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1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

22 | *

23 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

24 * Use is subject to |license terns.

25 =/

27 | *

28 * Dynam ¢ Host Configuration Protocol version 6, for IPv6. Supports
29 * RFCs 3315, 3319, 3646, 3898, 4075, 4242, 4280, 4580, 4649, and 4704.

30 */

32 #include <ctype. h>

33 #endif /* | codereview */
34 #include <stdio. h>

35 #include <stdlib.h>

36 #include <string.h>

37 #include <tine.h>

38 #include <sys/types. h>

39 #include <sys/socket.h>
40 #include <netinet/in.h>
41 #incl ude <neti net/dhcp6. h>
42 #include <arpal/inet.h>

43 #incl ude <dhcp_i npl . h>

44 #incl ude <dhcp_inittab. h>

46 #i ncl ude "snoop. h"

48 static const char *ntype_to_str(uint8_t);

49 static const char *option_to_str(uint8_t);

50 static const char *dui dtype_to_str(uint 16_t);

51 static const char *status_to_str(uintl6_t);

52 static const char *entr_to_str(uint32_t);

53 static const char *reconf_to_str(uint8_t);

54 static const char *authproto to str(uint8_t);

55 static const char *authalg_to_str(uint8_t, uint8_t);

56 static const char *authrdmto_str(uint8_t);

57 static const char *cwhat_to_str(uint8_t);

58 static const char *catype to_str(uint8_t);

59 static void show hex(const uint8_t *, int, const char *);
60 static void show ascii(const uint8_t *, int, const char *);

new usr/src/cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_dhcpv6. ¢

61 static void show address(const char *, const void *);
62 static void show_ options(const uint8_t *, int);

64 int

65 interpret_dhcpv6(int flags, const uint8_t *data, int |en)

66 {

67 int olen = len;

68 char *line, *lstart;

69 dhcpv6_rel ay_t dér;

70 dhcpv6_nessage_t dém

71 uint_t optlen;

72 uint16_t statuscode;

74 if (len <= 0) {

75 (void) strlcpy(get_sumline(), "DHCPv6?", MAXLINE);
76 return (0);

77 }

78 if (flags & F_SUM {

79 uint_t ias;

80 dhcpv6_option_t *d6o;

81 in6_addr_t |ink, peer;

82 char linkstr[I NET6 _ADDRSTRLEN ;

83 char peerstr[| NET6_ADDRSTRLEN] ;

85 line = Istart = get_sumline();

86 line += snprintf(line, MAXLINE, "DHCPv6 %",

87 ntype_to_str(data[0]));

88 if (data[0] == DHCPV6_NSG RELAY_FORW| |

89 data[ 0] == DHCPV6_MSG RELAY_REPL) {

90 i f (Ien<S|zeof (dér)) {

91 (void) strlcpy(line, "?",

92 MAXLINE - (line - Istart));

93 return (olen);

94 }

95 /* Not nuch in DHCPv6 is aligned. */

96 (void) mencpy(&d6r, data, sizeof (dér));

97 (void) nencpy(&ink, dér.d6r_|inkaddr, sizeof (link));
98 (voi d) nenctpy(&peer, dér.d6r_peer addr, si zeof (peer));
99 line += snprintf(line, MAXLINE - (line - Istart),
100 " HC=% |ink=% peer=%", d6r.d6r_hop_count,
101 i net _ntop( AF_I NET6, 8J|nk l'i nkstr,
102 sizeof (linkstr)),

103 i net _ntop(AF_ INEl'G &peer, peerstr,
104 si zeof (peerstr)));

105 data += sizeof (dér);

106 len -= sizeof (dér);

107 } else {

108 if (len < sizeof (dém) {

109 (voi d) strlcp (line, "?",

110 MAXLI (line - Istart));
111 return (ol en)

112 }

113 (void) mencpy(&I6m data, 5| zeof (dém));

114 line += snprintf(line, MAXLINE - (I|ne- Istart),
115 " xi d=%", DHCPV6_CET_TRANSI D( &d6n) ) ;
116 data += si zeof (dém;

117 len -= sizeof (dém;

118 }

119 las = 0;

120 d6o = NULL;

121 whi |l e ((d60 = dhcpv6_find_option(data, |en, d6o,
122 DHCPV6_OPT_I A_NA, NULL)) != NULL)

123 i as++;

124 if (ias > 0)

125 line += snprintf(line, MAXLINE - (line - Istart),
126 " I As=%", ias);
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127 d6o = dhcpv6_find_option(data, |en, NULL, 193 case DHCPV6 NSG_SO_I aT:

128 DHCPV6_OPT_STATUS_CODE, &opt | en) 194 return ("Solicit");

129 optlen -= sizeof (*d60); 195 case DHCPV6 I\/SG_AD\/ERTI SE:

130 if (d6o !'= NULL && optlen >= sizeof (statuscode)) { 196 return ("Advertise");

131 (voi d) nenctpy(&statuscode, déo + 1, 197 case DHCPV6 NSG_REQUEST

132 si zeof (statuscode)); 198 return ("Request");

