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__unchanged_portion_onitted_

216 /*

217 * Do an overall slot |abel |ookup for the device node.

218 */

219 char *

220 ?ci_sl ot _| abel _| ookup(topo_nod_t *nod, tnode_t *node, did_t *dp, did_t *pdp)
221

222 tnode_t *anode, *apnode;

223 did_t *adp, *apdp;

224 char *plat, *pp, *I = NULL, *ancestor_| = NULL, *new_| = NULL;
224 char *plat, *pp, *I, *ancestor_| = NULL, *new_| = NULL;

225 int err, b, d, f, done = 0O;

226 size_t len;

228 di d_BDF(dp, &b, &d, &f);

230 topo_nod_dprintf(md, "%: entry: node=%, node_nane=%s,
231 "node_i nst =%, dp=%, dp_bdf=%l/ %/ %d, pdp=%p\n",

232 __func__, node, topo_node_nane(node), topo_node_instance(node),
233 dp, b, d, f, pdp);

235 /*

236 * |f this device has a physical slot nunber then check if
237 * an ancestor also has a slot |abel.

238 *

239 * |f an ancestor has a slot label, then this node' s | abel
240 * is generated by concatenating a default |abel onto the
241 * ancestor’s |abel.

242 *

243 * We grab pairs of ancestors (parent and child) as we go up
244 * the tree because the parent is checked for the presence
245 * of a slot while the child contains the |abel.

246 *

247 * Note that this algorithmonly applies to nodes which have
248 * a physcal slot nunber. (i.e. PCIE devices or PCl/PCl X
249 * devices off of a PCIE to PCl X sw tch)

250 */

251 if (did_physlot(pdp) >= 0) {

253 topo_nod_dprintf(nod, "%: node=%: node has a physical "
254 "sl ot =%l, checking ancestors for slots\n",

255 _ func__, node, did_physlot(pdp));

257 /*

258 * Get this device's physical slot nane.

259 */

260 I = (char *)did_physl ot_nanme(pdp, d);

262 anode = topo_node_parent (node);

264 /*

265 * Check ancestors for a slot |abel until we

266 * either find one or hit a non-pci device.

267 */

268 while (!done) {

270 /*

271 * CGet next ancestor node and data pointers.
272 */

273 anode = topo_node_par ent (anode) ;
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274 if (anode 1= NULL) {

275 adp = did_find(nod,

276 t opo_node getspeci fic(anode));

277 apnode = topo_node_parent (anode) ;

278 if (apnode !'= NULL)

279 apdp = di d_find(nod,

280 t opo_node_get speci fi c(apnode));
281 el se

282 apdp = NULL;

283 } else {

284 apnode = NULL;

285 apdp = adp = NULL;

286

288 topo_nod_dprintf(nod, "%: node=%: checki ng next
289 "two ancestors: anode=%, adp=% "

290 apnode %, apdp=%\n",

291 func__, node, anode, adp, apnode, apdp);
292 if ((anode T= NULL) && (adp I = NULL)) {

293 di d_BDF(adp, &b, &d,

294 t opo_nod_dpri ntf(nod "9%: node =%p: "

295 “anode_nanme=%][ %], anode_bdf =%/ %/ %\ n"
296 _ func__, node, topo node_name( anode) ,
297 ) t opo_node_i nst ance(anode), b, d, f);
298

299 if ((apnode !'= NULL) && (apdp != NULL)) {

300 di d_BDF(apdp, &b, &d, &f),

301 topo_ nod_dpri ntf(rmd '%s: node=%p:

302 "apnode_name=%[ %], "

303 "apnode_bdf =%/ %a/ %\ n",

304 func__, node, topo_ node _nane(apnode),
305 topo_node mstance(apnode) b, d, f);
306 }

308 /*

309 * |If the ancestors do not exist or are not pci
310 * devices then we’'re done searching.

311 *

312 * Otherwise, if the ancestor has a physical slot,
313 *and it is a different slot than the one we

314 * started with then | ookup the ancestor |abel,
315 * and we're done.

