
new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 1

**
 30228 Wed Aug 8 12:51:10 2012
new/usr/src/uts/common/inet/tcp/tcp_opt_data.c
3065 some functions in the tcp module can be static
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #define _SUN_TPI_VERSION 2
29 #include <sys/tihdr.h>
30 #include <sys/socket.h>
31 #include <sys/xti_xtiopt.h>
32 #include <sys/xti_inet.h>
33 #include <sys/policy.h>

35 #include <inet/common.h>
36 #include <netinet/ip6.h>
37 #include <inet/ip.h>

39 #include <netinet/in.h>
40 #include <netinet/tcp.h>
41 #include <inet/optcom.h>
42 #include <inet/proto_set.h>
43 #include <inet/tcp_impl.h>

45 static int tcp_opt_default(queue_t *, int, int, uchar_t *);

47 #endif /* ! codereview */
48 /*
49 * Table of all known options handled on a TCP protocol stack.
50 *
51 * Note: This table contains options processed by both TCP and IP levels
52 * and is the superset of options that can be performed on a TCP over IP
53 * stack.
54 */
55 opdes_t tcp_opt_arr[] = {

57 { SO_LINGER, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0,
58 sizeof (struct linger), 0 },

60 { SO_DEBUG, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
61 { SO_KEEPALIVE, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 2

62 { SO_DONTROUTE, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
63 { SO_USELOOPBACK, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
64 },
65 { SO_BROADCAST, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
66 { SO_REUSEADDR, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
67 { SO_OOBINLINE, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
68 { SO_TYPE, SOL_SOCKET, OA_R, OA_R, OP_NP, 0, sizeof (int), 0 },
69 { SO_SNDBUF, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
70 { SO_RCVBUF, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
71 { SO_SNDTIMEO, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0,
72 sizeof (struct timeval), 0 },
73 { SO_RCVTIMEO, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0,
74 sizeof (struct timeval), 0 },
75 { SO_DGRAM_ERRIND, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
76 },
77 { SO_SND_COPYAVOID, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
78 { SO_ANON_MLP, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
79 0 },
80 { SO_MAC_EXEMPT, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
81 0 },
82 { SO_MAC_IMPLICIT, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
83 0 },
84 { SO_ALLZONES, SOL_SOCKET, OA_R, OA_RW, OP_CONFIG, 0, sizeof (int),
85 0 },
86 { SO_EXCLBIND, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

88 { SO_DOMAIN, SOL_SOCKET, OA_R, OA_R, OP_NP, 0, sizeof (int), 0 },

90 { SO_PROTOTYPE, SOL_SOCKET, OA_R, OA_R, OP_NP, 0, sizeof (int), 0 },

92 { TCP_NODELAY, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
93 },
94 { TCP_MAXSEG, IPPROTO_TCP, OA_R, OA_R, OP_NP, 0, sizeof (uint_t),
95 536 },

97 { TCP_NOTIFY_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
98 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

100 { TCP_ABORT_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
101 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

103 { TCP_CONN_NOTIFY_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
104 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

106 { TCP_CONN_ABORT_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
107 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

109 { TCP_RECVDSTADDR, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
110 0 },

112 { TCP_ANONPRIVBIND, IPPROTO_TCP, OA_R, OA_RW, OP_PRIVPORT, 0,
113 sizeof (int), 0 },

115 { TCP_EXCLBIND, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
116 },

118 { TCP_INIT_CWND, IPPROTO_TCP, OA_RW, OA_RW, OP_CONFIG, 0,
119 sizeof (int), 0 },

121 { TCP_KEEPALIVE_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0,
122 sizeof (int), 0 },

124 { TCP_KEEPIDLE, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

126 { TCP_KEEPCNT, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 3

128 { TCP_KEEPINTVL, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

130 { TCP_KEEPALIVE_ABORT_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0,
131 sizeof (int), 0 },

133 { TCP_CORK, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

135 { TCP_RTO_INITIAL, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (uint32_t), 0 },

137 { TCP_RTO_MIN, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (uint32_t), 0 },

139 { TCP_RTO_MAX, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (uint32_t), 0 },

141 { TCP_LINGER2, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

143 { IP_OPTIONS, IPPROTO_IP, OA_RW, OA_RW, OP_NP,
144 (OP_VARLEN|OP_NODEFAULT),
145 IP_MAX_OPT_LENGTH + IP_ADDR_LEN, -1 /* not initialized */ },
146 { T_IP_OPTIONS, IPPROTO_IP, OA_RW, OA_RW, OP_NP,
147 (OP_VARLEN|OP_NODEFAULT),
148 IP_MAX_OPT_LENGTH + IP_ADDR_LEN, -1 /* not initialized */ },

150 { IP_TOS, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
151 { T_IP_TOS, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
152 { IP_TTL, IPPROTO_IP, OA_RW, OA_RW, OP_NP, OP_DEF_FN,
153 sizeof (int), -1 /* not initialized */ },

155 { IP_SEC_OPT, IPPROTO_IP, OA_RW, OA_RW, OP_NP, OP_NODEFAULT,
156 sizeof (ipsec_req_t), -1 /* not initialized */ },

158 { IP_BOUND_IF, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0,
159 sizeof (int), 0 /* no ifindex */ },

161 { IP_UNSPEC_SRC, IPPROTO_IP, OA_R, OA_RW, OP_RAW, 0,
162 sizeof (int), 0 },

164 { IPV6_UNICAST_HOPS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, OP_DEF_FN,
165 sizeof (int), -1 /* not initialized */ },

167 { IPV6_BOUND_IF, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
168 sizeof (int), 0 /* no ifindex */ },

170 { IP_DONTFRAG, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

172 { IP_NEXTHOP, IPPROTO_IP, OA_R, OA_RW, OP_CONFIG, 0,
173 sizeof (in_addr_t), -1 /* not initialized */ },

175 { IPV6_UNSPEC_SRC, IPPROTO_IPV6, OA_R, OA_RW, OP_RAW, 0,
176 sizeof (int), 0 },

178 { IPV6_PKTINFO, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
179 (OP_NODEFAULT|OP_VARLEN),
180 sizeof (struct in6_pktinfo), -1 /* not initialized */ },
181 { IPV6_NEXTHOP, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
182 OP_NODEFAULT,
183 sizeof (sin6_t), -1 /* not initialized */ },
184 { IPV6_HOPOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
185 (OP_VARLEN|OP_NODEFAULT), 255*8,
186 -1 /* not initialized */ },
187 { IPV6_DSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
188 (OP_VARLEN|OP_NODEFAULT), 255*8,
189 -1 /* not initialized */ },
190 { IPV6_RTHDRDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
191 (OP_VARLEN|OP_NODEFAULT), 255*8,
192 -1 /* not initialized */ },
193 { IPV6_RTHDR, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 4

194 (OP_VARLEN|OP_NODEFAULT), 255*8,
195 -1 /* not initialized */ },
196 { IPV6_TCLASS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
197 OP_NODEFAULT,
198 sizeof (int), -1 /* not initialized */ },
199 { IPV6_PATHMTU, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
200 OP_NODEFAULT,
201 sizeof (struct ip6_mtuinfo), -1 /* not initialized */ },
202 { IPV6_DONTFRAG, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
203 sizeof (int), 0 },
204 { IPV6_USE_MIN_MTU, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
205 sizeof (int), 0 },
206 { IPV6_V6ONLY, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
207 sizeof (int), 0 },

209 /* Enable receipt of ancillary data */
210 { IPV6_RECVPKTINFO, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
211 sizeof (int), 0 },
212 { IPV6_RECVHOPLIMIT, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
213 sizeof (int), 0 },
214 { IPV6_RECVHOPOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
215 sizeof (int), 0 },
216 { _OLD_IPV6_RECVDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
217 sizeof (int), 0 },
218 { IPV6_RECVDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
219 sizeof (int), 0 },
220 { IPV6_RECVRTHDR, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
221 sizeof (int), 0 },
222 { IPV6_RECVRTHDRDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
223 sizeof (int), 0 },
224 { IPV6_RECVTCLASS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
225 sizeof (int), 0 },

227 { IPV6_SEC_OPT, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, OP_NODEFAULT,
228 sizeof (ipsec_req_t), -1 /* not initialized */ },
229 { IPV6_SRC_PREFERENCES, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
230 sizeof (uint32_t), IPV6_PREFER_SRC_DEFAULT },
231 };

233 /*
234 * Table of all supported levels
235 * Note: Some levels (e.g. XTI_GENERIC) may be valid but may not have
236 * any supported options so we need this info separately.
237 *
238 * This is needed only for topmost tpi providers and is used only by
239 * XTI interfaces.
240 */
241 optlevel_t tcp_valid_levels_arr[] = {
242 XTI_GENERIC,
243 SOL_SOCKET,
244 IPPROTO_TCP,
245 IPPROTO_IP,
246 IPPROTO_IPV6
247 };