133 line += snprintf(line, MAXLINE - (line - Istart), 199 case DHCPV6 I\/SG_CO\IFI RM

134 " status=%", ntohs(statuscode)); 200 return ("Confirnt);

135 optlen -= sizeof (statuscode); 201 case DHCPV6 NSG_RENEW

136 if (optlen > 0) { 202 return ("Renew')

137 line += snprintf(line, 203 case DHCPV6 I\/SG_REBI ND:

138 MAXLINE - (line - Istart), " \"%*s\"", 204 return ("Rebind");

139 optlen, (char *)(d6o + 1) + 2); 205 case DHCPV6 NSG_REPLY

140 } 206 return ("Reply");

141 } 207 case DHCPV6 I\/SG_RELEASE

142 d6o = dhcpv6_find_option(data, |en, NULL, 208 return ("Rel ease");

143 DHCPV6_OPT_RELAY_MSG, &opt | en); 209 case DHCPV6_MSG_DECLI NE:

144 optlen -= sizeof (*d6o); 210 return ("Decline");

145 if (d6o !'= NULL & optien >= 1) { 211 case DHCPV6_MSG RECONFI GURE:

146 line += snprintf(line, MAXLINE - ( e- Istart), 212 return ("Reconfigure");

147 " relay=%", ntype_to_str(*(uin *)(d60 +1))); 213 case DHCPV6_MSG | NFO_REQ

148 } 214 return ("Information-Request");

149 } elseif (flags & F DTAIL) { 215 case DHCPV6_MBG RELAY FORW

150 show_header(" DHCPv6: ", 216 return ("Rel ay- Forward");

151 "Dynam ¢ Host Configuration Protocol Version 6", len); 217 case DHCPV6_MSG RELAY_ REPL:

152 show_space(); 218 return ("Rel ay-Reply");

153 (voi d) snpri ntf(get line(0, 0), get_li ne_remii n(), 219 defaul t:

154 "Message type (nmsg-type) = % (%)", data[O0], 220 return ("Unknown");

155 mypeto str(data[0])); 221 }

156 if (data[0] == DHCPV6_MSG RELAY " FORW | | 222 }

157 data[ 0] == DHCPV6_MSG RELAY REPL) {

158 i f (Ien < sizeof (dér)) { 224 static const char *

159 (void) strlcpy(get_line(0, 0), "Truncated", 225 option_to_str(uint8_t ntype)

160 get_line_remain()); 226 {

161 return (ol en); 227 switch (ntype) {

162 } 228 case DHCPV6_OPT_CLI ENTI D:

163 (void) mencpy(&dér, data, sizeof (dér)); 229 return ("Client Identifier");

164 (voi d) snpri ntf(get line(0, 0), get_line_remain(), 230 case DHCPV6 (PT_SER\/ERI D:

165 "Hop count = %", d6r.dé6r hop count) 231 return ("Server ldentifier");

166 show_address(" L| nk address", dér.deér_|i nkaddr); 232 case DHCPV6_OPT_I A NA:

167 show_addr ess(" Peer address", dér.d6r_peeraddr); 233 return ("ldentity Association for Non-tenporary Addresses");

168 data += sizeof (dér); 234 case DHCPV6 (PT_I A TA

169 len -= sizeof (dér); 235 return ("ldentity Association for Tenporary Addresses");

170 } else { 236 case DHCPV6_OPT_| AADDR:

171 if (len < sizeof (dém) { 237 return ("1 A Address");

172 (void) strlcpy(get_line(0, 0), "Truncated", 238 case DHCPV6_CPT_O?Q

173 get _line_remain()); 239 return ("Option Request");

174 return (olen); 240 case DHCPV6 (PT_PREFERENCE

175 } 241 return ("Preference");

176 (void) nmencpy(&J6m data, sizeof (dém); 242 case DHCPV6 CPT_ELAPSED TI MVE:

177 (void) snprintf(get_li ne(O 0), get_line_remain(), 243 return ("El apsed Tinme");

178 “Transaction I D = %" DI-ICPVG_GEF_TRANSI D(&d6n) ) ; 244 case DHCPV6 ODT_RELAY MSG

179 data += sizeof (dém; 245 return ("Rel ay Message") ;

180 len -= sizeof (dém; 246 case DHCPV6_OPT_AUTH:

181 } 247 return ("Aut henti cat i on");

182 show_space(); 248 case DHCPV6 CPT_UNI CAST:

183 show_opt i ons(data I en); 249 return ("Server Unicast");

184 show_space(); 250 case DHCPV6_OPT_STATUS_ CODE:

185 } 251 return ("Status Code");

186 return (olen); 252 case DHCPV6_OPT_RAPI D_COW T:

187 } 253 return ("Rapid Commit");
254 case DHCPV6_OPT_USER CLASS:

189 static const char * 255 return ("User Cass");

190 ntype_to_str(uint8_t ntype) 256 case DHCPV6_OPT_VENDOR CLASS:

191 { 257 return ("Vendor d ass");

192 switch (ntype) { 258 case DHCPV6_OPT_VENDOR OPT:
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259 return ("Vendor-specific Information");
260 case DHCPV6 O:‘T_I NTERFACE_I D:

261 return ("Interface-1d");

262 case DHCPV6_OPT_RECONF_MSG

263 return ("Reconfi gure Message") ;

264 case DHCPV6 CPT_RECO\IF ACC.

