new usr/src/ man/ man5/resource_controls. 5 1

R R R R

21225 Sat Jul 13 17:57:07 2013
new usr/ src/ man/ man5/resource_control s. 5

3830

SIGQUEUE_MAX's limt of 32 is too |ow

R R R R R R R

©CONOOOUTAWNE

"\ te

.\" Copyright (c) 2007, Sun Mcrosystens, Inc. All Rights Reserved.

.\" The contents of this file are subject to the terns of the Common Devel opnent
.\" You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE or http:
.\" When distributing Covered Code, include this CDDL HEADER in each file and in
. TH RESOURCE_CONTROLS 5 "Jul 2, 2013"

. TH RESOURCE_CONTROLS 5 "Jul 2, 2007"

. SH NAME

resource_controls \- resource controls avail abl e through project database

. SH DESCRI PTI ON

.sp

.LP

The resource controls facility is configured through the project database. See
\fBproject\fR(4). You can set and nodify resource controls through the
followng utilities:

.RS +4

. TP

.iet \(bu

.el o
\fBprctl\fR(1)

. RE

.RS +4

TP

.iet \(bu

.el o

\ f Bpr oj add\ f R(1M
. RE

.RS +4

. TP

.iet \(bu

.el o

\ f Bpr oj mod\ f R(1M
.RE

.RS +4

TP

.iet \(bu

.el o
\fBrctladm fR(1M
RE

_sp

.LP

In a program you use \fBsetrctl\fR(2) to set resource control values.

.sp

.LP

In addition to the preceding resource controls, there are resource pools,
accessi bl e through the \fBpooladm fR(1M and \fBpool cfg\fR(1M utilities. In a
program resource pools can be manipul ated through the \fBlibpool\fR(3LIB)
l'ibrary.

.sp

.LP

The following are the resource controls are avail abl e:

.sp

.ne 2

.na

\ f B\ f Bpr ocess. nax- addr ess-space\f R fR

.ad

.sp .6

.RS 4n

Maxi mum anmount of address space, as summed over segnent sizes, that is
avail able to this process, expressed as a nunber of bytes.
RE

new usr/ src/ man/ man5/ resource_control s. 5

114

116
117
118
119
120
121
122
123
124

.sp
.ne 2

.na
\f B\ f Bprocess. max-core-si ze\fRfR
.ad

.sp .6

. RS 4n

Maxi mum si ze of a core file created by this process, expressed as a nunber of
byt es.

. RE

.sp
.ne 2

.na
\fB\f Bprocess. max-cpu-ti ne\fRfR
.ad

.sp .6

. RS 4n

Maxi mum CPU tinme that is available to this process, expressed as a nunber of
seconds.

. RE

.sp
.ne 2

.na
\ f B\ f Bpr ocess. nax- dat a- si ze\fR fR
ad

: sp .6

.RS 4n

Maxi mum heap nmenory available to this process, expressed as a nunber of bytes.
.RE

.sp
.ne 2

.na
\fB\fBprocess. max-file-descriptor\fRfR
.ad

.sp .6

. RS 4n

Maxi mum file descriptor index available to this process, expressed as an
i nt eger.

. RE

.sp
.ne 2

.nha
\fB\ fBprocess. max-file-size\fRfR
.ad

.sp .6

. RS 4n

Maxi mum file offset available for witing by this process, expressed as a
nunber of bytes.

.RE

.sp
.ne 2

.na

\ f B\ f Bpr ocess. max- nsg- nessages\f R f R

.ad

.sp .6

. RS 4n

Maxi mum nunber of messages on a nessage queue (val ue copied fromthe resource
control at \fBmsgget()\fR tine), expressed as an integer.

125 . RE

new usr/ src/ man/ man5/ resource_control s. 5

127 .sp

128 .ne 2

129 .na

130 \f B\ fBprocess. max- msg- gbytes\fR f R

131 . ad

132 .sp .6

133 . RS 4n

134 Maxi mum nunber of bytes of messages on a nessage queue (val ue copied fromthe
135 resource control at \fBnsgget()\fR tine), expressed as a nunmber of bytes
136 . RE

138 .sp

139 .ne 2

140 .na

141 \fB\f Bprocess. max-port-events\fR fR

142 . ad

143 .sp .6

144 . RS 4n

145 Maxi mum al | owabl e nunber of events per event port, expressed as an integer.
146 . RE

148 .sp

149 .ne 2

150 . na

151 \f B\ fBprocess. max- sem nsens\f R f R

152 . ad

153 .sp .6

154 . RS 4n

155 Maxi mum nunber of semaphores all owed per senaphore set, expressed as an
156 integer.

157 . RE

159 .sp

160 .ne 2

161 .na

162 \fB\fBprocess. max-semops\fR fR

163 . ad

164 .sp .6

165 . RS 4n

166 Maxi mum nunber of semaphore operations allowed per \fBsenop\fR call (value
167 copied fromthe resource control at \fBsenget()\fR tine). Expressed as an
168 integer, specifying the nunber of operations

169 . RE

171 . sp

172 .ne 2

173 .na

174 \f B\ f Bprocess. max- si gqueue-si ze\fR fR

175 . ad

176 .sp .6

177 . RS 4n

178 Maxi mum nunber of outstandi ng queued signals

179 . RE

181 .sp

182 .ne 2

183 . na

184 #endif /* ! codereview */

185 \f B\ f Bprocess. max- st ack-si ze\fR fR

186 . ad

187 .sp .6

188 . RS 4n

189 Maxi mum stack nmenory segnment available to this process, expressed as a nunber
190 of bytes.

191 . RE

new usr/ src/ man/ man5/ resource_control s. 5

193
194

195

196
197
198
199
200
201
202

.sp
.ne 2

na
\fg\prroj ect.cpu-caps\fRfR
. al

.sp .6

. RS 4n

Maxi mum armount of CPU resources that a project can use. The unit used is the
percentage of a single CPU that can be used by all user threads in a project
Expressed as an integer. The cap does not apply to threads running in real-tinme

203 scheduling class. This resource control does not support the \fBsyslog\fR
204 action.

205 . RE

207 .sp

208 .ne 2

209 .na

210 \fB\fBproject.cpu-shares\fRfR

211 . ad

212 .sp .6

213 . RS 4n

214 Nunmber of CPU shares granted to a project for use with the fair share schedul er
215 (see \fBFSS\fR(7)). The unit used is the nunber of shares (an integer). This
216 resource control does not support the \fBsyslog\fR action

217 .RE

219 .sp

220 .ne 2

221 .na

222 \fB\fBproject.mx-contracts\fRfR

223 . ad

224 .sp .6

225 . RS 4n

226 Maxi num nunber of contracts allowed in a project, expressed as an integer
227 .RE

229 .sp

230 .ne 2

231 .na

232 \fB\fBproj ect. max-crypto-nenory\f R fR

233 .ad

234 .sp .6

235 . RS 4n

236 Maxi mum armount of kernel nenory that can be used for crypto operations
237 Al'locations in the kernel for buffers and session-related structures are
238 charged agai nst this resource control

239 .RE

241 .sp

242 .ne 2

243 .na

244 \fB\fBproj ect. max-| ocked- nenory\ f R f R

245 . ad

246 .sp .6

247 . RS 4n

248 Total armount of physical nenory | ocked by device drivers and user processes
249 (including DISM, expressed as a nunber of bytes