250 #define TCP_OPT_ARR_CNT A_CNT(tcp_opt_arr)
251 #define TCP_VALID_LEVELS_CNT A_CNT(tcp_valid_levels_arr)

253 uint_t tcp_max_optsize; /* initialized when TCP driver is loaded */

255 /*
256 * Initialize option database object for TCP
257 *
258 * This object represents database of options to search passed to
259 * {sock,tpi}optcom_req() interface routine to take care of option

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 5

260 * management and associated methods.
261 */

263 optdb_obj_t tcp_opt_obj = {
264 tcp_opt_default, /* TCP default value function pointer */
265 tcp_tpi_opt_get, /* TCP get function pointer */
266 tcp_tpi_opt_set, /* TCP set function pointer */
267 TCP_OPT_ARR_CNT, /* TCP option database count of entries */
268 tcp_opt_arr, /* TCP option database */
269 TCP_VALID_LEVELS_CNT, /* TCP valid level count of entries */
270 tcp_valid_levels_arr /* TCP valid level array */
271 };

273 /* Maximum TCP initial cwin (start/restart). */
274 #define TCP_MAX_INIT_CWND 16

276 static int tcp_max_init_cwnd = TCP_MAX_INIT_CWND;

278 /*
279 * Some TCP options can be "set" by requesting them in the option
280 * buffer. This is needed for XTI feature test though we do not
281 * allow it in general. We interpret that this mechanism is more
282 * applicable to OSI protocols and need not be allowed in general.
283 * This routine filters out options for which it is not allowed (most)
284 * and lets through those (few) for which it is. [The XTI interface
285 * test suite specifics will imply that any XTI_GENERIC level XTI_* if
286 * ever implemented will have to be allowed here].
287 */
288 static boolean_t
289 tcp_allow_connopt_set(int level, int name)
290 {

292 switch (level) {
293 case IPPROTO_TCP:
294 switch (name) {
295 case TCP_NODELAY:
296 return (B_TRUE);
297 default:
298 return (B_FALSE);
299 }
300 /*NOTREACHED*/
301 default:
302 return (B_FALSE);
303 }
304 /*NOTREACHED*/
305 }

307 /*
308 * This routine gets default values of certain options whose default
309 * values are maintained by protocol specific code
310 */
311 /* ARGSUSED */
312 static int
45 int
313 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
314 {
315 int32_t *i1 = (int32_t *)ptr;
316 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps;

318 switch (level) {
319 case IPPROTO_TCP:
320 switch (name) {
321 case TCP_NOTIFY_THRESHOLD:
322 *i1 = tcps->tcps_ip_notify_interval;
323 break;
324 case TCP_ABORT_THRESHOLD:

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 6

325 *i1 = tcps->tcps_ip_abort_interval;
326 break;
327 case TCP_CONN_NOTIFY_THRESHOLD:
328 *i1 = tcps->tcps_ip_notify_cinterval;
329 break;
330 case TCP_CONN_ABORT_THRESHOLD:
331 *i1 = tcps->tcps_ip_abort_cinterval;
332 break;
333 default:
334 return (-1);
335 }
336 break;
337 case IPPROTO_IP:
338 switch (name) {
339 case IP_TTL:
340 *i1 = tcps->tcps_ipv4_ttl;
341 break;
342 default:
343 return (-1);
344 }
345 break;
346 case IPPROTO_IPV6:
347 switch (name) {
348 case IPV6_UNICAST_HOPS:
349 *i1 = tcps->tcps_ipv6_hoplimit;
350 break;
351 default:
352 return (-1);
353 }
354 break;
355 default:
356 return (-1);
357 }
358 return (sizeof (int));
359 }

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp/tcp_socket.c 1

**
 32213 Wed Aug 8 12:51:11 2012
new/usr/src/uts/common/inet/tcp/tcp_socket.c
3065 some functions in the tcp module can be static
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 /* This file contains all TCP kernel socket related functions. */

28 #include <sys/types.h>
29 #include <sys/strlog.h>
30 #include <sys/policy.h>
31 #include <sys/sockio.h>
32 #include <sys/strsubr.h>
33 #include <sys/strsun.h>
34 #include <sys/squeue_impl.h>
35 #include <sys/squeue.h>
36 #define _SUN_TPI_VERSION 2
37 #include <sys/tihdr.h>
38 #include <sys/timod.h>
39 #include <sys/tpicommon.h>
40 #include <sys/socketvar.h>

42 #include <inet/common.h>
43 #include <inet/proto_set.h>
44 #include <inet/ip.h>
45 #include <inet/tcp.h>
46 #include <inet/tcp_impl.h>

48 static void tcp_activate(sock_lower_handle_t, sock_upper_handle_t,
49 sock_upcalls_t *, int, cred_t *);
50 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
51 sock_upper_handle_t, cred_t *);
52 static int tcp_bind(sock_lower_handle_t, struct sockaddr *,
53 socklen_t, cred_t *);
54 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
55 static int tcp_connect(sock_lower_handle_t, const struct sockaddr *,
56 socklen_t, sock_connid_t *, cred_t *);
57 static int tcp_getpeername(sock_lower_handle_t, struct sockaddr *,
58 socklen_t *, cred_t *);
59 static int tcp_getsockname(sock_lower_handle_t, struct sockaddr *,
60 socklen_t *, cred_t *);
61 #endif /* ! codereview */

new/usr/src/uts/common/inet/tcp/tcp_socket.c 2

62 static int tcp_getsockopt(sock_lower_handle_t, int, int, void *,
63 socklen_t *, cred_t *);
64 static int tcp_setsockopt(sock_lower_handle_t, int, int, const void *,
65 socklen_t, cred_t *);
66 static int tcp_sendmsg(sock_lower_handle_t, mblk_t *, struct nmsghdr *,
67 cred_t *);
57 cred_t *cr);
68 static int tcp_shutdown(sock_lower_handle_t, int, cred_t *);
69 static void tcp_clr_flowctrl(sock_lower_handle_t);
70 static int tcp_ioctl(sock_lower_handle_t, int, intptr_t, int, int32_t *,
71 cred_t *);
72 static int tcp_close(sock_lower_handle_t, int, cred_t *);

74 sock_downcalls_t sock_tcp_downcalls = {
75 tcp_activate,
76 tcp_accept,
77 tcp_bind,
78 tcp_listen,
79 tcp_connect,
80 tcp_getpeername,
81 tcp_getsockname,
82 tcp_getsockopt,
83 tcp_setsockopt,
84 tcp_sendmsg,
85 NULL,
86 NULL,
87 NULL,
88 tcp_shutdown,
89 tcp_clr_flowctrl,
90 tcp_ioctl,
91 tcp_close,
92 };

______unchanged_portion_omitted_

130 /*ARGSUSED*/
131 static int
132 tcp_accept(sock_lower_handle_t lproto_handle,
133 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
134 cred_t *cr)
135 {
136 conn_t *lconnp, *econnp;
137 tcp_t *listener, *eager;

139 /* All Solaris components should pass a cred for this operation. */
140 ASSERT(cr != NULL);

142 #endif /* ! codereview */
143 /*
144 * KSSL can move a socket from one listener to another, in which
145 * case ‘lproto_handle’ points to the new listener. To ensure that
146 * the original listener is used the information is obtained from
147 * the eager.
148 */
149 econnp = (conn_t *)eproto_handle;
150 eager = econnp->conn_tcp;
151 ASSERT(IPCL_IS_NONSTR(econnp));
152 ASSERT(eager->tcp_listener != NULL);
153 listener = eager->tcp_listener;
154 lconnp = (conn_t *)listener->tcp_connp;
155 ASSERT(listener->tcp_state == TCPS_LISTEN);
156 ASSERT(lconnp->conn_upper_handle != NULL);

158 /*
159 * It is possible for the accept thread to race with the thread that
160 * made the su_newconn upcall in tcp_newconn_notify. Both
161 * tcp_newconn_notify and tcp_accept require that conn_upper_handle

new/usr/src/uts/common/inet/tcp/tcp_socket.c 3

162 * and conn_upcalls be set before returning, so they both write to
163 * them. However, we’re guaranteed that the value written is the same
164 * for both threads.
165 */
166 ASSERT(econnp->conn_upper_handle == NULL ||
167 econnp->conn_upper_handle == sock_handle);
168 ASSERT(econnp->conn_upcalls == NULL ||
169 econnp->conn_upcalls == lconnp->conn_upcalls);
170 econnp->conn_upper_handle = sock_handle;
171 econnp->conn_upcalls = lconnp->conn_upcalls;

173 ASSERT(econnp->conn_netstack ==
174 listener->tcp_connp->conn_netstack);
175 ASSERT(eager->tcp_tcps == listener->tcp_tcps);