265 return ("Reconfi gure Accept");

266 case DHCPV6_OPT_SI P_NAMES:

267 return ("SIP Servers Domain Name List");
268 case DHCPV6 ODT_SI P_ADDR:

269 return ("SIP Servers |Pv6 Address List");
270 case DHCPV6 CPT_DNS ADDR:

271 return ("DNS Recursive Name Server");

272 case DHCPV6 ODT_DNS SEARCH:

273 return ("Domain Search List");

274 case DHCPV6_OPT_I A PD:

275 return ("ldentity Association for Prefix Del egation");
276 case DHCPV6 ODT_I APREFI X:

277 return ("I A_PD Prefix");

278 case DHCPV6_CPT_NI S_SERVERS:

279 return ("Network Information Service Servers");
280 case DHCPV6 G’T_NI S_DOVAI N:

281 return (“Network Information Service Domain Nanme");
282 case DHCPV6 CPT_SNTP SERVERS:

283 return ("Sinple Network Time Protocol Servers");
284 case DHCPV6 G’T_I NFO_REFTI ME:

285 return ("Information Refresh Tinme");

286 case DHCPV6_OPT_BCMCS_SRV_D:

287 return ("BCMCS Controller Domain Nanme List");
288 case DHCPV6_OPT_BCMCS_SRV_A:

289 return ("BCMCS Controller |Pv6 Address");
290 case DHCPV6 (PT_GE(I:O\IF CVC.

291 return ("Civic Location");

292 case DHCPV6_OPT_REMOTE_| D

293 return ("Rel ay Agent Renote-1D');

294 case DHCPV6_OPT_SUBSCRI BER:

295 return ("Relay Agent Subscriber-1D");

296 case DHCPV6_OPT_CLI ENT_FQDN:

297 return ("Cient FQDN');

298 defaul t:

299 return ("Unknown");

300 }

301 }

303 static const char *

304 duidtype_to_str(uintl16_t dtype)

305 {

306 switch (dtype) {

307 case DHCPV6_DUI D_LLT:

308 return ("Link-layer Address Plus Tine");
309 case DHCPV6_DUI D_EN

310 return ("Enterprise Nunmber");

311 case DHCPV6_DUI D _LL:

312 return ("Link-layer Address");

313 defaul t:

314 return ("Unknown");

315 1

316 }

318 static const char *

319 status_to_str(uintl6_t status)

320 {

321 switch (status)

322 case DHCPV6_STAT_SUCCESS:

323 return ("Success");

324

case DHCPV6_STAT_UNSPECFAI L:
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325 return ("Failure, reason unspecified");
326 case DHCPV6_STAT_NOADDRS:

327 return ("No addresses for |As");
328 case DHCPV6_STAT_NOBI NDI NG

329 return ("dient binding unavailable");
330 case DHCPV6_STAT_NOTONLI NK:

331 return ("Prefix not on link");
332 case DHCPV6_STAT USEMCAST:

333 return ("Use multicast");

334 case DHCPV6_STAT_NOPREFI X:

335 return ("No prefix available");
336 defaul t:

337 return ("Unknown");

338 }

339 }

341 static const char *

342 entr_to_str(uint32_t entr)

343 {

344 switch (entr) {

345 case DHCPV6_SUN_ENT:

346 return ("Sun M crosystens");

347 defaul t:

348 return ("Unknown");

349 }

350 }

352 static const char *

353 reconf_to_str(uint8_t nsgtype)

354 {

355 switch (nmsgtype) {

356 case DHCPV6_RECONF_RENEW

357 return ("Renew');

358 case DHCPV6_RECONF_| NFO

359 return ("Information-request");
360 defaul t:

361 return ("Unknown");

362 }

363 }

365 static const char *

366 authproto_to_str(uint8_t aproto)

367 {

368 switch (aproto) {

369 case DHCPV6_PROTO DELAYED:

370 return ("Del ayed");

371 case DHCPV6_PROTO RECONFI G

372 return ("Reconfigure Key");
373 defaul t:

374 return ("Unknown");

375 }

376 }

378 static const char *

379 authalg_to_str(uint8_t aproto, uint8_t aalg)
380 {

381 switch (aproto) {

382 case DHCPV6_PROTO_DELAYED:

383 case DHCPV6_PROTO_RECONFI G

384 switch (aal g)

385 case DHCPV6_ALG HVAC MD5:
386 return ("HVAC-MD5 Signature");
387 defaul t:

388 return ("Unknown");
389 }

390 br eak;
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391 defaul t:

392 return ("Unknown");
393 }

394 }

396 static const char *
397 authrdmto_str(uint8_t ardm

398 {

399 switch (ardm {

400 case DHCPV6_RDM _MONOCNT:

401 return ("Mnotonic Counter");
402 defaul t:

403 return ("Unknown");

404 }

405 }

407 static const char *
408 cwhat _to_str(uint8_t what)

409 {

410 switch (what)

