1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright (c) 2017, Joyent, Inc. 14 * Copyright (c) 2018, Western Digital Corporation. 15 */ 16 17 /* 18 * Extensible Host Controller Interface (xHCI) USB Driver 19 * 20 * The xhci driver is an HCI driver for USB that bridges the gap between client 21 * device drivers and implements the actual way that we talk to devices. The 22 * xhci specification provides access to USB 3.x capable devices, as well as all 23 * prior generations. Like other host controllers, it both provides the way to 24 * talk to devices and also is treated like a hub (often called the root hub). 25 * 26 * This driver is part of the USBA (USB Architecture). It implements the HCDI 27 * (host controller device interface) end of USBA. These entry points are used 28 * by the USBA on behalf of client device drivers to access their devices. The 29 * driver also provides notifications to deal with hot plug events, which are 30 * quite common in USB. 31 * 32 * ---------------- 33 * USB Introduction 34 * ---------------- 35 * 36 * To properly understand the xhci driver and the design of the USBA HCDI 37 * interfaces it implements, it helps to have a bit of background into how USB 38 * devices are structured and understand how they work at a high-level. 39 * 40 * USB devices, like PCI devices, are broken down into different classes of 41 * device. For example, with USB you have hubs, human-input devices (keyboards, 42 * mice, etc.), mass storage, etc. Every device also has a vendor and device ID. 43 * Many client drivers bind to an entire class of device, for example, the hubd 44 * driver (to hubs) or scsa2usb (USB storage). However, there are other drivers 45 * that bind to explicit IDs such as usbsprl (specific USB to Serial devices). 46 * 47 * USB SPEEDS AND VERSIONS 48 * 49 * USB devices are often referred to in two different ways. One way they're 50 * described is with the USB version that they conform to. In the wild, you're 51 * most likely going to see USB 1.1, 2.0, 2.1, and 3.0. However, you may also 52 * see devices referred to as 'full-', 'low-', 'high-', and 'super-' speed 53 * devices. 54 * 55 * The latter description describes the maximum theoretical speed of a given 56 * device. For example, a super-speed device theoretically caps out around 5 57 * Gbit/s, whereas a low-speed device caps out at 1.5 Mbit/s. 58 * 59 * In general, each speed usually corresponds to a specific USB protocol 60 * generation. For example, all USB 3.0 devices are super-speed devices. All 61 * 'high-speed' devices are USB 2.x devices. Full-speed devices are special in 62 * that they can either be USB 1.x or USB 2.x devices. Low-speed devices are 63 * only a USB 1.x thing, they did not jump the fire line to USB 2.x. 64 * 65 * USB 3.0 devices and ports generally have the wiring for both USB 2.0 and USB 66 * 3.0. When a USB 3.x device is plugged into a USB 2.0 port or hub, then it 67 * will report its version as USB 2.1, to indicate that it is actually a USB 3.x 68 * device. 69 * 70 * USB ENDPOINTS 71 * 72 * A given USB device is made up of endpoints. A request, or transfer, is made 73 * to a specific USB endpoint. These endpoints can provide different services 74 * and have different expectations around the size of the data that'll be used 75 * in a given request and the periodicity of requests. Endpoints themselves are 76 * either used to make one-shot requests, for example, making requests to a mass 77 * storage device for a given sector, or for making periodic requests where you 78 * end up polling on the endpoint, for example, polling on a USB keyboard for 79 * keystrokes. 80 * 81 * Each endpoint encodes two different pieces of information: a direction and a 82 * type. There are two different directions: IN and OUT. These refer to the 83 * general direction that data moves relative to the operating system. For 84 * example, an IN transfer transfers data in to the operating system, from the 85 * device. An OUT transfer transfers data from the operating system, out to the 86 * device. 87 * 88 * There are four different kinds of endpoints: 89 * 90 * BULK These transfers are large transfers of data to or from 91 * a device. The most common use for bulk transfers is for 92 * mass storage devices. Though they are often also used by 93 * network devices and more. Bulk endpoints do not have an 94 * explicit time component to them. They are always used 95 * for one-shot transfers. 96 * 97 * CONTROL These transfers are used to manipulate devices 98 * themselves and are used for USB protocol level 99 * operations (whether device-specific, class-specific, or 100 * generic across all of USB). Unlike other transfers, 101 * control transfers are always bi-directional and use 102 * different kinds of transfers. 103 * 104 * INTERRUPT Interrupt transfers are used for small transfers that 105 * happen infrequently, but need reasonable latency. A good 106 * example of interrupt transfers is to receive input from 107 * a USB keyboard. Interrupt-IN transfers are generally 108 * polled. Meaning that a client (device driver) opens up 109 * an interrupt-IN pipe to poll on it, and receives 110 * periodic updates whenever there is information 111 * available. However, Interrupt transfers can be used 112 * as one-shot transfers both going IN and OUT. 113 * 114 * ISOCHRONOUS These transfers are things that happen once per 115 * time-interval at a very regular rate. A good example of 116 * these transfers are for audio and video. A device may 117 * describe an interval as 10ms at which point it will read 118 * or write the next batch of data every 10ms and transform 119 * it for the user. There are no one-shot Isochronous-IN 120 * transfers. There are one-shot Isochronous-OUT transfers, 121 * but these are used by device drivers to always provide 122 * the system with sufficient data. 123 * 124 * To find out information about the endpoints, USB devices have a series of 125 * descriptors that cover different aspects of the device. For example, there 126 * are endpoint descriptors which cover the properties of endpoints such as the 127 * maximum packet size or polling interval. 128 * 129 * Descriptors exist at all levels of USB. For example, there are general 130 * descriptors for every device. The USB device descriptor is described in 131 * usb_dev_descr(9S). Host controllers will look at these descriptors to ensure 132 * that they program the device correctly; however, they are more often used by 133 * client device drivers. There are also descriptors that exist at a class 134 * level. For example, the hub class has a class-specific descriptor which 135 * describes properties of the hub. That information is requested for and used 136 * by the hub driver. 137 * 138 * All of the different descriptors are gathered by the system and placed into a 139 * tree which USBA sometimes calls the 'Configuration Cloud'. Client device 140 * drivers gain access to this cloud and then use them to open endpoints, which 141 * are called pipes in USBA (and some revisions of the USB specification). 142 * 143 * Each pipe gives access to a specific endpoint on the device which can be used 144 * to perform transfers of a specific type and direction. For example, a mass 145 * storage device often has three different endpoints, the default control 146 * endpoint (which every device has), a Bulk-IN endpoint, and a Bulk-OUT 147 * endpoint. The device driver ends up with three open pipes. One to the default 148 * control endpoint to configure the device, and then the other two are used to 149 * perform I/O. 150 * 151 * These routines translate more or less directly into calls to a host 152 * controller driver. A request to open a pipe takes an endpoint descriptor that 153 * describes the properties of the pipe, and the host controller driver (this 154 * driver) goes through and does any work necessary to allow the client device 155 * driver to access it. Once the pipe is open, it either makes one-shot 156 * transfers specific to the transfer type or it starts performing a periodic 157 * poll of an endpoint. 158 * 159 * All of these different actions translate into requests to the host 160 * controller. The host controller driver itself is in charge of making sure 161 * that all of the required resources for polling are allocated with a request 162 * and then proceed to give the driver's periodic callbacks. 163 * 164 * HUBS AND HOST CONTROLLERS 165 * 166 * Every device is always plugged into a hub, even if the device is itself a 167 * hub. This continues until we reach what we call the root-hub. The root-hub is 168 * special in that it is not an actual USB hub, but is integrated into the host 169 * controller and is manipulated in its own way. For example, the host 170 * controller is used to turn on and off a given port's power. This may happen 171 * over any interface, though the most common way is through PCI. 172 * 173 * In addition to the normal character device that exists for a host controller 174 * driver, as part of attaching, the host controller binds to an instance of the 175 * hubd driver. While the root-hub is a bit of a fiction, everyone models the 176 * root-hub as the same as any other hub that's plugged in. The hub kernel 177 * module doesn't know that the hub isn't a physical device that's been plugged 178 * in. The host controller driver simulates that view by taking hub requests 179 * that are made and translating them into corresponding requests that are 180 * understood by the host controller, for example, reading and writing to a 181 * memory mapped register. 182 * 183 * The hub driver polls for changes in device state using an Interrupt-IN 184 * request, which is the same as is done for the root-hub. This allows the host 185 * controller driver to not have to know about the implementation of device hot 186 * plug, merely react to requests from a hub, the same as if it were an external 187 * device. When the hub driver detects a change, it will go through the 188 * corresponding state machine and attach or detach the corresponding client 189 * device driver, depending if the device was inserted or removed. 