177 /*
178 * We should have a minimum of 2 references on the conn at this
179 * point. One for TCP and one for the newconn notification
180 * (which is now taken over by IP). In the normal case we would
181 * also have another reference (making a total of 3) for the conn
182 * being in the classifier hash list. However the eager could have
183 * received an RST subsequently and tcp_closei_local could have
184 * removed the eager from the classifier hash list, hence we can’t
185 * assert that reference.
186 */
187 ASSERT(econnp->conn_ref >= 2);

189 mutex_enter(&listener->tcp_eager_lock);
190 /*
191 * Non-STREAMS listeners never defer the notification of new
192 * connections.
193 */
194 ASSERT(!listener->tcp_eager_prev_q0->tcp_conn_def_q0);
195 tcp_eager_unlink(eager);
196 mutex_exit(&listener->tcp_eager_lock);
197 CONN_DEC_REF(listener->tcp_connp);

199 return ((eager->tcp_state < TCPS_ESTABLISHED) ? ECONNABORTED : 0);
200 }

202 static int
203 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
204 socklen_t len, cred_t *cr)
205 {
206 int error;
207 conn_t *connp = (conn_t *)proto_handle;

209 /* All Solaris components should pass a cred for this operation. */
210 ASSERT(cr != NULL);
211 ASSERT(connp->conn_upper_handle != NULL);

213 error = squeue_synch_enter(connp, NULL);
214 if (error != 0) {
215 /* failed to enter */
216 return (ENOSR);
217 }

219 /* binding to a NULL address really means unbind */
220 if (sa == NULL) {
221 if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
222 error = tcp_do_unbind(connp);
223 else
224 error = EINVAL;
225 } else {
226 error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
227 }

new/usr/src/uts/common/inet/tcp/tcp_socket.c 4

229 squeue_synch_exit(connp);

231 if (error < 0) {
232 if (error == -TOUTSTATE)
233 error = EINVAL;
234 else
235 error = proto_tlitosyserr(-error);
236 }

238 return (error);
239 }

241 /* ARGSUSED */
242 static int
243 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
244 {
245 conn_t *connp = (conn_t *)proto_handle;
246 tcp_t *tcp = connp->conn_tcp;
247 int error;

249 ASSERT(connp->conn_upper_handle != NULL);

251 /* All Solaris components should pass a cred for this operation. */
252 ASSERT(cr != NULL);

254 error = squeue_synch_enter(connp, NULL);
255 if (error != 0) {
256 /* failed to enter */
257 return (ENOBUFS);
258 }

260 error = tcp_do_listen(connp, NULL, 0, backlog, cr, B_FALSE);
261 if (error == 0) {
262 /*
263 * sockfs needs to know what’s the maximum number of socket
264 * that can be queued on the listener.
265 */
266 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
267 SOCK_OPCTL_ENAB_ACCEPT,
268 (uintptr_t)(tcp->tcp_conn_req_max +
269 tcp->tcp_tcps->tcps_conn_req_max_q0));
270 } else if (error < 0) {
271 if (error == -TOUTSTATE)
272 error = EINVAL;
273 else
274 error = proto_tlitosyserr(-error);
275 }
276 squeue_synch_exit(connp);
277 return (error);
278 }

280 static int
281 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
282 socklen_t len, sock_connid_t *id, cred_t *cr)
283 {
284 conn_t *connp = (conn_t *)proto_handle;
285 int error;

287 ASSERT(connp->conn_upper_handle != NULL);

289 /* All Solaris components should pass a cred for this operation. */
290 ASSERT(cr != NULL);

292 error = proto_verify_ip_addr(connp->conn_family, sa, len);
293 if (error != 0) {

new/usr/src/uts/common/inet/tcp/tcp_socket.c 5

294 return (error);
295 }

297 error = squeue_synch_enter(connp, NULL);
298 if (error != 0) {
299 /* failed to enter */
300 return (ENOSR);
301 }

303 /*
304 * TCP supports quick connect, so no need to do an implicit bind
305 */
306 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
307 if (error == 0) {
308 *id = connp->conn_tcp->tcp_connid;
309 } else if (error < 0) {
310 if (error == -TOUTSTATE) {
311 switch (connp->conn_tcp->tcp_state) {
312 case TCPS_SYN_SENT:
313 error = EALREADY;
314 break;
315 case TCPS_ESTABLISHED:
316 error = EISCONN;
317 break;
318 case TCPS_LISTEN:
319 error = EOPNOTSUPP;
320 break;
321 default:
322 error = EINVAL;
323 break;
324 }
325 } else {
326 error = proto_tlitosyserr(-error);
327 }
328 }

330 if (connp->conn_tcp->tcp_loopback) {
331 struct sock_proto_props sopp;

333 sopp.sopp_flags = SOCKOPT_LOOPBACK;
334 sopp.sopp_loopback = B_TRUE;

336 (*connp->conn_upcalls->su_set_proto_props)(
337 connp->conn_upper_handle, &sopp);
338 }
339 done:
340 squeue_synch_exit(connp);

342 return ((error == 0) ? EINPROGRESS : error);
343 }

345 /* ARGSUSED3 */
346 static int
129 int
347 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
348 socklen_t *addrlenp, cred_t *cr)
349 {
350 conn_t *connp = (conn_t *)proto_handle;
351 tcp_t *tcp = connp->conn_tcp;

353 /* All Solaris components should pass a cred for this operation. */
354 ASSERT(cr != NULL);

356 ASSERT(tcp != NULL);
357 if (tcp->tcp_state < TCPS_SYN_RCVD)
358 return (ENOTCONN);

new/usr/src/uts/common/inet/tcp/tcp_socket.c 6

360 return (conn_getpeername(connp, addr, addrlenp));
361 }

363 /* ARGSUSED3 */
364 static int
147 int
365 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
366 socklen_t *addrlenp, cred_t *cr)
367 {
368 conn_t *connp = (conn_t *)proto_handle;

370 /* All Solaris components should pass a cred for this operation. */
371 ASSERT(cr != NULL);

373 return (conn_getsockname(connp, addr, addrlenp));
374 }

376 /* returns UNIX error, the optlen is a value-result arg */
377 static int
378 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
379 void *optvalp, socklen_t *optlen, cred_t *cr)
380 {
381 conn_t *connp = (conn_t *)proto_handle;
382 int error;
383 t_uscalar_t max_optbuf_len;
384 void *optvalp_buf;
385 int len;

387 ASSERT(connp->conn_upper_handle != NULL);

389 /* All Solaris components should pass a cred for this operation. */
390 ASSERT(cr != NULL);

392 #endif /* ! codereview */
393 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
394 tcp_opt_obj.odb_opt_des_arr,
395 tcp_opt_obj.odb_opt_arr_cnt,
396 B_FALSE, B_TRUE, cr);
397 if (error != 0) {
398 if (error < 0) {
399 error = proto_tlitosyserr(-error);
400 }
401 return (error);
402 }

404 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);

406 error = squeue_synch_enter(connp, NULL);
407 if (error == ENOMEM) {
408 kmem_free(optvalp_buf, max_optbuf_len);
409 return (ENOMEM);
410 }

412 len = tcp_opt_get(connp, level, option_name, optvalp_buf);
413 squeue_synch_exit(connp);

415 if (len == -1) {
416 kmem_free(optvalp_buf, max_optbuf_len);
417 return (EINVAL);
418 }

420 /*
421 * update optlen and copy option value
422 */
423 t_uscalar_t size = MIN(len, *optlen);

new/usr/src/uts/common/inet/tcp/tcp_socket.c 7

425 bcopy(optvalp_buf, optvalp, size);
426 bcopy(&size, optlen, sizeof (size));

428 kmem_free(optvalp_buf, max_optbuf_len);
429 return (0);
430 }

432 static int
433 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
434 const void *optvalp, socklen_t optlen, cred_t *cr)
435 {
436 conn_t *connp = (conn_t *)proto_handle;
437 int error;

439 ASSERT(connp->conn_upper_handle != NULL);

441 /* All Solaris components should pass a cred for this operation. */
442 ASSERT(cr != NULL);

444 #endif /* ! codereview */
445 /*
446 * Entering the squeue synchronously can result in a context switch,
447 * which can cause a rather sever performance degradation. So we try to
448 * handle whatever options we can without entering the squeue.
449 */
450 if (level == IPPROTO_TCP) {
451 switch (option_name) {
452 case TCP_NODELAY:
453 if (optlen != sizeof (int32_t))
454 return (EINVAL);
455 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
456 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
457 connp->conn_tcp->tcp_mss;
458 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
459 return (0);
460 default:
461 break;
462 }
463 }

465 error = squeue_synch_enter(connp, NULL);
466 if (error == ENOMEM) {
467 return (ENOMEM);
468 }