250 . RE

252 .sp

253 .ne 2

254 . na

255 \fB\fBproject. max-lwps\fRfR

256 . ad

257
258

.sp .6
. RS 4n

new usr/ src/ man/ man5/ resource_control s. 5

259 Maxi num nunber of LWPs sinul taneously available to a project, expressed as an
260 integer.

261 . RE

263 .sp

264 .ne 2

265 .na

266 \fB\fBproject.max-nsg-ids\fRfR

267 . ad

268 .sp .6

269 . RS 4n

270 Maxi mum nunber of nessage queue IDs allowed for a project, expressed as an
271 integer.

272 .RE

274 .sp

275 .ne 2

276 .na

277 \fB\fBproj ect. max-port-ids\fR fR

278 . ad

279 .sp .6

280 . RS 4n

281 Maxi mum al | owabl e nunber of event ports, expressed as an integer

282 . RE

284 .sp

285 .ne 2

286 .na

287 \fB\fBproject. max-semids\fRfR

288 . ad

289 .sp .6

290 . RS 4n

291 Maxi num nunber of semmphore IDs allowed for a project, expressed as an integer
292 .RE

294 .sp

295 .ne 2

296 .na

297 \fB\fBproject.max-shmids\fR fR

298 . ad

299 .sp .6

300 . RS 4n

301 Maxi mum nunber of shared nenory IDs allowed for a project, expressed as an
302 integer.

303 . RE

305 .sp

306 .ne 2

307 .na

308 \fB\fBproject.max-shmnmenory\fRfR

309 . ad

310 .sp .6

311 . RS 4n

312 Total armpunt of shared nenory allowed for a project, expressed as a nunber of
313 bytes

314 . RE

316 .sp

317 .ne 2

318 .na

319 \fB\fBproject.max-tasks\fR fR

320 . ad

321 .sp .6

322 . RS 4n

323 Maxi mum nunber of tasks allowable in a project, expressed as an integer.

324 . RE

new usr/src/ man/ man5/ resource_control s. 5

326 .sp
327 .ne 2

328 .na

329 \fB\fBproject.pool\fRfR

330 . ad

331 .sp .6

332 . RS 4n

333 Binds a specified resource pool with a project

334 .RE

336 .sp

337 .ne 2

338 .na

339 \fB\fBrcap. max-rss\fRfR

340 . ad

341 .sp .6

342 . RS 4n

343 The total anount of physical nenory, in bytes, that is available to processes
344 in a project.

345 . RE

347 .sp

348 .ne 2

349 .na

350 \fB\fBtask. max-cpu-time\fR fR

351 . ad

352 .sp .6

353 . RS 4n

354 Maximum CPU tinme that is available to this task’'s processes, expressed as a
355 nunber of seconds

356 . RE

358 .sp

359 .ne 2

360 . na

361 \fB\fBtask. max-lwps\fRfR

362 . ad

363 .sp .6

364 . RS 4n

365 Maxi mum nunber of LWPs sinul taneously available to this task’s processes

366 expressed as an integer.

367 .RE

369 .sp

370 . LP

371 The foll owi ng zone-wi de resource controls are avail abl e:
372 .sp

373 .ne 2

374 .na

375 \fB\fBzone. cpu-cap\fR fR

376 . ad

377 .sp .6

378 . RS 4n

379 Sets a limt on the ampunt of CPU tinme that can be used by a zone. The unit

380
381
382
383
384

386
387
388
389
390

used is the percentage of a single CPU that can be used by all user threads in
a zone. Expressed as an integer. Wen projects within the capped zone have
their own caps, the mninumvalue takes precedence. This resource control does
not support the \fBsyslog\fR action

. RE

.sp
.ne 2

.ha
\ f B\ f Bzone. cpu-shares\fR fR
.ad

new usr/ src/ man/ man5/ resource_control s. 5

391
392
393
394
395
396
397
398

400
401
402
403
404
405
406
407
408

410
411

412 .

413
414
415
416
417
418
419
420

.sp .6

. RS 4n

Sets a limt on the nunber of fair share schedul er (FSS) CPU shares for a zone.
CPU shares are first allocated to the zone, and then further subdivi ded anbng

projects within the zone as specified in the \fBproject.cpu-shares\fR entries.
Expressed as an integer. This resource control does not support the

\fBsysl og\ fR acti on.

. RE

.sp
.ne 2

.na
\ f B\ f Bzone. nax- | ocked- menory\f R f R
.ad

.sp .6

. RS 4n

Total armpunt of physical |ocked nenory available to a zone.
. RE

.sp
.ne 2

na
\ f B\ f Bzone. max- | wps\ f R f R

.ad

.sp .6

. RS 4n

Enhances resource isolation by preventing too many LWPs in one zone from
affecting other zones. A zone's total LWPs can be further subdivided anong
projects within the zone within the zone by using \fBproject.nmax-1wps\fR
entries. Expressed as an integer.

421 . RE

423
424

425 .

426
427
428
429
430
431
432

434
435
436
437
438
439
440
441

.sp
.ne 2

na
\ f B\ f Bzone. nax- nsg-i ds\f R f R
.ad

.sp .6

. RS 4n

Maxi mum nunber of message queue IDs allowed for a zone, expressed as an
i nteger.

.RE

.sp
.ne 2

.na
\f B\ f Bzone. nax-semids\f R fR

.ad

.Sp .6

.RS 4n

Maxi mum nunber of semaphore IDs allowed for a zone, expressed as an integer.

442 . RE

444
445
446
447
448
449
450
451
452

.sp
.ne 2

.na
\fB\f Bzone. max-shmids\fR fR

.ad

.sp .6

.RS 4n

Maxi mum nunber of shared nmenory IDs allowed for a zone, expressed as an
i nteger.

453 . RE

455
456

.sp
.ne 2

new usr/src/ man/ man5/ resource_control s. 5

457 .

na
458 \ f B\ f Bzone. max- shm menory\f R f R

459 . ad
460 .sp .6
461 . RS 4n

462 Total anopunt of shared nenory allowed for a zone,

463 bytes.
464 . RE

466 .sp
467 .ne 2
468

470
471 .sp .6
472 RS 4n

.na
469 \fB\f Bzone. max- swap\ f R\ f R
.ad

expressed as a nunber of

473 Total anpunt of swap that can be consumed by user process address space
474 mappings and \fBtnpfs\fR mounts for this zone.
. RE

475

477 .sp
478 . LP

479 See \fBzones\fR(5).

480 .SS "Units Used in Resource Controls”

481 .sp
482 . LP

483 Resource controls can be expressed as in units of size (bytes),

484 or as a count These units use the strings specified bel ow

485 .sp

486 .in +2
487 . nf

488 Cat egory
489

490 -----------
491 Size

492

493

494

495

496

497

499 Ti me
500
501
502
503
504
505

507 Count
508

509

510

511

512

513

514 . fi
515 .in -2

517 .sp
518 .LP

(integer).

Res Cirl
Type String

seconds

i nt eger

Modi fi er

519 Scal ed val ues can be used with resource controls.
520 scal ed threshol d val ue:

521 .sp
522 .in +2

tinme (seconds),

The foll owi ng exanpl e shows a

new usr/ src/ man/ man5/ resource_control s. 5

523 . nf

524 task. max-| wps=(priv, 1K, deny)

525 . fi

526 .in -2

528 .sp

529 . LP

530 In the \fBproject\fR file, the value \fB1IK\fR is expanded to \fB1000O\fR:
531 .sp

532 .in +2

533 . nf

534 task. max-| wps=(pri v, 1000, deny)

535 . fi

536 .in -2

538 .sp

539 .LP

540 A second exanpl e uses a |arger scal ed val ue:

541 .sp

542 .in +2

543 . nf

544 process. max-fil e-size=(priv, 5G deny)

545 . fi

546 .in -2

548 .sp

549 . LP

550 In the \fBproject\fR file, the value \fB5GfR is expanded to \fB5368709120\fR:
551 .sp

552 .in +2

553 . nf

554 process. max-fil e-size=(priv, 5368709120, deny)

555 . fi

556 .in -2

558 .sp

559 . LP

560 The precedi ng exanpl es use the scaling factors specified in the table above.
561 .sp

562 . LP

563 Note that unit nodifiers (for exanple, \fB5GfR) are accepted by the
564 \fBprctlI\fR(1), \fBprojadd\fR(1M, and \fBprojnod\fR(1M conmmands. You cannot
565 use unit nodifiers in the project database itself.

566 .SS "Resource Control Values and Privilege Level s"

567 .sp

568 . LP

569 A threshold value on a resource control constitutes a point at which |ocal
570 actions can be triggered or global actions, such as |ogging, can occur.
571 .sp

572 .LP

573 Each threshol d value on a resource control nust be associated with a privil ege
574 level. The privilege | evel nust be one of the follow ng three types:
575 .sp

576 .ne 2

577 .na

578 \fB\fBbasic\fR fR

579 . ad

580 .sp .6

581 . RS 4n

582 Can be nodified by the owner of the calling process.

583 . RE

585 .sp

586 .ne 2

587 .na

588 \fB\fBprivileged\fRfR

new usr/src/ man/ man5/resource_controls.5 10
589 . ad

590 .sp .6

591 . RS 4n

592 Can be nodified by the current process (requiring \fBsys_resource\fR privil ege)

593
594

596
597

598 .

