new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

R R R R

28711 Tue Feb 11 13:26: 06 2014
new usr/src/cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_dhcpv6. ¢
4587 snoop mi sdecodes DHCPv6 DHCPV6_DUI D_LL identifiers
Revi ewed by: Sebastien Roy <sebastien.roy@lel phi x. con>

LR

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

22 | *

23 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

24 * Use is subject to |license terns.

25 =/

27 | *

28 * Dynam ¢ Host Configuration Protocol version 6, for IPv6. Supports
29 * RFCs 3315, 3319, 3646, 3898, 4075, 4242, 4280, 4580, 4649, and 4704.

30 */

32 #include <ctype. h>

33 #endif /* | codereview */
34 #include <stdio. h>

35 #include <stdlib.h>

36 #include <string.h>

37 #include <tine.h>

38 #include <sys/types. h>

39 #include <sys/socket.h>
40 #include <netinet/in.h>
41 #incl ude <neti net/dhcp6. h>
42 #include <arpal/inet.h>

43 #incl ude <dhcp_i npl . h>

44 #incl ude <dhcp_inittab. h>

46 #i ncl ude "snoop. h"

48 static const char *ntype_to_str(uint8_t);

49 static const char *option_to_str(uint8_t);

50 static const char *dui dtype_to_str(uint 16_t);

51 static const char *status_to_str(uintl6_t);

52 static const char *entr_to_str(uint32_t);

53 static const char *reconf_to_str(uint8_t);

54 static const char *authproto to str(uint8_t);

55 static const char *authalg_to_str(uint8_t, uint8_t);

56 static const char *authrdmto_str(uint8_t);

57 static const char *cwhat_to_str(uint8_t);

58 static const char *catype to_str(uint8_t);

59 static void show hex(const uint8_t *, int, const char *);
60 static void show ascii(const uint8_t *, int, const char *);

new usr/src/cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_dhcpv6. ¢

61 static void show address(const char *, const void *);
62 static void show_ options(const uint8_t *, int);

64 int

65 interpret_dhcpv6(int flags, const uint8_t *data, int |en)

66 {

67 int olen = len;

68 char *line, *lstart;

69 dhcpv6_rel ay_t dér;

70 dhcpv6_nessage_t dém

71 uint_t optlen;

72 uint16_t statuscode;

74 if (len <= 0) {

75 (void) strlcpy(get_sumline(), "DHCPv6?", MAXLINE);
76 return (0);

77 }

78 if (flags & F_SUM {

79 uint_t ias;

80 dhcpv6_option_t *d6o;

81 in6_addr_t |ink, peer;

82 char linkstr[I NET6 _ADDRSTRLEN ;

83 char peerstr[| NET6_ADDRSTRLEN] ;

85 line = Istart = get_sumline();

86 line += snprintf(line, MAXLINE, "DHCPv6 %",

87 ntype_to_str(data[0]));

88 if (data[0] == DHCPV6_NSG RELAY_FORW| |

89 data[0] == DHCPV6_MSG RELAY_REPL) {

90 i f (Ien<S|zeof (dér)) {

91 (void) strlcpy(line, "?",

92 MAXLINE - (line - Istart));

93 return (olen);

94 }

95 /* Not nuch in DHCPv6 is aligned. */

96 (void) mencpy(&d6r, data, sizeof (dér));

97 (void) nencpy(&ink, dér.d6r_|inkaddr, sizeof (link));
98 (voi d) nenctpy(&peer, dér.d6r_peer addr, si zeof (peer));
99 line += snprintf(line, MAXLINE - (line - Istart),
100 " HC=% |ink=% peer=%", d6r.d6r_hop_count,
101 i net _ntop(AF_I NET6, 8J|nk l'i nkstr,
102 sizeof (linkstr)),

103 i net _ntop(AF_ INEl'G &peer, peerstr,
104 si zeof (peerstr)));

105 data += sizeof (dér);

106 len -= sizeof (dér);

107 } else {

108 if (len < sizeof (dém) {

109 (voi d) strlcp (line, "?",

110 MAXLI (line - Istart));
111 return (ol en)

112 }

113 (void) mencpy(&I6m data, 5| zeof (dém));

114 line += snprintf(line, MAXLINE - (I|ne- Istart),
115 " xi d=%", DHCPV6_CET_TRANSI D(&d6n)) ;
116 data += si zeof (dém;

117 len -= sizeof (dém;

118 }

119 las = 0;

120 d6o = NULL;

121 whi |l e ((d60 = dhcpv6_find_option(data, |en, d6o,
122 DHCPV6_OPT_I A_NA, NULL)) != NULL)

123 i as++;

124 if (ias > 0)

125 line += snprintf(line, MAXLINE - (line - Istart),
126 " I As=%", ias);

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢ 3 new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

127 d6o = dhcpv6_find_option(data, |en, NULL, 193 case DHCPV6 NSG_SO_I aT:

128 DHCPV6_OPT_STATUS_CODE, &opt | en) 194 return ("Solicit");

129 optlen -= sizeof (*d60); 195 case DHCPV6 I\/SG_AD\/ERTI SE:

130 if (d6o !'= NULL && optlen >= sizeof (statuscode)) { 196 return ("Advertise");