316 */

317 if ((anode == NULL) || (adp == NULL) ||

318 (apnode == NULL) || (apdp == NULL)) {

319 done++;

320 } else if (did_physlot_exists(apdp) &&

321 (apdp !'= pdp)) {

322 i f (topo_node_l abel (anode, &ancestor_I,
323 &err) 1= 0

324 t opo_nod_dpri ntf (nod,

325 "%;: node:O/cp t opo_node_| abel ()
326 "FAI LED " _func__, node);
327 (voi d) topo_| mod_ “seterrno(nod, err);
328 return (NULL);

329 }

330 done++;

331 topo_nod_dprintf(nmd, "%: node=%: found "
332 "ancestor with a slot, |abel=% "

333 _ func__, node, ancestor_l);

334 }

335 }

336 if (ancestor_| == NULL) {

337 topo nmod_dpri ntf(n'Dd "%: node=%: no ancestor "
338 "slot found\n", _ func__, node);

339 }
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}

/*

* |f we found an ancestor with a slot |abel, and this node has
* a physical slot nurmber |abel then concatenate the two to form
* this node’s | abel. Gtherwi se, do a full slot |abel |ookup.

*

/
if (ancestor_| && 1) {

topo_nod_dprintf(nod, "%: node=%p: concatenating "
"ancestor_| =% and | =%\n",

_ func__, node, ancestor_l, 1);
len = strlen(ancestor_|) + strlen(l) + 2;
new | = alloca(len);
(void) snprintf(new.|, len, "%/%", ancestor_|, 1);
I = newl;

} else if (topo_prop_get_string(node, FM FMRI _AUTHORI TY,
FM_FMRI _AUTH_PRODUCT, &plat, &err) == 0) {
} else {
/ *

* Get platformnane used for |ookups.
*

if (topo_prop_get_string(node, FM FMR _AUTHORI TY,
FM FVRI _AUTH PRODUCT, &plat, &err) < 0) {
(void) topo_nod_seterrno(nod, err);
return (NULL);

}
/*
* Trim SUNW fromthe platform nane
*/
pp = strchr(plat, ',");
1f (pp == NULL)
pp = plat;
els
++pp;
/*

* Get device nunber used for |ookup.

*

di d_BDF(dp, NULL, &d, NULL);

-

—h ok ok ok Ok k% %
-~

The slot |abel i

s deternmined in the follow ng order:
- Platformspecif

f

f

det

c | ookup based on physical slot #.
- Platformspecific |
- Platformspecific |
- Default |abel.
The default |abel is based on the slot names property
if it exists, else it is a generic nane derived from
the slot #.

ookup based on default |abel string.

i
i
i ookup based on devi ce nunber.

((I' = (char *)pci_l abel _physl ot _| ookup(nod, pp, pdp))
NULL
if ((I = (char *)did_physlot_name(pdp, d)) != NULL) {
I = (char *)

) pci _I abel _sl ot nane_| ookup(nod, pp, |, dp);
if (I == NULL) {
I = (char *)
pci _| abel _m ssi ng_| ookup(nod, pp, dp);
) }
topo_nod_strfree(nod, plat);

} else {

(voi d) topo_nod_seterrno(nod, err);
I = NULL;
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397 topo_nod_strfree(nod, ancestor_|);
399 /*
400 * |f we calculated a slot label, then save it in the
401 * node’'s data structure so we can free it later.
402 */
403 if (1) {
404 if (did_slot_label _get(dp) != NULL)
405 topo_nod_strfree(nod, did_slot_|abel_get(dp));
406 | = topo_nod_strdup(nod, I|);
407 di d_sl ot _| abel _set(dp, I|);
408 }
410 topo_nod_dprintf(md, "%: exit: node=%: | abel =%\n",
411 _ func__, node, (I 2?1 : "NULL"));
413 return (1);
414 }

__unchanged_portion_ontted_