599
600
601
602
603

or by \fBprctI\fR(1) (requiring \fBproc_owner\fR privilege).
. RE

.sp

.ne 2

na

\fB\fBsystem fRfR

.ad

.sp .6

. RS 4n
Fi xed for the duration of the operating systeminstance.

604 . RE

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

.sp
.LP

A resource control is guaranteed to have one \fBsystem fR value, which is
defined by the system or resource provider. The \fBsystem fR val ue represents
how much of the resource the current inplenentation of the operating systemis
capabl e of providing.

.sp

.LP

Any nunber of privileged values can be defined, and only one basic value is

al l oned. QOperations that are perforned without specifying a privilege value are
assigned a basic privilege by default.

.sp

.LP

The privilege level for a resource control value is defined in the privilege
field of the resource control block as \fBRCTL_BASICQ\fR, \fBRCTL_PRI VI LEGED f R,
or \fBRCTL_SYSTEMfR. See \fBsetrctI\fR(2) for nore information. You can use
the \fBprctI\fR command to nodify values that are associated with basic and
privileged |evels.

.sp

.LP

In specifying the privilege level of \fBprivileged\fR you can use the
abbreviation \fBpriv\fR For exanple:

.sp
.in +2

. nf

task. max- | wps=(pri v, 1K, deny)

Cfi

.in -2

.SS "d obal and Local Actions on Resource Control Values”
.sp

.LP

There are two categories of actions on resource control values: global and
| ocal .
.sp
.LP
d obal actions apply to resource control values for every resource control on
the system You can use \fBrctladmMfR(1M to performthe follow ng actions:
.RS +4
. TP
.iet \(bu
.el o
Di splay the global state of active systemresource controls.
RE

.RS +4

. TP

.iet \(bu

.el o

Set gl obal |ogging actions.

new usr/src/ man/ man5/resource_controls. 5 11

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

687 .
688 .

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

. RE

.sp

.LP

You can disable or enable the global |ogging action on resource controls. You
can set the \fBsyslog\fR action to a specific degree by assigning a severity
level, \fBsyslog=\fR fllevel\fR The possible settings for \fllevel\fR are as
foll ows:

.RS +4

. TP

.iet \(bu
.el o

\ f Bdebug\ f R
RE

‘RS +4

TP

et \(bu
|

.el o
\fBinfo\fR
.RE

.RS +4

TP

.iet \(bu
.el o
\fBnotice\fR
RE

RS +4

TP

.iet \(bu
|

.el o
\ f Bwar ni ng\ f R
. RE

.RS +4

.el o
\fBerr\fR
RE

.RS +4

. TP

.iet \(bu
.el o
\fBerit\fR
. RE

.RS +4
TP

.iet \(bu

.el o
\fBalert\fR
RE

.RS +4

. TP

.iet \(bu

.el o

\fBemerg\fR

.RE

.sp

.LP

By default, there is no global |o0gging of resource control violations.

.sp

.LP

Local actions are taken on a process that attenpts to exceed the control val ue.
For each threshold value that is placed on a resource control, you can
associ ate one or nore actions. There are three types of |ocal actions:
\fBnone\fR, \fBdeny\fR, and \fBsignal =\fR These three actions are used as
follows:

.sp

new usr/src/ man/ man5/resource_controls.5 12
721 .ne 2

722 .na

723 \fB\fBnone\fR fR

724 . ad

725 .sp .6

726 . RS 4n

727 No action is taken on resource requests for an amobunt that is greater than the

728
729
730

threshold. This action is useful for nonitoring resource usage without
affecting the progress of applications. You can also enable a global nessage
that displays when the resource control is exceeded, while, at the sane tineg,

731 the process exceeding the threshhold is not affected.

732 . RE

734 .sp

735 .ne 2

736 .na

737 \fB\fBdeny\f R fR

738 . ad

739 .sp .6

740 . RS 4n

741 You can deny resource requests for an anobunt that is greater than the

742 threshol d. For exanple, a \fBtask.nmax-Iwps\fR resource control with action deny
743 causes a \fBfork()\fR systemcall to fail if the new process woul d exceed the
744 control value. See the \fBfork\fR(2).

745 . RE

747 .sp

748 .ne 2

749 .na

750 \fB\fBsignal =\fRfR

751 . ad

752 .sp .6

753 . RS 4n

754 You can enabl e a global signal nessage action when the resource control is

755 exceeded. A signal is sent to the process when the threshold value is exceeded.
756 Additional signals are not sent if the process consunes additional resources.
757 Avail able signals are |isted bel ow.

758 . RE

760 .sp

761 . LP

762 Not all of the actions can be applied to every resource control. For exanple, a

763
764
765
766
767
768
769
770

process cannot exceed the number of CPU shares assigned to the project of which
it is a menber. Therefore, a deny action is not allowed on the

\ f Bproj ect . cpu-shares\fR resource control.

.sp

.LP

Due to inplenmentation restrictions, the global properties of each control can
restrict the range of available actions that can be set on the threshold val ue.
(See \fBrctladmfR(1M.) A list of available signal actions is presented in the

771 following list. For additional information about signals, see
772 \fBsignal \ f R(3HEAD) .

773 .sp

774 . LP

775 The following are the signals available to resource control val ues:
776 .sp

777 .ne 2

778 .na

779 \fB\f BSI GABRT\f R f R

780 . ad

781 .sp .6

782 . RS 4n

783 Termi nate the process.

784 . RE

786 .sp

new usr/src/ man/ man5/resource_controls. 5 13

787 .ne 2

788 . na

789 \fB\fBSIGHUP\f R f R

790 . ad

791 .sp .6

792 . RS 4n

793 Send a hangup signal. Occurs when carrier drops on an open line. Signal sent to
794 the process group that controls the termnal.

795 . RE

797 .sp

798 .ne 2

799 .na

800 \fB\fBSI GTERM f R f R

801 . ad

802 .sp .6

803 . RS 4n

804 Termi nate the process. Ternination signal sent by software.
805 . RE

807 .sp

808 .ne 2

809 . na

810 \fB\fBSIGKILL\fRfR

811 . ad

812 .sp .6

813 . RS 4n

814 Term nate the process and kill the program

815 . RE

817 .sp

818 .ne 2

819 .na

820 \fB\fBSI GSTOP\f R f R

821 . ad

822 .sp .6

823 . RS 4n

824 Stop the process. Job control signal.

825 . RE

827 .sp

828 .ne 2

829 .na

830 \fB\fBSI GXRES\f R\ f R

831 . ad

832 .sp .6

833 . RS 4n

834 Resource control linit exceeded. Generated by resource control facility.
835 . RE

837 .sp

838 .ne 2

839 .na

840 \fB\fBSIGXFSZ\f R f R

841 . ad

842 .sp .6

843 . RS 4n

844 Terminate the process. File size |limt exceeded. Available only to resource
845 controls with the \fBRCTL_GLOBAL_FILE_SI ZE\fR property
846 (\fBprocess.max-file-size\fR). See \fBrctl bl k_set_val ue\fR(3C).
847 . RE

849 .sp

850 .ne 2

851 .na

852

\fB\f BSI GXCPU f R f R

new usr/src/ man/ man5/resource_controls.5 14
853 . ad

854 .sp .6

855 . RS 4n

856 Terminate the process. CPU tinme limt exceeded. Avai lable only to resource

857 controls with the \fBRCTL_GLOBAL_CPUTI ME\ f R property

858 (\fBprocess. max-cpu-time\fR). See \fBrctl bl k_set_val ue\f R(30).

859 . RE

861 .SS "Resource Control Flags and Properties”

862 .sp

863 . LP

864 Each resource control on the systemhas a certain set of associated properties.
865 This set of properties is defined as a set of flags, which are associated with
866 all controlled instances of that resource. G obal flags cannot be nodified, but
867 the flags can be retrieved by using either \fBrctladmfR(1M or the

868 \fBsetrctlI\fR(2) systemcall.

869 .sp

870 .LP

871 Local flags define the default behavior and configuration for a specific

872 threshol d value of that resource control on a specific process or process

873 col lective. The local flags for one threshold value do not affect the behavior
874 of other defined threshold values for the sane resource control. However, the
875 gl obal flags affect the behavior for every value associated with a particul ar
876 control. Local flags can be nodified, within the constraints supplied by their
877 corresponding gl obal flags, by the \fBprctl\fR command or the \fBsetrctl\fR
878 systemcall. See \fBsetrctl\fR(2).