470 error = proto_opt_check(level, option_name, optlen, NULL,
471 tcp_opt_obj.odb_opt_des_arr,
472 tcp_opt_obj.odb_opt_arr_cnt,
473 B_TRUE, B_FALSE, cr);

475 if (error != 0) {
476 if (error < 0) {
477 error = proto_tlitosyserr(-error);
478 }
479 squeue_synch_exit(connp);
480 return (error);
481 }

483 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
484 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
485 NULL, cr);
486 squeue_synch_exit(connp);

488 ASSERT(error >= 0);

new/usr/src/uts/common/inet/tcp/tcp_socket.c 8

490 return (error);
491 }

493 /* ARGSUSED */
494 static int
495 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
496 cred_t *cr)
497 {
498 tcp_t *tcp;
499 uint32_t msize;
500 conn_t *connp = (conn_t *)proto_handle;
501 int32_t tcpstate;

503 /* All Solaris components should pass a cred for this operation. */
504 ASSERT(cr != NULL);

506 ASSERT(connp->conn_ref >= 2);
507 ASSERT(connp->conn_upper_handle != NULL);

509 if (msg->msg_controllen != 0) {
510 freemsg(mp);
511 return (EOPNOTSUPP);
512 }

514 switch (DB_TYPE(mp)) {
515 case M_DATA:
516 tcp = connp->conn_tcp;
517 ASSERT(tcp != NULL);

519 tcpstate = tcp->tcp_state;
520 if (tcpstate < TCPS_ESTABLISHED) {
521 freemsg(mp);
522 /*
523 * We return ENOTCONN if the endpoint is trying to
524 * connect or has never been connected, and EPIPE if it
525 * has been disconnected. The connection id helps us
526 * distinguish between the last two cases.
527 */
528 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN :
529 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN));
530 } else if (tcpstate > TCPS_CLOSE_WAIT) {
531 freemsg(mp);
532 return (EPIPE);
533 }

535 msize = msgdsize(mp);

537 mutex_enter(&tcp->tcp_non_sq_lock);
538 tcp->tcp_squeue_bytes += msize;
539 /*
540 * Squeue Flow Control
541 */
542 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) {
543 tcp_setqfull(tcp);
544 }
545 mutex_exit(&tcp->tcp_non_sq_lock);

547 /*
548 * The application may pass in an address in the msghdr, but
549 * we ignore the address on connection-oriented sockets.
550 * Just like BSD this code does not generate an error for
551 * TCP (a CONNREQUIRED socket) when sending to an address
552 * passed in with sendto/sendmsg. Instead the data is
553 * delivered on the connection as if no address had been
554 * supplied.
555 */

new/usr/src/uts/common/inet/tcp/tcp_socket.c 9

556 CONN_INC_REF(connp);

558 if (msg->msg_flags & MSG_OOB) {
559 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent,
560 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
561 } else {
562 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
563 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
564 }

566 return (0);

568 default:
569 ASSERT(0);
570 }

572 freemsg(mp);
573 return (0);
574 }

576 /* ARGSUSED */
577 static int
578 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
579 {
580 conn_t *connp = (conn_t *)proto_handle;
581 tcp_t *tcp = connp->conn_tcp;

583 ASSERT(connp->conn_upper_handle != NULL);

585 /* All Solaris components should pass a cred for this operation. */
586 ASSERT(cr != NULL);

588 /*
589 * X/Open requires that we check the connected state.
590 */
591 if (tcp->tcp_state < TCPS_SYN_SENT)
592 return (ENOTCONN);

594 /* shutdown the send side */
595 if (how != SHUT_RD) {
596 mblk_t *bp;

598 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
599 CONN_INC_REF(connp);
600 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
601 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);

603 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
604 SOCK_OPCTL_SHUT_SEND, 0);
605 }

607 /* shutdown the recv side */
608 if (how != SHUT_WR)
609 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
610 SOCK_OPCTL_SHUT_RECV, 0);

612 return (0);
613 }

615 static void
616 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
617 {
618 conn_t *connp = (conn_t *)proto_handle;
619 tcp_t *tcp = connp->conn_tcp;
620 mblk_t *mp;
621 int error;

new/usr/src/uts/common/inet/tcp/tcp_socket.c 10

623 ASSERT(connp->conn_upper_handle != NULL);

625 /*
626 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl()
627 * is currently running.
628 */
629 mutex_enter(&tcp->tcp_rsrv_mp_lock);
630 if ((mp = tcp->tcp_rsrv_mp) == NULL) {
631 mutex_exit(&tcp->tcp_rsrv_mp_lock);
632 return;
633 }
634 tcp->tcp_rsrv_mp = NULL;
635 mutex_exit(&tcp->tcp_rsrv_mp_lock);

637 error = squeue_synch_enter(connp, mp);
638 ASSERT(error == 0);

640 mutex_enter(&tcp->tcp_rsrv_mp_lock);
641 tcp->tcp_rsrv_mp = mp;
642 mutex_exit(&tcp->tcp_rsrv_mp_lock);

644 if (tcp->tcp_fused) {
645 tcp_fuse_backenable(tcp);
646 } else {
647 tcp->tcp_rwnd = connp->conn_rcvbuf;
648 /*
649 * Send back a window update immediately if TCP is above
650 * ESTABLISHED state and the increase of the rcv window
651 * that the other side knows is at least 1 MSS after flow
652 * control is lifted.
653 */
654 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
655 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
656 tcp_xmit_ctl(NULL, tcp,
657 (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
658 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
659 }
660 }

662 squeue_synch_exit(connp);
663 }

665 /* ARGSUSED */
666 static int
667 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
668 int mode, int32_t *rvalp, cred_t *cr)
669 {
670 conn_t *connp = (conn_t *)proto_handle;
671 int error;

673 ASSERT(connp->conn_upper_handle != NULL);

675 /* All Solaris components should pass a cred for this operation. */
676 ASSERT(cr != NULL);

678 /*
679 * If we don’t have a helper stream then create one.
680 * ip_create_helper_stream takes care of locking the conn_t,
681 * so this check for NULL is just a performance optimization.
682 */
683 if (connp->conn_helper_info == NULL) {
684 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps;

686 /*
687 * Create a helper stream for non-STREAMS socket.

new/usr/src/uts/common/inet/tcp/tcp_socket.c 11

688 */
689 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
690 if (error != 0) {
691 ip0dbg(("tcp_ioctl: create of IP helper stream "
692 "failed %d\n", error));
693 return (error);
694 }
695 }

697 switch (cmd) {
698 case ND_SET:
699 case ND_GET:
700 case _SIOCSOCKFALLBACK:
701 case TCP_IOC_ABORT_CONN:
702 case TI_GETPEERNAME:
703 case TI_GETMYNAME:
704 ip1dbg(("tcp_ioctl: cmd 0x%x on non streams socket",
705 cmd));
706 error = EINVAL;
707 break;
708 default:
709 /*
710 * If the conn is not closing, pass on to IP using
711 * helper stream. Bump the ioctlref to prevent tcp_close
712 * from closing the rq/wq out from underneath the ioctl
713 * if it ends up queued or aborted/interrupted.
714 */
715 mutex_enter(&connp->conn_lock);
716 if (connp->conn_state_flags & (CONN_CLOSING)) {
717 mutex_exit(&connp->conn_lock);
718 error = EINVAL;
719 break;
720 }
721 CONN_INC_IOCTLREF_LOCKED(connp);
722 error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
723 cmd, arg, mode, cr, rvalp);
724 CONN_DEC_IOCTLREF(connp);
725 break;
726 }
727 return (error);
728 }

730 /* ARGSUSED */
731 static int
732 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
733 {
734 conn_t *connp = (conn_t *)proto_handle;

736 ASSERT(connp->conn_upper_handle != NULL);

738 /* All Solaris components should pass a cred for this operation. */
739 ASSERT(cr != NULL);

741 tcp_close_common(connp, flags);

743 ip_free_helper_stream(connp);

745 /*
746 * Drop IP’s reference on the conn. This is the last reference
747 * on the connp if the state was less than established. If the
748 * connection has gone into timewait state, then we will have
749 * one ref for the TCP and one more ref (total of two) for the
750 * classifier connected hash list (a timewait connections stays
751 * in connected hash till closed).
752 *
753 * We can’t assert the references because there might be other

new/usr/src/uts/common/inet/tcp/tcp_socket.c 12

754 * transient reference places because of some walkers or queued
755 * packets in squeue for the timewait state.
756 */
757 CONN_DEC_REF(connp);

759 /*
760 * EINPROGRESS tells sockfs to wait for a ’closed’ upcall before
761 * freeing the socket.
762 */
763 return (EINPROGRESS);
764 }

766 /* ARGSUSED */
767 sock_lower_handle_t
768 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
769 uint_t *smodep, int *errorp, int flags, cred_t *credp)
770 {
771 conn_t *connp;
772 boolean_t isv6 = family == AF_INET6;