411 case DHCPV6_CWHAT_SERVER:
412 return ("Server");
413 case DHCPV6_CWHAT_NETWORK:
414 return ("Network");
415 case DHCPV6_CWHAT_CLI ENT:
416 return ("Cient");
417 defaul t:

418 return ("Unknown");
419 }

420 }

422 static const char *
423 catype_to_str(uint8_t catype)

424 {

425 SW tch (catype) {

426 case VI CADDR_LANG

427 return ("Language; RFC 2277");
428 case Cl VI CADDR_Al:

429 return ("National division (state)");
430 case Cl VI CADDR_A2:

431 return (" County");

432 case Cl VI CADDR_A3

433 return( Oty)

434 case Cl VI CADDR_A4

435 return ("Oty division");

436 case Cl VI CADDR_A5:

437 return ( Nm ghbor hood") ;

438 case Cl VI CADDR_A(

439 return (" Street group");

440 case Cl VI CADDR_PRD:

441 return ("Leading street direction");
442 case Cl VI CADDR_POD:

443 return( Trailing street suffix");
444 case Cl VI CADDR_STS:

445 return ("Street suffix or type");
446 case Cl VI CADDR_Hi

447 return ("House nunber");

448 case Cl VI (.‘ADDR_HNS:

449 return ( House nunber suffix");
450 case Cl VI CADDR L

451 return (" Landnar k" );

452 case Cl VI CADDR _LOC:

453 return ("Additional |ocation infornmation");
454 case Cl VI CADDR_NAM

455 return ("Name/ occupant");

456 case Cl VI CADDR_PC:
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457 return ("Postal Code/ZIP");

458 case Cl VI CADDR _BLD:

459 return ("Building");

460 case Cl VI CADDR_UNI T:

461 return ( Unlt/apt/sune")

462 case Cl VI CADDR_F

463 return (" FI oor");

464 case Cl VI CADDR_ROOM

465 return (" Room nunber");

466 case Cl VI CADDR_TY!

467 return (" PI ace type");

468 case Cl VI CADDR_PCN:

469 return ("Postal community nane");
470 case Cl VI CADDR_POBOX:

471 return ( Post of fi ce box");

472 case Cl VI CADDR_Al

473 return ("Addl tional code");

474 case Cl VI CADDR_SEA

475 return (" Seat/desk )

476 case Cl VI CADDR_RQOAD:

477 return ("Primary road or street");
478 case Cl VI CADDR_RSEC:

479 return ( Road section");

480 case Cl VI CADDR_RBI

481 return (" Road branch");

482 case Cl VI CADDR_RSBR:

483 return (" Road sub- branch");

484 case Cl VI CADDR SPRE

485 urn (" Street name pre-nodifier");
486 case Cl VI CADDR SPCST:

487 return ("Street nanme post-nodifier");
488 case Cl VI CADDR_SCRI PT:

489 return ("Script");

490 defaul t:

491 return ("Unknown");

492 1

493 }

495 static void

496 show_hex(const uint8_t *data, int |len, const char *nane)

497 {

498 char buffer[16 * 3 + 1];

499 int nlen;

500 int i;

501 char sep;

503 nI en = strI en(nane);

504 ep =’

505 Wmle(len>0){

506 for (i =0; i <16 & i < len; i++)
507 (void) snprintf(buffer + 3 * i,
508 (voi d) snprintf(get_line(0, 0), get
509 nl en, nane, sep, buffer);

510 name = "";

511 sep = ;

512 len -=i;

513 1

514 }

516 static void

517 show_ ascii(const uint8_t *data, int |len, const char *nane)

518 {

519 char buffer[64], *bp;
520 int nlen;

521 int i;

522 char sep;

_line_remain(),

*dat a++) ;

"nofs

%%s",
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524 nI en = strl en(nane) ;

525 ep = ' =

526 V\ImIe(Ien>0){

527 bp = buffer;

528 for (i =0; i < sizeof (buffer) - 4 & len > 0; len--) {
529 if (lisascii(*data) || !isprint(*data))

530 bp += snprintf(bp, 5, "\\%30", *datat+);
531 el se

532 *bp++;

533 }

534 *bp = "\0";

535 (voi d) snpri ntf(get line(0, 0), get_line_remain(),
536 s % \"%\"", nlen, name, sep, buffer);

537 sep = '

538 name = "";

539 }

540 }

542 static void

543 show_address(const char *addrnane, const void *aptr)

544 {

545 char *hnane;

546 char addrstr[| NET6_ADDRSTRLEN] ;

547 in6_addr_t addr;

549 (void) mencpy(&addr, aptr, sizeof (in6_addr_t));

550 (void) inet_ntop(AF_I NET6, &addr, addrstr, sizeof (addrstr));
551 hname = addrtoname( AF_|I NET6, &addr);

552 if (strcnp(hnane, addrstr) == 0)

553 (void) snprintf(get_line(O, 0), get_line_remain(), "% = %",
554 addr nanme, addrstr);

555 } else {

556 (voi d) snprl ntf(get line(0, 0), get_line_remain(),
557 "% = % (%)", addrnane, addrstr, hnane);

