
new/bootadm/bootadm.c 1

**
 228349 Fri Aug 31 05:08:45 2012
new/bootadm/bootadm.c
botadm patch
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2012 Milan Jurik. All rights reserved.
24 * Copyright 2012 Daniil Lunev. All rights reserved.
25 #endif /* ! codereview */
26 */

28 /*
29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
30 */

32 /*
33 * bootadm(1M) is a new utility for managing bootability of
34 * Solaris *Newboot* environments. It has two primary tasks:
35 * - Allow end users to manage bootability of Newboot Solaris instances
36 * - Provide services to other subsystems in Solaris (primarily Install)
37 */

39 /* Headers */
40 #include <stdio.h>
41 #include <errno.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <sys/types.h>
46 #include <sys/stat.h>
47 #include <alloca.h>
48 #include <stdarg.h>
49 #include <limits.h>
50 #include <signal.h>
51 #include <sys/wait.h>
52 #include <sys/mnttab.h>
53 #include <sys/mntent.h>
54 #include <sys/statvfs.h>
55 #include <libnvpair.h>
56 #include <ftw.h>
57 #include <fcntl.h>
58 #include <strings.h>
59 #include <utime.h>
60 #include <sys/systeminfo.h>
61 #include <sys/dktp/fdisk.h>

new/bootadm/bootadm.c 2

62 #include <sys/param.h>
63 #include <dirent.h>
64 #include <ctype.h>
65 #include <libgen.h>
66 #include <sys/sysmacros.h>
67 #include <sys/elf.h>
68 #include <libscf.h>
69 #include <zlib.h>
70 #include <sys/lockfs.h>
71 #include <sys/filio.h>
72 #include <libbe.h>
73 #ifdef i386
74 #include <libfdisk.h>
75 #endif

77 #if !defined(_OPB)
78 #include <sys/ucode.h>
79 #endif

81 #include <pwd.h>
82 #include <grp.h>
83 #include <device_info.h>
84 #include <sys/vtoc.h>
85 #include <sys/efi_partition.h>
86 #include <regex.h>
87 #include <locale.h>

89 #include "message.h"
90 #include "bootadm.h"

92 #ifndef TEXT_DOMAIN
93 #define TEXT_DOMAIN "SUNW_OST_OSCMD"
94 #endif /* TEXT_DOMAIN */

96 /* Type definitions */

98 /* Primary subcmds */
99 typedef enum {
100 BAM_MENU = 3,
101 BAM_ARCHIVE
102 } subcmd_t;

104 typedef enum {
105 OPT_ABSENT = 0, /* No option */
106 OPT_REQ, /* option required */
107 OPT_OPTIONAL /* option may or may not be present */
108 } option_t;

110 typedef struct {
111 char *subcmd;
112 option_t option;
113 error_t (*handler)();
114 int unpriv; /* is this an unprivileged command */
115 } subcmd_defn_t;

117 #define LINE_INIT 0 /* lineNum initial value */
118 #define ENTRY_INIT -1 /* entryNum initial value */
119 #define ALL_ENTRIES -2 /* selects all boot entries */

121 #define GRUB_DIR "/boot/grub"
122 #define GRUB_STAGE2 GRUB_DIR "/stage2"
123 #define GRUB_MENU "/boot/illumos.cfg"
124 #define MENU_TMP "/boot/illumos.cfg.tmp"
24 #define GRUB_MENU "/boot/grub/menu.lst"
25 #define MENU_TMP "/boot/grub/menu.lst.tmp"
125 #define GRUB_BACKUP_MENU "/etc/lu/GRUB_backup_menu"

new/bootadm/bootadm.c 3

126 #define RAMDISK_SPECIAL "/ramdisk"
127 #define STUBBOOT "/stubboot"
128 #define MULTIBOOT "/platform/i86pc/multiboot"
129 #define GRUBSIGN_DIR "/boot/grub/bootsign"
130 #define GRUBSIGN_BACKUP "/etc/bootsign"
131 #define GRUBSIGN_UFS_PREFIX "rootfs"
132 #define GRUBSIGN_ZFS_PREFIX "pool_"
133 #define GRUBSIGN_LU_PREFIX "BE_"
134 #define UFS_SIGNATURE_LIST "/var/run/grub_ufs_signatures"
135 #define ZFS_LEGACY_MNTPT "/tmp/bootadm_mnt_zfs_legacy"

137 #define BOOTADM_RDONLY_TEST "BOOTADM_RDONLY_TEST"

139 /* lock related */
140 #define BAM_LOCK_FILE "/var/run/bootadm.lock"
141 #define LOCK_FILE_PERMS (S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)

143 #define CREATE_RAMDISK "boot/solaris/bin/create_ramdisk"
144 #define CREATE_DISKMAP "boot/solaris/bin/create_diskmap"
145 #define EXTRACT_BOOT_FILELIST "boot/solaris/bin/extract_boot_filelist"
146 #define GRUBDISK_MAP "/var/run/solaris_grubdisk.map"

148 #define GRUB_slice "/etc/lu/GRUB_slice"
149 #define GRUB_root "/etc/lu/GRUB_root"
150 #define GRUB_fdisk "/etc/lu/GRUB_fdisk"
151 #define GRUB_fdisk_target "/etc/lu/GRUB_fdisk_target"
152 #define FINDROOT_INSTALLGRUB "/etc/lu/installgrub.findroot"
153 #define LULIB "/usr/lib/lu/lulib"
154 #define LULIB_PROPAGATE_FILE "lulib_propagate_file"
155 #define CKSUM "/usr/bin/cksum"
156 #define LU_MENU_CKSUM "/etc/lu/menu.cksum"
157 #define BOOTADM "/sbin/bootadm"

159 #define INSTALLGRUB "/sbin/installgrub"
160 #define STAGE1 "/boot/grub/stage1"
161 #define STAGE2 "/boot/grub/stage2"

163 typedef enum zfs_mnted {
164 ZFS_MNT_ERROR = -1,
165 LEGACY_MOUNTED = 1,
166 LEGACY_ALREADY,
167 ZFS_MOUNTED,
168 ZFS_ALREADY
169 } zfs_mnted_t;

171 /*
172 * Default file attributes
173 */
174 #define DEFAULT_DEV_MODE 0644 /* default permissions */
175 #define DEFAULT_DEV_UID 0 /* user root */
176 #define DEFAULT_DEV_GID 3 /* group sys */

178 /*
179 * Menu related
180 * menu_cmd_t and menu_cmds must be kept in sync
181 */
182 char *menu_cmds[] = {
183 "default_entry",/* DEFAULT_CMD */
84 "default", /* DEFAULT_CMD */
184 "timeout", /* TIMEOUT_CMD */
185 "entry_name", /* TITLE_CMD */
186 "pool_uuid", /* ROOT_CMD */
187 "kernel_path$", /* KERNEL_CMD */
188 "kernel_path", /* KERNEL_DOLLAR_CMD */
189 "module$", /* MODULE_CMD */
190 "module", /* MODULE_DOLLAR_CMD */

new/bootadm/bootadm.c 4

191 "=", /* SEP_CMD */
86 "title", /* TITLE_CMD */
87 "root", /* ROOT_CMD */
88 "kernel", /* KERNEL_CMD */
89 "kernel$", /* KERNEL_DOLLAR_CMD */
90 "module", /* MODULE_CMD */
91 "module$", /* MODULE_DOLLAR_CMD */
92 " ", /* SEP_CMD */
192 "#", /* COMMENT_CMD */
193 "chainloader", /* CHAINLOADER_CMD */
194 "args", /* ARGS_CMD */
195 "pool_label", /* FINDROOT_CMD */
196 "data_set", /* BOOTFS_CMD */
197 "kernel_options",/* KERNEL_OPTIONS_CMD */
96 "findroot", /* FINDROOT_CMD */
97 "bootfs", /* BOOTFS_CMD */
198 NULL
199 };

______unchanged_portion_omitted_

4681 int
4682 add_boot_entry(menu_t *mp,
4683 char *title,
4684 char *findroot,
4685 char *kernel,
4686 char *mod_kernel,
4687 char *module,
4688 char *bootfs)
4689 {
4690 int lineNum;
4691 int entryNum;
4692 char linebuf[BAM_MAXLINE];
4693 menu_cmd_t k_cmd;
4694 menu_cmd_t m_cmd;
4695 const char *fcn = "add_boot_entry()";
4696 char * options = NULL;
4697 #endif /* ! codereview */

4699 assert(mp);

4701 INJECT_ERROR1("ADD_BOOT_ENTRY_FINDROOT_NULL", findroot = NULL);
4702 if (findroot == NULL) {
4703 bam_error(NULL_FINDROOT);
4704 return (BAM_ERROR);
4705 }

4707 if (title == NULL) {
4708 title = "Solaris"; /* default to Solaris */
4709 }
4710 if (kernel == NULL) {
4711 bam_error(SUBOPT_MISS, menu_cmds[KERNEL_CMD]);
4712 return (BAM_ERROR);
4713 }
4714 if (module == NULL) {
4715 if (bam_direct != BAM_DIRECT_DBOOT) {
4716 bam_error(SUBOPT_MISS, menu_cmds[MODULE_CMD]);
4717 return (BAM_ERROR);
4718 }

4720 /* Figure the commands out from the kernel line */
4721 if (strstr(kernel, "$ISADIR") != NULL) {
4722 module = DIRECT_BOOT_ARCHIVE;
4723 } else if (strstr(kernel, "amd64") != NULL) {
4724 module = DIRECT_BOOT_ARCHIVE_64;
4725 } else {
4726 module = DIRECT_BOOT_ARCHIVE_32;

new/bootadm/bootadm.c 5

4727 }
4728 }

4730 k_cmd = KERNEL_DOLLAR_CMD;
4731 m_cmd = MODULE_DOLLAR_CMD;

4733 if (mp->start) {
4734 lineNum = mp->end->lineNum;
4735 entryNum = mp->end->entryNum;
4736 } else {
4737 lineNum = LINE_INIT;
4738 entryNum = ENTRY_INIT;
4739 }

4741 /*
4742 * No separator for comment (HDR/FTR) commands
4743 * The syntax for comments is #<comment>
4744 */
4745 (void) snprintf(linebuf, sizeof (linebuf), "%s%s",
4746 menu_cmds[COMMENT_CMD], BAM_BOOTADM_HDR);
4747 line_parser(mp, linebuf, &lineNum, &entryNum);

4749 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
4750 menu_cmds[TITLE_CMD], menu_cmds[SEP_CMD], title);
4751 line_parser(mp, linebuf, &lineNum, &entryNum);

4753 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
4754 menu_cmds[FINDROOT_CMD], menu_cmds[SEP_CMD], findroot);
4755 line_parser(mp, linebuf, &lineNum, &entryNum);
4756 BAM_DPRINTF((D_ADD_FINDROOT_NUM, fcn, lineNum, entryNum));

4758 if (bootfs != NULL) {
4759 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
4760 menu_cmds[BOOTFS_CMD], menu_cmds[SEP_CMD], bootfs);
4761 line_parser(mp, linebuf, &lineNum, &entryNum);
4762 }

4764 options = strpbrk(kernel, " \t");
4765 if (options)
4766 ++options;

4768 (void) snprintf(linebuf, sizeof (linebuf), "%s%s",
4769 menu_cmds[k_cmd], menu_cmds[SEP_CMD]);
4770 (void) strncat(linebuf, kernel, options - kernel);
4771 line_parser(mp, linebuf, &lineNum, &entryNum);

4773 if (options) {
4774 #endif /* ! codereview */
4775 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
4776 menu_cmds[KERNEL_OPTIONS_CMD], menu_cmds[SEP_CMD], options);
4596 menu_cmds[k_cmd], menu_cmds[SEP_CMD], kernel);
4777 line_parser(mp, linebuf, &lineNum, &entryNum);
4778 }
4779 #endif /* ! codereview */

4781 if (mod_kernel != NULL) {
4782 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
4783 menu_cmds[m_cmd], menu_cmds[SEP_CMD], mod_kernel);
4784 line_parser(mp, linebuf, &lineNum, &entryNum);
4785 }

4787 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
4788 menu_cmds[m_cmd], menu_cmds[SEP_CMD], module);
4789 line_parser(mp, linebuf, &lineNum, &entryNum);

4791 (void) snprintf(linebuf, sizeof (linebuf), "%s%s",

new/bootadm/bootadm.c 6

4792 menu_cmds[COMMENT_CMD], BAM_BOOTADM_FTR);
4793 line_parser(mp, linebuf, &lineNum, &entryNum);

4795 return (entryNum);
4796 }

4798 error_t
4799 delete_boot_entry(menu_t *mp, int entryNum, int quiet)
4800 {
4801 line_t *lp;
4802 line_t *freed;
4803 entry_t *ent;
4804 entry_t *tmp;
4805 int deleted = 0;
4806 const char *fcn = "delete_boot_entry()";

4808 assert(entryNum != ENTRY_INIT);

4810 tmp = NULL;

4812 ent = mp->entries;
4813 while (ent) {
4814 lp = ent->start;

4816 /*
4817 * Check entry number and make sure it’s a modifiable entry.
4818 *
4819 * Guidelines:
4820 * + We can modify a bootadm-created entry
4821 * + We can modify a libbe-created entry
4822 */
4823 if ((lp->flags != BAM_COMMENT &&
4824 (((ent->flags & BAM_ENTRY_LIBBE) == 0) &&
4825 strcmp(lp->arg, BAM_BOOTADM_HDR) != 0)) ||
4826 (entryNum != ALL_ENTRIES && lp->entryNum != entryNum)) {
4827 ent = ent->next;
4828 continue;
4829 }

4831 /* free the entry content */
4832 do {
4833 freed = lp;
4834 lp = lp->next; /* prev stays the same */
4835 BAM_DPRINTF((D_FREEING_LINE, fcn, freed->lineNum));
4836 unlink_line(mp, freed);
4837 line_free(freed);
4838 } while (freed != ent->end);

4840 /* free the entry_t structure */
4841 assert(tmp == NULL);
4842 tmp = ent;
4843 ent = ent->next;
4844 if (tmp->prev)
4845 tmp->prev->next = ent;
4846 else
4847 mp->entries = ent;
4848 if (ent)
4849 ent->prev = tmp->prev;
4850 BAM_DPRINTF((D_FREEING_ENTRY, fcn, tmp->entryNum));
4851 free(tmp);
4852 tmp = NULL;
4853 deleted = 1;
4854 }

4856 assert(tmp == NULL);

new/bootadm/bootadm.c 7

4858 if (!deleted && entryNum != ALL_ENTRIES) {
4859 if (quiet == DBE_PRINTERR)
4860 bam_error(NO_BOOTADM_MATCH);
4861 return (BAM_ERROR);
4862 }

4864 /*
4865 * Now that we have deleted an entry, update
4866 * the entry numbering and the default cmd.
4867 */
4868 update_numbering(mp);

4870 return (BAM_SUCCESS);
4871 }

4873 static error_t
4874 delete_all_entries(menu_t *mp, char *dummy, char *opt)
4875 {
4876 assert(mp);
4877 assert(dummy == NULL);
4878 assert(opt == NULL);

4880 BAM_DPRINTF((D_FUNC_ENTRY0, "delete_all_entries"));

4882 if (mp->start == NULL) {
4883 bam_print(EMPTY_MENU);
4884 return (BAM_SUCCESS);
4885 }

4887 if (delete_boot_entry(mp, ALL_ENTRIES, DBE_PRINTERR) != BAM_SUCCESS) {
4888 return (BAM_ERROR);
4889 }

4891 return (BAM_WRITE);
4892 }

4894 static FILE *
4895 create_diskmap(char *osroot)
4896 {
4897 FILE *fp;
4898 char cmd[PATH_MAX + 16];
4899 char path[PATH_MAX];
4900 const char *fcn = "create_diskmap()";

4902 /* make sure we have a map file */
4903 fp = fopen(GRUBDISK_MAP, "r");
4904 if (fp == NULL) {
4905 int ret;

4907 ret = snprintf(path, sizeof (path), "%s/%s", osroot,
4908 CREATE_DISKMAP);
4909 if (ret >= sizeof (path)) {
4910 bam_error(PATH_TOO_LONG, osroot);
4911 return (NULL);
4912 }
4913 if (is_safe_exec(path) == BAM_ERROR)
4914 return (NULL);

4916 (void) snprintf(cmd, sizeof (cmd),
4917 "%s/%s > /dev/null", osroot, CREATE_DISKMAP);
4918 if (exec_cmd(cmd, NULL) != 0)
4919 return (NULL);
4920 fp = fopen(GRUBDISK_MAP, "r");
4921 INJECT_ERROR1("DISKMAP_CREATE_FAIL", fp = NULL);
4922 if (fp) {
4923 BAM_DPRINTF((D_CREATED_DISKMAP, fcn, GRUBDISK_MAP));

new/bootadm/bootadm.c 8

4924 } else {
4925 BAM_DPRINTF((D_CREATE_DISKMAP_FAIL, fcn, GRUBDISK_MAP));
4926 }
4927 }
4928 return (fp);
4929 }

4931 #define SECTOR_SIZE 512

4933 static int
4934 get_partition(char *device)
4935 {
4936 int i, fd, is_pcfs, partno = -1;
4937 struct mboot *mboot;
4938 char boot_sect[SECTOR_SIZE];
4939 char *wholedisk, *slice;
4940 #ifdef i386
4941 ext_part_t *epp;
4942 uint32_t secnum, numsec;
4943 int rval, pno, ext_partno = -1;
4944 #endif

4946 /* form whole disk (p0) */
4947 slice = device + strlen(device) - 2;
4948 is_pcfs = (*slice != ’s’);
4949 if (!is_pcfs)
4950 *slice = ’\0’;
4951 wholedisk = s_calloc(1, strlen(device) + 3);
4952 (void) snprintf(wholedisk, strlen(device) + 3, "%sp0", device);
4953 if (!is_pcfs)
4954 *slice = ’s’;

4956 /* read boot sector */
4957 fd = open(wholedisk, O_RDONLY);
4958 if (fd == -1 || read(fd, boot_sect, SECTOR_SIZE) != SECTOR_SIZE) {
4959 return (partno);
4960 }
4961 (void) close(fd);

4963 #ifdef i386
4964 /* Read/Initialize extended partition information */
4965 if ((rval = libfdisk_init(&epp, wholedisk, NULL, FDISK_READ_DISK))
4966 != FDISK_SUCCESS) {
4967 switch (rval) {
4968 /*
4969 * FDISK_EBADLOGDRIVE and FDISK_ENOLOGDRIVE can
4970 * be considered as soft errors and hence
4971 * we do not return
4972 */
4973 case FDISK_EBADLOGDRIVE:
4974 break;
4975 case FDISK_ENOLOGDRIVE:
4976 break;
4977 case FDISK_EBADMAGIC:
4978 /*FALLTHROUGH*/
4979 default:
4980 free(wholedisk);
4981 libfdisk_fini(&epp);
4982 return (partno);
4983 }
4984 }
4985 #endif
4986 free(wholedisk);

4988 /* parse fdisk table */
4989 mboot = (struct mboot *)((void *)boot_sect);

new/bootadm/bootadm.c 9

4990 for (i = 0; i < FD_NUMPART; i++) {
4991 struct ipart *part =
4992 (struct ipart *)(uintptr_t)mboot->parts + i;
4993 if (is_pcfs) { /* looking for solaris boot part */
4994 if (part->systid == 0xbe) {
4995 partno = i;
4996 break;
4997 }
4998 } else { /* look for solaris partition, old and new */
4999 #ifdef i386
5000 if ((part->systid == SUNIXOS &&
5001 (fdisk_is_linux_swap(epp, part->relsect,
5002 NULL) != 0)) || part->systid == SUNIXOS2) {
5003 #else
5004 if (part->systid == SUNIXOS ||
5005 part->systid == SUNIXOS2) {
5006 #endif
5007 partno = i;
5008 break;
5009 }

5011 #ifdef i386
5012 if (fdisk_is_dos_extended(part->systid))
5013 ext_partno = i;
5014 #endif
5015 }
5016 }
5017 #ifdef i386
5018 /* If no primary solaris partition, check extended partition */
5019 if ((partno == -1) && (ext_partno != -1)) {
5020 rval = fdisk_get_solaris_part(epp, &pno, &secnum, &numsec);
5021 if (rval == FDISK_SUCCESS) {
5022 partno = pno - 1;
5023 }
5024 }
5025 libfdisk_fini(&epp);
5026 #endif
5027 return (partno);
5028 }

5030 char *
5031 get_grubroot(char *osroot, char *osdev, char *menu_root)
5032 {
5033 char *grubroot; /* (hd#,#,#) */
5034 char *slice;
5035 char *grubhd;
5036 int fdiskpart;
5037 int found = 0;
5038 char *devname;
5039 char *ctdname = strstr(osdev, "dsk/");
5040 char linebuf[PATH_MAX];
5041 FILE *fp;

5043 INJECT_ERROR1("GRUBROOT_INVALID_OSDEV", ctdname = NULL);
5044 if (ctdname == NULL) {
5045 bam_error(INVALID_DEV_DSK, osdev);
5046 return (NULL);
5047 }

5049 if (menu_root && !menu_on_bootdisk(osroot, menu_root)) {
5050 /* menu bears no resemblance to our reality */
5051 bam_error(CANNOT_GRUBROOT_BOOTDISK, osdev);
5052 return (NULL);
5053 }

5055 ctdname += strlen("dsk/");

new/bootadm/bootadm.c 10

5056 slice = strrchr(ctdname, ’s’);
5057 if (slice)
5058 *slice = ’\0’;

5060 fp = create_diskmap(osroot);
5061 if (fp == NULL) {
5062 bam_error(DISKMAP_FAIL, osroot);
5063 return (NULL);
5064 }

5066 rewind(fp);
5067 while (s_fgets(linebuf, sizeof (linebuf), fp) != NULL) {
5068 grubhd = strtok(linebuf, " \t\n");
5069 if (grubhd)
5070 devname = strtok(NULL, " \t\n");
5071 else
5072 devname = NULL;
5073 if (devname && strcmp(devname, ctdname) == 0) {
5074 found = 1;
5075 break;
5076 }
5077 }

5079 if (slice)
5080 *slice = ’s’;

5082 (void) fclose(fp);
5083 fp = NULL;

5085 INJECT_ERROR1("GRUBROOT_BIOSDEV_FAIL", found = 0);
5086 if (found == 0) {
5087 bam_error(BIOSDEV_SKIP, osdev);
5088 return (NULL);
5089 }

5091 fdiskpart = get_partition(osdev);
5092 INJECT_ERROR1("GRUBROOT_FDISK_FAIL", fdiskpart = -1);
5093 if (fdiskpart == -1) {
5094 bam_error(FDISKPART_FAIL, osdev);
5095 return (NULL);
5096 }

5098 grubroot = s_calloc(1, 10);
5099 if (slice) {
5100 (void) snprintf(grubroot, 10, "(hd%s,%d,%c)",
5101 grubhd, fdiskpart, slice[1] + ’a’ - ’0’);
5102 } else
5103 (void) snprintf(grubroot, 10, "(hd%s,%d)",
5104 grubhd, fdiskpart);

5106 assert(fp == NULL);
5107 assert(strncmp(grubroot, "(hd", strlen("(hd")) == 0);
5108 return (grubroot);
5109 }

5111 static char *
5112 find_primary_common(char *mntpt, char *fstype)
5113 {
5114 char signdir[PATH_MAX];
5115 char tmpsign[MAXNAMELEN + 1];
5116 char *lu;
5117 char *ufs;
5118 char *zfs;
5119 DIR *dirp = NULL;
5120 struct dirent *entp;
5121 struct stat sb;

new/bootadm/bootadm.c 11

5122 const char *fcn = "find_primary_common()";

5124 (void) snprintf(signdir, sizeof (signdir), "%s/%s",
5125 mntpt, GRUBSIGN_DIR);

5127 if (stat(signdir, &sb) == -1) {
5128 BAM_DPRINTF((D_NO_SIGNDIR, fcn, signdir));
5129 return (NULL);
5130 }

5132 dirp = opendir(signdir);
5133 INJECT_ERROR1("SIGNDIR_OPENDIR_FAIL", dirp = NULL);
5134 if (dirp == NULL) {
5135 bam_error(OPENDIR_FAILED, signdir, strerror(errno));
5136 return (NULL);
5137 }

5139 ufs = zfs = lu = NULL;

5141 while (entp = readdir(dirp)) {
5142 if (strcmp(entp->d_name, ".") == 0 ||
5143 strcmp(entp->d_name, "..") == 0)
5144 continue;

5146 (void) snprintf(tmpsign, sizeof (tmpsign), "%s", entp->d_name);

5148 if (lu == NULL &&
5149 strncmp(tmpsign, GRUBSIGN_LU_PREFIX,
5150 strlen(GRUBSIGN_LU_PREFIX)) == 0) {
5151 lu = s_strdup(tmpsign);
5152 }

5154 if (ufs == NULL &&
5155 strncmp(tmpsign, GRUBSIGN_UFS_PREFIX,
5156 strlen(GRUBSIGN_UFS_PREFIX)) == 0) {
5157 ufs = s_strdup(tmpsign);
5158 }

5160 if (zfs == NULL &&
5161 strncmp(tmpsign, GRUBSIGN_ZFS_PREFIX,
5162 strlen(GRUBSIGN_ZFS_PREFIX)) == 0) {
5163 zfs = s_strdup(tmpsign);
5164 }
5165 }

5167 BAM_DPRINTF((D_EXIST_PRIMARY_SIGNS, fcn,
5168 zfs ? zfs : "NULL",
5169 ufs ? ufs : "NULL",
5170 lu ? lu : "NULL"));

5172 if (dirp) {
5173 (void) closedir(dirp);
5174 dirp = NULL;
5175 }

5177 if (strcmp(fstype, "ufs") == 0 && zfs) {
5178 bam_error(SIGN_FSTYPE_MISMATCH, zfs, "ufs");
5179 free(zfs);
5180 zfs = NULL;
5181 } else if (strcmp(fstype, "zfs") == 0 && ufs) {
5182 bam_error(SIGN_FSTYPE_MISMATCH, ufs, "zfs");
5183 free(ufs);
5184 ufs = NULL;
5185 }

5187 assert(dirp == NULL);

new/bootadm/bootadm.c 12

5189 /* For now, we let Live Upgrade take care of its signature itself */
5190 if (lu) {
5191 BAM_DPRINTF((D_FREEING_LU_SIGNS, fcn, lu));
5192 free(lu);
5193 lu = NULL;
5194 }

5196 return (zfs ? zfs : ufs);
5197 }

5199 static char *
5200 find_backup_common(char *mntpt, char *fstype)
5201 {
5202 FILE *bfp = NULL;
5203 char tmpsign[MAXNAMELEN + 1];
5204 char backup[PATH_MAX];
5205 char *ufs;
5206 char *zfs;
5207 char *lu;
5208 int error;
5209 const char *fcn = "find_backup_common()";

5211 /*
5212 * We didn’t find it in the primary directory.
5213 * Look at the backup
5214 */
5215 (void) snprintf(backup, sizeof (backup), "%s%s",
5216 mntpt, GRUBSIGN_BACKUP);

5218 bfp = fopen(backup, "r");
5219 if (bfp == NULL) {
5220 error = errno;
5221 if (bam_verbose) {
5222 bam_error(OPEN_FAIL, backup, strerror(error));
5223 }
5224 BAM_DPRINTF((D_OPEN_FAIL, fcn, backup, strerror(error)));
5225 return (NULL);
5226 }

5228 ufs = zfs = lu = NULL;

5230 while (s_fgets(tmpsign, sizeof (tmpsign), bfp) != NULL) {

5232 if (lu == NULL &&
5233 strncmp(tmpsign, GRUBSIGN_LU_PREFIX,
5234 strlen(GRUBSIGN_LU_PREFIX)) == 0) {
5235 lu = s_strdup(tmpsign);
5236 }

5238 if (ufs == NULL &&
5239 strncmp(tmpsign, GRUBSIGN_UFS_PREFIX,
5240 strlen(GRUBSIGN_UFS_PREFIX)) == 0) {
5241 ufs = s_strdup(tmpsign);
5242 }

5244 if (zfs == NULL &&
5245 strncmp(tmpsign, GRUBSIGN_ZFS_PREFIX,
5246 strlen(GRUBSIGN_ZFS_PREFIX)) == 0) {
5247 zfs = s_strdup(tmpsign);
5248 }
5249 }

5251 BAM_DPRINTF((D_EXIST_BACKUP_SIGNS, fcn,
5252 zfs ? zfs : "NULL",
5253 ufs ? ufs : "NULL",

new/bootadm/bootadm.c 13

5254 lu ? lu : "NULL"));

5256 if (bfp) {
5257 (void) fclose(bfp);
5258 bfp = NULL;
5259 }

5261 if (strcmp(fstype, "ufs") == 0 && zfs) {
5262 bam_error(SIGN_FSTYPE_MISMATCH, zfs, "ufs");
5263 free(zfs);
5264 zfs = NULL;
5265 } else if (strcmp(fstype, "zfs") == 0 && ufs) {
5266 bam_error(SIGN_FSTYPE_MISMATCH, ufs, "zfs");
5267 free(ufs);
5268 ufs = NULL;
5269 }

5271 assert(bfp == NULL);

5273 /* For now, we let Live Upgrade take care of its signature itself */
5274 if (lu) {
5275 BAM_DPRINTF((D_FREEING_LU_SIGNS, fcn, lu));
5276 free(lu);
5277 lu = NULL;
5278 }

5280 return (zfs ? zfs : ufs);
5281 }

5283 static char *
5284 find_ufs_existing(char *osroot)
5285 {
5286 char *sign;
5287 const char *fcn = "find_ufs_existing()";

5289 sign = find_primary_common(osroot, "ufs");
5290 if (sign == NULL) {
5291 sign = find_backup_common(osroot, "ufs");
5292 BAM_DPRINTF((D_EXIST_BACKUP_SIGN, fcn, sign ? sign : "NULL"));
5293 } else {
5294 BAM_DPRINTF((D_EXIST_PRIMARY_SIGN, fcn, sign));
5295 }

5297 return (sign);
5298 }

5300 char *
5301 get_mountpoint(char *special, char *fstype)
5302 {
5303 FILE *mntfp;
5304 struct mnttab mp = {0};
5305 struct mnttab mpref = {0};
5306 int error;
5307 int ret;
5308 const char *fcn = "get_mountpoint()";

5310 BAM_DPRINTF((D_FUNC_ENTRY2, fcn, special, fstype));

5312 mntfp = fopen(MNTTAB, "r");
5313 error = errno;
5314 INJECT_ERROR1("MNTTAB_ERR_GET_MNTPT", mntfp = NULL);
5315 if (mntfp == NULL) {
5316 bam_error(OPEN_FAIL, MNTTAB, strerror(error));
5317 return (NULL);
5318 }

new/bootadm/bootadm.c 14

5320 mpref.mnt_special = special;
5321 mpref.mnt_fstype = fstype;

5323 ret = getmntany(mntfp, &mp, &mpref);
5324 INJECT_ERROR1("GET_MOUNTPOINT_MNTANY", ret = 1);
5325 if (ret != 0) {
5326 (void) fclose(mntfp);
5327 BAM_DPRINTF((D_NO_MNTPT, fcn, special, fstype));
5328 return (NULL);
5329 }
5330 (void) fclose(mntfp);

5332 assert(mp.mnt_mountp);

5334 BAM_DPRINTF((D_GET_MOUNTPOINT_RET, fcn, special, mp.mnt_mountp));

5336 return (s_strdup(mp.mnt_mountp));
5337 }

5339 /*
5340 * Mounts a "legacy" top dataset (if needed)
5341 * Returns: The mountpoint of the legacy top dataset or NULL on error
5342 * mnted returns one of the above values defined for zfs_mnted_t
5343 */
5344 static char *
5345 mount_legacy_dataset(char *pool, zfs_mnted_t *mnted)
5346 {
5347 char cmd[PATH_MAX];
5348 char tmpmnt[PATH_MAX];
5349 filelist_t flist = {0};
5350 char *is_mounted;
5351 struct stat sb;
5352 int ret;
5353 const char *fcn = "mount_legacy_dataset()";

5355 BAM_DPRINTF((D_FUNC_ENTRY1, fcn, pool));

5357 *mnted = ZFS_MNT_ERROR;

5359 (void) snprintf(cmd, sizeof (cmd),
5360 "/sbin/zfs get -Ho value mounted %s",
5361 pool);

5363 ret = exec_cmd(cmd, &flist);
5364 INJECT_ERROR1("Z_MOUNT_LEG_GET_MOUNTED_CMD", ret = 1);
5365 if (ret != 0) {
5366 bam_error(ZFS_MNTED_FAILED, pool);
5367 return (NULL);
5368 }

5370 INJECT_ERROR1("Z_MOUNT_LEG_GET_MOUNTED_OUT", flist.head = NULL);
5371 if ((flist.head == NULL) || (flist.head != flist.tail)) {
5372 bam_error(BAD_ZFS_MNTED, pool);
5373 filelist_free(&flist);
5374 return (NULL);
5375 }

5377 is_mounted = strtok(flist.head->line, " \t\n");
5378 INJECT_ERROR1("Z_MOUNT_LEG_GET_MOUNTED_STRTOK_YES", is_mounted = "yes");
5379 INJECT_ERROR1("Z_MOUNT_LEG_GET_MOUNTED_STRTOK_NO", is_mounted = "no");
5380 if (strcmp(is_mounted, "no") != 0) {
5381 filelist_free(&flist);
5382 *mnted = LEGACY_ALREADY;
5383 /* get_mountpoint returns a strdup’ed string */
5384 BAM_DPRINTF((D_Z_MOUNT_TOP_LEG_ALREADY, fcn, pool));
5385 return (get_mountpoint(pool, "zfs"));

new/bootadm/bootadm.c 15

5386 }

5388 filelist_free(&flist);

5390 /*
5391 * legacy top dataset is not mounted. Mount it now
5392 * First create a mountpoint.
5393 */
5394 (void) snprintf(tmpmnt, sizeof (tmpmnt), "%s.%d",
5395 ZFS_LEGACY_MNTPT, getpid());

5397 ret = stat(tmpmnt, &sb);
5398 if (ret == -1) {
5399 BAM_DPRINTF((D_Z_MOUNT_TOP_LEG_MNTPT_ABS, fcn, pool, tmpmnt));
5400 ret = mkdirp(tmpmnt, DIR_PERMS);
5401 INJECT_ERROR1("Z_MOUNT_TOP_LEG_MNTPT_MKDIRP", ret = -1);
5402 if (ret == -1) {
5403 bam_error(MKDIR_FAILED, tmpmnt, strerror(errno));
5404 return (NULL);
5405 }
5406 } else {
5407 BAM_DPRINTF((D_Z_MOUNT_TOP_LEG_MNTPT_PRES, fcn, pool, tmpmnt));
5408 }

5410 (void) snprintf(cmd, sizeof (cmd),
5411 "/sbin/mount -F zfs %s %s",
5412 pool, tmpmnt);

5414 ret = exec_cmd(cmd, NULL);
5415 INJECT_ERROR1("Z_MOUNT_TOP_LEG_MOUNT_CMD", ret = 1);
5416 if (ret != 0) {
5417 bam_error(ZFS_MOUNT_FAILED, pool);
5418 (void) rmdir(tmpmnt);
5419 return (NULL);
5420 }

5422 *mnted = LEGACY_MOUNTED;
5423 BAM_DPRINTF((D_Z_MOUNT_TOP_LEG_MOUNTED, fcn, pool, tmpmnt));
5424 return (s_strdup(tmpmnt));
5425 }

5427 /*
5428 * Mounts the top dataset (if needed)
5429 * Returns: The mountpoint of the top dataset or NULL on error
5430 * mnted returns one of the above values defined for zfs_mnted_t
5431 */
5432 static char *
5433 mount_top_dataset(char *pool, zfs_mnted_t *mnted)
5434 {
5435 char cmd[PATH_MAX];
5436 filelist_t flist = {0};
5437 char *is_mounted;
5438 char *mntpt;
5439 char *zmntpt;
5440 int ret;
5441 const char *fcn = "mount_top_dataset()";

5443 *mnted = ZFS_MNT_ERROR;

5445 BAM_DPRINTF((D_FUNC_ENTRY1, fcn, pool));

5447 /*
5448 * First check if the top dataset is a "legacy" dataset
5449 */
5450 (void) snprintf(cmd, sizeof (cmd),
5451 "/sbin/zfs get -Ho value mountpoint %s",

new/bootadm/bootadm.c 16

5452 pool);
5453 ret = exec_cmd(cmd, &flist);
5454 INJECT_ERROR1("Z_MOUNT_TOP_GET_MNTPT", ret = 1);
5455 if (ret != 0) {
5456 bam_error(ZFS_MNTPT_FAILED, pool);
5457 return (NULL);
5458 }

5460 if (flist.head && (flist.head == flist.tail)) {
5461 char *legacy = strtok(flist.head->line, " \t\n");
5462 if (legacy && strcmp(legacy, "legacy") == 0) {
5463 filelist_free(&flist);
5464 BAM_DPRINTF((D_Z_IS_LEGACY, fcn, pool));
5465 return (mount_legacy_dataset(pool, mnted));
5466 }
5467 }

5469 filelist_free(&flist);

5471 BAM_DPRINTF((D_Z_IS_NOT_LEGACY, fcn, pool));

5473 (void) snprintf(cmd, sizeof (cmd),
5474 "/sbin/zfs get -Ho value mounted %s",
5475 pool);

5477 ret = exec_cmd(cmd, &flist);
5478 INJECT_ERROR1("Z_MOUNT_TOP_NONLEG_GET_MOUNTED", ret = 1);
5479 if (ret != 0) {
5480 bam_error(ZFS_MNTED_FAILED, pool);
5481 return (NULL);
5482 }

5484 INJECT_ERROR1("Z_MOUNT_TOP_NONLEG_GET_MOUNTED_VAL", flist.head = NULL);
5485 if ((flist.head == NULL) || (flist.head != flist.tail)) {
5486 bam_error(BAD_ZFS_MNTED, pool);
5487 filelist_free(&flist);
5488 return (NULL);
5489 }

5491 is_mounted = strtok(flist.head->line, " \t\n");
5492 INJECT_ERROR1("Z_MOUNT_TOP_NONLEG_GET_MOUNTED_YES", is_mounted = "yes");
5493 INJECT_ERROR1("Z_MOUNT_TOP_NONLEG_GET_MOUNTED_NO", is_mounted = "no");
5494 if (strcmp(is_mounted, "no") != 0) {
5495 filelist_free(&flist);
5496 *mnted = ZFS_ALREADY;
5497 BAM_DPRINTF((D_Z_MOUNT_TOP_NONLEG_MOUNTED_ALREADY, fcn, pool));
5498 goto mounted;
5499 }

5501 filelist_free(&flist);
5502 BAM_DPRINTF((D_Z_MOUNT_TOP_NONLEG_MOUNTED_NOT_ALREADY, fcn, pool));

5504 /* top dataset is not mounted. Mount it now */
5505 (void) snprintf(cmd, sizeof (cmd),
5506 "/sbin/zfs mount %s", pool);
5507 ret = exec_cmd(cmd, NULL);
5508 INJECT_ERROR1("Z_MOUNT_TOP_NONLEG_MOUNT_CMD", ret = 1);
5509 if (ret != 0) {
5510 bam_error(ZFS_MOUNT_FAILED, pool);
5511 return (NULL);
5512 }
5513 *mnted = ZFS_MOUNTED;
5514 BAM_DPRINTF((D_Z_MOUNT_TOP_NONLEG_MOUNTED_NOW, fcn, pool));
5515 /*FALLTHRU*/
5516 mounted:
5517 /*

new/bootadm/bootadm.c 17

5518 * Now get the mountpoint
5519 */
5520 (void) snprintf(cmd, sizeof (cmd),
5521 "/sbin/zfs get -Ho value mountpoint %s",
5522 pool);

5524 ret = exec_cmd(cmd, &flist);
5525 INJECT_ERROR1("Z_MOUNT_TOP_NONLEG_GET_MNTPT_CMD", ret = 1);
5526 if (ret != 0) {
5527 bam_error(ZFS_MNTPT_FAILED, pool);
5528 goto error;
5529 }

5531 INJECT_ERROR1("Z_MOUNT_TOP_NONLEG_GET_MNTPT_OUT", flist.head = NULL);
5532 if ((flist.head == NULL) || (flist.head != flist.tail)) {
5533 bam_error(NULL_ZFS_MNTPT, pool);
5534 goto error;
5535 }

5537 mntpt = strtok(flist.head->line, " \t\n");
5538 INJECT_ERROR1("Z_MOUNT_TOP_NONLEG_GET_MNTPT_STRTOK", mntpt = "foo");
5539 if (*mntpt != ’/’) {
5540 bam_error(BAD_ZFS_MNTPT, pool, mntpt);
5541 goto error;
5542 }
5543 zmntpt = s_strdup(mntpt);

5545 filelist_free(&flist);

5547 BAM_DPRINTF((D_Z_MOUNT_TOP_NONLEG_MNTPT, fcn, pool, zmntpt));

5549 return (zmntpt);

5551 error:
5552 filelist_free(&flist);
5553 (void) umount_top_dataset(pool, *mnted, NULL);
5554 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
5555 return (NULL);
5556 }

5558 static int
5559 umount_top_dataset(char *pool, zfs_mnted_t mnted, char *mntpt)
5560 {
5561 char cmd[PATH_MAX];
5562 int ret;
5563 const char *fcn = "umount_top_dataset()";

5565 INJECT_ERROR1("Z_UMOUNT_TOP_INVALID_STATE", mnted = ZFS_MNT_ERROR);
5566 switch (mnted) {
5567 case LEGACY_ALREADY:
5568 case ZFS_ALREADY:
5569 /* nothing to do */
5570 BAM_DPRINTF((D_Z_UMOUNT_TOP_ALREADY_NOP, fcn, pool,
5571 mntpt ? mntpt : "NULL"));
5572 free(mntpt);
5573 return (BAM_SUCCESS);
5574 case LEGACY_MOUNTED:
5575 (void) snprintf(cmd, sizeof (cmd),
5576 "/sbin/umount %s", pool);
5577 ret = exec_cmd(cmd, NULL);
5578 INJECT_ERROR1("Z_UMOUNT_TOP_LEGACY_UMOUNT_FAIL", ret = 1);
5579 if (ret != 0) {
5580 bam_error(UMOUNT_FAILED, pool);
5581 free(mntpt);
5582 return (BAM_ERROR);
5583 }

new/bootadm/bootadm.c 18

5584 if (mntpt)
5585 (void) rmdir(mntpt);
5586 free(mntpt);
5587 BAM_DPRINTF((D_Z_UMOUNT_TOP_LEGACY, fcn, pool));
5588 return (BAM_SUCCESS);
5589 case ZFS_MOUNTED:
5590 free(mntpt);
5591 (void) snprintf(cmd, sizeof (cmd),
5592 "/sbin/zfs unmount %s", pool);
5593 ret = exec_cmd(cmd, NULL);
5594 INJECT_ERROR1("Z_UMOUNT_TOP_NONLEG_UMOUNT_FAIL", ret = 1);
5595 if (ret != 0) {
5596 bam_error(UMOUNT_FAILED, pool);
5597 return (BAM_ERROR);
5598 }
5599 BAM_DPRINTF((D_Z_UMOUNT_TOP_NONLEG, fcn, pool));
5600 return (BAM_SUCCESS);
5601 default:
5602 bam_error(INT_BAD_MNTSTATE, pool);
5603 return (BAM_ERROR);
5604 }
5605 /*NOTREACHED*/
5606 }

5608 /*
5609 * For ZFS, osdev can be one of two forms
5610 * It can be a "special" file as seen in mnttab: rpool/ROOT/szboot_0402
5611 * It can be a /dev/[r]dsk special file. We handle both instances
5612 */
5613 static char *
5614 get_pool(char *osdev)
5615 {
5616 char cmd[PATH_MAX];
5617 char buf[PATH_MAX];
5618 filelist_t flist = {0};
5619 char *pool;
5620 char *cp;
5621 char *slash;
5622 int ret;
5623 const char *fcn = "get_pool()";

5625 INJECT_ERROR1("GET_POOL_OSDEV", osdev = NULL);
5626 if (osdev == NULL) {
5627 bam_error(GET_POOL_OSDEV_NULL);
5628 return (NULL);
5629 }

5631 BAM_DPRINTF((D_GET_POOL_OSDEV, fcn, osdev));

5633 if (osdev[0] != ’/’) {
5634 (void) strlcpy(buf, osdev, sizeof (buf));
5635 slash = strchr(buf, ’/’);
5636 if (slash)
5637 *slash = ’\0’;
5638 pool = s_strdup(buf);
5639 BAM_DPRINTF((D_GET_POOL_RET, fcn, pool));
5640 return (pool);
5641 } else if (strncmp(osdev, "/dev/dsk/", strlen("/dev/dsk/")) != 0 &&
5642 strncmp(osdev, "/dev/rdsk/", strlen("/dev/rdsk/")) != 0) {
5643 bam_error(GET_POOL_BAD_OSDEV, osdev);
5644 return (NULL);
5645 }

5647 /*
5648 * Call the zfs fstyp directly since this is a zpool. This avoids
5649 * potential pcfs conflicts if the first block wasn’t cleared.

new/bootadm/bootadm.c 19

5650 */
5651 (void) snprintf(cmd, sizeof (cmd),
5652 "/usr/lib/fs/zfs/fstyp -a %s 2>/dev/null | /bin/grep ’^name:’",
5653 osdev);

5655 ret = exec_cmd(cmd, &flist);
5656 INJECT_ERROR1("GET_POOL_FSTYP", ret = 1);
5657 if (ret != 0) {
5658 bam_error(FSTYP_A_FAILED, osdev);
5659 return (NULL);
5660 }

5662 INJECT_ERROR1("GET_POOL_FSTYP_OUT", flist.head = NULL);
5663 if ((flist.head == NULL) || (flist.head != flist.tail)) {
5664 bam_error(NULL_FSTYP_A, osdev);
5665 filelist_free(&flist);
5666 return (NULL);
5667 }

5669 (void) strtok(flist.head->line, "’");
5670 cp = strtok(NULL, "’");
5671 INJECT_ERROR1("GET_POOL_FSTYP_STRTOK", cp = NULL);
5672 if (cp == NULL) {
5673 bam_error(BAD_FSTYP_A, osdev);
5674 filelist_free(&flist);
5675 return (NULL);
5676 }

5678 pool = s_strdup(cp);

5680 filelist_free(&flist);

5682 BAM_DPRINTF((D_GET_POOL_RET, fcn, pool));

5684 return (pool);
5685 }

5687 static char *
5688 find_zfs_existing(char *osdev)
5689 {
5690 char *pool;
5691 zfs_mnted_t mnted;
5692 char *mntpt;
5693 char *sign;
5694 const char *fcn = "find_zfs_existing()";

5696 pool = get_pool(osdev);
5697 INJECT_ERROR1("ZFS_FIND_EXIST_POOL", pool = NULL);
5698 if (pool == NULL) {
5699 bam_error(ZFS_GET_POOL_FAILED, osdev);
5700 return (NULL);
5701 }

5703 mntpt = mount_top_dataset(pool, &mnted);
5704 INJECT_ERROR1("ZFS_FIND_EXIST_MOUNT_TOP", mntpt = NULL);
5705 if (mntpt == NULL) {
5706 bam_error(ZFS_MOUNT_TOP_DATASET_FAILED, pool);
5707 free(pool);
5708 return (NULL);
5709 }

5711 sign = find_primary_common(mntpt, "zfs");
5712 if (sign == NULL) {
5713 sign = find_backup_common(mntpt, "zfs");
5714 BAM_DPRINTF((D_EXIST_BACKUP_SIGN, fcn, sign ? sign : "NULL"));
5715 } else {

new/bootadm/bootadm.c 20

5716 BAM_DPRINTF((D_EXIST_PRIMARY_SIGN, fcn, sign));
5717 }

5719 (void) umount_top_dataset(pool, mnted, mntpt);

5721 free(pool);

5723 return (sign);
5724 }

5726 static char *
5727 find_existing_sign(char *osroot, char *osdev, char *fstype)
5728 {
5729 const char *fcn = "find_existing_sign()";

5731 INJECT_ERROR1("FIND_EXIST_NOTSUP_FS", fstype = "foofs");
5732 if (strcmp(fstype, "ufs") == 0) {
5733 BAM_DPRINTF((D_CHECK_UFS_EXIST_SIGN, fcn));
5734 return (find_ufs_existing(osroot));
5735 } else if (strcmp(fstype, "zfs") == 0) {
5736 BAM_DPRINTF((D_CHECK_ZFS_EXIST_SIGN, fcn));
5737 return (find_zfs_existing(osdev));
5738 } else {
5739 bam_error(GRUBSIGN_NOTSUP, fstype);
5740 return (NULL);
5741 }
5742 }

5744 #define MH_HASH_SZ 16

5746 typedef enum {
5747 MH_ERROR = -1,
5748 MH_NOMATCH,
5749 MH_MATCH
5750 } mh_search_t;

5752 typedef struct mcache {
5753 char *mc_special;
5754 char *mc_mntpt;
5755 char *mc_fstype;
5756 struct mcache *mc_next;
5757 } mcache_t;

5759 typedef struct mhash {
5760 mcache_t *mh_hash[MH_HASH_SZ];
5761 } mhash_t;

5763 static int
5764 mhash_fcn(char *key)
5765 {
5766 int i;
5767 uint64_t sum = 0;

5769 for (i = 0; key[i] != ’\0’; i++) {
5770 sum += (uchar_t)key[i];
5771 }

5773 sum %= MH_HASH_SZ;

5775 assert(sum < MH_HASH_SZ);

5777 return (sum);
5778 }

5780 static mhash_t *
5781 cache_mnttab(void)

new/bootadm/bootadm.c 21

5782 {
5783 FILE *mfp;
5784 struct extmnttab mnt;
5785 mcache_t *mcp;
5786 mhash_t *mhp;
5787 char *ctds;
5788 int idx;
5789 int error;
5790 char *special_dup;
5791 const char *fcn = "cache_mnttab()";

5793 mfp = fopen(MNTTAB, "r");
5794 error = errno;
5795 INJECT_ERROR1("CACHE_MNTTAB_MNTTAB_ERR", mfp = NULL);
5796 if (mfp == NULL) {
5797 bam_error(OPEN_FAIL, MNTTAB, strerror(error));
5798 return (NULL);
5799 }

5801 mhp = s_calloc(1, sizeof (mhash_t));

5803 resetmnttab(mfp);

5805 while (getextmntent(mfp, &mnt, sizeof (mnt)) == 0) {
5806 /* only cache ufs */
5807 if (strcmp(mnt.mnt_fstype, "ufs") != 0)
5808 continue;

5810 /* basename() modifies its arg, so dup it */
5811 special_dup = s_strdup(mnt.mnt_special);
5812 ctds = basename(special_dup);

5814 mcp = s_calloc(1, sizeof (mcache_t));
5815 mcp->mc_special = s_strdup(ctds);
5816 mcp->mc_mntpt = s_strdup(mnt.mnt_mountp);
5817 mcp->mc_fstype = s_strdup(mnt.mnt_fstype);
5818 BAM_DPRINTF((D_CACHE_MNTS, fcn, ctds,
5819 mnt.mnt_mountp, mnt.mnt_fstype));
5820 idx = mhash_fcn(ctds);
5821 mcp->mc_next = mhp->mh_hash[idx];
5822 mhp->mh_hash[idx] = mcp;
5823 free(special_dup);
5824 }

5826 (void) fclose(mfp);

5828 return (mhp);
5829 }

5831 static void
5832 free_mnttab(mhash_t *mhp)
5833 {
5834 mcache_t *mcp;
5835 int i;

5837 for (i = 0; i < MH_HASH_SZ; i++) {
5838 /*LINTED*/
5839 while (mcp = mhp->mh_hash[i]) {
5840 mhp->mh_hash[i] = mcp->mc_next;
5841 free(mcp->mc_special);
5842 free(mcp->mc_mntpt);
5843 free(mcp->mc_fstype);
5844 free(mcp);
5845 }
5846 }

new/bootadm/bootadm.c 22

5848 for (i = 0; i < MH_HASH_SZ; i++) {
5849 assert(mhp->mh_hash[i] == NULL);
5850 }
5851 free(mhp);
5852 }

5854 static mh_search_t
5855 search_hash(mhash_t *mhp, char *special, char **mntpt)
5856 {
5857 int idx;
5858 mcache_t *mcp;
5859 const char *fcn = "search_hash()";

5861 assert(mntpt);

5863 *mntpt = NULL;

5865 INJECT_ERROR1("SEARCH_HASH_FULL_PATH", special = "/foo");
5866 if (strchr(special, ’/’)) {
5867 bam_error(INVALID_MHASH_KEY, special);
5868 return (MH_ERROR);
5869 }

5871 idx = mhash_fcn(special);

5873 for (mcp = mhp->mh_hash[idx]; mcp; mcp = mcp->mc_next) {
5874 if (strcmp(mcp->mc_special, special) == 0)
5875 break;
5876 }

5878 if (mcp == NULL) {
5879 BAM_DPRINTF((D_MNTTAB_HASH_NOMATCH, fcn, special));
5880 return (MH_NOMATCH);
5881 }

5883 assert(strcmp(mcp->mc_fstype, "ufs") == 0);
5884 *mntpt = mcp->mc_mntpt;
5885 BAM_DPRINTF((D_MNTTAB_HASH_MATCH, fcn, special));
5886 return (MH_MATCH);
5887 }

5889 static int
5890 check_add_ufs_sign_to_list(FILE *tfp, char *mntpt)
5891 {
5892 char *sign;
5893 char *signline;
5894 char signbuf[MAXNAMELEN];
5895 int len;
5896 int error;
5897 const char *fcn = "check_add_ufs_sign_to_list()";

5899 /* safe to specify NULL as "osdev" arg for UFS */
5900 sign = find_existing_sign(mntpt, NULL, "ufs");
5901 if (sign == NULL) {
5902 /* No existing signature, nothing to add to list */
5903 BAM_DPRINTF((D_NO_SIGN_TO_LIST, fcn, mntpt));
5904 return (0);
5905 }

5907 (void) snprintf(signbuf, sizeof (signbuf), "%s\n", sign);
5908 signline = signbuf;

5910 INJECT_ERROR1("UFS_MNTPT_SIGN_NOTUFS", signline = "pool_rpool10\n");
5911 if (strncmp(signline, GRUBSIGN_UFS_PREFIX,
5912 strlen(GRUBSIGN_UFS_PREFIX))) {
5913 bam_error(INVALID_UFS_SIGNATURE, sign);

new/bootadm/bootadm.c 23

5914 free(sign);
5915 /* ignore invalid signatures */
5916 return (0);
5917 }

5919 len = fputs(signline, tfp);
5920 error = errno;
5921 INJECT_ERROR1("SIGN_LIST_PUTS_ERROR", len = 0);
5922 if (len != strlen(signline)) {
5923 bam_error(SIGN_LIST_FPUTS_ERR, sign, strerror(error));
5924 free(sign);
5925 return (-1);
5926 }

5928 free(sign);

5930 BAM_DPRINTF((D_SIGN_LIST_PUTS_DONE, fcn, mntpt));
5931 return (0);
5932 }

5934 /*
5935 * slice is a basename not a full pathname
5936 */
5937 static int
5938 process_slice_common(char *slice, FILE *tfp, mhash_t *mhp, char *tmpmnt)
5939 {
5940 int ret;
5941 char cmd[PATH_MAX];
5942 char path[PATH_MAX];
5943 struct stat sbuf;
5944 char *mntpt;
5945 filelist_t flist = {0};
5946 char *fstype;
5947 char blkslice[PATH_MAX];
5948 const char *fcn = "process_slice_common()";

5951 ret = search_hash(mhp, slice, &mntpt);
5952 switch (ret) {
5953 case MH_MATCH:
5954 if (check_add_ufs_sign_to_list(tfp, mntpt) == -1)
5955 return (-1);
5956 else
5957 return (0);
5958 case MH_NOMATCH:
5959 break;
5960 case MH_ERROR:
5961 default:
5962 return (-1);
5963 }

5965 (void) snprintf(path, sizeof (path), "/dev/rdsk/%s", slice);
5966 if (stat(path, &sbuf) == -1) {
5967 BAM_DPRINTF((D_SLICE_ENOENT, fcn, path));
5968 return (0);
5969 }

5971 /* Check if ufs. Call ufs fstyp directly to avoid pcfs conflicts. */
5972 (void) snprintf(cmd, sizeof (cmd),
5973 "/usr/lib/fs/ufs/fstyp /dev/rdsk/%s 2>/dev/null",
5974 slice);

5976 if (exec_cmd(cmd, &flist) != 0) {
5977 if (bam_verbose)
5978 bam_print(FSTYP_FAILED, slice);
5979 return (0);

new/bootadm/bootadm.c 24

5980 }

5982 if ((flist.head == NULL) || (flist.head != flist.tail)) {
5983 if (bam_verbose)
5984 bam_print(FSTYP_BAD, slice);
5985 filelist_free(&flist);
5986 return (0);
5987 }

5989 fstype = strtok(flist.head->line, " \t\n");
5990 if (fstype == NULL || strcmp(fstype, "ufs") != 0) {
5991 if (bam_verbose)
5992 bam_print(NOT_UFS_SLICE, slice, fstype);
5993 filelist_free(&flist);
5994 return (0);
5995 }

5997 filelist_free(&flist);

5999 /*
6000 * Since we are mounting the filesystem read-only, the
6001 * the last mount field of the superblock is unchanged
6002 * and does not need to be fixed up post-mount;
6003 */

6005 (void) snprintf(blkslice, sizeof (blkslice), "/dev/dsk/%s",
6006 slice);

6008 (void) snprintf(cmd, sizeof (cmd),
6009 "/usr/sbin/mount -F ufs -o ro %s %s "
6010 "> /dev/null 2>&1", blkslice, tmpmnt);

6012 if (exec_cmd(cmd, NULL) != 0) {
6013 if (bam_verbose)
6014 bam_print(MOUNT_FAILED, blkslice, "ufs");
6015 return (0);
6016 }

6018 ret = check_add_ufs_sign_to_list(tfp, tmpmnt);

6020 (void) snprintf(cmd, sizeof (cmd),
6021 "/usr/sbin/umount -f %s > /dev/null 2>&1",
6022 tmpmnt);

6024 if (exec_cmd(cmd, NULL) != 0) {
6025 bam_print(UMOUNT_FAILED, slice);
6026 return (0);
6027 }

6029 return (ret);
6030 }

6032 static int
6033 process_vtoc_slices(
6034 char *s0,
6035 struct vtoc *vtoc,
6036 FILE *tfp,
6037 mhash_t *mhp,
6038 char *tmpmnt)
6039 {
6040 int idx;
6041 char slice[PATH_MAX];
6042 size_t len;
6043 char *cp;
6044 const char *fcn = "process_vtoc_slices()";

new/bootadm/bootadm.c 25

6046 len = strlen(s0);

6048 assert(s0[len - 2] == ’s’ && s0[len - 1] == ’0’);

6050 s0[len - 1] = ’\0’;

6052 (void) strlcpy(slice, s0, sizeof (slice));

6054 s0[len - 1] = ’0’;

6056 cp = slice + len - 1;

