
new/usr/src/man/man5/resource_controls.5 1

**
 21225 Sat Jul 13 17:57:07 2013
new/usr/src/man/man5/resource_controls.5
3830 SIGQUEUE_MAX’s limit of 32 is too low
**

1 ’\" te
2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH RESOURCE_CONTROLS 5 "Jul 2, 2013"
6 .TH RESOURCE_CONTROLS 5 "Jul 2, 2007"
7 .SH NAME
8 resource_controls \- resource controls available through project database
9 .SH DESCRIPTION

10 .sp
11 .LP
12 The resource controls facility is configured through the project database. See
13 \fBproject\fR(4). You can set and modify resource controls through the
14 following utilities:
15 .RS +4
16 .TP
17 .ie t \(bu
18 .el o
19 \fBprctl\fR(1)
20 .RE
21 .RS +4
22 .TP
23 .ie t \(bu
24 .el o
25 \fBprojadd\fR(1M)
26 .RE
27 .RS +4
28 .TP
29 .ie t \(bu
30 .el o
31 \fBprojmod\fR(1M)
32 .RE
33 .RS +4
34 .TP
35 .ie t \(bu
36 .el o
37 \fBrctladm\fR(1M)
38 .RE
39 .sp
40 .LP
41 In a program, you use \fBsetrctl\fR(2) to set resource control values.
42 .sp
43 .LP
44 In addition to the preceding resource controls, there are resource pools,
45 accessible through the \fBpooladm\fR(1M) and \fBpoolcfg\fR(1M) utilities. In a
46 program, resource pools can be manipulated through the \fBlibpool\fR(3LIB)
47 library.
48 .sp
49 .LP
50 The following are the resource controls are available:
51 .sp
52 .ne 2
53 .na
54 \fB\fBprocess.max-address-space\fR\fR
55 .ad
56 .sp .6
57 .RS 4n
58 Maximum amount of address space, as summed over segment sizes, that is
59 available to this process, expressed as a number of bytes.
60 .RE

new/usr/src/man/man5/resource_controls.5 2

62 .sp
63 .ne 2
64 .na
65 \fB\fBprocess.max-core-size\fR\fR
66 .ad
67 .sp .6
68 .RS 4n
69 Maximum size of a core file created by this process, expressed as a number of
70 bytes.
71 .RE

73 .sp
74 .ne 2
75 .na
76 \fB\fBprocess.max-cpu-time\fR\fR
77 .ad
78 .sp .6
79 .RS 4n
80 Maximum CPU time that is available to this process, expressed as a number of
81 seconds.
82 .RE

84 .sp
85 .ne 2
86 .na
87 \fB\fBprocess.max-data-size\fR\fR
88 .ad
89 .sp .6
90 .RS 4n
91 Maximum heap memory available to this process, expressed as a number of bytes.
92 .RE

94 .sp
95 .ne 2
96 .na
97 \fB\fBprocess.max-file-descriptor\fR\fR
98 .ad
99 .sp .6
100 .RS 4n
101 Maximum file descriptor index available to this process, expressed as an
102 integer.
103 .RE

105 .sp
106 .ne 2
107 .na
108 \fB\fBprocess.max-file-size\fR\fR
109 .ad
110 .sp .6
111 .RS 4n
112 Maximum file offset available for writing by this process, expressed as a
113 number of bytes.
114 .RE

116 .sp
117 .ne 2
118 .na
119 \fB\fBprocess.max-msg-messages\fR\fR
120 .ad
121 .sp .6
122 .RS 4n
123 Maximum number of messages on a message queue (value copied from the resource
124 control at \fBmsgget()\fR time), expressed as an integer.
125 .RE

new/usr/src/man/man5/resource_controls.5 3

127 .sp
128 .ne 2
129 .na
130 \fB\fBprocess.max-msg-qbytes\fR\fR
131 .ad
132 .sp .6
133 .RS 4n
134 Maximum number of bytes of messages on a message queue (value copied from the
135 resource control at \fBmsgget()\fR time), expressed as a number of bytes.
136 .RE

138 .sp
139 .ne 2
140 .na
141 \fB\fBprocess.max-port-events\fR\fR
142 .ad
143 .sp .6
144 .RS 4n
145 Maximum allowable number of events per event port, expressed as an integer.
146 .RE