774 #endif /* ! codereview */
775 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
776 (proto != 0 && proto != IPPROTO_TCP)) {
777 *errorp = EPROTONOSUPPORT;
778 return (NULL);
779 }

781 connp = tcp_create_common(credp, isv6, B_TRUE, errorp);
782 if (connp == NULL) {
783 return (NULL);
784 }

786 /*
787 * Put the ref for TCP. Ref for IP was already put
788 * by ipcl_conn_create. Also make the conn_t globally
172 * by ipcl_conn_create. Also Make the conn_t globally
789 * visible to walkers
790 */
791 mutex_enter(&connp->conn_lock);
792 CONN_INC_REF_LOCKED(connp);
793 ASSERT(connp->conn_ref == 2);
794 connp->conn_state_flags &= ~CONN_INCIPIENT;

796 connp->conn_flags |= IPCL_NONSTR;
797 mutex_exit(&connp->conn_lock);

799 ASSERT(errorp != NULL);
800 *errorp = 0;
801 *sock_downcalls = &sock_tcp_downcalls;
802 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
803 SM_SENDFILESUPP;

805 return ((sock_lower_handle_t)connp);
806 }

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp/tcp_stats.c 1

**
 33177 Wed Aug 8 12:51:11 2012
new/usr/src/uts/common/inet/tcp/tcp_stats.c
3065 some functions in the tcp module can be static
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/tihdr.h>
28 #include <sys/policy.h>
29 #include <sys/tsol/tnet.h>

31 #include <inet/common.h>
32 #include <inet/ip.h>
33 #include <inet/tcp.h>
34 #include <inet/tcp_impl.h>
35 #include <inet/tcp_stats.h>
36 #include <inet/kstatcom.h>
37 #include <inet/snmpcom.h>

39 static int tcp_snmp_state(tcp_t *);
40 static int tcp_kstat_update(kstat_t *, int);
41 static int tcp_kstat2_update(kstat_t *, int);
39 static int tcp_kstat_update(kstat_t *kp, int rw);
40 static int tcp_kstat2_update(kstat_t *kp, int rw);
42 static void tcp_sum_mib(tcp_stack_t *, mib2_tcp_t *);

44 static void tcp_add_mib(mib2_tcp_t *, mib2_tcp_t *);
45 static void tcp_add_stats(tcp_stat_counter_t *, tcp_stat_t *);
46 static void tcp_clr_stats(tcp_stat_t *);

48 tcp_g_stat_t tcp_g_statistics;
49 kstat_t *tcp_g_kstat;

51 /* Translate TCP state to MIB2 TCP state. */
52 static int
53 tcp_snmp_state(tcp_t *tcp)
54 {
55 if (tcp == NULL)
56 return (0);

58 switch (tcp->tcp_state) {
59 case TCPS_CLOSED:

new/usr/src/uts/common/inet/tcp/tcp_stats.c 2

60 case TCPS_IDLE: /* RFC1213 doesn’t have analogue for IDLE & BOUND */
61 case TCPS_BOUND:
62 return (MIB2_TCP_closed);
63 case TCPS_LISTEN:
64 return (MIB2_TCP_listen);
65 case TCPS_SYN_SENT:
66 return (MIB2_TCP_synSent);
67 case TCPS_SYN_RCVD:
68 return (MIB2_TCP_synReceived);
69 case TCPS_ESTABLISHED:
70 return (MIB2_TCP_established);
71 case TCPS_CLOSE_WAIT:
72 return (MIB2_TCP_closeWait);
73 case TCPS_FIN_WAIT_1:
74 return (MIB2_TCP_finWait1);
75 case TCPS_CLOSING:
76 return (MIB2_TCP_closing);
77 case TCPS_LAST_ACK:
78 return (MIB2_TCP_lastAck);
79 case TCPS_FIN_WAIT_2:
80 return (MIB2_TCP_finWait2);
81 case TCPS_TIME_WAIT:
82 return (MIB2_TCP_timeWait);
83 default:
84 return (0);
85 }
86 }

______unchanged_portion_omitted_

801 /*
802 * To add stats from one mib2_tcp_t to another. Static fields are not added.
803 * The caller should set them up propertly.
804 */
805 static void
804 void
806 tcp_add_mib(mib2_tcp_t *from, mib2_tcp_t *to)
807 {
808 to->tcpActiveOpens += from->tcpActiveOpens;
809 to->tcpPassiveOpens += from->tcpPassiveOpens;
810 to->tcpAttemptFails += from->tcpAttemptFails;
811 to->tcpEstabResets += from->tcpEstabResets;
812 to->tcpInSegs += from->tcpInSegs;
813 to->tcpOutSegs += from->tcpOutSegs;
814 to->tcpRetransSegs += from->tcpRetransSegs;
815 to->tcpOutRsts += from->tcpOutRsts;

817 to->tcpOutDataSegs += from->tcpOutDataSegs;
818 to->tcpOutDataBytes += from->tcpOutDataBytes;
819 to->tcpRetransBytes += from->tcpRetransBytes;
820 to->tcpOutAck += from->tcpOutAck;
821 to->tcpOutAckDelayed += from->tcpOutAckDelayed;
822 to->tcpOutUrg += from->tcpOutUrg;
823 to->tcpOutWinUpdate += from->tcpOutWinUpdate;
824 to->tcpOutWinProbe += from->tcpOutWinProbe;
825 to->tcpOutControl += from->tcpOutControl;
826 to->tcpOutFastRetrans += from->tcpOutFastRetrans;

828 to->tcpInAckBytes += from->tcpInAckBytes;
829 to->tcpInDupAck += from->tcpInDupAck;
830 to->tcpInAckUnsent += from->tcpInAckUnsent;
831 to->tcpInDataInorderSegs += from->tcpInDataInorderSegs;
832 to->tcpInDataInorderBytes += from->tcpInDataInorderBytes;
833 to->tcpInDataUnorderSegs += from->tcpInDataUnorderSegs;
834 to->tcpInDataUnorderBytes += from->tcpInDataUnorderBytes;
835 to->tcpInDataDupSegs += from->tcpInDataDupSegs;
836 to->tcpInDataDupBytes += from->tcpInDataDupBytes;

new/usr/src/uts/common/inet/tcp/tcp_stats.c 3

837 to->tcpInDataPartDupSegs += from->tcpInDataPartDupSegs;
838 to->tcpInDataPartDupBytes += from->tcpInDataPartDupBytes;
839 to->tcpInDataPastWinSegs += from->tcpInDataPastWinSegs;
840 to->tcpInDataPastWinBytes += from->tcpInDataPastWinBytes;
841 to->tcpInWinProbe += from->tcpInWinProbe;
842 to->tcpInWinUpdate += from->tcpInWinUpdate;
843 to->tcpInClosed += from->tcpInClosed;

845 to->tcpRttNoUpdate += from->tcpRttNoUpdate;
846 to->tcpRttUpdate += from->tcpRttUpdate;
847 to->tcpTimRetrans += from->tcpTimRetrans;
848 to->tcpTimRetransDrop += from->tcpTimRetransDrop;
849 to->tcpTimKeepalive += from->tcpTimKeepalive;
850 to->tcpTimKeepaliveProbe += from->tcpTimKeepaliveProbe;
851 to->tcpTimKeepaliveDrop += from->tcpTimKeepaliveDrop;
852 to->tcpListenDrop += from->tcpListenDrop;
853 to->tcpListenDropQ0 += from->tcpListenDropQ0;
854 to->tcpHalfOpenDrop += from->tcpHalfOpenDrop;
855 to->tcpOutSackRetransSegs += from->tcpOutSackRetransSegs;
856 to->tcpHCInSegs += from->tcpHCInSegs;
857 to->tcpHCOutSegs += from->tcpHCOutSegs;
858 }

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp_impl.h 1

**
 28387 Wed Aug 8 12:51:12 2012
new/usr/src/uts/common/inet/tcp_impl.h
3065 some functions in the tcp module can be static
**
______unchanged_portion_omitted_

339 /* Increment and decrement the number of connections in tcp_stack_t. */
340 #define TCPS_CONN_INC(tcps) \
341 atomic_inc_64(\
342 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt)

344 #define TCPS_CONN_DEC(tcps) \
345 atomic_dec_64(\
346 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt)

348 /*
349 * When the system is under memory pressure, stack variable tcps_reclaim is
350 * true, we shorten the connection timeout abort interval to tcp_early_abort
351 * seconds. Defined in tcp.c.
352 */
353 extern uint32_t tcp_early_abort;

