new boot adn? boot adm ¢ 1 new boot adn? boot adm ¢
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 #I ncl ude <SyS/ param h>
228349 Fri Aug 31 05:08:45 2012 63 #include <dirent.h>
new boot adnf boot adm ¢ 64 #include <ctype. h>
bot adm pat ch 65 #include <libgen. h>
IR E SRS RS RS SRR SRR R R R R R R R R SRR EEEEREEEEEEEEEERESE] 66 #I nCI ude <SyS/ SySI’TaCFOS. h>
1/* 67 #include <sys/elf.h>
2 * CDDL HEADER START 68 #include <libscf.h>
3 * 69 #include <zlib.h>
4 * The contents of this file are subject to the terms of the 70 #include <sys/| ockfs. h>
5 * Common Devel opnent and Distribution License (the "License"). 71 #include <sys/filio.h>
6 * You may not use this file except in conpliance with the License. 72 #include <libbe. h>
7 * 73 #ifdef i386
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 #include <libfdisk.h>
9 * or http://ww. opensol aris.org/os/licensing. 75 #endi f
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License. 77 #if !defined(_OPB)
12 * 78 #include <sys/ucode. h>
13 * When distributing Covered Code, include this CDDL HEADER in each 79 #endif
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |If applicable, add the followi ng below this CDDL HEADER, wth the 81 #include <pwd. h>
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 #include <grp. h>
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 83 #i ncl ude <device_info. h>
18 * 84 #include <sys/vtoc. h>
19 * CDDL HEADER END 85 #include <sys/efi_partition. h>
20 */ 86 #i ncl ude <regex. h>
21 /* 87 #include <local e. h>
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 * Copyright 2012 Mlan Jurik. Al rights reserved. 89 #include "nessage. h"
24 * Copyright 2012 Daniil Lunev. Al rights reserved. 90 #i ncl ude "bootadm h"
25 #endif /* | codereview */
26 */ 92 #i f ndef TEXT_DOMAI N
93 #define TEXT_DOVAI N " SUNW OST_OSsCwvD!
28 | * 94 #endif /* TEXT_DOVAIN */
29 * Copyright 2011 Nexenta Systenms, Inc. Al rights reserved.
30 */ 96 /* Type definitions */
32 /* 98 /* Primary subcnds */
33 * bootadm(1M is a new utility for managing bootability of 99 typedef enum {
34 * Solaris *Newboot* environnents. It has two primary tasks: 100 BAM MENU = 3,
35 * - Allow end users to nanage bootability of Newboot Sol aris instances 101 BAM _ARCHI VE
36 */ - Provide services to other subsystens in Solaris (primarily Install) 102 } subcnd_t;
37 *
104 typedef enum {
39 /* Headers */ 105 OPT_ABSENT = 0, /* No option */
40 #include <stdio. h> 106 OPT_REQ /* option required */
41 #incl ude <errno. h> 107 OPT_OPTI ONAL /* option may or may not be present */
42 #include <stdlib.h> 108 } option_t;
43 #include <string. h>
44 #incl ude <unistd. h> 110 typedef struct {
45 #incl ude <sys/types. h> 111 char *subcnd;
46 #include <sys/stat.h> 112 option_t option;
47 #include <all oca. h> 113 error_t (*handler)();
48 #include <stdarg. h> 114 int unpriv; /* is this an unprivileged conmand */
49 #include <limts.h> 115 } subcnd_defn_t;
50 #include <signal.h>
51 #include <sys/wait.h> 117 #define LINE INT 0 /* lineNuminitial value */
52 #include <sys/mttab. h> 118 #define ENTRY_IN T -1 /* entryNuminitial value */
53 #include <sys/ mtent.h> 119 #define ALL_ENTRI ES -2 /* selects all boot entries */
54 #include <sys/statvfs. h>
55 #include <libnvpair.h> 121 #define GRUB_DI R "/ boot/ grub”
56 #include <ftw h> 122 #defi ne GRUB_STAGE2 GRUB_DI R "/ stage2"
57 #include <fcntl.h> 123 #defi ne GRUB_MENU "/boot/illunos. cfg"
58 #include <strings.h> 124 #define MENU_TMP "/boot/illunps.cfg.tnmp"
59 #include <utine.h> 24 #define CGRUB_MENU "/ boot/grub/ menu. | st"
60 #include <sys/system nfo.h> 25 #define MENU_TWP "/ boot/ grub/ menu. | st.tnp"
61 #include <sys/dktp/fdisk. h> 125 #defi ne GRUB_BACKUP_NMENU "/etc/lu/ GRUB_backup_nenu"

new boot adnf boot adm ¢

126
127
128
129
130
131
132
133
134
135

137

139
140
141

143
144
145
146

148
149
150
151
152
153
154
155
156
157

159
160
161

163
164
165
166
167
168
169

171
172
173
174
175
176

178
179
180
181
182
183

184
185
186
187
188
189
190

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

/* | ock

#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

ne
ne

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne

typedef

RAMVDI SK_SPECI AL
STUBBOOT

MULTI BOOT

GRUBSI GN_DI R

GRUBS| GN_BACKUP
GRUBSI GN_UFS_PREFI X
GRUBSI GN_ZFS_PREFI X
GRUBSI GN_LU_PREFI X
UFS_SI GNATURE_LI ST
ZFS_LEGACY_MNTPT

BOOTADM _RDONLY_TEST

related */
BAM LOCK_FI LE
LOCK_FI LE_PERVS

CREATE_RAMDI SK
CREATE_DI SKNAP
EXTRACT_BOOT_FI LELI ST
GRUBDI SK_MAP

CGRUB_slice

GRUB_r oot

GRUB_f di sk

GRUB_f di sk_t ar get

FI NDROOT_| NSTALLGRUB
LULI B

LULI B_PROPAGATE_FI LE
CKSUM

LU_MENU_CKSUM
BOOTADM

| NSTALLGRUB
STAGEL
STAGE2

enum zfs_mted {
ZFS_MNT_ERROR = -1,
LEGACY_MOUNTED = 1,
LEGACY_ALREADY,
ZFS_MOUNTED,
ZFS_ALREADY

} zfs_mted_t;

| *

* Default file attributes
*/

#defi ne DEFAULT_DEV_MODE
#def i ne DEFAULT_DEV_UI D
#def i ne DEFAULT_DEV_G D

| *

* Menu rel ated
* menu_cnd_t and nenu_cnds nust be kept in sync
*/

char *menu_cnds[] = {
"defaul t_entry",/* DEFAULT_CMD */

"/ randi sk"

"/ stubboot "

"/ platformi86pc/nultiboot”
"/ boot / gr ub/ boot si gn"

"/ etc/ bootsign"

"rootfs"

" pool
"BE "
"/var/run/grub_ufs_signatures"
"/ tnp/ bootadm mt _zfs_| egacy"

" BOOTADM _RDONLY_TEST"

"/var/run/bootadm | ock"
(S_IRUSR| S_I WIUSR| S_I| RGRP| S_| ROTH)

"boot/sol ari s/ bin/ create_randi sk"
"boot/sol ari s/ bi n/ create_di skmap"
"boot/sol ari s/ bin/extract _boot _filelist"
"/var/run/sol ari s_grubdi sk. map"

"/etc/lu/ GRUB_slice"

"/etc/lu/ GRUB_root"

"/etc/lul GRUB_fdisk"

"/etc/lul GRUB_fdisk_target”
"/etc/lulinstallgrub.findroot"
"fusr/lib/lu/lulib"
"lulib_propagate_file"

"/ usr/bin/cksunt

"/etc/lul/ menu. cksunt

"/ sbi n/ boot adnt

"/ sbin/install grub”
"/ boot/ grub/ stagel”
"/ boot/ grub/ st age2”

0644 /* default perm ssions */
0 /* user root */
3 /* group sys */

"defaul t", /* DEFAULT_CMD */
“timeout”, /* TI MEOQUT_CMD */
"entry_nane", /* TITLE_CWVD */

"pool _uui d", /* ROOT_CMD */

"kernel _pat h$", /* KERNEL_CMD */

"kernel _path", /* KERNEL_DOLLAR CMD */
"nmodul e$", /* MODULE_CMD */

"nmodul e", /* MODULE_DOLLAR CMD */

new boot adnf boot adm ¢

"t /* SEP_CNMD */

"title", /* TITLE_CMD */

"root", /* ROOT_CMD */

"kernel ", /* KERNEL_CMD */

"ker nel $", /* KERNEL_DOLLAR _CMD */
"nodul e", /* MODULE_CMD */

"nodul e$", /* MODULE_DOLLAR CMD */
oy /* SEP_CMD */

"H#, /* COMMENT_CMD */

"chai nl oader", /* CHAI NLOADER CMD */
'args", /* ARGS_CMD */

"pool _| abel ", /* FI NDROOT_CMD */
"data_set", /* BOOTFS_CMD */
"kernel _options",/* KERNEL_OPTI ONS_CMD */
"findroot"”, /* FI NDROOT_CMD */
"boot fs", /* BOOTFS_CMD */

NULL

____unchanged_portion_onitted_

4681 int

4682 add_boot
4683

4684

4685

4686

4687

4688

4689 {

4690

4691

4692

4693

4694

4695

4696

4697 #endif /

4699

4701
4702
4703
4704
4705

4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718

4720
4721
4722
4723
4724
4725
4726

_entry(nmenu_t *np,
char *title,

char *findroot,
char *kernel,

char *nod_kernel,
char *nodul e,

char *bootfs)

int I'i neNum

int entryNum

char I'i nebuf [BAM_MAXLI NE] ;
menu_cnd_t k_cmd;

menu_cnd_t m cnd;

const char *fcn = "add_boot _entry()";

char * options = NULL;
* | codereview */

assert (np);

I NJECT_ERRORL(" ADD_BOOT_ENTRY_FI NDROOT_NULL", findroot = NULL);
if (findroot == NULL)

bam error (NULL_FI NDROOT) ;

return (BAM ERROR);
}

if (title == NULL) {
title = "Solaris"; /* default to Solaris */

}

if (kernel == NULL) {
bam error (SUBOPT_M SS, nenu_cnds[KERNEL_CMD]) ;
return (BAM ERROR);

}
if (nodule == NULL)
if (bamdirect != BAM DI RECT_DBOOT) {
bam error (SUBOPT_M SS, menu_cnds[MODULE_CMD]) ;
return (BAM ERROR);
}

/* Figure the commands out fromthe kernel line */
if (strstr(kernel, "$ISADIR') != NULL)
nmodul e = DI RECT_BOOT_ARCHI VE;
} else if (strstr(kernel, "amd64") != NULL) {
nodul e = DI RECT_BOOT_ARCHI VE_64;
} else {
nmodul e = DI RECT_BOOT_ARCHI VE_32;

new boot adnf boot adm ¢ 5 new boot adnf boot adm ¢

4727 } 4792 menu_cnds[COMVENT_CMD], BAM BOOTADM FTR) ;
4728 } 4793 I'i ne_parser(np, |inebuf, &l neNum &ent ryNurT)
4730 k_cmd = KERNEL_DOLLAR CMD; 4795 return (entryNum;
4731 m.cnd = MODULE_DOLLAR_CMD; 4796 }
4733 if (nmp->start) { 4798 error_t
4734 I'i neNum = np- >end- >l i neNum 4799 del ete_boot _entry(nenu_t *np, int entryNum int quiet)
4735 entryNum = np- >end- >ent r yNum 4800 {
4736 } else { 4801 line_t *| p;
4737 lineNum = LINE_INT; 4802 line_t *freed;
4738 entryNum = ENTRY_INIT; 4803 entry_t *ent;
4739 } 4804 entry_t *tnp;
4805 int del et ed = 0;
4741 I* 4806 const char *fcn = "del ete_boot _entry()";
4742 * No separator for coment (HDR/ FTR) conmands
4743 * The syntax for comments is #<comment> 4808 assert(entryNum!= ENTRY_INT);
4744 */
4745 (void) snprintf(linebuf, sizeof (linebuf), "%%", 4810 tnp = NULL;
4746 menu_cnds[COMVENT _ CMD], BAM BOOTADM HDR) ;
4747 I'i ne_parser(nmp, |inebuf, &l i neNum &ent ryNun) 4812 ent = np->entries;
4813 while (ent) {
4749 (void) snprintf(linebuf, sizeof (linebuf), "%%%", 4814 Ip = ent->start;
4750 menu_cnds[TI TLE CI\/D] menu_cnds[SEP_ CI\/D] title);
4751 l'i ne_parser(nmp, |inebuf, & ineNum &entryNun) 4816 /*
4817 * Check entry nunber and make sure it’'s a nodifiable entry.
4753 (void) snprintf(linebuf, sizeof (linebuf), "%%%", 4818
4754 menu_cnds[FI NDROOT CND] menu_cnds[SEP_CMD], findroot); 4819 * Qui del i nes:
4755 l'ine_parser(nmp, linebuf, & ineNum &entryNum; 4820 + We can nodify a bootadmcreated entry
4756 BAM _DPRI NTF((D_ADD_FI NDRwT_NUM fcn, lineNum entryNum); 4821 * + We can nodify a |ibbe-created entry
4822 */
4758 if (bootfs !'= NULL) { 4823 if ((Ip->flags ! = BAM COWENT &&
4759 (void) snprintf(linebuf, sizeof (linebuf), "%%%", 4824 (((ent->f1ags & BAM ENTRY_LI BBE) == 0) &&
4760 menu_cnds[BOOTFS_CMD], nenu_cnds[SEP_CVD], bootfs); 4825 strcnp(l p->arg, BAM BOOTADM HDR) != 0)) ||
4761 line_parser(np, |inebuf, & ineNum &entryNum; 4826 (entryNum!= ALL_ENTRI ES && | p->entryNum ! = entryNum)) {
4762 } 4827 ent = ent->next;
4828 conti nue;
4764 options = strpbrk(kernel, " \t"); 4829 }
4765 if (options)
4766 ++opti ons; 4831 /* free the entry content */
4832 do {
4768 (void) snprintf(linebuf, sizeof (linebuf), "%%", 4833 freed =1lp;
4769 menu_cnds[k_cnd], nmenu_cnds[SEP_CMD)) ; 4834 I'p = Ip->next; [/* prev stays the same */
4770 (void) strncat(li nebuf kernel, options - kernel); 4835 BAM DPRI NTF((D FREEI NG LI NE, fcn, freed->lineNum);
4771 I'ine_parser(nmp, i nebuf &li neNum &entryNun) ; 4836 unl ink_line(mp, freed);
4837 line_free(freed);
4773 if (options) { 4838 } while (freed != ent->end);
4774 #endif /* | codereview */
4775 (void) snprintf(linebuf, sizeof (linebuf), "%%%", 4840 /* free the entry_t structure */
4776 menu_cnds|[KERNEL_COPTI ONS_CMD], nenu_cnds[SEP_CMD], options); 4841 assert(tnp == NULL);
4596 menu_cnds[k_cnd], nenu cnds[SEP CMVD], kernel); 4842 tmp = ent;
4777 I'i ne_par ser(np, l'inebuf, & i neNJm &entryNum ; 4843 ent = ent->next;
4778 } 4844 if (tnp->prev)
4779 #endif /* | codereview */ 4845 t np- >prev->next = ent;
4846 el se
4781 if (rmod_kernel !'= NULL) { 4847 np->entries = ent;
4782 (void) snprintf(linebuf, sizeof (linebuf), "%%%", 4848 if (ent)
4783 menu_cnmds[m cnd], menu_cnds[SEP_CMVD], nod_kernel); 4849 ent->prev = tnp->prev;
4784 line_parser(np, linebuf, & ineNum &entryNum; 4850 BAM DPRI NTF((D_FREEI NG_ENTRY, fcn, tnp->entryNum);
4785 } 4851 free(tnp);
4852 tnp = NULL;
4787 (void) snprintf(linebuf, sizeof (linebuf), "%%%", 4853 deleted = 1
4788 menu_cnds[m cnd], menu_cnds[SEP_CMVD], nodul e); 4854 }
4789 l'ine_parser(np, |i nebuf & ineNum &ent ryNun)
4856 assert(tnp == NULL);

4791 (void) snprintf(linebuf, sizeof (linebuf), "%%",

new boot adnf boot adm ¢

4858 if (!deleted & entryNum!= ALL_ENTRI ES) {

4859 if (quiet == DBE_PRI NTERR)

4860 bam er r or (NO_BOOTADM MATCH) ;

4861 return (BAM ERROR);

4862 }

4864 /*

4865 * Now that we have del eted an entry, update

4866 * the entry nunbering and the default cnd.

4867 */

4868 updat e_nunberi ng(np) ;

4870 return (BAM SUCCESS);

4871 }

4873 static error_t

4874 delete_al |l _entries(nmenu_t *np, char *dummy, char *opt)
4875 {

4876 assert (np);

4877 assert (dumy == NULL);

4878 assert(opt == NULL);

4880 BAM DPRI NTF((D_FUNC_ENTRYO, "delete_all_entries"));
4882 if (nmp->start == NULL)

4883 bam pri nt (EMPTY_MENU) ;

4884 return (BAM_SUCCESS) ;

4885 }

4887 if (delete_boot_entry(np, ALL_ENTRIES, DBE_PRI NTERR) != BAM SUCCESS) {
4888 return (BAM ERROR);

4889 1

4891 return (BAM VRI TE) ;

4892 }

4894 static FILE *

4895 create_di skmap(char *osroot)

4896 {

4897 FI LE *fp;

4898 char cnd[PATH_MAX + 16];

4899 char pat h[PATH_MAX] ;

4900 const char *fcn = "create_di skmap()";

4902 /* make sure we have amapflle*/

4903 fp = fopen(GRUBDI SK_MAP, “r");

4904 if (fp == NULL) {

4905 int ret;

4907 ret = snprintf(path, sizeof (path), "%/ %", osroot,
4908 CREATE_DI SKVAP) ;

4909 if (ret >= sizeof (path)) {

4910 bam error (PATH TOO LONG, osroot);
4911 return (NULL);

4912 }

4913 1 f (is_safe_exec(path) == BAM ERROR)

4914 return (NULL);

4916 (void) snprintf(cnd, sizeof (cnd),

4917 "Us/ % > /dev/null", osroot, CREATE_DI SKVAP);
4918 if (exec_cnmd(cnd, NULL) != 0)

4919 return (NULL);

4920 fp=fo pen(GRUBDI SK_ VAP, "r");

4921 INJECT_ERRCRl(DI SKMAP_CREATE_FAIL", fp = NULL);
4922 if (fp) {

4923 BAM DPRI NTF((D_CREATED DI SKMAP, fcn, GRUBDI SK_MAP));

new boot adnf boot adm ¢

4924 } else {

4925 BAM DPRI NTF((D_CREATE_DI SKMAP_FAI L, fcn, GRUBDI SK_MAP));
4926 }

4927 }

4928 return (fp);

4929 }

4931 #define SECTOR SI ZE 512

4933 static int

4934 get _partition(char *device)

4935 {

4936 int i, fd, is_pcfs, partno = -1;

4937 struct nboot *nboot;

4938 char boot_sect[SECTCR Sl ZE] ;

4939 char *whol edi sk, *slice;

4940 #ifdef i386

4941 ext_part_t *epp;

4942 uint32_t secnum numsec;

4943 int rval, pno, ext_partno = -1;

4944 #endi f

4946 I* form whol e di sk (p0) */

4947 slice device + strlen(device) - 2;

4948 is pcfs (*slice !'="s");

4949 if (!is_pcfs)

4950 *slice = '"\0’

4951 whol edi sk = s_cal Ioc(l strlen(device) + 3);

4952 (voi d) snprintf(whol edisk, strlen(device) + 3, "%p0", device);
4953 if (!is_pcfs)

4954 *slice ='s’;

4956 /* read boot sector */

4957 fd = open(whol edi sk, O RDONLY);

4958 if (fd == -1 || read(fd, boot_sect, SECTOR SIZE) != SECTOR S| ZE) {
4959 return (partno);

4960 }

4961 (void) close(fd);

4963 #ifdef i386

4964 /* Read/Initialize extended partition information */

4965 if ((rval = 1ibfdisk_init(&pp, whol edisk, NULL, FDI SK_READ DI SK))
4966 I = FDI SK_SUCCESS) {

4967 switch (rval) {

4968 *

4969 * FDI SK_EBADLOGDRI VE and FDI SK_ENOLOGDRI VE can
4970 * be considered as soft errors and hence
4971 * we do not return

4972 *

4973 case FDI SK_EBADLOGDRI VE:

4974 br eak;

4975 case FDI SK_ENOLOGDRI VE:

4976 br eak;

4977 case FDI SK_EBADVAQ C.

4978 [* FALLTHROUGH* /

4979 defaul t:

4980 free(whol edi sk);

4981 I'i bf di sk_fi ni (&epp);

4982 return (partno);

4983 }

4984

4985 #endi f

4986 free(whol edi sk);

4988 /* parse fdisk table */

4989 nmboot = (struct nboot *)((void *)boot_sect);

new boot adn? boot adm ¢ 9 new boot adnf boot adm ¢
4990 for (i = 0; i < FD_NUMPART; i++) { 5056 slice = strrchr(ctdnanme, 's’);
4991 struct ipart *part = 5057 if (slice)
4992 (struct ipart *)(uintptr_t)nboot->parts + i; 5058 *slice = '\0";
4993 if (is_ pcfs) { /* looking for solaris boot part */
4994 f (part->systid == Oxbe) { 5060 fp = creat e_di skmap(osroot);
4995 partno = i; 5061 if (f NULL) {
4996 br eak; 5062 bam_er ror (DI SKMAP_FAI L, osroot);
4997 } 5063 return (NULL);
4998 } else { /* look for solaris partition, old and new */ 5064 }
4999 #ifdef i386
5000 if ((part->systid == SUNI XOS && 5066 rewi nd(fp);
5001 (fdisk_is_linux_swap(epp, part ->r el sect, 5067 while (s fgets(l i nebuf, sizeof (li nebuf) fp) !'= NULL) {
5002 NULL) T= 0)) || part->systid == SUN XCSZ) { 5068 grubhd = strtok(l i nebuf, " \t\n)
5003 #el se 5069 i f (grubhd)
5004 if (part->systid == SUNI XCS || 5070 devname = strtok(NULL, " \t\n");
5005 part->systid == SUNI X0S2) { 5071 el se
5006 #endi f 5072 devname = NULL;
5007 partno = i; 5073 if (devname && strcnp(devnane, ctdnane) == 0) {
5008 br eak; 5074 found = 1;
5009 } 5075 br eak;
5076 }
5011 #ifdef i386 5077 }
5012 if (fdisk_is_dos_extended(part->systid))
5013 ext_partno = i; 5079 if (slice)
5014 #endi f 5080 *slice = 's’;
5015 }
5016 } 5082 (v0| d) fclose(fp);
5017 #ifdef i386 5083 fp = NULL;
5018 /* If no primary solaris partition, check extended partition */
5019 if ((partno == -1) && (ext_partno != -1)) { 5085 I NJECT_ERRORL(" GRUBROOT_BI GSDEV_FAI L", found = 0);
5020 rval = fdisk_get_solaris_part(epp, &no, &secnum &nunsec); 5086 if (found == 0) {
5021 if (rval == FDI SK_SUCCESS) ({ 5087 bam error (Bl OSDEV_SKI P, osdev);
5022 partno = pno - 1; 5088 return (NULL);
5023 } 5089 }
5024 }
5025 i bf di sk_fini (&epp); 5091 fdiskpart = get_partition(osdev);
5026 #endi f 5092 I NJECT_ERRORL(" GRUBROOT_FDI SK_ FAI L", fdiskpart = -1);
5027 return (partno); 5093 if (fdiskpart == -1) {
5028 } 5094 bam error (FDI SKPART_FAI L, osdev);
5095 return (NULL);
5030 char * 5096 }
5031 get_grubroot(char *osroot, char *osdev, char *menu_root)
5032 { 5098 grubroot = s_calloc(1, 10);
5033 char *grubr oot ; [* (hd#, #, #) */ 5099 if (slice) {
5034 char *slice; 5100 (void) snprintf(grubroot, 10, "(hd“/s %i %)"
5035 char *gr ubhd; 5101 grubhd, fdiskpart, sli ce[1] +°),
5036 int f di skpart; 5102 } else
5037 int found = O; 5103 (void) snprintf(grubroot, 10, "(hd%, %d)",
5038 char *devnane; 5104 grubhd, fdiskpart);
5039 char *ctdnane = strstr(osdev, "dsk/");
5040 char I'i nebuf [PATH_MAX] ; 5106 assert(fp == NULL);
5041 FI LE *fp; 5107 assert(strncnp(grubroot, "(hd", strlen("(hd")) == 0);
5108 return (grubroot);
5043 I NJECT_ERRORL(" GRUBROOT_| NVALI D_OSDEV', ctdnane = NULL); 5109 }
5044 if (ctdname == NULL)
5045 bam error (| NVALI D_DEV_DSK, osdev); 5111 static char *
5046 return (NULL); 5112 find_primary_comon(char *mmtpt, char *fstype)
5047 } 5113 {
5114 char si gndi r [PATH_MAX] ;
5049 if (menu_root && !menu_on_bootdisk(osroot, nenu_root)) { 5115 char tr’rp5| gn[MAXNANELEN + 1];
5050 /* menu bears no resenbl ance to our reality */ 5116 char
5051 bam er r or (CANNOT_GRUBROOT_BOOTDI SK, osdev); 5117 char *ufs
5052 return (NULL); 5118 char *zfs;
5053 } 5119 DR *dirp = NULL;
5120 struct dirent *ent p;
5055 ctdname += strlen("dsk/"); 5121 struct stat sb;

new boot adnf boot adm ¢

5122

5124
5125

5127
5128
5129
5130

5132
5133
5134
5135
5136
5137

5139

5141
5142
5143
5144

5146

5148
5149
5150
5L
5152

5154
Silt55)
5156
5157
5158

5160
5161
5162
5163
5164
5165

5167
5168
5169
5170

5172
5173
5174
5175

5177
5178
5179
5180
5181
5182
5183
5184
5185

5187

const char *fcn = "find_primary_comon()";

(void) snprintf(signdir, sizeof (signdir), "%/ %",
mt pt, GRUBSI G\ _DIR);

if (stat(signdir, &hbh) == -1) {
BAM DPRI NTF((D_NO SIGNDIR, fcn, signdir));
return (NULL);

}
dirp = opendir(signdir);
I NJECT_ERRORL(" SI G\NDI R_ CPENDIR FAIL", dirp = NULL)
if (dirp == NULL)
bam error (OPENDI R_FAI LED, signdir, strerror(errno));
return (NULL);
}
ufs = zfs = lu = NULL;
while (entp = readdir(dirp)) {
if (strcnp(entp->d_nane, ".") == 0 ||
strcnp(ent p->d_name, "..") == 0)
cont i nue;
(void) snprintf(tnpsign, sizeof (tnpsign), "%", entp->d_nane);
if (lu == NULL &&
strncnmp(tnpsign, GRUBSI GN_LU_PREFI X,
strl en(GRUBSI GN_LU_PREFI X)) == 0) {
lu = s_strdup(tnpsign);
}
if (ufs == NULL &&
strncnp(tnpsign, GRUBSI GN_UFS_PREFI X,
strlen(GRUBSI GN_UFS_PREFI X)) == 0) {
ufs = s_strdup(tnpsign);
}
if (zfs == NULL &&
strncnp(tnpsi gn, CGRUBSI GN_ZFS_PREFI X,
strlen(GRUBSI GN_ZFS PREFI X)) == 0) {
zfs = s_strdup(tnpsign);
}
}

BAM DPRI NTF((D_EXI ST_PRI MARY_SI GNS, fcn,
zfs ? zfs : "NULL",
ufs ? ufs : "NULL",
lu ? lu: "NULL"));

if (dirp) {
(void) closedir(dirp);
dirp = NULL;

}

if (strecnp(fstype, "ufs") == 0 && zfs)
bam error (SI G_| FSTYPE M SMATCH, zfs, "ufs");
free(zfs)
zfs = NULL

} else if (strcmp(fstype, "zfs") == 0 && ufs) {
bam error (SI GN_FSTYPE_M SMATCH, ufs, "zfs");
free(ufs);
ufs = NULL

}

assert(dirp == NULL);

new boot adnf boot adm ¢

5189
5190
5191
5192
5193
5194

5196
5197

5199
5200

5202
5203
5204
5205
5206
5207
5208
5209

5211
5212
5213
5214
5215
5216

5218
5219
5220
5221
5222
5223
5224
5225
5226

5228
5230

5232
5233
5234
5235
5236

5238
5239
5240
5241
5242

5244
5245
5246
5247
5248
5249

5251
5252
5253

}

/* For now, we let Live Upgrade take care of its signature itself

if (lu) {
BAM _DPRI NTF((D_FREEI NG LU SIGNS, fcn, lu));
free(lu);
lu = NULL;

}

return (zfs ? zfs : ufs);

static char *
find_backup_common(char *mmtpt, char *fstype)
5201 {

FI LE *bfp = NULL;

char tmpsi gn[MAXNAMELEN + 1] ;

char backup[PATH_MAX] ;

char *ufs;

char *zfs;

char *|u;

int error;

const char *fcn = "find_backup_common()";
/*

* We didn’t find it in the primary directory.

* Look at the backup

*/

(void) snprintf(backup, sizeof (backup), "%9%",
mmt pt, GRUBSI GN_BACKUP) ;

bf p = fopen(backup, "r");
if (bfp == NULL) {
error = errno;
if (bam.verbose) {
bam error (OPEN_FAI L, backup, strerror(error));

}
BAM DPRI NTF((D_OPEN_FAIL, fcn, backup, strerror(error)));
return (NULL);

}

ufs = zfs = lu = NULL;

while (s_fgets(tnpsign, sizeof (tnpsign), bfp) !'= NULL) {

if (lu==NUL &&
strncnp(tnpsi gn, GRUBSI GN_LU PREFI X,
strlen(GRUBSI GN_LU PREFI X)) == 0) {
lu = s_strdup(tnpsign);
}

if (ufs == NULL &&
strncnp(tnpsi gn, CGRUBSI GN_UFS_PREFI X,
strlen(GRUBSI GN_UFS_PREFI X)) == 0) {
) ufs = s_strdup(tnpsign);

if (zfs == NULL &&
strncnp(tnpsi gn, GRUBSI GN_ZFS_PREFI X,
strlen(GRUBSI GN_ZFS_PREFI X)) == 0) {
zfs = s_strdup(tnpsign);

}
BAM DPRI NTF((D_ EXIST BACKUP_SI GNS, fcn

zfs ? zfs T "NULL"
ufs ? ufs : "NULL"

*/

new boot adnf boot adm ¢

5254 lu ? lu: "NULL"));

5256 if (bfp) {

5257 (voi d) fcl ose(bf p);

5258 bfp =

5259

5261 if (strenp(fstype, "ufs") == 0 && zfs) {

5262 bam error (SI GN_FSTYPE_M SMATCH, zfs, "ufs");
5263 free(zfs);

5264 zfs = NULL;

5265 } else if (strcmp(fstype, "zfs") == 0 && ufs) {
5266 bam error (SI GN_FSTYPE_M SMATCH, ufs, "zfs");
5267 free(ufs);

5268 ufs = NULL;

5269 }

5271 assert (bfp == NULL);

5273 /* For now, we let Live Upgrade take care of its signature itself
5274 if (lu)

5275 BAM DPRI NTF((D_FREEI NG LU SIGNS, fcn, lu));
5276 free(lu);

5277 lu = NULL;

5278 }

5280 return (zfs ? zfs : ufs);

5281 }

5283 static char *

5284 find_ufs_existing(char *osroot)

5285 {

5286 char *sign;

5287 const char *fcn = "find_ufs_existing()";

5289 sign = find_prinmary_comon(osroot, "ufs");

5290 if (sign == NULL) {

5291 sign = find_backup_comon(osroot, "ufs");
5292 BAM DPRI NTF((D_EXI ST_BACKUP_SI GN, fcn, sign ? sign :
5293 } else {

5294 BAM DPRI NTF((D_EXI ST_PRI MARY_SI GN, fcn, sign));
5295 }

5297 return (sign);

5298 }

5300 char *

5301 get _nount poi nt (char *special, char *fstype)

5302 {

5303 FI LE *mt f p;

5304 struct mttab np = {0};

5305 struct mttab mpref = {0};

5306 int error;

5307 int ret;

5308 const char *fcn = "get_nmountpoint()";

5310 BAM DPRI NTF((D_FUNC_ENTRY2, fcn, special, fstype));
5312 mtfp = fopen(MNTTAB, "r");

5313 error = errno;

5314 I NDECT ERRCRl(MNTTAB_ERR GET_MNTPT", mmtfp = NULL);
5315 if (mtfp == NULL)

5316 bam error (OPEN_FAI L, MNTTAB, strerror(error));
5317 return (NULL);

5318 1

"NULL"));

13

new boot adnf boot adm ¢

5320 npref. mt _speci al = speci al;

5321 mpref. mt_fstype = fstype;

5323 ret = getrmtany(mtfp, &mp, &npref);

5324 I NJECT_ERRORL(" GET_MOUNTPO NT_ MNTANY", ret = 1);

5325 if (ret '=0) {

5326 (void) fclose(mtfp);

5327 BAM _DPRI NTF((D_NO_MNTPT, fcn, special, fstype))

5328 return (NULL);

5329 }

5330 (void) fclose(mtfp);

5332 assert (nmp. mt _nmount p) ;

5334 BAM DPRI NTF((D_GET_MOUNTPO NT_RET, fcn, special, np.mt_nountp));
5336 return (s_strdup(nmp. mt_nountp));

5337 }

5339 /*

5340 * Mounts a "legacy" top dataset (if needed)

5341 * Returns: The nount poi nt of the | egacy top dataset or NULL on error
5342 * mted returns one of the above val ues defined for zfs_mmted_t
5343 */

5344 static char *

5345 nount _| egacy_dat aset (char *pool, zfs_mmted_t *mmted)

5346 {

5347 char cmd[PATH_MAX] ;

5348 char t mpmmt [PATH_MAX] ;

5349 filelist_t flist = {0};

5350 char *i s_nount ed;

5351 struct stat sbh;

5352 int ret;

5353 const char *fcn = "nount _| egacy_dataset ()";

5355 BAM DPRI NTF((D _FUNC_ENTRY1, fcn, pool));

5357 *mted = ZFS_MNT_ERROR;

5359 (voi d) snprintf(cnd, sizeof (cnd),

5360 / sbin/zfs get -Ho val ue nounted %",

5361 pool);

5363 ret = exec_cnd(cnd, & list);

5364 I NJECT_ERRORL("Z_MOUNT_LEG GET_MOUNTED CMD', ret = 1);

5365 if (ret 1=0) {

5366 bam error (ZFS_MNTED_FAI LED, pool);

5367 return (NULL);

5368 }

5370 I NJECT_ERRORL("Z_MOUNT_LEG GET_MOUNTED OQUT", flist.head = NULL);
5371 if ((fTist.head == NULL) |] (flist.head != flist.tail)) {

5372 bam error(BAD ZFS_MNTED, pool);

5373 filelist_free(&Iist);

5374 return (NULL);

5375 }

5377 is_mounted = strtok(flist.head->line, " \t\n");

5378 I NJECT_ERRORL("Z_MOUNT_LEG GET_MOUNTED STRTOK_YES', is_nounted = "yes");
5379 I NJECT_ERRORL(" Z_MOUNT_LEG GET_MOUNTED STRTOK_NO', is_mounted = "no");
5380 if (strcenp(is_nmounted, "no") != 0) {

5381 filelist_free(&list);

5382 *mted = LEGACY_ALREADY;

5383 /* get_nountpoint returns a strdup’ ed string */

5384 BAM DPRI NTF((D_Z_MOUNT _TOP_LEG ALREADY, fcn, pool))

5385 return (get_mountpoint (pool, "zfs"));

14

new boot adnf boot adm ¢ 15

5386 }

5388 filelist_free(&list);

5390 /*

5391 * | egacy top dataset is not nounted. Mouunt it now

5392 * First create a nountpoint.

5393 */

5394 (voi d) snprl ntf(tnmpmt, sizeof (tnpmt), "%. %",

5395 S LEGACY_MNTPT, getpid());

5397 ret = stat(tnpmt, &sb);

5398 if (ret == -1)

5399 BAM_ DPRI NTF((D_Z_MOUNT_TOP_LEG MNTPT_ABS, fcn, pool, tnpmt));
5400 ret = nkdirp(tnpmt, DI R _PERVB);

5401 I NJECT_ERRORL(" Z_MZUNT TOP_LEG NNTPT_M(DI RP", ret = -1);
5402 if (ret == -1) {

5403 bam error (MKDI R_FAI LED, tnmpmmt, strerror(errno));
5404 return (NULL);

5405

5406 } else {

5407 BAM DPRI NTF((D_Z_ MOUNT_TOP_LEG MNTPT_PRES, fcn, pool, tnpmt));
5408 1

5410 (voi d) snprintf(cnd, sizeof (cnd),

5411 /sbin/mount -F zfs % %",

5412 pool, tnmpmt);

5414 ret = exec_cnd(cnd, NULL);

5415 INJECT _ERRORL(" Z_MOUNT_ TGD LEG MOUNT_CMD', ret = 1);

5416 if (ret '=0)

5417 bam error (ZFS_MOUNT_FAI LED, pool);

5418 (void) rndir(tmpmt);

5419 return (NULL);

5420 }

5422 *mted = LEGACY_MOUNTED;

5423 BAM DPRI NTF((D_Z_MOUNT_TOP_LEG MOUNTED, fcn, pool, tnpmt));
5424 return (s_strdup(tnmpmt));

5425 }

5427 [*

5428 * Mounts the top dataset (if needed)

5429 * Returns: The nount poi nt of the top dataset or NULL on error
5430 * mted returns one of the above val ues defined for zfs_mmted_t
5431

5432 static char *

5433 nount _t op_dat aset (char *pool, zfs_mmted_t *mmted)

5434 {

5435 char cmd[PATH_MAX] ;

5436 filelist_t flist = {0};

5437 char *i s_nount ed;

5438 char *mt pt ;

5439 char *zmt pt;

5440 int ret;

5441 const char *fcn = "nount _top_dataset()";

5443 *mted = ZFS_MNT_ERROR,

5445 BAM DPRI NTF((D_FUNC_ENTRY1, fcn, pool));

5447 /*

5448 * First check if the top dataset is a "legacy" dataset
5449 */

5450 (void) snprintf(cnd, sizeof (cnd),

5451 "/sbin/zfs get -Ho val ue nountpoint %",

new boot adnf boot adm ¢ 16
5452 pool);

5453 ret = exec_cnd(cnd, & list);

5454 I NJECT_ERROR1("Z_MOUNT_TOP_GET_MNTPT", ret = 1);

5455 if (ret 1=0) {

5456 bam error (ZFS_MNTPT_FAI LED, pool);

5457 return (NULL);

5458 }

5460 if (flist.head & (flist.head == flist.tail)) {

5461 char *legacy = strtok(flist.head->line, " \t\n");

5462 if (legacy & strcnp(legacy, "legacy") == 0) {

5463 filelist _free(&list);

5464 BAM _DPRI NTF((D Z 1S | LEGACY fcn, pool));

5465 return (mount_Tegacy dat aset (pool, mnt ed))

5466 }

5467 }

5469 filelist_free(&list);

5471 BAM DPRI NTF((D_Z_| S_NOT_LEGACY, fcn, pool));

5473 (void) snprintf(cnmd, sizeof (cnd),

5474 "/sbin/zfs get -Ho val ue nounted %",

5475 pool) ;

5477 ret = exec_cnmd(cnd, &flist);

5478 I NJECT_ERRORL("Z_MOUNT_TOP_NONLEG GET_MOUNTED', ret = 1);

5479 if (ret '=0) {

5480 bam error (ZFS_MNTED_FAI LED, pool);

5481 return (NULL);

5482 }

5484 I NJECT_ERRORL("Z_MOUNT_TOP_NONLEG GET_MOUNTED VAL", flist.head = NULL);
5485 if ((fTist.head == NULL) || (flist.head != flist. tai il)) {

5486 bam error (BAD_ZFS_MNTED, pool);

5487 filelist free(&list);

5488 return (NULL);

5489 }

5491 is_mounted = strtok(flist.head->line, " \t\n");

5492 I NJECT_ERRORL(" Z_MOUNT_TOP_NONLEG GEI' MOUNTED YES" is_nmounted = "yes");
5493 I NJECT_ERRORL(" Z_MOUNT_ T()D NONLEG_GET_MOUNTED_NO', is_mounted = "no");
5494 if (strcnp(is_nounted, "no”) != 0) {

5495 filelist_free(&flist);

5496 *mted = ZFS_ALREADY;

5497 BAM_DPRI NTF((D_Z_MOUNT_TOP_NONLEG_MOUNTED_ALREADY, fcn, pool));
5498 got o nount ed;

5499 1

5501 filelist_free(&list);

5502 BAM DPRI NTF((D_Z_MOUNT_TOP_NONLEG MOUNTED_NOT_ALREADY, fcn, pool));
5504 /* top dataset is not nounted. Muunt it now */

5505 (void) snprintf(cnd, sizeof (cnd),

5506 "/ sbin/zfs mount %", pool);

5507 ret = exec_cnd(cnd, NULL);

5508 I NJECT_ERRORL("Z_MOUNT_TOP_NONLEG MOUNT CMD', ret = 1);

5509 if (ret '=0) {

5510 bam error (ZFS_MOUNT_FAI LED, pool);

5511 return (NULL);

5512 1

5513 *mted = ZFS_MOUNTED;

5514 BAM DPRI NTF((D_Z_MOUNT_TOP_NONLEG MOUNTED_NOW fcn, pool));

5515 | * FALLTHRU*/

5516 nount ed:

5517 i

new boot adnf boot adm ¢ 17 new boot adnf boot adm ¢

5518 * Now get the nountpoint 5584 if (mtpt)
5519 */ 5585 (void) rmdir(mtpt);
5520 (void) snprintf(cnd, sizeof (cnd), 5586 free(mtpt);
5521 "/ sbin/zfs get -Ho val ue nountpoint %", 5587 BAM DPRI NTF((D_Z_UMOUNT_TOP_LEGACY, fcn, pool));
5522 pool); 5588 return (BAM _SUCCESS);
5589 case ZFS_MOUNTED:
5524 ret = exec_cnmd(cnd, &flist); 5590 free(mtpt);
5525 I NJECT_ERRORL(" Z_MOUNT_TOP_| NCNLEG GET_MNTPT_CMD', ret = 1); 5591 (voi d) snprintf(cnd, sizeof (cnd),
5526 if (ret 1=0) { 5592 /sbin/zfs unnount %", pool);
5527 bam error (ZFS_MNTPT_FAI LED, pool); 5593 ret = exec cmj(cmi NULL) ;
5528 goto error; 5594 I NJECT_ERRORL("Z_UMOUNT_ TCP NONLEG UMOUNT_FAIL", ret = 1);
5529 } 5595 if (ret 1'=0) {
5596 bam error (UMOUNT_FAI LED, pool);
5531 I'NJ ECT ERRORL(" Z_MOUNT_TOP_NONLEG GET_MNTPT_OUT", flist.head = NULL); 5597 return (BAM ERROR);
5532 if ((fTist.head == NULL) |] (flist.head !'= flist.tail)) { 5598 }
5533 bam error (NULL_ZFS_MNTPT, pool); 5599 BAM DPRI NTF((D_Z_UMOUNT_TOP_NONLEG, fcn, pool));
5534 goto error; 5600 return (BAM_SUCCESS);
5535 } 5601 defaul t:
5602 bam error (| NT_BAD _MNTSTATE, pool);
5537 mtpt = strtok(flist.head->line, " \t\n"); 5603 return (BAM ERROR);
5538 I NJECT_ERRORL("Z_MOUNT_TOP_NONLEG_GET_MNTPT_STRTCK', mmtpt = "foo"); 5604 }
5539 if (*mtpt !'="/") { 5605 / * NOTREACHED* /
5540 bam error (BAD_ZFS_MNTPT, pool, mtpt); 5606 }
5541 goto error;
5542 } 5608 /*
5543 zmtpt = s_strdup(mtpt); 5609 * For ZFS, osdev can be one of two forns
5610 * It can be a "special" file as seen in mttab: rpool/ROOI/szboot_0402
5545 filelist _free(&list); 5611 * It can be a /dev/[r]dsk special file. W handl e both instances
5612 *
5547 BAM DPRI NTF((D_Z_MOUNT_TOP_NONLEG _MNTPT, fcn, pool, zmtpt)); 5613 static char *
5614 get _pool (char *osdev)
5549 return (zmmtpt); 5615 {
5616 char cnd[PATH_MAX] ;
5551 error: 5617 char buf[PAT H_MAX] ;
5552 filelist_free(&list); 5618 filelist_t flist {0};
5553 (void) unpunt_top_dataset (pool, *mmted, NULL); 5619 char pool
5554 BAM DPRI NTF((D_RETURN_FAI LURE, fcn)); 5620 char *cp
5555 return (NULL); 5621 char *sI ash
5556 } 5622 int ret;
5623 const char *fen = "get_pool ()";
5558 static int
5559 unount _t op_dat aset (char *pool, zfs_mted_t mmted, char *mmtpt) 5625 I NJECT_ERRORL(" GET_POOL_OSDEV', osdev = NULL);
5560 { 5626 if (osdev == NULL)
5561 char cmd[PATH_MAX] ; 5627 bam error (GET_POOL_OSDEV_NULL) ;
5562 int ret; 5628 return (NULL);
5563 const char *fcn = "unmount _top_dataset()"; 5629 }
5565 I NJECT_ERRORL("Z_UMDUNT _TOP_| NVALI D_STATE", mted = ZFS MNT_ERROR); 5631 BAM DPRI NTF((D _GET_POOL_QSDEV, fcn, osdev));
5566 switch (mted) {
5567 case LEGACY_ALREADY: 5633 if (osdev[O] !="/") {
5568 case ZFS_ALREADY: 5634 (void) strlcpy(buf, osdev, sizeof (buf));
5569 /* nothing to do */ 5635 slash = strchr(buf, '/");
5570 BAM _DPRI NTF((D_Z_UMOUNT_TOP_ALREADY_NOP, fcn, pool, 5636 if (slash)
5571 mtpt ? mtpt @ "NULL")); 5637 *slash = "\ 0" ;
5572 free(mtpt); 5638 pool = s_strdup(buf);
5573 return (BAM SUCCESS); 5639 BAM DPRI NTF((D_GET_POOL_RET, fcn, pool));
5574 case LEGACY_MOUNTED: 5640 return (pool);
5575 (void) snprintf(cnd, sizeof (cnd), 5641 } else if (strncnp(osdev, "/dev/dsk/", strlen("/dev/dsk/")) !=0 &&
5576 "/ sbi n/ unobunt %", pool); 5642 strncnp(osdev, "/dev/rdsk/", strlen("/dev/rdsk/")) !'=0) {
5577 ret = exec cmj(cmi NULL) 5643 bam error (GET_POOL_BAD_OSDEV, osdev);
5578 I NJECT_ERRORL("Z_UMOUNT_ TCP LEGACY_UMOUNT_FAIL", ret = 1); 5644 return (NULL);
5579 if (ret 1'=0) { 5645 }
5580 bam error (UMOUNT_FAI LED, pool);
5581 free(mtpt); 5647 /*
5582 return (BAM ERROR); 5648 * Call the zfs fstyp directly since this is a zpool. This avoids

5583 } 5649 * potential pcfs conflicts if the first block wasn't cleared.

new boot adnf boot adm ¢

5650 */

5651 (void) snprintf(cnd, sizeof (cnd),

5652 "lusr/lib/fs/zfs/fstyp -a % 25/ dev/ nul | | /bin/grep ’'“name:’
5653 osdev);

5655 ret = exec_cnd(cnd, &flist);

5656 I NDECT_ERRORL(" GET_POOL_FSTYP", ret = 1)

5657 if (ret 1=0) {

5658 bam error (FSTYP_A_FAI LED, osdev);

5659 return (NULL);

5660 1

5662 I NJECT_ERRORL (" GET_POOL_FSTYP_QUT", flist.head = NULL);
5663 if ((fTist.head == NULL) || (flist.head != flist. tall)) {
5664 bam error (NULL_FSTYP_A, osdev);

5665 filelist_free(&list);

5666 return (NULL);

5667 }

5669 (v0|d) strtok(flist.head->line, "'");

5670 cp = st rtok(NULL "),

5671 I NJECT_ERRORL(" GET_POOL_FSTYP_STRTOK", cp = NULL)

5672 if (cp == NULL) {

5673 bam error (BAD_FSTYP_A, osdev);

5674 filelist_free(&flist);

5675 return (NULL);

5676 }

5678 pool = s_strdup(cp);

5680 filelist_free(&list);

5682 BAM DPRI NTF((D_GET_POOL_RET, fcn, pool))

5684 return (pool);

5685 }

5687 static char *

5688 find_zfs_existing(char *osdev)

5689 {

5690 char *pool ;

5691 zfs_mted_t mt ed;

5692 char *mt pt ;

5693 char *sign;

5694 const char *fcn = "find_zfs_existing()";

5696 pool = get pooI (osdev);

5697 IhUECT ERRCFH(ZFS_| FIND EXI ST_POOL", pool = NULL)
5698 if (pool == NULL)

5699 bam error (ZFS _GET_POOL_FAI LED, osdev);

5700 return (NULL);

5701 1

5703 mt pt = nount_top_dat aset (pool, &mted);

5704 II\UECT ERRO?l(" ZFS_FI ND_EXI ST_ M:UNT TOP', mt pt = NULL);
5705 if (mtpt == NULL)

5706 bam error (ZFS_MOUNT_TOP_DATASET_FAI LED, pool);
5707 free(pool);

5708 return (NULL);

5709 }

5711 sign = fi nd_pri mary_comon(mtpt, "zfs");

5712 if (sign == NULL) {

5713 sign = find_backup_common(mmtpt, "zfs");

5714 BAM DPRI NTF((D_EXI ST_BACKUP_SI GN, fcn, sign ? sign : "NULL")):
5715 } else {

19

new boot adnf boot adm ¢ 20
5716 BAM DPRI NTF((D_EXI ST_PRI MARY_SI GN, fcn, sign))

5717

5719 (voi d) unount_top_dataset (pool, mted, mtpt);

5721 free(pool);

5723 return (sign);

5724 }

5726 static char *

5727 find_existing_sign(char *osroot,

5728 {
5729

5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742 }

5744 #define
5746 typedef

5747
5748
5749

char *osdev, char *fstype)

const char *fcn = "find_existing_sign()";
I NJECT_ERRORL(" FI ND EXI ST_NOTSUP_FS",
if (strcnp(fstype, "ufs") == 0
BAM DPRI NTF((D_CHECK_UFS_EXI ST_SIGN, fcn));
return (find_ufs_existing(osroot));
} else if (strcnp(fstype, "zfs") == 0) {
BAM _DPRI NTF((D_CHECK_ZFS_EXI ST_SIGN, fcn));
return (find_zfs_existing(osdev));
} else {
bam error (GRUBSI GN_NOTSUP, fstype);
return (NULL);

fstype = "foofs");

MH_HASH SZ 16

enum {
MH_ERROR = -1,
VH_NOVATCH,
MH_MATCH

5750 } nh_search_t;

5752 typedef struct ntache {

5753
5754
5755
5756

char *nmc_speci al ;
char *nec_mt pt;
char *nc fstype

struct nctache *nt_next;

5757 } ntache_t;

5759 typedef struct nhash

5760

{
ncache_t *nh_hash[MH_HASH_SZ] ;

5761 } mhash_t;

5763 static int
5764 mhash_fcn(char *key)

5765 {
5766
5767

5769
5770
5771
5773
5775

5777
5778 }

i nt i
ui nt 64_t sum = 0;
(i =0 key[i] !="10"; i+ {
sum += (uchar _t)key[i]

}
sum % MH_HASH Sz;
assert (sum < MH_HASH SZ);

return (sun;

5780 static nmhash_t *
5781 cache_mttab(void)

new boot adnf boot adm ¢

5782 {

5783 FI LE *nf p;

5784 struct extmttab mt;

5785 ntache_t *mep;

5786 nmhash_t *mhp;

5787 char *ctds;

5788 int i dx;

5789 int error;

5790 char *speu aI _dup;

5791 const char *fcn = "cache_mmttab()"

5793 nfp = fopen(l\/NTTAB "r");

5794 error = errn

5795 I NJECT ERRO?l(CACHE_MNTTAB_MNTTAB_ERR', nfp = NULL);
5796 if (nfp == NULL)

5797 bam error (OPEN_FAI L, MNTTAB, strerror(error));
5798 return (NULL);

5799 }

5801 mhp = s_calloc(1, sizeof (mhash_t));

5803 reset mttab(nfp);

5805 while (getextmtent(nfp, &mt, sizeof (mt)) == 0) {
5806 /* only cache ufs */

5807 if (strenp(mt. mt_fstype, "ufs") !'= 0)
5808 cont i nue;

5810 /* basenanme() nodifies its arg, so dup it */
5811 speci al _dup = s_strdup(mmt. mt_special);
5812 ctds = basenane(speci al _dup);

5814 nmcp = s_calloc(1, sizeof (ntache_t));
5815 ncp->nc_special = s_strdup(ctds);

5816 ncp->nc_mtpt = s_strdup(mt. mt_nount p);
5817 ncp- >nc fstype = s_strdup(mt. mt fstype)
5818 BAM DPRI NTF((D_CACHE_MNTS, fcn, ctds,
5819 mmt. mt _nountp, mt. rmt_fstype));
5820 i dx = mhash fcn(ct ds);

5821 ncp- >m: next mhp- >nh _hash[i dx];

5822 mhp- >nh_| hash[l dx] = ntp;

5823 free(special _dup);

5824 }

5826 (void) fclose(nfp);

5828 return (mhp);

5829 }

5831 static void

5832 free_mmttab(mhash_t *mhp)

5833 {

5834 ncache_t *nep;

5835 int i;

5837 for (i = 0; i < MH_HASH SZ; i++) {

5838 /* NTED* /

5839 while (ncp = nmhp->nmh_hash[i]) {

5840 nmhp- >mh_hash[i] = ntp->nt_next;
5841 free(ncp->nt_special);

5842 free(ncp->nc_mtpt);

5843 free(ncp->nt_fst ype) ;

5844 free(nctp);

5845 }

5846 1

21

new boot adnf boot adm ¢ 22
5848 (i =0; i < MLHASH SZ; i++) {

5849 assert (mhp->nmh_hash[i] == NULL);

5850 }

5851 free(nhp);

5852 }

5854 static mh_search_t

5855 search_hash(nhash_t *mhp, char *special, char **mtpt)

5856 {

5857 int i dx;

5858 ncache_t *m:p

5859 const char *fcn = "search_hash()";

5861 assert(mtpt);

5863 *mtpt = NULL

5865 | NJECT_ERROR1(" SEARCH HASH FULL_PATH', special = "/foo0");
5866 if (strchr(special, '7")) {

5867 bam error (I NVALI D MHASH _KEY, speci al);

5868 return (MH_ERROR);

5869 }

5871 i dx = mhash_fcn(special);

5873 (ncp = nmhp->nmh_hash[idx]; ncp; ncp = ncp->nt_next) {
5874 if (strcnp(necp->nc_special, special) == 0)

5875 br eak;

5876 }

5878 if (nmcp == NULL) {

5879 BAM DPRI NTF((D_MNTTAB_HASH NOMATCH, fcn, special));
5880 return (MH_NOVATCH);

5881 }

5883 assert(strcnp(m:p >ne fstype "ufs") == 0);

5884 *mt pt = ncp->nc_mt pt

5885 BAM DPRI NTF((D_MNTTAB_ HASH MATCH, fcn, special));

5886 return (MH_MATCH);

5887 }

5889 static int

5890 check_add_ufs_sign_to_list(FILE *tfp, char *mmtpt)

5891 {

5892 char *sign;

5893 char *signline;

5894 char si gnbuf [MAXNAMVELEN] ;

5895 int |l en;

5896 int error;

5897 const char *fcn = "check_add_ufs_sign_to_list()";
5899 /* safe to specify NULL as "osdev" arg for UFS */

5900 sign = find_existing_sign(mtpt, NULL, "ufs");

5901 if (sign == NULL) {

5902 /* No existing signature, nothing to add to list */
5903 BAM DPRI NTF((D _NO SI GN_ TO LI ST, fcn, mtpt))

5904 return (0);

5905 }

5907 (void) snpri ntf(S| gnbuf, sizeof (signbuf), "%\n", sign);
5908 signline = signbuf;

5910 I NJECT_ERRORL(" UFS_MNTPT_SI GN_NOTUFS", signline = "pool _rpool 10\ n");
5911 if (strncnp(signline, GRUBSIGN_UFS PREFI X,

5912 strl en(GRUBSI GN_UFS_PREFI X))) [

5913 bam error (1 NVALI D_UFS_SI GNATURE, sign);

new boot adnf boot adm ¢

5914 free(sign);

5915 /* ignore invalid signatures */

5916 return (0);

5917 }

5919 len = fputs(signline, tfp);

5920 error = errno;

5921 I NJECT_ERRORL("SI GN_LI ST_PUTS_ERRCR', len = 0);
5922 if (len!= strlen(signline)) {

5923 bam error (SI G\N_LI ST_FPUTS_ERR, sign, strerror(error));
5924 free(sign);

5925 return (-1);

5926 }

5928 free(sign);

5930 BAM DPRI NTF((D_SI GN_LI ST_PUTS_DONE, fcn, mtpt));
5931 return (0);

5932 }

5934 [*

5935 * slice is a basenane not a full pathname

5936 */

5937 static int
5938 process_slice_comon(char *slice, FILE *tfp, nmhash_t *mhp, char *tnpmt)
5939 {

5940 int ret;

5941 char crrd[PATH_MAX] ;

5942 char pat h[PATH M-\X]

5943 struct stat sbuf

5944 char *mt pt

5945 filelist_t fl|st = {0};

5946 char *fstype;

5947 char bl ksl i ce[PATH_MAX] ;

5948 const char *fcn = "process_slice_comon()"
5951 ret = search_hash(mhp, slice, &mtpt);

5952 switch (ret) {

5953 case MH_MATCH:

5954 “if (check_add ufs_sign_to list(tfp, mtpt) == -1)
5955 return (-1);

5956 el se

5957 return (0);

5958 case MH_NOVATCH:

5959 br eak;

5960 case I\/H_ERRO?:

5961 defaul t:

5962 return (-1);

5963 }

5965 (void) snprintf(path, sizeof (path), "/dev/rdsk/ %", slice);
5966 if (stat(path, &sbuf) == -1)

5967 BAM DPRI NTF((D_SLI CE_ENCENT, fcn, path))
5968 return (0);

5969 }

5971 /* Check if ufs. CaII ufs fstyp directly to avoid pcfs conflicts.
5972 (void) snprintf(cnd, sizeof (cnd),

5973 "lusr/libl/fs/uf s/fstyp I dev/ rdsk/ % 2>/ dev/ nul | "
5974 slice);

5976 if (exec_cnd(cnd, & list) !'=0) {

5977 if (bam.verbose)

5978 bam print (FSTYP_FAI LED, slice);

5979 return (0);

23

*/

new boot adn? boot adm ¢ 24
5980 }

5982 if ((flist.head == NULL) || (flist.head != flist.tail)) {
5983 if (bam.verbose)

5984 bam print (FSTYP_BAD, slice);

5985 filelist_free(&list);

5986 return (0);

5987 }

5989 fstype = strtok(flist.head->line, " \t\n");

5990 if (fstype == NULL || strcnp(fstype, "ufs") 1= 0) {
5991 1 f (bam.verbose)

5992 bam print (NOT_UFS_SLICE, slice, fstype);
5993 filelist free(&fllst)

5994 return (0);

5995 }

5997 filelist_free(&list);

5999 /*

6000 * Since we are nmounting the filesystemread-only, the
6001 * the last nount field of the superblock is unchanged
6002 * and does not need to be fixed up post-nount;

6003 */

6005 (void) snprintf(blkslice, sizeof (blkslice), "/dev/dsk/ %",
6006 slice);

6008 (voi d) snprintf(cnd, sizeof (cnd),

6009 /usr/sbin/mount -F ufs -oro % % "

6010 "> [dev/null 2>&1", blkslice, tnpmt);

6012 if (exec_cnd(cnd, NULL) !'= 0) {

6013 if (bam.verbose)

6014 bam pri nt (MOUNT_FAI LED, bl kslice, "ufs");
6015 return (0);

6016 }

6018 ret = check_add_ufs_sign_to_list(tfp, tnpmt);

6020 (void) snprintf(cnd, sizeof (cnd),

6021 "7usr/sbin/umunt -f % > /dev/null 2>&1",

6022 tmpmt) ;

6024 if (exec_cmd(cnd, NULL) !'= 0) {

6025 bam print (UMOUNT_FAI LED, slice);

6026 return (0);

6027 1

6029 return (ret);

6030 }

6032 static int

6033 process_vtoc_slices(

6034 char *s0,

6035 struct vtoc *vtoc,

6036 FILE *tfp,

6037 mhash_t *nhp,

6038 char *tnmpmt)

6039 {

6040 int idx;

6041 char sl i ce[PATH_MAX] ;

6042 size_t | en;

6043 char *cp;