6058 for (idx = 0; idx < vtoc->v_nparts; idx++) {

6060 (void) snprintf(cp, sizeof (slice) - (len - 1), "%u", idx);

6062 if (vtoc->v_part[idx].p_size == 0) {
6063 BAM_DPRINTF((D_VTOC_SIZE_ZERO, fcn, slice));
6064 continue;
6065 }

6067 /* Skip "SWAP", "USR", "BACKUP", "VAR", "HOME", "ALTSCTR" */
6068 switch (vtoc->v_part[idx].p_tag) {
6069 case V_SWAP:
6070 case V_USR:
6071 case V_BACKUP:
6072 case V_VAR:
6073 case V_HOME:
6074 case V_ALTSCTR:
6075 BAM_DPRINTF((D_VTOC_NOT_ROOT_TAG, fcn, slice));
6076 continue;
6077 default:
6078 BAM_DPRINTF((D_VTOC_ROOT_TAG, fcn, slice));
6079 break;
6080 }

6082 /* skip unmountable and readonly slices */
6083 switch (vtoc->v_part[idx].p_flag) {
6084 case V_UNMNT:
6085 case V_RONLY:
6086 BAM_DPRINTF((D_VTOC_NOT_RDWR_FLAG, fcn, slice));
6087 continue;
6088 default:
6089 BAM_DPRINTF((D_VTOC_RDWR_FLAG, fcn, slice));
6090 break;
6091 }

6093 if (process_slice_common(slice, tfp, mhp, tmpmnt) == -1) {
6094 return (-1);
6095 }
6096 }

6098 return (0);
6099 }

6101 static int
6102 process_efi_slices(
6103 char *s0,
6104 struct dk_gpt *efi,
6105 FILE *tfp,
6106 mhash_t *mhp,
6107 char *tmpmnt)
6108 {
6109 int idx;
6110 char slice[PATH_MAX];
6111 size_t len;

new/bootadm/bootadm.c 26

6112 char *cp;
6113 const char *fcn = "process_efi_slices()";

6115 len = strlen(s0);

6117 assert(s0[len - 2] == ’s’ && s0[len - 1] == ’0’);

6119 s0[len - 1] = ’\0’;

6121 (void) strlcpy(slice, s0, sizeof (slice));

6123 s0[len - 1] = ’0’;

6125 cp = slice + len - 1;

6127 for (idx = 0; idx < efi->efi_nparts; idx++) {

6129 (void) snprintf(cp, sizeof (slice) - (len - 1), "%u", idx);

6131 if (efi->efi_parts[idx].p_size == 0) {
6132 BAM_DPRINTF((D_EFI_SIZE_ZERO, fcn, slice));
6133 continue;
6134 }

6136 /* Skip "SWAP", "USR", "BACKUP", "VAR", "HOME", "ALTSCTR" */
6137 switch (efi->efi_parts[idx].p_tag) {
6138 case V_SWAP:
6139 case V_USR:
6140 case V_BACKUP:
6141 case V_VAR:
6142 case V_HOME:
6143 case V_ALTSCTR:
6144 BAM_DPRINTF((D_EFI_NOT_ROOT_TAG, fcn, slice));
6145 continue;
6146 default:
6147 BAM_DPRINTF((D_EFI_ROOT_TAG, fcn, slice));
6148 break;
6149 }

6151 /* skip unmountable and readonly slices */
6152 switch (efi->efi_parts[idx].p_flag) {
6153 case V_UNMNT:
6154 case V_RONLY:
6155 BAM_DPRINTF((D_EFI_NOT_RDWR_FLAG, fcn, slice));
6156 continue;
6157 default:
6158 BAM_DPRINTF((D_EFI_RDWR_FLAG, fcn, slice));
6159 break;
6160 }

6162 if (process_slice_common(slice, tfp, mhp, tmpmnt) == -1) {
6163 return (-1);
6164 }
6165 }

6167 return (0);
6168 }

6170 /*
6171 * s0 is a basename not a full path
6172 */
6173 static int
6174 process_slice0(char *s0, FILE *tfp, mhash_t *mhp, char *tmpmnt)
6175 {
6176 struct vtoc vtoc;
6177 struct dk_gpt *efi;

new/bootadm/bootadm.c 27

6178 char s0path[PATH_MAX];
6179 struct stat sbuf;
6180 int e_flag;
6181 int v_flag;
6182 int retval;
6183 int err;
6184 int fd;
6185 const char *fcn = "process_slice0()";

6187 (void) snprintf(s0path, sizeof (s0path), "/dev/rdsk/%s", s0);

6189 if (stat(s0path, &sbuf) == -1) {
6190 BAM_DPRINTF((D_SLICE0_ENOENT, fcn, s0path));
6191 return (0);
6192 }

6194 fd = open(s0path, O_NONBLOCK|O_RDONLY);
6195 if (fd == -1) {
6196 bam_error(OPEN_FAIL, s0path, strerror(errno));
6197 return (0);
6198 }

6200 e_flag = v_flag = 0;
6201 retval = ((err = read_vtoc(fd, &vtoc)) >= 0) ? 0 : err;
6202 switch (retval) {
6203 case VT_EIO:
6204 BAM_DPRINTF((D_VTOC_READ_FAIL, fcn, s0path));
6205 break;
6206 case VT_EINVAL:
6207 BAM_DPRINTF((D_VTOC_INVALID, fcn, s0path));
6208 break;
6209 case VT_ERROR:
6210 BAM_DPRINTF((D_VTOC_UNKNOWN_ERR, fcn, s0path));
6211 break;
6212 case VT_ENOTSUP:
6213 e_flag = 1;
6214 BAM_DPRINTF((D_VTOC_NOTSUP, fcn, s0path));
6215 break;
6216 case 0:
6217 v_flag = 1;
6218 BAM_DPRINTF((D_VTOC_READ_SUCCESS, fcn, s0path));
6219 break;
6220 default:
6221 BAM_DPRINTF((D_VTOC_UNKNOWN_RETCODE, fcn, s0path));
6222 break;
6223 }

6226 if (e_flag) {
6227 e_flag = 0;
6228 retval = ((err = efi_alloc_and_read(fd, &efi)) >= 0) ? 0 : err;
6229 switch (retval) {
6230 case VT_EIO:
6231 BAM_DPRINTF((D_EFI_READ_FAIL, fcn, s0path));
6232 break;
6233 case VT_EINVAL:
6234 BAM_DPRINTF((D_EFI_INVALID, fcn, s0path));
6235 break;
6236 case VT_ERROR:
6237 BAM_DPRINTF((D_EFI_UNKNOWN_ERR, fcn, s0path));
6238 break;
6239 case VT_ENOTSUP:
6240 BAM_DPRINTF((D_EFI_NOTSUP, fcn, s0path));
6241 break;
6242 case 0:
6243 e_flag = 1;

new/bootadm/bootadm.c 28

6244 BAM_DPRINTF((D_EFI_READ_SUCCESS, fcn, s0path));
6245 break;
6246 default:
6247 BAM_DPRINTF((D_EFI_UNKNOWN_RETCODE, fcn, s0path));
6248 break;
6249 }
6250 }

6252 (void) close(fd);

6254 if (v_flag) {
6255 retval = process_vtoc_slices(s0,
6256 &vtoc, tfp, mhp, tmpmnt);
6257 } else if (e_flag) {
6258 retval = process_efi_slices(s0,
6259 efi, tfp, mhp, tmpmnt);
6260 } else {
6261 BAM_DPRINTF((D_NOT_VTOC_OR_EFI, fcn, s0path));
6262 return (0);
6263 }

6265 return (retval);
6266 }

6268 /*
6269 * Find and create a list of all existing UFS boot signatures
6270 */
6271 static int
6272 FindAllUfsSignatures(void)
6273 {
6274 mhash_t *mnttab_hash;
6275 DIR *dirp = NULL;
6276 struct dirent *dp;
6277 char tmpmnt[PATH_MAX];
6278 char cmd[PATH_MAX];
6279 struct stat sb;
6280 int fd;
6281 FILE *tfp;
6282 size_t len;
6283 int ret;
6284 int error;
6285 const char *fcn = "FindAllUfsSignatures()";

6287 if (stat(UFS_SIGNATURE_LIST, &sb) != -1) {
6288 bam_print(SIGNATURE_LIST_EXISTS, UFS_SIGNATURE_LIST);
6289 return (0);
6290 }

6292 fd = open(UFS_SIGNATURE_LIST".tmp",
6293 O_RDWR|O_CREAT|O_TRUNC, 0644);
6294 error = errno;
6295 INJECT_ERROR1("SIGN_LIST_TMP_TRUNC", fd = -1);
6296 if (fd == -1) {
6297 bam_error(OPEN_FAIL, UFS_SIGNATURE_LIST".tmp", strerror(error));
6298 return (-1);
6299 }

6301 ret = close(fd);
6302 error = errno;
6303 INJECT_ERROR1("SIGN_LIST_TMP_CLOSE", ret = -1);
6304 if (ret == -1) {
6305 bam_error(CLOSE_FAIL, UFS_SIGNATURE_LIST".tmp",
6306 strerror(error));
6307 (void) unlink(UFS_SIGNATURE_LIST".tmp");
6308 return (-1);
6309 }

new/bootadm/bootadm.c 29

6311 tfp = fopen(UFS_SIGNATURE_LIST".tmp", "a");
6312 error = errno;
6313 INJECT_ERROR1("SIGN_LIST_APPEND_FOPEN", tfp = NULL);
6314 if (tfp == NULL) {
6315 bam_error(OPEN_FAIL, UFS_SIGNATURE_LIST".tmp", strerror(error));
6316 (void) unlink(UFS_SIGNATURE_LIST".tmp");
6317 return (-1);
6318 }

6320 mnttab_hash = cache_mnttab();
6321 INJECT_ERROR1("CACHE_MNTTAB_ERROR", mnttab_hash = NULL);
6322 if (mnttab_hash == NULL) {
6323 (void) fclose(tfp);
6324 (void) unlink(UFS_SIGNATURE_LIST".tmp");
6325 bam_error(CACHE_MNTTAB_FAIL, fcn);
6326 return (-1);
6327 }

6329 (void) snprintf(tmpmnt, sizeof (tmpmnt),
6330 "/tmp/bootadm_ufs_sign_mnt.%d", getpid());
6331 (void) unlink(tmpmnt);

6333 ret = mkdirp(tmpmnt, DIR_PERMS);
6334 error = errno;
6335 INJECT_ERROR1("MKDIRP_SIGN_MNT", ret = -1);
6336 if (ret == -1) {
6337 bam_error(MKDIR_FAILED, tmpmnt, strerror(error));
6338 free_mnttab(mnttab_hash);
6339 (void) fclose(tfp);
6340 (void) unlink(UFS_SIGNATURE_LIST".tmp");
6341 return (-1);
6342 }

6344 dirp = opendir("/dev/rdsk");
6345 error = errno;
6346 INJECT_ERROR1("OPENDIR_DEV_RDSK", dirp = NULL);
6347 if (dirp == NULL) {
6348 bam_error(OPENDIR_FAILED, "/dev/rdsk", strerror(error));
6349 goto fail;
6350 }

6352 while (dp = readdir(dirp)) {
6353 if (strcmp(dp->d_name, ".") == 0 ||
6354 strcmp(dp->d_name, "..") == 0)
6355 continue;

6357 /*
6358 * we only look for the s0 slice. This is guranteed to
6359 * have ’s’ at len - 2.
6360 */
6361 len = strlen(dp->d_name);
6362 if (dp->d_name[len - 2] != ’s’ || dp->d_name[len - 1] != ’0’) {
6363 BAM_DPRINTF((D_SKIP_SLICE_NOTZERO, fcn, dp->d_name));
6364 continue;
6365 }

6367 ret = process_slice0(dp->d_name, tfp, mnttab_hash, tmpmnt);
6368 INJECT_ERROR1("PROCESS_S0_FAIL", ret = -1);
6369 if (ret == -1)
6370 goto fail;
6371 }

6373 (void) closedir(dirp);
6374 free_mnttab(mnttab_hash);
6375 (void) rmdir(tmpmnt);

new/bootadm/bootadm.c 30

6377 ret = fclose(tfp);
6378 error = errno;
6379 INJECT_ERROR1("FCLOSE_SIGNLIST_TMP", ret = EOF);
6380 if (ret == EOF) {
6381 bam_error(CLOSE_FAIL, UFS_SIGNATURE_LIST".tmp",
6382 strerror(error));
6383 (void) unlink(UFS_SIGNATURE_LIST".tmp");
6384 return (-1);
6385 }

6387 /* We have a list of existing GRUB signatures. Sort it first */
6388 (void) snprintf(cmd, sizeof (cmd),
6389 "/usr/bin/sort -u %s.tmp > %s.sorted",
6390 UFS_SIGNATURE_LIST, UFS_SIGNATURE_LIST);

6392 ret = exec_cmd(cmd, NULL);
6393 INJECT_ERROR1("SORT_SIGN_LIST", ret = 1);
6394 if (ret != 0) {
6395 bam_error(GRUBSIGN_SORT_FAILED);
6396 (void) unlink(UFS_SIGNATURE_LIST".sorted");
6397 (void) unlink(UFS_SIGNATURE_LIST".tmp");
6398 return (-1);
6399 }

6401 (void) unlink(UFS_SIGNATURE_LIST".tmp");

6403 ret = rename(UFS_SIGNATURE_LIST".sorted", UFS_SIGNATURE_LIST);
6404 error = errno;
6405 INJECT_ERROR1("RENAME_TMP_SIGNLIST", ret = -1);
6406 if (ret == -1) {
6407 bam_error(RENAME_FAIL, UFS_SIGNATURE_LIST, strerror(error));
6408 (void) unlink(UFS_SIGNATURE_LIST".sorted");
6409 return (-1);
6410 }

6412 if (stat(UFS_SIGNATURE_LIST, &sb) == 0 && sb.st_size == 0) {
6413 BAM_DPRINTF((D_ZERO_LEN_SIGNLIST, fcn, UFS_SIGNATURE_LIST));
6414 }

6416 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
6417 return (0);

6419 fail:
6420 if (dirp)
6421 (void) closedir(dirp);
6422 free_mnttab(mnttab_hash);
6423 (void) rmdir(tmpmnt);
6424 (void) fclose(tfp);
6425 (void) unlink(UFS_SIGNATURE_LIST".tmp");
6426 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
6427 return (-1);
6428 }

6430 static char *
6431 create_ufs_sign(void)
6432 {
6433 struct stat sb;
6434 int signnum = -1;
6435 char tmpsign[MAXNAMELEN + 1];
6436 char *numstr;
6437 int i;
6438 FILE *tfp;
6439 int ret;
6440 int error;
6441 const char *fcn = "create_ufs_sign()";

new/bootadm/bootadm.c 31

6443 bam_print(SEARCHING_UFS_SIGN);

6445 ret = FindAllUfsSignatures();
6446 INJECT_ERROR1("FIND_ALL_UFS", ret = -1);
6447 if (ret == -1) {
6448 bam_error(ERR_FIND_UFS_SIGN);
6449 return (NULL);
6450 }

6452 /* Make sure the list exists and is owned by root */
6453 INJECT_ERROR1("SIGNLIST_NOT_CREATED",
6454 (void) unlink(UFS_SIGNATURE_LIST));
6455 if (stat(UFS_SIGNATURE_LIST, &sb) == -1 || sb.st_uid != 0) {
6456 (void) unlink(UFS_SIGNATURE_LIST);
6457 bam_error(UFS_SIGNATURE_LIST_MISS, UFS_SIGNATURE_LIST);
6458 return (NULL);
6459 }

6461 if (sb.st_size == 0) {
6462 bam_print(GRUBSIGN_UFS_NONE);
6463 i = 0;
6464 goto found;
6465 }

6467 /* The signature list was sorted when it was created */
6468 tfp = fopen(UFS_SIGNATURE_LIST, "r");
6469 error = errno;
6470 INJECT_ERROR1("FOPEN_SIGN_LIST", tfp = NULL);
6471 if (tfp == NULL) {
6472 bam_error(UFS_SIGNATURE_LIST_OPENERR,
6473 UFS_SIGNATURE_LIST, strerror(error));
6474 (void) unlink(UFS_SIGNATURE_LIST);
6475 return (NULL);
6476 }

6478 for (i = 0; s_fgets(tmpsign, sizeof (tmpsign), tfp); i++) {

6480 if (strncmp(tmpsign, GRUBSIGN_UFS_PREFIX,
6481 strlen(GRUBSIGN_UFS_PREFIX)) != 0) {
6482 (void) fclose(tfp);
6483 (void) unlink(UFS_SIGNATURE_LIST);
6484 bam_error(UFS_BADSIGN, tmpsign);
6485 return (NULL);
6486 }
6487 numstr = tmpsign + strlen(GRUBSIGN_UFS_PREFIX);

6489 if (numstr[0] == ’\0’ || !isdigit(numstr[0])) {
6490 (void) fclose(tfp);
6491 (void) unlink(UFS_SIGNATURE_LIST);
6492 bam_error(UFS_BADSIGN, tmpsign);
6493 return (NULL);
6494 }

6496 signnum = atoi(numstr);
6497 INJECT_ERROR1("NEGATIVE_SIGN", signnum = -1);
6498 if (signnum < 0) {
6499 (void) fclose(tfp);
6500 (void) unlink(UFS_SIGNATURE_LIST);
6501 bam_error(UFS_BADSIGN, tmpsign);
6502 return (NULL);
6503 }

6505 if (i != signnum) {
6506 BAM_DPRINTF((D_FOUND_HOLE_SIGNLIST, fcn, i));
6507 break;

new/bootadm/bootadm.c 32

6508 }
6509 }

6511 (void) fclose(tfp);

6513 found:
6514 (void) snprintf(tmpsign, sizeof (tmpsign), "rootfs%d", i);

6516 /* add the ufs signature to the /var/run list of signatures */
6517 ret = ufs_add_to_sign_list(tmpsign);
6518 INJECT_ERROR1("UFS_ADD_TO_SIGN_LIST", ret = -1);
6519 if (ret == -1) {
6520 (void) unlink(UFS_SIGNATURE_LIST);
6521 bam_error(FAILED_ADD_SIGNLIST, tmpsign);
6522 return (NULL);
6523 }

6525 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));

6527 return (s_strdup(tmpsign));
6528 }

6530 static char *
6531 get_fstype(char *osroot)
6532 {
6533 FILE *mntfp;
6534 struct mnttab mp = {0};
6535 struct mnttab mpref = {0};
6536 int error;
6537 int ret;
6538 const char *fcn = "get_fstype()";

6540 INJECT_ERROR1("GET_FSTYPE_OSROOT", osroot = NULL);
6541 if (osroot == NULL) {
6542 bam_error(GET_FSTYPE_ARGS);
6543 return (NULL);
6544 }

6546 mntfp = fopen(MNTTAB, "r");
6547 error = errno;
6548 INJECT_ERROR1("GET_FSTYPE_FOPEN", mntfp = NULL);
6549 if (mntfp == NULL) {
6550 bam_error(OPEN_FAIL, MNTTAB, strerror(error));
6551 return (NULL);
6552 }

6554 if (*osroot == ’\0’)
6555 mpref.mnt_mountp = "/";
6556 else
6557 mpref.mnt_mountp = osroot;

6559 ret = getmntany(mntfp, &mp, &mpref);
6560 INJECT_ERROR1("GET_FSTYPE_GETMNTANY", ret = 1);
6561 if (ret != 0) {
6562 bam_error(MNTTAB_MNTPT_NOT_FOUND, osroot, MNTTAB);
6563 (void) fclose(mntfp);
6564 return (NULL);
6565 }
6566 (void) fclose(mntfp);

6568 INJECT_ERROR1("GET_FSTYPE_NULL", mp.mnt_fstype = NULL);
6569 if (mp.mnt_fstype == NULL) {
6570 bam_error(MNTTAB_FSTYPE_NULL, osroot);
6571 return (NULL);
6572 }

new/bootadm/bootadm.c 33

6574 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));

6576 return (s_strdup(mp.mnt_fstype));
6577 }

6579 static char *
6580 create_zfs_sign(char *osdev)
6581 {
6582 char tmpsign[PATH_MAX];
6583 char *pool;
6584 const char *fcn = "create_zfs_sign()";

6586 BAM_DPRINTF((D_FUNC_ENTRY1, fcn, osdev));

6588 /*
6589 * First find the pool name
6590 */
6591 pool = get_pool(osdev);
6592 INJECT_ERROR1("CREATE_ZFS_SIGN_GET_POOL", pool = NULL);
6593 if (pool == NULL) {
6594 bam_error(GET_POOL_FAILED, osdev);
6595 return (NULL);
6596 }

6598 (void) snprintf(tmpsign, sizeof (tmpsign), "pool_%s", pool);

6600 BAM_DPRINTF((D_CREATED_ZFS_SIGN, fcn, tmpsign));

6602 free(pool);

6604 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));

6606 return (s_strdup(tmpsign));
6607 }

6609 static char *
6610 create_new_sign(char *osdev, char *fstype)
6611 {
6612 char *sign;
6613 const char *fcn = "create_new_sign()";

6615 INJECT_ERROR1("NEW_SIGN_FSTYPE", fstype = "foofs");

6617 if (strcmp(fstype, "zfs") == 0) {
6618 BAM_DPRINTF((D_CREATE_NEW_ZFS, fcn));
6619 sign = create_zfs_sign(osdev);
6620 } else if (strcmp(fstype, "ufs") == 0) {
6621 BAM_DPRINTF((D_CREATE_NEW_UFS, fcn));
6622 sign = create_ufs_sign();
6623 } else {
6624 bam_error(GRUBSIGN_NOTSUP, fstype);
6625 sign = NULL;
6626 }

6628 BAM_DPRINTF((D_CREATED_NEW_SIGN, fcn, sign ? sign : "<NULL>"));
6629 return (sign);
6630 }

6632 static int
6633 set_backup_common(char *mntpt, char *sign)
6634 {
6635 FILE *bfp;
6636 char backup[PATH_MAX];
6637 char tmpsign[PATH_MAX];
6638 int error;
6639 char *bdir;

new/bootadm/bootadm.c 34

6640 char *backup_dup;
6641 struct stat sb;
6642 int ret;
6643 const char *fcn = "set_backup_common()";

6645 (void) snprintf(backup, sizeof (backup), "%s%s",
6646 mntpt, GRUBSIGN_BACKUP);

6648 /* First read the backup */
6649 bfp = fopen(backup, "r");
6650 if (bfp != NULL) {
6651 while (s_fgets(tmpsign, sizeof (tmpsign), bfp)) {
6652 if (strcmp(tmpsign, sign) == 0) {
6653 BAM_DPRINTF((D_FOUND_IN_BACKUP, fcn, sign));
6654 (void) fclose(bfp);
6655 return (0);
6656 }
6657 }
6658 (void) fclose(bfp);
6659 BAM_DPRINTF((D_NOT_FOUND_IN_EXIST_BACKUP, fcn, sign));
6660 } else {
6661 BAM_DPRINTF((D_BACKUP_NOT_EXIST, fcn, backup));
6662 }

6664 /*
6665 * Didn’t find the correct signature. First create
6666 * the directory if necessary.
6667 */

6669 /* dirname() modifies its argument so dup it */
6670 backup_dup = s_strdup(backup);
6671 bdir = dirname(backup_dup);
6672 assert(bdir);

6674 ret = stat(bdir, &sb);
6675 INJECT_ERROR1("SET_BACKUP_STAT", ret = -1);
6676 if (ret == -1) {
6677 BAM_DPRINTF((D_BACKUP_DIR_NOEXIST, fcn, bdir));
6678 ret = mkdirp(bdir, DIR_PERMS);
6679 error = errno;
6680 INJECT_ERROR1("SET_BACKUP_MKDIRP", ret = -1);
6681 if (ret == -1) {
6682 bam_error(GRUBSIGN_BACKUP_MKDIRERR,
6683 GRUBSIGN_BACKUP, strerror(error));
6684 free(backup_dup);
6685 return (-1);
6686 }
6687 }
6688 free(backup_dup);

6690 /*
6691 * Open the backup in append mode to add the correct
6692 * signature;
6693 */
6694 bfp = fopen(backup, "a");
6695 error = errno;
6696 INJECT_ERROR1("SET_BACKUP_FOPEN_A", bfp = NULL);
6697 if (bfp == NULL) {
6698 bam_error(GRUBSIGN_BACKUP_OPENERR,
6699 GRUBSIGN_BACKUP, strerror(error));
6700 return (-1);
6701 }

6703 (void) snprintf(tmpsign, sizeof (tmpsign), "%s\n", sign);

6705 ret = fputs(tmpsign, bfp);

new/bootadm/bootadm.c 35

6706 error = errno;
6707 INJECT_ERROR1("SET_BACKUP_FPUTS", ret = 0);
6708 if (ret != strlen(tmpsign)) {
6709 bam_error(GRUBSIGN_BACKUP_WRITEERR,
6710 GRUBSIGN_BACKUP, strerror(error));
6711 (void) fclose(bfp);
6712 return (-1);
6713 }

6715 (void) fclose(bfp);

6717 if (bam_verbose)
6718 bam_print(GRUBSIGN_BACKUP_UPDATED, GRUBSIGN_BACKUP);

6720 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));

6722 return (0);
6723 }

6725 static int
6726 set_backup_ufs(char *osroot, char *sign)
6727 {
6728 const char *fcn = "set_backup_ufs()";

6730 BAM_DPRINTF((D_FUNC_ENTRY2, fcn, osroot, sign));
6731 return (set_backup_common(osroot, sign));
6732 }

6734 static int
6735 set_backup_zfs(char *osdev, char *sign)
6736 {
6737 char *pool;
6738 char *mntpt;
6739 zfs_mnted_t mnted;
6740 int ret;
6741 const char *fcn = "set_backup_zfs()";

6743 BAM_DPRINTF((D_FUNC_ENTRY2, fcn, osdev, sign));

6745 pool = get_pool(osdev);
6746 INJECT_ERROR1("SET_BACKUP_GET_POOL", pool = NULL);
6747 if (pool == NULL) {
6748 bam_error(GET_POOL_FAILED, osdev);
6749 return (-1);
6750 }

6752 mntpt = mount_top_dataset(pool, &mnted);
6753 INJECT_ERROR1("SET_BACKUP_MOUNT_DATASET", mntpt = NULL);
6754 if (mntpt == NULL) {
6755 bam_error(FAIL_MNT_TOP_DATASET, pool);
6756 free(pool);
6757 return (-1);
6758 }

6760 ret = set_backup_common(mntpt, sign);

6762 (void) umount_top_dataset(pool, mnted, mntpt);

6764 free(pool);

6766 INJECT_ERROR1("SET_BACKUP_ZFS_FAIL", ret = 1);
6767 if (ret == 0) {
6768 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
6769 } else {
6770 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
6771 }

new/bootadm/bootadm.c 36

6773 return (ret);
6774 }

6776 static int
6777 set_backup(char *osroot, char *osdev, char *sign, char *fstype)
6778 {
6779 const char *fcn = "set_backup()";
6780 int ret;

6782 INJECT_ERROR1("SET_BACKUP_FSTYPE", fstype = "foofs");

6784 if (strcmp(fstype, "ufs") == 0) {
6785 BAM_DPRINTF((D_SET_BACKUP_UFS, fcn));
6786 ret = set_backup_ufs(osroot, sign);
6787 } else if (strcmp(fstype, "zfs") == 0) {
6788 BAM_DPRINTF((D_SET_BACKUP_ZFS, fcn));
6789 ret = set_backup_zfs(osdev, sign);
6790 } else {
6791 bam_error(GRUBSIGN_NOTSUP, fstype);
6792 ret = -1;
6793 }

6795 if (ret == 0) {
6796 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
6797 } else {
6798 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
6799 }

6801 return (ret);
6802 }

6804 static int
6805 set_primary_common(char *mntpt, char *sign)
6806 {
6807 char signfile[PATH_MAX];
6808 char signdir[PATH_MAX];
6809 struct stat sb;
6810 int fd;
6811 int error;
6812 int ret;
6813 const char *fcn = "set_primary_common()";

6815 (void) snprintf(signfile, sizeof (signfile), "%s/%s/%s",
6816 mntpt, GRUBSIGN_DIR, sign);

6818 if (stat(signfile, &sb) != -1) {
6819 if (bam_verbose)
6820 bam_print(PRIMARY_SIGN_EXISTS, sign);
6821 return (0);
6822 } else {
6823 BAM_DPRINTF((D_PRIMARY_NOT_EXIST, fcn, signfile));
6824 }

6826 (void) snprintf(signdir, sizeof (signdir), "%s/%s",
6827 mntpt, GRUBSIGN_DIR);

6829 if (stat(signdir, &sb) == -1) {
6830 BAM_DPRINTF((D_PRIMARY_DIR_NOEXIST, fcn, signdir));
6831 ret = mkdirp(signdir, DIR_PERMS);
6832 error = errno;
6833 INJECT_ERROR1("SET_PRIMARY_MKDIRP", ret = -1);
6834 if (ret == -1) {
6835 bam_error(GRUBSIGN_MKDIR_ERR, signdir, strerror(errno));
6836 return (-1);
6837 }

new/bootadm/bootadm.c 37

6838 }

6840 fd = open(signfile, O_RDWR|O_CREAT|O_TRUNC, 0444);
6841 error = errno;
6842 INJECT_ERROR1("PRIMARY_SIGN_CREAT", fd = -1);
6843 if (fd == -1) {
6844 bam_error(GRUBSIGN_PRIMARY_CREATERR, signfile, strerror(error));
6845 return (-1);
6846 }

6848 ret = fsync(fd);
6849 error = errno;
6850 INJECT_ERROR1("PRIMARY_FSYNC", ret = -1);
6851 if (ret != 0) {
6852 bam_error(GRUBSIGN_PRIMARY_SYNCERR, signfile, strerror(error));
6853 }

6855 (void) close(fd);

6857 if (bam_verbose)
6858 bam_print(GRUBSIGN_CREATED_PRIMARY, signfile);

6860 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));

6862 return (0);
6863 }

6865 static int
6866 set_primary_ufs(char *osroot, char *sign)
6867 {
6868 const char *fcn = "set_primary_ufs()";

6870 BAM_DPRINTF((D_FUNC_ENTRY2, fcn, osroot, sign));
6871 return (set_primary_common(osroot, sign));
6872 }

6874 static int
6875 set_primary_zfs(char *osdev, char *sign)
6876 {
6877 char *pool;
6878 char *mntpt;
6879 zfs_mnted_t mnted;
6880 int ret;
6881 const char *fcn = "set_primary_zfs()";

6883 BAM_DPRINTF((D_FUNC_ENTRY2, fcn, osdev, sign));

6885 pool = get_pool(osdev);
6886 INJECT_ERROR1("SET_PRIMARY_ZFS_GET_POOL", pool = NULL);
6887 if (pool == NULL) {
6888 bam_error(GET_POOL_FAILED, osdev);
6889 return (-1);
6890 }

6892 /* Pool name must exist in the sign */
6893 ret = (strstr(sign, pool) != NULL);
6894 INJECT_ERROR1("SET_PRIMARY_ZFS_POOL_SIGN_INCOMPAT", ret = 0);
6895 if (ret == 0) {
6896 bam_error(POOL_SIGN_INCOMPAT, pool, sign);
6897 free(pool);
6898 return (-1);
6899 }

6901 mntpt = mount_top_dataset(pool, &mnted);
6902 INJECT_ERROR1("SET_PRIMARY_ZFS_MOUNT_DATASET", mntpt = NULL);
6903 if (mntpt == NULL) {

new/bootadm/bootadm.c 38

6904 bam_error(FAIL_MNT_TOP_DATASET, pool);
6905 free(pool);
6906 return (-1);
6907 }

6909 ret = set_primary_common(mntpt, sign);

6911 (void) umount_top_dataset(pool, mnted, mntpt);

6913 free(pool);

6915 INJECT_ERROR1("SET_PRIMARY_ZFS_FAIL", ret = 1);
6916 if (ret == 0) {
6917 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
6918 } else {
6919 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
6920 }

6922 return (ret);
6923 }

6925 static int
6926 set_primary(char *osroot, char *osdev, char *sign, char *fstype)
6927 {
6928 const char *fcn = "set_primary()";
6929 int ret;

6931 INJECT_ERROR1("SET_PRIMARY_FSTYPE", fstype = "foofs");
6932 if (strcmp(fstype, "ufs") == 0) {
6933 BAM_DPRINTF((D_SET_PRIMARY_UFS, fcn));
6934 ret = set_primary_ufs(osroot, sign);
6935 } else if (strcmp(fstype, "zfs") == 0) {
6936 BAM_DPRINTF((D_SET_PRIMARY_ZFS, fcn));
6937 ret = set_primary_zfs(osdev, sign);
6938 } else {
6939 bam_error(GRUBSIGN_NOTSUP, fstype);
6940 ret = -1;
6941 }

6943 if (ret == 0) {
6944 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
6945 } else {
6946 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
6947 }

6949 return (ret);
6950 }

6952 static int
6953 ufs_add_to_sign_list(char *sign)
6954 {
6955 FILE *tfp;
6956 char signline[MAXNAMELEN];
6957 char cmd[PATH_MAX];
6958 int ret;
6959 int error;
6960 const char *fcn = "ufs_add_to_sign_list()";

6962 INJECT_ERROR1("ADD_TO_SIGN_LIST_NOT_UFS", sign = "pool_rpool5");
6963 if (strncmp(sign, GRUBSIGN_UFS_PREFIX,
6964 strlen(GRUBSIGN_UFS_PREFIX)) != 0) {
6965 bam_error(INVALID_UFS_SIGN, sign);
6966 (void) unlink(UFS_SIGNATURE_LIST);
6967 return (-1);
6968 }

new/bootadm/bootadm.c 39

6970 /*
6971 * most failures in this routine are not a fatal error
6972 * We simply unlink the /var/run file and continue
6973 */

6975 ret = rename(UFS_SIGNATURE_LIST, UFS_SIGNATURE_LIST".tmp");
6976 error = errno;
6977 INJECT_ERROR1("ADD_TO_SIGN_LIST_RENAME", ret = -1);
6978 if (ret == -1) {
6979 bam_error(RENAME_FAIL, UFS_SIGNATURE_LIST".tmp",
6980 strerror(error));
6981 (void) unlink(UFS_SIGNATURE_LIST);
6982 return (0);
6983 }

6985 tfp = fopen(UFS_SIGNATURE_LIST".tmp", "a");
6986 error = errno;
6987 INJECT_ERROR1("ADD_TO_SIGN_LIST_FOPEN", tfp = NULL);
6988 if (tfp == NULL) {
6989 bam_error(OPEN_FAIL, UFS_SIGNATURE_LIST".tmp", strerror(error));
6990 (void) unlink(UFS_SIGNATURE_LIST".tmp");
6991 return (0);
6992 }

6994 (void) snprintf(signline, sizeof (signline), "%s\n", sign);

6996 ret = fputs(signline, tfp);
6997 error = errno;
6998 INJECT_ERROR1("ADD_TO_SIGN_LIST_FPUTS", ret = 0);
6999 if (ret != strlen(signline)) {
7000 bam_error(SIGN_LIST_FPUTS_ERR, sign, strerror(error));
7001 (void) fclose(tfp);
7002 (void) unlink(UFS_SIGNATURE_LIST".tmp");
7003 return (0);
7004 }

7006 ret = fclose(tfp);
7007 error = errno;
7008 INJECT_ERROR1("ADD_TO_SIGN_LIST_FCLOSE", ret = EOF);
7009 if (ret == EOF) {
7010 bam_error(CLOSE_FAIL, UFS_SIGNATURE_LIST".tmp",
7011 strerror(error));
7012 (void) unlink(UFS_SIGNATURE_LIST".tmp");
7013 return (0);
7014 }

7016 /* Sort the list again */
7017 (void) snprintf(cmd, sizeof (cmd),
7018 "/usr/bin/sort -u %s.tmp > %s.sorted",
7019 UFS_SIGNATURE_LIST, UFS_SIGNATURE_LIST);

7021 ret = exec_cmd(cmd, NULL);
7022 INJECT_ERROR1("ADD_TO_SIGN_LIST_SORT", ret = 1);
7023 if (ret != 0) {
7024 bam_error(GRUBSIGN_SORT_FAILED);
7025 (void) unlink(UFS_SIGNATURE_LIST".sorted");
7026 (void) unlink(UFS_SIGNATURE_LIST".tmp");
7027 return (0);
7028 }

7030 (void) unlink(UFS_SIGNATURE_LIST".tmp");

7032 ret = rename(UFS_SIGNATURE_LIST".sorted", UFS_SIGNATURE_LIST);
7033 error = errno;
7034 INJECT_ERROR1("ADD_TO_SIGN_LIST_RENAME2", ret = -1);
7035 if (ret == -1) {

new/bootadm/bootadm.c 40

7036 bam_error(RENAME_FAIL, UFS_SIGNATURE_LIST, strerror(error));
7037 (void) unlink(UFS_SIGNATURE_LIST".sorted");
7038 return (0);
7039 }

7041 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));

7043 return (0);
7044 }

7046 static int
7047 set_signature(char *osroot, char *osdev, char *sign, char *fstype)
7048 {
7049 int ret;
7050 const char *fcn = "set_signature()";

7052 BAM_DPRINTF((D_FUNC_ENTRY4, fcn, osroot, osdev, sign, fstype));

7054 ret = set_backup(osroot, osdev, sign, fstype);
7055 INJECT_ERROR1("SET_SIGNATURE_BACKUP", ret = -1);
7056 if (ret == -1) {
7057 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
7058 bam_error(SET_BACKUP_FAILED, sign, osroot, osdev);
7059 return (-1);
7060 }

7062 ret = set_primary(osroot, osdev, sign, fstype);
7063 INJECT_ERROR1("SET_SIGNATURE_PRIMARY", ret = -1);

7065 if (ret == 0) {
7066 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
7067 } else {
7068 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
7069 bam_error(SET_PRIMARY_FAILED, sign, osroot, osdev);

7071 }
7072 return (ret);
7073 }

7075 char *
7076 get_grubsign(char *osroot, char *osdev)
7077 {
7078 char *grubsign; /* (<sign>,#,#) */
7079 char *slice;
7080 int fdiskpart;
7081 char *sign;
7082 char *fstype;
7083 int ret;
7084 const char *fcn = "get_grubsign()";

7086 BAM_DPRINTF((D_FUNC_ENTRY2, fcn, osroot, osdev));
7087 fstype = get_fstype(osroot);
7088 INJECT_ERROR1("GET_GRUBSIGN_FSTYPE", fstype = NULL);
7089 if (fstype == NULL) {
7090 bam_error(GET_FSTYPE_FAILED, osroot);
7091 return (NULL);
7092 }

7094 sign = find_existing_sign(osroot, osdev, fstype);
7095 INJECT_ERROR1("FIND_EXISTING_SIGN", sign = NULL);
7096 if (sign == NULL) {
7097 BAM_DPRINTF((D_GET_GRUBSIGN_NO_EXISTING, fcn, osroot, osdev));
7098 sign = create_new_sign(osdev, fstype);
7099 INJECT_ERROR1("CREATE_NEW_SIGN", sign = NULL);
7100 if (sign == NULL) {
7101 bam_error(GRUBSIGN_CREATE_FAIL, osdev);

new/bootadm/bootadm.c 41

7102 free(fstype);
7103 return (NULL);
7104 }
7105 }

7107 ret = set_signature(osroot, osdev, sign, fstype);
7108 INJECT_ERROR1("SET_SIGNATURE_FAIL", ret = -1);
7109 if (ret == -1) {
7110 bam_error(GRUBSIGN_WRITE_FAIL, osdev);
7111 free(sign);
7112 free(fstype);
7113 (void) unlink(UFS_SIGNATURE_LIST);
7114 return (NULL);
7115 }

7117 free(fstype);

7119 if (bam_verbose)
7120 bam_print(GRUBSIGN_FOUND_OR_CREATED, sign, osdev);

7122 fdiskpart = get_partition(osdev);
7123 INJECT_ERROR1("GET_GRUBSIGN_FDISK", fdiskpart = -1);
7124 if (fdiskpart == -1) {
7125 bam_error(FDISKPART_FAIL, osdev);
7126 free(sign);
7127 return (NULL);
7128 }

7130 slice = strrchr(osdev, ’s’);

7132 grubsign = s_calloc(1, MAXNAMELEN + 10);
7133 /* if (slice) {
4598 if (slice) {
7134 (void) snprintf(grubsign, MAXNAMELEN + 10, "(%s,%d,%c)",
7135 sign, fdiskpart, slice[1] + ’a’ - ’0’);
7136 } else
7137 (void) snprintf(grubsign, MAXNAMELEN + 10, "(%s,%d)",
7138 sign, fdiskpart);*/
7139 grubsign = strdup(sign);
4603 sign, fdiskpart);

7141 free(sign);

7143 BAM_DPRINTF((D_GET_GRUBSIGN_SUCCESS, fcn, grubsign));

7145 return (strchr(grubsign,’_’) + 1);
4609 return (grubsign);
7146 }
______unchanged_portion_omitted_

7771 /*
7772 * look for matching bootadm entry with specified parameters
7773 * Here are the rules (based on existing usage):
7774 * - If title is specified, match on title only
7775 * - Else, match on root/findroot, kernel, and module.
7776 * Note that, if root_opt is non-zero, the absence of
7777 * root line is considered a match.
7778 */
7779 static entry_t *
7780 find_boot_entry(
7781 menu_t *mp,
7782 char *title,
7783 char *kernel,
7784 char *findroot,
7785 char *root,
7786 char *module,

new/bootadm/bootadm.c 42

7787 int root_opt,
7788 int *entry_num)
7789 {
7790 int i;
7791 line_t *lp;
7792 entry_t *ent;
7793 const char *fcn = "find_boot_entry()";

7795 if (entry_num)
7796 *entry_num = BAM_ERROR;

7798 /* find matching entry */
7799 for (i = 0, ent = mp->entries; ent; i++, ent = ent->next) {
7800 lp = ent->start;

7802 /* first line of entry must be bootadm comment */
7803 lp = ent->start;
7804 if (lp->flags != BAM_COMMENT ||
7805 strcmp(lp->arg, BAM_BOOTADM_HDR) != 0) {
7806 continue;
7807 }

7809 /* advance to title line */
7810 lp = lp->next;
7811 if (title) {
7812 if (lp->flags == BAM_TITLE && lp->arg &&
7813 strcmp(lp->arg, title) == 0) {
7814 BAM_DPRINTF((D_MATCHED_TITLE, fcn, title));
7815 break;
7816 }
7817 BAM_DPRINTF((D_NOMATCH_TITLE, fcn, title, lp->arg));
7818 continue; /* check title only */
7819 }

7821 lp = lp->next; /* advance to root line */
7822 if (lp == NULL) {
7823 continue;
7824 } else if (lp->cmd != NULL &&
7825 strcmp(lp->cmd, menu_cmds[FINDROOT_CMD]) == 0) {
7826 INJECT_ERROR1("FIND_BOOT_ENTRY_NULL_FINDROOT",
7827 findroot = NULL);
7828 if (findroot == NULL) {
7829 BAM_DPRINTF((D_NOMATCH_FINDROOT_NULL,
7830 fcn, lp->arg));
7831 continue;
7832 }
7833 /* findroot command found, try match */
7834 if (strncmp(lp->arg, strchr(findroot, ’_’) + 1, strlen(l
5298 if (strcmp(lp->arg, findroot) != 0) {
7835 BAM_DPRINTF((D_NOMATCH_FINDROOT,
7836 fcn, findroot, lp->arg));
7837 continue;
7838 }
7839 BAM_DPRINTF((D_MATCHED_FINDROOT, fcn, findroot));
7840 lp = lp->next; /* advance to kernel line */
7841 } else if (lp->cmd != NULL &&
7842 strcmp(lp->cmd, menu_cmds[ROOT_CMD]) == 0) {
7843 INJECT_ERROR1("FIND_BOOT_ENTRY_NULL_ROOT", root = NULL);
7844 if (root == NULL) {
7845 BAM_DPRINTF((D_NOMATCH_ROOT_NULL,
7846 fcn, lp->arg));
7847 continue;
7848 }
7849 /* root cmd found, try match */
7850 if (strcmp(lp->arg, root) != 0) {
7851 BAM_DPRINTF((D_NOMATCH_ROOT,

new/bootadm/bootadm.c 43

7852 fcn, root, lp->arg));
7853 continue;
7854 }
7855 BAM_DPRINTF((D_MATCHED_ROOT, fcn, root));
7856 lp = lp->next; /* advance to kernel line */
7857 } else {
7858 INJECT_ERROR1("FIND_BOOT_ENTRY_ROOT_OPT_NO",
7859 root_opt = 0);
7860 INJECT_ERROR1("FIND_BOOT_ENTRY_ROOT_OPT_YES",
7861 root_opt = 1);
7862 /* no root command, see if root is optional */
7863 if (root_opt == 0) {
7864 BAM_DPRINTF((D_NO_ROOT_OPT, fcn));
7865 continue;
7866 }
7867 BAM_DPRINTF((D_ROOT_OPT, fcn));
7868 }

7870 if (lp == NULL || lp->next == NULL) {
7871 continue;
7872 }

7874 if (kernel &&
7875 (!check_cmd(lp->cmd, KERNEL_CMD, lp->arg, kernel))) {
7876 if (!(ent->flags & BAM_ENTRY_FAILSAFE) ||
7877 !(ent->flags & BAM_ENTRY_DBOOT) ||
7878 strcmp(kernel, DIRECT_BOOT_FAILSAFE_LINE) != 0)
7879 continue;

7881 ent->flags |= BAM_ENTRY_UPGFSKERNEL;

7883 }
7884 BAM_DPRINTF((D_KERNEL_MATCH, fcn, kernel, lp->arg));

7886 /*
7887 * Check for matching module entry (failsafe or normal).
7888 * If it fails to match, we go around the loop again.
7889 * For xpv entries, there are two module lines, so we
7890 * do the check twice.
7891 */
7892 lp = lp->next; /* advance to options line */
7893 #endif /* ! codereview */
7894 lp = lp->next; /* advance to module line */
7895 if (check_cmd(lp->cmd, MODULE_CMD, lp->arg, module) ||
7896 (((lp = lp->next) != NULL) &&
7897 check_cmd(lp->cmd, MODULE_CMD, lp->arg, module))) {
7898 /* match found */
7899 BAM_DPRINTF((D_MODULE_MATCH, fcn, module, lp->arg));
7900 break;
7901 }

7903 if (strcmp(module, FAILSAFE_ARCHIVE) == 0 &&
7904 (strcmp(lp->prev->arg, FAILSAFE_ARCHIVE_32) == 0 ||
7905 strcmp(lp->prev->arg, FAILSAFE_ARCHIVE_64) == 0)) {
7906 ent->flags |= BAM_ENTRY_UPGFSMODULE;
7907 break;
7908 }

7910 }

7912 if (ent && entry_num) {
7913 *entry_num = i;
7914 }

7916 if (ent) {
7917 BAM_DPRINTF((D_RETURN_RET, fcn, i));

new/bootadm/bootadm.c 44

7918 } else {
7919 BAM_DPRINTF((D_RETURN_RET, fcn, BAM_ERROR));
7920 }
7921 return (ent);
7922 }

7924 static int
7925 update_boot_entry(menu_t *mp, char *title, char *findroot, char *root,
7926 char *kernel, char *mod_kernel, char *module, int root_opt)
7927 {
7928 int i;
7929 int change_kernel = 0;
7930 entry_t *ent;
7931 line_t *lp;
7932 line_t *tlp;
7933 char linebuf[BAM_MAXLINE];
7934 const char *fcn = "update_boot_entry()";
7935 char *label;
7936 #endif /* ! codereview */

7938 /* note: don’t match on title, it’s updated on upgrade */
7939 ent = find_boot_entry(mp, NULL, kernel, findroot, root, module,
7940 root_opt, &i);
7941 if ((ent == NULL) && (bam_direct == BAM_DIRECT_DBOOT)) {
7942 /*
7943 * We may be upgrading a kernel from multiboot to
7944 * directboot. Look for a multiboot entry. A multiboot
7945 * entry will not have a findroot line.
7946 */
7947 ent = find_boot_entry(mp, NULL, "multiboot", NULL, root,
7948 MULTIBOOT_ARCHIVE, root_opt, &i);
7949 if (ent != NULL) {
7950 BAM_DPRINTF((D_UPGRADE_FROM_MULTIBOOT, fcn, root));
7951 change_kernel = 1;
7952 }
7953 } else if (ent) {
7954 BAM_DPRINTF((D_FOUND_FINDROOT, fcn, findroot));
7955 }

7957 if (ent == NULL) {
7958 BAM_DPRINTF((D_ENTRY_NOT_FOUND_CREATING, fcn, findroot));
7959 return (add_boot_entry(mp, title, findroot,
7960 kernel, mod_kernel, module, NULL));
7961 }

7963 /* replace title of existing entry and update findroot line */
7964 lp = ent->start;
7965 lp = lp->next; /* title line */
7966 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
7967 menu_cmds[TITLE_CMD], menu_cmds[SEP_CMD], title);
7968 free(lp->arg);
7969 free(lp->line);
7970 lp->arg = s_strdup(title);
7971 lp->line = s_strdup(linebuf);
7972 BAM_DPRINTF((D_CHANGING_TITLE, fcn, title));

7974 tlp = lp; /* title line */
7975 lp = lp->next; /* root line */

7977 /* if no root or findroot command, create a new line_t */
7978 if ((lp->cmd != NULL) && (strcmp(lp->cmd, menu_cmds[ROOT_CMD]) != 0 &&
7979 strcmp(lp->cmd, menu_cmds[FINDROOT_CMD]) != 0)) {
7980 lp = s_calloc(1, sizeof (line_t));
7981 bam_add_line(mp, ent, tlp, lp);
7982 } else {
7983 if (lp->cmd != NULL)

new/bootadm/bootadm.c 45

7984 free(lp->cmd);

7986 free(lp->sep);
7987 free(lp->arg);
7988 free(lp->line);
7989 }

7991 lp->cmd = s_strdup(menu_cmds[FINDROOT_CMD]);
7992 lp->sep = s_strdup(menu_cmds[SEP_CMD]);
7993 label = s_strdup(strchr(findroot, ’_’) + 1);
7994 *(strchr(label,’,’)) = 0;
7995 lp->arg = s_strdup(label);
5356 lp->arg = s_strdup(findroot);
7996 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
7997 menu_cmds[FINDROOT_CMD], menu_cmds[SEP_CMD], label);
5358 menu_cmds[FINDROOT_CMD], menu_cmds[SEP_CMD], findroot);
7998 lp->line = s_strdup(linebuf);
7999 free(label);
8000 #endif /* ! codereview */
8001 BAM_DPRINTF((D_ADDING_FINDROOT_LINE, fcn, findroot));

8003 /* kernel line */
8004 lp = lp->next;

8006 if (ent->flags & BAM_ENTRY_UPGFSKERNEL) {
8007 char *params = NULL;
8008 char *opts = NULL;
8009 #endif /* ! codereview */

8011 opts = strpbrk(kernel, " \t");
8012 *opts++ = ’\0’;
5360 params = strstr(lp->line, "-s");
5361 if (params != NULL)
5362 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s%s",
5363 menu_cmds[KERNEL_DOLLAR_CMD], menu_cmds[SEP_CMD],
5364 kernel, params+2);
5365 else
8013 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
8014 menu_cmds[KERNEL_DOLLAR_CMD], menu_cmds[SEP_CMD],
8015 kernel);

8017 if (lp->cmd != NULL)
8018 free(lp->cmd);

8020 free(lp->arg);
8021 free(lp->line);
8022 lp->cmd = s_strdup(menu_cmds[KERNEL_DOLLAR_CMD]);
8023 lp->arg = s_strdup(strstr(linebuf, "/"));
8024 lp->line = s_strdup(linebuf);
8025 ent->flags &= ~BAM_ENTRY_UPGFSKERNEL;
8026 BAM_DPRINTF((D_ADDING_KERNEL_DOLLAR, fcn, lp->prev->cmd));

8028 lp = lp->next;
8029 params = strstr(lp->arg, "-s");
8030 free(lp->arg);
8031 free(lp->line);
8032 if (params)
8033 (void) snprintf(linebuf, sizeof(linebuf), "%s%s%s -s",
8034 lp->cmd, menu_cmds[SEP_CMD],opts);
8035 else
8036 (void) snprintf(linebuf, sizeof(linebuf), "%s%s%s",
8037 lp->cmd, menu_cmds[SEP_CMD],opts);
8038 lp->line = s_strdup(linebuf);
8039 lp->arg = s_strdup(strchr(linebuf, ’=’) + 1);
8040 #endif /* ! codereview */
8041 }

new/bootadm/bootadm.c 46

8043 if (change_kernel) {
8044 char *opts = NULL;
8045 #endif /* ! codereview */
8046 /*
8047 * We’re upgrading from multiboot to directboot.
8048 */
8049 opts = strpbrk(kernel, " \t");
8050 *opts++ = ’\0’;
8051 #endif /* ! codereview */
8052 if (lp->cmd != NULL &&
8053 strcmp(lp->cmd, menu_cmds[KERNEL_CMD]) == 0) {
8054 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
8055 menu_cmds[KERNEL_DOLLAR_CMD], menu_cmds[SEP_CMD],
8056 kernel);
8057 free(lp->cmd);
8058 free(lp->arg);
8059 free(lp->line);
8060 lp->cmd = s_strdup(menu_cmds[KERNEL_DOLLAR_CMD]);
8061 lp->arg = s_strdup(kernel);
8062 lp->line = s_strdup(linebuf);
8063 lp = lp->next;
8064 BAM_DPRINTF((D_ADDING_KERNEL_DOLLAR, fcn, kernel));
8065 (void) snprintf(linebuf, sizeof(linebuf), "%s%s%s",
8066 lp->cmd, menu_cmds[SEP_CMD],opts);
8067 free(lp->arg);
8068 free(lp->line);
8069 lp->line = s_strdup(linebuf);
8070 lp->arg = s_strdup(strchr(linebuf, ’=’) + 1);
8071 #endif /* ! codereview */
8072 }
8073 if (lp->cmd != NULL &&
8074 strcmp(lp->cmd, menu_cmds[MODULE_CMD]) == 0) {
8075 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
8076 menu_cmds[MODULE_DOLLAR_CMD], menu_cmds[SEP_CMD],
8077 module);
8078 free(lp->cmd);
8079 free(lp->arg);
8080 free(lp->line);
8081 lp->cmd = s_strdup(menu_cmds[MODULE_DOLLAR_CMD]);
8082 lp->arg = s_strdup(module);
8083 lp->line = s_strdup(linebuf);
8084 lp = lp->next;
8085 BAM_DPRINTF((D_ADDING_MODULE_DOLLAR, fcn, module));
8086 }
8087 }

8089 /* module line */
8090 lp = lp->next;

8092 if (ent->flags & BAM_ENTRY_UPGFSMODULE) {
8093 if (lp->cmd != NULL &&
8094 strcmp(lp->cmd, menu_cmds[MODULE_CMD]) == 0) {
8095 (void) snprintf(linebuf, sizeof (linebuf), "%s%s%s",
8096 menu_cmds[MODULE_DOLLAR_CMD], menu_cmds[SEP_CMD],
8097 module);
8098 free(lp->cmd);
8099 free(lp->arg);
8100 free(lp->line);
8101 lp->cmd = s_strdup(menu_cmds[MODULE_DOLLAR_CMD]);
8102 lp->arg = s_strdup(module);
8103 lp->line = s_strdup(linebuf);
8104 lp = lp->next;
8105 ent->flags &= ~BAM_ENTRY_UPGFSMODULE;
8106 BAM_DPRINTF((D_ADDING_MODULE_DOLLAR, fcn, module));
8107 }

new/bootadm/bootadm.c 47

8108 }

8110 BAM_DPRINTF((D_RETURN_RET, fcn, i));
8111 return (i);
8112 }

8114 int
8115 root_optional(char *osroot, char *menu_root)
8116 {
8117 char *ospecial;
8118 char *mspecial;
8119 char *slash;
8120 int root_opt;
8121 int ret1;
8122 int ret2;
8123 const char *fcn = "root_optional()";

8125 BAM_DPRINTF((D_FUNC_ENTRY2, fcn, osroot, menu_root));

8127 /*
8128 * For all filesystems except ZFS, a straight compare of osroot
8129 * and menu_root will tell us if root is optional.
8130 * For ZFS, the situation is complicated by the fact that
8131 * menu_root and osroot are always different
8132 */
8133 ret1 = is_zfs(osroot);
8134 ret2 = is_zfs(menu_root);
8135 INJECT_ERROR1("ROOT_OPT_NOT_ZFS", ret1 = 0);
8136 if (!ret1 || !ret2) {
8137 BAM_DPRINTF((D_ROOT_OPT_NOT_ZFS, fcn, osroot, menu_root));
8138 root_opt = (strcmp(osroot, menu_root) == 0);
8139 goto out;
8140 }

8142 ospecial = get_special(osroot);
8143 INJECT_ERROR1("ROOT_OPTIONAL_OSPECIAL", ospecial = NULL);
8144 if (ospecial == NULL) {
8145 bam_error(GET_OSROOT_SPECIAL_ERR, osroot);
8146 return (0);
8147 }
8148 BAM_DPRINTF((D_ROOT_OPTIONAL_OSPECIAL, fcn, ospecial, osroot));

8150 mspecial = get_special(menu_root);
8151 INJECT_ERROR1("ROOT_OPTIONAL_MSPECIAL", mspecial = NULL);
8152 if (mspecial == NULL) {
8153 bam_error(GET_MENU_ROOT_SPECIAL_ERR, menu_root);
8154 free(ospecial);
8155 return (0);
8156 }
8157 BAM_DPRINTF((D_ROOT_OPTIONAL_MSPECIAL, fcn, mspecial, menu_root));

8159 slash = strchr(ospecial, ’/’);
8160 if (slash)
8161 *slash = ’\0’;
8162 BAM_DPRINTF((D_ROOT_OPTIONAL_FIXED_OSPECIAL, fcn, ospecial, osroot));

8164 root_opt = (strcmp(ospecial, mspecial) == 0);

8166 free(ospecial);
8167 free(mspecial);

8169 out:
8170 INJECT_ERROR1("ROOT_OPTIONAL_NO", root_opt = 0);
8171 INJECT_ERROR1("ROOT_OPTIONAL_YES", root_opt = 1);
8172 if (root_opt) {
8173 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));

new/bootadm/bootadm.c 48

8174 } else {
8175 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
8176 }

8178 return (root_opt);
8179 }

8181 /*ARGSUSED*/
8182 static error_t
8183 update_entry(menu_t *mp, char *menu_root, char *osdev)
8184 {
8185 int entry;
8186 char *grubsign;
8187 char *grubroot;
8188 char *title;
8189 char osroot[PATH_MAX];
8190 char *failsafe_kernel = NULL;
8191 struct stat sbuf;
8192 char failsafe[256];
8193 char failsafe_64[256];
8194 int ret;
8195 const char *fcn = "update_entry()";

8197 assert(mp);
8198 assert(menu_root);
8199 assert(osdev);
8200 assert(bam_root);

8202 BAM_DPRINTF((D_FUNC_ENTRY3, fcn, menu_root, osdev, bam_root));

8204 (void) strlcpy(osroot, bam_root, sizeof (osroot));

8206 title = get_title(osroot);
8207 assert(title);