131 (voi d) nenctpy(&statuscode, déo + 1, 197 case DHCPV6 NSG_REQUEST

132 si zeof (statuscode)); 198 return ("Request");

133 line += snprintf(line, MAXLINE - (line - Istart), 199 case DHCPV6 I\/SG_CO\IFI RM

134 " status=%", ntohs(statuscode)); 200 return ("Confirnt);

135 optlen -= sizeof (statuscode); 201 case DHCPV6 NSG_RENEW

136 if (optlen > 0) { 202 return ("Renew')

137 line += snprintf(line, 203 case DHCPV6 I\/SG_REBI ND:

138 MAXLINE - (line - Istart), " \"%*s\"", 204 return ("Rebind");

139 optlen, (char *)(d6o + 1) + 2); 205 case DHCPV6 NSG_REPLY

140 } 206 return ("Reply");

141 } 207 case DHCPV6 I\/SG_RELEASE

142 d6o = dhcpv6_find_option(data, |en, NULL, 208 return ("Rel ease");

143 DHCPV6_OPT_RELAY_MSG, &opt | en); 209 case DHCPV6_MSG_DECLI NE:

144 optlen -= sizeof (*d6o); 210 return ("Decline");

145 if (d6o !'= NULL & optien >= 1) { 211 case DHCPV6_MSG RECONFI GURE:

146 line += snprintf(line, MAXLINE - (e- Istart), 212 return ("Reconfigure");

147 " relay=%", ntype_to_str(*(uin *)(d60 +1))); 213 case DHCPV6_MSG | NFO_REQ

148 } 214 return ("Information-Request");

149 } elseif (flags & F DTAIL) { 215 case DHCPV6_MBG RELAY FORW

150 show_header(" DHCPv6: ", 216 return ("Rel ay- Forward");

151 "Dynam ¢ Host Configuration Protocol Version 6", len); 217 case DHCPV6_MSG RELAY_ REPL:

152 show_space(); 218 return ("Rel ay-Reply");

153 (voi d) snpri ntf(get line(0, 0), get_li ne_remii n(), 219 defaul t:

154 "Message type (nmsg-type) = % (%)", data[O0], 220 return ("Unknown");

155 mypeto str(data[0])); 221 }

156 if (data[0] == DHCPV6_MSG RELAY " FORW | | 222 }

157 data[0] == DHCPV6_MSG RELAY REPL) {

158 i f (Ien < sizeof (dér)) { 224 static const char *

159 (void) strlcpy(get_line(0, 0), "Truncated", 225 option_to_str(uint8_t ntype)

160 get_line_remain()); 226 {

161 return (ol en); 227 switch (ntype) {

162 } 228 case DHCPV6_OPT_CLI ENTI D:

163 (void) mencpy(&dér, data, sizeof (dér)); 229 return ("Client Identifier");

164 (voi d) snpri ntf(get line(0, 0), get_line_remain(), 230 case DHCPV6 (PT_SER\/ERI D:

165 "Hop count = %", d6r.dé6r hop count) 231 return ("Server ldentifier");

166 show_address(" L| nk address", dér.deér_|i nkaddr); 232 case DHCPV6_OPT_I A NA:

167 show_addr ess(" Peer address", dér.d6r_peeraddr); 233 return ("ldentity Association for Non-tenporary Addresses");

168 data += sizeof (dér); 234 case DHCPV6 (PT_I A TA

169 len -= sizeof (dér); 235 return ("ldentity Association for Tenporary Addresses");

170 } else { 236 case DHCPV6_OPT_| AADDR:

171 if (len < sizeof (dém) { 237 return ("1 A Address");

172 (void) strlcpy(get_line(0, 0), "Truncated", 238 case DHCPV6_CPT_O?Q

173 get _line_remain()); 239 return ("Option Request");

174 return (olen); 240 case DHCPV6 (PT_PREFERENCE

175 } 241 return ("Preference");

176 (void) nmencpy(&J6m data, sizeof (dém); 242 case DHCPV6 CPT_ELAPSED TI MVE:

177 (void) snprintf(get_li ne(O 0), get_line_remain(), 243 return ("El apsed Tinme");

178 “Transaction I D = %" DI-ICPVG_GEF_TRANSI D(&d6n)) ; 244 case DHCPV6 ODT_RELAY MSG

179 data += sizeof (dém; 245 return ("Rel ay Message") ;

180 len -= sizeof (dém; 246 case DHCPV6_OPT_AUTH:

181 } 247 return ("Aut henti cat i on");

182 show_space(); 248 case DHCPV6 CPT_UNI CAST:

183 show_opt i ons(data I en); 249 return ("Server Unicast");

184 show_space(); 250 case DHCPV6_OPT_STATUS_ CODE:

185 } 251 return ("Status Code");

186 return (olen); 252 case DHCPV6_OPT_RAPI D_COW T:

187 } 253 return ("Rapid Commit");
254 case DHCPV6_OPT_USER CLASS:

189 static const char * 255 return ("User Cass");

190 ntype_to_str(uint8_t ntype) 256 case DHCPV6_OPT_VENDOR CLASS:

191 { 257 return ("Vendor d ass");

192 switch (ntype) { 258 case DHCPV6_OPT_VENDOR OPT:

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

259 return ("Vendor-specific Information");
260 case DHCPV6 O:‘T_I NTERFACE_I D:

261 return ("Interface-1d");

262 case DHCPV6_OPT_RECONF_MSG

263 return ("Reconfi gure Message") ;

264 case DHCPV6 CPT_RECO\IF ACC.