6044 const char *fcn = "process_vtoc_slices()";

new boot adn? boot adm ¢ 25 new boot adnf boot adm ¢ 26
6046 len = strlen(s0); 6112 char *cp;
6113 const char *fcn = "process_efi_slices()";
6048 assert(sO[len - 2] =="'s’ & sO[len - 1] =="'0");
6115 len = strlen(s0);
6050 sO[len - 1] ="'\0";
6117 assert(sO[len - 2] =="'s’ & sO[len - 1] =="0");
6052 (void) strlcpy(slice, sO, sizeof (slice));
6119 sO[len - 1] ="'\0";
6054 sO[len - 1] ="'0;
6121 (void) strlcpy(slice, sO, sizeof (slice));
6056 cp =slice + len - 1;
6123 sO[len - 1] ='0";
6058 for (idx = 0; idx < vtoc->v_nparts; idx++) {
6125 cp =slice + len - 1;
6060 (void) snprintf(cp, sizeof (slice) - (len - 1), "o", idx);
6127 for (idx = 0; idx < efi->efi_nparts; idx++) {
6062 if (vtoc->v_part[idx].p_size == 0) {
6063 BAM DPRI NTF((D_VTOC_SI ZE_ZERO, fcn, slice)); 6129 (void) snprintf(cp, sizeof (slice) - (len - 1), "ow", idx);
6064 cont i nue;
6065 } 6131 if (efi->efi_parts[idx].p_size == 0) {
6132 BAM DPRI NTF((D_EFI _SI ZE_ZERO, fcn, slice));
6067 /* Skip "SWAP*, "USR', "BACKUP', "VAR', "HOVE', "ALTSCTR' */ 6133 conti nue;
6068 switch (vtoc->v_part[idx].p_tag) { 6134 }
6069 case V_SWAP:
6070 case V_USR 6136 /* Skip "SWAP", "USR', "BACKUP', "VAR', "HOWE", "ALTSCTR' */
6071 case V_BACKUP: 6137 switch (efi->efi_parts[idx].p_tag) {
6072 case V_VAR 6138 case V_SWAP:
6073 case V_HOVE: 6139 case V_USR
6074 case V_ALTSCTR 6140 case V_BACKUP:
6075 BAM DPRI NTF((D_VTOC_NOT_ROOT_TAG, fcn, slice)); 6141 case V_VAR
6076 conti nue; 6142 case V_HOVE:
6077 defaul t: 6143 case V_ALTSCTR:
6078 BAM DPRI NTF((D_VTOC_ROOT_TAG fcn, slice)); 6144 BAM DPRI NTF((D_EFI _NOT_ROOT_TAG, fcn, slice));
6079 br eak; 6145 conti nue;
6080 } 6146 defaul t:
6147 BAM DPRI NTF((D_EFI _ROOT_TAG fcn, slice));
6082 /* skip unnount abl e and readonly slices */ 6148 br eak;
6083 switch (vtoc->v_part[idx].p_flag) { 6149 }
6084 case V_UNWNT:
6085 case V_RO\LY: 6151 /* skip unnount abl e and readonly slices */
6086 BAM DPRI NTF((D_VTOC_NOT_RDWR FLAG, fcn, slice)); 6152 switch (efi->efi_parts[idx].p_flag) {
6087 conti nue; 6153 case V_UNWNT:
6088 defaul t: 6154 case V_RO\LY:
6089 BAM DPRI NTF((D _VTOC RDWR FLAG, fcn, slice)); 6155 BAM DPRI NTF((D_EFI _NOT_RDWR FLAG, fcn, slice));
6090 br eak; 6156 conti nue;
6091 } 6157 defaul t:
6158 BAM DPRI NTF((D_EFI _RDWR FLAG fcn, slice));
6093 if (process_slice_comon(slice, tfp, nmhp, tnpmt) == -1) { 6159 br eak;
6094 return (-1); 6160 }
6095 }
6096 } 6162 if (process_slice_comon(slice, tfp, mhp, tnpmt) == -1) {
6163 return (-1);
6098 return (0); 6164 }
6099 } 6165 }
6101 static int 6167 return (0);
6102 process_efi_slices(6168 }
6103 char *s0,
6104 struct dk_gpt *efi, 6170 /*
6105 FILE *tfp, 6171 * sO is a basenane not a full path
6106 mhash_t *mhp, 6172 */
6107 char *tnpmt) 6173 static int
6108 { 6174 process_sliceO(char *s0, FILE *tfp, mhash_t *nhp, char *tnpmt)
6109 int i dx; 6175 {
6110 char sl i ce[PATH_MAX] ; 6176 struct vtoc vt oc;
6111 size_t I en; 6177 struct dk_gpt *efi;

new boot adnf boot adm ¢

6178
6179
6180
6181
6182
6183
6184
6185

6187

6189
6190
6191
6192

6194
6195
6196
6197
6198

6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223

6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243

char
struct stat

sOpat h[PATH_MAX] ;

int e fI ag;
int v_flag;
int retval ;
int err;
int fd;
const char *fcn = "process_slice0()";
(void) snprintf(sOpath, sizeof (sOpath), "/dev/rdsk/%", s0);
if (stat(sOpath, &sbuf) == - {
BAM DPRI NTF((D SLI CEO ENCENT, fcn, sOpath));
return (0);
}
fd = open(SOpath O_NONBLOCK| O_RDONLY) ;
if (fd 1)
bam_er ror (OPEN_FAI L, sOpath, strerror(errno));
return (0);
}
e flag = v_flag = O;
retval = ((err = read_vtoc(fd, &toc)) >=0) ?2 0 : err;
switch (retval) {
case VI_EIO
BAM DPRI NTF((D_VTOC_READ_FAIL, fcn, sOpath));
br eak;
case VT_EI NVAL:
BAM _DPRI NTF((D_VTOC_| NVALI D, fcn, sOpath));
br eak;
case VT_ ERRCR
BAM DPRI NTF((D_VTOC_UNKNOWN_ERR, fcn, sOpath));
br eak;
case VT_| ENOTSUP:
e flag = 1;
BAM DPRI NTF((D VTOC_NOTSUP, fcn, sOpath));
br eak;
case 0:
v_flag = 1;
BAM DPRI NTF((D_VTOC READ SUCCESS, fcn, sOpath));
br eak;
defaul t:
BAM DPRI NTF((D_VTOC_UNKNOWN _RETCCODE, fcn, sOpath));
br eak;
}
if (e_flag) {
e_flag = 0O;
retval = ((err = efi_alloc_and_read(fd, &efi)) >=0) ? 0 :
switch (r etval) {
case VI_EIO
BAM DPRI NTF((D_EFI _READ_FAI L, fcn, sOpath))
br eak;
case VT_El NVAL:
BAM DPRI NTF((D_EFl I NVALI D, fcn, sOpath));
br eak;
case VT_ERROR
BAM DPRI NTF((D_EFI _UNKNOWN_ERR, fcn, sOpath));
break;
case VT_ENOTSUP:
BAM DPRI NTF((D_EFI _NOTSUP, fcn, sOpath));
break;
case 0O:

e flag = 1,

27

err;

new boot adn? boot adm ¢

6244 BAM DPRI NTF((D_EFI _READ SUCCESS, fcn, sOpath));
6245 break;

6246 defaul t:

6247 BAM _DPRI NTF((D_EFI _UNKNOWN_RETCODE, fcn, sOpath));
6248 br eak;

6249 }

6250 }

6252 (void) close(fd);

6254 if (v_flag) {

6255 retval = process_vtoc_slices(sO,

6256 &toc, tfp, mhp, tnmpmt);

6257 } else if (e_flag) {

6258 retval = process_efi_slices(sO,

6259 efi, tfp, mhp, tnmpmt);

6260 } else {

6261 BAM DPRI NTF((D_NOT_VTOC_OR _EFI, fcn, sOpath));
6262 return (0);

6263 }

6265 return (retval);

6266 }

6268 /*

6269 * Find and create a |list of all existing UFS boot signatures
6270 */

6271 static int

6272 Fi ndAl | Uf sSi gnat ures(voi d)

6273 {

6274 mhash_t *mmt t ab_hash;

6275 DI R *dirp = NULL

6276 struct dirent *dp;

6277 char t mpmmt [PATH_MAX] ;

6278 char cmd[PATH_MAX] ;

6279 struct stat sbh;

6280 int fd;

6281 FI LE *tfp;

6282 size_t |l en;

6283 int ret;

6284 int error;

6285 const char *fcn = "FindAl | Uf sSignatures()";

6287 if (stat(UFS_SIGNATURE LI ST, &sb) !=-1) {

6288 bam pri nt (SI GNATURE_LI ST_EXI STS, UFS_SI GNATURE_LI ST) ;
6289 return (0);

6290 }

6292 fd = open(UFS_SI GNATURE LI ST". t np",

6293 O_RDWR| O_CREAT| O_TRUNC, 0644);

6294 error = errno;

6295 I NJECT_ERRORL("SIGN LI ST TMP_TRUNC', fd = -1);

6296 if (fd == -1) {

6297 bam error (OPEN_FAI L, UFS_SI GNATURE_ LI ST".tnp", strerror(error));
6298 return (-1);

6299 }

6301 ret = close(fd);

6302 error = errno;

6303 I NJECT_ERRORL("SI GN_LI ST_TMP_CLOSE", ret = -1);

6304 if (ret == -1)

6305 bam error (CLOSE_FAI L, UFS_SI GNATURE LI ST". t np",
6306 strerror(error));

6307 (voi d) unlink(UFS_SI GNATURE_LI ST". t np");

6308 return (-1);

6309 }

28

new boot adnf boot adm ¢

6311
6312
6313
6314
6315
6316
6317
6318

6320
6321
6322
6323
6324
6325
6326
6327

6329
6330
6331

6333
6334
6335
6336
6337
6338
6339
6340
6341
6342

6344
6345
6346
6347
6348
6349
6350

6352
6353
6354
6355

6357
6358
6359
6360
6361
6362
6363
6364
6365

6367
6368
6369
6370
6371

6373
6374
6375

29

tfp = fopen(UFS_SI GNATURE_LI ST". tmp", "a");

error = errno;

I NJECT_ERRORL("SI GN_LI ST_APPEND_FOPEN', tfp = NULL);

if (tfp == NULL)
bam error (OPEN_FAIL, UFS_SI GNATURE LI ST".tnp", strerror(error));
(void) unlink(UFS_ si GNATURE_LI ST". tnp");
return (-1);

}

mt tab_hash = cache_mttab();

I NJECT_ERRORL(" CA(J—iE MNTTAB_ ERRCR mt tab_hash = NULL);

if (mmtt

ab_hash == NULL) {

(void) fecl ose(tfp);

(void) unlink(UFS_SI GNATURE LI ST". tmp");
bam error (CACHE_MNTTAB_FAI L, fcn);
return (-1);

}
(voi d) snprintf(tnpmt, sizeof (tnmpmt),
/ boot adm uf s_si gn_mt . %d" getpid());
(voi d) unl i nk(t mpmt);
ret = mkdirp(tmpmt, DI R_PERVE);
error = errno
I NJECT_ERRORL("MKDI RP_SI GN_MNT", ret = -1);

if (ret

}

dirp =o0
error =

I NJECT ERRORl(" OPENDI R_DEV_RDSK",

if (dirp

}
while (d

}

(void) c
free_mt
(void) r

== -1) {
bam error (MKDI R_FAI LED, tnmpmt,
free_mttab(mttab_hash);
(void) fclose(tfp);

(voi d) unlink(UFS_SI GNATURE_LI ST". t np");
return (-1);

strerror(error));

pendi r(/ dev/rdsk");

errno

dirp = NULL);
== NULL)

bam er r or (OPENDI R_FAI LED,
goto fail;

"/ dev/rdsk", strerror(error));

p = readdir(dirp)) {
1f (strcnp(dp->d_nanme, ".") == 0 ||
strcnp(dp- >d_nane, "..") == 0)
cont i nue;

/*

* we only look for the sO slice. This is guranteed to

* have s’ at len -

*/

len = strlen(dp->d_nane);

if (dp->d_name[len - 2] | dp->d_name[len - 1] I="0") {
BAM DPRI NTF((D_SKI P_SLI CE_NOTZERQO, fcn, dp->d_nane));
conti nue;

=g

}

ret = process_slice0(dp->d_nane, tfp, mttab_hash, tnmpmt);
| NJECT_ERRORL(" PROCESS_SO_FAIL", ret = -1);
if (ret == -1)

goto fail;

losedir(dirp);
tab(mttab hash)
mdir(tnpmt) ;

new boot adnf boot adm ¢ 30
6377 ret = fclose(tfp);

6378 error = errno;

6379 I NJECT_ERRORL("FCLOSE_SI GNLI ST_TMP", ret = EOF);

6380 if (ret == EOF)

6381 bam error (CLOSE_FAIL, UFS_SI GNATURE_LI ST". t np",

6382 strerror(error))

6383 (void) unlink(UFS S| GNATURE LI ST". tnp");

6384 return (-1);

6385 }

6387 /* We have a list of existing GRUB signatures. Sort it first */
6388 (void) snprintf(cnd, sizeof (cnd),

6389 "/usr/bin/sort -u %.tnp > %.sorted",

6390 UFS_SI GNATURE_LI ST, UFS_SI GNATURE_LI ST) ;

6392 ret = exec crrd(cr'rd NULL) ;

6393 INJECT _ERRORL("SORT_SI GN_LI ST*, ret = 1);

6394 if (ret 1=0) {

6395 bam err or (GRUBSI GN_SORT_FAI LED) ;

6396 (void) unlink(UFS_SI GNATURE LI ST sorted")

6397 (voi d) unlink(UFS_SI GNATURE LI ST". t np");

6398 return (-1);

6399 }

6401 (void) unlink(UFS_SI GNATURE_LI ST".tnp");

6403 ret = renarre(UFS_SI GNATURE_LI ST". sorted”, UFS_SI GNATURE_LI ST) ;
6404 error = errn

6405 I NJECT ERRO?l(" RENAVE_TMP_SI GNLI ST*, ret = -1);

6406 if (ret == -1) {

6407 bam error (RENAME_FAIL, UFS_SI GNATURE_LI ST, strerror(error));
6408 (void) unlink(UFS_SI GNATURE LI ST". sorted")'

6409 return (-1);

6410 }

6412 if (stat(UFS_SIGNATURE LI ST, &sb) == 0 && sbh.st_size == 0) {
6413 BAM DPRI NTF((D_ZERO_LEN_SI GNLI ST, fcn, UFS_SI GNATURE_LI ST));
6414 }

6416 BAM DPRI NTF((D_RETURN_SUCCESS, fcn));

6417 return (0);

6419 fail:

6420 if (dirp)

6421 (void) closedir(dirp);

6422 free_mmttab(mttab_hash);

6423 (void) rmdir(tnmpmt);

6424 (void) fclose(tfp);

6425 (voi d) unlink(UFS_SI GNATURE_LI ST". t np");

6426 BAM DPRI NTF((D_RETURN_FAI LURE, fcn));

6427 return (-1);

6428 }

6430 static char *

6431 create_ufs_sign(void)

6432 {

6433 struct stat sb;

6434 int si gnnum = -1;

6435 char t npsi gn[MVAXNAMELEN + 1] ;

6436 char *nunstr;

6437 int i;

6438 FI LE *tfp;

6439 int ret;

6440 int error;

6441 const char *fcn = "create_ufs_sign()";

new boot adnf boot adm ¢

6443

6445
6446
6447
6448
6449
6450

6452
6453
6454
6455
6456
6457
6458
6459

6461
6462
6463
6464
6465

6467
6468
6469
6470
6471
6472
6473
6474
6475
6476

6478

6480
6481
6482
6483
6484
6485
6486
6487

6489
6490
6491
6492
6493
6494

6496
6497
6498
6499
6500
6501
6502
6503

6505
6506
6507

bam pri nt (SEARCH NG _UFS_SI QN) ;

ret = FindAl | U sSignatures();
I NJECT_ERRORL("FI ND_ALL_UFS", ret = -1);
if (ret == -1) {
bam error (ERR_FI ND_UFS_SI GN) ;
} return (NULL);

/* Make sure the list exists and is owned by root */
I NJECT_ERRORL ("SI GNLI ST_NOT_CREATED",
(voi d) unlink(UFS_SI GNATURE LI ST))

if (stat(UFS_SIGNATURE LI ST, &sb) == -1 || sh.st_uid != 0) {
(void) unlink(UFS_SI GNATURE LI ST);
bam error (UFS_SI GNATURE_LI ST_M SS, UFS_SI GNATURE_LI ST) ;
return (NULL);

}

if (sb.st_size == {
bam pr| nt (GRUBSI GN_UFS_NONE) ;

got o] found

}

/* The signature |list was sorted when it was created */
tfp = fopen(UFS_SI GNATURE_LI ST, "r");
error = errno;
IBUFC? ERRCRl(";CPEN SIGN_LIST", tfp = NULL)

bam error (UFS_SI GNATURE_LI ST_OPENERR,

UFS_SI GNATURE LI ST, “strerror(error));

(void) unlink(UFS_SI GNATURE_LI ST);

return (NULL);
}

for (i = 0; s_fgets(tnpsign, sizeof (tnpsign), tfp); i++) {

if (strncnp(tnpsign, CGRUBSI GN_UFS_PREFI X,
strlen(GRUBSI GN_UFS_PREFI X)) != 0) {
(void) fclose(tfp);
(voi d) unlink(UFS_SI GNATURE_LI ST) ;
bam error (UFS_BADSI G\, tnpsign);
return (NULL);

}
nunstr = tnpsign + strlen(GRUBSI GN_UFS_PREFI X) ;

if (numstr[0] == '\0" || !'isdigit(nunstr[0])) {
(voi d) fcI ose(tfp);
(void) unlink(UFS_: Sl GNATURE_LI ST) ;
bam error (UFS_BADSI GN, t npsign);
return (NULL);
}

si gnnum = at oi (nurmt r);
I NJECT_ERRORL(" NEGATI VE_SI GN', signnum = -1);
if (signnum< 0) {
(void) fclose(tfp);
(voi d) unlink(UFS_SI GNATURE_LI ST);
bam error (UFS_BADSI G\, tnpsign);
return (NULL);
}

if (i !'=signnum {
BAM DPRI NTF((D_FOUND HOLE_SI GNLI ST, fcn, i));
br eak;

31

new boot adnf boot adm ¢

6508
6509

6511

6513 found:

6514

6516
6517
6518
6519
6520
6521
6522
6523

6525

6527
6528 }

}
}

(void) fclose(tfp);

(void) snprintf(tnpsign, sizeof (tnpsign), "rootfs%l", i);

/* add the ufs signature to the /var/run |ist of signatures */
ret = uf s_add_t o_sign_list(tnpsign);
I NDECT ERRCRl(UFS_ADD TO SIGN_LIST", ret = -1);
if (ret == - {
(voi d) unl i nk(UFS_SI GNATURE_LI ST) ;
bam error (FAI LED_ADD_SI G\LI ST, trrpsi gn);
return (NULL);
}

BAM DPRI NTF((D_RETURN_SUCCESS, fcn));

return (s_strdup(tnpsign));

6530 static char *
6531 get _fstype(char *osroot)

6532 {
6533
6534
6535
6536
6537
6538

6540
6541
6542
6543
6544

6546
6547
6548
6549
6550
6551
6552

6554
6555
6556
6557

6559
6560
6561
6562
6563
6564
6565
6566

6568
6569
6570
6571
6572

FI LE *mﬂfp,
struct mttab mp = {0};

-

struct mttab npr ef {0};

int error;

int ret;

const char *fcn = "get_fstype()";

I NJECT_ERRORL(" GET_FSTYPE_OSROOT", osroot = NULL)
if (osroot == NULL)

bam error (GET_FSTYPE_ARGS) ;

return (NULL);

}
mtfp = fopen(MNTTAB, "r");
error = errno;

I NJECT ERRCRl("GET FSTYPE_FOPEN', mtfp = NULL)

if (mtfp == NULL)
bam 1error (OPEN_FAI L, MNTTAB, strerror(error));
return (NULL);

}

if (*osroot == '\0")
mpref. mt_nmountp = "/";
el se
npref. mt_nountp = osroot;

ret = getmrmtany(mtfp, &mp, &npref);

I NJECT_ERRORL(" GET_FSTYPE_GETMNTANY", ret = 1)

if (ret 1=0) {
bam error (MNTTAB_MNTPT_NOT_FOUND, osroot, MTTAB);
(void) fclose(mtfp);
return (NULL);

%voi d) fclose(mtfp);

I NJECT_ERRORL("GET_FSTYPE NULL", np.mt _fstype = NULL)
if (mp.mt_fstype == NULL) {

bam error (MNTTAB_FSTYPE_NULL, osroot);

return (NULL);

new boot adnf boot adm ¢

6574 BAM DPRI NTF((D_RETURN_SUCCESS, fcn))

6576 return (s_strdup(nmp. mt_fstype));

6577 }

6579 static char *

6580 create_zfs_sign(char *osdev)

6581 {

6582 char tnpS| gn[PATH_MAX] ;

6583 char *poo

6584 const char *fcn = "create_zfs_sign()";
6586 BAM DPRI NTF((D_FUNC_ENTRY1, fcn, osdev));
6588 I*

6589 * First find the pool nane

6590 */

6591 pool = get pooI (osdev);

6592 IhUECT ERRCRl(CREATE_. ZFS SI GN_GET_POOL", pool = NULL)
6593 if (pool == NULL) {

6594 bam error (GET_POOL_FAI LED, osdev);
6595 return (NULL);

6596 1

6598 (void) snprintf(tnpsign, sizeof (tnpsign), "pool %", pool);
6600 BAM DPRI NTF((D_CREATED_ZFS_SI GN, fcn, tnpsign));
6602 free(pool);

6604 BAM DPRI NTF((D_RETURN_SUCCESS, fcn))

6606 return (s_strdup(tnpsign));

6607 }

6609 static char *

6610 create_new sign(char *osdev, char *fstype)

6611

6612 char *sign;

6613 const char *fcn = "create_new sign()";
6615 I NJECT_ERRORL(" NEW SI GN_FSTYPE", fstype = "foofs")
6617 if (strcnp(fstype, "zfs") == 0) {

6618 BAM DPRI NTF((D_CREATE_NEW ZFS, fcn))
6619 sign = create_zfs_sign(osdev);

6620 } else if (strcnp(fstype, "ufs") == 0) {
6621 BAM DPRI NTF((D _CREATE_NEW UFS, fcn))
6622 sign = create_ufs_sign();

6623 } else {

6624 bam error (GRUBSI GN_NOTSUP, fstype);
6625 sign = NULL;

6626 }

6628 BAM DPRI NTF((D_CREATED_NEW SIGN, fcn, sign ? sign : "<NULL>"));
6629 return (sign);

6630 }

6632 static int

6633 set _backup_common(char *mmt pt, char *sign)

6634 {

6635 FI LE *bf p;

6636 char backup[PATH_MAX] ;

6637 char t npsi gn[PATH_MAX] ;

6638 int error;

6639 char *bdir;

33

new boot adnf boot adm ¢

6640
6641
6642
6643

6645
6646

6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662

6664
6665
6666
6667

6669
6670
6671
6672

6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688

6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701

6703
6705

char *backup_dup;

struct stat sb;

int ret;

const char *fcn = "set_backup_common()";

(void) snprintf(backup, sizeof (backup), "%%",
mt pt, GRUBSI GN_BACKUP) ;

/* First read the backup */

bf p = fopen(backup, "r");

if (bfp !'= NULL)

whil e (s fgets(trrp5|gn si zeof (terS|gn) bfp)) {
f (strcnp(tnpsign, sign) =

BAM DPRI NTF((D_ FClJND IN BACKUP, fcn,
(void) fclose(bfp);
return (0);

}

(void) fclose(bfp);

BAM _DPRI NTF((D_NOT_FOUND_| N_EXI ST_BACKUP, fcn, sign));
} else {

BAM DPRI NTF((D_BACKUP_NOT_EXI ST, fcn, backup));
}

/*

* Didn't find the correct signature. First create
* the directory if necessary.

*/

/* dirname() nodifies its argument so dup it */
backup_dup = s_strdup(backup);

bdi r = di rname(backup_dup);

assert(bdir);

ret = stat(bdir, &sbh);
I NJECT_ERROR1 (" SET_BACKUP_STAT", ret = -1);
if (ret == -1) {
BAM_DPRI NTF((D_BACKUP_DI R_NOCEXI ST, fcn, bdir));
ret = nkdirp(bdir, DI R _PERMS);
error = errno;
I NJECT_ERRORL(" SET_BACKUP_MKDI RP", ret = -1);
if (ret == -1) {
bam er r or (GRUBSI GN_BACKUP_MKDI RERR,
“GRUBSI GN_BACKUP, strerror(error));
free(backup_dup);
return (-1);

}
}
free(backup_dup);

/*

* Open the backup in append node to add the correct
* signature;

*/

bfp = fopen(backup, "a");
error = errno;
IMECF ERRORL(" SET_BACKUP_FOPEN A", bfp = NULL);
if (bfp == NULL)
bam er r or (GRUBSI GN_BACKUP_OPENERR,
GRUBSI GN_BACKUP, strerror(error));
return (-1);

}
(void) snprintf(tnpsign, sizeof (tnpsign), "%\n", sign);
ret = fputs(tnpsign, bfp);

new boot adnf boot adm ¢

6706 error =
6707

6708 if (ret
6709

6710

6711

6712

6713 }

6715 (void) f
6717 if (bam_
6718

6720 BAM _DPRI
6722 return (
6723 }

6725 static int

6726 set_backup_ufs(c
6727 {

6728 const ch
6730 BAM _DPRI
6731 return (
6732 }

6734 static int

6735 set_backup_zfs(c
6736 {

6737 char
6738 char
6739 zfs_mte
6740 int

6741 const ch
6743 BAM _DPRI
6745 pool =g
6746

6747 if (pool
6748

6749

6750 }

6752 mtpt =
6753

6754 if (mtp
6755

6756

6757

6758 }

6760 ret = se
6762 (void) u
6764 free(poo
6766

6767 if (ret
6768

6769 } else {
6770

6771 }

I NDJECT ERRO?l(SET_BACKUP_FPUTS",

| NJECT_ERRORL(" SET_| BACKLP GET_POOL"

I NJECT_ERRORL(" SET_BACKUP_ NUJNT DATASET" ,

errno

ret = 0);

1= strlen(tnpsign)) {

bam er r or (GRUBSI GN_BACKUP_WRI TEERR,
GRUBSI GN_BACKUP, strerror(error));

(voi d) fclose(bfp)

return (-1);

cl ose(bfp);

ver bose

)
bam pri nt (GRUBSI GN_BACKUP_UPDATED, GRUBSI GN_BACKUP) ;

NTF((D_RETURN_SUCCESS, fcn));
0);
har *osroot, char *sign)
ar *fcn = "set_backup_ufs()";

NTF((D_FUNC_ENTRY2, fcn, osroot,
set _backup_common(osr oot , S|gn))

sign));

har *osdev, char *sign)

*pool
*mt pt ;
d_t mt ed;
ret;
ar *fcn = "set_backup_zfs()";

NTF((D_FUNC_ENTRY2, fcn, osdev, sign))

et _pool (osdev);

pool = NULL)
== NULL) {

bam error (GET_POOL_FAI LED, osdev)

return (-1);

mount _t op_ dat aset (pool, &mted);

mt pt = NULL)
t == NULL) {

bam error (FAI L_MNT_TOP_DATASET, pool);
free(pool)

return (-1);

t _backup_common(mt pt, sign)
nmount _t op_dat aset (pool

1);

mted, mtpt)

I NJECT_ERRORL(" SET_BACKUP_ZFS FAIL", ret = 1);

) {
BAM DPRI NTF((D_RETURN_SUCCESS, fcn));
BAM DPRI NTF((D_RETURN_FAI LURE, fcn));

35

new boot adnf boot adm ¢ 36
6773 return (ret)

6774 }

6776 static int

6777 set_backup(char *osroot, char *osdev, char *sign, char *fstype)
6778 {

6779 const char *fcn = "set_backup()";

6780 int ret

6782 I NJECT_ERRORL(" SET_BACKUP_FSTYPE", fstype = "foofs");
6784 if (strenp(fstype, "ufs") == 0) {

6785 BAM DPRI NTF((D_SET_BACKUP_UFS, fcn));

6786 ret = set_backup_ufs(osroot, 3|gn)

6787 } else if (strcnp(fstype, "zfs") == 0) {

6788 BAM _DPRI NTF((D_SET_BACKUP_ZFS, fcn))

6789 ret = set_backup_zfs(osdev, sign)

6790 } else {

6791 bam error (GRUBSI GN_NOTSUP, fstype)

6792 ret = -1,

6793 }

6795 if (ret == 0) {

6796 BAM_DPRI NTF((D_RETURN_SUCCESS, fcn))

6797 } else

6798 BAM DPRI NTF((D_RETURN_FAI LURE, fcn));

6799 }

6801 return (ret);

6802 }

6804 static int

6805 set_primary_common(char *mmtpt, char *sign)

6806 {

6807 char si gnfil e[PATH_MAX] ;

6808 char si gndi r [PATH_MAX] ;

6809 struct stat sb

6810 int fd;

6811 int error;

6812 int ret;

6813 const char *fcn = "set_primary_common()";

6815 (void) snprintf(signfile, sizeof (signfile), "%/ %/ %"
6816 mtpt, GRUBSIGN_DIR, sign)

6818 if (stat(signfile, &b) = -1) {

6819 if (bam.verbose)

6820 bam pri nt (PRI MARY_SI GN_EXI STS, sign)
6821 return (0);

6822 } else {

6823 BAM DPRI NTF((D_PRI MARY_NOT_EXI ST, fcn, signfile));
6824

6826 (void) snprintf(signdir, sizeof (signdir), "%/ %"

6827 mtpt, GRUBSIGN DI R);

6829 if (stat(signdir, &b) == -1) {

6830 BANLDPRINTF((DfPRINARqu R_NCEXI ST, fcn, signdir))
6831 ret = nkdirp(signdir Dl R_PERMS) ;

6832 error = errno;

6833 I NJECT ERRCRl(" SET_PRI MARY_MKDI RP", ret = -1);
6834 if (ret == -1) {

6835 ban1error(GRUBSIGN MKDI R_ERR, signdir, strerror(errno));
6836 return (-

6837 }

new boot adnf boot adm ¢ 37 new boot adnf boot adm ¢

6838 } 6904 bam error (FAI L_MNT_TOP_DATASET, pool);
6905 free(pool);
6840 fd = open(si gnfi I e, O RDWR O CREAT| O TRUNC, 0444); 6906 return (-1);
6841 error = errno 6907 }
6842 I NJECT ERRO?l("PRIMﬁ\RY S| GN_CREAT", fd = -1);
6843 if (fd == -1) { 6909 ret = set_primary_comon(mtpt, sign);
6844 bam error (GRUBSI GN_PRI MARY_CREATERR, signfile, strerror(error));
6845) return (-1); 6911 (voi d) unount_top_dataset (pool, mted, mtpt);
6846
6913 free(pool);
6848 ret fsync(fd)
6849 error = errno 6915 I NJECT_ERRORL(" SET_PRI MARY_ZFS FAIL", ret = 1);
6850 I NJECT ERRO?l(" PRI MARY_FSYNC', ret = -1); 6916 if (ret == 0)
6851 if (ret 1=0) { 6917 BAM _DPRI NTF((D_RETURN_SUCCESS, fcn));
6852 bam error (GRUBSI GN_PRI MARY_SYNCERR, signfile, strerror(error)); 6918 } else {
6853 } 6919 BAM DPRI NTF((D_RETURN_FAI LURE, fcn));
6920
6855 (void) close(fd);
6922 return (ret);
6857 if (bam.verbose) 6923 }
6858 bam pri nt (GRUBSI GN_CREATED_PRI MARY, signfile);
6925 static int
6860 BAM DPRI NTF((D_RETURN_SUCCESS, fcn)); 6926 set _prinmary(char *osroot, char *osdev, char *sign, char *fstype)
6927 {
6862 return (0); 6928 const char *fcn = "set_primary()";
6863 } 6929 int ret;
6865 static int 6931 I NJECT_ERRORL(" SET_PRI NARY FSTYPE fstype = "foofs");
6866 set_primary_ufs(char *osroot, char *sign) 6932 if (strcnp(fstype, "ufs") 0)
6867 { 6933 BAM _DPRI NTF((D_ SEl' PRl MARY_UFS, fcn));
6868 const char *fcn = "set_primary_ufs()"; 6934 ret = set_primary_| ufs(osroot sign);
6935 } else if (strcnp(fstype, "zfs") == 0) {
6870 BAM DPRI NTF((D_FUNC_ENTRY2, fcn, osroot, sign)); 6936 BAM_ DPRI NTF((D_SET_PRI MARY_ZFS, fcn));
6871 return (set_primary_conmon(osroot, sign)); 6937 ret = set_primry_zfs(osdev, sign);
6872 } 6938 } else {
6939 bam error (GRUBSI GN_NOTSUP, fstype);
6874 static int 6940 ret = -1;
6875 set_primary_zfs(char *osdev, char *sign) 6941 }
6876 {
6877 char *pool ; 6943 if (ret == 0) {
6878 char *mt pt ; 6944 BAM_DPRI NTF((D_RETURN_SUCCESS, fcn));
6879 zfs_mted_t mt ed; 6945 } else {
6880 int ret; 6946 BAM DPRI NTF((D_RETURN_FAI LURE, fcn));
6881 const char *fcn = "set_primary_zfs()"; 6947 }
6883 BAM DPRI NTF((D_FUNC_ENTRY2, fcn, osdev, sign)); 6949) return (ret);
6950
6885 pool = get pooI (osdev);
6886 | NJECT_ERROR1 (" SET_PRI NARY ZFS_CET_POCL", pool = NULL); 6952 static int
6887 if (pool == NULL) { 6953 ufs_add_to_sign_list(char *sign)
6888 bam error (GET_POCOL_FAI LED, osdev); 6954 {
6889 return (-1); 6955 FI LE *tfp;
6890 } 6956 char si gnl i ne[MAXNAMVELEN] ;
6957 char cmd[PATH_MAX] ;
6892 /* Pool name nust exist in the sign */ 6958 int ret;
6893 ret = (strstr(sign, pool) !'= NULL); 6959 int error;
6894 I NJECT_ERRORL(" SET_PRI MARY_ZFS POOL_SI GN_| NCOMPAT", ret = 0); 6960 const char *fcn = "ufs_add_to_sign list()";
6895 if (ret == 0) {
6896 bam error (POOL_SI GN_| NCOWPAT, pool, sign); 6962 I NJECT_ERRORL (" ADD_TO _SI GN_LI ST_NOT_UFS", sign = "pool _rpool 5");
6897 free(pool); 6963 if (strncnp(sign, GRUBSI GN_UFS PREFI X,
6898 return (-1); 6964 strlen(GRUBSI GN_UFS PREFI X)) != 0) {
6899 } 6965 bam error (I NVALTD_UFS_SIGN, sign);
6966 (void) unlink(UFS_SI GNATURE_LI ST);
6901 mt pt = nount top dat aset (pool , &mted); 6967 return (-1);
6902 I NJECT_ERRORL(" SET_PRI MARY_ ZFS MOUNT _ DATASI:_l' mt pt = NULL); 6968 }

6903 if (mtpt == NULL) {

new boot adnf boot adm ¢

6970
6971
6972
6973

6975
6976
6977
6978
6979
6980
6981
6982
6983

6985
6986
6987
6988
6989
6990
6991
6992

6994

6996
6997
6998
6999
7000
7001
7002
7003
7004

7006
7007
7008
7009
7010
7011
7012
7013
7014

7016
7017
7018
7019

7021
7022
7023
7024
7025
7026
7027
7028

7030

7032
7033
7034
7035

/*

* nost failures in this routine are not a fatal error
* W sinply unlink the /var/run file and conti nue

*/

ret = rename(UFS_SI GNATURE_LI ST, UFS_SI GNATURE LI ST". tnp");

error errno;
I NJECT_ERRORL("ADD _TO SI GN_LI ST_RENAME", ret = -1);
if (ret == -1)
bam error (RENAME_FAI L, UFS_SI GNATURE_LI ST". t mp"
strerror(error));
(void) unlink(UFS_SI GNATURE LI ST);
return (0);
}
tfp = fopen(UFS_SI GNATURE_LI ST".tmp", "a");
error = errno;
I NJECT_ERRORL("ADD_TO SI GN_LI ST_FOPEN', tfp = NULL)
if (tfp == NULL)

bam error (OPEN_FAIL, UFS_SI GNATURE LI ST".tnp", strerror(error));

(void) unlink(UFS_ si GNATURE_LI ST". tnp");
return (0);

}
(void) snprintf(signline, sizeof (signline), "%\n", sign);

ret = fputs(signline, tfp);
error = errno;
I NJECT_ERRORL("ADD_TO SI GN_LI ST_FPUTS", ret = 0);
if (ret !'= strlen(signline))
bam error (SI G\N_LI ST_FPUTS_ERR, sign, strerror(error));
(void) fecl ose(tfp)
(void) unlink(UFS_ sl GNATURE_LI ST". tmp") ;
return (0);

}

ret = fclose(tfp);
error = errno;
I NJECT_ERRORL("ADD TO SI GN LI ST_FCLOSE", ret = EOF);
if (ret == EOF) {
bam error (CLOSE_FAIL, UFS_SI GNATURE_LI ST". t np",
strerror(error));
(voi d) unlink(UFS_SI G\IATURE LI ST". tmp");
return (0);

}

/* Sort the list again */

(voi d) snprintf(cnd, sizeof (cmi)
"/usr/bin/sort -u %.tnp > %.sorted"
UFS_SI GNATURE_LI ST, UFS_SI GNATURE_LI ST)

ret = exec cnd(cnd NULL) ;

IhUECT _ERROR1L(" ADD_TO . SIGN LI ST_SORT",

if (ret '=0)
bam error (GRUBSI GN_SORT_FAI LED) ;
(voi d) unlink(UFS_SI GNATURE LI ST". sort ed")
(void) unlink(UFS_SI GNATURE LI ST". tnp");
return (0);

ret = 1);

}
(void) unlink(UFS_SI GNATURE LI ST". tnp");

ret = renane(UFS_SI GNATURE_LI ST". sorted", UFS_SI GNATURE_LI ST);
error = errno;

I NJECT_ERRORL("ADD_TO SI GN_LI ST_RENAME2", ret = -1);

if (ret == -1) {

39

new boot adnf boot adm ¢

osdev));

7036 bam error (RENAME_FAIL, UFS_SI GNATURE_LI ST, strerror(error));
7037 (void) unlink(UFS_SI GNATURE LI ST". sort ed")

7038 return (0);

7039 }

7041 BAM DPRI NTF((D_RETURN_SUCCESS, fcn));

7043 return (0);

7044 }

7046 static int

7047 {set_signature(char *osroot, char *osdev, char *sign, char *fstype)
7048

7049 int ret;

7050 const char *fcn = "set_signature()";

7052 BAM DPRI NTF((D_FUNC_ENTRY4, fcn, osroot, osdev, sign, fstype));
7054 ret = set_backup(osroot, osdev, sign, fstype);

7055 I NJECT_ERROR1(" SET_SI GNATURE_BACKUP", ret = -1);

7056 if (ret == -1) {

7057 BAM DPRI NTF((D_RETURN_FAI LURE, fcn));

7058 bam error (SET_BACKUP_FAI LED, sign, osroot, osdev);
7059 return (-1);

7060 }

7062 ret = set_primary(osroot, osdev, sign, fstype);

7063 | NJECT_ERROR1(" SET_SI GNATURE_PRI MARY", ret = -1);

7065 if (ret == 0) {

7066 BAM DPRI NTF((D_RETURN_SUCCESS, fcn));

7067 } else {

7068 BAM DPRI NTF((D_RETURN_FAI LURE, fcn));

7069 bam error (SET_PRI MARY_FAI LED, sign, osroot, osdev);
7071 1

7072 return (ret);

7073 }

7075 char *

7076 get _grubsi gn(char *osroot, char *osdev)

7077 {

7078 char *grubsi gn; [* (<sign>, #,#) */

7079 char *slice;

7080 int fd|skpart

7081 char *sign;

7082 char *fstype;

7083 int ret;

7084 const char *fcn = "get_grubsign()";

7086 BAM DPRI NTF((D_FUNC_ENTRY2, fcn, osroot, osdev));

7087 fstype = get fstype(osroot)

7088 I NJECT_ERRORI(" GET_GRUBSI GN_FSTYPE", fstype = NULL);

7089 if (fstype == NULL) {

7090 bam error (GET_FSTYPE_FAI LED, osroot);

7091 return (NULL);

7092 1

7094 sign = find_existing_sign(osroot, osdev, fstype);

7095 I NJECT EH%IH(FI ND_EXI STI NG_ SIGN sign = NULL)

7096 if (sign == NULL) {

7097 BANLDPRINTF((D_GET_GRUBSIGth[LEXISTING fcn, osroot
7098 sign = create_new sign(osdev, fstype);

7099 | NJECT ERRCRl(CREATE_NEW SI GN', sign = NULL);
7100 if (sign == NULL) {

7101 bam error (GRUBSI GN_CREATE_FAI L, osdev)

new boot adnf boot adm ¢ 41 new boot adnf boot adm ¢ 42

7102 free(fstype); 7787 int root_opt,
7103 return (NULL); 7788 int *entry_num
7104 } 7789 {
7105 } 7790 int i
7791 l'ine_t *| p;
7107 ret = set_signature(osroot, osdev, sign, fstype); 7792 entry_t *ent;
7108 I NJECT_ERRORL(" SET_SI GNATURE_FAI L", ret = -1); 7793 const char *fcn = "find_boot _entry()";
7109 if (ret == -1) {
7110 bam error (GRUBSI GN_VWRI TE_FAI L, osdev); 7795 if (entry_num
7111 free(sign); 7796 *entry_num = BAM ERROR,
7112 free(fstype);
7113 (void) unlink(UFS_SI GNATURE_LI ST) ; 7798 /* find matching entry */
7114 return (NULL); 7799 for (i =0, ent = np->entries; ent; i++, ent = ent->next) {
7115 } 7800 Ip = ent->start;
7117 free(fstype); 7802 /* first line of entry nust be bootadm comment */
7803 Ip = ent->start;
7119 if (bam.verbose) 7804 if (Ip->flags != BAM COMMENT ||
7120 bam pri nt (GRUBSI GN_FOUND_OR_CREATED, sign, osdev); 7805 strenp(l p->arg, BAM BOOTADM HDR) != 0) {
7806 conti nue;
7122 fdi skpart = = get_part i tion(osdev); 7807 }
7123 I NJECT_ERRORL(" GET_GRUBSI GN_FDI sk*, fdi skpart = -1);
7124 if (fdiskpart == -1) { 7809 /* advance to title line */
7125 bam error (FDI SKPART_FAI L, osdev); 7810 Ip = | p->next;
7126 free(sign); 7811 it (title) {
7127 return (NULL); 7812 if (Ip->flags == BAM.TI TLE && | p->arg &&
7128 } 7813 strcenp(lp->arg, title) == 0) {
7814 BAM _DPRI NTF((D_MATCHED_TI TLE, fcn, title));
7130 slice = strrchr(osdev, 's’); 7815) br eak;
7816
7132 grubsign = s_calloc(1, MAXNAMELEN + 10); 7817 BAM DPRI NTF((D_NOVATCH TI TLE, fcn, title, Ip->arg));
7133 | * if (slice) { 7818 continue; /* check title only */
4598 if (slice) { 7819 }
7134 (void) snprintf(grubsign, MAXNAMELEN + 10, "(9%, %, %)",
7135 sign, fdiskpart, slice[1] + 'a - '0"); 7821 Ip = Ip->next; /* advance to root line */
7136 } else 7822 if (Ip == NULL) {
7137 (void) snprintf(grubsign, MAXNAMELEN + 10, " (%, %d)", 7823 conti nue;
7138 sign, fdiskpart);*/ 7824 } elseif (Ip->cnmd !'= NULL &&
7139 grubsi gn = strdup(sign); 7825 strenmp(l p->cnd, menu_cnds[FI NDROOT_CVD]) == 0) {
4603 sign, fdiskpart); 7826 I NJECT. ERRCRl(FI ND_BOOT_ENTRY_NULL_FI NDROOT"
7827 findroot = NULL);
7141 free(sign); 7828 if (findroot == NULL) {
7829 BAM DPRI NTF((D_NOVATCH_FI NDROOT_NULL,
7143 BAM DPRI NTF((D_GET_GRUBSI GN_SUCCESS, fcn, grubsign)); 7830 fcn, Ip->arg));
7831 conti nue;
7145 return (strchr(grubsign,’_') + 1); 7832 }
4609 return (grubsign); 7833 /* findroot command found, try match */
7146 } 7834 if (strncnp(lp->arg, strchr(flnd oot, '_') + 1, strlen(l
__unchanged_portion_onitted_ 5298 if (strcnp(lp->arg, findroot) !'= 0) {
7835 BAM _DPRI NTF((D_NOVATCH_FI NDROOT,
7771 | * 7836 fcn, findroot, |p->arg));
7772 * look for nmatching bootadmentry with specified paraneters 7837 conti nue;
7773 * Here are the rules (based on existing usage): 7838 }
7774 * - |f title is specified, match on title only 7839 BAM _DPRI NTF((D_MATCHED_FI NDROOT, fcn, findroot));
7775 * - Else, match on root/findroot, kernel, and nodul e. 7840 Ip = Ip->next; /* advance to kernel line */
7776 % Note that, if root_opt is non-zero, the absence of 7841 } elseif (Ip->cnd !'= NULL &&
7777 % root line is considered a natch. 7842 strenp(l p->cnd, nmenu_cnds[ROOT_CMD]) == 0) {
7778 */ 7843 I NJECT. ERRCRl(" FI'ND_BOOT_ENTRY_NULL_ROOT", root = NULL);
7779 static entry_t * 7844 if (root == NULL)
7780 find_boot _entry(7845 BAM DPRI NTF((D_NOVATCH ROOT_NULL,
7781 menu_t *np, 7846 fcn, Ip->arg));
7782 char *title, 7847 conti nue;
7783 char *ker nel 7848 }
7784 char *fi ndroot, 7849 /* root cnd found, try match */
7785 char *root, 7850 if (strcmp(lp->arg, root) !'=10) {

7786 char *nodul e, 7851 BAM _DPRI NTF((D_NOVATCH_ROCT,

new boot adnf boot adm ¢

7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868

7870
7871
7872

7874
7875
7876
7877
7878
7879

7881

7883
7884

7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901

7903
7904
7905
7906
7907
7908

7910
7912
7913
7914

7916
7917

43

fen,
conti nue;

}
BAM_DPRI NTF((D_MATCHED_ROOT, fcn,
I'p = I p->next; /* advance to kernel

root, |p->arg));

root));
line */
} else {
I NJECT_ERRORL(" FI ND_BOOT_ENTRY_ROOT_OPT_NO',
root_opt = 0);
I NJECT, ERRCRl("FIND BOOT_ENTRY_ROOT_OPT_YES",

root_opt = 1);
/* no root commnd see if root is optional */
if (root_opt == 0)
BAM _DPRI NTF((D NO_ROOT_OPT, fcn));
continue;
}
BAM _DPRI NTF((D_ROOT_OPT, fcn));
}
if (I'p==NULL || |p->next == NULL) {
conti nue;
}
if (kernel &&

(!check_cnd(l p->cnd, KERNEL_CMD, |p->arg, kernel))) {
if (!(ent->flags & BAM ENTRY_FAI LSAFE) ||
I (ent->flags & BAM ENTRY_DBOOT) ||

strenp(kernel, DI RECT_BOOT_FAI LSAFE_LINE) != 0)
conti nue;
ent->fl ags | = BAM _ENTRY_UPGFSKERNEL;
}
BAM _DPRI NTF((D_KERNEL_MATCH, fcn, kernel, |p->arg));
/*
* Check for matching nodule entry (failsafe or normal).
* If it fails to match, we go around the | oop again.
* For xpv entries, there are two nodule lines, so we
* do the check twice.
*
/
Ip = Ip->next; [/* advance to options line */
#endif /* | codereview */
Ip = Ip->next; /* advance to nodule line */
if (check_cmd(l p->cnd, MODULE_CMD, | p->arg, nodule) ||
((I'p = I p->next) = NULL) &&
check_cmd(| p->cnd, MODULE_CMD, | p->arg, nodule))) {
/* match found */
BAM DPRI NTF((D_MODULE_MATCH, fcn, nodule, |p->arg));
br eak;
}
if (strcnp(nodul e, FAI LSAFE_ARCHI VE) == &&
(strcnmp(l p->prev->arg, FAILSAFE_ ARCHI VE_32) == |
strenp(l p->prev->arg, FAI LSAFE ARCH VE 64) == 0)) {
ent->flags | = BAM ENTRY_UPGFSMODULE;
break;
}
}
if (ent & entry_nunm) {
*entry_num = i;
}
if (ent)

{
BAM DPRI NTF((D_RETURN RET, fcn,

i));

new boot adnf boot adm ¢

7918 } else {

7919 BAM DPRI NTF((D_RETURN_RET, fcn, BAM ERROR));

7920 }

7921 return (ent);

7922 }

7924 static int

7925 updat e_boot _entry(nenu_t *np, char *title, char *findroot, char *root,
7926 char *kernel, char *nod_kernel, char *npdule, int root_opt)

7927 {

7928 int i;

7929 int change_kernel = 0;

7930 entry_t *ent;

7931 l'ine_t *| p;

7932 line_t *tlp;

7933 char I'i nebuf [BAM_MAXLI NE] ;

7934 const char *fcn = "update_boot _entry()";

7935 char *| abel ;

7936 #endif /* | codereview */

7938 /* note: don't match on title, it’'s updated on upgrade */

7939 ent = find_boot_entry(np, NULL, kernel, findroot, root, nodule,
7940 root _opt, &);

7941 if ((ent/—— NULL) && (bam direct == BAM DI RECT_DBOOT)) {

7942 *

7943 * We may be upgrading a kernel fromnultiboot to

7944 * directboot. Look for a nultiboot entry. A multiboot
7945 * entry will not have a findroot Iine.

7946 */

7947 ent = find_boot_entry(np, NULL, "multiboot", NULL, root,
7948 MULTI BOOT_ARCHI VE, root_opt, &);

7949 if (ent !'= NULL) {

7950 BAM _DPRI NTF((D_UPGRADE_FROM MJULTI BOOT, fcn, root));
7951 change_kernel = 1;

7952 }

7953 } else if (ent) {

7954 BAM DPRI NTF((D_FOUND_FI NDROOT, fcn, findroot));

7955 }

7957 if (ent == NULL) {

7958 BAM A DPRI NTF((D_ENTRY_NOT_FOUND_CREATI NG fcn, findroot))
7959 return (add_boot _entry(np, title, findroot,

7960 kernel, nod_kernel, nodul e, NULL));

7961 1

7963 /* replace title of existing entry and update findroot |ine */
7964 Ip = ent->start;

7965 Ip = Ip->next; /[/* title line */

7966 (void) snprintf(linebuf, sizeof (linebuf), "%%%",

7967 menu_cnds[TI TLE_CMD], nenu_cnds[SEP_CMD], title);

7968 free(lp->arg);

7969 free(l p->line);

7970 I p->arg = s_strdup(title);

7971 Ip->line = s_strdup(linebuf);

7972 BAM DPRI NTF((D_CHANG NG TI TLE, fcn, title));

7974 tlp = Ip; /* title line */

7975 Ip = Ip->next; /* root line */

7977 /* if no root or findroot command, create a new line_t */

7978 if ((Ip->cmd !'= NULL) && (strcnp(lp->cnd, nenu_cnds[ROOT_CMD]) != 0
7979 strcnp(l p->cnd, nenu_cnds[FI NDROOT O\/D]) 1=0)) {

7980 Ip=sca||oc(1 sizeof (line_t));

7981 bam add_l i ne(nmp, ent, tlp, Ip);

7982 } else {

7983 if (Ip->cmd !'= NULL)

44

&&

new boot adnf boot adm ¢

7984

7986

7987

7988

7989 }

7991 | p->cnmd

7992 | p->sep

7993 | abel =

7994 *(strchr
7995 | p->arg

5356 | p->arg =

7996 (void) s
7997 menu
5358 menu
7998 I p->line
7999 free(l ab
8000 #endif /* | code
8001 BAM DPRI

8003 /* kerne
8004 Ip =1p-
8006 if (ent-
8007

8008

8009 #endif /* ! code

8011
8012
5360
5361
5362
5363
5364
5365
8013
8014
8015

8017
8018

8020
8021
8022
8023
8024
8025
8026

8028
8029

8030

8031

8032

8033

8034

8035

8036

8037

8038

8039

8040 #endif /*
8041 }

code

free(l p->cmd);

free(l p->sep);
free(l p->arg);
free(l p->line);

= s_strdup(nmenu_cnds[FI NDROOT_CM]) ;
= s_strdup(nmenu_cnds[SEP_CMD]) ;
strdup(strchr(flndroot) + 1),
(label,”,")) = 0;

=s strdup(label)

=s strdup(flndroot);
nprintf(linebuf, sizeof (linebuf),

U)

"B,

_cnds[FI NDROOT_CMD], nenu_cnds[SEP_CMVD], | abel);
crrds[FI NDROOT_CMD], nenu_cnds[SEP_CMD], findroot);
= s_strdup(li nebuf)

el);

review */

NTF((D_ADDI NG _FI NDROOT_LI NE, fcn, findroot))

I line */

>next ;

>flags & BAM ENTRY_UPGFSKERNEL) {

char *params = NULL;
char *opts = NULL;
review */

opts = strpbrk(kernel, " \t");
*opts++ = '\0";

params = strstr(lp->line, "-s");
1f (params != NULL)

(void) snprintf(linebuf, sizeof (linebuf),
menu_cnds[KERNEL_DOLLAR _CMD], menu_cnds[SEP_CMD] ,
kernel, paranms+2);

el se

(void) snprintf(linebuf, sizeof (linebuf), "%%%",
menu_cnds[KERNEL_DOLLAR_CMD], menu_cnds[SEP_CMD] ,
kernel);

if (Ip->cmd !'= NULL)
free(l p->cnd);

free(l p->arg);
free(l p->line);
| p->cmd = s strdup(nenu crmds[KERNEL_DOLLAR_CMD]) ;
| p->arg = s_strdup(strstr(linebuf, "/"));
I p->line = s_strdup(linebuf);
ent->flags & ~BAM ENTRY_| UPGFSKERNEL ;
BAM DPRI NTF((D_ADDI NG_KERNEL_DOLLAR, fcn, |p->prev->cnd))
Ip = | p->next;
params = strstr(lp->arg,
free(l p->arg);
free(l p->line);
if (parans)
(void) snprintf(linebuf, sizeof(linebuf)
| p->cmd, nenu_cnds[SEP_CMD], opts) ;

=8¢

el se
(void) snprintf(linebuf, sizeof(linebuf),
p->cnd, nmenu_cnds[SEP_CMD], opt s) ;
| p->line = s_strdup(linebuf)
| p->arg = s_strdup(strchr(linebuf,
review */

"% Y5 Ys"

=) + 1)

" YsUsUS"

"% %Y -s",

45

new boot adnf boot adm ¢

8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087

8089
8090

8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107

if (change_kernel) {

#endi f /* |

#endi f /* |

#endi f /* !

}
/*

char *opts = NULL;

coderevi ew */
/*

* We're upgrading fromnultiboot to directboot.
*/

opts = strpbrk(kernel At
0’

*opts++ =

coder evi ew */

if (Ip->cnmd !'= NULL &&
strcnp(l p->cnd, nmenu_cnds[KERNEL_CMVD]) == 0) {
(void) snprintf(linebuf, sizeof (linebuf),
menu_cnmds[KERNEL_DOLLAR _CMD] ,
kernel);
free(l p->cmd);
free(l p->arg);
free(l p->line);
I p->cmd = s_strdup(nmenu_cnds[KERNEL_DOLLAR _CMD]) ;
| p->arg = s_strdup(kernel);
I p->line = s_strdup(linebuf);
p = | p->next;
BAM DPRI NTF((D_ADDI NG KERNEL_DOLLAR, fcn,
(void) snprintf(linebuf, sizeof(linebuf),
| p- >cmj nmenu cnds[SEP CMD] , opt s) ;

"8 YsYs"

kernel));
"YsYsYs"

I p->line = s_strdup(linebuf);

I p->arg = s_strdup(strchr(linebuf, "=") + 1);

coderevi ew */

}
if (Ip->cmd !'= NULL &&
strcnp(l p->cnd, nenu_cnds[MODULE_CMD]) == 0) {
(void) snprintf(linebuf, sizeof (linebuf),
menu_cnmds[MODULE_DOLLAR _CMD] ,
nodul e) ;
free(l p->cmd);
free(l p->arg);
free(l p->line);
| p->cmd = s_strdup(nmenu_cnds[MODULE_DOLLAR _CMD]) ;
| p->arg = s_strdup(nodul e);
I p->line = s_strdup(linebuf);
I'p = | p->next;
BAM DPRI NTF((D_ADDI NG MODULE_DOLLAR, fcn,

"8 YsYs"

nodul e)) ;

nodul e line */

I'p = | p->next;

if (ent->flags & BAM ENTRY_UPGFSMODULE) {

if (I'p->cmd T= NULL &&
strcenp(l p->cnd, nmenu_cnds[MODULE_CMVD]) == 0) {
(void) snprintf(linebuf, sizeof (linebuf),
nmenu_cnds[MODULE_DOLLAR_CMD| ,
nmodul e) ;
free(l p->cnd);
free(lp->arg);
free(l p->line);
| p->cmd = s_strdup(nmenu_cnds][MODULE_DOLLAR _CMD]) ;
| p->arg = s_strdup(nodul e);
I p->line = s_strdup(linebuf);
I'p = | p->next;
ent ->f| ags & ~BAM ENTRY_UPGFSMODULE;
BAM DPRI NTF((D_ADDI NG MODULE_DOLLAR, fcn,

"YU Ys",

nodul e)) ;

menu_cnds[SEP_CMD] ,

menu_cnds[SEP_CMD] ,

menu_cnds[SEP_CMD] ,

46

new boot adnf boot adm ¢

8108

8110
8111
8112

8114
8115

}

int

root _optional (char *osroot,

8116 {

8117
8118
8119
8120
8121
8122
8123

8125

8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140

8142
8143
8144
8145
8146
8147
8148

8150
8151
8152
8153
8154
8155
8156
8157

8159
8160
8161
8162

8164

8166
8167

8169
8170
8171
8172
8173

out :

}

BAM DPRI NTF((D_RETURN_RET, fcn, i));
return (i);

char *menu_root)

char *ospeci al ;

char *mspeci al ;

char *s| ash;

int root _opt;

int retl;

int ret2;

const char *fcn = "root _optional ()";

BAM DPRI NTF((D_FUNC_ENTRY2, fcn, osroot, nenu_root));

/*
* For all filesystens except ZFS, a straight conpare of osroot
* and nenu_root will tell us if root is optional.
* For ZFS, the situation is conplicated by the fact that
*/nenu_root and osroot are always different
*
retl = is_zfs(osroot);
ret2 = is_zfs(menu_root);
INJECT ERRORL("ROOT_OPT_NOT_ZFS', retl = 0);
if (lretl || 'ret2) {
BAM DPRI NTF((D_ROOT_OPT_NOT_ZFS, fcn, osroot, menu_root));
root_opt = (strcnp(osroot, nenu_root) == 0);
goto out;
}
ospeci al = get_speci al (osroot);
I NDECT ERRCRl(ROOT_OPTI ONAL _ OSPECI AL" ospeci al = NULL);
if (ospecial == NULL) {
bam error (GET_OSROOT_SPECI AL_ERR, osroot);
return (0);

}
BAM DPRI NTF((D_ROOT_OPTI ONAL_OSPECI AL, fcn, ospecial, osroot));
mepeci al = get_speci al (menu_root);
| NJECT_ERRORL(" ROOT_OPTI ONAL_MSPECI AL",
if (mspecial == NULL) {
bam error (GET_MENU_ROOT_SPECI AL_ERR, nenu_root);
free(ospecial);
return (0);

mepeci al = NULL);

}
BAM DPRI NTF((D_ROOT_OPTI ONAL_MSPECI AL, fcn, nspecial, nenu_root));

slash = strchr(ospecial, '/");
if (slash)
*slash = "\0";

BAM_DPRI NTF((D_ROOT_OPTI ONAL_FI XED_OSPECI AL, fcn, ospecial,

root_opt = (strcnp(ospecial, nmspecial) == 0);
free(ospecial);
free(nspecial);

I NJECT ERRO?l("RCOT OPTI ONAL_NO',
| NJECT_ERRORL(* ROOT_COPTI ONAL _ YES
if (root_opt) {

BAM _DPRI NTF((D_RETURN_SUCCESS,

root_opt = 0);
root_opt = 1);

fcn));

osroot));

47

new boot adnf boot adm ¢

8174 } else {

8175 BAM DPRI NTF((D_RETURN_FAI LURE, fcn));

8176 }

8178 return (root_opt);

8179 }

8181 /* ARGSUSED*/

8182 static error_t

8183 update_entry(nenu_t *np, char *menu_root, char *osdev)

8184 {

8185 int entry;

8186 char *grubsi gn;

8187 char *grubr oot ;

8188 char *title,;

8189 char osr oot [PATH

8190 char *fail saf e_ker nel = NULL;

8191 struct stat sbuf;

8192 char fail saf e[256] ;

8193 char fail saf e_64[256] ;

8194 int ret;

8195 const char *fcn = "update_entry()";

8197 assert (np);

8198 assert(menu_root);

8199 assert (osdev);

8200 assert(bamroot);

8202 BAM DPRI NTF((D_FUNC_ENTRY3, fcn, nenu_root, osdev, bamroot));
8204 (void) strlcpy(osroot, bamroot, sizeof (osroot));
8206 title = get_title(osroot);

8207 assert(title);

8209 grubsi gn = get _grubsi gn(osroot, osdev);

8210 I NJECT_ERRORL(" GET_GRUBSI GN_ FAI L", grubsign = NULL);
8211 if (grubsign == NULL) {

8212 bam error (GET_GRUBSI GN_ERROR, osroot, osdev);
8213 return (BAM ERROR);

8214 }

8216 /*

8217 * It is not a fatal error if get_grubroot() fails
8218 * W no longer rely on biosdev to populate the
8219 * menu

8220 */

8221 grubroot = get_grubroot (osroot, osdev, menu_r oot) ;
8222 I NJECT ERROQl(GET_GRUBROOT_ FAI L grubroot = NULL);
8223 if (grubroot) {

8224 BAM _DPRI NTF((D_GET_GRUBROOT_SUCCESS,

8225 “fcn, osroot, osdev, menu_root));

8226 } else {

8227 BAM DPRI NTF((D_GET_GRUBROOT_FAI LURE,

8228 fcn, osroot, osdev, nmenu_root));

8229 }

8231 /* add the entry for normal Solaris */

8232 I NJECT_ERRORL(" UPDATE_ENTRY_MJLTI BOOT",

8233 bam di rect = BAM DI RECT_MJILTI BOQT) ;

8234 if (bamdirect == BAM DI RECT_DBOOT) ({

8235 entry = update_boot_entry(np, title, grubsign, grubroot,
8236 (bam zfs ? DI RECT_BOOT_KERNEL_ZFS : DI RECT_BOOT_KERNEL),
8237 NULL, DI RECT_BOOT_ARCHI VE,

8238 root _optional (osroot, menu_root));

8239 BAM DPRI NTF((D_UPDATED_| B(IJT ENTRY, fcn bam zfs, grubsign));

new boot adnf boot adm ¢ 49

8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252

8254
8255

8257
8258
8259
8260
8261
8262
8263
8264

8266
8267
8268
8269
8270

8272

8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297

8299
8300
8301
8302
8303
8304
8305

if ((entry != BAM ERROR) && (bam.is_hv == BAM HV_PRESENT)) {

(voi d) update_boot _entry(np, NEWI-N ENTRY, grubsign,
grubroot, XEN MENU, bam zfs ?
XEN_ KERNEL MODULE_LI NE_ZFS : XEN_KERNEL_MODULE_LI NE,
DI RECT_BOOT_ARCHI VE,
root _optional (osroot, menu_root));

BAM DPRI NTF((D_UPDATED_HV_ENTRY,
fcn, bam zfs, grubsign));

} else {
entry = update_boot_entry(np, title, grubsign, grubroot,
MULTI _BOOT, NULL, MJLTI BOOT_ARCHI VE
root _optional (osroot, menu_root));

BAM DPRI NTF((D_UPDATED_MULTI BOOT_ENTRY, fcn, grubsign));
}

/*

* Add the entry for failsafe archive. On a bfu'd system the
* failsafe may be different than the installed kernel.

