
new/usr/src/lib/fm/topo/libtopo/common/topo_xml.c 1

**
 57841 Fri Jan 12 10:52:06 2018
new/usr/src/lib/fm/topo/libtopo/common/topo_xml.c
8954 libtopo cannot handle any array type other than string_array.
Reviewed by: Andy Stormont astormont@racktopsystems.com
Reviewed by: David Hˆ¶ppner 0xffea@gmail.com
Reviewed by: Rob Johnston rob.johnston@joyent.com
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2018, Western Digital Technologies, Inc. All rights reserved.
26 */

28 #include <libxml/parser.h>
29 #include <libxml/xinclude.h>
30 #include <sys/fm/protocol.h>
31 #include <assert.h>
32 #include <string.h>
33 #include <strings.h>
34 #include <ctype.h>
35 #include <errno.h>
36 #include <limits.h>
37 #include <fm/libtopo.h>
38 #include <unistd.h>
39 #include <sys/stat.h>
40 #include <fcntl.h>
41 #include <topo_file.h>
42 #include <topo_mod.h>
43 #include <topo_subr.h>
44 #include <topo_alloc.h>
45 #include <topo_parse.h>
46 #include <topo_error.h>

48 static tf_rdata_t *topo_xml_walk(topo_mod_t *, tf_info_t *, xmlNodePtr,
49 tnode_t *);
50 static tf_edata_t *enum_attributes_process(topo_mod_t *, xmlNodePtr);
51 static int enum_run(topo_mod_t *, tf_rdata_t *);
52 static int fac_enum_run(topo_mod_t *, tnode_t *, const char *);
53 static int fac_process(topo_mod_t *, xmlNodePtr, tf_rdata_t *, tnode_t *);
54 static int fac_enum_process(topo_mod_t *, xmlNodePtr, tnode_t *);
55 static int decorate_nodes(topo_mod_t *, tf_rdata_t *, xmlNodePtr, tnode_t *,
56 tf_pad_t **);

new/usr/src/lib/fm/topo/libtopo/common/topo_xml.c 2

59 static void
60 strarr_free(topo_mod_t *mod, char **arr, uint_t nelems)
61 {
62 int i;

64 for (i = 0; i < nelems; i++)
65 topo_mod_strfree(mod, arr[i]);
66 topo_mod_free(mod, arr, (nelems * sizeof (char *)));
67 }

______unchanged_portion_omitted_

196 static int
197 xlate_common(topo_mod_t *mp, xmlNodePtr xn, topo_type_t ptype, nvlist_t *nvl,
198 const char *name)
197 const char *name)
199 {
200 int rv;
201 uint64_t ui;
202 uint_t i = 0, nelems = 0;
203 nvlist_t *fmri;
204 xmlChar *str;
205 char **strarrbuf;
206 void *arrbuf;
207 nvlist_t **nvlarrbuf;
208 xmlNodePtr cn;

210 topo_dprintf(mp->tm_hdl, TOPO_DBG_XML, "xlate_common(name=%s)\n", name);
211 switch (ptype) {
212 case TOPO_TYPE_INT32:
213 if (xmlattr_to_int(mp, xn, Value, &ui) < 0)
214 return (-1);
215 rv = nvlist_add_int32(nvl, name, (int32_t)ui);
216 break;
217 case TOPO_TYPE_UINT32:
218 if (xmlattr_to_int(mp, xn, Value, &ui) < 0)
219 return (-1);
220 rv = nvlist_add_uint32(nvl, name, (uint32_t)ui);
221 break;
222 case TOPO_TYPE_INT64:
223 if (xmlattr_to_int(mp, xn, Value, &ui) < 0)
224 return (-1);
225 rv = nvlist_add_int64(nvl, name, (int64_t)ui);
226 break;
227 case TOPO_TYPE_UINT64:
228 if (xmlattr_to_int(mp, xn, Value, &ui) < 0)
229 return (-1);
230 rv = nvlist_add_uint64(nvl, name, ui);
231 break;
232 case TOPO_TYPE_FMRI:
233 if (xmlattr_to_fmri(mp, xn, Value, &fmri) < 0)
234 return (-1);
235 rv = nvlist_add_nvlist(nvl, name, fmri);
236 nvlist_free(fmri);
237 break;
238 case TOPO_TYPE_STRING:
239 if ((str = xmlGetProp(xn, (xmlChar *)Value)) == NULL)
240 return (-1);
241 rv = nvlist_add_string(nvl, name, (char *)str);
242 xmlFree(str);
243 break;
244 case TOPO_TYPE_INT32_ARRAY:
245 case TOPO_TYPE_UINT32_ARRAY:
246 case TOPO_TYPE_INT64_ARRAY:
247 case TOPO_TYPE_UINT64_ARRAY:
247 for (cn = xn->xmlChildrenNode; cn != NULL; cn = cn->next)
248 if ((xmlStrcmp(cn->name, (xmlChar *)Propitem) == 0) ||

new/usr/src/lib/fm/topo/libtopo/common/topo_xml.c 3

249 (xmlStrcmp(cn->name, (xmlChar *)Argitem) == 0))
250 nelems++;