265 return ("Reconfi gure Accept");

266 case DHCPV6_OPT_SI P_NAMES:

267 return ("SIP Servers Domain Name List");
268 case DHCPV6 ODT_SI P_ADDR:

269 return ("SIP Servers |Pv6 Address List");
270 case DHCPV6 CPT_DNS ADDR:

271 return ("DNS Recursive Name Server");

272 case DHCPV6 ODT_DNS SEARCH:

273 return ("Domain Search List");

274 case DHCPV6_OPT_I A PD:

275 return ("ldentity Association for Prefix Del egation");
276 case DHCPV6 ODT_I APREFI X:

277 return ("I A_PD Prefix");

278 case DHCPV6_CPT_NI S_SERVERS:

279 return ("Network Information Service Servers");
280 case DHCPV6 G’T_NI S_DOVAI N:

281 return (“Network Information Service Domain Nanme");
282 case DHCPV6 CPT_SNTP SERVERS:

283 return ("Sinple Network Time Protocol Servers");
284 case DHCPV6 G’T_I NFO_REFTI ME:

285 return ("Information Refresh Tinme");

286 case DHCPV6_OPT_BCMCS_SRV_D:

287 return ("BCMCS Controller Domain Nanme List");
288 case DHCPV6_OPT_BCMCS_SRV_A:

289 return ("BCMCS Controller |Pv6 Address");
290 case DHCPV6 (PT_GE(I:O\IF CVC.

291 return ("Civic Location");

292 case DHCPV6_OPT_REMOTE_| D

293 return ("Rel ay Agent Renote-1D');

294 case DHCPV6_OPT_SUBSCRI BER:

295 return ("Relay Agent Subscriber-1D");

296 case DHCPV6_OPT_CLI ENT_FQDN:

297 return ("Cient FQDN');

298 defaul t:

299 return ("Unknown");

300 }

301 }

303 static const char *

304 duidtype_to_str(uintl16_t dtype)

305 {

306 switch (dtype) {

307 case DHCPV6_DUI D_LLT:

308 return ("Link-layer Address Plus Tine");
309 case DHCPV6_DUI D_EN

310 return ("Enterprise Nunmber");

311 case DHCPV6_DUI D _LL:

312 return ("Link-layer Address");

313 defaul t:

314 return ("Unknown");

315 1

316 }

318 static const char *

319 status_to_str(uintl6_t status)

320 {

321 switch (status)

322 case DHCPV6_STAT_SUCCESS:

323 return ("Success");

324

case DHCPV6_STAT_UNSPECFAI L:

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

325 return ("Failure, reason unspecified");
326 case DHCPV6_STAT_NOADDRS:

327 return ("No addresses for |As");
328 case DHCPV6_STAT_NOBI NDI NG

329 return ("dient binding unavailable");
330 case DHCPV6_STAT_NOTONLI NK:

331 return ("Prefix not on link");
332 case DHCPV6_STAT USEMCAST:

333 return ("Use multicast");

334 case DHCPV6_STAT_NOPREFI X:

335 return ("No prefix available");
336 defaul t:

337 return ("Unknown");

338 }

339 }

341 static const char *

342 entr_to_str(uint32_t entr)

343 {

344 switch (entr) {

345 case DHCPV6_SUN_ENT:

346 return ("Sun M crosystens");

347 defaul t:

348 return ("Unknown");

349 }

350 }

352 static const char *

353 reconf_to_str(uint8_t nsgtype)

354 {

355 switch (nmsgtype) {

356 case DHCPV6_RECONF_RENEW

357 return ("Renew');

358 case DHCPV6_RECONF_| NFO

359 return ("Information-request");
360 defaul t:

361 return ("Unknown");

362 }

363 }

365 static const char *

366 authproto_to_str(uint8_t aproto)

367 {

368 switch (aproto) {

369 case DHCPV6_PROTO DELAYED:

370 return ("Del ayed");

371 case DHCPV6_PROTO RECONFI G

372 return ("Reconfigure Key");
373 defaul t:

374 return ("Unknown");

375 }

376 }

378 static const char *

379 authalg_to_str(uint8_t aproto, uint8_t aalg)
380 {

381 switch (aproto) {

382 case DHCPV6_PROTO_DELAYED:

383 case DHCPV6_PROTO_RECONFI G

384 switch (aal g)

385 case DHCPV6_ALG HVAC MD5:
386 return ("HVAC-MD5 Signature");
387 defaul t:

388 return ("Unknown");
389 }

390 br eak;

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

391 defaul t:

392 return ("Unknown");
393 }

394 }

396 static const char *
397 authrdmto_str(uint8_t ardm

398 {

399 switch (ardm {

400 case DHCPV6_RDM _MONOCNT:

401 return ("Mnotonic Counter");
402 defaul t:

403 return ("Unknown");