*

(void) snprintf(failsafe, sizeof (failsafe), "%%",
osroot, FAI LSAFE_ARCHI VE_32)

(void) snprintf(failsafe_64, sizeof (failsafe_64), "%%",
osroot, FAlILSAFE_ARCHI VE_64);

/*

* Check if at |east one of the two archives exists

* Using $I SADIR as the default line, we have an entry which works
* for both the cases.

*/

if (stat(failsafe, &sbuf) == 0 || stat(failsafe_64, &sbuf) == 0) {

/* Figure out where the kernel |ine should point */
(void) snprintf(failsafe, sizeof (failsafe), "%%", osroot,
DI RECT_BOOT_FAI LSAFE_32) ;
(void) snprintf(failsafe_64, sizeof (failsafe_64), "%%",
osroot, DI RECT_BOOT_FAI LSAFE 64);
if (stat(fallsafe “&sbuf) =0 |T
stat (fail safe_64, &sbuf) == 0) {
fail safe_kernel = DI RECT_BOOT_FAI LSAFE LI NE;
} else {
(void) snprintf(failsafe, sizeof (failsafe), "%%",
osroot, MJLTI _BOOT FAILSAFE
if (stat(failsafe, &sbuf) {
fail safe_kernel = MJLTI _BOOT_FAI LSAFE_LI NE;
}

if (failsafe_kernel !'= NULL) {
(voi d) update_boot_entry(np, FAILSAFE_TITLE, grubsign,
grubroot, failsafe_kernel, NULL, FAILSAFE_ARCH VE,
r oot optl onal (osroot, menu root))
BAM_DPRI NTF((D_UPDATED_ FAILSAFE ENTRY, fcn
failsafe_kernel));

}
free(grubroot);

| NJECT_ERRORL(" UPDATE_ENTRY_ERROR', entry = BAM ERROR);

if (entry == BAM ERROR)
bam error (FAI LED_TO ADD BOOT_ENTRY, title, grubsign);
free(grubsign);
return (BAM_ERROR) ;

}
free(grubsign);

new boot adnf boot adm ¢

8307
8308
8309
8310
8311
8312
8313
8314
8315 }

updat e_nunberi ng(np) ;
ret = set_gl obal (np, nenu_cnds[DEFAULT_CMD], entry);
I NJECT_ERRORL(" SET_DEFAULT_ERROR', ret = BAM ERROR);
if (ret == BAM ERROR)

bam error (SET_DEFAULT_FAI LED, entry);

}
BAM DPRI NTF((D_RETURN_SUCCESS, fcn))
return (BAM VRI TE) ;

8317 static void
8318 save_default _entry(nenu_t *np, const char *which)

8319 {

8320 int I i neNum

8321 int ent ryNum

8322 int entry = 0; /* default is 0 */
8323 char I'i nebuf [BAM_MAXLI NE] ;

8324 line_t *Ip = np->curdefaul t;

8325 const char *fcn = "save_default_entry()";
8327 if (mp->start) {

8328 I'i neNum = np- >end- >l i neNum

8329 entryNum = np- >end- >ent r yNum

8330 } else {

8331 lineNum = LINE_INIT;

8332 entryNum = ENTRY_I NI T;

8333 }

8335 if (Ip)

8336 entry = s_strtol (I p->arg);

8338 (void) snprint f(i nebuf, sizeof (linebuf), "#%%l", which,
8339 BAM _DPRI NTF(()_SAVI NG DEFAULT TO, fcn, linebuf));
8340 l'ine_parser(mp, linebuf, & ineNum &entryNum;

8341 BAM DPRI NTF((D_SAVED | DEFAULT TO, fcn, lineNum entryNum));
8342 }

8344 static void

8345 restore_default _entry(nenu_t *np, const char *which, line_t *lp)
8346 {

8347 int entry;

8348 char *str;

8349 const char *fcn = "restore_default_entry()";
8351 if (I'p == NULL)

8352 BAM DPRI NTF((D_RESTORE_DEFAULT_NULL, fcn));
8353 return; /* nothing to restore */
8354 }

8356 BAM DPRI NTF((D_RESTORE_DEFAULT_STR, fcn, which));
8358 str = I p->arg + strlen(which);

8359 entry = s_strtol (str);

8360 (voi d) set_global (nmp, nenu_cnds[DEFAULT_CMD], entry);
8362 BAM DPRI NTF((D_RESTORED DEFAULT_TO, fcn, entry));
8364 /* delete saved old default line */

8365 unlink_line(mp, |p);

8366 line_free(lp);

8367 }

8369 /*

8370 * This function is for supporting reboot with args.

8371

* The opt val ue can be:

entry);

50

new boot adnf boot adm ¢ 51

8372 * NULL delete tenp entry, if present

8373 * entry=<n> switches default entry to <n>

8374 * else treated as boot-args and setup a tenperary nmenu entry
8375 * and neke it the default

8376 * Note that we are always rebooting the current CS instance

8377 * so osroot ==/ always.

8378 */

8379 #define REBOOT_TI TLE "Sol ari s_reboot _transient"

8381 /* ARGSUSED*/

8382 static error_t

8383 update_tenp(nenu_t *np, char *dummy, char *opt)

8384 {

8385 int entry;

8386 char *osdev;

8387 char *f stype;

8388 char *sign;

8389 char *opt _ptr;

8390 char *pat h;

8391 char ker nbuf [BUFSI Z] ;

8392 char ar gs_buf [BUFSI Z] ;

8393 char si gnbuf [PATH_MAX] ;

8394 int ret;

8395 const char *fcn = "update_tenp()";

8397 assert(nmp);

8398 assert (dummy == NULL);

8400 /* opt can be NULL */

8401 BAM DPRI NTF((D_FUNC_ENTRY1, fcn, opt ? opt "<NULL>"));
8402 BAM _DPRI NTF((D_BAM ROOT, fcn, bamalt_root, bamroot));
8404 if (bamalt_root || bamrootlen != 1 ||

8405 strcnp(bamroot, "/™) =0 ||

8406 strcnp(rootbuf, "/") 1= 0)

8407 bam er ror(ALT_ROOT_I NVALI D, bam root);

8408 return (BAM ERROR);

8409 }

8411 /* 1f no option, delete exiting reboot menu entry */

8412 if (opt == NULL) {

8413 entry_t *ent;

8414 BAM DPRI NTF((D_OPT_NULL, fcn));

8415 ent = find_boot_entry(np, REBOOT_TI TLE, NULL, NULL,
8416 NULL, NULL, 0, &entry);

8417 if (ent == NULL) { /* not found is ok */

8418 BAM DPRI NTF((D_TRANSI ENT_NOTFOUND, fcn));
8419 return (BAM SUCCESS) ;

8420 }

8421 (voi d) del ete_boot_entry(np, entry, DBE PRI NTERR);
8422 rest or e_def aul t_ent ry(nmp, BAM OLDDEF, np->ol ddefault);
8423 mp- >ol ddef aul t = NULL;

8424 BAM DPRI NTF((D_RESTORED DEFAULT, fcn));

8425 BAM DPRI NTF((D_RETURN_SUCCESS, fcn));

8426 return (BAM WRI TE);

8427 }

8429 /* if entry=is specified, set the default entry */

8430 if (strncnp(opt, "entry=", strlen("entry=")) == 0)

8431 int entryNum = s_strtol (opt + strlien("entry="));
8432 BAM DPRI NTF((D_ENTRY_EQUALS, fcn, opt));

8433 if (selector(np, opt, &entry, NJLL) == BAM_SUCCESS) {
8434 /* this is entry=# option */

8435 ret = set_global (np, menu_cnds[DEFAULT_CMD], entry);
8436 BAM DPRI NTF((D_ENTRY_SET 1S, fcn, entry, ret));
8437 return (ret);

new boot adn? boot adm ¢ 52
8438 } else {

8439 bam error (SET_DEFAULT_FAI LED, entryNum;

8440 return (BAM ERROR);

8441 }

8442 }

8444 /*

8445 * add a new nenu entry based on opt and make it the default
8446 *

8448 fstype = get_fstype("/");

8449 II\L'JECT ERRORl(" REBOOT_ FSTYPE NULL", fstype = NULL);

8450 if (fstype == NULL)

8451 bam err or (REBOOT_FSTYPE_FAI LED) ;

8452 return (BAM ERRCR);

8453 }

8455 osdev = get speC| al ("1");

8456 INJECT ERR(Pl(REBCOOT _ SPECI AL_NULL", osdev = NULL);

8457 if (osdev == NULL) {

8458 free(fstype);

8459 bam err or (REBOOT_SPECI AL_FAI LED) ;

8460 return (BAM ERROR);

8461 }

8463 sign = find_existing_sign("/", osdev, fstype);

8464 sign = strchr(sign, 7) +1,

8465 [* 1 codereview */

8466 I NJECT_ERRORL(" REBOOT_SI GN_NULL", sign = NULL);

8467 if (sign == NULL) {

8468 free(fstype);

8469 free(osdev);

8470 bam error (REBOOT_SI GN_FAI LED) ;

8471 return (BAM ERROR);

8472 }

8474 free(osdev);

8475 (void) strlcpy(signbuf, sign, sizeof (signbuf));

8476 free(sign);

8478 assert(strchr(signbuf, "(’) == NULL && strchr(signbuf, ',’) == NULL &&
8479 strchr(signbuf, ")) == NULL);

8481 /*

8482 * There is no alternate root while doing reboot with args
8483 * This version of bootadmis only delivered with a DBOOT
8484 * version of Solaris.

8485 */

8486 I NJECT_ERRORL(" REBOOT_NOT_DBOOT", bam direct = BAM DI RECT_MJLTI BOOT) ;
8487 if (bamdirect != BAM DI RECT DBCOT) {

8488 free(fstype);

8489 bam error (REBOOT_DI RECT_FAI LED) ;

8490 return (BAM ERROR);

8491 }

8493 /* add an entry for Sol ari s reboot */

8494 i f (opt[O] = 7o

8495 * It s an option - first see if boot-file is set */
8496 ret = get kernel(np KERNEL_ CVD, kernbuf si zeof (kernbuf));
8497 | NJECT_ERRORI1(" REBOOT_GET_KERNEL", ret = BAM ERROR);
8498 if (ret != BAM SUCCESS) {

8499 free(fstype);

8500 bam error (REBCOT _GET_KERNEL_FAI LED) ;

8501 return (BAM ERROR);

8502 }

8503 if (kernbuf[0] == "'\0")

new boot adn? boot adm ¢ 53 new boot adnf boot adm ¢ 54
8504 (void) strlcpy(kernbuf, DI RECT_BOOT_KERNEL, 8570 /*
8505 si zeof (kernbuf)); 8571 * If there were options given, use those.
8506 /* 8572 * Ctherw se, copy over the default options.
8507 * If this is a zfs file systemand kernbuf does not 8573 */
8508 * have "-B $ZFS-BOOTFS" string yet, add it. 8574 if (opt_ptr 1= NULL) {
8509 */ 8575 Restore the space in opt string */
8510 if (strenp(fstype, "zfs") == 0 && !strstr(kernbuf, ZFS BOOT)) ({ 8576 *opt ptr =" 7
8511 (void) strlcat(kernbuf, " ", sizeof (kernbuf)); 8577 (voi d) strI cat(ker nbuf, opt_ptr,
8512 (void) strlcat(kernbuf, ZFS BOOT, sizeof (kernbuf)); 8578 si zeof (kernbuf));
8513 } 8579 } else {
8514 (void) strlcat(kernbuf, " ", sizeof (kernbuf)); 8580 ret = get_kernel (nmp, ARGS_CMD, args_buf,
8515 (void) strlcat(kernbuf, opt, sizeof (kernbuf)); 8581 si zeof (args_buf));
8516 BAM_DPRI NTF((D_REBOOT_ OPTION, fcn, ker nbuf)); 8582 I NJECT_ERRORL(" UPDATE_ TEI\/P PARTI AL_ARGS",
8517 } elseif (opt[O] ="/") { 8583 ret = BAM ERROR);
8518 /* 1t's a full path, so wite it out. */ 8584 if (ret I—BAMSUCCESS) {
8519 (void) strlcpy(kernbuf, opt, sizeof (kernbuf)); 8585 free(fstype);
8586 bam error (REB(I)T_GET_ARGS_FAI LED) ;
8521 /* 8587 return (BAM ERROR);
8522 * | f someone runs: 8588 }
8523 *
8524 * # eeprom boot - ar gs=" - kd’ 8590 if (args_buf[0] !="\0")
8525 * # reboot /platforni86pc/kernel/unix 8591 (void) strlcat(kernbuf, " ",
8526 * 8592 si zeof (kernbuf));
8527 * we want to use the boot-args as part of the boot 8593 (voi d) strlcat (kernbuf,
8528 * line. On the other hand, if sonmeone runs: 8594 args_buf, sizeof (kernbuf));
8529 * 8595 }
8530 * # reboot "/platfornii86pc/kernel/unix -kd" 8596 }
8531 & 8597 BAM DPRI NTF((D_REBOOT_RESOLVED_PARTI AL, fcn, kernbuf));
8532 * we don’t need to mess with boot-args. |f there's 8598 } else
8533 * no space in the options string, assume we're in the 8599 free(fstype);
8534 * first case. 8600 bam er r or (UNKNOWN_KERNEL, opt);
8535 * 8601 bam print st der r (UNKNOWN_KERNEL_REBOOT) ;
8536 if (strchr(opt *7) == NULL) { 8602 return (BAM ERROR);
8537 et = get_ker nel (np, ARGS_CMD, args_buf, 8603 }
8538 si zeof (ar gs_ buf)); 8604 }
8539 | NDECT_ERRORL(" REBOOT GET_ARGS', ret = BAM ERROR); 8605 free(fstype);
8540 if (ret !'= BAM SUCCESS) { 8606 entry = add boot _entry(np, REBOOT_TITLE, signbuf, kernbuf,
8541 free(fstype); 8607 NULL, NULL, LL);
8542 bam error(REBCDT GET_ARGS_FAI LED) ; 8608 I NJECT ERRO?l(REBOOT_ADD BOOT_ENTRY", entry = BAM ERROR);
8543 return (BAM ERROR); 8609 if (entry == BAM ERROR)
8544 } 8610 bam error (REBOOT_W TH_ARGS_ADD ENTRY_FAI LED) ;
8611 return (BAM ERROR);
8546 if (args_buf[0] !'="\0") { 8612 }
8547 (void) strlcat(kernbuf, " ", sizeof (kernbuf));
8548 (void) strlcat(kernbuf, args_buf, 8614 save_defaul t _entry(np, BAM OLDDEF);
8549 si zeof (kernbuf)); 8615 ret = set_gl obal (np, nenu_cnds[DEFAULT_CMD], entry);
8550 } 8616 I NJECT_ERRORL(" REBOOT_SET_GLOBAL", ret = BAM ERRCR);
8551 } 8617 if (ret == BAM ERROR) {
8552 BAM DPRI NTF((D_REBOOT_ABSPATH, fcn, kernbuf)); 8618 bam er ror (REBOOT_SET_DEFAULT_FAI LED, entry);
8553 } else { 8619 }
8554 /* 8620 BAM DPRI NTF((D_RETURN_SUCCESS, fcn));
8555 * It may be a partial path, or it may be a partial 8621 return (BAM WRI TE) ;
8556 * path followed by options. Assume that only options 8622 }
8557 * follow a space. |f soneone sends us a kernel path
8558 * that includes a space, they deserve to be broken. 8624 error_t
8559 */ 8625 set_gl obal (menu_t *np, char *gl obal cnd, int val)
8560 opt_ptr = strchr(opt, ' '); 8626 {
8561 if (opt_ptr !'= NULL) { 8627 line_t *1 p;
8562 *opt_ptr = '\0"; 8628 l'ine_t *f ound;
8563 } 8629 line_t *| ast;
8630 char *cp;
8565 path = expand_pat h(opt); 8631 char *str;
8566 if (path !'= NULL) { 8632 char prefi x[BAM_MAXLI NE] ;
8567 (void) strlcpy(kernbuf, path, sizeof (kernbuf)); 8633 size_t I en;
8568 free(path); 8634 const char *fcn = "set _global ()";

new boot adnf boot adm ¢

8636
8637

8639
8640
8641
8642
8643
8644
8645
8646
8647
8648

8650
8651
8652
8653

8655

8657
8658
8659
8660
8661
8662
8663

8665

8667
8668
8669
8670
8671

8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694

8696
8697
8698
8699
8700
8701

assert(np);
assert (gl obal cmd) ;

if (strcnp(global cnd, nenu_cnds[DEFAULT_CMD]) == 0) {

IhUECT_ERRCRl("SET GLOBAL_VAL_NEG', val =-1);

I NJECT_ERRORL(" SET_GLOBAL_MENU_EMPTY", np->end = NULL):

I NJECT_ERROR1(" SET_ GLOBAL VAL_TOO BI G val = 100);

if (val <0 || np->end == NULL || val > np- >end- >entryNJnj {
(void) snprintf(prefix, sizeof (prefix), "%", val);
bam error (1 NVALI D_ENTRY, prefix);
return (BAM ERROR);

}

found = last = NULL;
for (Ip = mp->start; Ip; Ip = 1p->next) {
if (Ip->flags !'= BAM GLOBAL)
conti nue;

last = 1p; /* track the last global found */
| NJECT_ERROR1("SET_GLOBAL_NULL_CMD', |p->crmd = NULL);

if (Ip->cmd == NULL) {
bam error (NO_CMD, | p->lineNum;

conti nue;
i}f (strcnp(gl obal cmd, | p->cnd) !'= 0)

conti nue;
BAM _DPRI NTF((D_FOUND_GLOBAL, fcn, gl obal cnd));
if (found)

}
found = | p;
}

if (found == NULL) {
Ip = s_calloc(1, sizeof (line_t));

if (last == NULL)

| p->next = np->start;

np->start = | p;

np->end = (np->end) ? np->end : |p;
} else {

| p->next = | ast->next;

Iast—>next = 1p;

if (lp->next == NULL)

np- >end I p;

{
bam error (DUP_CMD, gl obal cnd, |p->lineNum bamroot);

55

}
| p->flags = BAM GLOBAL; /* other fields not needed for wites */

len = strlen(globalcnmd) + strlen(menu_cnds[SEP_CMD]) ;
|l en += 10; /* val < 10 digits */
I'p->line = s_calloc(l, Ien);
(void) snprintf(lp->line, len, "%%%",
gl obal cmd, nenu crrds[SEP CND] val);
BAM DPRI NTF((D_SET_GLOBAL_WROTE NEW fcn, |p->line));
BAM_DPRI NTF((D_RETURN_SUCCESS, fcn));
return (BAMWRI TE);

}
/*
* W are changing an existing entry. Retain any prefix whitespace,

* but overwite everything else. This preserves tabs added for
* readability.
*

/

str = found->line;

new boot adnf boot adm ¢

8702
8703
8704
8705
8706
8707

8709
8710
8711
8712

8714
8715
8716
8717 }

8719 /*

cp = prefix;

whi (*str ==" " || *str =="\t")
*(cpt+t) = *(str++);

cp "\Q0"; / Termnate prefix */

len = strlen(prefix) + strlen(gl obal cnd);

len += strlen(menu_cnds[SEP_CMD]) + 10;

o

free(found- >I ine);
found->line = s caIIoc(l len);
(voi d) snpri ntf(found >line, len,
"% %s%s%d", prefix, gl obal cmd, nenu_cnds[SEP_CMVD], val);

BAM DPRI NTF((D_SET_GLOBAL_REPLACED, fcn, found->line));
BAM DPRI NTF((D_RETURN_SUCCESS, fcn))
return (BAMWRITE); /* need a wite to menu */

8720 * partial _path nay be anything like "kernel/unix" or "kmdb". Try to
8721 * expand it to a full unix path. The calling function is expected to
8722 * output a nessage if an error occurs and NULL is returned.

*/

8723

8724 static char *
8725 expand_pat h(const char *partial _path)

8726 {
8727
8728
8729
8730
8731

8733
8734

8736
8737
8738
8739
8740
8741
8742

8744
8745
8746
8747
8748
8749

8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767

int new_pat h_| en;

char *new_pat h;

char new_pat h2[PATH_MAX] ;
struct stat sb;

const char *fcn = "expand_path()";

new path_len = strlen(partial _path) + 64;
new path = s_calloc(1, new path_len);

/* First, try the sinplest case - sonmething |ike "kernel/unix" */
(void) snprintf(new path, new path_len, "/platformi86pc/ %",
partial _path);
if (stat(new_ path, &sb) ==
BAM DPRI NTF((D_EXPAND_PATH, fcn, new_path));
return (new_path);

}

if (strcnp(partial _path, "kmdb") == 0) {
(void) snprintf(new path, new path_len, "% -k",
DI RECT_BOOT_KERNEL) ;
BAM _DPRI NTF((D_EXPAND_PATH, fcn, new_path));
return (new_path);
}
/*
* W' ve quickly reached unsupported usage. Try once nore to
* see if we were just given a glom nane.
*
(void) snprintf(new path, new path_len, "/platforni86pc/ %/ unix",
partial _path);
(void) snpri ntf(new pat h2, PATH MAX, "/platforni86pc/ %/ anmd64/ uni x",
partial _path);
if (stat(new path, &sb) == 0) {
if (stat(new_pat h2, &sh) == 0) {
/*

* W natched both, so we actually
* want to wite the $I SADI R version.
*/
(voi d) snprlntf(new path, new path_| en,
/ pl atforn1|86pc/kerne|/0/$/$ISAD|R/un|x
partial _path);

new boot adn? boot adm ¢ 57 new boot adnf boot adm ¢
8768 } 8834 }
8769 BAM DPRI NTF((D_EXPAND_PATH, fcn, new path));
8770 return (new_path); 8836 /*
8771 } 8837 */Title for an entry to set properties that once went in bootenv.rc.
8838 *
8773 free(new_path); 8839 #define BOOTENV_RC Tl TLE "Sol aris bootenv rc"
8774 BAM _DPRI NTF((D_RETURN_FAI LURE, fcn));
8775 return (NULL); 8841 /*
8776 } 8842 * |f path is NULL, return the kernel (optnum == KERNEL_CMD) or argunents
8843 * (optnum == ARGS_CMD) in the argument buf. |f path is a zero-length
8778 | * 8844 * string, reset the value to the default. |If path is a non-zero-length
8779 * The kernel cnd and arg have been changed, so 8845 * string, set the kernel or argunents.
8780 * check whether the archive |ine needs to change. 8846 *
8781 */ 8847 static error_t
8782 static void 8848 get _set _kernel (
8783 set_archive_line(entry_t *entryp, line_t *kernelp) 8849 menu_t *np,
8784 { 8850 menu_cnd_t opt num
8785 l'ine_t *Ip = entryp->start; 8851 char *path
8786 char *new_ar chi ve; 8852 char *buf,
8787 menu_cnd_t m cnd; 8853 size_t bufsize)
8788 const char *fcn = "set_archive_line()"; 8854 {
8855 int ent ryNum
8790 for (; Ip !'= NULL; Ip = |p->next) { 8856 int rv = BAM SUCCESS;
8791 i1t (lp- >cnd | = NULL && strncnp(| p->cnd, nenu _cnds[MODULE_CMD] , 8857 int free_new path = 0;
8792 si zeof (nmenu_cnds[MODULE_CMD]) - 1) = 0) { 8858 entry_t *entryp;
8793 br eak; 8859 l'ine_t *ptr;
8794 } 8860 line_t *ker nel p;
8861 char *new_arg;
8796 I NJECT_ERRORL(" SET_ARCHI VE_LI NE_END_ENTRY", |p = entryp->end); 8862 char *ol d_args;
8797 if (Ip == entryp->end) { 8863 char *space;
8798 BAM DPRI NTF((D_ARCHI VE_LI NE_NONE, fcn, 8864 char *new_pat h;
8799 entryp->entryNum); 8865 char ol d_space;
8800 return; 8866 size_t ol d_kernel _I en;
8801 } 8867 size_t new str_| en;
8802 } 8868 char *f stype;
8803 I NDECT ERRCRl(SET_ARCHI VE_LI NE_END_MENU', |p = NULL); 8869 char *osdev;
8804 if (Ip == NULL) { 8870 char *sign;
8805 BAM DPRI NTF((D_ARCHI VE_LI NE_NONE, fcn, entryp->entryNum); 8871 char si gnbuf [PATH_MAX] ;
8806 return; 8872 int ret;
8807 } 8873 const char *fen = "get_set_kernel ()";
8809 if (strstr(kernelp->arg, "$ISADIR") != NULL) { 8875 assert (bufsize > 0);
8810 new_ar chi ve = DI RECT_BOOT_ARCHI VE;
8811 m cnd = MODULE DOLLAR CVD; 8877 ptr = kernelp = NULL;
8812 } elseif (strstr(kernel p->arg, "anmd64") != NULL) { 8878 new arg = old_args = space = NULL;
8813 new_ar chi ve = DI RECT_BOOT_ARCHI VE_64; 8879 new_path = NULL;
8814 m cnd = MODULE_CMD; 8880 buf[0] = '\0";
8815 } else {
8816 new_ar chi ve = DI RECT_BOOT_ARCHI VE_32; 8882 I NJECT_ERRORL(" GET_SET_KERNEL_NOT_DBCOT" ,
8817 mcnd = N[DULE = C\VD; 8883 bam di rect = BAM DI RECT_MJLTI BOOT) ;
8818 } 8884 if (bamdirect != BAM DI RECT_DBOOT) {
8885 bam er r or (NOT_DBOOT, opt num == KERNEL_CMD ? "kernel " : "args");
8820 if (strcnp(lp->arg, new_ archive) == 0) { 8886 return (BAM ERROR);
8821 BAM DPRI NTF((D_ARCHI VE_LI NE_NOCHANGE, fcn, |p->arg)); 8887 }
8822 return;
8823 } 8889 /*
8890 * |If a user changed the default entry to a non-bootadm controll ed
8825 if (Ip->cnd !'= NULL && strcnp(lp->cnd, menu_cmds[mecnd]) != 0) { 8891 * one, we don’t want to ness with it. Just print an error and
8826 free(lp->cnd); 8892 * return.
8827 | p->cnd = s_strdup(menu_cnds[mcnd]); 8893 */
8828 } 8894 if (nmp->curdefault) {
8895 entryNum = s_st rtol (nmp->curdefaul t->arg);
8830 free(lp->arg); 8896 for (entryp = np->entries; entryp; entryp = entryp->next) {
8831 | p->arg = s_strdup(new_archive); 8897 if (entryp >entryNum == entryNum
8832 update_l i ne(l p); 8898 br eak;
8833 BAM DPRI NTF((D ARCHI VE_LI NE_REPLACED, fcn, |p->line)); 8899 }

new boot adnf boot adm ¢

8900
8901
8902
8903
8904
8905

8907
8908

8910
8911
8912
8913
8914
5380
8915
8916
8917
8918
8919
8920
8921
8922

8924
8925
8926
8927
8928

8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958

8960
8961
8962
8963
8964

59

if ((entryp !'= NULL) &&
((entryp->flags & (BAM ENTRY_BOOTADM BAM ENTRY_LU)) == 0)) {
bam er ror (DEFAULT_NOT_BAM) ;
return (BAM ERROR);

}
}
entryp = find_boot_entry(np, BOOTENV_RC TITLE, NULL, NULL, NULL, NULL,
0, &entryNum;
if (entryp !'= NULL) {

}

if (path

}
| *

* First,
*

if ((pat
((op

for (ptr = entryp->start; ptr & ptr != entryp->end;
ptr = ptr->next) {
if (strncmp(ptr->cnd, menu_cnds[KERNEL_CMD] ,
si zeof (nmenu_ crrds[KERNEL CMD]) - 2) == 0) {
sizeof (menu_cmds[KERNEL_CMD]) - 1) == 0) {
kernelp = ptr;
break;

}

}

if (kernelp == NULL) {
bam error (NO_KERNEL, entryNum;
return (BAM ERROR);

}

ol d_kernel _l en = strcspn(kernel p->arg, " \t");

space = old_args = kernel p- >arg + ol d_ker neI I en;

while ((*old_args =="' ') || (*old_args == t'))
ol d_ar gs++;

== NULL) {

if (entryp == NULL) {

BAM DPRI NTF((D_GET_SET_KERNEL_NO RC, fcn));
BAM_DPRI NTF((D_RETURN_SUCCESS, fcn));
return (BAM SUCCESS);

assert (kernel p);
if (optnum== ARGS , CVD) {

if (old args[0] I'="\0") {
(voi d) trlcpy(buf, ol d_args, bufsize);
BAM DPRI NTF((D_GET_SET_KERNEL_ARGS, fcn buf));
}
} else {
/

We need to print the kernel, so we just turn the
first space into a '\0" and print the beginning.
We don't print anything if it’s the default kernel.

* Ok Ok Ok

ol d_space = *space;

*space = '\0’;

if (strcnp(kernel p->arg, DI RECT_BOOT_KERNEL) != 0) {
(void) strlcpy(buf, kernelp->arg, bufsize);
BAM DPRI NTF((D_GET_SET_KERNEL_KERN, fcn, buf));

*space = ol d_space;

}
BAM DPRI NTF((D_RETURN_SUCCESS, fcn));
return (BAM _SUCCESS);

check if we're resetting an entry to the default.

h[0] =="\0") ||
tnum == KERNEL_CMD) &&

new boot adnf boot adm ¢

8965
8966
8967
8968
8969
8970

8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991

8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
5468
5469
9004
9005

9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028

60

(strcmp(path, DIRECT BOOT_KERNEL) == O))) {
if ((entryp == NULL) Tl (kernelp == NULL)) {
/* No previous entry, it’s already the default */
BAM _DPRI NTF((D_GET_SET_KERNEL_ALREADY, fcn));
return (BAM SUCCESS);

Check if we can delete the entry. |If we're resetting the
kernel command, and the args is already enpty, or if we're
resetting the args command, and the kernel is already the
default, we can restore the old default and delete the entry.

* Ok ok k% ok

if (((optnum == KERNEL_CMD) &&

((ol d_ args == NULL) || (old args[0] =="'\0"))) ||

((opt num == ARGS_CMD)

(strncmp(kernel p->arg, DI RECT_BOOT_KERNEL,

si zeof (DI RECT_BOOT_KERNEL) - 1) == 0))) {
kernel p = NULL;
(void) delete boot _entry(nmp, entryNum DBE_ PRI NTERR);
restore_default _entry(np, BAM OLD RC DEF,

np->ol d_rc_defaul t);

nmp->ol d_rc_default = NULL;
rv = BAM WRI TE;
BAM _DPRI NTF((D_GET_SET_KERNEL_RESTORE_DEFAULT, fcn));
goto done;

}
if (opt n;Jm == KERNEL_CMD) {
*

* At this point, we’ve already checked that ol d_args
* and entryp are valid pointers. The "+ 2" is for

* a space a the string termnation character.

*

new str_len = (sizeof (DI RECT_BOOT_KERNEL) - 1) +
strlen(old_args) + 2;

new arg = s_calloc(1l, new.str_len);

(void) snprintf(new arg, new str_len, "9%",
DI RECT_BOOT_KERNEL) ;

(void) snprintf(new arg, new str_len, "% %",
DI RECT_BOOT_KERNEL, ol d_args);

free(kernel p->arg);

kernel p->arg = new_ arg;

/*
* W& have changed the kernel line, so we may need
* to update the archive line as well.
*/
set _archive_line(entryp, kernelp);
BAM _DPRI NTF((D_GET_SET_KERNEL _ RESET KERNEL_SET_ARG,
fcn, kernelp->arg));
} else {
*

* W're resetting the boot args to nothing, so

* we only need to copy the kernel. W’ve already
* checked that the kernel is not the default.

*/

new arg = s_calloc(1, old_kernel _len + 1);
(void) snprintf(new arg, old_kernel_len + 1, "%",
ker nel p->arg) ;
free(kernel p->arg);
kernel p->arg = new arg;
BAM DPRI NTF((D_GET_SET_KERNEL_RESET_ARG_SET_KERNEL,
fcn, kernelp->arg));
}
rv = BAM WRI TE;

new boot adnf boot adm ¢

9029
9030

9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046

9048
9049
9050
9051
9052

9054
9055
9056
9057
9058
9059
9060
9061

9063
9064
9065
9066
9067
9068
9069
9070

9072
9073
9074
9075
9076
9077
9078
9079
9080

9082
9083
9084
9085
9086
9087

9089
9090
9091
9092
9093
9094

goto done;

}

/*
* Expand the kernel file to a full path, if necessary
*/

if ((optnum == KERNEL_CMD) && (path[0] !="/")) {
new path = expand pat h(pat h);
if (new_path == NULL
bam error (UNKNOAN_KERNEL, path);
BAM DPRI NTF((D_RETURN_FAI LURE, fcn));
return (BAM ERRCR);

free_new path = 1,
} else {

new_path = path;

free_new path =

}

/*

* At this point, we know we’'re setting a new value. First,
* of the case where there was no previous entry.

*/

if (entryp == NULL) {

/* Simlar to code in update temp */
fstype = get fstype(1");
I NJECT ERRCRl(CET_SET_ KERNEL FSTYPE",
if (fstype == NULL) {
bam er r or (BOOTENV_FSTYPE_FAI LED) ;
rv = BAM ERROR,
got o done;

}

osdev = get spemal("),
IN.]ECT ERRO?l(CET_SET_ KERNEL SPECI AL"
if (osdev == NULL) {
free(fstype);
bam error (BOOT ENV_SPECI AL_FAI LED) ;
rv = BAM ERROR,
got o done;

sign = find_existing_sign("/", osdev, fstype);
| NJECT_ERROR1 (" GET_SET_ KERNEL' _SIGN', sign = NULL);
if (sign == NULL) {

free(fstype);

free(osdev);

bam er ror (BOOTENV_SI GN_FAI LED) ;

rv = BAM ERROR;

goto done;

}

free(osdev);

(void) strlcpy(signbuf, sign, sizeof (signbuf));

free(sign);

assert(strchr(signbuf, "(’) == NULL &&
strchr(signbuf, ',”) == NULL &&
strchr(signbuf, ")’) == NULL);

if (optnum == KERNEL_CMD) {
if (strcrrp(fstype "zfs”) == 0) {
new str_len = strlen(new path) +
strlen(ZFS BOOT) + 8;
new arg = s_calloc(1, new.str_len);
(void) snprintf(new arg, new str_|len,

take care

fstype = NULL);

osdev = NULL);

"o

%",

61

new boot adn? boot adm ¢ 62
9095 new_pat h, ZFS BOOT) ;

9096 BAM DPRI NTF((D_GET_SET_| KERNEL NEW KERN, fcn
9097 new_ arg));

9098 ent ryl\Um = add boot _entry(np, BOOTENV_RC_TI TLE,
9099 signbuf, new arg, NULL, NULL, NULL);

9100 free(new ar g);

9101 } else {

9102 BAM DPRI NTF((D_GET_SET_KERNEL_NEW KERN, fcn
9103 new_path));

9104 entryNum = add_boot _entry(np, BOOTENV_RC TI TLE,
9105 signbuf, new path, NULL, NULL, NULL);

9106

9107 } else {

9108 new str_len = strlen(path) + 8;

9109 if (strcnp(fstype, "zfs") == {

9110 new_st r_I en += strl en(Dl RECT_BOOT_KERNEL_ZFS);
9111 new arg = s_calloc(1, new str_|len);

9112 (void) snprintf(new arg, new str_len, "% %",
9113 DI RECT_BOOT_KERNEL_ZFS, path);

9114 } else {

9115 new_str_len += strl en(Dl RECT_BOOT_KERNEL) ;
9116 new arg = s_calloc(1, new str_|en);

9117 (void) snprintf(new arg, newstr_len, "% %",
9118 Dl RECT_BOOT_KERNEL, path);

9119 }

9121 BAM DPRI NTF((D_GET_SET_KERNEL_NEW ARG fcn, new_ arg));
9122 entryNum = add_boot _entry(np, BOCTENV_RC | Ti TLE,

9123 signbuf, new arg, NULL, DI RECT_BOOT_ARCHI VE, NULL);
9124 free(new_ar g);

9125 }

9126 free(fstype);

9127 | NDECT_ERRORI(" GET_SET_KERNEL_ADD BOOT_ENTRY",

9128 entryNum = BAM ERROR) ;

9129 if (entryNum == BAM ERRCR)

9130 bam error (GET_SET_KERNEL_ADD BOOT_ENTRY,

9131 BOOTENV_RC_TI TLE) ;

9132 rv = BAM_ERROR

9133 got o done;

9134 }

9135 save_ def ault _entry(np, BAM OLD RC _DEF);

9136 ret = set_gl obal (np, nmenu_cnds] DEFAULT_ CND] entryNun;

9137 | NJECT_ERRORL(" GET_SET_KERNEL_SET GLOBAL", ret = BAM ERROR);
9138 if (ret == BAM ERROR) [

9139 bam error (GET_SET_KERNEL_SET_GLOBAL, entryNun);

9140 }

9141 rv = BAMWRI TE

9142 got o done;

9143 }

9145 /*

9146 * There was already an bootenv entry which we need to edit.

9147 *

9148 if (optnum == KERNEL_CMD) {

9149 new str_len = strlen(new_path) + strlen(old_args) + 2;

9150 new arg = s_calloc(1, new_str_len);

9151 (void) snprintf(new arg, new str_len, "% %", new path,

9152 ol d_args);

9153 free(kernel p->arg);

9154 kernel p->arg = new_arg;

9156 /*

9157 * |f we have changed the kernel line, we may need to update
9158 * the archive line as well.

9159 */

9160 set_archive_line(entryp, kernelp);

new boot adnf boot adm ¢

9161 BAM DPRI NTF((D_GET_SET_KERNEL_REPLACED KERNEL_SAME_ARG, fcn,
9162 kernel p->arg));

9163 } else {

9164 kernel p = kernel p- >next;

9165 new str_len = strl en(kernel p->arg) + strlen(path) + 8;

5630 new str_len = old_kernel _len + strlen(path) + 8;

9166 new arg = s_calloc(1l, new.str_len);

9167 (void) strncpy(new_arg, kernelp->arg, strlen(kernelp->arg));
5632 (void) strncpy(new_arg, ker nel p->arg, ol d_kernel _len);

9168 (void) strlcat(new_ arg, ", new_str_len);

9169 (void) strlcat(new arg, path, new str_| en)

9170 free(kernel p- >arg)

9171 kernel p->arg = new_arg;

9172 BAM DPRI NTF((D_GET_SET_KERNEL_SAME_KERNEL_REPLACED ARG, fcn,
9173 “kernel p->arg));

9174 1

9175 rv = BAM WRI TE;

9177 done:

9178 if ((rv == BAMWRI TE) && ker nel p)

9179 update I'i ne(kernel p);

9180 if (free_new_ path)

9181 free(new path);

9182 if (rv == BAMWITE) {

9183 BAM_DPRI NTF((D_RETURN_SUCCESS, fcn));

9184 } else {

9185 BAM DPRI NTF((D_RETURN_FAI LURE, fcn));

9186 }

9187 return (rv);

9188 }

__unchanged_portion_onitted_

new boot adnf boot adm h 1 new boot adnf boot adm h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 188 extern VOId Un|||"|k |Ine(l’TEnU t *npv |In€‘ t *lp)‘
9360 Fri Aug 31 05:08:47 2012 189 extern void line_free(line_t *lp);
new boot adnf boot adm h 190 extern char *s_strdup(char *);
bot adm pat ch 191 extern int is_sparc(void);
LEEE R R R R EE SRR EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREREEEEEEEEESE]
__unchanged_portion_onitted_ 193 #defi ne BAM MAXLI NE 8192
108 /* 195 /* nenu.lst comments created by bootadm */
109 * Menu rel ated 196 #defi ne BAM BOOTADM HDR "---------- ADDED BY BOOTADM - DO NOT EDIT ----------
110 * menu_cmd_t and nmenu_cnds nust be kept in sync 197 #define BAM BOOTADM FTR "-------------ooomoonn END BOOTADM - - - - ----mmmmmmm e - "
111 *
112 * The *_DOLLAR CMD val ues nust be 1 greater than the 199 /*
113 * respective [KERNEL| MODULE] _CMD val ues. 200 * menu.lst coments create by Live Upgrade. Note that these are the end of
114 */ 201 * the comment strings - there will be other text before them
115 typedef enum { 202 */
116 DEFAULT_CMD = O, 203 #define BAM LU_HDR " - ADDED BY LIVE UPGRADE - DO NOT EDIT ~----- "
117 TI MEQUT_CMD, 204 #define BAM LU FTR LR R END LI VE UPGRADE ------------ "
118 TI TLE_CMD,
119 ROOT_CMD, 206 #defi ne BAM OLDDEF " BOOTADM SAVED DEFAULT:
120 KERNEL_CVD, 207 #define BAM OLD_RC DEF "BOOTADM RC SAVED DEFAULT: "
121 KERNEL_DOLLAR_CMD, /* Must be KERNEL_CMD + 1 */
122 MODULE_CMD, 209 /*
123 MODULE_DOLLAR_CMD, /* Miust be MODULE CMD + 1 */ 210 * menu.lst coment created by I|ibbe
124 SEP_CMD, 211 */
125 COVMVENT_CND, 212 #define BAM LIBBE_FTR "============ End of LIBBE entry ============="
126 CHAI NLOADER_CMD,
127 ARGS_CWD, 214 /* Title used for failsafe entries */
128 FI NDROOT_CMD, 215 #define FAILSAFE_TITLE "Solaris failsafe"
129 BOOTFS_CMD,
130 KERNEL_OPTI ONS_CMD, 217 /* Title used for hv entries */
129 BOOTFS_CMD 218 #define NEW HV_ENTRY "Solaris xVM'
131 } nenu_cnd_t;
__unchanged_| portl on_omtted_ 220 /* ZFS boot option */

221 #define ZFS_BOOT "-B $ZFS_BOOTFS"
156 extern int bamverbose; 220 #define ZFS_BOOT "-B $ZFS- BOOTFS"
157 extern int bamforce;
158 extern direct_or_nulti_t bamdirect; 223 /* multiboot */
159 extern hv_t bam.is_hv; 224 #define MULTI _BOOT "I pl atfor m i 86pc/ nul ti boot "
160 extern findroot_t bam.is_findroot; 225 #define MULTI _BOOT_FAI LSAFE "/ boot/ mul ti boot"
161 extern int bam debug; 226 #define MULTI_BOOT_FAI LSAFE_UNI X "kernel / uni x"

227 #define MULTI _BOOT_FAI LSAFE_LI NE "/ boot/ mul ti boot kernel/unix -s"
163 extern void bam add_line(menu_t *np, entry_t *entry, line_t *prev, line_t *Ip);
164 extern void update_nunbering(menu_t *np); 229 /* directboot kernels */
165 extern error_t set_global (menu_t *, char *, int); 230 #define DIRECT_BOOT_32 "/platfornii86pc/kernel/unix"
166 extern error_t upgrade_nenu(nenu_t *, char *, char *); 231 #define DI RECT_BOOT_64 "/platfornii86pc/kernel/and64/ uni x"
167 extern error_t cvt_to_hyper(nenu_t *, char *, char *); 232 #define DI RECT_BOOT_KERNEL "/ platformni86pc/kernel/$l SADI R/ uni x"
168 extern error_t cvt_to_netal (menu_t *, char *, char *); 233 #define DI RECT_BOOT_FAI LSAFE 32 "/ boot/ pl at f or n1 i 86pc/ ker nel / uni x"
169 extern void *s_call oc(size_t , size_t); 234 #define DI RECT_BOOT_FAI LSAFE_64 "/ boot/ pl at fornii 86pc/ ker nel / and64/ uni x"
170 extern void *s_realloc(void *, size t) 235 #define DI RECT_BOOT_FAI LSAFE_KERNEL \
171 extern char *s_fgets(char *buf, int n, FILE *fp); 236 "/ boot/ pl at f orni i 86pc/ ker nel / $I SADI R/ uni x"
172 extern void bam error(char *for mat, ...); 237 #define DI RECT_BOOT_FAI LSAFE_LI NE DI RECT_BOOT_FAI LSAFE_KERNEL " -s"
173 extern void bamexit(int); 238 #define DI RECT_BOOT_KERNEL_ZFS DI RECT_BOOT_KERNEL ™ " ZFS_BOOT
174 extern void bampri nt(char P I 239 #define DI RECT_BOOT_PREFI X "/ pl atformi86pc/"
175 extern void bam print_st derr(char *format L) 240 #define KERNEL_PREFTX "/platformi86pc/"
176 extern void bamderror(char *format, ...); 241 #define AMD_UNI X _SPACE "/and64/unix "
177 extern error_t get_boot_cap(const char *osroot) 242 #define UNI X_SPACE "/unix "
178 extern char *get_special (char *);
179 extern char *os_to_grubdisk(char *, int); 244 |* xVM kernels */
180 extern void update_line(line_t *); 245 #define XEN_KERNEL_SUBSTR "xen. gz"
181 extern int add_boot_entry(menu_t *, char *, char *, char *, char *, char *,
182 char *); 247 |* Boot archives */
183 extern error_t delete_boot_entry(menu_t *, int, int); 248 #defi ne ARCHI VE_PREFI X "/platform™
184 extern int is_grub(const char *); 249 #define ARCH VE_SUFFI X "/ boot _ar chi ve"
185 extern char *get_grubsign(char *osroot, char *osdev); 250 #define CACHEDI R_SUFFI X "/archive_cache"
186 extern char *get_grubroot(char *osroot, char *osdev, char *nenu_root); 251 #defi ne UPDATEDI R_SUFFI X "/ updat es”

187 extern int root_optional (char *osroot, char *menu_root); 252 #define DI RECT_BOOT_ARCHI VE "/ platformi86pc/$l SADI R/ boot _ar chi ve"

new boot adnf boot adm h

253
254
255
256
257
258
259
260
261
262

264
265
266
267
268
269
270

272
273
274
275

277
278

280
281
282

284
285
286
287
288
289
290
291
292
293
294
295

#def i ne DI RECT_BOOT_ARCHI VE_32 "/platforni86pc/boot_archive"

#defi ne DI RECT_BOOT_ARCHI VE_64 "/pl atfornli86pc/and64/ boot _ar chi ve"
#defi ne MULTI BOOT_ARCHI VE CT_BCX)T ARCHI VE_32

#defi ne FAI LSAFE_ARCHI VE "/ boot / $| SADI R/ x86. mi ni r oot - saf e"
#def i ne FAlI LSAFE_ARCHI VE_32 "/ boot / x86. m ni r oot - saf e"

#def i ne FAI LSAFE_ARCHI VE_64 "/ boot / and64/ x86. m ni r oot - saf e"
#defi ne CACHEDI R_32 "/platformi86pc/archive_cache"
#def i ne CACHEDI R_64 "/ platformi86pc/and64/ archi ve_cache"
#defi ne UPDATEDI R 32 "/ platformi86pc/updates”

#def i ne UPDATEDI R_64 "/platformi86pc/and64/ updat es"

/* Hypervisors */

#def i ne
#defi ne
#defi ne
#defi ne
#def i ne

XEN_64 "/ boot / anmd64/ xen. gz"

XEN_MENU "/ boot/ $I SADI R/ xen. gz"

HYPERVI SOR_KERNEL "/ pl at f or m' i 86xpv/ ker nel / $| SADI R/ uni x"
XEN_KERNEL_MODULE LI NE HYPERVI SOR_KERNEL " " HYPERVI SOR_KERNEL
XEN_KERNEL_MODULE_LI NE_ZFS \

HYPERVI SOR_KERNEL * * HYPERVI SOR_KERNEL " * ZFS_BOOT

/* Hel pers */

#def i ne MKI SOFS_PATH
#define DD_PATH_USR
#defi ne LOCKFS_PATH

"/ usr/ bi n/ nki sof s"
"/ usr/bin/dd"
"/usr/sbin/lockfs"

/* A first guess at the nunber of entries in a menu */
10

#def i ne BAM_ENTRY_NUM

/* toggle for whether delete_boot_entry prints an error
0

#def i ne DBE_PRI NTERR

message or not */

#def i ne DBE_QUI ET 1

/*

*/ Debuggi ng defi nes

*

#define | NJECT_ERRORL(X, V) \

{\

if (bam.debug) { \

char *inj = getenv("_BOOTADM | NJECT"); \
if (inj &&strcr’rp(ln], (x)) ==0) { \

%
1A
3

__unchanged_portion_ontted_

new boot adnf boot adm _hyper. c

R R R R

29758 Fri Aug 31 05:08:48 2012

new boot adnf boot adm _hyper. c

bug fix

addi ng functionality and fixing bugs

addi ng functions to nenuadm

menuadm to replace bootadm nenu interaction

hypervi sor + bug fix

LEEE R R R R EE SRR EEEE SRR EEE RS SRR SRR EEEEEEREREEEEEEEEESE]
1/*

* CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*

*

*

*

*

*

*

*

*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

NRERRRRRRRRER
COONOUITAWNROW©O~NOUTDWN

23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. Al rights reserved.
*/

26 /*
27 * Copyright 2012 Daniil Lunev. Al rights reserved.
28 */

30 #endif /* | codereview */
31 #include <stdio.h>

32 #include <errno. h>

33 #include <stdlib.h>

34 #include <string. h>

35 #incl ude <unistd. h>

36 #include <alloca. h>

37 #include <ctype. h>

38 #include <sys/types. h>

40 #include "nmessage. h"
41 #i ncl ude "bootadm h"

43 #defi ne HYPER KERNEL_DI R "/ platformi86xpv/kernel"

44 #define METAL_KERNEL_DI R "/ platformi86pc/kernel”

46 #define BOOTRC FI LE "/ boot/ sol ari s/ bootenv.rc"

47 #define ZFS_BOOTSTR " $ZFS_BOOTFS"

26 #define ZFS_BOOTSTR " $ZFS- BOOTFS"

49 #define BFLAG "-B"

50 #define DEFAULT_SERI AL " 9600, 8, n, 1"

52 #define TTYXMODE_TO COWNUMtt yxnode) ((int)(*((ttyxmode) + 3) - "))
53 #define COWAME_TO COWNUM cormmane) ((int)(*((comane) + 3) - '0"))
55 #define WH TESPC(x) (x)

new boot adnf boot adm _hyper. c

57 static char *serial _config[2] = { NULL, NULL };

58 static char *consol e_dev = NULL;

60 static char *bootenv_rc_serial[2] = { NULL, NULL };

61 static char *bootenv_rc_consol e = NULL;

63 static unsigned zfs_boot = O;

65 /*

66 * Append the string pointed to by "str" to the string pointed to by "orig"
67 * adding the delimeter "delin in between.

68 *

69 * Return a pointer to the new string or NULL, if we were passed a bad string.
70 */

71 static char *

72 append_str(char *orig, char *str, char *delim

73 {

74 char *newstr;

75 int len;

77 if ((str == NULL) || (delim== NULL))

78 return (NULL);

80 if ((orig == NULL) || (*orig == NULL)) {

81 /*

82 * Return a pointer to a copy of the path so a caller can
83 * always rely upon being able to free() a returned pointer.
84 */

85 return (s_strdup(str));

86 }

88 len = strlen(orig) + strlen(str) + strlien(delim + 1;
89 if ((newstr = malloc(len)) == NULL) {

90 bam error (NO_MEM | en);

91 bamexit(1);

92 1

94 (void) snprintf(newstr, len, "%%%", orig, delim str);
95 return (newstr);

96 }

____unchanged_portion_onitted_

755 error_t

756 cvt_to_hyper(menu_t *np, char *osroot, char *extra_args)

757 {

758 const char *fcn = "cvt_to_hyper()";

760 line_t *Ip;

761 entry_t *ent;

762 size_t len, zfslen;

764 char *newstr;

765 char *osdev;

767 char *title = NULL;

768 char *findroot = NULL;

769 char *bootfs = NULL;

770 char *kernel = NULL;

771 char *opts = NULL;

772 #endif /* | codereview */

773 char *nod_kernel = NULL;

774 char *nodul e = NULL;

775 char *tnmp = NULL;

776 #endif /* | codereview */

778

char *kern_path = NULL;

new boot adnf boot adm hyper. c 3 new boot adn boot adm hyper. c 4
779 char *kern_bargs = NULL; 845 */
846 for (Ip = ent->start; Ip !'= NULL; Ip = |p->next) {
781 int curdef, newdef; 847 /*
782 int kp_allocated = 0; 848 * Process inportant lines fromnenu.lst boot entry.
783 int ret = BAM ERROR; 849 *
850 if (Ip->flags == BAM TITLE) {
785 assert(osroot); 851 title = strdupa(l p->arg);
852 } else if (Ip->cnd !'= NULL)
787 BAM DPRI NTF((D_FUNC_ENTRY2, fcn, osroot, extra_args)); 853 if (strcnp(lp->cnd, "pool_label") == 0) {
750 if (strenp(lp->cmd, "findroot") == 0) {
789 I* 854 findroot = strdupa(lp->arg);
790 * First just check to verify osroot is a sane directory. 855 } else if (strcnp(lp->cnd, "data_set") == 0) {
791 */ 752 } else if (strcemp(lp->cmd, "bootfs") == 0) {
792 if ((osdev = get_special (osroot)) == NULL) { 856 bootfs = strdupa(l p->arg);
793 bam error (CANT_FI ND_SPECI AL, osroot); 857 } else if (strcnp(lp->cmd, "kernel _options") == 0) {
794 return (BAM ERROR); 858 opts = strdupa(l p->arg);
795 } 859 #endif /* ! codereview */
860 } else if (strenp(lp->cnd,
797 free(osdev); 861 menu_cnds[MODULE DOLLAR CMD]) == 0) {
862 nmodul e = strdupa(l p->arg);
799 /* 863 } else if ((strcnmp(lp->cnd,
800 * Wiile the effect is purely cosnmetic, if osroot is "/" don't 864 menu_cnds[KERNEL_DOLLAR CMD]) == 0) &&
801 * bother prepending it to any paths as they are constructed to 865 (ret = cvt_netal _kernel (I p->arg,
802 * begin wth "/" anyway. 866 &ern_path)) = 0) {
803 */ 867 if (ret <0)
804 if (strcnp(osroot, "/") == 0) 868 ret = BAM ERROR
805 osroot = ""; 869 bam err or (KERNEL_NOT_PARSEABLE, curdef);
870 } else
807 /* 871 ret = BAM _NOCHANGE;
808 * Found the GRUB signature on the target partitions, so now get the
809 * default GRUB boot entry nunmber fromthe nmenu.lst file 873 goto abort;
810 */ 874 }
811 curdef = atoi (nmp->curdefaul t->arg); 875 }
813 /* look for the first line of the matching boot entry */ 877 if (Ip == ent->end)
814 for (ent = np->entries; ((ent != NULL) & (ent->entryNum!= curdef)); 878 br eak;
815 ent = ent->next) 879 }
816 ;
881
818 /* couldn’t find it, so error out */ 882 #endif /* | codereview */
819 if (ent == NULL) { 883 *
820 bam error (CANT_FI ND_DEFAULT, curdef); 884 * |f findroot, nodule or kern_path are NULL, the boot entry is
821 goto abort; 885 * mal f or ned.
822 } 886 */
887 if (findroot == NULL) {
824 g 888 bam error (FI NDROOT_NOT_FOUND, curdef);
825 * We found the proper nmenu entry, so first we need to process the 889 goto abort;
826 * bootenv.rc file to | ook for boot options the hypervisor m ght need 890 }
827 * passed as kernel start options such as the console device and seri al
828 * port paraneters. 892 if (rmodule == NULL) {
829 * 893 bam error (MODULE_NOT_PARSEABLE, curdef);
830 * |f there’s no bootenv.rc, it’s not an issue. 894 goto abort;
831 */ 895 }
832 par se_boot envr c(osroot);
897 if (kern_path == NULL)
834 if (bootenv_rc_console != NULL) 898 bam err or (KERNEL_NOT_FOUND, curdef);
835 consol e_netal _to_hyper (bootenv_rc_consol e); 899 goto abort;
900 }
837 if (bootenv_rc_serial[0] != NULL)
838 (void) serial_netal _to_hyper("ttya-node", bootenv_rc_serial[0]); 902 /* assenbl e new kernel and nodul e argunments from parsed val ues */
903 if (console_dev !'= NULL)
840 if (bootenv_rc_serial[1] != NULL) 904 kern_bargs = s_strdup(consol e_dev);
841 (void) serial_netal _to_hyper("ttyb-node", bootenv_rc_serial[1]);
906 if (serial_config[0] != NULL) {
843 /* 907 newstr = append_str(kern_bargs, serial_config[O0], " ");
844 * Now process the entry itself. 908 free(kern_bargs);

new boot adnf boot adm _hyper. c

909
910

912
913
914
915
916
917

919
920
921
922
923

925
926

928

930
931
932
933

935
936
937
938

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

956
957
958
959
960
961
962

964
965
966
967
968
969

971
972

974

kern_bargs = newstr;

}
if (serial_config[1] != NULL)

newstr = append_str(kern_bargs, serial_config[1], " ");

free(kern_bargs);
kern_bargs = newstr;

}

}

if ((extra_args != NULL) && (*extra_args != NULL)) {
newstr = append_str(kern_bargs, extra_args, " ");
free(kern_bargs);
kern_bargs = newstr;

}

len = strlen(osroot) + strlen(XEN_MENU) + strlen(kern_bargs) +
WH TESPC(1) + 1;

kernel = alloca(len);
if (kern_bargs != NULL) {
if (*kern_bargs !'= NULL)
(void) snprintf(kernel, len, "%% %", osroot,
XEN_MENU, kern_bargs);

free(kern_bargs);

} else {
(void) snprintf(kernel, len, "%%", osroot, XEN_MENU);
}
/*
* Change the kernel directory fromthe netal version to that needed for
* the hypervisor. Convert either "direct boot" path to the default
* path.
*

if ((strcnp(kern_path, DIRECT_BOOT_32) == 0) ||
(strcmp(kern_path, DI RECT_BOOT_64) == 0)) {
kern_pat h = HYPERVI SOR_KERNEL;
} else {
newstr = nodify_path(kern_path, METAL_KERNEL_DI R,
HYPER_KERNEL_DI R) ;
free(kern_path);
kern_path = newstr;
kp_al l ocated = 1;

}
/*
* We need to allocate space for the kernel path (twice) plus an
* intervening space, possibly the ZFS boot string, and NULL,
* of course.
*

len = (strlen(kern_path) * 2) + WH TESPC(1) + 1;
zfslen = (zfs_boot ? (WHI TESPC(1) + strlen(ZFS_BOOT)) : 0);

nmod_kernel = alloca(len + zfslen);
if (opts)

(void) snprintf(nod_kernel, len + strlien(opts) + 1, "% % %",
el se

#endif /* | codereview */
(void) snprintf(nmod_kernel, len, "% %", kern_path, kern_path);

if (kp_allocated)
free(kern_path);

if (zfs_boot) {

new boot adnf boot adm _hyper. c

975 char *zfsstr = alloca(zfslen + 1);

977 (void) snprintf(zfsstr, zfslen + 1, " %", ZFS BOOT);
978 (void) strcat(nod_kernel, zfsstr);

979 }

981 /* shut off warning nessages fromthe entry |line parser */
982 if (ent->flags & BAM ENTRY_BOOTADM

983 ent->fl ags & ~BAM ENTRY_BOOTADM

985 BAM DPRI NTF((D_CVT_CMD KERN DOLLAR, fcn, kernel));

986 BAM DPRI NTF((D_CVT_CMD_MOD_DOLLAR, fcn, nod_kernel));

988 if ((newdef = add_boot_entry(np, title, findroot, kernel, nod_kernel,
989 nmodul e, bootfs)) == BAM ERROR)

990 return (newdef);

992 /*

993 * Now try to delete the current default entry fromthe nmenu and add
994 * the new hypervisor entry with the paraneters we’ ve setup.
995 *

996 if (delete_boot_entry(np, curdef, DBE_QU ET) == BAM SUCCESS)
997 newdef - - ;

998 el se

999 bam print (NEW BOOT_ENTRY, title);

1001 /*

1002 * |f we successfully created the new entry, set the default boot
1003 * entry to that entry and let the caller know the new menu shoul d
1004 * be witten out.