879 .sp

880 .LP

881 For the conplete Iist of local flags, global flags, and their definitions, see
882 \fBrctl bl k_set_val ue\fR(30).

883 .sp

884 . LP

885 To determ ne system behavior when a threshold value for a particular resource

886 control is reached, use \fBrctladmfR to display the global flags for the
887 resource control For exanple, to display the values for

888 \fBprocess. max-cpu-tine\fR, enter:

889 .sp

890 .in +2

891 . nf

892 $ rctladm process. max-cpu-ti

893 p¥ocess max-cpu-time sysl og= off [I owerabl e no-deny cpu-tinme inf seconds]
894 . fi

895 .in -2

897 .sp

898 .LP

899 The gl obal flags indicate the follow ng:

900 .sp

901 .ne 2

902 .na

903 \fB\fBl owerabl e\ fRfR

904 . ad

905 .sp .6

906 . RS 4n

907 Superuser privileges are not required to |l ower the privileged values for this

908 control.

909 . RE

911 .sp

912 .ne 2

913 .na

914 \fB\fBno-deny\fRfR

915 . ad

916 .sp .6

917 . RS 4n

918 Even when threshold val ues are exceeded, access to the resource is never

new usr/ src/ man/ man5/ resource_control s. 5

919 deni ed.
920 . RE

922 .sp

923 .ne 2

924 . na

925 \fB\chpu-tirre\fR\fR

926 . ad

927 .sp .6

928 . RS 4n

929 \fBSI GXCPUfR is available to be sent when threshold val ues of this resource
930 are reached.

931 . RE

933 .sp

934 .ne 2

935 . na

936 \fB\fBseconds\fR fR

937 . ad

938 .sp .6

939 . RS 4n

940 The time value for the resource control.
941 . RE

943 .sp

944 | LP

945 Use the \fBprctl\fR command to display |ocal values and actions for the
946 resource control. For exanple:

947 .sp

948 .in +2

949 . nf

950 $ prctl -n process. max-cpu-tine $$

951 process 353939: -ksh

952 NAVE PRI VI LEGE VALUE FLAG ACTI ON REC!I PI ENT
953 process. nax-cpu-tine

954 privil eged 18. 4Es i nf si gnal =XCPU -
955 system 18. 4Es i nf none

956 . fi

957 .in -2

959 .sp

960 . LP

15

961 The \fBmax\fR (\fBRCTL_LOCAL_MAXI MAL\fR) flag is set for both threshold val ues,

962 and the \fBinf\fR (\fBRCTL_GLOBAL_INFINITE\fR) flag is defined for this

963 resource control. An \fBinf\fR value has an infinite quantity. The value is
964 never enforced. Hence, as configured, both threshold quantities represent
965 infinite values that are never exceeded.

966 .SS "Resource Control Enforcenent”

967 .sp
968 . LP
969 More than one resource control can exist on a resource. A resource control can
970 exi st at each containnent level in the process nbdel. |If resource controls are

971 active on the same resource at different container levels, the snallest

972 container’s control is enforced first. Thus, action is taken on

973 \fBprocess. max-cpu-tinme\fR before \fBtask. max-cpu-tine\fR if both controls are
974 encount ered simul taneously.

975 . SH ATTRI BUTES

976 .sp

977 .LP

978 See \fBattributes\fR(5) for a description of the follow ng attributes:

979 .sp

981 .sp
982 . TS
983 box;
984 c | ¢

new usr/src/ man/ man5/ resource_control s. 5

985 | (.

986 ATTRI BUTE TYPE ATTRI BUTE VALUE

987

988 Interface Stability Evol vi ng

989 . TE

991 . SH SEE ALSO

992 .sp

993 . LP

994 \prrctI\fR(l) \ f Bpool adm f R(1M, \f Bpool cfg\fR(M, \fBprojadd\fR(1M,
995 \f Bpr oj rmd\fR(lM, \fBrctladm fR(1IM, \fBsetrctI\fR(2),

996 \fBrctlbl k_set_value\fR(3C), \fBlibpool\fR(3LI B) \prr oj ect\fR(4),

997 \fBattributes\fR(5), \fBFSS\fR(?)

998 .sp

999 .LP

1000 \fl System Admi ni stration Guide: Virtualization Using the Solaris Operating
1001 System fR

16

new usr/src/uts/comon/os/rctl_proc.c

R R R R

12538 Sat Jul 13 17:57:08 2013
new usr/src/uts/comron/os/rctl_proc.c
3830 SIGQUEUE_ MAX's limt of 32 is too | ow

R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.

*

/

26 #pragna ident " %YW % % %E% SM "
26 #include <sys/types. h>

27 #include <sys/cmm_err.h>

28 #include <sys/sysmacros. h>

29 #include <sys/proc. h>

30 #include <sys/rctl.h>

31 #include <sys/rctl_inpl.h>

32 #include <sys/port_kernel.h>

33 #include <sys/signal.h>

34 #endif /* | codereview */

36 #i nclude <sys/vnparam h>
37 #include <sys/nmachparam h>

39 /*

40 * Process-based resource controls

41 * The structure of the kernel |eaves us no particular place where the process
42 = abstraction can be declared--it is intertwined with the growh of the Unix
43 = kernel . Accordingly, we place all of the resource control |ogic associated
44 = Wi th processes, both existing and future, in this file.

45 */

47 rctl_hndl _t rctlproc_l egacy[RLI M_NLI MTS]
48 uint_t rctlproc_flags[RLIMNLIMTS] = {

49 RCTL_LOCAL_SI GNAL, /* RLIMT_CPU =/

50 RCTL_LOCAL_DENY | RCTL_LOCAL_SI GNAL, /* RLIMT_FSI ZE */

51 RCTL_LOCAL_DENY, /* RLIM T_DATA */
52 RCTL_LOCAL_DENY, /* RLIM T_STACK */
53 RCTL_LOCAL_DENY, /* RLIMT_CORE */
54 RCTL_LOCAL_DENY, /* RLIM T_NOFI LE */
55) RCTL_LOCAL_DENY /* RLIMT_VMEM */

56 };

57 int rctlproc_signal sSfRLIMNLIMTS] = {

58 SI GXCPU, /* RLIMT_CPU */

59 Sl GXFSZ, /* RLIMT_FSI ZE */

new usr/src/uts/comon/os/rctl_proc.c

60
61

123
125

0o, 0,0 00 0, 0 /* remai nder do not signal

be
rctl_hndl _t rc_process_nmsgmb;
rctl_hndl _t rc_process_mnsgtql;
rctl _hndl _t rc_process_senmsl ;
rctl_hndl _t rc_process_senopm
rctl_hndl _t rc_process_portev;
rctl _hndl _t rc_process_sigqueue;
#endif /* | codereview */
/*

* process. max-cpu-tinme / RLIMT_CPU

*/
| * ARGSUSED* /
static int
proc_ cpu time_test(struct rctl *rctl, struct proc *p, rctl_entity_p_t *e,

rctl_val _t *rval, rctl_qty_t inc, uint_t flags)

{

return (inc >= rval ->rcv_val ue);
}
static rctl_ops_t proc_cpu_tine_ops = {

rcop_no_action,
rcop_no_usage,
rcop_no_set,
proc_cpu_tinme_test
e
/*
* process. max-file-size / RLIMT_FSI ZE
*/
static int
proc_filesize_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,

rctl_qty_t nv)

if (p->p_nodel == DATAMODEL_NATI VE)

nv = MN(nv, rctl->rc_dict_entry->rcd_max_native);
el se

nv = MN(nv, rctl->rc_dict_entry->rcd_nax_il p32);

ASSERT(e->rcep_t == RCENTI TY_PROCESS) ;
e->rcep_p. proc->p_fsz_ctl = nv;

return (0);

}

static rctl_ops_t proc_filesize_ops = {

rcop_no_action,
rcop_no_usage,
proc_filesize_set,
rcop_no_test
e
/*
* process. max-data / RLI M T_DATA
*/
/*
* process. max- st ack-size / RLI M T_STACK
*/
static int
proc_stack_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,

rctl_qty_t nv)

klwp_t *lwp = ttolwp(curthread);

*/

new usr/src/uts/comon/os/rctl_proc.c

127
128
129
130

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

155

157
158

160
161
162
163
164
165

167
168
169
170
171
172
173
174
175
176
177

179

181
182

184
185
186
187
188
189

}

if (p->p_nodel == DATAMODEL_NATI VE)

nv = MN(nv, rctl->rc_dict_entry->rcd_max_native);
el se

nv = MN(nv, rctl->rc_dict_entry->rcd_max_il p32);

In the process of changing the rlimt, this function actually
gets called a nunber of tinmes. We only want to save the current
rlimt the first time we come through here. In post_syscall (),
we copyin() the Iwp' s ustack, and conpare it to the rlimt we
save here; if the two match, we adjust the ustack to reflect
the new stack bounds.