404 }

405 }

407 static const char *
408 cwhat _to_str(uint8_t what)

409 {

410 switch (what)

411 case DHCPV6_CWHAT_SERVER:
412 return ("Server");
413 case DHCPV6_CWHAT_NETWORK:
414 return ("Network");
415 case DHCPV6_CWHAT_CLI ENT:
416 return ("Cient");
417 defaul t:

418 return ("Unknown");
419 }

420 }

422 static const char *
423 catype_to_str(uint8_t catype)

424 {

425 SW tch (catype) {

426 case VI CADDR_LANG

427 return ("Language; RFC 2277");
428 case Cl VI CADDR_Al:

429 return ("National division (state)");
430 case Cl VI CADDR_A2:

431 return (" County");

432 case Cl VI CADDR_A3

433 return(Oty)

434 case Cl VI CADDR_A4

435 return ("Oty division");

436 case Cl VI CADDR_A5:

437 return (Nm ghbor hood") ;

438 case Cl VI CADDR_A(

439 return (" Street group");

440 case Cl VI CADDR_PRD:

441 return ("Leading street direction");
442 case Cl VI CADDR_POD:

443 return(Trailing street suffix");
444 case Cl VI CADDR_STS:

445 return ("Street suffix or type");
446 case Cl VI CADDR_Hi

447 return ("House nunber");

448 case Cl VI (.‘ADDR_HNS:

449 return (House nunber suffix");
450 case Cl VI CADDR L

451 return (" Landnar k");

452 case Cl VI CADDR _LOC:

453 return ("Additional |ocation infornmation");
454 case Cl VI CADDR_NAM

455 return ("Name/ occupant");

456 case Cl VI CADDR_PC:

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

457 return ("Postal Code/ZIP");

458 case Cl VI CADDR _BLD:

459 return ("Building");

460 case Cl VI CADDR_UNI T:

461 return (Unlt/apt/sune")

462 case Cl VI CADDR_F

463 return (" FI oor");

464 case Cl VI CADDR_ROOM

465 return (" Room nunber");

466 case Cl VI CADDR_TY!

467 return (" PI ace type");

468 case Cl VI CADDR_PCN:

469 return ("Postal community nane");
470 case Cl VI CADDR_POBOX:

471 return (Post of fi ce box");

472 case Cl VI CADDR_Al

473 return ("Addl tional code");

474 case Cl VI CADDR_SEA

475 return (" Seat/desk)

476 case Cl VI CADDR_RQOAD:

477 return ("Primary road or street");
478 case Cl VI CADDR_RSEC:

479 return (Road section");

480 case Cl VI CADDR_RBI

481 return (" Road branch");

482 case Cl VI CADDR_RSBR:

483 return (" Road sub- branch");

484 case Cl VI CADDR SPRE

485 urn (" Street name pre-nodifier");
486 case Cl VI CADDR SPCST:

487 return ("Street nanme post-nodifier");
488 case Cl VI CADDR_SCRI PT:

489 return ("Script");

490 defaul t:

491 return ("Unknown");

492 1

493 }

495 static void

496 show_hex(const uint8_t *data, int |len, const char *nane)

497 {

498 char buffer[16 * 3 + 1];

499 int nlen;

500 int i;

501 char sep;

503 nI en = strI en(nane);

504 ep =’

505 Wmle(len>0){

506 for (i =0; i <16 & i < len; i++)
507 (void) snprintf(buffer + 3 * i,
508 (voi d) snprintf(get_line(0, 0), get
509 nl en, nane, sep, buffer);

510 name = "";

511 sep = ;

512 len -=i;

513 1

514 }

516 static void

517 show_ ascii(const uint8_t *data, int |len, const char *nane)

518 {

519 char buffer[64], *bp;
520 int nlen;

521 int i;

522 char sep;

_line_remain(),

*dat a++) ;

"nofs

%%s",

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

524 nI en = strl en(nane) ;

525 ep = ' =

526 V\ImIe(Ien>0){

527 bp = buffer;

528 for (i =0; i < sizeof (buffer) - 4 & len > 0; len--) {
529 if (lisascii(*data) || !isprint(*data))

530 bp += snprintf(bp, 5, "\\%30", *datat+);
531 el se

532 *bp++;

533 }

534 *bp = "\0";

535 (voi d) snpri ntf(get line(0, 0), get_line_remain(),
536 s % \"%\"", nlen, name, sep, buffer);

537 sep = '

538 name = "";

539 }

540 }

542 static void

543 show_address(const char *addrnane, const void *aptr)

544 {

545 char *hnane;

546 char addrstr[| NET6_ADDRSTRLEN] ;

547 in6_addr_t addr;

549 (void) mencpy(&addr, aptr, sizeof (in6_addr_t));

550 (void) inet_ntop(AF_I NET6, &addr, addrstr, sizeof (addrstr));
551 hname = addrtoname(AF_|I NET6, &addr);

552 if (strcnp(hnane, addrstr) == 0)

553 (void) snprintf(get_line(O, 0), get_line_remain(), "% = %",
554 addr nanme, addrstr);

555 } else {

556 (voi d) snprl ntf(get line(0, 0), get_line_remain(),
557 "% = % (%)", addrnane, addrstr, hnane);