558 1

559 }

561 static void
562 nest_options(const uint8_t *data, uint_t olen, char *prefix, ¢
{

564 char *str, *oldnest, *oldprefix;

566 if (olen <= 0)

567 return;

568 ol dprefix = prot_prefix;

569 ol dnest = prot_nest_prefix;

570 str = malloc(strlen(prot_nest_prefix) + strlen(prot_pr
571 if (str == NULL) {

572 prot _nest_prefix = prot_prefix;
573 } else {

574 (void) sprintf(str, "%%", prot_nest_prefix,
575 prot _nest_prefix = str;

576 }

577 show_header (prefix, title, 0);

578 show_opti ons(data, olen);

579 free(str);

580 prot _prefix = ol dprefix;

581 prot _nest _prefix = ol dnest;

582 }

584 static void

585 show options(const uint8_t *data, int |en)

586

587 dhcpv6_option_t dé6o;

588 uint_t olen, retlen;

har *title)

efix) + 1);

prot_prefix);
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589 uint16_t val 16;

590 uint16_t type;

591 uint32_t val 32;

592 const uint8_t *ostart;

593 char *str, *sp;

594 char *ol dnest;

596 /*

597 * Be very careful with negative nunbers; ANSI signed/unsigned
598 * conparison doesn’'t work as expected.

599 */

600 while (len >= (signed)sizeof (d6o)) {

601 (voi d) nmentpy(&d6o, data, sizeof (d60));

602 d6o. d6o_code = ntohs(d6o. d6o_code);

603 d6o. d6o_l| en = ol en = ntohs(d6o. d6o_I en);

604 (v0|d) snprintf(get_line(0, 0), get_ line _remain(),

605 "Option Code = % (%)", d6o. d6o_code,

606 option_to_str(d6o.d6o_code));

607 ostart = data += sizeof (d60);

608 len -= sizeof (d60);

609 if (olen > len) {

610 (void) strlcpy(get_line(0, 0), "Option truncated",
611 get _line_remain());

612 olen = len;

613 }

614 switch (d6o.d6o_code) {

615 case DHCPV6_OPT_CLI ENTI D

616 case DHCPV6_OPT_SERVERI D:

617 if (olen < sizeof (val16))

618 br eak;

619 (voi d) nem:py(&val 16, data, sizeof (val16));

620 data += sizeof (val 16)

621 ol en -= sizeof (val 16);

622 type = ntohs(val 16);

623 (void) snprintf(get_line(0, 0), get _line_renain(),
624 " DUD Type = % (%)", type,

625 dui dt ype_ to _str(type));

626 if (type == DHCPV6_DUI D | LLT || type == DHCPV6_DUI D LL) {
627 if (olen < SI zeof (val 16))

628 bre

629 (voi d) msm:py(&val 16, data, sizeof (val 16));
630 data += sizeof (val 16);

631 ol en -= sizeof (val 16);

632 val 16 = ntohs(val 16);

633 (void) snprintf(get_line(0, 0),

634 get_line_renmain(),

635 " Hardware Type = % (%)", val 16,
636 arp_htype(val 16));

32 arp_htype(type));

637 }

638 if (type == DHCPV6_DUI D LLT) {

639 time_t tineval ue;

641 if (olen < sizeof (val32))

642 br eak;

643 (void) mencpy(&val 32, data, sizeof (val32));
644 data += sizeof (val32);

645 olen -= si zeof (val 32);

646 timeval ue = ntohl (val 32) + DU D_TI ME_BASE;
647 (void) snprintf(get_|line(0, 0),

648 get _|ine_remain(),

649 T Time = %u (% 24s)" nt ohl (val 32),
650 cti rre(&tl neval ue));

651 }

652 if (type == DHCPV6_DUI D EN) {

653 if (olen < sizeof (val32))
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654
655
656
657
658
659
660
661
662
663
664
665
666
667
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br eak;
(void) mencpy(&val 32, data, sizeof (val32));
data += sizeof (val32);
olen -= sizeof (val32);
val 32 = ntohl (val 32);
(void) snprintf(get_line(0, 0),
get_line_renain(),
" Enterprise Nunber = %u (%)", val 32,
entr_to_str(val 32));

}
if (olen == 0)

br eak;
if ((str = malloc(olen * 3)) == NULL)
pr_err("interpret_dhcpv6: no ment);
sp = str + snprintf(str, 3, "%2x", *data++);
while (--olen > 0) {
*sp++ = (type == DHCPV6_DUI D LLT ||
type == DHCPVG DUIDLL) 70 ;
sp = sp + snprintf(sp, 3, "%@2x" *dat a++)

(v0| d) snprintf(get_line(0, 0), get_line_renmain(),
type == DHCPV6_DUI D LLT ||
type == DHCPV6 DU D LL) ?
" Li nk Layer Address = %"
Identifier = %", str)
free(str);
br eak;
case DHCPV6_| CPT I A_NA:
case DHCPV6_OPT_I| A_PD: {
dhcpv6_ia_na_t d6in;

if (olen < sizeof (d6in) - sizeof (d60))
br eak;
(void) mam:py(&d(iln data - sizeof (d60),
si zeof (d6in));
data += sizeof (d6i n) - sizeof (d60);
olen -= sizeof (d6in) - sizeof (d6o);
(void) snprintf(get_line(0, 0), get_line_remain(),
" |AID = %", ntohl(d6in.d6in_iaid));
(void) snprintf(get_line(0, 0), get_line_remain(),
"" T1 (renew) = % seconds", ntohl (d6in.d6in tl))
(void) snprintf(get_line(0, 0), get_line_remain(),

