new usr/src/uts/ common/inet/tcp/tcp_opt_data.c

R R R R

30228 Wed Aug 8 12:51:10 2012
new usr/src/uts/comon/inet/tcp/tcp_opt_data.c
3065 sonme functions in the tcp nodule can be static

R R R R R R

1/*

21/

=
[N
NN
-~

When distributing Covered Code,
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
I f applicable,
fields enclosed by brackets "[]" replaced with
information:

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmmon Devel opment and Distribution License (the
You may not use this file except in conpliance with the License.

"Li cense").

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

include this CDDL HEADER in each

add the follow ng bel ow this CDDL HEADER, with the
your own identifying
Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

22 * Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.

23 * Copyright (c) 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

26 #include <sys/types. h>
27 #include <sys/stream h>
28 #define
ncl ude <sys/ tihdr. h>

ncl ude <sys/socket. h>

ncl ude <sys/xti_xtiopt.h>
ncl ude <sys/xti _inet.h>
ncl ude <sys/policy. h>

29 #i
30 #i
31 #i
32 #i
33 #i

35 #i
36 #i
37 #i

39 #i
40 #i
41 #i
42 #i
43 #i

45 static int

_SUN_TPI _VERSI ON 2

ncl ude <inet/commmon. h>
ncl ude <netinet/ip6. h>
ncl ude <inet/ip.h>

ncl ude <netinet/in.h>

ncl ude <netinet/tcp. h>
ncl ude <inet/optcom h>
ncl ude <inet/proto_set.h>
ncl ude <inet/tcp_inpl.h>

47 #endif /*
/*

tcp_opt _defaul t (queue_t *, int, int, uchar_t *);

I codereview */

49 * Table of all known options handled on a TCP protocol stack.

50 *
51 *
52 *
53 *

Not e:

54 */
55 opdes_t tcp_opt_arr[] = {

57 { SO LI NGER,

This table contains options processed by both TCP and IP |evels
and is the superset of options that can be performed on a TCP over IP
st ack.

SOL_SOCKET, QA RW QA |

: . RW
58 si zeof (struct linger), O},
60 { SO DEBUG, SOL_SOCKET, OA RW QA RW OP NP, 0, sizeof (int), 0},
61 { SO KEEPALIVE, SOL_SOCKET, OA RW OA RW OP_NP, 0, sizeof (int), 0},

new usr/src/uts/ common/inet/tcp/tcp_opt_data.c

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

SO_RCVTI MEQ,
SO_DGRAM ERRI ND, SOL_SOCKET, O‘\RW QA RW OP_NP, 0,

},
SO _SND_COPYAVA D, SOL_SOCKET, OA_ RW OA RW CP_NP, O,
SO_ANON_M.P, SOL_SCCKET, OA_ RW OA RW OP_NP, 0, sizeof (int),

SO_ML\CEE;(ENPT, SOL_SOCKET, QA RW OA RW OP NP, O,
SO_MAC | ;vi:’LIClT, SOL_SOCKET, OA_RW OA RW OP_NP, O,
SO_ALLgO}\liES, SOL_SOCKET, QA R, QA RW OP CONFIG O,
SO_EXCEB% ND, SOL_SOCKET, OA RW OA_RW OP_NP, O,

TCP_NOTI FY_THRESHOLD,
TCP_ABORT_THRESHOLD,
TCP_CONN_NOTI FY_THRESHOLD,
TCP_CONN_ABORT_THRESHOLD,
TCP_RECVDSTADDR,
TCP_ANCNPRI VBI ND,
TCP_EXCLBI ND,
TCP_I NI T_CWRD,
TCP_KEEPALI VE_THRESHOLD,

TCP_KEEPI DLE,
TCP_KEEPCNT,

SO DONTROUTE, SOL_SOCKET, OA RW OAR\N OP_NP, 0, sizeof (int), O},
SO USELOOPBACK, SOL_SOCKET, OA RW OA RW OP_NP, 0, sizeof (int), O
)
SO _BROADCAST, SOL_SOCKET, OA RW QA RW OP_NP, 0, sizeof (int), O},
SO_REUSEADDR, SOL_SOCKET, CA_RW QA_RW OP_NP, 0, sizeof (int), 0},
SO OOBI NLI NE, SOL_SOCKET, OA RW QA RW OP NP, 0, sizeof (int), O},
SO _TYPE, SOL_SOCKET, OA'R, OA R, OP_NP, 0, sizeof (int), 0},
SO_SNDBUF, SOL_SOCKET, OA RW QA RW OP NP, 0, sizeof (int), 0},
SO_RCVBUF, SOL_SOCKET, OA'RW OA_RW OP_NP, 0, sizeof (int), O},
SO _SNDTI MEO, SOL_SOCKET, OA'RW QA RW OP_NP, O,
si zeof (struct t|rreval) 0},

SOL_ SOCKET, OARW OA_RW OP_NP, O,
sizeof (struct tineval),

o
——

sizeof (int), O
sizeof (int), O},
si zeof (int),

0

si zeof (int),

si zeof (int),

si zeof (int), 0},

SO_DOMAI N, SOL_SOCKET, OA R, OAR OP_NP, 0, sizeof (int), O},
SO _PROTOTYPE, SOL_SOCKET, OA_R, AR OP_NP, 0, sizeof (int), 0},
TCP_NCDELAY, | PPROTO TCP, OA RW OA RW CP_NP, 0, sizeof (int), O
T@_mi(’gga} I PPROTO TCP, CA R OA R OP_NP, 0, sizeof (uint_t),

| PPROTO_TCP, QA RW OA RW OP_NP,
OP_DEF_FN, sizeof (int), -1 /* not initialized *] },

| PPROTO_TCP, QA RW QA RW OP_NP,
OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

| PPROTO_TCP, OA_RW OA RW OP_NP,
OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

_ | PPROTO_TCP, OA_ RW OA RW OP_NP,
OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

| PPROTO TCP, OA RW OA RW OP_NP, 0, sizeof (int),

| PPROTO TCP, OA_R, OA RW OP_PRI VPORT, O,
si zeof (int), 0},

| PPROTO TCP, OA RW OA RW OP_NP, 0, sizeof (int), O

| PPROTO TCP, OA RW OA RW OP_CONFIG, O,
sizeof (int), 0},

| PPROTO TCP, GA RW OA RW OP_NP, O,
sizeof (int), 0},

| PPROTO TCP, OA RW OA_RW OP_NP, O,
| PPROTO TCP, QA RW QA RW OP_NP, 0,

sizeof (int), 0},

sizeof (int), O},

new usr/src/uts/ common/inet/tcp/tcp_opt_data.c
128 { TCP_KEEPI NTVL,
130 { TCP_KEEPALI VE_ABORT_THRESHOLD,

| PPROTO TCP, CA RW OA RW OP_NP, O,
| PPROTO TCP, OA RW OA RW OP_NP, 0,

sizeof (int), 0},

131 sizeof (int), 0},

133 { TCP_CORK, |PPROTO TCP, OA_ RW QA RW OP_NP, 0, sizeof (int), 0},
135 { TCP_RTO_INITI AL, | PPROTO TCP, OA RW OA RW OP_NP, 0, sizeof (uint32_t),
137 { TCP_.RTOM N, |PPROTO TCP, CA RW QA RW OP_NP, 0, sizeof (uint32_t), 0 },
139 { TCP_RTO MAX, |PPROTO TCP, CA RW QA RW OP_NP, 0, sizeof (uint32_t), 0},
141 { TCP_LINGER2, |PPROTO TCP, CA RW QA RW OP_NP, 0, sizeof (int), 0},
143 { | P_OPTI ONS, I PPROTO_I P, CA_RW QA RW OP_NP,

144 (OP_VARLEN| OP_NODEFAULT) ,

145 IPMAXCPTLENGTH+IPADDRLEN -1 /* not initialized */ },
146 { T_IP_OPTIONS, |IPPROTO IP, OA'RW OA RW OP_NP,

147 (OP_ VARLEN| OoP. NCDEFAULT)

148 I P_MAX_OPT_LENGTH + I P ADDR_LEN, -1 /* not initialized */ },
150 { | P_TGCS, | PPROTO | P, CA RW CA RW OP NP, 0, sizeof (int), 0},
151 { T_IP_TCS, IPPROTO | P, OA RW QA RW OP_NP, 0, sizeof (int), 0},
152 { IP_TTL, I PPROTO_| P, OA_RW QA RW OP_NP, OP_DEF_FN,

153 sizeof (int), -1 /* not initialized */ },

155 { I P_SEC_OPT, IPPROTO_IP, OA RW QA RW OP_NP, OP_NCDEFAULT,

156 sizeof (ipsec_req_t), -1 /* not initialized */ },

158 { IP_BOUND | F, |PPROTO IP, OA RW OA RW OP NP, O,

159 si zeof (int), 0 /* noifindex */ },

161 { I P_UNSPEC SRC, I PPROTO IP, CA R, CA_ RW OP_RAW O,

162 si zeof (int), O},

164 { | PV6_UNI CAST _HOPS, |PPROTO | PV6, OA RW OA RW OP NP, OP_DEF FN,
165 sizeof (int), -1 /* not initialized */ },

167 { 1 PV6_BOUND | F, |PPROTO | PV6, QA RW QA RW OP_NP, O,

168 si zeof (int), 0 /* no ifindex */ },

170 { | P_DONTFRAG |PPROTO IP, OA.RW OA RW OP_NP, 0, sizeof (int), 0},
172 { I P_NEXTHOP, I PPROTO IP, OA R, OA RW OP_CONFIG O,

173 sizeof (in_addr_t), -1 /* not initialized */ },

175 { | PV6_UNSPEC SRC, | PPROTO | PV6, OA R, QA RW OP_RAW O,

176 sizeof (int), O},

178 { 1 PV6_PKTINFO, | PPROTO | PV6, OA_ RW OA RW OP_NP,

179 (OP_NODEFAULT| OP_VARLEN) ,

180 si zeof (struct in6_pktinfo), -1 /* not initialized */ },

181 { | PV6_NEXTHOP, | PPROTO | PV6, OA_RW QA RW OP_NP,

182 OP_NODEFAULT,

183 sizeof (sin6_t), -1 /* not initialized */ },

184 { | PV6_HOPOPTS, I PPROTO | PV6, OA RW OA RW OP_NP,

185 (OP_ VARLEN| oP NODEFAULT) 255*8,

186 -1 7* not initialized */ },

187 { 1 PV6_DSTOPTS, |PPROTO | PV6, QA RW QA RW OP_NP,

188 (OoP_ VARLEN| (03] NCDEFAULT) 255*8,

189 -1 7* not initialized */ },

190 { | PV6_RTHDRDSTOPTS, |PPROTO | PV6, OA RW OA RW OP_NP,

191 (OP_VARLEN| OP_NODEFAULT), 2558,

192 -1 7* not initialized */}

193 { I PV6_RTHDR, |PPROTO | PV6, QA RW QA RW OP_NP,

0},

new usr/src/uts/ common/inet/tcp/tcp_opt_data.c

194 (OP_VARLEN| OP_NODEFAULT), 255*8,

195 -1 7* not initialized */}

196 { 1 PV6_TCLASS, |PPROTO | PV6, OA_RW OA_RW OP_NP,

197 OP_NODEFAULT,

198 sizeof (int), -1 /* not initialized */ },

199 { | PV6_PATHMIU, | PPROTO | PV6, QA RW QA RW OP_NP,

200 OP_NCDEFAULT,

201 sizeof (struct ip6_ntuinfo), -1 /* not initialized */ },
202 { | PV6_DONTFRAG, | PPROTO | PV6, OA_RW OA RW OP_NP, O,