148 .sp
149 .ne 2
150 .na
151 \fB\fBprocess.max-sem-nsems\fR\fR
152 .ad
153 .sp .6
154 .RS 4n
155 Maximum number of semaphores allowed per semaphore set, expressed as an
156 integer.
157 .RE

159 .sp
160 .ne 2
161 .na
162 \fB\fBprocess.max-sem-ops\fR\fR
163 .ad
164 .sp .6
165 .RS 4n
166 Maximum number of semaphore operations allowed per \fBsemop\fR call (value
167 copied from the resource control at \fBsemget()\fR time). Expressed as an
168 integer, specifying the number of operations.
169 .RE

171 .sp
172 .ne 2
173 .na
174 \fB\fBprocess.max-sigqueue-size\fR\fR
175 .ad
176 .sp .6
177 .RS 4n
178 Maximum number of outstanding queued signals.
179 .RE

181 .sp
182 .ne 2
183 .na
184 #endif /* ! codereview */
185 \fB\fBprocess.max-stack-size\fR\fR
186 .ad
187 .sp .6
188 .RS 4n
189 Maximum stack memory segment available to this process, expressed as a number
190 of bytes.
191 .RE

new/usr/src/man/man5/resource_controls.5 4

193 .sp
194 .ne 2
195 .na
196 \fB\fBproject.cpu-caps\fR\fR
197 .ad
198 .sp .6
199 .RS 4n
200 Maximum amount of CPU resources that a project can use. The unit used is the
201 percentage of a single CPU that can be used by all user threads in a project.
202 Expressed as an integer. The cap does not apply to threads running in real-time
203 scheduling class. This resource control does not support the \fBsyslog\fR
204 action.
205 .RE

207 .sp
208 .ne 2
209 .na
210 \fB\fBproject.cpu-shares\fR\fR
211 .ad
212 .sp .6
213 .RS 4n
214 Number of CPU shares granted to a project for use with the fair share scheduler
215 (see \fBFSS\fR(7)). The unit used is the number of shares (an integer). This
216 resource control does not support the \fBsyslog\fR action.
217 .RE

219 .sp
220 .ne 2
221 .na
222 \fB\fBproject.max-contracts\fR\fR
223 .ad
224 .sp .6
225 .RS 4n
226 Maximum number of contracts allowed in a project, expressed as an integer.
227 .RE

229 .sp
230 .ne 2
231 .na
232 \fB\fBproject.max-crypto-memory\fR\fR
233 .ad
234 .sp .6
235 .RS 4n
236 Maximum amount of kernel memory that can be used for crypto operations.
237 Allocations in the kernel for buffers and session-related structures are
238 charged against this resource control.
239 .RE

241 .sp
242 .ne 2
243 .na
244 \fB\fBproject.max-locked-memory\fR\fR
245 .ad
246 .sp .6
247 .RS 4n
248 Total amount of physical memory locked by device drivers and user processes
249 (including D/ISM), expressed as a number of bytes.
250 .RE

252 .sp
253 .ne 2
254 .na
255 \fB\fBproject.max-lwps\fR\fR
256 .ad
257 .sp .6
258 .RS 4n

new/usr/src/man/man5/resource_controls.5 5

259 Maximum number of LWPs simultaneously available to a project, expressed as an
260 integer.
261 .RE

263 .sp
264 .ne 2
265 .na
266 \fB\fBproject.max-msg-ids\fR\fR
267 .ad
268 .sp .6
269 .RS 4n
270 Maximum number of message queue IDs allowed for a project, expressed as an
271 integer.
272 .RE

274 .sp
275 .ne 2
276 .na
277 \fB\fBproject.max-port-ids\fR\fR
278 .ad
279 .sp .6
280 .RS 4n
281 Maximum allowable number of event ports, expressed as an integer.
282 .RE

284 .sp
285 .ne 2
286 .na
287 \fB\fBproject.max-sem-ids\fR\fR
288 .ad
289 .sp .6
290 .RS 4n
291 Maximum number of semaphore IDs allowed for a project, expressed as an integer.
292 .RE

294 .sp
295 .ne 2
296 .na
297 \fB\fBproject.max-shm-ids\fR\fR
298 .ad
299 .sp .6
300 .RS 4n
301 Maximum number of shared memory IDs allowed for a project, expressed as an
302 integer.
303 .RE