558 1

559 }

561 static void
562 nest_options(const uint8_t *data, uint_t olen, char *prefix, ¢
{

564 char *str, *oldnest, *oldprefix;

566 if (olen <= 0)

567 return;

568 ol dprefix = prot_prefix;

569 ol dnest = prot_nest_prefix;

570 str = malloc(strlen(prot_nest_prefix) + strlen(prot_pr
571 if (str == NULL) {

572 prot _nest_prefix = prot_prefix;
573 } else {

574 (void) sprintf(str, "%%", prot_nest_prefix,
575 prot _nest_prefix = str;

576 }

577 show_header (prefix, title, 0);

578 show_opti ons(data, olen);

579 free(str);

580 prot _prefix = ol dprefix;

581 prot _nest _prefix = ol dnest;

582 }

584 static void

585 show options(const uint8_t *data, int |en)

586

587 dhcpv6_option_t dé6o;

588 uint_t olen, retlen;

har *title)

efix) + 1);

prot_prefix);

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

10

589 uint16_t val 16;

590 uint16_t type;

591 uint32_t val 32;

592 const uint8_t *ostart;

593 char *str, *sp;

594 char *ol dnest;

596 /*

597 * Be very careful with negative nunbers; ANSI signed/unsigned
598 * conparison doesn’'t work as expected.

599 */

600 while (len >= (signed)sizeof (d6o)) {

601 (voi d) nmentpy(&d6o, data, sizeof (d60));

602 d6o. d6o_code = ntohs(d6o. d6o_code);

603 d6o. d6o_l| en = ol en = ntohs(d6o. d6o_I en);

604 (v0|d) snprintf(get_line(0, 0), get_ line _remain(),

605 "Option Code = % (%)", d6o. d6o_code,

606 option_to_str(d6o.d6o_code));

607 ostart = data += sizeof (d60);

608 len -= sizeof (d60);

609 if (olen > len) {

610 (void) strlcpy(get_line(0, 0), "Option truncated",
611 get _line_remain());

612 olen = len;

613 }

614 switch (d6o.d6o_code) {

615 case DHCPV6_OPT_CLI ENTI D

616 case DHCPV6_OPT_SERVERI D:

617 if (olen < sizeof (val16))

618 br eak;

619 (voi d) nem:py(&val 16, data, sizeof (val16));

620 data += sizeof (val 16)

621 ol en -= sizeof (val 16);

622 type = ntohs(val 16);

623 (void) snprintf(get_line(0, 0), get _line_renain(),
624 " DUD Type = % (%)", type,

625 dui dt ype_ to _str(type));

626 if (type == DHCPV6_DUI D | LLT || type == DHCPV6_DUI D LL) {
627 if (olen < SI zeof (val 16))

628 bre

629 (voi d) msm:py(&val 16, data, sizeof (val 16));
630 data += sizeof (val 16);

631 ol en -= sizeof (val 16);

632 val 16 = ntohs(val 16);

633 (void) snprintf(get_line(0, 0),

634 get_line_renmain(),

635 " Hardware Type = % (%)", val 16,
636 arp_htype(val 16));

32 arp_htype(type));

637 }

638 if (type == DHCPV6_DUI D LLT) {

639 time_t tineval ue;

641 if (olen < sizeof (val32))

642 br eak;

643 (void) mencpy(&val 32, data, sizeof (val32));
644 data += sizeof (val32);

645 olen -= si zeof (val 32);

646 timeval ue = ntohl (val 32) + DU D_TI ME_BASE;
647 (void) snprintf(get_|line(0, 0),

648 get _|ine_remain(),

649 T Time = %u (% 24s)" nt ohl (val 32),
650 cti rre(&tl neval ue));

651 }

652 if (type == DHCPV6_DUI D EN) {

653 if (olen < sizeof (val32))

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

704
705
706
707
708
709
710
711
712
713
714
715
716
717

br eak;
(void) mencpy(&val 32, data, sizeof (val32));
data += sizeof (val32);
olen -= sizeof (val32);
val 32 = ntohl (val 32);
(void) snprintf(get_line(0, 0),
get_line_renain(),
" Enterprise Nunber = %u (%)", val 32,
entr_to_str(val 32));

}
if (olen == 0)

br eak;
if ((str = malloc(olen * 3)) == NULL)
pr_err("interpret_dhcpv6: no ment);
sp = str + snprintf(str, 3, "%2x", *data++);
while (--olen > 0) {
*sp++ = (type == DHCPV6_DUI D LLT ||
type == DHCPVG DUIDLL) 70 ;
sp = sp + snprintf(sp, 3, "%@2x" *dat a++)

(v0| d) snprintf(get_line(0, 0), get_line_renmain(),
type == DHCPV6_DUI D LLT ||
type == DHCPV6 DU D LL) ?
" Li nk Layer Address = %"
Identifier = %", str)
free(str);
br eak;
case DHCPV6_| CPT I A_NA:
case DHCPV6_OPT_I| A_PD: {
dhcpv6_ia_na_t d6in;

if (olen < sizeof (d6in) - sizeof (d60))
br eak;
(void) mam:py(&d(iln data - sizeof (d60),
si zeof (d6in));
data += sizeof (d6i n) - sizeof (d60);
olen -= sizeof (d6in) - sizeof (d6o);
(void) snprintf(get_line(0, 0), get_line_remain(),
" |AID = %", ntohl(d6in.d6in_iaid));
(void) snprintf(get_line(0, 0), get_line_remain(),
"" T1 (renew) = % seconds", ntohl (d6in.d6in tl))
(void) snprintf(get_line(0, 0), get_line_remain(),

