio_vsd_ops_t *io_vsd_ops;

424 uint64_t io_offset;
425 hrtime_t io_timestamp;
426 avl_node_t io_queue_node;

428 /* Internal pipeline state */
429 enum zio_flag io_flags;
430 enum zio_stage io_stage;
431 enum zio_stage io_pipeline;
432 enum zio_flag io_orig_flags;
433 enum zio_stage io_orig_stage;
434 enum zio_stage io_orig_pipeline;
435 int io_error;
436 int io_child_error[ZIO_CHILD_TYPES];
437 uint64_t io_children[ZIO_CHILD_TYPES][ZIO_WAIT_TYPES];
438 uint64_t io_child_count;
439 uint64_t io_phys_children;
440 uint64_t io_parent_count;
441 uint64_t *io_stall;
442 zio_t *io_gang_leader;
443 zio_gang_node_t *io_gang_tree;
444 void *io_executor;
445 void *io_waiter;
446 kmutex_t io_lock;
447 kcondvar_t io_cv;

449 /* FMA state */
450 zio_cksum_report_t *io_cksum_report;
451 uint64_t io_ena;

453 /* Taskq dispatching state */
454 taskq_ent_t io_tqent;
455 };

457 extern zio_t *zio_null(zio_t *pio, spa_t *spa, vdev_t *vd,
458 zio_done_func_t *done, void *private, enum zio_flag flags);

460 extern zio_t *zio_root(spa_t *spa,
461 zio_done_func_t *done, void *private, enum zio_flag flags);

463 extern zio_t *zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, void *data,
464 uint64_t size, zio_done_func_t *done, void *private,
465 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb);

467 extern zio_t *zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
468 void *data, uint64_t size, const zio_prop_t *zp,
469 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
470 void *private,
471 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb);

473 extern zio_t *zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,

new/usr/src/uts/common/fs/zfs/sys/zio.h 4

474 void *data, uint64_t size, zio_done_func_t *done, void *private,
475 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb);

477 extern void zio_write_override(zio_t *zio, blkptr_t *bp, int copies,
478 boolean_t nopwrite);

480 extern void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp);

482 extern zio_t *zio_claim(zio_t *pio, spa_t *spa, uint64_t txg,
483 const blkptr_t *bp,
484 zio_done_func_t *done, void *private, enum zio_flag flags);

486 extern zio_t *zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
487 zio_done_func_t *done, void *private, enum zio_flag flags);

489 extern zio_t *zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset,
490 uint64_t size, void *data, int checksum,
491 zio_done_func_t *done, void *private, zio_priority_t priority,
492 enum zio_flag flags, boolean_t labels);

494 extern zio_t *zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset,
495 uint64_t size, void *data, int checksum,
496 zio_done_func_t *done, void *private, zio_priority_t priority,
497 enum zio_flag flags, boolean_t labels);

499 extern zio_t *zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg,
500 const blkptr_t *bp, enum zio_flag flags);

502 extern int zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp,
503 blkptr_t *old_bp, uint64_t size, boolean_t use_slog);
504 extern void zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp);
505 extern void zio_flush(zio_t *zio, vdev_t *vd);
506 extern void zio_shrink(zio_t *zio, uint64_t size);

508 extern int zio_wait(zio_t *zio);
509 extern void zio_nowait(zio_t *zio);
510 extern void zio_execute(zio_t *zio);
511 extern void zio_interrupt(zio_t *zio);

513 extern zio_t *zio_walk_parents(zio_t *cio);
514 extern zio_t *zio_walk_children(zio_t *pio);
515 extern zio_t *zio_unique_parent(zio_t *cio);
516 extern void zio_add_child(zio_t *pio, zio_t *cio);

518 extern void *zio_buf_alloc(size_t size);
519 extern void zio_buf_free(void *buf, size_t size);
520 extern void *zio_data_buf_alloc(size_t size);
521 extern void zio_data_buf_free(void *buf, size_t size);

523 extern void zio_resubmit_stage_async(void *);

525 extern zio_t *zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd,
526 uint64_t offset, void *data, uint64_t size, int type,
527 zio_priority_t priority, enum zio_flag flags,
528 zio_done_func_t *done, void *private);

530 extern zio_t *zio_vdev_delegated_io(vdev_t *vd, uint64_t offset,
531 void *data, uint64_t size, int type, zio_priority_t priority,
532 enum zio_flag flags, zio_done_func_t *done, void *private);

534 extern void zio_vdev_io_bypass(zio_t *zio);
535 extern void zio_vdev_io_reissue(zio_t *zio);
536 extern void zio_vdev_io_redone(zio_t *zio);

538 extern void zio_checksum_verified(zio_t *zio);
539 extern int zio_worst_error(int e1, int e2);

new/usr/src/uts/common/fs/zfs/sys/zio.h 5

541 extern enum zio_checksum zio_checksum_select(enum zio_checksum child,
542 enum zio_checksum parent);
543 extern enum zio_checksum zio_checksum_dedup_select(spa_t *spa,
544 enum zio_checksum child, enum zio_checksum parent);
545 extern enum zio_compress zio_compress_select(enum zio_compress child,
546 enum zio_compress parent);

548 extern void zio_suspend(spa_t *spa, zio_t *zio);
549 extern int zio_resume(spa_t *spa);
550 extern void zio_resume_wait(spa_t *spa);

552 /*
553 * Initial setup and teardown.
554 */
555 extern void zio_init(void);
556 extern void zio_fini(void);

558 /*
559 * Fault injection
560 */
561 struct zinject_record;
562 extern uint32_t zio_injection_enabled;
563 extern int zio_inject_fault(char *name, int flags, int *id,
564 struct zinject_record *record);
565 extern int zio_inject_list_next(int *id, char *name, size_t buflen,
566 struct zinject_record *record);
567 extern int zio_clear_fault(int id);
568 extern void zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type);
569 extern int zio_handle_fault_injection(zio_t *zio, int error);
570 extern int zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error);
571 extern int zio_handle_label_injection(zio_t *zio, int error);
572 extern void zio_handle_ignored_writes(zio_t *zio);
573 extern uint64_t zio_handle_io_delay(zio_t *zio);

575 /*
576 * Checksum ereport functions
577 */
578 extern void zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, struct zio *zio,
579 uint64_t offset, uint64_t length, void *arg, struct zio_bad_cksum *info);
580 extern void zfs_ereport_finish_checksum(zio_cksum_report_t *report,
581 const void *good_data, const void *bad_data, boolean_t drop_if_identical);

583 extern void zfs_ereport_send_interim_checksum(zio_cksum_report_t *report);
584 extern void zfs_ereport_free_checksum(zio_cksum_report_t *report);

586 /* If we have the good data in hand, this function can be used */
587 extern void zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
588 struct zio *zio, uint64_t offset, uint64_t length,
589 const void *good_data, const void *bad_data, struct zio_bad_cksum *info);

591 /* Called from spa_sync(), but primarily an injection handler */
592 extern void spa_handle_ignored_writes(spa_t *spa);

594 /* zbookmark_phys functions */
595 boolean_t zbookmark_is_before(const struct dnode_phys *dnp,
596 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2);

598 #ifdef __cplusplus
599 }
600 #endif

602 #endif /* _ZIO_H */

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 1

**
 135331 Tue Oct 28 11:57:20 2014
new/usr/src/uts/common/fs/zfs/zfs_vnops.c
Possibility to physically reserve space without writing leaf blocks
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 */

27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */

30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 2

62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/zfeature.h>
78 #endif /* ! codereview */
79 #include <sys/dnlc.h>
80 #include <sys/zfs_rlock.h>
81 #include <sys/extdirent.h>
82 #include <sys/kidmap.h>
83 #include <sys/cred.h>
84 #include <sys/attr.h>

86 /*
87 * Programming rules.
88 *
89 * Each vnode op performs some logical unit of work. To do this, the ZPL must
90 * properly lock its in-core state, create a DMU transaction, do the work,
91 * record this work in the intent log (ZIL), commit the DMU transaction,
92 * and wait for the intent log to commit if it is a synchronous operation.
93 * Moreover, the vnode ops must work in both normal and log replay context.
94 * The ordering of events is important to avoid deadlocks and references
95 * to freed memory. The example below illustrates the following Big Rules:
96 *
97 * (1) A check must be made in each zfs thread for a mounted file system.
98 * This is done avoiding races using ZFS_ENTER(zfsvfs).
99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
101 * can return EIO from the calling function.
102 *
103 * (2) VN_RELE() should always be the last thing except for zil_commit()
104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
105 * First, if it’s the last reference, the vnode/znode
106 * can be freed, so the zp may point to freed memory. Second, the last
107 * reference will call zfs_zinactive(), which may induce a lot of work --
108 * pushing cached pages (which acquires range locks) and syncing out
109 * cached atime changes. Third, zfs_zinactive() may require a new tx,
110 * which could deadlock the system if you were already holding one.
111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
112 *
113 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
114 * as they can span dmu_tx_assign() calls.
115 *
116 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
117 * dmu_tx_assign(). This is critical because we don’t want to block
118 * while holding locks.
119 *
120 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
121 * reduces lock contention and CPU usage when we must wait (note that if
122 * throughput is constrained by the storage, nearly every transaction
123 * must wait).
124 *
125 * Note, in particular, that if a lock is sometimes acquired before
126 * the tx assigns, and sometimes after (e.g. z_lock), then failing
127 * to use a non-blocking assign can deadlock the system. The scenario:

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 3

128 *
129 * Thread A has grabbed a lock before calling dmu_tx_assign().
130 * Thread B is in an already-assigned tx, and blocks for this lock.
131 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
132 * forever, because the previous txg can’t quiesce until B’s tx commits.
133 *
134 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
135 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
136 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
137 * to indicate that this operation has already called dmu_tx_wait().
138 * This will ensure that we don’t retry forever, waiting a short bit
139 * each time.
140 *
141 * (5) If the operation succeeded, generate the intent log entry for it
142 * before dropping locks. This ensures that the ordering of events
143 * in the intent log matches the order in which they actually occurred.
144 * During ZIL replay the zfs_log_* functions will update the sequence
145 * number to indicate the zil transaction has replayed.
146 *
147 * (6) At the end of each vnode op, the DMU tx must always commit,
148 * regardless of whether there were any errors.
149 *
150 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
151 * to ensure that synchronous semantics are provided when necessary.
152 *
153 * In general, this is how things should be ordered in each vnode op:
154 *
155 * ZFS_ENTER(zfsvfs); // exit if unmounted
156 * top:
157 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
158 * rw_enter(...); // grab any other locks you need
159 * tx = dmu_tx_create(...); // get DMU tx
160 * dmu_tx_hold_*(); // hold each object you might modify
161 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
162 * if (error) {
163 * rw_exit(...); // drop locks
164 * zfs_dirent_unlock(dl); // unlock directory entry
165 * VN_RELE(...); // release held vnodes
166 * if (error == ERESTART) {
167 * waited = B_TRUE;
168 * dmu_tx_wait(tx);
169 * dmu_tx_abort(tx);
170 * goto top;
171 * }
172 * dmu_tx_abort(tx); // abort DMU tx
173 * ZFS_EXIT(zfsvfs); // finished in zfs
174 * return (error); // really out of space
175 * }
176 * error = do_real_work(); // do whatever this VOP does
177 * if (error == 0)
178 * zfs_log_*(...); // on success, make ZIL entry
179 * dmu_tx_commit(tx); // commit DMU tx -- error or not
180 * rw_exit(...); // drop locks
181 * zfs_dirent_unlock(dl); // unlock directory entry
182 * VN_RELE(...); // release held vnodes
183 * zil_commit(zilog, foid); // synchronous when necessary
184 * ZFS_EXIT(zfsvfs); // finished in zfs
185 * return (error); // done, report error
186 */

188 /* ARGSUSED */
189 static int
190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
191 {
192 znode_t *zp = VTOZ(*vpp);
193 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 4

195 ZFS_ENTER(zfsvfs);
196 ZFS_VERIFY_ZP(zp);

198 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 ((flag & FAPPEND) == 0)) {
200 ZFS_EXIT(zfsvfs);
201 return (SET_ERROR(EPERM));
202 }

204 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
205 ZTOV(zp)->v_type == VREG &&
206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
207 if (fs_vscan(*vpp, cr, 0) != 0) {
208 ZFS_EXIT(zfsvfs);
209 return (SET_ERROR(EACCES));
210 }
211 }

213 /* Keep a count of the synchronous opens in the znode */
214 if (flag & (FSYNC | FDSYNC))
215 atomic_inc_32(&zp->z_sync_cnt);

217 ZFS_EXIT(zfsvfs);
218 return (0);
219 }

221 /* ARGSUSED */
222 static int
223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
224 caller_context_t *ct)
225 {
226 znode_t *zp = VTOZ(vp);
227 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

229 /*
230 * Clean up any locks held by this process on the vp.
231 */
232 cleanlocks(vp, ddi_get_pid(), 0);
233 cleanshares(vp, ddi_get_pid());

235 ZFS_ENTER(zfsvfs);
236 ZFS_VERIFY_ZP(zp);

238 /* Decrement the synchronous opens in the znode */
239 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
240 atomic_dec_32(&zp->z_sync_cnt);

242 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
243 ZTOV(zp)->v_type == VREG &&
244 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
245 VERIFY(fs_vscan(vp, cr, 1) == 0);

247 ZFS_EXIT(zfsvfs);
248 return (0);
249 }

251 /*
252 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
253 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
254 */
255 static int
256 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
257 {
258 znode_t *zp = VTOZ(vp);
259 uint64_t noff = (uint64_t)*off; /* new offset */

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 5

260 uint64_t file_sz;
261 int error;
262 boolean_t hole;

264 file_sz = zp->z_size;
265 if (noff >= file_sz) {
266 return (SET_ERROR(ENXIO));
267 }

269 if (cmd == _FIO_SEEK_HOLE)
270 hole = B_TRUE;
271 else
272 hole = B_FALSE;

274 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);

276 if (error == ESRCH)
277 return (SET_ERROR(ENXIO));

279 /*
280 * We could find a hole that begins after the logical end-of-file,
281 * because dmu_offset_next() only works on whole blocks. If the
282 * EOF falls mid-block, then indicate that the "virtual hole"
283 * at the end of the file begins at the logical EOF, rather than
284 * at the end of the last block.
285 */
286 if (noff > file_sz) {
287 ASSERT(hole);
288 noff = file_sz;
289 }

291 if (noff < *off)
292 return (error);
293 *off = noff;
294 return (error);
295 }

298 static int zfs_zero_write(vnode_t *vp, uint64_t size, cred_t *cr,
299 caller_context_t *ct);

301 #endif /* ! codereview */
302 /* ARGSUSED */
303 static int
304 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
305 int *rvalp, caller_context_t *ct)
306 {
307 offset_t off;
308 int error;
309 zfsvfs_t *zfsvfs;
310 znode_t *zp;
311 uint64_t size;
312 #endif /* ! codereview */

314 switch (com) {
315 case _FIOFFS:
316 return (zfs_sync(vp->v_vfsp, 0, cred));

318 /*
319 * The following two ioctls are used by bfu. Faking out,
320 * necessary to avoid bfu errors.
321 */
322 case _FIOGDIO:
323 case _FIOSDIO:
324 return (0);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 6

326 case _FIO_SEEK_DATA:
327 case _FIO_SEEK_HOLE:
328 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
329 return (SET_ERROR(EFAULT));

331 zp = VTOZ(vp);
332 zfsvfs = zp->z_zfsvfs;
333 ZFS_ENTER(zfsvfs);
334 ZFS_VERIFY_ZP(zp);

336 /* offset parameter is in/out */
337 error = zfs_holey(vp, com, &off);
338 ZFS_EXIT(zfsvfs);
339 if (error)
340 return (error);
341 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
342 return (SET_ERROR(EFAULT));
343 return (0);
344 case _FIO_RESERVE_SPACE:
345 if (ddi_copyin((void *)data, &size, sizeof (size), flag))
346 return (EFAULT);
347 error = zfs_zero_write(vp, size, cred, ct);
348 return (error);
349 #endif /* ! codereview */
350 }
351 return (SET_ERROR(ENOTTY));
352 }

354 /*
355 * Utility functions to map and unmap a single physical page. These
356 * are used to manage the mappable copies of ZFS file data, and therefore
357 * do not update ref/mod bits.
358 */
359 caddr_t
360 zfs_map_page(page_t *pp, enum seg_rw rw)
361 {
362 if (kpm_enable)
363 return (hat_kpm_mapin(pp, 0));
364 ASSERT(rw == S_READ || rw == S_WRITE);
365 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
366 (caddr_t)-1));
367 }

369 void
370 zfs_unmap_page(page_t *pp, caddr_t addr)
371 {
372 if (kpm_enable) {
373 hat_kpm_mapout(pp, 0, addr);
374 } else {
375 ppmapout(addr);
376 }
377 }

379 /*
380 * When a file is memory mapped, we must keep the IO data synchronized
381 * between the DMU cache and the memory mapped pages. What this means:
382 *
383 * On Write: If we find a memory mapped page, we write to *both*
384 * the page and the dmu buffer.
385 */
386 static void
387 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
388 {
389 int64_t off;

391 off = start & PAGEOFFSET;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 7

392 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
393 page_t *pp;
394 uint64_t nbytes = MIN(PAGESIZE - off, len);

396 if (pp = page_lookup(vp, start, SE_SHARED)) {
397 caddr_t va;

399 va = zfs_map_page(pp, S_WRITE);
400 (void) dmu_read(os, oid, start+off, nbytes, va+off,
401 DMU_READ_PREFETCH);
402 zfs_unmap_page(pp, va);
403 page_unlock(pp);
404 }
405 len -= nbytes;
406 off = 0;
407 }
408 }

410 /*
411 * When a file is memory mapped, we must keep the IO data synchronized
412 * between the DMU cache and the memory mapped pages. What this means:
413 *
414 * On Read: We "read" preferentially from memory mapped pages,
415 * else we default from the dmu buffer.
416 *
417 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
418 * the file is memory mapped.
419 */
420 static int
421 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
422 {
423 znode_t *zp = VTOZ(vp);
424 int64_t start, off;
425 int len = nbytes;
426 int error = 0;

428 start = uio->uio_loffset;
429 off = start & PAGEOFFSET;
430 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
431 page_t *pp;
432 uint64_t bytes = MIN(PAGESIZE - off, len);

434 if (pp = page_lookup(vp, start, SE_SHARED)) {
435 caddr_t va;

437 va = zfs_map_page(pp, S_READ);
438 error = uiomove(va + off, bytes, UIO_READ, uio);
439 zfs_unmap_page(pp, va);
440 page_unlock(pp);
441 } else {
442 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
443 uio, bytes);
444 }
445 len -= bytes;
446 off = 0;
447 if (error)
448 break;
449 }
450 return (error);
451 }

453 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */

455 /*
456 * Read bytes from specified file into supplied buffer.
457 *

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 8

458 * IN: vp - vnode of file to be read from.
459 * uio - structure supplying read location, range info,
460 * and return buffer.
461 * ioflag - SYNC flags; used to provide FRSYNC semantics.
462 * cr - credentials of caller.
463 * ct - caller context
464 *
465 * OUT: uio - updated offset and range, buffer filled.
466 *
467 * RETURN: 0 on success, error code on failure.
468 *
469 * Side Effects:
470 * vp - atime updated if byte count > 0
471 */
472 /* ARGSUSED */
473 static int
474 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
475 {
476 znode_t *zp = VTOZ(vp);
477 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
478 ssize_t n, nbytes;
479 int error = 0;
480 rl_t *rl;
481 xuio_t *xuio = NULL;

483 ZFS_ENTER(zfsvfs);
484 ZFS_VERIFY_ZP(zp);

486 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
487 ZFS_EXIT(zfsvfs);
488 return (SET_ERROR(EACCES));
489 }

491 /*
492 * Validate file offset
493 */
494 if (uio->uio_loffset < (offset_t)0) {
495 ZFS_EXIT(zfsvfs);
496 return (SET_ERROR(EINVAL));
497 }

499 /*
500 * Fasttrack empty reads
501 */
502 if (uio->uio_resid == 0) {
503 ZFS_EXIT(zfsvfs);
504 return (0);
505 }

507 /*
508 * Check for mandatory locks
509 */
510 if (MANDMODE(zp->z_mode)) {
511 if (error = chklock(vp, FREAD,
512 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
513 ZFS_EXIT(zfsvfs);
514 return (error);
515 }
516 }

518 /*
519 * If we’re in FRSYNC mode, sync out this znode before reading it.
520 */
521 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
522 zil_commit(zfsvfs->z_log, zp->z_id);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 9

524 /*
525 * Lock the range against changes.
526 */
527 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);

529 /*
530 * If we are reading past end-of-file we can skip
531 * to the end; but we might still need to set atime.
532 */
533 if (uio->uio_loffset >= zp->z_size) {
534 error = 0;
535 goto out;
536 }

538 ASSERT(uio->uio_loffset < zp->z_size);
539 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);

541 if ((uio->uio_extflg == UIO_XUIO) &&
542 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
543 int nblk;
544 int blksz = zp->z_blksz;
545 uint64_t offset = uio->uio_loffset;

547 xuio = (xuio_t *)uio;
548 if ((ISP2(blksz))) {
549 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
550 blksz)) / blksz;
551 } else {
552 ASSERT(offset + n <= blksz);
553 nblk = 1;
554 }
555 (void) dmu_xuio_init(xuio, nblk);

557 if (vn_has_cached_data(vp)) {
558 /*
559 * For simplicity, we always allocate a full buffer
560 * even if we only expect to read a portion of a block.
561 */
562 while (--nblk >= 0) {
563 (void) dmu_xuio_add(xuio,
564 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
565 blksz), 0, blksz);
566 }
567 }
568 }

570 while (n > 0) {
571 nbytes = MIN(n, zfs_read_chunk_size -
572 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));

574 if (vn_has_cached_data(vp)) {
575 error = mappedread(vp, nbytes, uio);
576 } else {
577 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
578 uio, nbytes);
579 }
580 if (error) {
581 /* convert checksum errors into IO errors */
582 if (error == ECKSUM)
583 error = SET_ERROR(EIO);
584 break;
585 }

587 n -= nbytes;
588 }
589 out:

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 10

590 zfs_range_unlock(rl);

592 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
593 ZFS_EXIT(zfsvfs);
594 return (error);
595 }

597 /*
598 * Write the bytes to a file.
599 *
600 * IN: vp - vnode of file to be written to.
601 * uio - structure supplying write location, range info,
602 * and data buffer.
603 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
604 * set if in append mode.
605 * cr - credentials of caller.
606 * ct - caller context (NFS/CIFS fem monitor only)
607 *
608 * OUT: uio - updated offset and range.
609 *
610 * RETURN: 0 on success, error code on failure.
611 *
612 * Timestamps:
613 * vp - ctime|mtime updated if byte count > 0
614 */

616 /* ARGSUSED */
617 static int
618 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
619 {
620 znode_t *zp = VTOZ(vp);
621 rlim64_t limit = uio->uio_llimit;
622 ssize_t start_resid = uio->uio_resid;
623 ssize_t tx_bytes;
624 uint64_t end_size;
625 dmu_tx_t *tx;
626 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
627 zilog_t *zilog;
628 offset_t woff;
629 ssize_t n, nbytes;
630 rl_t *rl;
631 int max_blksz = zfsvfs->z_max_blksz;
632 int error = 0;
633 arc_buf_t *abuf;
634 iovec_t *aiov = NULL;
635 xuio_t *xuio = NULL;
636 int i_iov = 0;
637 int iovcnt = uio->uio_iovcnt;
638 iovec_t *iovp = uio->uio_iov;
639 int write_eof;
640 int count = 0;
641 sa_bulk_attr_t bulk[4];
642 uint64_t mtime[2], ctime[2];

644 /*
645 * Fasttrack empty write
646 */
647 n = start_resid;
648 if (n == 0)
649 return (0);

651 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
652 limit = MAXOFFSET_T;

654 ZFS_ENTER(zfsvfs);
655 ZFS_VERIFY_ZP(zp);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 11

657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
660 &zp->z_size, 8);
661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
662 &zp->z_pflags, 8);

664 /*
665 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
666 * callers might not be able to detect properly that we are read-only,
667 * so check it explicitly here.
668 */
669 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
670 ZFS_EXIT(zfsvfs);
671 return (SET_ERROR(EROFS));
672 }

674 /*
675 * If immutable or not appending then return EPERM
676 */
677 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
678 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
679 (uio->uio_loffset < zp->z_size))) {
680 ZFS_EXIT(zfsvfs);
681 return (SET_ERROR(EPERM));
682 }

684 zilog = zfsvfs->z_log;

686 /*
687 * Validate file offset
688 */
689 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
690 if (woff < 0) {
691 ZFS_EXIT(zfsvfs);
692 return (SET_ERROR(EINVAL));
693 }

695 /*
696 * Check for mandatory locks before calling zfs_range_lock()
697 * in order to prevent a deadlock with locks set via fcntl().
698 */
699 if (MANDMODE((mode_t)zp->z_mode) &&
700 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
701 ZFS_EXIT(zfsvfs);
702 return (error);
703 }

705 /*
706 * Pre-fault the pages to ensure slow (eg NFS) pages
707 * don’t hold up txg.
708 * Skip this if uio contains loaned arc_buf.
709 */
710 if ((uio->uio_extflg == UIO_XUIO) &&
711 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
712 xuio = (xuio_t *)uio;
713 else
714 uio_prefaultpages(MIN(n, max_blksz), uio);

716 /*
717 * If in append mode, set the io offset pointer to eof.
718 */
719 if (ioflag & FAPPEND) {
720 /*
721 * Obtain an appending range lock to guarantee file append

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 12

722 * semantics. We reset the write offset once we have the lock.
723 */
724 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
725 woff = rl->r_off;
726 if (rl->r_len == UINT64_MAX) {
727 /*
728 * We overlocked the file because this write will cause
729 * the file block size to increase.
730 * Note that zp_size cannot change with this lock held.
731 */
732 woff = zp->z_size;
733 }
734 uio->uio_loffset = woff;
735 } else {
736 /*
737 * Note that if the file block size will change as a result of
738 * this write, then this range lock will lock the entire file
739 * so that we can re-write the block safely.
740 */
741 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
742 }

744 if (woff >= limit) {
745 zfs_range_unlock(rl);
746 ZFS_EXIT(zfsvfs);
747 return (SET_ERROR(EFBIG));
748 }

750 if ((woff + n) > limit || woff > (limit - n))
751 n = limit - woff;

753 /* Will this write extend the file length? */
754 write_eof = (woff + n > zp->z_size);

756 end_size = MAX(zp->z_size, woff + n);

758 /*
759 * Write the file in reasonable size chunks. Each chunk is written
760 * in a separate transaction; this keeps the intent log records small
761 * and allows us to do more fine-grained space accounting.
762 */
763 while (n > 0) {
764 abuf = NULL;
765 woff = uio->uio_loffset;
766 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
767 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
768 if (abuf != NULL)
769 dmu_return_arcbuf(abuf);
770 error = SET_ERROR(EDQUOT);
771 break;
772 }

774 if (xuio && abuf == NULL) {
775 ASSERT(i_iov < iovcnt);
776 aiov = &iovp[i_iov];
777 abuf = dmu_xuio_arcbuf(xuio, i_iov);
778 dmu_xuio_clear(xuio, i_iov);
779 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
780 iovec_t *, aiov, arc_buf_t *, abuf);
781 ASSERT((aiov->iov_base == abuf->b_data) ||
782 ((char *)aiov->iov_base - (char *)abuf->b_data +
783 aiov->iov_len == arc_buf_size(abuf)));
784 i_iov++;
785 } else if (abuf == NULL && n >= max_blksz &&
786 woff >= zp->z_size &&
787 P2PHASE(woff, max_blksz) == 0 &&

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 13

788 zp->z_blksz == max_blksz) {
789 /*
790 * This write covers a full block. "Borrow" a buffer
791 * from the dmu so that we can fill it before we enter
792 * a transaction. This avoids the possibility of
793 * holding up the transaction if the data copy hangs
794 * up on a pagefault (e.g., from an NFS server mapping).
795 */
796 size_t cbytes;

798 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
799 max_blksz);
800 ASSERT(abuf != NULL);
801 ASSERT(arc_buf_size(abuf) == max_blksz);
802 if (error = uiocopy(abuf->b_data, max_blksz,
803 UIO_WRITE, uio, &cbytes)) {
804 dmu_return_arcbuf(abuf);
805 break;
806 }
807 ASSERT(cbytes == max_blksz);
808 }

810 /*
811 * Start a transaction.
812 */
813 tx = dmu_tx_create(zfsvfs->z_os);
814 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
815 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
816 zfs_sa_upgrade_txholds(tx, zp);
817 error = dmu_tx_assign(tx, TXG_WAIT);
818 if (error) {
819 dmu_tx_abort(tx);
820 if (abuf != NULL)
821 dmu_return_arcbuf(abuf);
822 break;
823 }

825 /*
826 * If zfs_range_lock() over-locked we grow the blocksize
827 * and then reduce the lock range. This will only happen
828 * on the first iteration since zfs_range_reduce() will
829 * shrink down r_len to the appropriate size.
830 */
831 if (rl->r_len == UINT64_MAX) {
832 uint64_t new_blksz;

