
new/usr/src/lib/fm/topo/modules/common/pcibus/pcibus_labels.c 1

**
 14268 Fri Jun 29 20:27:05 2018
new/usr/src/lib/fm/topo/modules/common/pcibus/pcibus_labels.c
9637 Memleak in pcibus.so‘pci_slot_label_lookup.
**
______unchanged_portion_omitted_

216 /*
217 * Do an overall slot label lookup for the device node.
218 */
219 char *
220 pci_slot_label_lookup(topo_mod_t *mod, tnode_t *node, did_t *dp, did_t *pdp)
221 {
222 tnode_t *anode, *apnode;
223 did_t *adp, *apdp;
224 char *plat, *pp, *l = NULL, *ancestor_l = NULL, *new_l = NULL;
224 char *plat, *pp, *l, *ancestor_l = NULL, *new_l = NULL;
225 int err, b, d, f, done = 0;
226 size_t len;

228 did_BDF(dp, &b, &d, &f);

230 topo_mod_dprintf(mod, "%s: entry: node=%p, node_name=%s, "
231 "node_inst=%d, dp=%p, dp_bdf=%d/%d/%d, pdp=%p\n",
232 __func__, node, topo_node_name(node), topo_node_instance(node),
233 dp, b, d, f, pdp);

235 /*
236 * If this device has a physical slot number then check if
237 * an ancestor also has a slot label.
238 *
239 * If an ancestor has a slot label, then this node’s label
240 * is generated by concatenating a default label onto the
241 * ancestor’s label.
242 *
243 * We grab pairs of ancestors (parent and child) as we go up
244 * the tree because the parent is checked for the presence
245 * of a slot while the child contains the label.
246 *
247 * Note that this algorithm only applies to nodes which have
248 * a physcal slot number. (i.e. PCIE devices or PCI/PCIX
249 * devices off of a PCIE to PCIX switch)
250 */
251 if (did_physlot(pdp) >= 0) {

253 topo_mod_dprintf(mod, "%s: node=%p: node has a physical "
254 "slot=%d, checking ancestors for slots\n",
255 __func__, node, did_physlot(pdp));

257 /*
258 * Get this device’s physical slot name.
259 */
260 l = (char *)did_physlot_name(pdp, d);

262 anode = topo_node_parent(node);

264 /*
265 * Check ancestors for a slot label until we
266 * either find one or hit a non-pci device.
267 */
268 while (!done) {

270 /*
271 * Get next ancestor node and data pointers.
272 */
273 anode = topo_node_parent(anode);

new/usr/src/lib/fm/topo/modules/common/pcibus/pcibus_labels.c 2

274 if (anode != NULL) {
275 adp = did_find(mod,
276 topo_node_getspecific(anode));
277 apnode = topo_node_parent(anode);
278 if (apnode != NULL)
279 apdp = did_find(mod,
280 topo_node_getspecific(apnode));
281 else
282 apdp = NULL;
283 } else {
284 apnode = NULL;
285 apdp = adp = NULL;
286 }

288 topo_mod_dprintf(mod, "%s: node=%p: checking next "
289 "two ancestors: anode=%p, adp=%p "
290 "apnode=%p, apdp=%p\n",
291 __func__, node, anode, adp, apnode, apdp);
292 if ((anode != NULL) && (adp != NULL)) {
293 did_BDF(adp, &b, &d, &f);
294 topo_mod_dprintf(mod, "%s: node=%p: "
295 "anode_name=%s[%d], anode_bdf=%d/%d/%d\n",
296 __func__, node, topo_node_name(anode),
297 topo_node_instance(anode), b, d, f);
298 }
299 if ((apnode != NULL) && (apdp != NULL)) {
300 did_BDF(apdp, &b, &d, &f);
301 topo_mod_dprintf(mod, "%s: node=%p: "
302 "apnode_name=%s[%d], "
303 "apnode_bdf=%d/%d/%d\n",
304 __func__, node, topo_node_name(apnode),
305 topo_node_instance(apnode), b, d, f);
306 }