1005 */

1006 return (set_gl obal (nmp, menu_cnds[DEFAULT_CMD], newdef));

1008 abort:

1009 if (ret != BAM NOCHANGE)

1010 bam error (HYPER_ABORT, ((*osroot == NULL) ? "/" osroot));
1012 return (ret);

1013 }

1015 /* ARGSUSED*/

1016 error _t

1017 cvt_to_netal (menu_t *np, char *osroot, char *nenu_root)

1018 {

1019 const char *fcn = "cvt_to_netal ()";

1021 line_t *Ip;

1022 entry_t *ent;

1023 size_t len, zfslen;

1025 char *delim="

1026 char *newstr;

1027 char *osdev;

1029 char *title = NULL;

1030 char *findroot = NULL;

1031 char *bootfs = NULL;

1032 char *kernel = NULL;

1033 char *nodul e = NULL;

1035 char *barchi ve_path = DI RECT_BOOT_ARCHI VE;

1036 char *kern_path = NULL;

1038 int curdef, newdef;

1039 int emt_bflag = 1;

1040 int ret = BAM ERROR;

new boot adnf boot adm _hyper. c

1042
1044

1046
1047
1048
1049
1050
1051
1052

1054

1056
1057
1058
1059
1060

1062
1063
1064
1065

1067
1068
1069
1070
1071

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

754
1084
1085

756
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1103
1104

assert(osroot);
BAM DPRI NTF((D_FUNC_ENTRY2, fcn, osroot, ""));

/*
* First just check to verify osroot is a sane directory.
*

if ((osdev = get_special (osroot)) == NULL) {
bam error (CANT_FI ND_SPECI AL, osroot);
return (BAM ERROR);

}

free(osdev);

/*

* Found the GRUB signature on the target partitions, so now get the
* default GRUB boot entry number fromthe nmenu.lst file

*/

curdef = atoi (np->curdefault->arg);

/* look for the first line of the matching boot entry */
for (ent = np->entries; ((ent !'= NULL) && (ent->entryNum!= curdef));
ent = ent->next)

/* couldn’t find it so error out */
if (ent == NULL)
bam error(CANT FI ND_DEFAULT, curdef);

goto abort;
}
/*
:/Now process the entry itself.

for (Ip = ent->start; Ip !'= NULL; Ip = |p->next) {
/*
* Process inportant lines fromnenu.lst boot entry.
*/

if (Ip->flags == BAM TI TLE)
title = strdupa(l p->arg);
} elseif (Ip->cnmd !'= NULL) {
if (strcemp(lp->cnd, "pool _| abel ") == 0) {
if (strcnp(lp >cmj "findroot") == 0) {
findroot = strdupa(lp->ar g)
} else if (strcemp(lp->cnd, "data_set') == 0) {
} else if (strcnp(lp—>cnd, "bootfs") == 0) {
bootfs = strdupa(l p->arg);
} else if (strenp(lp->cnd,
rrenu_cmjs[NUDULE_DO_LAR_CND]) == 0) {
if (strstr(lp->arg, "boot_archive") == NULL) {
nmodul e = strdupa(l p->arg);
cvt _hyper _nodul e(nodul e, gkern _path);
} else {
barchi ve_path = strdupa(l p->arg);

}
} else if ((strcenp(lp->cnd,
nmenu_cnds[KERNEL_DOLLAR CMD]) == 0) &&
(cvt hyper _kernel (I p->arg) < 0)) {
ret = BAM NOCHANGE;
goto abort

}

if (Ip == ent->end)
br eak;

new boot adnf boot adm _hyper. c

1105

1107
1108
1109
1110
1111
1112
1113
1114

1116
1117
1118
1119

1121
1122
1123
1124

1126
1127
1128
1129
1130
1131
1132
1133
1134

1136
1137
1138

1140
1141
1142
1143
1144

1146
1147

1149
1150

1152
1153
1154
1155

1157
1158
1159
1160
1161
1162
1163
1164

1166
1167
1168
1169
1170

}

/*
* |f findroot, nodule or kern_path are NULL, the boot entry is
* mal for ned.
*/
if (findroot == NULL) {
bam error (FI NDROOT_NOT_FOUND, curdef);

goto abort;

}

if (rmodule == NULL) {
bam error(M:DULE NOT_PARSEABLE, curdef);
goto abort;

}

if (kern_path == NULL) {
bam err or (KERNEL_NOT_FOUND, curdef);
goto abort;

}

/*

* Assenbl e new kernel and nodul e argunents from parsed val ues.
*

* First, change the kernel directory fromthe hypervisor version to
* that needed for a netal kernel.

*/

newstr = nodify_path(kern_path, HYPER_ KERNEL_DI R, METAL_KERNEL_DI R);
free(kern_path);

kern_path = newstr;

/* allocate initial space for the kernel path */
len = strlen(kern_path) + 1;
zfslen = (zfs_boot ? (WH TESPO(1) + strlen(ZFS_BOOT)) : 0);

if ((kernel = malloc(len + zfslen)) == NULL) {
ree(kern pat h);
bam_error(NO_NEM len + zfslen);
bamexit(1);

}

(void) snprintf(kernel, len, "%", kern_path);
free(kern_path);

if (zfs_boot)
char *zfsstr = alloca(zfslen + 1);

(void) snprintf(zfsstr, zfslen + 1, " %", ZFS_BOOT);
(void) strcat(kernel, zfsstr);

emt_bflag =
}
/*
* Process the bootenv.rc file to | ook for boot options that would be
* the same as what the hypervisor had manually set, as we need not set
* those explicitly.
*

* |f there’s no bootenv.rc, it’s not an issue.

*/

par se_boot envrc(osroot);

/*

* Don't emit a console setting if it’s the sane as what woul d be
* set by bootenv.rec.

*/

if ((console_dev !'= NULL) && (bootenv_rc_console == NULL ||

new boot adnf boot adm _hyper. c 9 new boot adnf boot adm _hyper. c

1171 (strcnp(consol e_dev, bootenv_rc_console) !'=0))) { 1237 /* shut off warning nessages fromthe entry |line parser */
1172 if (emit_bflag) { 1238 if (ent->flags & BAM ENTRY_BOOTADM
1173 newstr = append_str(kernel, BFLAG " "); 1239 ent->fl ags & ~BAM ENTRY_BOOTADM
1174 free(kernel);
1175 kernel = append_str(newstr, "console=", " "); 1241 BAM DPRI NTF((D_CVT_CMD_KERN DCOLLAR, fcn, kernel));
1176 free(newstr); 1242 BAM DPRI NTF((D_CVvT_CVD_MOD_DOLLAR, fcn, nodule));
1177 newstr = append_str(kernel, console_dev, "");
1178 free(kernel); 1244 if ((newdef = add_boot_entry(np, title, findroot, kernel, NULL,
1179 kernel = newstr; 1245 bar chi ve_path, bootfs)) == BAM I ERROR) {
1180 emt_bflag = O; 1246 free(kernel);
1181 } else { 1247 return (newdef);
1182 newstr = append_str(kernel, "console=", ","); 1248 }
1183 free(kernel);
1184 kernel = append_str(newstr, consol e_dev, ""); 1250 I*
1185 free(newstr); 1251 * Now try to delete the current default entry fromthe nmenu and add
1186 } 1252 * the new hypervisor entry with the paraneters we’ ve setup.
1187 } 1253 */
1254 if (delete_boot entry(rrp, curdef, DBE_QUI ET) == BAM SUCCESS)
1189 /* 1255 newdef - -
1190 * W have to do sone strange processing here because the hypervisor’'s 1256 el se
1191 * serial ports default to "9600,8,n,1,-" if "conmX=auto" is specified, 1257 bam print (NEW BOOT_ENTRY, title);
1192 * or to "auto" if nothing is specified.
1193 * 1259 free(kernel);
1194 * This could result in a serial node setti ng string being added when
1195 * it woul d otherw se not be needed, but it's better to play it safe. 1261 /*
1196 */ 1262 * |f we successfully created the new entry, set the default boot
1197 if (emt_bflag) { 1263 * entry to that entry and let the caller know the new nmenu shoul d
1198 newstr = append_str(kernel, BFLAG " "); 1264 * be witten out.
1199 free(kernel); 1265 */
1200 kernel = newstr; 1266 return (set_global (nmp, nmenu_cnds[DEFAULT_CMD], newdef));
1201 delim=" "
1202 emt_bflag = 1268 abort:
1203 } 1269 if (ret !'= BAM NOCHANGE)
1270 bam error (METAL_ABORT, osroot);
1205 if ((serial_config[0] !'= NULL) && (bootenv_rc_serial[0] == NULL ||
1206 (strcnp(serial _config[0], bootenv_rc serial[o]) 1=0))) { 1272 return (ret);
1207 newstr = append_str(kernel, "ttya-node="", delim; 1273 }
1208 free(kernel); __unchanged_portion_omtted_
1210 /*
1211 * Pass the serial configuration as the delimter to
1212 * append_str() as it will be inserted between the current
1213 * string and the string we’'re appending, in this case the
1214 * cl osing single quote.
1215 */
1216 kernel = append_str(newstr, "'", serial_config[O0]);
1217 free(newst r)
1218 delim=",";
1219 }
1221 if ((serial_config[1] !'= NULL) && (bootenv_rc_serial[1] == NULL ||
1222 (strcmp(serial _config[1], bootenv rc_serial [1]) 1=0)))
1223 newstr = append_str(kernel, "ttyb-nmode="", delim;
1224 free(kernel);
1226 /*
1227 * Pass the serial configuration as the delimter to
1228 * append_str() as it will be inserted between the current
1229 * string and the string we’'re appending, in this case the
1230 * cl osing single quote.
1231 */
1232 kernel = append_str(newstr, "'", serial_config[1]);
1233 free(newst r)
1234 delim=",";

1235 }

new grub/ Makefile.util.def 1 new grub/ Makefile.util.def

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 365 |dadd = Ilbgrubgcrya
17967 Fri Aug 31 05:08:49 2012 366 | dadd = |i bgrubkern. a;
new grub/ Makefile.util.def 367 | dadd = grub-core/gnulib/libgnu.a;
grub patch 368 ldadd = "$(LIBINTL) $(LIBDEVMAPPER) $(LIBUTIL) $(LIBGEQOV’;
IR RS S SRS R SR SRR SRR R R SRS R R R R E R RS SRR EEREEREEEEEEEEESE] 369 ’

__unchanged_portion_onitted_
371 program = {
306 program = { 372 nanme grub nkl ayout ;

307 name = grub-sol ari sl st2cfg; 373 mansect ion = 1;

308 installdir = shin;

309 mansection = 8; 375 common = util/grub-nklayout. c;

310 common = util/grub-solari sl st2cfg.c; 376 common = grub-core/ kern/ emu/ ar gp_common. c;
311 conmon = util/ieeel275/ of path.c;

312 common = grub- core/ kern/ enu/ ar gp_common. c; 378 | dadd

I'i bgrubnods. a;
li

379 | dadd = |ibgrubgcry. a;
314 | dadd = |i bgrubnods. a; 380 | dadd = |i bgrubkern. a;
315 | dadd = |ibgrubgcry. a; 381 | dadd = grub core/ gnul i b/1ibgnu. a;
316 |dadd = |ibgrubkern.a; 382 Idadd = "$(LIBINTL) $(LI BDEVMAPPER) $(LIBZFS) $(LI BN\VPAIR) $(LI BGEOVW)'
317 | dadd = grub-core/gnulib/libgnu.a; 383 };
318 Idadd = "$(LIBINTL) $(LI BDEVMAPPER) $(LIBUTIL) $(LIBZFS) $(LIBNVPAIR) $(LIBGEO
319 }; 385 data = {

386 comron = util/grub. d/ READVE;

321 program = 387 installdir = grubconf;

{
322 #endif /* | codereview */ 388 };
323 name = grub-bi os-setup;
324 installdir = sbhin; 390 script = {
325 mansection = 8; 391 name = ' 00_header’
326 common = util/grub-setup.c; 392 comon = ut |I/grub d/ 00_header .
327 common = util/lvmc; 393 installdir = grubconf;
328 common = grub-core/ ker n/ enu/ ar gp_conmon. c; 394 };
329 common = grub-core/lib/reed_sol onon. c;
396 script =
331 ldadd = |ibgrubnods. a; 397 name = ' 10_wi ndows’
332 | dadd = |i bgrubkern. a; 398 conmon = util/grub. d/ 10_wi ndows. i n;
333 | dadd = |ibgrubgcry. a; 399 install d| r = grubconf;
334 | dadd = grub-core/ gnul i b/1ibgnu. a; 400 condition = CO\ID_HOST_W NDOWS;
335 Idadd = "$(LIBINTL) $(LIBDEVMAPPER) $(LIBUTIL) $(LIBZFS) $(LIBNVPAIR) $(LIBGEO 401 };
336 cppflags = ' - DGRUB_SETUP_BI CS=1';
337 }; 403 script = {
404 name = ’10 hur d’
339 program = { 405 common = uti I/grub d/ 10_hurd. i n;
340 name = grub-sparc64-setup; 406 installdir = grubconf;
341 installdir = shin; 407 condition = CO\JD_I-mT_HURD;
342 mansection = 8; 408 };
343 common = util/grub-setup.c;
344 common = util/lvmc; 410 script ={
345 common = grub-core/ ker n/ enu/ ar gp_conmon. c; 411 name = ' 10_kfreebsd’
346 common = grub-core/lib/reed_sol onon. c; 412 common = util/grub. d/ 10 kfreebsd. in;
347 common = util/ieeel275/ of path.c; 413 install d r = grubconf
414 condition = COND_ HOST KFREEBSD;
349 | dadd = |i bgrubnods. a; 415 };
350 | dadd = |i bgrubkern. a;
351 | dadd = |ibgrubgcry. a; 417 script = {
352 ldadd = grub-core/gnulib/libgnu. a; 418 npanme = "10_i |l unos’
353 ldadd = " $(LI Bl NTL) $(LI BDEVNAPPER) $(LIBUTIL) $(LIBZFS) $(LIBNVPAIR) $(LIBGEO 419 conmon = util/grub. d/ 10_i I lunos.in;
354 cppfl ags = ' - DGRUB_SETUP_SPARC64=1’ 420 installdir = grubconf;
355 }; 421 condition = COND_HOST I LLUMDS;
422 };
357 program = {
358 name = grub- of pat hnane; 424 script = {
359 installdir = sbhin; 425 nane =’ 10 net bsd’ ;
360 mansection = 8; 426 common = utl 1/ grub d/ 10_net bsd. i n;
361 comnmon = util/ieeel275/grub-of pat hnane. c; 427 install dl r = grubconf;
362 common = util/ieeel275/ of pat h. c; 428 condition = CO\JD_I-mT_NEI'BSD;
429 };

364 | dadd = |i bgrubnods. a;

new grub/ Makefile.util.def

431 script = {

432 name = "10_linu

433 common = util /grub d/ 10_l'i nux.in;
434 installdir = grubconf;

435 condi tion CCND_HOST_LI NUX;

436 };

438 script = {

439 name = ' 10_xnu’

440 conmon = ut||/grub d/ 10_xnu. i n;
441 installdir grubconf;

442 condition = (IND_HCST_XNU;

443 };

445 script = {

446 nanme = ' 20_linux_xen’;

447 common = util/grub.d/20_linux_xen.in;
448 installdir = grubconf;

449 condition = CO\ID_HOST LI NUX

450 };

452 script = {

453 nanme = 30 os- prober’

454 common = util/grub.d/ 30 os- prober.
455 installdir = grubconf;

456 };

458 script = {

459 name = "40_custoni;

460 common = util/grub.d/40_customin;
461 installdir = grubconf;

462 };

464 script = {

465 name = '41_custom ;

466 common = util/grub. d/41 custom i n;
467 installdir = grubconf

468 };

470 script = {

471 mansection = 1;

472 name = grub-nkrescue;

473 x86 = util/grub-nkrescue.in;

474 m ps_gemu_m ps = util/grub- nkr escue. in;
475 m ps_l oongson = util/grub-nkrescue.in;
476 iab4_efi = util/grub-nkrescue.in;
477 power pc_i eeel275 = util/ power pc/i eeel275/ grub- nmkrescue. i n;
478 enabl e = i 386_pc;

479 enabl e = i386_efi;

480 enabl e = x86_64_efi;

481 enable = i386_qgenu;

482 enabl e = i 386_nul ti boot;

483 enabl e = i 386_coreboot;

484 enabl e = m ps_genu_mi ps;

485 enabl e = mi ps_| oongson;

486 enable = ia64_efi;

487 enabl e = power pc_i eeel275;

488 };

490 script = {

491 mansection = 1;

492 nane = grub- nkst andal one;

493 common = util/grub-nkstandal one.in;
494 1},

496 script = {

new grub/ Makefile.util.def

497 mansection = 8;

498 installdir = sbhin;

499 nane = grub-install;

501 conmon = util/grub-install.in
502 enabl e = noemu;

503 };

505 script = {

506 mansection = 8;

507 installdir = sbhin;

508 nane = grub-nknetdir;

510 common = util/grub-nknetdir.in
511 };

513 script =

514 name = grub- nkconfig;

515 common = util/grub-nkconfig.in;
516 mansection = 8;

517 installdir = sbhin;

518 };

520 script = {

521 name = grub-set-default;

522 common = util/grub-set-default.in
523 mansection = 8;

524 installdir = sbhin;

525 };

527 script =

528 nane = grub reboot ;

529 common = util/ grub reboot .

530 mansection =

531 installdir = sbln

532 };

534 script = {

535 name = grub nkconfig_lib;

536 common = util/grub- nkconf i g_lib.in;
537 installdir = noinst;

538 };

540 script = {

541 nanme = grub- kbdconp

542 conmmon = util/ grub kbdcorrp. in;
543 mansection = 1;

544 };

546 script = {

547 name = grub shel | ;

548 comon = tests/utll/grub shel I .
549 installdir = noinst;

550 };

552 script = {

553 nane = grub-shell-tester;

554 common = tests/util/grub-shell-tester.in
555 installdir = noinst;

556 };

558 script = {

559 t est case;

560 name = exanple_scripted_test;
561 common = tests/exanpl e_scripted_test.in
562 };

new grub/ Makefile.util.def

564 script = {

565 testcase;

566 name = exanpl e_grub_script_test;

567 conmon = tests/exanpl e_grub_script_test.in;
568 };

570 script = {

571 test case;

572 name = grub_script_echol;

573 common = tests/grub_script_echol.in;
574 };

576 script = {

577 testcase;

578 nanme = grub_script_| eadi ng_whi t espace;
579 common = tests/grub_script_| eadi ng_whitespace.in;
580 };

582 script = {

583 testcase;

584 name = grub_script_echo_keywords;

585 common = tests/grub_script_echo_keywords.in;
586 };

588 script = {

589 t est case;

590 nanme = grub_script_varsi;

591 common = tests/grub_script_varsl.in;
592 };

594 script = {

595 testcase;

596 name = grub_script_forl;

597 common = tests/grub_script_forl.in;
598 };

600 script = {

601 t est case;

602 nanme = grub_script_whilel;

603 common = tests/grub_script_whilel.in;
604 };

606 script = {

607 testcase;

608 name = grub_script_if;

609 comnmon = tests/grub_script_if.in;

610 };

612 script = {

613 test case;

614 name = grub_script_bl ankl i nes;

615 common = tests/grub_script_blanklines.in;
616 };

618 script = {

619 testcase;

620 name = grub_script_final _sem col on;
621 conmmon = tests/grub_script_final_senicolon.in;
622 };

624 script = {

625 test case;

626 name = grub_script_dollar;

627 common = tests/grub_script_dollar.in;
628 };

new grub/ Makefile.util.def

630 script = {

631 testcase;

632 name = grub_script_conmments;

633 conmobn = tests/grub_script_conments.in;
634 };

636 script = {

637 test case;

638 name = grub_script_functions;

639 common = tests/grub_script_functions.in;
640 };

642 script = {

643 testcase;

644 nane = grub_script_break;

645 commobn = tests/grub_script_break.in;
646 };

648 script = {

649 testcase;

650 name = grub_script_continue;

651 common = tests/grub_script_continue.in;
652 };

654 script = {

655 t est case;

656 nanme = grub_script_shift;

657 conmmon = tests/grub_script_shift.in;
658 };

660 script = {

661 testcase;

662 name = grub_scri pt_bl ockarg;

663 common = tests/grub_script_bl ockarg.in;
664 };

666 script = {

667 t est case;

668 name = grub_script_set parans;

669 common = tests/grub_script_setparans.in;
670 };

672 script = {

673 testcase;

674 name = grub_script_return;

675 common = tests/grub_script_return.in;
676 };

678 script = {

679 test case;

680 name = grub_cnd_regexp;

681 common = tests/grub_cnd_regexp.in;

682 };

684 script = {

685 testcase;

686 name = grub_script_expansion;

687 conmon = tests/grub_script_expansion.in;
688 };

690 script = {

691 test case;

692 name = grub_script_not;

693 common = tests/grub_script_not.in;

694 };

new grub/ Makefile.util.def

696 script = {

697 testcase;

698 name = partmap_test;

699 conmpn = tests/partmap_test.in;

700 };

702 script = {

703 t est case;

704 name = grub_cmd_echo;

705 common = tests/grub_cnd_echo.in;

706 };

708 script = {

709 testcase;

710 nane = grub_script_gettext;

711 comnmon = tests/grub_script_gettext.in;
712 };

714 script = {

715 t est case;

716 name = grub_script_strcnp;

717 common = tests/grub_script_strcnp.in;
718 };

720 program = {

721 t est case;

722 name = exanple_unit_test;

723 common = tests/exanpl e_unit_test.c;
724 comnmon = tests/lib/unit_test.c;

725 common = grub-core/kern/list.c;

726 common = grub-core/kern/ msc.c;

727 commobn = grub-core/tests/lib/test.c;
728 | dadd = |i bgrubnods. a;

729 | dadd = |ibgrubgcry. a;

730 | dadd = |ibgrubkern. a;

731 | dadd = grub-core/gnulib/libgnu.a;
732 ldadd = ' $(LI BDEVVMAPPER) $(LIBZFS) $(LIBNVPAIR) $(LIBGEQV;
733 };

735 program = {

736 t est case;

737 name = printf_test;

738 common = tests/printf_unit_test.c;
739 common = tests/lib/unit_test.c;

740 common = grub-core/kern/list.c;

741 conmon = grub-core/kern/msc.c;

742 common = grub-core/tests/lib/test.c;
743 | dadd = |1 bgrubnods. a;

744 | dadd = |ibgrubgcry. a;

745 | dadd = |i bgrubkern. a;

746 | dadd = grub-core/gnulib/libgnu.a;
747 |dadd = "$(LI BDEVMAPPER) $(LIBZFS) $(LIBNVPAIR) $(LIBGEOW';
748 };

750 program = {

751 testcase;

752 nane = cnp_test;

753 conmpbn = tests/cnp_unit_test.c;

754 common = tests/lib/unit_test.c;

755 common = grub-core/kern/list.c;

756 common = grub-core/kern/ msc.c;

757 commobn = grub-core/tests/lib/test.c;
758 | dadd = |1 bgrubnods. a;

759 | dadd = |ibgrubgcry. a;

760 | dadd = |i bgrubkern. a;

new grub/ Makefile.util.def

761
762
763 };

| dadd
| dadd

grub-core/ gnulib/libgnu. a;

"$(LI BDEVMAPPER) $(LIBZFS) $(LIBNVPAIR) $(LIBGEQW)’

765 program = {
nanme = grub- menul st 2cf g;
mansection

766
767
768
769
770

772
773
774
775
776
777 };

conmon

|
|
|
9

u

g
g

i
i
i
-
$

=]_;
til/grub-nmenul st2cfg.c;
rub-core/lib/legacy_parse.c;
rub-core/lib/i386/pc/vesa_nodes_table.c;

bgr ubnods. a;

bgrubgcry. a;

bgr ubkern. a;

ub-core/ gnulib/libgnu. a;

(LI BINTL) $(LI BDEVMAPPER) $(LIBZFS) $(LI BNVPAIR)

$(LI BGEOW) * ;

new gr ub/ grub- cor e/ Makefi | e. core. def

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
34261 Fri Aug 31 05:08:49 2012

new gr ub/ grub- cor e/ Makefil e. core. def

grub patch

PR R R R R R R

__unchanged_portion_onitted_

1486 nodule = {

1487 name = illunmps_entries;

1488 common = commands/illunpbs_entri es.c;
1489 };

1491 nodule =

1492 name = sol ari sl egacy;
1493 common = commands/ sol ari sl egacy. c;
1494 };

1496 nodule = {

1497 #endif /* | codereview */
1498 name = part_acorn;

1499 conmon = part map/ acorn.c;
1500 };

1502 nodul e
1503 nanme = part_am ga;

1504 conmon = partnap/ ani ga. c;
1505 };

1507 nodule = {

1508 name = part_apple;

1509 comon = part map/ appl e. c;
1510 };

1512 nodule = {

1513 name = part_gpt;

1514 common = partmap/ gpt. c;
1515 };

1517 nodul e = {
1518 nanme = part_nsdos;
1519 common = part map/ nsdos. c;

1520 }

1522 nodule =

1523 name = part_sun;

1524 conmon = part map/ sun. c;
1525 };

1527 nodule = {

1528 nanme = part_plan;

1529 conmmon = partnmap/ pl an. c;
1530 };

1532 nodule = {

1533 name = part dvh;

1534 conmmon part rmp/ dvh. c;
1535 };

1537 nodule = {

1538 name = part bsd

1539 conmon = part map/ bsdl abel .
1540 };

1542 nodule = {
1543 name = part_sunpc;
1544 conmmon = part map/ sunpc. c;

new gr ub/ grub- cor e/ Makefil e. core. def
1545 };

1547 nodule = {

1548 nanme = nsdospart;

1549 conmmon = parttool / medospart.c;
1550 };

1552 nodule = {

1553 name = at_keyboard;

1554 common = term at _keyboard. c;
1555 enabl e = x86;

1556 };

1558 nodul e =

1559 nane = gfxterm

1560 conmmon
1561 enabl e
1562 };

term gf xtermc;
vi deonodul es;

InnQ—

1564 nodul e =

1565 nane = serial;

1566 cormnn = termserial.c

1567 x86 = term ns8250. c;

1568 i eee1275 = ternfi eee1275/ser| al .
1569 efi = termefi/serial.

1571 enabl e
1572 enabl e
1573 };

1575 nmodul e = {

1576 nanme = sendk

1577 i 386 pc = comrands/l 386/ pc/ sendkey. c;
1578 enable = i386_pc;

1579 };

t er mi nf onodul e;
i eeel275;

1581 nodul e =
1582 name =
1583 conmmon
1584 conmon
1585 enabl e
1586 };

erm nfo;
termterm nfo.c;
term tparmc;
term nf onodul e;

I n =

1588 nodul e
1589 nanme
1590 conmmon
1591 enabl e
1592 };

sb_keyboard;
term usb_keyboard. c;
usb;

e~

1594 nodul e
1595 name
1596 conmon
1597 enabl e
1598 enabl e
1599 enabl e
1600 };

a,

vi deo/ i 386/ pc/ vga. c;
i 386_pc;

i 386_cor eboot ;

i 386_mul ti boot;

nmauaun<—
«Q

1602 nodul e =
1603 =
1604 conmon
1605 conmon

ga_text;
tern i 386/ pc/vga_text.c;
term i 386/ vga_common. c;

=}
3
I
nin<—~

1606 enabl e i 386_pc;
1607 };

1609 nodul e =

1610 nane = video_cirrus;

new gr ub/ grub- cor e/ Makefi | e. core. def

1611 x86 = video/cirrus.c;

1612 enabl e = x86

1613 };

1615 nodule = {

1616 name = vi deo_bochs

1617 x86 = video/ bochs. c;

1618 enabl e = x86

1619 };

1621 nodule = {

1622 nane = functional _test

1623 common = tests/lib/functional _test.c;
1624 common = tests/lib/test.c
1625 };

1627 nodul e =

1628 nane = exfctest

1629 comon = tests/exanpl e_functional _test.c
1630 };

1632 nmodule = {

1633 nanme = bitmap;

1634 common = vi deo/ bi t map. c;

1635 enabl e = vi deonpdul es

1636 };

1638 nodul e = {

1639 nanme = bitmap_scal e

1640 conmon = vi deo/ bi t map_scal e. c;
1641 enabl e = vi deonpdul es

1642 };

1644 nodul e =

1645 name = efi_gop

1646 efi = video/efi_gop.c;

1647 enabl e = efi

1648 };

1650 nodul e = {

1651 nane = efi_uga

1652 efi = video/efi_uga.c;

1653 enabl e = i386_efi

1654 enabl e = x86_64_efi

1655 };

1657 nodul e =

1658 name = j peg

1659 common = vi deo/ reader s/ j peg. c;
1660 };

1662 nodul e =

1663 name = png

1664 conmmon = vi deo/ readers/ png.c;
1665 };

1667 nodule = {

1668 nane = tga

1669 conmmon = vi deo/ readers/tga.c
1670 };

1672 nodule = {

1673 name = vbe

1674 common = vi deo/ i 386/ pc/ vbe. c;
1675 enabl e = i 386_pc

1676 enabl e = i 386_cor eboot

new gr ub/ grub- cor e/ Makefil e. core. def

i 386_mul ti boot

i deo_fb;
vi deo/ f b/
vi deo/ f b/
vi deo/ f b/
vi deo/ f b/

\
fb
fb
fb
vi deonodul e

i deo;

vi deo/ vi deo. ¢
video/colors.c
vi deonodul es

eeel275 fb

i eeel275 = video/ieeel275.c

power pc_i eeel275

dl

emu = video/ enmu/sdl.c;

1677 enable =
1678 };

1680 nodule = {
1681 name = v
1682 conmmon =
1683 conmon =
1684 comon =
1685 conmon =
1686 enabl e =
1687 };

1689 nodule = {
1690 name = v
1691 common =
1692 comon =
1693 enable =
1694 };

1696 nodule =
1697 nane =
1698

1699 enabl e =
1700 };

1702 nodule = {
1703 nanme = s
1704

1705 enable =
1706 conditio
1707 };

1709 nodule = {
1710 name = d
1711 conmon =
1712 };

1714 nodule = {
1715 name = n
1716 common =
1717 common =
1718 conmon =
1719 comon =
1720 common =
1721 comon =
1722 comon =
1723 conmon =
1724 common =
1725 comon =
1726 comon =
1727 };

1729 nodule =
1730 name =t
1731 comon =
1732 };

1734 nodule = {
1735 name = h
1736 conmon =
1737 };

1739 nodul e =
1740 name = 0
1741 common =
1742 enable =

enu;
n = COND_GRUB_EMJ SDL;

at ehook
hook/ dat ehook. ¢

et

net/net.c;
net/dns.c;
net/ boot p.
net/ip.c;
net/ udp. c;
net/tcp.c;
net/icnp.c;
net/icnpé. c;
net /et hernet.c;
net/arp.c;

net/ netbuff. c;

o

ftp;
net/tftp.c;

ttp;
net/http.c;

f net
net/drivers/ieeel275/of net.c
i eeel275

new gr ub/ grub- cor e/ Makefi | e. core. def

1743 };

1745 nodul e =

1746 nane = efinet;

1747 conmon = net/drivers/efi/efinet.c;
1748 enable = efi;

1749 };

1751 nodule = {

1752 nane = emunet;

1753 emu = net/drivers/enu/ enunet.c

1754 enabl e = enu;

1755 };

1757 nodule = {

1758 nane = | egacycfg;

1759 conmmon = commands/ | egacycfg. c;

1760 common = |ib/legacy_parse.c;

1761 emu = |i b/| 386/ pc/ vesa_| rmdes _table.c;
1762 enabl e = i 386_pc;

1763 enabl e = enu;

1764 };

1766 nodule =

1767 nanme = test_bl ockarg;

1768 common = tests/test_bl ockarg.c;
1769 };

1771 nodule = {

1772 name = Xxzio;

1773 comon = i o/ xzio.c;

1774 common = | i b/ xzenbed/ xz_dec_bcj . c;
1775 common = |i b/ xzenbed/ xz_dec_| zna2. c;
1776 conmobn = Ilblxzenbed/xz “dec_streamc;
1777 cppflags = ' -1$(srcdir)/libl p05| x_wap -1$(srcdir)/lib/xzenbed
1778 cfl ags=" - Who- unr eachabl e- code’

1779 };

1781 nodule = {

1782 nanme = | zopi0;

1783 common = i o/l zopio.c;

1784 conmon = Ilb/mnllzolmnllzo.c;
1785 cflags = $(CFLAGS_PCSI X) -Who-undef -Wo-redundant -decls -Wo-error’
1786 cppflags = "-1$(srcdir)/lib/posix_ wap -1$(srcdir)/lib/mnilzo -DM NI LZO HAVE_
1787 };

1789 nodule = {

1790 nane = testl oad;

1791 conmmon = commands/test| oad. c;

1792 };

1794 nodule = {

1795 nane = backtrace;

1796 x86 i b/i 386/ backtrace. c;

1797 conmon = |i b/ backtrace.c;

1798 enabl e = x86;

1799 };

1801 nodule = {

1802 name = | sapm

1803 common = comands/ i 386/ pc/ | sapm c;
1804 enabl e = i 386_pc;

1805 }

1807 nodul e =

1808 nane = keyl ayouts;

new gr ub/ grub- cor e/ Makefil e. core. def

1809 conmmon = conmmands/ keyl ayouts. c;
1810 enabl e = vi deonpdul es;

1811 };

1813 nodul e = {

1814 name = pr ority_queue;

1815 comon = b/ priority_queue.c;
1816 };

1818 nodul e = {

1819 name = tine;

1820 conmon = commands/ ti ne. C;

1821 }

1823 nodule = {

1824 name = cacheinfo;

1825 conmon = conmands/ cachei nf o. c;
1826 condi ti on = COND_ENABLE_CACHE_STATS;
1827 };

1829 nodule = {

1830 name = adl er 32;

1831 common = | i b/ adl er 32. c;

1832 };

1834 nodule = {

1835 name = crc64;

1836 common = | b/ crc6a. C;

1837 };

1839 nodule = {

1840 name = all_vide

1841 common = i b/fake nodul e. c;
1842 }

1844 nodule = {

1845 nane = gdb

1846 common = gdb/ cstub. c;

1847 common = gdb/ gdb. c;

1848 i 386 = gdb/ i 386/ i dt NCH

1849 i 386 = gdb/i 386/ machdep. S;
1850 i 386 = gdb/i 386/signal.c;

1851 enabl e = i 386;

1852 };

new gr ub/ grub-core/ comrands/ il |l unbs_entries.c

R R R R

4544 Fri Aug 31 05:08:50 2012
new gr ub/ grub-core/ comrands/il |l unpbs_entries.c

grub patch
IR RS S SRS R SR SRR SRR R R SRS R R R R E R RS SRR EEREEREEEEEEEEESE]
1/*
2 * GRUB -- GCRand Unified Bootl oader
3 * Copyright (C 2012 Daniil Lunev
4 *
5 * CRUBis free software: you can redistribute it and/or nodify
6 * it under the terns of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * GRUB is distributed in the hope that it will be useful,
11 * but W THOUT ANY WARRANTY; without even the inplied warranty of
12 * MERCHANTABI LI TY or FITNESS FOR A PARTI CULAR PURPOSE. See the
13 * G\U General Public License for nore details.
14 =
15 * You shoul d have received a copy of the GNU General Public License
16 * along with GRUB. |f not, see <http://ww.gnu.org/licenses/>.
17 */

19 #incl ude <grub/types. h>
20 #include <grub/file.h>
21 #incl ude <grub/di sk. h>
22 #include <grub/m sc. h>
23 #include <grub/err.h>

24 #include <grub/dl.h>

25 #incl ude <grub/extcnd. h>
26 #include <grub/i 18n. h>
27 #include <grub/nornmal . h>

29 #include "nmenu_nmanagi ng. c"

31 GRUB_MOD LI CENSE (" GPLV3+");

33 static const struct grub_arg_option options[] = {
34 {0, 0, 0, 0, O,

35 };

37 static const char * globals[] = {
38 "defaul t _entry",

39 "timeout",
40 “"serial",
41 "termnal ",
42 NULL

43 };

45 static grub_err_t
46 get_val ue(char * buf, char ** val ue)

47 {

48 *value = grub_strchr(buf, "=");

49 if (! *value)

50 return grub_error (GRUB_ERR | NVALI D COMWAND, N _("illunps syntax error"));
51 **value = '\0’;

52 ++(*val ue);
53 return O;
54 }

56 static int
57 check_paran(char * param

59 int i =0;

61 for (; parans_list[i]; ++i)

new gr ub/ grub-core/ comrands/ il |l unps_entries.c 2

62 if (!grub_strcnp(param parans_list[i]))
63 return i;

64

65 return -1;

66 }

68 static int

69 check_gl obal (char * param
70 {

71 int i =0;

73 for (; globals[i]; ++i)
74 if (!grub_strcnp(param globals[i]))
75 return i;

77 return -1;
}

80 static grub_err_t
81 parse_config(grub_file_t file, entries * entry_list)

83 char * param

84 char * val ue;

85 entries * current_entry = NULL;
86 int paramid = O;

87 int global _id = 0;

88 grub_err_t err;

89

90 for(;;) {

91 param = grub_file_getline(file);

92 1f (! param

93 return grub_errno;

95 if ((*param=="#) || (*param==" ") ||

96 (*param == "\t') || (*param=="\n") ||

97 (*param == 0))

98 grub_free(param;

99 conti nue;

100 }

101 global _id = -1;

102

103 err = get_val ue(param &val ue);

104 if (err)

105 return err;

107 param.id = check_paran{param;

108 if (paramid < 0)

109 gl obal _id = check_gl obal (param;

110 if (global _id < 0) {

111 grub_free(paran;

112 return grub_error (GRUB_ERR | NVALI D COWAND, N _("illunps syntax error"))
113 }

114 1

115 if (err)

116 return err;

117 if (!'value[0])

118 return grub_error (GRUB_ERR I NVALID COMVAND, N ("illunps syntax error"));
119 if (global_id < 0)

120 if (param.id == 0)

121 current_entry = new entry(value, entry_list);

122 if (! current_entry)

123 grub_free(param;

124 return grub_error (GRUB_ERR OUT_OF MEMORY, N_("nenory can not be alloc
125

126 } else {

127 grub_strcpy(current _entry->entry_i nfo[param.id], value);

new gr ub/ grub-core/ commands/illunps_entries.c 3 new gr ub/ grub-core/ commands/illunps_entries.c

128 } 194 GRUB_MOD FINI(illunmps_entries)
129 } else { 195 {
130 char line[512]; 196 grub_unregi ster_extcnd (illunos_entries);
131 switch (global _id) { 197 }
132 case 0O: 198 #endif /* ! codereview */
133 grub_env_set ("default", val ue);

134 br eak;

135 case 1:

136 grub_env_set ("tineout", val ue);

137 br eak;

138 case 2:

139 grub_strcpy(line, "serial ");

140 grub_strcat(line, value);

141 grub_normal _parse_line(line, NULL);

142 break;

143 case 3:

144 grub_strcpy(line, "termnal _input ");

145 grub_strcat(line, value);

146 grub_strcat(line, "; term nal _output ");

147 grub_strcat(line, value);

148 grub_normal _parse_line(line, NULL);

149 br eak;

150 defaul t:

151 br eak;

152

153

154 grub_free(param;

155

156 return O;

157 }

159 static grub_err_t

160 ?r ub_cnd_i I Tumos_entries (grub_extcnd_context_t ctxt __attribute__ ((unused)), i

161

162 grub_file_t file;
163 entries * nmenu_entries = NULL;

164

165 if (argc !'=1)

166 return grub_error (GRUB_ERR BAD _ARGUMENT, N _("filenane expected"));
167

168 file = grub_file_open(args[0]);

169

170 if (!'file)

171 return grub_errno;

172

173 init_entries(&menu_entries);

174

175 if (parse_config(file, menu_entries) == 0) {
176 add_entries(nenu_entries);

177

178 clear_entries(nenu_entries);

179

180 grub_refresh();
181 grub_file_close(file);

183 return O;

184 }

186 static grub_extcnd_t illunps_entries;

188 GRUB_MOD I NI T(illunmps_entries)

ig(g) 1 illumos_entries = grub_register_extcnd ("illunmps_entries", grub_cnd_illunps_en
191 N_("FILE"), N ("Define an illunmps nmenu entries."), options);

192 }

new gr ub/ gr ub- cor e/ comrands/ nenu_nanagi ng. ¢ 1

R R R R

5949 Fri Aug 31 05:08:50 2012
new gr ub/ gr ub- cor e/ comrands/ nenu_nanagi ng. ¢

grub patch
IR RS S SRS R SR SRR SRR R R SRS R R R R E R RS SRR EEREEREEEEEEEEESE]
1/*
2 * GRUB -- GCRand Unified Bootl oader
3 * Copyright (C 2012 Daniil Lunev
4 *
5 * CRUBis free software: you can redistribute it and/or nodify
6 * it under the terns of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * GRUB is distributed in the hope that it will be useful,
11 * but W THOUT ANY WARRANTY; without even the inplied warranty of
12 * MERCHANTABI LI TY or FITNESS FOR A PARTI CULAR PURPOSE. See the
13 * G\U General Public License for nore details.
14 =
15 * You shoul d have received a copy of the GNU General Public License
16 * along with GRUB. |f not, see <http://ww.gnu.org/licenses/>.
17 */

19 #define VALUE SIZE 512

21 typedef struct entries entries;
22 struct entries {

23 entries *next;

24 char ** entry_info;

27 enum param consts {
28 ENTRY. ;

29 POOL_UU D,

30 POOL_LABEL,

31 DATA_SET,

32 KERNEL_PATH,

33 KERNEL_OPTI ONS,
34 BA_PATH,

35 DOLLAR KERNEL_PATH,
36 DOLLAR BA PATH,
37 };

39 static const char * parans_list[] = {
40 "entry_name",

41 "pool _uuid",

42 " pool _| abel ",

43 "data_set",

44 "kernel _path",

45 “"kernel _options",
46 "nodul e",

47 "kernel _path$",
48 "nodul e$",

49 NULL

50 };

52 static grub_err_t
53 init_entries(entries ** menu_entries)

54

55 (*menu_entries) = (entries*) grub_zall oc(sizeof (nenu_entries));

56 if (! *menu_entries)

57 return grub_error (GRUB_ERR QUT_OF_MEMORY, N_("nenory can not be allocated")
58 return O;

59 }

61 static entries *

new gr ub/ gr ub- cor e/ comrands/ nenu_nanagi ng. ¢
62 new entry(char * nane, entries * entry_list)
63 {
64 unsigned int i;

66 if (entry_list->next)
do {

67

68 entry_list = entry_list->next;

69 if (I'grub_strcnp(name, entry_list->entry_info[0]))
70 return entry_list;

71 } while (entry_Iist- >next);

72 entry_list->next = (entries*) grub_zalloc(sizeof(entries));

73 if (! entry_list->next)

74 return NULL;

75 entry_list = entry_list- >next;

76 entry list->entry_info (char**) grub_zal | oc(sizeof (parans_list));

77 for (i =0; i < 5|zeof(pararrs list) / sizeof(*paranms_list); i++) {
78 entry_list->entry_info[i] = (char *) grub_ zaIIoc(VALUE Si ZE);

79 if (! entry_list->entry_info[i])

80 return NULL;

81

}
82 grub_ strcpy(entry list->entry_info[0], nane);
83 return entry_list;

86 static void

87 clear_entries(entries * entry_list)
88 {

89 entries * next;

90 unsigned int i;

92 next = entry_list->next;
93 grub_free(entry_list);
94 entry_list = next;

96 while (entry_list)

97 next = entry_list->next;

98 if (entry_list->entry_info) {

99 for (i =0; i < sizeof(paranms_list) / sizeof(*parans_list); i++)
100 if (entry_list->entry_info[i])

101 grub_free(entry_list->entry_info[i]);
102 grub_free(entry_list->entry_info);

103

104 grub_free(entry_list);

105 entry_list = next;

106 }

107 }

109 static grub_err_t

110 add_entries(entries * nmenu_entries)
111 {

112 grub_err_t
113 char cl 1] ;
114 char cl2[] ="i I | unos”

115 char * class[] {cl1, cI2 NULL};
116 char * argv[] —{ NULL, NULL}
117 char id[512];

118 char * entry_source = NULL;

119 char * data_set;

120 char entry_tenplate[] =

121 "insnmod part_sunpc\n”
122 "insnmod part_nsdos\n"
123 "insnod zfs\n"

124 "insnod gzio\n"

125 "if cpuid -1 ; then\n"
126 " | SADI R=and64\ n"

127 "el se\n"

new gr ub/ gr ub- cor e/ comrands/ nenu_nanagi ng. ¢

128
129

131
132
133
134
135
136

138
139

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

185
186
187

189
190

192
193

| SADI R=\ n"
"fi\n";

menu_entries = nenu_entries->next;

while (menu_entries)
argv[0] = grub_strdup(nenu_entries->entry_i nf o[ENTRY_NAVME]) ;
if (largv[0])

return grub error (GRUB_ERR OUT_OF_MEMORY, N_("menory can not be allocated

entry_source = (char*) grub_zall oc(2048);

if (!entry_source)

return grub_error (GRUB_ERR OUT_OF_MEMORY, N _("nmenory can not be allocated

if (menu_entries->entry_info[DATA_SET][0] != 0)

data_set = grub_strchr(nenu_entries->entry_info[DATA SET], '/’);
el se

data_set = grub_strdup("$ZFS_DATASET");
grub_strcpy(entry_source, entry_tenplate);
if (menu_entries->entry_info[POOL_UUID][0]) {

grub_strcat(entry_source, "search --no-floppy --zfs-mrror --fs-uuid --set
grub_strcat(entry_source, nmenu_entries->entry_info[POOL_UUID]);

} else {
grub_strcat(entry_source, "search --no-floppy --zfs-mrror --label --set=r

grub_strcat(entry_source, menu_entries->entry_info[POOL_LABEL]);

grub_strcat(entry_source, "\n");

grub_strcat(entry_source, "zfs-bootfs ($root)");

if (menu_entries->entry_info[DATA_SET][0] !'= 0) {
grub_strcat(entry_source, data_set);
grub_strcat(entry_source, " ZFS_BOOTFS\n");

} else {
grub_strcat(entry_source, "default ZFS BOOTFS ZFS DATASET\n");

grub_strcat (entry_source, "nultiboot ($root)"

if (! menu_entries->entry_info[DOLLAR_KERNEL PATH][O]) {
grub_strcat(entry _source, data_set);
grub_strcat(entry_source, "/ @);

grub_strcat(entry_source, nmenu_entries->entry_i nfo[KERNEL_PATH]);

grub_strcat(entry_source,

)
grub_strcat(entry_source, nenu_entries->entry_i nf o[KERNEL_PATH]) ;

} else {

grub_strcat(entry_source, nmenu_entries->entry_i nfo[DOLLAR KERNEL_PATH)) ;

grub_strcat(entry_source,

L
grub_strcat(entry_source, nenu_entries->entry_i nf o[KERNEL_OPTI ONS]) ;

grub_strcat(entry_source, "\n")
grub_strcat(entry_source, "modul e ($root)");
if (T menu_entries- >entry i nf o[DOLLAR | KERNEL _PATH [0]) {
grub_strcat(entry_source, data_set);
gr ub_strcat(entry_source, "1@);
grub_strcat(entry_source, nmenu_entries->entry_info[BA_PATH]);
grub_strcat(entry_source, " ");
grub_strcat(entry_source, menu_entries->entry_info[BA_PATH]);
} else {

grub_strcat(entry_source, nmenu_entries->entry_i nfo[DOLLAR BA PATH]);

}
grub_strcpy(id, argv[O])'

grub_strcat(id, "-
grub_strcat (id, menu entries->entry_info[POOL_UUI D)) ;

err = grub_nornal _add_nenu_entry (2, (const char **) argv, class,
NULL, NULL, NULL, entry_source, 0);

if (err)
return err;

id,

new gr ub/ gr ub- cor e/ comrands/ nenu_nanagi ng. ¢

194

195 grub_free(argv[0]);

196 menu_entries = nmenu_entries->next;
197

}
198 grub_free(entry_source);
199 return O;
200 }
201 #endif /* ! codereview */

new gr ub/ gr ub- cor e/ comrands/ search. c 1

R R R R

7395 Fri Aug 31 05:08:51 2012

new gr ub/ gr ub- cor e/ comrands/ search. c

fixes + mrror

IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]
1 /* search.c - search devices based on a file or a filesystem|abel */
2 /*

3 * GRUB -- GRand Unified Bootl oader
4 * Copyright (C) 2005, 2007,2008,2009 Free Software Foundation, Inc.
5 *
6 * CGRUBis free software: you can redistribute it and/or nodify
7 * it under the terns of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * GRUB is distributed in the hope that it will be useful,
12 * but W THOUT ANY WARRANTY; without even the inplied warranty of
13 * MERCHANTABILITY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
14 * G\U General Public License for nore details.
15 =
16 * You should have received a copy of the GNU General Public License
17 * along with GRUB. If not, see <http://ww.gnu.org/licenses/>.
*

/

20 #include <grub/types. h>
21 #include <grub/msc. h>

22 #incl ude <grub/mm h>

23 #include <grub/err. h>

24 #include <grub/dl.h>

25 #include <grub/zfs/zfs. h>
26 #endif /* | codereview */
27 #include <grub/device. h>
28 #include <grub/file.h>

29 #incl ude <grub/env. h>

30 #i ncl ude <grub/comand. h>
31 #include <grub/search. h>
32 #include <grub/i18n. h>

33 #incl ude <grub/di sk. h>

34 #include <grub/partition.h>

36 GRUB_MOD_LI CENSE (" GPLv3+");
38 struct cache_entry

40 struct cache_entry *next;
41 char *key;

42 char *val ue;

43 };

45 static struct cache_entry *cache;

47 void

48 FUNC_NAME (const char *key, const char *var, int no_floppy,
49 char **hints, unsigned nhints, int mrror)

25 char **hints, unsigned nhints)

50

51 int count = O;

52 int is_cache = 0;

53 grub_uint64_t txg = O;

54 #endif /* | codereview */

55 grub_fs_aut ol oad_hook_t saved_aut ol oad;

57 auto int iterate_device (const char *nane);
58 int iterate_device (const char *nane)

60 int found = 0;

new gr ub/ gr ub- cor e/ comrands/ search. c

62 /* Skip floppy drives when requested. */

63 if (no_floppy &&

64 nane[0] == 'f' && nane[l] == 'd && nanme[2] >= 0’
65 return O;

67 #ifdef DO_SEARCH FS_UU D
68 #define conpare_fn grub_strcasecnp

69 #el se

70 #define conpare_fn grub_strcnp

71 #endi f

73 #ifdef DO _SEARCH FI LE

74 {

75 char *buf;

76 grub_file_t file;

78 buf = grub_xasprintf ("(%)%", nanme, key);
79 if (! buf)

80 return 1;

82 grub_file_filter_disable_conpression ();
83 file = grub_file_open (buf);

84 if (file)

85 {

86 found = 1;

87 grub_file_close (file);

88 }

89 grub_free (buf);

90

91 #el se

92 {

93 /* SEARCH_FS_UUI D or SEARCH LABEL */
94 grub_device_t dev;

95 grub_fs_t fs;

96 char *qui d;

98 dev = grub_devi ce_open (nane);

99 if (dev)

100

101 fs = grub_fs_probe (dev);

103 #i fdef DO _SEARCH FS_UUI D
104 #define read_fn uuid

105 #el se

106 #define read_fn |abel
107 #endi f

109 if (fs && fs->read_fn)
110
111 fs->read_fn (dev, &quid);

113 if (grub_errno == GRUB_ERR_NONE && qui d)
114

115 if (conpare_fn (quid, key) == 0)
116 found ;

118 grub_free (quid);
119 }
120 }

122 grub_devi ce_cl ose (dev);
123 }

124 }

125 #endi f

&& nare[2]

<:’9')

new gr ub/ gr ub- cor e/ comrands/ search. c

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

29
172
173
174
175
176
177

31
178
179
180
181

183
184

185
187

188
189

if (!is_cache & found && count == 0)
{
struct cache _entry *cache_ent;
cache_ent = grub_nall oc (S|zeof (*cache_ent));
if (cache_ent)
{

cache_ent->key = grub_strdup (key);
cache_ent->val ue = grub_strdup (nane);
if (cache_ent->val ue & cache_ent - >key)

cache_ent - >next = cache;
cache = cache_ent;

el se

grub_free (cache_ent->val ue);
grub_free (cache_ent->key);
grub_free (cache_ent);
grub_errno = GRLB_ERR_NO\IE;

el se
grub_errno = GRUB_ERR NONE;

if (found)
count ++;
if (var)
if (! mrror) {
grub_env_set (var, nane);
} else {
grub_uint64_t tnp_txg = O;
char * nvlist = NULL;
grub_device_t dev = grub_devi ce_open (nane);
if (! dev)
grub_errno = GRUB_ERR BAD_DEVI CE;
return O;

grub_errno = grub_zfs_fetch_nvli st
grub_devi ce_cl ose (dev);
if (grub_errno)
return O;
grub_zfs_nvlist_I ookup_uint64 (nvlist,
if (tmp_txg > txg) {
if (var)

(dev,

grub_env_set (var, nane);
txg = tnp_txg;
grub_free (nvlist);
} else {
el se
grub_printf (" %", nane);

}
#endif /* | codereview */
grub_errno = GRUB_ERR_NONE;
return (found & var & !mrror);
return (found &% var);

auto int part_
int part_hook (grub_disk_t
{

hook (grub_disk_t disk,
di sk, const grub_partition_t

&nvlist);

ZPOOL_CONFI G POOL_TXG, &t np_t

const grub_partition_t partition);

partition)

new gr ub/ gr ub- cor e/ comrands/ search. c

190
191

193
194
195

197
198
199
200
201
202

204
205

207
208
209
210
211
212

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

237

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

char *partition_nanme, *devnane;

int ret;

partition_name

if (! partition_ name)
return 1;
devname = grub_xasprintf ("%, %", disk->nang,

grub_free (partition_nane);
i f (!devnane)
return 1;
ret = iterate_device (devnane);
grub_free (devnane);

return ret;

}

auto void try (void);
void try (void)
{

unsi gned i ;
struct cache_entry **prev;
struct cache_entry *cache_ent;

= grub_partition_get_nane (partition);

partition_nane);

for (prev = &cache, cache_ent = *prev; cache_ent;
prev = &cache_ent - >next, cache_ent = *prev)
if (corrpare fn (cache_ent->key, key) == 0)

bre
|f{(cache ent)

is_cache = 1;
if (iterate_device (cache_ent->value))

is_cache = 0;
return;

is_cache = 0;
/* Cache entry was outdated. Renpve it.
if (!count)

grub_free (cache_ent->key);
grub_free (cache_ent->val ue);
grub_free (cache_ent);

*prev = cache_ent->next;

}
}
for (i =0; i < nhints; i++)
char *end;
if (thints[i][0])
conti nue;
end = hi nts[l] + grub_strlen (hints[i])
if (*end ==",")
*end = 0
if (iterate_device (hints[i]))
if (l*end)
*end = ’
return;
}
if (!*end)
grub_devi ce_t dev;
int ret;
dev = grub_device_open (hints[i]);

*/

1

new gr ub/ gr ub- cor e/ comrands/ search. c

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

280
281
282
283
284
285

287
288

290
291
292
293
294
295

297
298
299

301
302
303

}

if (!dev)
if (!*end)

*end =7,
conti nue;

if (! dev->disk)

grub_devi ce_cl ose (dev);
if (!*end)

*end =, ;
conti nue;

ret = grub_partition_iterate (dev->disk, part_hook);
if (!*end)
*end = ', ;
grub_devi ce_cl ose (dev);
if (ret)
return;
}

grub_device_iterate (iterate_device);

/* First try without autoloading if we're setting variable. */
if (var)

saved_aut ol oad = grub_fs_aut ol oad_hook;
grub_fs_aut ol oad_hook = O;
try ();

/* Restore autol oad hook. */
grub_fs_aut ol oad_hook = saved_aut ol oad;

/* Retry with autoload if nothing found. */

if (grub_errno == GRUB_ERR _NONE && count == 0)
try ();
el se
try ();

if (grub_errno == GRUB_ERR NONE && count == 0)
grub_error (GRUB_ERR FI LE_NOT_FOUND, "no such device: %", key);

static grub_err_t
grub_cnd_do_search (grub_comand_t cnd __attribute__ ((unused)), int argc,

304 {

305
306

308
309
159

311

312 }
__unchanged_portion_omtted_

char **args)

if (argc ==
return grub_error (GRUB_ERR BAD _ARGUMENT, N_("one argunent expected"));
FUNC_NAME (args[0], argc ==1 ? 0 : args[1], O, (args + 2),
argc > 2 ? argc - 2 : 0, ;
argc > 2 ? argc - 2 : 0);

return grub_errno;

new gr ub/ gr ub- cor e/ comrands/ sear ch_wr ap. c

R R R R

6857 Fri Aug 31 05:08:51 2012

new gr ub/ gr ub- cor e/ comrands/ search_wr ap. c

fixes + mrror
IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]

1 /* search.c - search devices based on a file or a filesystem|abel */

2

oo~NoOUThw

| *

B . N

#i
#i
#i
#i
#i
#i
#i
#i
#i

/

GRUB -- GRand Unified Bootl oader
Copyright (C 2005,2007,2008,2009 Free Software Foundation, Inc.