" T2 (rebind) = % seconds",
nest_options(data, olen, "I A ",
"ldentity Association");

br eak;

}
case DHCPV6_OPT_I A TA: {
dhcpv6_ia_ta_t d6it;

if (olen < sizeof (d6it) - sizeof (d6o))

eak;
(void) nencpy(&d6it, data - sizeof (d60),
sizeof (d6it));
data += sizeof (d6it) si zeof (d60);
olen -= sizeof (d6it) - sizeof (d60)

(voi d) snprintf(get_line(0, 0), get_line_renain(),
IAID = %™, ntohl (d6it. d6i t _faid));
nest _options(data, olen, "IA ",
"l dentity Associati on") ;
break;

}
case DHCPV6_OPT_| AADDR:
dhcva T aaddr _t dé6ia;

if (olen < sizeof (d6ia) - sizeof (d60))

11

ntohl (d6i n.d6in_t2));

new usr/src/cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_dhcpv6. ¢

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

778
779
780
781
782
783
784
785

12

br eak;
(void) mencpy(&d6ia, data - sizeof (d6o),
si zeof (d6ia));
data += sizeof (d6ia) si zeof (d60);
olen -= sizeof (d6ia) si zeof (d60);
show_address(" Address", &d6ia.d6ia_addr);
(void) snprintf(get_li ne(O 0), get_line_| r emai n(),
" Preferred |ifetime = % seconds",
nt ohl (d6i a. d6i a_preflife));
(void) snprintf(get_line(0, 0), get_line_renain(),
" Valid lifetime = % seconds",
nt ohl (d6i a. d6i a_vallife));
nest _options(data, olen, "ADDR ", "Address");
break;
case DHCPV6_OPT_CRO
whiTe (ol en >= sizeof (val16)) {
(voi d) man‘cpy(&val 16, data, sizeof (val 16));
val 16 = ntohs(val 16);
(void) snprintf(get_line(0, 0),
get _line_remain(),
" Requested Optlon Code = % (%)", val 16,
option_to_str(val 16));
data += sizeof (val 16);
olen -= sizeof (val16);
break;
case DHCPV6_OPT_PREFERENCE:
if (olen > 0) {
(void) snprintf(get_line(0, 0),
get _line_renain(),
*data == 255 ?
" Preference = % (immediate)" :
" Preference = %", *data);
break;
case DHCPV6_OPT_ELAPSED_TI ME:
if (olen == sizeof (val16)) {
(void) mencpy(&val 16, data, sizeof (val 16));
val 16 = ntohs(val 16);
(void) snprintf(get_line(0, 0),
get _|line_remain(),
El apsed Tinme = %. %92u seconds"”,
val 16 / 100, val 16 % 100);
br eak;
case DHCPV6_OPT_RELAY_MSG
if (olen > 0) {
ol dnest = prot_nest_prefix;
prot _nest_prefix = prot_prefix;
retlen = interpret_dhcpv6(F_DTAIL, data, olen);

case

prot_prefix = prot_nest_prefix;
prot _nest_prefix = ol dnest;

br eak;
DHCPV6_OPT_AUTH: {
dhcpv6_auth_t dé6a;

if (olen < DHCPV6_AUTH_SI ZE - sizeof (d60))
break;
(void) mencpy(&d6a, data - sizeof (d6o),
DHCPV6_AUTH_SI ZE) ;
data += DHCPV6_AUTH_SI ZE - si zeof (d60);
ol en += DHCPV6_AUTH_SI ZE - sizeof (d60);