355 /*
356 * To reach to an eager in Q0 which can be dropped due to an incoming
357 * new SYN request when Q0 is full, a new doubly linked list is
358 * introduced. This list allows to select an eager from Q0 in O(1) time.
359 * This is needed to avoid spending too much time walking through the
360 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
361 * this new list has to be a member of Q0.
362 * This list is headed by listener’s tcp_t. When the list is empty,
363 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
364 * of listener’s tcp_t point to listener’s tcp_t itself.
365 *
366 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
367 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
368 * These macros do not affect the eager’s membership to Q0.
369 */
370 #define MAKE_DROPPABLE(listener, eager) \
371 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \
372 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
373 = (eager); \
374 (eager)->tcp_eager_prev_drop_q0 = (listener); \
375 (eager)->tcp_eager_next_drop_q0 = \
376 (listener)->tcp_eager_next_drop_q0; \
377 (listener)->tcp_eager_next_drop_q0 = (eager); \
378 }

380 #define MAKE_UNDROPPABLE(eager) \
381 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \
382 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \
383 = (eager)->tcp_eager_prev_drop_q0; \
384 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \
385 = (eager)->tcp_eager_next_drop_q0; \
386 (eager)->tcp_eager_prev_drop_q0 = NULL; \
387 (eager)->tcp_eager_next_drop_q0 = NULL; \
388 }

390 /*
391 * The format argument to pass to tcp_display().
392 * DISP_PORT_ONLY means that the returned string has only port info.
393 * DISP_ADDR_AND_PORT means that the returned string also contains the
394 * remote and local IP address.
395 */
396 #define DISP_PORT_ONLY 1
397 #define DISP_ADDR_AND_PORT 2

new/usr/src/uts/common/inet/tcp_impl.h 2

399 #define IP_ADDR_CACHE_SIZE 2048
400 #define IP_ADDR_CACHE_HASH(faddr) \
401 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))

403 /* TCP cwnd burst factor. */
404 #define TCP_CWND_INFINITE 65535
405 #define TCP_CWND_SS 3
406 #define TCP_CWND_NORMAL 5

408 /*
409 * TCP reassembly macros. We hide starting and ending sequence numbers in
410 * b_next and b_prev of messages on the reassembly queue. The messages are
411 * chained using b_cont. These macros are used in tcp_reass() so we don’t
412 * have to see the ugly casts and assignments.
413 */
414 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next))
415 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \
416 (mblk_t *)(uintptr_t)(u))
417 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev))
418 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \
419 (mblk_t *)(uintptr_t)(u))

421 #define tcps_time_wait_interval tcps_propinfo_tbl[0].prop_cur_uval
422 #define tcps_conn_req_max_q tcps_propinfo_tbl[1].prop_cur_uval
423 #define tcps_conn_req_max_q0 tcps_propinfo_tbl[2].prop_cur_uval
424 #define tcps_conn_req_min tcps_propinfo_tbl[3].prop_cur_uval
425 #define tcps_conn_grace_period tcps_propinfo_tbl[4].prop_cur_uval
426 #define tcps_cwnd_max_ tcps_propinfo_tbl[5].prop_cur_uval
427 #define tcps_dbg tcps_propinfo_tbl[6].prop_cur_uval
428 #define tcps_smallest_nonpriv_port tcps_propinfo_tbl[7].prop_cur_uval
429 #define tcps_ip_abort_cinterval tcps_propinfo_tbl[8].prop_cur_uval
430 #define tcps_ip_abort_linterval tcps_propinfo_tbl[9].prop_cur_uval
431 #define tcps_ip_abort_interval tcps_propinfo_tbl[10].prop_cur_uval
432 #define tcps_ip_notify_cinterval tcps_propinfo_tbl[11].prop_cur_uval
433 #define tcps_ip_notify_interval tcps_propinfo_tbl[12].prop_cur_uval
434 #define tcps_ipv4_ttl tcps_propinfo_tbl[13].prop_cur_uval
435 #define tcps_keepalive_interval_high tcps_propinfo_tbl[14].prop_max_uval
436 #define tcps_keepalive_interval tcps_propinfo_tbl[14].prop_cur_uval
437 #define tcps_keepalive_interval_low tcps_propinfo_tbl[14].prop_min_uval
438 #define tcps_maxpsz_multiplier tcps_propinfo_tbl[15].prop_cur_uval
439 #define tcps_mss_def_ipv4 tcps_propinfo_tbl[16].prop_cur_uval
440 #define tcps_mss_max_ipv4 tcps_propinfo_tbl[17].prop_cur_uval
441 #define tcps_mss_min tcps_propinfo_tbl[18].prop_cur_uval
442 #define tcps_naglim_def tcps_propinfo_tbl[19].prop_cur_uval
443 #define tcps_rexmit_interval_initial_high \
444 tcps_propinfo_tbl[20].prop_max_uval
445 #define tcps_rexmit_interval_initial tcps_propinfo_tbl[20].prop_cur_uval
446 #define tcps_rexmit_interval_initial_low \
447 tcps_propinfo_tbl[20].prop_min_uval
448 #define tcps_rexmit_interval_max_high tcps_propinfo_tbl[21].prop_max_uval
449 #define tcps_rexmit_interval_max tcps_propinfo_tbl[21].prop_cur_uval
450 #define tcps_rexmit_interval_max_low tcps_propinfo_tbl[21].prop_min_uval
451 #define tcps_rexmit_interval_min_high tcps_propinfo_tbl[22].prop_max_uval
452 #define tcps_rexmit_interval_min tcps_propinfo_tbl[22].prop_cur_uval
453 #define tcps_rexmit_interval_min_low tcps_propinfo_tbl[22].prop_min_uval
454 #define tcps_deferred_ack_interval tcps_propinfo_tbl[23].prop_cur_uval
455 #define tcps_snd_lowat_fraction tcps_propinfo_tbl[24].prop_cur_uval
456 #define tcps_dupack_fast_retransmit tcps_propinfo_tbl[25].prop_cur_uval
457 #define tcps_ignore_path_mtu tcps_propinfo_tbl[26].prop_cur_bval
458 #define tcps_smallest_anon_port tcps_propinfo_tbl[27].prop_cur_uval
459 #define tcps_largest_anon_port tcps_propinfo_tbl[28].prop_cur_uval
460 #define tcps_xmit_hiwat tcps_propinfo_tbl[29].prop_cur_uval
461 #define tcps_xmit_lowat tcps_propinfo_tbl[30].prop_cur_uval
462 #define tcps_recv_hiwat tcps_propinfo_tbl[31].prop_cur_uval
463 #define tcps_recv_hiwat_minmss tcps_propinfo_tbl[32].prop_cur_uval

new/usr/src/uts/common/inet/tcp_impl.h 3

464 #define tcps_fin_wait_2_flush_interval_high \
465 tcps_propinfo_tbl[33].prop_max_uval
466 #define tcps_fin_wait_2_flush_interval tcps_propinfo_tbl[33].prop_cur_uval
467 #define tcps_fin_wait_2_flush_interval_low \
468 tcps_propinfo_tbl[33].prop_min_uval
469 #define tcps_max_buf tcps_propinfo_tbl[34].prop_cur_uval
470 #define tcps_strong_iss tcps_propinfo_tbl[35].prop_cur_uval
471 #define tcps_rtt_updates tcps_propinfo_tbl[36].prop_cur_uval
472 #define tcps_wscale_always tcps_propinfo_tbl[37].prop_cur_bval
473 #define tcps_tstamp_always tcps_propinfo_tbl[38].prop_cur_bval
474 #define tcps_tstamp_if_wscale tcps_propinfo_tbl[39].prop_cur_bval
475 #define tcps_rexmit_interval_extra tcps_propinfo_tbl[40].prop_cur_uval
476 #define tcps_deferred_acks_max tcps_propinfo_tbl[41].prop_cur_uval
477 #define tcps_slow_start_after_idle tcps_propinfo_tbl[42].prop_cur_uval
478 #define tcps_slow_start_initial tcps_propinfo_tbl[43].prop_cur_uval
479 #define tcps_sack_permitted tcps_propinfo_tbl[44].prop_cur_uval
480 #define tcps_ipv6_hoplimit tcps_propinfo_tbl[45].prop_cur_uval
481 #define tcps_mss_def_ipv6 tcps_propinfo_tbl[46].prop_cur_uval
482 #define tcps_mss_max_ipv6 tcps_propinfo_tbl[47].prop_cur_uval
483 #define tcps_rev_src_routes tcps_propinfo_tbl[48].prop_cur_bval
484 #define tcps_local_dack_interval tcps_propinfo_tbl[49].prop_cur_uval
485 #define tcps_local_dacks_max tcps_propinfo_tbl[50].prop_cur_uval
486 #define tcps_ecn_permitted tcps_propinfo_tbl[51].prop_cur_uval
487 #define tcps_rst_sent_rate_enabled tcps_propinfo_tbl[52].prop_cur_bval
488 #define tcps_rst_sent_rate tcps_propinfo_tbl[53].prop_cur_uval
489 #define tcps_push_timer_interval tcps_propinfo_tbl[54].prop_cur_uval
490 #define tcps_use_smss_as_mss_opt tcps_propinfo_tbl[55].prop_cur_bval
491 #define tcps_keepalive_abort_interval_high \
492 tcps_propinfo_tbl[56].prop_max_uval
493 #define tcps_keepalive_abort_interval \
494 tcps_propinfo_tbl[56].prop_cur_uval
495 #define tcps_keepalive_abort_interval_low \
496 tcps_propinfo_tbl[56].prop_min_uval
497 #define tcps_wroff_xtra tcps_propinfo_tbl[57].prop_cur_uval
498 #define tcps_dev_flow_ctl tcps_propinfo_tbl[58].prop_cur_bval
499 #define tcps_reass_timeout tcps_propinfo_tbl[59].prop_cur_uval
500 #define tcps_iss_incr tcps_propinfo_tbl[65].prop_cur_uval