305 .sp
306 .ne 2
307 .na
308 \fB\fBproject.max-shm-memory\fR\fR
309 .ad
310 .sp .6
311 .RS 4n
312 Total amount of shared memory allowed for a project, expressed as a number of
313 bytes.
314 .RE

316 .sp
317 .ne 2
318 .na
319 \fB\fBproject.max-tasks\fR\fR
320 .ad
321 .sp .6
322 .RS 4n
323 Maximum number of tasks allowable in a project, expressed as an integer.
324 .RE

new/usr/src/man/man5/resource_controls.5 6

326 .sp
327 .ne 2
328 .na
329 \fB\fBproject.pool\fR\fR
330 .ad
331 .sp .6
332 .RS 4n
333 Binds a specified resource pool with a project.
334 .RE

336 .sp
337 .ne 2
338 .na
339 \fB\fBrcap.max-rss\fR\fR
340 .ad
341 .sp .6
342 .RS 4n
343 The total amount of physical memory, in bytes, that is available to processes
344 in a project.
345 .RE

347 .sp
348 .ne 2
349 .na
350 \fB\fBtask.max-cpu-time\fR\fR
351 .ad
352 .sp .6
353 .RS 4n
354 Maximum CPU time that is available to this task’s processes, expressed as a
355 number of seconds.
356 .RE

358 .sp
359 .ne 2
360 .na
361 \fB\fBtask.max-lwps\fR\fR
362 .ad
363 .sp .6
364 .RS 4n
365 Maximum number of LWPs simultaneously available to this task’s processes,
366 expressed as an integer.
367 .RE

369 .sp
370 .LP
371 The following zone-wide resource controls are available:
372 .sp
373 .ne 2
374 .na
375 \fB\fBzone.cpu-cap\fR\fR
376 .ad
377 .sp .6
378 .RS 4n
379 Sets a limit on the amount of CPU time that can be used by a zone. The unit
380 used is the percentage of a single CPU that can be used by all user threads in
381 a zone. Expressed as an integer. When projects within the capped zone have
382 their own caps, the minimum value takes precedence. This resource control does
383 not support the \fBsyslog\fR action.
384 .RE

386 .sp
387 .ne 2
388 .na
389 \fB\fBzone.cpu-shares\fR\fR
390 .ad

new/usr/src/man/man5/resource_controls.5 7

391 .sp .6
392 .RS 4n
393 Sets a limit on the number of fair share scheduler (FSS) CPU shares for a zone.
394 CPU shares are first allocated to the zone, and then further subdivided among
395 projects within the zone as specified in the \fBproject.cpu-shares\fR entries.
396 Expressed as an integer. This resource control does not support the
397 \fBsyslog\fR action.
398 .RE

400 .sp
401 .ne 2
402 .na
403 \fB\fBzone.max-locked-memory\fR\fR
404 .ad
405 .sp .6
406 .RS 4n
407 Total amount of physical locked memory available to a zone.
408 .RE

410 .sp
411 .ne 2
412 .na
413 \fB\fBzone.max-lwps\fR\fR
414 .ad
415 .sp .6
416 .RS 4n
417 Enhances resource isolation by preventing too many LWPs in one zone from
418 affecting other zones. A zone’s total LWPs can be further subdivided among
419 projects within the zone within the zone by using \fBproject.max-lwps\fR
420 entries. Expressed as an integer.
421 .RE

423 .sp
424 .ne 2
425 .na
426 \fB\fBzone.max-msg-ids\fR\fR
427 .ad
428 .sp .6
429 .RS 4n
430 Maximum number of message queue IDs allowed for a zone, expressed as an
431 integer.
432 .RE

434 .sp
435 .ne 2
436 .na
437 \fB\fBzone.max-sem-ids\fR\fR
438 .ad
439 .sp .6
440 .RS 4n
441 Maximum number of semaphore IDs allowed for a zone, expressed as an integer.
442 .RE

444 .sp
445 .ne 2
446 .na
447 \fB\fBzone.max-shm-ids\fR\fR
448 .ad
449 .sp .6
450 .RS 4n
451 Maximum number of shared memory IDs allowed for a zone, expressed as an
452 integer.
453 .RE

455 .sp
456 .ne 2

new/usr/src/man/man5/resource_controls.5 8

457 .na
458 \fB\fBzone.max-shm-memory\fR\fR
459 .ad
460 .sp .6
461 .RS 4n
462 Total amount of shared memory allowed for a zone, expressed as a number of
463 bytes.
464 .RE