8209 grubsign = get_grubsign(osroot, osdev);
8210 INJECT_ERROR1("GET_GRUBSIGN_FAIL", grubsign = NULL);
8211 if (grubsign == NULL) {
8212 bam_error(GET_GRUBSIGN_ERROR, osroot, osdev);
8213 return (BAM_ERROR);
8214 }

8216 /*
8217 * It is not a fatal error if get_grubroot() fails
8218 * We no longer rely on biosdev to populate the
8219 * menu
8220 */
8221 grubroot = get_grubroot(osroot, osdev, menu_root);
8222 INJECT_ERROR1("GET_GRUBROOT_FAIL", grubroot = NULL);
8223 if (grubroot) {
8224 BAM_DPRINTF((D_GET_GRUBROOT_SUCCESS,
8225 fcn, osroot, osdev, menu_root));
8226 } else {
8227 BAM_DPRINTF((D_GET_GRUBROOT_FAILURE,
8228 fcn, osroot, osdev, menu_root));
8229 }

8231 /* add the entry for normal Solaris */
8232 INJECT_ERROR1("UPDATE_ENTRY_MULTIBOOT",
8233 bam_direct = BAM_DIRECT_MULTIBOOT);
8234 if (bam_direct == BAM_DIRECT_DBOOT) {
8235 entry = update_boot_entry(mp, title, grubsign, grubroot,
8236 (bam_zfs ? DIRECT_BOOT_KERNEL_ZFS : DIRECT_BOOT_KERNEL),
8237 NULL, DIRECT_BOOT_ARCHIVE,
8238 root_optional(osroot, menu_root));
8239 BAM_DPRINTF((D_UPDATED_BOOT_ENTRY, fcn, bam_zfs, grubsign));

new/bootadm/bootadm.c 49

8240 if ((entry != BAM_ERROR) && (bam_is_hv == BAM_HV_PRESENT)) {
8241 (void) update_boot_entry(mp, NEW_HV_ENTRY, grubsign,
8242 grubroot, XEN_MENU, bam_zfs ?
8243 XEN_KERNEL_MODULE_LINE_ZFS : XEN_KERNEL_MODULE_LINE,
8244 DIRECT_BOOT_ARCHIVE,
8245 root_optional(osroot, menu_root));
8246 BAM_DPRINTF((D_UPDATED_HV_ENTRY,
8247 fcn, bam_zfs, grubsign));
8248 }
8249 } else {
8250 entry = update_boot_entry(mp, title, grubsign, grubroot,
8251 MULTI_BOOT, NULL, MULTIBOOT_ARCHIVE,
8252 root_optional(osroot, menu_root));

8254 BAM_DPRINTF((D_UPDATED_MULTIBOOT_ENTRY, fcn, grubsign));
8255 }

8257 /*
8258 * Add the entry for failsafe archive. On a bfu’d system, the
8259 * failsafe may be different than the installed kernel.
8260 */
8261 (void) snprintf(failsafe, sizeof (failsafe), "%s%s",
8262 osroot, FAILSAFE_ARCHIVE_32);
8263 (void) snprintf(failsafe_64, sizeof (failsafe_64), "%s%s",
8264 osroot, FAILSAFE_ARCHIVE_64);

8266 /*
8267 * Check if at least one of the two archives exists
8268 * Using $ISADIR as the default line, we have an entry which works
8269 * for both the cases.
8270 */

8272 if (stat(failsafe, &sbuf) == 0 || stat(failsafe_64, &sbuf) == 0) {

8274 /* Figure out where the kernel line should point */
8275 (void) snprintf(failsafe, sizeof (failsafe), "%s%s", osroot,
8276 DIRECT_BOOT_FAILSAFE_32);
8277 (void) snprintf(failsafe_64, sizeof (failsafe_64), "%s%s",
8278 osroot, DIRECT_BOOT_FAILSAFE_64);
8279 if (stat(failsafe, &sbuf) == 0 ||
8280 stat(failsafe_64, &sbuf) == 0) {
8281 failsafe_kernel = DIRECT_BOOT_FAILSAFE_LINE;
8282 } else {
8283 (void) snprintf(failsafe, sizeof (failsafe), "%s%s",
8284 osroot, MULTI_BOOT_FAILSAFE);
8285 if (stat(failsafe, &sbuf) == 0) {
8286 failsafe_kernel = MULTI_BOOT_FAILSAFE_LINE;
8287 }
8288 }
8289 if (failsafe_kernel != NULL) {
8290 (void) update_boot_entry(mp, FAILSAFE_TITLE, grubsign,
8291 grubroot, failsafe_kernel, NULL, FAILSAFE_ARCHIVE,
8292 root_optional(osroot, menu_root));
8293 BAM_DPRINTF((D_UPDATED_FAILSAFE_ENTRY, fcn,
8294 failsafe_kernel));
8295 }
8296 }
8297 free(grubroot);

8299 INJECT_ERROR1("UPDATE_ENTRY_ERROR", entry = BAM_ERROR);
8300 if (entry == BAM_ERROR) {
8301 bam_error(FAILED_TO_ADD_BOOT_ENTRY, title, grubsign);
8302 free(grubsign);
8303 return (BAM_ERROR);
8304 }
8305 free(grubsign);

new/bootadm/bootadm.c 50

8307 update_numbering(mp);
8308 ret = set_global(mp, menu_cmds[DEFAULT_CMD], entry);
8309 INJECT_ERROR1("SET_DEFAULT_ERROR", ret = BAM_ERROR);
8310 if (ret == BAM_ERROR) {
8311 bam_error(SET_DEFAULT_FAILED, entry);
8312 }
8313 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
8314 return (BAM_WRITE);
8315 }

8317 static void
8318 save_default_entry(menu_t *mp, const char *which)
8319 {
8320 int lineNum;
8321 int entryNum;
8322 int entry = 0; /* default is 0 */
8323 char linebuf[BAM_MAXLINE];
8324 line_t *lp = mp->curdefault;
8325 const char *fcn = "save_default_entry()";

8327 if (mp->start) {
8328 lineNum = mp->end->lineNum;
8329 entryNum = mp->end->entryNum;
8330 } else {
8331 lineNum = LINE_INIT;
8332 entryNum = ENTRY_INIT;
8333 }

8335 if (lp)
8336 entry = s_strtol(lp->arg);

8338 (void) snprintf(linebuf, sizeof (linebuf), "#%s%d", which, entry);
8339 BAM_DPRINTF((D_SAVING_DEFAULT_TO, fcn, linebuf));
8340 line_parser(mp, linebuf, &lineNum, &entryNum);
8341 BAM_DPRINTF((D_SAVED_DEFAULT_TO, fcn, lineNum, entryNum));
8342 }

8344 static void
8345 restore_default_entry(menu_t *mp, const char *which, line_t *lp)
8346 {
8347 int entry;
8348 char *str;
8349 const char *fcn = "restore_default_entry()";

8351 if (lp == NULL) {
8352 BAM_DPRINTF((D_RESTORE_DEFAULT_NULL, fcn));
8353 return; /* nothing to restore */
8354 }

8356 BAM_DPRINTF((D_RESTORE_DEFAULT_STR, fcn, which));

8358 str = lp->arg + strlen(which);
8359 entry = s_strtol(str);
8360 (void) set_global(mp, menu_cmds[DEFAULT_CMD], entry);

8362 BAM_DPRINTF((D_RESTORED_DEFAULT_TO, fcn, entry));

8364 /* delete saved old default line */
8365 unlink_line(mp, lp);
8366 line_free(lp);
8367 }

8369 /*
8370 * This function is for supporting reboot with args.
8371 * The opt value can be:

new/bootadm/bootadm.c 51

8372 * NULL delete temp entry, if present
8373 * entry=<n> switches default entry to <n>
8374 * else treated as boot-args and setup a temperary menu entry
8375 * and make it the default
8376 * Note that we are always rebooting the current OS instance
8377 * so osroot == / always.
8378 */
8379 #define REBOOT_TITLE "Solaris_reboot_transient"

8381 /*ARGSUSED*/
8382 static error_t
8383 update_temp(menu_t *mp, char *dummy, char *opt)
8384 {
8385 int entry;
8386 char *osdev;
8387 char *fstype;
8388 char *sign;
8389 char *opt_ptr;
8390 char *path;
8391 char kernbuf[BUFSIZ];
8392 char args_buf[BUFSIZ];
8393 char signbuf[PATH_MAX];
8394 int ret;
8395 const char *fcn = "update_temp()";

8397 assert(mp);
8398 assert(dummy == NULL);

8400 /* opt can be NULL */
8401 BAM_DPRINTF((D_FUNC_ENTRY1, fcn, opt ? opt : "<NULL>"));
8402 BAM_DPRINTF((D_BAM_ROOT, fcn, bam_alt_root, bam_root));

8404 if (bam_alt_root || bam_rootlen != 1 ||
8405 strcmp(bam_root, "/") != 0 ||
8406 strcmp(rootbuf, "/") != 0) {
8407 bam_error(ALT_ROOT_INVALID, bam_root);
8408 return (BAM_ERROR);
8409 }

8411 /* If no option, delete exiting reboot menu entry */
8412 if (opt == NULL) {
8413 entry_t *ent;
8414 BAM_DPRINTF((D_OPT_NULL, fcn));
8415 ent = find_boot_entry(mp, REBOOT_TITLE, NULL, NULL,
8416 NULL, NULL, 0, &entry);
8417 if (ent == NULL) { /* not found is ok */
8418 BAM_DPRINTF((D_TRANSIENT_NOTFOUND, fcn));
8419 return (BAM_SUCCESS);
8420 }
8421 (void) delete_boot_entry(mp, entry, DBE_PRINTERR);
8422 restore_default_entry(mp, BAM_OLDDEF, mp->olddefault);
8423 mp->olddefault = NULL;
8424 BAM_DPRINTF((D_RESTORED_DEFAULT, fcn));
8425 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
8426 return (BAM_WRITE);
8427 }

8429 /* if entry= is specified, set the default entry */
8430 if (strncmp(opt, "entry=", strlen("entry=")) == 0) {
8431 int entryNum = s_strtol(opt + strlen("entry="));
8432 BAM_DPRINTF((D_ENTRY_EQUALS, fcn, opt));
8433 if (selector(mp, opt, &entry, NULL) == BAM_SUCCESS) {
8434 /* this is entry=# option */
8435 ret = set_global(mp, menu_cmds[DEFAULT_CMD], entry);
8436 BAM_DPRINTF((D_ENTRY_SET_IS, fcn, entry, ret));
8437 return (ret);

new/bootadm/bootadm.c 52

8438 } else {
8439 bam_error(SET_DEFAULT_FAILED, entryNum);
8440 return (BAM_ERROR);
8441 }
8442 }

8444 /*
8445 * add a new menu entry based on opt and make it the default
8446 */

8448 fstype = get_fstype("/");
8449 INJECT_ERROR1("REBOOT_FSTYPE_NULL", fstype = NULL);
8450 if (fstype == NULL) {
8451 bam_error(REBOOT_FSTYPE_FAILED);
8452 return (BAM_ERROR);
8453 }

8455 osdev = get_special("/");
8456 INJECT_ERROR1("REBOOT_SPECIAL_NULL", osdev = NULL);
8457 if (osdev == NULL) {
8458 free(fstype);
8459 bam_error(REBOOT_SPECIAL_FAILED);
8460 return (BAM_ERROR);
8461 }

8463 sign = find_existing_sign("/", osdev, fstype);
8464 sign = strchr(sign, ’_’) + 1;
8465 #endif /* ! codereview */
8466 INJECT_ERROR1("REBOOT_SIGN_NULL", sign = NULL);
8467 if (sign == NULL) {
8468 free(fstype);
8469 free(osdev);
8470 bam_error(REBOOT_SIGN_FAILED);
8471 return (BAM_ERROR);
8472 }

8474 free(osdev);
8475 (void) strlcpy(signbuf, sign, sizeof (signbuf));
8476 free(sign);

8478 assert(strchr(signbuf, ’(’) == NULL && strchr(signbuf, ’,’) == NULL &&
8479 strchr(signbuf, ’)’) == NULL);

8481 /*
8482 * There is no alternate root while doing reboot with args
8483 * This version of bootadm is only delivered with a DBOOT
8484 * version of Solaris.
8485 */
8486 INJECT_ERROR1("REBOOT_NOT_DBOOT", bam_direct = BAM_DIRECT_MULTIBOOT);
8487 if (bam_direct != BAM_DIRECT_DBOOT) {
8488 free(fstype);
8489 bam_error(REBOOT_DIRECT_FAILED);
8490 return (BAM_ERROR);
8491 }

8493 /* add an entry for Solaris reboot */
8494 if (opt[0] == ’-’) {
8495 /* It’s an option - first see if boot-file is set */
8496 ret = get_kernel(mp, KERNEL_CMD, kernbuf, sizeof (kernbuf));
8497 INJECT_ERROR1("REBOOT_GET_KERNEL", ret = BAM_ERROR);
8498 if (ret != BAM_SUCCESS) {
8499 free(fstype);
8500 bam_error(REBOOT_GET_KERNEL_FAILED);
8501 return (BAM_ERROR);
8502 }
8503 if (kernbuf[0] == ’\0’)

new/bootadm/bootadm.c 53

8504 (void) strlcpy(kernbuf, DIRECT_BOOT_KERNEL,
8505 sizeof (kernbuf));
8506 /*
8507 * If this is a zfs file system and kernbuf does not
8508 * have "-B $ZFS-BOOTFS" string yet, add it.
8509 */
8510 if (strcmp(fstype, "zfs") == 0 && !strstr(kernbuf, ZFS_BOOT)) {
8511 (void) strlcat(kernbuf, " ", sizeof (kernbuf));
8512 (void) strlcat(kernbuf, ZFS_BOOT, sizeof (kernbuf));
8513 }
8514 (void) strlcat(kernbuf, " ", sizeof (kernbuf));
8515 (void) strlcat(kernbuf, opt, sizeof (kernbuf));
8516 BAM_DPRINTF((D_REBOOT_OPTION, fcn, kernbuf));
8517 } else if (opt[0] == ’/’) {
8518 /* It’s a full path, so write it out. */
8519 (void) strlcpy(kernbuf, opt, sizeof (kernbuf));

8521 /*
8522 * If someone runs:
8523 *
8524 * # eeprom boot-args=’-kd’
8525 * # reboot /platform/i86pc/kernel/unix
8526 *
8527 * we want to use the boot-args as part of the boot
8528 * line. On the other hand, if someone runs:
8529 *
8530 * # reboot "/platform/i86pc/kernel/unix -kd"
8531 *
8532 * we don’t need to mess with boot-args. If there’s
8533 * no space in the options string, assume we’re in the
8534 * first case.
8535 */
8536 if (strchr(opt, ’ ’) == NULL) {
8537 ret = get_kernel(mp, ARGS_CMD, args_buf,
8538 sizeof (args_buf));
8539 INJECT_ERROR1("REBOOT_GET_ARGS", ret = BAM_ERROR);
8540 if (ret != BAM_SUCCESS) {
8541 free(fstype);
8542 bam_error(REBOOT_GET_ARGS_FAILED);
8543 return (BAM_ERROR);
8544 }

8546 if (args_buf[0] != ’\0’) {
8547 (void) strlcat(kernbuf, " ", sizeof (kernbuf));
8548 (void) strlcat(kernbuf, args_buf,
8549 sizeof (kernbuf));
8550 }
8551 }
8552 BAM_DPRINTF((D_REBOOT_ABSPATH, fcn, kernbuf));
8553 } else {
8554 /*
8555 * It may be a partial path, or it may be a partial
8556 * path followed by options. Assume that only options
8557 * follow a space. If someone sends us a kernel path
8558 * that includes a space, they deserve to be broken.
8559 */
8560 opt_ptr = strchr(opt, ’ ’);
8561 if (opt_ptr != NULL) {
8562 *opt_ptr = ’\0’;
8563 }

8565 path = expand_path(opt);
8566 if (path != NULL) {
8567 (void) strlcpy(kernbuf, path, sizeof (kernbuf));
8568 free(path);

new/bootadm/bootadm.c 54

8570 /*
8571 * If there were options given, use those.
8572 * Otherwise, copy over the default options.
8573 */
8574 if (opt_ptr != NULL) {
8575 /* Restore the space in opt string */
8576 *opt_ptr = ’ ’;
8577 (void) strlcat(kernbuf, opt_ptr,
8578 sizeof (kernbuf));
8579 } else {
8580 ret = get_kernel(mp, ARGS_CMD, args_buf,
8581 sizeof (args_buf));
8582 INJECT_ERROR1("UPDATE_TEMP_PARTIAL_ARGS",
8583 ret = BAM_ERROR);
8584 if (ret != BAM_SUCCESS) {
8585 free(fstype);
8586 bam_error(REBOOT_GET_ARGS_FAILED);
8587 return (BAM_ERROR);
8588 }

8590 if (args_buf[0] != ’\0’) {
8591 (void) strlcat(kernbuf, " ",
8592 sizeof (kernbuf));
8593 (void) strlcat(kernbuf,
8594 args_buf, sizeof (kernbuf));
8595 }
8596 }
8597 BAM_DPRINTF((D_REBOOT_RESOLVED_PARTIAL, fcn, kernbuf));
8598 } else {
8599 free(fstype);
8600 bam_error(UNKNOWN_KERNEL, opt);
8601 bam_print_stderr(UNKNOWN_KERNEL_REBOOT);
8602 return (BAM_ERROR);
8603 }
8604 }
8605 free(fstype);
8606 entry = add_boot_entry(mp, REBOOT_TITLE, signbuf, kernbuf,
8607 NULL, NULL, NULL);
8608 INJECT_ERROR1("REBOOT_ADD_BOOT_ENTRY", entry = BAM_ERROR);
8609 if (entry == BAM_ERROR) {
8610 bam_error(REBOOT_WITH_ARGS_ADD_ENTRY_FAILED);
8611 return (BAM_ERROR);
8612 }

8614 save_default_entry(mp, BAM_OLDDEF);
8615 ret = set_global(mp, menu_cmds[DEFAULT_CMD], entry);
8616 INJECT_ERROR1("REBOOT_SET_GLOBAL", ret = BAM_ERROR);
8617 if (ret == BAM_ERROR) {
8618 bam_error(REBOOT_SET_DEFAULT_FAILED, entry);
8619 }
8620 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
8621 return (BAM_WRITE);
8622 }

8624 error_t
8625 set_global(menu_t *mp, char *globalcmd, int val)
8626 {
8627 line_t *lp;
8628 line_t *found;
8629 line_t *last;
8630 char *cp;
8631 char *str;
8632 char prefix[BAM_MAXLINE];
8633 size_t len;
8634 const char *fcn = "set_global()";

new/bootadm/bootadm.c 55

8636 assert(mp);
8637 assert(globalcmd);

8639 if (strcmp(globalcmd, menu_cmds[DEFAULT_CMD]) == 0) {
8640 INJECT_ERROR1("SET_GLOBAL_VAL_NEG", val = -1);
8641 INJECT_ERROR1("SET_GLOBAL_MENU_EMPTY", mp->end = NULL);
8642 INJECT_ERROR1("SET_GLOBAL_VAL_TOO_BIG", val = 100);
8643 if (val < 0 || mp->end == NULL || val > mp->end->entryNum) {
8644 (void) snprintf(prefix, sizeof (prefix), "%d", val);
8645 bam_error(INVALID_ENTRY, prefix);
8646 return (BAM_ERROR);
8647 }
8648 }

8650 found = last = NULL;
8651 for (lp = mp->start; lp; lp = lp->next) {
8652 if (lp->flags != BAM_GLOBAL)
8653 continue;

8655 last = lp; /* track the last global found */

8657 INJECT_ERROR1("SET_GLOBAL_NULL_CMD", lp->cmd = NULL);
8658 if (lp->cmd == NULL) {
8659 bam_error(NO_CMD, lp->lineNum);
8660 continue;
8661 }
8662 if (strcmp(globalcmd, lp->cmd) != 0)
8663 continue;

8665 BAM_DPRINTF((D_FOUND_GLOBAL, fcn, globalcmd));

8667 if (found) {
8668 bam_error(DUP_CMD, globalcmd, lp->lineNum, bam_root);
8669 }
8670 found = lp;
8671 }

8673 if (found == NULL) {
8674 lp = s_calloc(1, sizeof (line_t));
8675 if (last == NULL) {
8676 lp->next = mp->start;
8677 mp->start = lp;
8678 mp->end = (mp->end) ? mp->end : lp;
8679 } else {
8680 lp->next = last->next;
8681 last->next = lp;
8682 if (lp->next == NULL)
8683 mp->end = lp;
8684 }
8685 lp->flags = BAM_GLOBAL; /* other fields not needed for writes */
8686 len = strlen(globalcmd) + strlen(menu_cmds[SEP_CMD]);
8687 len += 10; /* val < 10 digits */
8688 lp->line = s_calloc(1, len);
8689 (void) snprintf(lp->line, len, "%s%s%d",
8690 globalcmd, menu_cmds[SEP_CMD], val);
8691 BAM_DPRINTF((D_SET_GLOBAL_WROTE_NEW, fcn, lp->line));
8692 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
8693 return (BAM_WRITE);
8694 }

8696 /*
8697 * We are changing an existing entry. Retain any prefix whitespace,
8698 * but overwrite everything else. This preserves tabs added for
8699 * readability.
8700 */
8701 str = found->line;

new/bootadm/bootadm.c 56

8702 cp = prefix;
8703 while (*str == ’ ’ || *str == ’\t’)
8704 *(cp++) = *(str++);
8705 *cp = ’\0’; /* Terminate prefix */
8706 len = strlen(prefix) + strlen(globalcmd);
8707 len += strlen(menu_cmds[SEP_CMD]) + 10;

8709 free(found->line);
8710 found->line = s_calloc(1, len);
8711 (void) snprintf(found->line, len,
8712 "%s%s%s%d", prefix, globalcmd, menu_cmds[SEP_CMD], val);

8714 BAM_DPRINTF((D_SET_GLOBAL_REPLACED, fcn, found->line));
8715 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
8716 return (BAM_WRITE); /* need a write to menu */
8717 }

8719 /*
8720 * partial_path may be anything like "kernel/unix" or "kmdb". Try to
8721 * expand it to a full unix path. The calling function is expected to
8722 * output a message if an error occurs and NULL is returned.
8723 */
8724 static char *
8725 expand_path(const char *partial_path)
8726 {
8727 int new_path_len;
8728 char *new_path;
8729 char new_path2[PATH_MAX];
8730 struct stat sb;
8731 const char *fcn = "expand_path()";

8733 new_path_len = strlen(partial_path) + 64;
8734 new_path = s_calloc(1, new_path_len);

8736 /* First, try the simplest case - something like "kernel/unix" */
8737 (void) snprintf(new_path, new_path_len, "/platform/i86pc/%s",
8738 partial_path);
8739 if (stat(new_path, &sb) == 0) {
8740 BAM_DPRINTF((D_EXPAND_PATH, fcn, new_path));
8741 return (new_path);
8742 }

8744 if (strcmp(partial_path, "kmdb") == 0) {
8745 (void) snprintf(new_path, new_path_len, "%s -k",
8746 DIRECT_BOOT_KERNEL);
8747 BAM_DPRINTF((D_EXPAND_PATH, fcn, new_path));
8748 return (new_path);
8749 }

8751 /*
8752 * We’ve quickly reached unsupported usage. Try once more to
8753 * see if we were just given a glom name.
8754 */
8755 (void) snprintf(new_path, new_path_len, "/platform/i86pc/%s/unix",
8756 partial_path);
8757 (void) snprintf(new_path2, PATH_MAX, "/platform/i86pc/%s/amd64/unix",
8758 partial_path);
8759 if (stat(new_path, &sb) == 0) {
8760 if (stat(new_path2, &sb) == 0) {
8761 /*
8762 * We matched both, so we actually
8763 * want to write the $ISADIR version.
8764 */
8765 (void) snprintf(new_path, new_path_len,
8766 "/platform/i86pc/kernel/%s/$ISADIR/unix",
8767 partial_path);

new/bootadm/bootadm.c 57

8768 }
8769 BAM_DPRINTF((D_EXPAND_PATH, fcn, new_path));
8770 return (new_path);
8771 }

8773 free(new_path);
8774 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
8775 return (NULL);
8776 }

8778 /*
8779 * The kernel cmd and arg have been changed, so
8780 * check whether the archive line needs to change.
8781 */
8782 static void
8783 set_archive_line(entry_t *entryp, line_t *kernelp)
8784 {
8785 line_t *lp = entryp->start;
8786 char *new_archive;
8787 menu_cmd_t m_cmd;
8788 const char *fcn = "set_archive_line()";

8790 for (; lp != NULL; lp = lp->next) {
8791 if (lp->cmd != NULL && strncmp(lp->cmd, menu_cmds[MODULE_CMD],
8792 sizeof (menu_cmds[MODULE_CMD]) - 1) == 0) {
8793 break;
8794 }

8796 INJECT_ERROR1("SET_ARCHIVE_LINE_END_ENTRY", lp = entryp->end);
8797 if (lp == entryp->end) {
8798 BAM_DPRINTF((D_ARCHIVE_LINE_NONE, fcn,
8799 entryp->entryNum));
8800 return;
8801 }
8802 }
8803 INJECT_ERROR1("SET_ARCHIVE_LINE_END_MENU", lp = NULL);
8804 if (lp == NULL) {
8805 BAM_DPRINTF((D_ARCHIVE_LINE_NONE, fcn, entryp->entryNum));
8806 return;
8807 }

8809 if (strstr(kernelp->arg, "$ISADIR") != NULL) {
8810 new_archive = DIRECT_BOOT_ARCHIVE;
8811 m_cmd = MODULE_DOLLAR_CMD;
8812 } else if (strstr(kernelp->arg, "amd64") != NULL) {
8813 new_archive = DIRECT_BOOT_ARCHIVE_64;
8814 m_cmd = MODULE_CMD;
8815 } else {
8816 new_archive = DIRECT_BOOT_ARCHIVE_32;
8817 m_cmd = MODULE_CMD;
8818 }

8820 if (strcmp(lp->arg, new_archive) == 0) {
8821 BAM_DPRINTF((D_ARCHIVE_LINE_NOCHANGE, fcn, lp->arg));
8822 return;
8823 }

8825 if (lp->cmd != NULL && strcmp(lp->cmd, menu_cmds[m_cmd]) != 0) {
8826 free(lp->cmd);
8827 lp->cmd = s_strdup(menu_cmds[m_cmd]);
8828 }

8830 free(lp->arg);
8831 lp->arg = s_strdup(new_archive);
8832 update_line(lp);
8833 BAM_DPRINTF((D_ARCHIVE_LINE_REPLACED, fcn, lp->line));

new/bootadm/bootadm.c 58

8834 }

8836 /*
8837 * Title for an entry to set properties that once went in bootenv.rc.
8838 */
8839 #define BOOTENV_RC_TITLE "Solaris bootenv rc"

8841 /*
8842 * If path is NULL, return the kernel (optnum == KERNEL_CMD) or arguments
8843 * (optnum == ARGS_CMD) in the argument buf. If path is a zero-length
8844 * string, reset the value to the default. If path is a non-zero-length
8845 * string, set the kernel or arguments.
8846 */
8847 static error_t
8848 get_set_kernel(
8849 menu_t *mp,
8850 menu_cmd_t optnum,
8851 char *path,
8852 char *buf,
8853 size_t bufsize)
8854 {
8855 int entryNum;
8856 int rv = BAM_SUCCESS;
8857 int free_new_path = 0;
8858 entry_t *entryp;
8859 line_t *ptr;
8860 line_t *kernelp;
8861 char *new_arg;
8862 char *old_args;
8863 char *space;
8864 char *new_path;
8865 char old_space;
8866 size_t old_kernel_len;
8867 size_t new_str_len;
8868 char *fstype;
8869 char *osdev;
8870 char *sign;
8871 char signbuf[PATH_MAX];
8872 int ret;
8873 const char *fcn = "get_set_kernel()";

8875 assert(bufsize > 0);

8877 ptr = kernelp = NULL;
8878 new_arg = old_args = space = NULL;
8879 new_path = NULL;
8880 buf[0] = ’\0’;

8882 INJECT_ERROR1("GET_SET_KERNEL_NOT_DBOOT",
8883 bam_direct = BAM_DIRECT_MULTIBOOT);
8884 if (bam_direct != BAM_DIRECT_DBOOT) {
8885 bam_error(NOT_DBOOT, optnum == KERNEL_CMD ? "kernel" : "args");
8886 return (BAM_ERROR);
8887 }

8889 /*
8890 * If a user changed the default entry to a non-bootadm controlled
8891 * one, we don’t want to mess with it. Just print an error and
8892 * return.
8893 */
8894 if (mp->curdefault) {
8895 entryNum = s_strtol(mp->curdefault->arg);
8896 for (entryp = mp->entries; entryp; entryp = entryp->next) {
8897 if (entryp->entryNum == entryNum)
8898 break;
8899 }

new/bootadm/bootadm.c 59

8900 if ((entryp != NULL) &&
8901 ((entryp->flags & (BAM_ENTRY_BOOTADM|BAM_ENTRY_LU)) == 0)) {
8902 bam_error(DEFAULT_NOT_BAM);
8903 return (BAM_ERROR);
8904 }
8905 }

8907 entryp = find_boot_entry(mp, BOOTENV_RC_TITLE, NULL, NULL, NULL, NULL,
8908 0, &entryNum);

8910 if (entryp != NULL) {
8911 for (ptr = entryp->start; ptr && ptr != entryp->end;
8912 ptr = ptr->next) {
8913 if (strncmp(ptr->cmd, menu_cmds[KERNEL_CMD],
8914 sizeof (menu_cmds[KERNEL_CMD]) - 2) == 0) {
5380 sizeof (menu_cmds[KERNEL_CMD]) - 1) == 0) {
8915 kernelp = ptr;
8916 break;
8917 }
8918 }
8919 if (kernelp == NULL) {
8920 bam_error(NO_KERNEL, entryNum);
8921 return (BAM_ERROR);
8922 }

8924 old_kernel_len = strcspn(kernelp->arg, " \t");
8925 space = old_args = kernelp->arg + old_kernel_len;
8926 while ((*old_args == ’ ’) || (*old_args == ’\t’))
8927 old_args++;
8928 }

8930 if (path == NULL) {
8931 if (entryp == NULL) {
8932 BAM_DPRINTF((D_GET_SET_KERNEL_NO_RC, fcn));
8933 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
8934 return (BAM_SUCCESS);
8935 }
8936 assert(kernelp);
8937 if (optnum == ARGS_CMD) {
8938 if (old_args[0] != ’\0’) {
8939 (void) strlcpy(buf, old_args, bufsize);
8940 BAM_DPRINTF((D_GET_SET_KERNEL_ARGS, fcn, buf));
8941 }
8942 } else {
8943 /*
8944 * We need to print the kernel, so we just turn the
8945 * first space into a ’\0’ and print the beginning.
8946 * We don’t print anything if it’s the default kernel.
8947 */
8948 old_space = *space;
8949 *space = ’\0’;
8950 if (strcmp(kernelp->arg, DIRECT_BOOT_KERNEL) != 0) {
8951 (void) strlcpy(buf, kernelp->arg, bufsize);
8952 BAM_DPRINTF((D_GET_SET_KERNEL_KERN, fcn, buf));
8953 }
8954 *space = old_space;
8955 }
8956 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
8957 return (BAM_SUCCESS);
8958 }

8960 /*
8961 * First, check if we’re resetting an entry to the default.
8962 */
8963 if ((path[0] == ’\0’) ||
8964 ((optnum == KERNEL_CMD) &&

new/bootadm/bootadm.c 60

8965 (strcmp(path, DIRECT_BOOT_KERNEL) == 0))) {
8966 if ((entryp == NULL) || (kernelp == NULL)) {
8967 /* No previous entry, it’s already the default */
8968 BAM_DPRINTF((D_GET_SET_KERNEL_ALREADY, fcn));
8969 return (BAM_SUCCESS);
8970 }

8972 /*
8973 * Check if we can delete the entry. If we’re resetting the
8974 * kernel command, and the args is already empty, or if we’re
8975 * resetting the args command, and the kernel is already the
8976 * default, we can restore the old default and delete the entry.
8977 */
8978 if (((optnum == KERNEL_CMD) &&
8979 ((old_args == NULL) || (old_args[0] == ’\0’))) ||
8980 ((optnum == ARGS_CMD) &&
8981 (strncmp(kernelp->arg, DIRECT_BOOT_KERNEL,
8982 sizeof (DIRECT_BOOT_KERNEL) - 1) == 0))) {
8983 kernelp = NULL;
8984 (void) delete_boot_entry(mp, entryNum, DBE_PRINTERR);
8985 restore_default_entry(mp, BAM_OLD_RC_DEF,
8986 mp->old_rc_default);
8987 mp->old_rc_default = NULL;
8988 rv = BAM_WRITE;
8989 BAM_DPRINTF((D_GET_SET_KERNEL_RESTORE_DEFAULT, fcn));
8990 goto done;
8991 }

8993 if (optnum == KERNEL_CMD) {
8994 /*
8995 * At this point, we’ve already checked that old_args
8996 * and entryp are valid pointers. The "+ 2" is for
8997 * a space a the string termination character.
8998 */
8999 new_str_len = (sizeof (DIRECT_BOOT_KERNEL) - 1) +
9000 strlen(old_args) + 2;
9001 new_arg = s_calloc(1, new_str_len);
9002 (void) snprintf(new_arg, new_str_len, "%s",
9003 DIRECT_BOOT_KERNEL);
5468 (void) snprintf(new_arg, new_str_len, "%s %s",
5469 DIRECT_BOOT_KERNEL, old_args);
9004 free(kernelp->arg);
9005 kernelp->arg = new_arg;

9007 /*
9008 * We have changed the kernel line, so we may need
9009 * to update the archive line as well.
9010 */
9011 set_archive_line(entryp, kernelp);
9012 BAM_DPRINTF((D_GET_SET_KERNEL_RESET_KERNEL_SET_ARG,
9013 fcn, kernelp->arg));
9014 } else {
9015 /*
9016 * We’re resetting the boot args to nothing, so
9017 * we only need to copy the kernel. We’ve already
9018 * checked that the kernel is not the default.
9019 */
9020 new_arg = s_calloc(1, old_kernel_len + 1);
9021 (void) snprintf(new_arg, old_kernel_len + 1, "%s",
9022 kernelp->arg);
9023 free(kernelp->arg);
9024 kernelp->arg = new_arg;
9025 BAM_DPRINTF((D_GET_SET_KERNEL_RESET_ARG_SET_KERNEL,
9026 fcn, kernelp->arg));
9027 }
9028 rv = BAM_WRITE;

new/bootadm/bootadm.c 61

9029 goto done;
9030 }

9032 /*
9033 * Expand the kernel file to a full path, if necessary
9034 */
9035 if ((optnum == KERNEL_CMD) && (path[0] != ’/’)) {
9036 new_path = expand_path(path);
9037 if (new_path == NULL) {
9038 bam_error(UNKNOWN_KERNEL, path);
9039 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
9040 return (BAM_ERROR);
9041 }
9042 free_new_path = 1;
9043 } else {
9044 new_path = path;
9045 free_new_path = 0;
9046 }

9048 /*
9049 * At this point, we know we’re setting a new value. First, take care
9050 * of the case where there was no previous entry.
9051 */
9052 if (entryp == NULL) {

9054 /* Similar to code in update_temp */
9055 fstype = get_fstype("/");
9056 INJECT_ERROR1("GET_SET_KERNEL_FSTYPE", fstype = NULL);
9057 if (fstype == NULL) {
9058 bam_error(BOOTENV_FSTYPE_FAILED);
9059 rv = BAM_ERROR;
9060 goto done;
9061 }

9063 osdev = get_special("/");
9064 INJECT_ERROR1("GET_SET_KERNEL_SPECIAL", osdev = NULL);
9065 if (osdev == NULL) {
9066 free(fstype);
9067 bam_error(BOOTENV_SPECIAL_FAILED);
9068 rv = BAM_ERROR;
9069 goto done;
9070 }

9072 sign = find_existing_sign("/", osdev, fstype);
9073 INJECT_ERROR1("GET_SET_KERNEL_SIGN", sign = NULL);
9074 if (sign == NULL) {
9075 free(fstype);
9076 free(osdev);
9077 bam_error(BOOTENV_SIGN_FAILED);
9078 rv = BAM_ERROR;
9079 goto done;
9080 }

9082 free(osdev);
9083 (void) strlcpy(signbuf, sign, sizeof (signbuf));
9084 free(sign);
9085 assert(strchr(signbuf, ’(’) == NULL &&
9086 strchr(signbuf, ’,’) == NULL &&
9087 strchr(signbuf, ’)’) == NULL);

9089 if (optnum == KERNEL_CMD) {
9090 if (strcmp(fstype, "zfs") == 0) {
9091 new_str_len = strlen(new_path) +
9092 strlen(ZFS_BOOT) + 8;
9093 new_arg = s_calloc(1, new_str_len);
9094 (void) snprintf(new_arg, new_str_len, "%s %s",

new/bootadm/bootadm.c 62

9095 new_path, ZFS_BOOT);
9096 BAM_DPRINTF((D_GET_SET_KERNEL_NEW_KERN, fcn,
9097 new_arg));
9098 entryNum = add_boot_entry(mp, BOOTENV_RC_TITLE,
9099 signbuf, new_arg, NULL, NULL, NULL);
9100 free(new_arg);
9101 } else {
9102 BAM_DPRINTF((D_GET_SET_KERNEL_NEW_KERN, fcn,
9103 new_path));
9104 entryNum = add_boot_entry(mp, BOOTENV_RC_TITLE,
9105 signbuf, new_path, NULL, NULL, NULL);
9106 }
9107 } else {
9108 new_str_len = strlen(path) + 8;
9109 if (strcmp(fstype, "zfs") == 0) {
9110 new_str_len += strlen(DIRECT_BOOT_KERNEL_ZFS);
9111 new_arg = s_calloc(1, new_str_len);
9112 (void) snprintf(new_arg, new_str_len, "%s %s",
9113 DIRECT_BOOT_KERNEL_ZFS, path);
9114 } else {
9115 new_str_len += strlen(DIRECT_BOOT_KERNEL);
9116 new_arg = s_calloc(1, new_str_len);
9117 (void) snprintf(new_arg, new_str_len, "%s %s",
9118 DIRECT_BOOT_KERNEL, path);
9119 }

9121 BAM_DPRINTF((D_GET_SET_KERNEL_NEW_ARG, fcn, new_arg));
9122 entryNum = add_boot_entry(mp, BOOTENV_RC_TITLE,
9123 signbuf, new_arg, NULL, DIRECT_BOOT_ARCHIVE, NULL);
9124 free(new_arg);
9125 }
9126 free(fstype);
9127 INJECT_ERROR1("GET_SET_KERNEL_ADD_BOOT_ENTRY",
9128 entryNum = BAM_ERROR);
9129 if (entryNum == BAM_ERROR) {
9130 bam_error(GET_SET_KERNEL_ADD_BOOT_ENTRY,
9131 BOOTENV_RC_TITLE);
9132 rv = BAM_ERROR;
9133 goto done;
9134 }
9135 save_default_entry(mp, BAM_OLD_RC_DEF);
9136 ret = set_global(mp, menu_cmds[DEFAULT_CMD], entryNum);
9137 INJECT_ERROR1("GET_SET_KERNEL_SET_GLOBAL", ret = BAM_ERROR);
9138 if (ret == BAM_ERROR) {
9139 bam_error(GET_SET_KERNEL_SET_GLOBAL, entryNum);
9140 }
9141 rv = BAM_WRITE;
9142 goto done;
9143 }

9145 /*
9146 * There was already an bootenv entry which we need to edit.
9147 */
9148 if (optnum == KERNEL_CMD) {
9149 new_str_len = strlen(new_path) + strlen(old_args) + 2;
9150 new_arg = s_calloc(1, new_str_len);
9151 (void) snprintf(new_arg, new_str_len, "%s %s", new_path,
9152 old_args);
9153 free(kernelp->arg);
9154 kernelp->arg = new_arg;

9156 /*
9157 * If we have changed the kernel line, we may need to update
9158 * the archive line as well.
9159 */
9160 set_archive_line(entryp, kernelp);

new/bootadm/bootadm.c 63

9161 BAM_DPRINTF((D_GET_SET_KERNEL_REPLACED_KERNEL_SAME_ARG, fcn,
9162 kernelp->arg));
9163 } else {
9164 kernelp = kernelp->next;
9165 new_str_len = strlen(kernelp->arg) + strlen(path) + 8;
5630 new_str_len = old_kernel_len + strlen(path) + 8;
9166 new_arg = s_calloc(1, new_str_len);
9167 (void) strncpy(new_arg, kernelp->arg, strlen(kernelp->arg));
5632 (void) strncpy(new_arg, kernelp->arg, old_kernel_len);
9168 (void) strlcat(new_arg, " ", new_str_len);
9169 (void) strlcat(new_arg, path, new_str_len);
9170 free(kernelp->arg);
9171 kernelp->arg = new_arg;
9172 BAM_DPRINTF((D_GET_SET_KERNEL_SAME_KERNEL_REPLACED_ARG, fcn,
9173 kernelp->arg));
9174 }
9175 rv = BAM_WRITE;

9177 done:
9178 if ((rv == BAM_WRITE) && kernelp)
9179 update_line(kernelp);
9180 if (free_new_path)
9181 free(new_path);
9182 if (rv == BAM_WRITE) {
9183 BAM_DPRINTF((D_RETURN_SUCCESS, fcn));
9184 } else {
9185 BAM_DPRINTF((D_RETURN_FAILURE, fcn));
9186 }
9187 return (rv);
9188 }
______unchanged_portion_omitted_

new/bootadm/bootadm.h 1

**
 9360 Fri Aug 31 05:08:47 2012
new/bootadm/bootadm.h
botadm patch
**
______unchanged_portion_omitted_

108 /*
109 * Menu related
110 * menu_cmd_t and menu_cmds must be kept in sync
111 *
112 * The *_DOLLAR_CMD values must be 1 greater than the
113 * respective [KERNEL|MODULE]_CMD values.
114 */
115 typedef enum {
116 DEFAULT_CMD = 0,
117 TIMEOUT_CMD,
118 TITLE_CMD,
119 ROOT_CMD,
120 KERNEL_CMD,
121 KERNEL_DOLLAR_CMD, /* Must be KERNEL_CMD + 1 */
122 MODULE_CMD,
123 MODULE_DOLLAR_CMD, /* Must be MODULE_CMD + 1 */
124 SEP_CMD,
125 COMMENT_CMD,
126 CHAINLOADER_CMD,
127 ARGS_CMD,
128 FINDROOT_CMD,
129 BOOTFS_CMD,
130 KERNEL_OPTIONS_CMD,
129 BOOTFS_CMD
131 } menu_cmd_t;

______unchanged_portion_omitted_

156 extern int bam_verbose;
157 extern int bam_force;
158 extern direct_or_multi_t bam_direct;
159 extern hv_t bam_is_hv;
160 extern findroot_t bam_is_findroot;
161 extern int bam_debug;

163 extern void bam_add_line(menu_t *mp, entry_t *entry, line_t *prev, line_t *lp);
164 extern void update_numbering(menu_t *mp);
165 extern error_t set_global(menu_t *, char *, int);
166 extern error_t upgrade_menu(menu_t *, char *, char *);
167 extern error_t cvt_to_hyper(menu_t *, char *, char *);
168 extern error_t cvt_to_metal(menu_t *, char *, char *);
169 extern void *s_calloc(size_t, size_t);
170 extern void *s_realloc(void *, size_t);
171 extern char *s_fgets(char *buf, int n, FILE *fp);
172 extern void bam_error(char *format, ...);
173 extern void bam_exit(int);
174 extern void bam_print(char *, ...);
175 extern void bam_print_stderr(char *format, ...);
176 extern void bam_derror(char *format, ...);
177 extern error_t get_boot_cap(const char *osroot);
178 extern char *get_special(char *);
179 extern char *os_to_grubdisk(char *, int);
180 extern void update_line(line_t *);
181 extern int add_boot_entry(menu_t *, char *, char *, char *, char *, char *,
182 char *);
183 extern error_t delete_boot_entry(menu_t *, int, int);
184 extern int is_grub(const char *);
185 extern char *get_grubsign(char *osroot, char *osdev);
186 extern char *get_grubroot(char *osroot, char *osdev, char *menu_root);
187 extern int root_optional(char *osroot, char *menu_root);

new/bootadm/bootadm.h 2

188 extern void unlink_line(menu_t *mp, line_t *lp);
189 extern void line_free(line_t *lp);
190 extern char *s_strdup(char *);
191 extern int is_sparc(void);

193 #define BAM_MAXLINE 8192

195 /* menu.lst comments created by bootadm */
196 #define BAM_BOOTADM_HDR "---------- ADDED BY BOOTADM - DO NOT EDIT ----------"
197 #define BAM_BOOTADM_FTR "---------------------END BOOTADM--------------------"

199 /*
200 * menu.lst comments create by Live Upgrade. Note that these are the end of
201 * the comment strings - there will be other text before them.
202 */
203 #define BAM_LU_HDR " - ADDED BY LIVE UPGRADE - DO NOT EDIT -----"
204 #define BAM_LU_FTR " -------------- END LIVE UPGRADE ------------"

206 #define BAM_OLDDEF "BOOTADM SAVED DEFAULT: "
207 #define BAM_OLD_RC_DEF "BOOTADM RC SAVED DEFAULT: "

209 /*
210 * menu.lst comment created by libbe
211 */
212 #define BAM_LIBBE_FTR "============ End of LIBBE entry ============="

214 /* Title used for failsafe entries */
215 #define FAILSAFE_TITLE "Solaris failsafe"

217 /* Title used for hv entries */
218 #define NEW_HV_ENTRY "Solaris xVM"

220 /* ZFS boot option */
221 #define ZFS_BOOT "-B $ZFS_BOOTFS"
220 #define ZFS_BOOT "-B $ZFS-BOOTFS"

223 /* multiboot */
224 #define MULTI_BOOT "/platform/i86pc/multiboot"
225 #define MULTI_BOOT_FAILSAFE "/boot/multiboot"
226 #define MULTI_BOOT_FAILSAFE_UNIX "kernel/unix"
227 #define MULTI_BOOT_FAILSAFE_LINE "/boot/multiboot kernel/unix -s"

229 /* directboot kernels */
230 #define DIRECT_BOOT_32 "/platform/i86pc/kernel/unix"
231 #define DIRECT_BOOT_64 "/platform/i86pc/kernel/amd64/unix"
232 #define DIRECT_BOOT_KERNEL "/platform/i86pc/kernel/$ISADIR/unix"
233 #define DIRECT_BOOT_FAILSAFE_32 "/boot/platform/i86pc/kernel/unix"
234 #define DIRECT_BOOT_FAILSAFE_64 "/boot/platform/i86pc/kernel/amd64/unix"
235 #define DIRECT_BOOT_FAILSAFE_KERNEL \
236 "/boot/platform/i86pc/kernel/$ISADIR/unix"
237 #define DIRECT_BOOT_FAILSAFE_LINE DIRECT_BOOT_FAILSAFE_KERNEL " -s"
238 #define DIRECT_BOOT_KERNEL_ZFS DIRECT_BOOT_KERNEL " " ZFS_BOOT
239 #define DIRECT_BOOT_PREFIX "/platform/i86pc/"
240 #define KERNEL_PREFIX "/platform/i86pc/"
241 #define AMD_UNIX_SPACE "/amd64/unix "
242 #define UNIX_SPACE "/unix "

244 /* xVM kernels */
245 #define XEN_KERNEL_SUBSTR "xen.gz"

247 /* Boot archives */
248 #define ARCHIVE_PREFIX "/platform/"
249 #define ARCHIVE_SUFFIX "/boot_archive"
250 #define CACHEDIR_SUFFIX "/archive_cache"
251 #define UPDATEDIR_SUFFIX "/updates"
252 #define DIRECT_BOOT_ARCHIVE "/platform/i86pc/$ISADIR/boot_archive"

new/bootadm/bootadm.h 3

253 #define DIRECT_BOOT_ARCHIVE_32 "/platform/i86pc/boot_archive"
254 #define DIRECT_BOOT_ARCHIVE_64 "/platform/i86pc/amd64/boot_archive"
255 #define MULTIBOOT_ARCHIVE DIRECT_BOOT_ARCHIVE_32
256 #define FAILSAFE_ARCHIVE "/boot/$ISADIR/x86.miniroot-safe"
257 #define FAILSAFE_ARCHIVE_32 "/boot/x86.miniroot-safe"
258 #define FAILSAFE_ARCHIVE_64 "/boot/amd64/x86.miniroot-safe"
259 #define CACHEDIR_32 "/platform/i86pc/archive_cache"
260 #define CACHEDIR_64 "/platform/i86pc/amd64/archive_cache"
261 #define UPDATEDIR_32 "/platform/i86pc/updates"
262 #define UPDATEDIR_64 "/platform/i86pc/amd64/updates"

264 /* Hypervisors */
265 #define XEN_64 "/boot/amd64/xen.gz"
266 #define XEN_MENU "/boot/$ISADIR/xen.gz"
267 #define HYPERVISOR_KERNEL "/platform/i86xpv/kernel/$ISADIR/unix"
268 #define XEN_KERNEL_MODULE_LINE HYPERVISOR_KERNEL " " HYPERVISOR_KERNEL
269 #define XEN_KERNEL_MODULE_LINE_ZFS \
270 HYPERVISOR_KERNEL " " HYPERVISOR_KERNEL " " ZFS_BOOT

272 /* Helpers */
273 #define MKISOFS_PATH "/usr/bin/mkisofs"
274 #define DD_PATH_USR "/usr/bin/dd"
275 #define LOCKFS_PATH "/usr/sbin/lockfs"

277 /* A first guess at the number of entries in a menu */
278 #define BAM_ENTRY_NUM 10

280 /* toggle for whether delete_boot_entry prints an error message or not */
281 #define DBE_PRINTERR 0
282 #define DBE_QUIET 1

284 /*
285 * Debugging defines
286 */
287 #define INJECT_ERROR1(x, y) \
288 { \
289 if (bam_debug) { \
290 char *inj = getenv("_BOOTADM_INJECT"); \
291 if (inj && strcmp(inj, (x)) == 0) { \
292 y; \
293 } \
294 } \
295 }

______unchanged_portion_omitted_

new/bootadm/bootadm_hyper.c 1

**
 29758 Fri Aug 31 05:08:48 2012
new/bootadm/bootadm_hyper.c
bug fix
adding functionality and fixing bugs
adding functions to menuadm
menuadm to replace bootadm menu interaction
hypervisor + bug fix
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 /*
27 * Copyright 2012 Daniil Lunev. All rights reserved.
28 */

30 #endif /* ! codereview */
31 #include <stdio.h>
32 #include <errno.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <unistd.h>
36 #include <alloca.h>
37 #include <ctype.h>
38 #include <sys/types.h>

40 #include "message.h"
41 #include "bootadm.h"

43 #define HYPER_KERNEL_DIR "/platform/i86xpv/kernel"
44 #define METAL_KERNEL_DIR "/platform/i86pc/kernel"

46 #define BOOTRC_FILE "/boot/solaris/bootenv.rc"
47 #define ZFS_BOOTSTR "$ZFS_BOOTFS"
26 #define ZFS_BOOTSTR "$ZFS-BOOTFS"

49 #define BFLAG "-B"
50 #define DEFAULT_SERIAL "9600,8,n,1"

52 #define TTYXMODE_TO_COMNUM(ttyxmode) ((int)(*((ttyxmode) + 3) - ’‘’))
53 #define COMNAME_TO_COMNUM(comname) ((int)(*((comname) + 3) - ’0’))

55 #define WHITESPC(x) (x)

new/bootadm/bootadm_hyper.c 2

57 static char *serial_config[2] = { NULL, NULL };
58 static char *console_dev = NULL;

60 static char *bootenv_rc_serial[2] = { NULL, NULL };
61 static char *bootenv_rc_console = NULL;

63 static unsigned zfs_boot = 0;

65 /*
66 * Append the string pointed to by "str" to the string pointed to by "orig"
67 * adding the delimeter "delim" in between.
68 *
69 * Return a pointer to the new string or NULL, if we were passed a bad string.
70 */
71 static char *
72 append_str(char *orig, char *str, char *delim)
73 {
74 char *newstr;
75 int len;

77 if ((str == NULL) || (delim == NULL))
78 return (NULL);

80 if ((orig == NULL) || (*orig == NULL)) {
81 /*
82 * Return a pointer to a copy of the path so a caller can
83 * always rely upon being able to free() a returned pointer.
84 */
85 return (s_strdup(str));
86 }

88 len = strlen(orig) + strlen(str) + strlen(delim) + 1;
89 if ((newstr = malloc(len)) == NULL) {
90 bam_error(NO_MEM, len);
91 bam_exit(1);
92 }

94 (void) snprintf(newstr, len, "%s%s%s", orig, delim, str);
95 return (newstr);
96 }

______unchanged_portion_omitted_

755 error_t
756 cvt_to_hyper(menu_t *mp, char *osroot, char *extra_args)
757 {
758 const char *fcn = "cvt_to_hyper()";

760 line_t *lp;
761 entry_t *ent;
762 size_t len, zfslen;

764 char *newstr;
765 char *osdev;

767 char *title = NULL;
768 char *findroot = NULL;
769 char *bootfs = NULL;
770 char *kernel = NULL;
771 char *opts = NULL;
772 #endif /* ! codereview */
773 char *mod_kernel = NULL;
774 char *module = NULL;
775 char *tmp = NULL;
776 #endif /* ! codereview */

778 char *kern_path = NULL;

new/bootadm/bootadm_hyper.c 3

779 char *kern_bargs = NULL;

781 int curdef, newdef;
782 int kp_allocated = 0;
783 int ret = BAM_ERROR;

785 assert(osroot);

787 BAM_DPRINTF((D_FUNC_ENTRY2, fcn, osroot, extra_args));

789 /*
790 * First just check to verify osroot is a sane directory.
791 */
792 if ((osdev = get_special(osroot)) == NULL) {
793 bam_error(CANT_FIND_SPECIAL, osroot);
794 return (BAM_ERROR);
795 }

797 free(osdev);

799 /*
800 * While the effect is purely cosmetic, if osroot is "/" don’t
801 * bother prepending it to any paths as they are constructed to
802 * begin with "/" anyway.
803 */
804 if (strcmp(osroot, "/") == 0)
805 osroot = "";

807 /*
808 * Found the GRUB signature on the target partitions, so now get the
809 * default GRUB boot entry number from the menu.lst file
810 */
811 curdef = atoi(mp->curdefault->arg);

813 /* look for the first line of the matching boot entry */
814 for (ent = mp->entries; ((ent != NULL) && (ent->entryNum != curdef));
815 ent = ent->next)
816 ;

818 /* couldn’t find it, so error out */
819 if (ent == NULL) {
820 bam_error(CANT_FIND_DEFAULT, curdef);
821 goto abort;
822 }

824 /*
825 * We found the proper menu entry, so first we need to process the
826 * bootenv.rc file to look for boot options the hypervisor might need
827 * passed as kernel start options such as the console device and serial
828 * port parameters.
829 *
830 * If there’s no bootenv.rc, it’s not an issue.
831 */
832 parse_bootenvrc(osroot);

834 if (bootenv_rc_console != NULL)
835 console_metal_to_hyper(bootenv_rc_console);

837 if (bootenv_rc_serial[0] != NULL)
838 (void) serial_metal_to_hyper("ttya-mode", bootenv_rc_serial[0]);

840 if (bootenv_rc_serial[1] != NULL)
841 (void) serial_metal_to_hyper("ttyb-mode", bootenv_rc_serial[1]);

843 /*
844 * Now process the entry itself.

new/bootadm/bootadm_hyper.c 4

845 */
846 for (lp = ent->start; lp != NULL; lp = lp->next) {
847 /*
848 * Process important lines from menu.lst boot entry.
849 */
850 if (lp->flags == BAM_TITLE) {
851 title = strdupa(lp->arg);
852 } else if (lp->cmd != NULL) {
853 if (strcmp(lp->cmd, "pool_label") == 0) {
750 if (strcmp(lp->cmd, "findroot") == 0) {
854 findroot = strdupa(lp->arg);
855 } else if (strcmp(lp->cmd, "data_set") == 0) {
752 } else if (strcmp(lp->cmd, "bootfs") == 0) {
856 bootfs = strdupa(lp->arg);
857 } else if (strcmp(lp->cmd, "kernel_options") == 0) {
858 opts = strdupa(lp->arg);
859 #endif /* ! codereview */
860 } else if (strcmp(lp->cmd,
861 menu_cmds[MODULE_DOLLAR_CMD]) == 0) {
862 module = strdupa(lp->arg);
863 } else if ((strcmp(lp->cmd,
864 menu_cmds[KERNEL_DOLLAR_CMD]) == 0) &&
865 (ret = cvt_metal_kernel(lp->arg,
866 &kern_path)) != 0) {
867 if (ret < 0) {
868 ret = BAM_ERROR;
869 bam_error(KERNEL_NOT_PARSEABLE, curdef);
870 } else
871 ret = BAM_NOCHANGE;

873 goto abort;
874 }
875 }

877 if (lp == ent->end)
878 break;
879 }

881
882 #endif /* ! codereview */
883 /*
884 * If findroot, module or kern_path are NULL, the boot entry is
885 * malformed.
886 */
887 if (findroot == NULL) {
888 bam_error(FINDROOT_NOT_FOUND, curdef);
889 goto abort;
890 }

892 if (module == NULL) {
893 bam_error(MODULE_NOT_PARSEABLE, curdef);
894 goto abort;
895 }

897 if (kern_path == NULL) {
898 bam_error(KERNEL_NOT_FOUND, curdef);
899 goto abort;
900 }

902 /* assemble new kernel and module arguments from parsed values */
903 if (console_dev != NULL) {
904 kern_bargs = s_strdup(console_dev);

906 if (serial_config[0] != NULL) {
907 newstr = append_str(kern_bargs, serial_config[0], " ");
908 free(kern_bargs);

new/bootadm/bootadm_hyper.c 5

909 kern_bargs = newstr;
910 }

912 if (serial_config[1] != NULL) {
913 newstr = append_str(kern_bargs, serial_config[1], " ");
914 free(kern_bargs);
915 kern_bargs = newstr;
916 }
917 }

919 if ((extra_args != NULL) && (*extra_args != NULL)) {
920 newstr = append_str(kern_bargs, extra_args, " ");
921 free(kern_bargs);
922 kern_bargs = newstr;
923 }

925 len = strlen(osroot) + strlen(XEN_MENU) + strlen(kern_bargs) +
926 WHITESPC(1) + 1;

928 kernel = alloca(len);

930 if (kern_bargs != NULL) {
931 if (*kern_bargs != NULL)
932 (void) snprintf(kernel, len, "%s%s %s", osroot,
933 XEN_MENU, kern_bargs);

935 free(kern_bargs);
936 } else {
937 (void) snprintf(kernel, len, "%s%s", osroot, XEN_MENU);
938 }

940 /*
941 * Change the kernel directory from the metal version to that needed for
942 * the hypervisor. Convert either "direct boot" path to the default
943 * path.
944 */
945 if ((strcmp(kern_path, DIRECT_BOOT_32) == 0) ||
946 (strcmp(kern_path, DIRECT_BOOT_64) == 0)) {
947 kern_path = HYPERVISOR_KERNEL;
948 } else {
949 newstr = modify_path(kern_path, METAL_KERNEL_DIR,
950 HYPER_KERNEL_DIR);
951 free(kern_path);
952 kern_path = newstr;
953 kp_allocated = 1;
954 }

