new usr/src/lib/fmtopo/libtopo/common/topo_xmn.c

R R R R

57841 Fri Jan 12 10:52: 06 2018
new usr/src/lib/fm topo/libtopo/common/topo_xmn.c
8954 |ibtopo cannot handle any array type other than string_array.
Revi ewed by: Andy Stornont astornont @ ackt opsystens. com
Revi ewed by: David H fppner Oxffea@mail.com
Revi ewed by: Rob Johnston rob.johnston@ oyent.com

hkkkkkkkkkkkkkkkkhkkhkkkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License.

12 *

13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. Al rights reserved.

24 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.

28 #include <libxm/parser.h>
29 #include <libxnl/xinclude. h>
30 #include <sys/fn protocol.h>
31 #include <assert.h>

32 #include <string. h>

33 #include <strings. h>

34 #include <ctype. h>

35 #include <errno. h>

36 #include <limts.h>

37 #include <fnllibtopo. h>

38 #include <unistd. h>

39 #include <sys/stat.h>

40 #include <fcntl. h>

41 #include <topo_file.h>

42 #incl ude <topo_nod. h>

43 #incl ude <topo_subr. h>

44 #include <topo_alloc. h>

45 #incl ude <topo_parse. h>

46 #include <topo_error. h>

48 static tf_rdata_t *topo_xm _wal k(topo_mod_t *, tf_info_t *, xml NodePtr,

49 tnode_t *);
50 static tf_edata_t *enumattributes_process(topo_nod_t *, xm NodePtr);

51 static int enumrun(topo_nod_t *, tf_rdata_t *);

52 static int fac_enumrun(topo_nod_t *, tnode_t *, const char *);

53 static int fac_process(topo_nod_t *, xm NodePtr, tf_rdata_t *, tnode_t *);
54 static int fac_enum process(topo_nod_t *, xm NodePtr, tnode_t *);

55 static int decorate_nodes(topo_nod_t *, tf_rdata_t *, xml NodePtr, tnode_t

56 tf_pad_t **);

25 * Copyright (c) 2018, Western Digital Technologies, Inc. All rights reserved.
*/

new usr/src/lib/fmtopo/libtopo/comon/topo_xm.c

59 static void
60 strarr_free(topo_nod_t *nod, char **arr, uint_t nelens)

61 {

62 int i;

64 for (i =0; i < nelens; i++)

65 topo_nod_strfree(nod, arr[i]);

66 topo_nod_free(nod, arr, (nelems * sizeof (char *)));
67

__unchanged_portion_onitted_

196 static int

197 x|l ate_comon(topo_nod_t *np, xnl NodePtr xn, topo_type_t ptype, nvlist_t *nvl,

198 const char *nane)

197 const char *nane)

199 {

200 int rv;

201 uint64_t ui;

202 uint_t i =0, nelems = 0;

203 nvliist_t *fnri;

204 xm Char *str;

205 char **strarrbuf;

206 void *arrbuf;

207 nvlist_t **nvlarrbuf;

208 xm NodePtr cn;

210 topo_dprintf(np->tmhdl, TOPO DBG XM., "xl ate_common(nanme=%)\n",
211 swtch (ptype)

212 case TOPO_TYPE_| NT32:

213 if (xmattr_to_int(nmp, xn, Value, &ui) < 0)
214 return (-1);

215 rv = nvlist_add_int32(nvl, nane, (int32_t)ui);
216 br eak;

217 case TOPO_TYPE_UI NT32:

218 if (xmattr_to_int(nmp, xn, Value, &ui) < 0)
219 return (-1);

220 rv = nvlist_add_uint32(nvl, name, (uint32_t)ui);
221 br eak;

222 case TOPO TYPE_I NT64:

223 if (xmattr_to_int(nmp, xn, Value, &ui) < 0)
224 return (-1);

225 rv = nvlist_add_int64(nvl, nanme, (int64_t)ui);
226 br eak;

227 case TOPO _TYPE_UI NT64:

228 if (xmattr_to_int(nmp, xn, Value, &ui) < 0)
229 return (-1);

230 rv = nvlist_add_uint64(nvl, nane, ui);

231 br eak;

232 case TOPO TYPE FMRI :

233 if (xmattr_to_fnri(np, xn, Value, &nri) < 0)
234 return (-1);

235 rv = nvlist_add_nvlist(nvl, nane, fnri);

236 nvlist_free(fnri);

237 br eak;

238 case TOPO_TYPE_STRI NG

239 if ((str = xm GetProp(xn, (xm Char *)Value)) == NULL)
240 return (-1);

241 rv = nvlist_add_string(nvl, nane, (char *)str);
242 xm Free(str);

243 br eak;

244 case TOPO TYPE | NT32_ARRAY:

245 case TOPO_TYPE_Ul NT32_ARRAY:

246 case TOPO_TYPE_| NT64_ARRAY:

247 case TOPO TYPE_Ul NT64_ARRAY:

247 for (cn = xn->xm ChildrenNode; cn != NULL; cn = cn->next)

248 if ((xm Strcnp(cn->nanme, (xm Char *)Propitem

new usr/src/lib/fmtopo/libtopo/common/topo_xmn.c

249
250

252
253
254
255
256
257
258
259
260
248
249
250
251
252
253

255
256
257
258
259
272
273
274
260
276
277
278
279
280

282
283
284
285
286
287
288
289
290
261
262
263
264
265

267
268
269
270
271
272
273
274

276
303
277
278

280
281
282

(xm Strcnp(cn->name, (xm Char *)Argiten) == 0))
nel ems++;

if (nelens < 1) {
topo_ dprintf(np->tmhdl, TOPO DBG ERR, "No <prop|tem> "
“or <argitenm el ements found for array val");
return (-1);

}
if ((arrbuf = topo_nod_alloc(np, (nelems * sizeof (uint64_t))))
== NULL)

return (topo_nod_seterrno(np, ETOPO NOVEM));
br eak;
case TOPO _TYPE_STRI NG_ARRAY:
case TOPO TYPE_FMRI _ARRAY:
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next)
if ((xm Strenp(cn->nane, (xm Char *)Propitem) == 0) ||
xm Strcnmp(cn->nanme, (xm Char *)Argitem) == 0))
nel ens++;

if (nelens < 1) {
topo_ dprintf(np->tmhdl, TOPO DBG ERR, "No <prop|tem> "
"or <argitenr el ements found for array val");
return (-1);

}
if ((strarrbuf = topo_nod_alloc(nmp, (nelens * sizeof (char *))))
== NULL
return (topo_nod_seterrno(np, ETOPO NOVEM));

br eak;
case T(PO TYPE FMRI _ARRAY:
for (cn = xn->xni ChlldrenNode cn !'= NULL; cn = cn->next)

if ((xm Strcmp(cn->nanme, (xm Char *)Propitem) == 0) ||
(xm Strcnp(cn->nanme, (xm Char *)Argitem) == 0))
nel ems++;

if (nelens < 1)
topo dprintf(np->tmhdl, TOPO DBG ERR, "No <propitenr "
el ements found for array prop");
return (-1);

}
i1f ((nvlarrbuf = topo_nod_alloc(np, (nelens *
sizeof (nvlist_t *)))) == NULL)
return (topo_nod_seterrno(np, ETOPO NOVEM));

br eak;
defaul t:

topo dprintf(np->tmhdl, TOPO DBG ERR,

"Unr ecogni zed type attribute (ptype = %d)\n", ptype);

return (topo_nod_seterrno(np, ETOPO PRSR BADTYPE));

}

switch (ptype) {
case TOPO_TYPE_| NT32 ARRAY
if ((arrbuf = topo_nod_alloc(np, (nelens * sizeof (int32_t))))

== NULL)
return (topo_nod_seterrno(np, ETOPO _NOVEM));
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next)

if ((xm Strcmp(cn->nanme, (xm Char *)Propitem) == §
(xm Strcnmp(cn->nanme, (xm Char *)Argitem) == 0)) {

)

)

ue

if ((str = xm GetProp(cn, (xm Char *)Va
= ue

if ((str = xm GetProp(xn, (xm Char *)Va
== NULL)
return (-1);

((int32_t *)arrbuf)[i++]
= atoi ((const char *)str);
xm Free(str);

new usr/src/lib/fm topo/libtopo/comon/topo_xmn.c

283
284

286
287
288
315
289
290
291
292
293
294
295
296

298
322
299
300

302
303
304
305
306

308
309
310
334
311
312
313
314
315
316
317
318

320
341
321
322

324
325
326
327
328

330
331
332
353
333
334
335
336
337
338
339
340

342
360

}
}

rv = nvlist_add_int32_array(nvl, nane, (int32_t *)arrbuf,
nel ens) ;
topo_nod_free(np, arrbuf, (nelenms * sizeof (int32_t)));
free(arrbuf);
br eak;
case TOPO_TYPE_UlI NT32_ARRAY:
if ((arrbuf = topo_nod_alloc(np, (nelens * sizeof (uint32_t))))

== NULL)
return (topo_nod_seterrno(np, ETOPO NOVEM);
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next)

if ((xm Strcmp(cn->nanme, (xm Char *)Propitem) == O§

(xm Strcnmp(cn->nanme, (xm Char *)Argitem) == 0)) {
)
)

xm Get Prop(cn, (xm Char *)Val ue
xm Get Prop(xn, (xm Char *)Val
== NULL)

return (-1);

ue

((uint32_t *)arrbuf)[i++]
= atoi ((const char *)str);
xm Free(str);