GRUB is free software: you can redistribute it and/or nodify

it under the terns of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

GRUB is distributed in the hope that it will be useful,

but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with GRUB. |If not, see <http://ww.gnu.org/licenses/>.

ncl ude <grub/types. h>
ncl ude <grub/ m sc. h>
ncl ude <grub/ mm h>

ncl ude <grub/err.h>

ncl ude <grub/dl . h>

ncl ude <grub/env. h>

ncl ude <grub/extcnd. h>
ncl ude <grub/search. h>
ncl ude <grub/i 18n. h>

GRUB_MOD_LI CENSE (" GPLV3+");

static const struct grub_arg_option options[] =

{"file", "f', 0, N ("Search devices by a file , 0, s

{"l abel ", 1", 0, N ("Search devices by a filesystemlabel."),
0, 0},

{"fs-uuid", "u’, 0, N_("Search devices by a filesystemUu D. "),
0, O}

{" set 's’, GRUB_ARG _OPTI ON_OPTI O\IAL

("Set a variable to the first device found."' "), N_("VARNAME"),
ARG_TYPE_STRI NG,
{"no- floppy , ’n’, 0, N ("Do not probe any floppy drive."), 0, 0},
{"hint" "h', GRUB ARG_OPTI ON_REPEATABLE,
N(First try the device HINT. IT HINT ends in conma,
"also try subpartltl ons"), N_("H NT"), ARG TYPE _STRI NG}
{"hint-ieeel275" 0, GRUB_ ARG OPTI ON REPEATABLE,
N (First try the device HINT if currently runni ng on | EEE1275.
"I'f HINT ends in comm, also try subpartitions"),
N_("H NT"), ARG TYPE_STRI NG}
{"hint-bios", 0, GRUB_ARG OPTI ON_REPEATABLE,
N ("First try the device HINT if currently running on BICS.
"I'f HINT ends in comm, also try subpartitions"),
N_("H NT"), ARG TYPE_STRI NG,
{"hint-barenetal ", 0, GRUB_ARG_OPTI ON_REPEATABLE,
N ("First try the device HINT if direct hardware access is supported.
"I'f HINT ends in commm, also try subpartitions"),
N_("H NT") , ARG _TYPE_STRI NG,
{"hint-efi" 0, GRUB_ARG OPTI ON_REPEATABLE,
N(First try the device HINT if currently runni ng on EFI .
"I'f HINT ends in commm, also try subpartitions"),
N_("H NT"), ARG TYPE_STRI NG},

new gr ub/ gr ub- cor e/ comrands/ sear ch_wr ap. c

107

109
110
111
112
113

115
116
117
118
119

121
122
123
124
125

127

{"hint-arc" 0, GRUB_ARG_OPTI ON_REPEATABLE,

N_("First try the device HINT if “currently running on ARC."
" If HINT ends in conmm, also try subpartitions"),

N_("HI NT"), ARG TYPE_STRI NG}

"zfs-mrror", ’
#endi f /* | coderevi ew */
{O

*
0, 0, 0, 0, 0}

enum opti ons

SEARCH_FI LE,
SEARCH_LABEL,
SEARCH FS_UU D,
SEARCH SET,
SEARCH_NO_FLOPPY,
SEARCH_HI NT,
SEARCH_HI NT_I| EEE1275,
SEARCH Hi NT Bl CS,
SEAROH Hi NI' BAREMETAL,
SEARCH_HI NT_EFI ,
SEARCH_HI NT_, ARC
SEARCH ZFS M RROR,
#endif /* T codereview */

static grub_err_t
grub_cnd_search (grub_extcnd_context t ctxt, int

struct grub_arg_list *state = ctxt->state;
const char *var = 0;
const char *id = 0;
int i =0, j =0, nhints = 0;
char **hints = NULL;
int mrror_node = 0;
#endif /* | codereview */

if (state[SEARCH HI NT]. set)
for (i = 0; state[SEARCH HI NT].args[i]; i++)
nhi nt s++;

#i fdef GRUB_MACHI NE_| EEE1275

i f (state[SEARCH HI NT_I EEE1275] . set)
for (i = 0; state[SEARCH H NT_| EEE1275] . ar gs
nhi nt s++;
#endi f

#i f def GRUB_MACHI NE_EFI
if (state[SEARCH HI NT_EFI] . set)
for (i = 0; state[SEARCH HI NT_EFI].args[i];
nhi nt s++;
#endi f

#i f def GRUB_MACHI NE_PCBI OS

if (state[SEARCH HI NT_BI OS] . set)
for (i = 0; state[SEARCH HINT_BIOS].args[i];
nhi nt s++;
#endi f

#i f def GRUB_MACHI NE_ARC
if (state[SEARCH HI NT_ARC] . set)
for (i = 0; state[SEARCH H NT_ARC]. args[i];
nhi nts++;
#endi f

if (state[SEARCH H NT_BAREMETAL] . set)

argc,

[i];

i ++)

i ++)

i ++)

z', 0, N_("Handle zfs-mirror disk"), 0, 0},

char **args)

i++)

new gr ub/ gr ub- cor e/ comrands/ sear ch_wr ap. c

128 for (i = 0; state[SEARCH HI NT_BAREMETAL].args[i]; i++)
129 nhi nt s++;

131 hints = grub_nalloc (sizeof (hints[0]) * nhints);

132 if (thints

133 return grub_errno;

134 j =0

136 if (state[SEARCH HI NT]. set)

137 for (i = 0; state[SEARCH HI NT].args[i]; i++)

138 hints[j++] = state[SEARCH HI NT].args[i];

140 #ifdef GRUB_MACHI NE_| EEE1275

141 if (state[SEARCH HI NT_| EEE1275] . set)

142 for (i = 0; state[SEARCH HI NT_| EEE1275].args[i]; i++)
143 hints[j ++] = stat e[SEARCH _HI NT_I| EEE1275] . ar gs[l];
144 #endif

146 #ifdef GRUB_MACHI NE_EFI
147 if (state[SEARCH HI NT_EFI].set)

148 for (i = 0; state[SEARCH HI NT_EFI].args[i]; i++)
149 hints[j++] = state[SEARCH HI NT_EFI].args[i];
150 #endi f

152 #ifdef GRUB_MACHI NE_ARC

153 i f (state[SEARCH HI NT_ARC] . set)

154 for (i = 0; state[SEARCH HI NT_ARC].args[i]; i++)
155 hints[]j ++] = state[SEARCH H NT_ARC] . args[i];
156 #endi f

158 #ifdef GRUB_MACHI NE_PCBI OS
159 if (state[SEARCH HI NT_BI OS] . set)
160 for (i = 0; state[SEARCH HI NT_BI OS] . args[i]; i++)

161 hi nts[]j ++] = state[SEARCH HI NT_BI OS] . args[il;

162 #endi f

164 if (state[SEARCH H NT_BAREMETAL] . set)

165 for (i = 0; state[SEARCH HI NT_BAREMETAL].args[i]; i++)
166 hints[j++] = state[SEARCH H NT_BAREMETAL] . args[i];

168 /* Skip hints for future platfornms. */
169 for (j = 0; j < argc; j++)

170 if (grub_nencnp (args[j], “--hint-", sizeof ("--hint-") - 1) != 0)
171 br eak;

173 if (state[SEARCH _SET] . set)

174 var = state[SEARCH SET].arg ? state[SEARCH SET].arg : "root";

176 if (argc'—j)

177 id=args[]];

178 el se if (stat e[SEARCH_SET] . set && st at e[SEARCH_SET] . ar g)

179 {

180 id= stat e[SEAROH | SET] . arg;

181 var = "root

182 }

183 el se

184 return grub_error (GRUB_ERR BAD ARGUMENT, N_("one argunent expected"));

186 if (state[SEARCH ZFS_M RROR] . set)
187 mrror_node = 1;

189 #endif /* ! codereview */

190 if (state[SEARCH LABEL]. set)

191 grub_search_| abel (id, var, state[SEARCH NO FLOPPY].set,
192 hints, nhints, nirror_node);

66 hints, nhi nts);

new gr ub/ gr ub- cor e/ comrands/ sear ch_wr ap. c

193 else if (state[SEARCH FS UUI D). set)

194 grub_search_fs_uuid (id, var, state[SEARCH NO FLOPPY]. set,
195 hints, nhints, mrror_node);
69 hints, nhints);
196 else if (state[SEARCH FILE]. set)
197 grub_search_fs file (id, var, state[SEARCH NO FLOPPY]. set,
198 hi nt s, nhi nt s, mrror_node);
72 hints, nhints);
199 else
200 return grub_error (GRUB_ERR_| NVALI D_COMVAND, "unspecified search type");

202 return grub_errno;
203 }
__unchanged_portion_onitted_

new gr ub/ gr ub- cor e/ commands/ sol ari sl egacy. c

R R R R

5686 Fri Aug 31 05:08:52 2012
new gr ub/ gr ub- cor e/ comrands/ sol ari sl egacy. c

grub patch
IR RS S SRS R SR SRR SRR R R SRS R R R R E R RS SRR EEREEREEEEEEEEESE]
1/*
2 * GRUB -- GCRand Unified Bootl oader
3 * Copyright (C 2012 Daniil Lunev
4 *
5 * CRUBis free software: you can redistribute it and/or nodify
6 * it under the terns of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * GRUB is distributed in the hope that it will be useful,
11 * but W THOUT ANY WARRANTY; without even the inplied warranty of
12 * MERCHANTABILITY or FI TNESS FOR A PARTI CULAR PURPOCSE. See the
13 * G\U General Public License for nore details.
14 =
15 * You shoul d have received a copy of the GNU General Public License
16 * along with GRUB. |f not, see <http://ww.gnu.org/licenses/>.
17 */

19 #incl ude <grub/types. h>

20 #include <grub/m sc. h>

21 #incl ude <grub/command. h>
22 #include <grub/ nm h>

23 #include <grub/err.h>

24 #include <grub/dl.h>

25 #include <grub/file.h>

26 #i nclude <grub/nornmal . h>

27 #include <grub/script_sh. h>
28 #include <grub/i18n. h>

29 #include <grub/term h>

30 #include <grub/l egacy_parse. h>
31 #include <grub/crypto. h>

32 #include <grub/auth. h>

33 #incl ude <grub/di sk. h>

34 #include <grub/partition.h>

36 #i

ncl ude "nenu_nanagi ng. c"
38 GRUB_MOD_LI CENSE (" GPLV3+");

40 static entries *
41 parse_entries(grub_file_t file)

43 entries * list = NULL;
44 entries * current = NULL;
45 init_entries(&ist);

46 for(;;) {

47 char * buf = grub_file_getline(file);

48 char * param = buf;

49 char * val ue;

50

51 if (! buf)

52 br eak;

53

54 if ((buf[0] =='#) || (buf[O] ==" ") ||
55) (buf[0] == "\t") || (buf[0] == "\n")) {
56 grub_free(buf);

57 conti nue;

58 }

60 while ((*param==" ") || (*param=="\t"))

61 ++par am

new gr ub/ gr ub- cor e/ comrands/ sol ari sl egacy. c

63
64
65

121
122 }

value = grub_strchr(param ' ");
if (! value)
val ue = grub_strchr(param '\t’);

if (! value) {

grub_free(buf);
conti nue;

*val ue++ = 0;

while ((*value ==" ") || (*value == "\t"))
++val ue;

if ((*value =='\0") || (*value =="'\n")) {
grub_free(buf);
conti nue;

}

if (! grub_strcnp(param "default")) {
} else if (! grub_strcnp(param "tineout"))
} else if (! grub_strcnp(param "serial")) {
} else if (! grub_strcnp(param "termnal"))
} else if (! grub_strcnp(param "title")) {
current = new_entry(value, list);
} else if (! grub_strcnp(param "bootfs")) {
char * | path;
if (! current) {
grub_free(buf);

grub_error (GQUB_ERR_I NVALI D_COMWAND, N_("illunmps syntax error"));

return NULL;

}
I path = grub_strchr(value, '/");
*| path = 0;

grub_strcpy(current->entry_i nfo[POOL_LABEL],

*lpath ="/
grub_strcpy(current->entry_info[DATA_SET],

} else if (! grub_strcnp(param "kernel $"))
char * ender;

ender = grub_strchr(value, ' ");
if (! ender)

ender = grub_strchr(value, "\t’);
if (ender)

*ender = 0;

{
{

| path);
{

val ue);

grub_strcpy(current - >ent ry_i nf o[l KERNEL_PATH], val ue);

i f (ender)
++ender ;
while ((*ender ==" ") || (*ender == "\t
++ender;

1))

grub_strcpy(current->entry_i nf o[KERNEL_OPTI ONS] ,

} else if (! grub_strcnp(param "nodul e$"))
grub_strcpy(current->entry_i nfo[BA_PATH|,
} else {
grub_free(buf);
cont i nue;

}
grub_free(buf);

}
return |ist;

124 static grub_err_t
125 grub_sol aris_| egacy_cmd(struct grub_command *cnd,

126
127 {

int argc, char **args)

{
val ue) ;

ender) ;

new gr ub/ gr ub- cor e/ commands/ sol ari sl egacy. c

128
129
130
131

134
135

137

139
140

142
143
144
145

147
148

152
153
154
155
156

158
159
160
161
162
163
164
165
166
167
168

172
173
174

176
177

179

181
182
183
184
185
186
187
188
189
190
191
192
193

}

static grub_command_t cnd_source,
static grub_command_t cnd_source_extract,

int new. | env, extractor;

extractor = (cmd- >nama[O] ="'e');

new_env = (cnd- >narre[extract or ? (s| zeof ("extract_sl egacy_entries
(sizeof ("slegacy_") - 1)] =="¢");

) -

if (argc !=1)

return grub_error (GRUB_ERR BAD_ARGUMENT, N _("filenanme expected"));
grub_file_t file = grub_file_open(args[0]);
if (new_env)

grub_cls ();

if (new env & !extractor)
grub_env_cont ext _open ();

if (extractor)
grub_env_extractor_open (!new_env);

if (! file)
return ar ub_errno;

entries * |ist

if (! list) {
return grub_error (GRUB_ERR | NVALI D_COMVAND,

= parse_entries(file);

add_entries(list);
if (new_env)

grub_renu_t menu;

nmenu = grub_env_get_nenu ();

if (menu && nenu- >si ze)

grub_show_nenu (nenu, 1, 0);

If (lextractor)
grub_env_context_close ();

}
if (extractor)
grub_env_extractor_cl ose (!new env);

clear_entries(list);
grub_file_close(file);
return O;

cmd_configfile;
cnd_configfil e_extract;

GRUB_MOD_I NI T(sol ari s_| egacy)
{

cnmd_source
= grub_regi ster_command ("sl egacy_source",
grub_sol ari s_| egacy_cnd,
N ("FILE"),
/* TRANSLATORS: "l egacy config" neans
"config as used by grub-Ilegacy". */
N_("Parse | egacy config in same context"));
cmd_configfile
= grub_regi ster_command ("sl egacy_configfile",
grub_sol aris_| egacy_cnd,
N _("FILE"),
N_("Parse | egacy config in new context"));
cnmd_sour ce_extract

N_("illumps syntax error"));

new gr ub/ gr ub- cor e/ comrands/ sol ari sl egacy. c

194
195
196
197
198
199
200
201
202

205
207
209
210

211
212

}

= grub_regi ster_conmmand ("extract_slegacy_entries_source",
ar ub_sol aris_|l egacy_cnd,
N ("FILE"),
N_("Parse Iegacy config in same context taking only nenu entries"));
cnd _configfile_extract
= grub_register_command ("extract_slegacy_entries_configfile",
grub_sol aris_| egacy_cnd,
N ("FILE"),
N_("Parse | egacy config in new context taking only menu entries"));

GRUB_MOD_FI NI (sol ari s_| egacy)
208 {

213 }
214 #endif /* ! codereview */

grub_unregi ster_command (cmd_source);

grub_unregi ster_comand (cmd_confi gfl le);
grub_unregi ster_comand (cnd_source_extract);
grub_unregi ster_command (cnd_configfile_extract);

new grub/ grub-core/fs/zfs/zfs.c 1 new grub/ grub-core/fs/zfs/zfs.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 #defl ne me_ PRGD Bwr':s "bootfs"
107224 Fri Aug 31 05:08:52 2012
new grub/ grub-core/fs/zfs/zfs.c 64 /*
grub patch 65 * For nvlist manipulation. (fromnvpair.h)
IR RS S SRS R SR SRR SRR R R SRS R R R R E R RS SRR EEREEREEEEEEEEESE] 66 */
1/* 67 #define NV_ENCODE_NATI VE 0
2 * GRUB -- GCRand Unified Bootl oader 68 #defi ne NV_ENCODE_XDR 1
3 * Copyright (O 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010, 2011 Free Software Fo 69 #define NV_BI G ENDI AN 0
4 * Copyright 2010 Sun M crosystens, Inc. 70 #define NV_LI TTLE_ENDI AN 1
5 * Copyright 2012 Daniil Lunev 71 #define DATA_TYPE_UlI NT64 8
6 #endif /* | codereview */ 72 #define DATA_TYPE_STRI NG 9
7 * 73 #define DATA _TYPE_NVLI ST 19
8 * CGRUBis free software; you can redistribute it and/or nodify 74 #define DATA TYPE_NVLI ST_ARRAY 20
9 * it under the terns of the GNU General Public License as published by
10 * the Free Software Foundation; either version 3 of the License, or 76 #ifndef GRUB_UTIL
11 * (at your option) any later version. 77 static grub_dl _t ny_nod;
12 = 78 #endi f
13 * GRUB is distributed in the hope that it will be useful,
14 * but W THOUT ANY WARRANTY; without even the inplied warranty of 80 #define P2PHASE(x, align) ((x) & ((align) - 1))
15 * MERCHANTABILITY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
16 * G\U General Public License for nore details. 82 static inline grub_disk_addr_t
17 = 83 DVA_OFFSET_TO PHYS_SECTOR (grub_di sk_addr_t offset)
18 * You shoul d have received a copy of the GNU General Public License 84 {
19 * along with GRUB. |f not, see <http://ww.gnu.org/licenses/>. 85 return ((offset + VDEV_LABEL_START_SI ZE) >> SPA_M NBLOCKSHI FT) ;
20 */ 86 }
21 /*
22 * The zfs plug-in routines for GRUB are: 88 /*
23 * 89 * FAT ZAP data structures
24 * zfs_nount() - locates a valid uberblock of the root pool and reads 90 *
25 = inits MXS at the menory address MOS. 91 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECVA-182, reflected form*/
26 * 92 static inline grub_uint64_t
27 * zfs_open() - locates a plain file object by follow ng the MOS 93 ZAP_HASH I DX (grub_uint64_t hash, grub_uint64_t n)
28 * and pl aces its dnode at the nenory address DNODE. 94 {
29 = 95 return (((n) ==0) ? 0 : ((hash) >> (64 - (n))));
30 * zfs_read() - read in the data bl ocks pointed by the DNCDE. 96 }
31 *
32 */ 98 #define CHAI N_END oxffff /* end of the chunk chain */
34 #include <grub/err.h> 100 /*
35 #include <grub/file.h> 101 * The ampunt of space within the chunk available for the array is:
36 #i ncl ude <grub/mm h> 102 * chunk size - space for type (1) - space for next pointer (2)
37 #include <grub/m sc. h> 103 */
38 #incl ude <grub/ di sk. h> 104 #define ZAP_LEAF_ARRAY BYTES (ZAP_LEAF_CHUNKSI ZE - 3)
39 #include <grub/partition.h>
40 #i nclude <grub/dl.h> 106 static inline int
41 #incl ude <grub/types. h> 107 ZAP_LEAF_HASH SHI FT (int bs)
42 #include <grub/zfs/zfs.h> 108 {
43 #incl ude <grub/ zfs/zio.h> 109 return bs - 5;
44 #incl ude <grub/ zfs/dnode. h> 110 }
45 #incl ude <grub/ zf s/ uberbl ock_i npl . h>
46 #incl ude <grub/ zfs/vdev_i npl . h> 112 static inline int
47 #include <grub/ zfs/zio_checksum h> 113 ZAP_LEAF_HASH NUMENTRI ES (int bs)
48 #incl ude <grub/ zfs/zap_i npl . h> 114 {
49 #incl ude <grub/ zfs/zap_| eaf . h> 115 return 1 << ZAP_LEAF_HASH SHI FT(bs);
50 #include <grub/zfs/zfs_znode. h> 116 }
51 #incl ude <grub/zfs/dmu. h>
52 #include <grub/zfs/dnmu_objset. h> 118 static inline grub_size_t
53 #include <grub/zfs/sa_inpl.h> 119 LEAF_HASH (int bs, grub_uint64_t h, zap_leaf_phys_t *I)
54 #include <grub/zfs/dsl_dir.h> 120 {
55 #i nclude <grub/zfs/dsl _dataset. h> 121 return ((ZAP_LEAF_HASH NUMENTRI ES (bs)-1)
56 #i nclude <grub/defl ate. h> 122 & ((h) >> (64 - ZAP_LEAF_HASH SHI FT (bs) - 1->I_hdr.lh_prefix_len)));
57 #include <grub/crypto. h> 123 }
58 #incl ude <grub/i18n. h>
125 /*
60 GRUB_MOD LI CENSE (" GPLv3+"); 126 * The ampunt of space available for chunks is:
127 * block size shift - hash entry size (2) * nunber of hash

new grub/ grub-core/fs/zfs/zfs.c

128 * entries - header space (2*chunksize)

129 */

130 static inline int

131 ZAP_LEAF_NUMCHUNKS (i nt bs)

132

133 return (((1 << bs) - 2 * ZAP_LEAF_HASH NUMENTRI ES (bs)) /

134 ZAP_LEAF_CHUNKSI ZE -~ 2);

135 }

137 /*

138 * The chunks start imediately after the hash table. The end of the
139 * hash table is at |_hash + HASH NUMENTRI ES, which we sinply cast to a
140 * chunk_t.

141 */

142 static inline zap_l eaf _chunk_t *

143 ZAP_LEAF_CHUNK (zap_l eaf _phys_t *I, int bs, int idx)

144 {

145 return &((zap_l eaf _chunk_t *) (I->l_entries

146 + (ZAP_LEAF_HASH NUMENTRI ES(bs) * 2)

147 | sizeof (grub_properly_aligned_t)))[idx];
148 }

150 static inline struct zap_|l eaf _entry *

151 ZAP_LEAF_ENTRY(zap_l eaf _phys_t *I, int bs, int idx)

152

153 return &AP_LEAF_CHUNK(Il, bs, idx)->l_entry;

154 }

157 /*

158 * Deconpression Entry - |zjb

159 */

161 extern grub_err_t |zjb_deconpress (void *, void *, grub_size_t, grub_size_t);
163 typedef grub_err_t zfs_deconp_func_t (void *s_start, void *d_start,

164 grub_size_t s_len, grub_size_t d_len);
165 typedef struct deconp_entry

166 {

167 const char *nane;

168 zfs_deconp_func_t *deconp_func;

169 } deconp_entry_t;

171 /*

172 * Signature for checksum functi ons.

173 */

174 typedef void zio_checksumt(const void *data, grub_uint64_t size,

175 grub_zfs_endi an_t endian, zi o_cksum_t *zcp);
177 |*

178 * Information about each checksum function.

179 *

180 typedef struct zio_checksum.info {

181 zi o_checksumt *ci_func; /* checksum function for each byteorder */
182 int ci_correctable; /* nunber of correctable bits */
183 int ci _eck; /* uses zi o enbedded checksun? */
184 const char *ci _nane; /* descriptive nane */
185 } zio_checksum.info_t;

187 typedef struct dnode_end

188 {

189 dnode_phys_t dn;

190 grub_zfs_endi an_t endi an;

191 } dnode_end_t;

193 struct grub_zfs_devi ce_desc

new grub/ grub-core/fs/zfs/zfs.c

194 {

195 enum{ DEVI CE_LEAF, DEVICE M RROR, DEVICE RAIDZ } type;
196 grub_uint64_t id;

197 grub_uint64_t guid;

198 unsi gned ashift;

199 unsi gned max_chil dren_ashift;

201 /* Valid only for non-leafs. */
202 unsi gned n_children;

203 struct grub_zfs_device_desc *children;
205 /* Valid only for RAIDZ. */

206 unsi gned nparity;

208 /* Valid only for |eaf devices. */
209 grub_devi ce_t dev;

210 grub_di sk_addr_t vdev_phys_sector;
211 uber bl ock_t current_uberbl ock;

212 int original;

213 };

215 struct subvol ume

216 {

217 dnode_end_t ndn;

218 grub_uint64_t obj;

219 grub_uint64_t case_insensitive;

220 grub_si ze_t nkeys;

221 struct

222

223 grub_crypto_ci pher _handl e_t ci pher;
224 grub_ui nt64_t txg;

225 grub_uint64_t al go;

226 } *keyring;

227 };

229 static const char * feature_list[] = {
230 "l ocal host : unknown_f eat ure",

231 NULL,

232 };

234 typedef enum zfs_feature_id {

235 ZFS_FEATURE_UNKNOWN,

236 } zfs_feature_id_t;

238 struct enabl ed_feature_list {

239 struct enabl ed_feature_list * next;
240 zfs_feature_id_t id;

241 };

243 #endif /* | codereview */

244 struct grub_zfs_data

245 {

246 /* cache for a file block of the currently zfs_open()-ed file */
247 char *file_buf;

248 grub_uint64_t file_start;

249 grub_uint64_t file_end;

251 /* cache for a dnode bl ock */

252 dnode_phys_t *dnode_buf;

253 dnode_phys_t *dnode_ndn;

254 grub_ui nt64_t dnode_: start

255 grub_uint64_t dnode_end;

256 grub_zfs_endi an_t dnode_endi an;

258 dnode_end_t nos;

259 dnode_end_t dnode

new grub/ grub-core/fs/zfs/zfs.c 5 new grub/ grub-core/fs/zfs/zfs.c
260 struct subvol unme subvol ; 326 return GRUB_ERR_NONE;
327 }
262 struct grub_zfs_device_desc *devices_attached;
263 unsi gned n_devi ces_attached; 329 static deconp_entry_t deconp_tabl e[ZI O COWPRESS_FUNCTI ONS] = {
264 unsi gned n_devi ces_al | ocat ed; 330 “inherit", NULL}, /* ZI O_COMPRESS_| NHERI T */
265 struct grub_zfs_device_desc *device_original; 331 "on", |zjb_deconpress}, /* ZI O_COMPRESS_ON */
332 "of f", NULL}, /* ZI O COVPRESS_OFF */
267 uber bl ock_t current_uberbl ock; 333 "1zjb", 1zjb_deconpress}, /* ZI O COWPRESS_LZJB */
334 "en"pty", NULL}, /* ZI O_COVWPRESS _EMPTY */
269 struct enabled_feature_list * feature_list; 335 gZ| p-1", zlib_deconpress}, [/* ZI O COWRESS GZI P1 */
270 336 "gzip-2", zlib_deconpress}, [/* ZI O COWRESS GZI P2 */
271 #endif /* ! codereview */ 337 "gzi p- 3", zl i b_deconpress}, [/* ZI O COWRESS GZI P3 */
272 i nt nount ed; 338 "gzip-4", zlib_deconpress}, [/* ZI O COWRESS &I P4 */
273 grub_ui nt64_t guid; 339 "gzip-5", zlib_deconpress}, [/* ZI O COWRESS GZI P5 */
274 }; 340 "gzi p-6", zlib_deconpress}, [/* ZI O COVPRESS GZI P6 */
341 "gzip-7", zlib_deconpress}, [/* ZI O COWRESS GZI P7 */
276 grub_err_t (*grub_zfs_decrypt) (grub_crypto_cipher_handl e_t cipher, 342 "gzip-8", zli b_decor’rpress}, /* ZI O_ COWPRESS_&I P8 */
277 grub_uint64_t al go, 343 "gzip-9", zlib_deconpress}, [/* ZI O COWRESS GZI P9 */
278 voi d *nonce, 344 "zl e", zle_deconpress}, /* ZI O COWRESS ZLE */
279 char *buf, grub_size_ t size, 345 };
280 const grub_uint32_t *expected_nac,
281 grub_zfs_endian_t endian) = NULL; 347 static grub_err_t zio_read_data (bl kptr_t * bp, grub_zfs_endian_t endian,
282 grub_crypto_ci pher_handle_t (*grub_zfs_| oad_key) (const struct grub_zfs_key *key 348 void *buf, struct grub_zfs_data *data);
283 grub_si ze_t keysi ze,
284 grub_uint64_t salt, 350 /*
285 grub_uint64_t al go) = NULL; 351 * Qur own version of log2(). Same thing as highbit()-1.
352 */
287 static grub_err_t 353 static int
288 zIib_deconpress (void *s, void *d, 354 zfs_log2 (grub_uint64_t num
289 grub_size_t slen, grub_size_t dlen) 355 {
290 { 356 int i = 0;
291 if (grub_zlib_deconpress (s, slen, 0, d, dlen) < 0)
292 return grub_errno; 358 while (num> 1)
293 return GRUB_ERR_NONE; 359 {
294 } 360 i ++;
361 num = num >> 1;
296 static grub_err_t 362
297 zl e_deconpress (void *s, void *d,
298 grub_size_t slen, grub_size_t dlen) 364 return (i);
299 { 365 }
300 grub_uint8_t *iptr, *optr;
301 grub_size_t clen; 367 /* Checksum Functions */
302 for (iptr = s, optr =d; iptr < (grub_uint8_t *) s + slen 368 static void
303 && optr < (grub_uint8_t *) d + dlen;) 369 zi o_checksumoff (const void *buf _ attribute__ ((unused)),
304 { 370 grub_uint64_t size __attribute__ ((unused)),
305 if (*iptr & 0x80) 371 grub_zfs_endian_t endian __attribute__ ((unused)),
306 clen = ((*iptr) & Ox7f) + Ox41; 372 zi o_cksumt * zcp)
307 el se 373 {
308 clen = ((*iptr) & Ox3f) + 1; 374 ZI O_SET_CHECKSWM (zcp, 0, 0, 0, 0);
309 if ((grub_ssize_t) clen > (grub_uint8_t *) d + dlen - optr) 375 }
310 clen=(grub uint8_t *) d + dlen - optr;
311 if (*iptr & Ox40 || *iptr & 0x80) 377 | * Checksum Tabl e and Val ues */
312 { 378 static zio_checksum.info_t zio_checksumtable[Zl O CHECKSUM FUNCTI ONS] =
313 grub_nenset (optr, 0O, clen); 379 NULL, O, O, "inherit"},
314 I ptr++; 380 NULL, O, O, "on"},
315 optr += clen; 381 zi o_checksumoff, 0, 0, "off"},
316 cont i nue; 382 zi 0_checksum_ SHA256 1, 1, "label"},
317 } 383 zi 0_ checksum SHA256, 1, 1, "gang_header"},
318 if ((grub ssize_t) clen > (grub_uint8_t *) s + slen - iptr - 1) 384 NULL, 0, O, Z|Iog},
319 clen = (grub_uint8_t *) s + slen - iptr - 1; 385 fletcher_2, 0, 0, "fletcher2"},
320 grub_nencpy (optr, iptr + 1, clen); 386 fletcher_4, 1, 0, "fletcher4"},
321 optr += clen; 387 zi o_checksum SHA256, 1, 0, "SHA256"},
322 iptr += clen + 1; 388 NULL, O, O, "zilog2"},
323 } 389 zi o_checksum SHA256, 1, 0, "SHA256+MAC'},
324 if (optr < (grub_uint8_t *) d + dlen) 390 };
325 grub_menset (optr, O, (grub_uint8_t *) d + dlen - optr);

new grub/ grub-core/fs/zfs/zfs.c

392 /
393
394
395
396
397
398
399
400
401
402 {
403

404

405

407
408
409
410
411
412

414
415
416
417
418
419
420
421
422
423

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

442
443 }
445 |
446
447
448
449
450
451
452
453
454

*
*

*

*

zi o_checksum verify: Provides support for checksumverification.
*

Fl etcher2, Fletcher4, and SHA256 are supported.

/

static grub_err_t
zi o_checksumverify (zio_cksumt zc,

grub_uint32_t checksum
grub_zfs_endian_t endian,
char *buf, grub_size_t size)

zi o_eck_t
zi o_checksum info_t
zi o_cksumt actual

*zec = (zio_eck_t *) (buf + size) -

*Ci = &zi o_checksum t abl e[checksurﬂ
_cksum expect ed_cksum

if (checksum >= ZI O CHECKSUM FUNCTI ONS || ci->ci_func == NULL)
grub_dprintf ("zfs", "unknown checksum function
return grub_error (GRUB_ERR NOT_| MPLEMENTED YET,
"unknown checksum function %", checksun);

%I\ n", checksum;

}

if (ci->ci_eck)

{
expect ed_cksum = zec- >zec_cksum
zec->zec_cksum = zc;
ci->ci _func (buf, size, endian,
zec->zec_cksum = expect ed_cksum
zc = expected_cksum

&act ual _cksum ;

el se

ci->ci _func (buf, size, endian, &actual _cksun);

if (grub_nmencnp (&actual _cksum &zc,

checksum ! = ZI O CHECKSUM SHA256_MAC ? 32 : 20) != 0)
grub_dprintf
grub_dprintf

("zfs", "checksum % verification failed\n", ci->ci_nane);
("zfs", "actual checksum %016l x %916l | x 90161 | x %16 | x\ n"
(unsi gned | ong | ong) actual _cksum zc_word[0],
(unsi gned | ong | ong) actual _cksum zc_word[1],
(unsi gned | ong | ong) actual _cksum zc_word[2],
(un5| gned I ong 1 ong) actual _cksum zc_word[3]);
grub_dprintf ("zfs"
(unsi gned long long) zc.zc_word[O0],
(unsigned long Iong) zc.zc_word[1],
(unsigned long | ong) zc.zc_word|2],
(unsigned long long) zc.zc_word[3]);
return grub_error (GRUB_ERR BAD FS, N _("checksum verification failed"));

return GRUB_ERR_NONE;

*

* vdev_uber bl ock_conpare takes two uberbl ock structures and returns an integer
* indicating the nore recent of the two.

* Return Value = 1 if ub2 is nore recent

* Return Value = -1 if ubl is nore recent

* The nost recent uberblock is determined using its transacti on nunber and

* timestanp. The uberblock with the highest transaction nunmber is

* considered "newer". |If the transaction nunbers of the two bl ocks match, the
*/ti nmestanps are conpared to determine the "newer" of the two.

*

455 static int

456 vdev_uber bl ock_conpare (uberbl ock_t

457 {

* ubl, uberblock_t * ub2)

"expect ed checksum %916l | x %016l | x %16l | x %016l | x\ n"

new grub/ grub-core/fs/zfs/zfs.c 8

458 grub_zfs_endi an_t ubl_endi an, ub2_endi an;

459 if (grub_zfs to_cpu64 (ubl- >ub _magi ¢, GRUB_ZFS LI TTLE_ENDI AN)

460 == LBERBLOCK MAG O)

461 ubl_endi an = GRUB_ZFS_LI TTLE_ENDI AN;

462 el se

463 ubl_endi an = GRUB_ZFS_BI G_ENDI AN,

464 if (gr ub_zfs_to_cpub4 (ub2->ub_magic, GRUB_ZFS_LI TTLE_ENDI AN)

465 == UBERBLOCK_MAG C)

466 ub2_endi an = GRUB_ZFS_LI TTLE_ENDI AN,

467 el se

468 ub2_endi an = GRUB_ZFS BI G ENDI AN;

470 if (grub_zfs_to_cpu64 (ubl->ub_txg, ubl_endi an)

471 < grub_zfs_to_cpu64 (ub2->ub_txg, ub2_endian))

472 return (-1);

473 if (grub_zfs_to_cpu64 (ubl->ub_txg, ubl_endian)

474 > grub_zfs_to_cpu64 (ub2->ub_txg, ub2_endian))

475 return (1);

477 if (grub_zfs_to_cpu64 (ubl->ub_tinmestanp, ubl_endian)

478 < grub_zfs_to_cpu64 (ub2->ub_tinestanp, ub2_endian))

479 return (-1);

480 if (grub_zfs_to_cpu64 (ubl->ub_tinmestanp, ubl_endian)

481 > grub_zfs_to_cpu64 (ub2->ub_tinestanp, ub2_endi an))

482 return (1);

484 return (0);

485 }

487 [*

488 * Three pieces of information are needed to verify an uberbl ock: the nagic

489 * nunber, the version nunber, and the checksum

490 *

491 * Currently Inplenmented: version nunber, magi c nunber, checksum

492 =

493 */

494 static grub_err _t

495 uber bl ock_verify (uberbl ock_phys_t * ub, grub_uint64_t offset,

496 grub_size_t s)

497 {

498 uber bl ock_t *uber = &ub->ubp_uber bl ock;

499 grub_err_t err;

500 grub_zfs_endi an_t endian = GRUB_ZFS_UNKNOWN_ENDI AN;

501 zi o_cksumt zc;

503 if (grub_zfs_to_cpu64 (uber—>ub magi ¢, GRUB_ZFS_LI TTLE_ENDI AN)

504 == ERBL@K MAG C

505 &% grub_zfs_to_cpu64 (uber->ub_version, GRUB ZFS LI TTLE ENDI AN) > 0)
5 && grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS LITTLE_ENDI AN) > 0
6 &% grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS LI TTLE_ENDI AN)
7 <= SPA _VERSI ON)

506 endi an = GRUB_ZFS_LI TTLE_ENDI AN,

508 if (grub_zfs_to_cpu64 (uber->ub_magic, GRUB_ZFS BI G ENDI AN) == UBERBLOCK MAG C

509 &8 grub_zfs_to_cpub4 (uber->ub_version, GRUB_ZFS Bl G ENDIAN) > 0)
11 && grub_zfs to_cpu64 (uber->ub_version, GRUB_ZFS BIG ENDIAN) > 0
12 &% grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS Bl G_ENDI AN)
13 <= SPA VERSI ON)

510 endi an = GRUB_ZFS_BI G_ENDI AN

512 if (endian == GRUB_ZFS_UNKNOMN_ENDI AN)

513 return gr ub error (GRUB_ERR BAD FS, "invalid uberbl ock magic");

515 grub_menmset (&zc, 0, sizeof (zc));

517 zc.zc_word[0] = grub_cpu_to_zfs64 (offset, endian);

new

grub/ grub-core/fs/zfs/zfs.c

518 err = zio_checksumverify (zc, ZI O CHECKSUM LABEL, endi an,
519 (char *) ub, s);
521 return err;
522 }
__unchanged_portion_onitted_
782 | *
783 * Check the disk label information and retrieve needed vdev nane-val ue pairs.
784 *
785 */
786 static grub_err_t
787 check_pool _| abel (struct grub_zfs_data *data,
788 struct grub_zfs_device_desc *di skdesc,
789 int *inserted)
790 {
791 grub_uint64_t pool _state, txg = O;
792 char *nvlist;
793 #if O
794 char *nv;
795 #endi f
796 grub_ui nt64_t pool gui d;
797 grub_uint64_t version;
798 int found;
799 grub_err_t err;
801 *inserted = 0;
803 err = zfs_fetch_nvlist (diskdesc, &nvlist);
804 if (err)
805 return err;
807 grub_dprintf ("zfs", "check 2 passed\n");
809 found = grub_zfs_nvlist_|ookup_uint64 (nvlist, ZPOOL_CONFI G_POOL_STATE,
810 &pool _state);
811 if (! found)
812
813 grub_free (nvlist);
814 if (! grub_errno
815 grub_error (GRUB_ERR BAD FS, ZPOOL_CONFI G POOL_STATE " not found");
816 return grub_errno;
817 }
818 grub_dprintf ("zfs", "check 3 passed\n");
820 if (pool_state == POOL_STATE_DESTROYED)
821
822 grub_free (nvlist);
823 return grub_error (GRUB_ERR BAD FS, "zpool is narked as destroyed");
824
825 grub_dprintf ("zfs", "check 4 passed\n");
827 found = grub_zfs_nvlist_| ookup_uint64 (nvlist, ZPOOL_CONFI G POOL_TXG &txg);
828 if (!found)
829 {
830 grub_free (nvlist);
831 if (! grub_errno)
832 grub_error (GRUB_ERR BAD FS, ZPOOL_CONFI G POOL_TXG " not found");
833 return grub_errno;
834 }
835 grub_dprintf ("zfs", "check 6 passed\n");
837 /* not an active device */
838 if (txg == 0)
839
840 grub_free (nvlist);

new grub/ grub-core/fs/zfs/zfs.c

841
842
843

845
846
847
848
849
850
851
852
853
854

360
361
362
363
364
365
366
367
855

857
858
859
860
861
862
863
864
865

867
868
869
870
871
872
873
874
875

877

879
880
881
882

884
885
886

888
889
890
891
892
893
894
895
896
897

return grub_error (GRUB_ERR BAD_FS, "zpool isn't active");
grub_dprintf ("zfs", "check 7 passed\n");

found = grub_zfs_nvlist_| ookup_uint64 (nvlist, ZPOOL_CONFI G VERSI ON,
&version);
if (! found)
{

grub_free (nvlist);
if (! grub_errno)

grub_error (GRUB_ERR BAD FS, ZPOOL_CONFI G VERSION " not found");
return grub_errno;

}
grub_dprintf ("zfs", "check 8 passed\n");
if (version > SPA_VERSI ON)

grub_free (nvlist);

return grub_error (GRUB_ERR NOT_| MPLEMENTED YET,
"too new version %Blu > %Ilu",
(unsi gned | ong | ong) version,
(unsigned | ong | ong) SPA_VERSION);

}
grub_dprintf ("zfs", "check 9 passed\n");

found = grub_zfs_nvlist_| ookup_uint64 (nvlist, ZPOOL_CONFI G GU D,
&(di skdesc->gui d));
if (! found)
{

grub_free (nvlist);
if (! grub_errno)

grub_error (GRUB_ERR BAD FS, ZPOOL_CONFIG GUID " not found");
return grub_errno;

}
found = grub_zfs_nvlist_| ookup_uint64 (nvlist, ZPOOL_CONFI G POOL_GU D,
&pool gui d);
if (! found)
{
grub_free (nvlist);
if (! grub_errno)
grub_error (GRUB_ERR BAD FS, ZPOOL_CONFI G POOL_GUID " not found");
return grub_errno;
}

grub_dprintf ("zfs", "check 11 passed\n");
if (data->munted && data->guid != pool guid)
return grub_error (GRUB_ERR BAD_FS, "another zpool");

el se
dat a- >gui d = pool gui d;

char *nv;
nv = grub_zfs_nvlist_|l ookup_nvlist (nvlist, ZPOOL_CONFI G VDEV_TREE);
if ('nv)

grub_free (nvlist);
return grub_error (GRUB_ERR BAD FS, "couldn't find vdev tree");

fill_vdev_info (data, nv, diskdesc, inserted);

grub_free (nv);
grub_free (nvlist);

10

new gr

898
899
900
901
902

904

906
907 }

2680 #i
2193 #i

2681 /
2682
2683
2684
2685 s
2686 g
2199 g
2687
2688 {
2689
2690
2203
2204
2205

2692
2693
2208
2694
2210
2695
2696

2697
2698
2699
2700
2701
2218
2702
2220
2703
2704
2705
2223

ub/ grub-core/fs/zfs/zfs.c
return err;
grub_free (nv);
grub_dprintf ("zfs", "check 10 passed\n");
grub_free (nvlist);
return GRUB_ERR_NONE;
__unchanged_portion_onitted_
if 1
if O
*
* Get the default 'bootfs' property value fromthe rootpool.
*
*/
tatic grub_err_t
et _defaul t _bootfsobj (dnode_end_t * nosmdn, grub_uint64_t * obj,
et _def aul t _boot f sobj (dnode_phys t * mosndn, grub_uint64_t * obj,
struct grub_zfs_data *data)
grub_ui nt64_t obj num = 0;
dnode_end_t dn;
dnode_phys_t *dn;
if (!dn)
return grub_errno;
if ((grub_errno = dnode_get (nosnmdn, DMJ_POOL_DI RECTORY_OBJECT,
DMJ_OT_OBJECT_DI RECTORY, &dn, data)))
DMU_OT_OBJECT_DI RECTORY, dn, data)))
grub_free (dn);
return (grub_errno);
/*
* find the object nunber for ’pool_props’, and get the dnode
* of the ’pool _props’.
*
/
if (zap_l ookup (&dn, DMJ_POOL_PROPS, &objnum data, 0))
if (zap_l ookup (dn, DMJ_POOL_PROPS, &objnum data))
grub_free (dn);
return (GRUB ERR BAD_FS) ;
}
if ((grub_errno = dnode_get (nosmdn, objnum DMJ OT_POOL_PROPS, &dn, data)))
if ((grub_errno = dnode_get (nmosnmdn, objnum DMJ OT_POOL_PROPS, dn, data)))

2706
2225
2707
2708
2709
2228
2710
2230
2711
2712

2714
2715
2236
2716
2717

grub_free (dn);
return (grub_errno);

(zap_| ookup (&dn,

f ZPOOL_PROP_BOOTFS, &obj num data, 0))
if (zap_l ookup (dn,

ZPOOL_PROP_BOOTFS, &obj num data))
grub_free (dn);
return (GRUB_ERR BAD FS);

if (!objnum

grub_free (dn);
return (GRUB_ERR BAD_FS);

11

new grub/ grub-core/fs/zfs/zfs.c 12
2719 *obj = objnum

2720 return (0);

2721 }

2723 #endif /* | codereview */

2724 #endi f

2725 | *

2726 * Gven a MOS netadnode, get the netadnode of a given filesystem nane (fsnane),
2727 * e.g. pool/rootfs, or a given object nunmber (obj), e.g. the object nunber
2728 * of pool/rootfs.

2729 *

2730 * |f no fsname and no obj are given, return the DSL_DI R netadnode.
2731 * |f fsname is given, return its netadnode and its matching object number.
2732 * If only obj is given, return the metadnode for this object nunber.
2733 *

2734 */

2735 static grub_err_t

2736 get _fil esystem dnode (dnode_end_t * nosndn, char *fsnane,

2737 dnode_end_t * ndn, struct grub_zfs_data *data)
2738 {

2739 grub_uint64_t objnum

2740 grub_err_t err;

2742 grub_dprintf ("zfs", "endian = %\ n", nosndn->endi an);

2744 err = dnode_get (nosnmdn, DMJ_POOL_DI RECTORY_OBJECT,

2745 DMJ_OT_OBJECT_DI RECTORY, mn, data);

2746 if (err)

2747 return err;

2749 grub_dprintf ("zfs", "alive\n");

2751 err = zap_|l ookup (rdn, DMJ_POOL_ROOT_DATASET, &objnum data, 0);
2752 if (err)

2753 return err;

2755 grub_dprintf ("zfs", "alive\n");

2757 err = dnode_get (nosndn, objnum DMJ OT_DSL_DI R nmndn, data);

2758 if (err)

2759 return err;

2761 grub_dprintf ("zfs", "alive\n");

2763 whi l e (*fsnane)

2764 {

2765 grub_uint64_t childobj;

2766 char *cnane, ch;

2767

2768 while (*fsnane == "/")

2769 f sname++;

2771 if (! *fspame || *fsnane == '@)

2772 br eak;

2774 cnane = fsnane;

2775 while (*fsnane && *fsnanme != "/")

2776 f sname++;

2777 ch = *fsnane;

2778 *fsname = 0;

2780 childobj = grub_zfs_to_cpu64 ((((dsl_dir_phys_t *) DN _BONUS (&ndn->dn)))->
2781 err = dnode_get (nosnmdn, chil dobj,

2782 DMJ_OT_DSL_DI R CHI LD _MAP, ndn, data);

2783 if (err)

2784

return err;

new grub/ grub-core/fs/zfs/zfs.c 13

2786 err = zap_|l ookup (ndn, cnane, &objnum data, 0);

2787 if (err)

2788 return err;

2790 err = dnode_get (nosndn, objnum DWMJ OT_DSL_DI R ndn, data);

2791 if (err

2792 return err;

2794 *fsname = ch;

2795 }

2796 return GRUB_ERR _NONE;

2797 }

2799 static grub_err_t

2800 ?‘ake_rrdn (dnode_end_t * ndn, struct grub_zfs_data *data)

2801

2802 voi d *osp;

2803 bl kptr_t *bp;

2804 grub_si ze_t ospsi ze;

2805 grub_err_t err;

2807 grub_dprintf ("zfs", "endian = %\ n", ndn->endi an);

2809 = &(((dsl _dataset_phys_t *) DN_BONUS (&mdn->dn))->ds_bp);

2810 err = zio_read (bp, ndn->endian, &osp, &ospsize, data);

2811 if (err)

2812 return err;

2813 if (ospsize < OBJSET_PHYS_SI ZE_V14)

2814

2815 grub_free (osp);

2816 return grub_error (GRUB_ERR BAD FS, "too snall osp");

2817

2819 mdn- >endi an = (grub_zfs_to_cpu64 (bp->blk_prop, ndn->endi an)>>63) & 1;

2820 grub_memove ((char *) &(ndn->dn),

2821 (char *) &((objset_phys_t *) osp)->os_neta_dnode, DNODE_ S| ZE);
2822 grub_free (osp);

2823 return GRUB_ERR_NONE;

2824 }

2826 static grub_err_t

2827 dnode_get _full path (const char *fullpath, struct subvol ume *subvol,

2828 dnode_end_t * dn, int *isfs,

2829 struct grub_zfs_data *data)

2830 {

2831 char *fsnanme, *snapnane;

2832 const char *ptr_at, *filenang;

2833 grub_uint64_t headobj;

2834 grub_uint64_t keychai nobj;

2835 grub_uint64_t salt;

2836 grub_err_t err;

2837 int keyn = 0;

2839 auto int NESTED FUNC ATTR count _zap_keys (const void *nane,

2840 grub_si ze_t nanel en,

2841 const void *val _in,

2842 grub_size_t nelem

2843 grub_si ze_t el ensi ze);

2844 int NESTED FUNC ATTR count _zap_keys (const void *nane __attribute ((unused))
2845 grub_size_t namel en attribute__ ((unuse
2846 const void *val _in _attribute__ ((unused
2847 grub_size_t nelem __attribute ((unused)
2848 grub_sizet elensize __attribute__ ((unus
2849

2850 subvol - >nkeys++;

new grub/ grub-core/fs/zfs/zfs.c 14
2851 return O;

2852

2854 auto int NESTED FUNC ATTR | oad_zap_key (const void *nane,

2855 grub_si ze_t nanel en,

2856 const void *val _in,

2857 grub_size_t nelem

2858 grub_si ze_t el ensi ze);

2859 i nt NESTED_FUNC_ATTR | oad_zap_key (const void *nane,

2860 grub_si ze_t nanel en,

2861 const void *val _in,

2862 grub_size_t nelem

2863 grub_si ze_t el ensi ze)

2864

2865 if (nanmelen != 1)

2866

2867 grub_dprintf ("zfs", "Unexpected key index size % PRI uGRUB_SIZE "\ n",
2868 nanel en) ;

2869 return O;

2870

2872 if (elemsize != 1)

2873

2874 grub_dprintf ("zfs", "Unexpected key el ement size % PRIuCGRUB_SIZE "\n
2875 el ensi ze);

2876 return O;

2877

2879 subvol - >keyri ng[keyn] .txg = grub_be_to_cpu64 (* (gr ub_uint64_t *) name);
2880 subvol - >keyri ng[keyn].al go = grub_le_to_cpu64 (*(grub_uint64_t *) val in);
2881 subvol - >keyri ng[keyn] . ci pher = grub_zfs | oad_key (val _in, nelem salt,
2882 subvol - >keyri ng[keyn] .algo
2883 keyn++;

2884 return O;

2885 }

2887 p r_at = grub_strchr (fullpath, '@);

2888 i f (I ptr_at)

2889

2890 *isfs = 1;

2891 filenane = 0;

2892 snapname = O;

2893 fsnanme = grub_strdup (fullpath);

2894

2895 el se

2896

2897 const char *ptr_slash = grub_strchr (ptr_at, '/’);

2899 *isfs = 0;

2900 fsname = grub_malloc (ptr_at - fullpath + 1);

2901 if (!fsnane)

2902 return grub_errno

2903 gr ub_nencpy (fsname fullpath, ptr_at - fullpath);

2904 fsname[ptr_at - fullpath] = 0;

2905 if (ptr_at[1] && ptr_at[1] !="/")

2906

2907 snapnanme = grub_nalloc (ptr_slash - ptr_at);

2908 if (!snapnane)

2909

2910 grub_free (fsnane);

2911 return grub_errno;

2912

2913 grub_nencpy (snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
2914 snapnane[ptr_slash - ptr_at - 1] = 0;

2915

2916 el se

new grub/ grub-core/fs/zfs/zfs.c 15

2917 snapname = O;

2918 if (ptr_sl ash)

2919 filenane = ptr_slash;

2920 el se

2921 filenane = "/";

2922 grub_dprintf (" zfs", "fsname = ' %’ snapname=" %' filename = '%’'\n",
2923 fsnan‘e snapnane, fil enane);

2924

}
2925 grub dprintf ("zfs", "alive\n");
2926 err get _fil esyst em dnode (&(data >nmos), fsname, dn, data);
2927 if (err)

2928

2929 grub_free (fsnane);
2930 grub_free (snapnane);
2931 return err;

2932

2934 grub_dprintf ("zfs", "alive\n");

2936 headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&dn->dn))->dd_head_

2938 grub_dprintf ("zfs", "endian = %\ n", subvol ->mdn. endi an);
2940 err = dnode_get (&(data->nps), headobj, DMJ OT_DSL_DATASET, &subvol ->ndn,

2941 dat a);
2942 if (err)

2943

2944 grub_free (fsnane);
2945 grub_free (snapnane);
2946 return err;

2947

}
2948 grub_dprintf ("zfs", "endian = %\ n", subvol ->ndn. endi an) ;

2950 keychai nobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN _BONUS (&dn->dn))->keyc
2951 if (grub_zfs_| oad_key && keychai nobj)
{

2952

2953 dnode_end_t keychai n_dn, props_dn;

2954 grub_ui nt64_t propsobj;

2955 propsobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&dn->dn))->dd_
2957 err = dnode_get (&(data->nps), propsobj, DMJ OT_DSL_PROPS,
2958 &props_dn, data);

2959 if (err)

2960 {

2961 grub_free (fsnane);

2962 grub_free (snapnane);

2963 return err;

2964 1

2966 err = zap_|l ookup (&props_dn, "salt", &salt, data, 0);

2967 if (err == GRUB_ERR_FI LE_NOT_FOUND)

2968

2969 err = 0;

2970 grub_errno = 0;

2971 salt = 0;

2972 }

2973 if (err)

2974

2975 grub_dprintf ("zfs", "failed here\n");

2976 return err;

2977

2979 err = dnode_get (&(data->nps), keychainobj, DMJ OT_DSL_KEYCHAI N,
2980 &keychai n_dn, data);

2981 if (err)
2982 {

new grub/ grub-core/fs/zfs/zfs.c 16
2983 grub_free (fsnane);

2984 grub_free (snapnane);

2985 return err;

2986 }

2987 subvol - >nkeys = 0;

2988 zap_iterate (&keychain_dn, 8, count_zap_keys, data);

2989 subvol - >keyring = grub_. zal | oc (subvol - >nkeys * sizeof (subvol->keyring[0])
2990 if (!subvol->keyring)

2991

2992 grub_free (fsnane);

2993 grub_free (snapnane);

2994 return err;

2995

2996 zap_iterate (&keychain_dn, 8, |oad_zap_key, data);

2997 }

2999 i f (snapnane)

3000 {

3001 grub_ui nt64_t snapobj ;

3003 snapobj = grub_zfs_to_cpu64 (((dsl_dataset_phys_t *) DN _BONUS (&subvol ->nd
3005 err = dnode_get (&(data->nps), snapobj,

3006 DMJ_OT_DSL_DS_SNAP_MAP, &subvol ->ndn, data);
3007 if (lerr)

3008 err = zap_|l ookup (&subvol ->mdn, snapnanme, &headobj, data, 0);
3009 if (! err)

3010 err dnode_get (&(data->nps), headobj, DWMJ OT_DSL_DATASET,
3011 &subvol - >mdn, data);

3012 if (err)

3013

3014 grub_free (fsnane);

3015 grub_free (snapnane);

3016 return err;

3017 }

3018 }

3020 subvol - >0bj = headobj ;

3022 make_mdn (&subvol - >ndn, data);

3023

3024 grub_dprintf ("zfs", "endian = %\ n", subvol->nmdn. endi an);

3026 if (*isfs)
{

3027

3028 grub_free (fsnane);
3029 grub_free (snapnane);
3030 return GRUB_ERR NONE;
3031

}
3032 err = dnode_get_path (subvol, filenane, dn, data);
3033 grub_free (fsnane);
3034 grub_free (snapnane);
3035 return err;

3036 }

3038 /*

3039 * For a given XDR packed nvlist, verify the first 4 bytes and nove on.
3040 *

3041 * An XDR packed nvlist is encoded as (coments from nvs_xdr_create)
3042 *

3043 * encodi ng net hod/ host endi an (4 bytes)

3044 * nvl _version (4 bytes)

3045 * nvl _nvfl ag (4 bytes)

3046 * encoded nvpairs:

3047 * encoded size of the nvpair (4 bytes)

3048 * decoded size of the nvpair (4 bytes)

new grub/ grub-core/fs/zfs/zfs.c 17 new grub/ grub-core/fs/zfs/zfs.c
3049 * nane string size (4 bytes) 3115 nel m = grub_be_to_cpu32 (grub_get_unaligned32 (nvpair));
3050 * nanme string data (si zeof(Nv ALl G\4(string)) 3116 if (nelm< 1)
3051 * data type (4 bytes) 3117
3052 * # of elements in the nvpair (4 bytes) 3118 grub_error (GRUB_ERR BAD FS, "enpty nvpair");
3053 * data 3119 return O;
3054 * 2 zero's for the last nvpair 3120 }
3055 * (end of the entire list) (8 bytes)
3056 * 3122 nvpair += 4;
3057 */
3124 if ((grub_strncnp (nvp_name, nanme, nane_len) == 0) && type == val type)
3059 static int 3125
3060 nvlist_find_value (const char *nvlist_in, const char *nane, 3126 *val = (char *) nvpair;
3061 int valtype, char **val 3127 *size_out = encode_si ze;
3062 grub_size_t *size_out, grub_si ze_t *nel m.out) 3128 if (nelmout)
3063 { 3129 *nel mout = nelm
3064 int name_l en, type, encode_size; 3130 return 1;
3065 const char *nvpair, *nvp_nanme, *nvlist = nvlist_in; 3131
3067 /* Verify if the 1st and 2nd byte in the nvlist are valid. */ 3133 nvlist += encode_si ze; /* goto the next nvpair */
3068 /* NOTE: independently of what endi anness header announces all 3134
3069 subsequent val ues are big-endian. */ 3135 return O;
3070 if (nvlist[O] != NV_ENCODE XDR || (nvlist[1] != NV_LITTLE_ENDI AN 3136 }
3071 & nvlist[1] != NV_BI G ENDI AN))
3072 { 3138 int
3073 grub_dprintf ("zfs", "incorrect nvlist header\n"); 3139 grub_zfs_nvlist_| ookup_ui nt 64 (const char *nvlist, const char *nane,
3074 grub_error (GRUB_ERR BAD FS, "incorrect nvlist"); 3140 grub_uint64_t * out)
3075 return O; 3141 {
3076 } 3142 char *nvpair;
3143 grub_si ze_t size;
3078 /* skip the header, nvl_version, and nvl_nvflag */ 3144 i nt found;
3079 nvlist = nvlist + 4 * 3;
3080 /* 3146 found = nvlist_find_value (nvlist, name, DATA TYPE_ Ul NT64, &nvpair, &size,
3081 * Loop thru the nvpair I|ist 3147 if (!found)
3082 * The XDR representation of an integer is in big-endian byte order. 3148 return O;
3083 */ 3149 if (size < sizeof (grub_uint64_t))
3084 whil e ((encode_size = grub_be_to_cpu32 (grub_get_unaligned32 (nvlist)))) 3150 {
3085 { 3151 grub_error (GRUB_ERR BAD FS, "invalid uint64");
3086 int nelm 3152 return O;
3153 }
3088 if (nvlist + 4 * 4 >= nvlist_in + VDEV_PHYS_SI ZE)
3089 { 3155 *out = grub_be_to_cpu64 (grub_get_unaligned64 (nvpair));
3090 grub_dprintf ("zfs", "nvlist overflown"); 3156 return 1;
3091 grub_error (GRUB_ERR BAD FS, "incorrect nvlist"); 3157 }
3092 return O;
3093 } 3159 char *
3160 grub_zfs_nvlist_l ookup_string (const char *nvlist, const char *nane)
3095 nvpair = nvlist + 4 * 2; /* skip the encode/ decode size */ 3161 {
3162 char *nvpair;
3097 nane_l en = grub_be_to_cpu32 (grub_get_unaligned32 (nvpair)); 3163 char *ret;
3098 nvpair += 4; 3164 grub_size_t slen;
3165 grub_size_t size;
3100 nvp_nanme = nvpair; 3166 int found;
3101 nvpair = nvpalir + ((nane_len + 3) & ~3); /* align */
3168 found = nvlist_find_value (nvlist, nane, DATA TYPE STRING &nvpair, &size,
3103 if (nvpair + 8 >= nvlist_in + VDEV_PHYS_SI ZE 3169 if (!found)
3104 || encode_size < 0 3170 return O;
3105 || nvpair + 8 + encode_size > nvlist_in + VDEV_PHYS_SI ZE) 3171 if (size < 4)
3106 { 3172 {
3107 grub_dprintf ("zfs", "nvlist overflown"); 3173 grub_error (GRUB_ERR BAD FS, "invalid string");
3108 grub_error (GRUB_ERR BAD FS, "incorrect nvlist"); 3174 return O;
3109 return O; 3175 }
3110 } 3176 slen = grub_be_to_cpu32 (grub_get_unaligned32 (nvpair));
3177 if (slen > size -
3112 type = grub_be_to_cpu32 (grub_get_unaligned32 (nvpair)); 3178 sl en = size 4;
3113 nvpair += 4; 3179 ret = grub mal I oc (slen + 1);
3180 if (!'ret)

new grub/ grub-core/fs/zfs/zfs.c

3181 return O;

3182 grub_mencpy (ret, nvpair + 4, slen)

3183 ret[slen] = 0;

3184 return ret;

3185 }

3187 char *

3188 ?rub_zfs_nvlist_lookup_nvlist (const char *nvlist, const char *nane)
3189

3190 char *nvpair;

3191 char *ret

3192 grub_si ze_t size

3193 int found

3195 found = nvlist_find_value (nvlist, name, DATA TYPE_NVLI ST, &nvpair
3196 &size, 0)

3197 if (!found)

3198 return O;

3199 ret = grub_zalloc (size + 3 * sizeof (grub_uint32_t))

3200 if (lret)

3201 return O;

3202 grub_mencpy (ret, nvlist, sizeof (grub_uint32_t))

3204 grub_mencpy (ret + sizeof (grub_uint32_t), nvpair, size)

3205 return ret

3206 }

3208 int

3209 grub_zfs_nvlist_lookup_nvlist_array_get_nel m(const char *nvli st
3210 const char *nane)
3211 {

3212 char *nvpair;

3213 grub_size_t nelm size

3214 int found

3216 found = nvlist_find_value (nvlist, name, DATA TYPE_NVLI ST_ARRAY, &nvpair
3217 &si ze, &nelm;

3218 if (! found)

3219 return -1

3220 return nelm

3221 }

3223 static int

3224 get _nvlist_size (const char *beg, const char *linmt)

3225 {

3226 const char *ptr;

3227 grub_ui nt32_t encode_si ze

3228

3229 ptr = beg + 8

3231 while (ptr <limt

3232 && (encode_size = grub_be_to_cpu32 (grub_get_unaligned32 (ptr))))
3233 ptr += encode_size; /* goto the next nvpair */

3234 ptr += 8

3235 return (ptr > limt) ? -1 : (ptr - beg)

3236 }

3238 char *

3239 grub_zfs_nvlist_lookup_nvlist_array (const char *nvlist, const char *nane
3240 grub_si ze_t index)

3241 {

3242 char *nvpair, *nvpairptr;

3243 int found

3244 char *ret

3245 grub_size_t size

3246 unsi gned i ;

19

new grub/ grub-core/fs/zfs/zfs.c

3247 grub_size_t nel m
3248 int elensize =0

20

3250 found = nvlist_find_value (nvlist, nane, DATA TYPE_NVLI ST_ARRAY, &nvpair

3251 &size, &nelm;

3252 if (!found)

3253 return O;

3254 if (index >= nelm

3255

3256 grub_error (GRUB_ERR OUT_OF RANGE, "trying to | ookup past nvlist
3257 return O;

3258 }

3260 nvpai rptr = nvpair
3262 for (i =0; i < index; i++)
{

3263

3264 int r;

3265 r = get_nvlist_size (nvpairptr, nvpair + size)

3267 if (r <0)

3268 {

3269 grub_error (GRUB_ERR BAD FS, "incorrect nvlist array")
3270 return NULL;

3271

3272 nvpai rptr +=r

3273 }

3275 elensize = get_nvlist_size (nvpairptr, nvpair + size)

3277 if (elemsize < 0)

3278 {

3279 grub_error (GRUB_ERR BAD FS, "incorrect nvlist array")
3280 return O;

3281 }

3283 ret = grub_zalloc (elensize + sizeof (grub_uint32_t))
3284 if (lret)

3285 return O;

3286 grub_mencpy (ret, nvlist, sizeof (grub_uint32_t))

3288 grub_nencpy (ret + sizeof (grub_uint32_t), nvpairptr
3289 return ret
3290 }

3292 static void

3293 unnount _device (struct grub_zfs_devi ce_desc *desc)
3294 {

3295 unsi gned i

3296 switch (desc->type)

3297 {

3298 case DEVI CE_LEAF

3299 if (!desc->original && desc->dev)

3300 grub_devi ce_cl ose (desc->dev)

3301 return;

3302 case DEVI CE_RAI DZ:

3303 case DEVI CE_M RROR:

3304 for (i =0; i < desc->n_children; i++)
3305 unnmount _devi ce (&desc->children[i]);
3306 grub_free (desc->children)

3307 return;

3308

3309 }

3311 static void
3312 zfs_unnount (struct grub_zfs_data *data)

el ensi ze) ;

array");

new grub/ grub-core/fs/zfs/zfs.c

3313 {

3314 unsi gned i ;

3315 for (i = 0; i < data->n_devices_attached; i++)

3316 unnount _devi ce (&dat a->devi ces_attached[i]);

3317 grub_free (data->devices_attached);

3318 grub_free (data->dnode_buf);

3319 grub_free (data->dnode_ndn);

3320 grub_free (data->file_buf);

3321 for (i = 0; i < data->subvol.nkeys; i++)

3322 grub_crypto_ci pher_cl ose (data->subvol . keyring[i].cipher);
3323 grub_free (data->subvol . keyring);

3324 whil e (data->feature_list)

3325 struct enabled_feature_list * tnp = data->feature_|list;
3326 data->feature_list = data->feature_|ist->next;

3327 grub_free(tnp);

3328

3329 #endif /* | codereview */

3330 grub_free (data);

3331 }

3333 static int

3334 add_feature (struct grub_zfs_data * data, zfs_feature_id_t id)
3335 {

3336 struct enabled_feature_list * list = data->feature_list;
3337

3338 while (list->next) {

3339 if (list->next->d ==id)

3340 return id;

3341 list = list->next;

3342 }

3343

3344 list->next = (struct enabled_feature_list *) grub_zalloc (sizeof (struct
3345

3346 if (! list->next)

3347 return (-1);

3349 list->next->id =id;

3350 |'i st->next->next = NULL;

3351

3352 return O;

3353 }

3355 static zfs_feature_id_t

3356 check_feature (const char * feature)

3357 {

3358 int i =0;

3359 for (; i < ZFS_FEATURE_UNKNOW; ++i)

3360 if (! grub_strcnp (feature, feature_list[i]))

3361 return i;

3363 return ZFS_FEATURE_UNKNOWW;

3364 }

3366 /*

3367 * zfs_get_features_list() get feature list and check conpatability
3368 */

3369 static grub_err_t

3370 {zfs_get_f eatures_list (struct grub_zfs_data * data)

3371

3372 dnode_end_t dn;