834 if (zp->z_blksz > max_blksz) {
835 ASSERT(!ISP2(zp->z_blksz));
836 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
837 } else {
838 new_blksz = MIN(end_size, max_blksz);
839 }
840 zfs_grow_blocksize(zp, new_blksz, tx);
841 zfs_range_reduce(rl, woff, n);
842 }

844 /*
845 * XXX - should we really limit each write to z_max_blksz?
846 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
847 */
848 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));

850 if (abuf == NULL) {
851 tx_bytes = uio->uio_resid;
852 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
853 uio, nbytes, tx);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 14

854 tx_bytes -= uio->uio_resid;
855 } else {
856 tx_bytes = nbytes;
857 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
858 /*
859 * If this is not a full block write, but we are
860 * extending the file past EOF and this data starts
861 * block-aligned, use assign_arcbuf(). Otherwise,
862 * write via dmu_write().
863 */
864 if (tx_bytes < max_blksz && (!write_eof ||
865 aiov->iov_base != abuf->b_data)) {
866 ASSERT(xuio);
867 dmu_write(zfsvfs->z_os, zp->z_id, woff,
868 aiov->iov_len, aiov->iov_base, tx);
869 dmu_return_arcbuf(abuf);
870 xuio_stat_wbuf_copied();
871 } else {
872 ASSERT(xuio || tx_bytes == max_blksz);
873 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
874 woff, abuf, tx);
875 }
876 ASSERT(tx_bytes <= uio->uio_resid);
877 uioskip(uio, tx_bytes);
878 }
879 if (tx_bytes && vn_has_cached_data(vp)) {
880 update_pages(vp, woff,
881 tx_bytes, zfsvfs->z_os, zp->z_id);
882 }

884 /*
885 * If we made no progress, we’re done. If we made even
886 * partial progress, update the znode and ZIL accordingly.
887 */
888 if (tx_bytes == 0) {
889 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
890 (void *)&zp->z_size, sizeof (uint64_t), tx);
891 dmu_tx_commit(tx);
892 ASSERT(error != 0);
893 break;
894 }

896 /*
897 * Clear Set-UID/Set-GID bits on successful write if not
898 * privileged and at least one of the excute bits is set.
899 *
900 * It would be nice to to this after all writes have
901 * been done, but that would still expose the ISUID/ISGID
902 * to another app after the partial write is committed.
903 *
904 * Note: we don’t call zfs_fuid_map_id() here because
905 * user 0 is not an ephemeral uid.
906 */
907 mutex_enter(&zp->z_acl_lock);
908 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
909 (S_IXUSR >> 6))) != 0 &&
910 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
911 secpolicy_vnode_setid_retain(cr,
912 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
913 uint64_t newmode;
914 zp->z_mode &= ~(S_ISUID | S_ISGID);
915 newmode = zp->z_mode;
916 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
917 (void *)&newmode, sizeof (uint64_t), tx);
918 }
919 mutex_exit(&zp->z_acl_lock);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 15

921 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
922 B_TRUE);

924 /*
925 * Update the file size (zp_size) if it has changed;
926 * account for possible concurrent updates.
927 */
928 while ((end_size = zp->z_size) < uio->uio_loffset) {
929 (void) atomic_cas_64(&zp->z_size, end_size,
930 uio->uio_loffset);
931 ASSERT(error == 0);
932 }
933 /*
934 * If we are replaying and eof is non zero then force
935 * the file size to the specified eof. Note, there’s no
936 * concurrency during replay.
937 */
938 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
939 zp->z_size = zfsvfs->z_replay_eof;

941 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);

943 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
944 dmu_tx_commit(tx);

946 if (error != 0)
947 break;
948 ASSERT(tx_bytes == nbytes);
949 n -= nbytes;

951 if (!xuio && n > 0)
952 uio_prefaultpages(MIN(n, max_blksz), uio);
953 }

955 zfs_range_unlock(rl);

957 /*
958 * If we’re in replay mode, or we made no progress, return error.
959 * Otherwise, it’s at least a partial write, so it’s successful.
960 */
961 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
962 ZFS_EXIT(zfsvfs);
963 return (error);
964 }

966 if (ioflag & (FSYNC | FDSYNC) ||
967 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
968 zil_commit(zilog, zp->z_id);

970 ZFS_EXIT(zfsvfs);
971 return (0);
972 }

974 #define ZFS_RESERVE_CHUNK (2 * 1024 * 1024)
975 /* ARGSUSED */
976 static int
977 zfs_zero_write(vnode_t *vp, uint64_t size, cred_t *cr, caller_context_t *ct)
978 {
979 znode_t *zp = VTOZ(vp);
980 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
981 int count = 0;
982 sa_bulk_attr_t bulk[4];
983 uint64_t mtime[2], ctime[2];
984 rl_t *rl;
985 int error = 0;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 16

986 dmu_tx_t *tx = NULL;
987 uint64_t end_size;
988 uint64_t pos = 0;

990 if (zp->z_size > 0)
991 return (EFBIG);
992 if (size == 0)
993 return (0);

995 ZFS_ENTER(zfsvfs);
996 ZFS_VERIFY_ZP(zp);

998 if (!spa_feature_is_enabled(zfsvfs->z_os->os_spa,
999 SPA_FEATURE_SPACE_RESERVATION))

1000 {
1001 ZFS_EXIT(zfsvfs);
1002 return (ENOTSUP);
1003 }

1005 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1006 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1007 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1008 &zp->z_size, 8);
1009 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1010 &zp->z_pflags, 8);

1012 /*
1013 * If immutable or not appending then return EPERM
1014 */
1015 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY))) {
1016 ZFS_EXIT(zfsvfs);
1017 return (EPERM);
1018 }

1020 rl = zfs_range_lock(zp, 0, size, RL_WRITER);

1022 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
1023 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
1024 error = EDQUOT;
1025 goto out;
1026 }

1028 while (pos < size) {
1029 uint64_t length = size - pos;
1030 length = MIN(length, ZFS_RESERVE_CHUNK);
1031 again:
1032 tx = dmu_tx_create(zfsvfs->z_os);
1033 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1034 dmu_tx_hold_write(tx, zp->z_id, pos, length);
1035 zfs_sa_upgrade_txholds(tx, zp);
1036 error = dmu_tx_assign(tx, TXG_NOWAIT);
1037 if (error) {
1038 if (error == ERESTART) {
1039 dmu_tx_wait(tx);
1040 dmu_tx_abort(tx);
1041 goto again;
1042 }
1043 dmu_tx_abort(tx);
1044 goto out;
1045 }

1047 if (pos == 0)
1048 zfs_grow_blocksize(zp, MIN(size, zfsvfs->z_max_blksz), t
1049 dmu_write_zero(zfsvfs->z_os, zp->z_id, pos, length, tx);

1051 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TR

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 17

1053 pos += length;
1054 while ((end_size = zp->z_size) < pos)
1055 (void) atomic_cas_64(&zp->z_size, end_size, pos);

1057 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);

1059 dmu_tx_commit(tx);
1060 if (error)
1061 goto out;
1062 }
1063 out:
1064 zfs_range_unlock(rl);
1065 ZFS_EXIT(zfsvfs);

1067 return (error);
1068 }

1070 #endif /* ! codereview */
1071 void
1072 zfs_get_done(zgd_t *zgd, int error)
1073 {
1074 znode_t *zp = zgd->zgd_private;
1075 objset_t *os = zp->z_zfsvfs->z_os;

1077 if (zgd->zgd_db)
1078 dmu_buf_rele(zgd->zgd_db, zgd);

1080 zfs_range_unlock(zgd->zgd_rl);

1082 /*
1083 * Release the vnode asynchronously as we currently have the
1084 * txg stopped from syncing.
1085 */
1086 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));

1088 if (error == 0 && zgd->zgd_bp)
1089 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);

1091 kmem_free(zgd, sizeof (zgd_t));
1092 }

1094 #ifdef DEBUG
1095 static int zil_fault_io = 0;
1096 #endif

1098 /*
1099 * Get data to generate a TX_WRITE intent log record.
1100 */
1101 int
1102 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1103 {
1104 zfsvfs_t *zfsvfs = arg;
1105 objset_t *os = zfsvfs->z_os;
1106 znode_t *zp;
1107 uint64_t object = lr->lr_foid;
1108 uint64_t offset = lr->lr_offset;
1109 uint64_t size = lr->lr_length;
1110 blkptr_t *bp = &lr->lr_blkptr;
1111 dmu_buf_t *db;
1112 zgd_t *zgd;
1113 int error = 0;

1115 ASSERT(zio != NULL);
1116 ASSERT(size != 0);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 18

1118 /*
1119 * Nothing to do if the file has been removed
1120 */
1121 if (zfs_zget(zfsvfs, object, &zp) != 0)
1122 return (SET_ERROR(ENOENT));
1123 if (zp->z_unlinked) {
1124 /*
1125 * Release the vnode asynchronously as we currently have the
1126 * txg stopped from syncing.
1127 */
1128 VN_RELE_ASYNC(ZTOV(zp),
1129 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1130 return (SET_ERROR(ENOENT));
1131 }

1133 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1134 zgd->zgd_zilog = zfsvfs->z_log;
1135 zgd->zgd_private = zp;

1137 /*
1138 * Write records come in two flavors: immediate and indirect.
1139 * For small writes it’s cheaper to store the data with the
1140 * log record (immediate); for large writes it’s cheaper to
1141 * sync the data and get a pointer to it (indirect) so that
1142 * we don’t have to write the data twice.
1143 */
1144 if (buf != NULL) { /* immediate write */
1145 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1146 /* test for truncation needs to be done while range locked */
1147 if (offset >= zp->z_size) {
1148 error = SET_ERROR(ENOENT);
1149 } else {
1150 error = dmu_read(os, object, offset, size, buf,
1151 DMU_READ_NO_PREFETCH);
1152 }
1153 ASSERT(error == 0 || error == ENOENT);
1154 } else { /* indirect write */
1155 /*
1156 * Have to lock the whole block to ensure when it’s
1157 * written out and it’s checksum is being calculated
1158 * that no one can change the data. We need to re-check
1159 * blocksize after we get the lock in case it’s changed!
1160 */
1161 for (;;) {
1162 uint64_t blkoff;
1163 size = zp->z_blksz;
1164 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1165 offset -= blkoff;
1166 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1167 RL_READER);
1168 if (zp->z_blksz == size)
1169 break;
1170 offset += blkoff;
1171 zfs_range_unlock(zgd->zgd_rl);
1172 }
1173 /* test for truncation needs to be done while range locked */
1174 if (lr->lr_offset >= zp->z_size)
1175 error = SET_ERROR(ENOENT);
1176 #ifdef DEBUG
1177 if (zil_fault_io) {
1178 error = SET_ERROR(EIO);
1179 zil_fault_io = 0;
1180 }
1181 #endif
1182 if (error == 0)
1183 error = dmu_buf_hold(os, object, offset, zgd, &db,

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 19

1184 DMU_READ_NO_PREFETCH);

1186 if (error == 0) {
1187 blkptr_t *obp = dmu_buf_get_blkptr(db);
1188 if (obp) {
1189 ASSERT(BP_IS_HOLE(bp));
1190 *bp = *obp;
1191 }

1193 zgd->zgd_db = db;
1194 zgd->zgd_bp = bp;

1196 ASSERT(db->db_offset == offset);
1197 ASSERT(db->db_size == size);

1199 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1200 zfs_get_done, zgd);
1201 ASSERT(error || lr->lr_length <= zp->z_blksz);

1203 /*
1204 * On success, we need to wait for the write I/O
1205 * initiated by dmu_sync() to complete before we can
1206 * release this dbuf. We will finish everything up
1207 * in the zfs_get_done() callback.
1208 */
1209 if (error == 0)
1210 return (0);

1212 if (error == EALREADY) {
1213 lr->lr_common.lrc_txtype = TX_WRITE2;
1214 error = 0;
1215 }
1216 }
1217 }

1219 zfs_get_done(zgd, error);

1221 return (error);
1222 }

1224 /*ARGSUSED*/
1225 static int
1226 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1227 caller_context_t *ct)
1228 {
1229 znode_t *zp = VTOZ(vp);
1230 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1231 int error;

1233 ZFS_ENTER(zfsvfs);
1234 ZFS_VERIFY_ZP(zp);

1236 if (flag & V_ACE_MASK)
1237 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1238 else
1239 error = zfs_zaccess_rwx(zp, mode, flag, cr);

1241 ZFS_EXIT(zfsvfs);
1242 return (error);
1243 }

1245 /*
1246 * If vnode is for a device return a specfs vnode instead.
1247 */
1248 static int
1249 specvp_check(vnode_t **vpp, cred_t *cr)

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 20

1250 {
1251 int error = 0;

1253 if (IS_DEVVP(*vpp)) {
1254 struct vnode *svp;

1256 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1257 VN_RELE(*vpp);
1258 if (svp == NULL)
1259 error = SET_ERROR(ENOSYS);
1260 *vpp = svp;
1261 }
1262 return (error);
1263 }

1266 /*
1267 * Lookup an entry in a directory, or an extended attribute directory.
1268 * If it exists, return a held vnode reference for it.
1269 *
1270 * IN: dvp - vnode of directory to search.
1271 * nm - name of entry to lookup.
1272 * pnp - full pathname to lookup [UNUSED].
1273 * flags - LOOKUP_XATTR set if looking for an attribute.
1274 * rdir - root directory vnode [UNUSED].
1275 * cr - credentials of caller.
1276 * ct - caller context
1277 * direntflags - directory lookup flags
1278 * realpnp - returned pathname.
1279 *
1280 * OUT: vpp - vnode of located entry, NULL if not found.
1281 *
1282 * RETURN: 0 on success, error code on failure.
1283 *
1284 * Timestamps:
1285 * NA
1286 */
1287 /* ARGSUSED */
1288 static int
1289 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1290 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1291 int *direntflags, pathname_t *realpnp)
1292 {
1293 znode_t *zdp = VTOZ(dvp);
1294 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1295 int error = 0;

1297 /* fast path */
1298 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {

1300 if (dvp->v_type != VDIR) {
1301 return (SET_ERROR(ENOTDIR));
1302 } else if (zdp->z_sa_hdl == NULL) {
1303 return (SET_ERROR(EIO));
1304 }

1306 if (nm[0] == 0 || (nm[0] == ’.’ && nm[1] == ’\0’)) {
1307 error = zfs_fastaccesschk_execute(zdp, cr);
1308 if (!error) {
1309 *vpp = dvp;
1310 VN_HOLD(*vpp);
1311 return (0);
1312 }
1313 return (error);
1314 } else {
1315 vnode_t *tvp = dnlc_lookup(dvp, nm);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 21

1317 if (tvp) {
1318 error = zfs_fastaccesschk_execute(zdp, cr);
1319 if (error) {
1320 VN_RELE(tvp);
1321 return (error);
1322 }
1323 if (tvp == DNLC_NO_VNODE) {
1324 VN_RELE(tvp);
1325 return (SET_ERROR(ENOENT));
1326 } else {
1327 *vpp = tvp;
1328 return (specvp_check(vpp, cr));
1329 }
1330 }
1331 }
1332 }

1334 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);

1336 ZFS_ENTER(zfsvfs);
1337 ZFS_VERIFY_ZP(zdp);

1339 *vpp = NULL;

1341 if (flags & LOOKUP_XATTR) {
1342 /*
1343 * If the xattr property is off, refuse the lookup request.
1344 */
1345 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1346 ZFS_EXIT(zfsvfs);
1347 return (SET_ERROR(EINVAL));
1348 }

1350 /*
1351 * We don’t allow recursive attributes..
1352 * Maybe someday we will.
1353 */
1354 if (zdp->z_pflags & ZFS_XATTR) {
1355 ZFS_EXIT(zfsvfs);
1356 return (SET_ERROR(EINVAL));
1357 }

1359 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1360 ZFS_EXIT(zfsvfs);
1361 return (error);
1362 }

1364 /*
1365 * Do we have permission to get into attribute directory?
1366 */

1368 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1369 B_FALSE, cr)) {
1370 VN_RELE(*vpp);
1371 *vpp = NULL;
1372 }

1374 ZFS_EXIT(zfsvfs);
1375 return (error);
1376 }

1378 if (dvp->v_type != VDIR) {
1379 ZFS_EXIT(zfsvfs);
1380 return (SET_ERROR(ENOTDIR));
1381 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 22

1383 /*
1384 * Check accessibility of directory.
1385 */

1387 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1388 ZFS_EXIT(zfsvfs);
1389 return (error);
1390 }

1392 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1393 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1394 ZFS_EXIT(zfsvfs);
1395 return (SET_ERROR(EILSEQ));
1396 }

1398 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1399 if (error == 0)
1400 error = specvp_check(vpp, cr);

1402 ZFS_EXIT(zfsvfs);
1403 return (error);
1404 }

1406 /*
1407 * Attempt to create a new entry in a directory. If the entry
1408 * already exists, truncate the file if permissible, else return
1409 * an error. Return the vp of the created or trunc’d file.
1410 *
1411 * IN: dvp - vnode of directory to put new file entry in.
1412 * name - name of new file entry.
1413 * vap - attributes of new file.
1414 * excl - flag indicating exclusive or non-exclusive mode.
1415 * mode - mode to open file with.
1416 * cr - credentials of caller.
1417 * flag - large file flag [UNUSED].
1418 * ct - caller context
1419 * vsecp - ACL to be set
1420 *
1421 * OUT: vpp - vnode of created or trunc’d entry.
1422 *
1423 * RETURN: 0 on success, error code on failure.
1424 *
1425 * Timestamps:
1426 * dvp - ctime|mtime updated if new entry created
1427 * vp - ctime|mtime always, atime if new
1428 */

1430 /* ARGSUSED */
1431 static int
1432 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1433 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1434 vsecattr_t *vsecp)
1435 {
1436 znode_t *zp, *dzp = VTOZ(dvp);
1437 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1438 zilog_t *zilog;
1439 objset_t *os;
1440 zfs_dirlock_t *dl;
1441 dmu_tx_t *tx;
1442 int error;
1443 ksid_t *ksid;
1444 uid_t uid;
1445 gid_t gid = crgetgid(cr);
1446 zfs_acl_ids_t acl_ids;
1447 boolean_t fuid_dirtied;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 23

1448 boolean_t have_acl = B_FALSE;
1449 boolean_t waited = B_FALSE;

1451 /*
1452 * If we have an ephemeral id, ACL, or XVATTR then
1453 * make sure file system is at proper version
1454 */

1456 ksid = crgetsid(cr, KSID_OWNER);
1457 if (ksid)
1458 uid = ksid_getid(ksid);
1459 else
1460 uid = crgetuid(cr);

1462 if (zfsvfs->z_use_fuids == B_FALSE &&
1463 (vsecp || (vap->va_mask & AT_XVATTR) ||
1464 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1465 return (SET_ERROR(EINVAL));

1467 ZFS_ENTER(zfsvfs);
1468 ZFS_VERIFY_ZP(dzp);
1469 os = zfsvfs->z_os;
1470 zilog = zfsvfs->z_log;

1472 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1473 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1474 ZFS_EXIT(zfsvfs);
1475 return (SET_ERROR(EILSEQ));
1476 }

1478 if (vap->va_mask & AT_XVATTR) {
1479 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1480 crgetuid(cr), cr, vap->va_type)) != 0) {
1481 ZFS_EXIT(zfsvfs);
1482 return (error);
1483 }
1484 }
1485 top:
1486 *vpp = NULL;

1488 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1489 vap->va_mode &= ~VSVTX;

1491 if (*name == ’\0’) {
1492 /*
1493 * Null component name refers to the directory itself.
1494 */
1495 VN_HOLD(dvp);
1496 zp = dzp;
1497 dl = NULL;
1498 error = 0;
1499 } else {
1500 /* possible VN_HOLD(zp) */
1501 int zflg = 0;

1503 if (flag & FIGNORECASE)
1504 zflg |= ZCILOOK;

1506 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1507 NULL, NULL);
1508 if (error) {
1509 if (have_acl)
1510 zfs_acl_ids_free(&acl_ids);
1511 if (strcmp(name, "..") == 0)
1512 error = SET_ERROR(EISDIR);
1513 ZFS_EXIT(zfsvfs);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 24

1514 return (error);
1515 }
1516 }

1518 if (zp == NULL) {
1519 uint64_t txtype;

1521 /*
1522 * Create a new file object and update the directory
1523 * to reference it.
1524 */
1525 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1526 if (have_acl)
1527 zfs_acl_ids_free(&acl_ids);
1528 goto out;
1529 }

1531 /*
1532 * We only support the creation of regular files in
1533 * extended attribute directories.
1534 */

1536 if ((dzp->z_pflags & ZFS_XATTR) &&
1537 (vap->va_type != VREG)) {
1538 if (have_acl)
1539 zfs_acl_ids_free(&acl_ids);
1540 error = SET_ERROR(EINVAL);
1541 goto out;
1542 }

1544 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1545 cr, vsecp, &acl_ids)) != 0)
1546 goto out;
1547 have_acl = B_TRUE;

1549 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1550 zfs_acl_ids_free(&acl_ids);
1551 error = SET_ERROR(EDQUOT);
1552 goto out;
1553 }

1555 tx = dmu_tx_create(os);

1557 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1558 ZFS_SA_BASE_ATTR_SIZE);

1560 fuid_dirtied = zfsvfs->z_fuid_dirty;
1561 if (fuid_dirtied)
1562 zfs_fuid_txhold(zfsvfs, tx);
1563 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1564 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1565 if (!zfsvfs->z_use_sa &&
1566 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1567 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1568 0, acl_ids.z_aclp->z_acl_bytes);
1569 }
1570 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1571 if (error) {
1572 zfs_dirent_unlock(dl);
1573 if (error == ERESTART) {
1574 waited = B_TRUE;
1575 dmu_tx_wait(tx);
1576 dmu_tx_abort(tx);
1577 goto top;
1578 }
1579 zfs_acl_ids_free(&acl_ids);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 25

1580 dmu_tx_abort(tx);
1581 ZFS_EXIT(zfsvfs);
1582 return (error);
1583 }
1584 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);

1586 if (fuid_dirtied)
1587 zfs_fuid_sync(zfsvfs, tx);

1589 (void) zfs_link_create(dl, zp, tx, ZNEW);
1590 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1591 if (flag & FIGNORECASE)
1592 txtype |= TX_CI;
1593 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1594 vsecp, acl_ids.z_fuidp, vap);
1595 zfs_acl_ids_free(&acl_ids);
1596 dmu_tx_commit(tx);
1597 } else {
1598 int aflags = (flag & FAPPEND) ? V_APPEND : 0;

1600 if (have_acl)
1601 zfs_acl_ids_free(&acl_ids);
1602 have_acl = B_FALSE;

1604 /*
1605 * A directory entry already exists for this name.
1606 */
1607 /*
1608 * Can’t truncate an existing file if in exclusive mode.
1609 */
1610 if (excl == EXCL) {
1611 error = SET_ERROR(EEXIST);
1612 goto out;
1613 }
1614 /*
1615 * Can’t open a directory for writing.
1616 */
1617 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1618 error = SET_ERROR(EISDIR);
1619 goto out;
1620 }
1621 /*
1622 * Verify requested access to file.
1623 */
1624 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1625 goto out;
1626 }

1628 mutex_enter(&dzp->z_lock);
1629 dzp->z_seq++;
1630 mutex_exit(&dzp->z_lock);

1632 /*
1633 * Truncate regular files if requested.
1634 */
1635 if ((ZTOV(zp)->v_type == VREG) &&
1636 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1637 /* we can’t hold any locks when calling zfs_freesp() */
1638 zfs_dirent_unlock(dl);
1639 dl = NULL;
1640 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1641 if (error == 0) {
1642 vnevent_create(ZTOV(zp), ct);
1643 }
1644 }
1645 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 26

1646 out:

1648 if (dl)
1649 zfs_dirent_unlock(dl);

1651 if (error) {
1652 if (zp)
1653 VN_RELE(ZTOV(zp));
1654 } else {
1655 *vpp = ZTOV(zp);
1656 error = specvp_check(vpp, cr);
1657 }

1659 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1660 zil_commit(zilog, 0);

1662 ZFS_EXIT(zfsvfs);
1663 return (error);
1664 }

1666 /*
1667 * Remove an entry from a directory.
1668 *
1669 * IN: dvp - vnode of directory to remove entry from.
1670 * name - name of entry to remove.
1671 * cr - credentials of caller.
1672 * ct - caller context
1673 * flags - case flags
1674 *
1675 * RETURN: 0 on success, error code on failure.
1676 *
1677 * Timestamps:
1678 * dvp - ctime|mtime
1679 * vp - ctime (if nlink > 0)
1680 */

1682 uint64_t null_xattr = 0;

1684 /*ARGSUSED*/
1685 static int
1686 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1687 int flags)
1688 {
1689 znode_t *zp, *dzp = VTOZ(dvp);
1690 znode_t *xzp;
1691 vnode_t *vp;
1692 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1693 zilog_t *zilog;
1694 uint64_t acl_obj, xattr_obj;
1695 uint64_t xattr_obj_unlinked = 0;
1696 uint64_t obj = 0;
1697 zfs_dirlock_t *dl;
1698 dmu_tx_t *tx;
1699 boolean_t may_delete_now, delete_now = FALSE;
1700 boolean_t unlinked, toobig = FALSE;
1701 uint64_t txtype;
1702 pathname_t *realnmp = NULL;
1703 pathname_t realnm;
1704 int error;
1705 int zflg = ZEXISTS;
1706 boolean_t waited = B_FALSE;

1708 ZFS_ENTER(zfsvfs);
1709 ZFS_VERIFY_ZP(dzp);
1710 zilog = zfsvfs->z_log;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 27

1712 if (flags & FIGNORECASE) {
1713 zflg |= ZCILOOK;
1714 pn_alloc(&realnm);
1715 realnmp = &realnm;
1716 }

1718 top:
1719 xattr_obj = 0;
1720 xzp = NULL;
1721 /*
1722 * Attempt to lock directory; fail if entry doesn’t exist.
1723 */
1724 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1725 NULL, realnmp)) {
1726 if (realnmp)
1727 pn_free(realnmp);
1728 ZFS_EXIT(zfsvfs);
1729 return (error);
1730 }

1732 vp = ZTOV(zp);

1734 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1735 goto out;
1736 }

1738 /*
1739 * Need to use rmdir for removing directories.
1740 */
1741 if (vp->v_type == VDIR) {
1742 error = SET_ERROR(EPERM);
1743 goto out;
1744 }

1746 vnevent_remove(vp, dvp, name, ct);

1748 if (realnmp)
1749 dnlc_remove(dvp, realnmp->pn_buf);
1750 else
1751 dnlc_remove(dvp, name);

1753 mutex_enter(&vp->v_lock);
1754 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1755 mutex_exit(&vp->v_lock);

1757 /*
1758 * We may delete the znode now, or we may put it in the unlinked set;
1759 * it depends on whether we’re the last link, and on whether there are
1760 * other holds on the vnode. So we dmu_tx_hold() the right things to
1761 * allow for either case.
1762 */
1763 obj = zp->z_id;
1764 tx = dmu_tx_create(zfsvfs->z_os);
1765 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1766 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1767 zfs_sa_upgrade_txholds(tx, zp);
1768 zfs_sa_upgrade_txholds(tx, dzp);
1769 if (may_delete_now) {
1770 toobig =
1771 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1772 /* if the file is too big, only hold_free a token amount */
1773 dmu_tx_hold_free(tx, zp->z_id, 0,
1774 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1775 }

1777 /* are there any extended attributes? */

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 28

1778 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1779 &xattr_obj, sizeof (xattr_obj));
1780 if (error == 0 && xattr_obj) {
1781 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1782 ASSERT0(error);
1783 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1784 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1785 }

1787 mutex_enter(&zp->z_lock);
1788 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1789 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1790 mutex_exit(&zp->z_lock);

1792 /* charge as an update -- would be nice not to charge at all */
1793 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);

1795 /*
1796 * Mark this transaction as typically resulting in a net free of
1797 * space, unless object removal will be delayed indefinitely
1798 * (due to active holds on the vnode due to the file being open).
1799 */
1800 if (may_delete_now)
1801 dmu_tx_mark_netfree(tx);

1803 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1804 if (error) {
1805 zfs_dirent_unlock(dl);
1806 VN_RELE(vp);
1807 if (xzp)
1808 VN_RELE(ZTOV(xzp));
1809 if (error == ERESTART) {
1810 waited = B_TRUE;
1811 dmu_tx_wait(tx);
1812 dmu_tx_abort(tx);
1813 goto top;
1814 }
1815 if (realnmp)
1816 pn_free(realnmp);
1817 dmu_tx_abort(tx);
1818 ZFS_EXIT(zfsvfs);
1819 return (error);
1820 }

1822 /*
1823 * Remove the directory entry.
1824 */
1825 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);

1827 if (error) {
1828 dmu_tx_commit(tx);
1829 goto out;
1830 }

1832 if (unlinked) {
1833 /*
1834 * Hold z_lock so that we can make sure that the ACL obj
1835 * hasn’t changed. Could have been deleted due to
1836 * zfs_sa_upgrade().
1837 */
1838 mutex_enter(&zp->z_lock);
1839 mutex_enter(&vp->v_lock);
1840 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1841 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1842 delete_now = may_delete_now && !toobig &&
1843 vp->v_count == 1 && !vn_has_cached_data(vp) &&

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 29

1844 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1845 acl_obj;
1846 mutex_exit(&vp->v_lock);
1847 }

1849 if (delete_now) {
1850 if (xattr_obj_unlinked) {
1851 ASSERT3U(xzp->z_links, ==, 2);
1852 mutex_enter(&xzp->z_lock);
1853 xzp->z_unlinked = 1;
1854 xzp->z_links = 0;
1855 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1856 &xzp->z_links, sizeof (xzp->z_links), tx);
1857 ASSERT3U(error, ==, 0);
1858 mutex_exit(&xzp->z_lock);
1859 zfs_unlinked_add(xzp, tx);

1861 if (zp->z_is_sa)
1862 error = sa_remove(zp->z_sa_hdl,
1863 SA_ZPL_XATTR(zfsvfs), tx);
1864 else
1865 error = sa_update(zp->z_sa_hdl,
1866 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1867 sizeof (uint64_t), tx);
1868 ASSERT0(error);
1869 }
1870 mutex_enter(&vp->v_lock);
1871 vp->v_count--;
1872 ASSERT0(vp->v_count);
1873 mutex_exit(&vp->v_lock);
1874 mutex_exit(&zp->z_lock);
1875 zfs_znode_delete(zp, tx);
1876 } else if (unlinked) {
1877 mutex_exit(&zp->z_lock);
1878 zfs_unlinked_add(zp, tx);
1879 }

1881 txtype = TX_REMOVE;
1882 if (flags & FIGNORECASE)
1883 txtype |= TX_CI;
1884 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);

1886 dmu_tx_commit(tx);
1887 out:
1888 if (realnmp)
1889 pn_free(realnmp);

1891 zfs_dirent_unlock(dl);

1893 if (!delete_now)
1894 VN_RELE(vp);
1895 if (xzp)
1896 VN_RELE(ZTOV(xzp));

1898 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1899 zil_commit(zilog, 0);

1901 ZFS_EXIT(zfsvfs);
1902 return (error);
1903 }

1905 /*
1906 * Create a new directory and insert it into dvp using the name
1907 * provided. Return a pointer to the inserted directory.
1908 *
1909 * IN: dvp - vnode of directory to add subdir to.