956 /*
957 * We need to allocate space for the kernel path (twice) plus an
958 * intervening space, possibly the ZFS boot string, and NULL,
959 * of course.
960 */
961 len = (strlen(kern_path) * 2) + WHITESPC(1) + 1;
962 zfslen = (zfs_boot ? (WHITESPC(1) + strlen(ZFS_BOOT)) : 0);

964 mod_kernel = alloca(len + zfslen);
965 if (opts)
966 (void) snprintf(mod_kernel, len + strlen(opts) + 1, "%s %s %s",
967 else
968 #endif /* ! codereview */
969 (void) snprintf(mod_kernel, len, "%s %s", kern_path, kern_path);

971 if (kp_allocated)
972 free(kern_path);

974 if (zfs_boot) {

new/bootadm/bootadm_hyper.c 6

975 char *zfsstr = alloca(zfslen + 1);

977 (void) snprintf(zfsstr, zfslen + 1, " %s", ZFS_BOOT);
978 (void) strcat(mod_kernel, zfsstr);
979 }

981 /* shut off warning messages from the entry line parser */
982 if (ent->flags & BAM_ENTRY_BOOTADM)
983 ent->flags &= ~BAM_ENTRY_BOOTADM;

985 BAM_DPRINTF((D_CVT_CMD_KERN_DOLLAR, fcn, kernel));
986 BAM_DPRINTF((D_CVT_CMD_MOD_DOLLAR, fcn, mod_kernel));

988 if ((newdef = add_boot_entry(mp, title, findroot, kernel, mod_kernel,
989 module, bootfs)) == BAM_ERROR)
990 return (newdef);

992 /*
993 * Now try to delete the current default entry from the menu and add
994 * the new hypervisor entry with the parameters we’ve setup.
995 */
996 if (delete_boot_entry(mp, curdef, DBE_QUIET) == BAM_SUCCESS)
997 newdef--;
998 else
999 bam_print(NEW_BOOT_ENTRY, title);

1001 /*
1002 * If we successfully created the new entry, set the default boot
1003 * entry to that entry and let the caller know the new menu should
1004 * be written out.
1005 */
1006 return (set_global(mp, menu_cmds[DEFAULT_CMD], newdef));

1008 abort:
1009 if (ret != BAM_NOCHANGE)
1010 bam_error(HYPER_ABORT, ((*osroot == NULL) ? "/" : osroot));

1012 return (ret);
1013 }

1015 /*ARGSUSED*/
1016 error_t
1017 cvt_to_metal(menu_t *mp, char *osroot, char *menu_root)
1018 {
1019 const char *fcn = "cvt_to_metal()";

1021 line_t *lp;
1022 entry_t *ent;
1023 size_t len, zfslen;

1025 char *delim = ",";
1026 char *newstr;
1027 char *osdev;

1029 char *title = NULL;
1030 char *findroot = NULL;
1031 char *bootfs = NULL;
1032 char *kernel = NULL;
1033 char *module = NULL;

1035 char *barchive_path = DIRECT_BOOT_ARCHIVE;
1036 char *kern_path = NULL;

1038 int curdef, newdef;
1039 int emit_bflag = 1;
1040 int ret = BAM_ERROR;

new/bootadm/bootadm_hyper.c 7

1042 assert(osroot);

1044 BAM_DPRINTF((D_FUNC_ENTRY2, fcn, osroot, ""));

1046 /*
1047 * First just check to verify osroot is a sane directory.
1048 */
1049 if ((osdev = get_special(osroot)) == NULL) {
1050 bam_error(CANT_FIND_SPECIAL, osroot);
1051 return (BAM_ERROR);
1052 }

1054 free(osdev);

1056 /*
1057 * Found the GRUB signature on the target partitions, so now get the
1058 * default GRUB boot entry number from the menu.lst file
1059 */
1060 curdef = atoi(mp->curdefault->arg);

1062 /* look for the first line of the matching boot entry */
1063 for (ent = mp->entries; ((ent != NULL) && (ent->entryNum != curdef));
1064 ent = ent->next)
1065 ;

1067 /* couldn’t find it, so error out */
1068 if (ent == NULL) {
1069 bam_error(CANT_FIND_DEFAULT, curdef);
1070 goto abort;
1071 }

1073 /*
1074 * Now process the entry itself.
1075 */
1076 for (lp = ent->start; lp != NULL; lp = lp->next) {
1077 /*
1078 * Process important lines from menu.lst boot entry.
1079 */
1080 if (lp->flags == BAM_TITLE) {
1081 title = strdupa(lp->arg);
1082 } else if (lp->cmd != NULL) {
1083 if (strcmp(lp->cmd, "pool_label") == 0) {
754 if (strcmp(lp->cmd, "findroot") == 0) {
1084 findroot = strdupa(lp->arg);
1085 } else if (strcmp(lp->cmd, "data_set") == 0) {
756 } else if (strcmp(lp->cmd, "bootfs") == 0) {
1086 bootfs = strdupa(lp->arg);
1087 } else if (strcmp(lp->cmd,
1088 menu_cmds[MODULE_DOLLAR_CMD]) == 0) {
1089 if (strstr(lp->arg, "boot_archive") == NULL) {
1090 module = strdupa(lp->arg);
1091 cvt_hyper_module(module, &kern_path);
1092 } else {
1093 barchive_path = strdupa(lp->arg);
1094 }
1095 } else if ((strcmp(lp->cmd,
1096 menu_cmds[KERNEL_DOLLAR_CMD]) == 0) &&
1097 (cvt_hyper_kernel(lp->arg) < 0)) {
1098 ret = BAM_NOCHANGE;
1099 goto abort;
1100 }
1101 }

1103 if (lp == ent->end)
1104 break;

new/bootadm/bootadm_hyper.c 8

1105 }

1107 /*
1108 * If findroot, module or kern_path are NULL, the boot entry is
1109 * malformed.
1110 */
1111 if (findroot == NULL) {
1112 bam_error(FINDROOT_NOT_FOUND, curdef);
1113 goto abort;
1114 }

1116 if (module == NULL) {
1117 bam_error(MODULE_NOT_PARSEABLE, curdef);
1118 goto abort;
1119 }

1121 if (kern_path == NULL) {
1122 bam_error(KERNEL_NOT_FOUND, curdef);
1123 goto abort;
1124 }

1126 /*
1127 * Assemble new kernel and module arguments from parsed values.
1128 *
1129 * First, change the kernel directory from the hypervisor version to
1130 * that needed for a metal kernel.
1131 */
1132 newstr = modify_path(kern_path, HYPER_KERNEL_DIR, METAL_KERNEL_DIR);
1133 free(kern_path);
1134 kern_path = newstr;

1136 /* allocate initial space for the kernel path */
1137 len = strlen(kern_path) + 1;
1138 zfslen = (zfs_boot ? (WHITESPC(1) + strlen(ZFS_BOOT)) : 0);

1140 if ((kernel = malloc(len + zfslen)) == NULL) {
1141 free(kern_path);
1142 bam_error(NO_MEM, len + zfslen);
1143 bam_exit(1);
1144 }

1146 (void) snprintf(kernel, len, "%s", kern_path);
1147 free(kern_path);

1149 if (zfs_boot) {
1150 char *zfsstr = alloca(zfslen + 1);

1152 (void) snprintf(zfsstr, zfslen + 1, " %s", ZFS_BOOT);
1153 (void) strcat(kernel, zfsstr);
1154 emit_bflag = 0;
1155 }

1157 /*
1158 * Process the bootenv.rc file to look for boot options that would be
1159 * the same as what the hypervisor had manually set, as we need not set
1160 * those explicitly.
1161 *
1162 * If there’s no bootenv.rc, it’s not an issue.
1163 */
1164 parse_bootenvrc(osroot);

1166 /*
1167 * Don’t emit a console setting if it’s the same as what would be
1168 * set by bootenv.rc.
1169 */
1170 if ((console_dev != NULL) && (bootenv_rc_console == NULL ||

new/bootadm/bootadm_hyper.c 9

1171 (strcmp(console_dev, bootenv_rc_console) != 0))) {
1172 if (emit_bflag) {
1173 newstr = append_str(kernel, BFLAG, " ");
1174 free(kernel);
1175 kernel = append_str(newstr, "console=", " ");
1176 free(newstr);
1177 newstr = append_str(kernel, console_dev, "");
1178 free(kernel);
1179 kernel = newstr;
1180 emit_bflag = 0;
1181 } else {
1182 newstr = append_str(kernel, "console=", ",");
1183 free(kernel);
1184 kernel = append_str(newstr, console_dev, "");
1185 free(newstr);
1186 }
1187 }

1189 /*
1190 * We have to do some strange processing here because the hypervisor’s
1191 * serial ports default to "9600,8,n,1,-" if "comX=auto" is specified,
1192 * or to "auto" if nothing is specified.
1193 *
1194 * This could result in a serial mode setting string being added when
1195 * it would otherwise not be needed, but it’s better to play it safe.
1196 */
1197 if (emit_bflag) {
1198 newstr = append_str(kernel, BFLAG, " ");
1199 free(kernel);
1200 kernel = newstr;
1201 delim = " ";
1202 emit_bflag = 0;
1203 }

1205 if ((serial_config[0] != NULL) && (bootenv_rc_serial[0] == NULL ||
1206 (strcmp(serial_config[0], bootenv_rc_serial[0]) != 0))) {
1207 newstr = append_str(kernel, "ttya-mode=’", delim);
1208 free(kernel);

1210 /*
1211 * Pass the serial configuration as the delimiter to
1212 * append_str() as it will be inserted between the current
1213 * string and the string we’re appending, in this case the
1214 * closing single quote.
1215 */
1216 kernel = append_str(newstr, "’", serial_config[0]);
1217 free(newstr);
1218 delim = ",";
1219 }

1221 if ((serial_config[1] != NULL) && (bootenv_rc_serial[1] == NULL ||
1222 (strcmp(serial_config[1], bootenv_rc_serial[1]) != 0))) {
1223 newstr = append_str(kernel, "ttyb-mode=’", delim);
1224 free(kernel);

1226 /*
1227 * Pass the serial configuration as the delimiter to
1228 * append_str() as it will be inserted between the current
1229 * string and the string we’re appending, in this case the
1230 * closing single quote.
1231 */
1232 kernel = append_str(newstr, "’", serial_config[1]);
1233 free(newstr);
1234 delim = ",";
1235 }

new/bootadm/bootadm_hyper.c 10

1237 /* shut off warning messages from the entry line parser */
1238 if (ent->flags & BAM_ENTRY_BOOTADM)
1239 ent->flags &= ~BAM_ENTRY_BOOTADM;

1241 BAM_DPRINTF((D_CVT_CMD_KERN_DOLLAR, fcn, kernel));
1242 BAM_DPRINTF((D_CVT_CMD_MOD_DOLLAR, fcn, module));

1244 if ((newdef = add_boot_entry(mp, title, findroot, kernel, NULL,
1245 barchive_path, bootfs)) == BAM_ERROR) {
1246 free(kernel);
1247 return (newdef);
1248 }

1250 /*
1251 * Now try to delete the current default entry from the menu and add
1252 * the new hypervisor entry with the parameters we’ve setup.
1253 */
1254 if (delete_boot_entry(mp, curdef, DBE_QUIET) == BAM_SUCCESS)
1255 newdef--;
1256 else
1257 bam_print(NEW_BOOT_ENTRY, title);

1259 free(kernel);

1261 /*
1262 * If we successfully created the new entry, set the default boot
1263 * entry to that entry and let the caller know the new menu should
1264 * be written out.
1265 */
1266 return (set_global(mp, menu_cmds[DEFAULT_CMD], newdef));

1268 abort:
1269 if (ret != BAM_NOCHANGE)
1270 bam_error(METAL_ABORT, osroot);

1272 return (ret);
1273 }
______unchanged_portion_omitted_

new/grub/Makefile.util.def 1

**
 17967 Fri Aug 31 05:08:49 2012
new/grub/Makefile.util.def
grub patch
**
______unchanged_portion_omitted_

306 program = {
307 name = grub-solarislst2cfg;
308 installdir = sbin;
309 mansection = 8;
310 common = util/grub-solarislst2cfg.c;
311 common = util/ieee1275/ofpath.c;
312 common = grub-core/kern/emu/argp_common.c;

314 ldadd = libgrubmods.a;
315 ldadd = libgrubgcry.a;
316 ldadd = libgrubkern.a;
317 ldadd = grub-core/gnulib/libgnu.a;
318 ldadd = ’$(LIBINTL) $(LIBDEVMAPPER) $(LIBUTIL) $(LIBZFS) $(LIBNVPAIR) $(LIBGEO
319 };

321 program = {
322 #endif /* ! codereview */
323 name = grub-bios-setup;
324 installdir = sbin;
325 mansection = 8;
326 common = util/grub-setup.c;
327 common = util/lvm.c;
328 common = grub-core/kern/emu/argp_common.c;
329 common = grub-core/lib/reed_solomon.c;

331 ldadd = libgrubmods.a;
332 ldadd = libgrubkern.a;
333 ldadd = libgrubgcry.a;
334 ldadd = grub-core/gnulib/libgnu.a;
335 ldadd = ’$(LIBINTL) $(LIBDEVMAPPER) $(LIBUTIL) $(LIBZFS) $(LIBNVPAIR) $(LIBGEO
336 cppflags = ’-DGRUB_SETUP_BIOS=1’;
337 };

339 program = {
340 name = grub-sparc64-setup;
341 installdir = sbin;
342 mansection = 8;
343 common = util/grub-setup.c;
344 common = util/lvm.c;
345 common = grub-core/kern/emu/argp_common.c;
346 common = grub-core/lib/reed_solomon.c;
347 common = util/ieee1275/ofpath.c;

349 ldadd = libgrubmods.a;
350 ldadd = libgrubkern.a;
351 ldadd = libgrubgcry.a;
352 ldadd = grub-core/gnulib/libgnu.a;
353 ldadd = ’$(LIBINTL) $(LIBDEVMAPPER) $(LIBUTIL) $(LIBZFS) $(LIBNVPAIR) $(LIBGEO
354 cppflags = ’-DGRUB_SETUP_SPARC64=1’;
355 };

357 program = {
358 name = grub-ofpathname;
359 installdir = sbin;
360 mansection = 8;
361 common = util/ieee1275/grub-ofpathname.c;
362 common = util/ieee1275/ofpath.c;

364 ldadd = libgrubmods.a;

new/grub/Makefile.util.def 2

365 ldadd = libgrubgcry.a;
366 ldadd = libgrubkern.a;
367 ldadd = grub-core/gnulib/libgnu.a;
368 ldadd = ’$(LIBINTL) $(LIBDEVMAPPER) $(LIBUTIL) $(LIBGEOM)’;
369 };

371 program = {
372 name = grub-mklayout;
373 mansection = 1;

375 common = util/grub-mklayout.c;
376 common = grub-core/kern/emu/argp_common.c;

378 ldadd = libgrubmods.a;
379 ldadd = libgrubgcry.a;
380 ldadd = libgrubkern.a;
381 ldadd = grub-core/gnulib/libgnu.a;
382 ldadd = ’$(LIBINTL) $(LIBDEVMAPPER) $(LIBZFS) $(LIBNVPAIR) $(LIBGEOM)’;
383 };

385 data = {
386 common = util/grub.d/README;
387 installdir = grubconf;
388 };

390 script = {
391 name = ’00_header’;
392 common = util/grub.d/00_header.in;
393 installdir = grubconf;
394 };

396 script = {
397 name = ’10_windows’;
398 common = util/grub.d/10_windows.in;
399 installdir = grubconf;
400 condition = COND_HOST_WINDOWS;
401 };

403 script = {
404 name = ’10_hurd’;
405 common = util/grub.d/10_hurd.in;
406 installdir = grubconf;
407 condition = COND_HOST_HURD;
408 };

410 script = {
411 name = ’10_kfreebsd’;
412 common = util/grub.d/10_kfreebsd.in;
413 installdir = grubconf;
414 condition = COND_HOST_KFREEBSD;
415 };

417 script = {
418 name = ’10_illumos’;
419 common = util/grub.d/10_illumos.in;
420 installdir = grubconf;
421 condition = COND_HOST_ILLUMOS;
422 };

424 script = {
425 name = ’10_netbsd’;
426 common = util/grub.d/10_netbsd.in;
427 installdir = grubconf;
428 condition = COND_HOST_NETBSD;
429 };

new/grub/Makefile.util.def 3

431 script = {
432 name = ’10_linux’;
433 common = util/grub.d/10_linux.in;
434 installdir = grubconf;
435 condition = COND_HOST_LINUX;
436 };

438 script = {
439 name = ’10_xnu’;
440 common = util/grub.d/10_xnu.in;
441 installdir = grubconf;
442 condition = COND_HOST_XNU;
443 };

445 script = {
446 name = ’20_linux_xen’;
447 common = util/grub.d/20_linux_xen.in;
448 installdir = grubconf;
449 condition = COND_HOST_LINUX;
450 };

452 script = {
453 name = ’30_os-prober’;
454 common = util/grub.d/30_os-prober.in;
455 installdir = grubconf;
456 };

458 script = {
459 name = ’40_custom’;
460 common = util/grub.d/40_custom.in;
461 installdir = grubconf;
462 };

464 script = {
465 name = ’41_custom’;
466 common = util/grub.d/41_custom.in;
467 installdir = grubconf;
468 };

470 script = {
471 mansection = 1;
472 name = grub-mkrescue;
473 x86 = util/grub-mkrescue.in;
474 mips_qemu_mips = util/grub-mkrescue.in;
475 mips_loongson = util/grub-mkrescue.in;
476 ia64_efi = util/grub-mkrescue.in;
477 powerpc_ieee1275 = util/powerpc/ieee1275/grub-mkrescue.in;
478 enable = i386_pc;
479 enable = i386_efi;
480 enable = x86_64_efi;
481 enable = i386_qemu;
482 enable = i386_multiboot;
483 enable = i386_coreboot;
484 enable = mips_qemu_mips;
485 enable = mips_loongson;
486 enable = ia64_efi;
487 enable = powerpc_ieee1275;
488 };

490 script = {
491 mansection = 1;
492 name = grub-mkstandalone;
493 common = util/grub-mkstandalone.in;
494 };

496 script = {

new/grub/Makefile.util.def 4

497 mansection = 8;
498 installdir = sbin;
499 name = grub-install;

501 common = util/grub-install.in;
502 enable = noemu;
503 };

505 script = {
506 mansection = 8;
507 installdir = sbin;
508 name = grub-mknetdir;

510 common = util/grub-mknetdir.in;
511 };

513 script = {
514 name = grub-mkconfig;
515 common = util/grub-mkconfig.in;
516 mansection = 8;
517 installdir = sbin;
518 };

520 script = {
521 name = grub-set-default;
522 common = util/grub-set-default.in;
523 mansection = 8;
524 installdir = sbin;
525 };

527 script = {
528 name = grub-reboot;
529 common = util/grub-reboot.in;
530 mansection = 8;
531 installdir = sbin;
532 };

534 script = {
535 name = grub-mkconfig_lib;
536 common = util/grub-mkconfig_lib.in;
537 installdir = noinst;
538 };

540 script = {
541 name = grub-kbdcomp;
542 common = util/grub-kbdcomp.in;
543 mansection = 1;
544 };

546 script = {
547 name = grub-shell;
548 common = tests/util/grub-shell.in;
549 installdir = noinst;
550 };

552 script = {
553 name = grub-shell-tester;
554 common = tests/util/grub-shell-tester.in;
555 installdir = noinst;
556 };

558 script = {
559 testcase;
560 name = example_scripted_test;
561 common = tests/example_scripted_test.in;
562 };

new/grub/Makefile.util.def 5

564 script = {
565 testcase;
566 name = example_grub_script_test;
567 common = tests/example_grub_script_test.in;
568 };

570 script = {
571 testcase;
572 name = grub_script_echo1;
573 common = tests/grub_script_echo1.in;
574 };

576 script = {
577 testcase;
578 name = grub_script_leading_whitespace;
579 common = tests/grub_script_leading_whitespace.in;
580 };

582 script = {
583 testcase;
584 name = grub_script_echo_keywords;
585 common = tests/grub_script_echo_keywords.in;
586 };

588 script = {
589 testcase;
590 name = grub_script_vars1;
591 common = tests/grub_script_vars1.in;
592 };

594 script = {
595 testcase;
596 name = grub_script_for1;
597 common = tests/grub_script_for1.in;
598 };

600 script = {
601 testcase;
602 name = grub_script_while1;
603 common = tests/grub_script_while1.in;
604 };

606 script = {
607 testcase;
608 name = grub_script_if;
609 common = tests/grub_script_if.in;
610 };

612 script = {
613 testcase;
614 name = grub_script_blanklines;
615 common = tests/grub_script_blanklines.in;
616 };

618 script = {
619 testcase;
620 name = grub_script_final_semicolon;
621 common = tests/grub_script_final_semicolon.in;
622 };

624 script = {
625 testcase;
626 name = grub_script_dollar;
627 common = tests/grub_script_dollar.in;
628 };

new/grub/Makefile.util.def 6

630 script = {
631 testcase;
632 name = grub_script_comments;
633 common = tests/grub_script_comments.in;
634 };

636 script = {
637 testcase;
638 name = grub_script_functions;
639 common = tests/grub_script_functions.in;
640 };

642 script = {
643 testcase;
644 name = grub_script_break;
645 common = tests/grub_script_break.in;
646 };

648 script = {
649 testcase;
650 name = grub_script_continue;
651 common = tests/grub_script_continue.in;
652 };

654 script = {
655 testcase;
656 name = grub_script_shift;
657 common = tests/grub_script_shift.in;
658 };

660 script = {
661 testcase;
662 name = grub_script_blockarg;
663 common = tests/grub_script_blockarg.in;
664 };

666 script = {
667 testcase;
668 name = grub_script_setparams;
669 common = tests/grub_script_setparams.in;
670 };

672 script = {
673 testcase;
674 name = grub_script_return;
675 common = tests/grub_script_return.in;
676 };

678 script = {
679 testcase;
680 name = grub_cmd_regexp;
681 common = tests/grub_cmd_regexp.in;
682 };

684 script = {
685 testcase;
686 name = grub_script_expansion;
687 common = tests/grub_script_expansion.in;
688 };

690 script = {
691 testcase;
692 name = grub_script_not;
693 common = tests/grub_script_not.in;
694 };

new/grub/Makefile.util.def 7

696 script = {
697 testcase;
698 name = partmap_test;
699 common = tests/partmap_test.in;
700 };

702 script = {
703 testcase;
704 name = grub_cmd_echo;
705 common = tests/grub_cmd_echo.in;
706 };

708 script = {
709 testcase;
710 name = grub_script_gettext;
711 common = tests/grub_script_gettext.in;
712 };

714 script = {
715 testcase;
716 name = grub_script_strcmp;
717 common = tests/grub_script_strcmp.in;
718 };

720 program = {
721 testcase;
722 name = example_unit_test;
723 common = tests/example_unit_test.c;
724 common = tests/lib/unit_test.c;
725 common = grub-core/kern/list.c;
726 common = grub-core/kern/misc.c;
727 common = grub-core/tests/lib/test.c;
728 ldadd = libgrubmods.a;
729 ldadd = libgrubgcry.a;
730 ldadd = libgrubkern.a;
731 ldadd = grub-core/gnulib/libgnu.a;
732 ldadd = ’$(LIBDEVMAPPER) $(LIBZFS) $(LIBNVPAIR) $(LIBGEOM)’;
733 };

735 program = {
736 testcase;
737 name = printf_test;
738 common = tests/printf_unit_test.c;
739 common = tests/lib/unit_test.c;
740 common = grub-core/kern/list.c;
741 common = grub-core/kern/misc.c;
742 common = grub-core/tests/lib/test.c;
743 ldadd = libgrubmods.a;
744 ldadd = libgrubgcry.a;
745 ldadd = libgrubkern.a;
746 ldadd = grub-core/gnulib/libgnu.a;
747 ldadd = ’$(LIBDEVMAPPER) $(LIBZFS) $(LIBNVPAIR) $(LIBGEOM)’;
748 };

750 program = {
751 testcase;
752 name = cmp_test;
753 common = tests/cmp_unit_test.c;
754 common = tests/lib/unit_test.c;
755 common = grub-core/kern/list.c;
756 common = grub-core/kern/misc.c;
757 common = grub-core/tests/lib/test.c;
758 ldadd = libgrubmods.a;
759 ldadd = libgrubgcry.a;
760 ldadd = libgrubkern.a;

new/grub/Makefile.util.def 8

761 ldadd = grub-core/gnulib/libgnu.a;
762 ldadd = ’$(LIBDEVMAPPER) $(LIBZFS) $(LIBNVPAIR) $(LIBGEOM)’;
763 };

765 program = {
766 name = grub-menulst2cfg;
767 mansection = 1;
768 common = util/grub-menulst2cfg.c;
769 common = grub-core/lib/legacy_parse.c;
770 common = grub-core/lib/i386/pc/vesa_modes_table.c;

772 ldadd = libgrubmods.a;
773 ldadd = libgrubgcry.a;
774 ldadd = libgrubkern.a;
775 ldadd = grub-core/gnulib/libgnu.a;
776 ldadd = ’$(LIBINTL) $(LIBDEVMAPPER) $(LIBZFS) $(LIBNVPAIR) $(LIBGEOM)’;
777 };

new/grub/grub-core/Makefile.core.def 1

**
 34261 Fri Aug 31 05:08:49 2012
new/grub/grub-core/Makefile.core.def
grub patch
**
______unchanged_portion_omitted_

1486 module = {
1487 name = illumos_entries;
1488 common = commands/illumos_entries.c;
1489 };

1491 module = {
1492 name = solarislegacy;
1493 common = commands/solarislegacy.c;
1494 };

1496 module = {
1497 #endif /* ! codereview */
1498 name = part_acorn;
1499 common = partmap/acorn.c;
1500 };

1502 module = {
1503 name = part_amiga;
1504 common = partmap/amiga.c;
1505 };

1507 module = {
1508 name = part_apple;
1509 common = partmap/apple.c;
1510 };

1512 module = {
1513 name = part_gpt;
1514 common = partmap/gpt.c;
1515 };

1517 module = {
1518 name = part_msdos;
1519 common = partmap/msdos.c;
1520 };

1522 module = {
1523 name = part_sun;
1524 common = partmap/sun.c;
1525 };

1527 module = {
1528 name = part_plan;
1529 common = partmap/plan.c;
1530 };

1532 module = {
1533 name = part_dvh;
1534 common = partmap/dvh.c;
1535 };

1537 module = {
1538 name = part_bsd;
1539 common = partmap/bsdlabel.c;
1540 };

1542 module = {
1543 name = part_sunpc;
1544 common = partmap/sunpc.c;

new/grub/grub-core/Makefile.core.def 2

1545 };

1547 module = {
1548 name = msdospart;
1549 common = parttool/msdospart.c;
1550 };

1552 module = {
1553 name = at_keyboard;
1554 common = term/at_keyboard.c;
1555 enable = x86;
1556 };

1558 module = {
1559 name = gfxterm;
1560 common = term/gfxterm.c;
1561 enable = videomodules;
1562 };

1564 module = {
1565 name = serial;
1566 common = term/serial.c;
1567 x86 = term/ns8250.c;
1568 ieee1275 = term/ieee1275/serial.c;
1569 efi = term/efi/serial.c;

1571 enable = terminfomodule;
1572 enable = ieee1275;
1573 };

1575 module = {
1576 name = sendkey;
1577 i386_pc = commands/i386/pc/sendkey.c;
1578 enable = i386_pc;
1579 };

1581 module = {
1582 name = terminfo;
1583 common = term/terminfo.c;
1584 common = term/tparm.c;
1585 enable = terminfomodule;
1586 };

1588 module = {
1589 name = usb_keyboard;
1590 common = term/usb_keyboard.c;
1591 enable = usb;
1592 };

1594 module = {
1595 name = vga;
1596 common = video/i386/pc/vga.c;
1597 enable = i386_pc;
1598 enable = i386_coreboot;
1599 enable = i386_multiboot;
1600 };

1602 module = {
1603 name = vga_text;
1604 common = term/i386/pc/vga_text.c;
1605 common = term/i386/vga_common.c;
1606 enable = i386_pc;
1607 };

1609 module = {
1610 name = video_cirrus;

new/grub/grub-core/Makefile.core.def 3

1611 x86 = video/cirrus.c;
1612 enable = x86;
1613 };

1615 module = {
1616 name = video_bochs;
1617 x86 = video/bochs.c;
1618 enable = x86;
1619 };

1621 module = {
1622 name = functional_test;
1623 common = tests/lib/functional_test.c;
1624 common = tests/lib/test.c;
1625 };

1627 module = {
1628 name = exfctest;
1629 common = tests/example_functional_test.c;
1630 };

1632 module = {
1633 name = bitmap;
1634 common = video/bitmap.c;
1635 enable = videomodules;
1636 };

1638 module = {
1639 name = bitmap_scale;
1640 common = video/bitmap_scale.c;
1641 enable = videomodules;
1642 };

1644 module = {
1645 name = efi_gop;
1646 efi = video/efi_gop.c;
1647 enable = efi;
1648 };

1650 module = {
1651 name = efi_uga;
1652 efi = video/efi_uga.c;
1653 enable = i386_efi;
1654 enable = x86_64_efi;
1655 };

1657 module = {
1658 name = jpeg;
1659 common = video/readers/jpeg.c;
1660 };

1662 module = {
1663 name = png;
1664 common = video/readers/png.c;
1665 };

1667 module = {
1668 name = tga;
1669 common = video/readers/tga.c;
1670 };

1672 module = {
1673 name = vbe;
1674 common = video/i386/pc/vbe.c;
1675 enable = i386_pc;
1676 enable = i386_coreboot;

new/grub/grub-core/Makefile.core.def 4

1677 enable = i386_multiboot;
1678 };

1680 module = {
1681 name = video_fb;
1682 common = video/fb/video_fb.c;
1683 common = video/fb/fbblit.c;
1684 common = video/fb/fbfill.c;
1685 common = video/fb/fbutil.c;
1686 enable = videomodules;
1687 };

1689 module = {
1690 name = video;
1691 common = video/video.c;
1692 common = video/colors.c;
1693 enable = videomodules;
1694 };

1696 module = {
1697 name = ieee1275_fb;
1698 ieee1275 = video/ieee1275.c;
1699 enable = powerpc_ieee1275;
1700 };

1702 module = {
1703 name = sdl;
1704 emu = video/emu/sdl.c;
1705 enable = emu;
1706 condition = COND_GRUB_EMU_SDL;
1707 };

1709 module = {
1710 name = datehook;
1711 common = hook/datehook.c;
1712 };

1714 module = {
1715 name = net;
1716 common = net/net.c;
1717 common = net/dns.c;
1718 common = net/bootp.c;
1719 common = net/ip.c;
1720 common = net/udp.c;
1721 common = net/tcp.c;
1722 common = net/icmp.c;
1723 common = net/icmp6.c;
1724 common = net/ethernet.c;
1725 common = net/arp.c;
1726 common = net/netbuff.c;
1727 };

1729 module = {
1730 name = tftp;
1731 common = net/tftp.c;
1732 };

1734 module = {
1735 name = http;
1736 common = net/http.c;
1737 };

1739 module = {
1740 name = ofnet;
1741 common = net/drivers/ieee1275/ofnet.c;
1742 enable = ieee1275;

new/grub/grub-core/Makefile.core.def 5

1743 };

1745 module = {
1746 name = efinet;
1747 common = net/drivers/efi/efinet.c;
1748 enable = efi;
1749 };

1751 module = {
1752 name = emunet;
1753 emu = net/drivers/emu/emunet.c;
1754 enable = emu;
1755 };

1757 module = {
1758 name = legacycfg;
1759 common = commands/legacycfg.c;
1760 common = lib/legacy_parse.c;
1761 emu = lib/i386/pc/vesa_modes_table.c;
1762 enable = i386_pc;
1763 enable = emu;
1764 };

1766 module = {
1767 name = test_blockarg;
1768 common = tests/test_blockarg.c;
1769 };

1771 module = {
1772 name = xzio;
1773 common = io/xzio.c;
1774 common = lib/xzembed/xz_dec_bcj.c;
1775 common = lib/xzembed/xz_dec_lzma2.c;
1776 common = lib/xzembed/xz_dec_stream.c;
1777 cppflags = ’-I$(srcdir)/lib/posix_wrap -I$(srcdir)/lib/xzembed’;
1778 cflags=’-Wno-unreachable-code’;
1779 };

1781 module = {
1782 name = lzopio;
1783 common = io/lzopio.c;
1784 common = lib/minilzo/minilzo.c;
1785 cflags = ’$(CFLAGS_POSIX) -Wno-undef -Wno-redundant-decls -Wno-error’;
1786 cppflags = ’-I$(srcdir)/lib/posix_wrap -I$(srcdir)/lib/minilzo -DMINILZO_HAVE_
1787 };

1789 module = {
1790 name = testload;
1791 common = commands/testload.c;
1792 };

1794 module = {
1795 name = backtrace;
1796 x86 = lib/i386/backtrace.c;
1797 common = lib/backtrace.c;
1798 enable = x86;
1799 };

1801 module = {
1802 name = lsapm;
1803 common = commands/i386/pc/lsapm.c;
1804 enable = i386_pc;
1805 };

1807 module = {
1808 name = keylayouts;

new/grub/grub-core/Makefile.core.def 6

1809 common = commands/keylayouts.c;
1810 enable = videomodules;
1811 };

1813 module = {
1814 name = priority_queue;
1815 common = lib/priority_queue.c;
1816 };

1818 module = {
1819 name = time;
1820 common = commands/time.c;
1821 };

1823 module = {
1824 name = cacheinfo;
1825 common = commands/cacheinfo.c;
1826 condition = COND_ENABLE_CACHE_STATS;
1827 };

1829 module = {
1830 name = adler32;
1831 common = lib/adler32.c;
1832 };

1834 module = {
1835 name = crc64;
1836 common = lib/crc64.c;
1837 };

1839 module = {
1840 name = all_video;
1841 common = lib/fake_module.c;
1842 };

1844 module = {
1845 name = gdb;
1846 common = gdb/cstub.c;
1847 common = gdb/gdb.c;
1848 i386 = gdb/i386/idt.c;
1849 i386 = gdb/i386/machdep.S;
1850 i386 = gdb/i386/signal.c;
1851 enable = i386;
1852 };

new/grub/grub-core/commands/illumos_entries.c 1

**
 4544 Fri Aug 31 05:08:50 2012
new/grub/grub-core/commands/illumos_entries.c
grub patch
**

1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (C) 2012 Daniil Lunev
4 *
5 * GRUB is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *

10 * GRUB is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
17 */

19 #include <grub/types.h>
20 #include <grub/file.h>
21 #include <grub/disk.h>
22 #include <grub/misc.h>
23 #include <grub/err.h>
24 #include <grub/dl.h>
25 #include <grub/extcmd.h>
26 #include <grub/i18n.h>
27 #include <grub/normal.h>

29 #include "menu_managing.c"

31 GRUB_MOD_LICENSE ("GPLv3+");

33 static const struct grub_arg_option options[] = {
34 {0, 0, 0, 0, 0, 0}
35 };

37 static const char * globals[] = {
38 "default_entry",
39 "timeout",
40 "serial",
41 "terminal",
42 NULL
43 };

45 static grub_err_t
46 get_value(char * buf, char ** value)
47 {
48 *value = grub_strchr(buf, ’=’);
49 if (! *value)
50 return grub_error (GRUB_ERR_INVALID_COMMAND, N_("illumos syntax error"));
51 **value = ’\0’;
52 ++(*value);
53 return 0;
54 }

56 static int
57 check_param(char * param)
58 {
59 int i = 0;
60
61 for (; params_list[i]; ++i)

new/grub/grub-core/commands/illumos_entries.c 2

62 if (!grub_strcmp(param, params_list[i]))
63 return i;
64
65 return -1;
66 }

68 static int
69 check_global(char * param)
70 {
71 int i = 0;
72
73 for (; globals[i]; ++i)
74 if (!grub_strcmp(param, globals[i]))
75 return i;
76
77 return -1;
78 }

80 static grub_err_t
81 parse_config(grub_file_t file, entries * entry_list)
82 {
83 char * param;
84 char * value;
85 entries * current_entry = NULL;
86 int param_id = 0;
87 int global_id = 0;
88 grub_err_t err;
89
90 for(;;) {
91 param = grub_file_getline(file);
92 if (! param)
93 return grub_errno;

95 if ((*param == ’#’) || (*param == ’ ’) ||
96 (*param == ’\t’) || (*param == ’\n’) ||
97 (*param == 0)) {
98 grub_free(param);
99 continue;
100 }
101 global_id = -1;
102
103 err = get_value(param, &value);
104 if (err)
105 return err;

107 param_id = check_param(param);
108 if (param_id < 0) {
109 global_id = check_global(param);
110 if (global_id < 0) {
111 grub_free(param);
112 return grub_error (GRUB_ERR_INVALID_COMMAND, N_("illumos syntax error"))
113 }
114 }
115 if (err)
116 return err;
117 if (!value[0])
118 return grub_error (GRUB_ERR_INVALID_COMMAND, N_("illumos syntax error"));
119 if (global_id < 0) {
120 if (param_id == 0) {
121 current_entry = new_entry(value, entry_list);
122 if (! current_entry) {
123 grub_free(param);
124 return grub_error (GRUB_ERR_OUT_OF_MEMORY, N_("memory can not be alloc
125 }
126 } else {
127 grub_strcpy(current_entry->entry_info[param_id], value);

new/grub/grub-core/commands/illumos_entries.c 3

128 }
129 } else {
130 char line[512];
131 switch (global_id) {
132 case 0:
133 grub_env_set("default", value);
134 break;
135 case 1:
136 grub_env_set("timeout", value);
137 break;
138 case 2:
139 grub_strcpy(line, "serial ");
140 grub_strcat(line, value);
141 grub_normal_parse_line(line, NULL);
142 break;
143 case 3:
144 grub_strcpy(line, "terminal_input ");
145 grub_strcat(line, value);
146 grub_strcat(line, "; terminal_output ");
147 grub_strcat(line, value);
148 grub_normal_parse_line(line, NULL);
149 break;
150 default:
151 break;
152 }
153 }
154 grub_free(param);
155 }
156 return 0;
157 }

159 static grub_err_t
160 grub_cmd_illumos_entries (grub_extcmd_context_t ctxt __attribute__ ((unused)), i
161 {
162 grub_file_t file;
163 entries * menu_entries = NULL;
164
165 if (argc != 1)
166 return grub_error (GRUB_ERR_BAD_ARGUMENT, N_("filename expected"));
167
168 file = grub_file_open(args[0]);
169
170 if (!file)
171 return grub_errno;
172
173 init_entries(&menu_entries);
174
175 if (parse_config(file, menu_entries) == 0) {
176 add_entries(menu_entries);
177 }
178 clear_entries(menu_entries);
179
180 grub_refresh();
181 grub_file_close(file);

183 return 0;
184 }

186 static grub_extcmd_t illumos_entries;

188 GRUB_MOD_INIT(illumos_entries)
189 {
190 illumos_entries = grub_register_extcmd ("illumos_entries", grub_cmd_illumos_en
191 N_("FILE"), N_("Define an illumos menu entries."), options);
192 }

new/grub/grub-core/commands/illumos_entries.c 4

194 GRUB_MOD_FINI(illumos_entries)
195 {
196 grub_unregister_extcmd (illumos_entries);
197 }
198 #endif /* ! codereview */

new/grub/grub-core/commands/menu_managing.c 1

**
 5949 Fri Aug 31 05:08:50 2012
new/grub/grub-core/commands/menu_managing.c
grub patch
**

1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (C) 2012 Daniil Lunev
4 *
5 * GRUB is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *

10 * GRUB is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
17 */

19 #define VALUE_SIZE 512

21 typedef struct entries entries;
22 struct entries {
23 entries *next;
24 char ** entry_info;
25 };

27 enum param_consts {
28 ENTRY_NAME,
29 POOL_UUID,
30 POOL_LABEL,
31 DATA_SET,
32 KERNEL_PATH,
33 KERNEL_OPTIONS,
34 BA_PATH,
35 DOLLAR_KERNEL_PATH,
36 DOLLAR_BA_PATH,
37 };

39 static const char * params_list[] = {
40 "entry_name",
41 "pool_uuid",
42 "pool_label",
43 "data_set",
44 "kernel_path",
45 "kernel_options",
46 "module",
47 "kernel_path$",
48 "module$",
49 NULL
50 };

52 static grub_err_t
53 init_entries(entries ** menu_entries)
54 {
55 (*menu_entries) = (entries*) grub_zalloc(sizeof (menu_entries));
56 if (! *menu_entries)
57 return grub_error (GRUB_ERR_OUT_OF_MEMORY, N_("memory can not be allocated")
58 return 0;
59 }

61 static entries *

new/grub/grub-core/commands/menu_managing.c 2

62 new_entry(char * name, entries * entry_list)
63 {
64 unsigned int i;

66 if (entry_list->next)
67 do {
68 entry_list = entry_list->next;
69 if (!grub_strcmp(name, entry_list->entry_info[0]))
70 return entry_list;
71 } while (entry_list->next);
72 entry_list->next = (entries*) grub_zalloc(sizeof(entries));
73 if (! entry_list->next)
74 return NULL;
75 entry_list = entry_list->next;
76 entry_list->entry_info = (char**) grub_zalloc(sizeof(params_list));
77 for (i = 0; i < sizeof(params_list) / sizeof(*params_list); i++) {
78 entry_list->entry_info[i] = (char *) grub_zalloc(VALUE_SIZE);
79 if (! entry_list->entry_info[i])
80 return NULL;
81 }
82 grub_strcpy(entry_list->entry_info[0], name);
83 return entry_list;
84 }

86 static void
87 clear_entries(entries * entry_list)
88 {
89 entries * next;
90 unsigned int i;

92 next = entry_list->next;
93 grub_free(entry_list);
94 entry_list = next;

96 while (entry_list) {
97 next = entry_list->next;
98 if (entry_list->entry_info) {
99 for (i = 0; i < sizeof(params_list) / sizeof(*params_list); i++)
100 if (entry_list->entry_info[i])
101 grub_free(entry_list->entry_info[i]);
102 grub_free(entry_list->entry_info);
103 }
104 grub_free(entry_list);
105 entry_list = next;
106 }
107 }

109 static grub_err_t
110 add_entries(entries * menu_entries)
111 {
112 grub_err_t err;
113 char cl1[] = "os";
114 char cl2[] = "illumos";
115 char * class[] = {cl1, cl2, NULL};
116 char * argv[] = { NULL, NULL };
117 char id[512];
118 char * entry_source = NULL;
119 char * data_set;
120 char entry_template[] =
121 "insmod part_sunpc\n"
122 "insmod part_msdos\n"
123 "insmod zfs\n"
124 "insmod gzio\n"
125 "if cpuid -l ; then\n"
126 " ISADIR=amd64\n"
127 "else\n"

new/grub/grub-core/commands/menu_managing.c 3

128 " ISADIR=\n"
129 "fi\n";

131 menu_entries = menu_entries->next;
132 while (menu_entries) {
133 argv[0] = grub_strdup(menu_entries->entry_info[ENTRY_NAME]);
134 if (!argv[0])
135 return grub_error (GRUB_ERR_OUT_OF_MEMORY, N_("memory can not be allocated
136 entry_source = (char*) grub_zalloc(2048);

138 if (!entry_source)
139 return grub_error (GRUB_ERR_OUT_OF_MEMORY, N_("memory can not be allocated

141 if (menu_entries->entry_info[DATA_SET][0] != 0)
142 data_set = grub_strchr(menu_entries->entry_info[DATA_SET], ’/’);
143 else
144 data_set = grub_strdup("$ZFS_DATASET");
145 grub_strcpy(entry_source, entry_template);
146 if (menu_entries->entry_info[POOL_UUID][0]) {
147 grub_strcat(entry_source, "search --no-floppy --zfs-mirror --fs-uuid --set
148 grub_strcat(entry_source, menu_entries->entry_info[POOL_UUID]);
149 } else {
150 grub_strcat(entry_source, "search --no-floppy --zfs-mirror --label --set=r
151 grub_strcat(entry_source, menu_entries->entry_info[POOL_LABEL]);
152 }
153 grub_strcat(entry_source, "\n");
154 grub_strcat(entry_source, "zfs-bootfs ($root)");
155 if (menu_entries->entry_info[DATA_SET][0] != 0) {
156 grub_strcat(entry_source, data_set);
157 grub_strcat(entry_source, " ZFS_BOOTFS\n");
158 } else {
159 grub_strcat(entry_source, "default ZFS_BOOTFS ZFS_DATASET\n");
160 }
161 grub_strcat(entry_source, "multiboot ($root)");
162 if (! menu_entries->entry_info[DOLLAR_KERNEL_PATH][0]) {
163 grub_strcat(entry_source, data_set);
164 grub_strcat(entry_source, "/@");
165 grub_strcat(entry_source, menu_entries->entry_info[KERNEL_PATH]);
166 grub_strcat(entry_source, " ");
167 grub_strcat(entry_source, menu_entries->entry_info[KERNEL_PATH]);
168 } else {
169 grub_strcat(entry_source, menu_entries->entry_info[DOLLAR_KERNEL_PATH]);
170 }
171 grub_strcat(entry_source, " ");
172 grub_strcat(entry_source, menu_entries->entry_info[KERNEL_OPTIONS]);
173 grub_strcat(entry_source, "\n");
174 grub_strcat(entry_source, "module ($root)");
175 if (! menu_entries->entry_info[DOLLAR_KERNEL_PATH][0]) {
176 grub_strcat(entry_source, data_set);
177 grub_strcat(entry_source, "/@");
178 grub_strcat(entry_source, menu_entries->entry_info[BA_PATH]);
179 grub_strcat(entry_source, " ");
180 grub_strcat(entry_source, menu_entries->entry_info[BA_PATH]);
181 } else {
182 grub_strcat(entry_source, menu_entries->entry_info[DOLLAR_BA_PATH]);
183 }

185 grub_strcpy(id, argv[0]);
186 grub_strcat(id, "-");
187 grub_strcat(id, menu_entries->entry_info[POOL_UUID]);

189 err = grub_normal_add_menu_entry (2, (const char **) argv, class, id,
190 NULL, NULL, NULL, entry_source, 0);

192 if (err)
193 return err;

new/grub/grub-core/commands/menu_managing.c 4

194
195 grub_free(argv[0]);
196 menu_entries = menu_entries->next;
197 }
198 grub_free(entry_source);
199 return 0;
200 }
201 #endif /* ! codereview */

new/grub/grub-core/commands/search.c 1

**
 7395 Fri Aug 31 05:08:51 2012
new/grub/grub-core/commands/search.c
fixes + mirror
**

1 /* search.c - search devices based on a file or a filesystem label */
2 /*
3 * GRUB -- GRand Unified Bootloader
4 * Copyright (C) 2005,2007,2008,2009 Free Software Foundation, Inc.
5 *
6 * GRUB is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.

10 *
11 * GRUB is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
18 */

20 #include <grub/types.h>
21 #include <grub/misc.h>
22 #include <grub/mm.h>
23 #include <grub/err.h>
24 #include <grub/dl.h>
25 #include <grub/zfs/zfs.h>
26 #endif /* ! codereview */
27 #include <grub/device.h>
28 #include <grub/file.h>
29 #include <grub/env.h>
30 #include <grub/command.h>
31 #include <grub/search.h>
32 #include <grub/i18n.h>
33 #include <grub/disk.h>
34 #include <grub/partition.h>

36 GRUB_MOD_LICENSE ("GPLv3+");

38 struct cache_entry
39 {
40 struct cache_entry *next;
41 char *key;
42 char *value;
43 };

45 static struct cache_entry *cache;

47 void
48 FUNC_NAME (const char *key, const char *var, int no_floppy,
49 char **hints, unsigned nhints, int mirror)
25 char **hints, unsigned nhints)
50 {
51 int count = 0;
52 int is_cache = 0;
53 grub_uint64_t txg = 0;
54 #endif /* ! codereview */
55 grub_fs_autoload_hook_t saved_autoload;

57 auto int iterate_device (const char *name);
58 int iterate_device (const char *name)
59 {
60 int found = 0;

new/grub/grub-core/commands/search.c 2

62 /* Skip floppy drives when requested. */
63 if (no_floppy &&
64 name[0] == ’f’ && name[1] == ’d’ && name[2] >= ’0’ && name[2] <= ’9’)
65 return 0;

67 #ifdef DO_SEARCH_FS_UUID
68 #define compare_fn grub_strcasecmp
69 #else
70 #define compare_fn grub_strcmp
71 #endif

73 #ifdef DO_SEARCH_FILE
74 {
75 char *buf;
76 grub_file_t file;

78 buf = grub_xasprintf ("(%s)%s", name, key);
79 if (! buf)
80 return 1;

82 grub_file_filter_disable_compression ();
83 file = grub_file_open (buf);
84 if (file)
85 {
86 found = 1;
87 grub_file_close (file);
88 }
89 grub_free (buf);
90 }
91 #else
92 {
93 /* SEARCH_FS_UUID or SEARCH_LABEL */
94 grub_device_t dev;
95 grub_fs_t fs;
96 char *quid;

98 dev = grub_device_open (name);
99 if (dev)
100 {
101 fs = grub_fs_probe (dev);

103 #ifdef DO_SEARCH_FS_UUID
104 #define read_fn uuid
105 #else
106 #define read_fn label
107 #endif

109 if (fs && fs->read_fn)
110 {
111 fs->read_fn (dev, &quid);

113 if (grub_errno == GRUB_ERR_NONE && quid)
114 {
115 if (compare_fn (quid, key) == 0)
116 found = 1;

118 grub_free (quid);
119 }
120 }

122 grub_device_close (dev);
123 }
124 }
125 #endif

new/grub/grub-core/commands/search.c 3

127 if (!is_cache && found && count == 0)
128 {
129 struct cache_entry *cache_ent;
130 cache_ent = grub_malloc (sizeof (*cache_ent));
131 if (cache_ent)
132 {
133 cache_ent->key = grub_strdup (key);
134 cache_ent->value = grub_strdup (name);
135 if (cache_ent->value && cache_ent->key)
136 {
137 cache_ent->next = cache;
138 cache = cache_ent;
139 }
140 else
141 {
142 grub_free (cache_ent->value);
143 grub_free (cache_ent->key);
144 grub_free (cache_ent);
145 grub_errno = GRUB_ERR_NONE;
146 }
147 }
148 else
149 grub_errno = GRUB_ERR_NONE;
150 }

152 if (found)
153 {
154 count++;
155 if (var) {
156 if (! mirror) {
157 grub_env_set (var, name);
158 } else {
159 grub_uint64_t tmp_txg = 0;
160 char * nvlist = NULL;
161 grub_device_t dev = grub_device_open (name);
162 if (! dev) {
163 grub_errno = GRUB_ERR_BAD_DEVICE;
164 return 0;
165 }
166 grub_errno = grub_zfs_fetch_nvlist (dev, &nvlist);
167 grub_device_close (dev);
168 if (grub_errno)
169 return 0;
170 grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_TXG, &tmp_t
171 if (tmp_txg > txg) {
29 if (var)
172 grub_env_set (var, name);
173 txg = tmp_txg;
174 }
175 grub_free (nvlist);
176 }
177 } else {
31 else
178 grub_printf (" %s", name);
179 }
180 }
181 #endif /* ! codereview */

183 grub_errno = GRUB_ERR_NONE;
184 return (found && var && !mirror);
34 return (found && var);
185 }

187 auto int part_hook (grub_disk_t disk, const grub_partition_t partition);
188 int part_hook (grub_disk_t disk, const grub_partition_t partition)
189 {

new/grub/grub-core/commands/search.c 4

190 char *partition_name, *devname;
191 int ret;

193 partition_name = grub_partition_get_name (partition);
194 if (! partition_name)
195 return 1;

197 devname = grub_xasprintf ("%s,%s", disk->name, partition_name);
198 grub_free (partition_name);
199 if (!devname)
200 return 1;
201 ret = iterate_device (devname);
202 grub_free (devname);

204 return ret;
205 }

207 auto void try (void);
208 void try (void)
209 {
210 unsigned i;
211 struct cache_entry **prev;
212 struct cache_entry *cache_ent;

214 for (prev = &cache, cache_ent = *prev; cache_ent;
215 prev = &cache_ent->next, cache_ent = *prev)
216 if (compare_fn (cache_ent->key, key) == 0)
217 break;
218 if (cache_ent)
219 {
220 is_cache = 1;
221 if (iterate_device (cache_ent->value))
222 {
223 is_cache = 0;
224 return;
225 }
226 is_cache = 0;
227 /* Cache entry was outdated. Remove it. */
228 if (!count)
229 {
230 grub_free (cache_ent->key);
231 grub_free (cache_ent->value);
232 grub_free (cache_ent);
233 *prev = cache_ent->next;
234 }
235 }

237 for (i = 0; i < nhints; i++)
238 {
239 char *end;
240 if (!hints[i][0])
241 continue;
242 end = hints[i] + grub_strlen (hints[i]) - 1;
243 if (*end == ’,’)
244 *end = 0;
245 if (iterate_device (hints[i]))
246 {
247 if (!*end)
248 *end = ’,’;
249 return;
250 }
251 if (!*end)
252 {
253 grub_device_t dev;
254 int ret;
255 dev = grub_device_open (hints[i]);

new/grub/grub-core/commands/search.c 5

256 if (!dev)
257 {
258 if (!*end)
259 *end = ’,’;
260 continue;
261 }
262 if (!dev->disk)
263 {
264 grub_device_close (dev);
265 if (!*end)
266 *end = ’,’;
267 continue;
268 }
269 ret = grub_partition_iterate (dev->disk, part_hook);
270 if (!*end)
271 *end = ’,’;
272 grub_device_close (dev);
273 if (ret)
274 return;
275 }
276 }
277 grub_device_iterate (iterate_device);
278 }

280 /* First try without autoloading if we’re setting variable. */
281 if (var)
282 {
283 saved_autoload = grub_fs_autoload_hook;
284 grub_fs_autoload_hook = 0;
285 try ();

287 /* Restore autoload hook. */
288 grub_fs_autoload_hook = saved_autoload;

290 /* Retry with autoload if nothing found. */
291 if (grub_errno == GRUB_ERR_NONE && count == 0)
292 try ();
293 }
294 else
295 try ();

297 if (grub_errno == GRUB_ERR_NONE && count == 0)
298 grub_error (GRUB_ERR_FILE_NOT_FOUND, "no such device: %s", key);
299 }

301 static grub_err_t
302 grub_cmd_do_search (grub_command_t cmd __attribute__ ((unused)), int argc,
303 char **args)
304 {
305 if (argc == 0)
306 return grub_error (GRUB_ERR_BAD_ARGUMENT, N_("one argument expected"));

308 FUNC_NAME (args[0], argc == 1 ? 0 : args[1], 0, (args + 2),
309 argc > 2 ? argc - 2 : 0, 0);
159 argc > 2 ? argc - 2 : 0);

311 return grub_errno;
312 }

______unchanged_portion_omitted_

new/grub/grub-core/commands/search_wrap.c 1

**
 6857 Fri Aug 31 05:08:51 2012
new/grub/grub-core/commands/search_wrap.c
fixes + mirror
**

1 /* search.c - search devices based on a file or a filesystem label */
2 /*
3 * GRUB -- GRand Unified Bootloader
4 * Copyright (C) 2005,2007,2008,2009 Free Software Foundation, Inc.
5 *
6 * GRUB is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.