190 * 191 * We detect the changes for the Interrupt-IN primarily based on the port state 192 * change events that are delivered to the event ring. Whenever any event is 193 * fired, we use this to update the hub driver about _all_ ports with 194 * outstanding events. This more closely matches how a hub is supposed to behave 195 * and leaves things less likely for the hub driver to end up without clearing a 196 * flag on a port. 197 * 198 * PACKET SIZES AND BURSTING 199 * 200 * A given USB endpoint has an explicit packet size and a number of packets that 201 * can be sent per time interval. These concepts are abstracted away from client 202 * device drives usually, though they sometimes inform the upper bounds of what 203 * a device can perform. 204 * 205 * The host controller uses this information to transform arbitrary transfer 206 * requests into USB protocol packets. One of the nice things about the host 207 * controllers is that they abstract away all of the signaling and semantics of 208 * the actual USB protocols, allowing for life to be slightly easier in the 209 * operating system. 210 * 211 * That said, if the host controller is not programmed correctly, these can end 212 * up causing transaction errors and other problems in response to the data that 213 * the host controller is trying to send or receive. 214 * 215 * ------------ 216 * Organization 217 * ------------ 218 * 219 * The driver is made up of the following files. Many of these have their own 220 * theory statements to describe what they do. Here, we touch on each of the 221 * purpose of each of these files. 222 * 223 * xhci_command.c: This file contains the logic to issue commands to the 224 * controller as well as the actual functions that the 225 * other parts of the driver use to cause those commands. 226 * 227 * xhci_context.c: This file manages various data structures used by the 228 * controller to manage the controller's and device's 229 * context data structures. See more in the xHCI Overview 230 * and General Design for more information. 231 * 232 * xhci_dma.c: This manages the allocation of DMA memory and DMA 233 * attributes for controller, whether memory is for a 234 * transfer or something else. This file also deals with 235 * all the logic of getting data in and out of DMA buffers. 236 * 237 * xhci_endpoint.c: This manages all of the logic of handling endpoints or 238 * pipes. It deals with endpoint configuration, I/O 239 * scheduling, timeouts, and callbacks to USBA. 240 * 241 * xhci_event.c: This manages callbacks from the hardware to the driver. 242 * This covers command completion notifications and I/O 243 * notifications. 244 * 245 * xhci_hub.c: This manages the virtual root-hub. It basically 246 * implements and translates all of the USB level requests 247 * into xhci specific implements. It also contains the 248 * functions to register this hub with USBA. 249 * 250 * xhci_intr.c: This manages the underlying interrupt allocation, 251 * interrupt moderation, and interrupt routines. 252 * 253 * xhci_quirks.c: This manages information about buggy hardware that's 254 * been collected and experienced primarily from other 255 * systems. 256 * 257 * xhci_ring.c: This manages the abstraction of a ring in xhci, which is 258 * the primary of communication between the driver and the 259 * hardware, whether for the controller or a device. 260 * 261 * xhci_usba.c: This implements all of the HCDI functions required by 262 * USBA. This is the main entry point that drivers and the 263 * kernel frameworks will reach to start any operation. 264 * Many functions here will end up in the command and 265 * endpoint code. 266 * 267 * xhci.c: This provides the main kernel DDI interfaces and 268 * performs device initialization. 269 * 270 * xhci.h: This is the primary header file which defines 271 * illumos-specific data structures and constants to manage 272 * the system. 273 * 274 * xhcireg.h: This header file defines all of the register offsets, 275 * masks, and related macros. It also contains all of the 276 * constants that are used in various structures as defined 277 * by the specification, such as command offsets, etc. 278 * 279 * xhci_ioctl.h: This contains a few private ioctls that are used by a 280 * private debugging command. These are private. 281 * 282 * cmd/xhci/xhci_portsc: This is a private utility that can be useful for 283 * debugging xhci state. It is the only consumer of 284 * xhci_ioctl.h and the private ioctls. 285 * 286 * ---------------------------------- 287 * xHCI Overview and Structure Layout 288 * ---------------------------------- 289 * 290 * The design and structure of this driver follows from the way that the xHCI 291 * specification tells us that we have to work with hardware. First we'll give a 292 * rough summary of how that works, though the xHCI 1.1 specification should be 293 * referenced when going through this. 294 * 295 * There are three primary parts of the hardware -- registers, contexts, and 296 * rings. The registers are memory mapped registers that come in four sets, 297 * though all are found within the first BAR. These are used to program and 298 * control the hardware and aspects of the devices. Beyond more traditional 299 * device programming there are two primary sets of registers that are 300 * important: 301 * 302 * o Port Status and Control Registers (XHCI_PORTSC) 303 * o Doorbell Array (XHCI_DOORBELL) 304 * 305 * The port status and control registers are used to get and manipulate the 306 * status of a given device. For example, turning on and off the power to it. 307 * The Doorbell Array is used to kick off I/O operations and start the 308 * processing of an I/O ring. 309 * 310 * The contexts are data structures that represent various pieces of information 311 * in the controller. These contexts are generally filled out by the driver and 312 * then acknowledged and consumed by the hardware. There are controller-wide 313 * contexts (mostly managed in xhci_context.c) that are used to point to the 314 * contexts that exist for each device in the system. The primary context is 315 * called the Device Context Base Address Array (DCBAA). 316 * 317 * Each device in the system is allocated a 'slot', which is used to index into 318 * the DCBAA. Slots are assigned based on issuing commands to the controller. 319 * There are a fixed number of slots that determine the maximum number of 320 * devices that can end up being supported in the system. Note this includes all 321 * the devices plugged into the USB device tree, not just devices plugged into 322 * ports on the chassis. 323 * 324 * For each device, there is a context structure that describes properties of 325 * the device. For example, what speed is the device, is it a hub, etc. The 326 * context has slots for the device and for each endpoint on the device. As 327 * endpoints are enabled, their context information which describes things like 328 * the maximum packet size, is filled in and enabled. The mapping between these 329 * contexts look like: 330 * 331 * 332 * DCBAA 333 * +--------+ Device Context 334 * | Slot 0 |------------------>+--------------+ 335 * +--------+ | Slot Context | 336 * | ... | +--------------+ +----------+ 337 * +--------+ +------+ | Endpoint 0 |------>| I/O Ring | 338 * | Slot n |-->| NULL | | Context (Bi) | +----------+ 339 * +--------+ +------+ +--------------+ 340 * | Endpoint 1 | 341 * | Context (Out)| 342 * +--------------+ 343 * | Endpoint 1 | 344 * | Context (In) | 345 * +--------------+ 346 * | ... | 347 * +--------------+ 348 * | Endpoint 15 | 349 * | Context (In) | 350 * +--------------+ 351 * 352 * These contexts are always owned by the controller, though we can read them 353 * after various operations complete. Commands that toggle device state use a 354 * specific input context, which is a variant of the device context. The only 355 * difference is that it has an input context structure ahead of it to say which 356 * sections of the device context should be evaluated. 357 * 358 * Each active endpoint points us to an I/O ring, which leads us to the third 359 * main data structure that's used by the device: rings. Rings are made up of 360 * transfer request blocks (TRBs), which are joined together to form a given 361 * transfer description (TD) which represents a single I/O request. 362 * 363 * These rings are used to issue I/O to individual endpoints, to issue commands 364 * to the controller, and to receive notification of changes and completions. 365 * Issued commands go on the special ring called the command ring while the 366 * change and completion notifications go on the event ring. More details are 367 * available in xhci_ring.c. Each of these structures is represented by an 368 * xhci_ring_t. 369 * 370 * Each ring can be made up of one or more disjoint regions of DMA; however, we 371 * only use a single one. This also impacts some additional registers and 372 * structures that exist. The event ring has an indirection table called the 373 * Event Ring Segment Table (ERST). Each entry in the table (a segment) 374 * describes a chunk of the event ring. 375 * 376 * One other thing worth calling out is the scratchpad. The scratchpad is a way 377 * for the controller to be given arbitrary memory by the OS that it can use. 378 * There are two parts to the scratchpad. The first part is an array whose 379 * entries contain pointers to the actual addresses for the pages. The second 380 * part that we allocate are the actual pages themselves. 381 * 382 * ----------------------------- 383 * Endpoint State and Management 384 * ----------------------------- 385 * 386 * Endpoint management is one of the key parts to the xhci driver as every 387 * endpoint is a pipe that a device driver uses, so they are our primary 388 * currency. Endpoints are enabled and disabled when the client device drivers 389 * open and close a pipe. When an endpoint is enabled, we have to fill in an 390 * endpoint's context structure with information about the endpoint. These 391 * basically tell the controller important properties which it uses to ensure 392 * that there is adequate bandwidth for the device. 