203 sizeof (int), 07,

204 { I PV6_USE_M N_MrIU, IPPROTOIPVG QA RW QA RW OP_NP, O,

205 sizeof (int), O},

206 { | PV6_V6ONLY, IPPROTOIPVG OA RW OCA RW OP_NP, O,

207 sizeof (int), 0},

209 /* Enable receipt of ancillary data */

210 { | PV6_RECVPKTI NFO, | PPROTO | PV6, OA_RW OA RW OP_NP, O,

211 si zeof (int), O},

212 { | PV6_RECVHOPLIM T, |PPROTO | PV6, OA RW OA RW OP_NP, O,

213 sizeof (int), O},

214 { | PV6_RECVHOPOPTS, IPPROTO IPV6, CA RW OA RW OP_NP, O,

215 sizeof (int), O

216 { _OLD_ I PV6 REQ/DSTCPTS IPPROTO I PV6, QA RW QA RW OP_NP, O,
217 sizeof (int), 0},

218 { | PV6_RECVDSTOPTS, IPPROTO IPV6, CA RW OA RW OP_NP, O,

219 sizeof (int), O

220 { | PV6_RECVRTHDR, IPPROTO 1PV6, OARW OA RW OP_NP, O,

221 sizeof (int), O

222 { | PV6_ RECVRTHDRDSTOPTS, IPPROTO IPV6, CA_ RW QA RW OP_NP, O,
223 sizeof (int), 0},

224 { | PV6_RECVTCLASS, IPPROTOIPV6 OA RW QA RW OP_NP, O,

225 si zeof (i nt) 0},

227 { | PV6_SEC OPT, |PPROTO |PV6, OA RW OA RW OP_NP, OP_NCDEFAULT,
228 sizeof (ipsec_req_t), -1 /* not initialized */ },

229 { | PV6_SRC_PREFERENCES, IPPROTO 1 PV6, OA . RW QCA RW OP_NP, O,
230 sizeof (uint32_t), |PV6_ PREFER SRC_DEFAULT },

231 };

233 /*

234 * Table of all supported |evels

235 * Note: Sone levels (e.g. XTI_GENERIC) may be valid but nay not have
236 * any supported options so we need this info separately.

237 *

238 * This is needed only for topnost tpi providers and is used only by
239 * XTI interfaces.

240 */

241 optlevel _t tcp_valid_levels_arr[] = {

242 XTI _GENERI C,

243 SOL_ SOCKET,

244 | PPROTO_TCP,

245 | PPROTO | P,

246 | PPROTO_I PV6

247 };

250 #define TCP_OPT_ARR _CNT A CNT(tcp_opt_arr)

251 #define TCP_VALID LEVELS_CNT A CNT(tcp_valid_levels_arr)

253 uint_t tcp_max_optsize; /* initialized when TCP driver is |oaded */
255 [*

256 * Initialize option database object for TCP

257 *

258 * This object represents database of options to search passed to
259 * {sock,tpi}optcomreq() interface routine to take care of option

new usr/src/uts/ common/inet/tcp/tcp_opt_data.c

260 * managenent and associ ated net hods.
261 */

263 optdb_obj _t tcp_opt_obj = {

264 tcp_opt _defaul t, /* TCP default value function pointer */
265 tcp_tpi _opt_get, /* TCP get function pointer */

266 tcp_tpi _opt_set, /* TCP set function pointer */

267 TCP_OPT_ARR_CNT, /* TCP option database count of entries */
268 tcp_opt_arr, /* TCP option database */

269 TCP_VALI D_LEVELS_CNT, /* TCP valid |l evel count of entries */

270 tcp_valid_levels_arr /* TCP valid level array */

271 };

273 /* Maximum TCP initial cwin (start/restart). */
274 #define TCP_MAX_I NI T_CWND 16

276 static int tcp_max_init_cwnd = TCP_MAX_| NI T_CWND;

278 | *

279 * Some TCP options can be "set" by requesting themin the option
280 * buffer. This is needed for XTI feature test though we do not

281 * allowit in general. W interpret that this mechanismis nore

282 * applicable to OSI protocols and need not be allowed in general.
283 * This routine filters out options for which it is not allowed (nost)
284 * and lets through those (few) for which it is. [The XTI interface
285 * test suite specifics will inply that any XTI_GENERIC | evel XTI_* i
286 * ever inplemented will have to be allowed here].

287 */

288 static bool ean_t

289 tcp_al l ow_connopt_set(int level, int nane)

290 {

292 switch (level) {

293 case | PPROTO_TCP:

294 switch (nane) {

295 case TCP_NODELAY:

296 return (B_TRUE);

297 defaul t:

298 return (B_FALSE);

299 }

300 / * NOTREACHED* /

301 defaul t:

302 return (B_FALSE);

303 1

304 / * NOTREACHED* /

305 }

307 /*

308 * This routine gets default values of certain options whose defaul t

309 * values are maintained by protocol specific code
310 */

311 /* ARGSUSED */

312 static int

45 int

313 tcp_opt _defaul t (queue_t *q, int level, int nanme, uchar_t *ptr)
314 {

315 int32_t *il = (int32_t *)ptr;

316 tcp_stack_t *tcps = Q. TO TCP(q)->tcp_tcps;

318 switch (level) {

319 case | PPROTO_TCP:

320 switch (nane) {

321 case TCP_NOTI FY_THRESHOLD:

322 *i1l = tcps->tcps_ip_notify_interval;
323 br eak;

324 case TCP_ABORT THRESHOLD:

new usr/src/uts/ common/inet/tcp/tcp_opt_data.c

325 *i1l = tcps->tcps_i p_abort_interval;
326 break;

327 case TCP_CONN_NOTI FY_THRESHOLD:

328 *i1l = tcps->tcps_ip_notify_cinterval;
329 br eak;

330 case TCP_CONN_ABORT_THRESHOLD:

331 *i1 = tcps->tcps_i p_abort_cinterval;
332 br eak;

333 defaul t:

334 return (-1);

335 }

336 br eak;

337 case | PPROTO I P:

338 switch (nane) {

339 case | P_TTL:

340 *i1l = tcps->tcps_ipvad_ttl;

341 br eak;

342 defaul t:

343 return (-1);

344 }

345 br eak;

346 case | PPROTO_| PV6:

347 switch (nane) {

348 case | PV6_UNI CAST_HOPS:

349 *i1 = tcps->tcps_i pv6_hoplimt;
350 br eak;

351 defaul t:

352 return (-1);

353 }

354 br eak;

355 defaul t:

356 return (-1);

357 }

358 return (sizeof (int));

359 }

____unchanged_portion_onitted_

new usr/src/uts/ common/inet/tcp/tcp_socket.c 1 new usr/src/uts/ common/inet/tcp/tcp_socket.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 StatIC lnt tcp getsockopt(sock Iov\er handle t |nt, |nt, VOId *'
32213 Wed Aug 8 12:51:11 2012 63 socklen_t *, cred_t *);
new usr/src/uts/comon/inet/tcp/tcp_socket.c 64 static int t cp_set sockopt (sock_| ower handl e_t, int, int, const void *,
3065 sonme functions in the tcp nodule can be static 65 socklen_t, cred_t *);
LEEE R R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEEREREEEEEEEEESE] 66 St atic lnt tcp Sendl’TSg(SOCk |OV\Br handl e t nbl k_t *‘ StrUCt nnsghdr *'
1/* 67 cred_t *);
2 CDDL HEADER START 57 cred_t *cr);
3 68 static int tcp_shut down(sock | ower _handle_t, int, cred_t *);
4 The contents of this file are subject to the ternms of the 69 static void tcp_clr_flowctrl (sock_| ower handlet)
5 Common Devel opment and Distribution License (the "License"). 70 static int tcp_ioctl(sock_|ower_handle_t, int, intptr_t, int, int32_t *,
6 You may not use this file except in conpliance with the License. 71 cred_t *);
7 72 static int tcp_cl ose(sock_| ower _handle_t, int, cred_t *);
8 You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 or http://ww. opensol aris.org/os/licensing. 74 sock_downcal | s_t sock_tcp_downcalls = {
10 See the License for the specific | anguage governing perm ssions 75 tcp_activate,
and limtations under the License. 76 tcp_accept,
12 77 tcp_bi nd,