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 30

1910 * dirname - name of new directory.
1911 * vap - attributes of new directory.
1912 * cr - credentials of caller.
1913 * ct - caller context
1914 * flags - case flags
1915 * vsecp - ACL to be set
1916 *
1917 * OUT: vpp - vnode of created directory.
1918 *
1919 * RETURN: 0 on success, error code on failure.
1920 *
1921 * Timestamps:
1922 * dvp - ctime|mtime updated
1923 * vp - ctime|mtime|atime updated
1924 */
1925 /*ARGSUSED*/
1926 static int
1927 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1928 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1929 {
1930 znode_t *zp, *dzp = VTOZ(dvp);
1931 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1932 zilog_t *zilog;
1933 zfs_dirlock_t *dl;
1934 uint64_t txtype;
1935 dmu_tx_t *tx;
1936 int error;
1937 int zf = ZNEW;
1938 ksid_t *ksid;
1939 uid_t uid;
1940 gid_t gid = crgetgid(cr);
1941 zfs_acl_ids_t acl_ids;
1942 boolean_t fuid_dirtied;
1943 boolean_t waited = B_FALSE;

1945 ASSERT(vap->va_type == VDIR);

1947 /*
1948 * If we have an ephemeral id, ACL, or XVATTR then
1949 * make sure file system is at proper version
1950 */

1952 ksid = crgetsid(cr, KSID_OWNER);
1953 if (ksid)
1954 uid = ksid_getid(ksid);
1955 else
1956 uid = crgetuid(cr);
1957 if (zfsvfs->z_use_fuids == B_FALSE &&
1958 (vsecp || (vap->va_mask & AT_XVATTR) ||
1959 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1960 return (SET_ERROR(EINVAL));

1962 ZFS_ENTER(zfsvfs);
1963 ZFS_VERIFY_ZP(dzp);
1964 zilog = zfsvfs->z_log;

1966 if (dzp->z_pflags & ZFS_XATTR) {
1967 ZFS_EXIT(zfsvfs);
1968 return (SET_ERROR(EINVAL));
1969 }

1971 if (zfsvfs->z_utf8 && u8_validate(dirname,
1972 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1973 ZFS_EXIT(zfsvfs);
1974 return (SET_ERROR(EILSEQ));
1975 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 31

1976 if (flags & FIGNORECASE)
1977 zf |= ZCILOOK;

1979 if (vap->va_mask & AT_XVATTR) {
1980 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1981 crgetuid(cr), cr, vap->va_type)) != 0) {
1982 ZFS_EXIT(zfsvfs);
1983 return (error);
1984 }
1985 }

1987 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1988 vsecp, &acl_ids)) != 0) {
1989 ZFS_EXIT(zfsvfs);
1990 return (error);
1991 }
1992 /*
1993 * First make sure the new directory doesn’t exist.
1994 *
1995 * Existence is checked first to make sure we don’t return
1996 * EACCES instead of EEXIST which can cause some applications
1997 * to fail.
1998 */
1999 top:
2000 *vpp = NULL;

2002 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2003 NULL, NULL)) {
2004 zfs_acl_ids_free(&acl_ids);
2005 ZFS_EXIT(zfsvfs);
2006 return (error);
2007 }

2009 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2010 zfs_acl_ids_free(&acl_ids);
2011 zfs_dirent_unlock(dl);
2012 ZFS_EXIT(zfsvfs);
2013 return (error);
2014 }

2016 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2017 zfs_acl_ids_free(&acl_ids);
2018 zfs_dirent_unlock(dl);
2019 ZFS_EXIT(zfsvfs);
2020 return (SET_ERROR(EDQUOT));
2021 }

2023 /*
2024 * Add a new entry to the directory.
2025 */
2026 tx = dmu_tx_create(zfsvfs->z_os);
2027 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2028 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2029 fuid_dirtied = zfsvfs->z_fuid_dirty;
2030 if (fuid_dirtied)
2031 zfs_fuid_txhold(zfsvfs, tx);
2032 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2033 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2034 acl_ids.z_aclp->z_acl_bytes);
2035 }

2037 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2038 ZFS_SA_BASE_ATTR_SIZE);

2040 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2041 if (error) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 32

2042 zfs_dirent_unlock(dl);
2043 if (error == ERESTART) {
2044 waited = B_TRUE;
2045 dmu_tx_wait(tx);
2046 dmu_tx_abort(tx);
2047 goto top;
2048 }
2049 zfs_acl_ids_free(&acl_ids);
2050 dmu_tx_abort(tx);
2051 ZFS_EXIT(zfsvfs);
2052 return (error);
2053 }

2055 /*
2056 * Create new node.
2057 */
2058 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);

2060 if (fuid_dirtied)
2061 zfs_fuid_sync(zfsvfs, tx);

2063 /*
2064 * Now put new name in parent dir.
2065 */
2066 (void) zfs_link_create(dl, zp, tx, ZNEW);

2068 *vpp = ZTOV(zp);

2070 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2071 if (flags & FIGNORECASE)
2072 txtype |= TX_CI;
2073 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2074 acl_ids.z_fuidp, vap);

2076 zfs_acl_ids_free(&acl_ids);

2078 dmu_tx_commit(tx);

2080 zfs_dirent_unlock(dl);

2082 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2083 zil_commit(zilog, 0);

2085 ZFS_EXIT(zfsvfs);
2086 return (0);
2087 }

2089 /*
2090 * Remove a directory subdir entry. If the current working
2091 * directory is the same as the subdir to be removed, the
2092 * remove will fail.
2093 *
2094 * IN: dvp - vnode of directory to remove from.
2095 * name - name of directory to be removed.
2096 * cwd - vnode of current working directory.
2097 * cr - credentials of caller.
2098 * ct - caller context
2099 * flags - case flags
2100 *
2101 * RETURN: 0 on success, error code on failure.
2102 *
2103 * Timestamps:
2104 * dvp - ctime|mtime updated
2105 */
2106 /*ARGSUSED*/
2107 static int

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 33

2108 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2109 caller_context_t *ct, int flags)
2110 {
2111 znode_t *dzp = VTOZ(dvp);
2112 znode_t *zp;
2113 vnode_t *vp;
2114 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2115 zilog_t *zilog;
2116 zfs_dirlock_t *dl;
2117 dmu_tx_t *tx;
2118 int error;
2119 int zflg = ZEXISTS;
2120 boolean_t waited = B_FALSE;

2122 ZFS_ENTER(zfsvfs);
2123 ZFS_VERIFY_ZP(dzp);
2124 zilog = zfsvfs->z_log;

2126 if (flags & FIGNORECASE)
2127 zflg |= ZCILOOK;
2128 top:
2129 zp = NULL;

2131 /*
2132 * Attempt to lock directory; fail if entry doesn’t exist.
2133 */
2134 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2135 NULL, NULL)) {
2136 ZFS_EXIT(zfsvfs);
2137 return (error);
2138 }

2140 vp = ZTOV(zp);

2142 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2143 goto out;
2144 }

2146 if (vp->v_type != VDIR) {
2147 error = SET_ERROR(ENOTDIR);
2148 goto out;
2149 }

2151 if (vp == cwd) {
2152 error = SET_ERROR(EINVAL);
2153 goto out;
2154 }

2156 vnevent_rmdir(vp, dvp, name, ct);

2158 /*
2159 * Grab a lock on the directory to make sure that noone is
2160 * trying to add (or lookup) entries while we are removing it.
2161 */
2162 rw_enter(&zp->z_name_lock, RW_WRITER);

2164 /*
2165 * Grab a lock on the parent pointer to make sure we play well
2166 * with the treewalk and directory rename code.
2167 */
2168 rw_enter(&zp->z_parent_lock, RW_WRITER);

2170 tx = dmu_tx_create(zfsvfs->z_os);
2171 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2172 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2173 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 34

2174 zfs_sa_upgrade_txholds(tx, zp);
2175 zfs_sa_upgrade_txholds(tx, dzp);
2176 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2177 if (error) {
2178 rw_exit(&zp->z_parent_lock);
2179 rw_exit(&zp->z_name_lock);
2180 zfs_dirent_unlock(dl);
2181 VN_RELE(vp);
2182 if (error == ERESTART) {
2183 waited = B_TRUE;
2184 dmu_tx_wait(tx);
2185 dmu_tx_abort(tx);
2186 goto top;
2187 }
2188 dmu_tx_abort(tx);
2189 ZFS_EXIT(zfsvfs);
2190 return (error);
2191 }

2193 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);

2195 if (error == 0) {
2196 uint64_t txtype = TX_RMDIR;
2197 if (flags & FIGNORECASE)
2198 txtype |= TX_CI;
2199 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2200 }

2202 dmu_tx_commit(tx);

2204 rw_exit(&zp->z_parent_lock);
2205 rw_exit(&zp->z_name_lock);
2206 out:
2207 zfs_dirent_unlock(dl);

2209 VN_RELE(vp);

2211 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2212 zil_commit(zilog, 0);

2214 ZFS_EXIT(zfsvfs);
2215 return (error);
2216 }

2218 /*
2219 * Read as many directory entries as will fit into the provided
2220 * buffer from the given directory cursor position (specified in
2221 * the uio structure).
2222 *
2223 * IN: vp - vnode of directory to read.
2224 * uio - structure supplying read location, range info,
2225 * and return buffer.
2226 * cr - credentials of caller.
2227 * ct - caller context
2228 * flags - case flags
2229 *
2230 * OUT: uio - updated offset and range, buffer filled.
2231 * eofp - set to true if end-of-file detected.
2232 *
2233 * RETURN: 0 on success, error code on failure.
2234 *
2235 * Timestamps:
2236 * vp - atime updated
2237 *
2238 * Note that the low 4 bits of the cookie returned by zap is always zero.
2239 * This allows us to use the low range for "special" directory entries:

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 35

2240 * We use 0 for ’.’, and 1 for ’..’. If this is the root of the filesystem,
2241 * we use the offset 2 for the ’.zfs’ directory.
2242 */
2243 /* ARGSUSED */
2244 static int
2245 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2246 caller_context_t *ct, int flags)
2247 {
2248 znode_t *zp = VTOZ(vp);
2249 iovec_t *iovp;
2250 edirent_t *eodp;
2251 dirent64_t *odp;
2252 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2253 objset_t *os;
2254 caddr_t outbuf;
2255 size_t bufsize;
2256 zap_cursor_t zc;
2257 zap_attribute_t zap;
2258 uint_t bytes_wanted;
2259 uint64_t offset; /* must be unsigned; checks for < 1 */
2260 uint64_t parent;
2261 int local_eof;
2262 int outcount;
2263 int error;
2264 uint8_t prefetch;
2265 boolean_t check_sysattrs;

2267 ZFS_ENTER(zfsvfs);
2268 ZFS_VERIFY_ZP(zp);

2270 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2271 &parent, sizeof (parent))) != 0) {
2272 ZFS_EXIT(zfsvfs);
2273 return (error);
2274 }

2276 /*
2277 * If we are not given an eof variable,
2278 * use a local one.
2279 */
2280 if (eofp == NULL)
2281 eofp = &local_eof;

2283 /*
2284 * Check for valid iov_len.
2285 */
2286 if (uio->uio_iov->iov_len <= 0) {
2287 ZFS_EXIT(zfsvfs);
2288 return (SET_ERROR(EINVAL));
2289 }

2291 /*
2292 * Quit if directory has been removed (posix)
2293 */
2294 if ((*eofp = zp->z_unlinked) != 0) {
2295 ZFS_EXIT(zfsvfs);
2296 return (0);
2297 }

2299 error = 0;
2300 os = zfsvfs->z_os;
2301 offset = uio->uio_loffset;
2302 prefetch = zp->z_zn_prefetch;

2304 /*
2305 * Initialize the iterator cursor.

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 36

2306 */
2307 if (offset <= 3) {
2308 /*
2309 * Start iteration from the beginning of the directory.
2310 */
2311 zap_cursor_init(&zc, os, zp->z_id);
2312 } else {
2313 /*
2314 * The offset is a serialized cursor.
2315 */
2316 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2317 }

2319 /*
2320 * Get space to change directory entries into fs independent format.
2321 */
2322 iovp = uio->uio_iov;
2323 bytes_wanted = iovp->iov_len;
2324 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2325 bufsize = bytes_wanted;
2326 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2327 odp = (struct dirent64 *)outbuf;
2328 } else {
2329 bufsize = bytes_wanted;
2330 outbuf = NULL;
2331 odp = (struct dirent64 *)iovp->iov_base;
2332 }
2333 eodp = (struct edirent *)odp;

2335 /*
2336 * If this VFS supports the system attribute view interface; and
2337 * we’re looking at an extended attribute directory; and we care
2338 * about normalization conflicts on this vfs; then we must check
2339 * for normalization conflicts with the sysattr name space.
2340 */
2341 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2342 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2343 (flags & V_RDDIR_ENTFLAGS);

2345 /*
2346 * Transform to file-system independent format
2347 */
2348 outcount = 0;
2349 while (outcount < bytes_wanted) {
2350 ino64_t objnum;
2351 ushort_t reclen;
2352 off64_t *next = NULL;

2354 /*
2355 * Special case ‘.’, ‘..’, and ‘.zfs’.
2356 */
2357 if (offset == 0) {
2358 (void) strcpy(zap.za_name, ".");
2359 zap.za_normalization_conflict = 0;
2360 objnum = zp->z_id;
2361 } else if (offset == 1) {
2362 (void) strcpy(zap.za_name, "..");
2363 zap.za_normalization_conflict = 0;
2364 objnum = parent;
2365 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2366 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2367 zap.za_normalization_conflict = 0;
2368 objnum = ZFSCTL_INO_ROOT;
2369 } else {
2370 /*
2371 * Grab next entry.

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 37

2372 */
2373 if (error = zap_cursor_retrieve(&zc, &zap)) {
2374 if ((*eofp = (error == ENOENT)) != 0)
2375 break;
2376 else
2377 goto update;
2378 }

2380 if (zap.za_integer_length != 8 ||
2381 zap.za_num_integers != 1) {
2382 cmn_err(CE_WARN, "zap_readdir: bad directory "
2383 "entry, obj = %lld, offset = %lld\n",
2384 (u_longlong_t)zp->z_id,
2385 (u_longlong_t)offset);
2386 error = SET_ERROR(ENXIO);
2387 goto update;
2388 }

2390 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2391 /*
2392 * MacOS X can extract the object type here such as:
2393 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2394 */

2396 if (check_sysattrs && !zap.za_normalization_conflict) {
2397 zap.za_normalization_conflict =
2398 xattr_sysattr_casechk(zap.za_name);
2399 }
2400 }

2402 if (flags & V_RDDIR_ACCFILTER) {
2403 /*
2404 * If we have no access at all, don’t include
2405 * this entry in the returned information
2406 */
2407 znode_t *ezp;
2408 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2409 goto skip_entry;
2410 if (!zfs_has_access(ezp, cr)) {
2411 VN_RELE(ZTOV(ezp));
2412 goto skip_entry;
2413 }
2414 VN_RELE(ZTOV(ezp));
2415 }

2417 if (flags & V_RDDIR_ENTFLAGS)
2418 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2419 else
2420 reclen = DIRENT64_RECLEN(strlen(zap.za_name));

2422 /*
2423 * Will this entry fit in the buffer?
2424 */
2425 if (outcount + reclen > bufsize) {
2426 /*
2427 * Did we manage to fit anything in the buffer?
2428 */
2429 if (!outcount) {
2430 error = SET_ERROR(EINVAL);
2431 goto update;
2432 }
2433 break;
2434 }
2435 if (flags & V_RDDIR_ENTFLAGS) {
2436 /*
2437 * Add extended flag entry:

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 38

2438 */
2439 eodp->ed_ino = objnum;
2440 eodp->ed_reclen = reclen;
2441 /* NOTE: ed_off is the offset for the *next* entry */
2442 next = &(eodp->ed_off);
2443 eodp->ed_eflags = zap.za_normalization_conflict ?
2444 ED_CASE_CONFLICT : 0;
2445 (void) strncpy(eodp->ed_name, zap.za_name,
2446 EDIRENT_NAMELEN(reclen));
2447 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2448 } else {
2449 /*
2450 * Add normal entry:
2451 */
2452 odp->d_ino = objnum;
2453 odp->d_reclen = reclen;
2454 /* NOTE: d_off is the offset for the *next* entry */
2455 next = &(odp->d_off);
2456 (void) strncpy(odp->d_name, zap.za_name,
2457 DIRENT64_NAMELEN(reclen));
2458 odp = (dirent64_t *)((intptr_t)odp + reclen);
2459 }
2460 outcount += reclen;

2462 ASSERT(outcount <= bufsize);

2464 /* Prefetch znode */
2465 if (prefetch)
2466 dmu_prefetch(os, objnum, 0, 0);

2468 skip_entry:
2469 /*
2470 * Move to the next entry, fill in the previous offset.
2471 */
2472 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2473 zap_cursor_advance(&zc);
2474 offset = zap_cursor_serialize(&zc);
2475 } else {
2476 offset += 1;
2477 }
2478 if (next)
2479 *next = offset;
2480 }
2481 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */

2483 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2484 iovp->iov_base += outcount;
2485 iovp->iov_len -= outcount;
2486 uio->uio_resid -= outcount;
2487 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2488 /*
2489 * Reset the pointer.
2490 */
2491 offset = uio->uio_loffset;
2492 }

2494 update:
2495 zap_cursor_fini(&zc);
2496 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2497 kmem_free(outbuf, bufsize);

2499 if (error == ENOENT)
2500 error = 0;

2502 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 39

2504 uio->uio_loffset = offset;
2505 ZFS_EXIT(zfsvfs);
2506 return (error);
2507 }

2509 ulong_t zfs_fsync_sync_cnt = 4;

2511 static int
2512 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2513 {
2514 znode_t *zp = VTOZ(vp);
2515 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

2517 /*
2518 * Regardless of whether this is required for standards conformance,
2519 * this is the logical behavior when fsync() is called on a file with
2520 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2521 * going to be pushed out as part of the zil_commit().
2522 */
2523 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2524 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2525 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);

2527 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);

2529 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2530 ZFS_ENTER(zfsvfs);
2531 ZFS_VERIFY_ZP(zp);
2532 zil_commit(zfsvfs->z_log, zp->z_id);
2533 ZFS_EXIT(zfsvfs);
2534 }
2535 return (0);
2536 }

2539 /*
2540 * Get the requested file attributes and place them in the provided
2541 * vattr structure.
2542 *
2543 * IN: vp - vnode of file.
2544 * vap - va_mask identifies requested attributes.
2545 * If AT_XVATTR set, then optional attrs are requested
2546 * flags - ATTR_NOACLCHECK (CIFS server context)
2547 * cr - credentials of caller.
2548 * ct - caller context
2549 *
2550 * OUT: vap - attribute values.
2551 *
2552 * RETURN: 0 (always succeeds).
2553 */
2554 /* ARGSUSED */
2555 static int
2556 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2557 caller_context_t *ct)
2558 {
2559 znode_t *zp = VTOZ(vp);
2560 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2561 int error = 0;
2562 uint64_t links;
2563 uint64_t mtime[2], ctime[2];
2564 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2565 xoptattr_t *xoap = NULL;
2566 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2567 sa_bulk_attr_t bulk[2];
2568 int count = 0;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 40

2570 ZFS_ENTER(zfsvfs);
2571 ZFS_VERIFY_ZP(zp);

2573 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);

2575 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2576 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);

2578 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2579 ZFS_EXIT(zfsvfs);
2580 return (error);
2581 }

2583 /*
2584 * If ACL is trivial don’t bother looking for ACE_READ_ATTRIBUTES.
2585 * Also, if we are the owner don’t bother, since owner should
2586 * always be allowed to read basic attributes of file.
2587 */
2588 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2589 (vap->va_uid != crgetuid(cr))) {
2590 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2591 skipaclchk, cr)) {
2592 ZFS_EXIT(zfsvfs);
2593 return (error);
2594 }
2595 }

2597 /*
2598 * Return all attributes. It’s cheaper to provide the answer
2599 * than to determine whether we were asked the question.
2600 */

2602 mutex_enter(&zp->z_lock);
2603 vap->va_type = vp->v_type;
2604 vap->va_mode = zp->z_mode & MODEMASK;
2605 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2606 vap->va_nodeid = zp->z_id;
2607 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2608 links = zp->z_links + 1;
2609 else
2610 links = zp->z_links;
2611 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2612 vap->va_size = zp->z_size;
2613 vap->va_rdev = vp->v_rdev;
2614 vap->va_seq = zp->z_seq;

2616 /*
2617 * Add in any requested optional attributes and the create time.
2618 * Also set the corresponding bits in the returned attribute bitmap.
2619 */
2620 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2621 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2622 xoap->xoa_archive =
2623 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2624 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2625 }

2627 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2628 xoap->xoa_readonly =
2629 ((zp->z_pflags & ZFS_READONLY) != 0);
2630 XVA_SET_RTN(xvap, XAT_READONLY);
2631 }

2633 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2634 xoap->xoa_system =
2635 ((zp->z_pflags & ZFS_SYSTEM) != 0);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 41

2636 XVA_SET_RTN(xvap, XAT_SYSTEM);
2637 }

2639 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2640 xoap->xoa_hidden =
2641 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2642 XVA_SET_RTN(xvap, XAT_HIDDEN);
2643 }

2645 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2646 xoap->xoa_nounlink =
2647 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2648 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2649 }

2651 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2652 xoap->xoa_immutable =
2653 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2654 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2655 }

2657 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2658 xoap->xoa_appendonly =
2659 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2660 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2661 }

2663 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2664 xoap->xoa_nodump =
2665 ((zp->z_pflags & ZFS_NODUMP) != 0);
2666 XVA_SET_RTN(xvap, XAT_NODUMP);
2667 }

2669 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2670 xoap->xoa_opaque =
2671 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2672 XVA_SET_RTN(xvap, XAT_OPAQUE);
2673 }

2675 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2676 xoap->xoa_av_quarantined =
2677 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2678 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2679 }

2681 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2682 xoap->xoa_av_modified =
2683 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2684 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2685 }

2687 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2688 vp->v_type == VREG) {
2689 zfs_sa_get_scanstamp(zp, xvap);
2690 }

2692 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2693 uint64_t times[2];

2695 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2696 times, sizeof (times));
2697 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2698 XVA_SET_RTN(xvap, XAT_CREATETIME);
2699 }

2701 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 42

2702 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2703 XVA_SET_RTN(xvap, XAT_REPARSE);
2704 }
2705 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2706 xoap->xoa_generation = zp->z_gen;
2707 XVA_SET_RTN(xvap, XAT_GEN);
2708 }

2710 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2711 xoap->xoa_offline =
2712 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2713 XVA_SET_RTN(xvap, XAT_OFFLINE);
2714 }

2716 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2717 xoap->xoa_sparse =
2718 ((zp->z_pflags & ZFS_SPARSE) != 0);
2719 XVA_SET_RTN(xvap, XAT_SPARSE);
2720 }
2721 }

2723 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2724 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2725 ZFS_TIME_DECODE(&vap->va_ctime, ctime);

2727 mutex_exit(&zp->z_lock);

2729 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);

2731 if (zp->z_blksz == 0) {
2732 /*
2733 * Block size hasn’t been set; suggest maximal I/O transfers.
2734 */
2735 vap->va_blksize = zfsvfs->z_max_blksz;
2736 }

2738 ZFS_EXIT(zfsvfs);
2739 return (0);
2740 }

2742 /*
2743 * Set the file attributes to the values contained in the
2744 * vattr structure.
2745 *
2746 * IN: vp - vnode of file to be modified.
2747 * vap - new attribute values.
2748 * If AT_XVATTR set, then optional attrs are being set
2749 * flags - ATTR_UTIME set if non-default time values provided.
2750 * - ATTR_NOACLCHECK (CIFS context only).
2751 * cr - credentials of caller.
2752 * ct - caller context
2753 *
2754 * RETURN: 0 on success, error code on failure.
2755 *
2756 * Timestamps:
2757 * vp - ctime updated, mtime updated if size changed.
2758 */
2759 /* ARGSUSED */
2760 static int
2761 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2762 caller_context_t *ct)
2763 {
2764 znode_t *zp = VTOZ(vp);
2765 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2766 zilog_t *zilog;
2767 dmu_tx_t *tx;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 43

2768 vattr_t oldva;
2769 xvattr_t tmpxvattr;
2770 uint_t mask = vap->va_mask;
2771 uint_t saved_mask = 0;
2772 int trim_mask = 0;
2773 uint64_t new_mode;
2774 uint64_t new_uid, new_gid;
2775 uint64_t xattr_obj;
2776 uint64_t mtime[2], ctime[2];
2777 znode_t *attrzp;
2778 int need_policy = FALSE;
2779 int err, err2;
2780 zfs_fuid_info_t *fuidp = NULL;
2781 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2782 xoptattr_t *xoap;
2783 zfs_acl_t *aclp;
2784 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2785 boolean_t fuid_dirtied = B_FALSE;
2786 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2787 int count = 0, xattr_count = 0;

2789 if (mask == 0)
2790 return (0);

2792 if (mask & AT_NOSET)
2793 return (SET_ERROR(EINVAL));

2795 ZFS_ENTER(zfsvfs);
2796 ZFS_VERIFY_ZP(zp);

2798 zilog = zfsvfs->z_log;

2800 /*
2801 * Make sure that if we have ephemeral uid/gid or xvattr specified
2802 * that file system is at proper version level
2803 */

2805 if (zfsvfs->z_use_fuids == B_FALSE &&
2806 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2807 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2808 (mask & AT_XVATTR))) {
2809 ZFS_EXIT(zfsvfs);
2810 return (SET_ERROR(EINVAL));
2811 }

2813 if (mask & AT_SIZE && vp->v_type == VDIR) {
2814 ZFS_EXIT(zfsvfs);
2815 return (SET_ERROR(EISDIR));
2816 }

2818 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2819 ZFS_EXIT(zfsvfs);
2820 return (SET_ERROR(EINVAL));
2821 }

2823 /*
2824 * If this is an xvattr_t, then get a pointer to the structure of
2825 * optional attributes. If this is NULL, then we have a vattr_t.
2826 */
2827 xoap = xva_getxoptattr(xvap);

2829 xva_init(&tmpxvattr);

2831 /*
2832 * Immutable files can only alter immutable bit and atime
2833 */

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 44

2834 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2835 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2836 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2837 ZFS_EXIT(zfsvfs);
2838 return (SET_ERROR(EPERM));
2839 }

2841 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2842 ZFS_EXIT(zfsvfs);
2843 return (SET_ERROR(EPERM));
2844 }

2846 /*
2847 * Verify timestamps doesn’t overflow 32 bits.
2848 * ZFS can handle large timestamps, but 32bit syscalls can’t
2849 * handle times greater than 2039. This check should be removed
2850 * once large timestamps are fully supported.
2851 */
2852 if (mask & (AT_ATIME | AT_MTIME)) {
2853 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2854 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2855 ZFS_EXIT(zfsvfs);
2856 return (SET_ERROR(EOVERFLOW));
2857 }
2858 }

2860 top:
2861 attrzp = NULL;
2862 aclp = NULL;