10 *
11 * GRUB is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
18 */

20 #include <grub/types.h>
21 #include <grub/misc.h>
22 #include <grub/mm.h>
23 #include <grub/err.h>
24 #include <grub/dl.h>
25 #include <grub/env.h>
26 #include <grub/extcmd.h>
27 #include <grub/search.h>
28 #include <grub/i18n.h>

30 GRUB_MOD_LICENSE ("GPLv3+");

32 static const struct grub_arg_option options[] =
33 {
34 {"file", ’f’, 0, N_("Search devices by a file."), 0, 0},
35 {"label", ’l’, 0, N_("Search devices by a filesystem label."),
36 0, 0},
37 {"fs-uuid", ’u’, 0, N_("Search devices by a filesystem UUID."),
38 0, 0},
39 {"set", ’s’, GRUB_ARG_OPTION_OPTIONAL,
40 N_("Set a variable to the first device found."), N_("VARNAME"),
41 ARG_TYPE_STRING},
42 {"no-floppy", ’n’, 0, N_("Do not probe any floppy drive."), 0, 0},
43 {"hint", ’h’, GRUB_ARG_OPTION_REPEATABLE,
44 N_("First try the device HINT. If HINT ends in comma, "
45 "also try subpartitions"), N_("HINT"), ARG_TYPE_STRING},
46 {"hint-ieee1275", 0, GRUB_ARG_OPTION_REPEATABLE,
47 N_("First try the device HINT if currently running on IEEE1275. "
48 "If HINT ends in comma, also try subpartitions"),
49 N_("HINT"), ARG_TYPE_STRING},
50 {"hint-bios", 0, GRUB_ARG_OPTION_REPEATABLE,
51 N_("First try the device HINT if currently running on BIOS. "
52 "If HINT ends in comma, also try subpartitions"),
53 N_("HINT"), ARG_TYPE_STRING},
54 {"hint-baremetal", 0, GRUB_ARG_OPTION_REPEATABLE,
55 N_("First try the device HINT if direct hardware access is supported. "
56 "If HINT ends in comma, also try subpartitions"),
57 N_("HINT"), ARG_TYPE_STRING},
58 {"hint-efi", 0, GRUB_ARG_OPTION_REPEATABLE,
59 N_("First try the device HINT if currently running on EFI. "
60 "If HINT ends in comma, also try subpartitions"),
61 N_("HINT"), ARG_TYPE_STRING},

new/grub/grub-core/commands/search_wrap.c 2

62 {"hint-arc", 0, GRUB_ARG_OPTION_REPEATABLE,
63 N_("First try the device HINT if currently running on ARC."
64 " If HINT ends in comma, also try subpartitions"),
65 N_("HINT"), ARG_TYPE_STRING},
66 {"zfs-mirror", ’z’, 0, N_("Handle zfs-mirror disk"), 0, 0},
67 #endif /* ! codereview */
68 {0, 0, 0, 0, 0, 0}
69 };

71 enum options
72 {
73 SEARCH_FILE,
74 SEARCH_LABEL,
75 SEARCH_FS_UUID,
76 SEARCH_SET,
77 SEARCH_NO_FLOPPY,
78 SEARCH_HINT,
79 SEARCH_HINT_IEEE1275,
80 SEARCH_HINT_BIOS,
81 SEARCH_HINT_BAREMETAL,
82 SEARCH_HINT_EFI,
83 SEARCH_HINT_ARC,
84 SEARCH_ZFS_MIRROR,
85 #endif /* ! codereview */
86 };

88 static grub_err_t
89 grub_cmd_search (grub_extcmd_context_t ctxt, int argc, char **args)
90 {
91 struct grub_arg_list *state = ctxt->state;
92 const char *var = 0;
93 const char *id = 0;
94 int i = 0, j = 0, nhints = 0;
95 char **hints = NULL;
96 int mirror_mode = 0;
97 #endif /* ! codereview */

99 if (state[SEARCH_HINT].set)
100 for (i = 0; state[SEARCH_HINT].args[i]; i++)
101 nhints++;

103 #ifdef GRUB_MACHINE_IEEE1275
104 if (state[SEARCH_HINT_IEEE1275].set)
105 for (i = 0; state[SEARCH_HINT_IEEE1275].args[i]; i++)
106 nhints++;
107 #endif

109 #ifdef GRUB_MACHINE_EFI
110 if (state[SEARCH_HINT_EFI].set)
111 for (i = 0; state[SEARCH_HINT_EFI].args[i]; i++)
112 nhints++;
113 #endif

115 #ifdef GRUB_MACHINE_PCBIOS
116 if (state[SEARCH_HINT_BIOS].set)
117 for (i = 0; state[SEARCH_HINT_BIOS].args[i]; i++)
118 nhints++;
119 #endif

121 #ifdef GRUB_MACHINE_ARC
122 if (state[SEARCH_HINT_ARC].set)
123 for (i = 0; state[SEARCH_HINT_ARC].args[i]; i++)
124 nhints++;
125 #endif

127 if (state[SEARCH_HINT_BAREMETAL].set)

new/grub/grub-core/commands/search_wrap.c 3

128 for (i = 0; state[SEARCH_HINT_BAREMETAL].args[i]; i++)
129 nhints++;

131 hints = grub_malloc (sizeof (hints[0]) * nhints);
132 if (!hints)
133 return grub_errno;
134 j = 0;

136 if (state[SEARCH_HINT].set)
137 for (i = 0; state[SEARCH_HINT].args[i]; i++)
138 hints[j++] = state[SEARCH_HINT].args[i];

140 #ifdef GRUB_MACHINE_IEEE1275
141 if (state[SEARCH_HINT_IEEE1275].set)
142 for (i = 0; state[SEARCH_HINT_IEEE1275].args[i]; i++)
143 hints[j++] = state[SEARCH_HINT_IEEE1275].args[i];
144 #endif

146 #ifdef GRUB_MACHINE_EFI
147 if (state[SEARCH_HINT_EFI].set)
148 for (i = 0; state[SEARCH_HINT_EFI].args[i]; i++)
149 hints[j++] = state[SEARCH_HINT_EFI].args[i];
150 #endif

152 #ifdef GRUB_MACHINE_ARC
153 if (state[SEARCH_HINT_ARC].set)
154 for (i = 0; state[SEARCH_HINT_ARC].args[i]; i++)
155 hints[j++] = state[SEARCH_HINT_ARC].args[i];
156 #endif

158 #ifdef GRUB_MACHINE_PCBIOS
159 if (state[SEARCH_HINT_BIOS].set)
160 for (i = 0; state[SEARCH_HINT_BIOS].args[i]; i++)
161 hints[j++] = state[SEARCH_HINT_BIOS].args[i];
162 #endif

164 if (state[SEARCH_HINT_BAREMETAL].set)
165 for (i = 0; state[SEARCH_HINT_BAREMETAL].args[i]; i++)
166 hints[j++] = state[SEARCH_HINT_BAREMETAL].args[i];

168 /* Skip hints for future platforms. */
169 for (j = 0; j < argc; j++)
170 if (grub_memcmp (args[j], "--hint-", sizeof ("--hint-") - 1) != 0)
171 break;

173 if (state[SEARCH_SET].set)
174 var = state[SEARCH_SET].arg ? state[SEARCH_SET].arg : "root";

176 if (argc != j)
177 id = args[j];
178 else if (state[SEARCH_SET].set && state[SEARCH_SET].arg)
179 {
180 id = state[SEARCH_SET].arg;
181 var = "root";
182 }
183 else
184 return grub_error (GRUB_ERR_BAD_ARGUMENT, N_("one argument expected"));

186 if (state[SEARCH_ZFS_MIRROR].set)
187 mirror_mode = 1;

189 #endif /* ! codereview */
190 if (state[SEARCH_LABEL].set)
191 grub_search_label (id, var, state[SEARCH_NO_FLOPPY].set,
192 hints, nhints, mirror_mode);
66 hints, nhints);

new/grub/grub-core/commands/search_wrap.c 4

193 else if (state[SEARCH_FS_UUID].set)
194 grub_search_fs_uuid (id, var, state[SEARCH_NO_FLOPPY].set,
195 hints, nhints, mirror_mode);
69 hints, nhints);
196 else if (state[SEARCH_FILE].set)
197 grub_search_fs_file (id, var, state[SEARCH_NO_FLOPPY].set,
198 hints, nhints, mirror_mode);
72 hints, nhints);
199 else
200 return grub_error (GRUB_ERR_INVALID_COMMAND, "unspecified search type");

202 return grub_errno;
203 }

______unchanged_portion_omitted_

new/grub/grub-core/commands/solarislegacy.c 1

**
 5686 Fri Aug 31 05:08:52 2012
new/grub/grub-core/commands/solarislegacy.c
grub patch
**

1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (C) 2012 Daniil Lunev
4 *
5 * GRUB is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *

10 * GRUB is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
17 */

19 #include <grub/types.h>
20 #include <grub/misc.h>
21 #include <grub/command.h>
22 #include <grub/mm.h>
23 #include <grub/err.h>
24 #include <grub/dl.h>
25 #include <grub/file.h>
26 #include <grub/normal.h>
27 #include <grub/script_sh.h>
28 #include <grub/i18n.h>
29 #include <grub/term.h>
30 #include <grub/legacy_parse.h>
31 #include <grub/crypto.h>
32 #include <grub/auth.h>
33 #include <grub/disk.h>
34 #include <grub/partition.h>

36 #include "menu_managing.c"

38 GRUB_MOD_LICENSE ("GPLv3+");

40 static entries *
41 parse_entries(grub_file_t file)
42 {
43 entries * list = NULL;
44 entries * current = NULL;
45 init_entries(&list);
46 for(;;) {
47 char * buf = grub_file_getline(file);
48 char * param = buf;
49 char * value;
50
51 if (! buf)
52 break;
53
54 if ((buf[0] == ’#’) || (buf[0] == ’ ’) ||
55 (buf[0] == ’\t’) || (buf[0] == ’\n’)) {
56 grub_free(buf);
57 continue;
58 }

60 while ((*param == ’ ’) || (*param == ’\t’))
61 ++param;

new/grub/grub-core/commands/solarislegacy.c 2

63 value = grub_strchr(param, ’ ’);
64 if (! value)
65 value = grub_strchr(param, ’\t’);

67 if (! value) {
68 grub_free(buf);
69 continue;
70 }

72 *value++ = 0;
73 while ((*value == ’ ’) || (*value == ’\t’))
74 ++value;

76 if ((*value == ’\0’) || (*value == ’\n’)) {
77 grub_free(buf);
78 continue;
79 }
80
81 if (! grub_strcmp(param, "default")) {
82 } else if (! grub_strcmp(param, "timeout")) {
83 } else if (! grub_strcmp(param, "serial")) {
84 } else if (! grub_strcmp(param, "terminal")) {
85 } else if (! grub_strcmp(param, "title")) {
86 current = new_entry(value, list);
87 } else if (! grub_strcmp(param, "bootfs")) {
88 char * lpath;
89 if (! current) {
90 grub_free(buf);
91 grub_error (GRUB_ERR_INVALID_COMMAND, N_("illumos syntax error"));
92 return NULL;
93 }
94 lpath = grub_strchr(value, ’/’);
95 *lpath = 0;
96 grub_strcpy(current->entry_info[POOL_LABEL], value);
97 *lpath = ’/’;
98 grub_strcpy(current->entry_info[DATA_SET], lpath);
99 } else if (! grub_strcmp(param, "kernel$")) {
100 char * ender;
101 ender = grub_strchr(value, ’ ’);
102 if (! ender)
103 ender = grub_strchr(value, ’\t’);
104 if (ender)
105 *ender = 0;
106 grub_strcpy(current->entry_info[KERNEL_PATH], value);
107 if (ender) {
108 ++ender;
109 while ((*ender == ’ ’) || (*ender == ’\t’))
110 ++ender;
111 grub_strcpy(current->entry_info[KERNEL_OPTIONS], ender);
112 }
113 } else if (! grub_strcmp(param, "module$")) {
114 grub_strcpy(current->entry_info[BA_PATH], value);
115 } else {
116 grub_free(buf);
117 continue;
118 }
119 grub_free(buf);
120 }
121 return list;
122 }

124 static grub_err_t
125 grub_solaris_legacy_cmd(struct grub_command *cmd,
126 int argc, char **args)
127 {

new/grub/grub-core/commands/solarislegacy.c 3

128 int new_env, extractor;
129 extractor = (cmd->name[0] == ’e’);
130 new_env = (cmd->name[extractor ? (sizeof ("extract_slegacy_entries_") - 1)
131 : (sizeof ("slegacy_") - 1)] == ’c’);

134 if (argc != 1)
135 return grub_error (GRUB_ERR_BAD_ARGUMENT, N_("filename expected"));

137 grub_file_t file = grub_file_open(args[0]);

139 if (new_env)
140 grub_cls ();

142 if (new_env && !extractor)
143 grub_env_context_open ();
144 if (extractor)
145 grub_env_extractor_open (!new_env);

147 if (! file)
148 return grub_errno;

150 entries * list = parse_entries(file);

152 if (! list) {
153 return grub_error (GRUB_ERR_INVALID_COMMAND, N_("illumos syntax error"));
154 }
155
156 add_entries(list);

158 if (new_env)
159 {
160 grub_menu_t menu;
161 menu = grub_env_get_menu ();
162 if (menu && menu->size)
163 grub_show_menu (menu, 1, 0);
164 if (!extractor)
165 grub_env_context_close ();
166 }
167 if (extractor)
168 grub_env_extractor_close (!new_env);

170 clear_entries(list);

172 grub_file_close(file);
173 return 0;
174 }

176 static grub_command_t cmd_source, cmd_configfile;
177 static grub_command_t cmd_source_extract, cmd_configfile_extract;

179 GRUB_MOD_INIT(solaris_legacy)
180 {
181 cmd_source
182 = grub_register_command ("slegacy_source",
183 grub_solaris_legacy_cmd,
184 N_("FILE"),
185 /* TRANSLATORS: "legacy config" means
186 "config as used by grub-legacy". */
187 N_("Parse legacy config in same context"));
188 cmd_configfile
189 = grub_register_command ("slegacy_configfile",
190 grub_solaris_legacy_cmd,
191 N_("FILE"),
192 N_("Parse legacy config in new context"));
193 cmd_source_extract

new/grub/grub-core/commands/solarislegacy.c 4

194 = grub_register_command ("extract_slegacy_entries_source",
195 grub_solaris_legacy_cmd,
196 N_("FILE"),
197 N_("Parse legacy config in same context taking only menu entries"));
198 cmd_configfile_extract
199 = grub_register_command ("extract_slegacy_entries_configfile",
200 grub_solaris_legacy_cmd,
201 N_("FILE"),
202 N_("Parse legacy config in new context taking only menu entries"));

205 }

207 GRUB_MOD_FINI(solaris_legacy)
208 {
209 grub_unregister_command (cmd_source);
210 grub_unregister_command (cmd_configfile);
211 grub_unregister_command (cmd_source_extract);
212 grub_unregister_command (cmd_configfile_extract);
213 }
214 #endif /* ! codereview */

new/grub/grub-core/fs/zfs/zfs.c 1

**
 107224 Fri Aug 31 05:08:52 2012
new/grub/grub-core/fs/zfs/zfs.c
grub patch
**

1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (C) 1999,2000,2001,2002,2003,2004,2009,2010,2011 Free Software Fo
4 * Copyright 2010 Sun Microsystems, Inc.
5 * Copyright 2012 Daniil Lunev
6 #endif /* ! codereview */
7 *
8 * GRUB is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by

10 * the Free Software Foundation; either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * GRUB is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
20 */
21 /*
22 * The zfs plug-in routines for GRUB are:
23 *
24 * zfs_mount() - locates a valid uberblock of the root pool and reads
25 * in its MOS at the memory address MOS.
26 *
27 * zfs_open() - locates a plain file object by following the MOS
28 * and places its dnode at the memory address DNODE.
29 *
30 * zfs_read() - read in the data blocks pointed by the DNODE.
31 *
32 */

34 #include <grub/err.h>
35 #include <grub/file.h>
36 #include <grub/mm.h>
37 #include <grub/misc.h>
38 #include <grub/disk.h>
39 #include <grub/partition.h>
40 #include <grub/dl.h>
41 #include <grub/types.h>
42 #include <grub/zfs/zfs.h>
43 #include <grub/zfs/zio.h>
44 #include <grub/zfs/dnode.h>
45 #include <grub/zfs/uberblock_impl.h>
46 #include <grub/zfs/vdev_impl.h>
47 #include <grub/zfs/zio_checksum.h>
48 #include <grub/zfs/zap_impl.h>
49 #include <grub/zfs/zap_leaf.h>
50 #include <grub/zfs/zfs_znode.h>
51 #include <grub/zfs/dmu.h>
52 #include <grub/zfs/dmu_objset.h>
53 #include <grub/zfs/sa_impl.h>
54 #include <grub/zfs/dsl_dir.h>
55 #include <grub/zfs/dsl_dataset.h>
56 #include <grub/deflate.h>
57 #include <grub/crypto.h>
58 #include <grub/i18n.h>

60 GRUB_MOD_LICENSE ("GPLv3+");

new/grub/grub-core/fs/zfs/zfs.c 2

62 #define ZPOOL_PROP_BOOTFS "bootfs"

64 /*
65 * For nvlist manipulation. (from nvpair.h)
66 */
67 #define NV_ENCODE_NATIVE 0
68 #define NV_ENCODE_XDR 1
69 #define NV_BIG_ENDIAN 0
70 #define NV_LITTLE_ENDIAN 1
71 #define DATA_TYPE_UINT64 8
72 #define DATA_TYPE_STRING 9
73 #define DATA_TYPE_NVLIST 19
74 #define DATA_TYPE_NVLIST_ARRAY 20

76 #ifndef GRUB_UTIL
77 static grub_dl_t my_mod;
78 #endif

80 #define P2PHASE(x, align) ((x) & ((align) - 1))

82 static inline grub_disk_addr_t
83 DVA_OFFSET_TO_PHYS_SECTOR (grub_disk_addr_t offset)
84 {
85 return ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT);
86 }

88 /*
89 * FAT ZAP data structures
90 */
91 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
92 static inline grub_uint64_t
93 ZAP_HASH_IDX (grub_uint64_t hash, grub_uint64_t n)
94 {
95 return (((n) == 0) ? 0 : ((hash) >> (64 - (n))));
96 }

98 #define CHAIN_END 0xffff /* end of the chunk chain */

100 /*
101 * The amount of space within the chunk available for the array is:
102 * chunk size - space for type (1) - space for next pointer (2)
103 */
104 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)

106 static inline int
107 ZAP_LEAF_HASH_SHIFT (int bs)
108 {
109 return bs - 5;
110 }

112 static inline int
113 ZAP_LEAF_HASH_NUMENTRIES (int bs)
114 {
115 return 1 << ZAP_LEAF_HASH_SHIFT(bs);
116 }

118 static inline grub_size_t
119 LEAF_HASH (int bs, grub_uint64_t h, zap_leaf_phys_t *l)
120 {
121 return ((ZAP_LEAF_HASH_NUMENTRIES (bs)-1)
122 & ((h) >> (64 - ZAP_LEAF_HASH_SHIFT (bs) - l->l_hdr.lh_prefix_len)));
123 }

125 /*
126 * The amount of space available for chunks is:
127 * block size shift - hash entry size (2) * number of hash

new/grub/grub-core/fs/zfs/zfs.c 3

128 * entries - header space (2*chunksize)
129 */
130 static inline int
131 ZAP_LEAF_NUMCHUNKS (int bs)
132 {
133 return (((1 << bs) - 2 * ZAP_LEAF_HASH_NUMENTRIES (bs)) /
134 ZAP_LEAF_CHUNKSIZE - 2);
135 }

137 /*
138 * The chunks start immediately after the hash table. The end of the
139 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
140 * chunk_t.
141 */
142 static inline zap_leaf_chunk_t *
143 ZAP_LEAF_CHUNK (zap_leaf_phys_t *l, int bs, int idx)
144 {
145 return &((zap_leaf_chunk_t *) (l->l_entries
146 + (ZAP_LEAF_HASH_NUMENTRIES(bs) * 2)
147 / sizeof (grub_properly_aligned_t)))[idx];
148 }

150 static inline struct zap_leaf_entry *
151 ZAP_LEAF_ENTRY(zap_leaf_phys_t *l, int bs, int idx)
152 {
153 return &ZAP_LEAF_CHUNK(l, bs, idx)->l_entry;
154 }

157 /*
158 * Decompression Entry - lzjb
159 */

161 extern grub_err_t lzjb_decompress (void *, void *, grub_size_t, grub_size_t);

163 typedef grub_err_t zfs_decomp_func_t (void *s_start, void *d_start,
164 grub_size_t s_len, grub_size_t d_len);
165 typedef struct decomp_entry
166 {
167 const char *name;
168 zfs_decomp_func_t *decomp_func;
169 } decomp_entry_t;

171 /*
172 * Signature for checksum functions.
173 */
174 typedef void zio_checksum_t(const void *data, grub_uint64_t size,
175 grub_zfs_endian_t endian, zio_cksum_t *zcp);

177 /*
178 * Information about each checksum function.
179 */
180 typedef struct zio_checksum_info {
181 zio_checksum_t *ci_func; /* checksum function for each byteorder */
182 int ci_correctable; /* number of correctable bits */
183 int ci_eck; /* uses zio embedded checksum? */
184 const char *ci_name; /* descriptive name */
185 } zio_checksum_info_t;

187 typedef struct dnode_end
188 {
189 dnode_phys_t dn;
190 grub_zfs_endian_t endian;
191 } dnode_end_t;

193 struct grub_zfs_device_desc

new/grub/grub-core/fs/zfs/zfs.c 4

194 {
195 enum { DEVICE_LEAF, DEVICE_MIRROR, DEVICE_RAIDZ } type;
196 grub_uint64_t id;
197 grub_uint64_t guid;
198 unsigned ashift;
199 unsigned max_children_ashift;

201 /* Valid only for non-leafs. */
202 unsigned n_children;
203 struct grub_zfs_device_desc *children;

205 /* Valid only for RAIDZ. */
206 unsigned nparity;

208 /* Valid only for leaf devices. */
209 grub_device_t dev;
210 grub_disk_addr_t vdev_phys_sector;
211 uberblock_t current_uberblock;
212 int original;
213 };

215 struct subvolume
216 {
217 dnode_end_t mdn;
218 grub_uint64_t obj;
219 grub_uint64_t case_insensitive;
220 grub_size_t nkeys;
221 struct
222 {
223 grub_crypto_cipher_handle_t cipher;
224 grub_uint64_t txg;
225 grub_uint64_t algo;
226 } *keyring;
227 };

229 static const char * feature_list[] = {
230 "localhost:unknown_feature",
231 NULL,
232 };

234 typedef enum zfs_feature_id {
235 ZFS_FEATURE_UNKNOWN,
236 } zfs_feature_id_t;

238 struct enabled_feature_list {
239 struct enabled_feature_list * next;
240 zfs_feature_id_t id;
241 };

243 #endif /* ! codereview */
244 struct grub_zfs_data
245 {
246 /* cache for a file block of the currently zfs_open()-ed file */
247 char *file_buf;
248 grub_uint64_t file_start;
249 grub_uint64_t file_end;

251 /* cache for a dnode block */
252 dnode_phys_t *dnode_buf;
253 dnode_phys_t *dnode_mdn;
254 grub_uint64_t dnode_start;
255 grub_uint64_t dnode_end;
256 grub_zfs_endian_t dnode_endian;

258 dnode_end_t mos;
259 dnode_end_t dnode;

new/grub/grub-core/fs/zfs/zfs.c 5

260 struct subvolume subvol;

262 struct grub_zfs_device_desc *devices_attached;
263 unsigned n_devices_attached;
264 unsigned n_devices_allocated;
265 struct grub_zfs_device_desc *device_original;

267 uberblock_t current_uberblock;

269 struct enabled_feature_list * feature_list;
270
271 #endif /* ! codereview */
272 int mounted;
273 grub_uint64_t guid;
274 };

276 grub_err_t (*grub_zfs_decrypt) (grub_crypto_cipher_handle_t cipher,
277 grub_uint64_t algo,
278 void *nonce,
279 char *buf, grub_size_t size,
280 const grub_uint32_t *expected_mac,
281 grub_zfs_endian_t endian) = NULL;
282 grub_crypto_cipher_handle_t (*grub_zfs_load_key) (const struct grub_zfs_key *key
283 grub_size_t keysize,
284 grub_uint64_t salt,
285 grub_uint64_t algo) = NULL;

287 static grub_err_t
288 zlib_decompress (void *s, void *d,
289 grub_size_t slen, grub_size_t dlen)
290 {
291 if (grub_zlib_decompress (s, slen, 0, d, dlen) < 0)
292 return grub_errno;
293 return GRUB_ERR_NONE;
294 }

296 static grub_err_t
297 zle_decompress (void *s, void *d,
298 grub_size_t slen, grub_size_t dlen)
299 {
300 grub_uint8_t *iptr, *optr;
301 grub_size_t clen;
302 for (iptr = s, optr = d; iptr < (grub_uint8_t *) s + slen
303 && optr < (grub_uint8_t *) d + dlen;)
304 {
305 if (*iptr & 0x80)
306 clen = ((*iptr) & 0x7f) + 0x41;
307 else
308 clen = ((*iptr) & 0x3f) + 1;
309 if ((grub_ssize_t) clen > (grub_uint8_t *) d + dlen - optr)
310 clen = (grub_uint8_t *) d + dlen - optr;
311 if (*iptr & 0x40 || *iptr & 0x80)
312 {
313 grub_memset (optr, 0, clen);
314 iptr++;
315 optr += clen;
316 continue;
317 }
318 if ((grub_ssize_t) clen > (grub_uint8_t *) s + slen - iptr - 1)
319 clen = (grub_uint8_t *) s + slen - iptr - 1;
320 grub_memcpy (optr, iptr + 1, clen);
321 optr += clen;
322 iptr += clen + 1;
323 }
324 if (optr < (grub_uint8_t *) d + dlen)
325 grub_memset (optr, 0, (grub_uint8_t *) d + dlen - optr);

new/grub/grub-core/fs/zfs/zfs.c 6

326 return GRUB_ERR_NONE;
327 }

329 static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
330 {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */
331 {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */
332 {"off", NULL}, /* ZIO_COMPRESS_OFF */
333 {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */
334 {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */
335 {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */
336 {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */
337 {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */
338 {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */
339 {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */
340 {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */
341 {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */
342 {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */
343 {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */
344 {"zle", zle_decompress}, /* ZIO_COMPRESS_ZLE */
345 };

347 static grub_err_t zio_read_data (blkptr_t * bp, grub_zfs_endian_t endian,
348 void *buf, struct grub_zfs_data *data);

350 /*
351 * Our own version of log2(). Same thing as highbit()-1.
352 */
353 static int
354 zfs_log2 (grub_uint64_t num)
355 {
356 int i = 0;

358 while (num > 1)
359 {
360 i++;
361 num = num >> 1;
362 }

364 return (i);
365 }

367 /* Checksum Functions */
368 static void
369 zio_checksum_off (const void *buf __attribute__ ((unused)),
370 grub_uint64_t size __attribute__ ((unused)),
371 grub_zfs_endian_t endian __attribute__ ((unused)),
372 zio_cksum_t * zcp)
373 {
374 ZIO_SET_CHECKSUM (zcp, 0, 0, 0, 0);
375 }

377 /* Checksum Table and Values */
378 static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
379 {NULL, 0, 0, "inherit"},
380 {NULL, 0, 0, "on"},
381 {zio_checksum_off, 0, 0, "off"},
382 {zio_checksum_SHA256, 1, 1, "label"},
383 {zio_checksum_SHA256, 1, 1, "gang_header"},
384 {NULL, 0, 0, "zilog"},
385 {fletcher_2, 0, 0, "fletcher2"},
386 {fletcher_4, 1, 0, "fletcher4"},
387 {zio_checksum_SHA256, 1, 0, "SHA256"},
388 {NULL, 0, 0, "zilog2"},
389 {zio_checksum_SHA256, 1, 0, "SHA256+MAC"},
390 };

new/grub/grub-core/fs/zfs/zfs.c 7

392 /*
393 * zio_checksum_verify: Provides support for checksum verification.
394 *
395 * Fletcher2, Fletcher4, and SHA256 are supported.
396 *
397 */
398 static grub_err_t
399 zio_checksum_verify (zio_cksum_t zc, grub_uint32_t checksum,
400 grub_zfs_endian_t endian,
401 char *buf, grub_size_t size)
402 {
403 zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
404 zio_checksum_info_t *ci = &zio_checksum_table[checksum];
405 zio_cksum_t actual_cksum, expected_cksum;

407 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL)
408 {
409 grub_dprintf ("zfs", "unknown checksum function %d\n", checksum);
410 return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
411 "unknown checksum function %d", checksum);
412 }

414 if (ci->ci_eck)
415 {
416 expected_cksum = zec->zec_cksum;
417 zec->zec_cksum = zc;
418 ci->ci_func (buf, size, endian, &actual_cksum);
419 zec->zec_cksum = expected_cksum;
420 zc = expected_cksum;
421 }
422 else
423 ci->ci_func (buf, size, endian, &actual_cksum);

425 if (grub_memcmp (&actual_cksum, &zc,
426 checksum != ZIO_CHECKSUM_SHA256_MAC ? 32 : 20) != 0)
427 {
428 grub_dprintf ("zfs", "checksum %s verification failed\n", ci->ci_name);
429 grub_dprintf ("zfs", "actual checksum %016llx %016llx %016llx %016llx\n",
430 (unsigned long long) actual_cksum.zc_word[0],
431 (unsigned long long) actual_cksum.zc_word[1],
432 (unsigned long long) actual_cksum.zc_word[2],
433 (unsigned long long) actual_cksum.zc_word[3]);
434 grub_dprintf ("zfs", "expected checksum %016llx %016llx %016llx %016llx\n"
435 (unsigned long long) zc.zc_word[0],
436 (unsigned long long) zc.zc_word[1],
437 (unsigned long long) zc.zc_word[2],
438 (unsigned long long) zc.zc_word[3]);
439 return grub_error (GRUB_ERR_BAD_FS, N_("checksum verification failed"));
440 }

442 return GRUB_ERR_NONE;
443 }

445 /*
446 * vdev_uberblock_compare takes two uberblock structures and returns an integer
447 * indicating the more recent of the two.
448 * Return Value = 1 if ub2 is more recent
449 * Return Value = -1 if ub1 is more recent
450 * The most recent uberblock is determined using its transaction number and
451 * timestamp. The uberblock with the highest transaction number is
452 * considered "newer". If the transaction numbers of the two blocks match, the
453 * timestamps are compared to determine the "newer" of the two.
454 */
455 static int
456 vdev_uberblock_compare (uberblock_t * ub1, uberblock_t * ub2)
457 {

new/grub/grub-core/fs/zfs/zfs.c 8

458 grub_zfs_endian_t ub1_endian, ub2_endian;
459 if (grub_zfs_to_cpu64 (ub1->ub_magic, GRUB_ZFS_LITTLE_ENDIAN)
460 == UBERBLOCK_MAGIC)
461 ub1_endian = GRUB_ZFS_LITTLE_ENDIAN;
462 else
463 ub1_endian = GRUB_ZFS_BIG_ENDIAN;
464 if (grub_zfs_to_cpu64 (ub2->ub_magic, GRUB_ZFS_LITTLE_ENDIAN)
465 == UBERBLOCK_MAGIC)
466 ub2_endian = GRUB_ZFS_LITTLE_ENDIAN;
467 else
468 ub2_endian = GRUB_ZFS_BIG_ENDIAN;

470 if (grub_zfs_to_cpu64 (ub1->ub_txg, ub1_endian)
471 < grub_zfs_to_cpu64 (ub2->ub_txg, ub2_endian))
472 return (-1);
473 if (grub_zfs_to_cpu64 (ub1->ub_txg, ub1_endian)
474 > grub_zfs_to_cpu64 (ub2->ub_txg, ub2_endian))
475 return (1);

477 if (grub_zfs_to_cpu64 (ub1->ub_timestamp, ub1_endian)
478 < grub_zfs_to_cpu64 (ub2->ub_timestamp, ub2_endian))
479 return (-1);
480 if (grub_zfs_to_cpu64 (ub1->ub_timestamp, ub1_endian)
481 > grub_zfs_to_cpu64 (ub2->ub_timestamp, ub2_endian))
482 return (1);

484 return (0);
485 }

487 /*
488 * Three pieces of information are needed to verify an uberblock: the magic
489 * number, the version number, and the checksum.
490 *
491 * Currently Implemented: version number, magic number, checksum
492 *
493 */
494 static grub_err_t
495 uberblock_verify (uberblock_phys_t * ub, grub_uint64_t offset,
496 grub_size_t s)
497 {
498 uberblock_t *uber = &ub->ubp_uberblock;
499 grub_err_t err;
500 grub_zfs_endian_t endian = GRUB_ZFS_UNKNOWN_ENDIAN;
501 zio_cksum_t zc;

503 if (grub_zfs_to_cpu64 (uber->ub_magic, GRUB_ZFS_LITTLE_ENDIAN)
504 == UBERBLOCK_MAGIC
505 && grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS_LITTLE_ENDIAN) > 0)
5 && grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS_LITTLE_ENDIAN) > 0
6 && grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS_LITTLE_ENDIAN)
7 <= SPA_VERSION)

506 endian = GRUB_ZFS_LITTLE_ENDIAN;

508 if (grub_zfs_to_cpu64 (uber->ub_magic, GRUB_ZFS_BIG_ENDIAN) == UBERBLOCK_MAGIC
509 && grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS_BIG_ENDIAN) > 0)
11 && grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS_BIG_ENDIAN) > 0
12 && grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS_BIG_ENDIAN)
13 <= SPA_VERSION)
510 endian = GRUB_ZFS_BIG_ENDIAN;

512 if (endian == GRUB_ZFS_UNKNOWN_ENDIAN)
513 return grub_error (GRUB_ERR_BAD_FS, "invalid uberblock magic");

515 grub_memset (&zc, 0, sizeof (zc));

517 zc.zc_word[0] = grub_cpu_to_zfs64 (offset, endian);

new/grub/grub-core/fs/zfs/zfs.c 9

518 err = zio_checksum_verify (zc, ZIO_CHECKSUM_LABEL, endian,
519 (char *) ub, s);

521 return err;
522 }

______unchanged_portion_omitted_

782 /*
783 * Check the disk label information and retrieve needed vdev name-value pairs.
784 *
785 */
786 static grub_err_t
787 check_pool_label (struct grub_zfs_data *data,
788 struct grub_zfs_device_desc *diskdesc,
789 int *inserted)
790 {
791 grub_uint64_t pool_state, txg = 0;
792 char *nvlist;
793 #if 0
794 char *nv;
795 #endif
796 grub_uint64_t poolguid;
797 grub_uint64_t version;
798 int found;
799 grub_err_t err;

801 *inserted = 0;

803 err = zfs_fetch_nvlist (diskdesc, &nvlist);
804 if (err)
805 return err;

807 grub_dprintf ("zfs", "check 2 passed\n");

809 found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_STATE,
810 &pool_state);
811 if (! found)
812 {
813 grub_free (nvlist);
814 if (! grub_errno)
815 grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_POOL_STATE " not found");
816 return grub_errno;
817 }
818 grub_dprintf ("zfs", "check 3 passed\n");

820 if (pool_state == POOL_STATE_DESTROYED)
821 {
822 grub_free (nvlist);
823 return grub_error (GRUB_ERR_BAD_FS, "zpool is marked as destroyed");
824 }
825 grub_dprintf ("zfs", "check 4 passed\n");

827 found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_TXG, &txg);
828 if (!found)
829 {
830 grub_free (nvlist);
831 if (! grub_errno)
832 grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_POOL_TXG " not found");
833 return grub_errno;
834 }
835 grub_dprintf ("zfs", "check 6 passed\n");

837 /* not an active device */
838 if (txg == 0)
839 {
840 grub_free (nvlist);

new/grub/grub-core/fs/zfs/zfs.c 10

841 return grub_error (GRUB_ERR_BAD_FS, "zpool isn’t active");
842 }
843 grub_dprintf ("zfs", "check 7 passed\n");

845 found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_VERSION,
846 &version);
847 if (! found)
848 {
849 grub_free (nvlist);
850 if (! grub_errno)
851 grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_VERSION " not found");
852 return grub_errno;
853 }
854 grub_dprintf ("zfs", "check 8 passed\n");

360 if (version > SPA_VERSION)
361 {
362 grub_free (nvlist);
363 return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
364 "too new version %llu > %llu",
365 (unsigned long long) version,
366 (unsigned long long) SPA_VERSION);
367 }
855 grub_dprintf ("zfs", "check 9 passed\n");

857 found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_GUID,
858 &(diskdesc->guid));
859 if (! found)
860 {
861 grub_free (nvlist);
862 if (! grub_errno)
863 grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_GUID " not found");
864 return grub_errno;
865 }

867 found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_GUID,
868 &poolguid);
869 if (! found)
870 {
871 grub_free (nvlist);
872 if (! grub_errno)
873 grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_POOL_GUID " not found");
874 return grub_errno;
875 }

877 grub_dprintf ("zfs", "check 11 passed\n");

879 if (data->mounted && data->guid != poolguid)
880 return grub_error (GRUB_ERR_BAD_FS, "another zpool");
881 else
882 data->guid = poolguid;

884 {
885 char *nv;
886 nv = grub_zfs_nvlist_lookup_nvlist (nvlist, ZPOOL_CONFIG_VDEV_TREE);

888 if (!nv)
889 {
890 grub_free (nvlist);
891 return grub_error (GRUB_ERR_BAD_FS, "couldn’t find vdev tree");
892 }
893 err = fill_vdev_info (data, nv, diskdesc, inserted);
894 if (err)
895 {
896 grub_free (nv);
897 grub_free (nvlist);

new/grub/grub-core/fs/zfs/zfs.c 11

898 return err;
899 }
900 grub_free (nv);
901 }
902 grub_dprintf ("zfs", "check 10 passed\n");

904 grub_free (nvlist);

906 return GRUB_ERR_NONE;
907 }

______unchanged_portion_omitted_

2680 #if 1
2193 #if 0
2681 /*
2682 * Get the default ’bootfs’ property value from the rootpool.
2683 *
2684 */
2685 static grub_err_t
2686 get_default_bootfsobj (dnode_end_t * mosmdn, grub_uint64_t * obj,
2199 get_default_bootfsobj (dnode_phys_t * mosmdn, grub_uint64_t * obj,
2687 struct grub_zfs_data *data)
2688 {
2689 grub_uint64_t objnum = 0;
2690 dnode_end_t dn;
2203 dnode_phys_t *dn;
2204 if (!dn)
2205 return grub_errno;

2692 if ((grub_errno = dnode_get (mosmdn, DMU_POOL_DIRECTORY_OBJECT,
2693 DMU_OT_OBJECT_DIRECTORY, &dn, data)))
2208 DMU_OT_OBJECT_DIRECTORY, dn, data)))
2694 {
2210 grub_free (dn);
2695 return (grub_errno);
2696 }

2697 /*
2698 * find the object number for ’pool_props’, and get the dnode
2699 * of the ’pool_props’.
2700 */
2701 if (zap_lookup (&dn, DMU_POOL_PROPS, &objnum, data, 0))
2218 if (zap_lookup (dn, DMU_POOL_PROPS, &objnum, data))
2702 {
2220 grub_free (dn);
2703 return (GRUB_ERR_BAD_FS);
2704 }
2705 if ((grub_errno = dnode_get (mosmdn, objnum, DMU_OT_POOL_PROPS, &dn, data)))
2223 if ((grub_errno = dnode_get (mosmdn, objnum, DMU_OT_POOL_PROPS, dn, data)))
2706 {
2225 grub_free (dn);
2707 return (grub_errno);
2708 }
2709 if (zap_lookup (&dn, ZPOOL_PROP_BOOTFS, &objnum, data,0))
2228 if (zap_lookup (dn, ZPOOL_PROP_BOOTFS, &objnum, data))
2710 {
2230 grub_free (dn);
2711 return (GRUB_ERR_BAD_FS);
2712 }

2714 if (!objnum)
2715 {
2236 grub_free (dn);
2716 return (GRUB_ERR_BAD_FS);
2717 }

new/grub/grub-core/fs/zfs/zfs.c 12

2719 *obj = objnum;
2720 return (0);
2721 }

2723 #endif /* ! codereview */
2724 #endif
2725 /*
2726 * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
2727 * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
2728 * of pool/rootfs.
2729 *
2730 * If no fsname and no obj are given, return the DSL_DIR metadnode.
2731 * If fsname is given, return its metadnode and its matching object number.
2732 * If only obj is given, return the metadnode for this object number.
2733 *
2734 */
2735 static grub_err_t
2736 get_filesystem_dnode (dnode_end_t * mosmdn, char *fsname,
2737 dnode_end_t * mdn, struct grub_zfs_data *data)
2738 {
2739 grub_uint64_t objnum;
2740 grub_err_t err;

2742 grub_dprintf ("zfs", "endian = %d\n", mosmdn->endian);

2744 err = dnode_get (mosmdn, DMU_POOL_DIRECTORY_OBJECT,
2745 DMU_OT_OBJECT_DIRECTORY, mdn, data);
2746 if (err)
2747 return err;

2749 grub_dprintf ("zfs", "alive\n");

2751 err = zap_lookup (mdn, DMU_POOL_ROOT_DATASET, &objnum, data, 0);
2752 if (err)
2753 return err;

2755 grub_dprintf ("zfs", "alive\n");

2757 err = dnode_get (mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
2758 if (err)
2759 return err;

2761 grub_dprintf ("zfs", "alive\n");

2763 while (*fsname)
2764 {
2765 grub_uint64_t childobj;
2766 char *cname, ch;
2767
2768 while (*fsname == ’/’)
2769 fsname++;

2771 if (! *fsname || *fsname == ’@’)
2772 break;

2774 cname = fsname;
2775 while (*fsname && *fsname != ’/’)
2776 fsname++;
2777 ch = *fsname;
2778 *fsname = 0;

2780 childobj = grub_zfs_to_cpu64 ((((dsl_dir_phys_t *) DN_BONUS (&mdn->dn)))->
2781 err = dnode_get (mosmdn, childobj,
2782 DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
2783 if (err)
2784 return err;

new/grub/grub-core/fs/zfs/zfs.c 13

2786 err = zap_lookup (mdn, cname, &objnum, data, 0);
2787 if (err)
2788 return err;

2790 err = dnode_get (mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
2791 if (err)
2792 return err;

2794 *fsname = ch;
2795 }
2796 return GRUB_ERR_NONE;
2797 }

2799 static grub_err_t
2800 make_mdn (dnode_end_t * mdn, struct grub_zfs_data *data)
2801 {
2802 void *osp;
2803 blkptr_t *bp;
2804 grub_size_t ospsize;
2805 grub_err_t err;

2807 grub_dprintf ("zfs", "endian = %d\n", mdn->endian);

2809 bp = &(((dsl_dataset_phys_t *) DN_BONUS (&mdn->dn))->ds_bp);
2810 err = zio_read (bp, mdn->endian, &osp, &ospsize, data);
2811 if (err)
2812 return err;
2813 if (ospsize < OBJSET_PHYS_SIZE_V14)
2814 {
2815 grub_free (osp);
2816 return grub_error (GRUB_ERR_BAD_FS, "too small osp");
2817 }

2819 mdn->endian = (grub_zfs_to_cpu64 (bp->blk_prop, mdn->endian)>>63) & 1;
2820 grub_memmove ((char *) &(mdn->dn),
2821 (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
2822 grub_free (osp);
2823 return GRUB_ERR_NONE;
2824 }

2826 static grub_err_t
2827 dnode_get_fullpath (const char *fullpath, struct subvolume *subvol,
2828 dnode_end_t * dn, int *isfs,
2829 struct grub_zfs_data *data)
2830 {
2831 char *fsname, *snapname;
2832 const char *ptr_at, *filename;
2833 grub_uint64_t headobj;
2834 grub_uint64_t keychainobj;
2835 grub_uint64_t salt;
2836 grub_err_t err;
2837 int keyn = 0;

2839 auto int NESTED_FUNC_ATTR count_zap_keys (const void *name,
2840 grub_size_t namelen,
2841 const void *val_in,
2842 grub_size_t nelem,
2843 grub_size_t elemsize);
2844 int NESTED_FUNC_ATTR count_zap_keys (const void *name __attribute__ ((unused))
2845 grub_size_t namelen __attribute__ ((unuse
2846 const void *val_in __attribute__ ((unused
2847 grub_size_t nelem __attribute__ ((unused)
2848 grub_size_t elemsize __attribute__ ((unus
2849 {
2850 subvol->nkeys++;

new/grub/grub-core/fs/zfs/zfs.c 14

2851 return 0;
2852 }

2854 auto int NESTED_FUNC_ATTR load_zap_key (const void *name,
2855 grub_size_t namelen,
2856 const void *val_in,
2857 grub_size_t nelem,
2858 grub_size_t elemsize);
2859 int NESTED_FUNC_ATTR load_zap_key (const void *name,
2860 grub_size_t namelen,
2861 const void *val_in,
2862 grub_size_t nelem,
2863 grub_size_t elemsize)
2864 {
2865 if (namelen != 1)
2866 {
2867 grub_dprintf ("zfs", "Unexpected key index size %" PRIuGRUB_SIZE "\n",
2868 namelen);
2869 return 0;
2870 }

2872 if (elemsize != 1)
2873 {
2874 grub_dprintf ("zfs", "Unexpected key element size %" PRIuGRUB_SIZE "\n",
2875 elemsize);
2876 return 0;
2877 }

2879 subvol->keyring[keyn].txg = grub_be_to_cpu64 (*(grub_uint64_t *) name);
2880 subvol->keyring[keyn].algo = grub_le_to_cpu64 (*(grub_uint64_t *) val_in);
2881 subvol->keyring[keyn].cipher = grub_zfs_load_key (val_in, nelem, salt,
2882 subvol->keyring[keyn].algo
2883 keyn++;
2884 return 0;
2885 }

2887 ptr_at = grub_strchr (fullpath, ’@’);
2888 if (! ptr_at)
2889 {
2890 *isfs = 1;
2891 filename = 0;
2892 snapname = 0;
2893 fsname = grub_strdup (fullpath);
2894 }
2895 else
2896 {
2897 const char *ptr_slash = grub_strchr (ptr_at, ’/’);

2899 *isfs = 0;
2900 fsname = grub_malloc (ptr_at - fullpath + 1);
2901 if (!fsname)
2902 return grub_errno;
2903 grub_memcpy (fsname, fullpath, ptr_at - fullpath);
2904 fsname[ptr_at - fullpath] = 0;
2905 if (ptr_at[1] && ptr_at[1] != ’/’)
2906 {
2907 snapname = grub_malloc (ptr_slash - ptr_at);
2908 if (!snapname)
2909 {
2910 grub_free (fsname);
2911 return grub_errno;
2912 }
2913 grub_memcpy (snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
2914 snapname[ptr_slash - ptr_at - 1] = 0;
2915 }
2916 else

new/grub/grub-core/fs/zfs/zfs.c 15

2917 snapname = 0;
2918 if (ptr_slash)
2919 filename = ptr_slash;
2920 else
2921 filename = "/";
2922 grub_dprintf ("zfs", "fsname = ’%s’ snapname=’%s’ filename = ’%s’\n",
2923 fsname, snapname, filename);
2924 }
2925 grub_dprintf ("zfs", "alive\n");
2926 err = get_filesystem_dnode (&(data->mos), fsname, dn, data);
2927 if (err)
2928 {
2929 grub_free (fsname);
2930 grub_free (snapname);
2931 return err;
2932 }

2934 grub_dprintf ("zfs", "alive\n");

2936 headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&dn->dn))->dd_head_

2938 grub_dprintf ("zfs", "endian = %d\n", subvol->mdn.endian);

2940 err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, &subvol->mdn,
2941 data);
2942 if (err)
2943 {
2944 grub_free (fsname);
2945 grub_free (snapname);
2946 return err;
2947 }
2948 grub_dprintf ("zfs", "endian = %d\n", subvol->mdn.endian);

2950 keychainobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&dn->dn))->keyc
2951 if (grub_zfs_load_key && keychainobj)
2952 {
2953 dnode_end_t keychain_dn, props_dn;
2954 grub_uint64_t propsobj;
2955 propsobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&dn->dn))->dd_

2957 err = dnode_get (&(data->mos), propsobj, DMU_OT_DSL_PROPS,
2958 &props_dn, data);
2959 if (err)
2960 {
2961 grub_free (fsname);
2962 grub_free (snapname);
2963 return err;
2964 }

2966 err = zap_lookup (&props_dn, "salt", &salt, data, 0);
2967 if (err == GRUB_ERR_FILE_NOT_FOUND)
2968 {
2969 err = 0;
2970 grub_errno = 0;
2971 salt = 0;
2972 }
2973 if (err)
2974 {
2975 grub_dprintf ("zfs", "failed here\n");
2976 return err;
2977 }

2979 err = dnode_get (&(data->mos), keychainobj, DMU_OT_DSL_KEYCHAIN,
2980 &keychain_dn, data);
2981 if (err)
2982 {

new/grub/grub-core/fs/zfs/zfs.c 16

2983 grub_free (fsname);
2984 grub_free (snapname);
2985 return err;
2986 }
2987 subvol->nkeys = 0;
2988 zap_iterate (&keychain_dn, 8, count_zap_keys, data);
2989 subvol->keyring = grub_zalloc (subvol->nkeys * sizeof (subvol->keyring[0])
2990 if (!subvol->keyring)
2991 {
2992 grub_free (fsname);
2993 grub_free (snapname);
2994 return err;
2995 }
2996 zap_iterate (&keychain_dn, 8, load_zap_key, data);
2997 }

2999 if (snapname)
3000 {
3001 grub_uint64_t snapobj;

3003 snapobj = grub_zfs_to_cpu64 (((dsl_dataset_phys_t *) DN_BONUS (&subvol->md

3005 err = dnode_get (&(data->mos), snapobj,
3006 DMU_OT_DSL_DS_SNAP_MAP, &subvol->mdn, data);
3007 if (!err)
3008 err = zap_lookup (&subvol->mdn, snapname, &headobj, data, 0);
3009 if (!err)
3010 err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET,
3011 &subvol->mdn, data);
3012 if (err)
3013 {
3014 grub_free (fsname);
3015 grub_free (snapname);
3016 return err;
3017 }
3018 }

3020 subvol->obj = headobj;

3022 make_mdn (&subvol->mdn, data);
3023
3024 grub_dprintf ("zfs", "endian = %d\n", subvol->mdn.endian);

3026 if (*isfs)
3027 {
3028 grub_free (fsname);
3029 grub_free (snapname);
3030 return GRUB_ERR_NONE;
3031 }
3032 err = dnode_get_path (subvol, filename, dn, data);
3033 grub_free (fsname);
3034 grub_free (snapname);
3035 return err;
3036 }

3038 /*
3039 * For a given XDR packed nvlist, verify the first 4 bytes and move on.
3040 *
3041 * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
3042 *
3043 * encoding method/host endian (4 bytes)
3044 * nvl_version (4 bytes)
3045 * nvl_nvflag (4 bytes)
3046 * encoded nvpairs:
3047 * encoded size of the nvpair (4 bytes)
3048 * decoded size of the nvpair (4 bytes)

new/grub/grub-core/fs/zfs/zfs.c 17

3049 * name string size (4 bytes)
3050 * name string data (sizeof(NV_ALIGN4(string))
3051 * data type (4 bytes)
3052 * # of elements in the nvpair (4 bytes)
3053 * data
3054 * 2 zero’s for the last nvpair
3055 * (end of the entire list) (8 bytes)
3056 *
3057 */

3059 static int
3060 nvlist_find_value (const char *nvlist_in, const char *name,
3061 int valtype, char **val,
3062 grub_size_t *size_out, grub_size_t *nelm_out)
3063 {
3064 int name_len, type, encode_size;
3065 const char *nvpair, *nvp_name, *nvlist = nvlist_in;

3067 /* Verify if the 1st and 2nd byte in the nvlist are valid. */
3068 /* NOTE: independently of what endianness header announces all
3069 subsequent values are big-endian. */
3070 if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
3071 && nvlist[1] != NV_BIG_ENDIAN))
3072 {
3073 grub_dprintf ("zfs", "incorrect nvlist header\n");
3074 grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist");
3075 return 0;
3076 }

3078 /* skip the header, nvl_version, and nvl_nvflag */
3079 nvlist = nvlist + 4 * 3;
3080 /*
3081 * Loop thru the nvpair list
3082 * The XDR representation of an integer is in big-endian byte order.
3083 */
3084 while ((encode_size = grub_be_to_cpu32 (grub_get_unaligned32 (nvlist))))
3085 {
3086 int nelm;

3088 if (nvlist + 4 * 4 >= nvlist_in + VDEV_PHYS_SIZE)
3089 {
3090 grub_dprintf ("zfs", "nvlist overflow\n");
3091 grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist");
3092 return 0;
3093 }

3095 nvpair = nvlist + 4 * 2; /* skip the encode/decode size */

3097 name_len = grub_be_to_cpu32 (grub_get_unaligned32 (nvpair));
3098 nvpair += 4;

3100 nvp_name = nvpair;
3101 nvpair = nvpair + ((name_len + 3) & ~3); /* align */

3103 if (nvpair + 8 >= nvlist_in + VDEV_PHYS_SIZE
3104 || encode_size < 0
3105 || nvpair + 8 + encode_size > nvlist_in + VDEV_PHYS_SIZE)
3106 {
3107 grub_dprintf ("zfs", "nvlist overflow\n");
3108 grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist");
3109 return 0;
3110 }

3112 type = grub_be_to_cpu32 (grub_get_unaligned32 (nvpair));
3113 nvpair += 4;

new/grub/grub-core/fs/zfs/zfs.c 18

3115 nelm = grub_be_to_cpu32 (grub_get_unaligned32 (nvpair));
3116 if (nelm < 1)
3117 {
3118 grub_error (GRUB_ERR_BAD_FS, "empty nvpair");
3119 return 0;
3120 }

3122 nvpair += 4;

3124 if ((grub_strncmp (nvp_name, name, name_len) == 0) && type == valtype)
3125 {
3126 *val = (char *) nvpair;
3127 *size_out = encode_size;
3128 if (nelm_out)
3129 *nelm_out = nelm;
3130 return 1;
3131 }

3133 nvlist += encode_size; /* goto the next nvpair */
3134 }
3135 return 0;
3136 }

3138 int
3139 grub_zfs_nvlist_lookup_uint64 (const char *nvlist, const char *name,
3140 grub_uint64_t * out)
3141 {
3142 char *nvpair;
3143 grub_size_t size;
3144 int found;

3146 found = nvlist_find_value (nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
3147 if (!found)
3148 return 0;
3149 if (size < sizeof (grub_uint64_t))
3150 {
3151 grub_error (GRUB_ERR_BAD_FS, "invalid uint64");
3152 return 0;
3153 }

3155 *out = grub_be_to_cpu64 (grub_get_unaligned64 (nvpair));
3156 return 1;
3157 }

3159 char *
3160 grub_zfs_nvlist_lookup_string (const char *nvlist, const char *name)
3161 {
3162 char *nvpair;
3163 char *ret;
3164 grub_size_t slen;
3165 grub_size_t size;
3166 int found;

3168 found = nvlist_find_value (nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
3169 if (!found)
3170 return 0;
3171 if (size < 4)
3172 {
3173 grub_error (GRUB_ERR_BAD_FS, "invalid string");
3174 return 0;
3175 }
3176 slen = grub_be_to_cpu32 (grub_get_unaligned32 (nvpair));
3177 if (slen > size - 4)
3178 slen = size - 4;
3179 ret = grub_malloc (slen + 1);
3180 if (!ret)

new/grub/grub-core/fs/zfs/zfs.c 19

3181 return 0;
3182 grub_memcpy (ret, nvpair + 4, slen);
3183 ret[slen] = 0;
3184 return ret;
3185 }

3187 char *
3188 grub_zfs_nvlist_lookup_nvlist (const char *nvlist, const char *name)
3189 {
3190 char *nvpair;
3191 char *ret;
3192 grub_size_t size;
3193 int found;

3195 found = nvlist_find_value (nvlist, name, DATA_TYPE_NVLIST, &nvpair,
3196 &size, 0);
3197 if (!found)
3198 return 0;
3199 ret = grub_zalloc (size + 3 * sizeof (grub_uint32_t));
3200 if (!ret)
3201 return 0;
3202 grub_memcpy (ret, nvlist, sizeof (grub_uint32_t));

3204 grub_memcpy (ret + sizeof (grub_uint32_t), nvpair, size);
3205 return ret;
3206 }

3208 int
3209 grub_zfs_nvlist_lookup_nvlist_array_get_nelm (const char *nvlist,
3210 const char *name)
3211 {
3212 char *nvpair;
3213 grub_size_t nelm, size;
3214 int found;

3216 found = nvlist_find_value (nvlist, name, DATA_TYPE_NVLIST_ARRAY, &nvpair,
3217 &size, &nelm);
3218 if (! found)
3219 return -1;
3220 return nelm;
3221 }

3223 static int
3224 get_nvlist_size (const char *beg, const char *limit)
3225 {
3226 const char *ptr;
3227 grub_uint32_t encode_size;
3228
3229 ptr = beg + 8;

3231 while (ptr < limit
3232 && (encode_size = grub_be_to_cpu32 (grub_get_unaligned32 (ptr))))
3233 ptr += encode_size; /* goto the next nvpair */
3234 ptr += 8;
3235 return (ptr > limit) ? -1 : (ptr - beg);
3236 }

3238 char *
3239 grub_zfs_nvlist_lookup_nvlist_array (const char *nvlist, const char *name,
3240 grub_size_t index)
3241 {
3242 char *nvpair, *nvpairptr;
3243 int found;
3244 char *ret;
3245 grub_size_t size;
3246 unsigned i;

new/grub/grub-core/fs/zfs/zfs.c 20

3247 grub_size_t nelm;
3248 int elemsize = 0;

3250 found = nvlist_find_value (nvlist, name, DATA_TYPE_NVLIST_ARRAY, &nvpair,
3251 &size, &nelm);
3252 if (!found)
3253 return 0;
3254 if (index >= nelm)
3255 {
3256 grub_error (GRUB_ERR_OUT_OF_RANGE, "trying to lookup past nvlist array");
3257 return 0;
3258 }

3260 nvpairptr = nvpair;

3262 for (i = 0; i < index; i++)
3263 {
3264 int r;
3265 r = get_nvlist_size (nvpairptr, nvpair + size);

3267 if (r < 0)
3268 {
3269 grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist array");
3270 return NULL;
3271 }
3272 nvpairptr += r;
3273 }

3275 elemsize = get_nvlist_size (nvpairptr, nvpair + size);

3277 if (elemsize < 0)
3278 {
3279 grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist array");
3280 return 0;
3281 }

3283 ret = grub_zalloc (elemsize + sizeof (grub_uint32_t));
3284 if (!ret)
3285 return 0;
3286 grub_memcpy (ret, nvlist, sizeof (grub_uint32_t));

3288 grub_memcpy (ret + sizeof (grub_uint32_t), nvpairptr, elemsize);
3289 return ret;
3290 }

3292 static void
3293 unmount_device (struct grub_zfs_device_desc *desc)
3294 {
3295 unsigned i;
3296 switch (desc->type)
3297 {
3298 case DEVICE_LEAF:
3299 if (!desc->original && desc->dev)
3300 grub_device_close (desc->dev);
3301 return;
3302 case DEVICE_RAIDZ:
3303 case DEVICE_MIRROR:
3304 for (i = 0; i < desc->n_children; i++)
3305 unmount_device (&desc->children[i]);
3306 grub_free (desc->children);
3307 return;
3308 }
3309 }

3311 static void
3312 zfs_unmount (struct grub_zfs_data *data)

new/grub/grub-core/fs/zfs/zfs.c 21

3313 {
3314 unsigned i;
3315 for (i = 0; i < data->n_devices_attached; i++)
3316 unmount_device (&data->devices_attached[i]);
3317 grub_free (data->devices_attached);
3318 grub_free (data->dnode_buf);
3319 grub_free (data->dnode_mdn);
3320 grub_free (data->file_buf);
3321 for (i = 0; i < data->subvol.nkeys; i++)
3322 grub_crypto_cipher_close (data->subvol.keyring[i].cipher);
3323 grub_free (data->subvol.keyring);
3324 while (data->feature_list) {
3325 struct enabled_feature_list * tmp = data->feature_list;
3326 data->feature_list = data->feature_list->next;
3327 grub_free(tmp);
3328 }
3329 #endif /* ! codereview */
3330 grub_free (data);
3331 }

3333 static int
3334 add_feature (struct grub_zfs_data * data, zfs_feature_id_t id)
3335 {
3336 struct enabled_feature_list * list = data->feature_list;
3337
3338 while (list->next) {
3339 if (list->next->id == id)
3340 return id;
3341 list = list->next;
3342 }
3343
3344 list->next = (struct enabled_feature_list *) grub_zalloc (sizeof (struct enabl
3345
3346 if (! list->next)
3347 return (-1);

3349 list->next->id = id;
3350 list->next->next = NULL;
3351
3352 return 0;
3353 }

3355 static zfs_feature_id_t
3356 check_feature (const char * feature)
3357 {
3358 int i = 0;
3359 for (; i < ZFS_FEATURE_UNKNOWN; ++i)
3360 if (! grub_strcmp (feature, feature_list[i]))
3361 return i;

3363 return ZFS_FEATURE_UNKNOWN;
3364 }

3366 /*
3367 * zfs_get_features_list() get feature list and check compatability
3368 */
3369 static grub_err_t
3370 zfs_get_features_list (struct grub_zfs_data * data)
3371 {
3372 dnode_end_t dn;
3373 dnode_end_t * mos = &(data->mos);
3374 grub_err_t err;
3375 grub_uint64_t objnum;
3376 int ret;
3377
3378 int NESTED_FUNC_ATTR feature_hook (const char * cname, grub_uint64_t val)

new/grub/grub-core/fs/zfs/zfs.c 22

3379 {
3380 grub_err_t iret = 0;

3382 zfs_feature_id_t id;

3384 if (! (*cname))
3385 goto out;

3387 // retrieve feature number
3388 id = check_feature (cname);

3390 // if grub doesn’t support such feature, return error
3391 if (id == ZFS_FEATURE_UNKNOWN) {
3392 if (val == 0) {
3393 grub_error(GRUB_ERR_BAD_FS,
3394 "Unsupported feature %s was enabled,"
3395 " but haven’t been activated yet. You will not be able to boot"
3396 " if this feature are activated.", cname);
3397 } else {
3398 grub_error(GRUB_ERR_BAD_FS,
3399 "Unsupported feature %s is activated. Booting failed",cname);
3400 iret = 1;
3401 }
3402 goto out;
3403 }
3404
3405 // add feature to list
3406 iret = add_feature(data, id);
3407
3408 out:
3409 return iret;
3410 }
3411
3412 // get object directory
3413 err = dnode_get (mos, DMU_POOL_DIRECTORY_OBJECT,
3414 DMU_OT_OBJECT_DIRECTORY, &dn, data);
3415 if (err)
3416 return err;