308 /*
309 * If the ancestors do not exist or are not pci
310 * devices then we’re done searching.
311 *
312 * Otherwise, if the ancestor has a physical slot,
313 * and it is a different slot than the one we
314 * started with then lookup the ancestor label,
315 * and we’re done.
316 */
317 if ((anode == NULL) || (adp == NULL) ||
318 (apnode == NULL) || (apdp == NULL)) {
319 done++;
320 } else if (did_physlot_exists(apdp) &&
321 (apdp != pdp)) {
322 if (topo_node_label(anode, &ancestor_l,
323 &err) != 0) {
324 topo_mod_dprintf(mod,
325 "%s: node=%p: topo_node_label() "
326 "FAILED!", __func__, node);
327 (void) topo_mod_seterrno(mod, err);
328 return (NULL);
329 }
330 done++;
331 topo_mod_dprintf(mod, "%s: node=%p: found "
332 "ancestor with a slot, label=%s ",
333 __func__, node, ancestor_l);
334 }
335 }
336 if (ancestor_l == NULL) {
337 topo_mod_dprintf(mod, "%s: node=%p: no ancestor "
338 "slot found\n", __func__, node);
339 }

new/usr/src/lib/fm/topo/modules/common/pcibus/pcibus_labels.c 3

340 }

342 /*
343 * If we found an ancestor with a slot label, and this node has
344 * a physical slot number label then concatenate the two to form
345 * this node’s label. Otherwise, do a full slot label lookup.
346 */
347 if (ancestor_l && l) {
348 topo_mod_dprintf(mod, "%s: node=%p: concatenating "
349 "ancestor_l=%s and l=%s\n",
350 __func__, node, ancestor_l, l);
351 len = strlen(ancestor_l) + strlen(l) + 2;
352 new_l = alloca(len);
353 (void) snprintf(new_l, len, "%s/%s", ancestor_l, l);
354 l = new_l;
355 } else if (topo_prop_get_string(node, FM_FMRI_AUTHORITY,
356 FM_FMRI_AUTH_PRODUCT, &plat, &err) == 0) {
355 } else {
357 /*
357 * Get platform name used for lookups.
358 */
359 if (topo_prop_get_string(node, FM_FMRI_AUTHORITY,
360 FM_FMRI_AUTH_PRODUCT, &plat, &err) < 0) {
361 (void) topo_mod_seterrno(mod, err);
362 return (NULL);
363 }
364 /*
358 * Trim SUNW, from the platform name
359 */
360 pp = strchr(plat, ’,’);
361 if (pp == NULL)
362 pp = plat;
363 else
364 ++pp;
365 /*
366 * Get device number used for lookup.
367 */
368 did_BDF(dp, NULL, &d, NULL);

370 /*
371 * The slot label is determined in the following order:
372 * - Platform specific lookup based on physical slot #.
373 * - Platform specific lookup based on default label string.
374 * - Platform specific lookup based on device number.
375 * - Default label.
376 * The default label is based on the slot names property
377 * if it exists, else it is a generic name derived from
378 * the slot #.
379 */
380 if ((l = (char *)pci_label_physlot_lookup(mod, pp, pdp))
381 == NULL) {
382 if ((l = (char *)did_physlot_name(pdp, d)) != NULL) {
383 l = (char *)
384 pci_label_slotname_lookup(mod, pp, l, dp);
385 }
386 if (l == NULL) {
387 l = (char *)
388 pci_label_missing_lookup(mod, pp, dp);
389 }
390 }
391 topo_mod_strfree(mod, plat);
392 } else {
393 (void) topo_mod_seterrno(mod, err);
394 l = NULL;
395 }

new/usr/src/lib/fm/topo/modules/common/pcibus/pcibus_labels.c 4

397 topo_mod_strfree(mod, ancestor_l);

399 /*
400 * If we calculated a slot label, then save it in the
401 * node’s data structure so we can free it later.
402 */
403 if (l) {
404 if (did_slot_label_get(dp) != NULL)
405 topo_mod_strfree(mod, did_slot_label_get(dp));
406 l = topo_mod_strdup(mod, l);
407 did_slot_label_set(dp, l);
408 }

410 topo_mod_dprintf(mod, "%s: exit: node=%p: label=%s\n",
411 __func__, node, (l ? l : "NULL"));

413 return (l);
414 }

______unchanged_portion_omitted_