2864 /* Can this be moved to before the top label? */
2865 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2866 ZFS_EXIT(zfsvfs);
2867 return (SET_ERROR(EROFS));
2868 }

2870 /*
2871 * First validate permissions
2872 */

2874 if (mask & AT_SIZE) {
2875 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2876 if (err) {
2877 ZFS_EXIT(zfsvfs);
2878 return (err);
2879 }
2880 /*
2881 * XXX - Note, we are not providing any open
2882 * mode flags here (like FNDELAY), so we may
2883 * block if there are locks present... this
2884 * should be addressed in openat().
2885 */
2886 /* XXX - would it be OK to generate a log record here? */
2887 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2888 if (err) {
2889 ZFS_EXIT(zfsvfs);
2890 return (err);
2891 }

2893 if (vap->va_size == 0)
2894 vnevent_truncate(ZTOV(zp), ct);
2895 }

2897 if (mask & (AT_ATIME|AT_MTIME) ||
2898 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2899 XVA_ISSET_REQ(xvap, XAT_READONLY) ||

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 45

2900 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2901 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2902 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2903 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2904 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2905 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2906 skipaclchk, cr);
2907 }

2909 if (mask & (AT_UID|AT_GID)) {
2910 int idmask = (mask & (AT_UID|AT_GID));
2911 int take_owner;
2912 int take_group;

2914 /*
2915 * NOTE: even if a new mode is being set,
2916 * we may clear S_ISUID/S_ISGID bits.
2917 */

2919 if (!(mask & AT_MODE))
2920 vap->va_mode = zp->z_mode;

2922 /*
2923 * Take ownership or chgrp to group we are a member of
2924 */

2926 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2927 take_group = (mask & AT_GID) &&
2928 zfs_groupmember(zfsvfs, vap->va_gid, cr);

2930 /*
2931 * If both AT_UID and AT_GID are set then take_owner and
2932 * take_group must both be set in order to allow taking
2933 * ownership.
2934 *
2935 * Otherwise, send the check through secpolicy_vnode_setattr()
2936 *
2937 */

2939 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2940 ((idmask == AT_UID) && take_owner) ||
2941 ((idmask == AT_GID) && take_group)) {
2942 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2943 skipaclchk, cr) == 0) {
2944 /*
2945 * Remove setuid/setgid for non-privileged users
2946 */
2947 secpolicy_setid_clear(vap, cr);
2948 trim_mask = (mask & (AT_UID|AT_GID));
2949 } else {
2950 need_policy = TRUE;
2951 }
2952 } else {
2953 need_policy = TRUE;
2954 }
2955 }

2957 mutex_enter(&zp->z_lock);
2958 oldva.va_mode = zp->z_mode;
2959 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2960 if (mask & AT_XVATTR) {
2961 /*
2962 * Update xvattr mask to include only those attributes
2963 * that are actually changing.
2964 *
2965 * the bits will be restored prior to actually setting

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 46

2966 * the attributes so the caller thinks they were set.
2967 */
2968 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2969 if (xoap->xoa_appendonly !=
2970 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2971 need_policy = TRUE;
2972 } else {
2973 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2974 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2975 }
2976 }

2978 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2979 if (xoap->xoa_nounlink !=
2980 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2981 need_policy = TRUE;
2982 } else {
2983 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2984 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2985 }
2986 }

2988 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2989 if (xoap->xoa_immutable !=
2990 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2991 need_policy = TRUE;
2992 } else {
2993 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2994 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2995 }
2996 }

2998 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2999 if (xoap->xoa_nodump !=
3000 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3001 need_policy = TRUE;
3002 } else {
3003 XVA_CLR_REQ(xvap, XAT_NODUMP);
3004 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3005 }
3006 }

3008 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3009 if (xoap->xoa_av_modified !=
3010 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3011 need_policy = TRUE;
3012 } else {
3013 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3014 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3015 }
3016 }

3018 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3019 if ((vp->v_type != VREG &&
3020 xoap->xoa_av_quarantined) ||
3021 xoap->xoa_av_quarantined !=
3022 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3023 need_policy = TRUE;
3024 } else {
3025 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3026 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3027 }
3028 }

3030 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3031 mutex_exit(&zp->z_lock);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 47

3032 ZFS_EXIT(zfsvfs);
3033 return (SET_ERROR(EPERM));
3034 }

3036 if (need_policy == FALSE &&
3037 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3038 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3039 need_policy = TRUE;
3040 }
3041 }

3043 mutex_exit(&zp->z_lock);

3045 if (mask & AT_MODE) {
3046 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3047 err = secpolicy_setid_setsticky_clear(vp, vap,
3048 &oldva, cr);
3049 if (err) {
3050 ZFS_EXIT(zfsvfs);
3051 return (err);
3052 }
3053 trim_mask |= AT_MODE;
3054 } else {
3055 need_policy = TRUE;
3056 }
3057 }

3059 if (need_policy) {
3060 /*
3061 * If trim_mask is set then take ownership
3062 * has been granted or write_acl is present and user
3063 * has the ability to modify mode. In that case remove
3064 * UID|GID and or MODE from mask so that
3065 * secpolicy_vnode_setattr() doesn’t revoke it.
3066 */

3068 if (trim_mask) {
3069 saved_mask = vap->va_mask;
3070 vap->va_mask &= ~trim_mask;
3071 }
3072 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3073 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3074 if (err) {
3075 ZFS_EXIT(zfsvfs);
3076 return (err);
3077 }

3079 if (trim_mask)
3080 vap->va_mask |= saved_mask;
3081 }

3083 /*
3084 * secpolicy_vnode_setattr, or take ownership may have
3085 * changed va_mask
3086 */
3087 mask = vap->va_mask;

3089 if ((mask & (AT_UID | AT_GID))) {
3090 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3091 &xattr_obj, sizeof (xattr_obj));

3093 if (err == 0 && xattr_obj) {
3094 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3095 if (err)
3096 goto out2;
3097 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 48

3098 if (mask & AT_UID) {
3099 new_uid = zfs_fuid_create(zfsvfs,
3100 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3101 if (new_uid != zp->z_uid &&
3102 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3103 if (attrzp)
3104 VN_RELE(ZTOV(attrzp));
3105 err = SET_ERROR(EDQUOT);
3106 goto out2;
3107 }
3108 }

3110 if (mask & AT_GID) {
3111 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3112 cr, ZFS_GROUP, &fuidp);
3113 if (new_gid != zp->z_gid &&
3114 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3115 if (attrzp)
3116 VN_RELE(ZTOV(attrzp));
3117 err = SET_ERROR(EDQUOT);
3118 goto out2;
3119 }
3120 }
3121 }
3122 tx = dmu_tx_create(zfsvfs->z_os);

3124 if (mask & AT_MODE) {
3125 uint64_t pmode = zp->z_mode;
3126 uint64_t acl_obj;
3127 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);

3129 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3130 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3131 err = SET_ERROR(EPERM);
3132 goto out;
3133 }

3135 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3136 goto out;

3138 mutex_enter(&zp->z_lock);
3139 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3140 /*
3141 * Are we upgrading ACL from old V0 format
3142 * to V1 format?
3143 */
3144 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3145 zfs_znode_acl_version(zp) ==
3146 ZFS_ACL_VERSION_INITIAL) {
3147 dmu_tx_hold_free(tx, acl_obj, 0,
3148 DMU_OBJECT_END);
3149 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3150 0, aclp->z_acl_bytes);
3151 } else {
3152 dmu_tx_hold_write(tx, acl_obj, 0,
3153 aclp->z_acl_bytes);
3154 }
3155 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3156 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3157 0, aclp->z_acl_bytes);
3158 }
3159 mutex_exit(&zp->z_lock);
3160 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3161 } else {
3162 if ((mask & AT_XVATTR) &&
3163 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 49

3164 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3165 else
3166 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3167 }

3169 if (attrzp) {
3170 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3171 }

3173 fuid_dirtied = zfsvfs->z_fuid_dirty;
3174 if (fuid_dirtied)
3175 zfs_fuid_txhold(zfsvfs, tx);

3177 zfs_sa_upgrade_txholds(tx, zp);

3179 err = dmu_tx_assign(tx, TXG_WAIT);
3180 if (err)
3181 goto out;

3183 count = 0;
3184 /*
3185 * Set each attribute requested.
3186 * We group settings according to the locks they need to acquire.
3187 *
3188 * Note: you cannot set ctime directly, although it will be
3189 * updated as a side-effect of calling this function.
3190 */

3193 if (mask & (AT_UID|AT_GID|AT_MODE))
3194 mutex_enter(&zp->z_acl_lock);
3195 mutex_enter(&zp->z_lock);

3197 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3198 &zp->z_pflags, sizeof (zp->z_pflags));

3200 if (attrzp) {
3201 if (mask & (AT_UID|AT_GID|AT_MODE))
3202 mutex_enter(&attrzp->z_acl_lock);
3203 mutex_enter(&attrzp->z_lock);
3204 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3205 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3206 sizeof (attrzp->z_pflags));
3207 }

3209 if (mask & (AT_UID|AT_GID)) {

3211 if (mask & AT_UID) {
3212 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3213 &new_uid, sizeof (new_uid));
3214 zp->z_uid = new_uid;
3215 if (attrzp) {
3216 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3217 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3218 sizeof (new_uid));
3219 attrzp->z_uid = new_uid;
3220 }
3221 }

3223 if (mask & AT_GID) {
3224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3225 NULL, &new_gid, sizeof (new_gid));
3226 zp->z_gid = new_gid;
3227 if (attrzp) {
3228 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3229 SA_ZPL_GID(zfsvfs), NULL, &new_gid,

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 50

3230 sizeof (new_gid));
3231 attrzp->z_gid = new_gid;
3232 }
3233 }
3234 if (!(mask & AT_MODE)) {
3235 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3236 NULL, &new_mode, sizeof (new_mode));
3237 new_mode = zp->z_mode;
3238 }
3239 err = zfs_acl_chown_setattr(zp);
3240 ASSERT(err == 0);
3241 if (attrzp) {
3242 err = zfs_acl_chown_setattr(attrzp);
3243 ASSERT(err == 0);
3244 }
3245 }

3247 if (mask & AT_MODE) {
3248 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3249 &new_mode, sizeof (new_mode));
3250 zp->z_mode = new_mode;
3251 ASSERT3U((uintptr_t)aclp, !=, NULL);
3252 err = zfs_aclset_common(zp, aclp, cr, tx);
3253 ASSERT0(err);
3254 if (zp->z_acl_cached)
3255 zfs_acl_free(zp->z_acl_cached);
3256 zp->z_acl_cached = aclp;
3257 aclp = NULL;
3258 }

3261 if (mask & AT_ATIME) {
3262 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3263 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3264 &zp->z_atime, sizeof (zp->z_atime));
3265 }

3267 if (mask & AT_MTIME) {
3268 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3269 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3270 mtime, sizeof (mtime));
3271 }

3273 /* XXX - shouldn’t this be done *before* the ATIME/MTIME checks? */
3274 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3275 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3276 NULL, mtime, sizeof (mtime));
3277 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3278 &ctime, sizeof (ctime));
3279 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3280 B_TRUE);
3281 } else if (mask != 0) {
3282 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3283 &ctime, sizeof (ctime));
3284 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3285 B_TRUE);
3286 if (attrzp) {
3287 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3288 SA_ZPL_CTIME(zfsvfs), NULL,
3289 &ctime, sizeof (ctime));
3290 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3291 mtime, ctime, B_TRUE);
3292 }
3293 }
3294 /*
3295 * Do this after setting timestamps to prevent timestamp

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 51

3296 * update from toggling bit
3297 */

3299 if (xoap && (mask & AT_XVATTR)) {

3301 /*
3302 * restore trimmed off masks
3303 * so that return masks can be set for caller.
3304 */

3306 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3307 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3308 }
3309 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3310 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3311 }
3312 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3313 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3314 }
3315 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3316 XVA_SET_REQ(xvap, XAT_NODUMP);
3317 }
3318 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3319 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3320 }
3321 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3322 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3323 }

3325 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3326 ASSERT(vp->v_type == VREG);

3328 zfs_xvattr_set(zp, xvap, tx);
3329 }

3331 if (fuid_dirtied)
3332 zfs_fuid_sync(zfsvfs, tx);

3334 if (mask != 0)
3335 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);

3337 mutex_exit(&zp->z_lock);
3338 if (mask & (AT_UID|AT_GID|AT_MODE))
3339 mutex_exit(&zp->z_acl_lock);

3341 if (attrzp) {
3342 if (mask & (AT_UID|AT_GID|AT_MODE))
3343 mutex_exit(&attrzp->z_acl_lock);
3344 mutex_exit(&attrzp->z_lock);
3345 }
3346 out:
3347 if (err == 0 && attrzp) {
3348 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3349 xattr_count, tx);
3350 ASSERT(err2 == 0);
3351 }

3353 if (attrzp)
3354 VN_RELE(ZTOV(attrzp));

3356 if (aclp)
3357 zfs_acl_free(aclp);

3359 if (fuidp) {
3360 zfs_fuid_info_free(fuidp);
3361 fuidp = NULL;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 52

3362 }

3364 if (err) {
3365 dmu_tx_abort(tx);
3366 if (err == ERESTART)
3367 goto top;
3368 } else {
3369 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3370 dmu_tx_commit(tx);
3371 }

3373 out2:
3374 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3375 zil_commit(zilog, 0);

3377 ZFS_EXIT(zfsvfs);
3378 return (err);
3379 }

3381 typedef struct zfs_zlock {
3382 krwlock_t *zl_rwlock; /* lock we acquired */
3383 znode_t *zl_znode; /* znode we held */
3384 struct zfs_zlock *zl_next; /* next in list */
3385 } zfs_zlock_t;

3387 /*
3388 * Drop locks and release vnodes that were held by zfs_rename_lock().
3389 */
3390 static void
3391 zfs_rename_unlock(zfs_zlock_t **zlpp)
3392 {
3393 zfs_zlock_t *zl;

3395 while ((zl = *zlpp) != NULL) {
3396 if (zl->zl_znode != NULL)
3397 VN_RELE(ZTOV(zl->zl_znode));
3398 rw_exit(zl->zl_rwlock);
3399 *zlpp = zl->zl_next;
3400 kmem_free(zl, sizeof (*zl));
3401 }
3402 }

3404 /*
3405 * Search back through the directory tree, using the ".." entries.
3406 * Lock each directory in the chain to prevent concurrent renames.
3407 * Fail any attempt to move a directory into one of its own descendants.
3408 * XXX - z_parent_lock can overlap with map or grow locks
3409 */
3410 static int
3411 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3412 {
3413 zfs_zlock_t *zl;
3414 znode_t *zp = tdzp;
3415 uint64_t rootid = zp->z_zfsvfs->z_root;
3416 uint64_t oidp = zp->z_id;
3417 krwlock_t *rwlp = &szp->z_parent_lock;
3418 krw_t rw = RW_WRITER;

3420 /*
3421 * First pass write-locks szp and compares to zp->z_id.
3422 * Later passes read-lock zp and compare to zp->z_parent.
3423 */
3424 do {
3425 if (!rw_tryenter(rwlp, rw)) {
3426 /*
3427 * Another thread is renaming in this path.

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 53

3428 * Note that if we are a WRITER, we don’t have any
3429 * parent_locks held yet.
3430 */
3431 if (rw == RW_READER && zp->z_id > szp->z_id) {
3432 /*
3433 * Drop our locks and restart
3434 */
3435 zfs_rename_unlock(&zl);
3436 *zlpp = NULL;
3437 zp = tdzp;
3438 oidp = zp->z_id;
3439 rwlp = &szp->z_parent_lock;
3440 rw = RW_WRITER;
3441 continue;
3442 } else {
3443 /*
3444 * Wait for other thread to drop its locks
3445 */
3446 rw_enter(rwlp, rw);
3447 }
3448 }

3450 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3451 zl->zl_rwlock = rwlp;
3452 zl->zl_znode = NULL;
3453 zl->zl_next = *zlpp;
3454 *zlpp = zl;

3456 if (oidp == szp->z_id) /* We’re a descendant of szp */
3457 return (SET_ERROR(EINVAL));

3459 if (oidp == rootid) /* We’ve hit the top */
3460 return (0);

3462 if (rw == RW_READER) { /* i.e. not the first pass */
3463 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3464 if (error)
3465 return (error);
3466 zl->zl_znode = zp;
3467 }
3468 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3469 &oidp, sizeof (oidp));
3470 rwlp = &zp->z_parent_lock;
3471 rw = RW_READER;

3473 } while (zp->z_id != sdzp->z_id);

3475 return (0);
3476 }

3478 /*
3479 * Move an entry from the provided source directory to the target
3480 * directory. Change the entry name as indicated.
3481 *
3482 * IN: sdvp - Source directory containing the "old entry".
3483 * snm - Old entry name.
3484 * tdvp - Target directory to contain the "new entry".
3485 * tnm - New entry name.
3486 * cr - credentials of caller.
3487 * ct - caller context
3488 * flags - case flags
3489 *
3490 * RETURN: 0 on success, error code on failure.
3491 *
3492 * Timestamps:
3493 * sdvp,tdvp - ctime|mtime updated

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 54

3494 */
3495 /*ARGSUSED*/
3496 static int
3497 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3498 caller_context_t *ct, int flags)
3499 {
3500 znode_t *tdzp, *szp, *tzp;
3501 znode_t *sdzp = VTOZ(sdvp);
3502 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3503 zilog_t *zilog;
3504 vnode_t *realvp;
3505 zfs_dirlock_t *sdl, *tdl;
3506 dmu_tx_t *tx;
3507 zfs_zlock_t *zl;
3508 int cmp, serr, terr;
3509 int error = 0;
3510 int zflg = 0;
3511 boolean_t waited = B_FALSE;

3513 ZFS_ENTER(zfsvfs);
3514 ZFS_VERIFY_ZP(sdzp);
3515 zilog = zfsvfs->z_log;

3517 /*
3518 * Make sure we have the real vp for the target directory.
3519 */
3520 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3521 tdvp = realvp;

3523 tdzp = VTOZ(tdvp);
3524 ZFS_VERIFY_ZP(tdzp);

3526 /*
3527 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3528 * ctldir appear to have the same v_vfsp.
3529 */
3530 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3531 ZFS_EXIT(zfsvfs);
3532 return (SET_ERROR(EXDEV));
3533 }

3535 if (zfsvfs->z_utf8 && u8_validate(tnm,
3536 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3537 ZFS_EXIT(zfsvfs);
3538 return (SET_ERROR(EILSEQ));
3539 }

3541 if (flags & FIGNORECASE)
3542 zflg |= ZCILOOK;

3544 top:
3545 szp = NULL;
3546 tzp = NULL;
3547 zl = NULL;

3549 /*
3550 * This is to prevent the creation of links into attribute space
3551 * by renaming a linked file into/outof an attribute directory.
3552 * See the comment in zfs_link() for why this is considered bad.
3553 */
3554 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3555 ZFS_EXIT(zfsvfs);
3556 return (SET_ERROR(EINVAL));
3557 }

3559 /*

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 55

3560 * Lock source and target directory entries. To prevent deadlock,
3561 * a lock ordering must be defined. We lock the directory with
3562 * the smallest object id first, or if it’s a tie, the one with
3563 * the lexically first name.
3564 */
3565 if (sdzp->z_id < tdzp->z_id) {
3566 cmp = -1;
3567 } else if (sdzp->z_id > tdzp->z_id) {
3568 cmp = 1;
3569 } else {
3570 /*
3571 * First compare the two name arguments without
3572 * considering any case folding.
3573 */
3574 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);

3576 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3577 ASSERT(error == 0 || !zfsvfs->z_utf8);
3578 if (cmp == 0) {
3579 /*
3580 * POSIX: "If the old argument and the new argument
3581 * both refer to links to the same existing file,
3582 * the rename() function shall return successfully
3583 * and perform no other action."
3584 */
3585 ZFS_EXIT(zfsvfs);
3586 return (0);
3587 }
3588 /*
3589 * If the file system is case-folding, then we may
3590 * have some more checking to do. A case-folding file
3591 * system is either supporting mixed case sensitivity
3592 * access or is completely case-insensitive. Note
3593 * that the file system is always case preserving.
3594 *
3595 * In mixed sensitivity mode case sensitive behavior
3596 * is the default. FIGNORECASE must be used to
3597 * explicitly request case insensitive behavior.
3598 *
3599 * If the source and target names provided differ only
3600 * by case (e.g., a request to rename ’tim’ to ’Tim’),
3601 * we will treat this as a special case in the
3602 * case-insensitive mode: as long as the source name
3603 * is an exact match, we will allow this to proceed as
3604 * a name-change request.
3605 */
3606 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3607 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3608 flags & FIGNORECASE)) &&
3609 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3610 &error) == 0) {
3611 /*
3612 * case preserving rename request, require exact
3613 * name matches
3614 */
3615 zflg |= ZCIEXACT;
3616 zflg &= ~ZCILOOK;
3617 }
3618 }

3620 /*
3621 * If the source and destination directories are the same, we should
3622 * grab the z_name_lock of that directory only once.
3623 */
3624 if (sdzp == tdzp) {
3625 zflg |= ZHAVELOCK;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 56

3626 rw_enter(&sdzp->z_name_lock, RW_READER);
3627 }

3629 if (cmp < 0) {
3630 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3631 ZEXISTS | zflg, NULL, NULL);
3632 terr = zfs_dirent_lock(&tdl,
3633 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3634 } else {
3635 terr = zfs_dirent_lock(&tdl,
3636 tdzp, tnm, &tzp, zflg, NULL, NULL);
3637 serr = zfs_dirent_lock(&sdl,
3638 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3639 NULL, NULL);
3640 }

3642 if (serr) {
3643 /*
3644 * Source entry invalid or not there.
3645 */
3646 if (!terr) {
3647 zfs_dirent_unlock(tdl);
3648 if (tzp)
3649 VN_RELE(ZTOV(tzp));
3650 }

3652 if (sdzp == tdzp)
3653 rw_exit(&sdzp->z_name_lock);

3655 if (strcmp(snm, "..") == 0)
3656 serr = SET_ERROR(EINVAL);
3657 ZFS_EXIT(zfsvfs);
3658 return (serr);
3659 }
3660 if (terr) {
3661 zfs_dirent_unlock(sdl);
3662 VN_RELE(ZTOV(szp));

3664 if (sdzp == tdzp)
3665 rw_exit(&sdzp->z_name_lock);

3667 if (strcmp(tnm, "..") == 0)
3668 terr = SET_ERROR(EINVAL);
3669 ZFS_EXIT(zfsvfs);
3670 return (terr);
3671 }

3673 /*
3674 * Must have write access at the source to remove the old entry
3675 * and write access at the target to create the new entry.
3676 * Note that if target and source are the same, this can be
3677 * done in a single check.
3678 */

3680 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3681 goto out;

3683 if (ZTOV(szp)->v_type == VDIR) {
3684 /*
3685 * Check to make sure rename is valid.
3686 * Can’t do a move like this: /usr/a/b to /usr/a/b/c/d
3687 */
3688 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3689 goto out;
3690 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 57

3692 /*
3693 * Does target exist?
3694 */
3695 if (tzp) {
3696 /*
3697 * Source and target must be the same type.
3698 */
3699 if (ZTOV(szp)->v_type == VDIR) {
3700 if (ZTOV(tzp)->v_type != VDIR) {
3701 error = SET_ERROR(ENOTDIR);
3702 goto out;
3703 }
3704 } else {
3705 if (ZTOV(tzp)->v_type == VDIR) {
3706 error = SET_ERROR(EISDIR);
3707 goto out;
3708 }
3709 }
3710 /*
3711 * POSIX dictates that when the source and target
3712 * entries refer to the same file object, rename
3713 * must do nothing and exit without error.
3714 */
3715 if (szp->z_id == tzp->z_id) {
3716 error = 0;
3717 goto out;
3718 }
3719 }

3721 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3722 if (tzp)
3723 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);

3725 /*
3726 * notify the target directory if it is not the same
3727 * as source directory.
3728 */
3729 if (tdvp != sdvp) {
3730 vnevent_rename_dest_dir(tdvp, ct);
3731 }

3733 tx = dmu_tx_create(zfsvfs->z_os);
3734 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3735 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3736 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3737 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3738 if (sdzp != tdzp) {
3739 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3740 zfs_sa_upgrade_txholds(tx, tdzp);
3741 }
3742 if (tzp) {
3743 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3744 zfs_sa_upgrade_txholds(tx, tzp);
3745 }

3747 zfs_sa_upgrade_txholds(tx, szp);
3748 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3749 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3750 if (error) {
3751 if (zl != NULL)
3752 zfs_rename_unlock(&zl);
3753 zfs_dirent_unlock(sdl);
3754 zfs_dirent_unlock(tdl);

3756 if (sdzp == tdzp)
3757 rw_exit(&sdzp->z_name_lock);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 58

3759 VN_RELE(ZTOV(szp));
3760 if (tzp)
3761 VN_RELE(ZTOV(tzp));
3762 if (error == ERESTART) {
3763 waited = B_TRUE;
3764 dmu_tx_wait(tx);
3765 dmu_tx_abort(tx);
3766 goto top;
3767 }
3768 dmu_tx_abort(tx);
3769 ZFS_EXIT(zfsvfs);
3770 return (error);
3771 }

3773 if (tzp) /* Attempt to remove the existing target */
3774 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);

3776 if (error == 0) {
3777 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3778 if (error == 0) {
3779 szp->z_pflags |= ZFS_AV_MODIFIED;

3781 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3782 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3783 ASSERT0(error);

3785 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3786 if (error == 0) {
3787 zfs_log_rename(zilog, tx, TX_RENAME |
3788 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3789 sdl->dl_name, tdzp, tdl->dl_name, szp);

3791 /*
3792 * Update path information for the target vnode
3793 */
3794 vn_renamepath(tdvp, ZTOV(szp), tnm,
3795 strlen(tnm));
3796 } else {
3797 /*
3798 * At this point, we have successfully created
3799 * the target name, but have failed to remove
3800 * the source name. Since the create was done
3801 * with the ZRENAMING flag, there are
3802 * complications; for one, the link count is
3803 * wrong. The easiest way to deal with this
3804 * is to remove the newly created target, and
3805 * return the original error. This must
3806 * succeed; fortunately, it is very unlikely to
3807 * fail, since we just created it.
3808 */
3809 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3810 ZRENAMING, NULL), ==, 0);
3811 }
3812 }
3813 }

3815 dmu_tx_commit(tx);
3816 out:
3817 if (zl != NULL)
3818 zfs_rename_unlock(&zl);

3820 zfs_dirent_unlock(sdl);
3821 zfs_dirent_unlock(tdl);

3823 if (sdzp == tdzp)

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 59

3824 rw_exit(&sdzp->z_name_lock);

3827 VN_RELE(ZTOV(szp));
3828 if (tzp)
3829 VN_RELE(ZTOV(tzp));

3831 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3832 zil_commit(zilog, 0);

3834 ZFS_EXIT(zfsvfs);
3835 return (error);
3836 }

3838 /*
3839 * Insert the indicated symbolic reference entry into the directory.
3840 *
3841 * IN: dvp - Directory to contain new symbolic link.
3842 * link - Name for new symlink entry.
3843 * vap - Attributes of new entry.
3844 * cr - credentials of caller.
3845 * ct - caller context
3846 * flags - case flags
3847 *
3848 * RETURN: 0 on success, error code on failure.
3849 *
3850 * Timestamps:
3851 * dvp - ctime|mtime updated
3852 */
3853 /*ARGSUSED*/
3854 static int
3855 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3856 caller_context_t *ct, int flags)
3857 {
3858 znode_t *zp, *dzp = VTOZ(dvp);
3859 zfs_dirlock_t *dl;
3860 dmu_tx_t *tx;
3861 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3862 zilog_t *zilog;
3863 uint64_t len = strlen(link);
3864 int error;
3865 int zflg = ZNEW;
3866 zfs_acl_ids_t acl_ids;
3867 boolean_t fuid_dirtied;
3868 uint64_t txtype = TX_SYMLINK;
3869 boolean_t waited = B_FALSE;

3871 ASSERT(vap->va_type == VLNK);

3873 ZFS_ENTER(zfsvfs);
3874 ZFS_VERIFY_ZP(dzp);
3875 zilog = zfsvfs->z_log;

3877 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3878 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3879 ZFS_EXIT(zfsvfs);
3880 return (SET_ERROR(EILSEQ));
3881 }
3882 if (flags & FIGNORECASE)
3883 zflg |= ZCILOOK;

3885 if (len > MAXPATHLEN) {
3886 ZFS_EXIT(zfsvfs);
3887 return (SET_ERROR(ENAMETOOLONG));
3888 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 60

3890 if ((error = zfs_acl_ids_create(dzp, 0,
3891 vap, cr, NULL, &acl_ids)) != 0) {
3892 ZFS_EXIT(zfsvfs);
3893 return (error);
3894 }
3895 top:
3896 /*
3897 * Attempt to lock directory; fail if entry already exists.
3898 */
3899 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3900 if (error) {
3901 zfs_acl_ids_free(&acl_ids);
3902 ZFS_EXIT(zfsvfs);
3903 return (error);
3904 }

3906 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3907 zfs_acl_ids_free(&acl_ids);
3908 zfs_dirent_unlock(dl);
3909 ZFS_EXIT(zfsvfs);
3910 return (error);
3911 }