252 if (nelems < 1) {
253 topo_dprintf(mp->tm_hdl, TOPO_DBG_ERR, "No <propitem> "
254 "or <argitem> elements found for array val");
255 return (-1);
256 }
257 if ((arrbuf = topo_mod_alloc(mp, (nelems * sizeof (uint64_t))))
258 == NULL)
259 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
260 break;
248 case TOPO_TYPE_STRING_ARRAY:
249 case TOPO_TYPE_FMRI_ARRAY:
250 for (cn = xn->xmlChildrenNode; cn != NULL; cn = cn->next)
251 if ((xmlStrcmp(cn->name, (xmlChar *)Propitem) == 0) ||
252 (xmlStrcmp(cn->name, (xmlChar *)Argitem) == 0))
253 nelems++;

255 if (nelems < 1) {
256 topo_dprintf(mp->tm_hdl, TOPO_DBG_ERR, "No <propitem> "
257 "or <argitem> elements found for array val");
258 return (-1);
259 }
272 if ((strarrbuf = topo_mod_alloc(mp, (nelems * sizeof (char *))))
273 == NULL)
274 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
260 break;
276 case TOPO_TYPE_FMRI_ARRAY:
277 for (cn = xn->xmlChildrenNode; cn != NULL; cn = cn->next)
278 if ((xmlStrcmp(cn->name, (xmlChar *)Propitem) == 0) ||
279 (xmlStrcmp(cn->name, (xmlChar *)Argitem) == 0))
280 nelems++;

282 if (nelems < 1) {
283 topo_dprintf(mp->tm_hdl, TOPO_DBG_ERR, "No <propitem> "
284 "elements found for array prop");
285 return (-1);
286 }
287 if ((nvlarrbuf = topo_mod_alloc(mp, (nelems *
288 sizeof (nvlist_t *)))) == NULL)
289 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
290 break;
261 default:
262 topo_dprintf(mp->tm_hdl, TOPO_DBG_ERR,
263 "Unrecognized type attribute (ptype = %d)\n", ptype);
264 return (topo_mod_seterrno(mp, ETOPO_PRSR_BADTYPE));
265 }

267 switch (ptype) {
268 case TOPO_TYPE_INT32_ARRAY:
269 if ((arrbuf = topo_mod_alloc(mp, (nelems * sizeof (int32_t))))
270 == NULL)
271 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
272 for (cn = xn->xmlChildrenNode; cn != NULL; cn = cn->next) {
273 if ((xmlStrcmp(cn->name, (xmlChar *)Propitem) == 0) ||
274 (xmlStrcmp(cn->name, (xmlChar *)Argitem) == 0)) {

276 if ((str = xmlGetProp(cn, (xmlChar *)Value))
303 if ((str = xmlGetProp(xn, (xmlChar *)Value))
277 == NULL)
278 return (-1);

280 ((int32_t *)arrbuf)[i++]
281 = atoi((const char *)str);
282 xmlFree(str);

new/usr/src/lib/fm/topo/libtopo/common/topo_xml.c 4

283 }
284 }

286 rv = nvlist_add_int32_array(nvl, name, (int32_t *)arrbuf,
287 nelems);
288 topo_mod_free(mp, arrbuf, (nelems * sizeof (int32_t)));
315 free(arrbuf);
289 break;
290 case TOPO_TYPE_UINT32_ARRAY:
291 if ((arrbuf = topo_mod_alloc(mp, (nelems * sizeof (uint32_t))))
292 == NULL)
293 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
294 for (cn = xn->xmlChildrenNode; cn != NULL; cn = cn->next) {
295 if ((xmlStrcmp(cn->name, (xmlChar *)Propitem) == 0) ||
296 (xmlStrcmp(cn->name, (xmlChar *)Argitem) == 0)) {

298 if ((str = xmlGetProp(cn, (xmlChar *)Value))
322 if ((str = xmlGetProp(xn, (xmlChar *)Value))
299 == NULL)
300 return (-1);

302 ((uint32_t *)arrbuf)[i++]
303 = atoi((const char *)str);
304 xmlFree(str);
305 }
306 }