393 * 394 * Each endpoint has its own ring as described in the previous section. We place 395 * TRBs (transfer request blocks) onto a given ring to request I/O be performed. 396 * Responses are placed on the event ring, in other words, the rings associated 397 * with an endpoint are purely for producing I/O. 398 * 399 * Endpoints have a defined state machine as described in xHCI 1.1 / 4.8.3. 400 * These states generally correspond with the state of the endpoint to process 401 * I/O and handle timeouts. The driver basically follows a similar state machine 402 * as described there. There are some deviations. For example, what they 403 * describe as 'running' we break into both the Idle and Running states below. 404 * We also have a notion of timed out and quiescing. The following image 405 * summarizes the states and transitions: 406 * 407 * +------+ +-----------+ 408 * | Idle |---------*--------------------->| Running |<-+ 409 * +------+ . I/O queued on +-----------+ | 410 * ^ ring and timeout | | | | 411 * | scheduled. | | | | 412 * | | | | | 413 * +-----*---------------------------------+ | | | 414 * | . No I/Os remain | | | 415 * | | | | 416 * | +------*------------------+ | | 417 * | | . Timeout | | 418 * | | fires for | | 419 * | | I/O | | 420 * | v v | 421 * | +-----------+ +--------+ | 422 * | | Timed Out | | Halted | | 423 * | +-----------+ +--------+ | 424 * | | | | 425 * | | +-----------+ | | 426 * | +-->| Quiescing |<----------+ | 427 * | +-----------+ | 428 * | No TRBs. | . TRBs | 429 * | remain . | . Remain | 430 * +----------*----<------+-------->-------*-----------+ 431 * 432 * Normally, a given endpoint will oscillate between having TRBs scheduled and 433 * not. Every time a new I/O is added to the endpoint, we'll ring the doorbell, 434 * making sure that we're processing the ring, presuming that the endpoint isn't 435 * in one of the error states. 436 * 437 * To detect device hangs, we have an active timeout(9F) per active endpoint 438 * that ticks at a one second rate while we still have TRBs outstanding on an 439 * endpoint. Once all outstanding TRBs have been processed, the timeout will 440 * stop itself and there will be no active checking until the endpoint has I/O 441 * scheduled on it again. 442 * 443 * There are two primary ways that things can go wrong on the endpoint. We can 444 * either have a timeout or an event that transitions the endpoint to the Halted 445 * state. In the halted state, we need to issue explicit commands to reset the 446 * endpoint before removing the I/O. 447 * 448 * The way we handle both a timeout and a halted condition is similar, but the 449 * way they are triggered is different. When we detect a halted condition, we 450 * don't immediately clean it up, and wait for the client device driver (or USBA 451 * on its behalf) to issue a pipe reset. When we detect a timeout, we 452 * immediately take action (assuming no other action is ongoing). 453 * 454 * In both cases, we quiesce the device, which takes care of dealing with taking 455 * the endpoint from whatever state it may be in and taking the appropriate 456 * actions based on the state machine in xHCI 1.1 / 4.8.3. The end of quiescing 457 * leaves the device stopped, which allows us to update the ring's pointer and 458 * remove any TRBs that are causing problems. 459 * 460 * As part of all this, we ensure that we can only be quiescing the device from 461 * a given path at a time. Any requests to schedule I/O during this time will 462 * generally fail. 463 * 464 * The following image describes the state machine for the timeout logic. It 465 * ties into the image above. 466 * 467 * +----------+ +---------+ 468 * | Disabled |-----*--------------------->| Enabled |<--+ 469 * +----------+ . TRBs scheduled +---------+ *. 1 sec timer 470 * ^ and no active | | | | fires and 471 * | timer. | | | | another 472 * | | | +--+--+ quiesce, in 473 * | | | | a bad state, 474 * +------*------------------------------+ | ^ or decrement 475 * | . 1 sec timer | | I/O timeout 476 * | fires and | | 477 * | no TRBs or | +--------------+ 478 * | endpoint shutdown | | 479 * | *. . timer counter | 480 * ^ | reaches zero | 481 * | v | 482 * | +--------------+ | 483 * +-------------*---------------<--| Quiesce ring |->---*-------+ 484 * . No more | and fail I/O | . restart 485 * I/Os +--------------+ timer as 486 * more I/Os 487 * 488 * As we described above, when there are active TRBs and I/Os, a 1 second 489 * timeout(9F) will be active. Each second, we decrement a counter on the 490 * current, active I/O until either a new I/O takes the head, or the counter 491 * reaches zero. If the counter reaches zero, then we go through, quiesce the 492 * ring, and then clean things up. 493 * 494 * ------------------ 495 * Periodic Endpoints 496 * ------------------ 497 * 498 * It's worth calling out periodic endpoints explicitly, as they operate 499 * somewhat differently. Periodic endpoints are limited to Interrupt-IN and 500 * Isochronous-IN. The USBA often uses the term polling for these. That's 501 * because the client only needs to make a single API call; however, they'll 502 * receive multiple callbacks until either an error occurs or polling is 503 * requested to be terminated. 504 * 505 * When we have one of these periodic requests, we end up always rescheduling 506 * I/O requests, as well as, having a specific number of pre-existing I/O 507 * requests to cover the periodic needs, in case of latency spikes. Normally, 508 * when replying to a request, we use the request handle that we were given. 509 * However, when we have a periodic request, we're required to duplicate the 510 * handle before giving them data. 511 * 512 * However, the duplication is a bit tricky. For everything that was duplicated, 513 * the framework expects us to submit data. Because of that we, don't duplicate 514 * them until they are needed. This minimizes the likelihood that we have 515 * outstanding requests to deal with when we encounter a fatal polling failure. 516 * 517 * Most of the polling setup logic happens in xhci_usba.c in 518 * xhci_hcdi_periodic_init(). The consumption and duplication is handled in 519 * xhci_endpoint.c. 520 * 521 * ---------------- 522 * Structure Layout 523 * ---------------- 524 * 525 * The following images relate the core data structures. The primary structure 526 * in the system is the xhci_t. This is the per-controller data structure that 527 * exists for each instance of the driver. From there, each device in the system 528 * is represented by an xhci_device_t and each endpoint is represented by an 529 * xhci_endpoint_t. For each client that opens a given endpoint, there is an 530 * xhci_pipe_t. For each I/O related ring, there is an xhci_ring_t in the 531 * system. 532 * 533 * +------------------------+ 534 * | Per-Controller | 535 * | Structure | 536 * | xhci_t | 537 * | | 538 * | uint_t ---+--> Capability regs offset 539 * | uint_t ---+--> Operational regs offset 540 * | uint_t ---+--> Runtime regs offset 541 * | uint_t ---+--> Doorbell regs offset 542 * | xhci_state_flags_t ---+--> Device state flags 543 * | xhci_quirks_t ---+--> Device quirk flags 544 * | xhci_capability_t ---+--> Controller capability structure 545 * | xhci_dcbaa_t ---+----------------------------------+ 546 * | xhci_scratchpad_t ---+---------+ | 547 * | xhci_command_ing_t ---+------+ | v 548 * | xhci_event_ring_t ---+----+ | | +---------------------+ 549 * | xhci_usba_t ---+--+ | | | | Device Context | 550 * +------------------------+ | | | | | Base Address | 551 * | | | | | Array Structure | 552 * | | | | | xhci_dcbaa_t | 553 * +-------------------------------+ | | | | | 554 * | +-------------------------------+ | | DCBAA KVA <-+-- uint64_t * | 555 * | | +----------------------------+ | DMA Buffer <-+-- xhci_dma_buffer_t | 556 * | | v | +---------------------+ 557 * | | +--------------------------+ +-----------------------+ 558 * | | | Event Ring | | 559 * | | | Management | | 560 * | | | xhci_event_ring_t | v 561 * | | | | Event Ring +----------------------+ 562 * | | | xhci_event_segment_t * --|-> Segment VA | Scratchpad (Extra | 563 * | | | xhci_dma_buffer_t --|-> Segment DMA Buf. | Controller Memory) | 564 * | | | xhci_ring_t --|--+ | xhci_scratchpad_t | 565 * | | +--------------------------+ | Scratchpad | | 566 * | | | Base Array KVA <-+- uint64_t * | 567 * | +------------+ | Array DMA Buf. <-+- xhci_dma_buffer_t | 568 * | v | Scratchpad DMA <-+- xhci_dma_buffer_t * | 569 * | +---------------------------+ | Buffer per page +----------------------+ 570 * | | Command Ring | | 571 * | | xhci_command_ring_t | +------------------------------+ 572 * | | | | 573 * | | xhci_ring_t --+-> Command Ring --->------------+ 574 * | | list_t --+-> Command List v 575 * | | timeout_id_t --+-> Timeout State +---------------------+ 576 * | | xhci_command_ring_state_t +-> State Flags | I/O Ring | 577 * | +---------------------------+ | xhci_ring_t | 578 * | | | 579 * | Ring DMA Buf. <-+-- xhci_dma_buffer_t | 580 * | Ring Length <-+-- uint_t | 581 * | Ring Entry KVA <-+-- xhci_trb_t * | 582 * | +---------------------------+ Ring Head <-+-- uint_t | 583 * +--->| USBA State | Ring Tail <-+-- uint_t | 584 * | xhci_usba_t | Ring Cycle <-+-- uint_t | 585 * | | +---------------------+ 586 * | usba_hcdi_ops_t * -+-> USBA Ops Vector ^ 587 * | usb_dev_dscr_t -+-> USB Virtual Device Descriptor | 588 * | usb_ss_hub_descr_t -+-> USB Virtual Hub Descriptor | 589 * | usba_pipe_handle_data_t * +-> Interrupt polling client | 590 * | usb_intr_req_t -+-> Interrupt polling request | 591 * | uint32_t --+-> Interrupt polling device mask | 592 * | list_t --+-> Pipe List (Active Users) | 593 * | list_t --+-------------------+ | 594 * +---------------------------+ | ^ 595 * | | 596 * v | 597 * +-------------------------------+ +---------------+ | 598 * | USB Device |------------>| USB Device |--> ... | 599 * | xhci_device_t | | xhci_device_t | | 600 * | | +---------------+ | 601 * | usb_port_t --+-> USB Port plugged into | 602 * | uint8_t --+-> Slot Number | 603 * | boolean_t --+-> Address Assigned | 604 * | usba_device_t * --+-> USBA Device State | 605 * | xhci_dma_buffer_t --+-> Input Context DMA Buffer | 606 * | xhci_input_context_t * --+-> Input Context KVA | 607 * | xhci_slot_contex_t * --+-> Input Slot Context KVA | 608 * | xhci_endpoint_context_t *[] --+-> Input Endpoint Context KVA | 609 * | xhci_dma_buffer_t --+-> Output Context DMA Buffer | 610 * | xhci_slot_context_t * --+-> Output Slot Context KVA ^ 611 * | xhci_endpoint_context_t *[] --+-> Output Endpoint Context KVA | 612 * | xhci_endpoint_t *[] --+-> Endpoint Tracking ---+ | 613 * +-------------------------------+ | | 614 * | | 615 * v | 616 * +------------------------------+ +-----------------+ | 617 * | Endpoint Data |----------->| Endpoint Data |--> ... | 618 * | xhci_endpoint_t | | xhci_endpoint_t | | 619 * | | +-----------------+ | 620 * | int --+-> Endpoint Number | 621 * | int --+-> Endpoint Type | 622 * | xhci_endpoint_state_t --+-> Endpoint State | 623 * | timeout_id_t --+-> Endpoint Timeout State | 624 * | usba_pipe_handle_data_t * --+-> USBA Client Handle | 625 * | xhci_ring_t --+-> Endpoint I/O Ring -------->--------+ 626 * | list_t --+-> Transfer List --------+ 627 * +------------------------------+ | 628 * v 629 * +-------------------------+ +--------------------+ 630 * | Transfer Structure |----------------->| Transfer Structure |-> ... 