When distributing Covered Code, include this CDDL HEADER in each 78
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 79
If applicable, add the follow ng bel ow this CDDL HEADER, with the 80

tcp_listen,
tcp_connect,
t cp_get peer nane,

=
[N

B A T

-~

16 fields enclosed by brackets "[]" replaced with your own identifying 81 t cp_get socknane,
17 information: Portions Copyright [yyyy]l [nane of copyright owner] 82 t cp_get sockopt,
18 83 t cp_set sockopt,
19 CDDL HEADER END 84 tcp_sendnsg,
20 85 NULL,
86 NULL,
22 /* 87 NULL,
23 * Copyright (c) 2010, Oacle and/or its affiliates. Al rights reserved. 88 t cp_shut down,
24 */ 89 tcp_clr_flowetrl,
90 tcp_ioctl,
26 /* This file contains all TCP kernel socket related functions. */ 91 tcp_cl ose,
92 };
28 #include <sys/types. h> __unchanged_portion_omtted_
29 #include <sys/strlog. h>
30 #include <sys/policy.h> 130 /* ARGSUSED*/
31 #include <sys/sockio. h> 131 static int
32 #include <sys/strsubr.h> 132 tcp_accept (sock_| ower _handl e_t | proto_handl e,
33 #include <sys/strsun. h> 133 sock_| ower _handl e_t eproto_handl e, sock_upper_handl e_t sock_handl e,
34 #include <sys/squeue_inpl.h> 134 cred_t *cr)
35 #include <sys/squeue. h> 135 {
36 #define _SUN TPl _VERSION 2 136 conn_t *|connp, *econnp;
37 #include <sys/tihdr.h> 137 tcp_t *listener, *eager;
38 #include <sys/tinod. h>
39 #include <sys/tpi coomon. h> 139 /* Al Solaris conponents should pass a cred for this operation. */
40 #include <sys/socketvar.h> 140 ASSERT(cr != NULL);
42 #include <inet/common. h> 142 #endi f /* | codereview */
43 #include <inet/proto_set.h> 143
44 #include <inet/ip.h> 144 * KSSL can nove a socket fromone listener to another, in which
45 #include <inet/tcp. h> 145 * case ‘| proto_handle’ points to the new |listener. To ensure that
46 #include <inet/tcp_inpl.h> 146 * the original listener is used the information is obtained from
147 * the eager.
48 static void tcp_activat e(sock_| ower _handl e_t, sock_upper_handl e_t, 148 */
49 sock_upcal Is_t *, int, cred_t *); 149 econnp = (conn_t *)eproto_handle;
50 static int tcp_accept (sock_| ower _handl e_t, sock_| ower_handl e_t, 150 eager = econnp->conn_tcp;
51 sock_upper_handl e_t, cred t *)s 151 ASSERT(| PCL_I S_NONSTR(econnp)) ;
52 static int t cp_bi nd(sock_T ower handl e t, struct sockaddr *, 152 ASSERT(eager ->tcp_l i stener = NULL);
53 socklen_t, cred_t *); 153 i stener = eager->tcp_listener;
54 static int tep_list en(sockfl ower_handle_t, int, cred_t *); 154 I connp = (conn_t *)listener->tcp_connp;
55 static int tcp_connect (sock_| ower _handl e_t, const struct sockaddr *, 155 ASSERT(| i stener->tcp_state == TCPS_LI| STEN) ;
56 sockl en_t, sock_connid_t *, cred_t *); 156 ASSERT(| connp- >conn_upper _handl e ! = NULL);
57 static int t cp_get peer name(sock_| ower _handl e_t, struct sockaddr *,
58 socklen_t *, cred_t *); 158 /*
59 static int t cp_get sockname(sock_Tower _handl e_t, struct sockaddr *, 159 * It is possible for the accept thread to race with the thread that
60 socklen_t *, cred_t *); 160 * made the su_newconn upcall in tcp_newonn_notify. Both
61 #endif /* | codereview */ 161 * tcp_newconn_notify and tcp_accept require that conn_upper_handl e

new usr/src/uts/ common/inet/tcp/tcp_socket.c

162
163
164
165
166
167
168
169
170
171

173
174
175

177
178
179
180
181
182
183
184
185
186
187

189
190
191
192
193
194
195
196
197

199
200 }

* and conn_upcal | s be set before returning, so they both wite to

* them However, we’'re guaranteed that the value witten is the sane

* for both threads.
*
/
ASSERT(econnp->conn_upper _handl e == NULL ||
econnp- >conn_upper _handl e == sock_handl e) ;
ASSERT(econnp->conn_upcal I s == NULL ||
econnp- >conn_upcal I s == | connp->conn_upcal | s);
econnp- >conn_upper _handl e = sock_handl e;
econnp->conn_upcal I s = | connp->conn_upcal | s;

ASSERT(econnp- >conn_net st ack ==
|'i st ener->t cp_connp- >conn_net st ack) ;

ASSERT(eager->tcp_tcps == |istener->tcp_tcps);

/*

* We should have a mininmumof 2 references on the conn at this

* point. One for TCP and one for the newconn notification

* (which is now taken over by IP). In the normal case we woul d

* al so have another reference (making a total of 3) for the conn
* being in the classifier hash list. However the eager could have
* received an RST subsequently and tcp_cl osei _| ocal coul d have

* renoved the eager fromthe classifier hash list, hence we can’t
*/assert that reference.

*

ASSERT(econnp->conn_ref >= 2);
mut ex_enter (& i stener->tcp_eager_| ock);
*

* Non- STREAMS |isteners never defer the notification of new
* connections.
*/
ASSERT(! | i stener->tcp_eager _prev_q0->tcp_conn_def_q0);
tcp_eager _unl i nk(eager);
mut ex_exit (& i stener->tcp_eager_| ock);
CONN_DEC_REF(|i stener->tcp_connp);

return ((eager->tcp_state < TCPS_ESTABLI SHED) ? ECONNABORTED : 0);

202 static int
203 tcp_bi nd(sock_| ower _handl e_t proto_handl e, struct sockaddr *sa,

204
205 {
206
207

209
210
211

213
214
215
216
217

219
220
221
222
223
224
225
226
227

socklen_t len, cred_t *cr)

int error;
conn_t *connp = (conn_t *)proto_handl e;

/* Al Solaris conmponents should pass a cred for this operation. */
ASSERT(cr !'= NULL);
ASSERT(connp->conn_upper _handl e ! = NULL);

error = squeue_synch_enter(connp, NULL);
if (error 1= 0)

/* failed to enter */

return (ENOSR);
}

/* binding to a NULL address really means unbind */
if (sa == NULL)
if (connp->conn_tcp->tcp_state < TCPS_LI STEN)
error = tcp_do_unbi nd(connp);
el se
error = EINVAL;
} else {
error = tcp_do_bind(connp, sa, len, cr, B TRUE);
}

new usr/src/uts/ common/inet/tcp/tcp_socket.c

229 squeue_synch_exi t (connp);

231 if (error <0) {

232 if (error == - TOUTSTATE)

233 error = EINVAL;

234 el se

235 error = proto_tlitosyserr(-error);

236 }

238 return (error);

239 }

241 | * ARGSUSED */

242 static int

243 tcp_listen(sock_| ower _handl e_t proto_handl e, int backlog, cred_t *cr)
244 {

245 conn_t *connp = (conn_t *)proto_handle;

246 tep_t *tcp = connp->conn_tcp;

247 int error;

249 ASSERT(connp- >conn_upper _handl e ! = NULL);

251 /* Al Solaris conponents should pass a cred for this operation. */
252 ASSERT(cr !'= NULL);

254 error = squeue_synch_enter(connp, NULL);

255 if (error = 0)

256 /* failed to enter */

257 return (ENOBUFS);

258 }

260 error = tcp_do_listen(connp, NULL, 0, backlog, cr, B_FALSE);
261 if (error == 0) {

262 /*

263 * sockfs needs to know what’s the maxi num nunber of socket
264 * that can be queued on the |istener.

265 */

266 (*connp->conn_upcal | s->su_opct |) (connp->conn_upper _handl e,
267 SOCK_OPCTL_ENAB_ACCEPT,

268 (uintptr_t)(tcp->tcp_conn_req_nax +

269 tcp->tcp_tcps->tcps_conn_req_nmax_qo0));

270 } else if (error < 0)

271 if (error == - TQUTSTATE)

272 error = EINVAL;

273 el se

274 error = proto_tlitosyserr(-error);

275 }

276 squeue_synch_exit (connp);

277 return (error);

278 }

280 static int

281 tcp_connect (sock_| ower _handl e_t proto_handl e, const struct sockaddr *sa,
282 socklen_t len, sock_connid_t *id, cred_t *cr)

283 {

284 conn_t *connp = (conn_t *)proto_handl e;

285 int error;

287 ASSERT(connp- >conn_upper _handl e ! = NULL);

289 /* Al Solaris conponents should pass a cred for this operation. */
290 ASSERT(cr !'= NULL);

292 error = proto_verify_ip_addr(connp->conn_fanmly, sa, len);
293 if (error '=0) {

new usr/src/uts/ common/inet/tcp/tcp_socket.c

294 return (error);

295 1

297 error = squeue_synch_enter(connp, NULL);

298 if (error 1= 0)

299 /* failed to enter */

300 return (ENGCSR);

301 }

303 /*

304 * TCP supports quick connect, so no need to do an inplicit bind
305 */

306 error = tcp_do_connect (connp, sa, len, cr, curproc->p_pid);
307 if (error == 0) {

308 *id = connp->conn_t cp->tcp_connid;

309 } elseif (error < 0) {

310 if (error == - TOUTSTATE)

311 swi tch (connp->conn_tcp->tcp_state) {
312 case TCPS_SYN SENT:

313 error = EALREADY;

314 br eak;

315 case TCPS_ESTABLI SHED:

316 error = ElI SCONN;

317 br eak;

318 case TCPS_LI STEN:

319 error = EOPNOTSUPP;

320 br eak;

321 defaul t:

322 error = EINVAL;

323 br eak;

324 }

325 } else {

326 error = proto_tlitosyserr(-error);
327 }

328 }

330 if (connp->conn_tcp->tcp_| oopback) {

331 struct sock_proto_props sopp;

333 sopp. sopp_fl ags = SOCKOPT_LOOPBACK;

334 sopp. sopp_| oopback = B_TRUE;

336 (*connp->conn_upcal | s->su_set _prot o_props) (
337 connp- >conn_upper _handl e, &sopp);

338

339 done:

340 squeue_synch_exit (connp);

342 return ((error == 0) ? EINPROGRESS : error);

343 }

345 /* ARGSUSED3 */
346 static int

129 int

347 tcp_get peernane(sock_| ower _handl e_t proto_handl e, struct sockaddr *addr,
348 sockl en_t *addrlenp, cred_t *cr)

349 {

350 conn_t *connp = (conn_t *)proto_handl e;

351 tcep_t *tcp = connp->conn_tcp;

353 /* Al Solaris conmponents should pass a cred for this operation.
354 ASSERT(cr !'= NULL);

356 ASSERT(tcp !'= NULL);

357 if (tcp->tcp_state < TCPS_SYN _RCVD)

358 return (ENOTCONN);

*/

new usr/src/uts/ common/inet/tcp/tcp_socket.c

360 return (conn_get peernanme(connp, addr, addrlenp));

361 }

363 /* ARGSUSED3 */
364 static int

147 int

365 tcp_get socknanme(sock_| ower _handl e_t proto_handl e, struct sockaddr *addr,
366 sockl en_t *addrlenp, cred_t *cr)

367 {

368 conn_t *connp = (conn_t *)proto_handle;

370 /* Al Solaris conponents should pass a cred for this operation. */
371 ASSERT(cr !'= NULL);

373 return (conn_getsocknanme(connp, addr, addrlenp));

374 }

376 /* returns UNIX error, the optlen is a value-result arg */

377 static int

378 tcp_get sockopt (sock_| ower _handl e_t proto_handle, int |evel, int option_nane,
379 voi d *optval p, socklen_t *optlen, cred_t *cr)

380 {

381 conn_t *connp = (conn_t *)proto_handl e;