308 rv = nvlist_add_uint32_array(nvl, name, (uint32_t *)arrbuf,
309 nelems);
310 topo_mod_free(mp, arrbuf, (nelems * sizeof (uint32_t)));
334 free(arrbuf);
311 break;
312 case TOPO_TYPE_INT64_ARRAY:
313 if ((arrbuf = topo_mod_alloc(mp, (nelems * sizeof (int64_t))))
314 == NULL)
315 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
316 for (cn = xn->xmlChildrenNode; cn != NULL; cn = cn->next) {
317 if ((xmlStrcmp(cn->name, (xmlChar *)Propitem) == 0) ||
318 (xmlStrcmp(cn->name, (xmlChar *)Argitem) == 0)) {

320 if ((str = xmlGetProp(cn, (xmlChar *)Value))
341 if ((str = xmlGetProp(xn, (xmlChar *)Value))
321 == NULL)
322 return (-1);

324 ((int64_t *)arrbuf)[i++]
325 = atol((const char *)str);
326 xmlFree(str);
327 }
328 }

330 rv = nvlist_add_int64_array(nvl, name, (int64_t *)arrbuf,
331 nelems);
332 topo_mod_free(mp, arrbuf, (nelems * sizeof (int64_t)));
353 free(arrbuf);
333 break;
334 case TOPO_TYPE_UINT64_ARRAY:
335 if ((arrbuf = topo_mod_alloc(mp, (nelems * sizeof (uint64_t))))
336 == NULL)
337 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
338 for (cn = xn->xmlChildrenNode; cn != NULL; cn = cn->next) {
339 if ((xmlStrcmp(cn->name, (xmlChar *)Propitem) == 0) ||
340 (xmlStrcmp(cn->name, (xmlChar *)Argitem) == 0)) {

342 if ((str = xmlGetProp(cn, (xmlChar *)Value))
360 if ((str = xmlGetProp(xn, (xmlChar *)Value))

new/usr/src/lib/fm/topo/libtopo/common/topo_xml.c 5

343 == NULL)
344 return (-1);

346 ((uint64_t *)arrbuf)[i++]
347 = atol((const char *)str);
348 xmlFree(str);
349 }
350 }

352 rv = nvlist_add_uint64_array(nvl, name, arrbuf,
353 nelems);
354 topo_mod_free(mp, arrbuf, (nelems * sizeof (uint64_t)));
372 free(arrbuf);
355 break;
356 case TOPO_TYPE_STRING_ARRAY:
357 if ((strarrbuf = topo_mod_alloc(mp, (nelems * sizeof (char *))))
358 == NULL)
359 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
360 for (cn = xn->xmlChildrenNode; cn != NULL; cn = cn->next) {
361 if ((xmlStrcmp(cn->name, (xmlChar *)Propitem) == 0) ||
362 (xmlStrcmp(cn->name, (xmlChar *)Argitem) == 0)) {

364 if ((str = xmlGetProp(cn, (xmlChar *)Value))
365 == NULL)
366 return (-1);

368 strarrbuf[i++] =
369 topo_mod_strdup(mp, (const char *)str);
370 xmlFree(str);
371 }
372 }

374 rv = nvlist_add_string_array(nvl, name, strarrbuf, nelems);
375 strarr_free(mp, strarrbuf, nelems);
376 break;
377 case TOPO_TYPE_FMRI_ARRAY:
378 if ((nvlarrbuf = topo_mod_alloc(mp, (nelems *
379 sizeof (nvlist_t *)))) == NULL)
380 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
381 for (cn = xn->xmlChildrenNode; cn != NULL; cn = cn->next) {
382 if ((xmlStrcmp(cn->name, (xmlChar *)Propitem) == 0) ||
383 (xmlStrcmp(cn->name, (xmlChar *)Argitem) == 0)) {

385 if ((str = xmlGetProp(cn, (xmlChar *)Value))
397 if ((str = xmlGetProp(xn, (xmlChar *)Value))
386 == NULL)
387 return (-1);

389 if (topo_mod_str2nvl(mp, (const char *)str,
390 &(nvlarrbuf[i++])) < 0) {
391 xmlFree(str);
392 return (-1);
393 }
394 xmlFree(str);
395 }
396 }

398 rv = nvlist_add_nvlist_array(nvl, name, nvlarrbuf,
399 nelems);
400 topo_mod_free(mp, nvlarrbuf, (nelems * sizeof (nvlist_t *)));
412 free(nvlarrbuf);
401 break;
402 }

404 if (rv != 0) {
405 topo_dprintf(mp->tm_hdl, TOPO_DBG_ERR,

new/usr/src/lib/fm/topo/libtopo/common/topo_xml.c 6

406 "Nvlist construction failed.\n");
407 return (topo_mod_seterrno(mp, ETOPO_NOMEM));
408 } else
409 return (0);
410 }

______unchanged_portion_omitted_