3418 // retrieve pool properties object numer
3419 err = zap_lookup (&dn, DMU_POOL_FEATURES_FOR_READ, &objnum, data, 0);
3420 if (err)
3421 return err;
3422
3423 // get "features for read" zap dnode
3424 err = dnode_get (mos, objnum, DMU_OTN_ZAP_METADATA, &dn, data);
3425 if (err)
3426 return err;
3427
3428 // itterate zap to fetch feature list
3429 ret = zap_iterate_u64 (&dn, feature_hook, data);
3430 if (ret)
3431 return grub_error(GRUB_ERR_BAD_FS, "There are enabled unsupported features")
3432
3433 return GRUB_ERR_NONE;
3434 }

3436 #endif /* ! codereview */
3437 /*
3438 * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
3439 * to the memory address MOS.
3440 *
3441 */
3442 static struct grub_zfs_data *
3443 zfs_mount (grub_device_t dev)
3444 {

new/grub/grub-core/fs/zfs/zfs.c 23

3445 struct grub_zfs_data *data = 0;
3446 grub_err_t err;
3447 void *osp = 0;
3448 grub_size_t ospsize;
3449 grub_zfs_endian_t ub_endian = GRUB_ZFS_UNKNOWN_ENDIAN;
3450 uberblock_t *ub;
3451 int inserted;

3453 if (! dev->disk)
3454 {
3455 grub_error (GRUB_ERR_BAD_DEVICE, "not a disk");
3456 return 0;
3457 }

3459 data = grub_zalloc (sizeof (*data));
3460 if (!data)
3461 return 0;
3462 #if 0
3463 /* if it’s our first time here, zero the best uberblock out */
3464 if (data->best_drive == 0 && data->best_part == 0 && find_best_root)
3465 grub_memset (¤t_uberblock, 0, sizeof (uberblock_t));
3466 #endif

3468 data->feature_list = NULL;
3469 #endif /* ! codereview */
3470 data->n_devices_allocated = 16;
3471 data->devices_attached = grub_malloc (sizeof (data->devices_attached[0])
3472 * data->n_devices_allocated);
3473 data->n_devices_attached = 0;
3474 err = scan_disk (dev, data, 1, &inserted);
3475 if (err)
3476 {
3477 zfs_unmount (data);
3478 return NULL;
3479 }

3481 ub = &(data->current_uberblock);
3482 ub_endian = (grub_zfs_to_cpu64 (ub->ub_magic,
3483 GRUB_ZFS_LITTLE_ENDIAN) == UBERBLOCK_MAGIC
3484 ? GRUB_ZFS_LITTLE_ENDIAN : GRUB_ZFS_BIG_ENDIAN);

3486 err = zio_read (&ub->ub_rootbp, ub_endian,
3487 &osp, &ospsize, data);
3488 if (err)
3489 {
3490 zfs_unmount (data);
3491 return NULL;
3492 }

3494 if (ospsize < OBJSET_PHYS_SIZE_V14)
3495 {
3496 grub_error (GRUB_ERR_BAD_FS, "OSP too small");
3497 grub_free (osp);
3498 zfs_unmount (data);
3499 return NULL;
3500 }

3502 /* Got the MOS. Save it at the memory addr MOS. */
3503 grub_memmove (&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode,
3504 DNODE_SIZE);
3505 data->mos.endian = (grub_zfs_to_cpu64 (ub->ub_rootbp.blk_prop,
3506 ub_endian) >> 63) & 1;
3507 grub_free (osp);
3508
3509 data->mounted = 1;

new/grub/grub-core/fs/zfs/zfs.c 24

3511 if (grub_zfs_to_cpu64(ub->ub_version, ub_endian) == SPA_FEATURE_VERSION) {
3512 data->feature_list = (struct enabled_feature_list*) grub_zalloc (
3513 sizeof (struct enabled_feature
3514 data->feature_list->next = NULL;
3515 err = zfs_get_features_list(data);
3516
3517 if (err) {
3518 data->mounted = 0;
3519 zfs_unmount (data);
3520 return NULL;
3521 }
3522 }

3524 #endif /* ! codereview */
3525 return data;
3526 }

3528 static grub_err_t
3529 find_default_dataset_path(char * path, grub_uint64_t * mdnobj, struct grub_zfs_d
3530 {
3531 grub_uint64_t obj, pobj, zobj;
3532 grub_err_t err;
3533 dnode_end_t mdn, *mosmdn;
3534 char buf[512];

3536 int NESTED_FUNC_ATTR hook (const char * name, grub_uint64_t val) {
3537 if (val == obj) {
3538 grub_strcpy(buf, name);
3539 return 1;
3540 }
3541 return 0;
3542 }

3544 obj = *mdnobj;
3545 mosmdn = &(data->mos);
3546 buf[0] = ’\0’;
3547 path[0] = ’\0’;

3549 // get object’s data dir
3550 err = dnode_get(mosmdn, obj, DMU_OT_DSL_DATASET, &mdn, data);
3551 if (err)
3552 return err;
3553 obj = grub_zfs_to_cpu64((((dsl_dataset_phys_t*)DN_BONUS (&mdn.dn)))->ds_dir_ob
3554
3555 for (;;) {
3556 // get object dnode
3557 err = dnode_get(mosmdn, obj, DMU_OT_DSL_DIR, &mdn, data);
3558 if (err)
3559 return err;

3561 // find out its parent’s objnum
3562 pobj = grub_zfs_to_cpu64((((dsl_dir_phys_t*)DN_BONUS (&mdn.dn)))->dd_parent_
3563 if (obj == pobj)
3564 break;

3566 // if pobj is 0 then we have reached top dataset
3567 if (! pobj)
3568 break;

3570 // get object’s parent dnode
3571 err = dnode_get(mosmdn, pobj, DMU_OT_DSL_DIR, &mdn, data);
3572 if (err)
3573 return err;

3575 // find out parent’s zap objnum
3576 zobj = grub_zfs_to_cpu64((((dsl_dir_phys_t*)DN_BONUS (&mdn.dn)))->dd_child_d

new/grub/grub-core/fs/zfs/zfs.c 25

3578 // get zap’s dnode
3579 err = dnode_get(mosmdn, zobj, DMU_OT_DSL_DIR_CHILD_MAP, &mdn, data);
3580 if (err)
3581 return err;

3583 // lookup zap to get name
3584 err = zap_iterate_u64(&mdn, hook, data);
3585 if (err == 0)
3586 return err;

3588 // pobj becomes obj now
3589 obj = pobj;

3591 // append new intermediate dnode to path
3592 grub_strcat(buf, path);
3593 grub_strcpy(path, "/");
3594 grub_strcat(path, buf);
3595 }
3596
3597 return GRUB_ERR_NONE;
3598 }

3600 grub_err_t
3601 get_default_bootfs_obj(grub_device_t dev, char * path, grub_uint64_t * mdnobj)
3602 {
3603 struct grub_zfs_data * data;
3604 grub_err_t err = 0;
3605 data = zfs_mount(dev);
3606 if (data) {
3607 err = get_default_bootfsobj(&(data->mos), mdnobj, data);
3608 if (err)
3609 return err;
3610 err = find_default_dataset_path(path, mdnobj, data);
3611 zfs_unmount(data);
3612 return err;
3613 } else {
3614 return grub_errno;
3615 }
3616 return 0;
3617 }

3619 #endif /* ! codereview */
3620 grub_err_t
3621 grub_zfs_fetch_nvlist (grub_device_t dev, char **nvlist)
3622 {
3623 struct grub_zfs_data *zfs;
3624 grub_err_t err;

3626 zfs = zfs_mount (dev);
3627 if (!zfs)
3628 return grub_errno;
3629 err = zfs_fetch_nvlist (zfs->device_original, nvlist);
3630 zfs_unmount (zfs);
3631 return err;
3632 }

3634 static grub_err_t
3635 zfs_label (grub_device_t device, char **label)
3636 {
3637 char *nvlist;
3638 grub_err_t err;
3639 struct grub_zfs_data *data;

3641 data = zfs_mount (device);
3642 if (! data)

new/grub/grub-core/fs/zfs/zfs.c 26

3643 return grub_errno;

3645 err = zfs_fetch_nvlist (data->device_original, &nvlist);
3646 if (err)
3647 {
3648 zfs_unmount (data);
3649 return err;
3650 }

3652 *label = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFIG_POOL_NAME);
3653 grub_free (nvlist);
3654 zfs_unmount (data);
3655 return grub_errno;
3656 }

3658 static grub_err_t
3659 zfs_uuid (grub_device_t device, char **uuid)
3660 {
3661 struct grub_zfs_data *data;

3663 *uuid = 0;

3665 data = zfs_mount (device);
3666 if (! data)
3667 return grub_errno;

3669 *uuid = grub_xasprintf ("%016llx", (long long unsigned) data->guid);
3670 zfs_unmount (data);
3671 if (! *uuid)
3672 return grub_errno;
3673 return GRUB_ERR_NONE;
3674 }

3676 static grub_err_t
3677 zfs_mtime (grub_device_t device, grub_int32_t *mt)
3678 {
3679 struct grub_zfs_data *data;
3680 grub_zfs_endian_t ub_endian = GRUB_ZFS_UNKNOWN_ENDIAN;
3681 uberblock_t *ub;

3683 *mt = 0;

3685 data = zfs_mount (device);
3686 if (! data)
3687 return grub_errno;

3689 ub = &(data->current_uberblock);
3690 ub_endian = (grub_zfs_to_cpu64 (ub->ub_magic,
3691 GRUB_ZFS_LITTLE_ENDIAN) == UBERBLOCK_MAGIC
3692 ? GRUB_ZFS_LITTLE_ENDIAN : GRUB_ZFS_BIG_ENDIAN);

3694 *mt = grub_zfs_to_cpu64 (ub->ub_timestamp, ub_endian);
3695 zfs_unmount (data);
3696 return GRUB_ERR_NONE;
3697 }

3699 /*
3700 * zfs_open() locates a file in the rootpool by following the
3701 * MOS and places the dnode of the file in the memory address DNODE.
3702 */
3703 static grub_err_t
3704 grub_zfs_open (struct grub_file *file, const char *fsfilename)
3705 {
3706 struct grub_zfs_data *data;
3707 grub_err_t err;
3708 int isfs;

new/grub/grub-core/fs/zfs/zfs.c 27

3710 data = zfs_mount (file->device);
3711 if (! data)
3712 return grub_errno;

3714 err = dnode_get_fullpath (fsfilename, &(data->subvol),
3715 &(data->dnode), &isfs, data);
3716 if (err)
3717 {
3718 zfs_unmount (data);
3719 return err;
3720 }

3722 if (isfs)
3723 {
3724 zfs_unmount (data);
3725 return grub_error (GRUB_ERR_BAD_FILE_TYPE, N_("missing ‘%c’ symbol"), ’@’)
3726 }

3728 /* We found the dnode for this file. Verify if it is a plain file. */
3729 if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS)
3730 {
3731 zfs_unmount (data);
3732 return grub_error (GRUB_ERR_BAD_FILE_TYPE, N_("not a regular file"));
3733 }

3735 /* get the file size and set the file position to 0 */

3737 /*
3738 * For DMU_OT_SA we will need to locate the SIZE attribute
3739 * attribute, which could be either in the bonus buffer
3740 * or the "spill" block.
3741 */
3742 if (data->dnode.dn.dn_bonustype == DMU_OT_SA)
3743 {
3744 void *sahdrp;
3745 int hdrsize;

3747 if (data->dnode.dn.dn_bonuslen != 0)
3748 {
3749 sahdrp = (sa_hdr_phys_t *) DN_BONUS (&data->dnode.dn);
3750 }
3751 else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR)
3752 {
3753 blkptr_t *bp = &data->dnode.dn.dn_spill;

3755 err = zio_read (bp, data->dnode.endian, &sahdrp, NULL, data);
3756 if (err)
3757 return err;
3758 }
3759 else
3760 {
3761 return grub_error (GRUB_ERR_BAD_FS, "filesystem is corrupt");
3762 }

3764 hdrsize = SA_HDR_SIZE (((sa_hdr_phys_t *) sahdrp));
3765 file->size = grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp + hd
3766 }
3767 else if (data->dnode.dn.dn_bonustype == DMU_OT_ZNODE)
3768 {
3769 file->size = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&data->dnode.d
3770 }
3771 else
3772 return grub_error (GRUB_ERR_BAD_FS, "bad bonus type");

3774 file->data = data;

new/grub/grub-core/fs/zfs/zfs.c 28

3775 file->offset = 0;

3777 #ifndef GRUB_UTIL
3778 grub_dl_ref (my_mod);
3779 #endif

3781 return GRUB_ERR_NONE;
3782 }

3784 static grub_ssize_t
3785 grub_zfs_read (grub_file_t file, char *buf, grub_size_t len)
3786 {
3787 struct grub_zfs_data *data = (struct grub_zfs_data *) file->data;
3788 grub_size_t blksz, movesize;
3789 grub_size_t length;
3790 grub_size_t read;
3791 grub_err_t err;

3793 /*
3794 * If offset is in memory, move it into the buffer provided and return.
3795 */
3796 if (file->offset >= data->file_start
3797 && file->offset + len <= data->file_end)
3798 {
3799 grub_memmove (buf, data->file_buf + file->offset - data->file_start,
3800 len);
3801 return len;
3802 }

3804 blksz = grub_zfs_to_cpu16 (data->dnode.dn.dn_datablkszsec,
3805 data->dnode.endian) << SPA_MINBLOCKSHIFT;

3807 /*
3808 * Entire Dnode is too big to fit into the space available. We
3809 * will need to read it in chunks. This could be optimized to
3810 * read in as large a chunk as there is space available, but for
3811 * now, this only reads in one data block at a time.
3812 */
3813 length = len;
3814 read = 0;
3815 while (length)
3816 {
3817 void *t;
3818 /*
3819 * Find requested blkid and the offset within that block.
3820 */
3821 grub_uint64_t blkid = grub_divmod64 (file->offset + read, blksz, 0);
3822 grub_free (data->file_buf);
3823 data->file_buf = 0;

3825 err = dmu_read (&(data->dnode), blkid, &t,
3826 0, data);
3827 data->file_buf = t;
3828 if (err)
3829 {
3830 data->file_buf = NULL;
3831 data->file_start = data->file_end = 0;
3832 return -1;
3833 }

3835 data->file_start = blkid * blksz;
3836 data->file_end = data->file_start + blksz;

3838 movesize = data->file_end - file->offset - read;
3839 if (movesize > length)
3840 movesize = length;

new/grub/grub-core/fs/zfs/zfs.c 29

3842 grub_memmove (buf, data->file_buf + file->offset + read
3843 - data->file_start, movesize);
3844 buf += movesize;
3845 length -= movesize;
3846 read += movesize;
3847 }

3849 return len;
3850 }

3852 static grub_err_t
3853 grub_zfs_close (grub_file_t file)
3854 {
3855 zfs_unmount ((struct grub_zfs_data *) file->data);

3857 #ifndef GRUB_UTIL
3858 grub_dl_unref (my_mod);
3859 #endif

3861 return GRUB_ERR_NONE;
3862 }

3864 grub_err_t
3865 grub_zfs_getmdnobj (grub_device_t dev, const char *fsfilename,
3866 grub_uint64_t *mdnobj)
3867 {
3868 struct grub_zfs_data *data;
3869 grub_err_t err;
3870 int isfs;

3872 data = zfs_mount (dev);
3873 if (! data)
3874 return grub_errno;

3876 err = dnode_get_fullpath (fsfilename, &(data->subvol),
3877 &(data->dnode), &isfs, data);
3878 *mdnobj = data->subvol.obj;
3879 zfs_unmount (data);
3880 return err;
3881 }

3883 static void
3884 fill_fs_info (struct grub_dirhook_info *info,
3885 dnode_end_t mdn, struct grub_zfs_data *data)
3886 {
3887 grub_err_t err;
3888 dnode_end_t dn;
3889 grub_uint64_t objnum;
3890 grub_uint64_t headobj;
3891
3892 grub_memset (info, 0, sizeof (*info));
3893
3894 info->dir = 1;
3895
3896 if (mdn.dn.dn_type == DMU_OT_DSL_DIR)
3897 {
3898 headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&mdn.dn))->dd_h

3900 err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
3901 if (err)
3902 {
3903 grub_dprintf ("zfs", "failed here\n");
3904 return;
3905 }
3906 }

new/grub/grub-core/fs/zfs/zfs.c 30

3907 make_mdn (&mdn, data);
3908 err = dnode_get (&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
3909 &dn, data);
3910 if (err)
3911 {
3912 grub_dprintf ("zfs", "failed here\n");
3913 return;
3914 }
3915
3916 err = zap_lookup (&dn, ZFS_ROOT_OBJ, &objnum, data, 0);
3917 if (err)
3918 {
3919 grub_dprintf ("zfs", "failed here\n");
3920 return;
3921 }
3922
3923 err = dnode_get (&mdn, objnum, 0, &dn, data);
3924 if (err)
3925 {
3926 grub_dprintf ("zfs", "failed here\n");
3927 return;
3928 }
3929
3930 if (dn.dn.dn_bonustype == DMU_OT_SA)
3931 {
3932 void *sahdrp;
3933 int hdrsize;

3935 if (dn.dn.dn_bonuslen != 0)
3936 {
3937 sahdrp = (sa_hdr_phys_t *) DN_BONUS (&dn.dn);
3938 }
3939 else if (dn.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR)
3940 {
3941 blkptr_t *bp = &dn.dn.dn_spill;

3943 err = zio_read (bp, dn.endian, &sahdrp, NULL, data);
3944 if (err)
3945 return;
3946 }
3947 else
3948 {
3949 grub_error (GRUB_ERR_BAD_FS, "filesystem is corrupt");
3950 return;
3951 }

3953 hdrsize = SA_HDR_SIZE (((sa_hdr_phys_t *) sahdrp));
3954 info->mtimeset = 1;
3955 info->mtime = grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp + h
3956 }

3958 if (dn.dn.dn_bonustype == DMU_OT_ZNODE)
3959 {
3960 info->mtimeset = 1;
3961 info->mtime = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&dn.dn))->zp_
3962 }
3963 return;
3964 }

3966 static grub_err_t
3967 grub_zfs_dir (grub_device_t device, const char *path,
3968 int (*hook) (const char *, const struct grub_dirhook_info *))
3969 {
3970 struct grub_zfs_data *data;
3971 grub_err_t err;
3972 int isfs;

new/grub/grub-core/fs/zfs/zfs.c 31

3973 auto int NESTED_FUNC_ATTR iterate_zap (const char *name, grub_uint64_t val);
3974 auto int NESTED_FUNC_ATTR iterate_zap_fs (const char *name,
3975 grub_uint64_t val);
3976 auto int NESTED_FUNC_ATTR iterate_zap_snap (const char *name,
3977 grub_uint64_t val);

3979 int NESTED_FUNC_ATTR iterate_zap (const char *name, grub_uint64_t val)
3980 {
3981 struct grub_dirhook_info info;
3982 dnode_end_t dn;
3983 grub_memset (&info, 0, sizeof (info));

3985 dnode_get (&(data->subvol.mdn), val, 0, &dn, data);

3987 if (dn.dn.dn_bonustype == DMU_OT_SA)
3988 {
3989 void *sahdrp;
3990 int hdrsize;

3992 if (dn.dn.dn_bonuslen != 0)
3993 {
3994 sahdrp = (sa_hdr_phys_t *) DN_BONUS (&data->dnode.dn);
3995 }
3996 else if (dn.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR)
3997 {
3998 blkptr_t *bp = &dn.dn.dn_spill;

4000 err = zio_read (bp, dn.endian, &sahdrp, NULL, data);
4001 if (err)
4002 {
4003 grub_print_error ();
4004 return 0;
4005 }
4006 }
4007 else
4008 {
4009 grub_error (GRUB_ERR_BAD_FS, "filesystem is corrupt");
4010 grub_print_error ();
4011 return 0;
4012 }

4014 hdrsize = SA_HDR_SIZE (((sa_hdr_phys_t *) sahdrp));
4015 info.mtimeset = 1;
4016 info.mtime = grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp +
4017 info.case_insensitive = data->subvol.case_insensitive;
4018 }
4019
4020 if (dn.dn.dn_bonustype == DMU_OT_ZNODE)
4021 {
4022 info.mtimeset = 1;
4023 info.mtime = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&dn.dn))->zp
4024 dn.endian);
4025 }
4026 info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
4027 grub_dprintf ("zfs", "type=%d, name=%s\n",
4028 (int)dn.dn.dn_type, (char *)name);
4029 return hook (name, &info);
4030 }

4032 int NESTED_FUNC_ATTR iterate_zap_fs (const char *name, grub_uint64_t val)
4033 {
4034 struct grub_dirhook_info info;
4035 dnode_end_t mdn;
4036 err = dnode_get (&(data->mos), val, 0, &mdn, data);
4037 if (err)
4038 return 0;

new/grub/grub-core/fs/zfs/zfs.c 32

4039 if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
4040 return 0;

4042 fill_fs_info (&info, mdn, data);
4043 return hook (name, &info);
4044 }
4045 int NESTED_FUNC_ATTR iterate_zap_snap (const char *name, grub_uint64_t val)
4046 {
4047 struct grub_dirhook_info info;
4048 char *name2;
4049 int ret;
4050 dnode_end_t mdn;

4052 err = dnode_get (&(data->mos), val, 0, &mdn, data);
4053 if (err)
4054 return 0;

4056 if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
4057 return 0;

4059 fill_fs_info (&info, mdn, data);

4061 name2 = grub_malloc (grub_strlen (name) + 2);
4062 name2[0] = ’@’;
4063 grub_memcpy (name2 + 1, name, grub_strlen (name) + 1);
4064 ret = hook (name2, &info);
4065 grub_free (name2);
4066 return ret;
4067 }

4069 data = zfs_mount (device);
4070 if (! data)
4071 return grub_errno;
4072 err = dnode_get_fullpath (path, &(data->subvol), &(data->dnode), &isfs, data);
4073 if (err)
4074 {
4075 zfs_unmount (data);
4076 return err;
4077 }
4078 if (isfs)
4079 {
4080 grub_uint64_t childobj, headobj;
4081 grub_uint64_t snapobj;
4082 dnode_end_t dn;
4083 struct grub_dirhook_info info;

4085 fill_fs_info (&info, data->dnode, data);
4086 hook ("@", &info);
4087
4088 childobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&data->dnode.d
4089 headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&data->dnode.dn
4090 err = dnode_get (&(data->mos), childobj,
4091 DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
4092 if (err)
4093 {
4094 zfs_unmount (data);
4095 return err;
4096 }

4098 zap_iterate_u64 (&dn, iterate_zap_fs, data);
4099
4100 err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
4101 if (err)
4102 {
4103 zfs_unmount (data);
4104 return err;

new/grub/grub-core/fs/zfs/zfs.c 33

4105 }

4107 snapobj = grub_zfs_to_cpu64 (((dsl_dataset_phys_t *) DN_BONUS (&dn.dn))->d

4109 err = dnode_get (&(data->mos), snapobj,
4110 DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
4111 if (err)
4112 {
4113 zfs_unmount (data);
4114 return err;
4115 }

4117 zap_iterate_u64 (&dn, iterate_zap_snap, data);
4118 }
4119 else
4120 {
4121 if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS)
4122 {
4123 zfs_unmount (data);
4124 return grub_error (GRUB_ERR_BAD_FILE_TYPE, N_("not a directory"));
4125 }
4126 zap_iterate_u64 (&(data->dnode), iterate_zap, data);
4127 }
4128 zfs_unmount (data);
4129 return grub_errno;
4130 }

4132 #ifdef GRUB_UTIL
4133 static grub_err_t
4134 grub_zfs_embed (grub_device_t device __attribute__ ((unused)),
4135 unsigned int *nsectors,
4136 unsigned int max_nsectors,
4137 grub_embed_type_t embed_type,
4138 grub_disk_addr_t **sectors)
4139 {
4140 unsigned i;

4142 if (embed_type != GRUB_EMBED_PCBIOS)
4143 return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
4144 "ZFS currently supports only PC-BIOS embedding");

4146 if ((VDEV_BOOT_SIZE >> GRUB_DISK_SECTOR_BITS) < *nsectors)
4147 return grub_error (GRUB_ERR_OUT_OF_RANGE,
4148 N_("your core.img is unusually large. "
4149 "It won’t fit in the embedding area"));

4151 *nsectors = (VDEV_BOOT_SIZE >> GRUB_DISK_SECTOR_BITS);
4152 if (*nsectors > max_nsectors)
4153 *nsectors = max_nsectors;
4154 *sectors = grub_malloc (*nsectors * sizeof (**sectors));
4155 if (!*sectors)
4156 return grub_errno;
4157 for (i = 0; i < *nsectors; i++)
4158 (*sectors)[i] = i + (VDEV_BOOT_OFFSET >> GRUB_DISK_SECTOR_BITS);

4160 return GRUB_ERR_NONE;
4161 }
4162 #endif

4164 static struct grub_fs grub_zfs_fs = {
4165 .name = "zfs",
4166 .dir = grub_zfs_dir,
4167 .open = grub_zfs_open,
4168 .read = grub_zfs_read,
4169 .close = grub_zfs_close,
4170 .label = zfs_label,

new/grub/grub-core/fs/zfs/zfs.c 34

4171 .uuid = zfs_uuid,
4172 .mtime = zfs_mtime,
4173 #ifdef GRUB_UTIL
4174 .embed = grub_zfs_embed,
4175 .reserved_first_sector = 1,
4176 .blocklist_install = 0,
4177 #endif
4178 .next = 0
4179 };

4181 GRUB_MOD_INIT (zfs)
4182 {
4183 COMPILE_TIME_ASSERT (sizeof (zap_leaf_chunk_t) == ZAP_LEAF_CHUNKSIZE);
4184 grub_fs_register (&grub_zfs_fs);
4185 #ifndef GRUB_UTIL
4186 my_mod = mod;
4187 #endif
4188 }

4190 GRUB_MOD_FINI (zfs)
4191 {
4192 grub_fs_unregister (&grub_zfs_fs);
4193 }

new/grub/grub-core/fs/zfs/zfsinfo.c 1

**
 11496 Fri Aug 31 05:08:54 2012
new/grub/grub-core/fs/zfs/zfsinfo.c
grub patch
**
______unchanged_portion_omitted_

186 static grub_err_t
187 get_bootpath (char *nvlist, char **bootpath, char **devid, grub_uint64_t inguid)
187 get_bootpath (char *nvlist, char **bootpath, char **devid)
188 {
189 char *type = 0;
190 grub_uint64_t diskguid = 0;
191 #endif /* ! codereview */

193 type = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFIG_TYPE);

195 if (!type)
196 return grub_errno;

198 if (grub_strcmp (type, VDEV_TYPE_DISK) == 0)
199 {
200 grub_zfs_nvlist_lookup_uint64 (nvlist, "guid", &diskguid);
201 #endif /* ! codereview */
202 *bootpath = grub_zfs_nvlist_lookup_string (nvlist,
203 ZPOOL_CONFIG_PHYS_PATH);
204 *devid = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFIG_DEVID);
205 if (!*bootpath || !*devid || (diskguid != inguid))
190 if (!*bootpath || !*devid)
206 {
207 grub_free (*bootpath);
208 grub_free (*devid);
209 *bootpath = 0;
210 *devid = 0;
211 }
212 return GRUB_ERR_NONE;
213 }

215 if (grub_strcmp (type, VDEV_TYPE_MIRROR) == 0)
216 {
217 int nelm, i;

219 nelm = grub_zfs_nvlist_lookup_nvlist_array_get_nelm
220 (nvlist, ZPOOL_CONFIG_CHILDREN);

222 for (i = 0; i < nelm; i++)
223 {
224 char *child;

226 child = grub_zfs_nvlist_lookup_nvlist_array (nvlist,
227 ZPOOL_CONFIG_CHILDREN,
228 i);

230 get_bootpath (child, bootpath, devid, inguid);
215 get_bootpath (child, bootpath, devid);

232 grub_free (child);

234 if (*bootpath && *devid)
235 return GRUB_ERR_NONE;
236 }
237 }

239 return GRUB_ERR_NONE;
240 }

______unchanged_portion_omitted_

new/grub/grub-core/fs/zfs/zfsinfo.c 2

334 static grub_err_t
335 grub_cmd_zfs_bootfs (grub_command_t cmd __attribute__ ((unused)), int argc,
336 char **args)
337 {
338 grub_device_t dev;
339 char *devname;
340 grub_err_t err;
341 char *nvlist = 0;
342 char *nv = 0;
343 char *bootpath = 0, *devid = 0;
344 char *fsname;
345 char *bootfs;
346 char *poolname;
347 char def_path[512];
348 struct grub_zfs_data * data;
349 grub_uint64_t mdnobj, guid;
350 int def = 0;
332 grub_uint64_t mdnobj;

352 if (argc < 1)
353 return grub_error (GRUB_ERR_BAD_ARGUMENT, N_("one argument expected"));

355 devname = grub_file_get_device_name (args[0]);

357 #endif /* ! codereview */
358 if (grub_errno)
359 return grub_errno;

361 dev = grub_device_open (devname);
362 grub_free (devname);
363 if (!dev)
364 return grub_errno;

366 err = grub_zfs_fetch_nvlist (dev, &nvlist);

368 fsname = grub_strchr (args[0], ’)’);
369 if (fsname)
370 fsname++;
371 else
372 fsname = args[0];

374 if (grub_strcmp(fsname, "default") == 0)
375 ++def;

377 if (! def) {
338 if (!err)
378 err = grub_zfs_getmdnobj (dev, fsname, &mdnobj);
379 } else {
380 err = get_default_bootfs_obj(dev, def_path, &mdnobj);
381 }
382 #endif /* ! codereview */

384 grub_device_close (dev);

386 if (err)
387 return err;

389 poolname = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFIG_POOL_NAME);
390 if (!poolname)
391 {
392 if (!grub_errno)
393 grub_error (GRUB_ERR_BAD_FS, "No poolname found");
394 return grub_errno;
395 }

new/grub/grub-core/fs/zfs/zfsinfo.c 3

397 nv = grub_zfs_nvlist_lookup_nvlist (nvlist, ZPOOL_CONFIG_VDEV_TREE);
398 grub_zfs_nvlist_lookup_uint64 (nvlist, "guid", &guid);
399 #endif /* ! codereview */

401 if (nv && guid)
402 get_bootpath (nv, &bootpath, &devid, guid);
340 if (nv)
341 get_bootpath (nv, &bootpath, &devid);

404 grub_free (nv);
405 grub_free (nvlist);

407 bootfs = grub_xasprintf ("zfs-bootfs=%s/%llu%s%s%s%s%s%s",
408 poolname, (unsigned long long) mdnobj,
409 bootpath ? ",bootpath=\"" : "",
410 bootpath ? : "",
411 bootpath ? "\"" : "",
412 devid ? ",diskdevid=\"" : "",
413 devid ? : "",
414 devid ? "\"" : "");
415 if (!bootfs)
416 return grub_errno;
417 if (argc >= 2)
418 grub_env_set (args[1], bootfs);
419 else
420 grub_printf ("%s\n", bootfs);

422 if ((def) && (argc >= 3))
423 grub_env_set(args[2], def_path);
424 else if (def)
425 grub_printf("%s\n", def_path);

427 #endif /* ! codereview */
428 grub_free (bootfs);
429 grub_free (poolname);
430 grub_free (bootpath);
431 grub_free (devid);

433 return GRUB_ERR_NONE;
434 }

437 static grub_command_t cmd_info, cmd_bootfs;

439 GRUB_MOD_INIT (zfsinfo)
440 {
441 cmd_info = grub_register_command ("zfsinfo", grub_cmd_zfsinfo,
442 N_("DEVICE"),
443 N_("Print ZFS info about DEVICE."));
444 cmd_bootfs = grub_register_command ("zfs-bootfs", grub_cmd_zfs_bootfs,
445 N_("FILESYSTEM [VARIABLE]"),
446 N_("Print ZFS-BOOTFSOBJ or store it into V
447 }

449 GRUB_MOD_FINI (zfsinfo)
450 {
451 grub_unregister_command (cmd_info);
452 grub_unregister_command (cmd_bootfs);
453 }

new/grub/grub-core/partmap/sun.c 1

**
 4574 Fri Aug 31 05:08:55 2012
new/grub/grub-core/partmap/sun.c
grub patch
**
______unchanged_portion_omitted_

87 static grub_err_t
88 sun_partition_map_iterate (grub_disk_t disk,
89 int (*hook) (grub_disk_t disk,
90 const grub_partition_t partition))
91 {
92 struct grub_partition p;
93 union
94 {
95 struct grub_sun_block sunb;
95 struct grub_sun_block sun;
96 grub_uint16_t raw[0];
97 } block;
98 int partnum;
99 grub_err_t err;

101 p.partmap = &grub_sun_partition_map;
102 err = grub_disk_read (disk, 0, 0, sizeof (struct grub_sun_block),
103 &block);
104 if (err)
105 return err;

107 if (GRUB_PARTMAP_SUN_MAGIC != grub_be_to_cpu16 (block.sunb.magic))
107 if (GRUB_PARTMAP_SUN_MAGIC != grub_be_to_cpu16 (block.sun.magic))
108 return grub_error (GRUB_ERR_BAD_PART_TABLE, "not a sun partition table");

110 if (! grub_sun_is_valid (block.raw))
111 return grub_error (GRUB_ERR_BAD_PART_TABLE, "invalid checksum");
112
113 /* Maybe another error value would be better, because partition
114 table _is_ recognized but invalid. */
115 for (partnum = 0; partnum < GRUB_PARTMAP_SUN_MAX_PARTS; partnum++)
116 {
117 struct grub_sun_partition_descriptor *desc;

119 if (block.sunb.infos[partnum].id == 0
120 || block.sunb.infos[partnum].id == GRUB_PARTMAP_SUN_WHOLE_DISK_ID)
119 if (block.sun.infos[partnum].id == 0
120 || block.sun.infos[partnum].id == GRUB_PARTMAP_SUN_WHOLE_DISK_ID)
121 continue;

123 desc = &block.sunb.partitions[partnum];
123 desc = &block.sun.partitions[partnum];
124 p.start = ((grub_uint64_t) grub_be_to_cpu32 (desc->start_cylinder)
125 * grub_be_to_cpu16 (block.sunb.ntrks)
126 * grub_be_to_cpu16 (block.sunb.nsect));
125 * grub_be_to_cpu16 (block.sun.ntrks)
126 * grub_be_to_cpu16 (block.sun.nsect));
127 p.len = grub_be_to_cpu32 (desc->num_sectors);
128 p.number = p.index = partnum;
129 if (p.len)
130 {
131 if (hook (disk, &p))
132 partnum = GRUB_PARTMAP_SUN_MAX_PARTS;
133 }
134 }

136 return grub_errno;
137 }

______unchanged_portion_omitted_

new/grub/grub-core/partmap/sunpc.c 1

**
 3952 Fri Aug 31 05:08:55 2012
new/grub/grub-core/partmap/sunpc.c
grub patch
**
______unchanged_portion_omitted_

69 static grub_err_t
70 sun_pc_partition_map_iterate (grub_disk_t disk,
71 int (*hook) (grub_disk_t disk,
72 const grub_partition_t partition))
73 {
74 grub_partition_t p;
75 union
76 {
77 struct grub_sun_pc_block sunb;
77 struct grub_sun_pc_block sun;
78 grub_uint16_t raw[0];
79 } block;
80 int partnum;
81 grub_err_t err;

83 p = (grub_partition_t) grub_zalloc (sizeof (struct grub_partition));
84 if (! p)
85 return grub_errno;

87 p->partmap = &grub_sun_pc_partition_map;
88 err = grub_disk_read (disk, 1, 0, sizeof (struct grub_sun_pc_block), &block);
89 if (err)
90 {
91 grub_free (p);
92 return err;
93 }
94
95 if (GRUB_PARTMAP_SUN_PC_MAGIC != grub_le_to_cpu16 (block.sunb.magic))
95 if (GRUB_PARTMAP_SUN_PC_MAGIC != grub_le_to_cpu16 (block.sun.magic))
96 {
97 grub_free (p);
98 return grub_error (GRUB_ERR_BAD_PART_TABLE,
99 "not a sun_pc partition table");
100 }

102 if (! grub_sun_is_valid (block.raw))
103 {
104 grub_free (p);
105 return grub_error (GRUB_ERR_BAD_PART_TABLE, "invalid checksum");
106 }

108 /* Maybe another error value would be better, because partition
109 table _is_ recognized but invalid. */
110 for (partnum = 0; partnum < GRUB_PARTMAP_SUN_PC_MAX_PARTS; partnum++)
111 {
112 struct grub_sun_pc_partition_descriptor *desc;

114 if (block.sunb.partitions[partnum].id == 0
115 || block.sunb.partitions[partnum].id
114 if (block.sun.partitions[partnum].id == 0
115 || block.sun.partitions[partnum].id
116 == GRUB_PARTMAP_SUN_PC_WHOLE_DISK_ID)
117 continue;

119 desc = &block.sunb.partitions[partnum];
119 desc = &block.sun.partitions[partnum];
120 p->start = grub_le_to_cpu32 (desc->start_sector);
121 p->len = grub_le_to_cpu32 (desc->num_sectors);
122 p->number = partnum;

new/grub/grub-core/partmap/sunpc.c 2

123 if (p->len)
124 {
125 if (hook (disk, p))
126 partnum = GRUB_PARTMAP_SUN_PC_MAX_PARTS;
127 }
128 }

130 grub_free (p);

132 return grub_errno;
133 }

______unchanged_portion_omitted_

new/grub/include/grub/search.h 1

**
 1170 Fri Aug 31 05:08:56 2012
new/grub/include/grub/search.h
fix mirror
**

1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (C) 2009 Free Software Foundation, Inc.
4 *
5 * GRUB is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *

10 * GRUB is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
17 */

19 #ifndef GRUB_SEARCH_HEADER
20 #define GRUB_SEARCH_HEADER 1

22 void grub_search_fs_file (const char *key, const char *var, int no_floppy,
23 char **hints, unsigned nhints, int mirror);
23 char **hints, unsigned nhints);
24 void grub_search_fs_uuid (const char *key, const char *var, int no_floppy,
25 char **hints, unsigned nhints, int mirror);
25 char **hints, unsigned nhints);
26 void grub_search_label (const char *key, const char *var, int no_floppy,
27 char **hints, unsigned nhints, int mirror);
27 char **hints, unsigned nhints);

29 #endif

new/grub/include/grub/zfs/dmu.h 1

**
 4683 Fri Aug 31 05:08:56 2012
new/grub/include/grub/zfs/dmu.h
feature flags + bug fix
**

1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (C) 1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
4 *
5 * GRUB is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 3 of the License, or
8 * (at your option) any later version.
9 *

10 * GRUB is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
17 */
18 /*
19 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
20 * Use is subject to license terms.
21 */
22 /*
23 * Copyright 2012, Daniil Lunev
24 */
25 #endif /* ! codereview */

27 #ifndef _SYS_DMU_H
28 #define _SYS_DMU_H

30 /*
31 * This file describes the interface that the DMU provides for its
32 * consumers.
33 *
34 * The DMU also interacts with the SPA. That interface is described in
35 * dmu_spa.h.
36 */

38 #define B_FALSE 0
39 #define B_TRUE 1

41 #define DMU_OT_NEWTYPE 0x80
42 #define DMU_OT_METADATA 0x40
43 #define DMU_OT_BYTESWAP_MASK 0x3f

45 #define DMU_OT(byteswap, metadata) \
46 (DMU_OT_NEWTYPE | \
47 ((metadata) ? DMU_OT_METADATA : 0) | \
48 ((byteswap) & DMU_OT_BYTESWAP_MASK))

50 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
51 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
52 (ot) < DMU_OT_NUMTYPES)

54 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
55 ((ot) & DMU_OT_METADATA) : \
56 dmu_ot[(ot)].ot_metadata)

58 typedef enum dmu_object_byteswap {
59 DMU_BSWAP_UINT8,
60 DMU_BSWAP_UINT16,
61 DMU_BSWAP_UINT32,

new/grub/include/grub/zfs/dmu.h 2

62 DMU_BSWAP_UINT64,
63 DMU_BSWAP_ZAP,
64 DMU_BSWAP_DNODE,
65 DMU_BSWAP_OBJSET,
66 DMU_BSWAP_ZNODE,
67 DMU_BSWAP_OLDACL,
68 DMU_BSWAP_ACL,
69 DMU_BSWAP_NUMFUNCS
70 } dmu_object_byteswap_t;

72 #endif /* ! codereview */
73 typedef enum dmu_object_type {
74 DMU_OT_NONE,
75 /* general: */
76 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
77 DMU_OT_OBJECT_ARRAY, /* UINT64 */
78 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
79 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
80 DMU_OT_BPLIST, /* UINT64 */
81 DMU_OT_BPLIST_HDR, /* UINT64 */
82 /* spa: */
83 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
84 DMU_OT_SPACE_MAP, /* UINT64 */
85 /* zil: */
86 DMU_OT_INTENT_LOG, /* UINT64 */
87 /* dmu: */
88 DMU_OT_DNODE, /* DNODE */
89 DMU_OT_OBJSET, /* OBJSET */
90 /* dsl: */
91 DMU_OT_DSL_DIR, /* UINT64 */
92 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
93 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
94 DMU_OT_DSL_PROPS, /* ZAP */
95 DMU_OT_DSL_DATASET, /* UINT64 */
96 /* zpl: */
97 DMU_OT_ZNODE, /* ZNODE */
98 DMU_OT_OLDACL, /* OLD ACL */
99 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
100 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
101 DMU_OT_MASTER_NODE, /* ZAP */
102 DMU_OT_UNLINKED_SET, /* ZAP */
103 /* zvol: */
104 DMU_OT_ZVOL, /* UINT8 */
105 DMU_OT_ZVOL_PROP, /* ZAP */
106 /* other; for testing only! */
107 DMU_OT_PLAIN_OTHER, /* UINT8 */
108 DMU_OT_UINT64_OTHER, /* UINT64 */
109 DMU_OT_ZAP_OTHER, /* ZAP */
110 /* new object types: */
111 DMU_OT_ERROR_LOG, /* ZAP */
112 DMU_OT_SPA_HISTORY, /* UINT8 */
113 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
114 DMU_OT_POOL_PROPS, /* ZAP */
115 DMU_OT_DSL_PERMS, /* ZAP */
116 DMU_OT_ACL, /* ACL */
117 DMU_OT_SYSACL, /* SYSACL */
118 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
119 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
120 DMU_OT_NEXT_CLONES, /* ZAP */
121 DMU_OT_SCRUB_QUEUE, /* ZAP */
122 DMU_OT_USERGROUP_USED, /* ZAP */
123 DMU_OT_USERGROUP_QUOTA, /* ZAP */
124 DMU_OT_USERREFS, /* ZAP */
125 DMU_OT_DDT_ZAP, /* ZAP */
126 DMU_OT_DDT_STATS, /* ZAP */
127 DMU_OT_SA, /* System attr */

new/grub/include/grub/zfs/dmu.h 3

128 DMU_OT_SA_MASTER_NODE, /* ZAP */
129 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
130 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
131 DMU_OT_DSL_KEYCHAIN = 54,
132 DMU_OT_NUMTYPES,
133
134 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
22 DMU_OT_NUMTYPES
135 } dmu_object_type_t;

______unchanged_portion_omitted_

147 /*
148 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
149 */
150 #define DMU_POOL_DIRECTORY_OBJECT 1
151 #define DMU_POOL_CONFIG "config"
152 #define DMU_POOL_ROOT_DATASET "root_dataset"
153 #define DMU_POOL_SYNC_BPLIST "sync_bplist"
154 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
155 #define DMU_POOL_ERRLOG_LAST "errlog_last"
156 #define DMU_POOL_SPARES "spares"
157 #define DMU_POOL_DEFLATE "deflate"
158 #define DMU_POOL_HISTORY "history"
159 #define DMU_POOL_PROPS "pool_props"
160 #define DMU_POOL_L2CACHE "l2cache"
161 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
162 #endif /* ! codereview */

164 #endif /* _SYS_DMU_H */

new/grub/include/grub/zfs/zfs.h 1

**
 5552 Fri Aug 31 05:08:57 2012
new/grub/include/grub/zfs/zfs.h
grub patch
**

1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (C) 1999,2000,2001,2002,2003,2004,2009 Free Software Foundation,
4 *
5 * GRUB is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 3 of the License, or
8 * (at your option) any later version.
9 *

10 * GRUB is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
17 */
18 /*
19 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
20 */
21 /*
22 * Copyright 2012, Daniil Lunev
23 */
24 #endif /* ! codereview */

26 #ifndef GRUB_ZFS_HEADER
27 #define GRUB_ZFS_HEADER 1

29 #include <grub/err.h>
30 #include <grub/disk.h>
31 #include <grub/crypto.h>

33 typedef enum grub_zfs_endian
34 {
35 GRUB_ZFS_UNKNOWN_ENDIAN = -2,
36 GRUB_ZFS_LITTLE_ENDIAN = -1,
37 GRUB_ZFS_BIG_ENDIAN = 0
38 } grub_zfs_endian_t;

40 /*
41 * On-disk version number.
42 */
43 #define SPA_VERSION 33ULL
44 #define SPA_FEATURE_VERSION 5000ULL
45 #endif /* ! codereview */

47 /*
48 * The following are configuration names used in the nvlist describing a pool’s
49 * configuration.
50 */
51 #define ZPOOL_CONFIG_VERSION "version"
52 #define ZPOOL_CONFIG_POOL_NAME "name"
53 #define ZPOOL_CONFIG_POOL_STATE "state"
54 #define ZPOOL_CONFIG_POOL_TXG "txg"
55 #define ZPOOL_CONFIG_POOL_GUID "pool_guid"
56 #define ZPOOL_CONFIG_CREATE_TXG "create_txg"
57 #define ZPOOL_CONFIG_TOP_GUID "top_guid"
58 #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree"
59 #define ZPOOL_CONFIG_TYPE "type"
60 #define ZPOOL_CONFIG_CHILDREN "children"
61 #define ZPOOL_CONFIG_ID "id"

new/grub/include/grub/zfs/zfs.h 2

62 #define ZPOOL_CONFIG_GUID "guid"
63 #define ZPOOL_CONFIG_PATH "path"
64 #define ZPOOL_CONFIG_DEVID "devid"
65 #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array"
66 #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift"
67 #define ZPOOL_CONFIG_ASHIFT "ashift"
68 #define ZPOOL_CONFIG_ASIZE "asize"
69 #define ZPOOL_CONFIG_DTL "DTL"
70 #define ZPOOL_CONFIG_STATS "stats"
71 #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk"
72 #define ZPOOL_CONFIG_ERRCOUNT "error_count"
73 #define ZPOOL_CONFIG_NOT_PRESENT "not_present"
74 #define ZPOOL_CONFIG_SPARES "spares"
75 #define ZPOOL_CONFIG_IS_SPARE "is_spare"
76 #define ZPOOL_CONFIG_NPARITY "nparity"
77 #define ZPOOL_CONFIG_PHYS_PATH "phys_path"
78 #define ZPOOL_CONFIG_L2CACHE "l2cache"
79 #define ZPOOL_CONFIG_HOLE_ARRAY "hole_array"
80 #define ZPOOL_CONFIG_VDEV_CHILDREN "vdev_children"
81 #define ZPOOL_CONFIG_IS_HOLE "is_hole"
82 #define ZPOOL_CONFIG_DDT_HISTOGRAM "ddt_histogram"
83 #define ZPOOL_CONFIG_DDT_OBJ_STATS "ddt_object_stats"
84 #define ZPOOL_CONFIG_DDT_STATS "ddt_stats"
85 /*
86 * The persistent vdev state is stored as separate values rather than a single
87 * ’vdev_state’ entry. This is because a device can be in multiple states, such
88 * as offline and degraded.
89 */
90 #define ZPOOL_CONFIG_OFFLINE "offline"
91 #define ZPOOL_CONFIG_FAULTED "faulted"
92 #define ZPOOL_CONFIG_DEGRADED "degraded"
93 #define ZPOOL_CONFIG_REMOVED "removed"

95 #define VDEV_TYPE_ROOT "root"
96 #define VDEV_TYPE_MIRROR "mirror"
97 #define VDEV_TYPE_REPLACING "replacing"
98 #define VDEV_TYPE_RAIDZ "raidz"
99 #define VDEV_TYPE_DISK "disk"
100 #define VDEV_TYPE_FILE "file"
101 #define VDEV_TYPE_MISSING "missing"
102 #define VDEV_TYPE_HOLE "hole"
103 #define VDEV_TYPE_SPARE "spare"
104 #define VDEV_TYPE_L2CACHE "l2cache"

106 /*
107 * pool state. The following states are written to disk as part of the normal
108 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE, L2CACHE. The remaining
109 * states are software abstractions used at various levels to communicate pool
110 * state.
111 */
112 typedef enum pool_state {
113 POOL_STATE_ACTIVE = 0, /* In active use */
114 POOL_STATE_EXPORTED, /* Explicitly exported */
115 POOL_STATE_DESTROYED, /* Explicitly destroyed */
116 POOL_STATE_SPARE, /* Reserved for hot spare use */
117 POOL_STATE_L2CACHE, /* Level 2 ARC device */
118 POOL_STATE_UNINITIALIZED, /* Internal spa_t state */
119 POOL_STATE_UNAVAIL, /* Internal libzfs state */
120 POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */
121 } pool_state_t;

123 struct grub_zfs_data;

125 grub_err_t grub_zfs_fetch_nvlist (grub_device_t dev, char **nvlist);
126 grub_err_t grub_zfs_getmdnobj (grub_device_t dev, const char *fsfilename,
127 grub_uint64_t *mdnobj);

new/grub/include/grub/zfs/zfs.h 3

129 char *grub_zfs_nvlist_lookup_string (const char *nvlist, const char *name);
130 char *grub_zfs_nvlist_lookup_nvlist (const char *nvlist, const char *name);
131 int grub_zfs_nvlist_lookup_uint64 (const char *nvlist, const char *name,
132 grub_uint64_t *out);
133 char *grub_zfs_nvlist_lookup_nvlist_array (const char *nvlist,
134 const char *name,
135 grub_size_t index);
136 int grub_zfs_nvlist_lookup_nvlist_array_get_nelm (const char *nvlist,
137 const char *name);
138 grub_err_t
139 grub_zfs_add_key (grub_uint8_t *key_in,
140 grub_size_t keylen,
141 int passphrase);

143 grub_err_t
144 get_default_bootfs_obj(grub_device_t dev, char * path, grub_uint64_t * mdnobj);
145 #endif /* ! codereview */
146 extern grub_err_t (*grub_zfs_decrypt) (grub_crypto_cipher_handle_t cipher,
147 grub_uint64_t algo,
148 void *nonce,
149 char *buf, grub_size_t size,
150 const grub_uint32_t *expected_mac,
151 grub_zfs_endian_t endian);

153 struct grub_zfs_key;

155 extern grub_crypto_cipher_handle_t (*grub_zfs_load_key) (const struct grub_zfs_k
156 grub_size_t keysize,
157 grub_uint64_t salt,
158 grub_uint64_t algo);

162 #endif /* ! GRUB_ZFS_HEADER */

new/grub/util/grub-solarislst2cfg.c 1

**
 5580 Fri Aug 31 05:08:58 2012
new/grub/util/grub-solarislst2cfg.c
grub patch
**

1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (C) 2012 Daniil Lunev
4 *
5 * GRUB is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *

10 * GRUB is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
17 */

19 #include <grub/types.h>
20 #include <grub/emu/misc.h>
21 #include <grub/emu/getroot.h>
22 #include <grub/fs.h>
23 #include <grub/device.h>

25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>

29 #define BUFFER_SIZE 512

31 struct commands {
32 const char * lst;
33 const char * cfg;
34 };

36 void
37 get_uuid_by_path(char * path, char ** uuid)
38 {
39 char ** devices = NULL;
40 char * drive = NULL;
41 grub_device_t dev = NULL;
42 grub_fs_t fs = NULL;
43 char * grub_path = NULL;

45 grub_path = canonicalize_file_name(path);
46 if (! grub_path)
47 grub_util_error("Can’t canonicalize path");
48
49 devices = grub_guess_root_devices(grub_path);
50 if (! devices)
51 grub_util_error("Can’t find device");
52
53 drive = grub_util_get_grub_dev(devices[0]);
54 if (! drive)
55 grub_util_error("Can’t get drive");
56
57 dev = grub_device_open(drive);
58 if (! dev)
59 grub_util_error("Can’t open device");

61 fs = grub_fs_probe(dev);

new/grub/util/grub-solarislst2cfg.c 2

62 if (! fs)
63 grub_util_error("Probing fs error");

65 if (! fs->uuid)
66 grub_util_error("This fs doesn’t support uuid");

68 if (fs->uuid(dev, uuid) != GRUB_ERR_NONE)
69 grub_util_error("%s", grub_errmsg);

71 free(grub_path);
72 if (dev)
73 grub_device_close(dev);

75 return;
76 }

78 struct commands com[] = {
79 {"title", "entry_name"},
80 {"findroot", "pool"},
81 {"bootfs", "data_set"},
82 {"kernel$", "kernel_path"},
83 {"module$", "module"},
84 {"default", "default_entry"},
85 {"timeout", "timeout"},
86 {"serial", "serial"},
87 {"terminal", "terminal"},
88 {0, 0},
89 };

91 int
92 get_command_id(char * command)
93 {
94 int i = 0;
95 for (; com[i].lst; ++i)
96 if (!strcmp(com[i].lst, command))
97 return i;
98 return -1;
99 }

101 char *
102 retrive_value(char * val)
103 {
104 char * str;
105 int quote_flag = 0;;

107 while ((*val == ’ ’) || (*val == ’\t’))
108 ++val;

110 if (*val == ’"’) {
111 ++val;
112 ++quote_flag;
113 }
114
115 str = val;
116
117 for (;;) {
118 if (quote_flag) {
119 if (*val == ’"’)
120 break;
121 if (*val == ’\0’)
122 return NULL;
123 } else {
124 if ((*val == ’ ’) || (*val == ’\t’) || (*val == ’\0’))
125 break;
126 }
127 ++val;

new/grub/util/grub-solarislst2cfg.c 3

128 }
129 *val = ’\0’;

131 return str;
132 }

134 int
135 parse_menulst(FILE * in_file, FILE * out_file)
136 {
137 char line[BUFFER_SIZE];
138 char * command;
139 char * value;
140 char * label = NULL;
141 char bootfs[BUFFER_SIZE];
142 char pool[BUFFER_SIZE];
143 char * uuid;
144 char * c;
145 int com_id;

147 for (;;) {
148 command = fgets(line, BUFFER_SIZE, in_file);
149 if (! command)
150 return 0;

152 c = command + strlen(command) - 1;
153 if ((*c != ’\n’) && (fgets(line, BUFFER_SIZE, in_file)))
154 return 1;

156 if ((*command == ’#’) || (*command == ’ ’)
157 || (*command == ’\t’) || (*command == ’\n’))
158 continue;

160 if (*c == ’\n’)
161 *c = ’\0’;
162 value = strchr(line, ’ ’);
163 if (! value)
164 continue;

166 *value++ = ’\0’;
167
168 com_id = get_command_id(command);
169 if (com_id < 0)
170 continue;

172 switch (com_id) {
173 case 0:
174 fprintf(out_file,"\n%s=%s\n", com[com_id].cfg, value);
175 break;
176 case 1:
177 label = strdup(strchr(value, ’_’) + 1);
178 c = strchr(label, ’,’);
179 if (c)
180 *c = 0;
181 continue;
182 case 2:
183 c = strchr(value, ’/’);
184 if (c != NULL) {
185 strcpy(bootfs, c);
186 *c = ’\0’;
187 strcpy(pool + 1, value);
188 *pool = ’/’;
189 uuid = NULL;
190 get_uuid_by_path(pool, &uuid);
191 if (! uuid)
192 return 1;
193

new/grub/util/grub-solarislst2cfg.c 4

194 fprintf(out_file,"pool_uuid=%s\n", uuid);
195
196 }
197 *c = ’/’;
198 fprintf(out_file,"data_set=%s\n", value);
199 if (label) {
200 free(label);
201 label = NULL;
202 }
203 break;
204 case 3:
205 case 4:
206 if (label) {
207 fprintf(out_file,"pool_label=%s\n", label);
208 free(label);
209 label = NULL;
210 }
211 if (com_id == 3)
212 c = strchr (value, ’ ’);
213 if (c)
214 *c = ’\0’;
215 if (! value)
216 return 1;
217
218 fprintf(out_file,"%s=%s\n", com[com_id].cfg, value);

220 if ((com_id == 3) && (c)) {
221 char * tmp;
222 value = c + 1;
223 tmp = strstr(value, "ZFS-BOOTFS");
224 if (tmp)
225 *(tmp + 3) = ’_’;
226 fprintf(out_file,"kernel_options=%s\n", value);
227 }

229 break;
230 default:
231 fprintf(out_file,"%s=%s\n", com[com_id].cfg, value);
232 break;
233 }
234 }
235 return 0;
236 }

238 int
239 main(int argc, char ** argv)
240 {
241 FILE * lst_file;
242 FILE * cfg_file;
243 int err = 0;

245 if (argc != 3) {
246 printf("grub-solarislst2cfg lst_file cfg_file\n");
247 return 1;
248 }

250 lst_file = fopen(argv[1], "r");
251 if (! lst_file)
252 return 1;

254 cfg_file = fopen(argv[2], "w");
255 if (! cfg_file) {
256 fclose(lst_file);
257 return 1;
258 }

new/grub/util/grub-solarislst2cfg.c 5

260 grub_util_init_nls();
261 grub_util_biosdisk_init(DEFAULT_DEVICE_MAP);
262 grub_init_all();
263
264 err = parse_menulst(lst_file, cfg_file);

266 grub_fini_all();

268 fclose(lst_file);
269 fclose(cfg_file);

271 if (err)
272 remove(argv[2]);
273 return err;
274 }
275 #endif /* ! codereview */

new/grub/util/grub.d/10_illumos.in 1

**
 1774 Fri Aug 31 05:08:58 2012
new/grub/util/grub.d/10_illumos.in
fixes
**
______unchanged_portion_omitted_

53 submenu ’Illumos-entries’ {
54 illumos_entries /@/boot/illumos.cfg
55 }
56 #endif /* ! codereview */
57 EOF

new/grubadm/error.c 1

**
 1441 Fri Aug 31 05:08:59 2012
new/grubadm/error.c
menuadm->grubadm, ba_path->module, various changes, starting adding serial termi
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2012, Daniil Lunev. All rights reserved.
23 */
24 #include <stdarg.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include "grubadm.h"
28 #include "error.h"

30 char * DEBUG;

32 void
33 debug_print (const char * fmt, ...)
34 {
35 va_list args;
36 if (DEBUG) {
37 va_start (args, fmt);
38 vfprintf (stderr, fmt, args);
39 va_end (args);
40 }
41 }