3373 dnode_end_t * npbs = &(data->nos);

3374 grub_err_t err;

3375 grub_uint64_t objnum

3376 int ret;

3377

3378 i nt NESTED_FUNC_ATTR feature_hook (const char * cname, grub_uint64_t val)

21

enabl

new gr

3379
3380

3382

3384
3385

3387
3388

3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416

3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434 }

ub/ grub-core/fs/zfs/zfs.c 22
{

grub_err_t iret = 0;
zfs_feature_id_t id;

if (! (*cnanme))
goto out;

/ retrieve feature nunmber
d = check_feature (cnane);

Il
if

/
i

f grub doesn't support such feature, return error
id == ZFS_FEATURE_UNKNOWN) {
(val == 0)
grub_error (GRUB_ERR BAD FS,
"Unsupported feature % was enabl ed, "
" but haven't been activated yet. You will
" if this feature are activated.", cnane);

i
(
f
not be able to boot"

} else {
grub_error (GRUB_ERR BAD FS,
"Unsupported feature % is activated. Booting failed", cnane);
iret = 1;

}
goto out;

/! add feature to |ist
iret = add_feature(data, id);

out:
return iret;

/1 get object directory

err = dnode_get (nos, DMJ POOL_DI RECTORY_OBJECT,
DVU_OT_OBJECT DI RECTORY, &dn, data);

if (err)

return err;

/1 retrieve pool
err = zap_| ookup (&dn,
if (err)

return err;

properties object numer
DMJ_POOL_FEATURES_FOR_READ, &objnum data, 0);

/1 get "features for read" zap dnode
err = dnode_get (nbs, objnum DMJ_OTN_ZAP_METADATA, &dn, data);
if (err)

return err;

// itterate zap to fetch feature |ist
ret = zap_iterate_u64 (&dn, feature_hook, data);
if (ret)
return grub_error (GRUB_ERR BAD FS, "There are enabl ed unsupported features")

return GRUB_ERR_NONE;

3436 #endif /* | codereview */

3437 /
3438
3439
3440
3441

*

* zfs_nmount() locates a valid uberblock of the root pool and read in its MOS
* to the nenory address MOS.
*

*/

3442 static struct grub_zfs_data *
3443 zfs_nount (grub_device_t dev)

3444 {

new grub/ grub-core/fs/zfs/zfs.c 23

3445
3446
3447
3448
3449
3450
3451

3453
3454
3455
3456
3457

3459
3460
3461
3462
3463
3464
3465
3466

3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479

3481
3482
3483
3484

3486
3487
3488
3489
3490
3491
3492

3494
3495
3496
3497
3498
3499
3500

3502
3503
3504
3505
3506
3507
3508
3509

struct grub_zfs_data *data = O;

grub_err_t err;

void *osp = 0;

grub_si ze_t ospsize;

grub_zfs_endi an_t ub_endi an = GRUB_ZFS_UNKNOMN_ENDI AN;
uber bl ock_t *ub;

int inserted;

if{(! dev- >di sk)

grub_error
return O;

(GRUB_ERR BAD DEVI CE, "not a disk");

data = grub_zal l oc (sizeof (*data));

if (!data)
return O;
#if 0O
/* if it’s our first tine here, zero the best uberbl ock out */
if (data->best_drive == 0 && data->best_part == 0 & find_best_root)
grub_nenset (¤t_uberbl ock, 0, sizeof (uberblock_t));
#endi f

#endi f /* |

data->feature_list = NULL;

coderevi ew */

dat a- >n_devi ces_al | ocated = 16;

dat a- >devi ces_attached = grub_nal |l oc (sizeof (data->devices_attached[0])
* dat a->n_devi ces_al | ocat ed) ;

dat a- >n_devi ces_attached = 0;

err = scan_di sk (dev, data, 1, & nserted);

if (err)

zfs_unmount (data);
return NULL;

ub = &(data->current_uberbl ock);
ub_endi an = (grub_zfs_to_cpu64 (ub->ub_nagic,
GRUB_ZFS LI TTLE_ENDI AN) == UBERBLOCK_MAG C
? GRUB_ZFS LI TTLE_ENDI AN : GRUB_ZFS BI G ENDI AN) ;

err = zio_read (&ub->ub_root bp,
&osp, &ospsi ze,

ub_endi an,
data) ;
if (err)

{

zf s_unnmount
return NULL;

(data);

if (ospsize < OBJSET_PHYS S| ZE V14)

grub_error (GRUB_ERR BAD FS,
grub_free (osp);

zfs_unnmount (data);

return NULL;

"OSP too small");

/* Got the MOS. Save it at the nenory addr MOS. */
grub_nmemmove (&(data->nps.dn), &((objset_phys_t *) osp)->os_neta_dnode,
DNODE_SI ZE) ;
dat a- >nos. endi an = (grub_zfs_to_cpu64 (ub->ub_rootbp. bl k_prop,
ub_endi an) >> 63) & 1;
grub_free (osp);

dat a- >nounted = 1;

new grub/ grub-core/fs/zfs/zfs.c 24

3511

if (grub_zfs_to_cpu64(ub->ub_version, ub_endian) == SPA FEATURE_VERSI ON) {

3512 data->feature_list = (struct enabled_feature_list*) grub_zalloc (
3513 sizeof (struct enabl ed_feature
3514 dat a->feature_list->next = NULL;

3515 err = zfs_get_features_list(data);

3516

3517 if (err) {

3518 dat a- >mounted = 0;

3519 zfs_unmount (data);

3520 return NULL;

3521 }

3522 }

3524 #endif /* | codereview */

3525 return data;

3526 }

3528 static grub_err_t

3529 find_defaul t_dataset_path(char * path, grub_uint64_t * ndnobj, struct grub_zfs_d
3530 {

3531 grub_uint64_t obj, pobj, zobj;

3532 grub_err_t err;

3533 dnode_end_t ndn, *nosndn;

3534 char buf[512];

3536 i nt NESTED_FUNC_ATTR hook (const char * name, grub_uint64_t val) {
3537 if (val == obj) {

3538 grub_strcpy(buf, nane);

3539 return 1,

3540

3541 return O;

3542

3544 obj = *mdnobj ;

3545 nosnmdn = &(dat a- >nos) ;

3546 buf[0] = '\0;

3547 path[0] = "'\0";

3549 /1 get object’s data dir

3550 err = dnode_get (nosndn, obj, DMJ OT_DSL_DATASET, &nn, data);

3551 if (err)

3552 return err;

3553 obj = grub_zfs_to_cpu64((((dsl_dataset_phys_t*)DN BONUS (&mdn. dn)))->ds_dir_ob
3554

3555 for (;;) {

3556 /1 get object dnode

3557 err = dnode_get (nosndn, obj, DMJ OT_DSL_DI R &mdn, data);

3558 if (err)

3559 return err;

3561 // find out its parent’s objnum

3562 pobj = grub_zfs_to_cpu64((((dsl_dir_phys_t*)DN_BONUS (&ndn. dn)))->dd_parent _
3563 if (obj == pobj)

3564 br eak;

3566 /1 if pobj is O then we have reached top dataset

3567 if (! pobj

3568 br eak;

3570 /1 get object’s parent dnode

3571 err = dnode_get (nosndn, pobj, DMJ OT_DSL_DI R, &mn, data);

3572 if (err)

3573 return err;

3575 /1 find out parent’s zap obj num

3576 zobj = grub_zfs_to_cpu64((((dsl_dir_phys_t*)DN BONUS (&dn. dn)))->dd_child_d

new grub/ grub-core/fs/zfs/zfs.c 25 new grub/ grub-core/fs/zfs/zfs.c
3643 return grub_errno;
3578 /1 get zap’s dnode
3579 err = dnode_get (nosndn, zobj, DMJ OT_DSL_DI R CH LD MAP, &ndn, data); 3645 err = zfs_fetch_nvlist (data->device_original, &vlist);
3580 if (err) 3646 if (err)
3581 return err; 3647
3648 zf s_unmount (data);
3583 /1 | ookup zap to get nane 3649 return err;
3584 err = zap_iterate_u64(&mn, hook, data); 3650
3585 if (err == 0)
3586 return err; 3652 *| abel = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFI G POOL_NAME) ;
3653 grub_free (nvlist);
3588 /1 pobj becones obj now 3654 zfs_unmount (data);
3589 obj = pobj; 3655 return grub_errno;
3656 }
3591 /1 append new internedi ate dnode to path
3592 grub_strcat (buf, path); 3658 static grub_err_t
3593 grub_strcpy(path, "/"); 3659 zfs_uuid (grub_device_t device, char **uuid)
3594 grub_strcat (path, buf); 3660 {
3595 } 3661 struct grub_zfs_data *data;
3596
3597 return GRUB_ERR _NONE; 3663 *uuid = 0;
3598 }
3665 data = zfs_nount (device);
3600 grub_err_t 3666 if (! data)
3601 ?et _defaul t _bootfs_obj (grub_device_t dev, char * path, grub_uint64_t * ndnobj) 3667 return grub_errno;
3602
3603 struct grub_zfs_data * data; 3669 *uuid = grub_xasprintf ("9%16l1x", (long |long unsigned) data->guid);
3604 grub_err_t err = O; 3670 zfs_unnmount (data);
3605 data = zfs_nount(dev); 3671 if (! *uuid)
3606 if (data) { 3672 return grub_errno;
3607 err = get_defaul t _boot f sobj (&(dat a- >nps), ndnobj, data); 3673 return GRUB_ERR_NONE;
3608 if (err) 3674 }
3609 return err;
3610 err = find_defaul t_dataset_path(path, ndnobj, data); 3676 static grub_err_t
3611 zf s_unnount (dat a) ; 3677 zfs_mtinme (grub_device_t device, grub_int32_t *nt)
3612 return err; 3678 {
3613 } else { 3679 struct grub_zfs_data *data;
3614 return grub_errno; 3680 grub_zfs_endi an_t ub_endi an = GRUB_ZFS_UNKNOMN_ENDI AN;
3615 } 3681 uber bl ock_t *ub;
3616 return O;
3617 } 3683 *nt = 0;
3619 #endif /* | codereview */ 3685 data = zfs_nount (device);
3620 grub_err_t 3686 if (! data)
3621 ?r ub_zfs_fetch_nvlist (grub_device_t dev, char **nvlist) 3687 return grub_errno;
3622
3623 struct grub_zfs_data *zfs; 3689 ub = &(data->current_uberbl ock);
3624 grub_err_t err; 3690 ub_endi an = (grub_zfs_to_cpu64 (ub->ub_magic,
3691 GRUB_ZFS LI TTLE_ENDI AN) == UBERBLOCK_MAG C
3626 th s(= fzf)s_maunt (dev); 3692 ? GRUB_ZFS_ LI TTLE_ENDI AN : GRUB_ZFS_BI G_ENDI AN) ;
3627 i lzfs
3628 return grub_errno; 3694 *m = grub_zfs_to_cpu64 (ub->ub_tinestanp, ub_endian);
3629 err = zfs_fetch_nvlist (zfs->device_original, nvlist); 3695 zfs_unmount (data);
3630 zfs_unmount (zfs); 3696 return GRUB_ERR _NONE;
3631 return err; 3697 }
3632 }
3699 /*
3634 static grub_err_t 3700 * zfs_open() locates a file in the rootpool by follow ng the
3635 zfs_|l abel (grub_device_t device, char **|abel) 3701 * MOS and places the dnode of the file in the menory address DNODE.
3636 { 3702 */
3637 char *nvlist; 3703 static grub_err_t
3638 grub_err_t err; 3704 grub_zfs_open (struct grub_file *file, const char *fsfil enane)
3639 struct grub_zfs_data *data; 3705 {
3706 struct grub_zfs_data *data;
3641 data = zfs_nount (device); 3707 grub_err_t err;
3642 if (! data) 3708 int isfs;

new grub/ grub-core/fs/zfs/zfs.c 27

3710
3711
3712

3714
3715
3716
3717
3718
3719
3720

3722
3723
3724
3725
3726

3728
3729
3730
3731
3732
3733

3735

3737
3738
3739
3740
3741
3742
3743
3744
3745

3747
3748
3749
3750
3751
3752
3753

3755
3756
3757
3758
3759
3760
3761
3762

3764
3765
3766
3767
3768
3769
3770
3771
3772

3774

data = zfs_nount (fil e->device);
if (! data)
return grub_errno;
err = dnode_get _fullpath (fsfilenane, &(data->subvol),
&(dat a- >dnode), &isfs, data);
if (err)

zf s_unmount (data);
return err;
if (isfs)
{

zf s_unnmount (data)

return grub_error (GRUB ERR BAD FILE TYPE, N ("missing ‘%’ synbol"), '@)

/* We found the dnode for this file. Verify if it is a plain file. */
i f (data->dnode.dn.dn_type != DMJ_OT_PLAI N_FI LE_CONTENTS)
{
zfs_unmount (data);
return grub_error (GRUB_ERR BAD FILE_TYPE, N ("not a regular file"));
/* get the file size and set the file position to 0 */
/

attribute, which could be either in the bonus buffer

*
* For DMJ_OT_SA we will need to | ocate the SIZE attribute
*
* bl ock.

or the "sp|II
*

i f (data->dnode. dn. dn_bonustype == DMJ_OT_SA)

voi d *sahdr p;
int hdrsize;

i f (data->dnode. dn. dn_bonuslen != 0)
sahdrp = (sa_hdr_phys_t *) DN_BONUS (&dat a- >dnode. dn);

el se if (data->dnode.dn.dn_flags & DNODE_FLAG SPI LL_BLKPTR)

bl kptr_t *bp = &dat a->dnode. dn. dn_spill;
err = zio_read (bp, data->dnode.endi an, &sahdrp, NULL, data);
if (err)

return err;

el se

return grub_error (GRUB_ERR BAD_FS, "filesystemis corrupt");

hdrsi ze = SA HDR S| ZE (((sa_hdr_phys_t *) sahdrp));
file->size = grub_zfs_to_cpu64 (grub_get_unali gned64 ((char *) sahdrp + hd
}
el se if (data->dnode. dn.dn_bonustype == DMJ_OT_ZNODE)
file->size = grub_zfs_to_cpu64 (((znode_phys_t *) DN _BONUS (&dat a- >dnode. d

el se

return grub_error (GRUB_ERR BAD FS, "bad bonus type");

file->data = data;

new grub/ grub-core/fs/zfs/zfs.c

3775
3777
3778
3779

3781

file->offset = 0;
#i f ndef GRUB_UTI L
grub_dl _ref (nmy_nod);
#endi f

return GRUB_ERR NONE;

3782 }

3784

static grub_ssize_t

3785 grub_zfs_read (grub_file_t file, char *buf, grub_size t len)

3786 {

3787 struct grub_zfs_data *data = (struct grub_zfs_data *) file->data;
3788 grub_size_t bl ksz, novesi ze;

3789 grub_size_t |engt h

3790 grub_si ze_t read;

3791 grub_err_t err;

3793 /*

3794 * |f offset is in nenory, nove it into the buffer provided and return.
3795 *

3796 if (file->offset >= data->file_start

3797 && file->of fset + len <= data->file_end)

3798

3799 gr ub_nmemmove (buf data->file_buf + file->offset - data->file_start,
3800 en)

3801 return len;

3802

3804 bl ksz = grub_zfs_to_cpul6 (data->dnode. dn. dn_dat abl kszsec,

3805 dat a- >dnode. endi an) << SPA M NBLOCKSHI FT,;
3807 /*

3808 * Entire Dnode is too big to fit into the space available. W
3809 * will need to read it in chunks. This could be optimzed to
3810 * read in as large a chunk as there is space avail able, but for
3811 * now, this only reads in one data block at a tine.

3812 */

3813 Iength = len;

3814 read

3815 whi Ie (Iength)

3816 {

3817 void *t;

3818 /*

3819 */ Find requested bl kid and the offset within that bl ock.
3820 *

3821 grub_uint64_t blkid = grub_divnod64 (file->offset + read, blksz, 0);
3822 grub_free (data->file_buf);

3823 data->file_buf = 0;

3825 err = dmu_read (& data->dnode), blkid, &,

3826 0, data);

3827 data->file_buf =t;

3828 if (err)

3829

3830 data->file_buf = NULL,;

3831 data->file_start = data->file_end = O;

3832 return -1;

3833

3835 data->file_start = blkid * bl ksz;

3836 data->file_end = data->file_start + blksz;

3838 novesi ze = data->file_end - file->of fset - read,

3839 if (nmovesize > |ength)

3840 novesi ze = | ength;

new grub/ grub-core/fs/zfs/zfs.c 29 new grub/ grub-core/fs/zfs/zfs.c 30
3907 make_| r’rdn (&dn, data);

3842 grub_nmemove (buf, data->file_buf + file->offset + read 3908 err = dnode_get (&mdn, MASTER NODE_OBJ, DMJ_OT_MASTER NODE,
3843 - data->file_start, novesize); 3909 &dn, data);
3844 buf += novesi ze; 3910 if (err)
3845 I ength -= novesi ze; 3911
3846 read += novesi ze; 3912 grub_dprintf ("zfs", "failed here\n");
3847 } 3913 return;
3914 }
3849 return |en; 3915
3850 } 3916 err = zap_|l ookup (&dn, ZFS_ROOT_OBJ, &objnum data, 0);
3917 if (err)
3852 static grub_er 3918 {
3853 grub_zfs close (grubfllet file) 3919 grub_dprintf ("zfs", "failed here\n");
3854 { 3920 return;
3855 zfs_unmount ((struct grub_zfs data *) file->data); 3921 }
3922
3857 #ifndef GRUB_UTIL 3923 err = dnode_get (&mdn, objnum 0, &dn, data);
3858 grub_dl _unref (ny_nod); 3924 if (err)
3859 #endi f 3925
3926 grub_dprintf ("zfs", "failed here\n");
3861 return GRUB_ERR _NONE; 3927 return;
3862 } 3928 }
3929
3864 grub_err 3930 if (dn.dn.dn_bonustype == DMJ_OT_SA)
3865 grub_zfs getmjnobj (grub_device_t dev, const char *fsfilenang, 3931
3866 grub_ui nt64_t *ndnobj) 3932 voi d *sahdr p;
3867 { 3933 int hdrsize;
3868 struct grub_zfs_data *data;
3869 grub_err_t err; 3935 if (dn.dn.dn_bonuslen != 0)
3870 int isfs; 3936
3937 sahdrp = (sa_hdr_phys_t *) DN_BONUS (&dn.dn);
3872 data = zfs_nount (dev); 3938 }
3873 if (! data) 3939 else if (dn.dn.dn_flags & DNODE_FLAG SPI LL_BLKPTR)
3874 return grub_errno; 3940
3941 bl kptr_t *bp = &dn. dn. dn_spill;

3876 err = dnode_get _fullpath (fsfilenane, &(data->subvol),

3877 &(dat a- >dnode), &isfs, data); 3943 err = zio_read (bp, dn.endian, &sahdrp, NULL, data);
3878 *mdnobj = data->subvol . obj; 3944 if (err)
3879 zfs_unmount (data); 3945 return;
3880 return err; 3946 }
3881 } 3947 el se
3948
3883 static void 3949 grub_error (GRUB_ERR BAD FS, "filesystemis corrupt");
3884 fill _fs_info (struct grub_dirhook_info *info, 3950 return;
3885 (dnode_end_t ndn, struct grub_zfs_data *data) 3951 }
3886
3887 grub_err_t err; 3953 hdrsi ze = SA HDR S| ZE (((sa_hdr_phys_t *) sahdrp));
3888 dnode_end_t dn; 3954 i nf o- >m| neset = 1;
3889 grub_ui nt64_t obj num 3955 info->ntime = grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp + h
3890 grub_uint64_t headobj ; 3956 }
3891
3892 grub_menset (info, O, sizeof (*info)); 3958 if (dn.dn.dn_bonustype == DMJ_OT_ZNCDE)
3893 3959 {
3894 info->dir = 1; 3960 info->ntineset = 1;
3895 3961 info->ntinme = grub_zfs_to_cpu64 (((znode_phys_t *) DN _BONUS (&dn.dn))->zp_
3896 if (ndn.dn.dn_type == DMJ_OT_DSL_DI R) 3962 }
3897 { 3963 return;
3898 headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN _BONUS (&ndn.dn))->dd_h 3964 }
3900 err = dnode_get (&(data->nps), headobj, DMJ OT_DSL_DATASET, &mrdn, data); 3966 static grub_err_t
3901 if (err) 3967 grub_zfs_dir (grub_device_ t device, const char *path,
3902 { 3968 int (*hook) (const char *, const struct grub_dirhook_info *))
3903 grub_dprintf ("zfs", "failed here\n"); 3969 {
3904 return; 3970 struct grub_zfs_data *data;
3905 } 3971 grub_err_t err;

3906 } 3972 int isfs;

new grub/ grub-core/fs/zfs/zfs.c 31

3973
3974
3975
3976
3977

3979
3980
3981
3982
3983

3985

3987
3988
3989
3990

3992
3993
3994
3995
3996
3997
3998

4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012

4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030

4032
4033
4034
4035
4036
4037
4038

auto int NESTED FUNC ATTR iterate_zap (const char *name, grub_uint64_t val);
auto int NESTED FUNC ATTR iterate_zap_fs (const char *nane,

grub_uint64_t val);

auto int NESTED FUNC ATTR iterate_zap_snap (const char *nane,

grub_uint64_t val);

int NESTED_FUNC ATTR iterate_zap (const char *nane, grub_uint64_t val)
{

struct grub_dirhook_info info;
dnode_end_t dn;
grub_renset (& nfo, 0, sizeof (info));

dnode_get (&(data->subvol.ndn), val, 0, &n, data);
if (dn.dn.dn_bonustype == DMJ_OT_SA)
{

voi d *sahdr p;
int hdrsize;

if (dn.dn.dn_bonuslen != 0)

sahdrp = (sa_hdr_phys_t *) DN _BONUS (&dat a- >dnode. dn);
else if (dn.dn.dn_flags & DNODE_FLAG SPI LL_BLKPTR)

bl kptr_t *bp = &dn.dn.dn_spill;

err = zio_read (bp, dn.endian, &sahdrp, NULL, data);
if (err)

grub_print_error ();
return O;

el se

grub_error (GRUB_ERR BAD FS, "filesystemis corrupt");
grub_print_error ();
return O;

}

hdrsi ze = SA HDR S| ZE (((sa_hdr_phys_t *) sahdrp));

info.ntinmeset = 1;

info.ntime = grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp +
info.case_insensitive = data->subvol . case_insensitive;

}
if (dn.dn.dn_bonustype == DMJ_OT_ZNCDE)
{

info.nmtinmeset = 1;
info.nmime = grub_zfs_to_cpu64 (((znode_phys_t *) DN _BONUS (&dn.dn))->zp
dn. endi an) ;

info.dir = (dn.dn.dn_type == DMJ OT_DI RECTORY_CONTENTS) ;
grub_dprintf ("zfs", "type=%l, name=%\n",
(int)dn.dn.dn_type, (char *)nane);

return hook (nanme, & nfo);

int NESTED FUNC ATTR iterate_zap_fs (const char *nane, grub_uint64_t val)
{

struct grub_dirhook_i nfo info;
dnode_end_t nun;
err = dnode_get (&(data->nps), val, 0, &mn, data);
if (err)
return O;

new grub/ grub-core/fs/zfs/zfs.c 32
4039 if (mdn.dn.dn_type !'= DMJ OT_DSL_DI R)

4040 return O;

4042 fill_fs_info (& nfo, ndn, data);

4043 return hook (nanme, & nfo);

4044

4045 i nt NESTED_FUNC ATTR iterate_zap_snap (const char *nane, grub_uint64_t val)
4046 {

4047 struct grub_dirhook_info info;

4048 char *nane2;

4049 int ret;

4050 dnode_end_t ndn;

4052 err = dnode_get (&(data->nps), val, 0, &mn, data);

4053 if (err)

4054 return O;

4056 if (mdn.dn.dn_type != DMJ_OT_DSL_DATASET)

4057 return O;

4059 fill_fs_info (& nfo, ndn, data);

4061 name2 = grub_malloc (grub_strlen (nanme) + 2);

4062 nane2[0] ="' @;

4063 grub_nencpy (nane2 + 1, name, grub_strlen (name) + 1);

4064 ret = hook (nane2, & nfo);

4065 grub_free (nane2);

4066 return ret;

4067 }

4069 data = zfs_nount (device);

4070 if (! data)

4071 return grub_errno;

4072 err = dnode_get _full path (path, &(data->subvol), &(data->dnode), & sfs, data);
4073 if (err)

4074

4075 zfs_unmount (data);

4076 return err;

4077 }

4078 if (isfs)

4079 {

4080 grub_uint64_t childobj, headobj;

4081 grub_ui nt 64_t snapobj ;

4082 dnode_end_t dn;

4083 struct grub_dirhook_info info;

4085 fill_fs_info (& nfo, data->dnode, data);

4086 hook ("@, & nfo);

4087

4088 childobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN _BONUS (&data->dnode. d
4089 headobj = grub_zfs_to_cpu64 (((dsl _dir_phys_t *) DN _BONUS (&data->dnode. dn
4090 err = dnode_get (&(data->nps), childobj,

4091 DMJ_OT_DSL_DI R CHI LD MAP, &dn, data);

4092 if (err)

4093

4094 zf s_unnmount (data);

4095 return err;

4096

4098 zap_iterate_u64 (&n, iterate_zap fs, data);

4099

4100 err = dnode_get (&(data->nps), headobj, DWMJU OT_DSL_DATASET, &dn, data);
4101 if (err)

4102

4103 zf s_unnmount (data);

4104 return err;

new grub/ grub-core/fs/zfs/zfs.c

4105
4107

4109
4110
4111
4112
4113
4114
4115

4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130

4132
4133
4134
4135
4136
4137
4138
4139
4140

4142
4143
4144

4146
4147
4148
4149

4151
4152
4153
4154
4155
4156
4157
4158

4160

}
#

}

33

snapobj = grub_zfs_to_cpu64 (((dsl_dataset_phys_t *) DN _BONUS (&dn.dn))->d

err = dnode_get (&(data->nps), snapobj,
DMJ_OT_DSL_DS_SNAP_MNAP, &dn, data);
if (err)
zfs_unnmount (data);
return err;
zap_iterate_u64 (&n, iterate_zap_snap, data);
el se
if (data->dnode.dn.dn_type != DMJ_OT_DI RECTORY_CONTENTS)
{

zf s_unnmount (data);
return grub_error (GRUB_ERR BAD FILE TYPE, N ("not a directory"));

zap_iterate_u64 (&(data->dnode), iterate_zap, data);
}
zfs_unmount (data);
return grub_errno;

fdef GRUB_UTIL

static grub_err_t
grub_zfs_enbed (grub_device_t device __attribute__ ((unused)),

4161 }
#endi f

4162

4164
4165
4166
4167
4168
4169
4170

unsi gned int *nsectors,

unsi gned i nt max_nsectors,
grub_enbed_type_t enbed_type,
grub_di sk_addr_t **sectors)

unsi gned i ;

if (embed_type != GRUB_EMBED PCBI OS)
return grub_error (GRUB_ERR _NOT_|I MPLEMENTED_YET,
"ZFS currently supports only PC Bl S enbeddi ng");

f ((VDEV_BOOT_SI ZE >> GRUB_DI SK_SECTOR BI TS) < *nsectors)
return grub_error (GRUB_ERR OUT_OF_RANGE,
N _("your core.img is unusually large. "
"I't won’t fit in the enbedding area"));

*nsectors = (VDEV_BOOT_SI ZE >> GRUB_DI SK_SECTOR BI TS);
if (*nsectors > max_nsectors)
*nsectors = max_nsectors;
*sectors = grub_malloc (*nsectors * sizeof (**sectors));
if (!*sectors)
return grub_errno;
for (i =0; i < *nsectors; i++)
(*sectors)[i] =i + (VDEV_BOOT_OFFSET >> GRUB_DI SK_SECTCR BI TS);

return GRUB_ERR_NONE;

static struct grub_fs grub_zfs_fs = {

.name = "zfs",
.dir = grub_zfs_dir,

open = grub_zfs_open,
read = grub_zfs_read,
cl ose = grub_zfs_cl ose,
| abel = zfs_| abel,

new grub/ grub-core/fs/zfs/zfs.c

4171 .uuid = zfs_uuid,

4172 .ntime = zfs_ntine,

4173 #ifdef GRUB_UTIL

4174 .enbed = grub_zfs_enbed,

4175 .reserved_first_sector =1,

4176 .blocklist_install =0,

4177 #endi f

4178 .next =0

4179 };

4181 GRUB_MOD INIT (zfs)

4182 {

4183 COWPI LE_TI ME_ASSERT (si zeof (zap_leaf_chunk_t) == ZAP_LEAF_CHUNKSI ZE);
4184 grub_fs_register (&rub_zfs_fs);
4185 #i fndef GRUB_UTI L

4186 ny_nmod = nod;

4187 #endi f

4188 }

4190 GRUB_MOD_FI NI (zfs)

4191

4192 grub_fs_unregister (&rub_zfs_fs);
4193 }

new grub/ grub-core/fs/zfs/zfsinfo.c 1

R R R R

11496 Fri Aug 31 05:08:54 2012
new grub/ grub-core/fs/zfs/zfsinfo.c
grub patch

PR R R R R R R

____unchanged_portion_onitted_

186 static grub_err_t

187 get _bootpath (char *nvlist, char **bootpath, char **devid, grub_uint64_t inguid)
187 get_bootpath (char *nvlist, char **bootpath, char **devid)

188 {

189 char *type = 0;

190 grub_uint64_t diskguid = 0;

191 #endif /* ! codereview */

193 type = grub_zfs_nvlist_lookup_string (nvlist, ZPOO._CONFI G TYPE);
195 if ('type)

196 return grub_errno;

198 if (grub_strcnp (type, VDEV_TYPE DI SK) == 0)

199

200 grub_zfs_nvlist_| ookup_uint64 (nvlist, "guid", &diskguid);
201 #endif /* 1 codereview */

202 *boot path = grub_zfs_nvlist_|ookup_string (nvlist,

203 ZPOOL_CONFI G_PHYS_PATH) ;
204 *devid = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFI G DEVID);
205 if (!*bootpath || !*devid || (diskguid != inguid))

190 if (!*bootpath || !*devid)

206

207 grub_free (*boot path);

208 grub_free (*devid);

209 *boot path = 0;

210 *devid = 0;

211 }

212 return GRUB_ERR NONE;

213 }

215 if (grub_strcnp (type, VDEV_TYPE_M RROR) == 0)

216

217 int nelm i;

219 nel m = grub_zfs_nvlist_| ookup_nvlist_array_get_nelm

220 (nvlist, ZPOOL_CONFI G CHI LDREN);

222 for (i =0; i <nelm i++)

223 {

224 char *child;

226 child = grub_zfs_nvlist_lookup_nvlist_array (nvlist,
227 ZPOOL_CONFI G_CHI LDREN,
228 i)

230 get _bootpath (child, bootpath, devid, inguid);

215 get _bootpath (child, bootpath, devid);

232 grub_free (child);

234 if (*bootpath & *devid)

235 return GRUB_ERR_NONE;

236 1

237 }

239 return GRUB_ERR_NONE;
240 }
____unchanged_portion_onitted_

new grub/ grub-core/fs/zfs/zfsinfo.c

334 static grub_err_t

335 grub_cnd_zfs_bootfs (grub_comand_t cnd __attribute__ ((unused)), int argc,
336 char **args)
337 {

338 grub_devi ce_t dev;

339 char *devnane;

340 grub_err_t err;

341 char *nvlist = 0;

342 char *nv = 0;

343 char *bootpath = 0, *devid = O;
344 char *fsnaneg;

345 char *bootfs;

346 char *pool nane;

347 char def _path[512];

348 struct grub_zfs_data * data;
349 grub_uint64_t mdnobj, guid;

350 int def = 0;

332 grub_ui nt 64_t ndnobj ;

352 if (argc < 1)
353 return grub_error (GRUB_ERR _BAD _ARGUMENT, N_("one argunent expected"));

355 devname = grub_file_get_device_nane (args[0]);

357 #endif /* ! codereview */
358 if (grub_errno)
359 return grub_errno;

361 dev = grub_device_open (devnane);
362 grub_free (devnane);

363 if (!dev)

364 return grub_errno;

366 err = grub_zfs_fetch_nvlist (dev, &nvlist);

368 fsnane = grub_strchr (args[0], ')’);
369 if (fsnane)

370 f snane++;

371 el se

372 fsnane = args[0];

374 if (grub_strcnmp(fsname, "default") == 0)

375 ++def ;

377 if (! def) {

338 if (lterr

378 err = grub_zfs_getndnobj (dev, fsnane, &nnobj);
379 } else {

380 err = get_defaul t_bootfs_obj(dev, def_path, &rdnobj);
381

}
382 #endif /* | codereview */
384 grub_device_cl ose (dev);

386 if (err)
387 return err;

389 pool nane = grub_zfs_nvlist_|l ookup_string (nvlist, ZPOOL_CONFI G POOL_NAME);
390 i1 f (!pool nane)

391

392 if (!grub_errno)

393 grub_error (GRUB_ERR BAD FS, "No pool name found");
394 return grub_errno;

395 }

new grub/ grub-core/fs/zfs/zfsinfo.c

397
398

= grub_zfs_nvlist_| ookup_nvlist (nvl | st, ZPOOL w\lFI G_VDEV_TREE) ;

gr ub zfs_nvlist_| ookup_ui nt64 (nvlist, gw d", &guid

399 #endif /* T codereview */

401
402
340
341

404
405

407
408
409
410
411
412
413
414
415
416
417
418
419
420

422
423
424
425

if (nv & guid)

get _bootpath (nv, &bootpath, &devid, guid);
if (nv)

get _bootpath (nv, &bootpath, &devid);

grub_free (nv);
grub_free (nvlist);

bootfs = grub_xasprintf ("zfs-bootfs=%/%|u¥%%s%s%%s%s",

pool nane, (unsigned | ong | ong) minobj ,

bootpath ? ", boot path=\"
bootpath 2 : "",
bootpath 2 "\"" : ""
devid ? " d| skdeV| d= \ Loty
devid ? : "",
devid ? "\"" : "");
if (!bootfs)
return grub_errno;
if (argc >= 2)
grub_env_set (args[1], bootfs);
el se
grub_printf ("%\n", bootfs);

if ((def) && (argc >= 3))
grub_env_set (args[2], def_path);
else if (def)
grub_printf("%\n", def_path);

427 #endif /* | codereview */

428
429
430
431

433
434 }

grub_free (bootfs);
grub_free (pool nane);
grub_free (bootpath);
grub_free (devid);

return GRUB_ERR_NONE;

437 static grub_command_t cnd_i nfo, cnmd_bootfs;

439 GRUB_MOD I NI T (zf si nf o)

440 {
441
442
443
444
445
446
447 }

cmd_info = grub_regi ster_command ("zfsinfo", grub_cnd_zfsinfo,

N(DEVICE
N

cnd_boot fs = grub_register_comand ('

449 GRUB_MOD FINI (zfsinfo)

450 {
451
452
453 }

grub_unregi ster_command (cnmd_i nfo);
grub_unregi st er_conmand (cnd_ bootfs)

),
("Print ZFS info about DEVICE."
"zfs-bootfs", grub_cnd_zfs_boot
N_(" FI LESYSTEM [VAR ABLE] "
N_("Print ZFS- BOOTFSOBJ or store it

"))
fs,

into V

new gr ub/ gr ub- cor e/ part map/ sun. c

R R R R

4574 Fri Aug 31 05:08:55 2012

new gr ub/ grub- cor e/ part map/ sun. c
grub patch

PR R R R R R R

__unchanged_portion_onitted_

87 static grub_err_t
88 sun_partition_map_iterate (grub_disk_t disk,

117

119
120
119
120
121

123
123
124
125
126
125
126
127
128
129
130
131
132
133
134

136

137 }
__unchanged_portion_onitted_

int (*hook) (grub di sk_t di sk,
const grub_parti ti on_t partition))

struct grub_partition p;
uni on

struct grub_sun_bl ock sunb;
struct grub_sun_bl ock sun;
grub_uint16_t raw{0];

} bl ock;

int partnum

grub_err_t err;

p. partmap = &grub_sun_partition_nap;
err = grub_disk_read (disk, 0, 0, sizeof (struct grub_sun_block),

&bl ock) ;
if (err)
return err;
if (GRUB_PARTMAP_SUN MAG C != grub_be_t o_cpul6 (bl ock.sunb. magic))
i f (GRUB_PARTMAP_SUN MAGIC != grub_be to cpulG (bl ock. sun. magi c))

return grub_error (GRUB_ERR BAD PART TABLE, "not a sun partition table");

if (! grub_sun_is_valid (block.raw))
return grub_error (GRUB_ERR BAD_PART_TABLE, "invalid checksunt);

/* Maybe anot her error value woul d be better, because partition
tabl e _is_ recognized but invalid. */
r (partnum = 0; partnum < GRUB_PARTMAP_SUN MAX_PARTS; part num+)

struct grub_sun_partition_descriptor *desc;

if (block.sunb.infos[partnunj.id == 0
|| bl ock.sunb.infos[partnun].id == GRUB_PARTMAP_SUN WHOLE_DI SK_I D)
if (block.sun.infos[partnum.id == 0
|| block.sun.infos[partnuni.id == GRUB_PARTMAP_SUN WHOLE DI SK_I D)
conti nue;

desc = &bl ock. sunb. partitions[partnuni;
desc = &bl ock. sun. partitions[partnuni;
p. st art = ((grub_uint64_t) grub_be_t o_cpu32 (desc->start_cylinder)
* grub_be_to_cpul6 (bl ock.sunb.ntrks)
* grub_be_to_cpul6 (bl ock.sunb.nsect));
* grub_be_to_cpul6 (bl ock.sun.ntrks)
* grub_be_to_cpul6 (bl ock.sun.nsect));
p.len = grub_be_to_cpu32 (desc->num sectors);
p. nunber = p.index = partnum
i)

if (hook (disk, &p))
partnum = GRUB_PARTMAP_SUN_MAX_PARTS;
}

return grub_errno;

new gr ub/ gr ub- cor e/ part map/ sunpc. c

R R R R

3952 Fri Aug 31 05:08:55 2012
new gr ub/ gr ub- cor e/ part map/ sunpc. c
grub patch

PR R R R R R R

__unchanged_portion_onitted_

69 static grub_err_t
70 sun_pc_partition_map_iterate (grub_disk_t disk,
int (*hook) (grub di sk_t di sk,
72 const grub_partltlon_t partition))

74 grub_partition_t p;
75 uni on

76

77 struct grub_sun_pc_bl ock sunb;
77 struct grub_sun_pc_bl ock sun;
78 grub_uint16_t raw{0];

79 } bl ock;

80 int partnum
81 grub_err_t err;

83 p = (grub_partition_t) grub_zalloc (sizeof (struct grub_partition));
84 if (!
85 return grub_errno;

87 p->partmap = &grub_sun_pc_partition_nap;
88 err = grub_disk_read (disk, 1, 0, sizeof (struct grub_sun_pc_block), &block);

89 if (err)
90
91 grub_free (p);
92 return err;
93
94
95 i f (GRUB_PARTMAP_SUN PC MAGI C ! = grub_l e_to_cpul6 (bl ock.sunb. nagic))
95 i f (GRUB_PARTMAP_SUN PC MAGI C != grub_l e to_cpul6 (bl ock.sun. magic))
96 {
97 grub_free (p);
98 return grub_error (GRUB_ERR _BAD_PART_TABLE,
99 "not a sun_pc partition table");
100 }
102 if (! grub_sun_is_valid (block.raw))
103 {
104 grub_free (p);
105 return grub_error (GRUB_ERR BAD_PART_TABLE, "invalid checksunt);
106 }

108 /* Maybe another error value would be better, because partition

109 table _is_ recognized but invalid. */

110 for (partnum = 0; partnum < GRUB_PARTMAP_SUN PC MAX_PARTS; partnumt+)
{

112 struct grub_sun_pc_partition_descriptor *desc;
114 if (block.sunb.partitions[partnun]j.id == 0
115 || bl ock.sunb.partitions[partnuni.id

114 if (block.sun.partitions[partnunmi.id == 0

115 || block.sun.partitions[partnuni.id

116 == GRUB_PARTMAP_SUN_PC_WHOLE_DI SK_| D)

117 conti nue;

119 desc = &bl ock. sunb. partitions[partnun;

119 desc = &bl ock.sun. partitions[partnuni;

120 p- >start = grub_l e_to_cpu32 (desc->start_sector);
121 p->len = gr ub_le_to_cpu32 (desc->num sectors);

122 p- >nunber = partnum

new gr ub/ gr ub- cor e/ part map/ sunpc. c

123
124
125
126
127
128

130
132

133 }
__unchanged_portion_onitted_

if (p->len)

if (hook (disk, p))
partnum = GRUB_PARTMAP_SUN PC_MAX_PARTS;

}
grub_free (p);

return grub_errno;

new grub/incl ude/ grub/search. h

R R R R

1170 Fri Aug 31 05:08:56 2012

new grub/incl ude/ grub/search. h
fix mrror

R R R R R

1

/*

* GRUB -- GRand Unified Bootl oader

* Copyright (C) 2009 Free Software Foundation, Inc.

*

* CRUBis free software: you can redistribute it and/or nodify

* it under the terns of the G\U General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.

*

* CRUB is distributed in the hope that it will be useful,

* but W THOUT ANY WARRANTY; without even the inplied warranty of

* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the

* GNU Ceneral Public License for nore details.

*

* You shoul d have received a copy of the G\U General Public License
* along with GRUB. |f not, see <http://ww.gnu.org/licenses/>.

*/

#i f ndef GRUB_SEARCH_HEADER

#def i ne GRUB_SEARCH_HEADER 1

void grub_search_fs_file (const char *key, const char *var, int no_fl oppy,
char **hints, unsigned nhints, int mrror);
char **hints, unsigned nhints);
void grub_search_fs_uuid (const char *key, const char *var, int no_floppy,
char **hints, unsigned nhints, int mirror);
char **hints, unsigned nhints);
voi d grub_search_| abel (const char *key, const char *var, int no_floppy,
char **hints, unsigned nhints, int mrror);
char **hints, unsigned nhints);

#endi f

new grub/incl ude/ grub/ zfs/dnmu. h

R R R R

4683 Fri Aug 31 05:08:56 2012
new grub/incl ude/ grub/ zfs/dnmu. h
feature flags + bug fix

R R R

1/*

2 * GRUB -- GCRand Unified Bootl oader

3 * Copyright (O 1999, 2000, 2001, 2002, 2003, 2004 Free Sof tware Foundati on,
4 *

5 * CGRUBis free software; you can redistribute it and/or nodify

6 * it under the terns of the GNU General Public License as published by
7 * the Free Software Foundation; either version 3 of the License, or
8 * (at your option) any later version.

9 *

10 * GRUB is distributed in the hope that it will be useful,

11 * but W THOUT ANY WARRANTY; without even the inplied warranty of

12 * MERCHANTABILITY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

13 * G\U General Public License for nore details.

14 =

15 * You shoul d have received a copy of the GNU General Public License
16 * along with GRUB. |f not, see <http://ww.gnu.org/licenses/>.

17 */

18 /*

19 * Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.

20 * Use is subject to |license terns.

21 %/

22 /*

23 * Copyright 2012, Daniil Lunev

24 */

25 #endif /* ! codereview */

27 #ifndef _SYS DMJ H

28 #define _SYS DMJ H

30 /*

31 * This file describes the interface that the DMJ provides for its

32 * consuners.

33 *

34 * The DMJ also interacts with the SPA. That interface is described in
35 * dnu_spa. h.

36 */

38 #define B_FALSE O
39 #define B_TRUE 1

41 #define DMJ_OT_NEWYPE 0x80
42 #define DMJ_OT_METADATA 0x40
43 #defi ne DNU OT BYTESWAP_MASK 0x 3f

45 #define DMJ OT(byteswap, netadata) \
46 (DMJU_OT_NEWIYPE | \

47 ((metadata) ? DMJ_OT_METADATA : 0) | \

48 ((byt eswap) & DMJ_OT_BYTESWAP NASK))

50 #define DMJ OT_IS VALID(ot) (((ot) & DMJ OT_NEWIYPE) ? \
51 ((ot) & DMJ OT_BYTESWAP_MASK) < DMJ_BSWAP_NUMFUNCS : \
52 (ot) < DMUJ_OT_NUMIYPES)

54 #define DMJ OT_IS NETADATA(ot) (((ot) & DMJ_OT_NEWIYPE) ? \
55 ((ot) & DMU_OT_METADATA) :
56 drmu_ot [(ot)]. ot _net adat a)

58 typedef enum dnu_obj ect _byteswap {
59 DMJ_BSWAP_UI NT8,
60 DMJ_BSWAP_UI NT16
61 DMU_BSWAP_UI NT32,

I nc.

new gr ub/incl ude/ grub/ zfs/dnmu. h

62 DMJ_BSWAP_UI NT64,

63 DMJ_BSWAP_ZAP,

64 DMJ_BSWAP_DNCDE,

65 DMJ_BSWAP_OBJSET,

66 DMJ_BSWAP_ZNCDE,

67 DMJ_BSWAP_OLDACL,

68 DMJ_BSWAP_ACL,

69 DMJ _BSWAP_ NUMFUNCS

70 } dmu_obj ect byt eswap_t ;

72 #endif /* | codereview */
73 typedef enum dnmu_obj ect _type {

74 DMJ_OT_NONE,

75 /* general: */

76 DMJ_OT_OBJECT_DI RECTORY,

77 DMJ_OT_OBJECT_ARRAY,

78 DMU_OT_PACKED_NVLI ST,

79 DNU OT PACKED NVLI ST_SI ZE,

80 DMJ_OT_BPLI ST,

81 DMJ_OT_BPLI ST_HDR,

82 /* spa: */

83 DMJ_OT_SPACE_NMAP_HEADER,

84 DMJ_OT_SPACE_NMAP,

85 /* ZilT */

86 DMJ_OT_| NTENT_LOG,

87 [* dmu: */

88 DMUJ_OT_ DNCDE,

89 DMUJ_OT_OBJSET,

90 [* dslT */

91 DMJ_OT_DSL_DI R,

92 DMJ_OT_DSL_DI R_CHI LD_NAP,

93 DMJ_OT_DSL_DS_SNAP_VAP,

94 DMU_OT_DSL_PROPS,

95 DMU_OT_DSL_DATASET,

96 [* zZpl T */

97 DMJ_OT_ZNODE,

98 DMU_OT_OLDACL,

99 DMU_OT_PLAI N_FI LE_CONTENTS,
100 DMJ_OT_DI RECTORY_CONTENTS,
101 DMJ_OT_MASTER_NCDE,

102 DMJ_OT_UNLI NKED_SET,
103 /* zvol: */

104 DMJ_OT_zZvVaL,

105 DMJ_OT_ZVOL_PROP,

106 /* other; for testing only!
107 DMJ_OT_ PLAI N_OTHER,

108 DMJ OT Ul NT64_OTHER,
109 DMJ_OT_ZAP_OTHER,

110 /* new obj ect types: */
111 DMJ_OT_ERROR_LOG

112 DMU_OT_SPA_HI STORY,

113 DMU_OT_SPA_HI STORY_OFFSETS,
114 DMJ_OT_POOL_ PROPS,

115 DMU_OT_DSL_PERMS,

116 DMJ_OT_ACL,

117 DMJ_OT_SYSACL,

118 DMU_OT_FUI D,

119 DMU_OT_FUI D_SI ZE,

120 DMJ_OT_NEXT_CLONES,

121 DMU_OT_SCRUB_QUEUE,

122 DMU_OT_USERGROUP_USED,
123 DMJ_OT_USERGROUP_QUOTA,
124 DMJ_OT_USERREFS,

125 DNU OT DDT_ZAP,

126 DMJ_OT_DDT_STATS,

127 DMJ_OT_SA,

—~—— . m—m—m——— — L — m—— e — -

* ok Ok kX ok

——

———

— e —

* ok * * ok * ok Ok ok F ok

EE

* ok

EE

* ok ok ok % ok Ok ok % ok Ok ok k% ok

ZAP */

Ul NT64 */

Ul NT8 (XDR by nvlist_pack/ unpack)
Ul NT64 *

Ul NT64 */

Ul NT64 */

U NT64 */
Ul NT64 */

Ul NT64 */

DNODE */
OBJSET */

Ul NT64 */
ZAP */
ZAP */
ZAP */
Ul NT64 */

ZNODE */
OLD ACL */
U NT8 */
ZAP */
ZAP */
ZAP */

Ul NT8 */
ZAP */

Ul NT8 */
Ul NT64 */
ZAP */

ZAP */

Ul NT8 */

spa_hi s_phys_t */

ZAP */

ZAP */

ACL */

SYSACL */

FU D tabl e (Packed NVLI ST Ul NT8) */
FU D tabl e size U NT64 */
ZAP */

ZAP */

ZAP */

ZAP */

ZAP */

ZAP */

ZAP */

System attr */

new grub/incl ude/ grub/ zfs/dnmu. h

128
129
130
131
132
133
134

22
135 } dnu_ob

DMJ_OT_SA MASTER_NODE,

DMJ_OT_SA_ATTR _REG STRATI ON,

DMJ_OT_SA_ATTR_LAYOUTS,
DMU_OT_DSL_KEYCHAI N = 54,
DMU_OT_NUMTYPES,

[* ZAP */
[* ZAP */
[* ZAP */

DMU_OTN_ZAP_METADATA = DMJ_OT(DMJ_BSWAP_ZAP, B TRUE),

DMJ_OT_NUMTYPES
j ect _type_t;

" unchanged_portion_omitted_

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

164

| *

* The nanmes of zap entries in the DI RECTORY_OBJECT of the MOS.
*
/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

DMJU_PCOOL_DI RECTORY_OBJECT
DMU_POOL_CONFI G
DMJ_PQOL_RQOT_DATASET
DMJ_POOL_SYNC_BPLI ST
DMJ_POOL_ERRLOG_SCRUB
DMU_POOL_ERRLOG_LAST
DMJ_POOL_SPARES
DMJ_POOL_DEFLATE
DMJ_POOL_HI STORY
DMUJ_POOL_PROPS
DMJ_PQOL_L2CACHE
DMJ_POOL_FEATURES_FOR_READ

#endi f /* | codereview */

#endi

f

/* _SYS DMU H */

1

"config"

"root _dat aset"
"sync_bplist"
"errl og_scrub”
"errlog_last"
"spares”

"defl ate"
"history"

"pool _props”

"] 2cache"
"features_for_read"

new grub/incl ude/ grub/zfs/zfs.h

R R R R

5552 Fri Aug 31 05:08:57 2012
new grub/incl ude/ grub/zfs/zfs.h

along with GRUB. If not, see <http://wwm. gnu.org/licenses/>.

grub patch
IR RS S SRS R SR SRR SRR R R SRS R R R R E R RS SRR EEREEREEEEEEEEESE]
1/*
2 * GRUB -- GRand Unified Bootl oader
3 * Copyright (O 1999, 2000, 2001, 2002, 2003, 2004, 2009 Free Sof tware Foundati on,
4 *
5 * CGRUBis free software; you can redistribute it and/or nodify
6 * it under the terns of the GNU General Public License as published by
7 * the Free Software Foundation; either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * GRUB is distributed in the hope that it will be useful,
11 * but W THOUT ANY WARRANTY; without even the inplied warranty of
12 * MERCHANTABI LI TY or FITNESS FOR A PARTI CULAR PURPOSE. See the
13 * G\U General Public License for nore details.
14 =
15 * You shoul d have received a copy of the GNU General Public License
*
*
/

/
*
*
*/
21 | *
22 * Copyright 2012, Daniil Lunev
*
/
24 #endif /* | codereview */

26 #ifndef GRUB_ZFS HEADER
27 #define GRUB_ZFS HEADER 1

29 #include <grub/err.h>
30 #i nclude <grub/disk. h>
31 #include <grub/crypto. h>

33 typedef enum grub_zfs_endi an

34

35 CRUB_ZFS_UNKNOWN_ENDI AN = -2,

36 GRUB_ZFS_LI TTLE_ENDI AN = -1,

37 GRUB_ZFS_BI G ENDI AN = 0

38 } grub_zfs_endian_t;

40 [*

41 * On-di sk version nunber.

42 =/

43 #define SPA_VERSI ON 33ULL
44 #defi ne SPA_FEATURE_VERSI ON 5000ULL

45 #endif /* | codereview */

47 | *
48 * The followi ng are configuration names used in the nvlist describing a pool’s
49 * configuration.

*/

50

51 #define ZPOOL_CONFI G_VERSI ON "version"
52 #define ZPOOL_CONFI G_POOL_NAME "nane"

53 #define ZPOOL_CONFI G_POOL_STATE "state"

54 #define ZPOOL_CONFI G_POOL_TXG "txg"

55 #define ZPOOL_CONFI G POOL_GUI D 'pool _gui d"

56 #define ZPOOL_CONFI G_CREATE_TXG "create_txg"

57 #define ZPOOL_CONFI G TOP_GUI D "t op_gui d"
58 #defi ne ZPOOL_CONFI G_VDEV_TREE "vdev_tree"
59 #define ZPOOL_CONFI G TYPE "type"

60 #define ZPOOL_CONFI G_CHI LDREN "chil dren"”
61 #define ZPOOL_CONFI G I D "id"

Copyright (c) 2007, 2010, Oracle and/or its affiliates. Al rights reserved.

new grub/incl ude/ grub/zfs/zfs.h 2

121

125
126
127

#def i ne ZPOOL_CONFI G_GUI D "gui d"
#def i ne ZPOOL_CONFI G_PATH "pat h"
#defi ne ZPOOL_CONFI G_DEVI D "devi d"

#defi ne ZPOOL_CONFI G_METASLAB_ARRAY
#defi ne ZPOOL_CONFI G_METASLAB_SHI FT
#def i ne ZPOOL_CONFI G_ASHI FT
#def i ne ZPOOL_CONFI G_ASI ZE

"met asl ab_array
"nmet asl ab_shift
“ashift"
"asize"

#def i ne ZPOOL_CONFI G DTL " DTL"
#def i ne ZPOOL_CONFI G_STATS "stats"
#defi ne ZPOOL_CONFI G WHOLE_DI SK “whol e_di sk"

#def i ne ZPOOL_CONFI G_ERRCOUNT "error_count"

#defi ne ZPOOL_CONFI G_NOT_PRESENT "not _present"
#def i ne ZPOOL_CONFI G_SPARES "spares"
#defi ne ZPOOL_CONFI G_| S_SPARE "is_spare"
#defi ne ZPOOL_CONFI G_NPARI TY "nparity"
#defi ne ZPOOL_CONFI G_PHYS PATH " phys_pat h"
#def i ne ZPOOL_CONFI G_L2CACHE "l 2cache"

#defi ne ZPOOL_CONFI G_HOLE_ARRAY
#def i ne ZPOOL_CONFI G_VDEV_CHI LDREN
#def i ne ZPOOL_CONFI G| S_ HOLE
#def i ne ZPOOL_CONFI G_DDT_HI STOGRAM
#def i ne ZPOOL_CONFI G_DDT_OBJ_STATS
#defi ne ZPOOL_CONFI G DDT_STATS
/*
* The persistent vdev state is stored as separate val ues rather than a single
* 'vdev_state’ entry. This is because a device can be in nultiple states, such
* as offline and degraded.

"hol e_array"
"vdev_chil dren"
"is_hole"

"ddt _hi st ogr ant'
"ddt _obj ect _stats"
"ddt_stats"

*/

#def i ne ZPOOL_CONFI G_OFFLI NE "of fline"

#def i ne ZPOOL_CONFI G_FAULTED "faul ted"

#def i ne ZPOOL_CONFI G_DEGRADED "degr aded"”

#def i ne ZPOOL_CONFI G_REMOVED "renmoved"

#def i ne VDEV_TYPE_ROOT "root"

#defi ne VDEV_TYPE_M RROR "mrror"

#def i ne VDEV_TYPE_REPLACI NG "repl aci ng"

#def i ne VDEV_TYPE_RAI DZ "raidz"

#defi ne VDEV_TYPE_DI SK "di sk"

#defi ne VDEV_TYPE_FI LE "file"

#def i ne VDEV_TYPE_M SSI NG "m ssing"

#def i ne VDEV_TYPE_HOLE "hol e"

#def i ne VDEV_TYPE_SPARE "spare"”

#def i ne VDEV_TYPE_L2CACHE "1 2cache"

/*
* pool state. The following states are witten to disk as part of the normal
* SPA |ifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE, L2CACHE. The renmining
* states are software abstractions used at various |levels to conmuni cate pool
*
iy state.

typedef enum pool _state {

POOL_STATE_ACTI VE = 0, /* In active use */
POOL_STATE_EXPORTED, /* Explicitly exported */
POOL_STATE_DESTROYED, /* Explicitly destroyed */
POCOL_STATE_SPARE, /* Reserved for hot spare use */
POOL_STATE_L2CACHE, /* Level 2 ARC device */
POOL_STATE_UNI NI TI ALI ZED, /* Internal spa_t state */
POOL_STATE_UNAVAI L, /* Internal |ibzfs state =Y
POOL_STATE_POTENTI ALLYfACTI VE /* Internal libzfs state 2

} pool _state_t;

struct grub_zfs_data;

grub_err_t grub_zfs_fetch_nvlist (grub_device_t dev, char **nvlist);

grub_err_t grub_zfs_get ndnobj

(grub_device_t dev, const char *fsfilenane,

grub_ui nt 64_t *r'rdnobj);

new grub/incl ude/ grub/zfs/zfs.h 3

129 char *grub_zfs_nvlist_| ookup_string (const char *nvlist, const char *nane);
130 char *grub_zfs_nvlist_|l ookup_nvlist (const char *nvlist, const char *nanme);
131 int grub_zfs_nvlist_|l ookup_uint64 (const char *nvlist, const char *nane,

132 grub_uint64_t *out);

133 char *grub_zfs_nvlist_l ookup_nvlist_array (const char *nvlist,

134 const char *nane,

135 grub_size_t index);

136 int grub_zfs_nvlist_lookup_nvlist_array_get_nelm (const char *nvlist,
137 const char *nane);

138 grub_err_t

139 grub_zfs_add_key (grub_uint8_ t *key_in,
140 grub_si ze_t keyl en,
141 i nt passphrase);

143 grub_err_t

144 get _defaul t _bootfs_obj (grub_device_t dev, char * path, grub_uint64_t * ndnobj);
145 #endif /* ! codereview */

146 extern grub_err_t (*grub_zfs_decrypt) (grub_crypto_cipher_handl e_t cipher,

147 grub_uint64_t al go,

148 voi d *nonce,

149 char *buf, grub_size_t size,

150 const grub_uint32_t *expected_nac,
151 grub_zfs_endi an_t endian);

153 struct grub_zfs_key;

155 extern grub_crypto_ci pher _handle_t (*grub_zfs_| oad_key) (const struct grub_zfs_k

156 grub_si ze_t keysi ze,
157 grub_uint64_t salt,
158 grub_uint64_t al go);

162 #endif /* | GRUB_ZFS HEADER */

new grub/util/grub-solarislst2cfg.c

R R R R

5580 Fri Aug 31 05:08:58 2012
new grub/util/grub-solarislst2cfg.c

grub patch
IR RS S SRS R SR SRR SRR R R SRS R R R R E R RS SRR EEREEREEEEEEEEESE]
1/*
2 * GRUB -- GCRand Unified Bootl oader
3 * Copyright (C 2012 Daniil Lunev
4 *
5 * CRUBis free software: you can redistribute it and/or nodify
6 * it under the terns of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * GRUB is distributed in the hope that it will be useful,
11 * but W THOUT ANY WARRANTY; without even the inplied warranty of
12 * MERCHANTABI LI TY or FITNESS FOR A PARTI CULAR PURPOSE. See the
13 * G\U General Public License for nore details.
14 =
15 * You shoul d have received a copy of the GNU General Public License
16 * along with GRUB. |f not, see <http://ww.gnu.org/licenses/>.
17 */

19 #incl ude <grub/types. h>

20 #include <grub/enu/ m sc. h>

21 #incl ude <grub/emu/getroot. h>
22 #include <grub/fs.h>

23 #include <grub/device. h>

25 #include <stdio. h>
26 #include <stdlib. h>
27 #include <string. h>

29 #define BUFFER_SI ZE 512

31 struct comands {
32 const char * |st;
33 const char * cfg;
34 };

36 void
37 get _uuid_by_path(char * path, char ** uuid)
{

39 char ** devices = NULL;
40 char * drive = NULL;

41 grub_device_t dev = NULL;
42 grub_fs_t fs = NULL;

43 char * grub_path = NULL;

45 grub_path = canonicalize_file_nane(path);
46 if (! grub_path)

47 grub_util _error("Can’t canonicalize path");

49 devices = grub_guess_root_devi ces(grub_path);
50 if (! devices)
51 grub_util _error("Can’t find device");

53 drive = grub_util_get_grub_dev(devices[0]);
54 if (! drive)

55 grub_util _error("Can't get drive");

57 dev = grub_devi ce_open(drive);

58 if (! dev)

59 grub_util _error("Can’t open device");

61 fs = grub_fs_probe(dev);

new grub/util/grub-solarislst2cfg.c

62 if (! fs)
63 grub_util _error("Probing fs error");

65 if (! fs->uuid)

66 grub_util _error("This fs doesn’t support uuid");

68 if (fs->uuid(dev, uuid) !'= GRUB_ERR NONE)
69 grub_util _error("%", grub_errnsg);

71 free(grub_path);
72 if (dev)

73 grub_devi ce_cl ose(dev);

75 return;

76 }

78 struct commands con{] = {

79 {"title", "entry_name"},

80 {"findroot", "pool"},

81 {"bootfs", "data_set"},

82 {"kernel $", "kernel _path"},
83 {" modul e$", "nodul e"},

84 {"default", "default_entry"},
85 {"tineout", "tineout"},

86 {"serial", "serial"},

87 {"terminal", "termnal"},

88 {0, 0},

89 };

91 int

92 get _command_i d(char * command)
93 {

94 int i = 0;

95 for (; confi].lst; ++i)

96 if (!'strcmp(confi].lst, command))
97 return i;

98 return -1;

99 }
101 char *
102 retrive_value(char * val)
103 {

104 char * str;
105 int quote flag = 0;;

107 while ((*val ==" ") || (*val =="\t"))
108 ++val ;

110 if (*val ==""") {

111 ++val ;

112 ++quot e_f | ag;

113}

114

115 str = val;

116

117 for (;;) {

118 if (quote_flag) {

119 if (*val ==""")

120 br eak;

121 if (*val == "'\0")

122 return NULL;

123 } else {

124 if ((*val ==" ") || (*val =="\t") || (*val
125 br eak;

126 }

127 ++val ;

"\0"))

new grub/util/grub-solarislst2cfg.c

128 }

129 *val ='\0";
131 return str;
132 }

134 int

135 parse_nenul st (FILE * in_file, FILE * out_file)

136 {

137 char |ine[BUFFER_SI ZE] ;
138 char * conmand;

139 char * val ue;

140 char * |abel = NULL;

141 char boot f s[BUFFER_SI ZE] ;
142 char pool [BUFFER_SI ZE] ;
143 char * uuid;

144 char * c;

145 int com.id;

147 for (;;) {

148 command = fgets(line, BUFFER SIZE, in_file);
149 if (! command)

150 return O;

152 ¢ = command + strlen(comand) - 1;

153 if ((*¢c!'=’'\n") & (fgets(line, BUFFER SIZE, in_file)))
154 return 1;

156 f ((*command == "#) || (*command == " '’
157 || (*command == "\t’') || (*command == '"\n"))
158 cont i nue;

160 if (c == ’\n)

161 "\0

162 valuezstrchr(llne B

163 if (! value)

164 conti nue;

166 *val ue++ = '\ 0" ;

167

168 comid = get_command_i d(command) ;

169 if (comid < 0)

170 conti nue;

172 switch (comid) {

173 case O:

174 fprintf(out_file,"\n%=%\n", con{com.id].cfg, value);
175 br eak;

176 case 1:

177 | abel = strdup(strchr(val ue, ') +1);
178 c = strchr(label, ’

179 if (c)

180 *c = 0;

181 conti nue;

182 case 2:

183 c = strchr(value, '/");

184 if (c!= NULL) {

185 strcpy(bootfs, c);

186 *¢ ='\0

187 strcpy(pool + 1, value);

188 *pool " =

189 uuid = NULL

190 get _uui d_by_pat h(pool, &uuid);

191 if (! uuid)

192 return 1;

193

new grub/util/grub-solarislst2cfg.c

194 fprintf(out_file,"pool _uuid=%\n", uuid);
195

196 }

197 *¢ ="/,

198 fprintf(out_file, "data_set=%\n", val ue);
199 if (label) {

200 free(l abel);

201 | abel = NULL;

202 }

203 br eak;

204 case 3:

205 case 4:

206 if (label) {

207 fprintf(out_file,"pool_|abel =%\ n", |abel);
208 free(l abel);

209 | abel = NULL;

210 }

211 i f (comld == 3)

212 c = strchr (value, ' ");

213 if (c)

214 *¢ ='\0;

215 if (! value)

216 return 1;

217

218 fprintf(out_file, "%=%\n", confcom.id].cfg, value);
220 if ((comid == 3) & (c)) {

221 char * tnp;

222 value = ¢ + 1;

223 tnmp = strstr(val ue, "ZFS-BOOTFS");

224 if (tnp)

225 *(tnp + 3) ="' ';

226 fprintf(out_file, " ker nel _options=%\n", value);
227 }

229 br eak;

230 defaul t:

231 fprintf(out_file, "%=%\n", confcom.id].cfg, value);
232 br eak;

233 }

234

235 return O;

236 }

238 int

239 main(int argc, char ** argv)

240 {

241 FILE * Ist_file;

242 FILE * cfg_file;

243 int err =0;

245 if (arge !'=3) {

246 printf("grub-solarislst2cfg Ist_file cfg_file\n");
247 return 1;

248 }

250 Ist_file = fopen(argv[1], "r");

251 if (! Ist_file)

252 return 1,

254 cfg_file = fopen(argv[2], "W');

255 if (! cfg_file

256 fclose(lst_file)

257 return 1;
258 }

new grub/util/grub-solarislst2cfg.c

260 grub_util_init_nls();
261 grub_util _bi osdi sk_i ni t (DEFAULT_DEVI CE_MAP) ;
262 grub_init_all();

263
264 err = parse_nenulst(lst_file, cfg_file);

266 grub_fini_all();

268 fclose(lst_file);
269 fclose(cfg_file);

271 if (err)

272 renmove(argv[2]);
273 return err;

274 }

275 #endif /* | codereview */

new grub/util/grub.d/10_illunos.in

R R R R

1774 Fri Aug 31 05:08:58 2012
new grub/util/grub.d/10_illunos.in
fixes

R R R R R

__unchanged_portion_onitted_

53 subrmenu ' Il lunps-entries’
54 illumos_entries /@boot/illunps.cfg
55

56 #endif /* | codereview */
57 EOF

new gr ubadni error.c 1 new gr ubadni error.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 {
1441 Fri Aug 31 05:08:59 2012 63 DEBUG = get env(" DEBUG') ;

new grubadm error.c 64 }
nmenuadm >gr ubadm ba_pat h- >npdul e, various changes, starting adding serial term 65 #endif /* | codereview */
LEEE R R R R RS EEEEEE R R EE SRR EEEEEEEEEEEEEEEEEREEREREEEEEEEESE]

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER i n each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

15 * |f applicable, add the followi ng below this CODL HEADER, wth the

16 * fields enclosed by brackets "[]" replaced with your own identifying

17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright 2012, Daniil Lunev. All rights reserved.