382 int error;

383 t _uscal ar _t max_opt buf _| en;

384 voi d *opt val p_buf;

385 int | en;

387 ASSERT(connp->conn_upper _handl e ! = NULL);

389 /* Al Solaris conmponents should pass a cred for this operation. */
390 ASSERT(cr !'= NULL);

392 #endif /* | codereview */

393 error = proto_opt_check(l evel, option_nane, *optlen, &max_optbuf_Ien,
394 tcp_opt _obj.odb_opt _des_arr,

395 t cp_opt _obj . odb_opt _arr_cnt,

396 B FALSE, B TRUE, cr);

397 if (error 1= 0)

398 if (error < 0)

399 error = proto_tlitosyserr(-error);

400 }

401 return (error);

402 }

404 optval p_buf = kmem al | oc(max_opt buf _| en, KM SLEEP);

406 error = squeue_synch_enter(connp, NULL);

407 if (error == ENOME

408 knmem free(optval p_buf, max_optbuf_|en);

409 return (ENOVEM ;

410 }

412 len = tcp_opt_get(connp, |evel, option_nanme, optval p_buf);
413 squeue_synch_exi t (connp);

415 if (len == -1) {

416 kmem free(optval p_buf, max_optbuf_|en);

417 return (EINVAL);

418 1

420 /*

421 * update optlen and copy option val ue

422 */

423 t_uscalar_t size = MN(len, *optlen);

new usr/src/uts/ common/inet/tcp/tcp_socket.c 7 new usr/src/uts/ common/inet/tcp/tcp_socket.c
490 return (error);
425 bcopy(optval p_buf, optval p, size); 491 }
426 bcopy(&si ze, optlen, sizeof (size));
493 /* ARGSUSED */
428 kmem f ree(optval p_buf, max_optbuf_|en); 494 static int
429 return (0); 495 tcp_sendnsg(sock_| ower _handl e_t proto_handl e, nmblk_t *np, struct nnsghdr *nsg,
430 } 496 cred_t *cr)
497 {
432 static int 498 tcp_t *tcp;
433 tcp_set sockopt (sock_| ower _handl e_t proto_handl e, int level, int option_nang, 499 ui nt 32_t nei ze;
434 const void *optval p, socklen_t optlen, cred_t *cr) 500 conn_t *connp = (conn_t *)proto_handl e;
435 { 501 int32_t tcpstate;
436 conn_t *connp = (conn_t *)proto_handl e;
437 int error; 503 /* Al Solaris conmponents should pass a cred for this operation. */
504 ASSERT(cr !'= NULL);
439 ASSERT(connp->conn_upper _handl e ! = NULL);
506 ASSERT(connp->conn_ref >= 2);
441 /* Al Solaris conponents should pass a cred for this operation. */ 507 ASSERT(connp- >conn_upper _handl e ! = NULL);
442 ASSERT(cr !'= NULL);
509 if (msg->nmsg_controllen !'=0) {
444 #endif /* | codereview */ 510 freensg(np);
445 l* 511 return (EO’NOTSUPP)
446 * Entering the squeue synchronously can result in a context swtch, 512 }
447 * which can cause a rather sever perfornmance degradation. So we try to
448 * handl e whatever options we can w thout entering the squeue. 514 switch (DB TYPE(mp)) {
449 */ 515 case M DATA
450 if (level == | PPROTO TCP) { 516 tcp = connp->conn_t cp;
451 switch (option_nane) { 517 ASSERT(tcp != NULL);
452 case TCP_NODELAY:
453 if (optlen !'= sizeof (int32_t)) 519 tcpstate = tcp->tcp_state;
454 return (EINVAL); 520 if (tcpstate < TCPS_ESTABLI SHED) {
455 mut ex_ent er (& onnp- >conn_t cp- >t cp_non_sq_l ock); 521 freensg(np);
456 connp->conn_tcp->tcp_naglim= *(int *)optvalp ? 1 : 522 /*
457 connp- >conn_t cp- >t cp_nss; 523 * We return ENOTCONN if the endpoint is trying to
458 mut ex_exli t (&onnp- >conn_t cp- >t cp_non_sq_I ock); 524 * connect or has never been connected, and EPIPE if it
459 return (0); 525 * has been di sconnected. The connection id hel ps us
460 defaul t: 526 * distinguish between the | ast two cases.
461 br eak; 527 */
462 } 528 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN :
463 1 529 ((tcp->tcp._ connid > 0) ? EPIPE : ENOTCONN));
530 } else if (tcpstate > TCPS _CLOSE WAIT) {
465 error = squeue_synch_enter(connp, NULL); 531 freensg(np);
466 if (error == ENOVEM { 532 return (EPI PE);
467 return (ENOVEM ; 533 }
468 }
535 nei ze = nsgdsi ze(np);
470 error = proto_opt_check(level, option_nanme, optlen, NULL,
471 tcp_opt _obj . odb_opt _des_arr, 537 mut ex_ent er (&t cp- >t cp_non_sq_| ock) ;
472 t cp_opt _obj . odb_opt _arr_cnt, 538 tcp >t cp_squeue_bytes += nsi ze;
473 B_TRUE, B_FALSE, cr); 539 /*
540 * Squeue Fl ow Control
475 if (error 1'=0) { 541 */
476 if (error <0) { 542 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) {
477 error = proto_tlitosyserr(-error); 543 tcp_setqfull (tcp);
478 } 544 }
479 squeue_synch_exi t (connp); 545 mut ex_exi t (& cp->tcp_non_sq_I ock);
480 return (error);
481 } 547 /*
548 * The application may pass in an address in the nsghdr, but
483 error = tcp_opt_set(connp, SETFN_OPTCOM NEGOTI ATE, |evel, option_nane, 549 * we ignore the address on connection-oriented sockets.
484 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar t *)optval p, 550 * Just like BSD this code does not generate an error for
485 NULL, cr); 551 * TCP (a CONNREQUI RED socket) when sending to an address
486 squeue_synch_exit (connp); 552 * passed in with sendto/sendnsg. Instead the data is
553 * delivered on the connection as if no address had been
488 ASSERT(error >= 0); 554 * suppl i ed.
555 */

new usr/src/uts/ common/inet/tcp/tcp_socket.c

556 CONN_I NC_REF(connp) ;

558 if (msg->nsg_flags & MSG QOB)

559 SQUEUE_ENTER_ONE(connp->conn_sqp, np, tcp_output_urgent,
560 connp, NULL, tcp_squeue_flag, SQTAG TCP_QUTPUT);
561 } else {

562 SQUEUE_ENTER_ONE(connp- >conn_sqp, np, tcp_output,
563 connp, NULL, tcp_squeue_flag, SQTAG TCP_QUTPUT);
564 }

566 return (0);

568 defaul t:

569 ASSERT(0) ;

570 }

572 freemsg(np);

573 return (0);

574 }

576 /* ARGSUSED */

577 static int

578 tcp_shut down(sock_| ower _handl e_t proto_handl e, int how, cred_t *cr)

579 {

580 conn_t *connp = (conn_t *)proto_handl e;

581 tep_t *tcp = connp->conn_tcp;

583 ASSERT(connp->conn_upper _handl e ! = NULL);

585 /* Al Solaris conponents should pass a cred for this operation. */
586 ASSERT(cr !'= NULL);

588 *

589 * X/ Open requires that we check the connected state.

590 */

591 if (tcp->tcp_state < TCPS_SYN_SENT)

592 return (ENOTCONN);

594 /* shutdown the send side */

595 if (how != SHUT RD) {

596 mol k_t *bp;

598 bp = allocb_wait(0, BPRI_H, STR NOSIG NULL);

599 CONN_I NC_REF(connp) ;

600 SQUEUE_ENTER O\IE(connp >conn_sqp, bp, tcp_shutdown_out put,
601 connp, NULL, SQ NODRAI N, SQTAG TCP_SHUTDOAN_OUTPUT) ;
603 (*connp->conn_upcal | s->su_opct |) (connp->conn_upper _handl e,
604 SOCK_OPCTL_SHUT_SEND, 0);

605 }

607 /* shutdown the recv side */

608 if (how != SHUT_WR)

609 (*connp->conn_upcal | s->su opctl)(connp >conn_upper _handl e,
610 SOCK_OPCTL_SHUT_RECV, ;

612 return (0);

613 }

615 static void

616 tcp_clr_flowctrl (sock_|l ower _handl e_t proto_handl e)

617 {

618 conn_t *connp = (conn_t *)proto_handl e;

619 tcp_t *tcp = connp->conn_tcp;

620 nbl k_t *np;

621 int error;

new usr/src/uts/ common/inet/tcp/tcp_socket.c

623

625
626
627
628
629
630
631
632
633
634
635

637
638

640
641
642

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

662
663 }

665 /*

ASSERT(connp- >conn_upper _handl e ! = NULL);

/*
If tcp->tcp_rsrv_nmp == NULL,
* is currently running.
*
/
nmut ex_ent er (& cp->tcp_rsrv_np_| ock);
if ((mp = tcp->tcp_rsrv_np) == NULL)
mut ex_exit (& cp->tcp_rsrv_np_| ock);
return;

it means that tcp_clr_flowctrl ()

}
tcp->tcp_rsrv_np = NULL;
mut ex_exit (& cp->tcp_rsrv_np_| ock);

error = squeue_synch_enter(connp, np);
ASSERT(error == 0);

mut ex_ent er (& cp->tcp_rsrv_np_| ock);
tcp->tcp_rsrv_np = np,
mut ex_exi t (& cp->tcp_rsrv_np_| ock) ;

if (tcp->tcp_fused) {
tcp_fuse_backenabl e(tcp);

} else {
tcp->tcp_rwnd = connp->conn_r cvbuf;
/*

* Send back a w ndow update i mediately if TCP is above
* ESTABLI SHED state and the increase of the rcv w ndow

* that the other side knows is at least 1 MSS after flow

* control is lifted.
*
/
if (tcp->tcp_state >= TCPS_ESTABLI| SHED &&
tcp_rwnd_reopen(tcp) == TH_ACK _NEEDED) {
tep_xmt_ctl (NULL, tcp,
(tcp->tcp_swnd == 0) ? tcp->tcp_suna :

666 static int

tcp->tcp_snxt, tcp->tcp_rnxt, TH ACK);
}
}
squeue_synch_exi t (connp);
ARGSUSED */
667 tcp_ioctl (sock_|l ower_handle_t proto_handle, int cmd, intptr_t arg,

668
669 {
670
671

673

675
676

678
679
680
681
682
683
684

686
687

int node, int32_t *rvalp, cred_t *cr)
conn_t *connp = (conn_t *)proto_handl e;
int error;

ASSERT(connp- >conn_upper _handl e ! = NULL);

/* Al Solaris conponents should pass a cred for this operation.
ASSERT(cr !'= NULL);

/
If we don’t have a hel per streamthen create one.

i p_create_hel per_stream takes care of |ocking the conn_t,
so this check for NULL is just a performance optim zation.