631 * | xhci_transfer_t | | xhci_transfer_t | 632 * | | +--------------------+ 633 * | xhci_dma_buffer_t --+-> I/O DMA Buffer 634 * | uint_t --+-> Number of TRBs 635 * | uint_t --+-> Short transfer data 636 * | uint_t --+-> Timeout seconds remaining 637 * | usb_cr_t --+-> USB Transfer return value 638 * | boolean_t --+-> Data direction 639 * | xhci_trb_t * --+-> Host-order transfer requests for I/O 640 * | usb_isoc_pkt_descr_t * -+-> Isochronous only response data 641 * | usb_opaque_t --+-> USBA Request Handle 642 * +-------------------------+ 643 * 644 * ------------- 645 * Lock Ordering 646 * ------------- 647 * 648 * There are three different tiers of locks that exist in the driver. First, 649 * there is a lock for each controller: xhci_t`xhci_lock. This protects all the 650 * data for that instance of the controller. If there are multiple instances of 651 * the xHCI controller in the system, each one is independent and protected 652 * separately. The two do not share any data. 653 * 654 * From there, there are two other, specific locks in the system: 655 * 656 * o xhci_command_ring_t`xcr_lock 657 * o xhci_device_t`xd_imtx 658 * 659 * There is only one xcr_lock per controller, like the xhci_lock. It protects 660 * the state of the command ring. However, there is on xd_imtx per device. 661 * Recall that each device is scoped to a given controller. This protects the 662 * input slot context for a given device. 663 * 664 * There are a few important rules to keep in mind here that are true 665 * universally throughout the driver: 666 * 667 * 1) Always grab the xhci_t`xhci_lock, before grabbing any of the other locks. 668 * 2) A given xhci_device_t`xd_imtx, must be taken before grabbing the 669 * xhci_command_ring_t`xcr_lock. 670 * 3) A given thread can only hold one of the given xhci_device_t`xd_imtx locks 671 * at a given time. In other words, we should never be manipulating the input 672 * context of two different devices at once. 673 * 4) It is safe to hold the xhci_device_t`xd_imtx while tearing down the 674 * endpoint timer. Conversely, the endpoint specific logic should never enter 675 * this lock. 676 * 677 * -------------------- 678 * Relationship to EHCI 679 * -------------------- 680 * 681 * On some Intel chipsets, a given physical port on the system may be routed to 682 * one of the EHCI or xHCI controllers. This association can be dynamically 683 * changed by writing to platform specific registers as handled by the quirk 684 * logic in xhci_quirk.c. 685 * 686 * As these ports may support USB 3.x speeds, we always route all such ports to 687 * the xHCI controller, when supported. In addition, to minimize disruptions 688 * from devices being enumerated and attached to the EHCI driver and then 689 * disappearing, we generally attempt to load the xHCI controller before the 690 * EHCI controller. This logic is not done in the driver; however, it is done in 691 * other parts of the kernel like in uts/common/io/consconfig_dacf.c in the 692 * function consconfig_load_drivres(). 693 * 694 * ----------- 695 * Future Work 696 * ----------- 697 * 698 * The primary future work in this driver spans two different, but related 699 * areas. The first area is around controller resets and how they tie into FM. 700 * Presently, we do not have a good way to handle controllers coming and going 701 * in the broader USB stack or properly reconfigure the device after a reset. 702 * Secondly, we don't handle the suspend and resume of devices and drivers. 703 */ 704 705 #include <sys/param.h> 706 #include <sys/modctl.h> 707 #include <sys/conf.h> 708 #include <sys/devops.h> 709 #include <sys/ddi.h> 710 #include <sys/sunddi.h> 711 #include <sys/cmn_err.h> 712 #include <sys/ddifm.h> 713 #include <sys/pci.h> 714 #include <sys/class.h> 715 #include <sys/policy.h> 716 717 #include <sys/usb/hcd/xhci/xhci.h> 718 #include <sys/usb/hcd/xhci/xhci_ioctl.h> 719 720 /* 721 * We want to use the first BAR to access its registers. The regs[] array is 722 * ordered based on the rules for the PCI supplement to IEEE 1275. So regs[1] 723 * will always be the first BAR. 724 */ 725 #define XHCI_REG_NUMBER 1 726 727 /* 728 * This task queue exists as a global taskq that is used for resetting the 729 * device in the face of FM or runtime errors. Each instance of the device 730 * (xhci_t) happens to have a single taskq_dispatch_ent already allocated so we 731 * know that we should always be able to dispatch such an event. 732 */ 733 static taskq_t *xhci_taskq; 734 735 /* 736 * Global soft state for per-instance data. Note that we must use the soft state 737 * routines and cannot use the ddi_set_driver_private() routines. The USB 738 * framework presumes that it can use the dip's private data. 739 */ 740 void *xhci_soft_state; 741 742 /* 743 * This is the time in us that we wait after a controller resets before we 744 * consider reading any register. There are some controllers that want at least 745 * 1 ms, therefore we default to 10 ms. 746 */ 747 clock_t xhci_reset_delay = 10000; 748 749 void 750 xhci_error(xhci_t *xhcip, const char *fmt, ...) 751 { 752 va_list ap; 753 754 va_start(ap, fmt); 755 if (xhcip != NULL && xhcip->xhci_dip != NULL) { 756 vdev_err(xhcip->xhci_dip, CE_WARN, fmt, ap); 757 } else { 758 vcmn_err(CE_WARN, fmt, ap); 759 } 760 va_end(ap); 761 } 762 763 void 764 xhci_log(xhci_t *xhcip, const char *fmt, ...) 765 { 766 va_list ap; 767 768 va_start(ap, fmt); 769 if (xhcip != NULL && xhcip->xhci_dip != NULL) { 770 vdev_err(xhcip->xhci_dip, CE_NOTE, fmt, ap); 771 } else { 772 vcmn_err(CE_NOTE, fmt, ap); 773 } 774 va_end(ap); 775 } 776 777 /* 778 * USBA is in charge of creating device nodes for us. USBA explicitly ORs in the 779 * constant HUBD_IS_ROOT_HUB, so we have to undo that when we're looking at 780 * things here. A simple bitwise-and will take care of this. And hey, it could 781 * always be more complex, USBA could clone! 782 */ 783 static dev_info_t * 784 xhci_get_dip(dev_t dev) 785 { 786 xhci_t *xhcip; 787 int instance = getminor(dev) & ~HUBD_IS_ROOT_HUB; 788 789 xhcip = ddi_get_soft_state(xhci_soft_state, instance); 790 if (xhcip != NULL) 791 return (xhcip->xhci_dip); 792 return (NULL); 793 } 794 795 uint8_t 796 xhci_get8(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 797 { 798 uintptr_t addr, roff; 799 800 switch (rtt) { 801 case XHCI_R_CAP: 802 roff = xhcip->xhci_regs_capoff; 803 break; 804 case XHCI_R_OPER: 805 roff = xhcip->xhci_regs_operoff; 806 break; 807 case XHCI_R_RUN: 808 roff = xhcip->xhci_regs_runoff; 809 break; 810 case XHCI_R_DOOR: 811 roff = xhcip->xhci_regs_dooroff; 812 break; 813 default: 814 panic("called %s with bad reg type: %d", __func__, rtt); 815 } 816 ASSERT(roff != PCI_EINVAL32); 817 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 818 819 return (ddi_get8(xhcip->xhci_regs_handle, (void *)addr)); 820 } 821 822 uint16_t 823 xhci_get16(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 824 { 825 uintptr_t addr, roff; 826 827 switch (rtt) { 828 case XHCI_R_CAP: 829 roff = xhcip->xhci_regs_capoff; 830 break; 831 case XHCI_R_OPER: 832 roff = xhcip->xhci_regs_operoff; 833 break; 834 case XHCI_R_RUN: 835 roff = xhcip->xhci_regs_runoff; 836 break; 837 case XHCI_R_DOOR: 838 roff = xhcip->xhci_regs_dooroff; 839 break; 840 default: 841 panic("called %s with bad reg type: %d", __func__, rtt); 842 } 843 ASSERT(roff != PCI_EINVAL32); 844 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 845 846 return (ddi_get16(xhcip->xhci_regs_handle, (void *)addr)); 847 } 848 849 uint32_t 850 xhci_get32(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 851 { 852 uintptr_t addr, roff; 853 854 switch (rtt) { 855 case XHCI_R_CAP: 856 roff = xhcip->xhci_regs_capoff; 857 break; 858 case XHCI_R_OPER: 859 roff = xhcip->xhci_regs_operoff; 860 break; 861 case XHCI_R_RUN: 862 roff = xhcip->xhci_regs_runoff; 863 break; 864 case XHCI_R_DOOR: 865 roff = xhcip->xhci_regs_dooroff; 866 break; 867 default: 868 panic("called %s with bad reg type: %d", __func__, rtt); 869 } 870 ASSERT(roff != PCI_EINVAL32); 871 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 872 873 return (ddi_get32(xhcip->xhci_regs_handle, (void *)addr)); 874 } 875 876 uint64_t 877 xhci_get64(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 878 { 879 uintptr_t addr, roff; 880 881 switch (rtt) { 882 case XHCI_R_CAP: 883 roff = xhcip->xhci_regs_capoff; 884 break; 885 case XHCI_R_OPER: 886 roff = xhcip->xhci_regs_operoff; 887 break; 888 case XHCI_R_RUN: 889 roff = xhcip->xhci_regs_runoff; 890 break; 891 case XHCI_R_DOOR: 892 roff = xhcip->xhci_regs_dooroff; 893 break; 894 default: 895 panic("called %s with bad reg type: %d", __func__, rtt); 896 } 897 ASSERT(roff != PCI_EINVAL32); 898 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 899 900 return (ddi_get64(xhcip->xhci_regs_handle, (void *)addr)); 901 } 902 903 void 904 xhci_put8(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint8_t val) 905 { 906 uintptr_t addr, roff; 907 908 switch (rtt) { 909 case XHCI_R_CAP: 910 roff = xhcip->xhci_regs_capoff; 911 break; 912 case XHCI_R_OPER: 913 roff = xhcip->xhci_regs_operoff; 914 break; 915 case XHCI_R_RUN: 916 roff = xhcip->xhci_regs_runoff; 917 break; 918 case XHCI_R_DOOR: 919 roff = xhcip->xhci_regs_dooroff; 920 break; 921 default: 922 panic("called %s with bad reg type: %d", __func__, rtt); 923 } 924 ASSERT(roff != PCI_EINVAL32); 925 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 926 927 ddi_put8(xhcip->xhci_regs_handle, (void *)addr, val); 928 } 929 930 void 931 xhci_put16(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint16_t val) 932 { 933 uintptr_t addr, roff; 934 935 switch (rtt) { 936 case XHCI_R_CAP: 937 roff = xhcip->xhci_regs_capoff; 938 break; 939 case XHCI_R_OPER: 940 roff = xhcip->xhci_regs_operoff; 941 break; 942 case XHCI_R_RUN: 943 roff = xhcip->xhci_regs_runoff; 944 break; 945 case XHCI_R_DOOR: 946 roff = xhcip->xhci_regs_dooroff; 947 break; 948 default: 949 panic("called %s with bad reg type: %d", __func__, rtt); 950 } 951 ASSERT(roff != PCI_EINVAL32); 952 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 953 954 ddi_put16(xhcip->xhci_regs_handle, (void *)addr, val); 955 } 956 957 void 958 xhci_put32(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint32_t val) 959 { 960 uintptr_t addr, roff; 961 962 switch (rtt) { 963 case XHCI_R_CAP: 964 roff = xhcip->xhci_regs_capoff; 965 break; 966 case XHCI_R_OPER: 967 roff = xhcip->xhci_regs_operoff; 968 break; 969 case XHCI_R_RUN: 970 roff = xhcip->xhci_regs_runoff; 971 break; 972 case XHCI_R_DOOR: 973 roff = xhcip->xhci_regs_dooroff; 974 break; 975 default: 976 panic("called %s with bad reg type: %d", __func__, rtt); 977 } 978 ASSERT(roff != PCI_EINVAL32); 979 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 980 981 ddi_put32(xhcip->xhci_regs_handle, (void *)addr, val); 982 } 983 984 void 985 xhci_put64(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint64_t val) 986 { 987 uintptr_t addr, roff; 988 989 switch (rtt) { 990 case XHCI_R_CAP: 991 roff = xhcip->xhci_regs_capoff; 992 break; 993 case XHCI_R_OPER: 994 roff = xhcip->xhci_regs_operoff; 995 break; 996 case XHCI_R_RUN: 997 roff = xhcip->xhci_regs_runoff; 998 break; 999 case XHCI_R_DOOR: 1000 roff = xhcip->xhci_regs_dooroff; 1001 break; 1002 default: 1003 panic("called %s with bad reg type: %d", __func__, rtt); 1004 } 1005 ASSERT(roff != PCI_EINVAL32); 1006 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 1007 1008 ddi_put64(xhcip->xhci_regs_handle, (void *)addr, val); 1009 } 1010 1011 int 1012 xhci_check_regs_acc(xhci_t *xhcip) 1013 { 1014 ddi_fm_error_t de; 1015 1016 /* 1017 * Treat cases where we can't check as fine so we can treat the code 1018 * more simply. 1019 */ 1020 if (quiesce_active || !DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps)) 1021 return (DDI_FM_OK); 1022 1023 ddi_fm_acc_err_get(xhcip->xhci_regs_handle, &de, DDI_FME_VERSION); 1024 ddi_fm_acc_err_clear(xhcip->xhci_regs_handle, DDI_FME_VERSION); 1025 return (de.fme_status); 1026 } 1027 1028 /* 1029 * As a leaf PCIe driver, we just post the ereport and continue on. 1030 */ 1031 /* ARGSUSED */ 1032 static int 1033 xhci_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 1034 { 1035 pci_ereport_post(dip, err, NULL); 1036 return (err->fme_status); 1037 } 1038 1039 static void 1040 xhci_fm_fini(xhci_t *xhcip) 1041 { 1042 if (xhcip->xhci_fm_caps == 0) 1043 return; 1044 1045 if (DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) 1046 ddi_fm_handler_unregister(xhcip->xhci_dip); 1047 1048 if (DDI_FM_EREPORT_CAP(xhcip->xhci_fm_caps) || 1049 DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) 1050 pci_ereport_teardown(xhcip->xhci_dip); 1051 1052 ddi_fm_fini(xhcip->xhci_dip); 1053 } 1054 1055 static void 1056 xhci_fm_init(xhci_t *xhcip) 1057 { 1058 ddi_iblock_cookie_t iblk; 1059 int def = DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 1060 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE; 1061 1062 xhcip->xhci_fm_caps = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip, 1063 DDI_PROP_DONTPASS, "fm_capable", def); 1064 1065 if (xhcip->xhci_fm_caps < 0) { 1066 xhcip->xhci_fm_caps = 0; 1067 } else if (xhcip->xhci_fm_caps & ~def) { 1068 xhcip->xhci_fm_caps &= def; 1069 } 1070 1071 if (xhcip->xhci_fm_caps == 0) 1072 return; 1073 1074 ddi_fm_init(xhcip->xhci_dip, &xhcip->xhci_fm_caps, &iblk); 1075 if (DDI_FM_EREPORT_CAP(xhcip->xhci_fm_caps) || 1076 DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) { 1077 pci_ereport_setup(xhcip->xhci_dip); 1078 } 1079 1080 if (DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) { 1081 ddi_fm_handler_register(xhcip->xhci_dip, 1082 xhci_fm_error_cb, xhcip); 1083 } 1084 } 1085 1086 static int 1087 xhci_reg_poll(xhci_t *xhcip, xhci_reg_type_t rt, int reg, uint32_t mask, 1088 uint32_t targ, uint_t tries, int delay_ms) 1089 { 1090 uint_t i; 1091 1092 for (i = 0; i < tries; i++) { 1093 uint32_t val = xhci_get32(xhcip, rt, reg); 1094 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1095 ddi_fm_service_impact(xhcip->xhci_dip, 1096 DDI_SERVICE_LOST); 1097 return (EIO); 1098 } 1099 1100 if ((val & mask) == targ) 1101 return (0); 1102 1103 delay(drv_usectohz(delay_ms * 1000)); 1104 } 1105 return (ETIMEDOUT); 1106 } 1107 1108 static boolean_t 1109 xhci_regs_map(xhci_t *xhcip) 1110 { 1111 off_t memsize; 1112 int ret; 1113 ddi_device_acc_attr_t da; 1114 1115 if (ddi_dev_regsize(xhcip->xhci_dip, XHCI_REG_NUMBER, &memsize) != 1116 DDI_SUCCESS) { 1117 xhci_error(xhcip, "failed to get register set size"); 1118 return (B_FALSE); 1119 } 1120 1121 bzero(&da, sizeof (ddi_device_acc_attr_t)); 1122 da.devacc_attr_version = DDI_DEVICE_ATTR_V0; 1123 da.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 1124 da.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 1125 if (DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps)) { 1126 da.devacc_attr_access = DDI_FLAGERR_ACC; 1127 } else { 1128 da.devacc_attr_access = DDI_DEFAULT_ACC; 1129 } 1130 1131 ret = ddi_regs_map_setup(xhcip->xhci_dip, XHCI_REG_NUMBER, 1132 &xhcip->xhci_regs_base, 0, memsize, &da, &xhcip->xhci_regs_handle); 1133 1134 if (ret != DDI_SUCCESS) { 1135 xhci_error(xhcip, "failed to map device registers: %d", ret); 1136 return (B_FALSE); 1137 } 1138 1139 return (B_TRUE); 1140 } 1141 1142 static boolean_t 1143 xhci_regs_init(xhci_t *xhcip) 1144 { 1145 /* 1146 * The capabilities always begin at offset zero. 1147 */ 1148 xhcip->xhci_regs_capoff = 0; 1149 xhcip->xhci_regs_operoff = xhci_get8(xhcip, XHCI_R_CAP, XHCI_CAPLENGTH); 1150 xhcip->xhci_regs_runoff = xhci_get32(xhcip, XHCI_R_CAP, XHCI_RTSOFF); 1151 xhcip->xhci_regs_runoff &= ~0x1f; 1152 xhcip->xhci_regs_dooroff = xhci_get32(xhcip, XHCI_R_CAP, XHCI_DBOFF); 1153 xhcip->xhci_regs_dooroff &= ~0x3; 1154 1155 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1156 xhci_error(xhcip, "failed to initialize controller register " 1157 "offsets: encountered FM register error"); 1158 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1159 return (B_FALSE); 1160 } 1161 1162 return (B_TRUE); 1163 } 1164 1165 /* 1166 * Read various parameters from PCI configuration space and from the Capability 1167 * registers that we'll need to register the device. We cache all of the 1168 * Capability registers. 1169 */ 1170 static boolean_t 1171 xhci_read_params(xhci_t *xhcip) 1172 { 1173 uint8_t usb; 1174 uint16_t vers; 1175 uint32_t struc1, struc2, struc3, cap1, cap2, pgsz; 1176 uint32_t psize, pbit, capreg; 1177 xhci_capability_t *xcap; 1178 unsigned long ps; 1179 1180 /* 1181 * While it's tempting to do a 16-bit read at offset 0x2, unfortunately, 1182 * a few emulated systems don't support reading at offset 0x2 for the 1183 * version. Instead we need to read the caplength register and get the 1184 * upper two bytes. 1185 */ 1186 capreg = xhci_get32(xhcip, XHCI_R_CAP, XHCI_CAPLENGTH); 1187 vers = XHCI_VERSION_MASK(capreg); 1188 usb = pci_config_get8(xhcip->xhci_cfg_handle, PCI_XHCI_USBREV); 1189 struc1 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS1); 1190 struc2 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS2); 1191 struc3 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS3); 1192 cap1 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCCPARAMS1); 1193 cap2 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCCPARAMS2); 1194 pgsz = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PAGESIZE); 1195 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1196 xhci_error(xhcip, "failed to read controller parameters: " 1197 "encountered FM register error"); 1198 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1199 return (B_FALSE); 1200 } 1201 1202 xcap = &xhcip->xhci_caps; 1203 xcap->xcap_usb_vers = usb; 1204 xcap->xcap_hci_vers = vers; 1205 xcap->xcap_max_slots = XHCI_HCS1_DEVSLOT_MAX(struc1); 1206 xcap->xcap_max_intrs = XHCI_HCS1_IRQ_MAX(struc1); 1207 xcap->xcap_max_ports = XHCI_HCS1_N_PORTS(struc1); 1208 if (xcap->xcap_max_ports > MAX_PORTS) { 1209 xhci_error(xhcip, "Root hub has %d ports, but system only " 1210 "supports %d, limiting to %d\n", xcap->xcap_max_ports, 1211 MAX_PORTS, MAX_PORTS); 1212 xcap->xcap_max_ports = MAX_PORTS; 1213 } 1214 1215 xcap->xcap_ist_micro = XHCI_HCS2_IST_MICRO(struc2); 1216 xcap->xcap_ist = XHCI_HCS2_IST(struc2); 1217 xcap->xcap_max_esrt = XHCI_HCS2_ERST_MAX(struc2); 1218 xcap->xcap_scratch_restore = XHCI_HCS2_SPR(struc2); 1219 xcap->xcap_max_scratch = XHCI_HCS2_SPB_MAX(struc2); 1220 1221 xcap->xcap_u1_lat = XHCI_HCS3_U1_DEL(struc3); 1222 xcap->xcap_u2_lat = XHCI_HCS3_U2_DEL(struc3); 1223 1224 xcap->xcap_flags = XHCI_HCC1_FLAGS_MASK(cap1); 1225 xcap->xcap_max_psa = XHCI_HCC1_PSA_SZ_MAX(cap1); 1226 xcap->xcap_xecp_off = XHCI_HCC1_XECP(cap1); 1227 xcap->xcap_flags2 = XHCI_HCC2_FLAGS_MASK(cap2); 1228 1229 /* 1230 * We don't have documentation for what changed from before xHCI 0.96, 1231 * so we just refuse to support versions before 0.96. We also will 1232 * ignore anything with a major version greater than 1. 