23 */

24 #include <stdarg. h>
25 #include <stdio. h>
26 #include <stdlib. h>
27 #include "grubadm h"
28 #include "error.h"

30 char * DEBUG

32 void

33 debug_print (const char * fnt, ...)
34 {

35 va_list args;

36 if (DEBUG {

37 va_start (args, fnt);
38 viprintf (stderr, fnt, args);
39 va_end (args);

40 }

41 }

43 void

44 print_systemerror ()

45

46 perror (APP_NAME) ;

47 }

49 void

50 print_error (const char * fnt, ...)
51

52 va_list args;

53 fprintf (stderr, "%: ", APP_NAME);
54 va_start (args, fnt);

55 viprintf (stderr, fnt, args);
56 va_end (args);

57 fprintf (stderr, "\n");

58 }

60 void

61 check_debug ()

new grubadm error.h

R R R R

1039 Fri Aug 31 05:08:59 2012
new grubadm error.h

nmenuadm >gr ubadm ba_pat h- >npdul e, various changes, starting adding serial term

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright 2012, Daniil Lunev. All rights reserved.

23 */

24 extern char * DEBUG

26 void

27 debug_print (const char * fnt, 2

29 void

30 print_systemerror ();

32 void

33 print_error (const char * fnt, L)

35 void

36 check_debug ();

#endif /* | codereview */

new gr ubadni gr ubadm 1m 1

R R R R

6974 Fri

Aug 31 05:09:00 2012

new gr ubadni gr ubadm 1m

l'icense + man
IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]

"\" te
.\" Copyright 2012, Daniil Lunev. Al rights reserved.
. TH GRUBADM 1M "July 25, 2012"
. SH NAME
grubadm \- GRUB2 ||| unps boot nenu manager
. SH SYNOPSI S
.LP

nf
\ f Bgr ubadm fR [\fB--clone\fR [\fB--new fR] [\fB——deIe \fR] [\fB--1ist\fR]

\fB\--hel pfR] [\fB--all\fR] [\fB--enabl e-hyper\fR] [\fB--disable-hyper\fR]
\fB--get-name\fR] [\fB--get-uuid\fR] [\fB--get-pool\fR][\fB--get-dataset\fR]
\fBget-kernel\fR] [\fB--get-opts\fR] [\fB--get-nodules\fR] [\fB--get-default\fR
\fB--get-timeout\fR] [\fB--get-termnal\fR] [\fB--get-serial\fR] [\fB--get-all\
\fB--defaul t\fR] [\fB--set-name\fR \flname\fR] [\fB--set-uuid\fR \fluuid\fR]
\fB--set-pool\fR \flpool\fR] [\fB--set-dataset\fR \fldataset\fR]
\fB--set-kernel\fR \flkernel\fR] [\fB--set-opts\fR \floptions\fR]
\fB--set-modul e\fR \flnodul e\fR] [\fB--set-default\fR \fldefault entry nunder\f
\fB--set-timeout\fR\fltinmeout\fR] [\fB--set-terminal\fR\flterm nal s\fR]
\fB--set-serial\fR\flserial\fR] [\fB--name\fR \flnane\fR] [\fB--uuid\fR \fluu
\fB--pool\fR \flpool\fR] [\fB--dataset\fR \fldataset\fR] [\fB--kernel\fR \flke
\fB--nodul e\fR \fl nodul e\fR] [\fB--nunber\fR \flnunber\fR]

\fB--alt-root\fR \flalt-root\fR] [\fB--clear\fR]

Lfi

. SH DESCRI PTI ON

.sp

LP

The command \fBgrubadm fR is used to nanipulate GRUB2 Il lunmps entries and GRUB2
booting paraneters. It nmodify only \fBillunmps.cfg\fR and don’t influence on entr
that placed in different locations. If you want to see illunps entries in

the GRUB2 boot nenu, be sure that \fBgrub.cfg\fR contain line "illunbps_entries
/@boot/lllunDs cfg".

. SH OPTI ONS

LP

The fol | ow ng options are supported:

.sp

.ne 2

. ha
\fB\fB--1ist\fRfR
.ad

.sp .6

. RS 4n

Li st nanmes of all
. RE

entries and gl obal paraneters val ues

.sp
.ne 2

.na

\fB\fB--delete\fRfR

.ad

.sp .6

. RS 4n

Del ete entry (don’t stack with --clone,
- -enabl e- hyper, --disabl e-hyper)

. RE

--new, --get-*, --set-

.sp
.ne 2

. na
\fB\fB--newAf R fR
.ad

new gr ubadni gr ubadm 1m

62
63
64

.sp .6
. RS 4n
Add new entry (don't stack with --clone,

65 . RE

.sp
.ne 2

.na
\fB\fB--defaul t\fR fR
.ad

.sp .6

. RS 4n

Fill entry with default val ues
. RE

.sp

.ne 2

.ha
\fB\fB--clone\fRfR

.ad

.sp .6

. RS 4n

Clone existing entry (don’t stack with --delete,
.RE

.sp
.ne 2

. na
\fB\fB--clear\fRfR
.ad

.sp .6
.RS 4n

Delete all entries
.RE

.sp
ne 2

\fB\fB——heI p\fRfR
ad

sp .6

RS 4n
Show usage
.RE

.sp
.ne 2

. na
\fB\fB--alI\fRfR
ad

:sp .6
.RS 4n

Apply action to all appropriate entries

115 . RE

117
118

.sp
.ne 2

119 .na

120
121
122
123
124
125

\fB\fB--nunmber\fRfR \flnumber\fR
.ad

.sp .6

. RS 4n

Get entry by nunber.
default entry will be getted.

126 . RE

--del ete,

- - new,

--all)

—-all)

If an unappropriate val ue are passed,

new gr ubadni gr ubadm 1m

128
129

130 .

131
132
133
134
135
136

138
139
140
141
142
143
144
145
146

148
149
150
151
152
153
154
155
156

158
159
160
161
162
163
164
165
166

168
169

170 .

171
172
173
174
175
176

178
179
180
181
182
183
184
185
186

188
189

190 .

191
192
193

.sp
.ne 2

na
\fg\fB--nama\fR\fR \flnane\fR
. al

.sp .6

. RS 4n

Find entry by name
.RE

.sp
.ne 2

.na
\fB\fB--uui d\fRfR \fluuid\fR
.ad

.sSp .6

.RS 4n

Find entry by pool uuid

.RE

.sp
.ne 2

.ha
\fB\fB--pool \fRfR \flpool\fR
.ad

.sp .6

.RS 4n

Find entry by pool nane
. RE

.sp
.ne 2

.na
\fB\fB--dataset\fRfR \fldataset\fR
.ad

.sp .6

. RS 4n

Find entry by dataset

. RE

.sp
.ne 2

na
\fB\fB--kernel \fRfR \fl kernel\fR
.ad

.sp .6

. RS 4n

Find entry by kernel
.RE

.sp
.ne 2

.na

\fB\fB--nodul e\ fRfR \fInodul e\fR
.ad

.sp .6

. RS 4n

Find entry by nodul e

.RE

.sp
.ne 2

na
\fB\fB--get-nane\fR fR
.ad

.sp .6

new gr ubadni gr ubadm 1m

194
195

. RS 4n
Get entry name

196 . RE

198
199

200 .

201
202
203
204
205
206

208
209
210
211
212
213
214
215
216

218
219
220
221
222
223
224
225
226

228
229
230
231
232
233
234
235
236

238
239

240 .

241
242
243
244
245
246

248
249

250 .

251
252
253
254
255

.sp
.ne 2

na
\fB\fB--get-pool\fRfR
. ad

.sp .6

. RS 4n

Get entry pool nane
. RE

.sp
.ne 2

.na
\fB\fB--get-uuid\fRfR
.ad

.Sp .6

.RS 4n

Get entry pool uuid
.RE

.sp
.ne 2

.na
\fB\fB--get-dataset\fRfR
.ad

.sp .6

. RS 4n

Get entry dataset
.RE

.sp
.ne 2

.na
\fB\fB--get-kernel \fRfR
ad

.sp .6

. RS 4n

Get entry kernel line
. RE

.sp
.ne 2

na
\fB\fB--get-opts\fRfR
.ad

.sp .6

. RS 4n

Get entry kernele opts
.RE

.sp
.ne 2

na
\fB\fB--get-nodul es\fRfR
.ad

.sp .6

. RS 4n

Get entry nodul es

256 . RE

258
259

.sp
.ne 2

new gr ubadni gr ubadm 1m

260
261
262
263
264
265
266

268
269

270 .

271
272
273
274
275
276

278
279
280
281
282
283
284
285
286

288
289

290 .

291
292
293
294
295

.ha
\fB\fB--get-defaul t\fRfR
.ad

.sp .6

.RS 4n

Get default entry nunber
.RE

.sp
.ne 2

na
\fB\fB--get-tineout\fRfR
.ad

.sp .6

. RS 4n

Get timeout
. RE

.sp
.ne 2

.na
\fB\fB--get-serial\fRfR

.ad

.Sp .6

.RS 4n

Get serial port configureation info
. RE

.sp
.ne 2

na

\fB\fB--get-termnal \fRfR
.ad

.sp .6

. RS 4n
Get term nal

296 . RE

298
299
300
301

302 .

303
304
305
306

308
309

310 .

311
312
313
314
315
316

318
319

320 .

321
322
323
324
325

.sp
.ne 2

.na
\fB\fB--get-alI\fRfR
ad

.sp .6

. RS 4n

Get all information about appropriate entries
. RE

.sp
.ne 2

na
\fB\fB--set-nane\fRfR \fl name\ f R
.ad

.sp .6

.RS 4n

Set entry nane
.RE

.sp
.ne 2

na
\fB\fB--set-pool\fRfR \flpool\fR
.ad

.sp .6

. RS 4n

Set entry pool nane

new gr ubadni gr ubadm 1m

326

328
329
330
331
332
333
334
335
336

338
339
340
341
342
343
344
345
346

348
349
350
351
352
353
354
355
356

358
359

360 .

361
362
363
364
365
366

368
369
370
371
372
373
374
375
376
377
378

380
381
382
383
384
385
386
387
388

390
391

. RE

.sp
.ne 2

.na
\fB\fB--set-uuid\fRfR \fluuid\fR
.ad

.sp .6

.RS 4n

Set entry pool uuid

.RE

.sp
.ne 2

.na
\fB\fB--set-dataset\fRfR \fldataset\fR
.ad

.sp .6

. RS 4n

Set entry dataset
. RE

.sp
.ne 2

.na
\fB\fB--set-kernel \fRfR \flkernel\fR
.ad

.Sp .6

.RS 4n

Set entry kernel line

. RE

.sp
.ne 2

na
\fB\fB--set-opts\fRfR \floptions\fR
.ad

.sSp .6

. RS 4n

Set entry kernele opts
.RE

.sp
.ne 2

.na

\fg\fB——set—nDduIe\fR\fR\fInDduIe\fR

. al

.sp .6

. RS 4n

Set entry nodule (all earlier specified modules will
if you want to specify multiple npdul es, use several
in a single command)

. RE

.sp
.ne 2

.na
\fB\fB--set-defaul t\fRfR \fldefault entry nunber\fR
.ad

.sp .6

. RS 4n

Set default entry nunber

.RE

.sp
.ne 2

be del et ed,
--set-nodul e

new gr ubadni gr ubadm 1m

392
393
394
395
396
397

. nha
\fB\fB--set-tinmeout\fRfR \fltimeout\fR
.ad

.sp .6

.RS 4n

Set timeout

398 . RE

400
401

402 .

403
404
405
406
407
408

410
411
412
413
414
415
416
417

.sp
.ne 2

na
\fB\fB--set-serial \fRfR \flserial _port_parans\fR
.ad

.sp .6

. RS 4n

Set serial port configureation info
.RE

.sp
.ne 2

. na
\fB\fB--set-termnal \fRfR \flterm nal\fR
.ad

.Sp .6

.RS 4n

Set termnal

418 . RE

420
421

422 .

423
424
425
426
427
428

430
431
432
433
434
435
436
437

.sp
.ne 2

na
\ f B\ f B- - enabl e- hyper\f R f R
.ad

.sp .6

. RS 4n

Convert entry to boot with xen
.RE

.sp
.ne 2

.na
\fB\fB--di sabl e-hyper\fR fR

.ad

.sp .6

. RS 4n

Convert entry from xen-node to normal boot nod

438 . RE

440
441
442
443
444
445

447
448
449
450
451
452
453

455
456
457

. SH EXAMPLES
.LP
\f BExanpl e 1\fR

.sp
.LP
List all entries

.sp
Lin +2

. nf

exanpl e% \ f Bgr ubadm --1ist\fR
i

.in -2

.sp

.LP
\ f BExanpl e 2\fR
.sp

new gr ubadni gr ubadm 1m 8

458
459

461
462
463
464

465 . f

466
467

469
470
471
472
473

475
476
477
478
479
480
481

483
484
485
486
487

489
490
491
492

493 .

494
495

497
498
499
500
501

503
504
505
506
507
508
509

511
512
513
514
515

517
518
519
520
521
522
523

.LP
Add new entry with default paranters

.sp

.in +2

. nf

exanpl e% \ f Bgr ubadm - -new --default --set-name test\fR
i

.in -2

.sp

. LP
\ f BExanpl e 3\fR
.sp
.LP

Delete all entries with specified dataset

.sp
.in +2

. nf
exanpl e% \ f Bgr ubadm - -del ete --all --dataset "rpool/ROOT/test_pool "\fR
i

.in -2
.sp

.LP
\ f BExanpl e 4\fR

.sp
.LP
Clone entry and set diffrent kernel options

.sp

.in +2

. nf

exanpl e% \ f Bgr ubadm - -cl one --nane test --set-nanme new test --set-opt "-s"\fR
fi

.in -2

.sp

.LP
\ f BExanpl e 5\fR

.sp
.LP
Change kernel and convert entry to hypervisor

.Sp
Lin +2

. nf
exanpl e% \ f Bgr ubadm - - name test --set-kernel "/platforni86pc/kernel/unix" --ena
i

.in -2
.sp

.LP
\ f BExanpl e 6\fR

.sp
.LP

Set up serial console

.sp

Lin +2

. nf

exanpl e% \ f Bgr ubadm - -set-serial "--unit=0 --speed=9600" --set-terminal "serial"
i

.in -2
.sp

new gr ubadni gr ubadm 1m

525 .LP

526 \fBExanple 7\fR

527 .sp

528 .LP

529 Get default entry nunber

531 .sp

532 .in +2

533 . nf

534 exanpl e% \ f Bgr ubadm - - get -defaul t\ fR
535 . fi

536 .in -2

537 .sp

539 . SH FI LES

540 .sp

541 .ne 2

542 .na

543 /pool /boot/illunos.cfg
544 . ad

545 .sp .6

546 . RS 4n

547 Bootnenu file.

548 . RE

550 . SH NOTES

551 grubadmis repl acenent of bootadm boot nenu functionality for grub2. You can't
552 use bootadm nenu functionality on with GRUB2 as well as you can't use grubadm
553 wi th GRUB-I egacy.

555 #endif /* | codereview */

new gr ubadn gr ubadm c

R R R R

13773 Fri Aug 31 05:09: 00 2012
new gr ubadn gr ubadm c
rename

R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END

*/
*

21/

22 * Copyright 2012, Daniil Lunev. All rights reserved.
*
/

24 #include <stdio. h>
25 #include <stdlib.h>
26 #include <string. h>
27 #include <unistd. h>
28 #include <getopt.h>
29 #include <assert.h>
30 #include "grubadm h"
31 #include "error.h"
32 #include "nmenu. h"

34 menu_list get_arg = { 0 };
35 menu_list find_arg = { 0 };
36 menu_list set_arg = { 0 };
int get_tinmeout = 0;

| = 0
38 int get_default = O;
39 int get_serial = 0;
40 int get_termnal = O;
41 int Ist_flag = O;
42 int new flag = O;
43 int all_flag = O;
44 int del _flag = O;
45 int fnd_flag = O;
46 int hlp_flag = 0O;
47 int get_flag = O;
48 int set_flag = O;
49 int cln_flag = O;
50 int clr_flag = O;
51 int enh_flag = O;
52 int dih_flag = O;
53 int numflag = O;
54 int nunber;

55 char * set_tinmeout
56 char * set_default
57 char * set_serial = NULL;

58 char * set_term nal = NULL;
59 char * alt_root = NULL;

NULL;
NULL;

61 static char opt_string[] = "landh?R";

new gr ubadn gr ubadm c

62 static const struct option options[] = {

63 "list", no_argunent, NULL, 'I" },

64 "all", no_argunent, NULL, ’'a’ },

65 "new', no_argunment, NULL, 'n’ },

66 "del ete", no_argunent, NULL, 'd’ },

67 "hel p", no_argunent, NULL, 'h’ },

68 "nanme", required_argunent, NULL, 4 },

69 "pool ", required_argument, NULL, 5 },

70 "uui d", required_argunment, NULL, 6 },

71 "dataset", required_argunent, NULL, 7 },

72 "kernel ", required_argunent, NULL, 8 },

73 "modul e", required_argunent, NULL, 9 },

74 "set-nanme", required_argunment, NULL, 10 },
75 "set-pool", required_argunent, NULL, 11 },

76 "set-uuid", required_argunent, NULL, 12 },

77 "set-dataset", required_argunment, NULL, 13 },
78 "set-kernel", required_argunment, NULL, 14 },
79 "set-opts", required_argunent, NULL, 15 },
80 "set-nodul e", required_argunent, NULL, 16 },
81 "set-default", required_argument, NULL, 17 },
82 "set-timeout”, required_argunment, NULL, 18 },
83 "get-nane", no_argunent, NULL, 19 },

84 "get-pool", no_argunent, NULL, 20 },

85 "get-uuid", no_argunent, NULL, 21 },

86 "get-dataset”, no_argunent, NULL, 22},

87 "get-kernel", no_argunment, NULL, 23},

88 "get-opts", no_argunent, NULL, 24 },

89 "get-nodul es”, no_argunent, NULL, 25},

90 "get-default", no_argunent, NULL, 26 },

91 "get-tinmeout”, no_argunent, NULL, 27 },

92 "get-all", no_argunent, NULL, 28 },

93 "alt-root", required_argunent, NULL, 'R },
94 "default", no_argunent, NULL, 30 },

95 "set-serial", required_argunment, NULL, 31 },
96 "set-terminal", required_argunent, NULL, 32 },
97 "get-serial", no_argunent, NULL, 33 },

98 "get-termnal", no_argunent, NULL, 34 },

99 “clone", no_argunent, NULL, 35},

100 "enabl e- hyper", no_argunent, NULL, 36 },

101 "di sabl e- hyper", no_argunent, NULL, 37 },
102 "clear", no_argunent, NULL, 38 },

103 "nunber”, required_argunent, NULL, 39 },

104 NULL, no_argunent, NULL, O },

105 };

107 static void

108 usage ()

109 {

110 printf (

111 "Usage: \ n"

112 "--list list all entries\n"

113 "--all apply actions to all appropriate entries\n"
114 "--new create new entry\n"

115 "--delete delete entry\n"

116 "--clone clone existing entry\n"

117 "--default set default entry properties\n"
118 "--hel p show this nessage\n"

119 "--nunber <opt> find entry by number (-1 = default entry)\n"
120 "--name <opt> find entry by nanme\n"
121 "--pool <opt> by pool nane\n"

122 "--uuid <opt> by uuid\n"

123 "--dataset <opt> by dataset\n"

124 "--kernel <opt> by kernel\n"

125 "--nodul e <opt> by nodul e\ n"

126 "--set-name <opt> set new name to entry\n"
127 "--set-pool <opt>\n"

new gr ubadn gr ubadm c 3 new gr ubadn gr ubadm c 4
128 "--set-uuid <opt>\n" 194 debug_print ("%\n", fnc);
129 "--set-kernel <opt>\n"
130 "--set-opts <opt>\n" 196 while ((opt = getopt_long (argc, argv, opt_string, options, & ndex)) !=
131 "--set-nodul e <opt>\n" 197 Swit ch (op) {
132 "--set-default <opt>\n" 198 case 'a’
133 "--set-timeout <opt>\n" 199 ++al | _flag;
134 "--get-nane get entry name\n" 200 br eak;
135 "--get-pool\n" 201 case 'd:
136 "--get-uuid\n" 202 ++del _fl ag;
137 "--get-kernel\n" 203 break;
138 "--get-opts\n" 204 case '|’:
139 "--get-nodul e\ n" 205 ++ st _fl ag;
140 "--get-defaul t\n" 206 br eak;
141 "--get-timeout\n" 207 case 'n’:
142 "--get-all retrieve all parans of entry\n" 208 ++new_f | ag;
143 "--alt-root <opt> alternate root directory\n" 209 br eak;
144 "--default set default fields value to entry\n" 210 case 'h':
145 "--set-serial set parans of serial port\n" 211 case ' ?':
146 "--set-termnal set default term nal\n" 212 ++hl p_f 1 ag;
147 "--get-serial get parans of serial port" 213 br eak;
148 "--get-termnal get default term nal\n" 214 case 4:
149 "--enabl e-hyper convert entry to boot with xen\n" 215 ++f nd_f | ag;
150 "--di sabl e-hyper convert entry to nornal boot\n" 216 strcpy (find_arg.entry.entry_nane, optarg);
151 "--clear delete all entries\n" 217 br eak;
152) 218 case 5:
153 } 219 ++f nd_f | ag;
220 strcpy (find_arg.entry. pool _| abel, optarg);
155 static char * 221 br eak;
156 get _pool (const char * file) 222 case 6:
157 { 223 ++f nd_f | ag;
158 char buf [MAX_STRI NG_SI ZE] ; 224 strcpy (find_arg.entry. pool _uuid, optarg);
159 char * tnp; 225 break;
160 FILE * pi pe; 226 case 7:
227 ++f nd_f | ag;
162 const char fnc[] = "get_pool"; 228 strcpy (find_arg.entry. dataset, optarg);
229 break;
164 debug_print ("%\narg: %\n", fnc, file); 230 case 8:
231 ++f nd_f | ag;
166 strcpy (buf, "/usr/bin/df -h "); 232 strcpy (find_arg.entry. kernel, optarg);
167 strcat (buf, file); 233 break;
168 234 case 9:
169 pi pe = popen (buf, "r"); 235 ++f nd_f | ag;
170 1f (! pipe) 236 find_arg.entry. nodul es[(find_arg. entry. nodul es_anount) ++
171 return NULL; 237 break;
238 case 10:
173 et (buf, MAX_STRI NG SI ZE, pi pe); 239 ++set _fl ag;
174 fo(! fgets (buf, MAX_STRING SI ZE, pipe)) { 240 strcpy (set_arg.entry.entry_nanme, optarg);
175 pcl ose (p| pe); 241 br eak;
176 return NULL; 242 case 11:
177 } 243 ++set _fl ag;
244 strcpy (set_arg.entry. pool _| abel, optarg);
179 pcl ose (pipe); 245 br eak;
180 tnp = strchr (buf VAR 246 case 12:
181 *tnmp = 0O; 247 ++set _fl ag;
182 tnmp = st rdup (buf); 248 strcpy (set_arg.entry.pool _uuid, optarg);
183 return tnp; 249 break;
184 } 250 case 13:
251 ++set _fl ag;
186 static int 252 strcpy (set_arg.entry.dataset, optarg);
187 parse_args (int argc, char ** argv) 253 br eak;
188 { 254 case 14:
189 int opt = 0; 255 ++set _fl ag;
190 int index; 256 strcpy (set_arg.entry. kernel, optarg);
191 257 break;
192 const char fnc[] = "parse_args"; 258 case 15:
259 ++set _fl ag;

new gr ubadn gr ubadm c

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

30:

31:

32:

strcpy (set_arg.entry. kernel _opts, optarg);
7 ?

break;

++set _fl ag;
set_arg.entry.
break;

set _default =
br eak;

set _timeout =
br eak;

++get _fl ag;
get _arg.entry.
br eak;

++get _fl ag;
get_arg.entry.
br eak;

++get _fl ag;
get_arg.entry.
br eak;

++get _fl ag;
get_arg.entry.
br eak;

++get _fl ag;
get _arg.entry.
break;

++get _fl ag;
get _arg.entry.
break;

++get _fl ag;
get _arg.entry.
break;

++get _defaul t;
br eak;

++get _ti meout ;
br eak;

++get _fl ag;
nenset
br eak;

al t_root =
br eak;

++set _fl ag;

strcpy (set_arg.entry.entry_nane,
strcpy (set_arg.entry. pool

(&(get _

nodul es[(set_arg. entry. nodul es_anount) ++]

strdup (optarg);

strdup (optarg);

entry_nanme[0] = 1;

pool _l abel [0] = 1;

pool _uuid[0] = 1;

dataset[0] = 1;

kernel [0] = 1;

kernel _opts[0] = 1;

nmodul es = (char**) 1;

arg.entry), OxFF, sizeof (nenu_entry));

strdup (optarg);

"Menuadm defaul t");

| abel, get_pool ("/"));

strcpy (set_arg.entry.kernel, "/platfornii86pc/kernel/$l

strcpy (set_arg.entry. kernel _opts,

set_arg.entry.
set_arg.entry.
br eak;

set_serial =
break;

"-B $ZFS_BOOTFS") ;
nodul es[0] = strdup ("/platforni86pc/$l SA
nmodul es_anount = 1;

strdup (optarg);

new gr ubadn gr ubadm c
326 set _termnal = strdup (optarg);
327 break;
328 case 33:
329 ++get _serial ;
330 br eak;
331 case 34:
332 ++get _terminal ;
333 br eak;
334 case 35:
335 ++cl n_f 1 ag;
336 break;
337 case 36:
338 ++enh_f | ag;
339 break;
340 case 37:
341 ++di h_f 1 ag;
342 br eak;
343 case 38:
344 ++cl r_fl ag;
345 br eak;
346 case 39:
347 ++num f | ag;
348 sscanf (optarg, "%l", &nunber);
349 br eak;
350 defaul t:
351 return O;
352 }
358 }
354 return 1;
355 }
357 static int
358 check_flags ()
359 {
360 const char fnc[] = "check_flags";
362 debug_print ("%\n", fnc);
364 if (new_flag)
365 if (del _flag || all_flag || cln_flag || fnd_flag || numfl ag)
366 return O;
368 if (del_flag)
369 if ((! fnd_flag & ! numflag) || set_flag || get_flag || cln_fl
370 return O;
372 if (cln_flag)
373 if (! fnd_flag || all_flag)
374 return O;
376 if (fnd_flag)
377 if (numflag)
378 return O;
379 return 1;
380 }
382 static void
383 apply_set (nenu_list * entry, nmenu_list * set)
384 {
385 unsigned int i = 0;
387 const char fnc[] = "apply_set";
389 debug_print ("%\n", fnc);
391 if (set->entry.entry_nane[0])

new gr ubadn gr ubadm c

392

394
395

397
398

400
401

403
404

406
407

409
410
411

413
414

416
417
418

420
421

}

strcpy (entry->entry.entry_name,

if (set->entry. pool _|abel[0])
strcpy (entry->entry. pool _| abel,

if (set->entry.pool _uuid[0])
strcpy (entry->entry. pool _uuid,

if (set->entry.dataset[0])

strcpy (entry->entry. dataset, set->entry.dataset);
if (set->entry.kernel[0])

strcpy (entry->entry. kernel, set->entry.kernel);
if (set->entry.kernel _opts[0])

strcpy (entry->entry. kernel _opts, set->entry. kernel
if (set->entry.nodul es_anmount) {

for (i =0; i < entry->entry. nodul es_anount; ++i)

free (entry->entry.nodules[i]);

for (i = 0; i < set->entry.nopdul es_anount; ++i)

entry->entry. nodul es[i] = strdup (set->entry. modules[i])

set->entry.entry_name);

set->entry. pool _| abel);

set->entry. pool _uuid);

_opts);

entry->entry. nodul es_anount = set->entry. nodul es_anount;

static void

out put

422 {

423
425
427

429
430

432
433

435
436

438
439

441
442

444
445

447
448
449

451
452

454
455

}

int

main (int argc,

456 {

457

_entry (menu_list * entry, nenu_list * get)

unsigned int i = 0;
const char fnc[] = "output_entry";
debug_print ("%\n", fnc);

if (get->entry.entry_name[0])
printf("%\n", entry->entry.entry_nane);

if (get->entry. pool _|abel [0])
printf("9%s\n", entry->entry.pool _| abel);

if (get->entry.pool _uuid[0])
printf("u%s\n", entry->entry.pool _uuid);

if (get->entry.dataset[0])
printf("%\n", entry->entry. dataset);

if (get->entry.kernel[0])
printf("%\n", entry->entry. kernel);

if (get->entry. kernel _opts[0])
printf("%\n", entry->entry. kernel _opts);

if (get->entry. rmdul es)
for (i =0; i < entry->entry. nodul es_anount; ++i)
pr|ntf("°/s\n" entry->entry. nodul es[l]);

primtf(- \n");

char ** argv)

char * pool;

new gr ubadn gr ubadm c

458 char config[MAX_STRI NG_SI ZE] ;

459 char tnp_confi g MAX_STRI NG_SI ZE] ;

460 menu_list * menu;

461 menu_list * tnp;

462 menu_list * entry;

463 int entries_anount;

464 int d_num

466 check_debug ();

468 if (argc < 2)

469 ++ st _fl ag;

471 set_arg.entry. nodul es = (char **) calloc (MAX_MODULE_AMOUNT, sizeof (cha
472 find_arg.entry. modul es = (char **) calloc (MAX_MODULE_AMOUNT,
473 if (! parse_args (argc, argv))

474 return 1,

476 if (hlp_flag) {

477 usage ();

478 return O;

479 }

481 if (! check_flags ()) {

482 print_error ("wong option set, check \"man grubadm"");
483 return 1;

484 }

486 pool = get_pool (aI t_root ?: "/");

487 strcpy (config, "“/");

488 if (alt_root)

489 strcat (config, alt_root);

490 strcat (config, "/");

491 strcat (config, pool);

492 strcat (config, "/");

493 strcpy (tnp_config, config);

494 strcat (config, CONFIG PATH)

495 strcat (tnp_config, TMP_ CONFI G 5 PATH) ;

497 menu = parse_file (confl g, &entries_anount);
498 if (entries_amount == -1) {

499 return 1,

500 }

502 tmp = menu;

503 entry = NULL;

505 do {

506 if (clr_flag) {

507 menu = NULL;

508 br eak;

509 }

511 if (set_default) {

512 sscanf (set_default, "9%d", &J_num;
513 if (d_num < entries_anount)
514 strcpy (default_entry, set_default);
515 }

516

517 if (set_timeout)

518 strcpy (tinmeout, set_tineout);
520 if (set_serial)

521 strcpy (serial, set_serial);

523 if (set_termnal)

new gr ubadn gr ubadm c
524

526
527
528
529
530
531
532

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

551
552
553
554
555
556
5517

559
560
561
562
563
564
565
566

568
569
570
571
572
573
574
5145]
576
577
578

580
581

583
584
585

587
588
589

if (fnd

}

strcpy (terminal, set_termnal);

_flag) {
entry = find_entry (tnp, & ind_arg);
if (! entry) {
print_error (MSG_ERR_NO ENTRY);
) br eak;

if (numflag) {

if (cln_

if (set

if (cln

if (get

if (all_

el se

if ((number < 0) || (number >= entries_anmount)) {
if (! default entry[O])

} else {
sscanf (default_entry, "9% ", &nunber);
}
if (nunmber >= entries_anount)
number = 0;
entry = get_entry_by_nunber (nenu, nunber);
if (! entry) {
print_error (MSG ERR_NO ENTRY);
br eak;
}
flag) {
entry = clone_entry (entry);
if (! entry) {
print_error (MSG_ERR_NO ENTRY);
break;
}
_flag) {
if (entry)

appl y_set (entry, &set_arg);
else if (new_flag)

add_entry (&menu, &set_arg);
el se
return 1,

| ag)

f (! enable_hyper (entry)) {
print_error (MSG ERR HYPER);
br eak;

| ag)

f (! disable_hyper (entry)) {
print_error (MG ERR _HYPER);
br eak;

}
_flag)
add_entry (&menu, entry);
_flag)
if (entry)
output _entry (entry, &get_arg);
fI ag)

tnp = entry->next;

new gr ubadn gr ubadm c

590 tnp = NULL;

592 if (del_flag)

593 del ete_entry (&enu, entry);

594 } while (tnp);

596 if (get_default)

597 printf (" %% %s\n", cnd_|ist[CVMD_DEFAULT],
599 if (get_timeout)

600 printf ("%%%\n", cnd_list[CVD_TI MEOUT],
602 if (get_serial)

603 printf ("%%%\n", cnd_|ist[CVMD_SERI AL],
605 if (get_termnal)

606 printf (" %% Y%\ n", cnd_list[CVMD_TERM NAL],
608 if (Ist_flag) {

609 list_menu (nmenu);

610 }

612 wite_nmenu (config, tnp_config, nenu);

613 free_nenu (&enu);

614 return O;

615 }

616 #endif /* | codereview */

10

SEPARATOR, defaul t _en

SEPARATOR, timeout);

SEPARATOR, serial);

SEPARATOR, termnal)

new gr ubadnm gr ubadm h

R R R R

1402 Fri Aug 31 05:09: 00 2012
new gr ubadn gr ubadm h

renane

R R R R R

1/*

21/

=
[N

T N I I NN

—~

22 *
*/

CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright 2012, Daniil Lunev. Al rights reserved.

24 #define APP_NAME "grubadnt
25 #define CONFI G PATH "/boot/il |l unps.cfg"
26 #define TMP_CONFI G _PATH "/boot/ill unos. cfg.tnp"

28 #define HYPER_KERNEL "/boot/$I SADI R/ xen. gz"
29 #define HYPER KERNEL_OPTS "consol e=vga"

31 #define MAX_STRI NG SI ZE 1024
32 #define MAX_MODULE_AMOUNT 8

34 #define MSG ERR LONG LINE "Too |ong |ine"

35 #define MBG_ERR WRONG _SYNTAX "Syntax error"

36 #define MSG ERR _SAME_NAME "Duplicate entry definition”

37 #define MSG ERR NO ENTRY "Entry with defined paranmeters can not be found"
38 #define MSG_ERR HYPER "Hyper operation failed"

39 #endif /* | codereview */

new gr ubadni nenu. ¢

R R R R

13007 Fri Aug 31 05:09:01 2012
new gr ubadni nenu. ¢
nmenuadm >gr ubadm ba_pat h- >npdul e, various changes, starting adding serial term

R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2012, Daniil Lunev. All rights reserved.
23 */
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string. h>
27 #include "grubadm h"
28 #include "error.h"
29 #include "menu. h"
31 char default_entry[MAX_STRING SIZE] = { 0 };
32 char tinmeout[MAX_STRING SIZE] = { 0 };
33 char serial [MAX_STRING SIZE] = { 0 };
34 char terminal [MAX_STRING SIZE] = { 0 };
36 const char * cnd_list[] = {
37 "entry_nane",
38 "pool _| abel ",
39 "pool _uui d",
40 "data_set",
41 "kernel _pat h",
42 "kernel _options",
43 "nmodul e",
44 "defaul t_entry",
45 "timeout",
46 "serial",
47 “termnal ",
48 NULL
49 };
51 void
52 free_nmenu (nenu_list ** nenu)
53 {
54 unsigned int i;
55 menu_list * iter = *menu;
56 menu_list * tnp = *nenu;
58 const char fnc[] = "free_nmenu";
60 debug_print ("%\n", fnc);

new gr ubadni nenu. ¢ 2

118

120
121

123
124

126

}

while (iter)
if (iter->entry. nodul es_anount)
for (i =0; i <iter->entry.nodul es_anount; ++i)
free (iter->entry.nodul es[i]);
free (iter->entry.nodul es);

tnmp = iter;
iter = iter->next;
free (tm);

}
*menu = NULL;

static menu_list *))
new entry (nmenu_list ** menu, const char * entry_nane, const unsigned int num

}

nmenu_l i st * added_entry;
menu_list * iter;

const char fnc[] = "new entry";
debug_print ("%\nargs : % | %\n", fnc, entry_name, num;

added_entry = (nenu_list *) calloc (1, sizeof (menu_list));
if (! added_entry)

print_systemerror ();

return NULL;
}

nenset ((void *) added_entry, 0, sizeof (menu_list));
added_entry->entry_nunber = num
strcpy (added_entry->entry.entry_nane, entry_nane);
added_entry->entry. nodul es =

(char **) calloc (MAX_MODULE_AMOUNT, sizeof (char *));

if (! added_entry->entry. nodul es) {
free_nmenu (&added_entry);
print_systemerror ();
return NULL;

*menu = added_entry;

for (iter = *nmenu; iter->next; iter = iter->next)
if (! strcnp (iter->entry.entry_nane, entry_nane)) {
print_error ("% %", MSG ERR SAME_NAME, entry_n
free_nenu (&added_entry);
return NULL;

}

if (! strcnp (iter->entry.entry_nane, entry_nane)) {
print_error ("% %", MSG ERR SAME_NAME, entry_nane);
free_nenu (&added_entry);
return NULL;

Iter->next = added_entry;

}

return added_entry;

nmenu_|ist *
add_entry (menu_list ** nmenu, nenu_list * entry)
125 {

menu_list * iter;

new gr ubadni nenu. ¢

139

141
142
143
144
145
146

148

171

173
174

190

192
193

}

const char fnc[] = "add_entry";
debug_print ("%\n", fnc);

if (! entry)
return NULL;

if (! *nmenu) {
entry->entry_nunber = 0;
*menu = entry;
return entry,;

}

for (iter = * menu; iter->next; iter = iter->next)
if (! strcnp (iter->entry.entry_nane, entry->entry.entry_nane))
return NULL;

if (! strcnp (iter->entry.entry_name, entry->entry.entry_nane))
return NULL;

iter->next = entry;
entry->entry_nunber = iter->entry_nunber + 1;
return entry;

menu_list *
clone_entry (menu_list * entry)

}

unsigned int i;
char fnc[] = "clone_entry";
debug_print ("%\n", fnc);

if (! entry)
return NULL;
menu_list * clone = (menu_list *) calloc (1, sizeof (nmenu_list));
nmencpy ((void *) clone, (void *) entry, sizeof (menu_list));
cl one->next = NULL;
cl one->entry. nodul es = (char **) calloc (MAX_MODULE AMOUNT, sizeof (char
for (i =0; i < clone->entry. nodul es_anmount; ++i)
clone->entry. nodul es[i] = strdup (entry->entry. nodul es[i]);
return clone;

nmenu_|ist *
enabl e_hyper (menu_list * entry)

unsigned int i;
char kernel _nmod[MAX_STRI NG_SI ZE] ;

char fnc[] = "enabl e_hyper";
debug_print ("%\n", fnc);

if (! entry)
return NULL;

strcpy (kernel _nod, entry->entry. kernel);
strcat (kernel _nod, " ");

strcat (kernel _npd, entry->entry.kernel);
strcat (kernel _nod, " ");

strcat (kernel _npd, entry->entry.kernel _opts);

strcpy (entry->entry. kernel, HYPER KERNEL);
strcpy (entry->entry. kernel _opts, HYPER _KERNEL_OPTS);

new gr ubadni menu. ¢

194

195 for (i = entry->entry.nodul es_anmount; i > 0; --i)
196 entry->entry. nodul es[i] = entry->entry. modul es[i-1];
197 entry->entry. nodul es[0] = strdup (kernel _nod);
198 ++(entry->entry. nodul es_anount) ;

200 return entry;

201 }

203 menu_list *

204 di sabl e_hyper (menu_list * entry)

205 {

206 unsigned int i;

207 char * tnp;

209 char fnc[] = "disable_hyper";

211 debug_print ("%\n", fnc);

213 if (! entry)

214 return NULL;

216 tnp = strchr (entry->entry. nodul es[0], * ');

217 if (! tnp)

218 return NULL;

220 *tnp++ = '\0";

222 strcpy (entry->entry. kernel, entry->entry. nodul es[0]);
223

224 entry->entry. kernel _opts[0] = "'\0";

225 tnp = strchr(tnp, ' ');

226 if (tnmp && *(++tnp))

227 strcpy (entry->entry. kernel _opts, tnp);
228

229 free (entry->entry. nodul es[0]);

230 --(entry->entry. nodul es_anount);

232 for (i =0; i < entry->entry.nodul es_anmount; ++i)
233 entry->entry. modul es[i] = entry->entry.nodul es[i + 1];
235 return entry;

236 }

238 int

239 delete_entry (menu_list ** menu, nmenu_list * del)

240 {

241 menu_list * iter = *nmenu;

242 int d_num i_num

244 const char fnc[] = "delete_entry";

246 debug_print ("%\n", fnc);

248 if (! menu || ! del)

249 return O;

251 i _num = del - >entry_nunber;

253 if (iter == del)

254 *menu = (*nenu) - >next;

255 iter->next = NULL;

256 free_nmenu (&iter);

257 } else {

258 while (iter->next)

259 if (iter->next == del) {

new gr ubadni nenu. ¢

260
261
262
263
264
265
266
267

269

271
272
273
274

276
277

279

280
281

325

iter->next = del ->next;
del - >next = NULL;
free_nenu (&del);
br eak;
iter = iter->next;
}
}
sscanf (default_entry, "%", &_num;
if (i_num<= d_num {
d_ num=d_num? d_num- 1 : O;
sprintf (default_entry, "9%", d_num;
}
return O;
}
static menu_list *
add_param (nmenu_l i st ** nenu,
const cnd_id id,
const char * val ue,
unsi gned int * num
{
menu_list * iter;
char * tnp;
const char fnc[] = "add_parant;
debug_print ("%\narg: % | % | %\n", fnc, (unsigned int) id,

if (id == CVD_ENTRY_NAME)

return new entry (menu, value, (*num++);
if (! *menu)

print_error ("%, %", MSG ERR WRONG SYNTAX, "entry isn’
}
for (iter = * nmenu; iter->next; iter = iter->next)

switch (id) {

case CMD_POOL_LABEL:
strcpy (iter->entry. pool _| abel,
br eak;

case CMD_POCL_UUI D
strcpy (iter->entry. pool _uuid,
br eak;

case CVD_DATA SET:
strcpy (iter->entry. dataset,
br eak;

case CVD_KERNEL_PATH:
strcpy (iter->entry.kernel, value);
br eak;

case CMVD_KERNEL_OPTI ONS:
strcpy (iter->entry. kernel _opts, val ue);
br eak;

case CVD_BA PATH:
if (iter->entry.nodul es_anount >= MAX_MODULE_AMOUNT)

return NULL;
iter->entry. nodul es[iter->entry. nodul es_anount] =
(char *) malloc (MAX_STRI NG SI ZE);
iter->entry. nodul es[iter->entry. nodul es_anount])
return NULL;
strcpy (iter->entry.nodul es[iter->entry. nodul es_anount],

val ue) ;

val ue);

val ue) ;

if (!

val ue, *

t define

val ue);

new gr ubadnf menu. ¢ 6
326 ++(iter->entry. nodul es_anount);
327 br eak;
328 defaul t:
329 return NULL;
330
331 return iter;
332 }
334 void
335 list_menu (menu_list * nenu)
336 {
337 const char fnc[] = "list_nenu";
339 debug_print ("%\n", fnc);
341 if (*default_entry)
342 printf ("%%%\n", cnd_|ist[CVMD_DEFAULT], SEPARATOR, default_en
344 if (*timeout)
345 printf ("%%%\n", cnd_|ist[CVMD_TI MEQUT], SEPARATOR, tineout);
347 if (*serial)
348 printf ("%%%\n", cnd_|ist[CMD_SERI AL], SEPARATOR, serial);
350 if (*termnal)
351 printf ("%%%\n", cnd_|ist[CVMD_TERM NAL], SEPARATOR, term nal)
358 while (menu) {
354 printf("% : %\n", menu->entry_nunber, nenu->entry.entry_nane);
355 menu = nmenu- >next;
356 }
357 }
359 nenu_list *
360 find_entry (menu_list * menu, nenu_list * find)
361 {
362 unsigned int i = 0;
363 const char fnc[] = "find_entry";
365 debug_print ("%\n", fnc);
367 if (! menu || ! find)
368 return NULL;
370 while (menu) {
371 if (find->entry.entry_nane[0])
372 if (strcnp (menu->entry.entry_nane, find->entry.entry_na
373 goto out;
374 if (find->entry. pool _| abel [0])
375 if (strcnp (nmenu->entry. pool _| abel, find->entry.pool_|ab
376 goto out;
377 if (find->entry. pool _uuid[0])
378 if (strcnp (menu->entry. pool _uuid, find->entry.pool _uuid
379 goto out;
380 if (find->entry.dataset[0])
381 if (strcnp (menu->entry. dataset, find->entry. dataset))
382 goto out;
383 if (find->entry.kernel[0])
384 if (strcnp (menu->entry. kernel, find->entry.kernel))
385 goto out;
387 if (find->entry. nodul es_anmount) {
388 for (i = 0; i < menu->entry.nodul es_anount; ++i)
389 if (! strcnp (menu->entry. nodul es[i], find->entr
390 return nenu;
391 goto out;

new gr ubadn menu. ¢ 7 new gr ubadnif menu. ¢ 8
392 } 458 char |ine[MAX_STRI NG_SI ZE] ;
459 char * param
394 return nmenu; 460 char * val ue;
395 out: 461 cnd_id id;
396 menu = nmenu- >next; 462
397 } 463 const char fnc[] = "parse_file";
399) return NULL; 465 debug_print ("%\narg : %\n", fnc, file_nane);
400
467 menu_file = fopen (file_nanme, "r");
402 nenu_list * 468 if (! menu_file) {
403 get _entry_by_nunber (nmenu_list * nmenu, int nunber) 469 print_systemerror ();
404 { 470 goto out;
405 whi | e (nenu) 471 }
406 if (menu->entry_nunber == nunber)
407 return menu; 473 for (;;) {
408 el se 474 if (get Ilne(nenuflle line) == -1) {
409 menu = nmenu- >next; 475 if (feof (menu_file))
410 return NULL; 476 br eak;
411 } 477 free_nenu (&manu);
478 counter = -1;
413 static size_t 479 goto out;
414 get _line (FILE * nenu_file, char * line) 480 }
415 {
416 const char fnc[] = "get_line"; 482 if (line[0] =="#")
417 483 conti nue;
418 debug_print ("%\n", fnc); 484
485 param = |ine;
420 if (! fgets (line, MAX_STRING SIZE, nenu_file)) { 486 while ((*param==" ") || (*param=="\t"))
421 if (! feof (menu_file)) 487 ++ param
422 print_systemerror (); 488 if (*param=="\0")
423 return -1; 489 cont i nue;
424 }
491 value = strchr (line, "=);
426 if ((Ilne[strlen(llne) - 1] !I= \n) && (! feof (menu_file))) { 492 if (! value) {
427 print_error ("% (> %l)", MSG ERR LONG LINE, MAX_STRI NG Sl ZE) ; 493 print_error ("% at line 9%’'", MSG ERR WRONG SYNTAX, Ii
428 return -1; 494 free_nmenu (&enu);
429 } 495 counter = -1;
496 goto out;
431 line[strlen (line) - 1] ="'\0"; 497 }
498 *val ue++ = "\ 0" ;
433 return strlen (line);
434 } 500 id = get_param.id (param;
501 if (id == CVMD_UNK {
436 static cmd_id 502 print_error ("% at line ' %'", MSG ERR WRONG SYNTAX, Ii
437 get _param.id (const char * param 503 free_nenu (&menu);
438 { 504 counter = -1;
439 unsigned int id; 505 goto out;
506 }
441 const char fnc[] = "get_param.id";
508 if (id == CVD_DEFAULT) {
443 debug_print ("%\narg : %\n", fnc, param; 509 strcpy (def aul t _entry, value);
510 } elseif (i CMD_TI MEQUT) {
445 for (id =0; cnmd_list[id]; ++id) 511 strcpy (tlmaout val ue) ;
446 if (! strcnp (cnd_list[id], param) 512 } elseif (id--CNDSERIAL) {
447 br eak; 513 strcpy (serial, value);
514 } else if (id == CVMD _TERM NAL) {
449 return id; 515 strcpy (termnal, value);
450 } 516 } elseif (! addfparam(&rrenu, id, value, &counter)) {
517 free_nmenu (&renu);
452 nenu_list * 518 counter = -1;
453 parse_file (const char * file_nanme, int * entries_anount) 519 goto out;
454 { 520 }
455 FILE * menu_file = NULL; 521 }
456 unsi gned int counter = 0;
457 menu_list * menu = NULL; 523 out:

new gr ubadnf menu. c 9
524 if (menu_file)
525 fclose (nmenu_file);
527 *entries_anmount = counter;
529 return nmenu;
530 }
532 int
533 wite_nmenu (const char * config, const char * tnp_config, menu_list * nmenu)
534 {
535 FILE * tnp_nenu = fopen (tnp_config, "wW');
536 unsigned int i = 0;
538 const char fnc[] = "wite_nenu";
540 debug_print ("%\n", fnc);
542 if (! tnmp_nmenu) {
543 print_systemerror();
544 return O;
545 }
546
547 if (default_entry[O0])
548 fprintf (tnp_menu, "%%%\n", cnd_|ist[CVD _DEFAULT], SEPARATOR
549 if (timeout[O0])
550 fprintf (tnp_nenu, "%%%\n\n", cnd_|ist[CVD Tl MEQUT], SEPARATO
551 if (serial[0])
552 printf (tnp_menu, "%%%\n\n", cnd_|ist[CVD_SERI AL], SEPARATOR
553 if (termnal[0])
554 fprintf (tnp_nenu, "%%%\n\n", cnd_|list[CVD TERM NAL], SEPARAT
556 while (nmenu) {
557 fprintf (tnp_nmenu, "%%%\n", cnd_|ist[CVMD_ENTRY_NAME], SEPARAT
558 if (menu->entry. pool _| abel [0])
559 fprintf (tnp_nenu, "%%%\n", cnd_list[CvD_POOL_LABEL],
560 if (menu->entry. pool _uuid[0])
561 fprintf (tnp_nmenu, "%%%\n", cnd_|list[CVvD _POOL_UU D],
562 if (menu->entry. dataset[0])
563 fprintf (tnp_nenu, "%%%\n", cnd_list[CVMD _DATA SET], S
564 if (menu->entry.kernel [0])
565 fprintf (tnp_nenu, "%%%\n", cnd_|ist[CVD_KERNEL_PATH]
566 if (menu->entry. kernel _opts[O0])
567 fprintf (tnp_nenu, "%%%\n", cmd_list[CVD_KERNEL_OPTI O
568 if (menu->entry. nodul es_anount)
569 for (i = 0; i < menu->entry.nodul es_anount; ++i)
570 fprintf (tnmp_nenu, "%%%\n", cnd_|list[CVD BA P
571 fprintf (tnp_menu, "#-------mmmmm o
572 menu = nmenu- >next;
573 }
575 fclose (tnp_nenu);
577 remove (config);
578 rename (tnp_config, config);
580 return 1;
581 }
582 #endif /* | codereview */

new gr ubadni nenu. h

R R R R

2300 Fri Aug 31 05:09:01 2012

new gr ubadni menu. h
nmenuadm >gr ubadm ba_pat h- >npdul e, various changes, starting adding serial term

R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2012, Daniil Lunev. All rights reserved.
23 *
25 #define SEPARATOR "="
27 typedef struct nenu_entry nenu_entry;
28 typedef struct nmenu_list menu_list;
29 typedef enumcnd_id cnd_id;
31 struct nenu_entry {
32 char entry_nanme[MAX_STRI NG_SI ZE] ;
33 char pool _I abel [MAX_STRI NG_SI ZE] ;
34 char pool _uui d[MAX_STRI NG_SI ZE] ;
35 char dat aset [MAX_STRI NG_SI ZF] ;
36 char kernel [MAX_STRI NG_SI ZE] ;
37 char kernel _opt s[MAX_STRI NG_SI ZE] ;
38 unsi gned int nodul es_anount;
39 char ** nodul es;
40 };
42 extern char defaul t_entry[MAX_STRI NG _SI ZE] ;
43 extern char tineout[MAX_STRI NG_SI ZE] ;
44 extern char serial [MAX_STRI NG SI ZF] ;
45 extern char term nal [MAX_STRI NG_SI ZE] ;
47 struct menu_li st
48 unsi gned int entry_nunber;
49 menu_entry entry;
50 menu_list * next;
51 };
53 enumcnd_id {
54 CVD_ENTRY_NAME,
55 CMD_POOL_LABEL,
56 CVD_POOL_UUI D,
57 CVD_DATA_SET,
58 CVD_KERNEL _PATH,
59 CVD_KERNEL_OPTI ONS,
60 CVD_BA PATH,
61 CMD_DEFAULT,

new gr ubadni nenu. h

CVD_TI MEQUT,
CMD_SERI AL,
CVD_TERM NAL,
CVD_UNKNOWN
B3
extern const char * cnd_list[];
voi d
free_nmenu (nenu_list ** menu);

menu_|ist *
parse_file (const char * file_nanme, int * entries_anmount);

voi d
list_menu (menu_list * nmenu);
menu_|ist *

add_entry (menu_list ** nenu, nenu_list * entry);

menu_|ist *
clone_entry (menu_list *entry);

int
delete_entry (menu_list ** menu, nmenu_list * del);

menu_|ist *
find_entry (nenu_list * nenu, nmenu_list * find);

menu_list *
enabl e_hyper (menu_list * entry);

nenu_|ist *
di sabl e_hyper (nenu_list * entry);

menu_|ist *
get _entry_by nunber (nenu_list * nenu, int nunber);
#endi f /* ! codereview */

new | i bbe/ conmon/ be_utils.c

R R R R

100804 Fri Aug 31 05:09: 01 2012
new | i bbe/ conmon/ be_utils.c
I'i bbe patch

R R R R

__unchanged_portion_onitted_

347 | *

348 * Function: be_append_nenu

349 * Description: Appends an entry for a BE into the menu.lst.

350 * Paraneters:

351 * be_nanme - pointer to name of BE to add boot nenu entry for.
352 * be_root _pool - pointer to nane of pool BE lives in.

353 * boot _pool - Used if the pool containing the grub menu is
354 * different than the one contaiing the BE. This
355 * will normally be NULL.

356 * be_orig_root_ds - The root dataset for the BE. This is
357 * used to check to see if an entry already exists
358 * for this BE

359 * description - pointer to description of BE to be added in
360 * the title line for this BEs entry.

361 * Returns:

362 * BE_SUCCESS - Success

363 * be_errno_t - Failure

364 * Scope:

365 * Semi-private (library wide use only)

366 */

367 int

368 be_append_nenu(char *be_name, char *be_root_pool, char *boot_pool,

369 char *be_orig_root_ds, char *descrT] ption)

370 {

371 zfs_handl e_t *zhp = NULL;

372 char menu_fil e[MAXPATHLEN] ;

373 char be_root ds[Mﬁ\XPATHLENJ

374 char |ine[BUFSI Z] ;

375 char tenp_line[BUFSI 7] ;

376 char title[MAXPATHLEN] ;

377 char *entries[BUFSI Z];

378 char *tnp_entries[BUFSI Z] ;

379 char *pool _mtpnt = NULL;

380 char *ptnp_mtpnt = NULL;

381 char *orig_mmtpnt = NULL;

382 bool ean_t found_be = B_FALSE;

383 bool ean_t found _ori g be = B_FALSE;

384 bool ean_t found_titie = B_ FALSE

385 bool ean_t pool _mounted = B_FALSE;

386 bool ean_t collect_lines = B_FALSE;

387 FI LE *menu_fp = NULL;

388 int err =0, ret = BE_SUCCESS;

389 int i, numtnmp_lines = 0, numlines = 0;

391 if (be_name == NULL || be_root_pool == NULL)

392 return (BE_ERR I NVAL);

394 if (boot_pool == NULL)

395 boot _pool = be_root_pool;

397 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET)) == NULL) {
398 be_print_err(gettext("be_append_nenu: failed to open "
399 "pool dataset for %: %\n"), be_root_pool,

400 l'1bzfs_error_description(g_zfs));

401 return (zfs_err_to_be_err(g_zfs));

402 }

404 I*

405 * Check to see if the pool’'s dataset is mounted. If it isn't we'll

new | i bbe/ conmon/ be_utils.c

406
407
408
409
410
411
412
413
414

416
417
418
419
420
421
422
423
424
425

427
428
429
430
431
432
433
434
435
436

438

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

457
458

460
461

463
464
464

466
467
468
468
469

*

if

}

/*
*
*

if

}
/*

*

if

attenpt to nount it.
*/

((ret = be_rount _pool (zhp, &ptnp_mtpnt, &orig_mtpnt,
&pool _mounted)) != BE_SUCCESS)
be_print_err(gettext("be_append_nenu: pool dataset
"(%) could not be nounted\n"), be_root_pool);
ZFS_CLOSE(zhp);
return (ret);

Get the nountpoint for the root pool dataset.