466 .sp
467 .ne 2
468 .na
469 \fB\fBzone.max-swap\fR\fR
470 .ad
471 .sp .6
472 .RS 4n
473 Total amount of swap that can be consumed by user process address space
474 mappings and \fBtmpfs\fR mounts for this zone.
475 .RE

477 .sp
478 .LP
479 See \fBzones\fR(5).
480 .SS "Units Used in Resource Controls"
481 .sp
482 .LP
483 Resource controls can be expressed as in units of size (bytes), time (seconds),
484 or as a count (integer). These units use the strings specified below.
485 .sp
486 .in +2
487 .nf
488 Category Res Ctrl Modifier Scale
489 Type String
490 ----------- ----------- -------- -----
491 Size bytes B 1
492 KB 2^10
493 MB 2^20
494 GB 2^30
495 TB 2^40
496 PB 2^50
497 EB 2^60

499 Time seconds s 1
500 Ks 10^3
501 Ms 10^6
502 Gs 10^9
503 Ts 10^12
504 Ps 10^15
505 Es 10^18

507 Count integer none 1
508 K 10^3
509 M 10^6
510 G 10^9
511 T 10^12
512 P 10^15
513 Es 10^18
514 .fi
515 .in -2

517 .sp
518 .LP
519 Scaled values can be used with resource controls. The following example shows a
520 scaled threshold value:
521 .sp
522 .in +2

new/usr/src/man/man5/resource_controls.5 9

523 .nf
524 task.max-lwps=(priv,1K,deny)
525 .fi
526 .in -2

528 .sp
529 .LP
530 In the \fBproject\fR file, the value \fB1K\fR is expanded to \fB1000\fR:
531 .sp
532 .in +2
533 .nf
534 task.max-lwps=(priv,1000,deny)
535 .fi
536 .in -2

538 .sp
539 .LP
540 A second example uses a larger scaled value:
541 .sp
542 .in +2
543 .nf
544 process.max-file-size=(priv,5G,deny)
545 .fi
546 .in -2

548 .sp
549 .LP
550 In the \fBproject\fR file, the value \fB5G\fR is expanded to \fB5368709120\fR:
551 .sp
552 .in +2
553 .nf
554 process.max-file-size=(priv,5368709120,deny)
555 .fi
556 .in -2

558 .sp
559 .LP
560 The preceding examples use the scaling factors specified in the table above.
561 .sp
562 .LP
563 Note that unit modifiers (for example, \fB5G\fR) are accepted by the
564 \fBprctl\fR(1), \fBprojadd\fR(1M), and \fBprojmod\fR(1M) commands. You cannot
565 use unit modifiers in the project database itself.
566 .SS "Resource Control Values and Privilege Levels"
567 .sp
568 .LP
569 A threshold value on a resource control constitutes a point at which local
570 actions can be triggered or global actions, such as logging, can occur.
571 .sp
572 .LP
573 Each threshold value on a resource control must be associated with a privilege
574 level. The privilege level must be one of the following three types:
575 .sp
576 .ne 2
577 .na
578 \fB\fBbasic\fR\fR
579 .ad
580 .sp .6
581 .RS 4n
582 Can be modified by the owner of the calling process.
583 .RE

585 .sp
586 .ne 2
587 .na
588 \fB\fBprivileged\fR\fR

new/usr/src/man/man5/resource_controls.5 10

589 .ad
590 .sp .6
591 .RS 4n
592 Can be modified by the current process (requiring \fBsys_resource\fR privilege)
593 or by \fBprctl\fR(1) (requiring \fBproc_owner\fR privilege).
594 .RE

596 .sp
597 .ne 2
598 .na
599 \fB\fBsystem\fR\fR
600 .ad
601 .sp .6
602 .RS 4n
603 Fixed for the duration of the operating system instance.
604 .RE