1233 */ 1234 if (xcap->xcap_hci_vers < 0x96 || xcap->xcap_hci_vers >= 0x200) { 1235 xhci_error(xhcip, "Encountered unsupported xHCI version 0.%2x", 1236 xcap->xcap_hci_vers); 1237 return (B_FALSE); 1238 } 1239 1240 /* 1241 * Determine the smallest size page that the controller supports and 1242 * make sure that it matches our pagesize. We basically check here for 1243 * the presence of 4k and 8k pages. The basis of the pagesize is used 1244 * extensively throughout the code and specification. While we could 1245 * support other page sizes here, given that we don't support systems 1246 * with it at this time, it doesn't make much sense. 1247 */ 1248 ps = PAGESIZE; 1249 if (ps == 0x1000) { 1250 pbit = XHCI_PAGESIZE_4K; 1251 psize = 0x1000; 1252 } else if (ps == 0x2000) { 1253 pbit = XHCI_PAGESIZE_8K; 1254 psize = 0x2000; 1255 } else { 1256 xhci_error(xhcip, "Encountered host page size that the driver " 1257 "doesn't know how to handle: %lx\n", ps); 1258 return (B_FALSE); 1259 } 1260 1261 if (!(pgsz & pbit)) { 1262 xhci_error(xhcip, "Encountered controller that didn't support " 1263 "the host page size (%d), supports: %x", psize, pgsz); 1264 return (B_FALSE); 1265 } 1266 xcap->xcap_pagesize = psize; 1267 1268 return (B_TRUE); 1269 } 1270 1271 /* 1272 * Apply known workarounds and issues. These reports come from other 1273 * Operating Systems and have been collected over time. 1274 */ 1275 static boolean_t 1276 xhci_identify(xhci_t *xhcip) 1277 { 1278 xhci_quirks_populate(xhcip); 1279 1280 if (xhcip->xhci_quirks & XHCI_QUIRK_NO_MSI) { 1281 xhcip->xhci_caps.xcap_intr_types = DDI_INTR_TYPE_FIXED; 1282 } else { 1283 xhcip->xhci_caps.xcap_intr_types = DDI_INTR_TYPE_FIXED | 1284 DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX; 1285 } 1286 1287 if (xhcip->xhci_quirks & XHCI_QUIRK_32_ONLY) { 1288 xhcip->xhci_caps.xcap_flags &= ~XCAP_AC64; 1289 } 1290 1291 return (B_TRUE); 1292 } 1293 1294 static boolean_t 1295 xhci_alloc_intr_handle(xhci_t *xhcip, int type) 1296 { 1297 int ret; 1298 1299 /* 1300 * Normally a well-behaving driver would more carefully request an 1301 * amount of interrupts based on the number available, etc. But since we 1302 * only actually want a single interrupt, we're just going to go ahead 1303 * and ask for a single interrupt. 1304 */ 1305 ret = ddi_intr_alloc(xhcip->xhci_dip, &xhcip->xhci_intr_hdl, type, 0, 1306 XHCI_NINTR, &xhcip->xhci_intr_num, DDI_INTR_ALLOC_NORMAL); 1307 if (ret != DDI_SUCCESS) { 1308 xhci_log(xhcip, "!failed to allocate interrupts of type %d: %d", 1309 type, ret); 1310 return (B_FALSE); 1311 } 1312 xhcip->xhci_intr_type = type; 1313 1314 return (B_TRUE); 1315 } 1316 1317 static boolean_t 1318 xhci_alloc_intrs(xhci_t *xhcip) 1319 { 1320 int intr_types, ret; 1321 1322 if (XHCI_NINTR > xhcip->xhci_caps.xcap_max_intrs) { 1323 xhci_error(xhcip, "controller does not support the minimum " 1324 "number of interrupts required (%d), supports %d", 1325 XHCI_NINTR, xhcip->xhci_caps.xcap_max_intrs); 1326 return (B_FALSE); 1327 } 1328 1329 if ((ret = ddi_intr_get_supported_types(xhcip->xhci_dip, 1330 &intr_types)) != DDI_SUCCESS) { 1331 xhci_error(xhcip, "failed to get supported interrupt types: " 1332 "%d", ret); 1333 return (B_FALSE); 1334 } 1335 1336 /* 1337 * Mask off interrupt types we've already ruled out due to quirks or 1338 * other reasons. 1339 */ 1340 intr_types &= xhcip->xhci_caps.xcap_intr_types; 1341 if (intr_types & DDI_INTR_TYPE_MSIX) { 1342 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_MSIX)) 1343 return (B_TRUE); 1344 } 1345 1346 if (intr_types & DDI_INTR_TYPE_MSI) { 1347 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_MSI)) 1348 return (B_TRUE); 1349 } 1350 1351 if (intr_types & DDI_INTR_TYPE_FIXED) { 1352 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_FIXED)) 1353 return (B_TRUE); 1354 } 1355 1356 xhci_error(xhcip, "failed to allocate an interrupt, supported types: " 1357 "0x%x", intr_types); 1358 return (B_FALSE); 1359 } 1360 1361 static boolean_t 1362 xhci_add_intr_handler(xhci_t *xhcip) 1363 { 1364 int ret; 1365 1366 if ((ret = ddi_intr_get_pri(xhcip->xhci_intr_hdl, 1367 &xhcip->xhci_intr_pri)) != DDI_SUCCESS) { 1368 xhci_error(xhcip, "failed to get interrupt priority: %d", ret); 1369 return (B_FALSE); 1370 } 1371 1372 if ((ret = ddi_intr_get_cap(xhcip->xhci_intr_hdl, 1373 &xhcip->xhci_intr_caps)) != DDI_SUCCESS) { 1374 xhci_error(xhcip, "failed to get interrupt capabilities: %d", 1375 ret); 1376 return (B_FALSE); 1377 } 1378 1379 if ((ret = ddi_intr_add_handler(xhcip->xhci_intr_hdl, xhci_intr, xhcip, 1380 (uintptr_t)0)) != DDI_SUCCESS) { 1381 xhci_error(xhcip, "failed to add interrupt handler: %d", ret); 1382 return (B_FALSE); 1383 } 1384 return (B_TRUE); 1385 } 1386 1387 /* 1388 * Find a capability with an identifier whose value is 'id'. The 'init' argument 1389 * gives us the offset to start searching at. See xHCI 1.1 / 7 for more 1390 * information. This is more or less exactly like PCI capabilities. 1391 */ 1392 static boolean_t 1393 xhci_find_ext_cap(xhci_t *xhcip, uint32_t id, uint32_t init, uint32_t *outp) 1394 { 1395 uint32_t off; 1396 uint8_t next = 0; 1397 1398 /* 1399 * If we have no offset, we're done. 1400 */ 1401 if (xhcip->xhci_caps.xcap_xecp_off == 0) 1402 return (B_FALSE); 1403 1404 off = xhcip->xhci_caps.xcap_xecp_off << 2; 1405 do { 1406 uint32_t cap_hdr; 1407 1408 off += next << 2; 1409 cap_hdr = xhci_get32(xhcip, XHCI_R_CAP, off); 1410 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1411 xhci_error(xhcip, "failed to read xhci extended " 1412 "capabilities at offset 0x%x: encountered FM " 1413 "register error", off); 1414 ddi_fm_service_impact(xhcip->xhci_dip, 1415 DDI_SERVICE_LOST); 1416 break; 1417 } 1418 1419 if (cap_hdr == PCI_EINVAL32) 1420 break; 1421 if (XHCI_XECP_ID(cap_hdr) == id && 1422 (init == UINT32_MAX || off > init)) { 1423 *outp = off; 1424 return (B_TRUE); 1425 } 1426 next = XHCI_XECP_NEXT(cap_hdr); 1427 /* 1428 * Watch out for overflow if we somehow end up with a more than 1429 * 2 GiB space. 1430 */ 1431 if (next << 2 > (INT32_MAX - off)) 1432 return (B_FALSE); 1433 } while (next != 0); 1434 1435 return (B_FALSE); 1436 } 1437 1438 /* 1439 * For mostly information purposes, we'd like to walk to augment the devinfo 1440 * tree with the number of ports that support USB 2 and USB 3. Note though that 1441 * these ports may be overlapping. Many ports can support both USB 2 and USB 3 1442 * and are wired up to the same physical port, even though they show up as 1443 * separate 'ports' in the xhci sense. 1444 */ 1445 static boolean_t 1446 xhci_port_count(xhci_t *xhcip) 1447 { 1448 uint_t nusb2 = 0, nusb3 = 0; 1449 uint32_t off = UINT32_MAX; 1450 1451 while (xhci_find_ext_cap(xhcip, XHCI_ID_PROTOCOLS, off, &off) == 1452 B_TRUE) { 1453 uint32_t rvers, rport; 1454 1455 /* 1456 * See xHCI 1.1 / 7.2 for the format of this. The first uint32_t 1457 * has version information while the third uint32_t has the port 1458 * count. 1459 */ 1460 rvers = xhci_get32(xhcip, XHCI_R_CAP, off); 1461 rport = xhci_get32(xhcip, XHCI_R_CAP, off + 8); 1462 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1463 xhci_error(xhcip, "failed to read xhci port counts: " 1464 "encountered fatal FM register error"); 1465 ddi_fm_service_impact(xhcip->xhci_dip, 1466 DDI_SERVICE_LOST); 1467 return (B_FALSE); 1468 } 1469 1470 rvers = XHCI_XECP_PROT_MAJOR(rvers); 1471 rport = XHCI_XECP_PROT_PCOUNT(rport); 1472 1473 if (rvers == 3) { 1474 nusb3 += rport; 1475 } else if (rvers <= 2) { 1476 nusb2 += rport; 1477 } else { 1478 xhci_error(xhcip, "encountered port capabilities with " 1479 "unknown major USB version: %d\n", rvers); 1480 } 1481 } 1482 1483 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip, 1484 "usb2-capable-ports", nusb2); 1485 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip, 1486 "usb3-capable-ports", nusb3); 1487 1488 return (B_TRUE); 1489 } 1490 1491 /* 1492 * Take over control from the BIOS or other firmware, if applicable. 1493 */ 1494 static boolean_t 1495 xhci_controller_takeover(xhci_t *xhcip) 1496 { 1497 int ret; 1498 uint32_t val, off; 1499 1500 /* 1501 * If we can't find the legacy capability, then there's nothing to do. 1502 */ 1503 if (xhci_find_ext_cap(xhcip, XHCI_ID_USB_LEGACY, UINT32_MAX, &off) == 1504 B_FALSE) 1505 return (B_TRUE); 1506 val = xhci_get32(xhcip, XHCI_R_CAP, off); 1507 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1508 xhci_error(xhcip, "failed to read BIOS take over registers: " 1509 "encountered fatal FM register error"); 1510 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1511 return (B_FALSE); 1512 } 1513 1514 if (val & XHCI_BIOS_OWNED) { 1515 val |= XHCI_OS_OWNED; 1516 xhci_put32(xhcip, XHCI_R_CAP, off, val); 1517 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1518 xhci_error(xhcip, "failed to write BIOS take over " 1519 "registers: encountered fatal FM register error"); 1520 ddi_fm_service_impact(xhcip->xhci_dip, 1521 DDI_SERVICE_LOST); 1522 return (B_FALSE); 1523 } 1524 1525 /* 1526 * Wait up to 5 seconds for things to change. While this number 1527 * isn't specified in the xHCI spec, it seems to be the de facto 1528 * value that various systems are using today. We'll use a 10ms 1529 * interval to check. 