We check to nake sure that we're changing the rlimt of our

own process rather than on behal f of some other process. The
noti on of changing this resource limt on behalf of another
process is problematic at best, and changing the anount of stack
space a process is allowed to consune is a rather antiquated
notion that has limted applicability in our nultithreaded
process nodel .

® ok % ok ok ok ok ok ok F ok F Ok ¥
—~

ASSERT(e->rcep_t == RCENTI TY_PROCESS) ;
if (Iwp !'= NULL && | wp->lwp_procp == e->rcep_p.proc &&
I wp- >l wp_ust ack && | wp->lwp_ol d_stk_ctl == 0)
| wp->l wp_ol d_stk_ctl = (size_t)e->rcep_p.proc->p_stk_ctl;
curthread->t_post_sys = 1;

}
e->rcep_p. proc->p_stk_ctl = nv;

return (0);

static rctl_ops_t proc_stack_ops = {

rcop_no_action,
rcop_no_usage,
proc_stack_set,
rcop_no_test

e
/*
* process. max-file-descriptors / RLIMT_NOFI LE
*/
static int
proc_nofile_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
{
ASSERT(e->rcep_t == RCENTI TY_PROCESS) ;
i f (p->p_nodel == DATAMODEL_NATI VE)
nv = MN(nv, rctl->rc_dict_entry->rcd_max_native);
el se
nv = MN(nv, rctl->rc_dict_entry->rcd_nax_il p32);
e->rcep_p. proc->p_fno_ctl = nv;
return (0);
}

static rctl_ops_t proc_nofile_ops = {

rcop_no_action,
rcop_no_usage,
proc_nofil e_set,
rcop_absol ut e_t est

new usr/src/uts/comon/os/rctl_proc.c

192 * process. max- address-space / RLIM T_VMEM
/

193 *

194 static int
195 proc_vmem set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)

196 {
197
198
199
200
201

203

205
206 }

ASSERT(e->rcep_t == RCENTI TY_PROCESS) ;
if (p->p_nodel == DATAMODEL TLP32)
nv = MN(nv, rctl->rc_dict_entry->rcd_max_il p32);

el se

nv = MN(nv, rctl->rc_dict_entry->rcd_nax_native);
e->rcep_p. proc->p_vmemct|l = nv;
return (0);

208 static rctl_ops_t proc_vmemops = {

209
210
211
212
213 };

/

215
216
217
218
219
220
221
222 void

* ok kb F Ok

rcop_no_action,
rcop_no_usage,
proc_vnmem set,
rcop_no_t est

void rctlproc_default_init()

Overvi ew
Est abl i sh default basic and privileged control values on the init process.
These correspond to the soft and hard limts, respectively.

223 rctlproc_default_init(struct proc *initp, rctl_alloc_gp_t *gp)

224 {
225

227
228
229
230
231
232

234
235
236
237
238
239

241
242
243
244
245
246

248
249
250
251 #if def
252
253
254 tel se
255
256
257 #endi f

struct rlimt64 rlp64;
/*

* RLIMT_CPU:. deny never, sigtoproc(pp, NULL, SIGXCPU).
S

rip64.rlimecur = rlp64.rlimmax = RLI M64_I NFI NI TY;
(void) rctl_rlimt_set(rctlproc_legacy[RLIMT_CPU], initp, &rlp64, gp,
RCTL_LOCAL_SI GNAL, SI GXCPU, kcred);

/*
* RLIMT_FSI ZE: deny al ways, sigtoproc(pp, NULL, SIGXFSZ).
*
rip6d.rlimecur = rlp64.rlimmax = RLIMB4_I NFINITY;
(void) rctl_rlimt_set(rctlproc_|legacy[RLIMT_FSIZE], initp, &l p64, gp,
RCTL_LOCAL_SI GNAL | RCTL_LOCAL_DENY, SIGXFSz, kcred);
/*
* RLIM T_DATA: deny al ways, no default action.
*
/
rip6d.rlimecur = rlp64.rlimmnmax = RLIMB4A_I NFINITY;
(void) rctl_rlimt_set(rctlproc_|legacy[RLIM T_DATA], initp, &l p64, gp,
RCTL_LOCAL_DENY, 0, kcred);

/*
* RLIM T_STACK: deny al ways, no default action.
*/

__sparc

rl p64.rlimcur = DFLSSI Z;

rlp64.rlimmax = LONG MAX;

rip64.rlimcur = DFLSSI Z;

rl p64.rlimmax = MAXSSI Z;

new usr/src/uts/comon/os/rctl

258
259

261
262
263
264
265
266

268
269
270
271
272
273
274

276
277
278
279
280
281
282

284
285
286
287
288
289
290
291
292
293

void

Overv
Reg
The
her

* Ok kR % *

*/
voi d

rctl proc_|

rctl proc

294 {

295
296
297

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

#ifdef _
#i f def

#el se

#endi f

_proc.c 5
(void) rctl_rlimt_set(rctlproc_|legacy[RLIM T_STACK], initp, &l p64, gp,
RCTL_LOCAL_DENY, 0, kcred);
/*
* RLIM T_CORE: deny al ways, no default action.
*
/
rip6d.rlimecur = rlp64.rlimmax = RLIM4_I NFINITY;
(void) rctl _rlimt_set(rctlproc_| Iegacy[RLIMT CORE], initp, &l p64, gp,
RCTL_LOCAL_DENY, 0, kcred);
/*
* RLIM T_NOFI LE: deny al ways, no action.
*/
rip6d4.rlimcur =rlimfd_cur;
rlp64.rlimmax = rlimfd_max;
(void) rctl_rlimt set(rctlproc | egacy[RLIM T_NOFI LE], initp, &l p64,
gp, RCTL_LOCAL_DENY, 0, kcred);
/*
* RLIM T_VMEM
*
/
rip64.rlimecur = rlp64.rlimmax = RLI M64_I NFI NI TY;
(void) rctl _rlinmt_set(rctlproc_|legacy[RLIMT _VMEM, initp, &l p64, gp,

RCTL_LCCAL_DENY, 0, kcred);

rctlproc_init()

i ew
ister the various resource controls associated with process entities.

historical rliminfinity map and rliminfinity32_nap are now encoded
e as the native and ILP32 infinite values for each resource control.
init(void)
_init()
rctl_set_t *set;

rctl
rctl

_alloc_gp_t *gp;
_entity_p_ t e;

rctlproc_l egacy[RLIM T_CPU] = rctl _register("process. max-cpu-ti me"
RCENTI TY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ NEVER |
RCTL_GLOBAL_CPU _TI ME | RCTL_GLOBAL_I NFI NI TE | RCTL_G.OBAL_SECONDS,
Ul NT64_MAX, Ul NT64_MAX, &proc_cpu_tine ops)

rctlproc_legacy[RLIM T_FSI ZE] = rctl _register("process. max-file-size",
RCENTI TY_PROCESS, RCTL_GLOBAL_LOAERABLE | RCTL_GLOBAL_DENY_ALWAYS |
RCTL_GLOBAL_FI LE_SI ZE | RCTL_GLOBAL_BYTES,
MAXOFFSET_T, MAXOFFSET_T, &proc_fil esize ops)

rctlproc_l egacy[RLIM T_DATA] = rctl _register("process. nax-dat a-si ze",
RCENTI TY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ ALWAYS |
RCTL_GLOBAL_SI GNAL_NEVER | RCTL_GLOBAL_BYTES,
ULONG_MAX, UINT32_MAX, &rctl_default_ops);

LP64

__sparc

rctl proc_l egacy[RLIM T_STACK] = rctl _register("process. max-stack-si ze"
RCENTI TY_PROCESS, RCTL_G.OBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
RCTL_GLOBAL_SI GNAL_NEVER | RCTL_GLOBAL_BYTES,
LONG_MAX, | NT32_MAX, &proc_stack_ops);