" T2 (rebind) = % seconds",
nest_options(data, olen, "I A ",
"ldentity Association");

br eak;

}
case DHCPV6_OPT_I A TA: {
dhcpv6_ia_ta_t d6it;

if (olen < sizeof (d6it) - sizeof (d6o))

eak;
(void) nencpy(&d6it, data - sizeof (d60),
sizeof (d6it));
data += sizeof (d6it) si zeof (d60);
olen -= sizeof (d6it) - sizeof (d60)

(voi d) snprintf(get_line(0, 0), get_line_renain(),
IAID = %™, ntohl (d6it. d6i t _faid));
nest _options(data, olen, "IA ",
"l dentity Associati on") ;
break;

}
case DHCPV6_OPT_| AADDR:
dhcva T aaddr _t dé6ia;

if (olen < sizeof (d6ia) - sizeof (d60))

11

ntohl (d6i n.d6in_t2));
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br eak;
(void) mencpy(&d6ia, data - sizeof (d6o),
si zeof (d6ia));
data += sizeof (d6ia) si zeof (d60);
olen -= sizeof (d6ia) si zeof (d60);
show_address(" Address", &d6ia.d6ia_addr);
(void) snprintf(get_li ne(O 0), get_line_| r emai n(),
" Preferred |ifetime = % seconds",
nt ohl (d6i a. d6i a_preflife));
(void) snprintf(get_line(0, 0), get_line_renain(),
" Valid lifetime = % seconds",
nt ohl (d6i a. d6i a_vallife));
nest _options(data, olen, "ADDR ", "Address");
break;
case DHCPV6_OPT_CRO
whiTe (ol en >= sizeof (val16)) {
(voi d) man‘cpy(&val 16, data, sizeof (val 16));
val 16 = ntohs(val 16);
(void) snprintf(get_line(0, 0),
get _line_remain(),
" Requested Optlon Code = % (%)", val 16,
option_to_str(val 16));
data += sizeof (val 16);
olen -= sizeof (val16);
break;
case DHCPV6_OPT_PREFERENCE:
if (olen > 0) {
(void) snprintf(get_line(0, 0),
get _line_renain(),
*data == 255 ?
" Preference = % (immediate)" :
" Preference = %", *data);
break;
case DHCPV6_OPT_ELAPSED_TI ME:
if (olen == sizeof (val16)) {
(void) mencpy(&val 16, data, sizeof (val 16));
val 16 = ntohs(val 16);
(void) snprintf(get_line(0, 0),
get _|line_remain(),
El apsed Tinme = %. %92u seconds"”,
val 16 / 100, val 16 % 100);
br eak;
case DHCPV6_OPT_RELAY_MSG
if (olen > 0) {
ol dnest = prot_nest_prefix;
prot _nest_prefix = prot_prefix;
retlen = interpret_dhcpv6(F_DTAIL, data, olen);

case

prot_prefix = prot_nest_prefix;
prot _nest_prefix = ol dnest;

br eak;
DHCPV6_OPT_AUTH: {
dhcpv6_auth_t dé6a;

if (olen < DHCPV6_AUTH_SI ZE - sizeof (d60))
break;
(void) mencpy(&d6a, data - sizeof (d6o),
DHCPV6_AUTH_SI ZE) ;
data += DHCPV6_AUTH_SI ZE - si zeof (d60);
ol en += DHCPV6_AUTH_SI ZE - sizeof (d60);