1530 */ 1531 ret = xhci_reg_poll(xhcip, XHCI_R_CAP, off, 1532 XHCI_BIOS_OWNED | XHCI_OS_OWNED, XHCI_OS_OWNED, 500, 10); 1533 if (ret == EIO) 1534 return (B_FALSE); 1535 if (ret == ETIMEDOUT) { 1536 xhci_log(xhcip, "!timed out waiting for firmware to " 1537 "hand off, taking over"); 1538 val &= ~XHCI_BIOS_OWNED; 1539 xhci_put32(xhcip, XHCI_R_CAP, off, val); 1540 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1541 xhci_error(xhcip, "failed to write forced " 1542 "takeover: encountered fatal FM register " 1543 "error"); 1544 ddi_fm_service_impact(xhcip->xhci_dip, 1545 DDI_SERVICE_LOST); 1546 return (B_FALSE); 1547 } 1548 } 1549 } 1550 1551 val = xhci_get32(xhcip, XHCI_R_CAP, off + XHCI_XECP_LEGCTLSTS); 1552 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1553 xhci_error(xhcip, "failed to read legacy control registers: " 1554 "encountered fatal FM register error"); 1555 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1556 return (B_FALSE); 1557 } 1558 val &= XHCI_XECP_SMI_MASK; 1559 val |= XHCI_XECP_CLEAR_SMI; 1560 xhci_put32(xhcip, XHCI_R_CAP, off + XHCI_XECP_LEGCTLSTS, val); 1561 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1562 xhci_error(xhcip, "failed to write legacy control registers: " 1563 "encountered fatal FM register error"); 1564 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1565 return (B_FALSE); 1566 } 1567 1568 return (B_TRUE); 1569 } 1570 1571 static int 1572 xhci_controller_stop(xhci_t *xhcip) 1573 { 1574 uint32_t cmdreg; 1575 1576 cmdreg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD); 1577 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1578 xhci_error(xhcip, "failed to read USB Command register: " 1579 "encountered fatal FM register error"); 1580 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1581 return (EIO); 1582 } 1583 1584 cmdreg &= ~(XHCI_CMD_RS | XHCI_CMD_INTE); 1585 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, cmdreg); 1586 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1587 xhci_error(xhcip, "failed to write USB Command register: " 1588 "encountered fatal FM register error"); 1589 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1590 return (EIO); 1591 } 1592 1593 /* 1594 * Wait up to 50ms for this to occur. The specification says that this 1595 * should stop within 16ms, but we give ourselves a bit more time just 1596 * in case. 1597 */ 1598 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, XHCI_STS_HCH, 1599 XHCI_STS_HCH, 50, 10)); 1600 } 1601 1602 static int 1603 xhci_controller_reset(xhci_t *xhcip) 1604 { 1605 int ret; 1606 uint32_t cmdreg; 1607 1608 cmdreg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD); 1609 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1610 xhci_error(xhcip, "failed to read USB Command register for " 1611 "reset: encountered fatal FM register error"); 1612 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1613 return (EIO); 1614 } 1615 1616 cmdreg |= XHCI_CMD_HCRST; 1617 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, cmdreg); 1618 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1619 xhci_error(xhcip, "failed to write USB Command register for " 1620 "reset: encountered fatal FM register error"); 1621 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1622 return (EIO); 1623 } 1624 1625 /* 1626 * Some controllers apparently don't want to be touched for at least 1ms 1627 * after we initiate the reset. Therefore give all controllers this 1628 * moment to breathe. 1629 */ 1630 delay(drv_usectohz(xhci_reset_delay)); 1631 1632 /* 1633 * To tell that the reset has completed we first verify that the reset 1634 * has finished and that the USBCMD register no longer has the reset bit 1635 * asserted. However, once that's done we have to go verify that CNR 1636 * (Controller Not Ready) is no longer asserted. 1637 */ 1638 if ((ret = xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBCMD, 1639 XHCI_CMD_HCRST, 0, 500, 10)) != 0) 1640 return (ret); 1641 1642 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, 1643 XHCI_STS_CNR, 0, 500, 10)); 1644 } 1645 1646 /* 1647 * Take care of all the required initialization before we can actually enable 1648 * the controller. This means that we need to: 1649 * 1650 * o Program the maximum number of slots 1651 * o Program the DCBAAP and allocate the scratchpad 1652 * o Program the Command Ring 1653 * o Initialize the Event Ring 1654 * o Enable interrupts (set imod) 1655 */ 1656 static int 1657 xhci_controller_configure(xhci_t *xhcip) 1658 { 1659 int ret; 1660 uint32_t config; 1661 1662 config = xhci_get32(xhcip, XHCI_R_OPER, XHCI_CONFIG); 1663 config &= ~XHCI_CONFIG_SLOTS_MASK; 1664 config |= xhcip->xhci_caps.xcap_max_slots; 1665 xhci_put32(xhcip, XHCI_R_OPER, XHCI_CONFIG, config); 1666 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1667 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1668 return (EIO); 1669 } 1670 1671 if ((ret = xhci_context_init(xhcip)) != 0) { 1672 const char *reason; 1673 if (ret == EIO) { 1674 reason = "fatal FM I/O error occurred"; 1675 } else if (ret == ENOMEM) { 1676 reason = "unable to allocate DMA memory"; 1677 } else { 1678 reason = "unexpected error occurred"; 1679 } 1680 1681 xhci_error(xhcip, "failed to initialize xhci context " 1682 "registers: %s (%d)", reason, ret); 1683 return (ret); 1684 } 1685 1686 if ((ret = xhci_command_ring_init(xhcip)) != 0) { 1687 xhci_error(xhcip, "failed to initialize commands: %d", ret); 1688 return (ret); 1689 } 1690 1691 if ((ret = xhci_event_init(xhcip)) != 0) { 1692 xhci_error(xhcip, "failed to initialize events: %d", ret); 1693 return (ret); 1694 } 1695 1696 if ((ret = xhci_intr_conf(xhcip)) != 0) { 1697 xhci_error(xhcip, "failed to configure interrupts: %d", ret); 1698 return (ret); 1699 } 1700 1701 return (0); 1702 } 1703 1704 static int 1705 xhci_controller_start(xhci_t *xhcip) 1706 { 1707 uint32_t reg; 1708 1709 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD); 1710 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1711 xhci_error(xhcip, "failed to read USB Command register for " 1712 "start: encountered fatal FM register error"); 1713 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1714 return (EIO); 1715 } 1716 1717 reg |= XHCI_CMD_RS; 1718 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, reg); 1719 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1720 xhci_error(xhcip, "failed to write USB Command register for " 1721 "start: encountered fatal FM register error"); 1722 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1723 return (EIO); 1724 } 1725 1726 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, 1727 XHCI_STS_HCH, 0, 500, 10)); 1728 } 1729 1730 /* ARGSUSED */ 1731 static void 1732 xhci_reset_task(void *arg) 1733 { 1734 /* 1735 * Longer term, we'd like to properly perform a controller reset. 1736 * However, that requires a bit more assistance from USBA to work 1737 * properly and tear down devices. In the meantime, we panic. 1738 */ 1739 panic("XHCI runtime reset required"); 1740 } 1741 1742 /* 1743 * This function is called when we've detected a fatal FM condition that has 1744 * resulted in a loss of service and we need to force a reset of the controller 1745 * as a whole. Only one such reset may be ongoing at a time. 1746 */ 1747 void 1748 xhci_fm_runtime_reset(xhci_t *xhcip) 1749 { 1750 boolean_t locked = B_FALSE; 1751 1752 if (mutex_owned(&xhcip->xhci_lock)) { 1753 locked = B_TRUE; 1754 } else { 1755 mutex_enter(&xhcip->xhci_lock); 1756 } 1757 1758 /* 1759 * If we're already in the error state than a reset is already ongoing 1760 * and there is nothing for us to do here. 1761 */ 1762 if (xhcip->xhci_state & XHCI_S_ERROR) { 1763 goto out; 1764 } 1765 1766 xhcip->xhci_state |= XHCI_S_ERROR; 1767 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1768 taskq_dispatch_ent(xhci_taskq, xhci_reset_task, xhcip, 0, 1769 &xhcip->xhci_tqe); 1770 out: 1771 if (!locked) { 1772 mutex_exit(&xhcip->xhci_lock); 1773 } 1774 } 1775 1776 static int 1777 xhci_ioctl_portsc(xhci_t *xhcip, intptr_t arg) 1778 { 1779 int i; 1780 xhci_ioctl_portsc_t xhi; 1781 1782 bzero(&xhi, sizeof (xhci_ioctl_portsc_t)); 1783 xhi.xhi_nports = xhcip->xhci_caps.xcap_max_ports; 1784 for (i = 1; i <= xhcip->xhci_caps.xcap_max_ports; i++) { 1785 xhi.xhi_portsc[i] = xhci_get32(xhcip, XHCI_R_OPER, 1786 XHCI_PORTSC(i)); 1787 } 1788 1789 if (ddi_copyout(&xhi, (void *)(uintptr_t)arg, sizeof (xhi), 0) != 0) 1790 return (EFAULT); 1791 1792 return (0); 1793 } 1794 1795 static int 1796 xhci_ioctl_clear(xhci_t *xhcip, intptr_t arg) 1797 { 1798 uint32_t reg; 1799 xhci_ioctl_clear_t xic; 1800 1801 if (ddi_copyin((const void *)(uintptr_t)arg, &xic, sizeof (xic), 1802 0) != 0) 1803 return (EFAULT); 1804 1805 if (xic.xic_port == 0 || xic.xic_port > 1806 xhcip->xhci_caps.xcap_max_ports) 1807 return (EINVAL); 1808 1809 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xic.xic_port)); 1810 reg &= ~XHCI_PS_CLEAR; 1811 reg |= XHCI_PS_CSC | XHCI_PS_PEC | XHCI_PS_WRC | XHCI_PS_OCC | 1812 XHCI_PS_PRC | XHCI_PS_PLC | XHCI_PS_CEC; 1813 xhci_put32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xic.xic_port), reg); 1814 1815 return (0); 1816 } 1817 1818 static int 1819 xhci_ioctl_setpls(xhci_t *xhcip, intptr_t arg) 1820 { 1821 uint32_t reg; 1822 xhci_ioctl_setpls_t xis; 1823 1824 if (ddi_copyin((const void *)(uintptr_t)arg, &xis, sizeof (xis), 1825 0) != 0) 1826 return (EFAULT); 1827 1828 if (xis.xis_port == 0 || xis.xis_port > 1829 xhcip->xhci_caps.xcap_max_ports) 1830 return (EINVAL); 1831 1832 if (xis.xis_pls & ~0xf) 1833 return (EINVAL); 1834 1835 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xis.xis_port)); 1836 reg &= ~XHCI_PS_CLEAR; 1837 reg |= XHCI_PS_PLS_SET(xis.xis_pls); 1838 reg |= XHCI_PS_LWS; 1839 xhci_put32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xis.xis_port), reg); 1840 1841 return (0); 1842 } 1843 1844 static int 1845 xhci_open(dev_t *devp, int flags, int otyp, cred_t *credp) 1846 { 1847 dev_info_t *dip = xhci_get_dip(*devp); 1848 1849 return (usba_hubdi_open(dip, devp, flags, otyp, credp)); 1850 } 1851 1852 static int 1853 xhci_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 1854 int *rvalp) 1855 { 1856 dev_info_t *dip = xhci_get_dip(dev); 1857 1858 if (cmd == XHCI_IOCTL_PORTSC || 1859 cmd == XHCI_IOCTL_CLEAR || 1860 cmd == XHCI_IOCTL_SETPLS) { 1861 xhci_t *xhcip = ddi_get_soft_state(xhci_soft_state, 1862 getminor(dev) & ~HUBD_IS_ROOT_HUB); 1863 1864 if (secpolicy_xhci(credp) != 0 || 1865 crgetzoneid(credp) != GLOBAL_ZONEID) 1866 return (EPERM); 1867 1868 if (mode & FKIOCTL) 1869 return (ENOTSUP); 1870 1871 if (!