(void) snprintf(get Ilne(O 0), get_| I'i ne_remai n(),

Protocol = % (%)" d6a. déa_proto,

new usr/src/ cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_dhcpv6. c 13
786 aut hproto_to_str(d6a. d6a_proto));
787 (void) snprintf(get_line(0, 0), get_line_renain(),
788 " Agorithm= % (%)", d6a.d6a_alg,
789 aut hal g_to_str(d6a. d6éa_proto, d6a.d6a_alg));
790 (voi d) snprl ntf(get_line(0, 0), get_line_remal n()
791 Repl ay Detection Method = % (%)", d6a. déa _rdm
792 authrdmto_str(d6a. d6éa_rdm);
793 show_hex(d6a. déa_repl ay, sizeof (d6a.d6a_replay),
794 " RDM Data");
795 if (olen > 0)
796 show_hex(data, olen, Auth Info");
797 br eak;
798 }
799 case DHCPV6_OPT_UNI CAST:
800 if (olen >= sizeof (in6_addr_t))
801 show_address(" Server Address", data);
802 br eak;
803 case DHCPV6 CPT STATUS_CODE:
804 if (olen < SI zeof (val 16))
805 bre
806 (voi d) mem:py(&val 16, data, sizeof (val16));
807 val 16 = ntohs(val 16);
808 (void) snprintf(get_| i ne(0, 0), get_line_remain(),
809 " Status Code = % (%)", val 16,
810 status_to_str(val 16));
811 data += sizeof (val 16);
812 ol en -= sizeof (val16);
813 if (olen > 0)
814 (voi d) snprintf(get_li ne(O 0)
815 get _line_renmain(), = \"%*s\"",
816 ol en, data);
817 br eak;
818 case DHCPV6 CPT VENDOR_CLASS:
819 if (olen < sizeof (val32))
820 br eak;
821 (voi d) rrem:py(&val 32, data, sizeof (val32));
822 data += sizeof (val 32);
823 olen -= sizeof (val32);
824 val 32 = ntohl (val 32);
825 (void) snprintf(get_| i ne(0, 0), get_line_remin(),
826 "" Enterprise Number = %u (%)™, val32,
827 entr_to_str(val 32));
828 /* FALLTHROUGH */
829 case DHCPV6_OPT USER CLASS:
830 while (ol en >= sizeof (val16)) {
831 (void) nentpy(&val 16, data, sizeof (val16));
832 data += sizeof (val 16);
833 ol en -= sizeof (val16);
834 val 16 = ntohs(val 16);
835 if (val16 > olen) {
836 (void) strlcpy(get_li ne(O, 0),
837 " Truncated class"
838 get _line_remain());
839 val 16 = ol en;
840 }
841 show_hex(data, olen, C ass");
842 data += val 16;
843 ol en -= val 16;
844 }
845 break;
846 case DHCPV6_OPT VENDOR OPT: {
847 dhcpv6_option_t sdéo;
849 if (olen < sizeof (val32))
850 br eak;

851 (voi d) rrem:pyk&val 32, data,

si zeof (val 32));

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

913
914
915
916
917

case

case
case

case

data += sizeof (val32);

ol en -= sizeof (val32);

val 32 = ntohl (val 32);

(void) snprintf(get_line(0, 0), get_line_remain(),
" Enterprise Nunber = %u (%)", val 32,
entr_to_str(val 32));

while (ol en >= sizeof (sd6o)) {

(void) nentpy(&sd6o, data, sizeof (sd6o));

sd6o. d6o_code = ntohs(sd6o. d6o_code);

sd6o. d6o_| en = ntohs(sd6o. d6o_I en);

(void) snprintf(get_line(0, 0),
get_line_renain(),

14

" Vendor Option Code = %", d6o.d6o_code);

data += sizeof (d60);
ol en -= sizeof (d6o);
if (sd6o.d6o_len > olen) {
(voi d) strlcpy(get_line(0, 0),
Vendor Optlon truncat ed”
get_line_remain());
sd6o. d6o_| en = ol en;

}
1 f (sd6o.d6o_len > 0) {
show_hex(data, sd6o.d6o_| en,

Data");
data += sd6o. d6o_| en;
ol en -= sd6o. d6o_| en;

}
br eak;

DHCPV6_OPT_REMOTE_| D:
if (olen < SI zeof (val 32))
bre

(void) nencpy(&val 32, data, sizeof (val32));
data += sizeof (val 32);
ol en -= sizeof (val 32);
val 32 = ntohl (val 32);
(void) snprintf(get_line(0, 0), get_line_remin(),
" Enterprise Nunber = %u (%)", val 32,
entr_to str(val 32));
/* FALLTHROUGH *
DHCPV6_OPT_| NTERFACE_I D:
DHCPV6_OPT_SUBSCRI BER:
if (olen > 0)
show_hex(data, olen, " 1D");
br eak;
DHCPV6_OPT_RECONF_MSG
if (olen > 0) {
(void) snprintf(get_line(0, 0),
get _line_remain(),
Message Type = % (9%)", *data,
reconf_to_str(*data));

br eak;
DHCPV6_OPT_SI P_NAMES:
DHCPV6_OPT_DNS_SEARCH:
DHCPV6_OPT_NI'S_DOVAI N:
DHCPV6_OPT_BCMCS_SRV_D: {
dhcp_symbol _t *synp;
char *sp2;

synp = inittab_getbycode(
| TAB_CAT_STANDARD | | TAB_CAT_V6, | TAB_CONS_SNOCP,
d6o. d6o_code) ;

if (symp !'= NULL)

str = inittab_decode(synp, data, olen, B _TRUE);