(!zfs_is_mounted(zhp, &pool _mtpnt)) {
be_print_err(gettext("be_append_nenu: pool
"dataset (%) is not nounted. Can’'t set
"the default BE in the grub nenu.\n"), be_root_pool);
ret = BE_ERR_NO_MENY;
goto cl eanup;

Check to see if this system supports grub
*

(be_has_grub()) {
(void) snprintf(menu_file, sizeof (nmenu_file),
"U%%", pool_mtpnt, BE_GRUB_MENU);

} else {

}

be_|

/

* ok ok ok % ok F

*
*/
if

(voi d) snprl ntf(menu_file, sizeof (menu_file),
pool _mt pnt, BE SPARC_MENU) ;

nmake_r oot _ds(be_root_pool, be_nane, be_root_ds, sizeof (be_root_ds));

Iterate through menu first to nake sure the BE doesn’t already
have an entry in the nenu.

Additional ly while iterating through the nenu, if we have an
original root dataset for a BE we’'re cloning from we need to keep
track of that BE's nenu entry. We will then use the lines from
that entry to create the entry for the new BE.

((ret = be_open_nenu(be_root_pool, nenu_file,
&msnu_fp "r", B_TRUE)) != BE_SUCCESS) {
goto cl eanup;

} else if (menu_fp == NULL) {

}

ret = BE_ERR_NO_NENU;
goto cl eanup;

free(pool rmtpnt)
pool _mtpnt = NULL

whi

le (fgets(line, BUFSIZ, nenu_fp)) {
char *tok = NULL;

(void) strlcpy(ter'rp line, line, BUFSIZ);
tok = strtok(line, "=\n");
tok = strtok(line, BE_WH TE . SPACE) ;

if (tok == NULL || tok[O] == "#") {
conti nue;
} else if (strcnp(tok, "entry_name") == 0) {
} else if (strcnp(tok, "title") == 0) {
collect_lines = B_FALSE;

new | i bbe/ conmon/ be_utils.c

470
471
472
473
474

476
477
478
479
480
481
482
483
483
484
485
486
487

489
490
491
492

494
495
496
497
498
499
500
501
502
503
503
504
505
506
507
508
509
510
511
512
513
514
515
516

518
519
520
521

523
524
525
526
527
528
529
530
531
532
533

}
f
if
c
f
[

if ((tok = strtok(NULL, "\n")) == NULL)

(void) strlcpy(title, "", sizeof (title));
el se

(voi d) strlcpy(tltle t ok,
found_title = B_TRU

sizeof (title));

if (numtnp_lines !'=0) {
for (i =0; i < numtnp_lines;
free(tnp_entries[i]);
tnp_entries[i] = NULL;

i++) {

numtnp_lines = 0O;

(strcmp(tok, "data_set") == 0) {
(strcmp(tok, "bootfs") == 0) {

har *bootfs = strtok(NULL, BE_WH TE_SPACE);
ound_title = B_FALSE;

if (bootfs == NULL)

conti nue;

if (strcrrp(bootfs be_root_ds) == 0) {
found_be = B_TRUE;
break;

}

if (be_orig_root_ds != NULL &&
strcnp(bootfs, be_orig_root_ds) == 0 &&
! found_orig_be) {
char str[BUFSI Z];
found_ori g_be = B_TRUE;
num.lines = 0;
*

* Store the newtitle line
*/

(void) snprintf(str, BUFSIZ,
(void) snprintf(str, BUFSIZ, "title %\n",
description ? description : be_nane);
entries[num.lines] = strdup(str);
num | i nes++;
*

* |f there are any lines between the title
* and the bootfs line store these. Al so
* free the tenporary Ilines.

*

/

for (i =0; i < numtnp_lines; i++) {
entries[numlines] = tnp_entries[i];
tnp_entries[i] = NULL;
num | i nes++;

}

zprop_get _cbhdata_t cb = { 0 };
zprop_source_t src;

char * bc = strchr(be_root_ds, '/');
char sguid[] = "guid";

*bc = '\0’

cbh.cb _fi rst = B_TRUE;
cb. cb_sources = ZPROP_SRC ALL;
cb.cb_type = ZFS_TYPE_POCL;
zprop_get _list(g_zfs,

zpool _handle_t * z_hndl = zpool _open(g_zfs,
*be =/
if (z_hndl) {

uint64_t guid = zpool _get_prop_int(z_hnd
BUFSI Z, "pool _uui d=

(void) snprintf(str,
entries[numlines] = strdup(str);

"entry_name=%\n",

sgw d, &cb.cb_proplist,

new | i bbe/ conmon/ be_utils.c

534
535
536
537
517
538
539
540
541
521
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
B
576
577
578
579
580
581

583

585
586
587
588
589
590
591

593
594
595
596
597

numtnp_|lines

#endi f /*

}

num | i nes++;
zpool _cl ose(z_hndl);

}

numtnp_lines = 0;
/~k

0;

* Store the new bootfs Iine.
*/

(void) snprintf(str,
(void) snprintf(str,
be_root _ds);
entries[numlines] = strdup(str);

num | i nes++;
col l ect _lines = B_TRUE;

BUFSI Z,

}
} else if (found_orig_be && collect_lines) {
/*

BUFSI Z, "data_set=%\n",
"bootfs

%s\ n",

* get the rest of the lines for the original BE and

* store them
*/
if (strstr(line,
strstr(line,
conti nue;
if (strcnp(tok, "splashi mage "y == 0) {
entries[numlines] =
strdup(™spl ashi nage "
"/ boot/ spl ashi mage. xpm n");
} else if ((strcmp(tok, "kernel _path")
((strcmp(tok, "nodule") == 0))

BE_GRUB_COMVENT) = NULL
“BOOTADM') != NULL)

char * path;
char * st_path;

st_path = strtok(NULL, "\n");
path = (char *) malloc(512);
strcpy(path, tok);
strcat(path, "=");
strcat(path, st_path);
strcat(path, "\n");
entries[numlines] = path;

coder evi ew */

} else {

==x0)

entries[numlines] = strdup(tenp_|line);

num | i nes++;
} elseif (found_title & !found_orig_be)

{
tp_entries[numtnp_lines] = strdup(tenp_line);

numtnp_|ines++;

(void) fclose(nmenu_fp);

if (found_be) {
/*

* If an entry for this BE was already in the nmenu,

* that entry’s title matches what we woul d have p
* return success. Oherwise return failure.
*/
char *new_ title = description ? description :
if (strenp(title, new_title) == 0) {

ret = BE_SUCCESS;

got o cl eanup;
} else {

if (be_renmove_nenu(be_nane, be_root_pool,

ut

then if
in

be_nane;

new | i bbe/ conmon/ be_utils.c

598
599
600
601
602
603
604
605
606

608
609
610
611
612
613
614
615
616

618
619
620
621
622
623
624
625
626

628
629
630
631
632
633
634
635
636
637
638

640
539
641
642
643
644
645
646
647
648
649
650
651
652
653
654
541

656
657
658
659
660
661

boot _pool) != BE_SUCCESS) {
be prl nt_err(gettext("be_append_nenu:
"Failed to renpve existing unusable "
"entry '%’ in boot menu.\n"), be_nane);
ret = BE_ERR BE_EXI STS;
goto cl eanup;

}

I* Append BE entry to the end of the file */

nmenu fp = fopen(menu_fi le, "at+");

err = errno

if (menu_ fp == NULL)
be_print_err(gettext("be_append_nenu: failed "

"to open nmenu.lst file %\n"), nenu_file);

ret = errno_to_be_err(err);
goto cl eanup;

}
if (found_orig_be) {
/*

* wite out all the stored Ilines
*
/
for (i =0; i < numlines; i++)
(void) fprintf(nmenu_fp, "%", entries[i]);
free(entries[i]);

}
numlines = 0;

/*
* Check to see if this system supports grub
*

if (be_has_grub())
(void) fprintf(menu_fp, "%\n",

ret = BE_SUCCESS;

} else {
zprop_get _chdata_t cb = { 0 };
zprop_source_t src;
char * bc = strchr(be_root_ds, '/");
char sguid[] = "guid";

BE_GRUB_COWMVENT) ;

(void) fprintf(menu_fp, "entry_nane=%\n",

(void) fprintf(menu_fp, "title %\n",
description ? description : be_nane);

*be = '\0;

cb.cb_first = B TRUE;

ch. cb_sources = ZPROP_SRC ALL;

cb. cb_type = ZFS_TYPE_POOL;

zprop_get _|ist(g_zfs, sgui d &ch. cb_proplist,

zpool _| handle t o z_hndI = zpool _open(g_zfs, be_root_ds);
*bc -_—
if (z hndl) {

uint64_t guid = zpool _get_prop_int(z_hndl,
(void) fprintf(menu_fp, "pool _uuid=%I1x\n", guid);
zpool _cl ose(z_hndl);

(void) fprintf(nenu_fp, "data_set=%\n",
(void) fprintf(nenu_fp, "bootfs %\n",

be_root _ds);
be_root _ds);

/*
* Check to see if this system supports grub
*
/
if (be_has_grub()) {
(void) fprintf(menu_fp, "kernel _path="
"/ platfornmi86pc/kernel/$l SADI R/ uni x\ n");

ZFS TYPE_POOL);

cb.cb_proplis

new | i bbe/ conmon/ be_utils.c

662
663
664
547
548
549
550
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

712 i
be_renmove_nenu(char *be_nane, char *be_root_pool,

713

cl eanup:

714 {

715
716
717
718
719
720
721
722
723

(voi d) fprl ntf(menu_fp, "kernel _options="
B $ZFS_BOOTFS, consol e= graphl c\n");

(voi d) fprintf(menu_fp, "nodul e="
(void) fprintf(nmenu_fp, "kernel$ "

“/pI atfornli 86pc/kernel/$| SADI R/unl x -B"

" $ZFS- BOOTFS\ n") ;

(void) fprintf(menu_ fp, "modul e$

"/ platforni86pc/$l SADI R/ boot archive\n");
(void) fprintf(menu_fp, "%\n", BE_GRUB COVNENT);

}

ret = BE_SUCCESS;
}
(void) fclose(nenu_fp);

if (pool_nmounted) {
int err = BE_SUCCESS;
err = be_unmount pool (zhp, pt np_mmt pnt,
if (ret == BE_SUCCESS
ret = err;
free(ori g_rmt pnt);
free(ptmp_mtpnt);

orig_mtpnt);

}
ZFS CLOSE(zhp);
if (numtnp lines > 0) {
r (i =0; i <numtnp_lines; i++) {
free(tnp_entries[i]);
tnp_entries[i] = NULL;

if (numlines > 0) {
for (i =0; i <numlines; i++) {
free(entries[i]);
) entries[i] = NULL

}
return (ret);

Functi on: be_renove_nenu
Description: Renoves a BE's entry froma nenu.lst file.
Par anet ers:
be_name - the name of BE whose entry is to be renpved from
the nmenu.lst file.
be_root_pool - the pool that be_nane lives in.
boot _pool - the pool where the BE is, if different than
the pool containing the boot menu. |f this is
NULL it will be set to be_root_pool.
Ret ur ns:
BE_SUCCESS - Success
be_errno_t - Failure
Scope:

Sem -private (library wi de use only)

char *boot _pool)

zfs_handl e_t *zhp = NULL;

char be_r oot _ds[MAXPATHLEN ;
char **puf fer = NULL;

char nmenu_buf [BUFSI Z] ;

char nmenu[MAXPATHLEN] ;

char *pool _mt pnt = NULL;
char *ptnp_mt pnt = NULL;
char *orig_mmtpnt = NULL;
char *tnp_nmenu = NULL;

new | i bbe/ conmon/ be_utils.c

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

741
742

744
745

747
748
749
750
751
752
753

755
756
757
758
759
760
761
762
763
764
765

767
768
769
770
771
772
773
774
775
776

778
779

781
782
783
784
785
786
787

FI LE *menu_fp = LL;
FI LE *tnp_menu_fp = NULL
struct stat sb;
int ret = BE_SUCCESS;
int
int fd
int err = 0;
int nlines = 0;
int default_entry =
int entry_cnt = 0;
int entry_del = 0;
int numentry_del = 0O;
int tnp_nenu_len = 0;
bool ean_t wite = B_TRUE;
bool ean_t do_buffer = B_FALSE;
bool ean_t pool _mounted = B_FALSE;
if (boot_pool == NULL)

boot _pool = be_root_pool;

/* Get name of BE s root dataset */

be_make_r oot _ds(be_root _pool, be_nane, be_root_ds, sizeof (be_root_ds));

/* Get handle to pool dataset */
if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET)) == NULL) {
be_print err(gettext("be_renove_nenu: "
"failed to open pool dataset for %: %"),
be_root _pool, libzfs_error_description(g_ zfs))
return (zfs_err to be_err(g_zfs));

}

/*

* Check to see if the pool’s dataset is mounted. If it isn't we'll

* attenpt to nount it.

*/
if ((ret = be_nount_pool (zhp, &ptnp_mtpnt, &orig_mtpnt,
&pool _nmount ed)) != BE_SUCCESS) {
be_print_err(gettext("be_renpbve_nenu: pool dataset
"(%) could not be nounted\n"), be_root_pool);

ZFS_CLOSE(zhp) ;
return (ret);

}
/*

* CGet the nountpoint for the root pool dataset.
*/

if (!zfs_is_mounted(zhp, &pool _mtpnt)) {
be_print_err(gettext("be_renove_nenu: pool
"dataset (%) is not nounted. Can't set "
"the default BE in the grub nenu.\n"), be_root_pool);
ret = BE_ERR_NO_MENY;
goto cl eanup;

}

/* Get path to boot nenu */
(void) strlcpy(nmenu, pool_mtpnt, sizeof (nenu));

/'k
* Check to see if this system supports grub
*
/
if (be_has_grub())
(void) strlcat(menu, BE_GRUB_MENU, sizeof (nenu));
el se
(void) strlcat(menu, BE_SPARC_MENU, sizeof (nenu));

/* Get handle to boot menu file */

new | i bbe/ conmon/ be_utils.c

790
791
792
793
794
795
796

798
799

801
802
803
804
805
806
807
808

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

837
838
839

841

843
844
730

846
847
848
849
850
851
852
853
854

if ((ret = be_open_nenu(be_root_pool, nenu, &renu_fp, “r",
B TRUE)) T= BE_SUCCESS) {
goto cl eanup;
} else if (menu_fp == NULL) {
ret = BE_ERR_NO_MENU,
goto cl eanup;

}

free(pool _mtpnt);
pool _mt pnt = NULL;

/* Grab the stats of the original nmenu file */
if (stat(nmenu, &sb) !'= 0) {
err = errno;
be_print_err(gettext("be_renove_nenu:
"failed to stat file %: %\n"), menu, strerror(err));
ret = errno_to_be_err(err);
goto cl eanup;

}

/* Create a tnp file for the nodified nenu.lst */

tnp_nenu_l en = strlen(menu) + 7;

if ((tmp_menu = (char *)malloc(tnp_nenu_len)) == NULL) {
be_print_err(gettext("be_remove_nmenu: malloc failed\n"));
ret = BE_ERR_NOVEM
goto cl eanup;

id) menmset (tnp_nenu, 0, tnp_nenu_len);
id) strlcpy(tnp_nmenu, nenu, tmp_nenu Ien)
d) strlcat(trrp menu, " XXXXXX', tnp_ manulen)
(f nksterrp(tr’rp_manu)) = -1)
err = errno;
be_print_err(gettext("be_renove_nmenu: nkstenp failed\n"));
ret = errno_to_be_err(err);
free(tnp_nenu);
tnp_menu = NULL;
goto cl eanup;

}

1f ((trmp_menu_fp = fdopen(fd, "w')) == NULL) {
err = errno;
be_print_err(gettext("be_renove_nenu:

"could not open tnp file for wite: %\n"), strerror(err));

(void) close(fd);
ret = errno_to_be_err(err);
got o cl eanup;

}

while (fgets(menu_buf, BUFSIZ, nenu_fp)) {
char tline [BUFSIZ];
char *tok = NULL;

(void) strlcpy(tline, nmenu_buf, sizeof (tline));

/* Tokeni ze line */
tok = strtok(tline, "=\n"
tok = strtok(tline, BE_WH TE = SPACE) ;

if (tok == NULL || tok[O0] == "#") {
/* Found enpty line or comment |ine */
if (do_buffer)
/* Buffer this line */
if ((buffer = (char **)realloc(buffer,
si zeof (char *)*(nlines + 1))) == NULL) {
ret = BE_ERR_NOVEM
goto cleanup,

new | i bbe/ conmon/ be_utils.c

855
856
857
858
859

861
862
863
864
865
866
752
867
868
869
870
871

873
874
875

877
878
764
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

895
896
897
898
899
900
901

903
904
905
906
907
908
909
910
911
912

914
800
915

if ((buffer[nl i nes++] = strdup(nmenu_buf))
{

ret = BE_ERR_NOVEM
goto cl eanup;

}

} elseif (wite || strncnp(menu_buf, BE_GRUB_COMVENT,

strlen(BE_GRUB_COMMENT)) !'= 0) {
/* Wite this line out */
(void) fputs(menu_buf, tnp_nmenu_fp);

}
} else if (strcnp(tok, "default entry") == 0) {
} else if (strcmp(tok, "default") == 0) {

/*

* Record what 'default’ is set to because we m ght

* need to adjust this upon deleting an entry.
*/

tok = strtok(NULL, BE_WH TE_SPACE);
if (tok !'= NULL) {
defaul t _entry = atoi (tok);

(voi d) fputs(nenu buf, tnp_menu_fp);

if (strcnp(tok, "entry_ name") == 0) {
if (strenp(tok, "title") == 0) {
/*
* |f we’ve reached a "title’ line and do_buffer is

* is true, that neanswevejust buffered an entire
* entry wi thout findi ng a 'bootfs’ directive. W
* need to wite that entry out and keep searching.

*/
if (do_ buffer) {
for (1 =0; i <nlines; i++) {
(void) fputs(buffer[il]
free(buffer[i]);

}
free(buffer);
buffer = NULL;
nlines = 0;

, tnp_nenu_fp);

}

/*

* Turn witing off and buffering on, and increnent
* our entry counter.

*/

wite = B_FALSE;
do_buffer = B_TRUE;
entry_cnt ++;

/* Buffer this "title line */
if ((buffer = (char **)realloc(buffer
sizeof (char *)*(nlines + 1))) == NULL) {
ret = BE_ERR NOVEM
goto cl eanup;

}
if ((buffer[nlines++] = strdup(menu_buf)) == NULL) {
ret = BE_ERR_NOVEM
goto cl eanup;

}

if (strcnp(tok, "data_set") == 0) {
if (strcnp(tok, "bootfs") == 0) {

char *bootfs = NULL;
/*

new | i bbe/ common/ be_utils.c

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

937
938
939
940
941
942
943

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983

} else {

10

* Found a 'bootfs’ line. See if it matches the
* BE we're | ooking for.

*/

if ((bootfs = strtok(NULL, BE_WH TE_SPACE)) == NULL ||
strcnp(bootfs, be_root_ds) != 0) {
/~k

} else {

* Either there’s nothing after the 'bootfs’
* or this is not the BE we're | ooking for,
* wite out the line(s) we’'ve buffered since
* finding the title.
*

/

for (i =0; i <nlines; i++) {
(void) fputs(buffer[i], tnp_nenu_fp);
free(buffer[i]);

}
free(buffer);
buf fer = NULL;
nlines = 0;

/*

* Turn witing back on, and turn off buffering
* since this isn't the entry we're | ooking

* for.

*/

wite = B TRUE;

do_buffer = B_FALSE;

/* Wite this 'bootfs’ line out. */
(void) fputs(nmenu_buf, tnp_nenu_fp);

Found the entry we're | ooking for.

Record its entry nunber, increment the
nunber of entries we've deleted, and turn
witing off. Also, throw away the |ines
we' ve buffered for this entry so far, we
don’t need them

~
R

*/

entry_del = entry_cnt - 1,
num ent try_ del ++;

wite = B_| FALSE

do_buffer = B_FALSE;

for (i =0; i <nlines; i++) {
free(buffer[l])

}
free(buffer);
buf fer NULL;
nlines 0;

if (do_buffer) {

/* Buffer this line */
if ((buffer = (char **)realloc(buffer,
sizeof (char *)*(nlines + 1))) == NULL) {
ret = BE_ERR_NOVEM
goto cl eanup;

}
if ((buffer[nlines++] = strdup(nmenu_buf))

ret = BE_ERR NOVEM
got o cl eanup;

} else |% (write)

{
Wite this line out */
(void) fputs(menu_buf, tnp_nmenu_fp);

new | i bbe/ conmon/ be_utils.c

984
985
986

988
989
990
991

993
994
995
996
997
998
999
1000
1001
1002
1003

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

1020
1021
1022
1023
1024
1025

1027
1028
1029
1030
1031
1032
1033
1034
1035

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

}
}
}
(void) fcl ose(menu fp);
menu_fp = NUL

(voi d) fclose(trrp nenu_f p);
trp_menu_fp = NULL;

/* Copy the nodified nmenu.lst into place */
if (renarre(trrp_rrenu, menu) != 0)
err = errno;
be prl nt _err(gettext("be_renove_nenu:
"failed to renane file % to %: %\n"),
tnp_nenu, nenu, strerror(err));
ret = errno_to_be_err(err);
goto cl eanup;

free(tnp_nenu);
trp_rmenu = NULL;

/
If we’ve renoved an entry, see if we need to

adj ust the default value in the nenu.Ist. |If the
entry we' ve del eted cones before the default entry
we need to adjust the default value accordingly.

*
*
*
*
*
*
* be_has_grub is used here to check to see if this system
*/supports grub.
*
f (be_has_grub() && numentry_del > 0) {
if (entry_del <= default_entry) {
default_entry = default_entry - numentry_del;
if (default_entry < 0)
default _entry = O;

Adj ust the default value by rewiting the
menu.lst file. This may be overkill, but to
preserve the location of the 'default’ entry
/in the file, we need to do this.

* Ok ok k%

/* Get handle to boot nenu file */

if ((nenu_fp = fopen(nmenu, "r")) == NULL) {
err = errno;
be prl nt_err(gettext("be_renove_nenu:

“failTed to open menu.lst (9%): %\n"),

nenu, strerror(err));
ret = errno_to_be_err(err);
goto cl eanup;

}

/* Create a tnp file for the nodified nenu.lst */
tnp_nenu_len = strlen(menu) + 7;
if ((tnp nmenu (char *)mal |l oc(tnp_menu_l en))

== NULL) {

be_prl nt_err(gettext("be_renove_nenu:
"malloc failed\n"));

ret = BE_ERR_NOVEM

goto cl eanup;

id) nmenset(tnmp_nenu, 0, tnp_nenu_len);

id) strlcpy(tnmp_menu, menu, tnp_nenu Ien)

id) strlcat(tnmp_nmenu, "XXXXXX", tnp_nenu Ien)
(fd = nmkstenmp(tnp_nenu)) == -1) {

11

new | i bbe/ conmon/ be_utils.c

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

1068
1069
1070

1072

1074
1075
961

1077
1078
1079
1080

966
1081
1082
1083

969

1085
1086
1087
1088
1089
1090

1092
1093
1094
1095

1097
1098
1099
1100
1101
1102
1103
1104
1105

1107
1108
1109
1110

1112

}

12

err = errno;

be_print_err(gettext("be_renove_nenu: "
"nkstenp failed: %\n"), strerror(err));

ret = errno_to_be_err(err);

free(tnp_nenu);

tp_nmenu = NULL;

goto cl eanup;

}
if ((tnp_rmenu_fp = fdopen(fd, "w')) == NULL) {
err = errno;
be_pri nt_err(gettext(be_renove_nenu: "
"could not open tnmp file for wite: %\n"),
strerror(err))
(void) close(fd);
ret = errno_to_be_err(err);
goto cl eanup;

}

whil e (fgets(nenu_buf, BUFSIZ, nenu_fp)) {
char tline [BUFSIZ]
char *tok = NULL;

(void) strlcpy(tline, menu_buf, sizeof (tline));

/* Tokenize line */
tok = strtok(tline, "=\n");
t ok strtok(tline, BE_WHI TE = SPACE) ;

if (tok == NULL)
/* Found enpty line, wite it out */
(voi d) fputs(menu_buf, t np_nenu_fp);
} else if (strcnp(tok, "default entry) == 0) {
} else if (strcnp(tok, "default") ==
/* Found the default |ine, adj ust it */
(void) snprintf(tline, si zeof (tline),
"defaul t _entry=%l\n", default_entry)
"default %\n", default_entry);

(void) fputs(tline, tnp_menu_fp);

} else {
/* Pass through all other lines */
(void) fputs(menu_buf, tnp_nenu_fp);

}

(void) fcl ose(manu fp);
menu_fp =

(voi d) fclose(tnp menu_fp);
trmp_nmenu_fp = NULL;

/* Copy the nodified menu.lst into place */
if (rename(tnp_nenu, nmenu) != 0)
err = errno;
be_print_err(gettext("be_renove_nenu:
"failed to renane file % to %: %\n"),
tnp_nmenu, nenu, strerror(err));
ret = errno to be err(err)
goto cl eanup;

}

free(tnp_nenu);
tmp_menu = NULL;

/* Set the perns and ownership of the updated file */

new | i bbe/ conmon/ be_utils.c 13

1113 if (chmod(rmenu, sb.st_node) !'= 0) {

1114 err = errno;

1115 be_print_err(gettext("be_renove_nmenu: "

1116 "failed to chmod %: %\n"), nenu, strerror(err));
1117 ret = errno_to_be_err(err);

1118 goto cl eanup;

1119 1

1120 if (chown(nenu, sb.st_uid, sb.st_gid) !=0) {

1121 err = errno;

1122 be_print_err(gettext("be_renove_nenu: "

1123 "failed to chown %: %\n"), nenu, strerror(err));
1124 ret = errno_to_be_err(err);

1125 goto cl eanup;

1126 }

1128 cl eanup:

1129 if (pool _nounted) {

1130 int err = BE_SUCCESS;

1131 err = be_unnount _pool (zhp, ptnp_mtpnt, orig_mtpnt);
1132 if (ret == BE_SUCCESS)

1133 ret = err;

1134 free(orig_mtpnt);

1135 free(ptnp_mtpnt);

1136 }

1137 ZFS_CLGCSE(zhp) ;

1139 free(buffer);

1140 if (menu_fp !'= NULL)

1141 (void) fclose(nenu_fp);

1142 if (tmp_nmenu_fp !'= NULL)

1143 (void) fclose(tnmp_menu_fp);

1144 if (tnp_menu != NULL)

1145 (void) unlink(tnp_nenu);

1146 free(tnp_nenu);

1147 }

1149 return (ret);

1150 }

1152 /*

1153 * Function: be_defaul t _grub_bootfs

1154 * Description: This function returns the dataset in the default entry of
1155 * the grub nenu. If no default entry is found with a valid bootfs
1156 * entry NULL is returned.

1157 * Paraneters

1158 * be_root_pool - This is the nane of the root pool where the
1159 * grub menu can be found.

1160 * def _bootfs - This is used to pass back the bootfs string. On
1161 * error NULL is returned here.

1162 * Returns:

1163 * Success - BE_SUCCESS is returned.

1164 * Failure - a be_errno_t is returned.

1165 * Scope:

1166 * Semi -private (library wide use only)

1167 */

1168 int

1169 be_defaul t _grub_bootfs(const char *be_root_pool, char **def_bootfs)
1170 {

1171 zfs_handl e_t *zhp = NULL;

1172 char grub_fil e[MAXPATHLEN] ;

1173 FILE *menu_fp

1174 char I'i ne[BUFSI Z]

1175 char *pool _mt pnt = NULL;

1176 char *ptnp_mt pnt = NULL;

1177 char *orig_mmtpnt = NULL;

1178 int default_entry = 0, entries = 0;

new | i bbe/ conmon/ be_utils.c

1179
1180
1181

1183

1185
1186
1187
1188
1189
1190
1191
1192

1194

1196
1197
1198
1199
1200
1201
1202

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

1227
1228

1230
1231
1232
1233
1234
1235
1236

1238
1239

1241
1242
1128

0;

int found_default =

int ret = BE_SUCCESS;

bool ean_t pool _mounted = B_FALSE;
errno = O;

/*

* Check to see if this system supports grub

*

if (!be_has_grub()) {

be_print_err(gettext("be_default_grub_bootfs: operation "

"not supported on this architecture\n"));

return (BE_ERR _NOTSUP);
}

*def _bootfs = NULL;

/* Get handle to pool dataset */

if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS TYPE DATASET)) == NULL)
be_print_err(gettext("be_default_grub_bootfs:

"failed to open pool

dataset for %: 9%"),

be_root_pool, |ibzfs_error_description(g_zfs));

return (zfs_err_to_be_er

}
/*

* Check to see if the pool’'s dataset is mounted. If it isn't we'll

* attenpt to nount it.
*

r(g_zfs));

if ((ret = be_nount_pool (zhp, &ptnp_mtpnt, &orig_mtpnt,
&pool _nount ed)) ! = BE_SUCCESS)

be_print_err(gettext("be_default_grub_bootfs: pool dataset

"(%) could not be nmounted\n"), be_root_pool);

ZFS_CLGSE(zhp) ;
return (ret);

}
/*

* Cet the nountpoint for the root pool dataset.

*/

if (!zfs_is_mounted(zhp, &pool _mtpnt)) {
be_print_err(gettext("be_default_grub_bootfs: failed "

"to get nount point

"the default BE in t
ret = BE_ERR NO MENU,
goto cl eanup;

}

for the root pool. Can't set
he grub nmenu.\n"));

(void) snprintf(grub_file, MAXPATHLEN, "%%",

pool _mt pnt, BE_GRUB_MENU);

if ((ret = be_open_nenu((char *)
&nrenu_fp, "r", B_FALSE)) !=
goto cl eanup;
} else if (menu_fp == NULL) {
ret = BE_ERR_NO_MENY;
goto cl eanup;

}

free(pool _mtpnt);
pool _mmt pnt = NULL;

while (fgets(line, BUFSIZ, nenu_

char *tok
char *tok

strtok(line,
strtok(line,

be_root _pool, grub_file,
BE_SUCCESS) {

fp)) {
=)
BE_WH TE_SPACE) ;

{

14

new | i bbe/ cormon/ be_utils.c 15 new | i bbe/ cormon/ be_utils.c 16
1244 if (tok !'= NULL && tok[O] !="#") { 1307 * The code takes this and finds the BE's entry in the grub nenu
1245 if (!found_default) { 1308 * and changes the default entry to point to that entry in the
1246 if (strenp(tok, "default_entry") == 0) { 1309 * list.
1132 if (strenp(tok, "default"”) == 0) { 1310 * Paraneters:
1247 tok = strtok(NULL, BE_WHI TE_SPACE); 1311 * be_name - This is the name of the BE wanted as the default
1248 if (tok !'= NULL) { 1312 * for the next boot.
1249 default_entry = atoi (tok); 1313 * be_root_pool - This is the nane of the root pool where the
1250 rew nd(menu_ fp) 1314 * grub menu can be found.
1251 found_default = 1; 1315 * Returns:
1252 } 1316 * BE_SUCCESS - Success
1253 } 1317 * be_errno_t - Failure
1254 conti nue; 1318 * Scope:
1255 } 1319 * Semi-private (library wide use only)
1256 if (strcnp(tok, e try_nanme") == 0) { 1320 */
1142 if (strcnp(tok, itle") == 0) { 1321 int
1257 entries++ 1322 be_change_grub_defaul t (char *be_nane, char *be_root_pool)
1258 } else if (def auIt_entry == entries - 1) { 1323 {
1259 if (strcnp(tok, "dat a_set ") == 0) { 1324 zfs_handl e_t *zhp = NULL;
1145 if (strecnp(tok, "bootfs") == 0) { 1325 char grub_fil e[MAXPATHLEN] ;
1260 tok = strtok(NULL, BE_WH TE_SPACE); 1326 char *tenp_grub;
1261 (void) fclose(nmenu_fp); 1327 char *pool _mt pnt = NULL;
1328 char *pt np_mt pnt = NULL;
1263 if (tok == NULL) { 1329 char *orig_mtpnt = NULL;
1264 ret = BE_SUCCESS; 1330 char i ne[BUFSI Z] ;
1265 goto cl eanup; 1331 char tenmp_| i ne[BUFSI Z] ;
1266 } 1332 char be r oot ds[l\/AXPATHLEN];
1333 FI LE *grub_fp = NULL;
1268 if ((*def_bootfs = strdup(tok)) != 1334 FI LE *tenp_fp = NULL;
1269 NULL) { 1335 struct stat sb;
1270 ret = BE_SUCCESS; 1336 int tenp_grub_ Ien = 0;
1271 goto cl eanup; 1337 int fd, entries = 0;
1272 1 1338 int err = 0;
1273 be_print_err(gettext(1339 int ret = BE_SUCCESS;
1274 "be_defaul t _grub_bootfs: " 1340 bool ean_t found_default = B_FALSE;
1275 "menory allocation failed\n")); 1341 bool ean_t pool _mounted = B_FALSE;
1276 ret = BE_ERR_NOVEM
1277 goto cl eanup; 1343 errno = O;
1278 }
1279 } else if (default_entry < entries - 1) { 1345 I*
1280 I* 1346 * Check to see if this system supports grub
1281 * no bootfs entry for the default entry. 1347 *
1282 */ 1348 if (!'be_has_grub()) {
1283 br eak; 1349 be_print_err(gettext("be_change_grub_default: operation "
1284 } 1350 "not supported on this architecture\n"));
1285 } 1351 return (BE_ERR NOTSUP);
1286 } 1352 }
1287 (void) fclose(nenu_fp);
1354 /* Generate string for BE' s root dataset */
1289 cl eanup: 1355 be_make_r oot _ds(be_root _pool, be_nane, be_root_ds, sizeof (be_root_ds));
1290 if (pool _nount ed) {
1291 int err = BE_SUCCESS; 1357 /* Get handle to pool dataset */
1292 err = be unrmunt _pool (zhp, ptnp_mmtpnt, orig_mmtpnt); 1358 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS TYPE DATASEl’)) == NULL) {
1293 if (ret == BE = SUCCESS) 1359 be_print err(gettext("be_change_grub_defaul t: "
1294 ret = err; 1360 "faiTed to open pool dataset for %: 9%"),
1295 free(orig_mt pnt); 1361 be_root_pool, |ibzfs_error_description(g_ zfs))
1296 free(ptnp_mtpnt); 1362 return (zfs_err to be_err(g_zfs));
1297 1 1363 1
1298 ZFS_CLOSE(zhp);
1299 return (ret); 1365 /*
1300 } 1366 * Check to see if the pool’'s dataset is mounted. If it isn't we'll
1367 * attenpt to mount it
1302 /* 1368 */
1303 * Function: be_change_grub_def aul t 1369 if ((ret = be_nount_pool (zhp, &ptnp_mtpnt, &orig_mtpnt,
1304 * Description: This function takes two paraneters. These are the nanme of 1370 &pool _nmount ed)) ! = BE_SUCCESS)
1305 * the BE we want to have as the default booted in the grub 1371 be_print_err(gettext("be_change_grub_default: pool dataset
1306 * menu and the root pool where the path to the grub nmenu exists. 1372 "(%) could not be mounted\n"), be_root_pool);

new | i bbe/ cormon/ be_utils.c 17 new | i bbe/ cormon/ be_utils.c 18
1373 ZFS_CLOSE(zhp); 1439 }
1374 return (ret);
1375 } 1441 while (fgets(line, BUFSIZ, grub_fp)) {
1442 char *tok = strtok(line, "=\n");
1377 /* 1328 char *tok = strtok(line, BE_WH TE - SPACE) ;
1378 * CGet the nountpoint for the root pool dataset.
1379 */ 1444 if (tok == NULL || tok[O0] == "#") {
1380 if (!zfs_is_munted(zhp, &pool mtpnt)) { 1445 conti nue;
1381 be_print _err(gettext(" be_change_grub_defaul t: pool " 1446 } else if (strcnp(tok, "entry_name") == 0) {
1382 "dataset (%) is not nounted. Can't set " 1332 } else if (strenp(tok, "title") == 0) {
1383 "the default BE in the grub nenu.\n"), be_root_pool); 1447 entries++;
1384 ret = BE_ERR_NO_MENY; 1448 conti nue;
1385 goto cl eanup; 1449 } else if (strcnp(tok, "data_set") == 0) {
1386 } 1335 } else if (strcnp(tok, "bootfs") == 0)
1450 char *bootfs = strtok(NULL, BE_WH TE_SPACE);
1388 (void) snprintf(grub_file, MAXPATHLEN, "%%", 1451 if (bootfs == NULL)
1389 pool _mt pnt, BE_GRUB NENU) 1452 conti nue;
1391 if ((ret = be_open_nenu(be_root_pool, grub_file, 1454 if (strcnp(bootfs, be_root_ds) == 0) {
1392 &yrub_fp, "r+", B TRUE)) != BE_SUCCESS) { 1455 found_default = B_TRUE;
1393 goto cl eanup; 1456 br eak;
1394 } else if (grub_fp == NULL) { 1457 }
1395 ret = BE_ERR NO MENU, 1458 }
1396 goto cl eanup; 1459 }
1397 }
1461 if (!found_default) {
1399 free(pool _mtpnt); 1462 be_print_err(gettext("be_change_grub_default: failed "
1400 pool _mtpnt = NULL; 1463 "to find entry for % in the grub nmenu\n"),
1464 be_nane) ;
1402 /* Grab the stats of the original nmenu file */ 1465 ret = BE_ERR_BE_NCENT;
1403 if (stat(grub_file, &sb) !'=0) { 1466 goto cl eanup;
1404 err = errno; 1467 }
1405 be_print_err(gettext("be_change_grub_defaul t: "
1406 "failed to stat file %: %\n"), grub_file, strerror(err)); 1469 rewi nd(grub_fp);
1407 ret = errno_to_be_err(err);
1408 goto cl eanup; 1471 (void) snprintf(tenp_line, BUFSIZ, "default_entry=%l\n",
1409 } 1472 entries - 1 >= 0 ? entries - 1 : 0);
1473 (void) fputs(tenp_line, tenp_fp);
1411 /* Create a tnp file for the nodified menu.lst */ 1474 #endif /* ! codereview */
1412 tenp_grub_len = strlen(grub_file) + 7; 1475 while (fgets(line, BUFSIZ grub_fp)) {
1413 if ((temp_grub = (char *)malloc(terrp grub len)) == NULL) { 1476 char *tok = NULL
1414 be_print_err(gettext("be_change_grub_default: "
1415 "mall oc failed\n")); 1478 (void) strncpy(tenp_line, line, BUFSIZ);
1416 ret = BE_ERR_NOVEM
1417 got o cl eanup; 1480 if ((tok = strtok(tenp_line, "=\n")) != NULL &&
1418 } 1481 strcnp(tok, "default entry) == 0) {
1419 (void) nenset(tenp_grub, 0, tenp_grub_len); 1357 if ((tok = strtok(tenp l'ine, BE_WH TE_SPACE)) != NULL &&
1420 (void) strlcpy(tenp_grub, grub file, tenp_grub_len); 1358 strcnp(tok, "default") == 0) {
1421 (void) strlcat(tenp_grub, "XXXXXX', temp_grub_Ten); 1359 (void) snprintf(tenp_line, BUFSIZ "default %l\n",
1422 if ((fd = nkstenp(tenp_ grub)) == -1) { 1360 entries - 1 >= 0 ? entries - 1: 0);
1423 err = errno; 1361 (void) fputs(tenp_line, tenmp_fp);
1424 be pr| nt_err(gettext("be_change_grub_default: " 1482 } else {
1425 "nmkstenp failed: %\n"), strerror(err)); 1483 (void) fputs(line, tenp_fp);
1426 ret = errno_to_be_err(err); 1484 }
1427 free(tenp_grub); 1485 }
1428 tenp_grub = NULL;
1429 got o cl eanup; 1487 (void) fclose(grub_fp);
1430 } 1488 grub_fp = NULL;
1431 i f ((terrp fp = fdopen(fd "w')) == NULL) { 1489 (void) fcl ose(tenp fp);
1432 = errno 1490 tenp_fp = NULL,;
1433 be_pr| nt_er r (gettext ("be_change_grub_default: "
1434 "failed to open % file: %\n"), 1492 if (rename(t enp_gr ub, grub_file) !'=10) {
1435 tenp_grub, strerror(err)); 1493 err = errno;
1436 (void) close(fd); 1494 be pr| nt_err(gettext("be_change_grub_defaul t:
1437 ret = errno_to_be_err(err); 1495 "failed to renane file % to %: %\n"),
1438 goto cl eanup; 1496 temp_grub, grub_file, strerror(err));

new | i bbe/ conmon/ be_utils.c 19

1497 ret = errno_to_be_err(err);

1498 goto cl eanup;

1499 }

1500 free(tenp_grub);

1501 tenp_grub = NULL;

1503 /* Set the perms and ownership of the updated file */

1504 if (chmod(grub_file, sb.st_npde) != 0)

1505 err = errno;

1506 be_print_err(gettext("be change grub_defaul t:

1507 "failed to chnod %: %\n"), grub_file, strerror(err));
1508 ret = errno_to_be_err(err);

1509 goto cl eanup;

1510 1

1511 if (chown(grub_fi le, sh.st_uid, sh.st_gid) !=0) {

1512 err = errno;

1513 be prl nt _err(gettext("be_change_grub_default: "

1514 "failed to chown %: %\n"), grub_file, strerror(err));
1515 ret = errno_to_be_err(err);

1516 }

1518 cl eanup:

1519 if (pool_nmounted) {

1520 int err = BE_SUCCESS;

1521 err = be_unmount _pool (zhp, ptrp_mtpnt, orig_mtpnt);
1522 if (ret == BE SUCCESS)

1523 ret = err;

1524 free(orig_mtpnt);

1525 free(ptnmp_mtpnt);

1526 }

1527 ZFS_CLGSE(zhp) ;

1528 if (grub fp I'= NULL)

1529 (void) fclose(grub_fp);

1530 if (temp_fp !'= NULL)

1531 (void) fclose(tenp_fp);

1532 if (tenp_grub !'= NULL)

1533 (void) unlink(tenp_grub);

1534 free(tenp_grub);

1535 1

1537 return (ret);

1538 }

1540 /*

1541 * Function: be_updat e_nenu

1542 * Description: This function is used by be_renane to change the BE nane in
1543 * an existing entry in the grub nenu to the new nane of the BE.
1544 * Paraneters:

1545 * be_orig_nanme - the original nane of the BE

1546 * be_new_nane - the new name the BE is being renaneed to.
1547 * be_r oot _pool - The pool which contains the grub nenu
1548 * boot _pool - the pool where the BE is, if different than
1549 * the pool containing the boot menu. |If thisis
1550 * NULL it will be set to be_root_pool.

1551 * Returns:

1552 * BE_SUCCESS - Success

1553 * be_errno_t - Failure

1554 * Scope:

1555 * Semi-private (library wide use only)

1556 */

1557 int

1558 be_updat e_nenu(char *be_orig_nane, char *be_new nane, char *be_root_pool,
1559 char *boot _pool)

1560 {

1561 zfs_handl e_t *zhp = NULL;

1562 char menu_fil e[MAXPATHLEN] ;

new | i bbe/ conmon/ be_utils.c

1563 char be_root _ds[MAXPATHLEN] ;

1564 char be_new root ds[NAXPATHLEN]

1565 char |ine[BUFSI Z];

1566 char *pool _mtpnt = NULL;

1567 char *ptnmp_mtpnt = NULL;

1568 char *orig_mtpnt = NULL;

1569 char *tenp_nenu = NULL;

1570 FILE *menu_fp = NULL;

1571 FILE *new_fp = NULL;

1572 struct stat sb;

1573 int tenp_nmenu_len = 0;

1574 int tmp_fd;

1575 int ret = BE_SUCCESS;

1576 int flag = 0;

1577 #endif /* ! codereview */

1578 int err = 0;

1579 bool ean_t pool _nounted = B_FALSE;

1581 errno = 0;

1583 if (boot_pool == NULL)

1584 boot _pool = be_root_pool;

1586 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET))
1587 be prl nt err(gettext(be_update_nenu: failed to open
1588 'pool dataset for %: %\n"), be_root_pool,
1589 I'1 bzfs_error_description(g_zfs));

1590 return (zfs_err_to_be_err(g_zfs));

1591 }

1593 /*

1594 * Check to see if the pool’'s dataset is mounted. If it
1595 * attenpt to nmount it

1596 */

1597 if ((ret = be_nount_pool (zhp, &ptnp_mtpnt, &orig_mtpnt,
1598 &pool _rmount ed)) | = BE_SUCCESS)

1599 be_print_err(gettext("be_update_nenu: pool dataset
1600 "(%) could not be mounted\n"), be_root_pool);
1601 ZFS_CLGOSE(zhp) ;

1602 return (ret);

1603 }

1605 /*

1606 * CGet the nountpoint for the root pool dataset.

1607 */

1608 if (!zfs_is_munted(zhp, &pool _mtpnt)) {

1609 be_print_err(gettext("be_update_nenu: failed "
1610 "to get nmount point for the root pool. Can't set
1611 "the default BE in the grub nenu.\n"));

1612 ret = BE_ERR_NO_MENU,

1613 goto cl eanup;

1614 1

1616 /*

1617 * Check to see if this system supports grub

1618 */

1619 if (be_has_grub()) {

1620 (void) snprintf(nmenu_file, sizeof (nmenu_file),
1621 "% %", pool _mtpnt, BE_GRUB_MENU);

1622 } else {

1623 (void) snprintf(menu_file, sizeof (nenu_file),
1624 "Us%", pool _mtpnt, BE_SPARC MENU);

1625 }

1627 be_make_r oot _ds(be_root_pool, be_orig_nane, be_root_ds,
1628 si zeof (be_root_ds));

20

new | i bbe/ cormon/ be_utils.c 21 new | i bbe/ cormon/ be_utils.c 22
1629 be_make_r oot _ds(be_root _pool, be_new _nane, be_new root_ds, 1456 c = strtok(tline, BE_WH TE_SPACE);
1630 si zeof (be_new root_ds));

1696 if (c == NULL) {
1632 if ((ret = be_open_nenu(be_root_pool, nmenu_file, 1697 /* Found enpty line, wite it out. */
1633 &menu_f p, "r", B.TRUE)) != BE_SUCCESS) { 1698 (void) fput s(I ine, new. fp);
1634 goto cl eanup; 1699 } elseif (c[0] =="#") {
1635 } else if (menu_fp == NULL) { 1700 /* Found a comment line, wite it out. */
1636 ret = BE_ERR_NO_I\/ENU; 1701 (void) fput s(I ine, new fp)
1637 goto cl eanup; 1702 } else if (strcnmp(c, "entry_| name") == 0) {
1638 } 1464 } elseif (strcr’rp(c, "title") == 0) {

1703 char *name = NULL;
1640 free(pool _mtpnt); 1704 char *desc = NULL;
1641 pool _mt pnt = NULL;

1706 /*
1643 /* Grab the stat of the original nmenu file */ 1707 * Found a 'title’ line, parse out BE nane or
1644 if (st at(nenu_fi le, &hb) !'=0) { 1708 * the description.
1645 err = errno; 1709 */
1646 be pr| nt_err(gettext("be_update_nenu: " 1710 flag = 0;
1647 "failed to stat file %: %\n"), nenu_file, strerror(err)); 1711 #endif /* | codereview */
1648 (void) fclose(nenu_fp); 1712 name = strtok(NULL, BE_WH TE_SPACE);
1649 ret = errno_t o_be_err(err);
1650 goto cl eanup; 1714 if (name == NULL) {
1651 } 1715 l*

1716 * Nothing after 'title, just push
1653 /* Create tnp file for nodified nenu.lst */ 1717 * this line through
1654 temp_nenu_len = strlen(menu_file) + 7; 1718 */
1655 if ((temp_menu = (char *)mall oc(tenp_nenu_| en)) 1719 (void) fputs(line, new fp);
1656 == NULL) { 1720 } else {
1657 be prl nt _err(gettext("be_update_nenu: " 1721 *
1658 "mal Toc failed\n")); 1722 * Grab the remainder of the title which
1659 (void) fclose(nmenu_fp); 1723 * could be a nulti worded description
1660 ret = BE_ERR_NOVEM 1724 *
1661) goto cl eanup; 1725 desc = strtok(NULL, "\n");
1662
1663 (void) nmenset (tenp_nenu, 0, tenp_nenu_len); 1727 if (strcnp(name, be_orig_nanme) == 0) {
1664 (void) strlcpy(tenp_menu, nenu_file, tenp_nenu_|en); 1728 /*
1665 (void) strlcat(temp_menu, "XXXXXX', tenp_nenu_len); 1729 * The first token of the title is
1666 if ((tmp_fd = nkstenp(tenp_nenu)) == -1) { 1730 * the old BE nane, replace it with
1667 err = errno; 1731 * the new one, and wite it out
1668 be_print err(gettext(be_updat e_nenu: " 1732 * along with the renainder of
1669 "nmkstenp failed: %\n"), strerror(err)); 1733 * description if there is one.
1670 (void) fclose(nenu_fp); 1734 */
1671 free(tenp_nenu); 1735 ++f | ag;
1672 ret = errno_to_be_err(err); 1736 #endif /* | codereview */
1673 got o cl eanup; 1737 if (desc) {
1674 } 1738 (void) snprintf(new_line,
1675 if ((new_fp = fdopen(tnp_fd, "w')) == NULL) { 1739 SI zeof (new_line),
1676 err = errno; 1740 "entry_name=% %\ n"
1677 be_print_err(gettext("be_update_menu: " 1472 "title % Y%\n"
1678 "fdopen failed: %\n"), strerror(err)); 1741 be_new_nane, desc) ;
1679 (void) close(tnp_fd); 1742 } else {
1680 (void) fclose(nmenu_fp); 1743 (void) snprintf(new_|ine,
1681 free(tenp_nenu); 1744 SI zeof (new_line),
1682 ret = errno_to_be_err(err); 1745 "entry_nane=%\n", be_new na
1683 goto cl eanup; 1477 "title %\ n", be_new_nane);
1684 } 1746 }
1686 while (fgets(line, BUFSIZ, nenu_fp)) { 1748 (void) fputs(new_|ine, newfp);
1687 char tline[BUFSI Z]; 1749 } else {
1688 char new_| I ne[BUFSI Z] ; 1750 (void) fputs(line, new_fp);
1689 char *c¢ = NULL; 1751 }

1752 }
1691 (void) strlcpy(tline, line, sizeof (tline)); 1753 } else if (strcnmp(c, "data_set") == 0) {

1485 } else if (strcnp(c, "bootfs") == 0)
1693 /* Tokeni ze line */ 1754 /*
1694 c = strtok(tline, "=\n"); 1755 * Found a 'bootfs’ line, parse out the BE root

new | i bbe/ conmon/ be_utils.c

1756
1757
1758

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

: dat aset val ue.
chgr *root_ds = strtok(NULL, BE_WH TE_SPACE)
if (root_gs == NULL) {
/* Not hi ng after 'bootfs’, just push
* this line through

*

(void) fputs(line, new_fp);
} else {

* |f this bootfs is the one we're renaming,

* wite out the new root dataset val ue

*/

if (strcnp(root_ds, be_root_ds) == 0) {
++f | ag;

1773 #endif /* | codereview */

1774
1775
1504
1776

1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790

1792
1793
1794

1796
1797
1798
1799
1800
1801
1802
1803

1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818

1820 cl eanup:

(void) snprintf(new_line,

23

si zeof (new_|ine), "data_set=%\n",

si zeof (new_line), "bootfs %\n",

be_new root _ds);

el (void) fputs(new_|ine, newfp);
el se

}

(void) fputs(line, new fp);

} else {
/*

* Found sone other line we don't care
* about, wite it out.
*

(void) fputs(line, new fp);
}

(void) fclose(nenu_fp);
(void) fclose(new_ fp);
(void) close(tnp_fd);

if (renane(tenp_nmenu, nenu_file) !'=0) {
err = errno;
be_print_err(gettext("be_update_nenu: "
"failed to renane file % to %: %\n"),
temp_nenu, nenu_file, strerror(err));
ret = errno_to_be_err(err);

}
free(tenp_nenu);

/* Set the pernms and ownership of the updated file */
if (chmod(menu_file, sb.st_node) != 0)
err = errno;
be_print_err(gettext("be_update_nenu:
"failed to chmod %: %\n"), nenu_file, strerror(err));
ret = errno_to_be_err(err);
goto cl eanup;

}
if (chown(rmenu_file, sb.st_uid, sb.st_gid) !=0) {
err = errno;
be_print_err(gettext("be_update_nenu: "
"failed to chown %: %\n"), nenu_file, strerror(err));
ret = errno_to_be_err(err);

new | i bbe/ conmon/ be_utils.c

1821 if (pool _nounted)

1822 int err = BE_SUCCESS;

1823 err = be_unnount _pool (zhp, ptnp_mtpnt, orig_mtpnt);
1824 if (ret == BE_SUCCESS)

1825 ret = err;

1826 free(orig_mtpnt);

1827 free(ptmp_mtpnt);

1828 }

1829 ZFS_CLGCSE(zhp) ;

1830 return (ret);

1831 }

1833 /*

1834 * Function: be_has_menu_entry

1835 * Description: Checks to see if the BEs root dataset has an entry in the grub
1836 * menu.

1837 * Paraneters:

1838 * be_dataset - The root dataset of the BE

1839 * be_root_pool - The pool which contains the boot nenu
1840 * entry - A pointer the the entry nunber of the BE if found.
1841 * Returns:

1842 * B_TRUE - Success

1843 * B FALSE - Failure

1844 * Scope

1845 * Semi-private (library wide use only)

1846 */

1847 bool ean_t

1848 ?e_has_rrenu_entry(char *be_dat aset, char *be_root_pool, int *entry)
1849

1850 zfs_handl e_t *zhp = NULL;

1851 char menu_fil e[MAXPATHLEN] ;

1852 FILE *menu_f p;

1853 char I'i ne[BUFSI Z] ;

1854 char *| ast;

1855 char *rpool _mtpnt = NULL;

1856 char *ptnp_mt pnt = NULL;

1857 char *orig_mtpnt = NULL;

1858 int ent _num = 0;

1859 bool ean_t ret = 0;

1860 bool ean_t pool _mounted = B_FALSE;

1863 /*

1864 * Check to see if this system supports grub

1865 *

1866 if ((zhp = zfs_open(g_zfs, be_root_pool, ZFS_TYPE_DATASET))
1867 be_print_err(gettext("be_has_nenu_entry: failed to open "
1868 "pool dataset for %: %\n"), be_root_pool,

1869 I1bzfs_error_description(g_zfs));

1870 return (B_FALSE);

1871 }

1873 *

1874 * Check to see if the pool’s dataset is mounted. If it isn't we'll
1875 * attenpt to nount it.

1876 */

1877 if (be_nmount_pool (zhp, &ptnp_mtpnt, &orig_mtpnt,

1878 &pool _rmounted) != 0) {

1879 be_print_err(gettext("be_has_nenu_entry: pool dataset
1880 "(%) could not be nounted\n"), be_root_pool);
1881 ZFS_CLGOSE(zhp)

1882 return (B_FALSE);

1883 }

1885 I*

1886 * Get the nountpoint for the root pool dataset.

24

new | i bbe/ conmon/ be_utils.c

1887
1888
1889
1890
1891
1892
1893
1894

1896
1897
1898
1899
1900
1901
1902

1904
1905
1906
1907
1908
1909
1910
1911

1913
1914

1916
1917
1646

1919
1920
1649
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1666
1938
1939
1940

1942
1943
1944
1945
1946
1947
1948
1949

cl eanup:

*
/
if (!zfs_is_mounted(zhp, & pool_mtpnt)) {
be_print_err(gettext("be_has_nenu_entry: pool
"dataset (%) is not nounted. Can’t set "
"the default BE in the grub nenu.\n"),
ret = B_FALSE;
goto cl eanup;

be_r oot _pool);

}
if (be_has_grub()) {

(void) snprintf(menu_file, MAXPATHLEN, "/%%",
rpool _mt pnt, BE_GRUB_MENU);
} else {
(void) snprintf(menu_file, MAXPATHLEN, "/%%",

rpool _mmt pnt, BE_ SPARC > MENU) ;

}

if (be_open_nenu(be_root_pool,
B FALSE) != 0)
ret = B _FALSE,
goto cl eanup;
} elseif (nEnu fp == NULL) {
ret = B_FALSE;
goto cI eanup;

menu_file, &renu_fp, "r",

}

free(rpool _mtpnt);
rpool _mt pnt = NULL;

while (fgets(line, BUFSIZ, nenu_fp)) {

char *tok = strtok_r(line, "=\n", & ast);
char *tok = strtok_r(line, BE_WH TE_SPACE, &l ast);
if (tok !'= NULL && tok[O] !="#")

if (strcnp(tok, "data_set") == 0) {
if (strcrrp(tok "bootfs") == 0) {
tok = strtok_r(last, BE WH TE_SPACE, &l ast);
if (tok !'= NULL && strcnp(tok
be_dataset) == 0)
(void) fclose(nmenu_fp);

The entry nunber needs to be
decremented here because the title
will always be the first line for
an entry. Because of this we'll

al ways be off by one entry when we
check for bootfs.

* ok % ok ok %

*/

*entry = ent_num- 1,
ret = B_TRUE;

goto cl eanup;

}
} else if (strcnp(tok,
} else if (strenp(tok,
ent _numt+;

"entry_nanme") == 0)
"title") == 0)

if (pool _nounted)
(voi d) be_unmount _pool (zhp, ptnp_mt pnt,
free(orig_mtpnt);

free(ptmp_mtpnt);

orig_mtpnt);

}
ZFS_CLOSE(zhp) ;
(void) fcl ose(manu fp);

25

new | i bbe/ common/ be_utils.c

1950
1951

3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656

3658
3659

3661
3662
3663

3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678

3680
3681
3682
3683
3684
3685

return (ret);

}

__unchanged_portion_onitted_

/*
Functi on:
Descri ption:

be_create_nenu

*
*
* This function is used if no nenu.lst file exists. In

* this case a new file is created and if needed default
* lines are added to the file.

* Paramet ers:

* pool - The name of the pool the nenu.lst file is on

* menu_file - The name of the file we're creating.

* menu_fp - A pointer to the file pointer of the file we
*
*
*
*
*
*
*
*

created. This is also used to pass back the file

pointer to the newy created file.

nmode - the original npbde used for the failed attenpt to

non-exi stent file.
Ret ur ns
BE_SUCCESS - Success
be_errno_t - Failure
Scope:
* Private
*/
static int
be_creat e_menu(
char *pool,
char *nmenu_file,
FILE **nenu_f p,
char *node)

be_node_list_t
char *menu_path = NULL;
char *be_rpool = NULL;
char *be_name = NULL;
char *console = NULL;
errno = 0O;

*be_nodes = NULL;

if (menu_file == NULL || menu_fp == NULL || node == NULL)
return (BE_ERR_INVAL);

nmenu_path = strdup(nmenu_file);
if (menu_path == NULL)
return (BE_ERR_NOMVEM ;

(voi d) dlrnama(manu pat h);
if (*menu_path =
free(menu path);
return (BE_ERR_ BAD MENU_PATH) ;

}
if (nkdirp(menu_path,
SIRMKU| SIRGRP | SIXGRP | SIROTH| S IXOTH == -1 &&
errno ! = EEXI ST) {
free(nenu_path);
be_print_err(gettext("be_create_nenu:
"directory: %\n"), nenu_path, strerror(errno));
return (errno_to_be_err(errno));

free(nenu_path);
/*
* Check to see if this system supports grub
*/
if (be_has_grub()) {
/*

* The grub nenu is mssing so we need to create it

Failed to create the %

26

new | i bbe/ conmon/ be_utils.c 27

3686
3687
3688
3689
3690
3691
3692

3694

3696
3697
3698
3699
3700
3701
3702
3703

3704
3705
3706
3707
3708
3709
3710
3439
3711
3712
3713
3714
3715
3716

3718
3447
3719

3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732

3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746

3748

* and fill in the first few lines.
*/

FI LE *t enp_] fp = fopen(nmenu_file, "a+");
if (ter'rp fp == NULL) {
menu_fp = NULL;
return (errno_to_be_err(errno));

}
if ((console = be_get_console_prop()) != NULL) {
/*
* |f console is redirected to serial line,

* GRUB splash screen will not be enabl ed.
*
/

if (strncnp(console, "text", strlen("text")) == 0 ||
strncnp(consol e, "graphics",
strlen("graphics")) == 0) {

(void) fprintf(tenp_f p, "os\n",

(v0|d) fprintf(temp_fp, "%\n",
GRUB_FOREGROUND) ;

(v0|d) “fprintf(tenp_fp, "%\n",
E_GRUB_BACKGROUND) ;

(v0|d) “fprintf(tenp_fp, "%\n",
BE_GRUB_DEFAULT) ; */

BE_GRUB_DEFAULT) ;

BE_GRUB_SPLASH) ;

} else {
be prlnt _err(gettext("be create_nenu: "
“consol e on serial |ine,
"CRUB spl ash inage will be disabled\n"));
}
}
(void) fprintf(tenp_fp, "tineout=30\n");
(void) fprintf(tenp_fp, "tineout 30\n");
(void) fclose(tenp_fp);
} else {
/*
* The menu file doesn’t exist so we need to create a
* blank file.
*
/

FILE *tenp_fp = fopen(nmenu_file, "wt");
if (temp_fp == NULL) {

*menu_fp = NULL;

return (errno_to_be_err(errno));

) %voi d) fclose(tenp_fp);

/*

* Now we need to add all the BE's back into the the file.

*

/
if (_be_list(NULL, &be_nodes) == BE_SUCCESS) {

whil e (be_nodes != NULL) {
if (strcnp(pool, be_nodes->be_rpool) == 0) {
(voi d) be_append_nenu(be_nodes- >be_node_nane,
be_nodes->be_rpool, NULL, NULL, NULL);

}

i f (be_nodes->be_active_on_boot) {
be_rpool = strdup(be_nodes->be_rpool);
be_name = strdup(be_nodes->be_node_nane);

}

be_nodes = be_nodes- >be_next _node;

new | i

3749
3750
3751

3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763

3765
3766 }

bbe/ common/ be_utils.c

}
be_free_list(be_nodes);

/*
* Check to see if this system supports grub
*/
if (be_ has grub()) {
err = be_change_grub_defaul t (be_nane,
|f (err != BE_SUCCESS)
return (err);

*menu_fp = fopen(nenu_file, node);
if (*menu_fp == NULL)
return (errno_to_be_err(errno));

return (BE_SUCCESS);

__unchanged_portion_ontted_

be_rpool);

28