3913 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3914 zfs_acl_ids_free(&acl_ids);
3915 zfs_dirent_unlock(dl);
3916 ZFS_EXIT(zfsvfs);
3917 return (SET_ERROR(EDQUOT));
3918 }
3919 tx = dmu_tx_create(zfsvfs->z_os);
3920 fuid_dirtied = zfsvfs->z_fuid_dirty;
3921 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3922 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3923 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3924 ZFS_SA_BASE_ATTR_SIZE + len);
3925 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3926 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3927 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3928 acl_ids.z_aclp->z_acl_bytes);
3929 }
3930 if (fuid_dirtied)
3931 zfs_fuid_txhold(zfsvfs, tx);
3932 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3933 if (error) {
3934 zfs_dirent_unlock(dl);
3935 if (error == ERESTART) {
3936 waited = B_TRUE;
3937 dmu_tx_wait(tx);
3938 dmu_tx_abort(tx);
3939 goto top;
3940 }
3941 zfs_acl_ids_free(&acl_ids);
3942 dmu_tx_abort(tx);
3943 ZFS_EXIT(zfsvfs);
3944 return (error);
3945 }

3947 /*
3948 * Create a new object for the symlink.
3949 * for version 4 ZPL datsets the symlink will be an SA attribute
3950 */
3951 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);

3953 if (fuid_dirtied)
3954 zfs_fuid_sync(zfsvfs, tx);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 61

3956 mutex_enter(&zp->z_lock);
3957 if (zp->z_is_sa)
3958 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3959 link, len, tx);
3960 else
3961 zfs_sa_symlink(zp, link, len, tx);
3962 mutex_exit(&zp->z_lock);

3964 zp->z_size = len;
3965 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3966 &zp->z_size, sizeof (zp->z_size), tx);
3967 /*
3968 * Insert the new object into the directory.
3969 */
3970 (void) zfs_link_create(dl, zp, tx, ZNEW);

3972 if (flags & FIGNORECASE)
3973 txtype |= TX_CI;
3974 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);

3976 zfs_acl_ids_free(&acl_ids);

3978 dmu_tx_commit(tx);

3980 zfs_dirent_unlock(dl);

3982 VN_RELE(ZTOV(zp));

3984 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3985 zil_commit(zilog, 0);

3987 ZFS_EXIT(zfsvfs);
3988 return (error);
3989 }

3991 /*
3992 * Return, in the buffer contained in the provided uio structure,
3993 * the symbolic path referred to by vp.
3994 *
3995 * IN: vp - vnode of symbolic link.
3996 * uio - structure to contain the link path.
3997 * cr - credentials of caller.
3998 * ct - caller context
3999 *
4000 * OUT: uio - structure containing the link path.
4001 *
4002 * RETURN: 0 on success, error code on failure.
4003 *
4004 * Timestamps:
4005 * vp - atime updated
4006 */
4007 /* ARGSUSED */
4008 static int
4009 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4010 {
4011 znode_t *zp = VTOZ(vp);
4012 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4013 int error;

4015 ZFS_ENTER(zfsvfs);
4016 ZFS_VERIFY_ZP(zp);

4018 mutex_enter(&zp->z_lock);
4019 if (zp->z_is_sa)
4020 error = sa_lookup_uio(zp->z_sa_hdl,
4021 SA_ZPL_SYMLINK(zfsvfs), uio);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 62

4022 else
4023 error = zfs_sa_readlink(zp, uio);
4024 mutex_exit(&zp->z_lock);

4026 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);

4028 ZFS_EXIT(zfsvfs);
4029 return (error);
4030 }

4032 /*
4033 * Insert a new entry into directory tdvp referencing svp.
4034 *
4035 * IN: tdvp - Directory to contain new entry.
4036 * svp - vnode of new entry.
4037 * name - name of new entry.
4038 * cr - credentials of caller.
4039 * ct - caller context
4040 *
4041 * RETURN: 0 on success, error code on failure.
4042 *
4043 * Timestamps:
4044 * tdvp - ctime|mtime updated
4045 * svp - ctime updated
4046 */
4047 /* ARGSUSED */
4048 static int
4049 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4050 caller_context_t *ct, int flags)
4051 {
4052 znode_t *dzp = VTOZ(tdvp);
4053 znode_t *tzp, *szp;
4054 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4055 zilog_t *zilog;
4056 zfs_dirlock_t *dl;
4057 dmu_tx_t *tx;
4058 vnode_t *realvp;
4059 int error;
4060 int zf = ZNEW;
4061 uint64_t parent;
4062 uid_t owner;
4063 boolean_t waited = B_FALSE;

4065 ASSERT(tdvp->v_type == VDIR);

4067 ZFS_ENTER(zfsvfs);
4068 ZFS_VERIFY_ZP(dzp);
4069 zilog = zfsvfs->z_log;

4071 if (VOP_REALVP(svp, &realvp, ct) == 0)
4072 svp = realvp;

4074 /*
4075 * POSIX dictates that we return EPERM here.
4076 * Better choices include ENOTSUP or EISDIR.
4077 */
4078 if (svp->v_type == VDIR) {
4079 ZFS_EXIT(zfsvfs);
4080 return (SET_ERROR(EPERM));
4081 }

4083 szp = VTOZ(svp);
4084 ZFS_VERIFY_ZP(szp);

4086 /*
4087 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 63

4088 * ctldir appear to have the same v_vfsp.
4089 */
4090 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4091 ZFS_EXIT(zfsvfs);
4092 return (SET_ERROR(EXDEV));
4093 }

4095 /* Prevent links to .zfs/shares files */

4097 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4098 &parent, sizeof (uint64_t))) != 0) {
4099 ZFS_EXIT(zfsvfs);
4100 return (error);
4101 }
4102 if (parent == zfsvfs->z_shares_dir) {
4103 ZFS_EXIT(zfsvfs);
4104 return (SET_ERROR(EPERM));
4105 }

4107 if (zfsvfs->z_utf8 && u8_validate(name,
4108 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4109 ZFS_EXIT(zfsvfs);
4110 return (SET_ERROR(EILSEQ));
4111 }
4112 if (flags & FIGNORECASE)
4113 zf |= ZCILOOK;

4115 /*
4116 * We do not support links between attributes and non-attributes
4117 * because of the potential security risk of creating links
4118 * into "normal" file space in order to circumvent restrictions
4119 * imposed in attribute space.
4120 */
4121 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4122 ZFS_EXIT(zfsvfs);
4123 return (SET_ERROR(EINVAL));
4124 }

4127 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4128 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4129 ZFS_EXIT(zfsvfs);
4130 return (SET_ERROR(EPERM));
4131 }

4133 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4134 ZFS_EXIT(zfsvfs);
4135 return (error);
4136 }

4138 top:
4139 /*
4140 * Attempt to lock directory; fail if entry already exists.
4141 */
4142 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4143 if (error) {
4144 ZFS_EXIT(zfsvfs);
4145 return (error);
4146 }

4148 tx = dmu_tx_create(zfsvfs->z_os);
4149 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4150 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4151 zfs_sa_upgrade_txholds(tx, szp);
4152 zfs_sa_upgrade_txholds(tx, dzp);
4153 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 64

4154 if (error) {
4155 zfs_dirent_unlock(dl);
4156 if (error == ERESTART) {
4157 waited = B_TRUE;
4158 dmu_tx_wait(tx);
4159 dmu_tx_abort(tx);
4160 goto top;
4161 }
4162 dmu_tx_abort(tx);
4163 ZFS_EXIT(zfsvfs);
4164 return (error);
4165 }

4167 error = zfs_link_create(dl, szp, tx, 0);

4169 if (error == 0) {
4170 uint64_t txtype = TX_LINK;
4171 if (flags & FIGNORECASE)
4172 txtype |= TX_CI;
4173 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4174 }

4176 dmu_tx_commit(tx);

4178 zfs_dirent_unlock(dl);

4180 if (error == 0) {
4181 vnevent_link(svp, ct);
4182 }

4184 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4185 zil_commit(zilog, 0);

4187 ZFS_EXIT(zfsvfs);
4188 return (error);
4189 }

4191 /*
4192 * zfs_null_putapage() is used when the file system has been force
4193 * unmounted. It just drops the pages.
4194 */
4195 /* ARGSUSED */
4196 static int
4197 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4198 size_t *lenp, int flags, cred_t *cr)
4199 {
4200 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4201 return (0);
4202 }

4204 /*
4205 * Push a page out to disk, klustering if possible.
4206 *
4207 * IN: vp - file to push page to.
4208 * pp - page to push.
4209 * flags - additional flags.
4210 * cr - credentials of caller.
4211 *
4212 * OUT: offp - start of range pushed.
4213 * lenp - len of range pushed.
4214 *
4215 * RETURN: 0 on success, error code on failure.
4216 *
4217 * NOTE: callers must have locked the page to be pushed. On
4218 * exit, the page (and all other pages in the kluster) must be
4219 * unlocked.

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 65

4220 */
4221 /* ARGSUSED */
4222 static int
4223 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4224 size_t *lenp, int flags, cred_t *cr)
4225 {
4226 znode_t *zp = VTOZ(vp);
4227 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4228 dmu_tx_t *tx;
4229 u_offset_t off, koff;
4230 size_t len, klen;
4231 int err;

4233 off = pp->p_offset;
4234 len = PAGESIZE;
4235 /*
4236 * If our blocksize is bigger than the page size, try to kluster
4237 * multiple pages so that we write a full block (thus avoiding
4238 * a read-modify-write).
4239 */
4240 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4241 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4242 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4243 ASSERT(koff <= zp->z_size);
4244 if (koff + klen > zp->z_size)
4245 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4246 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4247 }
4248 ASSERT3U(btop(len), ==, btopr(len));

4250 /*
4251 * Can’t push pages past end-of-file.
4252 */
4253 if (off >= zp->z_size) {
4254 /* ignore all pages */
4255 err = 0;
4256 goto out;
4257 } else if (off + len > zp->z_size) {
4258 int npages = btopr(zp->z_size - off);
4259 page_t *trunc;

4261 page_list_break(&pp, &trunc, npages);
4262 /* ignore pages past end of file */
4263 if (trunc)
4264 pvn_write_done(trunc, flags);
4265 len = zp->z_size - off;
4266 }

4268 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4269 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4270 err = SET_ERROR(EDQUOT);
4271 goto out;
4272 }
4273 tx = dmu_tx_create(zfsvfs->z_os);
4274 dmu_tx_hold_write(tx, zp->z_id, off, len);

4276 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4277 zfs_sa_upgrade_txholds(tx, zp);
4278 err = dmu_tx_assign(tx, TXG_WAIT);
4279 if (err != 0) {
4280 dmu_tx_abort(tx);
4281 goto out;
4282 }

4284 if (zp->z_blksz <= PAGESIZE) {
4285 caddr_t va = zfs_map_page(pp, S_READ);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 66

4286 ASSERT3U(len, <=, PAGESIZE);
4287 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4288 zfs_unmap_page(pp, va);
4289 } else {
4290 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4291 }

4293 if (err == 0) {
4294 uint64_t mtime[2], ctime[2];
4295 sa_bulk_attr_t bulk[3];
4296 int count = 0;

4298 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4299 &mtime, 16);
4300 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4301 &ctime, 16);
4302 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4303 &zp->z_pflags, 8);
4304 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4305 B_TRUE);
4306 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4307 }
4308 dmu_tx_commit(tx);

4310 out:
4311 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4312 if (offp)
4313 *offp = off;
4314 if (lenp)
4315 *lenp = len;

4317 return (err);
4318 }

4320 /*
4321 * Copy the portion of the file indicated from pages into the file.
4322 * The pages are stored in a page list attached to the files vnode.
4323 *
4324 * IN: vp - vnode of file to push page data to.
4325 * off - position in file to put data.
4326 * len - amount of data to write.
4327 * flags - flags to control the operation.
4328 * cr - credentials of caller.
4329 * ct - caller context.
4330 *
4331 * RETURN: 0 on success, error code on failure.
4332 *
4333 * Timestamps:
4334 * vp - ctime|mtime updated
4335 */
4336 /*ARGSUSED*/
4337 static int
4338 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4339 caller_context_t *ct)
4340 {
4341 znode_t *zp = VTOZ(vp);
4342 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4343 page_t *pp;
4344 size_t io_len;
4345 u_offset_t io_off;
4346 uint_t blksz;
4347 rl_t *rl;
4348 int error = 0;

4350 ZFS_ENTER(zfsvfs);
4351 ZFS_VERIFY_ZP(zp);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 67

4353 /*
4354 * There’s nothing to do if no data is cached.
4355 */
4356 if (!vn_has_cached_data(vp)) {
4357 ZFS_EXIT(zfsvfs);
4358 return (0);
4359 }

4361 /*
4362 * Align this request to the file block size in case we kluster.
4363 * XXX - this can result in pretty aggresive locking, which can
4364 * impact simultanious read/write access. One option might be
4365 * to break up long requests (len == 0) into block-by-block
4366 * operations to get narrower locking.
4367 */
4368 blksz = zp->z_blksz;
4369 if (ISP2(blksz))
4370 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4371 else
4372 io_off = 0;
4373 if (len > 0 && ISP2(blksz))
4374 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4375 else
4376 io_len = 0;

4378 if (io_len == 0) {
4379 /*
4380 * Search the entire vp list for pages >= io_off.
4381 */
4382 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4383 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4384 goto out;
4385 }
4386 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);

4388 if (off > zp->z_size) {
4389 /* past end of file */
4390 zfs_range_unlock(rl);
4391 ZFS_EXIT(zfsvfs);
4392 return (0);
4393 }

4395 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);

4397 for (off = io_off; io_off < off + len; io_off += io_len) {
4398 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4399 pp = page_lookup(vp, io_off,
4400 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4401 } else {
4402 pp = page_lookup_nowait(vp, io_off,
4403 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4404 }

4406 if (pp != NULL && pvn_getdirty(pp, flags)) {
4407 int err;

4409 /*
4410 * Found a dirty page to push
4411 */
4412 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4413 if (err)
4414 error = err;
4415 } else {
4416 io_len = PAGESIZE;
4417 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 68

4418 }
4419 out:
4420 zfs_range_unlock(rl);
4421 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4422 zil_commit(zfsvfs->z_log, zp->z_id);
4423 ZFS_EXIT(zfsvfs);
4424 return (error);
4425 }

4427 /*ARGSUSED*/
4428 void
4429 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4430 {
4431 znode_t *zp = VTOZ(vp);
4432 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4433 int error;

4435 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4436 if (zp->z_sa_hdl == NULL) {
4437 /*
4438 * The fs has been unmounted, or we did a
4439 * suspend/resume and this file no longer exists.
4440 */
4441 if (vn_has_cached_data(vp)) {
4442 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4443 B_INVAL, cr);
4444 }

4446 mutex_enter(&zp->z_lock);
4447 mutex_enter(&vp->v_lock);
4448 ASSERT(vp->v_count == 1);
4449 vp->v_count = 0;
4450 mutex_exit(&vp->v_lock);
4451 mutex_exit(&zp->z_lock);
4452 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4453 zfs_znode_free(zp);
4454 return;
4455 }

4457 /*
4458 * Attempt to push any data in the page cache. If this fails
4459 * we will get kicked out later in zfs_zinactive().
4460 */
4461 if (vn_has_cached_data(vp)) {
4462 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4463 cr);
4464 }

4466 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4467 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);

4469 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4470 zfs_sa_upgrade_txholds(tx, zp);
4471 error = dmu_tx_assign(tx, TXG_WAIT);
4472 if (error) {
4473 dmu_tx_abort(tx);
4474 } else {
4475 mutex_enter(&zp->z_lock);
4476 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4477 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4478 zp->z_atime_dirty = 0;
4479 mutex_exit(&zp->z_lock);
4480 dmu_tx_commit(tx);
4481 }
4482 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 69

4484 zfs_zinactive(zp);
4485 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4486 }

4488 /*
4489 * Bounds-check the seek operation.
4490 *
4491 * IN: vp - vnode seeking within
4492 * ooff - old file offset
4493 * noffp - pointer to new file offset
4494 * ct - caller context
4495 *
4496 * RETURN: 0 on success, EINVAL if new offset invalid.
4497 */
4498 /* ARGSUSED */
4499 static int
4500 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4501 caller_context_t *ct)
4502 {
4503 if (vp->v_type == VDIR)
4504 return (0);
4505 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4506 }

4508 /*
4509 * Pre-filter the generic locking function to trap attempts to place
4510 * a mandatory lock on a memory mapped file.
4511 */
4512 static int
4513 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4514 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4515 {
4516 znode_t *zp = VTOZ(vp);
4517 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

4519 ZFS_ENTER(zfsvfs);
4520 ZFS_VERIFY_ZP(zp);

4522 /*
4523 * We are following the UFS semantics with respect to mapcnt
4524 * here: If we see that the file is mapped already, then we will
4525 * return an error, but we don’t worry about races between this
4526 * function and zfs_map().
4527 */
4528 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4529 ZFS_EXIT(zfsvfs);
4530 return (SET_ERROR(EAGAIN));
4531 }
4532 ZFS_EXIT(zfsvfs);
4533 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4534 }

4536 /*
4537 * If we can’t find a page in the cache, we will create a new page
4538 * and fill it with file data. For efficiency, we may try to fill
4539 * multiple pages at once (klustering) to fill up the supplied page
4540 * list. Note that the pages to be filled are held with an exclusive
4541 * lock to prevent access by other threads while they are being filled.
4542 */
4543 static int
4544 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4545 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4546 {
4547 znode_t *zp = VTOZ(vp);
4548 page_t *pp, *cur_pp;
4549 objset_t *os = zp->z_zfsvfs->z_os;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 70

4550 u_offset_t io_off, total;
4551 size_t io_len;
4552 int err;

4554 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4555 /*
4556 * We only have a single page, don’t bother klustering
4557 */
4558 io_off = off;
4559 io_len = PAGESIZE;
4560 pp = page_create_va(vp, io_off, io_len,
4561 PG_EXCL | PG_WAIT, seg, addr);
4562 } else {
4563 /*
4564 * Try to find enough pages to fill the page list
4565 */
4566 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4567 &io_len, off, plsz, 0);
4568 }
4569 if (pp == NULL) {
4570 /*
4571 * The page already exists, nothing to do here.
4572 */
4573 *pl = NULL;
4574 return (0);
4575 }

4577 /*
4578 * Fill the pages in the kluster.
4579 */
4580 cur_pp = pp;
4581 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4582 caddr_t va;

4584 ASSERT3U(io_off, ==, cur_pp->p_offset);
4585 va = zfs_map_page(cur_pp, S_WRITE);
4586 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4587 DMU_READ_PREFETCH);
4588 zfs_unmap_page(cur_pp, va);
4589 if (err) {
4590 /* On error, toss the entire kluster */
4591 pvn_read_done(pp, B_ERROR);
4592 /* convert checksum errors into IO errors */
4593 if (err == ECKSUM)
4594 err = SET_ERROR(EIO);
4595 return (err);
4596 }
4597 cur_pp = cur_pp->p_next;
4598 }

4600 /*
4601 * Fill in the page list array from the kluster starting
4602 * from the desired offset ‘off’.
4603 * NOTE: the page list will always be null terminated.
4604 */
4605 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4606 ASSERT(pl == NULL || (*pl)->p_offset == off);

4608 return (0);
4609 }

4611 /*
4612 * Return pointers to the pages for the file region [off, off + len]
4613 * in the pl array. If plsz is greater than len, this function may
4614 * also return page pointers from after the specified region
4615 * (i.e. the region [off, off + plsz]). These additional pages are

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 71

4616 * only returned if they are already in the cache, or were created as
4617 * part of a klustered read.
4618 *
4619 * IN: vp - vnode of file to get data from.
4620 * off - position in file to get data from.
4621 * len - amount of data to retrieve.
4622 * plsz - length of provided page list.
4623 * seg - segment to obtain pages for.
4624 * addr - virtual address of fault.
4625 * rw - mode of created pages.
4626 * cr - credentials of caller.
4627 * ct - caller context.
4628 *
4629 * OUT: protp - protection mode of created pages.
4630 * pl - list of pages created.
4631 *
4632 * RETURN: 0 on success, error code on failure.
4633 *
4634 * Timestamps:
4635 * vp - atime updated
4636 */
4637 /* ARGSUSED */
4638 static int
4639 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4640 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4641 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4642 {
4643 znode_t *zp = VTOZ(vp);
4644 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4645 page_t **pl0 = pl;
4646 int err = 0;

4648 /* we do our own caching, faultahead is unnecessary */
4649 if (pl == NULL)
4650 return (0);
4651 else if (len > plsz)
4652 len = plsz;
4653 else
4654 len = P2ROUNDUP(len, PAGESIZE);
4655 ASSERT(plsz >= len);

4657 ZFS_ENTER(zfsvfs);
4658 ZFS_VERIFY_ZP(zp);

4660 if (protp)
4661 *protp = PROT_ALL;

4663 /*
4664 * Loop through the requested range [off, off + len) looking
4665 * for pages. If we don’t find a page, we will need to create
4666 * a new page and fill it with data from the file.
4667 */
4668 while (len > 0) {
4669 if (*pl = page_lookup(vp, off, SE_SHARED))
4670 *(pl+1) = NULL;
4671 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4672 goto out;
4673 while (*pl) {
4674 ASSERT3U((*pl)->p_offset, ==, off);
4675 off += PAGESIZE;
4676 addr += PAGESIZE;
4677 if (len > 0) {
4678 ASSERT3U(len, >=, PAGESIZE);
4679 len -= PAGESIZE;
4680 }
4681 ASSERT3U(plsz, >=, PAGESIZE);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 72

4682 plsz -= PAGESIZE;
4683 pl++;
4684 }
4685 }

4687 /*
4688 * Fill out the page array with any pages already in the cache.
4689 */
4690 while (plsz > 0 &&
4691 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4692 off += PAGESIZE;
4693 plsz -= PAGESIZE;
4694 }
4695 out:
4696 if (err) {
4697 /*
4698 * Release any pages we have previously locked.
4699 */
4700 while (pl > pl0)
4701 page_unlock(*--pl);
4702 } else {
4703 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4704 }

4706 *pl = NULL;

4708 ZFS_EXIT(zfsvfs);
4709 return (err);
4710 }

4712 /*
4713 * Request a memory map for a section of a file. This code interacts
4714 * with common code and the VM system as follows:
4715 *
4716 * - common code calls mmap(), which ends up in smmap_common()
4717 * - this calls VOP_MAP(), which takes you into (say) zfs
4718 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4719 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4720 * - zfs_addmap() updates z_mapcnt
4721 */
4722 /*ARGSUSED*/
4723 static int
4724 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4725 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4726 caller_context_t *ct)
4727 {
4728 znode_t *zp = VTOZ(vp);
4729 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4730 segvn_crargs_t vn_a;
4731 int error;

4733 ZFS_ENTER(zfsvfs);
4734 ZFS_VERIFY_ZP(zp);

4736 if ((prot & PROT_WRITE) && (zp->z_pflags &
4737 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4738 ZFS_EXIT(zfsvfs);
4739 return (SET_ERROR(EPERM));
4740 }

4742 if ((prot & (PROT_READ | PROT_EXEC)) &&
4743 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4744 ZFS_EXIT(zfsvfs);
4745 return (SET_ERROR(EACCES));
4746 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 73

4748 if (vp->v_flag & VNOMAP) {
4749 ZFS_EXIT(zfsvfs);
4750 return (SET_ERROR(ENOSYS));
4751 }

4753 if (off < 0 || len > MAXOFFSET_T - off) {
4754 ZFS_EXIT(zfsvfs);
4755 return (SET_ERROR(ENXIO));
4756 }

4758 if (vp->v_type != VREG) {
4759 ZFS_EXIT(zfsvfs);
4760 return (SET_ERROR(ENODEV));
4761 }

4763 /*
4764 * If file is locked, disallow mapping.
4765 */
4766 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4767 ZFS_EXIT(zfsvfs);
4768 return (SET_ERROR(EAGAIN));
4769 }

4771 as_rangelock(as);
4772 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4773 if (error != 0) {
4774 as_rangeunlock(as);
4775 ZFS_EXIT(zfsvfs);
4776 return (error);
4777 }

4779 vn_a.vp = vp;
4780 vn_a.offset = (u_offset_t)off;
4781 vn_a.type = flags & MAP_TYPE;
4782 vn_a.prot = prot;
4783 vn_a.maxprot = maxprot;
4784 vn_a.cred = cr;
4785 vn_a.amp = NULL;
4786 vn_a.flags = flags & ~MAP_TYPE;
4787 vn_a.szc = 0;
4788 vn_a.lgrp_mem_policy_flags = 0;

4790 error = as_map(as, *addrp, len, segvn_create, &vn_a);

4792 as_rangeunlock(as);
4793 ZFS_EXIT(zfsvfs);
4794 return (error);
4795 }

4797 /* ARGSUSED */
4798 static int
4799 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4800 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4801 caller_context_t *ct)
4802 {
4803 uint64_t pages = btopr(len);

4805 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4806 return (0);
4807 }

4809 /*
4810 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4811 * more accurate mtime for the associated file. Since we don’t have a way of
4812 * detecting when the data was actually modified, we have to resort to
4813 * heuristics. If an explicit msync() is done, then we mark the mtime when the

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 74

4814 * last page is pushed. The problem occurs when the msync() call is omitted,
4815 * which by far the most common case:
4816 *
4817 * open()
4818 * mmap()
4819 * <modify memory>
4820 * munmap()
4821 * close()
4822 * <time lapse>
4823 * putpage() via fsflush
4824 *
4825 * If we wait until fsflush to come along, we can have a modification time that
4826 * is some arbitrary point in the future. In order to prevent this in the
4827 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4828 * torn down.
4829 */
4830 /* ARGSUSED */
4831 static int
4832 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4833 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4834 caller_context_t *ct)
4835 {
4836 uint64_t pages = btopr(len);

4838 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4839 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);

4841 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4842 vn_has_cached_data(vp))
4843 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);

4845 return (0);
4846 }

4848 /*
4849 * Free or allocate space in a file. Currently, this function only
4850 * supports the ‘F_FREESP’ command. However, this command is somewhat
4851 * misnamed, as its functionality includes the ability to allocate as
4852 * well as free space.
4853 *
4854 * IN: vp - vnode of file to free data in.
4855 * cmd - action to take (only F_FREESP supported).
4856 * bfp - section of file to free/alloc.
4857 * flag - current file open mode flags.
4858 * offset - current file offset.
4859 * cr - credentials of caller [UNUSED].
4860 * ct - caller context.
4861 *
4862 * RETURN: 0 on success, error code on failure.
4863 *
4864 * Timestamps:
4865 * vp - ctime|mtime updated
4866 */
4867 /* ARGSUSED */
4868 static int
4869 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4870 offset_t offset, cred_t *cr, caller_context_t *ct)
4871 {
4872 znode_t *zp = VTOZ(vp);
4873 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4874 uint64_t off, len;
4875 int error;

4877 ZFS_ENTER(zfsvfs);
4878 ZFS_VERIFY_ZP(zp);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 75

4880 if (cmd != F_FREESP) {
4881 ZFS_EXIT(zfsvfs);
4882 return (SET_ERROR(EINVAL));
4883 }

4885 /*
4886 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4887 * callers might not be able to detect properly that we are read-only,
4888 * so check it explicitly here.
4889 */
4890 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4891 ZFS_EXIT(zfsvfs);
4892 return (SET_ERROR(EROFS));
4893 }

4895 if (error = convoff(vp, bfp, 0, offset)) {
4896 ZFS_EXIT(zfsvfs);
4897 return (error);
4898 }

4900 if (bfp->l_len < 0) {
4901 ZFS_EXIT(zfsvfs);
4902 return (SET_ERROR(EINVAL));
4903 }

4905 off = bfp->l_start;
4906 len = bfp->l_len; /* 0 means from off to end of file */

4908 error = zfs_freesp(zp, off, len, flag, TRUE);

4910 if (error == 0 && off == 0 && len == 0)
4911 vnevent_truncate(ZTOV(zp), ct);

4913 ZFS_EXIT(zfsvfs);
4914 return (error);
4915 }

4917 /*ARGSUSED*/
4918 static int
4919 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4920 {
4921 znode_t *zp = VTOZ(vp);
4922 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4923 uint32_t gen;
4924 uint64_t gen64;
4925 uint64_t object = zp->z_id;
4926 zfid_short_t *zfid;
4927 int size, i, error;

4929 ZFS_ENTER(zfsvfs);
4930 ZFS_VERIFY_ZP(zp);

4932 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4933 &gen64, sizeof (uint64_t))) != 0) {
4934 ZFS_EXIT(zfsvfs);
4935 return (error);
4936 }

4938 gen = (uint32_t)gen64;

4940 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4941 if (fidp->fid_len < size) {
4942 fidp->fid_len = size;
4943 ZFS_EXIT(zfsvfs);
4944 return (SET_ERROR(ENOSPC));
4945 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 76

4947 zfid = (zfid_short_t *)fidp;

4949 zfid->zf_len = size;

4951 for (i = 0; i < sizeof (zfid->zf_object); i++)
4952 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));

4954 /* Must have a non-zero generation number to distinguish from .zfs */
4955 if (gen == 0)
4956 gen = 1;
4957 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4958 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));

4960 if (size == LONG_FID_LEN) {
4961 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4962 zfid_long_t *zlfid;