502 extern struct qinit tcp_rinitv4, tcp_rinitv6;
503 extern boolean_t do_tcp_fusion;

505 /*
506 * Object to represent database of options to search passed to
507 * {sock,tpi}optcom_req() interface routine to take care of option
508 * management and associated methods.
509 */
510 extern optdb_obj_t tcp_opt_obj;
511 extern uint_t tcp_max_optsize;

513 extern int tcp_squeue_flag;

515 extern uint_t tcp_free_list_max_cnt;

517 /*
518 * Functions in tcp.c.
519 */
520 extern void tcp_acceptor_hash_insert(t_uscalar_t, tcp_t *);
521 extern tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t, tcp_stack_t *);
522 extern void tcp_acceptor_hash_remove(tcp_t *);
523 extern mblk_t *tcp_ack_mp(tcp_t *);
524 extern int tcp_build_hdrs(tcp_t *);
525 extern void tcp_cleanup(tcp_t *);
526 extern int tcp_clean_death(tcp_t *, int);
527 extern void tcp_clean_death_wrapper(void *, mblk_t *, void *,
528 ip_recv_attr_t *);
529 extern void tcp_close_common(conn_t *, int);

new/usr/src/uts/common/inet/tcp_impl.h 4

530 extern void tcp_close_detached(tcp_t *);
531 extern void tcp_close_mpp(mblk_t **);
532 extern void tcp_closei_local(tcp_t *);
533 extern sock_lower_handle_t tcp_create(int, int, int, sock_downcalls_t **,
534 uint_t *, int *, int, cred_t *);
535 extern conn_t *tcp_create_common(cred_t *, boolean_t, boolean_t, int *);
536 extern void tcp_disconnect(tcp_t *, mblk_t *);
537 extern char *tcp_display(tcp_t *, char *, char);
538 extern int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
539 boolean_t);
540 extern int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
541 cred_t *, pid_t);
542 extern int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int,
543 cred_t *, boolean_t);
544 extern int tcp_do_unbind(conn_t *);
545 extern boolean_t tcp_eager_blowoff(tcp_t *, t_scalar_t);
546 extern void tcp_eager_cleanup(tcp_t *, boolean_t);
547 extern void tcp_eager_kill(void *, mblk_t *, void *, ip_recv_attr_t *);
548 extern void tcp_eager_unlink(tcp_t *);
549 extern int tcp_getpeername(sock_lower_handle_t, struct sockaddr *,
550 socklen_t *, cred_t *);
551 extern int tcp_getsockname(sock_lower_handle_t, struct sockaddr *,
552 socklen_t *, cred_t *);
549 extern void tcp_init_values(tcp_t *, tcp_t *);
550 extern void tcp_ipsec_cleanup(tcp_t *);
551 extern int tcp_maxpsz_set(tcp_t *, boolean_t);
552 extern void tcp_mss_set(tcp_t *, uint32_t);
553 extern void tcp_reinput(conn_t *, mblk_t *, ip_recv_attr_t *, ip_stack_t *);
554 extern void tcp_rsrv(queue_t *);
555 extern uint_t tcp_rwnd_reopen(tcp_t *);
556 extern int tcp_rwnd_set(tcp_t *, uint32_t);
557 extern int tcp_set_destination(tcp_t *);
558 extern void tcp_set_ws_value(tcp_t *);
559 extern void tcp_stop_lingering(tcp_t *);
560 extern void tcp_update_pmtu(tcp_t *, boolean_t);
561 extern mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t);
562 extern boolean_t tcp_zcopy_check(tcp_t *);
563 extern void tcp_zcopy_notify(tcp_t *);
564 extern void tcp_get_proto_props(tcp_t *, struct sock_proto_props *);

566 /*
567 * Bind related functions in tcp_bind.c
568 */
569 extern int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t,
570 cred_t *, boolean_t);
571 extern void tcp_bind_hash_insert(tf_t *, tcp_t *, int);
572 extern void tcp_bind_hash_remove(tcp_t *);
573 extern in_port_t tcp_bindi(tcp_t *, in_port_t, const in6_addr_t *,
574 int, boolean_t, boolean_t, boolean_t);
575 extern in_port_t tcp_update_next_port(in_port_t, const tcp_t *,
576 boolean_t);

578 /*
579 * Fusion related functions in tcp_fusion.c.
580 */
581 extern void tcp_fuse(tcp_t *, uchar_t *, tcpha_t *);
582 extern void tcp_unfuse(tcp_t *);
583 extern boolean_t tcp_fuse_output(tcp_t *, mblk_t *, uint32_t);
584 extern void tcp_fuse_output_urg(tcp_t *, mblk_t *);
585 extern boolean_t tcp_fuse_rcv_drain(queue_t *, tcp_t *, mblk_t **);
586 extern size_t tcp_fuse_set_rcv_hiwat(tcp_t *, size_t);
587 extern int tcp_fuse_maxpsz(tcp_t *);
588 extern void tcp_fuse_backenable(tcp_t *);
589 extern void tcp_iss_key_init(uint8_t *, int, tcp_stack_t *);

591 /*

new/usr/src/uts/common/inet/tcp_impl.h 5

592 * Output related functions in tcp_output.c.
593 */
594 extern void tcp_close_output(void *, mblk_t *, void *, ip_recv_attr_t *);
595 extern void tcp_output(void *, mblk_t *, void *, ip_recv_attr_t *);
596 extern void tcp_output_urgent(void *, mblk_t *, void *, ip_recv_attr_t *);
597 extern void tcp_rexmit_after_error(tcp_t *);
598 extern void tcp_sack_rexmit(tcp_t *, uint_t *);
599 extern void tcp_send_data(tcp_t *, mblk_t *);
600 extern void tcp_send_synack(void *, mblk_t *, void *, ip_recv_attr_t *);
601 extern void tcp_shutdown_output(void *, mblk_t *, void *, ip_recv_attr_t *);
602 extern void tcp_ss_rexmit(tcp_t *);
603 extern void tcp_update_xmit_tail(tcp_t *, uint32_t);
604 extern void tcp_wput(queue_t *, mblk_t *);
605 extern void tcp_wput_data(tcp_t *, mblk_t *, boolean_t);
606 extern void tcp_wput_sock(queue_t *, mblk_t *);
607 extern void tcp_wput_fallback(queue_t *, mblk_t *);
608 extern void tcp_xmit_ctl(char *, tcp_t *, uint32_t, uint32_t, int);
609 extern void tcp_xmit_listeners_reset(mblk_t *, ip_recv_attr_t *,
610 ip_stack_t *i, conn_t *);
611 extern mblk_t *tcp_xmit_mp(tcp_t *, mblk_t *, int32_t, int32_t *,
612 mblk_t **, uint32_t, boolean_t, uint32_t *, boolean_t);

614 /*
615 * Input related functions in tcp_input.c.
616 */
617 extern void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
618 extern void tcp_input_data(void *, mblk_t *, void *, ip_recv_attr_t *);
619 extern void tcp_input_listener_unbound(void *, mblk_t *, void *,
620 ip_recv_attr_t *);
621 extern boolean_t tcp_paws_check(tcp_t *, tcpha_t *, tcp_opt_t *);
622 extern uint_t tcp_rcv_drain(tcp_t *);
623 extern void tcp_rcv_enqueue(tcp_t *, mblk_t *, uint_t, cred_t *);
624 extern boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *,
625 ip_recv_attr_t *);

627 /*
628 * Kernel socket related functions in tcp_socket.c.
629 */
630 extern int tcp_fallback(sock_lower_handle_t, queue_t *, boolean_t,
631 so_proto_quiesced_cb_t, sock_quiesce_arg_t *);
632 extern boolean_t tcp_newconn_notify(tcp_t *, ip_recv_attr_t *);