43 void
44 print_system_error ()
45 {
46 perror(APP_NAME);
47 }

49 void
50 print_error (const char * fmt, ...)
51 {
52 va_list args;
53 fprintf (stderr, "%s: ", APP_NAME);
54 va_start (args, fmt);
55 vfprintf (stderr, fmt, args);
56 va_end (args);
57 fprintf (stderr, "\n");
58 }

60 void
61 check_debug ()

new/grubadm/error.c 2

62 {
63 DEBUG = getenv("DEBUG");
64 }
65 #endif /* ! codereview */

new/grubadm/error.h 1

**
 1039 Fri Aug 31 05:08:59 2012
new/grubadm/error.h
menuadm->grubadm, ba_path->module, various changes, starting adding serial termi
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2012, Daniil Lunev. All rights reserved.
23 */
24 extern char * DEBUG;

26 void
27 debug_print (const char * fmt, ...);

29 void
30 print_system_error ();

32 void
33 print_error (const char * fmt, ...);

35 void
36 check_debug ();
37 #endif /* ! codereview */

new/grubadm/grubadm.1m 1

**
 6974 Fri Aug 31 05:09:00 2012
new/grubadm/grubadm.1m
license + man
**

1 ’\" te
2 .\" Copyright 2012, Daniil Lunev. All rights reserved.
3 .TH GRUBADM 1M "July 25, 2012"
4 .SH NAME
5 grubadm \- GRUB2 Illumos bootmenu manager
6 .SH SYNOPSIS
7 .LP
8 .nf
9 \fBgrubadm\fR [\fB--clone\fR] [\fB--new\fR] [\fB--delete\fR] [\fB--list\fR]

10 [\fB\--helpfR] [\fB--all\fR] [\fB--enable-hyper\fR] [\fB--disable-hyper\fR]
11 [\fB--get-name\fR] [\fB--get-uuid\fR] [\fB--get-pool\fR][\fB--get-dataset\fR]
12 [\fBget-kernel\fR] [\fB--get-opts\fR] [\fB--get-modules\fR] [\fB--get-default\fR
13 [\fB--get-timeout\fR] [\fB--get-terminal\fR] [\fB--get-serial\fR] [\fB--get-all\
14 [\fB--default\fR] [\fB--set-name\fR \fIname\fR] [\fB--set-uuid\fR \fIuuid\fR]
15 [\fB--set-pool\fR \fIpool\fR] [\fB--set-dataset\fR \fIdataset\fR]
16 [\fB--set-kernel\fR \fIkernel\fR] [\fB--set-opts\fR \fIoptions\fR]
17 [\fB--set-module\fR \fImodule\fR] [\fB--set-default\fR \fIdefault entry numder\f
18 [\fB--set-timeout\fR \fItimeout\fR] [\fB--set-terminal\fR \fIterminals\fR]
19 [\fB--set-serial\fR \fIserial\fR] [\fB--name\fR \fIname\fR] [\fB--uuid\fR \fIuui
20 [\fB--pool\fR \fIpool\fR] [\fB--dataset\fR \fIdataset\fR] [\fB--kernel\fR \fIker
21 [\fB--module\fR \fImodule\fR] [\fB--number\fR \fInumber\fR]
22 [\fB--alt-root\fR \fIalt-root\fR] [\fB--clear\fR]
23 .fi

25 .SH DESCRIPTION
26 .sp
27 .LP
28 The command \fBgrubadm\fR is used to manipulate GRUB2 Illumos entries and GRUB2
29 booting parameters. It modify only \fBillumos.cfg\fR and don’t influence on entr
30 that placed in different locations. If you want to see illumos entries in
31 the GRUB2 boot menu, be sure that \fBgrub.cfg\fR contain line "illumos_entries
32 /@/boot/illumos.cfg".
33 .SH OPTIONS
34 .LP
35 The following options are supported:
36 .sp
37 .ne 2
38 .na
39 \fB\fB--list\fR\fR
40 .ad
41 .sp .6
42 .RS 4n
43 List names of all entries and global parameters values
44 .RE

46 .sp
47 .ne 2
48 .na
49 \fB\fB--delete\fR\fR
50 .ad
51 .sp .6
52 .RS 4n
53 Delete entry (don’t stack with --clone, --new, --get-*, --set-*,
54 --enable-hyper, --disable-hyper)
55 .RE

57 .sp
58 .ne 2
59 .na
60 \fB\fB--new\fR\fR
61 .ad

new/grubadm/grubadm.1m 2

62 .sp .6
63 .RS 4n
64 Add new entry (don’t stack with --clone, --delete, --all)
65 .RE

67 .sp
68 .ne 2
69 .na
70 \fB\fB--default\fR\fR
71 .ad
72 .sp .6
73 .RS 4n
74 Fill entry with default values
75 .RE

77 .sp
78 .ne 2
79 .na
80 \fB\fB--clone\fR\fR
81 .ad
82 .sp .6
83 .RS 4n
84 Clone existing entry (don’t stack with --delete, --new, --all)
85 .RE

87 .sp
88 .ne 2
89 .na
90 \fB\fB--clear\fR\fR
91 .ad
92 .sp .6
93 .RS 4n
94 Delete all entries
95 .RE

97 .sp
98 .ne 2
99 .na
100 \fB\fB--help\fR\fR
101 .ad
102 .sp .6
103 .RS 4n
104 Show usage
105 .RE

107 .sp
108 .ne 2
109 .na
110 \fB\fB--all\fR\fR
111 .ad
112 .sp .6
113 .RS 4n
114 Apply action to all appropriate entries
115 .RE

117 .sp
118 .ne 2
119 .na
120 \fB\fB--number\fR\fR \fInumber\fR
121 .ad
122 .sp .6
123 .RS 4n
124 Get entry by number. If an unappropriate value are passed,
125 default entry will be getted.
126 .RE

new/grubadm/grubadm.1m 3

128 .sp
129 .ne 2
130 .na
131 \fB\fB--name\fR\fR \fIname\fR
132 .ad
133 .sp .6
134 .RS 4n
135 Find entry by name
136 .RE

138 .sp
139 .ne 2
140 .na
141 \fB\fB--uuid\fR\fR \fIuuid\fR
142 .ad
143 .sp .6
144 .RS 4n
145 Find entry by pool uuid
146 .RE

148 .sp
149 .ne 2
150 .na
151 \fB\fB--pool\fR\fR \fIpool\fR
152 .ad
153 .sp .6
154 .RS 4n
155 Find entry by pool name
156 .RE

158 .sp
159 .ne 2
160 .na
161 \fB\fB--dataset\fR\fR \fIdataset\fR
162 .ad
163 .sp .6
164 .RS 4n
165 Find entry by dataset
166 .RE

168 .sp
169 .ne 2
170 .na
171 \fB\fB--kernel\fR\fR \fIkernel\fR
172 .ad
173 .sp .6
174 .RS 4n
175 Find entry by kernel
176 .RE

178 .sp
179 .ne 2
180 .na
181 \fB\fB--module\fR\fR \fImodule\fR
182 .ad
183 .sp .6
184 .RS 4n
185 Find entry by module
186 .RE

188 .sp
189 .ne 2
190 .na
191 \fB\fB--get-name\fR\fR
192 .ad
193 .sp .6

new/grubadm/grubadm.1m 4

194 .RS 4n
195 Get entry name
196 .RE

198 .sp
199 .ne 2
200 .na
201 \fB\fB--get-pool\fR\fR
202 .ad
203 .sp .6
204 .RS 4n
205 Get entry pool name
206 .RE

208 .sp
209 .ne 2
210 .na
211 \fB\fB--get-uuid\fR\fR
212 .ad
213 .sp .6
214 .RS 4n
215 Get entry pool uuid
216 .RE

218 .sp
219 .ne 2
220 .na
221 \fB\fB--get-dataset\fR\fR
222 .ad
223 .sp .6
224 .RS 4n
225 Get entry dataset
226 .RE

228 .sp
229 .ne 2
230 .na
231 \fB\fB--get-kernel\fR\fR
232 .ad
233 .sp .6
234 .RS 4n
235 Get entry kernel line
236 .RE

238 .sp
239 .ne 2
240 .na
241 \fB\fB--get-opts\fR\fR
242 .ad
243 .sp .6
244 .RS 4n
245 Get entry kernele opts
246 .RE

248 .sp
249 .ne 2
250 .na
251 \fB\fB--get-modules\fR\fR
252 .ad
253 .sp .6
254 .RS 4n
255 Get entry modules
256 .RE

258 .sp
259 .ne 2

new/grubadm/grubadm.1m 5

260 .na
261 \fB\fB--get-default\fR\fR
262 .ad
263 .sp .6
264 .RS 4n
265 Get default entry number
266 .RE

268 .sp
269 .ne 2
270 .na
271 \fB\fB--get-timeout\fR\fR
272 .ad
273 .sp .6
274 .RS 4n
275 Get timeout
276 .RE

278 .sp
279 .ne 2
280 .na
281 \fB\fB--get-serial\fR\fR
282 .ad
283 .sp .6
284 .RS 4n
285 Get serial port configureation info
286 .RE

288 .sp
289 .ne 2
290 .na
291 \fB\fB--get-terminal\fR\fR
292 .ad
293 .sp .6
294 .RS 4n
295 Get terminal
296 .RE

298 .sp
299 .ne 2
300 .na
301 \fB\fB--get-all\fR\fR
302 .ad
303 .sp .6
304 .RS 4n
305 Get all information about appropriate entries
306 .RE

308 .sp
309 .ne 2
310 .na
311 \fB\fB--set-name\fR\fR \fIname\fR
312 .ad
313 .sp .6
314 .RS 4n
315 Set entry name
316 .RE

318 .sp
319 .ne 2
320 .na
321 \fB\fB--set-pool\fR\fR \fIpool\fR
322 .ad
323 .sp .6
324 .RS 4n
325 Set entry pool name

new/grubadm/grubadm.1m 6

326 .RE

328 .sp
329 .ne 2
330 .na
331 \fB\fB--set-uuid\fR\fR \fIuuid\fR
332 .ad
333 .sp .6
334 .RS 4n
335 Set entry pool uuid
336 .RE

338 .sp
339 .ne 2
340 .na
341 \fB\fB--set-dataset\fR\fR \fIdataset\fR
342 .ad
343 .sp .6
344 .RS 4n
345 Set entry dataset
346 .RE

348 .sp
349 .ne 2
350 .na
351 \fB\fB--set-kernel\fR\fR \fIkernel\fR
352 .ad
353 .sp .6
354 .RS 4n
355 Set entry kernel line
356 .RE

358 .sp
359 .ne 2
360 .na
361 \fB\fB--set-opts\fR\fR \fIoptions\fR
362 .ad
363 .sp .6
364 .RS 4n
365 Set entry kernele opts
366 .RE

368 .sp
369 .ne 2
370 .na
371 \fB\fB--set-module\fR\fR \fImodule\fR
372 .ad
373 .sp .6
374 .RS 4n
375 Set entry module (all earlier specified modules will be deleted,
376 if you want to specify multiple modules, use several --set-module
377 in a single command)
378 .RE

380 .sp
381 .ne 2
382 .na
383 \fB\fB--set-default\fR\fR \fIdefault entry number\fR
384 .ad
385 .sp .6
386 .RS 4n
387 Set default entry number
388 .RE

390 .sp
391 .ne 2

new/grubadm/grubadm.1m 7

392 .na
393 \fB\fB--set-timeout\fR\fR \fItimeout\fR
394 .ad
395 .sp .6
396 .RS 4n
397 Set timeout
398 .RE

400 .sp
401 .ne 2
402 .na
403 \fB\fB--set-serial\fR\fR \fIserial_port_params\fR
404 .ad
405 .sp .6
406 .RS 4n
407 Set serial port configureation info
408 .RE

410 .sp
411 .ne 2
412 .na
413 \fB\fB--set-terminal\fR\fR \fIterminal\fR
414 .ad
415 .sp .6
416 .RS 4n
417 Set terminal
418 .RE

420 .sp
421 .ne 2
422 .na
423 \fB\fB--enable-hyper\fR\fR
424 .ad
425 .sp .6
426 .RS 4n
427 Convert entry to boot with xen
428 .RE

430 .sp
431 .ne 2
432 .na
433 \fB\fB--disable-hyper\fR\fR
434 .ad
435 .sp .6
436 .RS 4n
437 Convert entry from xen-mode to normal boot mod
438 .RE

440 .SH EXAMPLES
441 .LP
442 \fBExample 1\fR
443 .sp
444 .LP
445 List all entries

447 .sp
448 .in +2
449 .nf
450 example% \fBgrubadm --list\fR
451 .fi
452 .in -2
453 .sp

455 .LP
456 \fBExample 2\fR
457 .sp

new/grubadm/grubadm.1m 8

458 .LP
459 Add new entry with default paramters

461 .sp
462 .in +2
463 .nf
464 example% \fBgrubadm --new --default --set-name test\fR
465 .fi
466 .in -2
467 .sp

469 .LP
470 \fBExample 3\fR
471 .sp
472 .LP
473 Delete all entries with specified dataset

475 .sp
476 .in +2
477 .nf
478 example% \fBgrubadm --delete --all --dataset "rpool/ROOT/test_pool"\fR
479 .fi
480 .in -2
481 .sp

483 .LP
484 \fBExample 4\fR
485 .sp
486 .LP
487 Clone entry and set diffrent kernel options

489 .sp
490 .in +2
491 .nf
492 example% \fBgrubadm --clone --name test --set-name new_test --set-opt "-s"\fR
493 .fi
494 .in -2
495 .sp

497 .LP
498 \fBExample 5\fR
499 .sp
500 .LP
501 Change kernel and convert entry to hypervisor

503 .sp
504 .in +2
505 .nf
506 example% \fBgrubadm --name test --set-kernel "/platform/i86pc/kernel/unix" --ena
507 .fi
508 .in -2
509 .sp

511 .LP
512 \fBExample 6\fR
513 .sp
514 .LP
515 Set up serial console

517 .sp
518 .in +2
519 .nf
520 example% \fBgrubadm --set-serial "--unit=0 --speed=9600" --set-terminal "serial"
521 .fi
522 .in -2
523 .sp

new/grubadm/grubadm.1m 9

525 .LP
526 \fBExample 7\fR
527 .sp
528 .LP
529 Get default entry number

531 .sp
532 .in +2
533 .nf
534 example% \fBgrubadm --get-default\fR
535 .fi
536 .in -2
537 .sp

539 .SH FILES
540 .sp
541 .ne 2
542 .na
543 /pool/boot/illumos.cfg
544 .ad
545 .sp .6
546 .RS 4n
547 Bootmenu file.
548 .RE

550 .SH NOTES
551 grubadm is replacement of bootadm boot menu functionality for grub2. You can’t
552 use bootadm menu functionality on with GRUB2 as well as you can’t use grubadm
553 with GRUB-legacy.

555 #endif /* ! codereview */

new/grubadm/grubadm.c 1

**
 13773 Fri Aug 31 05:09:00 2012
new/grubadm/grubadm.c
rename
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2012, Daniil Lunev. All rights reserved.
23 */
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <getopt.h>
29 #include <assert.h>
30 #include "grubadm.h"
31 #include "error.h"
32 #include "menu.h"

34 menu_list get_arg = { 0 };
35 menu_list find_arg = { 0 };
36 menu_list set_arg = { 0 };
37 int get_timeout = 0;
38 int get_default = 0;
39 int get_serial = 0;
40 int get_terminal = 0;
41 int lst_flag = 0;
42 int new_flag = 0;
43 int all_flag = 0;
44 int del_flag = 0;
45 int fnd_flag = 0;
46 int hlp_flag = 0;
47 int get_flag = 0;
48 int set_flag = 0;
49 int cln_flag = 0;
50 int clr_flag = 0;
51 int enh_flag = 0;
52 int dih_flag = 0;
53 int num_flag = 0;
54 int number;
55 char * set_timeout = NULL;
56 char * set_default = NULL;
57 char * set_serial = NULL;
58 char * set_terminal = NULL;
59 char * alt_root = NULL;

61 static char opt_string[] = "landh?R:";

new/grubadm/grubadm.c 2

62 static const struct option options[] = {
63 { "list", no_argument, NULL, ’l’ },
64 { "all", no_argument, NULL, ’a’ },
65 { "new", no_argument, NULL, ’n’ },
66 { "delete", no_argument, NULL, ’d’ },
67 { "help", no_argument, NULL, ’h’ },
68 { "name", required_argument, NULL, 4 },
69 { "pool", required_argument, NULL, 5 },
70 { "uuid", required_argument, NULL, 6 },
71 { "dataset", required_argument, NULL, 7 },
72 { "kernel", required_argument, NULL, 8 },
73 { "module", required_argument, NULL, 9 },
74 { "set-name", required_argument, NULL, 10 },
75 { "set-pool", required_argument, NULL, 11 },
76 { "set-uuid", required_argument, NULL, 12 },
77 { "set-dataset", required_argument, NULL, 13 },
78 { "set-kernel", required_argument, NULL, 14 },
79 { "set-opts", required_argument, NULL, 15 },
80 { "set-module", required_argument, NULL, 16 },
81 { "set-default", required_argument, NULL, 17 },
82 { "set-timeout", required_argument, NULL, 18 },
83 { "get-name", no_argument, NULL, 19 },
84 { "get-pool", no_argument, NULL, 20 },
85 { "get-uuid", no_argument, NULL, 21 },
86 { "get-dataset", no_argument, NULL, 22 },
87 { "get-kernel", no_argument, NULL, 23 },
88 { "get-opts", no_argument, NULL, 24 },
89 { "get-modules", no_argument, NULL, 25 },
90 { "get-default", no_argument, NULL, 26 },
91 { "get-timeout", no_argument, NULL, 27 },
92 { "get-all", no_argument, NULL, 28 },
93 { "alt-root", required_argument, NULL, ’R’ },
94 { "default", no_argument, NULL, 30 },
95 { "set-serial", required_argument, NULL, 31 },
96 { "set-terminal", required_argument, NULL, 32 },
97 { "get-serial", no_argument, NULL, 33 },
98 { "get-terminal", no_argument, NULL, 34 },
99 { "clone", no_argument, NULL, 35 },
100 { "enable-hyper", no_argument, NULL, 36 },
101 { "disable-hyper", no_argument, NULL, 37 },
102 { "clear", no_argument, NULL, 38 },
103 { "number", required_argument, NULL, 39 },
104 { NULL, no_argument, NULL, 0 },
105 };

107 static void
108 usage ()
109 {
110 printf (
111 "Usage:\n"
112 "--list list all entries\n"
113 "--all apply actions to all appropriate entries\n"
114 "--new create new entry\n"
115 "--delete delete entry\n"
116 "--clone clone existing entry\n"
117 "--default set default entry properties\n"
118 "--help show this message\n"
119 "--number <opt> find entry by number (-1 = default entry)\n"
120 "--name <opt> find entry by name\n"
121 "--pool <opt> by pool name\n"
122 "--uuid <opt> by uuid\n"
123 "--dataset <opt> by dataset\n"
124 "--kernel <opt> by kernel\n"
125 "--module <opt> by module\n"
126 "--set-name <opt> set new name to entry\n"
127 "--set-pool <opt>\n"

new/grubadm/grubadm.c 3

128 "--set-uuid <opt>\n"
129 "--set-kernel <opt>\n"
130 "--set-opts <opt>\n"
131 "--set-module <opt>\n"
132 "--set-default <opt>\n"
133 "--set-timeout <opt>\n"
134 "--get-name get entry name\n"
135 "--get-pool\n"
136 "--get-uuid\n"
137 "--get-kernel\n"
138 "--get-opts\n"
139 "--get-module\n"
140 "--get-default\n"
141 "--get-timeout\n"
142 "--get-all retrieve all params of entry\n"
143 "--alt-root <opt> alternate root directory\n"
144 "--default set default fields value to entry\n"
145 "--set-serial set params of serial port\n"
146 "--set-terminal set default terminal\n"
147 "--get-serial get params of serial port"
148 "--get-terminal get default terminal\n"
149 "--enable-hyper convert entry to boot with xen\n"
150 "--disable-hyper convert entry to normal boot\n"
151 "--clear delete all entries\n"
152);
153 }

155 static char *
156 get_pool (const char * file)
157 {
158 char buf[MAX_STRING_SIZE];
159 char * tmp;
160 FILE * pipe;

162 const char fnc[] = "get_pool";

164 debug_print ("%s\narg: %s\n", fnc, file);

166 strcpy (buf, "/usr/bin/df -h ");
167 strcat (buf, file);
168
169 pipe = popen (buf, "r");
170 if (! pipe)
171 return NULL;

173 fgets (buf, MAX_STRING_SIZE, pipe);
174 if (! fgets (buf, MAX_STRING_SIZE, pipe)) {
175 pclose (pipe);
176 return NULL;
177 }

179 pclose (pipe);
180 tmp = strchr (buf, ’/’);
181 *tmp = 0;
182 tmp = strdup (buf);
183 return tmp;
184 }

186 static int
187 parse_args (int argc, char ** argv)
188 {
189 int opt = 0;
190 int index;
191
192 const char fnc[] = "parse_args";

new/grubadm/grubadm.c 4

194 debug_print ("%s\n", fnc);

196 while ((opt = getopt_long (argc, argv, opt_string, options, &index)) !=
197 switch (opt) {
198 case ’a’:
199 ++all_flag;
200 break;
201 case ’d’:
202 ++del_flag;
203 break;
204 case ’l’:
205 ++lst_flag;
206 break;
207 case ’n’:
208 ++new_flag;
209 break;
210 case ’h’:
211 case ’?’:
212 ++hlp_flag;
213 break;
214 case 4:
215 ++fnd_flag;
216 strcpy (find_arg.entry.entry_name, optarg);
217 break;
218 case 5:
219 ++fnd_flag;
220 strcpy (find_arg.entry.pool_label, optarg);
221 break;
222 case 6:
223 ++fnd_flag;
224 strcpy (find_arg.entry.pool_uuid, optarg);
225 break;
226 case 7:
227 ++fnd_flag;
228 strcpy (find_arg.entry.dataset, optarg);
229 break;
230 case 8:
231 ++fnd_flag;
232 strcpy (find_arg.entry.kernel, optarg);
233 break;
234 case 9:
235 ++fnd_flag;
236 find_arg.entry.modules[(find_arg.entry.modules_amount)++
237 break;
238 case 10:
239 ++set_flag;
240 strcpy (set_arg.entry.entry_name, optarg);
241 break;
242 case 11:
243 ++set_flag;
244 strcpy (set_arg.entry.pool_label, optarg);
245 break;
246 case 12:
247 ++set_flag;
248 strcpy (set_arg.entry.pool_uuid, optarg);
249 break;
250 case 13:
251 ++set_flag;
252 strcpy (set_arg.entry.dataset, optarg);
253 break;
254 case 14:
255 ++set_flag;
256 strcpy (set_arg.entry.kernel, optarg);
257 break;
258 case 15:
259 ++set_flag;

new/grubadm/grubadm.c 5

260 strcpy (set_arg.entry.kernel_opts, optarg);
261 break;
262 case 16:
263 ++set_flag;
264 set_arg.entry.modules[(set_arg.entry.modules_amount)++]
265 break;
266 case 17:
267 set_default = strdup (optarg);
268 break;
269 case 18:
270 set_timeout = strdup (optarg);
271 break;
272 case 19:
273 ++get_flag;
274 get_arg.entry.entry_name[0] = 1;
275 break;
276 case 20:
277 ++get_flag;
278 get_arg.entry.pool_label[0] = 1;
279 break;
280 case 21:
281 ++get_flag;
282 get_arg.entry.pool_uuid[0] = 1;
283 break;
284 case 22:
285 ++get_flag;
286 get_arg.entry.dataset[0] = 1;
287 break;
288 case 23:
289 ++get_flag;
290 get_arg.entry.kernel[0] = 1;
291 break;
292 case 24:
293 ++get_flag;
294 get_arg.entry.kernel_opts[0] = 1;
295 break;
296 case 25:
297 ++get_flag;
298 get_arg.entry.modules = (char**) 1;
299 break;
300 case 26:
301 ++get_default;
302 break;
303 case 27:
304 ++get_timeout;
305 break;
306 case 28:
307 ++get_flag;
308 memset (&(get_arg.entry), 0xFF, sizeof (menu_entry));
309 break;
310 case ’R’:
311 alt_root = strdup (optarg);
312 break;
313 case 30:
314 ++set_flag;
315 strcpy (set_arg.entry.entry_name, "Menuadm default");
316 strcpy (set_arg.entry.pool_label, get_pool ("/"));
317 strcpy (set_arg.entry.kernel, "/platform/i86pc/kernel/$I
318 strcpy (set_arg.entry.kernel_opts, "-B $ZFS_BOOTFS");
319 set_arg.entry.modules[0] = strdup ("/platform/i86pc/$ISA
320 set_arg.entry.modules_amount = 1;
321 break;
322 case 31:
323 set_serial = strdup (optarg);
324 break;
325 case 32:

new/grubadm/grubadm.c 6

326 set_terminal = strdup (optarg);
327 break;
328 case 33:
329 ++get_serial;
330 break;
331 case 34:
332 ++get_terminal;
333 break;
334 case 35:
335 ++cln_flag;
336 break;
337 case 36:
338 ++enh_flag;
339 break;
340 case 37:
341 ++dih_flag;
342 break;
343 case 38:
344 ++clr_flag;
345 break;
346 case 39:
347 ++num_flag;
348 sscanf (optarg, "%d", &number);
349 break;
350 default:
351 return 0;
352 }
353 }
354 return 1;
355 }

357 static int
358 check_flags ()
359 {
360 const char fnc[] = "check_flags";

362 debug_print ("%s\n", fnc);

364 if (new_flag)
365 if (del_flag || all_flag || cln_flag || fnd_flag || num_flag)
366 return 0;

368 if (del_flag)
369 if ((! fnd_flag && ! num_flag) || set_flag || get_flag || cln_fl
370 return 0;

372 if (cln_flag)
373 if (! fnd_flag || all_flag)
374 return 0;

376 if (fnd_flag)
377 if (num_flag)
378 return 0;
379 return 1;
380 }

382 static void
383 apply_set (menu_list * entry, menu_list * set)
384 {
385 unsigned int i = 0;

387 const char fnc[] = "apply_set";

389 debug_print ("%s\n", fnc);

391 if (set->entry.entry_name[0])

new/grubadm/grubadm.c 7

392 strcpy (entry->entry.entry_name, set->entry.entry_name);

394 if (set->entry.pool_label[0])
395 strcpy (entry->entry.pool_label, set->entry.pool_label);

397 if (set->entry.pool_uuid[0])
398 strcpy (entry->entry.pool_uuid, set->entry.pool_uuid);

400 if (set->entry.dataset[0])
401 strcpy (entry->entry.dataset, set->entry.dataset);

403 if (set->entry.kernel[0])
404 strcpy (entry->entry.kernel, set->entry.kernel);

406 if (set->entry.kernel_opts[0])
407 strcpy (entry->entry.kernel_opts, set->entry.kernel_opts);

409 if (set->entry.modules_amount) {
410 for (i = 0; i < entry->entry.modules_amount; ++i)
411 free (entry->entry.modules[i]);

413 for (i = 0; i < set->entry.modules_amount; ++i)
414 entry->entry.modules[i] = strdup (set->entry.modules[i])

416 entry->entry.modules_amount = set->entry.modules_amount;
417 }
418 }

420 static void
421 output_entry (menu_list * entry, menu_list * get)
422 {
423 unsigned int i = 0;

425 const char fnc[] = "output_entry";

427 debug_print ("%s\n", fnc);

429 if (get->entry.entry_name[0])
430 printf("%s\n", entry->entry.entry_name);

432 if (get->entry.pool_label[0])
433 printf("%s\n", entry->entry.pool_label);

435 if (get->entry.pool_uuid[0])
436 printf("%s\n", entry->entry.pool_uuid);

438 if (get->entry.dataset[0])
439 printf("%s\n", entry->entry.dataset);

441 if (get->entry.kernel[0])
442 printf("%s\n", entry->entry.kernel);

444 if (get->entry.kernel_opts[0])
445 printf("%s\n", entry->entry.kernel_opts);

447 if (get->entry.modules)
448 for (i = 0; i < entry->entry.modules_amount; ++i)
449 printf("%s\n", entry->entry.modules[i]);

451 printf("---\n");
452 }

454 int
455 main (int argc, char ** argv)
456 {
457 char * pool;

new/grubadm/grubadm.c 8

458 char config[MAX_STRING_SIZE];
459 char tmp_config[MAX_STRING_SIZE];
460 menu_list * menu;
461 menu_list * tmp;
462 menu_list * entry;
463 int entries_amount;
464 int d_num;

466 check_debug ();

468 if (argc < 2)
469 ++lst_flag;

471 set_arg.entry.modules = (char **) calloc (MAX_MODULE_AMOUNT, sizeof (cha
472 find_arg.entry.modules = (char **) calloc (MAX_MODULE_AMOUNT, sizeof (ch
473 if (! parse_args (argc, argv))
474 return 1;

476 if (hlp_flag) {
477 usage ();
478 return 0;
479 }

481 if (! check_flags ()) {
482 print_error ("wrong option set, check \"man grubadm\"");
483 return 1;
484 }

486 pool = get_pool (alt_root ?: "/");
487 strcpy (config, "/");
488 if (alt_root)
489 strcat (config, alt_root);
490 strcat (config, "/");
491 strcat (config, pool);
492 strcat (config, "/");
493 strcpy (tmp_config, config);
494 strcat (config, CONFIG_PATH);
495 strcat (tmp_config, TMP_CONFIG_PATH);

497 menu = parse_file (config, &entries_amount);
498 if (entries_amount == -1) {
499 return 1;
500 }

502 tmp = menu;
503 entry = NULL;

505 do {
506 if (clr_flag) {
507 menu = NULL;
508 break;
509 }

511 if (set_default) {
512 sscanf (set_default, "%d", &d_num);
513 if (d_num < entries_amount)
514 strcpy (default_entry, set_default);
515 }
516
517 if (set_timeout)
518 strcpy (timeout, set_timeout);

520 if (set_serial)
521 strcpy (serial, set_serial);

523 if (set_terminal)

new/grubadm/grubadm.c 9

524 strcpy (terminal, set_terminal);

526 if (fnd_flag) {
527 entry = find_entry (tmp, &find_arg);
528 if (! entry) {
529 print_error (MSG_ERR_NO_ENTRY);
530 break;
531 }
532 }

534 if (num_flag) {
535 if ((number < 0) || (number >= entries_amount)) {
536 if (! default_entry[0]) {
537 number = 0;
538 } else {
539 sscanf (default_entry, "%d", &number);
540 }
541 }
542 if (number >= entries_amount)
543 number = 0;
544 entry = get_entry_by_number (menu, number);
545 if (! entry) {
546 print_error (MSG_ERR_NO_ENTRY);
547 break;
548 }
549 }

551 if (cln_flag) {
552 entry = clone_entry (entry);
553 if (! entry) {
554 print_error (MSG_ERR_NO_ENTRY);
555 break;
556 }
557 }

559 if (set_flag) {
560 if (entry)
561 apply_set (entry, &set_arg);
562 else if (new_flag)
563 add_entry (&menu, &set_arg);
564 else
565 return 1;
566 }

568 if (enh_flag)
569 if (! enable_hyper (entry)) {
570 print_error (MSG_ERR_HYPER);
571 break;
572 }
573
574 if (dih_flag)
575 if (! disable_hyper (entry)) {
576 print_error (MSG_ERR_HYPER);
577 break;
578 }

580 if (cln_flag)
581 add_entry (&menu, entry);

583 if (get_flag)
584 if (entry)
585 output_entry (entry, &get_arg);

587 if (all_flag)
588 tmp = entry->next;
589 else

new/grubadm/grubadm.c 10

590 tmp = NULL;

592 if (del_flag)
593 delete_entry (&menu, entry);
594 } while (tmp);

596 if (get_default)
597 printf ("%s%s%s\n", cmd_list[CMD_DEFAULT], SEPARATOR, default_en

599 if (get_timeout)
600 printf ("%s%s%s\n", cmd_list[CMD_TIMEOUT], SEPARATOR, timeout);

602 if (get_serial)
603 printf ("%s%s%s\n", cmd_list[CMD_SERIAL], SEPARATOR, serial);

605 if (get_terminal)
606 printf ("%s%s%s\n", cmd_list[CMD_TERMINAL], SEPARATOR, terminal)

608 if (lst_flag) {
609 list_menu (menu);
610 }

612 write_menu (config, tmp_config, menu);
613 free_menu (&menu);
614 return 0;
615 }
616 #endif /* ! codereview */

new/grubadm/grubadm.h 1

**
 1402 Fri Aug 31 05:09:00 2012
new/grubadm/grubadm.h
rename
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2012, Daniil Lunev. All rights reserved.
23 */
24 #define APP_NAME "grubadm"
25 #define CONFIG_PATH "/boot/illumos.cfg"
26 #define TMP_CONFIG_PATH "/boot/illumos.cfg.tmp"

28 #define HYPER_KERNEL "/boot/$ISADIR/xen.gz"
29 #define HYPER_KERNEL_OPTS "console=vga"

31 #define MAX_STRING_SIZE 1024
32 #define MAX_MODULE_AMOUNT 8

34 #define MSG_ERR_LONG_LINE "Too long line"
35 #define MSG_ERR_WRONG_SYNTAX "Syntax error"
36 #define MSG_ERR_SAME_NAME "Duplicate entry definition"
37 #define MSG_ERR_NO_ENTRY "Entry with defined parameters can not be found"
38 #define MSG_ERR_HYPER "Hyper operation failed"
39 #endif /* ! codereview */

new/grubadm/menu.c 1

**
 13007 Fri Aug 31 05:09:01 2012
new/grubadm/menu.c
menuadm->grubadm, ba_path->module, various changes, starting adding serial termi
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2012, Daniil Lunev. All rights reserved.
23 */
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include "grubadm.h"
28 #include "error.h"
29 #include "menu.h"

31 char default_entry[MAX_STRING_SIZE] = { 0 };
32 char timeout[MAX_STRING_SIZE] = { 0 };
33 char serial[MAX_STRING_SIZE] = { 0 };
34 char terminal[MAX_STRING_SIZE] = { 0 };

36 const char * cmd_list[] = {
37 "entry_name",
38 "pool_label",
39 "pool_uuid",
40 "data_set",
41 "kernel_path",
42 "kernel_options",
43 "module",
44 "default_entry",
45 "timeout",
46 "serial",
47 "terminal",
48 NULL
49 };

51 void
52 free_menu (menu_list ** menu)
53 {
54 unsigned int i;
55 menu_list * iter = *menu;
56 menu_list * tmp = *menu;

58 const char fnc[] = "free_menu";

60 debug_print ("%s\n", fnc);

new/grubadm/menu.c 2

62 while (iter) {
63 if (iter->entry.modules_amount)
64 for (i = 0; i < iter->entry.modules_amount; ++i)
65 free (iter->entry.modules[i]);
66 free (iter->entry.modules);
67 tmp = iter;
68 iter = iter->next;
69 free (tmp);
70 }

72 *menu = NULL;
73 }

75 static menu_list *
76 new_entry (menu_list ** menu, const char * entry_name, const unsigned int num)
77 {
78 menu_list * added_entry;
79 menu_list * iter;

81 const char fnc[] = "new_entry";

83 debug_print ("%s\nargs : %s | %u\n", fnc, entry_name, num);

85 added_entry = (menu_list *) calloc (1, sizeof (menu_list));
86 if (! added_entry) {
87 print_system_error ();
88 return NULL;
89 }

91 memset ((void *) added_entry, 0, sizeof (menu_list));
92 added_entry->entry_number = num;
93 strcpy (added_entry->entry.entry_name, entry_name);
94 added_entry->entry.modules =
95 (char **) calloc (MAX_MODULE_AMOUNT, sizeof (char *));

97 if (! added_entry->entry.modules) {
98 free_menu (&added_entry);
99 print_system_error ();
100 return NULL;
101 }

103 if (! *menu) {
104 *menu = added_entry;
105 } else {
106 for (iter = *menu; iter->next; iter = iter->next)
107 if (! strcmp (iter->entry.entry_name, entry_name)) {
108 print_error ("%s %s", MSG_ERR_SAME_NAME, entry_n
109 free_menu (&added_entry);
110 return NULL;
111 }
112 if (! strcmp (iter->entry.entry_name, entry_name)) {
113 print_error ("%s %s", MSG_ERR_SAME_NAME, entry_name);
114 free_menu (&added_entry);
115 return NULL;
116 }
117 iter->next = added_entry;
118 }

120 return added_entry;
121 }

123 menu_list *
124 add_entry (menu_list ** menu, menu_list * entry)
125 {
126 menu_list * iter;

new/grubadm/menu.c 3

128 const char fnc[] = "add_entry";

130 debug_print ("%s\n", fnc);

132 if (! entry)
133 return NULL;

135 if (! *menu) {
136 entry->entry_number = 0;
137 *menu = entry;
138 return entry;
139 }

141 for (iter = * menu; iter->next; iter = iter->next)
142 if (! strcmp (iter->entry.entry_name, entry->entry.entry_name))
143 return NULL;
144
145 if (! strcmp (iter->entry.entry_name, entry->entry.entry_name))
146 return NULL;

148 iter->next = entry;
149 entry->entry_number = iter->entry_number + 1;
150 return entry;
151 }

153 menu_list *
154 clone_entry (menu_list * entry)
155 {
156 unsigned int i;

158 char fnc[] = "clone_entry";

160 debug_print ("%s\n", fnc);

162 if (! entry)
163 return NULL;
164 menu_list * clone = (menu_list *) calloc (1, sizeof (menu_list));
165 memcpy ((void *) clone, (void *) entry, sizeof (menu_list));
166 clone->next = NULL;
167 clone->entry.modules = (char **) calloc (MAX_MODULE_AMOUNT, sizeof (char
168 for (i = 0; i < clone->entry.modules_amount; ++i)
169 clone->entry.modules[i] = strdup (entry->entry.modules[i]);
170 return clone;
171 }

173 menu_list *
174 enable_hyper (menu_list * entry)
175 {
176 unsigned int i;
177 char kernel_mod[MAX_STRING_SIZE];

179 char fnc[] = "enable_hyper";

181 debug_print ("%s\n", fnc);

183 if (! entry)
184 return NULL;
185
186 strcpy (kernel_mod, entry->entry.kernel);
187 strcat (kernel_mod, " ");
188 strcat (kernel_mod, entry->entry.kernel);
189 strcat (kernel_mod, " ");
190 strcat (kernel_mod, entry->entry.kernel_opts);

192 strcpy (entry->entry.kernel, HYPER_KERNEL);
193 strcpy (entry->entry.kernel_opts, HYPER_KERNEL_OPTS);

new/grubadm/menu.c 4

194
195 for (i = entry->entry.modules_amount; i > 0; --i)
196 entry->entry.modules[i] = entry->entry.modules[i-1];
197 entry->entry.modules[0] = strdup (kernel_mod);
198 ++(entry->entry.modules_amount);

200 return entry;
201 }

203 menu_list *
204 disable_hyper (menu_list * entry)
205 {
206 unsigned int i;
207 char * tmp;

209 char fnc[] = "disable_hyper";

211 debug_print ("%s\n", fnc);

213 if (! entry)
214 return NULL;

216 tmp = strchr (entry->entry.modules[0], ’ ’);
217 if (! tmp)
218 return NULL;

220 *tmp++ = ’\0’;

222 strcpy (entry->entry.kernel, entry->entry.modules[0]);
223
224 entry->entry.kernel_opts[0] = ’\0’;
225 tmp = strchr(tmp, ’ ’);
226 if (tmp && *(++tmp)) {
227 strcpy (entry->entry.kernel_opts, tmp);
228 }
229 free (entry->entry.modules[0]);
230 --(entry->entry.modules_amount);

232 for (i = 0; i < entry->entry.modules_amount; ++i)
233 entry->entry.modules[i] = entry->entry.modules[i + 1];

235 return entry;
236 }

238 int
239 delete_entry (menu_list ** menu, menu_list * del)
240 {
241 menu_list * iter = *menu;
242 int d_num, i_num;

244 const char fnc[] = "delete_entry";

246 debug_print ("%s\n", fnc);

248 if (! menu || ! del)
249 return 0;

251 i_num = del->entry_number;

253 if (iter == del) {
254 *menu = (*menu)->next;
255 iter->next = NULL;
256 free_menu (&iter);
257 } else {
258 while (iter->next) {
259 if (iter->next == del) {

new/grubadm/menu.c 5

260 iter->next = del->next;
261 del->next = NULL;
262 free_menu (&del);
263 break;
264 }
265 iter = iter->next;
266 }
267 }

269 sscanf (default_entry, "%d", &d_num);

271 if (i_num <= d_num) {
272 d_num = d_num ? d_num - 1 : 0;
273 sprintf (default_entry, "%d", d_num);
274 }

276 return 0;
277 }

279 static menu_list *
280 add_param (menu_list ** menu,
281 const cmd_id id,
282 const char * value,
283 unsigned int * num)
284 {
285 menu_list * iter;
286 char * tmp;

288 const char fnc[] = "add_param";

290 debug_print ("%s\narg: %u | %s | %u\n", fnc, (unsigned int) id, value, *

292 if (id == CMD_ENTRY_NAME)
293 return new_entry (menu, value, (*num)++);

295 if (! *menu) {
296 print_error ("%s, %s", MSG_ERR_WRONG_SYNTAX, "entry isn’t define
297 }

299 for (iter = * menu; iter->next; iter = iter->next)
300 ;

302 switch (id) {
303 case CMD_POOL_LABEL:
304 strcpy (iter->entry.pool_label, value);
305 break;
306 case CMD_POOL_UUID:
307 strcpy (iter->entry.pool_uuid, value);
308 break;
309 case CMD_DATA_SET:
310 strcpy (iter->entry.dataset, value);
311 break;
312 case CMD_KERNEL_PATH:
313 strcpy (iter->entry.kernel, value);
314 break;
315 case CMD_KERNEL_OPTIONS:
316 strcpy (iter->entry.kernel_opts, value);
317 break;
318 case CMD_BA_PATH:
319 if (iter->entry.modules_amount >= MAX_MODULE_AMOUNT)
320 return NULL;
321 iter->entry.modules[iter->entry.modules_amount] =
322 (char *) malloc (MAX_STRING_SIZE);
323 if (! iter->entry.modules[iter->entry.modules_amount])
324 return NULL;
325 strcpy (iter->entry.modules[iter->entry.modules_amount], value);

new/grubadm/menu.c 6

326 ++(iter->entry.modules_amount);
327 break;
328 default:
329 return NULL;
330 }
331 return iter;
332 }

334 void
335 list_menu (menu_list * menu)
336 {
337 const char fnc[] = "list_menu";

339 debug_print ("%s\n", fnc);

341 if (*default_entry)
342 printf ("%s%s%s\n", cmd_list[CMD_DEFAULT], SEPARATOR, default_en

344 if (*timeout)
345 printf ("%s%s%s\n", cmd_list[CMD_TIMEOUT], SEPARATOR, timeout);

347 if (*serial)
348 printf ("%s%s%s\n", cmd_list[CMD_SERIAL], SEPARATOR, serial);

350 if (*terminal)
351 printf ("%s%s%s\n", cmd_list[CMD_TERMINAL], SEPARATOR, terminal)

353 while (menu) {
354 printf("%u : %s\n", menu->entry_number, menu->entry.entry_name);
355 menu = menu->next;
356 }
357 }

359 menu_list *
360 find_entry (menu_list * menu, menu_list * find)
361 {
362 unsigned int i = 0;
363 const char fnc[] = "find_entry";

365 debug_print ("%s\n", fnc);

367 if (! menu || ! find)
368 return NULL;

370 while (menu) {
371 if (find->entry.entry_name[0])
372 if (strcmp (menu->entry.entry_name, find->entry.entry_na
373 goto out;
374 if (find->entry.pool_label[0])
375 if (strcmp (menu->entry.pool_label, find->entry.pool_lab
376 goto out;
377 if (find->entry.pool_uuid[0])
378 if (strcmp (menu->entry.pool_uuid, find->entry.pool_uuid
379 goto out;
380 if (find->entry.dataset[0])
381 if (strcmp (menu->entry.dataset, find->entry.dataset))
382 goto out;
383 if (find->entry.kernel[0])
384 if (strcmp (menu->entry.kernel, find->entry.kernel))
385 goto out;

387 if (find->entry.modules_amount) {
388 for (i = 0; i < menu->entry.modules_amount; ++i)
389 if (! strcmp (menu->entry.modules[i], find->entr
390 return menu;
391 goto out;

new/grubadm/menu.c 7

392 }

394 return menu;
395 out:
396 menu = menu->next;
397 }

399 return NULL;
400 }

402 menu_list *
403 get_entry_by_number (menu_list * menu, int number)
404 {
405 while (menu)
406 if (menu->entry_number == number)
407 return menu;
408 else
409 menu = menu->next;
410 return NULL;
411 }

413 static size_t
414 get_line (FILE * menu_file, char * line)
415 {
416 const char fnc[] = "get_line";
417
418 debug_print ("%s\n", fnc);

420 if (! fgets (line, MAX_STRING_SIZE, menu_file)) {
421 if (! feof (menu_file))
422 print_system_error ();
423 return -1;
424 }

426 if ((line[strlen (line) - 1] != ’\n’) && (! feof (menu_file))) {
427 print_error ("%s (> %d)", MSG_ERR_LONG_LINE, MAX_STRING_SIZE);
428 return -1;
429 }

431 line[strlen (line) - 1] = ’\0’;

433 return strlen (line);
434 }

436 static cmd_id
437 get_param_id (const char * param)
438 {
439 unsigned int id;

441 const char fnc[] = "get_param_id";

443 debug_print ("%s\narg : %s\n", fnc, param);

445 for (id = 0; cmd_list[id]; ++id)
446 if (! strcmp (cmd_list[id], param))
447 break;

449 return id;
450 }

452 menu_list *
453 parse_file (const char * file_name, int * entries_amount)
454 {
455 FILE * menu_file = NULL;
456 unsigned int counter = 0;
457 menu_list * menu = NULL;

new/grubadm/menu.c 8

458 char line[MAX_STRING_SIZE];
459 char * param;
460 char * value;
461 cmd_id id;
462
463 const char fnc[] = "parse_file";

465 debug_print ("%s\narg : %s\n", fnc, file_name);

467 menu_file = fopen (file_name, "r");
468 if (! menu_file) {
469 print_system_error ();
470 goto out;
471 }

473 for (;;) {
474 if (get_line (menu_file, line) == -1) {
475 if (feof (menu_file))
476 break;
477 free_menu (&menu);
478 counter = -1;
479 goto out;
480 }

482 if (line[0] == ’#’)
483 continue;
484
485 param = line;
486 while ((*param == ’ ’) || (*param == ’\t’))
487 ++ param;
488 if (*param == ’\0’)
489 continue;

491 value = strchr (line, ’=’);
492 if (! value) {
493 print_error ("%s at line ’%s’", MSG_ERR_WRONG_SYNTAX, li
494 free_menu (&menu);
495 counter = -1;
496 goto out;
497 }
498 *value++ = ’\0’;

500 id = get_param_id (param);
501 if (id == CMD_UNKNOWN) {
502 print_error ("%s at line ’%s’", MSG_ERR_WRONG_SYNTAX, li
503 free_menu (&menu);
504 counter = -1;
505 goto out;
506 }

508 if (id == CMD_DEFAULT) {
509 strcpy (default_entry, value);
510 } else if (id == CMD_TIMEOUT) {
511 strcpy (timeout, value);
512 } else if (id == CMD_SERIAL) {
513 strcpy (serial, value);
514 } else if (id == CMD_TERMINAL) {
515 strcpy (terminal, value);
516 } else if (! add_param (&menu, id, value, &counter)) {
517 free_menu (&menu);
518 counter = -1;
519 goto out;
520 }
521 }

523 out:

new/grubadm/menu.c 9

524 if (menu_file)
525 fclose (menu_file);

527 *entries_amount = counter;

529 return menu;
530 }

532 int
533 write_menu (const char * config, const char * tmp_config, menu_list * menu)
534 {
535 FILE * tmp_menu = fopen (tmp_config, "w");
536 unsigned int i = 0;

538 const char fnc[] = "write_menu";

540 debug_print ("%s\n", fnc);

542 if (! tmp_menu) {
543 print_system_error();
544 return 0;
545 }
546
547 if (default_entry[0])
548 fprintf (tmp_menu, "%s%s%s\n", cmd_list[CMD_DEFAULT], SEPARATOR,
549 if (timeout[0])
550 fprintf (tmp_menu, "%s%s%s\n\n", cmd_list[CMD_TIMEOUT], SEPARATO
551 if (serial[0])
552 fprintf (tmp_menu, "%s%s%s\n\n", cmd_list[CMD_SERIAL], SEPARATOR
553 if (terminal[0])
554 fprintf (tmp_menu, "%s%s%s\n\n", cmd_list[CMD_TERMINAL], SEPARAT

556 while (menu) {
557 fprintf (tmp_menu, "%s%s%s\n", cmd_list[CMD_ENTRY_NAME], SEPARAT
558 if (menu->entry.pool_label[0])
559 fprintf (tmp_menu, "%s%s%s\n", cmd_list[CMD_POOL_LABEL],
560 if (menu->entry.pool_uuid[0])
561 fprintf (tmp_menu, "%s%s%s\n", cmd_list[CMD_POOL_UUID],
562 if (menu->entry.dataset[0])
563 fprintf (tmp_menu, "%s%s%s\n", cmd_list[CMD_DATA_SET], S
564 if (menu->entry.kernel[0])
565 fprintf (tmp_menu, "%s%s%s\n", cmd_list[CMD_KERNEL_PATH]
566 if (menu->entry.kernel_opts[0])
567 fprintf (tmp_menu, "%s%s%s\n", cmd_list[CMD_KERNEL_OPTIO
568 if (menu->entry.modules_amount)
569 for (i = 0; i < menu->entry.modules_amount; ++i)
570 fprintf (tmp_menu, "%s%s%s\n", cmd_list[CMD_BA_P
571 fprintf (tmp_menu, "#---
572 menu = menu->next;
573 }

575 fclose (tmp_menu);

577 remove (config);
578 rename (tmp_config, config);

580 return 1;
581 }
582 #endif /* ! codereview */

new/grubadm/menu.h 1

**
 2300 Fri Aug 31 05:09:01 2012
new/grubadm/menu.h
menuadm->grubadm, ba_path->module, various changes, starting adding serial termi
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2012, Daniil Lunev. All rights reserved.
23 */

25 #define SEPARATOR "="

27 typedef struct menu_entry menu_entry;
28 typedef struct menu_list menu_list;
29 typedef enum cmd_id cmd_id;

31 struct menu_entry {
32 char entry_name[MAX_STRING_SIZE];
33 char pool_label[MAX_STRING_SIZE];
34 char pool_uuid[MAX_STRING_SIZE];
35 char dataset[MAX_STRING_SIZE];
36 char kernel[MAX_STRING_SIZE];
37 char kernel_opts[MAX_STRING_SIZE];
38 unsigned int modules_amount;
39 char ** modules;
40 };

42 extern char default_entry[MAX_STRING_SIZE];
43 extern char timeout[MAX_STRING_SIZE];
44 extern char serial[MAX_STRING_SIZE];
45 extern char terminal[MAX_STRING_SIZE];

47 struct menu_list {
48 unsigned int entry_number;
49 menu_entry entry;
50 menu_list * next;
51 };

53 enum cmd_id {
54 CMD_ENTRY_NAME,
55 CMD_POOL_LABEL,
56 CMD_POOL_UUID,
57 CMD_DATA_SET,
58 CMD_KERNEL_PATH,
59 CMD_KERNEL_OPTIONS,
60 CMD_BA_PATH,
61 CMD_DEFAULT,

new/grubadm/menu.h 2

62 CMD_TIMEOUT,
63 CMD_SERIAL,
64 CMD_TERMINAL,
65 CMD_UNKNOWN
66 };

68 extern const char * cmd_list[];

70 void
71 free_menu (menu_list ** menu);

73 menu_list *
74 parse_file (const char * file_name, int * entries_amount);

76 void
77 list_menu (menu_list * menu);

79 menu_list *
80 add_entry (menu_list ** menu, menu_list * entry);

82 menu_list *
83 clone_entry (menu_list *entry);

85 int
86 delete_entry (menu_list ** menu, menu_list * del);

88 menu_list *
89 find_entry (menu_list * menu, menu_list * find);

91 menu_list *
92 enable_hyper (menu_list * entry);

94 menu_list *
95 disable_hyper (menu_list * entry);

97 menu_list *
98 get_entry_by_number (menu_list * menu, int number);
99 #endif /* ! codereview */

new/libbe/common/be_utils.c 1

**
 100804 Fri Aug 31 05:09:01 2012
new/libbe/common/be_utils.c
libbe patch
**
______unchanged_portion_omitted_

347 /*
348 * Function: be_append_menu
349 * Description: Appends an entry for a BE into the menu.lst.
350 * Parameters:
351 * be_name - pointer to name of BE to add boot menu entry for.
352 * be_root_pool - pointer to name of pool BE lives in.
353 * boot_pool - Used if the pool containing the grub menu is
354 * different than the one contaiing the BE. This
355 * will normally be NULL.
356 * be_orig_root_ds - The root dataset for the BE. This is
357 * used to check to see if an entry already exists
358 * for this BE.
359 * description - pointer to description of BE to be added in
360 * the title line for this BEs entry.
361 * Returns:
362 * BE_SUCCESS - Success
363 * be_errno_t - Failure
364 * Scope:
365 * Semi-private (library wide use only)
366 */
367 int
368 be_append_menu(char *be_name, char *be_root_pool, char *boot_pool,
369 char *be_orig_root_ds, char *description)
370 {
371 zfs_handle_t *zhp = NULL;
372 char menu_file[MAXPATHLEN];
373 char be_root_ds[MAXPATHLEN];
374 char line[BUFSIZ];
375 char temp_line[BUFSIZ];
376 char title[MAXPATHLEN];
377 char *entries[BUFSIZ];
378 char *tmp_entries[BUFSIZ];
379 char *pool_mntpnt = NULL;
380 char *ptmp_mntpnt = NULL;
381 char *orig_mntpnt = NULL;
382 boolean_t found_be = B_FALSE;
383 boolean_t found_orig_be = B_FALSE;
384 boolean_t found_title = B_FALSE;
385 boolean_t pool_mounted = B_FALSE;
386 boolean_t collect_lines = B_FALSE;
387 FILE *menu_fp = NULL;
388 int err = 0, ret = BE_SUCCESS;
389 int i, num_tmp_lines = 0, num_lines = 0;

391 if (be_name == NULL || be_root_pool == NULL)
392 return (BE_ERR_INVAL);

394 if (boot_pool == NULL)
395 boot_pool = be_root_pool;

397 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET)) == NULL) {
398 be_print_err(gettext("be_append_menu: failed to open "
399 "pool dataset for %s: %s\n"), be_root_pool,
400 libzfs_error_description(g_zfs));
401 return (zfs_err_to_be_err(g_zfs));
402 }

404 /*
405 * Check to see if the pool’s dataset is mounted. If it isn’t we’ll

new/libbe/common/be_utils.c 2

406 * attempt to mount it.
407 */
408 if ((ret = be_mount_pool(zhp, &ptmp_mntpnt, &orig_mntpnt,
409 &pool_mounted)) != BE_SUCCESS) {
410 be_print_err(gettext("be_append_menu: pool dataset "
411 "(%s) could not be mounted\n"), be_root_pool);
412 ZFS_CLOSE(zhp);
413 return (ret);
414 }

416 /*
417 * Get the mountpoint for the root pool dataset.
418 */
419 if (!zfs_is_mounted(zhp, &pool_mntpnt)) {
420 be_print_err(gettext("be_append_menu: pool "
421 "dataset (%s) is not mounted. Can’t set "
422 "the default BE in the grub menu.\n"), be_root_pool);
423 ret = BE_ERR_NO_MENU;
424 goto cleanup;
425 }

427 /*
428 * Check to see if this system supports grub
429 */
430 if (be_has_grub()) {
431 (void) snprintf(menu_file, sizeof (menu_file),
432 "%s%s", pool_mntpnt, BE_GRUB_MENU);
433 } else {
434 (void) snprintf(menu_file, sizeof (menu_file),
435 "%s%s", pool_mntpnt, BE_SPARC_MENU);
436 }

438 be_make_root_ds(be_root_pool, be_name, be_root_ds, sizeof (be_root_ds));

440 /*
441 * Iterate through menu first to make sure the BE doesn’t already
442 * have an entry in the menu.
443 *
444 * Additionally while iterating through the menu, if we have an
445 * original root dataset for a BE we’re cloning from, we need to keep
446 * track of that BE’s menu entry. We will then use the lines from
447 * that entry to create the entry for the new BE.
448 */
449 if ((ret = be_open_menu(be_root_pool, menu_file,
450 &menu_fp, "r", B_TRUE)) != BE_SUCCESS) {
451 goto cleanup;
452 } else if (menu_fp == NULL) {
453 ret = BE_ERR_NO_MENU;
454 goto cleanup;
455 }

457 free(pool_mntpnt);
458 pool_mntpnt = NULL;

460 while (fgets(line, BUFSIZ, menu_fp)) {
461 char *tok = NULL;

463 (void) strlcpy(temp_line, line, BUFSIZ);
464 tok = strtok(line, "=\n");
464 tok = strtok(line, BE_WHITE_SPACE);

466 if (tok == NULL || tok[0] == ’#’) {
467 continue;
468 } else if (strcmp(tok, "entry_name") == 0) {
468 } else if (strcmp(tok, "title") == 0) {
469 collect_lines = B_FALSE;

new/libbe/common/be_utils.c 3

470 if ((tok = strtok(NULL, "\n")) == NULL)
471 (void) strlcpy(title, "", sizeof (title));
472 else
473 (void) strlcpy(title, tok, sizeof (title));
474 found_title = B_TRUE;

476 if (num_tmp_lines != 0) {
477 for (i = 0; i < num_tmp_lines; i++) {
478 free(tmp_entries[i]);
479 tmp_entries[i] = NULL;
480 }
481 num_tmp_lines = 0;
482 }
483 } else if (strcmp(tok, "data_set") == 0) {
483 } else if (strcmp(tok, "bootfs") == 0) {
484 char *bootfs = strtok(NULL, BE_WHITE_SPACE);
485 found_title = B_FALSE;
486 if (bootfs == NULL)
487 continue;

489 if (strcmp(bootfs, be_root_ds) == 0) {
490 found_be = B_TRUE;
491 break;
492 }

494 if (be_orig_root_ds != NULL &&
495 strcmp(bootfs, be_orig_root_ds) == 0 &&
496 !found_orig_be) {
497 char str[BUFSIZ];
498 found_orig_be = B_TRUE;
499 num_lines = 0;
500 /*
501 * Store the new title line
502 */
503 (void) snprintf(str, BUFSIZ, "entry_name=%s\n",
503 (void) snprintf(str, BUFSIZ, "title %s\n",
504 description ? description : be_name);
505 entries[num_lines] = strdup(str);
506 num_lines++;
507 /*
508 * If there are any lines between the title
509 * and the bootfs line store these. Also
510 * free the temporary lines.
511 */
512 for (i = 0; i < num_tmp_lines; i++) {
513 entries[num_lines] = tmp_entries[i];
514 tmp_entries[i] = NULL;
515 num_lines++;
516 }