4964 zlfid = (zfid_long_t *)fidp;

4966 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4967 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));

4969 /* XXX - this should be the generation number for the objset */
4970 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4971 zlfid->zf_setgen[i] = 0;
4972 }

4974 ZFS_EXIT(zfsvfs);
4975 return (0);
4976 }

4978 static int
4979 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4980 caller_context_t *ct)
4981 {
4982 znode_t *zp, *xzp;
4983 zfsvfs_t *zfsvfs;
4984 zfs_dirlock_t *dl;
4985 int error;

4987 switch (cmd) {
4988 case _PC_LINK_MAX:
4989 *valp = ULONG_MAX;
4990 return (0);

4992 case _PC_FILESIZEBITS:
4993 *valp = 64;
4994 return (0);

4996 case _PC_XATTR_EXISTS:
4997 zp = VTOZ(vp);
4998 zfsvfs = zp->z_zfsvfs;
4999 ZFS_ENTER(zfsvfs);
5000 ZFS_VERIFY_ZP(zp);
5001 *valp = 0;
5002 error = zfs_dirent_lock(&dl, zp, "", &xzp,
5003 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5004 if (error == 0) {
5005 zfs_dirent_unlock(dl);
5006 if (!zfs_dirempty(xzp))
5007 *valp = 1;
5008 VN_RELE(ZTOV(xzp));
5009 } else if (error == ENOENT) {
5010 /*
5011 * If there aren’t extended attributes, it’s the

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 77

5012 * same as having zero of them.
5013 */
5014 error = 0;
5015 }
5016 ZFS_EXIT(zfsvfs);
5017 return (error);

5019 case _PC_SATTR_ENABLED:
5020 case _PC_SATTR_EXISTS:
5021 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5022 (vp->v_type == VREG || vp->v_type == VDIR);
5023 return (0);

5025 case _PC_ACCESS_FILTERING:
5026 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5027 vp->v_type == VDIR;
5028 return (0);

5030 case _PC_ACL_ENABLED:
5031 *valp = _ACL_ACE_ENABLED;
5032 return (0);

5034 case _PC_MIN_HOLE_SIZE:
5035 *valp = (ulong_t)SPA_MINBLOCKSIZE;
5036 return (0);

5038 case _PC_TIMESTAMP_RESOLUTION:
5039 /* nanosecond timestamp resolution */
5040 *valp = 1L;
5041 return (0);

5043 default:
5044 return (fs_pathconf(vp, cmd, valp, cr, ct));
5045 }
5046 }

5048 /*ARGSUSED*/
5049 static int
5050 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5051 caller_context_t *ct)
5052 {
5053 znode_t *zp = VTOZ(vp);
5054 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5055 int error;
5056 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;

5058 ZFS_ENTER(zfsvfs);
5059 ZFS_VERIFY_ZP(zp);
5060 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5061 ZFS_EXIT(zfsvfs);

5063 return (error);
5064 }

5066 /*ARGSUSED*/
5067 static int
5068 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5069 caller_context_t *ct)
5070 {
5071 znode_t *zp = VTOZ(vp);
5072 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5073 int error;
5074 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5075 zilog_t *zilog = zfsvfs->z_log;

5077 ZFS_ENTER(zfsvfs);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 78

5078 ZFS_VERIFY_ZP(zp);

5080 error = zfs_setacl(zp, vsecp, skipaclchk, cr);

5082 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5083 zil_commit(zilog, 0);

5085 ZFS_EXIT(zfsvfs);
5086 return (error);
5087 }

5089 /*
5090 * The smallest read we may consider to loan out an arcbuf.
5091 * This must be a power of 2.
5092 */
5093 int zcr_blksz_min = (1 << 10); /* 1K */
5094 /*
5095 * If set to less than the file block size, allow loaning out of an
5096 * arcbuf for a partial block read. This must be a power of 2.
5097 */
5098 int zcr_blksz_max = (1 << 17); /* 128K */

5100 /*ARGSUSED*/
5101 static int
5102 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5103 caller_context_t *ct)
5104 {
5105 znode_t *zp = VTOZ(vp);
5106 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5107 int max_blksz = zfsvfs->z_max_blksz;
5108 uio_t *uio = &xuio->xu_uio;
5109 ssize_t size = uio->uio_resid;
5110 offset_t offset = uio->uio_loffset;
5111 int blksz;
5112 int fullblk, i;
5113 arc_buf_t *abuf;
5114 ssize_t maxsize;
5115 int preamble, postamble;

5117 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5118 return (SET_ERROR(EINVAL));

5120 ZFS_ENTER(zfsvfs);
5121 ZFS_VERIFY_ZP(zp);
5122 switch (ioflag) {
5123 case UIO_WRITE:
5124 /*
5125 * Loan out an arc_buf for write if write size is bigger than
5126 * max_blksz, and the file’s block size is also max_blksz.
5127 */
5128 blksz = max_blksz;
5129 if (size < blksz || zp->z_blksz != blksz) {
5130 ZFS_EXIT(zfsvfs);
5131 return (SET_ERROR(EINVAL));
5132 }
5133 /*
5134 * Caller requests buffers for write before knowing where the
5135 * write offset might be (e.g. NFS TCP write).
5136 */
5137 if (offset == -1) {
5138 preamble = 0;
5139 } else {
5140 preamble = P2PHASE(offset, blksz);
5141 if (preamble) {
5142 preamble = blksz - preamble;
5143 size -= preamble;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 79

5144 }
5145 }

5147 postamble = P2PHASE(size, blksz);
5148 size -= postamble;

5150 fullblk = size / blksz;
5151 (void) dmu_xuio_init(xuio,
5152 (preamble != 0) + fullblk + (postamble != 0));
5153 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5154 int, postamble, int,
5155 (preamble != 0) + fullblk + (postamble != 0));

5157 /*
5158 * Have to fix iov base/len for partial buffers. They
5159 * currently represent full arc_buf’s.
5160 */
5161 if (preamble) {
5162 /* data begins in the middle of the arc_buf */
5163 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5164 blksz);
5165 ASSERT(abuf);
5166 (void) dmu_xuio_add(xuio, abuf,
5167 blksz - preamble, preamble);
5168 }

5170 for (i = 0; i < fullblk; i++) {
5171 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5172 blksz);
5173 ASSERT(abuf);
5174 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5175 }

5177 if (postamble) {
5178 /* data ends in the middle of the arc_buf */
5179 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5180 blksz);
5181 ASSERT(abuf);
5182 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5183 }
5184 break;
5185 case UIO_READ:
5186 /*
5187 * Loan out an arc_buf for read if the read size is larger than
5188 * the current file block size. Block alignment is not
5189 * considered. Partial arc_buf will be loaned out for read.
5190 */
5191 blksz = zp->z_blksz;
5192 if (blksz < zcr_blksz_min)
5193 blksz = zcr_blksz_min;
5194 if (blksz > zcr_blksz_max)
5195 blksz = zcr_blksz_max;
5196 /* avoid potential complexity of dealing with it */
5197 if (blksz > max_blksz) {
5198 ZFS_EXIT(zfsvfs);
5199 return (SET_ERROR(EINVAL));
5200 }

5202 maxsize = zp->z_size - uio->uio_loffset;
5203 if (size > maxsize)
5204 size = maxsize;

5206 if (size < blksz || vn_has_cached_data(vp)) {
5207 ZFS_EXIT(zfsvfs);
5208 return (SET_ERROR(EINVAL));
5209 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 80

5210 break;
5211 default:
5212 ZFS_EXIT(zfsvfs);
5213 return (SET_ERROR(EINVAL));
5214 }

5216 uio->uio_extflg = UIO_XUIO;
5217 XUIO_XUZC_RW(xuio) = ioflag;
5218 ZFS_EXIT(zfsvfs);
5219 return (0);
5220 }

5222 /*ARGSUSED*/
5223 static int
5224 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5225 {
5226 int i;
5227 arc_buf_t *abuf;
5228 int ioflag = XUIO_XUZC_RW(xuio);

5230 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);

5232 i = dmu_xuio_cnt(xuio);
5233 while (i-- > 0) {
5234 abuf = dmu_xuio_arcbuf(xuio, i);
5235 /*
5236 * if abuf == NULL, it must be a write buffer
5237 * that has been returned in zfs_write().
5238 */
5239 if (abuf)
5240 dmu_return_arcbuf(abuf);
5241 ASSERT(abuf || ioflag == UIO_WRITE);
5242 }

5244 dmu_xuio_fini(xuio);
5245 return (0);
5246 }

5248 /*
5249 * Predeclare these here so that the compiler assumes that
5250 * this is an "old style" function declaration that does
5251 * not include arguments => we won’t get type mismatch errors
5252 * in the initializations that follow.
5253 */
5254 static int zfs_inval();
5255 static int zfs_isdir();

5257 static int
5258 zfs_inval()
5259 {
5260 return (SET_ERROR(EINVAL));
5261 }

5263 static int
5264 zfs_isdir()
5265 {
5266 return (SET_ERROR(EISDIR));
5267 }
5268 /*
5269 * Directory vnode operations template
5270 */
5271 vnodeops_t *zfs_dvnodeops;
5272 const fs_operation_def_t zfs_dvnodeops_template[] = {
5273 VOPNAME_OPEN, { .vop_open = zfs_open },
5274 VOPNAME_CLOSE, { .vop_close = zfs_close },
5275 VOPNAME_READ, { .error = zfs_isdir },

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 81

5276 VOPNAME_WRITE, { .error = zfs_isdir },
5277 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5278 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5279 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5280 VOPNAME_ACCESS, { .vop_access = zfs_access },
5281 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5282 VOPNAME_CREATE, { .vop_create = zfs_create },
5283 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5284 VOPNAME_LINK, { .vop_link = zfs_link },
5285 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5286 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5287 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5288 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5289 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5290 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5291 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5292 VOPNAME_FID, { .vop_fid = zfs_fid },
5293 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5294 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5295 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5296 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5297 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5298 NULL, NULL
5299 };

5301 /*
5302 * Regular file vnode operations template
5303 */
5304 vnodeops_t *zfs_fvnodeops;
5305 const fs_operation_def_t zfs_fvnodeops_template[] = {
5306 VOPNAME_OPEN, { .vop_open = zfs_open },
5307 VOPNAME_CLOSE, { .vop_close = zfs_close },
5308 VOPNAME_READ, { .vop_read = zfs_read },
5309 VOPNAME_WRITE, { .vop_write = zfs_write },
5310 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5311 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5312 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5313 VOPNAME_ACCESS, { .vop_access = zfs_access },
5314 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5315 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5316 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5317 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5318 VOPNAME_FID, { .vop_fid = zfs_fid },
5319 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5320 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5321 VOPNAME_SPACE, { .vop_space = zfs_space },
5322 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5323 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5324 VOPNAME_MAP, { .vop_map = zfs_map },
5325 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5326 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5327 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5328 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5329 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5330 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5331 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5332 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5333 NULL, NULL
5334 };

5336 /*
5337 * Symbolic link vnode operations template
5338 */
5339 vnodeops_t *zfs_symvnodeops;
5340 const fs_operation_def_t zfs_symvnodeops_template[] = {
5341 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 82

5342 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5343 VOPNAME_ACCESS, { .vop_access = zfs_access },
5344 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5345 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5346 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5347 VOPNAME_FID, { .vop_fid = zfs_fid },
5348 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5349 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5350 NULL, NULL
5351 };

5353 /*
5354 * special share hidden files vnode operations template
5355 */
5356 vnodeops_t *zfs_sharevnodeops;
5357 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5358 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5359 VOPNAME_ACCESS, { .vop_access = zfs_access },
5360 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5361 VOPNAME_FID, { .vop_fid = zfs_fid },
5362 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5363 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5364 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5365 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5366 NULL, NULL
5367 };

5369 /*
5370 * Extended attribute directory vnode operations template
5371 *
5372 * This template is identical to the directory vnodes
5373 * operation template except for restricted operations:
5374 * VOP_MKDIR()
5375 * VOP_SYMLINK()
5376 *
5377 * Note that there are other restrictions embedded in:
5378 * zfs_create() - restrict type to VREG
5379 * zfs_link() - no links into/out of attribute space
5380 * zfs_rename() - no moves into/out of attribute space
5381 */
5382 vnodeops_t *zfs_xdvnodeops;
5383 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5384 VOPNAME_OPEN, { .vop_open = zfs_open },
5385 VOPNAME_CLOSE, { .vop_close = zfs_close },
5386 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5387 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5388 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5389 VOPNAME_ACCESS, { .vop_access = zfs_access },
5390 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5391 VOPNAME_CREATE, { .vop_create = zfs_create },
5392 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5393 VOPNAME_LINK, { .vop_link = zfs_link },
5394 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5395 VOPNAME_MKDIR, { .error = zfs_inval },
5396 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5397 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5398 VOPNAME_SYMLINK, { .error = zfs_inval },
5399 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5400 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5401 VOPNAME_FID, { .vop_fid = zfs_fid },
5402 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5403 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5404 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5405 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5406 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5407 NULL, NULL

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 83

5408 };

5410 /*
5411 * Error vnode operations template
5412 */
5413 vnodeops_t *zfs_evnodeops;
5414 const fs_operation_def_t zfs_evnodeops_template[] = {
5415 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5416 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5417 NULL, NULL
5418 };

new/usr/src/uts/common/fs/zfs/zio.c 1

**
 93682 Tue Oct 28 11:57:20 2014
new/usr/src/uts/common/fs/zfs/zio.c
Possibility to physically reserve space without writing leaf blocks
**
______unchanged_portion_omitted_

950 /*
951 * ==
952 * Prepare to read and write logical blocks
953 * ==
954 */

956 static int
957 zio_read_bp_init(zio_t *zio)
958 {
959 blkptr_t *bp = zio->io_bp;

961 if (!BP_IS_EMBEDDED(bp) && BP_GET_PROP_RESERVATION(bp)) {
962 memset(zio->io_orig_data, 0, zio->io_orig_size);
963 zio->io_pipeline = ZIO_INTERLOCK_STAGES;
964 return (ZIO_PIPELINE_CONTINUE);
965 }

967 #endif /* ! codereview */
968 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
969 zio->io_child_type == ZIO_CHILD_LOGICAL &&
970 !(zio->io_flags & ZIO_FLAG_RAW)) {
971 uint64_t psize =
972 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
973 void *cbuf = zio_buf_alloc(psize);

975 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
976 }

978 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
979 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
980 decode_embedded_bp_compressed(bp, zio->io_data);
981 } else {
982 ASSERT(!BP_IS_EMBEDDED(bp));
983 }

985 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
986 zio->io_flags |= ZIO_FLAG_DONT_CACHE;

988 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
989 zio->io_flags |= ZIO_FLAG_DONT_CACHE;

991 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
992 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;

994 return (ZIO_PIPELINE_CONTINUE);
995 }

997 static int
998 zio_write_bp_init(zio_t *zio)
999 {
1000 spa_t *spa = zio->io_spa;
1001 zio_prop_t *zp = &zio->io_prop;
1002 enum zio_compress compress = zp->zp_compress;
1003 enum zio_checksum checksum = zp->zp_checksum;
1004 uint8_t dedup = zp->zp_dedup;
1005 #endif /* ! codereview */
1006 blkptr_t *bp = zio->io_bp;
1007 uint64_t lsize = zio->io_size;
1008 uint64_t psize = lsize;

new/usr/src/uts/common/fs/zfs/zio.c 2

1009 int pass = 1;

1011 /*
1012 * If our children haven’t all reached the ready stage,
1013 * wait for them and then repeat this pipeline stage.
1014 */
1015 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1016 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1017 return (ZIO_PIPELINE_STOP);

1019 if (!IO_IS_ALLOCATING(zio))
1020 return (ZIO_PIPELINE_CONTINUE);

1022 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);

1024 if (zp->zp_zero_write && !(zio->io_pipeline & ZIO_GANG_STAGES)) {
1025 dedup = B_FALSE;
1026 compress = ZIO_COMPRESS_OFF;
1027 checksum = ZIO_CHECKSUM_OFF;
1028 }

1030 #endif /* ! codereview */
1031 if (zio->io_bp_override) {
1032 ASSERT(bp->blk_birth != zio->io_txg);
1033 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);

1035 *bp = *zio->io_bp_override;
1036 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;

1038 if (BP_IS_EMBEDDED(bp))
1039 return (ZIO_PIPELINE_CONTINUE);

1041 /*
1042 * If we’ve been overridden and nopwrite is set then
1043 * set the flag accordingly to indicate that a nopwrite
1044 * has already occurred.
1045 */
1046 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1047 ASSERT(!zp->zp_dedup);
1048 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1049 return (ZIO_PIPELINE_CONTINUE);
1050 }

1052 ASSERT(!zp->zp_nopwrite);

1054 if (BP_IS_HOLE(bp) || !dedup)
961 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1055 return (ZIO_PIPELINE_CONTINUE);

1057 ASSERT(zio_checksum_table[checksum].ci_dedup ||
964 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1058 zp->zp_dedup_verify);

1060 if (BP_GET_CHECKSUM(bp) == checksum) {
967 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1061 BP_SET_DEDUP(bp, 1);
1062 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1063 return (ZIO_PIPELINE_CONTINUE);
1064 }
1065 zio->io_bp_override = NULL;
1066 BP_ZERO(bp);
1067 }

1069 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1070 /*
1071 * We’re rewriting an existing block, which means we’re

new/usr/src/uts/common/fs/zfs/zio.c 3

1072 * working on behalf of spa_sync(). For spa_sync() to
1073 * converge, it must eventually be the case that we don’t
1074 * have to allocate new blocks. But compression changes
1075 * the blocksize, which forces a reallocate, and makes
1076 * convergence take longer. Therefore, after the first
1077 * few passes, stop compressing to ensure convergence.
1078 */
1079 pass = spa_sync_pass(spa);

1081 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1082 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1083 ASSERT(!BP_GET_DEDUP(bp));

1085 if (pass >= zfs_sync_pass_dont_compress)
1086 compress = ZIO_COMPRESS_OFF;

1088 /* Make sure someone doesn’t change their mind on overwrites */
1089 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1090 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1091 }

1093 if (compress != ZIO_COMPRESS_OFF) {
1094 void *cbuf = zio_buf_alloc(lsize);
1095 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1096 if (psize == 0 || psize == lsize) {
1097 compress = ZIO_COMPRESS_OFF;
1098 zio_buf_free(cbuf, lsize);
1099 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1100 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1101 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1102 encode_embedded_bp_compressed(bp,
1103 cbuf, compress, lsize, psize);
1104 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1105 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1106 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1107 zio_buf_free(cbuf, lsize);
1108 bp->blk_birth = zio->io_txg;
1109 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1110 ASSERT(spa_feature_is_active(spa,
1111 SPA_FEATURE_EMBEDDED_DATA));
1112 return (ZIO_PIPELINE_CONTINUE);
1113 } else {
1114 /*
1115 * Round up compressed size to MINBLOCKSIZE and
1116 * zero the tail.
1117 */
1118 size_t rounded =
1119 P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1120 if (rounded > psize) {
1121 bzero((char *)cbuf + psize, rounded - psize);
1122 psize = rounded;
1123 }
1124 if (psize == lsize) {
1125 compress = ZIO_COMPRESS_OFF;
1126 zio_buf_free(cbuf, lsize);
1127 } else {
1128 zio_push_transform(zio, cbuf,
1129 psize, lsize, NULL);
1130 }
1131 }
1132 }

1134 /*
1135 * The final pass of spa_sync() must be all rewrites, but the first
1136 * few passes offer a trade-off: allocating blocks defers convergence,
1137 * but newly allocated blocks are sequential, so they can be written

new/usr/src/uts/common/fs/zfs/zio.c 4

1138 * to disk faster. Therefore, we allow the first few passes of
1139 * spa_sync() to allocate new blocks, but force rewrites after that.
1140 * There should only be a handful of blocks after pass 1 in any case.
1141 */
1142 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1143 BP_GET_PSIZE(bp) == psize &&
1144 pass >= zfs_sync_pass_rewrite) {
1145 ASSERT(psize != 0);
1146 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1147 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1148 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1149 } else {
1150 BP_ZERO(bp);
1151 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1152 }

1154 if (psize == 0) {
1155 if (zio->io_bp_orig.blk_birth != 0 &&
1156 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1157 BP_SET_LSIZE(bp, lsize);
1158 BP_SET_TYPE(bp, zp->zp_type);
1159 BP_SET_LEVEL(bp, zp->zp_level);
1160 BP_SET_BIRTH(bp, zio->io_txg, 0);
1161 }
1162 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1163 } else {
1164 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1165 BP_SET_LSIZE(bp, lsize);
1166 BP_SET_TYPE(bp, zp->zp_type);
1167 BP_SET_LEVEL(bp, zp->zp_level);
1168 BP_SET_PSIZE(bp, psize);
1169 BP_SET_COMPRESS(bp, compress);
1170 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1171 BP_SET_DEDUP(bp, zp->zp_dedup);
1172 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1173 if (zp->zp_zero_write && !(zio->io_pipeline & ZIO_GANG_STAGES))
1174 boolean_t need_allocate = B_FALSE;
1175 if (zio->io_pipeline & ZIO_STAGE_DVA_ALLOCATE)
1176 need_allocate = B_TRUE;
1177 zio->io_pipeline = ZIO_INTERLOCK_STAGES;
1178 if (need_allocate)
1179 zio->io_pipeline |= ZIO_STAGE_DVA_ALLOCATE;
1180 BP_SET_PROP_RESERVATION(bp, 1);
1181 } else {
1182 BP_SET_PROP_RESERVATION(bp, 0);
1183 }
1184 #endif /* ! codereview */
1185 if (zp->zp_dedup) {
1186 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1187 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1188 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1189 }
1190 if (zp->zp_nopwrite) {
1191 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1192 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1193 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1194 }
1195 }

1197 return (ZIO_PIPELINE_CONTINUE);
1198 }

1200 static int
1201 zio_free_bp_init(zio_t *zio)
1202 {
1203 blkptr_t *bp = zio->io_bp;

new/usr/src/uts/common/fs/zfs/zio.c 5

1205 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1206 if (BP_GET_DEDUP(bp))
1207 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1208 }

1210 return (ZIO_PIPELINE_CONTINUE);
1211 }

1213 /*
1214 * ==
1215 * Execute the I/O pipeline
1216 * ==
1217 */

1219 static void
1220 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1221 {
1222 spa_t *spa = zio->io_spa;
1223 zio_type_t t = zio->io_type;
1224 int flags = (cutinline ? TQ_FRONT : 0);

1226 /*
1227 * If we’re a config writer or a probe, the normal issue and
1228 * interrupt threads may all be blocked waiting for the config lock.
1229 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1230 */
1231 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1232 t = ZIO_TYPE_NULL;

1234 /*
1235 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1236 */
1237 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1238 t = ZIO_TYPE_NULL;

1240 /*
1241 * If this is a high priority I/O, then use the high priority taskq if
1242 * available.
1243 */
1244 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1245 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1246 q++;

1248 ASSERT3U(q, <, ZIO_TASKQ_TYPES);

1250 /*
1251 * NB: We are assuming that the zio can only be dispatched
1252 * to a single taskq at a time. It would be a grievous error
1253 * to dispatch the zio to another taskq at the same time.
1254 */
1255 ASSERT(zio->io_tqent.tqent_next == NULL);
1256 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1257 flags, &zio->io_tqent);
1258 }

1260 static boolean_t
1261 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1262 {
1263 kthread_t *executor = zio->io_executor;
1264 spa_t *spa = zio->io_spa;

1266 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1267 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1268 uint_t i;
1269 for (i = 0; i < tqs->stqs_count; i++) {

new/usr/src/uts/common/fs/zfs/zio.c 6

1270 if (taskq_member(tqs->stqs_taskq[i], executor))
1271 return (B_TRUE);
1272 }
1273 }

1275 return (B_FALSE);
1276 }

1278 static int
1279 zio_issue_async(zio_t *zio)
1280 {
1281 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);

1283 return (ZIO_PIPELINE_STOP);
1284 }

1286 void
1287 zio_interrupt(zio_t *zio)
1288 {
1289 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1290 }

1292 /*
1293 * Execute the I/O pipeline until one of the following occurs:
1294 *
1295 * (1) the I/O completes
1296 * (2) the pipeline stalls waiting for dependent child I/Os
1297 * (3) the I/O issues, so we’re waiting for an I/O completion interrupt
1298 * (4) the I/O is delegated by vdev-level caching or aggregation
1299 * (5) the I/O is deferred due to vdev-level queueing
1300 * (6) the I/O is handed off to another thread.
1301 *
1302 * In all cases, the pipeline stops whenever there’s no CPU work; it never
1303 * burns a thread in cv_wait().
1304 *
1305 * There’s no locking on io_stage because there’s no legitimate way
1306 * for multiple threads to be attempting to process the same I/O.
1307 */
1308 static zio_pipe_stage_t *zio_pipeline[];

1310 void
1311 zio_execute(zio_t *zio)
1312 {
1313 zio->io_executor = curthread;

1315 while (zio->io_stage < ZIO_STAGE_DONE) {
1316 enum zio_stage pipeline = zio->io_pipeline;
1317 enum zio_stage stage = zio->io_stage;
1318 int rv;

1320 ASSERT(!MUTEX_HELD(&zio->io_lock));
1321 ASSERT(ISP2(stage));
1322 ASSERT(zio->io_stall == NULL);

1324 do {
1325 stage <<= 1;
1326 } while ((stage & pipeline) == 0);

1328 ASSERT(stage <= ZIO_STAGE_DONE);

1330 /*
1331 * If we are in interrupt context and this pipeline stage
1332 * will grab a config lock that is held across I/O,
1333 * or may wait for an I/O that needs an interrupt thread
1334 * to complete, issue async to avoid deadlock.
1335 *

new/usr/src/uts/common/fs/zfs/zio.c 7

1336 * For VDEV_IO_START, we cut in line so that the io will
1337 * be sent to disk promptly.
1338 */
1339 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1340 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1341 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1342 zio_requeue_io_start_cut_in_line : B_FALSE;
1343 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1344 return;
1345 }

1347 zio->io_stage = stage;
1348 rv = zio_pipeline[highbit64(stage) - 1](zio);

1350 if (rv == ZIO_PIPELINE_STOP)
1351 return;

1353 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1354 }
1355 }

1357 /*
1358 * ==
1359 * Initiate I/O, either sync or async
1360 * ==
1361 */
1362 int
1363 zio_wait(zio_t *zio)
1364 {
1365 int error;

1367 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1368 ASSERT(zio->io_executor == NULL);

1370 zio->io_waiter = curthread;

1372 zio_execute(zio);

1374 mutex_enter(&zio->io_lock);
1375 while (zio->io_executor != NULL)
1376 cv_wait(&zio->io_cv, &zio->io_lock);
1377 mutex_exit(&zio->io_lock);

1379 error = zio->io_error;
1380 zio_destroy(zio);

1382 return (error);
1383 }

1385 void
1386 zio_nowait(zio_t *zio)
1387 {
1388 ASSERT(zio->io_executor == NULL);

1390 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1391 zio_unique_parent(zio) == NULL) {
1392 /*
1393 * This is a logical async I/O with no parent to wait for it.
1394 * We add it to the spa_async_root_zio "Godfather" I/O which
1395 * will ensure they complete prior to unloading the pool.
1396 */
1397 spa_t *spa = zio->io_spa;

1399 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1400 }

new/usr/src/uts/common/fs/zfs/zio.c 8

1402 zio_execute(zio);
1403 }

1405 /*
1406 * ==
1407 * Reexecute or suspend/resume failed I/O
1408 * ==
1409 */

1411 static void
1412 zio_reexecute(zio_t *pio)
1413 {
1414 zio_t *cio, *cio_next;

1416 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1417 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1418 ASSERT(pio->io_gang_leader == NULL);
1419 ASSERT(pio->io_gang_tree == NULL);

1421 pio->io_flags = pio->io_orig_flags;
1422 pio->io_stage = pio->io_orig_stage;
1423 pio->io_pipeline = pio->io_orig_pipeline;
1424 pio->io_reexecute = 0;
1425 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1426 pio->io_error = 0;
1427 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1428 pio->io_state[w] = 0;
1429 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1430 pio->io_child_error[c] = 0;

1432 if (IO_IS_ALLOCATING(pio))
1433 BP_ZERO(pio->io_bp);

1435 /*
1436 * As we reexecute pio’s children, new children could be created.
1437 * New children go to the head of pio’s io_child_list, however,
1438 * so we will (correctly) not reexecute them. The key is that
1439 * the remainder of pio’s io_child_list, from ’cio_next’ onward,
1440 * cannot be affected by any side effects of reexecuting ’cio’.
1441 */
1442 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1443 cio_next = zio_walk_children(pio);
1444 mutex_enter(&pio->io_lock);
1445 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1446 pio->io_children[cio->io_child_type][w]++;
1447 mutex_exit(&pio->io_lock);
1448 zio_reexecute(cio);
1449 }

1451 /*
1452 * Now that all children have been reexecuted, execute the parent.
1453 * We don’t reexecute "The Godfather" I/O here as it’s the
1454 * responsibility of the caller to wait on him.
1455 */
1456 if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1457 zio_execute(pio);
1458 }