634 /*
635 * Timer related functions in tcp_timers.c.
636 */
637 extern void tcp_ack_timer(void *);
638 extern void tcp_close_linger_timeout(void *);
639 extern void tcp_keepalive_timer(void *);
640 extern void tcp_push_timer(void *);
641 extern void tcp_reass_timer(void *);
642 extern mblk_t *tcp_timermp_alloc(int);
643 extern void tcp_timermp_free(tcp_t *);
644 extern timeout_id_t tcp_timeout(conn_t *, void (*)(void *), hrtime_t);
645 extern clock_t tcp_timeout_cancel(conn_t *, timeout_id_t);
646 extern void tcp_timer(void *arg);
647 extern void tcp_timers_stop(tcp_t *);

649 /*
650 * TCP TPI related functions in tcp_tpi.c.
651 */
652 extern void tcp_addr_req(tcp_t *, mblk_t *);
653 extern void tcp_capability_req(tcp_t *, mblk_t *);
654 extern boolean_t tcp_conn_con(tcp_t *, uchar_t *, mblk_t *,
655 mblk_t **, ip_recv_attr_t *);
656 extern void tcp_err_ack(tcp_t *, mblk_t *, int, int);
657 extern void tcp_err_ack_prim(tcp_t *, mblk_t *, int, int, int);

new/usr/src/uts/common/inet/tcp_impl.h 6

658 extern void tcp_info_req(tcp_t *, mblk_t *);
659 extern void tcp_send_conn_ind(void *, mblk_t *, void *);
660 extern void tcp_send_pending(void *, mblk_t *, void *, ip_recv_attr_t *);
661 extern void tcp_tpi_accept(queue_t *, mblk_t *);
662 extern void tcp_tpi_bind(tcp_t *, mblk_t *);
663 extern int tcp_tpi_close(queue_t *, int);
664 extern int tcp_tpi_close_accept(queue_t *);
665 extern void tcp_tpi_connect(tcp_t *, mblk_t *);
666 extern int tcp_tpi_opt_get(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);
667 extern int tcp_tpi_opt_set(queue_t *, uint_t, int, int, uint_t, uchar_t *,
668 uint_t *, uchar_t *, void *, cred_t *);
669 extern void tcp_tpi_unbind(tcp_t *, mblk_t *);
670 extern void tcp_tli_accept(tcp_t *, mblk_t *);
671 extern void tcp_use_pure_tpi(tcp_t *);
672 extern void tcp_do_capability_ack(tcp_t *, struct T_capability_ack *,
673 t_uscalar_t);

675 /*
676 * TCP option processing related functions in tcp_opt_data.c
677 */
682 extern int tcp_opt_default(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);
678 extern int tcp_opt_get(conn_t *, int, int, uchar_t *);
679 extern int tcp_opt_set(conn_t *, uint_t, int, int, uint_t, uchar_t *,
680 uint_t *, uchar_t *, void *, cred_t *);

682 /*
683 * TCP time wait processing related functions in tcp_time_wait.c.
684 */
685 extern void tcp_time_wait_append(tcp_t *);
686 extern void tcp_time_wait_collector(void *);
687 extern boolean_t tcp_time_wait_remove(tcp_t *, tcp_squeue_priv_t *);
688 extern void tcp_time_wait_processing(tcp_t *, mblk_t *, uint32_t,
689 uint32_t, int, tcpha_t *, ip_recv_attr_t *);

691 /*
692 * Misc functions in tcp_misc.c.
693 */
694 extern uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t);
695 extern void tcp_ioctl_abort_conn(queue_t *, mblk_t *);
696 extern void tcp_listener_conf_cleanup(tcp_stack_t *);
697 extern void tcp_stack_cpu_add(tcp_stack_t *, processorid_t);

699 #endif /* _KERNEL */

701 #ifdef __cplusplus
702 }

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp_stats.h 1

**
 7689 Wed Aug 8 12:51:12 2012
new/usr/src/uts/common/inet/tcp_stats.h
3065 some functions in the tcp module can be static
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 #ifndef _INET_TCP_STATS_H
27 #define _INET_TCP_STATS_H

29 /*
30 * TCP private kernel statistics declarations.
31 */

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 #ifdef _KERNEL

39 /*
40 * TCP Statistics.
41 *
42 * How TCP statistics work.
43 *
44 * There are two types of statistics invoked by two macros.
45 *
46 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
47 * supposed to be used in non MT-hot paths of the code.
48 *
49 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
50 * supposed to be used for DEBUG purposes and may be used on a hot path.
51 * These counters are only available in a debugged kernel. They are grouped
51 * These counters are only available in a debugged kerel. They are grouped
52 * under the TCP_DEBUG_COUNTER C pre-processor condition.
53 *
54 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
55 * (use "kstat tcp" to get them).
56 *
57 * How to add new counters.
58 *
59 * 1) Add a field in the tcp_stat structure describing your counter.
60 * 2) Add a line in the template in tcp_kstat2_init() with the name

new/usr/src/uts/common/inet/tcp_stats.h 2

61 * of the counter.
62 * 3) Update tcp_clr_stats() and tcp_cp_stats() with the new counters.
63 * IMPORTANT!! - make sure that all the above functions are in sync !!
64 * 4) Use either TCP_STAT or TCP_DBGSTAT with the name.
65 *
66 * Please avoid using private counters which are not kstat-exported.
67 *
68 * Implementation note.
69 *
70 * Both the MIB2 and tcp_stat_t counters are kept per CPU in the array
71 * tcps_sc in tcp_stack_t. Each array element is a pointer to a
72 * tcp_stats_cpu_t struct. Once allocated, the tcp_stats_cpu_t struct is
73 * not freed until the tcp_stack_t is going away. So there is no need to
74 * acquire a lock before accessing the stats counters.
75 */

77 #ifndef TCP_DEBUG_COUNTER
78 #ifdef DEBUG
79 #define TCP_DEBUG_COUNTER 1
80 #else
81 #define TCP_DEBUG_COUNTER 0
82 #endif
83 #endif

85 /* Kstats */
86 typedef struct tcp_stat {
87 kstat_named_t tcp_time_wait_syn_success;
88 kstat_named_t tcp_clean_death_nondetached;
89 kstat_named_t tcp_eager_blowoff_q;
90 kstat_named_t tcp_eager_blowoff_q0;
91 kstat_named_t tcp_no_listener;
92 kstat_named_t tcp_listendrop;
93 kstat_named_t tcp_listendropq0;
94 kstat_named_t tcp_wsrv_called;
95 kstat_named_t tcp_flwctl_on;
96 kstat_named_t tcp_timer_fire_early;
97 kstat_named_t tcp_timer_fire_miss;
98 kstat_named_t tcp_zcopy_on;
99 kstat_named_t tcp_zcopy_off;
100 kstat_named_t tcp_zcopy_backoff;
101 kstat_named_t tcp_fusion_flowctl;
102 kstat_named_t tcp_fusion_backenabled;
103 kstat_named_t tcp_fusion_urg;
104 kstat_named_t tcp_fusion_putnext;
105 kstat_named_t tcp_fusion_unfusable;
106 kstat_named_t tcp_fusion_aborted;
107 kstat_named_t tcp_fusion_unqualified;
108 kstat_named_t tcp_fusion_rrw_busy;
109 kstat_named_t tcp_fusion_rrw_msgcnt;
110 kstat_named_t tcp_fusion_rrw_plugged;
111 kstat_named_t tcp_in_ack_unsent_drop;
112 kstat_named_t tcp_sock_fallback;
113 kstat_named_t tcp_lso_enabled;
114 kstat_named_t tcp_lso_disabled;
115 kstat_named_t tcp_lso_times;
116 kstat_named_t tcp_lso_pkt_out;
117 kstat_named_t tcp_listen_cnt_drop;
118 kstat_named_t tcp_listen_mem_drop;
119 kstat_named_t tcp_zwin_mem_drop;
120 kstat_named_t tcp_zwin_ack_syn;
121 kstat_named_t tcp_rst_unsent;
122 kstat_named_t tcp_reclaim_cnt;
123 kstat_named_t tcp_reass_timeout;
124 #ifdef TCP_DEBUG_COUNTER
125 kstat_named_t tcp_time_wait;
126 kstat_named_t tcp_rput_time_wait;

new/usr/src/uts/common/inet/tcp_stats.h 3

127 kstat_named_t tcp_detach_time_wait;
128 kstat_named_t tcp_timeout_calls;
129 kstat_named_t tcp_timeout_cached_alloc;
130 kstat_named_t tcp_timeout_cancel_reqs;
131 kstat_named_t tcp_timeout_canceled;
132 kstat_named_t tcp_timermp_freed;
133 kstat_named_t tcp_push_timer_cnt;
134 kstat_named_t tcp_ack_timer_cnt;
135 #endif
136 } tcp_stat_t;

______unchanged_portion_omitted_

