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1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License.

12 *

13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. Al rights reserved.

24 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.

28 #include <libxm/parser.h>
29 #include <libxnl/xinclude. h>
30 #include <sys/fn protocol.h>
31 #include <assert.h>

32 #include <string. h>

33 #include <strings. h>

34 #include <ctype. h>

35 #include <errno. h>

36 #include <limts.h>

37 #include <fnllibtopo. h>

38 #include <unistd. h>

39 #include <sys/stat.h>

40 #include <fcntl. h>

41 #include <topo_file.h>

42 #incl ude <topo_nod. h>

43 #incl ude <topo_subr. h>

44 #include <topo_alloc. h>

45 #incl ude <topo_parse. h>

46 #include <topo_error. h>

48 static tf_rdata_t *topo_xm _wal k(topo_mod_t *, tf_info_t *, xml NodePtr,

49 tnode_t *);
50 static tf_edata_t *enumattributes_process(topo_nod_t *, xm NodePtr);

51 static int enumrun(topo_nod_t *, tf_rdata_t *);

52 static int fac_enumrun(topo_nod_t *, tnode_t *, const char *);

53 static int fac_process(topo_nod_t *, xm NodePtr, tf_rdata_t *, tnode_t *);
54 static int fac_enum process(topo_nod_t *, xm NodePtr, tnode_t *);

55 static int decorate_nodes(topo_nod_t *, tf_rdata_t *, xml NodePtr, tnode_t

56 tf_pad_t **);

25 * Copyright (c) 2018, Western Digital Technologies, Inc. All rights reserved.
*/
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59 static void
60 strarr_free(topo_nod_t *nod, char **arr, uint_t nelens)

61 {

62 int i;

64 for (i =0; i < nelens; i++)

65 topo_nod_strfree(nod, arr[i]);

66 topo_nod_free(nod, arr, (nelems * sizeof (char *)));
67

__unchanged_portion_onitted_

196 static int

197 x|l ate_comon(topo_nod_t *np, xnl NodePtr xn, topo_type_t ptype, nvlist_t *nvl,

198 const char *nane)

197 const char *nane)

199 {

200 int rv;

201 uint64_t ui;

202 uint_t i =0, nelems = 0;

203 nvliist_t *fnri;

204 xm Char *str;

205 char **strarrbuf;

206 void *arrbuf;

207 nvlist_t **nvlarrbuf;

208 xm NodePtr cn;

210 topo_dprintf(np->tmhdl, TOPO DBG XM., "xl ate_common(nanme=%)\n",
211 swtch (ptype)

212 case TOPO_TYPE_| NT32:

213 if (xmattr_to_int(nmp, xn, Value, &ui) < 0)
214 return (-1);

215 rv = nvlist_add_int32(nvl, nane, (int32_t)ui);
216 br eak;

217 case TOPO_TYPE_UI NT32:

218 if (xmattr_to_int(nmp, xn, Value, &ui) < 0)
219 return (-1);

220 rv = nvlist_add_uint32(nvl, name, (uint32_t)ui);
221 br eak;

222 case TOPO TYPE_I NT64:

223 if (xmattr_to_int(nmp, xn, Value, &ui) < 0)
224 return (-1);

225 rv = nvlist_add_int64(nvl, nanme, (int64_t)ui);
226 br eak;

227 case TOPO _TYPE_UI NT64:

228 if (xmattr_to_int(nmp, xn, Value, &ui) < 0)
229 return (-1);

230 rv = nvlist_add_uint64(nvl, nane, ui);

231 br eak;

232 case TOPO TYPE FMRI :

233 if (xmattr_to_fnri(np, xn, Value, &nri) < 0)
234 return (-1);

235 rv = nvlist_add_nvlist(nvl, nane, fnri);

236 nvlist_free(fnri);

237 br eak;

238 case TOPO_TYPE_STRI NG

239 if ((str = xm GetProp(xn, (xm Char *)Value)) == NULL)
240 return (-1);

241 rv = nvlist_add_string(nvl, nane, (char *)str);
242 xm Free(str);

243 br eak;

244 case TOPO TYPE | NT32_ARRAY:

245 case TOPO_TYPE_Ul NT32_ARRAY:

246 case TOPO_TYPE_| NT64_ARRAY:

247 case TOPO TYPE_Ul NT64_ARRAY:

247 for (cn = xn->xm ChildrenNode; cn != NULL; cn = cn->next)

248 if ((xm Strcnp(cn->nanme, (xm Char *)Propitem
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(xm Strcnp(cn->name, (xm Char *)Argiten) == 0))
nel ems++;

if (nelens < 1) {
topo_ dprintf(np->tmhdl, TOPO DBG ERR, "No <prop|tem> "
“or <argitenm el ements found for array val");
return (-1);

}
if ((arrbuf = topo_nod_alloc(np, (nelems * sizeof (uint64_t))))
== NULL)

return (topo_nod_seterrno(np, ETOPO NOVEM));
br eak;
case TOPO _TYPE_STRI NG_ARRAY:
case TOPO TYPE_FMRI _ARRAY:
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next)
if ((xm Strenp(cn->nane, (xm Char *)Propitem) == 0) ||
xm Strcnmp(cn->nanme, (xm Char *)Argitem) == 0))
nel ens++;

if (nelens < 1) {
topo_ dprintf(np->tmhdl, TOPO DBG ERR, "No <prop|tem> "
"or <argitenr el ements found for array val");
return (-1);

}
if ((strarrbuf = topo_nod_alloc(nmp, (nelens * sizeof (char *))))
== NULL
return (topo_nod_seterrno(np, ETOPO NOVEM));

br eak;
case T(PO TYPE FMRI _ARRAY:
for (cn = xn->xni ChlldrenNode cn !'= NULL; cn = cn->next)

if ((xm Strcmp(cn->nanme, (xm Char *)Propitem) == 0) ||
(xm Strcnp(cn->nanme, (xm Char *)Argitem) == 0))
nel ems++;

if (nelens < 1)
topo dprintf(np->tmhdl, TOPO DBG ERR, "No <propitenr "
el ements found for array prop");
return (-1);

}
i1f ((nvlarrbuf = topo_nod_alloc(np, (nelens *
sizeof (nvlist_t *)))) == NULL)
return (topo_nod_seterrno(np, ETOPO NOVEM));

br eak;
defaul t:

topo dprintf(np->tmhdl, TOPO DBG ERR,

"Unr ecogni zed type attribute (ptype = %d)\n", ptype);

return (topo_nod_seterrno(np, ETOPO PRSR BADTYPE));

}

switch (ptype) {
case TOPO_TYPE_| NT32 ARRAY
if ((arrbuf = topo_nod_alloc(np, (nelens * sizeof (int32_t))))

== NULL)
return (topo_nod_seterrno(np, ETOPO _NOVEM));
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next)

if ((xm Strcmp(cn->nanme, (xm Char *)Propitem) == §
(xm Strcnmp(cn->nanme, (xm Char *)Argitem) == 0)) {

)

)

ue

if ((str = xm GetProp(cn, (xm Char *)Va
= ue

if ((str = xm GetProp(xn, (xm Char *)Va
== NULL)
return (-1);

((int32_t *)arrbuf)[i++]
= atoi ((const char *)str);
xm Free(str);
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}
}

rv = nvlist_add_int32_array(nvl, nane, (int32_t *)arrbuf,
nel ens) ;
topo_nod_free(np, arrbuf, (nelenms * sizeof (int32_t)));
free(arrbuf);
br eak;
case TOPO_TYPE_UlI NT32_ARRAY:
if ((arrbuf = topo_nod_alloc(np, (nelens * sizeof (uint32_t))))

== NULL)
return (topo_nod_seterrno(np, ETOPO NOVEM);
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next)

if ((xm Strcmp(cn->nanme, (xm Char *)Propitem) == O§

(xm Strcnmp(cn->nanme, (xm Char *)Argitem) == 0)) {
)
)

xm Get Prop(cn, (xm Char *)Val ue
xm Get Prop(xn, (xm Char *)Val
== NULL)

return (-1);

ue

((uint32_t *)arrbuf)[i++]
= atoi ((const char *)str);
xm Free(str);