/* __sparc */

rctiproc_l egacy[RLIM T_STACK] = rctl _register("process. max- st ack-si ze"
RCENTI TY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
RCTL_GLOBAL_SI GNAL_NEVER | RCTL_GLOBAL_BYTES,
MAXSS| Z, USRSTACK32 - PAGESI ZE, &proc_st ack ops)

/* __sparc *

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

343
344
345
346
347

349
350
351
352
353

355
356
357
358
359

361
362
363
364
365

367
368
369
370
371

373
374
375
376
377
378
379
380

382
383
384
385
386
387
388

new usr/src/uts/comon/os/rctl_proc.c
#else [* _LP64 */
rctlproc_l egacy[RLIM T_STACK] = rctl _register("process. nax-stack-si ze",
RCENTI TY_PROCESS, RCTL_G.OBAL_LOANERABLE | RCTL_GLOBAL_DENY_ALWAYS |
RCTL_GLOBAL_SI GNAL_NEVER | RCTL_GLOBAL_BYTES,
USRSTACK - PAGESI ZE, USRSTACK - PAGESI ZE, &proc_stack_ops);
#endi f
rctlproc_legacy[RLIMT_CORE] = rctl _register("process. nax-core-size"
RCENTI TY_PROCESS, RCTL_G.OBAL_LOWERABLE | RCTL_GLCBAL_DENY_ALV\AYS |
RCTL_GLOBAL_SI GNAL_NEVER | RCTL_GLOBAL_BYTES,
M N(MAXOFFSET_T, ULONG MAX), U NT32_MAX, &rctl_default_ops);
rctl proc_| | egacy[RLIM T_NOFTLE] = rctl _register(

"process. max-fil e-descriptor", RCENTI TY_PROCESS,
RCTL_GLOBAL_LONERABLE | RCTL_ GLOBAL DENY_ALWAYS |
RCTL_GLOBAL_COUNT, | NT32_MAX, | NT32_MAX, &proc_nofile_ops);

rctlproc_l egacy[RLIM T_VMEM ~ =
rctl_register("process. max-address-space", RCENTI TY_PROCESS,
RCTL_GLOBAL_LONERABLE | RCTL_GLOBAL_DENY_ALWAYS |
RCTL_GLOBAL_SI GNAL_NEVER | RCTL_GLOBAL_BYTES,
ULONG MAX, UINT32_MAX, &proc_vmem ops);

rc_process_semmsl = rctl _register("process. max-semnsens",
RCENTI TY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_COUNT,
SHRT_MAX, SHRT_MAX, &rctl_absol ute_ops);

rctl _add_| egacy_limt("process. max-sem nsens", "semsys",
"sem nfo_senmsl ", 512, SHRT_MAX);

rc_process_senopm = rctl _regi ster("process. nax-sem ops",
RCENTI TY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_G.OBAL_COUNT,
I NT_MAX, I NT_MAX, &rctl_absol ute_ops);

rctl_add_l egacy Tinmit("process. max-sem ops“, "sensys",
"sem nfo_senopni', 512, | NT_MAX);

rc_process_nmsgmmb = rctl _register("process. max-nsg- gbyte
RCENTI TY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_ GLGSAL BYTES,
ULONG_MAX, ULONG MAX, &rctl_absol ute_ops);

rctl_add Iegacy l'imit("process. max-nsg-gbytes", "msgsys",
"msgi nf o_nmsgmmb", 65536, ULONG _MAX);

rc_process_msgtqgl = rctl _register("process. max-msg- nessages”
RCENTI TY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLCBAL_OQJNT,
Ul NT_MAX, UINT_MAX, &rctl_absol ute_ops);

rctl_add_| Iegacy Ilmt(process. nax- nsg- nEssages", "megsys",
"msgi nfo_nsgtqgl", 8192, U NT_MAX);

rc_process_portev = rctl _register("process. max-port-events",
RCENTI TY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_COUNT,
PORT_MAX_EVENTS, PORT_MAX_EVENTS, &rctl_absol ute_ops);

rctl _add_defaul t I|mt(process. max-port-events", PORT_DEFAULT_EVENTS,
RCPRI'V_PRI VI LEGED, RCTL_LOCAL_DENY) ;

rc_process_sigqueue = rctl _register("process. nax-si gqueue-si ze"
RCENTI TY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
RCTL_GLOBAL_COUNT, _SI GQUEUE_SI ZE_MAX, _SI GQUEUE_SI ZE_MAX,
& ctl _absol ut e_ops);

rctl_add_default _|imt("process. max-si gqueue-si ze"
~SI GQUEUE_SI ZE_BASI C, RCPRIV_BASI C, RCTL_ LCIAL _DENY) ;

rctl _add_default _|Tmit("process. max-si gqueue-si ze"
~SI GQUEUE_SI ZE_PRI VI LEGED, RCPRI V_PRI VI LEGED, RCTL LOCAL_DENY) ;

#endif /* | codereview */

/*

* Place mninmal set of controls on "sched" process for inheritance by

* processes created via newproc().

*

/
set = rctl_set_create();
gp = rctl_set_init_preal |l oc(RCENTI TY_PROCESS) ;

new usr/src/uts/comon/os/rctl_proc.c

389 mut ex_ent er (&cur proc->p_| ock) ;

390 e.rcep_p.proc = curproc;

391 e.rcep_t = RCENTI TY_PROCESS;

392 curproc->p_rctls = rctl_set_init(RCENTI TY_PRCCESS, curproc, &e,
393 set, ;

394 mut ex_exi t (&cur proc->p_| ock) ;

395 rctl_preall oc_destroy(gp);

396 }

new usr/src/uts/comon/os/sig.c

R R R R

73742 Sat Jul 13 17:57:08 2013
new usr/src/uts/comon/os/sig.c
3830 SIGQUEUE_ MAX's limt of 32 is too | ow

R R R R

__unchanged_portion_onitted_

2376 #ifndef | NT_MAX

2377 #define | NT_MAX 2147483647
2376 #ifndef UCHAR MAX

2377 #defi ne UCHAR_MAX 255
2378 #endi f

2380 #define _SI GQUEUE_PREALLOC 32 /* XXX: | og scale? */

2382 #endif /* | codereview */

2383 [*

2384 * The pre-allocated pool (with _SI GQUEUE PREALLOC entries) is
2385 * allocated at the first sigqueue/signotify call.

2380 * The entire pool (w th naxcount entries) is pre-allocated at
2381 * the first sigqueue/signotify call.

2386 */

2387 sigghdr_t *

2388 sigghdral | oc(size_t size, uint_t maxcount)

2389 {

2390 size_t i;

2391 si gqueue_t *sq, *next;

2392 sigghdr_t *sqgh;

2394 i = (_SI GQUEUE_PREALLCC * size) + sizeof (sigghdr_t);
2395 ASSERT(maxcount <= | NT_MAX);

2390 i = (maxcount * size) + si zeof (sigghdr_t);

2391 ASSERT(maxcount <= UCHAR MAX && i <= USHRT_I\/AX);
2396 sgh = kmem al | oc(l KM SLEEP) ;

2397 sgh->sqb_count = naxcount;

2398 sqgh- >sqb_ m-lxcount = maxcount ;

2399 sgh->sqb_si ze = |;

2393 sgh- >sgb_count (uchar _t) maxcount;

2394 sqgh- >sqb_rraxcount = (uchar _t) maxcount;

2395 sgh->sqb_size = (ushort _t)i;

2400 sgh->sqb_pexited = O;

2401 sgh->sgb_sent = 0;

2402 sgh->sqb_free = sq = (sigqueue_t *)(sqh + 1);

2403 for (i = S|GQUEU_PREALO(: Ty U= Jo=))

2399 for (i = maxcount -1 0 =05 i--) {

2404 next = (sigqueue_t *)((ulntptr _t)sqg + size);
2405 sq—>sq_nex = next;

2406 sq = next;

2407 }

2408 sg->sq_next = NULL;

2409 cv_init(&gh->sgb_cv, NULL, CV_DEFAULT, NULL);
2410 mut ex_i ni t (&sqgh->sqgb_l| ock, NULL, MJUTEX_DEFAULT, NULL);
2411 return (sqh);

2412 }

2414 static void sigqrel (sigqueue_t *);

2416 /*

2417 * Allocate a sigqueue/signotify structure fromthe per process

2418 * pre-allocated pool or allocate a new sigqueue/signotify structure
2419 * if the pre-allocated pool is exhausted.