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢ 15 new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_dhcpv6. ¢
918 if (str !'= NULL) { 984 " What Location = % (%)", d6c.d6c_what,
919 sp = str; 985 cwhat _to_str(d6c. déc_what))
920 do { 986 (void) snprintf(get_line(0, 0), get_line_remin(),
921 sp2 = strchr(sp, ' '); 987 " Country Code = % *s", si zeof (d6c. déc_cc),
922 if (sp2 !'= NULL) 988 d6c. déc_cc);
923 *sp2++ = '\ 0’ 989 while (olen >= 2)
924 (void) snprintf(get_| i ne(O 0), 990 (void) snprintf(get_line(0, 0),
925 get _line_remain(), 991 get _line_remain(),
926 " Name = %", sp); 992 " TA Element = % (%)", *data,
927 } while ((sp = sp2) != NULL); 993 catype_to str(*data))
928 free(str); 994 solen = data[1];
929 } 995 data += 2;
930 free(synp); 996 olen -= 2;
931 } 997 if (solen > olen) {
932 br eak; 998 (voi d) strlcpy(get_line(O, 0)
933 } 999 CA El enent truncated"
934 case DHCPV6_OPT_SI P_ADDR: 1000 get _line_remain());
935 case DHCPV6_OPT_DNS_ADDR: 1001 solen = ol en;
936 case DHCPV6_OPT_NI S_SERVERS: 1002 }
937 case DHCPV6_OPT_SNTP_SERVERS: 1003 if (solen > 0) {
938 case DHCPV6_OPT_BCMCS_SRV_A: 1004 show ascii(data, solen, " CA Data");
939 whiTe (ol en >= sizeof (in6_addr t)) { 1005 data += sol en;
940 show address(" Address™, data); 1006 olen -= solen;
941 data += sizeof (i n6_addr_t); 1007 }
942 olen -= sizeof (in6_addr_t); 1008 }
943 } 1009 br eak;
944 break; 1010 }
945 case DHCPV6_OPT_I APREFI X: { 1011 case DHCPV6_OPT_CLI ENT_FQDN: {
946 dhcpv6_i aprefix_t d6ip; 1012 dhcp_synbol _t *synp;
948 if (olen < DHCPV6_| APREFI X_SI ZE - sizeof (d6o)) 1014 if (olen == 0)
949 break; 1015 break
950 (void) nencpy(&d6i p, data - sizeof (d60), 1016 (voi d) snprl ntf(get line(0, 0), get_line_remain(),
951 DHCPV6_| APREFI X_SI ZE) ; 1017 Flags = 9%92x", *data);
952 data += DHCPV6_| APREFI X_ SI ZE - si zeof (d60); 1018 (voi d) snpri ntf(get i ne(0, 0) get _line_renain(),
953 ol en -= DHCPV6_| APREFI X SI ZE - sizeof (d6o); 1019 %" get fl ag(*dat a, DHCPV6_FQDNF_S,
954 show_address(" Prefix", d6ip.d6ip_addr); 1020 "Perf or m AMMA RR updat es"” "No AAAA RR updates"));
955 (void) snprintf(get_li ne(O 0), get_line_remain(), 1021 (voi d) snprintf(get_line(0, 0) get _line_renmain(),
956 "" Preferred lifetine = % seconds", 1022 %", getflag(*data DHCPV6_FQDNF_O,
957 nt ohl (d6i p. d6i p_ pr efli f e)); 1023 "Server override updates"”
958 (void) snprintf(get_li ne(O 0), get_line_renmin(), 1024 "No server override updat es"));
959 " Valid lifetime = % seconds", 1025 (voi d) snpri ntf(get line(0, 0), get_line_remain(),
960 ntohl (d6i p. d6i p_vallife)); 1026 %", getfl ag(*data DHCPV6_FQDNF_N,
961 (voi d) snprintf(get_line(0, 0), get_line_remain(), 1027 "Server perf orms no updat es"
962 Prefix length = %", d6ip.d6ip_preflen); 1028 "Server perforns updat es"));
963 nest _options(data, olen, "ADDR ", "Address"); 1029 synp = inittab_getbycode(
964 br eak; 1030 | TAB_CAT_STANDARD | | TAB_CAT_V6, | TAB_CONS_SNOOP,
965 } 1031 d6o. d6o_code) ;
966 case DHCPV6_OPT_| NFO_REFTI ME: 1032 if (synp !'= NULL) {
967 if (olen < sizeof (val32)) 1033 str = inittab_decode(synp, data, olen, B_TRUE);
968 br eak; 1034 if (str !'= NULL)
969 (void) mencpy(&val 32, data, sizeof (val32)); 1035 (void) snprintf(get_line(0, 0),
970 (void) snprintf(get_line(0, 0), get_line_remain(), 1036 get I'i ne_remain(),
971 " Refresh Time = %u seconds", ntohl(val 32)); 1037 FQDN = %", str);
972 br eak; 1038 free(str);
973 case DHCPV6_OPT_GEOCONF_CVC: { 1039 }
974 dhcpv6_ci vic_t déc; 1040 free(synp);
975 int solen; 1041 }
1042 br eak;
977 if (olen < DHCPV6_CI VIC_SI ZE - sizeof (d60)) 1043 }
978 break; 1044 }
979 (void) nenctpy(&d6c, data - sizeof (d6o), 1045 data = ostart + d6o.d6o_|en;
980 DHCPV6_CI VI C_SI ZE) ; 1046 len -= d6o. d6o_| en;
981 data += DHCPV6_CI VI C_SI ZE - sizeof (d60); 1047 }
982 olen -= DHCPV6_CI VIC S| ZE - sizeof (d60); 1048 if (lent1=0) {
983 (void) snprintf(get_line(0, 0), get_line_remain(), 1049 (void) strlcpy(get_line(0, 0), "Option entry truncated",

new usr/src/ cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_dhcpv6. c 17

1050 get _line_remain());
1051 }
1052 }

____unchanged_portion_onitted_