1460 void
1461 zio_suspend(spa_t *spa, zio_t *zio)
1462 {
1463 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1464 fm_panic("Pool ’%s’ has encountered an uncorrectable I/O "
1465 "failure and the failure mode property for this pool "
1466 "is set to panic.", spa_name(spa));

new/usr/src/uts/common/fs/zfs/zio.c 9

1468 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);

1470 mutex_enter(&spa->spa_suspend_lock);

1472 if (spa->spa_suspend_zio_root == NULL)
1473 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1474 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1475 ZIO_FLAG_GODFATHER);

1477 spa->spa_suspended = B_TRUE;

1479 if (zio != NULL) {
1480 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1481 ASSERT(zio != spa->spa_suspend_zio_root);
1482 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1483 ASSERT(zio_unique_parent(zio) == NULL);
1484 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1485 zio_add_child(spa->spa_suspend_zio_root, zio);
1486 }

1488 mutex_exit(&spa->spa_suspend_lock);
1489 }

1491 int
1492 zio_resume(spa_t *spa)
1493 {
1494 zio_t *pio;

1496 /*
1497 * Reexecute all previously suspended i/o.
1498 */
1499 mutex_enter(&spa->spa_suspend_lock);
1500 spa->spa_suspended = B_FALSE;
1501 cv_broadcast(&spa->spa_suspend_cv);
1502 pio = spa->spa_suspend_zio_root;
1503 spa->spa_suspend_zio_root = NULL;
1504 mutex_exit(&spa->spa_suspend_lock);

1506 if (pio == NULL)
1507 return (0);

1509 zio_reexecute(pio);
1510 return (zio_wait(pio));
1511 }

1513 void
1514 zio_resume_wait(spa_t *spa)
1515 {
1516 mutex_enter(&spa->spa_suspend_lock);
1517 while (spa_suspended(spa))
1518 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1519 mutex_exit(&spa->spa_suspend_lock);
1520 }

1522 /*
1523 * ==
1524 * Gang blocks.
1525 *
1526 * A gang block is a collection of small blocks that looks to the DMU
1527 * like one large block. When zio_dva_allocate() cannot find a block
1528 * of the requested size, due to either severe fragmentation or the pool
1529 * being nearly full, it calls zio_write_gang_block() to construct the
1530 * block from smaller fragments.
1531 *
1532 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1533 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like

new/usr/src/uts/common/fs/zfs/zio.c 10

1534 * an indirect block: it’s an array of block pointers. It consumes
1535 * only one sector and hence is allocatable regardless of fragmentation.
1536 * The gang header’s bps point to its gang members, which hold the data.
1537 *
1538 * Gang blocks are self-checksumming, using the bp’s <vdev, offset, txg>
1539 * as the verifier to ensure uniqueness of the SHA256 checksum.
1540 * Critically, the gang block bp’s blk_cksum is the checksum of the data,
1541 * not the gang header. This ensures that data block signatures (needed for
1542 * deduplication) are independent of how the block is physically stored.
1543 *
1544 * Gang blocks can be nested: a gang member may itself be a gang block.
1545 * Thus every gang block is a tree in which root and all interior nodes are
1546 * gang headers, and the leaves are normal blocks that contain user data.
1547 * The root of the gang tree is called the gang leader.
1548 *
1549 * To perform any operation (read, rewrite, free, claim) on a gang block,
1550 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1551 * in the io_gang_tree field of the original logical i/o by recursively
1552 * reading the gang leader and all gang headers below it. This yields
1553 * an in-core tree containing the contents of every gang header and the
1554 * bps for every constituent of the gang block.
1555 *
1556 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1557 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1558 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1559 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1560 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1561 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1562 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1563 * of the gang header plus zio_checksum_compute() of the data to update the
1564 * gang header’s blk_cksum as described above.
1565 *
1566 * The two-phase assemble/issue model solves the problem of partial failure --
1567 * what if you’d freed part of a gang block but then couldn’t read the
1568 * gang header for another part? Assembling the entire gang tree first
1569 * ensures that all the necessary gang header I/O has succeeded before
1570 * starting the actual work of free, claim, or write. Once the gang tree
1571 * is assembled, free and claim are in-memory operations that cannot fail.
1572 *
1573 * In the event that a gang write fails, zio_dva_unallocate() walks the
1574 * gang tree to immediately free (i.e. insert back into the space map)
1575 * everything we’ve allocated. This ensures that we don’t get ENOSPC
1576 * errors during repeated suspend/resume cycles due to a flaky device.
1577 *
1578 * Gang rewrites only happen during sync-to-convergence. If we can’t assemble
1579 * the gang tree, we won’t modify the block, so we can safely defer the free
1580 * (knowing that the block is still intact). If we *can* assemble the gang
1581 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1582 * each constituent bp and we can allocate a new block on the next sync pass.
1583 *
1584 * In all cases, the gang tree allows complete recovery from partial failure.
1585 * ==
1586 */

1588 static zio_t *
1589 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1590 {
1591 if (gn != NULL)
1592 return (pio);

1594 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1595 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1596 &pio->io_bookmark));
1597 }

1599 zio_t *

new/usr/src/uts/common/fs/zfs/zio.c 11

1600 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1601 {
1602 zio_t *zio;

1604 if (gn != NULL) {
1605 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1606 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1607 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1608 /*
1609 * As we rewrite each gang header, the pipeline will compute
1610 * a new gang block header checksum for it; but no one will
1611 * compute a new data checksum, so we do that here. The one
1612 * exception is the gang leader: the pipeline already computed
1613 * its data checksum because that stage precedes gang assembly.
1614 * (Presently, nothing actually uses interior data checksums;
1615 * this is just good hygiene.)
1616 */
1617 if (gn != pio->io_gang_leader->io_gang_tree) {
1618 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1619 data, BP_GET_PSIZE(bp));
1620 }
1621 /*
1622 * If we are here to damage data for testing purposes,
1623 * leave the GBH alone so that we can detect the damage.
1624 */
1625 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1626 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1627 } else {
1628 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1629 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1630 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1631 }

1633 return (zio);
1634 }

1636 /* ARGSUSED */
1637 zio_t *
1638 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1639 {
1640 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1641 ZIO_GANG_CHILD_FLAGS(pio)));
1642 }

1644 /* ARGSUSED */
1645 zio_t *
1646 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1647 {
1648 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1649 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1650 }

1652 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1653 NULL,
1654 zio_read_gang,
1655 zio_rewrite_gang,
1656 zio_free_gang,
1657 zio_claim_gang,
1658 NULL
1659 };

1661 static void zio_gang_tree_assemble_done(zio_t *zio);

1663 static zio_gang_node_t *
1664 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1665 {

new/usr/src/uts/common/fs/zfs/zio.c 12

1666 zio_gang_node_t *gn;

1668 ASSERT(*gnpp == NULL);

1670 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1671 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1672 *gnpp = gn;

1674 return (gn);
1675 }

1677 static void
1678 zio_gang_node_free(zio_gang_node_t **gnpp)
1679 {
1680 zio_gang_node_t *gn = *gnpp;

1682 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1683 ASSERT(gn->gn_child[g] == NULL);

1685 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1686 kmem_free(gn, sizeof (*gn));
1687 *gnpp = NULL;
1688 }

1690 static void
1691 zio_gang_tree_free(zio_gang_node_t **gnpp)
1692 {
1693 zio_gang_node_t *gn = *gnpp;

1695 if (gn == NULL)
1696 return;

1698 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1699 zio_gang_tree_free(&gn->gn_child[g]);

1701 zio_gang_node_free(gnpp);
1702 }

1704 static void
1705 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1706 {
1707 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);

1709 ASSERT(gio->io_gang_leader == gio);
1710 ASSERT(BP_IS_GANG(bp));

1712 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1713 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1714 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1715 }

1717 static void
1718 zio_gang_tree_assemble_done(zio_t *zio)
1719 {
1720 zio_t *gio = zio->io_gang_leader;
1721 zio_gang_node_t *gn = zio->io_private;
1722 blkptr_t *bp = zio->io_bp;

1724 ASSERT(gio == zio_unique_parent(zio));
1725 ASSERT(zio->io_child_count == 0);

1727 if (zio->io_error)
1728 return;

1730 if (BP_SHOULD_BYTESWAP(bp))
1731 byteswap_uint64_array(zio->io_data, zio->io_size);

new/usr/src/uts/common/fs/zfs/zio.c 13

1733 ASSERT(zio->io_data == gn->gn_gbh);
1734 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1735 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);

1737 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1738 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1739 if (!BP_IS_GANG(gbp))
1740 continue;
1741 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1742 }
1743 }

1745 static void
1746 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1747 {
1748 zio_t *gio = pio->io_gang_leader;
1749 zio_t *zio;

1751 ASSERT(BP_IS_GANG(bp) == !!gn);
1752 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1753 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);

1755 /*
1756 * If you’re a gang header, your data is in gn->gn_gbh.
1757 * If you’re a gang member, your data is in ’data’ and gn == NULL.
1758 */
1759 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);

1761 if (gn != NULL) {
1762 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);

1764 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1765 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1766 if (BP_IS_HOLE(gbp))
1767 continue;
1768 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1769 data = (char *)data + BP_GET_PSIZE(gbp);
1770 }
1771 }

1773 if (gn == gio->io_gang_tree)
1774 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);

1776 if (zio != pio)
1777 zio_nowait(zio);
1778 }

1780 static int
1781 zio_gang_assemble(zio_t *zio)
1782 {
1783 blkptr_t *bp = zio->io_bp;

1785 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1786 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);

1788 zio->io_gang_leader = zio;

1790 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);

1792 return (ZIO_PIPELINE_CONTINUE);
1793 }

1795 static int
1796 zio_gang_issue(zio_t *zio)
1797 {

new/usr/src/uts/common/fs/zfs/zio.c 14

1798 blkptr_t *bp = zio->io_bp;

1800 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1801 return (ZIO_PIPELINE_STOP);

1803 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1804 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);

1806 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1807 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1808 else
1809 zio_gang_tree_free(&zio->io_gang_tree);

1811 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;

1813 return (ZIO_PIPELINE_CONTINUE);
1814 }

1816 static void
1817 zio_write_gang_member_ready(zio_t *zio)
1818 {
1819 zio_t *pio = zio_unique_parent(zio);
1820 zio_t *gio = zio->io_gang_leader;
1821 dva_t *cdva = zio->io_bp->blk_dva;
1822 dva_t *pdva = pio->io_bp->blk_dva;
1823 uint64_t asize;

1825 if (BP_IS_HOLE(zio->io_bp))
1826 return;

1828 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));

1830 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1831 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1832 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1833 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1834 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));

1836 mutex_enter(&pio->io_lock);
1837 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1838 ASSERT(DVA_GET_GANG(&pdva[d]));
1839 asize = DVA_GET_ASIZE(&pdva[d]);
1840 asize += DVA_GET_ASIZE(&cdva[d]);
1841 DVA_SET_ASIZE(&pdva[d], asize);
1842 }
1843 mutex_exit(&pio->io_lock);
1844 }

1846 static int
1847 zio_write_gang_block(zio_t *pio)
1848 {
1849 spa_t *spa = pio->io_spa;
1850 blkptr_t *bp = pio->io_bp;
1851 zio_t *gio = pio->io_gang_leader;
1852 zio_t *zio;
1853 zio_gang_node_t *gn, **gnpp;
1854 zio_gbh_phys_t *gbh;
1855 uint64_t txg = pio->io_txg;
1856 uint64_t resid = pio->io_size;
1857 uint64_t lsize;
1858 int copies = gio->io_prop.zp_copies;
1859 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1860 zio_prop_t zp;
1861 int error;

1863 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,

new/usr/src/uts/common/fs/zfs/zio.c 15

1864 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1865 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1866 if (error) {
1867 pio->io_error = error;
1868 return (ZIO_PIPELINE_CONTINUE);
1869 }

1871 if (pio == gio) {
1872 gnpp = &gio->io_gang_tree;
1873 } else {
1874 gnpp = pio->io_private;
1875 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1876 }

1878 gn = zio_gang_node_alloc(gnpp);
1879 gbh = gn->gn_gbh;
1880 bzero(gbh, SPA_GANGBLOCKSIZE);

1882 /*
1883 * Create the gang header.
1884 */
1885 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1886 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);

1888 /*
1889 * Create and nowait the gang children.
1890 */
1891 for (int g = 0; resid != 0; resid -= lsize, g++) {
1892 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1893 SPA_MINBLOCKSIZE);
1894 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);

1896 zp.zp_checksum = gio->io_prop.zp_checksum;
1897 zp.zp_compress = ZIO_COMPRESS_OFF;
1898 zp.zp_type = DMU_OT_NONE;
1899 zp.zp_level = 0;
1900 zp.zp_copies = gio->io_prop.zp_copies;
1901 zp.zp_dedup = B_FALSE;
1902 zp.zp_dedup_verify = B_FALSE;
1903 zp.zp_zero_write = B_FALSE;
1904 #endif /* ! codereview */
1905 zp.zp_nopwrite = B_FALSE;

1907 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1908 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1909 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1910 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1911 &pio->io_bookmark));
1912 }

1914 /*
1915 * Set pio’s pipeline to just wait for zio to finish.
1916 */
1917 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;

1919 zio_nowait(zio);

1921 return (ZIO_PIPELINE_CONTINUE);
1922 }

1924 /*
1925 * The zio_nop_write stage in the pipeline determines if allocating
1926 * a new bp is necessary. By leveraging a cryptographically secure checksum,
1927 * such as SHA256, we can compare the checksums of the new data and the old
1928 * to determine if allocating a new block is required. The nopwrite
1929 * feature can handle writes in either syncing or open context (i.e. zil

new/usr/src/uts/common/fs/zfs/zio.c 16

1930 * writes) and as a result is mutually exclusive with dedup.
1931 */
1932 static int
1933 zio_nop_write(zio_t *zio)
1934 {
1935 blkptr_t *bp = zio->io_bp;
1936 blkptr_t *bp_orig = &zio->io_bp_orig;
1937 zio_prop_t *zp = &zio->io_prop;

1939 ASSERT(BP_GET_LEVEL(bp) == 0);
1940 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1941 ASSERT(zp->zp_nopwrite);
1942 ASSERT(!zp->zp_dedup);
1943 ASSERT(zio->io_bp_override == NULL);
1944 ASSERT(IO_IS_ALLOCATING(zio));

1946 /*
1947 * Check to see if the original bp and the new bp have matching
1948 * characteristics (i.e. same checksum, compression algorithms, etc).
1949 * If they don’t then just continue with the pipeline which will
1950 * allocate a new bp.
1951 */
1952 if (BP_IS_HOLE(bp_orig) ||
1953 !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1954 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1955 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1956 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1957 zp->zp_copies != BP_GET_NDVAS(bp_orig))
1958 return (ZIO_PIPELINE_CONTINUE);

1960 /*
1961 * If the checksums match then reset the pipeline so that we
1962 * avoid allocating a new bp and issuing any I/O.
1963 */
1964 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1965 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1966 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1967 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1968 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1969 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1970 sizeof (uint64_t)) == 0);

1972 *bp = *bp_orig;
1973 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1974 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1975 }

1977 return (ZIO_PIPELINE_CONTINUE);
1978 }

1980 /*
1981 * ==
1982 * Dedup
1983 * ==
1984 */
1985 static void
1986 zio_ddt_child_read_done(zio_t *zio)
1987 {
1988 blkptr_t *bp = zio->io_bp;
1989 ddt_entry_t *dde = zio->io_private;
1990 ddt_phys_t *ddp;
1991 zio_t *pio = zio_unique_parent(zio);

1993 mutex_enter(&pio->io_lock);
1994 ddp = ddt_phys_select(dde, bp);
1995 if (zio->io_error == 0)

new/usr/src/uts/common/fs/zfs/zio.c 17

1996 ddt_phys_clear(ddp); /* this ddp doesn’t need repair */
1997 if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1998 dde->dde_repair_data = zio->io_data;
1999 else
2000 zio_buf_free(zio->io_data, zio->io_size);
2001 mutex_exit(&pio->io_lock);
2002 }

2004 static int
2005 zio_ddt_read_start(zio_t *zio)
2006 {
2007 blkptr_t *bp = zio->io_bp;

2009 ASSERT(BP_GET_DEDUP(bp));
2010 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2011 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);

2013 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2014 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2015 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2016 ddt_phys_t *ddp = dde->dde_phys;
2017 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2018 blkptr_t blk;

2020 ASSERT(zio->io_vsd == NULL);
2021 zio->io_vsd = dde;

2023 if (ddp_self == NULL)
2024 return (ZIO_PIPELINE_CONTINUE);

2026 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2027 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2028 continue;
2029 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2030 &blk);
2031 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2032 zio_buf_alloc(zio->io_size), zio->io_size,
2033 zio_ddt_child_read_done, dde, zio->io_priority,
2034 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2035 &zio->io_bookmark));
2036 }
2037 return (ZIO_PIPELINE_CONTINUE);
2038 }

2040 zio_nowait(zio_read(zio, zio->io_spa, bp,
2041 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2042 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));

2044 return (ZIO_PIPELINE_CONTINUE);
2045 }

2047 static int
2048 zio_ddt_read_done(zio_t *zio)
2049 {
2050 blkptr_t *bp = zio->io_bp;

2052 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2053 return (ZIO_PIPELINE_STOP);

2055 ASSERT(BP_GET_DEDUP(bp));
2056 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2057 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);

2059 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2060 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2061 ddt_entry_t *dde = zio->io_vsd;

new/usr/src/uts/common/fs/zfs/zio.c 18

2062 if (ddt == NULL) {
2063 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2064 return (ZIO_PIPELINE_CONTINUE);
2065 }
2066 if (dde == NULL) {
2067 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2068 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2069 return (ZIO_PIPELINE_STOP);
2070 }
2071 if (dde->dde_repair_data != NULL) {
2072 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2073 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2074 }
2075 ddt_repair_done(ddt, dde);
2076 zio->io_vsd = NULL;
2077 }

2079 ASSERT(zio->io_vsd == NULL);

2081 return (ZIO_PIPELINE_CONTINUE);
2082 }

2084 static boolean_t
2085 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2086 {
2087 spa_t *spa = zio->io_spa;

2089 /*
2090 * Note: we compare the original data, not the transformed data,
2091 * because when zio->io_bp is an override bp, we will not have
2092 * pushed the I/O transforms. That’s an important optimization
2093 * because otherwise we’d compress/encrypt all dmu_sync() data twice.
2094 */
2095 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2096 zio_t *lio = dde->dde_lead_zio[p];

2098 if (lio != NULL) {
2099 return (lio->io_orig_size != zio->io_orig_size ||
2100 bcmp(zio->io_orig_data, lio->io_orig_data,
2101 zio->io_orig_size) != 0);
2102 }
2103 }

2105 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2106 ddt_phys_t *ddp = &dde->dde_phys[p];

2108 if (ddp->ddp_phys_birth != 0) {
2109 arc_buf_t *abuf = NULL;
2110 uint32_t aflags = ARC_WAIT;
2111 blkptr_t blk = *zio->io_bp;
2112 int error;

2114 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);

2116 ddt_exit(ddt);

2118 error = arc_read(NULL, spa, &blk,
2119 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2120 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2121 &aflags, &zio->io_bookmark);

2123 if (error == 0) {
2124 if (arc_buf_size(abuf) != zio->io_orig_size ||
2125 bcmp(abuf->b_data, zio->io_orig_data,
2126 zio->io_orig_size) != 0)
2127 error = SET_ERROR(EEXIST);

new/usr/src/uts/common/fs/zfs/zio.c 19

2128 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2129 }

2131 ddt_enter(ddt);
2132 return (error != 0);
2133 }
2134 }

2136 return (B_FALSE);
2137 }

2139 static void
2140 zio_ddt_child_write_ready(zio_t *zio)
2141 {
2142 int p = zio->io_prop.zp_copies;
2143 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2144 ddt_entry_t *dde = zio->io_private;
2145 ddt_phys_t *ddp = &dde->dde_phys[p];
2146 zio_t *pio;

2148 if (zio->io_error)
2149 return;

2151 ddt_enter(ddt);

2153 ASSERT(dde->dde_lead_zio[p] == zio);

2155 ddt_phys_fill(ddp, zio->io_bp);

2157 while ((pio = zio_walk_parents(zio)) != NULL)
2158 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);

2160 ddt_exit(ddt);
2161 }

2163 static void
2164 zio_ddt_child_write_done(zio_t *zio)
2165 {
2166 int p = zio->io_prop.zp_copies;
2167 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2168 ddt_entry_t *dde = zio->io_private;
2169 ddt_phys_t *ddp = &dde->dde_phys[p];

2171 ddt_enter(ddt);

2173 ASSERT(ddp->ddp_refcnt == 0);
2174 ASSERT(dde->dde_lead_zio[p] == zio);
2175 dde->dde_lead_zio[p] = NULL;

2177 if (zio->io_error == 0) {
2178 while (zio_walk_parents(zio) != NULL)
2179 ddt_phys_addref(ddp);
2180 } else {
2181 ddt_phys_clear(ddp);
2182 }

2184 ddt_exit(ddt);
2185 }

2187 static void
2188 zio_ddt_ditto_write_done(zio_t *zio)
2189 {
2190 int p = DDT_PHYS_DITTO;
2191 zio_prop_t *zp = &zio->io_prop;
2192 blkptr_t *bp = zio->io_bp;
2193 ddt_t *ddt = ddt_select(zio->io_spa, bp);

new/usr/src/uts/common/fs/zfs/zio.c 20

2194 ddt_entry_t *dde = zio->io_private;
2195 ddt_phys_t *ddp = &dde->dde_phys[p];
2196 ddt_key_t *ddk = &dde->dde_key;

2198 ddt_enter(ddt);

2200 ASSERT(ddp->ddp_refcnt == 0);
2201 ASSERT(dde->dde_lead_zio[p] == zio);
2202 dde->dde_lead_zio[p] = NULL;

2204 if (zio->io_error == 0) {
2205 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2206 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2207 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2208 if (ddp->ddp_phys_birth != 0)
2209 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2210 ddt_phys_fill(ddp, bp);
2211 }

2213 ddt_exit(ddt);
2214 }

2216 static int
2217 zio_ddt_write(zio_t *zio)
2218 {
2219 spa_t *spa = zio->io_spa;
2220 blkptr_t *bp = zio->io_bp;
2221 uint64_t txg = zio->io_txg;
2222 zio_prop_t *zp = &zio->io_prop;
2223 int p = zp->zp_copies;
2224 int ditto_copies;
2225 zio_t *cio = NULL;
2226 zio_t *dio = NULL;
2227 ddt_t *ddt = ddt_select(spa, bp);
2228 ddt_entry_t *dde;
2229 ddt_phys_t *ddp;

2231 ASSERT(BP_GET_DEDUP(bp));
2232 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2233 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);

2235 ddt_enter(ddt);
2236 dde = ddt_lookup(ddt, bp, B_TRUE);
2237 ddp = &dde->dde_phys[p];

2239 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2240 /*
2241 * If we’re using a weak checksum, upgrade to a strong checksum
2242 * and try again. If we’re already using a strong checksum,
2243 * we can’t resolve it, so just convert to an ordinary write.
2244 * (And automatically e-mail a paper to Nature?)
2245 */
2246 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2247 zp->zp_checksum = spa_dedup_checksum(spa);
2248 zio_pop_transforms(zio);
2249 zio->io_stage = ZIO_STAGE_OPEN;
2250 BP_ZERO(bp);
2251 } else {
2252 zp->zp_dedup = B_FALSE;
2253 }
2254 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2255 ddt_exit(ddt);
2256 return (ZIO_PIPELINE_CONTINUE);
2257 }

2259 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);

new/usr/src/uts/common/fs/zfs/zio.c 21

2260 ASSERT(ditto_copies < SPA_DVAS_PER_BP);

2262 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2263 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2264 zio_prop_t czp = *zp;

2266 czp.zp_copies = ditto_copies;

2268 /*
2269 * If we arrived here with an override bp, we won’t have run
2270 * the transform stack, so we won’t have the data we need to
2271 * generate a child i/o. So, toss the override bp and restart.
2272 * This is safe, because using the override bp is just an
2273 * optimization; and it’s rare, so the cost doesn’t matter.
2274 */
2275 if (zio->io_bp_override) {
2276 zio_pop_transforms(zio);
2277 zio->io_stage = ZIO_STAGE_OPEN;
2278 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2279 zio->io_bp_override = NULL;
2280 BP_ZERO(bp);
2281 ddt_exit(ddt);
2282 return (ZIO_PIPELINE_CONTINUE);
2283 }

2285 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2286 zio->io_orig_size, &czp, NULL, NULL,
2287 zio_ddt_ditto_write_done, dde, zio->io_priority,
2288 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);

2290 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2291 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2292 }

2294 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2295 if (ddp->ddp_phys_birth != 0)
2296 ddt_bp_fill(ddp, bp, txg);
2297 if (dde->dde_lead_zio[p] != NULL)
2298 zio_add_child(zio, dde->dde_lead_zio[p]);
2299 else
2300 ddt_phys_addref(ddp);
2301 } else if (zio->io_bp_override) {
2302 ASSERT(bp->blk_birth == txg);
2303 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2304 ddt_phys_fill(ddp, bp);
2305 ddt_phys_addref(ddp);
2306 } else {
2307 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2308 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2309 zio_ddt_child_write_done, dde, zio->io_priority,
2310 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);

2312 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2313 dde->dde_lead_zio[p] = cio;
2314 }

2316 ddt_exit(ddt);

2318 if (cio)
2319 zio_nowait(cio);
2320 if (dio)
2321 zio_nowait(dio);

2323 return (ZIO_PIPELINE_CONTINUE);
2324 }

new/usr/src/uts/common/fs/zfs/zio.c 22

2326 ddt_entry_t *freedde; /* for debugging */

2328 static int
2329 zio_ddt_free(zio_t *zio)
2330 {
2331 spa_t *spa = zio->io_spa;
2332 blkptr_t *bp = zio->io_bp;
2333 ddt_t *ddt = ddt_select(spa, bp);
2334 ddt_entry_t *dde;
2335 ddt_phys_t *ddp;

2337 ASSERT(BP_GET_DEDUP(bp));
2338 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);

2340 ddt_enter(ddt);
2341 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2342 ddp = ddt_phys_select(dde, bp);
2343 ddt_phys_decref(ddp);
2344 ddt_exit(ddt);

2346 return (ZIO_PIPELINE_CONTINUE);
2347 }

2349 /*
2350 * ==
2351 * Allocate and free blocks
2352 * ==
2353 */
2354 static int
2355 zio_dva_allocate(zio_t *zio)
2356 {
2357 spa_t *spa = zio->io_spa;
2358 metaslab_class_t *mc = spa_normal_class(spa);
2359 blkptr_t *bp = zio->io_bp;
2360 int error;
2361 int flags = 0;

2363 if (zio->io_gang_leader == NULL) {
2364 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2365 zio->io_gang_leader = zio;
2366 }

2368 ASSERT(BP_IS_HOLE(bp));
2369 ASSERT0(BP_GET_NDVAS(bp));
2370 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2371 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2372 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));

2374 /*
2375 * The dump device does not support gang blocks so allocation on
2376 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2377 * the "fast" gang feature.
2378 */
2379 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2380 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2381 METASLAB_GANG_CHILD : 0;
2382 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2383 zio->io_prop.zp_copies, zio->io_txg, NULL, flags);

2385 if (error) {
2386 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2387 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2388 error);
2389 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2390 return (zio_write_gang_block(zio));
2391 zio->io_error = error;

new/usr/src/uts/common/fs/zfs/zio.c 23

2392 }

2394 return (ZIO_PIPELINE_CONTINUE);
2395 }

2397 static int
2398 zio_dva_free(zio_t *zio)
2399 {
2400 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);

2402 return (ZIO_PIPELINE_CONTINUE);
2403 }

2405 static int
2406 zio_dva_claim(zio_t *zio)
2407 {
2408 int error;

2410 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2411 if (error)
2412 zio->io_error = error;

2414 return (ZIO_PIPELINE_CONTINUE);
2415 }

2417 /*
2418 * Undo an allocation. This is used by zio_done() when an I/O fails
2419 * and we want to give back the block we just allocated.
2420 * This handles both normal blocks and gang blocks.
2421 */
2422 static void
2423 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2424 {
2425 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2426 ASSERT(zio->io_bp_override == NULL);

2428 if (!BP_IS_HOLE(bp))
2429 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);

2431 if (gn != NULL) {
2432 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2433 zio_dva_unallocate(zio, gn->gn_child[g],
2434 &gn->gn_gbh->zg_blkptr[g]);
2435 }
2436 }
2437 }

2439 /*
2440 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2441 */
2442 int
2443 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2444 uint64_t size, boolean_t use_slog)
2445 {
2446 int error = 1;

2448 ASSERT(txg > spa_syncing_txg(spa));

2450 /*
2451 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2452 * set the METASLAB_GANG_AVOID flag so that they don’t "fast gang"
2453 * when allocating them.
2454 */
2455 if (use_slog) {
2456 error = metaslab_alloc(spa, spa_log_class(spa), size,
2457 new_bp, 1, txg, old_bp,

new/usr/src/uts/common/fs/zfs/zio.c 24

2458 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2459 }

2461 if (error) {
2462 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2463 new_bp, 1, txg, old_bp,
2464 METASLAB_HINTBP_AVOID);
2465 }