* ok ok ok ¥
-~

if (connp->conn_hel per_info == NULL) {
tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps;
/*
* Create a hel per stream for non- STREAMS socket .

*/

10

new usr/src/uts/ common/inet/tcp/tcp_socket.c 11
688 */

689 error = ip_create_hel per_stream(connp, tcps->tcps_|di_ident);
690 if (error 1= 0)

691 i podbg(("tcp_ioctl: create of IP helper stream™
692 "failed %\ n", error));

693 return (error);

694 }

695 }

697 switch (cmd) {

698 case ND_SET:

699 case ND_CET:

700 case _SI OCSOCKFALLBACK:

701 case TCP_| OC_ABORT_CONN:

702 case TI_GETPEERNAMNE:

703 case TI_GETMYNAME:

704 |p1dbg(("tcp ioctl: cnd 0x% on non streans socket"
705));

706 error = EI NVAL;

707 br eak;

708 defaul t:

709 /*

710 * If the conn is not closing, pass on to |P using
711 * hel per stream Bunp the ioctlref to prevent tcp_close
712 * fromclosing the rg/wg out fromunderneath the ioctl
713 * if it ends up queued or aborted/interrupted.

714 */

715 nut ex_ent er (&connp- >conn_| ock) ;

716 if (connp->conn_state_flags & (CONN_CLCSING) {

717 mut ex_exi t (& onnp- >conn_| ock) ;

718 error = EI NVAL;

719 br eak;

720 }

721 CONN_I NC_| OCTLREF_LOCKED(connp) ;

722 error = Tdi_ioctl(connp- >conn_he| per _i nf o- >i phs_handl e,
723 crm arg, node, cr, rvalp);

724 CONN_DEC | OCTLREF(connp) ;

725 br eak;

726 }

727 return (error);

728 }

730 /* ARGSUSED */

731 static int

732 }cp_cl ose(sock_|l ower _handl e_t proto_handle, int flags, cred_t *cr)

733

734 conn_t *connp = (conn_t *)proto_handl e;

736 ASSERT(connp->conn_upper _handl e ! = NULL);

738 /* Al Solaris conponents should pass a cred for this operation. */
739 ASSERT(cr !'= NULL);

741 tcp_cl ose_conmon(connp, flags);

743 i p_free_hel per_strean(connp);

745 /*

746 * Drop IP's reference on the conn. This is the |ast reference

747 * on the connp if the state was | ess than established. If the

748 * connection has gone into tinmewait state, then we will have

749 * one ref for the TCP and one nore ref (total of two) for the

750 * classifier connected hash list (a tinmewait connections stays
751 * in connected hash till closed).

752 *

753 * W can’'t assert the references because there m ght be other

new usr/src/uts/ common/inet/tcp/tcp_socket.c 12
754 * transient reference places because of some wal kers or queued
755 * packets in squeue for the tinmewait state.

756 */

757 CONN_DEC_REF(connp) ;

759 /*

760 * EINPROGRESS tells sockfs to wait for a 'closed upcall before
761 * freeing the socket.

762 */

763 return (El NPROGRESS) ;

764 }

766 /* ARGSUSED */

767 sock_| ower _handl e_t

768 tcp_create(int famly, int type, t proto, sock_downcalls_t **sock_downcalls,
769{ uint_t *snodep, int *errorp, int flags, cred_t *credp)

770

771 conn_t *connp;

772 bool ean_t isve = famly == AF_| NET6;

774 #endif /* | codereview */

775 if (type !'= SOCK_STREAM || (famly !'= AF_INET & famly != AF_I NET6) ||
776 (proto !'=0 & proto != I PPROTO TCP)) {

777 *errorp = EPROTONOSUPPORT;

778 return (NULL);

779 }

781 connp = tcp_create_comon(credp, isv6, B TRUE, errorp);

782 if (connp == NULL)

783 return (NULL);

784 }

786 /*

787 * Put the ref for TCP. Ref for IP was already put

788 * by ipcl_conn_create. Al so make the conn_t globally

172 * by ipcl_conn_create. Also Make the conn_t globally

789 * visible to wal kers

790 */

791 mut ex_ent er (&onnp- >conn_| ock) ;

792 CONN_TNC_REF_LOCKED(connp) ;

793 ASSERT(connp->conn_ref == 2)'

794 connp->conn_state_flags & ~CONN_I NCI Pl ENT;

796 connp->conn_flags | = | PCL_NONSTR;

797 mut ex_exi t (& onnp->conn_| ock) ;

799 ASSERT(errorp != NULL);

800 *errorp = 0;

801 *sock_downcal | s = &sock _tcp_downcal | s;

802 *snmodep = SM CONNREQUI RED | ~SM EXDATA | SM ACCEPTSUPP |

803 SM_SENDFI LESUPP;

805 return ((sock_|l ower_handl e_t)connp);

806 }

__unchanged_portion_om tted_

new usr/src/uts/comon/inet/tcp/tcp_stats.c 1

R R R R

33177 Wed Aug 8 12:51:11 2012
new usr/src/uts/comon/inet/tcp/tcp_stats.c
3065 sonme functions in the tcp nodule can be static

R R R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
*/

22 /*

23 * Copyright (c) 2010, Oacle and/or its affiliates. Al rights reserved.
*
/

26 #include <sys/types. h>

27 #include <sys/tihdr.h>

28 #include <sys/policy.h>

29 #include <sys/tsol/tnet.h>

31 #include <inet/comon. h>
32 #include <inet/ip.h>

new usr/src/uts/comon/inet/tcp/tcp_stats.c

60 case TCPS_IDLE: /* RFC1213 doesn’t have anal ogue for
61 case TCPS_BOUND:

62 return (M B2_TCP_cl osed);

63 case TCPS_LI STEN:

64 return (MB2_TCP_listen);

65 case TCPS_SYN_SENT:

66 return (M B2_TCP_synSent);

67 case TCPS_SYN_RCVD:

68 return (M B2_TCP_synRecei ved);
69 case TCPS_ESTABLI SHED:

70 return (M B2_TCP_establ i shed);
71 case TCPS_CLOSE WAI T:

72 return (M B2_TCP_cl oseWiit);
73 case TCPS_FIN WAIT_1:

74 return (MB2_TCP_finWaitl);

75 case TCPS_CLOSI NG

76 return (M B2_TCP_cl osing);

77 case TCPS_LAST_ACK:

78 return (M B2_TCP_| ast Ack) ;

79 case TCPS_FIN WAI T_2:

80 return (MB2_TCP_finWait2);

81 case TCPS_TI ME_VWAIT:

82 return (MB2_TCP_timeWit);

83 defaul t:

84 return (0);

85

86 }

__unchanged_portion_onitted_

801 /*

802 * To add stats fromone nmib2_tcp_t to another.
803 * The caller should set themup propertly.
804 */

805 static void

Static fields are not

33 #incl ude
34 #incl ude
35 #incl ude
36 #incl ude
37 #include

39 stati
40 stati
41 stati
39 stati
40 stati

c
®
®
c
c

42 static

44 static void
45 static void
46 static void

48 tcp_g_stat_t

49 kstat _t

<i
<i
<i
<i
<i

int
int
int
int
int
voi d

net/tcp. h>
net/tcp_inpl.h>
net/tcp_stats. h>
net/ kst at com h>
net/ snnpcom h>

tcp_snnp_state(tcp_t *);

tcp_kstat _update(kstat_t *, int);
tcp_kstat2_update(kstat_t *, int
tcp_kstat_update(kstat_t *kp, in
tcp_kstat2_update(kstat _t *k i
tcp_summb(tcp_stack_t *, m

DE
trw;
, int rw;
b2 _t t *);
tcp_add_mi b(m b2_tcp_t *, mb2_tcp_t *);
tcp_add_stats(tcp_stat_counter_t *, tcp_stat_t *);
tcp_clr_stats(tcp_stat_t *);

p t
2_tep_

tcp_g_statistics;
*tcp_g_kstat;

51 /* Translate TCP state to M B2 TCP state. */
52 static int
53 tcp_snnp_state(tcp_t *tcp)

54 {

55 if (tcp == NULL)

56 return (0);

58 switch (tcp- >tcp state) {
59 case TCPS_CLOSED:

804 void

806 tcp_add_mb(mb2_tcp_t *from mb2_tcp_t *to)

807 {

808 to- >t cpActiveOpens += from >t cpActiveOpens;

809 t 0- >t cpPassi veOpens += from >t cpPassi veQpens;

810 to->tcpAttenptFails += from >tcpAttenptFails;

811 t 0- >t cpEst abResets += from >t cpEst abReset s;

812 to->tcpl nSegs += from >t cpl nSegs;

813 t 0- >t cpQut Segs += from >t cpQut Segs;

814 to- >t cpRetransSegs += from >t cpRet ransSegs;

815 to->tcpQut Rsts += from >tcpQut Rsts;

817 t 0- >t cpQut Dat aSegs += from >t cpQut Dat aSegs;

818 t o- >t cpQut Dat aByt es += from >t cpQut Dat aByt es;

819 to->tcpRetransBytes += from >t cpRetransBytes;

820 to- >t cpQut Ack += from >t cpQut Ack;

821 t 0- >t cpQut AckDel ayed += from >t cpQut AckDel ayed;

822 to->tcpQutU g += from >tcpQut Urg;

823 t o- >t cpQut WnUpdat e += from >t cpQut W nUpdat e;

824 t 0- >t cpQut W nProbe += from >t cpQut W nPr obe;

825 to- >t cpQut Control += from >tcpCQut Control ;

826 t 0- >t cpQut Fast Retrans += from >t cpQut Fast Retr ans;

828 t o- >t cpl nAckByt es += from >t cpl nAckByt es;

829 t o- >t cpl nDupAck += from >t cpl nDupAck;

830 t o- >t cpl nAckUnsent += from >t cpl nAckUnsent ;

831 t o- >t cpl nDat al nor der Segs += from >t cpl nDat al nor der Segs;
832 t o- >t cpl nDat al nor der Byt es += from >t cpl nDat al nor der Byt es;
833 t 0- >t cpl nDat aUnor der Segs += from >t cpl nDat aUnor der Segs;
834 t o- >t cpl nDat aUnor der Byt es += from >t cpl nDat aUnor der Byt es;
835 t o- >t cpl nDat aDupSegs += from >t cpl nDat aDupSegs;