(void) snprintf(get Ilne(O 0), get_| I'i ne_remai n(),

Protocol = % (%)" d6a. déa_proto,
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786 aut hproto_to_str(d6a. d6a_proto));
787 (void) snprintf(get_line(0, 0), get_line_renain(),
788 " Agorithm= % (%)", d6a.d6a_alg,
789 aut hal g_to_str(d6a. d6éa_proto, d6a.d6a_alg));
790 (voi d) snprl ntf(get_line(0, 0), get_line_remal n()
791 Repl ay Detection Method = % (%)", d6a. déa _rdm
792 authrdmto_str(d6a. d6éa_rdm);
793 show_hex(d6a. déa_repl ay, sizeof (d6a.d6a_replay),
794 " RDM Data");
795 if (olen > 0)
796 show_hex(data, olen, Auth Info");
797 br eak;
798 }
799 case DHCPV6_OPT_UNI CAST:
800 if (olen >= sizeof (in6_addr_t))
801 show_address(" Server Address", data);
802 br eak;
803 case DHCPV6 CPT STATUS_CODE:
804 if (olen < SI zeof (val 16))
805 bre
806 (voi d) mem:py(&val 16, data, sizeof (val16));
807 val 16 = ntohs(val 16);
808 (void) snprintf(get_| i ne(0, 0), get_line_remain(),
809 " Status Code = % (%)", val 16,
810 status_to_str(val 16));
811 data += sizeof (val 16);
812 ol en -= sizeof (val16);
813 if (olen > 0)
814 (voi d) snprintf(get_li ne(O 0)
815 get _line_renmain(), = \"%*s\"",
816 ol en, data);
817 br eak;
818 case DHCPV6 CPT VENDOR_CLASS:
819 if (olen < sizeof (val32))
820 br eak;
821 (voi d) rrem:py(&val 32, data, sizeof (val32));
822 data += sizeof (val 32);
823 olen -= sizeof (val32);
824 val 32 = ntohl (val 32);
825 (void) snprintf(get_| i ne(0, 0), get_line_remin(),
826 "" Enterprise Number = %u (%)™, val32,
827 entr_to_str(val 32));
828 /* FALLTHROUGH */
829 case DHCPV6_OPT USER CLASS:
830 while (ol en >= sizeof (val16)) {
831 (void) nentpy(&val 16, data, sizeof (val16));
832 data += sizeof (val 16);
833 ol en -= sizeof (val16);
834 val 16 = ntohs(val 16);
835 if (val16 > olen) {
836 (void) strlcpy(get_li ne(O, 0),
837 " Truncated class"
838 get _line_remain());
839 val 16 = ol en;
840 }
841 show_hex(data, olen, C ass");
842 data += val 16;
843 ol en -= val 16;
844 }
845 break;
846 case DHCPV6_OPT VENDOR OPT: {
847 dhcpv6_option_t sdéo;
849 if (olen < sizeof (val32))
850 br eak;

851 (voi d) rrem:pyk&val 32, data,

si zeof (val 32));
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case

case
case

case

data += sizeof (val32);

ol en -= sizeof (val32);

val 32 = ntohl (val 32);

(void) snprintf(get_line(0, 0), get_line_remain(),
" Enterprise Nunber = %u (%)", val 32,
entr_to_str(val 32));

while (ol en >= sizeof (sd6o)) {

(void) nentpy(&sd6o, data, sizeof (sd6o));

sd6o. d6o_code = ntohs(sd6o. d6o_code);

sd6o. d6o_| en = ntohs(sd6o. d6o_I en);

(void) snprintf(get_line(0, 0),
get_line_renain(),
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" Vendor Option Code = %", d6o.d6o_code);

data += sizeof (d60);
ol en -= sizeof (d6o);
if (sd6o.d6o_len > olen) {
(voi d) strlcpy(get_line(0, 0),
Vendor Optlon truncat ed”
get_line_remain());
sd6o. d6o_| en = ol en;

}
1 f (sd6o.d6o_len > 0) {
show_hex(data, sd6o.d6o_| en,

Data");
data += sd6o. d6o_| en;
ol en -= sd6o. d6o_| en;

}
br eak;

DHCPV6_OPT_REMOTE_| D:
if (olen < SI zeof (val 32))
bre

(void) nencpy(&val 32, data, sizeof (val32));
data += sizeof (val 32);
ol en -= sizeof (val 32);
val 32 = ntohl (val 32);
(void) snprintf(get_line(0, 0), get_line_remin(),
" Enterprise Nunber = %u (%)", val 32,
entr_to str(val 32));
/* FALLTHROUGH *
DHCPV6_OPT_| NTERFACE_I D:
DHCPV6_OPT_SUBSCRI BER:
if (olen > 0)
show_hex(data, olen, " 1D");
br eak;
DHCPV6_OPT_RECONF_MSG
if (olen > 0) {
(void) snprintf(get_line(0, 0),
get _line_remain(),
Message Type = % (9%)", *data,
reconf_to_str(*data));

br eak;
DHCPV6_OPT_SI P_NAMES:
DHCPV6_OPT_DNS_SEARCH:
DHCPV6_OPT_NI'S_DOVAI N:
DHCPV6_OPT_BCMCS_SRV_D: {
dhcp_symbol _t *synp;
char *sp2;

synp = inittab_getbycode(
| TAB_CAT_STANDARD | | TAB_CAT_V6, | TAB_CONS_SNOCP,
d6o. d6o_code) ;

if (symp !'= NULL)