}

rv = nvlist_add_uint32_array(nvl, nane, (uint32_t *)arrbuf,
nel ens);
topo_nod_free(np, arrbuf, (nelenms * sizeof (uint32_t)));
free(arrbuf);
br eak;
case TOPO TYPE | NT64_ARRAY:
if ((arrbuf = topo_nod_alloc(np, (nelems * sizeof (int64_t))))
== NULL)
return (topo_nod_seterrno(np, ETOPO NOVEM));
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next)
if ((xm Strenp(cn->nane, (xm Char *)Propitem) == 0
(xm Strcmp(cn->nanme, (xm Char *)Argitem) == 0)

if ((str = xm GetProp(cn, (xm Char *)Va
if ((str = xm GetProp(xn, (xm Char *)Va
== NULL)
return (-1);

((int64_t *)arrbuf)[i++]
= atol ((const char *)str);
xm Free(str);

ue
ue

}

rv = nvlist_add_int64_array(nvl, nane, (int64_t *)arrbuf,
nel ens) ;
topo_nod_free(np, arrbuf, (nelens * sizeof (int64_t)));
free(arrbuf);
break;
case TOPO TYPE Ul NT64_ARRAY:
if ((arrbuf = topo_nod_alloc(np, (nelems * sizeof (uint64_t))))

== NULL)
return (topo_nod_seterrno(np, ETOPO NC]VEM)
for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn- >next)

if ((xm Strcmp(cn->nanme, (xm Char *)Proplten) == O§
(xm Strcnp(cn->nanme, (xm Char *)Argiten) == 0)) {

)

)

if ((str = xm GetProp(cn, (xnl Char *)Val ue))
if ((str = xm Get Prop(xn, (xml Char *)Val ue))

new usr/src/lib/fmtopo/libtopo/common/topo_xmn.c

343 == NULL)

344 return (-1);

346 ((uint64_t *)arrbuf)[i++]

347 = atol ((const char *)str);

348 xm Free(str);

349 }

350 }

352 rv = nvlist_add_uint64_array(nvl, nane, arrbuf,

353 nel ens) ;

354 topo_nod_free(np, arrbuf, (nelems * sizeof (uint64_t)));
372 free(arrbuf);

355 break;

356 case TOPO TYPE STRI NG ARRAY:

357 if ((strarrbuf = topo_nod_alloc(np, (nelens * sizeof (char *))))
358 == NULL)

359 return (topo_nod_seterrno(np, ETOPO NOVEM));

360 for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next) {
361 if ((xm Strcmp(cn->nanme, (xm Char *)Propitem

362 (xm Strcnp(cn->nanme, (xm Char *)Argitemn)

364 if ((str = xm GetProp(cn, (xnm Char *)Val ue))
365 == NULL)

366 return (-1);

368 strarrbuf[i++] =

369 t opo_nod_strdup(np, (const char *)str);
370 xm Free(str);

371 }

372 }

374 rv = nvlist_add_string_array(nvl, nane, strarrbuf, nelens);
375 strarr_free(np, strarrbuf, nelens);

376 br eak;

377 case TOPO TYPE FMRI _ARRAY:

378 if ((nvlarrbuf = topo_nod_alloc(np, (nelens *

379 sizeof (nvlist_t *)))) == NULL)

380 return (topo_nod_seterrno(np, ETOPO NOVEM));

381 for (cn = xn->xm ChildrenNode; cn !'= NULL; cn = cn->next) {
382 if ((xm Strcmp(cn->nanme, (xm Char *)Propitem

383 (xm Strcnp(cn->nanme, (xm Char *)Argitemn)

385 if ((str = xm GetProp(cn, (xnml Char *)Val ue))
397 if ((str = xm Get Prop(xn, (xml Char *)Val ue))
386 == NULL)

387 return (-1);

389 if (topo_nod_str2nvl (np, (const char *)str,
390 &nvlarrbuf[i++])) < 0)

391 xm Free(str);

392 return (-1);

393 }

394 xm Free(str);

395 }

396 }

398 rv = nvlist_add_nvlist_array(nvl, nane, nvlarrbuf,

399 nel ens);

400 topo_nod_free(np, nvlarrbuf, (nelems * sizeof (nvlist_t

412 free(nvlarrbuf);

401 br eak;

402 }

404 if (rv1=0)

405 topo_dprintf(np->tm hdl, TOPO DBG ERR,

new usr/src/lib/fmtopo/libtopo/common/topo_xmn.c

406 "Nvlist construction failed.\n");

407 return (topo_nod_seterrno(np, ETOPO _NOVEM);
408 } else

409 return (0);

410 }

__unchanged_portion_onitted_