518 zprop_get_cbdata_t cb = { 0 };
519 zprop_source_t src;
520 char * bc = strchr(be_root_ds, ’/’);
521 char sguid[] = "guid";

523 *bc = ’\0’;
524 cb.cb_first = B_TRUE;
525 cb.cb_sources = ZPROP_SRC_ALL;
526 cb.cb_type = ZFS_TYPE_POOL;
527 zprop_get_list(g_zfs, sguid, &cb.cb_proplist, ZF
528 zpool_handle_t * z_hndl = zpool_open(g_zfs, be_r
529 *bc = ’/’;
530 if (z_hndl) {
531 uint64_t guid = zpool_get_prop_int(z_hnd
532 (void) snprintf(str, BUFSIZ, "pool_uuid=
533 entries[num_lines] = strdup(str);

new/libbe/common/be_utils.c 4

534 num_lines++;
535 zpool_close(z_hndl);
536 }
537 num_tmp_lines = 0;
517 num_tmp_lines = 0;
538 /*
539 * Store the new bootfs line.
540 */
541 (void) snprintf(str, BUFSIZ, "data_set=%s\n",
521 (void) snprintf(str, BUFSIZ, "bootfs %s\n",
542 be_root_ds);
543 entries[num_lines] = strdup(str);
544 num_lines++;
545 collect_lines = B_TRUE;
546 }
547 } else if (found_orig_be && collect_lines) {
548 /*
549 * get the rest of the lines for the original BE and
550 * store them.
551 */
552 if (strstr(line, BE_GRUB_COMMENT) != NULL ||
553 strstr(line, "BOOTADM") != NULL)
554 continue;
555 if (strcmp(tok, "splashimage") == 0) {
556 entries[num_lines] =
557 strdup("splashimage "
558 "/boot/splashimage.xpm\n");
559 } else if ((strcmp(tok, "kernel_path") == 0) ||
560 (strcmp(tok, "module") == 0))
561 {
562 char * path;
563 char * st_path;
564
565 st_path = strtok(NULL, "\n");
566 path = (char *) malloc(512);
567 strcpy(path, tok);
568 strcat(path, "=");
569 strcat(path, st_path);
570 strcat(path, "\n");
571 entries[num_lines] = path;
572 #endif /* ! codereview */
573 } else {
574 entries[num_lines] = strdup(temp_line);
575 }
576 num_lines++;
577 } else if (found_title && !found_orig_be) {
578 tmp_entries[num_tmp_lines] = strdup(temp_line);
579 num_tmp_lines++;
580 }
581 }

583 (void) fclose(menu_fp);

585 if (found_be) {
586 /*
587 * If an entry for this BE was already in the menu, then if
588 * that entry’s title matches what we would have put in
589 * return success. Otherwise return failure.
590 */
591 char *new_title = description ? description : be_name;

593 if (strcmp(title, new_title) == 0) {
594 ret = BE_SUCCESS;
595 goto cleanup;
596 } else {
597 if (be_remove_menu(be_name, be_root_pool,

new/libbe/common/be_utils.c 5

598 boot_pool) != BE_SUCCESS) {
599 be_print_err(gettext("be_append_menu: "
600 "Failed to remove existing unusable "
601 "entry ’%s’ in boot menu.\n"), be_name);
602 ret = BE_ERR_BE_EXISTS;
603 goto cleanup;
604 }
605 }
606 }

608 /* Append BE entry to the end of the file */
609 menu_fp = fopen(menu_file, "a+");
610 err = errno;
611 if (menu_fp == NULL) {
612 be_print_err(gettext("be_append_menu: failed "
613 "to open menu.lst file %s\n"), menu_file);
614 ret = errno_to_be_err(err);
615 goto cleanup;
616 }

618 if (found_orig_be) {
619 /*
620 * write out all the stored lines
621 */
622 for (i = 0; i < num_lines; i++) {
623 (void) fprintf(menu_fp, "%s", entries[i]);
624 free(entries[i]);
625 }
626 num_lines = 0;

628 /*
629 * Check to see if this system supports grub
630 */
631 if (be_has_grub())
632 (void) fprintf(menu_fp, "%s\n", BE_GRUB_COMMENT);
633 ret = BE_SUCCESS;
634 } else {
635 zprop_get_cbdata_t cb = { 0 };
636 zprop_source_t src;
637 char * bc = strchr(be_root_ds, ’/’);
638 char sguid[] = "guid";

640 (void) fprintf(menu_fp, "entry_name=%s\n",
539 (void) fprintf(menu_fp, "title %s\n",
641 description ? description : be_name);
642 *bc = ’\0’;
643 cb.cb_first = B_TRUE;
644 cb.cb_sources = ZPROP_SRC_ALL;
645 cb.cb_type = ZFS_TYPE_POOL;
646 zprop_get_list(g_zfs, sguid, &cb.cb_proplist, ZFS_TYPE_POOL);
647 zpool_handle_t * z_hndl = zpool_open(g_zfs, be_root_ds);
648 *bc = ’/’;
649 if (z_hndl) {
650 uint64_t guid = zpool_get_prop_int(z_hndl, cb.cb_proplis
651 (void) fprintf(menu_fp, "pool_uuid=%llx\n", guid);
652 zpool_close(z_hndl);
653 }
654 (void) fprintf(menu_fp, "data_set=%s\n", be_root_ds);
541 (void) fprintf(menu_fp, "bootfs %s\n", be_root_ds);

656 /*
657 * Check to see if this system supports grub
658 */
659 if (be_has_grub()) {
660 (void) fprintf(menu_fp, "kernel_path="
661 "/platform/i86pc/kernel/$ISADIR/unix\n");

new/libbe/common/be_utils.c 6

662 (void) fprintf(menu_fp, "kernel_options="
663 "-B $ZFS_BOOTFS,console=graphic\n");
664 (void) fprintf(menu_fp, "module="
547 (void) fprintf(menu_fp, "kernel$ "
548 "/platform/i86pc/kernel/$ISADIR/unix -B "
549 "$ZFS-BOOTFS\n");
550 (void) fprintf(menu_fp, "module$ "
665 "/platform/i86pc/$ISADIR/boot_archive\n");
666 (void) fprintf(menu_fp, "%s\n", BE_GRUB_COMMENT);
667 }
668 ret = BE_SUCCESS;
669 }
670 (void) fclose(menu_fp);
671 cleanup:
672 if (pool_mounted) {
673 int err = BE_SUCCESS;
674 err = be_unmount_pool(zhp, ptmp_mntpnt, orig_mntpnt);
675 if (ret == BE_SUCCESS)
676 ret = err;
677 free(orig_mntpnt);
678 free(ptmp_mntpnt);
679 }
680 ZFS_CLOSE(zhp);
681 if (num_tmp_lines > 0) {
682 for (i = 0; i < num_tmp_lines; i++) {
683 free(tmp_entries[i]);
684 tmp_entries[i] = NULL;
685 }
686 }
687 if (num_lines > 0) {
688 for (i = 0; i < num_lines; i++) {
689 free(entries[i]);
690 entries[i] = NULL;
691 }
692 }
693 return (ret);
694 }

696 /*
697 * Function: be_remove_menu
698 * Description: Removes a BE’s entry from a menu.lst file.
699 * Parameters:
700 * be_name - the name of BE whose entry is to be removed from
701 * the menu.lst file.
702 * be_root_pool - the pool that be_name lives in.
703 * boot_pool - the pool where the BE is, if different than
704 * the pool containing the boot menu. If this is
705 * NULL it will be set to be_root_pool.
706 * Returns:
707 * BE_SUCCESS - Success
708 * be_errno_t - Failure
709 * Scope:
710 * Semi-private (library wide use only)
711 */
712 int
713 be_remove_menu(char *be_name, char *be_root_pool, char *boot_pool)
714 {
715 zfs_handle_t *zhp = NULL;
716 char be_root_ds[MAXPATHLEN];
717 char **buffer = NULL;
718 char menu_buf[BUFSIZ];
719 char menu[MAXPATHLEN];
720 char *pool_mntpnt = NULL;
721 char *ptmp_mntpnt = NULL;
722 char *orig_mntpnt = NULL;
723 char *tmp_menu = NULL;

new/libbe/common/be_utils.c 7

724 FILE *menu_fp = NULL;
725 FILE *tmp_menu_fp = NULL;
726 struct stat sb;
727 int ret = BE_SUCCESS;
728 int i;
729 int fd;
730 int err = 0;
731 int nlines = 0;
732 int default_entry = 0;
733 int entry_cnt = 0;
734 int entry_del = 0;
735 int num_entry_del = 0;
736 int tmp_menu_len = 0;
737 boolean_t write = B_TRUE;
738 boolean_t do_buffer = B_FALSE;
739 boolean_t pool_mounted = B_FALSE;

741 if (boot_pool == NULL)
742 boot_pool = be_root_pool;

744 /* Get name of BE’s root dataset */
745 be_make_root_ds(be_root_pool, be_name, be_root_ds, sizeof (be_root_ds));

747 /* Get handle to pool dataset */
748 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET)) == NULL) {
749 be_print_err(gettext("be_remove_menu: "
750 "failed to open pool dataset for %s: %s"),
751 be_root_pool, libzfs_error_description(g_zfs));
752 return (zfs_err_to_be_err(g_zfs));
753 }

755 /*
756 * Check to see if the pool’s dataset is mounted. If it isn’t we’ll
757 * attempt to mount it.
758 */
759 if ((ret = be_mount_pool(zhp, &ptmp_mntpnt, &orig_mntpnt,
760 &pool_mounted)) != BE_SUCCESS) {
761 be_print_err(gettext("be_remove_menu: pool dataset "
762 "(%s) could not be mounted\n"), be_root_pool);
763 ZFS_CLOSE(zhp);
764 return (ret);
765 }

767 /*
768 * Get the mountpoint for the root pool dataset.
769 */
770 if (!zfs_is_mounted(zhp, &pool_mntpnt)) {
771 be_print_err(gettext("be_remove_menu: pool "
772 "dataset (%s) is not mounted. Can’t set "
773 "the default BE in the grub menu.\n"), be_root_pool);
774 ret = BE_ERR_NO_MENU;
775 goto cleanup;
776 }

778 /* Get path to boot menu */
779 (void) strlcpy(menu, pool_mntpnt, sizeof (menu));

781 /*
782 * Check to see if this system supports grub
783 */
784 if (be_has_grub())
785 (void) strlcat(menu, BE_GRUB_MENU, sizeof (menu));
786 else
787 (void) strlcat(menu, BE_SPARC_MENU, sizeof (menu));

789 /* Get handle to boot menu file */

new/libbe/common/be_utils.c 8

790 if ((ret = be_open_menu(be_root_pool, menu, &menu_fp, "r",
791 B_TRUE)) != BE_SUCCESS) {
792 goto cleanup;
793 } else if (menu_fp == NULL) {
794 ret = BE_ERR_NO_MENU;
795 goto cleanup;
796 }

798 free(pool_mntpnt);
799 pool_mntpnt = NULL;

801 /* Grab the stats of the original menu file */
802 if (stat(menu, &sb) != 0) {
803 err = errno;
804 be_print_err(gettext("be_remove_menu: "
805 "failed to stat file %s: %s\n"), menu, strerror(err));
806 ret = errno_to_be_err(err);
807 goto cleanup;
808 }

810 /* Create a tmp file for the modified menu.lst */
811 tmp_menu_len = strlen(menu) + 7;
812 if ((tmp_menu = (char *)malloc(tmp_menu_len)) == NULL) {
813 be_print_err(gettext("be_remove_menu: malloc failed\n"));
814 ret = BE_ERR_NOMEM;
815 goto cleanup;
816 }
817 (void) memset(tmp_menu, 0, tmp_menu_len);
818 (void) strlcpy(tmp_menu, menu, tmp_menu_len);
819 (void) strlcat(tmp_menu, "XXXXXX", tmp_menu_len);
820 if ((fd = mkstemp(tmp_menu)) == -1) {
821 err = errno;
822 be_print_err(gettext("be_remove_menu: mkstemp failed\n"));
823 ret = errno_to_be_err(err);
824 free(tmp_menu);
825 tmp_menu = NULL;
826 goto cleanup;
827 }
828 if ((tmp_menu_fp = fdopen(fd, "w")) == NULL) {
829 err = errno;
830 be_print_err(gettext("be_remove_menu: "
831 "could not open tmp file for write: %s\n"), strerror(err));
832 (void) close(fd);
833 ret = errno_to_be_err(err);
834 goto cleanup;
835 }

837 while (fgets(menu_buf, BUFSIZ, menu_fp)) {
838 char tline [BUFSIZ];
839 char *tok = NULL;

841 (void) strlcpy(tline, menu_buf, sizeof (tline));

843 /* Tokenize line */
844 tok = strtok(tline, "=\n");
730 tok = strtok(tline, BE_WHITE_SPACE);

846 if (tok == NULL || tok[0] == ’#’) {
847 /* Found empty line or comment line */
848 if (do_buffer) {
849 /* Buffer this line */
850 if ((buffer = (char **)realloc(buffer,
851 sizeof (char *)*(nlines + 1))) == NULL) {
852 ret = BE_ERR_NOMEM;
853 goto cleanup;
854 }

new/libbe/common/be_utils.c 9

855 if ((buffer[nlines++] = strdup(menu_buf))
856 == NULL) {
857 ret = BE_ERR_NOMEM;
858 goto cleanup;
859 }

861 } else if (write || strncmp(menu_buf, BE_GRUB_COMMENT,
862 strlen(BE_GRUB_COMMENT)) != 0) {
863 /* Write this line out */
864 (void) fputs(menu_buf, tmp_menu_fp);
865 }
866 } else if (strcmp(tok, "default_entry") == 0) {
752 } else if (strcmp(tok, "default") == 0) {
867 /*
868 * Record what ’default’ is set to because we might
869 * need to adjust this upon deleting an entry.
870 */
871 tok = strtok(NULL, BE_WHITE_SPACE);

873 if (tok != NULL) {
874 default_entry = atoi(tok);
875 }

877 (void) fputs(menu_buf, tmp_menu_fp);
878 } else if (strcmp(tok, "entry_name") == 0) {
764 } else if (strcmp(tok, "title") == 0) {
879 /*
880 * If we’ve reached a ’title’ line and do_buffer is
881 * is true, that means we’ve just buffered an entire
882 * entry without finding a ’bootfs’ directive. We
883 * need to write that entry out and keep searching.
884 */
885 if (do_buffer) {
886 for (i = 0; i < nlines; i++) {
887 (void) fputs(buffer[i], tmp_menu_fp);
888 free(buffer[i]);
889 }
890 free(buffer);
891 buffer = NULL;
892 nlines = 0;
893 }

895 /*
896 * Turn writing off and buffering on, and increment
897 * our entry counter.
898 */
899 write = B_FALSE;
900 do_buffer = B_TRUE;
901 entry_cnt++;

903 /* Buffer this ’title’ line */
904 if ((buffer = (char **)realloc(buffer,
905 sizeof (char *)*(nlines + 1))) == NULL) {
906 ret = BE_ERR_NOMEM;
907 goto cleanup;
908 }
909 if ((buffer[nlines++] = strdup(menu_buf)) == NULL) {
910 ret = BE_ERR_NOMEM;
911 goto cleanup;
912 }

914 } else if (strcmp(tok, "data_set") == 0) {
800 } else if (strcmp(tok, "bootfs") == 0) {
915 char *bootfs = NULL;

917 /*

new/libbe/common/be_utils.c 10

918 * Found a ’bootfs’ line. See if it matches the
919 * BE we’re looking for.
920 */
921 if ((bootfs = strtok(NULL, BE_WHITE_SPACE)) == NULL ||
922 strcmp(bootfs, be_root_ds) != 0) {
923 /*
924 * Either there’s nothing after the ’bootfs’
925 * or this is not the BE we’re looking for,
926 * write out the line(s) we’ve buffered since
927 * finding the title.
928 */
929 for (i = 0; i < nlines; i++) {
930 (void) fputs(buffer[i], tmp_menu_fp);
931 free(buffer[i]);
932 }
933 free(buffer);
934 buffer = NULL;
935 nlines = 0;

937 /*
938 * Turn writing back on, and turn off buffering
939 * since this isn’t the entry we’re looking
940 * for.
941 */
942 write = B_TRUE;
943 do_buffer = B_FALSE;

945 /* Write this ’bootfs’ line out. */
946 (void) fputs(menu_buf, tmp_menu_fp);
947 } else {
948 /*
949 * Found the entry we’re looking for.
950 * Record its entry number, increment the
951 * number of entries we’ve deleted, and turn
952 * writing off. Also, throw away the lines
953 * we’ve buffered for this entry so far, we
954 * don’t need them.
955 */
956 entry_del = entry_cnt - 1;
957 num_entry_del++;
958 write = B_FALSE;
959 do_buffer = B_FALSE;

961 for (i = 0; i < nlines; i++) {
962 free(buffer[i]);
963 }
964 free(buffer);
965 buffer = NULL;
966 nlines = 0;
967 }
968 } else {
969 if (do_buffer) {
970 /* Buffer this line */
971 if ((buffer = (char **)realloc(buffer,
972 sizeof (char *)*(nlines + 1))) == NULL) {
973 ret = BE_ERR_NOMEM;
974 goto cleanup;
975 }
976 if ((buffer[nlines++] = strdup(menu_buf))
977 == NULL) {
978 ret = BE_ERR_NOMEM;
979 goto cleanup;
980 }
981 } else if (write) {
982 /* Write this line out */
983 (void) fputs(menu_buf, tmp_menu_fp);

new/libbe/common/be_utils.c 11

984 }
985 }
986 }

988 (void) fclose(menu_fp);
989 menu_fp = NULL;
990 (void) fclose(tmp_menu_fp);
991 tmp_menu_fp = NULL;

993 /* Copy the modified menu.lst into place */
994 if (rename(tmp_menu, menu) != 0) {
995 err = errno;
996 be_print_err(gettext("be_remove_menu: "
997 "failed to rename file %s to %s: %s\n"),
998 tmp_menu, menu, strerror(err));
999 ret = errno_to_be_err(err);

1000 goto cleanup;
1001 }
1002 free(tmp_menu);
1003 tmp_menu = NULL;

1005 /*
1006 * If we’ve removed an entry, see if we need to
1007 * adjust the default value in the menu.lst. If the
1008 * entry we’ve deleted comes before the default entry
1009 * we need to adjust the default value accordingly.
1010 *
1011 * be_has_grub is used here to check to see if this system
1012 * supports grub.
1013 */
1014 if (be_has_grub() && num_entry_del > 0) {
1015 if (entry_del <= default_entry) {
1016 default_entry = default_entry - num_entry_del;
1017 if (default_entry < 0)
1018 default_entry = 0;

1020 /*
1021 * Adjust the default value by rewriting the
1022 * menu.lst file. This may be overkill, but to
1023 * preserve the location of the ’default’ entry
1024 * in the file, we need to do this.
1025 */

1027 /* Get handle to boot menu file */
1028 if ((menu_fp = fopen(menu, "r")) == NULL) {
1029 err = errno;
1030 be_print_err(gettext("be_remove_menu: "
1031 "failed to open menu.lst (%s): %s\n"),
1032 menu, strerror(err));
1033 ret = errno_to_be_err(err);
1034 goto cleanup;
1035 }

1037 /* Create a tmp file for the modified menu.lst */
1038 tmp_menu_len = strlen(menu) + 7;
1039 if ((tmp_menu = (char *)malloc(tmp_menu_len))
1040 == NULL) {
1041 be_print_err(gettext("be_remove_menu: "
1042 "malloc failed\n"));
1043 ret = BE_ERR_NOMEM;
1044 goto cleanup;
1045 }
1046 (void) memset(tmp_menu, 0, tmp_menu_len);
1047 (void) strlcpy(tmp_menu, menu, tmp_menu_len);
1048 (void) strlcat(tmp_menu, "XXXXXX", tmp_menu_len);
1049 if ((fd = mkstemp(tmp_menu)) == -1) {

new/libbe/common/be_utils.c 12

1050 err = errno;
1051 be_print_err(gettext("be_remove_menu: "
1052 "mkstemp failed: %s\n"), strerror(err));
1053 ret = errno_to_be_err(err);
1054 free(tmp_menu);
1055 tmp_menu = NULL;
1056 goto cleanup;
1057 }
1058 if ((tmp_menu_fp = fdopen(fd, "w")) == NULL) {
1059 err = errno;
1060 be_print_err(gettext("be_remove_menu: "
1061 "could not open tmp file for write: %s\n"),
1062 strerror(err));
1063 (void) close(fd);
1064 ret = errno_to_be_err(err);
1065 goto cleanup;
1066 }

1068 while (fgets(menu_buf, BUFSIZ, menu_fp)) {
1069 char tline [BUFSIZ];
1070 char *tok = NULL;

1072 (void) strlcpy(tline, menu_buf, sizeof (tline));

1074 /* Tokenize line */
1075 tok = strtok(tline, "=\n");
961 tok = strtok(tline, BE_WHITE_SPACE);

1077 if (tok == NULL) {
1078 /* Found empty line, write it out */
1079 (void) fputs(menu_buf, tmp_menu_fp);
1080 } else if (strcmp(tok, "default_entry") == 0) {
966 } else if (strcmp(tok, "default") == 0) {

1081 /* Found the default line, adjust it */
1082 (void) snprintf(tline, sizeof (tline),
1083 "default_entry=%d\n", default_entry)
969 "default %d\n", default_entry);

1085 (void) fputs(tline, tmp_menu_fp);
1086 } else {
1087 /* Pass through all other lines */
1088 (void) fputs(menu_buf, tmp_menu_fp);
1089 }
1090 }

1092 (void) fclose(menu_fp);
1093 menu_fp = NULL;
1094 (void) fclose(tmp_menu_fp);
1095 tmp_menu_fp = NULL;

1097 /* Copy the modified menu.lst into place */
1098 if (rename(tmp_menu, menu) != 0) {
1099 err = errno;
1100 be_print_err(gettext("be_remove_menu: "
1101 "failed to rename file %s to %s: %s\n"),
1102 tmp_menu, menu, strerror(err));
1103 ret = errno_to_be_err(err);
1104 goto cleanup;
1105 }

1107 free(tmp_menu);
1108 tmp_menu = NULL;
1109 }
1110 }

1112 /* Set the perms and ownership of the updated file */

new/libbe/common/be_utils.c 13

1113 if (chmod(menu, sb.st_mode) != 0) {
1114 err = errno;
1115 be_print_err(gettext("be_remove_menu: "
1116 "failed to chmod %s: %s\n"), menu, strerror(err));
1117 ret = errno_to_be_err(err);
1118 goto cleanup;
1119 }
1120 if (chown(menu, sb.st_uid, sb.st_gid) != 0) {
1121 err = errno;
1122 be_print_err(gettext("be_remove_menu: "
1123 "failed to chown %s: %s\n"), menu, strerror(err));
1124 ret = errno_to_be_err(err);
1125 goto cleanup;
1126 }

1128 cleanup:
1129 if (pool_mounted) {
1130 int err = BE_SUCCESS;
1131 err = be_unmount_pool(zhp, ptmp_mntpnt, orig_mntpnt);
1132 if (ret == BE_SUCCESS)
1133 ret = err;
1134 free(orig_mntpnt);
1135 free(ptmp_mntpnt);
1136 }
1137 ZFS_CLOSE(zhp);

1139 free(buffer);
1140 if (menu_fp != NULL)
1141 (void) fclose(menu_fp);
1142 if (tmp_menu_fp != NULL)
1143 (void) fclose(tmp_menu_fp);
1144 if (tmp_menu != NULL) {
1145 (void) unlink(tmp_menu);
1146 free(tmp_menu);
1147 }

1149 return (ret);
1150 }

1152 /*
1153 * Function: be_default_grub_bootfs
1154 * Description: This function returns the dataset in the default entry of
1155 * the grub menu. If no default entry is found with a valid bootfs
1156 * entry NULL is returned.
1157 * Parameters:
1158 * be_root_pool - This is the name of the root pool where the
1159 * grub menu can be found.
1160 * def_bootfs - This is used to pass back the bootfs string. On
1161 * error NULL is returned here.
1162 * Returns:
1163 * Success - BE_SUCCESS is returned.
1164 * Failure - a be_errno_t is returned.
1165 * Scope:
1166 * Semi-private (library wide use only)
1167 */
1168 int
1169 be_default_grub_bootfs(const char *be_root_pool, char **def_bootfs)
1170 {
1171 zfs_handle_t *zhp = NULL;
1172 char grub_file[MAXPATHLEN];
1173 FILE *menu_fp;
1174 char line[BUFSIZ];
1175 char *pool_mntpnt = NULL;
1176 char *ptmp_mntpnt = NULL;
1177 char *orig_mntpnt = NULL;
1178 int default_entry = 0, entries = 0;

new/libbe/common/be_utils.c 14

1179 int found_default = 0;
1180 int ret = BE_SUCCESS;
1181 boolean_t pool_mounted = B_FALSE;

1183 errno = 0;

1185 /*
1186 * Check to see if this system supports grub
1187 */
1188 if (!be_has_grub()) {
1189 be_print_err(gettext("be_default_grub_bootfs: operation "
1190 "not supported on this architecture\n"));
1191 return (BE_ERR_NOTSUP);
1192 }

1194 *def_bootfs = NULL;

1196 /* Get handle to pool dataset */
1197 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET)) == NULL) {
1198 be_print_err(gettext("be_default_grub_bootfs: "
1199 "failed to open pool dataset for %s: %s"),
1200 be_root_pool, libzfs_error_description(g_zfs));
1201 return (zfs_err_to_be_err(g_zfs));
1202 }

1204 /*
1205 * Check to see if the pool’s dataset is mounted. If it isn’t we’ll
1206 * attempt to mount it.
1207 */
1208 if ((ret = be_mount_pool(zhp, &ptmp_mntpnt, &orig_mntpnt,
1209 &pool_mounted)) != BE_SUCCESS) {
1210 be_print_err(gettext("be_default_grub_bootfs: pool dataset "
1211 "(%s) could not be mounted\n"), be_root_pool);
1212 ZFS_CLOSE(zhp);
1213 return (ret);
1214 }

1216 /*
1217 * Get the mountpoint for the root pool dataset.
1218 */
1219 if (!zfs_is_mounted(zhp, &pool_mntpnt)) {
1220 be_print_err(gettext("be_default_grub_bootfs: failed "
1221 "to get mount point for the root pool. Can’t set "
1222 "the default BE in the grub menu.\n"));
1223 ret = BE_ERR_NO_MENU;
1224 goto cleanup;
1225 }

1227 (void) snprintf(grub_file, MAXPATHLEN, "%s%s",
1228 pool_mntpnt, BE_GRUB_MENU);

1230 if ((ret = be_open_menu((char *)be_root_pool, grub_file,
1231 &menu_fp, "r", B_FALSE)) != BE_SUCCESS) {
1232 goto cleanup;
1233 } else if (menu_fp == NULL) {
1234 ret = BE_ERR_NO_MENU;
1235 goto cleanup;
1236 }

1238 free(pool_mntpnt);
1239 pool_mntpnt = NULL;

1241 while (fgets(line, BUFSIZ, menu_fp)) {
1242 char *tok = strtok(line, "=\n");
1128 char *tok = strtok(line, BE_WHITE_SPACE);

new/libbe/common/be_utils.c 15

1244 if (tok != NULL && tok[0] != ’#’) {
1245 if (!found_default) {
1246 if (strcmp(tok, "default_entry") == 0) {
1132 if (strcmp(tok, "default") == 0) {
1247 tok = strtok(NULL, BE_WHITE_SPACE);
1248 if (tok != NULL) {
1249 default_entry = atoi(tok);
1250 rewind(menu_fp);
1251 found_default = 1;
1252 }
1253 }
1254 continue;
1255 }
1256 if (strcmp(tok, "entry_name") == 0) {
1142 if (strcmp(tok, "title") == 0) {
1257 entries++;
1258 } else if (default_entry == entries - 1) {
1259 if (strcmp(tok, "data_set") == 0) {
1145 if (strcmp(tok, "bootfs") == 0) {
1260 tok = strtok(NULL, BE_WHITE_SPACE);
1261 (void) fclose(menu_fp);

1263 if (tok == NULL) {
1264 ret = BE_SUCCESS;
1265 goto cleanup;
1266 }

1268 if ((*def_bootfs = strdup(tok)) !=
1269 NULL) {
1270 ret = BE_SUCCESS;
1271 goto cleanup;
1272 }
1273 be_print_err(gettext(
1274 "be_default_grub_bootfs: "
1275 "memory allocation failed\n"));
1276 ret = BE_ERR_NOMEM;
1277 goto cleanup;
1278 }
1279 } else if (default_entry < entries - 1) {
1280 /*
1281 * no bootfs entry for the default entry.
1282 */
1283 break;
1284 }
1285 }
1286 }
1287 (void) fclose(menu_fp);

1289 cleanup:
1290 if (pool_mounted) {
1291 int err = BE_SUCCESS;
1292 err = be_unmount_pool(zhp, ptmp_mntpnt, orig_mntpnt);
1293 if (ret == BE_SUCCESS)
1294 ret = err;
1295 free(orig_mntpnt);
1296 free(ptmp_mntpnt);
1297 }
1298 ZFS_CLOSE(zhp);
1299 return (ret);
1300 }

1302 /*
1303 * Function: be_change_grub_default
1304 * Description: This function takes two parameters. These are the name of
1305 * the BE we want to have as the default booted in the grub
1306 * menu and the root pool where the path to the grub menu exists.

new/libbe/common/be_utils.c 16

1307 * The code takes this and finds the BE’s entry in the grub menu
1308 * and changes the default entry to point to that entry in the
1309 * list.
1310 * Parameters:
1311 * be_name - This is the name of the BE wanted as the default
1312 * for the next boot.
1313 * be_root_pool - This is the name of the root pool where the
1314 * grub menu can be found.
1315 * Returns:
1316 * BE_SUCCESS - Success
1317 * be_errno_t - Failure
1318 * Scope:
1319 * Semi-private (library wide use only)
1320 */
1321 int
1322 be_change_grub_default(char *be_name, char *be_root_pool)
1323 {
1324 zfs_handle_t *zhp = NULL;
1325 char grub_file[MAXPATHLEN];
1326 char *temp_grub;
1327 char *pool_mntpnt = NULL;
1328 char *ptmp_mntpnt = NULL;
1329 char *orig_mntpnt = NULL;
1330 char line[BUFSIZ];
1331 char temp_line[BUFSIZ];
1332 char be_root_ds[MAXPATHLEN];
1333 FILE *grub_fp = NULL;
1334 FILE *temp_fp = NULL;
1335 struct stat sb;
1336 int temp_grub_len = 0;
1337 int fd, entries = 0;
1338 int err = 0;
1339 int ret = BE_SUCCESS;
1340 boolean_t found_default = B_FALSE;
1341 boolean_t pool_mounted = B_FALSE;

1343 errno = 0;

1345 /*
1346 * Check to see if this system supports grub
1347 */
1348 if (!be_has_grub()) {
1349 be_print_err(gettext("be_change_grub_default: operation "
1350 "not supported on this architecture\n"));
1351 return (BE_ERR_NOTSUP);
1352 }

1354 /* Generate string for BE’s root dataset */
1355 be_make_root_ds(be_root_pool, be_name, be_root_ds, sizeof (be_root_ds));

1357 /* Get handle to pool dataset */
1358 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET)) == NULL) {
1359 be_print_err(gettext("be_change_grub_default: "
1360 "failed to open pool dataset for %s: %s"),
1361 be_root_pool, libzfs_error_description(g_zfs));
1362 return (zfs_err_to_be_err(g_zfs));
1363 }

1365 /*
1366 * Check to see if the pool’s dataset is mounted. If it isn’t we’ll
1367 * attempt to mount it.
1368 */
1369 if ((ret = be_mount_pool(zhp, &ptmp_mntpnt, &orig_mntpnt,
1370 &pool_mounted)) != BE_SUCCESS) {
1371 be_print_err(gettext("be_change_grub_default: pool dataset "
1372 "(%s) could not be mounted\n"), be_root_pool);

new/libbe/common/be_utils.c 17

1373 ZFS_CLOSE(zhp);
1374 return (ret);
1375 }

1377 /*
1378 * Get the mountpoint for the root pool dataset.
1379 */
1380 if (!zfs_is_mounted(zhp, &pool_mntpnt)) {
1381 be_print_err(gettext("be_change_grub_default: pool "
1382 "dataset (%s) is not mounted. Can’t set "
1383 "the default BE in the grub menu.\n"), be_root_pool);
1384 ret = BE_ERR_NO_MENU;
1385 goto cleanup;
1386 }

1388 (void) snprintf(grub_file, MAXPATHLEN, "%s%s",
1389 pool_mntpnt, BE_GRUB_MENU);

1391 if ((ret = be_open_menu(be_root_pool, grub_file,
1392 &grub_fp, "r+", B_TRUE)) != BE_SUCCESS) {
1393 goto cleanup;
1394 } else if (grub_fp == NULL) {
1395 ret = BE_ERR_NO_MENU;
1396 goto cleanup;
1397 }

1399 free(pool_mntpnt);
1400 pool_mntpnt = NULL;

1402 /* Grab the stats of the original menu file */
1403 if (stat(grub_file, &sb) != 0) {
1404 err = errno;
1405 be_print_err(gettext("be_change_grub_default: "
1406 "failed to stat file %s: %s\n"), grub_file, strerror(err));
1407 ret = errno_to_be_err(err);
1408 goto cleanup;
1409 }

1411 /* Create a tmp file for the modified menu.lst */
1412 temp_grub_len = strlen(grub_file) + 7;
1413 if ((temp_grub = (char *)malloc(temp_grub_len)) == NULL) {
1414 be_print_err(gettext("be_change_grub_default: "
1415 "malloc failed\n"));
1416 ret = BE_ERR_NOMEM;
1417 goto cleanup;
1418 }
1419 (void) memset(temp_grub, 0, temp_grub_len);
1420 (void) strlcpy(temp_grub, grub_file, temp_grub_len);
1421 (void) strlcat(temp_grub, "XXXXXX", temp_grub_len);
1422 if ((fd = mkstemp(temp_grub)) == -1) {
1423 err = errno;
1424 be_print_err(gettext("be_change_grub_default: "
1425 "mkstemp failed: %s\n"), strerror(err));
1426 ret = errno_to_be_err(err);
1427 free(temp_grub);
1428 temp_grub = NULL;
1429 goto cleanup;
1430 }
1431 if ((temp_fp = fdopen(fd, "w")) == NULL) {
1432 err = errno;
1433 be_print_err(gettext("be_change_grub_default: "
1434 "failed to open %s file: %s\n"),
1435 temp_grub, strerror(err));
1436 (void) close(fd);
1437 ret = errno_to_be_err(err);
1438 goto cleanup;

new/libbe/common/be_utils.c 18

1439 }

1441 while (fgets(line, BUFSIZ, grub_fp)) {
1442 char *tok = strtok(line, "=\n");
1328 char *tok = strtok(line, BE_WHITE_SPACE);

1444 if (tok == NULL || tok[0] == ’#’) {
1445 continue;
1446 } else if (strcmp(tok, "entry_name") == 0) {
1332 } else if (strcmp(tok, "title") == 0) {
1447 entries++;
1448 continue;
1449 } else if (strcmp(tok, "data_set") == 0) {
1335 } else if (strcmp(tok, "bootfs") == 0) {
1450 char *bootfs = strtok(NULL, BE_WHITE_SPACE);
1451 if (bootfs == NULL)
1452 continue;

1454 if (strcmp(bootfs, be_root_ds) == 0) {
1455 found_default = B_TRUE;
1456 break;
1457 }
1458 }
1459 }

1461 if (!found_default) {
1462 be_print_err(gettext("be_change_grub_default: failed "
1463 "to find entry for %s in the grub menu\n"),
1464 be_name);
1465 ret = BE_ERR_BE_NOENT;
1466 goto cleanup;
1467 }

1469 rewind(grub_fp);

1471 (void) snprintf(temp_line, BUFSIZ, "default_entry=%d\n",
1472 entries - 1 >= 0 ? entries - 1 : 0);
1473 (void) fputs(temp_line, temp_fp);
1474 #endif /* ! codereview */
1475 while (fgets(line, BUFSIZ, grub_fp)) {
1476 char *tok = NULL;

1478 (void) strncpy(temp_line, line, BUFSIZ);

1480 if ((tok = strtok(temp_line, "=\n")) != NULL &&
1481 strcmp(tok, "default_entry") == 0) {
1357 if ((tok = strtok(temp_line, BE_WHITE_SPACE)) != NULL &&
1358 strcmp(tok, "default") == 0) {
1359 (void) snprintf(temp_line, BUFSIZ, "default %d\n",
1360 entries - 1 >= 0 ? entries - 1 : 0);
1361 (void) fputs(temp_line, temp_fp);
1482 } else {
1483 (void) fputs(line, temp_fp);
1484 }
1485 }

1487 (void) fclose(grub_fp);
1488 grub_fp = NULL;
1489 (void) fclose(temp_fp);
1490 temp_fp = NULL;

1492 if (rename(temp_grub, grub_file) != 0) {
1493 err = errno;
1494 be_print_err(gettext("be_change_grub_default: "
1495 "failed to rename file %s to %s: %s\n"),
1496 temp_grub, grub_file, strerror(err));

new/libbe/common/be_utils.c 19

1497 ret = errno_to_be_err(err);
1498 goto cleanup;
1499 }
1500 free(temp_grub);
1501 temp_grub = NULL;

1503 /* Set the perms and ownership of the updated file */
1504 if (chmod(grub_file, sb.st_mode) != 0) {
1505 err = errno;
1506 be_print_err(gettext("be_change_grub_default: "
1507 "failed to chmod %s: %s\n"), grub_file, strerror(err));
1508 ret = errno_to_be_err(err);
1509 goto cleanup;
1510 }
1511 if (chown(grub_file, sb.st_uid, sb.st_gid) != 0) {
1512 err = errno;
1513 be_print_err(gettext("be_change_grub_default: "
1514 "failed to chown %s: %s\n"), grub_file, strerror(err));
1515 ret = errno_to_be_err(err);
1516 }

1518 cleanup:
1519 if (pool_mounted) {
1520 int err = BE_SUCCESS;
1521 err = be_unmount_pool(zhp, ptmp_mntpnt, orig_mntpnt);
1522 if (ret == BE_SUCCESS)
1523 ret = err;
1524 free(orig_mntpnt);
1525 free(ptmp_mntpnt);
1526 }
1527 ZFS_CLOSE(zhp);
1528 if (grub_fp != NULL)
1529 (void) fclose(grub_fp);
1530 if (temp_fp != NULL)
1531 (void) fclose(temp_fp);
1532 if (temp_grub != NULL) {
1533 (void) unlink(temp_grub);
1534 free(temp_grub);
1535 }

1537 return (ret);
1538 }

1540 /*
1541 * Function: be_update_menu
1542 * Description: This function is used by be_rename to change the BE name in
1543 * an existing entry in the grub menu to the new name of the BE.
1544 * Parameters:
1545 * be_orig_name - the original name of the BE
1546 * be_new_name - the new name the BE is being renameed to.
1547 * be_root_pool - The pool which contains the grub menu
1548 * boot_pool - the pool where the BE is, if different than
1549 * the pool containing the boot menu. If this is
1550 * NULL it will be set to be_root_pool.
1551 * Returns:
1552 * BE_SUCCESS - Success
1553 * be_errno_t - Failure
1554 * Scope:
1555 * Semi-private (library wide use only)
1556 */
1557 int
1558 be_update_menu(char *be_orig_name, char *be_new_name, char *be_root_pool,
1559 char *boot_pool)
1560 {
1561 zfs_handle_t *zhp = NULL;
1562 char menu_file[MAXPATHLEN];

new/libbe/common/be_utils.c 20

1563 char be_root_ds[MAXPATHLEN];
1564 char be_new_root_ds[MAXPATHLEN];
1565 char line[BUFSIZ];
1566 char *pool_mntpnt = NULL;
1567 char *ptmp_mntpnt = NULL;
1568 char *orig_mntpnt = NULL;
1569 char *temp_menu = NULL;
1570 FILE *menu_fp = NULL;
1571 FILE *new_fp = NULL;
1572 struct stat sb;
1573 int temp_menu_len = 0;
1574 int tmp_fd;
1575 int ret = BE_SUCCESS;
1576 int flag = 0;
1577 #endif /* ! codereview */
1578 int err = 0;
1579 boolean_t pool_mounted = B_FALSE;

1581 errno = 0;

1583 if (boot_pool == NULL)
1584 boot_pool = be_root_pool;

1586 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET)) == NULL) {
1587 be_print_err(gettext("be_update_menu: failed to open "
1588 "pool dataset for %s: %s\n"), be_root_pool,
1589 libzfs_error_description(g_zfs));
1590 return (zfs_err_to_be_err(g_zfs));
1591 }

1593 /*
1594 * Check to see if the pool’s dataset is mounted. If it isn’t we’ll
1595 * attempt to mount it.
1596 */
1597 if ((ret = be_mount_pool(zhp, &ptmp_mntpnt, &orig_mntpnt,
1598 &pool_mounted)) != BE_SUCCESS) {
1599 be_print_err(gettext("be_update_menu: pool dataset "
1600 "(%s) could not be mounted\n"), be_root_pool);
1601 ZFS_CLOSE(zhp);
1602 return (ret);
1603 }

1605 /*
1606 * Get the mountpoint for the root pool dataset.
1607 */
1608 if (!zfs_is_mounted(zhp, &pool_mntpnt)) {
1609 be_print_err(gettext("be_update_menu: failed "
1610 "to get mount point for the root pool. Can’t set "
1611 "the default BE in the grub menu.\n"));
1612 ret = BE_ERR_NO_MENU;
1613 goto cleanup;
1614 }

1616 /*
1617 * Check to see if this system supports grub
1618 */
1619 if (be_has_grub()) {
1620 (void) snprintf(menu_file, sizeof (menu_file),
1621 "%s%s", pool_mntpnt, BE_GRUB_MENU);
1622 } else {
1623 (void) snprintf(menu_file, sizeof (menu_file),
1624 "%s%s", pool_mntpnt, BE_SPARC_MENU);
1625 }

1627 be_make_root_ds(be_root_pool, be_orig_name, be_root_ds,
1628 sizeof (be_root_ds));

new/libbe/common/be_utils.c 21

1629 be_make_root_ds(be_root_pool, be_new_name, be_new_root_ds,
1630 sizeof (be_new_root_ds));

1632 if ((ret = be_open_menu(be_root_pool, menu_file,
1633 &menu_fp, "r", B_TRUE)) != BE_SUCCESS) {
1634 goto cleanup;
1635 } else if (menu_fp == NULL) {
1636 ret = BE_ERR_NO_MENU;
1637 goto cleanup;
1638 }

1640 free(pool_mntpnt);
1641 pool_mntpnt = NULL;

1643 /* Grab the stat of the original menu file */
1644 if (stat(menu_file, &sb) != 0) {
1645 err = errno;
1646 be_print_err(gettext("be_update_menu: "
1647 "failed to stat file %s: %s\n"), menu_file, strerror(err));
1648 (void) fclose(menu_fp);
1649 ret = errno_to_be_err(err);
1650 goto cleanup;
1651 }

1653 /* Create tmp file for modified menu.lst */
1654 temp_menu_len = strlen(menu_file) + 7;
1655 if ((temp_menu = (char *)malloc(temp_menu_len))
1656 == NULL) {
1657 be_print_err(gettext("be_update_menu: "
1658 "malloc failed\n"));
1659 (void) fclose(menu_fp);
1660 ret = BE_ERR_NOMEM;
1661 goto cleanup;
1662 }
1663 (void) memset(temp_menu, 0, temp_menu_len);
1664 (void) strlcpy(temp_menu, menu_file, temp_menu_len);
1665 (void) strlcat(temp_menu, "XXXXXX", temp_menu_len);
1666 if ((tmp_fd = mkstemp(temp_menu)) == -1) {
1667 err = errno;
1668 be_print_err(gettext("be_update_menu: "
1669 "mkstemp failed: %s\n"), strerror(err));
1670 (void) fclose(menu_fp);
1671 free(temp_menu);
1672 ret = errno_to_be_err(err);
1673 goto cleanup;
1674 }
1675 if ((new_fp = fdopen(tmp_fd, "w")) == NULL) {
1676 err = errno;
1677 be_print_err(gettext("be_update_menu: "
1678 "fdopen failed: %s\n"), strerror(err));
1679 (void) close(tmp_fd);
1680 (void) fclose(menu_fp);
1681 free(temp_menu);
1682 ret = errno_to_be_err(err);
1683 goto cleanup;
1684 }

1686 while (fgets(line, BUFSIZ, menu_fp)) {
1687 char tline[BUFSIZ];
1688 char new_line[BUFSIZ];
1689 char *c = NULL;

1691 (void) strlcpy(tline, line, sizeof (tline));

1693 /* Tokenize line */
1694 c = strtok(tline, "=\n");

new/libbe/common/be_utils.c 22

1456 c = strtok(tline, BE_WHITE_SPACE);

1696 if (c == NULL) {
1697 /* Found empty line, write it out. */
1698 (void) fputs(line, new_fp);
1699 } else if (c[0] == ’#’) {
1700 /* Found a comment line, write it out. */
1701 (void) fputs(line, new_fp);
1702 } else if (strcmp(c, "entry_name") == 0) {
1464 } else if (strcmp(c, "title") == 0) {
1703 char *name = NULL;
1704 char *desc = NULL;

1706 /*
1707 * Found a ’title’ line, parse out BE name or
1708 * the description.
1709 */
1710 flag = 0;
1711 #endif /* ! codereview */
1712 name = strtok(NULL, BE_WHITE_SPACE);

1714 if (name == NULL) {
1715 /*
1716 * Nothing after ’title’, just push
1717 * this line through
1718 */
1719 (void) fputs(line, new_fp);
1720 } else {
1721 /*
1722 * Grab the remainder of the title which
1723 * could be a multi worded description
1724 */
1725 desc = strtok(NULL, "\n");

1727 if (strcmp(name, be_orig_name) == 0) {
1728 /*
1729 * The first token of the title is
1730 * the old BE name, replace it with
1731 * the new one, and write it out
1732 * along with the remainder of
1733 * description if there is one.
1734 */
1735 ++flag;
1736 #endif /* ! codereview */
1737 if (desc) {
1738 (void) snprintf(new_line,
1739 sizeof (new_line),
1740 "entry_name=%s %s\n",
1472 "title %s %s\n",
1741 be_new_name, desc);
1742 } else {
1743 (void) snprintf(new_line,
1744 sizeof (new_line),
1745 "entry_name=%s\n", be_new_na
1477 "title %s\n", be_new_name);
1746 }

1748 (void) fputs(new_line, new_fp);
1749 } else {
1750 (void) fputs(line, new_fp);
1751 }
1752 }
1753 } else if (strcmp(c, "data_set") == 0) {
1485 } else if (strcmp(c, "bootfs") == 0) {
1754 /*
1755 * Found a ’bootfs’ line, parse out the BE root

new/libbe/common/be_utils.c 23

1756 * dataset value.
1757 */
1758 char *root_ds = strtok(NULL, BE_WHITE_SPACE);

1760 if (root_ds == NULL) {
1761 /*
1762 * Nothing after ’bootfs’, just push
1763 * this line through
1764 */
1765 (void) fputs(line, new_fp);
1766 } else {
1767 /*
1768 * If this bootfs is the one we’re renaming,
1769 * write out the new root dataset value
1770 */
1771 if (strcmp(root_ds, be_root_ds) == 0) {
1772 ++flag;
1773 #endif /* ! codereview */
1774 (void) snprintf(new_line,
1775 sizeof (new_line), "data_set=%s\n",
1504 sizeof (new_line), "bootfs %s\n",
1776 be_new_root_ds);

1778 (void) fputs(new_line, new_fp);
1779 } else {
1780 (void) fputs(line, new_fp);
1781 }
1782 }
1783 } else {
1784 /*
1785 * Found some other line we don’t care
1786 * about, write it out.
1787 */
1788 (void) fputs(line, new_fp);
1789 }
1790 }

1792 (void) fclose(menu_fp);
1793 (void) fclose(new_fp);
1794 (void) close(tmp_fd);

1796 if (rename(temp_menu, menu_file) != 0) {
1797 err = errno;
1798 be_print_err(gettext("be_update_menu: "
1799 "failed to rename file %s to %s: %s\n"),
1800 temp_menu, menu_file, strerror(err));
1801 ret = errno_to_be_err(err);
1802 }
1803 free(temp_menu);

1805 /* Set the perms and ownership of the updated file */
1806 if (chmod(menu_file, sb.st_mode) != 0) {
1807 err = errno;
1808 be_print_err(gettext("be_update_menu: "
1809 "failed to chmod %s: %s\n"), menu_file, strerror(err));
1810 ret = errno_to_be_err(err);
1811 goto cleanup;
1812 }
1813 if (chown(menu_file, sb.st_uid, sb.st_gid) != 0) {
1814 err = errno;
1815 be_print_err(gettext("be_update_menu: "
1816 "failed to chown %s: %s\n"), menu_file, strerror(err));
1817 ret = errno_to_be_err(err);
1818 }

1820 cleanup:

new/libbe/common/be_utils.c 24

1821 if (pool_mounted) {
1822 int err = BE_SUCCESS;
1823 err = be_unmount_pool(zhp, ptmp_mntpnt, orig_mntpnt);
1824 if (ret == BE_SUCCESS)
1825 ret = err;
1826 free(orig_mntpnt);
1827 free(ptmp_mntpnt);
1828 }
1829 ZFS_CLOSE(zhp);
1830 return (ret);
1831 }

1833 /*
1834 * Function: be_has_menu_entry
1835 * Description: Checks to see if the BEs root dataset has an entry in the grub
1836 * menu.
1837 * Parameters:
1838 * be_dataset - The root dataset of the BE
1839 * be_root_pool - The pool which contains the boot menu
1840 * entry - A pointer the the entry number of the BE if found.
1841 * Returns:
1842 * B_TRUE - Success
1843 * B_FALSE - Failure
1844 * Scope:
1845 * Semi-private (library wide use only)
1846 */
1847 boolean_t
1848 be_has_menu_entry(char *be_dataset, char *be_root_pool, int *entry)
1849 {
1850 zfs_handle_t *zhp = NULL;
1851 char menu_file[MAXPATHLEN];
1852 FILE *menu_fp;
1853 char line[BUFSIZ];
1854 char *last;
1855 char *rpool_mntpnt = NULL;
1856 char *ptmp_mntpnt = NULL;
1857 char *orig_mntpnt = NULL;
1858 int ent_num = 0;
1859 boolean_t ret = 0;
1860 boolean_t pool_mounted = B_FALSE;

1863 /*
1864 * Check to see if this system supports grub
1865 */
1866 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET)) == NULL) {
1867 be_print_err(gettext("be_has_menu_entry: failed to open "
1868 "pool dataset for %s: %s\n"), be_root_pool,
1869 libzfs_error_description(g_zfs));
1870 return (B_FALSE);
1871 }

1873 /*
1874 * Check to see if the pool’s dataset is mounted. If it isn’t we’ll
1875 * attempt to mount it.
1876 */
1877 if (be_mount_pool(zhp, &ptmp_mntpnt, &orig_mntpnt,
1878 &pool_mounted) != 0) {
1879 be_print_err(gettext("be_has_menu_entry: pool dataset "
1880 "(%s) could not be mounted\n"), be_root_pool);
1881 ZFS_CLOSE(zhp);
1882 return (B_FALSE);
1883 }

1885 /*
1886 * Get the mountpoint for the root pool dataset.

new/libbe/common/be_utils.c 25

1887 */
1888 if (!zfs_is_mounted(zhp, &rpool_mntpnt)) {
1889 be_print_err(gettext("be_has_menu_entry: pool "
1890 "dataset (%s) is not mounted. Can’t set "
1891 "the default BE in the grub menu.\n"), be_root_pool);
1892 ret = B_FALSE;
1893 goto cleanup;
1894 }

1896 if (be_has_grub()) {
1897 (void) snprintf(menu_file, MAXPATHLEN, "/%s%s",
1898 rpool_mntpnt, BE_GRUB_MENU);
1899 } else {
1900 (void) snprintf(menu_file, MAXPATHLEN, "/%s%s",
1901 rpool_mntpnt, BE_SPARC_MENU);
1902 }

1904 if (be_open_menu(be_root_pool, menu_file, &menu_fp, "r",
1905 B_FALSE) != 0) {
1906 ret = B_FALSE;
1907 goto cleanup;
1908 } else if (menu_fp == NULL) {
1909 ret = B_FALSE;
1910 goto cleanup;
1911 }

1913 free(rpool_mntpnt);
1914 rpool_mntpnt = NULL;

1916 while (fgets(line, BUFSIZ, menu_fp)) {
1917 char *tok = strtok_r(line, "=\n", &last);
1646 char *tok = strtok_r(line, BE_WHITE_SPACE, &last);

1919 if (tok != NULL && tok[0] != ’#’) {
1920 if (strcmp(tok, "data_set") == 0) {
1649 if (strcmp(tok, "bootfs") == 0) {
1921 tok = strtok_r(last, BE_WHITE_SPACE, &last);
1922 if (tok != NULL && strcmp(tok,
1923 be_dataset) == 0) {
1924 (void) fclose(menu_fp);
1925 /*
1926 * The entry number needs to be
1927 * decremented here because the title
1928 * will always be the first line for
1929 * an entry. Because of this we’ll
1930 * always be off by one entry when we
1931 * check for bootfs.
1932 */
1933 *entry = ent_num - 1;
1934 ret = B_TRUE;
1935 goto cleanup;
1936 }
1937 } else if (strcmp(tok, "entry_name") == 0)
1666 } else if (strcmp(tok, "title") == 0)
1938 ent_num++;
1939 }
1940 }

1942 cleanup:
1943 if (pool_mounted) {
1944 (void) be_unmount_pool(zhp, ptmp_mntpnt, orig_mntpnt);
1945 free(orig_mntpnt);
1946 free(ptmp_mntpnt);
1947 }
1948 ZFS_CLOSE(zhp);
1949 (void) fclose(menu_fp);

new/libbe/common/be_utils.c 26

1950 return (ret);
1951 }
______unchanged_portion_omitted_

3624 /*
3625 * Function: be_create_menu
3626 * Description:
3627 * This function is used if no menu.lst file exists. In
3628 * this case a new file is created and if needed default
3629 * lines are added to the file.
3630 * Parameters:
3631 * pool - The name of the pool the menu.lst file is on
3632 * menu_file - The name of the file we’re creating.
3633 * menu_fp - A pointer to the file pointer of the file we
3634 * created. This is also used to pass back the file
3635 * pointer to the newly created file.
3636 * mode - the original mode used for the failed attempt to
3637 * non-existent file.
3638 * Returns:
3639 * BE_SUCCESS - Success
3640 * be_errno_t - Failure
3641 * Scope:
3642 * Private
3643 */
3644 static int
3645 be_create_menu(
3646 char *pool,
3647 char *menu_file,
3648 FILE **menu_fp,
3649 char *mode)
3650 {
3651 be_node_list_t *be_nodes = NULL;
3652 char *menu_path = NULL;
3653 char *be_rpool = NULL;
3654 char *be_name = NULL;
3655 char *console = NULL;
3656 errno = 0;

3658 if (menu_file == NULL || menu_fp == NULL || mode == NULL)
3659 return (BE_ERR_INVAL);

3661 menu_path = strdup(menu_file);
3662 if (menu_path == NULL)
3663 return (BE_ERR_NOMEM);

3665 (void) dirname(menu_path);
3666 if (*menu_path == ’.’) {
3667 free(menu_path);
3668 return (BE_ERR_BAD_MENU_PATH);
3669 }
3670 if (mkdirp(menu_path,
3671 S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH) == -1 &&
3672 errno != EEXIST) {
3673 free(menu_path);
3674 be_print_err(gettext("be_create_menu: Failed to create the %s "
3675 "directory: %s\n"), menu_path, strerror(errno));
3676 return (errno_to_be_err(errno));
3677 }
3678 free(menu_path);

3680 /*
3681 * Check to see if this system supports grub
3682 */
3683 if (be_has_grub()) {
3684 /*
3685 * The grub menu is missing so we need to create it

new/libbe/common/be_utils.c 27

3686 * and fill in the first few lines.
3687 */
3688 FILE *temp_fp = fopen(menu_file, "a+");
3689 if (temp_fp == NULL) {
3690 *menu_fp = NULL;
3691 return (errno_to_be_err(errno));
3692 }

3694 if ((console = be_get_console_prop()) != NULL) {

3696 /*
3697 * If console is redirected to serial line,
3698 * GRUB splash screen will not be enabled.
3699 */
3700 if (strncmp(console, "text", strlen("text")) == 0 ||
3701 strncmp(console, "graphics",
3702 strlen("graphics")) == 0) {
3703 /*

3704 (void) fprintf(temp_fp, "%s\n", BE_GRUB_SPLASH);
3705 (void) fprintf(temp_fp, "%s\n",
3706 BE_GRUB_FOREGROUND);
3707 (void) fprintf(temp_fp, "%s\n",
3708 BE_GRUB_BACKGROUND);
3709 (void) fprintf(temp_fp, "%s\n",
3710 BE_GRUB_DEFAULT);*/
3439 BE_GRUB_DEFAULT);
3711 } else {
3712 be_print_err(gettext("be_create_menu: "
3713 "console on serial line, "
3714 "GRUB splash image will be disabled\n"));
3715 }
3716 }

3718 (void) fprintf(temp_fp, "timeout=30\n");
3447 (void) fprintf(temp_fp, "timeout 30\n");
3719 (void) fclose(temp_fp);

3721 } else {
3722 /*
3723 * The menu file doesn’t exist so we need to create a
3724 * blank file.
3725 */
3726 FILE *temp_fp = fopen(menu_file, "w+");
3727 if (temp_fp == NULL) {
3728 *menu_fp = NULL;
3729 return (errno_to_be_err(errno));
3730 }
3731 (void) fclose(temp_fp);
3732 }

3734 /*
3735 * Now we need to add all the BE’s back into the the file.
3736 */
3737 if (_be_list(NULL, &be_nodes) == BE_SUCCESS) {
3738 while (be_nodes != NULL) {
3739 if (strcmp(pool, be_nodes->be_rpool) == 0) {
3740 (void) be_append_menu(be_nodes->be_node_name,
3741 be_nodes->be_rpool, NULL, NULL, NULL);
3742 }
3743 if (be_nodes->be_active_on_boot) {
3744 be_rpool = strdup(be_nodes->be_rpool);
3745 be_name = strdup(be_nodes->be_node_name);
3746 }

3748 be_nodes = be_nodes->be_next_node;

new/libbe/common/be_utils.c 28

3749 }
3750 }
3751 be_free_list(be_nodes);

3753 /*
3754 * Check to see if this system supports grub
3755 */
3756 if (be_has_grub()) {
3757 int err = be_change_grub_default(be_name, be_rpool);
3758 if (err != BE_SUCCESS)
3759 return (err);
3760 }
3761 *menu_fp = fopen(menu_file, mode);
3762 if (*menu_fp == NULL)
3763 return (errno_to_be_err(errno));

3765 return (BE_SUCCESS);
3766 }
______unchanged_portion_omitted_