str = inittab_decode(synp, data, olen, B _TRUE);
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918 if (str !'= NULL) { 984 " What Location = % (%)", d6c.d6c_what,
919 sp = str; 985 cwhat _to_str(d6c. déc_what ))
920 do { 986 (void) snprintf(get_line(0, 0), get_line_remin(),
921 sp2 = strchr(sp, ' '); 987 " Country Code = % *s", si zeof (d6c. déc_cc),
922 if (sp2 !'= NULL) 988 d6c. déc_cc);
923 *sp2++ = '\ 0’ 989 while (olen >= 2)
924 (void) snprintf(get_| i ne(O 0), 990 (void) snprintf(get_line(0, 0),
925 get _line_remain(), 991 get _line_remain(),
926 " Name = %", sp); 992 " TA Element = % (%)", *data,
927 } while ((sp = sp2) != NULL); 993 catype_to str(*data))
928 free(str); 994 solen = data[1];
929 } 995 data += 2;
930 free(synp); 996 olen -= 2;
931 } 997 if (solen > olen) {
932 br eak; 998 (voi d) strlcpy(get_line(O, 0)
933 } 999 CA El enent truncated"
934 case DHCPV6_OPT_SI P_ADDR: 1000 get _line_remain());
935 case DHCPV6_OPT_DNS_ADDR: 1001 solen = ol en;
936 case DHCPV6_OPT_NI S_SERVERS: 1002 }
937 case DHCPV6_OPT_SNTP_SERVERS: 1003 if (solen > 0) {
938 case DHCPV6_OPT_BCMCS_SRV_A: 1004 show ascii(data, solen, " CA Data");
939 whiTe (ol en >= sizeof (in6_addr t)) { 1005 data += sol en;
940 show address(" Address™, data); 1006 olen -= solen;
941 data += sizeof (i n6_addr_t); 1007 }
942 olen -= sizeof (in6_addr_t); 1008 }
943 } 1009 br eak;
944 break; 1010 }
945 case DHCPV6_OPT_I APREFI X: { 1011 case DHCPV6_OPT_CLI ENT_FQDN: {
946 dhcpv6_i aprefix_t d6ip; 1012 dhcp_synbol _t *synp;
948 if (olen < DHCPV6_| APREFI X_SI ZE - sizeof (d6o)) 1014 if (olen == 0)
949 break; 1015 break
950 (void) nencpy(&d6i p, data - sizeof (d60), 1016 (voi d) snprl ntf(get line(0, 0), get_line_remain(),
951 DHCPV6_| APREFI X_SI ZE) ; 1017 Flags = 9%92x", *data);
952 data += DHCPV6_| APREFI X_ SI ZE - si zeof (d60); 1018 (voi d) snpri ntf(get i ne(0, 0) get _line_renain(),
953 ol en -= DHCPV6_| APREFI X SI ZE - sizeof (d6o); 1019 %" get fl ag(*dat a, DHCPV6_FQDNF_S,
954 show_address(" Prefix", d6ip.d6ip_addr); 1020 "Perf or m AMMA RR updat es"” "No AAAA RR updates"));
955 (void) snprintf(get_li ne(O 0), get_line_remain(), 1021 (voi d) snprintf(get_line(0, 0) get _line_renmain(),
956 "" Preferred lifetine = % seconds", 1022 %", getflag(*data DHCPV6_FQDNF_O,
957 nt ohl (d6i p. d6i p_ pr efli f e)); 1023 "Server override updates"”
958 (void) snprintf(get_li ne(O 0), get_line_renmin(), 1024 "No server override updat es"));
959 " Valid lifetime = % seconds", 1025 (voi d) snpri ntf(get line(0, 0), get_line_remain(),
960 ntohl (d6i p. d6i p_vallife)); 1026 %", getfl ag(*data DHCPV6_FQDNF_N,
961 (voi d) snprintf(get_line(0, 0), get_line_remain(), 1027 "Server perf orms no updat es"
962 Prefix length = %", d6ip.d6ip_preflen); 1028 "Server perforns updat es"));
963 nest _options(data, olen, "ADDR ", "Address"); 1029 synp = inittab_getbycode(
964 br eak; 1030 | TAB_CAT_STANDARD | | TAB_CAT_V6, | TAB_CONS_SNOOP,
965 } 1031 d6o. d6o_code) ;
966 case DHCPV6_OPT_| NFO_REFTI ME: 1032 if (synp !'= NULL) {
967 if (olen < sizeof (val32)) 1033 str = inittab_decode(synp, data, olen, B_TRUE);
968 br eak; 1034 if (str !'= NULL)
969 (void) mencpy(&val 32, data, sizeof (val32)); 1035 (void) snprintf(get_line(0, 0),
970 (void) snprintf(get_line(0, 0), get_line_remain(), 1036 get I'i ne_remain(),
971 " Refresh Time = %u seconds", ntohl(val 32)); 1037 FQDN = %", str);
972 br eak; 1038 free(str);
973 case DHCPV6_OPT_GEOCONF_CVC: { 1039 }
974 dhcpv6_ci vic_t déc; 1040 free(synp);
975 int solen; 1041 }
1042 br eak;
977 if (olen < DHCPV6_CI VIC_SI ZE - sizeof (d60)) 1043 }
978 break; 1044 }
979 (void) nenctpy(&d6c, data - sizeof (d6o), 1045 data = ostart + d6o.d6o_|en;
980 DHCPV6_CI VI C_SI ZE) ; 1046 len -= d6o. d6o_| en;
981 data += DHCPV6_CI VI C_SI ZE - sizeof (d60); 1047 }
982 olen -= DHCPV6_CI VIC S| ZE - sizeof (d60); 1048 if (lent1=0) {
983 (void) snprintf(get_line(0, 0), get_line_remain(), 1049 (void) strlcpy(get_line(0, 0), "Option entry truncated",
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1050 get _line_remain());
1051 }
1052 }

____unchanged_portion_onitted_




