new usr/src/lib/fmtopo/nmodul es/ common/ pci bus/ pci bus_| abel s. ¢

R R R R

14268 Fri Jun 29 20:27:05 2018
new usr/src/lib/fmtopo/nodul es/ common/ pci bus/ pci bus_| abel s. ¢
9637 Meml eak in pcibus.so' pci_slot_| abel _| ookup.

R R R R R R R

__unchanged_portion_onitted_

216 /*

217 * Do an overall slot |abel |ookup for the device node.

218 */

219 char *

220 ?ci_sl ot _| abel _| ookup(topo_nod_t *nod, tnode_t *node, did_t *dp, did_t *pdp)
221

222 tnode_t *anode, *apnode;

223 did_t *adp, *apdp;

224 char *plat, *pp, *I = NULL, *ancestor_| = NULL, *new_| = NULL;
224 char *plat, *pp, *I, *ancestor_| = NULL, *new_| = NULL;

225 int err, b, d, f, done = 0O;

226 size_t len;

228 di d_BDF(dp, &b, &d, &f);

230 topo_nod_dprintf(md, "%: entry: node=%, node_nane=%s,
231 "node_i nst =%, dp=%, dp_bdf=%l/ %/ %d, pdp=%p\n",

232 __func__, node, topo_node_nane(node), topo_node_instance(node),
233 dp, b, d, f, pdp);

235 /*

236 * |f this device has a physical slot nunber then check if
237 * an ancestor also has a slot |abel.

238 *

239 * |f an ancestor has a slot label, then this node' s | abel
240 * is generated by concatenating a default |abel onto the
241 * ancestor’s |abel.

242 *

243 * We grab pairs of ancestors (parent and child) as we go up
244 * the tree because the parent is checked for the presence
245 * of a slot while the child contains the |abel.

246 *

247 * Note that this algorithmonly applies to nodes which have
248 * a physcal slot nunber. (i.e. PCIE devices or PCl/PCl X
249 * devices off of a PCIE to PCl X sw tch)

250 */

251 if (did_physlot(pdp) >= 0) {

253 topo_nod_dprintf(nod, "%: node=%: node has a physical "
254 "sl ot =%l, checking ancestors for slots\n",

255 _ func__, node, did_physlot(pdp));

257 /*

258 * Get this device's physical slot nane.

259 */

260 I = (char *)did_physl ot_nanme(pdp, d);

262 anode = topo_node_parent (node);

264 /*

265 * Check ancestors for a slot |abel until we

266 * either find one or hit a non-pci device.

267 */

268 while (!done) {

270 /*

271 * CGet next ancestor node and data pointers.
272 */

273 anode = topo_node_par ent (anode) ;

new usr/src/lib/fmtopo/nmodul es/ common/ pci bus/ pci bus_| abel s. ¢

274 if (anode 1= NULL) {

275 adp = did_find(nod,

276 t opo_node getspeci fic(anode));

277 apnode = topo_node_parent (anode) ;

278 if (apnode !'= NULL)

279 apdp = di d_find(nod,

280 t opo_node_get speci fi c(apnode));
281 el se

282 apdp = NULL;

283 } else {

284 apnode = NULL;

285 apdp = adp = NULL;

286

288 topo_nod_dprintf(nod, "%: node=%: checki ng next
289 "two ancestors: anode=%, adp=% "

290 apnode %, apdp=%\n",

291 func__, node, anode, adp, apnode, apdp);
292 if ((anode T= NULL) && (adp I = NULL)) {

293 di d_BDF(adp, &b, &d,

294 t opo_nod_dpri ntf(nod "9%: node =%p: "

295 “anode_nanme=%][%], anode_bdf =%/ %/ %\ n"
296 _ func__, node, topo node_name(anode) ,
297) t opo_node_i nst ance(anode), b, d, f);
298

299 if ((apnode !'= NULL) && (apdp != NULL)) {

300 di d_BDF(apdp, &b, &d, &f),

301 topo_ nod_dpri ntf(rmd '%s: node=%p:

302 "apnode_name=%[%], "

303 "apnode_bdf =%/ %a/ %\ n",

304 func__, node, topo_ node _nane(apnode),
305 topo_node mstance(apnode) b, d, f);
306 }

308 /*

309 * |If the ancestors do not exist or are not pci
310 * devices then we’'re done searching.