2413 * allocate a sigqueue/signotify structure fromthe per process

2414 * pre-allocated pool.

2420 */

2421 sigqueue_t *
2422 sigqal | oc(sigghdr_t *sgh)

new usr/src/uts/comon/os/sig.c

KM _SLEEP) ;

2423 {

2424 sigqueue_t *sq = NULL;

2426 ASSERT(MUTEX_HELD(&cur proc->p_l ock)) ;

2428 if (sgh !'= NULL) {

2429 mut ex_ent er (&sqgh->sqgb_| ock) ;

2430 if (sgh->sqgb_count > 0) {

2431 sgh->sqgb_count - -;

2432 if (sgh- >sqb free == NULL) {

2433

2434 * The pre-allocated pool is exhausted.
2435 */

2436 sq = kmem al | oc(si zeof (sigqueue_t),
2437 sg->sqg_func = NULL;

2438 } else {

2439 #endif /* | codereview */

2440 sq = sqgh->sqb_free;

2441 sq->sq_func = sigqrel;

2442 #endif /* | codereview */

2443 sgh->sgb_free = sq->sqg_next;
2444

2445 #endif /* | codereview */

2446 mut ex_exi t (&sqgh->sqb_| ock) ;

2447 bzero(&sq->sq_i nfo, sizeof (k_siginfo_t));
2448 sqg- >sq_backptr = sqh

2427 sg->sq_func = sigqrel;

2449 sq- >sq_next = NULL;

2450 sqg->sq_external = O;

2451 } else {

2452 mut ex_exi t (&sqgh- >sqgb_| ock) ;

2453 }

2454

2455 return (sq);

2456 }

__unchanged_portion_onitted_

new usr/src/uts/comon/sys/signal.h

R R R R

10030 Sat Jul 13 17:57:09 2013
new usr/src/uts/comon/sys/signal.h
3830 SIGQUEUE_ MAX's limt of 32 is too | ow

R R R R R R R

__unchanged_portion_onitted_

303 typedef struct sigghdr { /* sigqueue pool header

304 si gqueue_t *sqb_free; /* free sigq struct |ist

305 int sgb_count; /* sigq free count

306 uint_t sgb_maxcount ; /* sigq max free count

307 size_t sqgb_si ze; /* size of header+free structs
306 uchar _t sgb_count; /* sigq free count

307 uchar _t sgb_maxcount ; /* sigq nmax free count

308 ushort _t sgb_si ze; /* size of header+free structs
308 uchar _t sgb_pexi t ed; /* process has exited

309 uint_t sgb_sent ; /* nunber of sigq sent

310 uchar _t sgb_sent; /* nunber of sigq sent

310 kcondvar _t sqgb_cv; /* waiting for a sigq struct
311 kmut ex_t sqgb_I ock; /* lock for sigqg pool

312 } sigghdr_t;

314 #define _SI GQUEUE_SI ZE_BASI C 128 /* basic limt */

315 #define _SI GQUEUE_SI ZE PRI VI LEGED 512 /* privileged limt */
316 #define _SI GQUEUE_SI ZE_MAX 8192 /* maximum |imt

315 #define _SI GQUEUE MAX 32

318 #define _SIGNOTI FY_MAX 32

320 extern void setsigact(int, void (*)(int), const k_sigset_t *,

321 extern void sigorset (k_sigset_t *, const k_sigset_t *);

322 extern void si gandset (k_sigset_t *, const k_sigset_t *);

323 extern void sigdiffset(k_sigset_t *, const k_sigset_t *);

324 extern void sigintr(k_sigset_t *, int);

325 extern void sigunintr(k_sigset_t *);

326 extern void sigreplace(k_sigset _t *, k_sigset_t *);

328 extern int kill(pid_t, int);

330 #endif /* _KERNEL */

332 #ifdef __cplusplus
333 }
__unchanged_portion_onitted_

new usr/src/ uts/comon/ syscal | / si gqueue. c 1

R R R R

5578 Sat Jul 13 17:57:09 2013
new usr/src/ uts/comon/ syscal | / si gqueue. c
3830 SIGQUEUE_ MAX's limt of 32 is too | ow

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END

*/

22 | *

23 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to |license terns.

25 */

27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

29 #pragma ident " %Y U % %Y SM "
29 #include <sys/param h>

30 #include <sys/types. h>

31 #include <sys/sysmacros. h>
32 #include <sys/systm h>

33 #include <sys/errno. h>

34 #include <sys/proc. h>

35 #include <sys/procset. h>
36 #include <sys/fault.h>

37 #include <sys/signal.h>

38 #include <sys/siginfo. h>
39 #include <sys/debug. h>

41 extern rctl_hndl _t rc_process_si gqueue;
43 #endif /* | codereview */

44 static int
45 siggkill (pid_t pid, sigsend_t *sigsend)
{

new usr/ src/ uts/comon/ syscal | / si gqueue. c

46

a7 proc_t *p;

48 int error;

50 if ((uint_t)sigsend->sig >= NSIQ

51 return (EINVAL);

53 if (pid==-1)

54 procset _t set;

56 setprocset (&et, POP_AND, P_ALL, P_WID, P_ALL, P_MWID);
57 error = si gsendset(&set si gsend);
58 }else|f(p|d>0){

59 nmut ex_ent er (&pi dl ock) ;

60 if ((p =prfind(pid)) == NULL || p->p_stat == SIDL)
61 error = ESRCH,

62 el se {

63 error = sigsendproc(p, sigsend);

64 if (error == 0 && si gsend->perm == 0)

65 error = EPERM

66 }

67 mut ex_exi t (&pi dl ock) ;

68 } else {

69 int nfound = 0;

70 pid_t pgid;

72 if (pid==0)

73 pgid = ttoproc(curthread)->p_pgrp;

74 el se

75 pgid = -pid;

77 error = 0;

78 mut ex enter(&pl dl ock) ;

79 for (p = pgfind(pgid); p & lerror; p = p->p_pglink) {
80 if (p->p_stat != SIDL) {

81 nf ound++;

82 error = sigsendproc(p, sigsend);

83 }

84

85 mut ex_exi t (&pi dl ock);

86 if (nfound == 0)

87 error = ESRCH;

88 else if (error == 0 && sigsend->perm == 0)

89 error = EPERM

90 }

92 return (error);

93 }

96 /*

97 * for inplenmentations that don’t require binary conpatibility,

98 * the kill systemcall may be made into a library call to the

99 * sigsend systemcall

100 */

101 int

102 kill (pid_t pid, int sig)

103 {

104 int error;

105 sigsend_t v;

107 bzero(&v, sizeof (v));

108 v.sig = sig;

109 v. checkperm = 1;

110 v.si code = S| _USER

111 if ((error = siggkill(pid, &)) !=0)

112 return (set_errno(error));

113 return (0);

114 }

116 /*

117 * The handling of small unions, like the sigval argument to sigqueue,
118 * is architecture dependent. W have adopted the convention that the
119 * value itself is passed in the storage which crosses the kernel
120 * protection boundary. This procedure will accept a scal ar argunent,
121 */and store it in the appropriate value nenber of the sigsend_t structure.
122 *

123 int

124
125

si gqueue(pid_t pid, int

sig, /* union sigval

int si_code, int block)

*/ void *val ue,

new usr/src/ uts/comon/ syscal | / si gqueue. c

126 {

127 int error;

128 sigsend_t v;

129 sigghdr_t *sqgh;

130 proc_t *p = curproc;

132 /* The si_code value nust indicate the signal will be queued */
133 if (pid <=0]| !sigwllqueue(sig, si_code))

134 return (set_errno(ElNVAL));

136 if ((sqh = p->p_sigghdr) == NULL) {

137 rlinéd_t siggsz_nex;

139 mut ex_ent er (&p->p_I ock) ;

140 siggsz_max = rctl _enforced_val ue(rc_process_si gqueue,
141 p->p_rctls, p);

142 mut ex_exi t (&p->p_| ock);

144 #endif /* ! codereview */

145 /* Allocate sigqueue pool first tinme */

146 sgh = sigghdral |l oc(sizeof (sigqueue_t), (uint_t)sigqgsz_max);
43 sgh = sigqghdral |l oc(sizeof (sigqueue_t), _S|IGQUEUE MAX);
147 mut ex_ent er (&p- >p_I ock) ;