(mode & FWRITE)) 1872 return (EBADF); 1873 1874 if (cmd == XHCI_IOCTL_PORTSC) 1875 return (xhci_ioctl_portsc(xhcip, arg)); 1876 else if (cmd == XHCI_IOCTL_CLEAR) 1877 return (xhci_ioctl_clear(xhcip, arg)); 1878 else 1879 return (xhci_ioctl_setpls(xhcip, arg)); 1880 } 1881 1882 return (usba_hubdi_ioctl(dip, dev, cmd, arg, mode, credp, rvalp)); 1883 } 1884 1885 static int 1886 xhci_close(dev_t dev, int flag, int otyp, cred_t *credp) 1887 { 1888 dev_info_t *dip = xhci_get_dip(dev); 1889 1890 return (usba_hubdi_close(dip, dev, flag, otyp, credp)); 1891 } 1892 1893 /* 1894 * We try to clean up everything that we can. The only thing that we let stop us 1895 * at this time is a failure to remove the root hub, which is realistically the 1896 * equivalent of our EBUSY case. 1897 */ 1898 static int 1899 xhci_cleanup(xhci_t *xhcip) 1900 { 1901 int ret, inst; 1902 1903 if (xhcip->xhci_seq & XHCI_ATTACH_ROOT_HUB) { 1904 if ((ret = xhci_root_hub_fini(xhcip)) != 0) 1905 return (ret); 1906 } 1907 1908 if (xhcip->xhci_seq & XHCI_ATTACH_USBA) { 1909 xhci_hcd_fini(xhcip); 1910 } 1911 1912 if (xhcip->xhci_seq & XHCI_ATTACH_STARTED) { 1913 mutex_enter(&xhcip->xhci_lock); 1914 while (xhcip->xhci_state & XHCI_S_ERROR) 1915 cv_wait(&xhcip->xhci_statecv, &xhcip->xhci_lock); 1916 mutex_exit(&xhcip->xhci_lock); 1917 1918 (void) xhci_controller_stop(xhcip); 1919 } 1920 1921 /* 1922 * Always release the context, command, and event data. They handle the 1923 * fact that they me be in an arbitrary state or unallocated. 1924 */ 1925 xhci_event_fini(xhcip); 1926 xhci_command_ring_fini(xhcip); 1927 xhci_context_fini(xhcip); 1928 1929 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ENABLE) { 1930 (void) xhci_ddi_intr_disable(xhcip); 1931 } 1932 1933 if (xhcip->xhci_seq & XHCI_ATTACH_SYNCH) { 1934 cv_destroy(&xhcip->xhci_statecv); 1935 mutex_destroy(&xhcip->xhci_lock); 1936 } 1937 1938 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ADD) { 1939 if ((ret = ddi_intr_remove_handler(xhcip->xhci_intr_hdl)) != 1940 DDI_SUCCESS) { 1941 xhci_error(xhcip, "failed to remove interrupt " 1942 "handler: %d", ret); 1943 } 1944 } 1945 1946 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ALLOC) { 1947 if ((ret = ddi_intr_free(xhcip->xhci_intr_hdl)) != 1948 DDI_SUCCESS) { 1949 xhci_error(xhcip, "failed to free interrupts: %d", ret); 1950 } 1951 } 1952 1953 if (xhcip->xhci_seq & XHCI_ATTACH_REGS_MAP) { 1954 ddi_regs_map_free(&xhcip->xhci_regs_handle); 1955 xhcip->xhci_regs_handle = NULL; 1956 } 1957 1958 if (xhcip->xhci_seq & XHCI_ATTACH_PCI_CONFIG) { 1959 pci_config_teardown(&xhcip->xhci_cfg_handle); 1960 xhcip->xhci_cfg_handle = NULL; 1961 } 1962 1963 if (xhcip->xhci_seq & XHCI_ATTACH_FM) { 1964 xhci_fm_fini(xhcip); 1965 xhcip->xhci_fm_caps = 0; 1966 } 1967 1968 inst = ddi_get_instance(xhcip->xhci_dip); 1969 xhcip->xhci_dip = NULL; 1970 ddi_soft_state_free(xhci_soft_state, inst); 1971 1972 return (DDI_SUCCESS); 1973 } 1974 1975 /* QUIESCE(9E) to support fast reboot */ 1976 int 1977 xhci_quiesce(dev_info_t *dip) 1978 { 1979 xhci_t *xhcip; 1980 1981 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip)); 1982 1983 return (xhci_controller_stop(xhcip) == 0 && 1984 xhci_controller_reset(xhcip) == 0 ? DDI_SUCCESS : DDI_FAILURE); 1985 } 1986 1987 static int 1988 xhci_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1989 { 1990 int ret, inst, route; 1991 xhci_t *xhcip; 1992 1993 if (cmd != DDI_ATTACH) 1994 return (DDI_FAILURE); 1995 1996 inst = ddi_get_instance(dip); 1997 if (ddi_soft_state_zalloc(xhci_soft_state, inst) != 0) 1998 return (DDI_FAILURE); 1999 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip)); 2000 xhcip->xhci_dip = dip; 2001 2002 xhcip->xhci_regs_capoff = PCI_EINVAL32; 2003 xhcip->xhci_regs_operoff = PCI_EINVAL32; 2004 xhcip->xhci_regs_runoff = PCI_EINVAL32; 2005 xhcip->xhci_regs_dooroff = PCI_EINVAL32; 2006 2007 xhci_fm_init(xhcip); 2008 xhcip->xhci_seq |= XHCI_ATTACH_FM; 2009 2010 if (pci_config_setup(xhcip->xhci_dip, &xhcip->xhci_cfg_handle) != 2011 DDI_SUCCESS) { 2012 goto err; 2013 } 2014 xhcip->xhci_seq |= XHCI_ATTACH_PCI_CONFIG; 2015 xhcip->xhci_vendor_id = pci_config_get16(xhcip->xhci_cfg_handle, 2016 PCI_CONF_VENID); 2017 xhcip->xhci_device_id = pci_config_get16(xhcip->xhci_cfg_handle, 2018 PCI_CONF_DEVID); 2019 2020 if (xhci_regs_map(xhcip) == B_FALSE) { 2021 goto err; 2022 } 2023 2024 xhcip->xhci_seq |= XHCI_ATTACH_REGS_MAP; 2025 2026 if (xhci_regs_init(xhcip) == B_FALSE) 2027 goto err; 2028 2029 if (xhci_read_params(xhcip) == B_FALSE) 2030 goto err; 2031 2032 if (xhci_identify(xhcip) == B_FALSE) 2033 goto err; 2034 2035 if (xhci_alloc_intrs(xhcip) == B_FALSE) 2036 goto err; 2037 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ALLOC; 2038 2039 if (xhci_add_intr_handler(xhcip) == B_FALSE) 2040 goto err; 2041 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ADD; 2042 2043 mutex_init(&xhcip->xhci_lock, NULL, MUTEX_DRIVER, 2044 (void *)(uintptr_t)xhcip->xhci_intr_pri); 2045 cv_init(&xhcip->xhci_statecv, NULL, CV_DRIVER, NULL); 2046 xhcip->xhci_seq |= XHCI_ATTACH_SYNCH; 2047 2048 if (xhci_port_count(xhcip) == B_FALSE) 2049 goto err; 2050 2051 if (xhci_controller_takeover(xhcip) == B_FALSE) 2052 goto err; 2053 2054 /* 2055 * We don't enable interrupts until after we take over the controller 2056 * from the BIOS. We've observed cases where this can cause spurious 2057 * interrupts. 2058 */ 2059 if (xhci_ddi_intr_enable(xhcip) == B_FALSE) 2060 goto err; 2061 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ENABLE; 2062 2063 if ((ret = xhci_controller_stop(xhcip)) != 0) { 2064 xhci_error(xhcip, "failed to stop controller: %s", 2065 ret == EIO ? "encountered FM register error" : 2066 "timed out while waiting for controller"); 2067 goto err; 2068 } 2069 2070 if ((ret = xhci_controller_reset(xhcip)) != 0) { 2071 xhci_error(xhcip, "failed to reset controller: %s", 2072 ret == EIO ? "encountered FM register error" : 2073 "timed out while waiting for controller"); 2074 goto err; 2075 } 2076 2077 if ((ret = xhci_controller_configure(xhcip)) != 0) { 2078 xhci_error(xhcip, "failed to configure controller: %d", ret); 2079 goto err; 2080 } 2081 2082 /* 2083 * Some systems support having ports routed to both an ehci and xhci 2084 * controller. If we support it and the user hasn't requested otherwise 2085 * via a driver.conf tuning, we reroute it now. 2086 */ 2087 route = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip, 2088 DDI_PROP_DONTPASS, "xhci-reroute", XHCI_PROP_REROUTE_DEFAULT); 2089 if (route != XHCI_PROP_REROUTE_DISABLE && 2090 (xhcip->xhci_quirks & XHCI_QUIRK_INTC_EHCI)) 2091 (void) xhci_reroute_intel(xhcip); 2092 2093 if ((ret = xhci_controller_start(xhcip)) != 0) { 2094 xhci_log(xhcip, "failed to reset controller: %s", 2095 ret == EIO ? "encountered FM register error" : 2096 "timed out while waiting for controller"); 2097 goto err; 2098 } 2099 xhcip->xhci_seq |= XHCI_ATTACH_STARTED; 2100 2101 /* 2102 * Finally, register ourselves with the USB framework itself. 2103 */ 2104 if ((ret = xhci_hcd_init(xhcip)) != 0) { 2105 xhci_error(xhcip, "failed to register hcd with usba"); 2106 goto err; 2107 } 2108 xhcip->xhci_seq |= XHCI_ATTACH_USBA; 2109 2110 if ((ret = xhci_root_hub_init(xhcip)) != 0) { 2111 xhci_error(xhcip, "failed to load the root hub driver"); 2112 goto err; 2113 } 2114 xhcip->xhci_seq |= XHCI_ATTACH_ROOT_HUB; 2115 2116 return (DDI_SUCCESS); 2117 2118 err: 2119 (void) xhci_cleanup(xhcip); 2120 return (DDI_FAILURE); 2121 } 2122 2123 static int 2124 xhci_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2125 { 2126 xhci_t *xhcip; 2127 2128 if (cmd != DDI_DETACH) 2129 return (DDI_FAILURE); 2130 2131 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip)); 2132 if (xhcip == NULL) { 2133 dev_err(dip, CE_WARN, "detach called without soft state!"); 2134 return (DDI_FAILURE); 2135 } 2136 2137 return (xhci_cleanup(xhcip)); 2138 } 2139 2140 /* ARGSUSED */ 2141 static int 2142 xhci_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **outp) 2143 { 2144 dev_t dev; 2145 int inst; 2146 2147 switch (cmd) { 2148 case DDI_INFO_DEVT2DEVINFO: 2149 dev = (dev_t)arg; 2150 *outp = xhci_get_dip(dev); 2151 if (*outp == NULL) 2152 return (DDI_FAILURE); 2153 break; 2154 case DDI_INFO_DEVT2INSTANCE: 2155 dev = (dev_t)arg; 2156 inst = getminor(dev) & ~HUBD_IS_ROOT_HUB; 2157 *outp = (void *)(uintptr_t)inst; 2158 break; 2159 default: 2160 return (DDI_FAILURE); 2161 } 2162 2163 return (DDI_SUCCESS); 2164 } 2165 2166 static struct cb_ops xhci_cb_ops = { 2167 xhci_open, /* cb_open */ 2168 xhci_close, /* cb_close */ 2169 nodev, /* cb_strategy */ 2170 nodev, /* cb_print */ 2171 nodev, /* cb_dump */ 2172 nodev, /* cb_read */ 2173 nodev, /* cb_write */ 2174 xhci_ioctl, /* cb_ioctl */ 2175 nodev, /* cb_devmap */ 2176 nodev, /* cb_mmap */ 2177 nodev, /* cb_segmap */ 2178 nochpoll, /* cb_chpoll */ 2179 ddi_prop_op, /* cb_prop_op */ 2180 NULL, /* cb_stream */ 2181 D_MP | D_HOTPLUG, /* cb_flag */ 2182 CB_REV, /* cb_rev */ 2183 nodev, /* cb_aread */ 2184 nodev /* cb_awrite */ 2185 }; 2186 2187 static struct dev_ops xhci_dev_ops = { 2188 DEVO_REV, /* devo_rev */ 2189 0, /* devo_refcnt */ 2190 xhci_getinfo, /* devo_getinfo */ 2191 nulldev, /* devo_identify */ 2192 nulldev, /* devo_probe */ 2193 xhci_attach, /* devo_attach */ 2194 xhci_detach, /* devo_detach */ 2195 nodev, /* devo_reset */ 2196 &xhci_cb_ops, /* devo_cb_ops */ 2197 &usba_hubdi_busops, /* devo_bus_ops */ 2198 usba_hubdi_root_hub_power, /* devo_power */ 2199 xhci_quiesce /* devo_quiesce */ 2200 }; 2201 2202 static struct modldrv xhci_modldrv = { 2203 &mod_driverops, 2204 "USB xHCI Driver", 2205 &xhci_dev_ops 2206 }; 2207 2208 static struct modlinkage xhci_modlinkage = { 2209 MODREV_1, 2210 &xhci_modldrv, 2211 NULL 2212 }; 2213 2214 int 2215 _init(void) 2216 { 2217 int ret; 2218 2219 if ((ret = ddi_soft_state_init(&xhci_soft_state, sizeof (xhci_t), 2220 0)) != 0) { 2221 return (ret); 2222 } 2223 2224 xhci_taskq = taskq_create("xhci_taskq", 1, minclsyspri, 0, 0, 0); 2225 if (xhci_taskq == NULL) { 2226 ddi_soft_state_fini(&xhci_soft_state); 2227 return (ENOMEM); 2228 } 2229 2230 if ((ret = mod_install(&xhci_modlinkage)) != 0) { 2231 taskq_destroy(xhci_taskq); 2232 xhci_taskq = NULL; 2233 } 2234 2235 return (ret); 2236 } 2237 2238 int 2239 _info(struct modinfo *modinfop) 2240 { 2241 return (mod_info(&xhci_modlinkage, modinfop)); 2242 } 2243 2244 int 2245 _fini(void) 2246 { 2247 int ret; 2248 2249 if ((ret = mod_remove(&xhci_modlinkage)) != 0) 2250 return (ret); 2251 2252 if (xhci_taskq != NULL) { 2253 taskq_destroy(xhci_taskq); 2254 xhci_taskq = NULL; 2255 } 2256 2257 ddi_soft_state_fini(&xhci_soft_state); 2258 2259 return (0); 2260 }