836 t o- >t cpl nDat aDupByt es += from >t cpl nDat aDupByt es;

I DLE & BOUND */

added.

new usr/src/uts/comon/inet/tcp/tcp_stats.c

837
838
839
840
841
842
843

845
846
847
848
849
850
851
852
853
854
855
856
857

858 }

t 0- >t cpl nDat aPart DupSegs += from >t cpl nDat aPar t DupSegs;

t o- >t cpl nDat aPar t DupByt es += from >t cpl nDat aPar t DupByt es;
t 0- >t cpl nDat aPast W nSegs += from >t cpl nDat aPast W nSegs;

t 0- >t cpl nDat aPast W nByt es += from >t cpl nDat aPast W nByt es;
t 0- >t cpl nW nProbe += from >t cpl nW nPr obe;

t o- >t cpl NnW nUpdate += from >t cpl nW nUpdat e;

to->tcpl nC osed += from >tcpl nCl osed;

to->tcpRtt NoUpdat e += from >t cpRtt NoUpdat e;
to->tcpRttUpdate += from >tcpRtt Update;

to->tcpTi nRetrans += from >t cpTi nRetrans;

to->tcpTi nRetransDrop += from >t cpTi nRet ransDr op;

to- >t cpTi nKeepal i ve += from >t cpTi nKeepal i ve;

t o- >t cpTi nKeepal i veProbe += from >t cpTi nKeepal i vePr obe;
t o- >t cpTi nKeepal i veDrop += from >t cpTi nKeepal i veDr op;

t o- >t cpLi stenDrop += from >t cpLi stenDrop;

to- >t cpLi stenDropQ += from >t cpLi st enDr opQo;

t o- >t cpHal f OpenDrop += from >t cpHal f OpenDr op;

t 0- >t cpQut SackRet ransSegs += from >t cpQut SackRet r ansSegs;
t 0- >t cpHCl nSegs += from >t cpHCl nSegs;

t 0- >t cpHCQut Segs += from >t cpHCQut Segs;

__unchanged_portion_onitted_

new usr/src/uts/comon/inet/tcp_inpl.h 1 new usr/src/uts/comon/inet/tcp_inpl.h
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
28387 Wed Aug 8 12:51:12 2012 399 #define | P_ADDR_CACHE_SI ZE 2048
new usr/src/uts/comon/inet/tcp_inpl.h 400 #define | P_ADDR_CACHE_HASH(f addr) \
3065 sonme functions in the tcp nodul e can be static 401 (ntohl (faddr) & (I P_ADDR_CACHE_SI ZE -1))
LEEE R R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEEREREEEEEEEEESE]
__unchanged_portion_onitted_ 403 /* TCP cwnd burst factor. */

404 #define TCP_CWND_I NFI NI TE 65535
339 /* Increnment and decrenment the nunber of connections in tcp_stack_t. */ 405 #define TCP_CWND_SS 3
340 #define TCPS_CONN_I NC(tcps) \ 406 #define TCP_CWND_NORMAL 5
341 at omi c¢_i nc_64(\
342 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqi d] ->tcp_sc_conn_cnt) 408 /*

409 * TCP reassenbly macros. W hide starting and ending sequence nunbers in
344 #define TCPS_CONN DEC(tcps) \ 410 * b_next and b_prev of nmessages on the reassenbly queue. The nessages are
345 atom c_dec_64 \ 411 * chained using b_cont. These macros are used in tcp_reass() so we don't
346 (uint64_t *)&(tcps) >t cps_sc[CPU- >cpu_seqi d] - >t cp_sc_conn_cnt) 412 * have to see the ugly casts and assignnents.

413 */
348 /* 414 #define TCP_REASS_SEQ np) ((uint32_t)(uintptr_t)((np)->b_next))
349 * When the systemis under nenory pressure, stack variable tcps_reclaimis 415 #define TCP_REASS_SET_SEQ np, u) ((mp) - >b_next =\
350 * true, we shorten the connection tineout abort interval to tcp_early_abort 416 (bl k_t *)(uintptr_t)(u))
351 * seconds. Defined in tcp.c. 417 #define TCP_REASS_END(np) ((uint32_t)(uintptr_t)((nmp)->b_prev))
352 */ 418 #define TCP_REASS SET_END(np, u) ((np)->b_prev =\
353 extern uint32_t tcp_early_abort; 419 (Ik _t)(U| ntptr_t)(u))
355 /* 421 #define tcps_tinme_wait_interval tcps_propinfo_tbl[0].prop_cur_uval
356 * To reach to an eager in Q0 which can be dropped due to an inconing 422 #define tcps_conn_req_max_q tcps_propinfo_tbl[1].prop_cur_uval
357 * new SYN request when Q is full, a new doubly linked list is 423 #define tcps_conn_req_max_qg0 tcps_propinfo_tbl[2].prop_cur_uval
358 * introduced. This |ist allows to select an eager fromQ in Q1) tine. 424 #define tcps_conn_req_mnin tcps_propinfo_tbl[3].prop_cur_uval
359 * This is needed to avoid spending too rmuch tinme wal king through the 425 #define tcps_conn_grace_period tcps_propinfo_tbl[4].prop_cur_uval
360 * long list of eagers in Q0 when tcp_drop_qO() is called. Each nenber of 426 #define tcps_cwnd_max_ tcps_propinfo_tbl[5].prop_cur_uval
361 * this newlist has to be a menber of Q. 427 #define tcps_dbg tcps_propinfo_tbl[6].prop_cur_uval
362 * This list is headed by listener’s tcp_t. Wen the list is enpty, 428 #define tcps_snmallest_nonpriv_port tcps_propinfo_tbl[7].prop_cur_uval
363 * both the poi nters - tcp_eager_next drop q0 and tcp_ eager prev_drop_qo0, 429 #define tcps_ip_abort_cinterval tcps_propinfo_tbl[8].prop_cur_uval
364 * of listener’s tcp_t point to l'istener's tcp_t itself 430 #define tcps_ip_abort_linterval t cps_propi nfo_tbl [9]. prop_cur_uval
365 * 431 #define tcps_ip_abort_interval t cps_propi nfo_tbl [10]. prop_cur_uval
366 * Gven an eager in Q and a |listener, MAKE DROPPABLE() puts the eager 432 #define tcps_ip_notify_cinterval tcps_propinfo_tbl[11]. prop_cur_uval
367 * in the list. MAKE_UNDROPPABLE() takes the eager out of the |ist 433 #define tcps_ip_notify_interval tcps_propinfo_tbl[12]. prop_cur_uval
368 * These macros do not affect the eager’s menbership to Q. 434 #define tcps_ipva_ttl tcps_propinfo_tbl[13]. prop_cur_uval
369 */ 435 #define tcps_keepalive_interval _high tcps_propinfo_tbl[14]. prop_max_uval
370 #define MAKE_DROPPABLE(I i stener, eager) \ 436 #define tcps_keepalive_interval tcps_propinfo_tbl[14]. prop_cur_uval
371 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 437 #define tcps_keepalive_interval _| ow tcps_propinfo_tbl[14]. prop_m n_uval
372 (listener)->tcp_eager_next_drop_qO->tcp_eager _prev_drop_qg0\ 438 #define tcps_nmaxpsz_nultiplier tcps_propinfo_tbl[15]. prop_cur_uval
373 = (eager); \ 439 #define tcps_nss_def _i pv4d tcps_propinfo_tbl[16].prop_cur_uval
374 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 440 #define tcps_nss_max_i pv4d tcps_propinfo_tbl[17]. prop_cur_uval
375 (eager)->tcp_eager _next _drop_q0 = \ 441 #define tcps_nss_mn tcps_propinfo_tbl[18]. prop_cur_uval
376 (11 stener)->tcp_eager_next_drop_qo0; \ 442 #define tcps_nagli m def tcps_propinfo_tbl[19]. prop_cur_uval
377 (listener)->tcp_eager_next_drop_g0 = (eager); \ 443 #define tcps_rexmit_interval _initial_high \
378 } 444 tcps_propi nfo_tbl[20]. prop_max_uval

445 #define tcps_rexmt_interval _initial tcps_propi nfo_tbl[20].prop_cur_uval
380 #defi ne MAKE_UNDROPPABLE(eager) \ 446 #define tcps_rexmt_interval _initial_low \
381 if ((eager)->tcp_eager_next_drop_qg0 != NULL) { \ 447 tcps_propinfo_tbl[20].prop_m n_uval
382 (eager) - >t cp_eager _next _drop_qO0- >t cp_eager _prev_drop_qg0 \ 448 #define tcps_rexmt_interval _max_high tcps_propinfo_tbl[21]. prop_max_uval
383 = (eager)->tcp_eager_prev_drop_qo; \ 449 #define tcps_rexmt_interval _max tcps_propinfo_tbl[21]. prop_cur_uval
384 (eager)->tcp_eager_prev_drop_qO0->t cp_eager _next _drop_q0 \ 450 #define tcps_rexmit_interval _max_| ow tcps_propinfo_tbl[21]. prop_nin_uval
385 = (eager)->tcp_eager_next_drop_qoO; \ 451 #define tcps_rexmit_interval _min_high tcps_propinfo_thl[22].prop_max_uval
386 (eager)->tcp_eager _prev_drop_g0 = NULL; \ 452 #define tcps_rexmt_interval _mn tcps_propinfo_tbl[22]. prop_cur_uval
387 (eager) - >t cp_eager _next _drop_q0 = NULL; \ 453 #define tcps_rexmit_interval _mn_|low tcps_propinfo_tbl[22]. prop_m n_uval
388 } 454 #define tcps_deferred_ack_interval tcps_propinfo_tbl[23].prop_cur_uval