311 *

312 * Otherwise, if the ancestor has a physical slot,
313 *and it is a different slot than the one we

314 * started with then | ookup the ancestor |abel,
315 * and we're done.

316 */

317 if ((anode == NULL) || (adp == NULL) ||

318 (apnode == NULL) || (apdp == NULL)) {

319 done++;

320 } else if (did_physlot_exists(apdp) &&

321 (apdp !'= pdp)) {

322 i f (topo_node_l abel (anode, &ancestor_I,
323 &err) 1= 0

324 t opo_nod_dpri ntf (nod,

325 "%;: node:O/cp t opo_node_| abel ()
326 "FAI LED " _func__, node);
327 (voi d) topo_| mod_ “seterrno(nod, err);
328 return (NULL);

329 }

330 done++;

331 topo_nod_dprintf(nmd, "%: node=%: found "
332 "ancestor with a slot, |abel=% "

333 _ func__, node, ancestor_l);

334 }

335 }

336 if (ancestor_| == NULL) {

337 topo nmod_dpri ntf(n'Dd "%: node=%: no ancestor "
338 "slot found\n", _ func__, node);

339 }

new usr/src/lib/fmtopo/nmodul es/ common/ pci bus/ pci bus_| abel s. ¢

340

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
355
357
357
358
359
360
361
362
363
364
358
359
360
361
362
363
364
365
366
367
368

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

}

/*

* |f we found an ancestor with a slot |abel, and this node has
* a physical slot nurmber |abel then concatenate the two to form
* this node’s | abel. Gtherwi se, do a full slot |abel |ookup.

*

/
if (ancestor_| && 1) {

topo_nod_dprintf(nod, "%: node=%p: concatenating "
"ancestor_| =% and | =%\n",

_ func__, node, ancestor_l, 1);
len = strlen(ancestor_|) + strlen(l) + 2;
new | = alloca(len);
(void) snprintf(new.|, len, "%/%", ancestor_|, 1);
I = newl;

} else if (topo_prop_get_string(node, FM FMRI _AUTHORI TY,
FM_FMRI _AUTH_PRODUCT, &plat, &err) == 0) {
} else {
/ *

* Get platformnane used for |ookups.
*

if (topo_prop_get_string(node, FM FMR _AUTHORI TY,
FM FVRI _AUTH PRODUCT, &plat, &err) < 0) {
(void) topo_nod_seterrno(nod, err);
return (NULL);

}
/*
* Trim SUNW fromthe platform nane
*/
pp = strchr(plat, ',");
1f (pp == NULL)
pp = plat;
els
++pp;
/*

* Get device nunber used for |ookup.

*

di d_BDF(dp, NULL, &d, NULL);

-

—h ok ok ok Ok k% %
-~

The slot |abel i

s deternmined in the follow ng order:
- Platformspecif

f

f

det

c | ookup based on physical slot #.
- Platformspecific |
- Platformspecific |
- Default |abel.
The default |abel is based on the slot names property
if it exists, else it is a generic nane derived from
the slot #.

ookup based on default |abel string.

i
i
i ookup based on devi ce nunber.

((I' = (char *)pci_l abel _physl ot _| ookup(nod, pp, pdp))
NULL
if ((I = (char *)did_physlot_name(pdp, d)) != NULL) {
I = (char *)

) pci _I abel _sl ot nane_| ookup(nod, pp, |, dp);
if (I == NULL) {
I = (char *)
pci _| abel _m ssi ng_| ookup(nod, pp, dp);
) }
topo_nod_strfree(nod, plat);

} else {

(voi d) topo_nod_seterrno(nod, err);
I = NULL;

new usr/src/lib/fmtopo/nmodul es/ common/ pci bus/ pci bus_| abel s. ¢
397 topo_nod_strfree(nod, ancestor_|);
399 /*
400 * |f we calculated a slot label, then save it in the
401 * node’'s data structure so we can free it later.
402 */
403 if (1) {
404 if (did_slot_label _get(dp) != NULL)
405 topo_nod_strfree(nod, did_slot_|abel_get(dp));
406 | = topo_nod_strdup(nod, I|);
407 di d_sl ot _| abel _set(dp, I|);
408 }
410 topo_nod_dprintf(md, "%: exit: node=%: | abel =%\n",
411 _ func__, node, (I 2?1 : "NULL"));
413 return (1);
414 }

__unchanged_portion_ontted_