148 if (p->p_sigghdr == NULL)

149 /* hang the pool head on proc */

150 p->p_si gghdr = sqgh;

151 } else {

152 /* another Iwp allocated the pool, free ours */
153 si gghdrfree(sgh);

154 sgh = p->p_si gghdr;

155 }

156 mut ex_exi t (&p->p_l ock);

157 }

159 do {

160 bzero(&v, sizeof (v));

161 v.sig = sig;

162 v. checkperm = 1;

163 v.sicode = si_code;

164 v. val ue. S|val “ptr = val

165 if ((error = 5|qu|II(p|d &)) !'= EAGAIN || !block)
166 br eak;

167 /* bl ock waiti ng for another chance to allocate a sigqueue_t
168 mut ex_ent er (&sqgh- >sqb_| ock);

169 whil e (sgh->sqb_count == 0) {

170 if (lcv_wait_si g(&sqh >sqgb_cv, &sgh->sqb_l ock)) {
171 error = EINTR,

172 br eak;

173 }

174 }

175 mt ex eX|t(&sqh >sqgb_I ock);

176 } while (error == GAI'N) ;

178 if (error)

179 return (set_errno(error));

180 return (0);

181 }

__unchanged_portion_omtted_

*/

new usr/src/ uts/ comon/syscal | / sysconfig.c 1

R R R R

5280 Sat Jul 13 17:57:10 2013
new usr/src/ uts/common/syscal | / sysconfig.c
3830 SIGQUEUE_ MAX's limt of 32 is too |ow

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END

*/

22 | *
23 * Copyright 2008 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to |license terns.

25 */
27 1* Oopyrlght (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /| * Ri ghts Reser ved *

30 #include <sys/param h>

31 #include <sys/types. h>

32 #include <sys/sysnmacros. h>
33 #include <sys/systm h>

34 #include <sys/tuneabl e. h>
35 #include <sys/errno. h>

36 #include <sys/var.h>

37 #include <sys/signal.h>

38 #include <sys/tine.h>

39 #include <sys/sysconfig.h>
40 #include <sys/resource. h>
41 #include <sys/ulimt.h>

42 #include <sys/unistd. h>

43 #incl ude <sys/debug. h>

44 #include <sys/cpuvar. h>

45 #i ncl ude <sys/nman. h>

46 #include <sys/tinmer.h>

47 #include <sys/zone. h>

48 #incl ude <sys/vm usage. h>

50 extern rctl_hndl _t rc_process_sigqueue;

52 #endif /* 1 codereview */

53 | ong

54 sysconfig(int which)

55 {

56 switch (which) {

58 /*

59 * if it is not handled in mach_sysconfig either
60 * it nust be EI NVAL.

61 */

new usr/src/uts/comon/syscal | / sysconfig.c

62
63

65
66

68
69

defaul t:
return (mach_sysconfig(which)); /* ‘uname -i‘/os */

case _CONFI G_CLK TCK:
return ((long)hz); /* clock frequency per second */

case _CONFI G PROF_TCK:
return ((long)hz); /* profiling clock freq per sec */

case _CO\JEI G_NGROUPS:
/: Maxi mum nunber of suppl ementary groups.
re{ urn (ngroups_max) ;

case _OO/\IEI G_OPEN_FI LES:

* Maxi mum nunber of open files (soft limt).

*/
{ :
rlimbd_t fd_ctl;
mut ex_ent er (&cur proc->p_| ock) ;
fd_ctl = rctl_enforced_val ue(
rctl proc_l egacy[RLI M T_NOFI LE], curproc->p_rctls,
curproc);
nut ex_exi t (&cur proc->p_| ock);
return ((ulong_t)fd_ctl);
}

case _CONFI G CHI LD_MAX:
/*
* Maxi mum nunber of processes.
*/

return (v.v_naxup);

case _CONFI G POSI X_VER:
return (_POSI X_VERSION); /* current POCSIX version */

case _CONFI G_PAGESI ZE:
return (PAGESI ZE);

case _CONFI G_XOPEN_VER:
return (_XOPEN_VERSION); /* current XOPEN version */

case _CONFI G_NPROC_CONF:
return (zone_ncpus_get (curproc->p_zone));

case _CONFI G_NPROC_ONLN:
return (zone_ncpus_online_get (curproc->p_zone));

case _CONFI G_NPROC_NAX:
return (max_ncpus);

case _CONFlI G_STACK_PROT:
return (curproc->p_stkprot & ~PROT_USER);

case _CONFI G Al O LI STI O_MAX:
return (_Al O LI STI O MAX);

case _CONFI G_ Al O MVAX:
return (_Al O MAX);

case _CONFI G Al O PRI O DELTA MAX:
return (0);

case _CONFI G_DELAYTI MER_NAX:

new usr/src/uts/comon/syscal | / sysconfig.c

128

130
131

133
134

136
137

139
140

142
143

145
146
147
148
149
150
151
152
153
154
155
156

50

158
159

161
162

164
165

167
168
169
170
171
172
173
174
175
176

180
181
182
183
184
185
186
187
188
189
190
191

case

case

case

case

case

case

case

case

case

case

case

return (I NT_MAX);

_CONFI G_MQ_OPEN_MAX:
return (_MQ OPEN_MAX);

_CONFI G_MQ_PRI O_NMAX:
return (_MQ PRI O MAX);

_CONFI G_RTSI G_MAX:
return (_SIGRTMAX - _SIGRTM N + 1);

_CONFI G_SEM _NSEMS_VAX:
return (_SEM NSEMS_MAX) ;

_CONFI G_SEM VALUE_MAX:
return (_SEM VALUE MAX):

_CONFI G_SI GQUEUE_MAX:
/ *

*/ Maxi mum nunber of outstandi ng queued signals.
*
{ _ :
rlinmb4_t siggsz_max;
mut ex_ent er (&cur proc->p_l ock) ;
siggsz_max = rctl _enforced_val ue(rc_process_si gqueue,
curproc->p_rctls, curproc);
mut ex_exi t (&cur proc->p_|l ock) ;
return ((uint_t)sigqgsz_max);

Eet urn (_SI GQUEUE_MAX) ;

_CONFI G SIGRT_M N:
return (_SIGRTMN);

_CONFI G_SI GRT_NMAX:
return (_SI GRTMAX);

_CONFI G_TI MER_MAX:
return (timer_max);

_CONFI G_PHYS_PAGES:
/ *

* |f the non-global zone has a phys. menory cap, use that.

* We always report the systemw de value for the global zone,
* even though rcapd can be used on the gl obal zone too.

*/

if (!INGLOBALZONE(curproc) &&
cur proc->p_zone->zone_phys_ntap != 0)
return (M N(btop(curproc->p_zone->zone_phys_ntap),
physinstall ed));

return (physinstalled);
_CONFI G_AVPHYS_PAGES:
/ *

* |f the non-global zone has a phys. nenory cap, use

* the phys. nenory cap - zone's current rss. W always
* report the systemw de value for the gl obal zone, even
* though rcapd can be used on the global zone too.
*
if

(!'1 NGLOBALZONE(cur proc) &&
curproc->p_zone->zone_phys_ntap != 0) {
pgcnt _t cap, rss, free;
vnusage_t I n_use;
size_t cnt = 1;

it

&ent,

is possible

new usr/src/uts/comon/syscal | / sysconfig.c
193 cap = btop(curproc->p_zone->zone_phys_ntap);
194 if (cap > physinstalled)
195 return (freemem;
197 if (vm. getusage(VMJSAGE_ZONE, 1, &i n_use,
198 FKIOCTL) !'= 0)
199 in_use.vnu_rss_all = 0;
200 rss = btop(in_use.vmu_rss_all);
201 /*
202 * Because rcapd inplenents a soft cap,
203 * for rss to be tenporarily over the cap.
204 *
205 if (cap > rss)
206 free = cap - rss;
207 el se
208 free = 0O;
209 return (MN(free, freenmen);
210 }
212 return (freemen);
214 case _CONFI G_VAXPI D:
215 return (maxpid);
217 case _CONFI G_CPU D_NAX:
218 return (max_cpuid);
220 case _CONFI G EPHI D_MAX:
221 return (MAXEPHUI D) ;
223 case _CONFI G_SYM.OOP_NAX:
224 return (MAXSYMLI NKS) ;
225 }
226 }

____unchanged_portion_onitted_