455 #define tcps_snd_|l owat _fraction tcps_propinfo_tbl[24].prop_cur_uval
390 /* 456 #define tcps_dupack_fast_retransmt tcps_propinfo_tbl[25]. prop_cur_uval
391 * The format argunent to pass to tcp_display(). 457 #define tcps_ignore_path_ntu tcps_propinfo_tbl[26].prop_cur_bval
392 * DISP_PORT_ONLY neans that the returned string has only port info. 458 #define tcps_snall est_anon_port tcps_propinfo_tbl[27]. prop_cur_uval
393 * DI SP_ADDR_AND_PORT neans that the returned string also contains the 459 #define tcps_| argest_anon_port tcps_propinfo_tbl[28].prop_cur_uval
394 * renote and |local |P address. 460 #define tcps_xmt_hiwat tcps_propinfo_tbl[29].prop_cur_uval
395 */ 461 #define tcps_xmt_| owat tcps_propi nfo_tbl[30].prop_cur_uval
396 #define DI SP_PORT_ONLY 1 462 #define tcps_recv_hiwat tcps_propinfo_tbl[31]. prop_cur_uval
397 #define DI SP_ADDR_AND_PORT 2 463 #define tcps_recv_hi wat _mi nnss tcps_propinfo_tbl[32].prop_cur_uval

new usr/src/uts/comon/inet/tcp_inpl.h

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

502
503

505
506
507
508
509
510
511

513
515

517
518
519
520
521
522
523
524
525
526
527
528
529

#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i

ne

ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne
ne

tcps_fin_wait_2_flush_interval _high \
t cps_pr opi
tcps_fin_wait_2_flush_interval tcps_propi
tcps_fin_wait_2_flush_interval _| ow \
t cps_propi
t cps_max_buf t cps_pr opi
tcps_strong_iss t cps_propi
tcps_rtt_updates tcps_propi
tcps_wscal e_al ways t cps_propi
tcps_t stanp_al ways t cps_pr opi
tcps_tstanp_if_wscal e t cps_pr opi
tcps_rexmt_interval _extra t cps_pr opi
t cps_def erred_acks_max t cps_propi
tcps_slow start_after_idle t cps_pr opi
tcps_slow start_initial t cps_pr opi
tcps_sack_permtted t cps_pr opi
tcps_i pv6_hoplimt t cps_propi
tcps_nss_def _i pv6 t cps_pr opi
tcps_nss_max_i pv6 t cps_pr opi
tcps_rev_src_routes t cps_pr opi
tcps_| ocal _dack_i nterval tcps_propi
tcps_| ocal _dacks_max t cps_pr opi
tcps_ecn_permitted t cps_pr opi
tcps_rst_sent_rate_enabl ed t cps_pr opi
tcps_rst_sent_rate t cps_pr opi
tcps_push_tiner_interval tcps_propi
tcps_use_smes_as_nss_opt tcps_pr opi
tcps_keepal i ve_abort _i nterval _hi gh \
tcps_propi
tcps_keepal i ve_abort _interval \
tcps pr opi
tcps_keepal i ve_abort _interval _|l ow \
tcps_propi
tcps_woff_xtra t cps_propi
tcps_dev_flow ctl t cps_pr opi
tcps_reass_ti meout t cps_pr opi
tcps_i ss_incr t cps_propi
ginit tcp_rinitv4, tcp_rinitve6;

extern struct
extern bool ean_t do_tcp_fusion;

/*

* (Cbject to represent database of options to search passed to

* {sock, t pi }optcom req()
* managenent and associ at ed net hods.
*

/

extern optdb_obj _t

extern uint_t

tc
tc

nfo_tbl[33].
nfo_tbl[33].
nfo_tbl[33
nfo_tbl[34
nfo_tbl[35
nfo_tbl[36
nfo_tbl[37
nfo_tbl[38
nfo_tbl[39
nfo_tbl[40
nfo_tbl[41
nfo_tbl[42
nfo_tbl[43
nfo_tbl[44
nfo_tbl[45
nfo_tbl[46
nfo_tbl[47
nfo_tbl[48
nfo_tbl[49
nfo_tbl[50
nfo_tbl[51
nfo_tbl[52
nfo_tbl[53
nfo_tbhl[54
nfo_tbl[55
nfo_tbl [56]
nf o_t bl [56]
nfo_tbl[56]
nfo_tbl[57]
nfo_t bl [58]
nfo_tbl[59]
nfo_tbl[65]

prop_max_uval
prop_cur_uval

. prop_m n_uval
. prop_cur_uval
. prop_cur _uval
. prop_cur _uval
. prop_cur _bval
. prop_cur_bval
. prop_cur_bval
. prop_cur _uval
. prop_cur _uval
. prop_cur_uval
. prop_cur_uval
. prop_cur _uval
. prop_cur _uval
. prop_cur_uval
. prop_cur_uval
. prop_cur_bval
. prop_cur _uval
. prop_cur_uval
. prop_cur_uval
. prop_cur _bval
. prop_cur _uval
. prop_cur _uval
. prop_cur_bval

. prop_nmax_uval
. prop_cur_uval

. prop_m n_uval
. prop_cur _uval
. prop_cur_bval
. prop_cur_uval
. prop_cur _uval

interface routine to take care of option

p_opt _obj ;
p_max_opt si ze;

extern int tcp_squeue_flag;

extern uint_t tcp_free_list_nax_cnt;

| *

* Functions in tcp.c.

*/

extern
extern
extern
extern
extern
extern
extern
extern

extern

voi d
tcp_t
voi d
bl k_t
int
voi d
int
voi d

voi d

tcp_acceptor _hash_insert (t_uscal ar_t,
*tcp_accept or _hash_| ookup(t_uscal ar_t,

tcp_accept or _hash_renove(tcp_t *);
*tcp_ack_np(tep_t *);
tcp_build_hdrs(tcp_t *);
tcp_cleanup(tcp_t *);

tcp_cl ean_death(tcp_t *,int)

tcp_cl ean

_deat h_wr apper (voi d *’k,

ip_recv_attr_t *);

tcp_cl ose_

common(conn_t *, int);

mbl k_t *,

tep_t

*)s
tcp_stack_t *);

void *,

new usr/src/uts/comon/inet/tcp_inpl.h

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

566 /

567
568
569
570
571
572
573
574
575
576

578
579
580
581
582
583
584
585
586
587
588
589

591

extern
extern
extern
extern

extern
extern
extern
extern

extern
extern

extern
extern
extern
extern
extern
extern

extern

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

*

voi d tcp_cl ose_detached(tcp_t *);

voi d tcp_cl ose_npp(nbl k_t *¥);

voi d tcp_closei _local (tcp_t *);

sock_| ower _handl e_t tcp_create(int, int, |nt sock_downcal | s_t **,
uint_t *, int *, int, cred_t

conn_t *tcp_create_comon(cred_t *, bool ean _t, boolean_t, int *);

voi d tcp_di sconnect (tcp_t *, nblk_t *);

char *tcp_display(tcp_t *, char * char)

int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *
bool ean_t);

int tcp_do_connect (conn_t *, const struct sockaddr *, socklen_t,
cred_t *, pid_t);

int tcp_do Ilsten(conn t *, struct sockaddr *, socklen_t, int,
cred_t *, boolean_t);

int tcp_do_unbi nd(conn_t *):

bool ean_t tcp_eager _bl owof f (tcp_t *, t_scalar_t);

voi d t cp_eager _cl eanup(t cp_t *, bool ean_t);

voi d tcp_eager _kill (void * lk_t *, void *, ip_recv_attr_t *);

voi d tcp_eager _unlink(tcp_ to*

int t cp_get peer name(sock_ Iower _handl e_t, struct sockaddr *,
socklen_t *, cred_t *

int t cp_get sockname(sock_ Tower _handl e_t, struct sockaddr *,
socklen_t *, cred_t *);

voi d tep_init _values(tcp_t *, tcp_t *);

voi d tcp_i psec_cl eanup(tcp_t *);

int tcp_maxpsz_set(tcp_t *, bool ean_t);

voi d tcp_nss_set(tcp_t *, uint32_t);

voi d tcp_reinput(conn_t *, nmblk_t *, ip_recv_attr_t *, ip_stack_t

voi d tcp_rsrv(queue_t *);

uint _t tcp_rwnd_reopen(tcp_t *);

int tcp_rwnd_set (tcp_t *, U|nt32_t);

int tcp_set_destination(tcp_t *);

voi d tcp_set_ws_val ue(tcp_t *);

voi d tcp_stop_lingering(tcp_t *);

voi d tcp_update_pntu(tcp_t *, bool ean_t);

bl k_t *tcp_zcopy_backof f(tcp_t *, nblk_t *, boolean_t);

bool ean_t tcp_zcopy_check(tcp_t *);

voi d tcp_zcopy_notify(tcp_t *);

voi d tcp_get _proto_props(tcp_t *, struct sock_proto_props *);

* Bind related functions in tcp_bind.c

*/

extern

extern
extern
extern

extern

/*

* Fusi
*/
extern
extern
extern
extern
extern
extern
extern
extern
extern

| *

int

voi d

voi d
in_port_t

in_port_t

t cp_bi nd_check(conn_t
cred_
tcp_bi nd_hash_i nsert (t
t cp_bi nd_hash_renove(tcp
tcp_bindi (tcp_
bool ean_t,
t cp_updat e_next

t *, bool ean

int,

1)
f

t

bool ean_t);

struct sockaddr *,

i *, tep_t *, int);

*

?, in_port_t,
bool ean_t,

on related functions in tcp_fusion.c.

sockl en
const in6_addr
bool ean_t);

_port(in_port_t,

const tcp_t

voi d tcp_fuse(tcp_t *, uchar_t *, tcpha_t *);

voi d tcp_unfuse(tcp_t *);

bool ean_t tcp_fuse_output(tcp_t *, nblk_t *, uint32_t);

voi d tcp_fuse_output_urg(tcp_t *, mblk_t *);

bool ean_t tcp_fuse_rcv_drain(queue_t *, tcp_t *, nmblk_t **);
size_t tcp_fuse_set_rcv_hiwat(tcp_t *, size_t);

int tcp_fuse_maxpsz(tcp_t *);

voi d tcp_fuse_backenabl e(tcp_t *);

voi d tcp_iss_key_init(uint8_t *, int, tcp_stack_t *);

_t,

_t

*
,

*
’

*)s

new usr/src/uts/comon/inet/tcp_inpl.h

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

614
615
616
617
618
619
620
621
622
623
624
625

627
628
629
630
631
632

634
635
636
637
638
639
640
641
642
643
644
645
646
647

649
650
651
652
653
654
655
656
657

* Qutput related functions in tcp_output.c

*

/
extern void tcp_cl ose output(void * nblk_t *, void *, ip_recv_attr_t *);
extern void tcp_out put (voi d * r'rblkt *, void *, ip_recv_attr_t *);
extern void tcp_output_urgent(void *, nmblk_t *, void *, ip_recv_attr_t *);
extern void tcp_rexmt_after_error(tcp_t *);
extern void tcp_sack_rexmit(tcp_t *, uint_t *);
extern void tcp_send_data(tcp_t *, mblk_t *);
extern void tcp_send_synack(void *, nblk_t *, void *, ip_recv_attr_t *);
extern void tcp_shut down_out put (void *, mblk_t *, void *, ip_recv_attr_t *);
extern void tcp_ss_rexmt(tcp_t *);
extern void tcp_update xmit_tail (tcp_t *, uint32_t);
extern void tcp_wput (queue_t *, nmblk_t *);
extern void tcp_wput _data(tcp_t *, nblk_t *, boolean_t);
extern void tcp_wput _sock(queue_t *, nblk_t *);
extern void tcp_wput _fall back(queue_t *, nblk_t *);
extern void tep_xmit_ctl(char *, tcp_t *, uint32_t, uint32_t, int);
extern void tcp_xmit_listeners_reset(nblk_t *, ip_recv_attr_t *,

i p_stack_t *| conn_t *);
extern nbl k_t *tcp_xmt_np(tc , mblk_t *, int32_t, int32_t *,
mbl k_t **, UI nt32t bool ean_t, uint32_t *, boolean_t);