2467 if (error == 0) {
2468 BP_SET_LSIZE(new_bp, size);
2469 BP_SET_PSIZE(new_bp, size);
2470 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2471 BP_SET_CHECKSUM(new_bp,
2472 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2473 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2474 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2475 BP_SET_LEVEL(new_bp, 0);
2476 BP_SET_DEDUP(new_bp, 0);
2477 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2478 }

2480 return (error);
2481 }

2483 /*
2484 * Free an intent log block.
2485 */
2486 void
2487 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2488 {
2489 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2490 ASSERT(!BP_IS_GANG(bp));

2492 zio_free(spa, txg, bp);
2493 }

2495 /*
2496 * ==
2497 * Read and write to physical devices
2498 * ==
2499 */
2500 static int
2501 zio_vdev_io_start(zio_t *zio)
2502 {
2503 vdev_t *vd = zio->io_vd;
2504 uint64_t align;
2505 spa_t *spa = zio->io_spa;

2507 ASSERT(zio->io_error == 0);
2508 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);

2510 if (vd == NULL) {
2511 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2512 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);

2514 /*
2515 * The mirror_ops handle multiple DVAs in a single BP.
2516 */
2517 return (vdev_mirror_ops.vdev_op_io_start(zio));
2518 }

2520 /*
2521 * We keep track of time-sensitive I/Os so that the scan thread
2522 * can quickly react to certain workloads. In particular, we care
2523 * about non-scrubbing, top-level reads and writes with the following

new/usr/src/uts/common/fs/zfs/zio.c 25

2524 * characteristics:
2525 * - synchronous writes of user data to non-slog devices
2526 * - any reads of user data
2527 * When these conditions are met, adjust the timestamp of spa_last_io
2528 * which allows the scan thread to adjust its workload accordingly.
2529 */
2530 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2531 vd == vd->vdev_top && !vd->vdev_islog &&
2532 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2533 zio->io_txg != spa_syncing_txg(spa)) {
2534 uint64_t old = spa->spa_last_io;
2535 uint64_t new = ddi_get_lbolt64();
2536 if (old != new)
2537 (void) atomic_cas_64(&spa->spa_last_io, old, new);
2538 }

2540 align = 1ULL << vd->vdev_top->vdev_ashift;

2542 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
2543 P2PHASE(zio->io_size, align) != 0) {
2544 /* Transform logical writes to be a full physical block size. */
2545 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2546 char *abuf = zio_buf_alloc(asize);
2547 ASSERT(vd == vd->vdev_top);
2548 if (zio->io_type == ZIO_TYPE_WRITE) {
2549 bcopy(zio->io_data, abuf, zio->io_size);
2550 bzero(abuf + zio->io_size, asize - zio->io_size);
2551 }
2552 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2553 }

2555 /*
2556 * If this is not a physical io, make sure that it is properly aligned
2557 * before proceeding.
2558 */
2559 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2560 ASSERT0(P2PHASE(zio->io_offset, align));
2561 ASSERT0(P2PHASE(zio->io_size, align));
2562 } else {
2563 /*
2564 * For physical writes, we allow 512b aligned writes and assume
2565 * the device will perform a read-modify-write as necessary.
2566 */
2567 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2568 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2569 }

2571 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));

2573 /*
2574 * If this is a repair I/O, and there’s no self-healing involved --
2575 * that is, we’re just resilvering what we expect to resilver --
2576 * then don’t do the I/O unless zio’s txg is actually in vd’s DTL.
2577 * This prevents spurious resilvering with nested replication.
2578 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2579 * A is out of date, we’ll read from C+D, then use the data to
2580 * resilver A+B -- but we don’t actually want to resilver B, just A.
2581 * The top-level mirror has no way to know this, so instead we just
2582 * discard unnecessary repairs as we work our way down the vdev tree.
2583 * The same logic applies to any form of nested replication:
2584 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
2585 */
2586 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2587 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2588 zio->io_txg != 0 && /* not a delegated i/o */
2589 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {

new/usr/src/uts/common/fs/zfs/zio.c 26

2590 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2591 zio_vdev_io_bypass(zio);
2592 return (ZIO_PIPELINE_CONTINUE);
2593 }

2595 if (vd->vdev_ops->vdev_op_leaf &&
2596 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {

2598 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2599 return (ZIO_PIPELINE_CONTINUE);

2601 if ((zio = vdev_queue_io(zio)) == NULL)
2602 return (ZIO_PIPELINE_STOP);

2604 if (!vdev_accessible(vd, zio)) {
2605 zio->io_error = SET_ERROR(ENXIO);
2606 zio_interrupt(zio);
2607 return (ZIO_PIPELINE_STOP);
2608 }
2609 }

2611 return (vd->vdev_ops->vdev_op_io_start(zio));
2612 }

2614 static int
2615 zio_vdev_io_done(zio_t *zio)
2616 {
2617 vdev_t *vd = zio->io_vd;
2618 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2619 boolean_t unexpected_error = B_FALSE;

2621 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2622 return (ZIO_PIPELINE_STOP);

2624 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);

2626 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {

2628 vdev_queue_io_done(zio);

2630 if (zio->io_type == ZIO_TYPE_WRITE)
2631 vdev_cache_write(zio);

2633 if (zio_injection_enabled && zio->io_error == 0)
2634 zio->io_error = zio_handle_device_injection(vd,
2635 zio, EIO);

2637 if (zio_injection_enabled && zio->io_error == 0)
2638 zio->io_error = zio_handle_label_injection(zio, EIO);

2640 if (zio->io_error) {
2641 if (!vdev_accessible(vd, zio)) {
2642 zio->io_error = SET_ERROR(ENXIO);
2643 } else {
2644 unexpected_error = B_TRUE;
2645 }
2646 }
2647 }

2649 ops->vdev_op_io_done(zio);

2651 if (unexpected_error)
2652 VERIFY(vdev_probe(vd, zio) == NULL);

2654 return (ZIO_PIPELINE_CONTINUE);
2655 }

new/usr/src/uts/common/fs/zfs/zio.c 27

2657 /*
2658 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2659 * disk, and use that to finish the checksum ereport later.
2660 */
2661 static void
2662 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2663 const void *good_buf)
2664 {
2665 /* no processing needed */
2666 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2667 }

2669 /*ARGSUSED*/
2670 void
2671 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2672 {
2673 void *buf = zio_buf_alloc(zio->io_size);

2675 bcopy(zio->io_data, buf, zio->io_size);

2677 zcr->zcr_cbinfo = zio->io_size;
2678 zcr->zcr_cbdata = buf;
2679 zcr->zcr_finish = zio_vsd_default_cksum_finish;
2680 zcr->zcr_free = zio_buf_free;
2681 }

2683 static int
2684 zio_vdev_io_assess(zio_t *zio)
2685 {
2686 vdev_t *vd = zio->io_vd;

2688 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2689 return (ZIO_PIPELINE_STOP);

2691 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2692 spa_config_exit(zio->io_spa, SCL_ZIO, zio);

2694 if (zio->io_vsd != NULL) {
2695 zio->io_vsd_ops->vsd_free(zio);
2696 zio->io_vsd = NULL;
2697 }

2699 if (zio_injection_enabled && zio->io_error == 0)
2700 zio->io_error = zio_handle_fault_injection(zio, EIO);

2702 /*
2703 * If the I/O failed, determine whether we should attempt to retry it.
2704 *
2705 * On retry, we cut in line in the issue queue, since we don’t want
2706 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2707 */
2708 if (zio->io_error && vd == NULL &&
2709 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2710 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
2711 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2712 zio->io_error = 0;
2713 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2714 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2715 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2716 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2717 zio_requeue_io_start_cut_in_line);
2718 return (ZIO_PIPELINE_STOP);
2719 }

2721 /*

new/usr/src/uts/common/fs/zfs/zio.c 28

2722 * If we got an error on a leaf device, convert it to ENXIO
2723 * if the device is not accessible at all.
2724 */
2725 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2726 !vdev_accessible(vd, zio))
2727 zio->io_error = SET_ERROR(ENXIO);

2729 /*
2730 * If we can’t write to an interior vdev (mirror or RAID-Z),
2731 * set vdev_cant_write so that we stop trying to allocate from it.
2732 */
2733 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2734 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2735 vd->vdev_cant_write = B_TRUE;
2736 }

2738 if (zio->io_error)
2739 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;

2741 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2742 zio->io_physdone != NULL) {
2743 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2744 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2745 zio->io_physdone(zio->io_logical);
2746 }

2748 return (ZIO_PIPELINE_CONTINUE);
2749 }

2751 void
2752 zio_vdev_io_reissue(zio_t *zio)
2753 {
2754 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2755 ASSERT(zio->io_error == 0);

2757 zio->io_stage >>= 1;
2758 }

2760 void
2761 zio_vdev_io_redone(zio_t *zio)
2762 {
2763 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);

2765 zio->io_stage >>= 1;
2766 }

2768 void
2769 zio_vdev_io_bypass(zio_t *zio)
2770 {
2771 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2772 ASSERT(zio->io_error == 0);

2774 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2775 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2776 }

2778 /*
2779 * ==
2780 * Generate and verify checksums
2781 * ==
2782 */
2783 static int
2784 zio_checksum_generate(zio_t *zio)
2785 {
2786 blkptr_t *bp = zio->io_bp;
2787 enum zio_checksum checksum;

new/usr/src/uts/common/fs/zfs/zio.c 29

2789 if (bp == NULL) {
2790 /*
2791 * This is zio_write_phys().
2792 * We’re either generating a label checksum, or none at all.
2793 */
2794 checksum = zio->io_prop.zp_checksum;

2796 if (checksum == ZIO_CHECKSUM_OFF)
2797 return (ZIO_PIPELINE_CONTINUE);

2799 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2800 } else {
2801 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2802 ASSERT(!IO_IS_ALLOCATING(zio));
2803 checksum = ZIO_CHECKSUM_GANG_HEADER;
2804 } else {
2805 checksum = BP_GET_CHECKSUM(bp);
2806 }
2807 }

2809 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);

2811 return (ZIO_PIPELINE_CONTINUE);
2812 }

2814 static int
2815 zio_checksum_verify(zio_t *zio)
2816 {
2817 zio_bad_cksum_t info;
2818 blkptr_t *bp = zio->io_bp;
2819 int error;

2821 ASSERT(zio->io_vd != NULL);

2823 if (bp == NULL) {
2824 /*
2825 * This is zio_read_phys().
2826 * We’re either verifying a label checksum, or nothing at all.
2827 */
2828 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2829 return (ZIO_PIPELINE_CONTINUE);

2831 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2832 }

2834 if ((error = zio_checksum_error(zio, &info)) != 0) {
2835 zio->io_error = error;
2836 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2837 zfs_ereport_start_checksum(zio->io_spa,
2838 zio->io_vd, zio, zio->io_offset,
2839 zio->io_size, NULL, &info);
2840 }
2841 }

2843 return (ZIO_PIPELINE_CONTINUE);
2844 }

2846 /*
2847 * Called by RAID-Z to ensure we don’t compute the checksum twice.
2848 */
2849 void
2850 zio_checksum_verified(zio_t *zio)
2851 {
2852 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2853 }

new/usr/src/uts/common/fs/zfs/zio.c 30

2855 /*
2856 * ==
2857 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2858 * An error of 0 indicates success. ENXIO indicates whole-device failure,
2859 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2860 * indicate errors that are specific to one I/O, and most likely permanent.
2861 * Any other error is presumed to be worse because we weren’t expecting it.
2862 * ==
2863 */
2864 int
2865 zio_worst_error(int e1, int e2)
2866 {
2867 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2868 int r1, r2;

2870 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2871 if (e1 == zio_error_rank[r1])
2872 break;

2874 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2875 if (e2 == zio_error_rank[r2])
2876 break;

2878 return (r1 > r2 ? e1 : e2);
2879 }

2881 /*
2882 * ==
2883 * I/O completion
2884 * ==
2885 */
2886 static int
2887 zio_ready(zio_t *zio)
2888 {
2889 blkptr_t *bp = zio->io_bp;
2890 zio_t *pio, *pio_next;

2892 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2893 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2894 return (ZIO_PIPELINE_STOP);

2896 if (zio->io_ready) {
2897 ASSERT(IO_IS_ALLOCATING(zio));
2898 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2899 (zio->io_flags & ZIO_FLAG_NOPWRITE));
2900 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);

2902 zio->io_ready(zio);
2903 }

2905 if (bp != NULL && bp != &zio->io_bp_copy)
2906 zio->io_bp_copy = *bp;

2908 if (zio->io_error)
2909 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;

2911 mutex_enter(&zio->io_lock);
2912 zio->io_state[ZIO_WAIT_READY] = 1;
2913 pio = zio_walk_parents(zio);
2914 mutex_exit(&zio->io_lock);

2916 /*
2917 * As we notify zio’s parents, new parents could be added.
2918 * New parents go to the head of zio’s io_parent_list, however,
2919 * so we will (correctly) not notify them. The remainder of zio’s

new/usr/src/uts/common/fs/zfs/zio.c 31

2920 * io_parent_list, from ’pio_next’ onward, cannot change because
2921 * all parents must wait for us to be done before they can be done.
2922 */
2923 for (; pio != NULL; pio = pio_next) {
2924 pio_next = zio_walk_parents(zio);
2925 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2926 }

2928 if (zio->io_flags & ZIO_FLAG_NODATA) {
2929 if (BP_IS_GANG(bp)) {
2930 zio->io_flags &= ~ZIO_FLAG_NODATA;
2931 } else {
2932 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2933 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2934 }
2935 }

2937 if (zio_injection_enabled &&
2938 zio->io_spa->spa_syncing_txg == zio->io_txg)
2939 zio_handle_ignored_writes(zio);

2941 return (ZIO_PIPELINE_CONTINUE);
2942 }

2944 static int
2945 zio_done(zio_t *zio)
2946 {
2947 spa_t *spa = zio->io_spa;
2948 zio_t *lio = zio->io_logical;
2949 blkptr_t *bp = zio->io_bp;
2950 vdev_t *vd = zio->io_vd;
2951 uint64_t psize = zio->io_size;
2952 zio_t *pio, *pio_next;

2954 /*
2955 * If our children haven’t all completed,
2956 * wait for them and then repeat this pipeline stage.
2957 */
2958 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2959 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2960 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2961 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2962 return (ZIO_PIPELINE_STOP);

2964 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2965 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2966 ASSERT(zio->io_children[c][w] == 0);

2968 if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
2969 ASSERT(bp->blk_pad[0] == 0);
2970 ASSERT(bp->blk_pad[1] == 0);
2971 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2972 (bp == zio_unique_parent(zio)->io_bp));
2973 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2974 zio->io_bp_override == NULL &&
2975 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2976 ASSERT(!BP_SHOULD_BYTESWAP(bp));
2977 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2978 ASSERT(BP_COUNT_GANG(bp) == 0 ||
2979 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2980 }
2981 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2982 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2983 }

2985 /*

new/usr/src/uts/common/fs/zfs/zio.c 32

2986 * If there were child vdev/gang/ddt errors, they apply to us now.
2987 */
2988 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2989 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2990 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);

2992 /*
2993 * If the I/O on the transformed data was successful, generate any
2994 * checksum reports now while we still have the transformed data.
2995 */
2996 if (zio->io_error == 0) {
2997 while (zio->io_cksum_report != NULL) {
2998 zio_cksum_report_t *zcr = zio->io_cksum_report;
2999 uint64_t align = zcr->zcr_align;
3000 uint64_t asize = P2ROUNDUP(psize, align);
3001 char *abuf = zio->io_data;

3003 if (asize != psize) {
3004 abuf = zio_buf_alloc(asize);
3005 bcopy(zio->io_data, abuf, psize);
3006 bzero(abuf + psize, asize - psize);
3007 }

3009 zio->io_cksum_report = zcr->zcr_next;
3010 zcr->zcr_next = NULL;
3011 zcr->zcr_finish(zcr, abuf);
3012 zfs_ereport_free_checksum(zcr);

3014 if (asize != psize)
3015 zio_buf_free(abuf, asize);
3016 }
3017 }

3019 zio_pop_transforms(zio); /* note: may set zio->io_error */

3021 vdev_stat_update(zio, psize);

3023 if (zio->io_error) {
3024 /*
3025 * If this I/O is attached to a particular vdev,
3026 * generate an error message describing the I/O failure
3027 * at the block level. We ignore these errors if the
3028 * device is currently unavailable.
3029 */
3030 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3031 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);

3033 if ((zio->io_error == EIO || !(zio->io_flags &
3034 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3035 zio == lio) {
3036 /*
3037 * For logical I/O requests, tell the SPA to log the
3038 * error and generate a logical data ereport.
3039 */
3040 spa_log_error(spa, zio);
3041 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3042 0, 0);
3043 }
3044 }

3046 if (zio->io_error && zio == lio) {
3047 /*
3048 * Determine whether zio should be reexecuted. This will
3049 * propagate all the way to the root via zio_notify_parent().
3050 */
3051 ASSERT(vd == NULL && bp != NULL);

new/usr/src/uts/common/fs/zfs/zio.c 33

3052 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);

3054 if (IO_IS_ALLOCATING(zio) &&
3055 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3056 if (zio->io_error != ENOSPC)
3057 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3058 else
3059 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3060 }

3062 if ((zio->io_type == ZIO_TYPE_READ ||
3063 zio->io_type == ZIO_TYPE_FREE) &&
3064 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3065 zio->io_error == ENXIO &&
3066 spa_load_state(spa) == SPA_LOAD_NONE &&
3067 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3068 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;

3070 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3071 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;

3073 /*
3074 * Here is a possibly good place to attempt to do
3075 * either combinatorial reconstruction or error correction
3076 * based on checksums. It also might be a good place
3077 * to send out preliminary ereports before we suspend
3078 * processing.
3079 */
3080 }

3082 /*
3083 * If there were logical child errors, they apply to us now.
3084 * We defer this until now to avoid conflating logical child
3085 * errors with errors that happened to the zio itself when
3086 * updating vdev stats and reporting FMA events above.
3087 */
3088 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);

3090 if ((zio->io_error || zio->io_reexecute) &&
3091 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3092 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3093 zio_dva_unallocate(zio, zio->io_gang_tree, bp);

3095 zio_gang_tree_free(&zio->io_gang_tree);

3097 /*
3098 * Godfather I/Os should never suspend.
3099 */
3100 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3101 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3102 zio->io_reexecute = 0;

3104 if (zio->io_reexecute) {
3105 /*
3106 * This is a logical I/O that wants to reexecute.
3107 *
3108 * Reexecute is top-down. When an i/o fails, if it’s not
3109 * the root, it simply notifies its parent and sticks around.
3110 * The parent, seeing that it still has children in zio_done(),
3111 * does the same. This percolates all the way up to the root.
3112 * The root i/o will reexecute or suspend the entire tree.
3113 *
3114 * This approach ensures that zio_reexecute() honors
3115 * all the original i/o dependency relationships, e.g.
3116 * parents not executing until children are ready.
3117 */

new/usr/src/uts/common/fs/zfs/zio.c 34

3118 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);

3120 zio->io_gang_leader = NULL;

3122 mutex_enter(&zio->io_lock);
3123 zio->io_state[ZIO_WAIT_DONE] = 1;
3124 mutex_exit(&zio->io_lock);

3126 /*
3127 * "The Godfather" I/O monitors its children but is
3128 * not a true parent to them. It will track them through
3129 * the pipeline but severs its ties whenever they get into
3130 * trouble (e.g. suspended). This allows "The Godfather"
3131 * I/O to return status without blocking.
3132 */
3133 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3134 zio_link_t *zl = zio->io_walk_link;
3135 pio_next = zio_walk_parents(zio);

3137 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3138 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3139 zio_remove_child(pio, zio, zl);
3140 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3141 }
3142 }

3144 if ((pio = zio_unique_parent(zio)) != NULL) {
3145 /*
3146 * We’re not a root i/o, so there’s nothing to do
3147 * but notify our parent. Don’t propagate errors
3148 * upward since we haven’t permanently failed yet.
3149 */
3150 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3151 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3152 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3153 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3154 /*
3155 * We’d fail again if we reexecuted now, so suspend
3156 * until conditions improve (e.g. device comes online).
3157 */
3158 zio_suspend(spa, zio);
3159 } else {
3160 /*
3161 * Reexecution is potentially a huge amount of work.
3162 * Hand it off to the otherwise-unused claim taskq.
3163 */
3164 ASSERT(zio->io_tqent.tqent_next == NULL);
3165 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3166 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3167 0, &zio->io_tqent);
3168 }
3169 return (ZIO_PIPELINE_STOP);
3170 }

3172 ASSERT(zio->io_child_count == 0);
3173 ASSERT(zio->io_reexecute == 0);
3174 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));

3176 /*
3177 * Report any checksum errors, since the I/O is complete.
3178 */
3179 while (zio->io_cksum_report != NULL) {
3180 zio_cksum_report_t *zcr = zio->io_cksum_report;
3181 zio->io_cksum_report = zcr->zcr_next;
3182 zcr->zcr_next = NULL;
3183 zcr->zcr_finish(zcr, NULL);

new/usr/src/uts/common/fs/zfs/zio.c 35

3184 zfs_ereport_free_checksum(zcr);
3185 }

3187 /*
3188 * It is the responsibility of the done callback to ensure that this
3189 * particular zio is no longer discoverable for adoption, and as
3190 * such, cannot acquire any new parents.
3191 */
3192 if (zio->io_done)
3193 zio->io_done(zio);

3195 mutex_enter(&zio->io_lock);
3196 zio->io_state[ZIO_WAIT_DONE] = 1;
3197 mutex_exit(&zio->io_lock);

3199 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3200 zio_link_t *zl = zio->io_walk_link;
3201 pio_next = zio_walk_parents(zio);
3202 zio_remove_child(pio, zio, zl);
3203 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3204 }

3206 if (zio->io_waiter != NULL) {
3207 mutex_enter(&zio->io_lock);
3208 zio->io_executor = NULL;
3209 cv_broadcast(&zio->io_cv);
3210 mutex_exit(&zio->io_lock);
3211 } else {
3212 zio_destroy(zio);
3213 }

3215 return (ZIO_PIPELINE_STOP);
3216 }

3218 /*
3219 * ==
3220 * I/O pipeline definition
3221 * ==
3222 */
3223 static zio_pipe_stage_t *zio_pipeline[] = {
3224 NULL,
3225 zio_read_bp_init,
3226 zio_free_bp_init,
3227 zio_issue_async,
3228 zio_write_bp_init,
3229 zio_checksum_generate,
3230 zio_nop_write,
3231 zio_ddt_read_start,
3232 zio_ddt_read_done,
3233 zio_ddt_write,
3234 zio_ddt_free,
3235 zio_gang_assemble,
3236 zio_gang_issue,
3237 zio_dva_allocate,
3238 zio_dva_free,
3239 zio_dva_claim,
3240 zio_ready,
3241 zio_vdev_io_start,
3242 zio_vdev_io_done,
3243 zio_vdev_io_assess,
3244 zio_checksum_verify,
3245 zio_done
3246 };

3248 /* dnp is the dnode for zb1->zb_object */
3249 boolean_t

new/usr/src/uts/common/fs/zfs/zio.c 36

3250 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3251 const zbookmark_phys_t *zb2)
3252 {
3253 uint64_t zb1nextL0, zb2thisobj;

3255 ASSERT(zb1->zb_objset == zb2->zb_objset);
3256 ASSERT(zb2->zb_level == 0);

3258 /* The objset_phys_t isn’t before anything. */
3259 if (dnp == NULL)
3260 return (B_FALSE);

3262 zb1nextL0 = (zb1->zb_blkid + 1) <<
3263 ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));

3265 zb2thisobj = zb2->zb_object ? zb2->zb_object :
3266 zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);

3268 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3269 uint64_t nextobj = zb1nextL0 *
3270 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3271 return (nextobj <= zb2thisobj);
3272 }

3274 if (zb1->zb_object < zb2thisobj)
3275 return (B_TRUE);
3276 if (zb1->zb_object > zb2thisobj)
3277 return (B_FALSE);
3278 if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3279 return (B_FALSE);
3280 return (zb1nextL0 <= zb2->zb_blkid);
3281 }

new/usr/src/uts/common/sys/filio.h 1

**
 4410 Tue Oct 28 11:57:20 2014
new/usr/src/uts/common/sys/filio.h
Possibility to physically reserve space without writing leaf blocks
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */

29 /*
30 * University Copyright- Copyright (c) 1982, 1986, 1988
31 * The Regents of the University of California
32 * All Rights Reserved
33 *
34 * University Acknowledgment- Portions of this document are derived from
35 * software developed by the University of California, Berkeley, and its
36 * contributors.
37 */

39 #ifndef _SYS_FILIO_H
40 #define _SYS_FILIO_H

42 #pragma ident "%Z%%M% %I% %E% SMI"

44 /*
45 * General file ioctl definitions.
46 */

48 #include <sys/ioccom.h>

50 #ifdef __cplusplus
51 extern "C" {
52 #endif

54 #define FIOCLEX _IO(’f’, 1) /* set exclusive use on fd */
55 #define FIONCLEX _IO(’f’, 2) /* remove exclusive use */
56 /* another local */
57 #define FIONREAD _IOR(’f’, 127, int) /* get # bytes to read */
58 #define FIONBIO _IOW(’f’, 126, int) /* set/clear non-blocking i/o */
59 #define FIOASYNC _IOW(’f’, 125, int) /* set/clear async i/o */
60 #define FIOSETOWN _IOW(’f’, 124, int) /* set owner */
61 #define FIOGETOWN _IOR(’f’, 123, int) /* get owner */

new/usr/src/uts/common/sys/filio.h 2

63 /*
64 * ioctl’s for Online: DiskSuite.
65 * WARNING - the support for these ioctls may be withdrawn
66 * in future OS releases.
67 */
68 #define _FIOLFS _IO(’f’, 64) /* file system lock */
69 #define _FIOLFSS _IO(’f’, 65) /* file system lock status */
70 #define _FIOFFS _IO(’f’, 66) /* file system flush */
71 #define _FIOAI _FIOOBSOLETE67 /* get allocation info is */
72 #define _FIOOBSOLETE67 _IO(’f’, 67) /* obsolete and unsupported */
73 #define _FIOSATIME _IO(’f’, 68) /* set atime */
74 #define _FIOSDIO _IO(’f’, 69) /* set delayed io */
75 #define _FIOGDIO _IO(’f’, 70) /* get delayed io */
76 #define _FIOIO _IO(’f’, 71) /* inode open */
77 #define _FIOISLOG _IO(’f’, 72) /* disksuite/ufs protocol */
78 #define _FIOISLOGOK _IO(’f’, 73) /* disksuite/ufs protocol */
79 #define _FIOLOGRESET _IO(’f’, 74) /* disksuite/ufs protocol */

81 /*
82 * Contract-private ioctl()
83 */
84 #define _FIOISBUSY _IO(’f’, 75) /* networker/ufs protocol */
85 #define _FIODIRECTIO _IO(’f’, 76) /* directio */
86 #define _FIOTUNE _IO(’f’, 77) /* tuning */

88 /*
89 * WARNING: These ’f’ ioctls are also defined in sys/fs/cachefs_fs.h
90 * It currently defines 78-86.
91 */

93 /*
94 * Internal Logging UFS
95 */
96 #define _FIOLOGENABLE _IO(’f’, 87) /* logging/ufs protocol */
97 #define _FIOLOGDISABLE _IO(’f’, 88) /* logging/ufs protocol */

99 /*
100 * File system snapshot ioctls (see sys/fs/ufs_snap.h)
101 * (there is another snapshot ioctl, _FIOSNAPSHOTCREATE_MULTI,
102 * defined farther down in this file.)
103 */
104 #define _FIOSNAPSHOTCREATE _IO(’f’, 89) /* create a snapshot */
105 #define _FIOSNAPSHOTDELETE _IO(’f’, 90) /* delete a snapshot */

107 /*
108 * Return the current superblock of size SBSIZE
109 */
110 #define _FIOGETSUPERBLOCK _IO(’f’, 91)

112 /*
113 * Contract private ioctl
114 */
115 #define _FIOGETMAXPHYS _IO(’f’, 92)

117 /*
118 * TSufs support
119 */
120 #define _FIO_SET_LUFS_DEBUG _IO(’f’, 93) /* set lufs_debug */
121 #define _FIO_SET_LUFS_ERROR _IO(’f’, 94) /* set a lufs error */
122 #define _FIO_GET_TOP_STATS _IO(’f’, 95) /* get lufs tranaction stats */

124 /*
125 * create a snapshot with multiple backing files
126 */
127 #define _FIOSNAPSHOTCREATE_MULTI _IO(’f’, 96)

new/usr/src/uts/common/sys/filio.h 3

129 /*
130 * handle lseek SEEK_DATA and SEEK_HOLE for holey file knowledge
131 */
132 #define _FIO_SEEK_DATA _IO(’f’, 97) /* SEEK_DATA */
133 #define _FIO_SEEK_HOLE _IO(’f’, 98) /* SEEK_HOLE */

135 /*
136 * boot archive compression
137 */
138 #define _FIO_COMPRESSED _IO(’f’, 99) /* mark file as compressed */
139 #define _FIO_RESERVE_SPACE _IO(’f’, 100) /* Reserve space */
140 #endif /* ! codereview */

142 #ifdef __cplusplus
143 }
144 #endif

146 #endif /* _SYS_FILIO_H */