}

rv = nvlist_add_uint32_array(nvl, nane, (uint32_t *)arrbuf,
nel ens);
topo_nod_free(np, arrbuf, (nelenms * sizeof (uint32_t)));
free(arrbuf);
br eak;
case TOPO TYPE | NT64_ARRAY:
if ((arrbuf = topo_nod_alloc(np, (nelems * sizeof (int64_t))))
== NULL)
return (topo_nod_seterrno(np, ETOPO NOVEM));
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next)
if ((xm Strenp(cn->nane, (xm Char *)Propitem) == 0
(xm Strcmp(cn->nanme, (xm Char *)Argitem) == 0)

if ((str = xm GetProp(cn, (xm Char *)Va
if ((str = xm GetProp(xn, (xm Char *)Va
== NULL)
return (-1);

((int64_t *)arrbuf)[i++]
= atol ((const char *)str);
xm Free(str);

ue
ue

}

rv = nvlist_add_int64_array(nvl, nane, (int64_t *)arrbuf,
nel ens) ;
topo_nod_free(np, arrbuf, (nelens * sizeof (int64_t)));
free(arrbuf);
break;
case TOPO TYPE Ul NT64_ARRAY:
if ((arrbuf = topo_nod_alloc(np, (nelems * sizeof (uint64_t))))

== NULL)
return (topo_nod_seterrno(np, ETOPO NC]VEM)
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn- >next)

if ((xm Strcmp(cn->nanme, (xm Char *)Proplten) == O§
(xm Strcnp(cn->nanme, (xm Char *)Argiten) == 0)) {

)

)

if ((str = xm GetProp(cn, (xnl Char *)Val ue))
if ((str = xm Get Prop(xn, (xml Char *)Val ue))
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343 == NULL)

344 return (-1);

346 ((uint64_t *)arrbuf)[i++]

347 = atol ((const char *)str);

348 xm Free(str);

349 }

350 }

352 rv = nvlist_add_uint64_array(nvl, nane, arrbuf,

353 nel ens) ;

354 topo_nod_free(np, arrbuf, (nelems * sizeof (uint64_t)));
372 free(arrbuf);

355 break;

356 case TOPO TYPE STRI NG ARRAY:

357 if ((strarrbuf = topo_nod_alloc(np, (nelens * sizeof (char *))))
358 == NULL)

359 return (topo_nod_seterrno(np, ETOPO NOVEM));

360 for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next) {
361 if ((xm Strcmp(cn->nanme, (xm Char *)Propitem

362 (xm Strcnp(cn->nanme, (xm Char *)Argitemn)

364 if ((str = xm GetProp(cn, (xnm Char *)Val ue))
365 == NULL)

366 return (-1);

368 strarrbuf[i++] =

369 t opo_nod_strdup(np, (const char *)str);
370 xm Free(str);

371 }

372 }

374 rv = nvlist_add_string_array(nvl, nane, strarrbuf, nelens);
375 strarr_free(np, strarrbuf, nelens);

376 br eak;

377 case TOPO TYPE FMRI _ARRAY:

378 if ((nvlarrbuf = topo_nod_alloc(np, (nelens *

379 sizeof (nvlist_t *)))) == NULL)

380 return (topo_nod_seterrno(np, ETOPO NOVEM));

381 for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next) {
382 if ((xm Strcmp(cn->nanme, (xm Char *)Propitem

383 (xm Strcnp(cn->nanme, (xm Char *)Argitemn)

385 if ((str = xm GetProp(cn, (xnml Char *)Val ue))
397 if ((str = xm Get Prop(xn, (xml Char *)Val ue))
386 == NULL)

387 return (-1);

389 if (topo_nod_str2nvl (np, (const char *)str,
390 &nvlarrbuf[i++])) < 0)

391 xm Free(str);

392 return (-1);

393 }

394 xm Free(str);

395 }

396 }

398 rv = nvlist_add_nvlist_array(nvl, nane, nvlarrbuf,

399 nel ens);

400 topo_nod_free(np, nvlarrbuf, (nelems * sizeof (nvlist_t

412 free(nvlarrbuf);

401 br eak;

402 }

404 if (rv1=0)

405 topo_dprintf(np->tm hdl, TOPO DBG ERR,
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406 "Nvlist construction failed.\n");

407 return (topo_nod_seterrno(np, ETOPO _NOVEM );
408 } else

409 return (0);

410 }

__unchanged_portion_onitted_