/*

* Input related functions in tcp_input.c

*

/
extern void tcp_icnp_input(void *, nblk_t void *, ip_recv_attr_t *);

extern void tcp_i nput _data(void *, nbl k_t void *,

*
* ip_recv_attr_t *);
_unbound(void *,

extern void tcp_i nput _| i stener mbl k_t *, void *,
ip_recv_attr_t *);
extern bool ean_t tcp_paws_check(tcp_t *, tcpha_t *, tcp_opt_t *);

extern uint_t tcp_rcv_drain(tcp_t *);

extern void tcp_rcv_enqueue(tcp_t *, nblk_t *, uint_t, cred_t *);
extern bool ean_t tcp_verifyicnp(conn_t *, void *, |crrph *, icnp6_t *,
ip_recv_attr_t *);
/*
* Kernel socket related functions in tcp_socket.c.
*/
extern int tcp_fall back(sock_| ower _handl e_t, queue_t *, bool ean_t,

so_proto_qui esced_cb_t,
extern bool ean_t tcp_newconn_notify(tcp_t *,

sock_qui esce_arg_t *);
ip_recv_attr_t *);

/*

* Ti mer
*/
extern void
extern void
extern void
extern void
extern void
extern nmbl k_t
extern void

related functions in tcp_tinmers.c.

tcp_ack_tiner(void *);
tcp_close_linger_tineout(void *);
tcp_keepalive_tiner(void *);
tcp_push_tiner(void *);
tcp_reass_tiner(void *);
*tcp_timernp_alloc(int);
tcp_tinernp_free(tcp_t *);

extern tineout_id_t tcp_timeout(conn_t *, void (*)(void *), hrtinme_t);

extern clock_t tcp_tineout_cancel (conn_t *, timeout_id_t);

extern void tcp_timer(void *arg);

extern void tcp_timers_st op(tcp_t *);

/*

* TCP TPl related functions in tcp_tpi.c

*/

extern void tcp_addr_req(tcp_t *, nblk_t *);

extern void tcp_capability req(tcp_t *, nbl k_t *);

extern bool ean_t tcp_conn_con(tcp_t *, uchar_t *, nblk_t *,
mbl k_t **, 1p_recv_attr_t *);

extern void tcp_err_ack(tcp_t *, nblk_t *, int, int);

extern void tcp_err_ack_prinm(tcp_t *, nblk_t *, int, int, int);

new usr/src/uts/comon/inet/tcp_inpl.h

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673

675
676
677
682
678
679
680

682
683
684
685
686
687

extern void
extern void

tcp_info_req(tcp_t *, nblk_t

tcp_send_conn_i nd(void *, t *, void *);

*
’

extern void t cp_send_pendi ng(voi d *, " bl k_t *, void *, ip_recv_attr_t *);

extern void tcp_tpi _accept (queue_t *, nmblk_t *);

extern void tcp_tpi_bind(tcp_t *, mblk_t *);

extern int tcp_tpi_cl ose(queue_t *, int);

extern int tcp_tpi _cl ose_accept (queue_t *);

extern void tcp_tpi_connect(tcp_t *, nblk_t *);

extern int tcp_tpi _opt_get(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);

extern int tcp_tpi_opt_set(queue_t *, uint_t, i nt int, uint_t, uchar_t
uint_t *, uchar_t *, void *, cred_t *);

extern void tcp_tpi _unbind(tcp_t *, nblk_t *);

extern void tcp_tli_accept(tcp_t *, nblk_t *);

extern void
extern void

tcp_use_pure_tpi(tcp_t *);
tcp_do_capability_ack(tcp_t *,
t_uscalar_t);

struct T_capability_ack *,

/*

* TCP option processing related functions in tcp_opt_data.c

*/

extern int tcp_opt _defaul t (queue_t *, t_scalar_t, t_scalar_t, uchar_t *);

extern int tcp_opt_get(conn_t *, int, int, uchar_t *);

extern int tcp_opt_set(conn_t *, uint_t, int, int, uint_t, uchar_t *,
uint_t *, uchar_t *, void *, cred_t *);

/*

* TCP tine wait processing related functions in tcp_time_wait.c.

*/

extern void tcp_tinme_wait_append(tcp_t *);

extern void
extern bool ean_t

tcp_tinme_wait
tcp_tine_wait

_collector(void *);
_renmove(tcp_t *, tcp_squeue_priv_t *);

688 extern void tcp_tine_wait_processing(tcp_t *, nmblk_t *, uint32_t,
689 uint32_t, int, tcpha_t *, ip_recv_attr_t *);
691 /*

692 * Msc functions in tcp_msc.c.

693 */

694 extern uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t);

695 extern void tcp_ioctl _abort_conn(queue_t *, mblk_t *);

696 extern void tcp_listener_conf_cl eanup(tcp_stack_t *);

697 extern void tcp_stack_cpu_add(tcp_stack_t *, processorid_t);

699 #endif /* _KERNEL */

701 #ifdef __cplusplus

702 }

__unchanged_portion_onitted_

new usr/src/uts/comon/inet/tcp_stats.h

R R R R

7689 Wed Aug 8 12:51:12 2012

new usr/src/uts/comon/inet/tcp_stats.h
3065 sonme functions in the tcp nodul e can be static

R R R R R R

1

/*

/*

*
*

B A T
-~

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.

#i fndef _| NET_TCP_STATS H
#def i ne I NET_TCP_STATS H

/*
* TCP private kernel statistics declarations.
*

#ifdef _ cplusplus

extern "C'

#endi f

#i fdef _KERNEL

/

I i T R

TCP Statistics.
How TCP statistics work.
There are two types of statistics invoked by two macros.

TCP_STAT(nane) does non-atomc increnent of a named stat counter. It is
supposed to be used in non MI-hot paths of the code.

TCP_DBGSTAT(nanme) does atomi c increnment of a named stat counter. It is
supposed to be used for DEBUG purposes and nay be used on a hot path.
These counters are only available in a debugged kernel. They are grouped
These counters are only available in a debugged kerel. They are grouped
under the TCP_DEBUG COUNTER C pre-processor condition.

Bot h TCP_STAT and TCP_DBGSTAT counters are avail abl e using kstat
(use "kstat tcp" to get them.

How to add new counters.

1) Add a field in the tcp_stat structure describing your counter.
2) Add aline in the tenplate in tcp_kstat2_init() with the name

new usr/src/uts/comon/inet/tcp_stats.h

of the counter.
3) Update tcp_clr_stats() and tcp_cp_stats() with the new counters.

| MPORTANT! ! - make sure that all the above functions are in sync !!
4) Use either TCP_STAT or TCP_DBGSTAT with the nane.

Pl ease avoid using private counters which are not kstat-exported.

*
*
*
*
*
*
*
* | npl ement ati on note.
*
* Both the MB2 and tcp_stat_t counters are kept per CPU in the array

* tcps_sc in tcp_stack_t. Each array elenent 1s a pointer to a

* tcp_stats_cpu_t struct. Once allocated, the tcp_stats_cpu_t struct is
* not freed until the tcp_stack_t is going away. So there is no need to
* acquire a lock before accessing the stats counters.

*

/

#i f ndef TCP_DEBUG_COUNTER
#i f def DEBUG

#defi ne TCP_DEBUG COUNTER 1
#el se

#def i ne TCP_DEBUG_COUNTER 0
#endi f

#endi f

/* Kstats */

typedef struct tcp_stat {
kst at _named_t tcp_tine_wait_syn_success;
kst at _named_t tcp_cl ean_deat h_nondet ached;
kstat _named_t tcp_eager _bl owof f _q;
kst at _named_t t cp_eager _bl owof f _qO;
kst at _named_t tcp_no_listener;
kst at _nanmed_t tcp_listendrop;
kst at _naned_t tcp_listendropqO;
kst at _named_t tcp_wsrv_call ed;
kstat _named_t tep_flwetl _on;
kst at _named_t tecp_tiner_fire_early;
kstat _named_t tcp_tinmer_fire_mss;
kstat _nanmed_t tcp_zcopy_on;
kst at _named_t tcp_zcopy_of f;
kstat _named_t tcp_zcopy_backof f;
kst at _named_t tcp_fusion_flowctl;
kstat _nanmed_t t cp_f usi on_backenabl ed;
kst at _named_t tcp_fusion_urg;
kst at _named_t t cp_f usi on_put next ;
kst at _named_t t cp_fusi on_unf usabl e;
kstat _nanmed_t tcp_fusi on_abort ed;
kst at _named_t tcp_fusion_unqualifi ed;
kst at _named_t tcp_fusion_rrw_ busy;
kst at _naned_t tcp_fusion_rrw_nmsgcnt;
kstat _nanmed_t tcp_fusion_rrw_pl ugged;
kst at _named_t tcp_i n_ack_unsent _drop;
kst at _named_t tcp_sock_fal | back;
kst at _named_t tcp_I| so_enabl ed;
kstat _nanmed_t tcp_| so_di sabl ed;
kst at _named_t tcp_l so_tines;
kst at _named_t tcp_Il so_pkt _out;
kst at _named_t tcp_listen_cnt_drop;
kstat _named_t tcp_listen_nemdrop;
kstat _naned_t tcp_zwi n_nmem drop;
kst at _named_t tcp_zwi n_ack_syn;
kstat _named_t tcp_rst_unsent;
kst at _nanmed_t tcp_reclaiment;
kstat _nanmed_t tcp_reass_tineout;

#i f def TCP_DEBUG_COUNTER
kst at _named_t tcp_tine_wait;
kst at _named_t tcp_rput _tine_wait;

new usr/src/uts/comon/inet/tcp_stats.h

127
128
129
130
131
132
133
134
135 #endi f

kst at _named_t
kst at _named_t
kst at _naned_t
kstat _named_t
kst at _named_t
kst at _named_t
kst at _naned_t
kstat _named_t

136 } tcp_stat_t;
____unchanged_portion_onitted_

tcp_detach_tinme_wait;
tcp_tineout_calls;
tcp_tineout_cached_all oc;
tcp_tineout_cancel _regs;
tcp_timeout _cancel ed;
tcp_tinernp_freed;
tcp_push_tiner_cnt;
tcp_ack_timer_cnt;