606 .sp
607 .LP
608 A resource control is guaranteed to have one \fBsystem\fR value, which is
609 defined by the system, or resource provider. The \fBsystem\fR value represents
610 how much of the resource the current implementation of the operating system is
611 capable of providing.
612 .sp
613 .LP
614 Any number of privileged values can be defined, and only one basic value is
615 allowed. Operations that are performed without specifying a privilege value are
616 assigned a basic privilege by default.
617 .sp
618 .LP
619 The privilege level for a resource control value is defined in the privilege
620 field of the resource control block as \fBRCTL_BASIC\fR, \fBRCTL_PRIVILEGED\fR,
621 or \fBRCTL_SYSTEM\fR. See \fBsetrctl\fR(2) for more information. You can use
622 the \fBprctl\fR command to modify values that are associated with basic and
623 privileged levels.
624 .sp
625 .LP
626 In specifying the privilege level of \fBprivileged\fR, you can use the
627 abbreviation \fBpriv\fR. For example:
628 .sp
629 .in +2
630 .nf
631 task.max-lwps=(priv,1K,deny)
632 .fi
633 .in -2

635 .SS "Global and Local Actions on Resource Control Values"
636 .sp
637 .LP
638 There are two categories of actions on resource control values: global and
639 local.
640 .sp
641 .LP
642 Global actions apply to resource control values for every resource control on
643 the system. You can use \fBrctladm\fR(1M) to perform the following actions:
644 .RS +4
645 .TP
646 .ie t \(bu
647 .el o
648 Display the global state of active system resource controls.
649 .RE
650 .RS +4
651 .TP
652 .ie t \(bu
653 .el o
654 Set global logging actions.

new/usr/src/man/man5/resource_controls.5 11

655 .RE
656 .sp
657 .LP
658 You can disable or enable the global logging action on resource controls. You
659 can set the \fBsyslog\fR action to a specific degree by assigning a severity
660 level, \fBsyslog=\fR\fIlevel\fR. The possible settings for \fIlevel\fR are as
661 follows:
662 .RS +4
663 .TP
664 .ie t \(bu
665 .el o
666 \fBdebug\fR
667 .RE
668 .RS +4
669 .TP
670 .ie t \(bu
671 .el o
672 \fBinfo\fR
673 .RE
674 .RS +4
675 .TP
676 .ie t \(bu
677 .el o
678 \fBnotice\fR
679 .RE
680 .RS +4
681 .TP
682 .ie t \(bu
683 .el o
684 \fBwarning\fR
685 .RE
686 .RS +4
687 .TP
688 .ie t \(bu
689 .el o
690 \fBerr\fR
691 .RE
692 .RS +4
693 .TP
694 .ie t \(bu
695 .el o
696 \fBcrit\fR
697 .RE
698 .RS +4
699 .TP
700 .ie t \(bu
701 .el o
702 \fBalert\fR
703 .RE
704 .RS +4
705 .TP
706 .ie t \(bu
707 .el o
708 \fBemerg\fR
709 .RE
710 .sp
711 .LP
712 By default, there is no global logging of resource control violations.
713 .sp
714 .LP
715 Local actions are taken on a process that attempts to exceed the control value.
716 For each threshold value that is placed on a resource control, you can
717 associate one or more actions. There are three types of local actions:
718 \fBnone\fR, \fBdeny\fR, and \fBsignal=\fR. These three actions are used as
719 follows:
720 .sp

new/usr/src/man/man5/resource_controls.5 12

721 .ne 2
722 .na
723 \fB\fBnone\fR\fR
724 .ad
725 .sp .6
726 .RS 4n
727 No action is taken on resource requests for an amount that is greater than the
728 threshold. This action is useful for monitoring resource usage without
729 affecting the progress of applications. You can also enable a global message
730 that displays when the resource control is exceeded, while, at the same time,
731 the process exceeding the threshhold is not affected.
732 .RE

734 .sp
735 .ne 2
736 .na
737 \fB\fBdeny\fR\fR
738 .ad
739 .sp .6
740 .RS 4n
741 You can deny resource requests for an amount that is greater than the
742 threshold. For example, a \fBtask.max-lwps\fR resource control with action deny
743 causes a \fBfork()\fR system call to fail if the new process would exceed the
744 control value. See the \fBfork\fR(2).
745 .RE

747 .sp
748 .ne 2
749 .na
750 \fB\fBsignal=\fR\fR
751 .ad
752 .sp .6
753 .RS 4n
754 You can enable a global signal message action when the resource control is
755 exceeded. A signal is sent to the process when the threshold value is exceeded.
756 Additional signals are not sent if the process consumes additional resources.
757 Available signals are listed below.
758 .RE

760 .sp
761 .LP
762 Not all of the actions can be applied to every resource control. For example, a
763 process cannot exceed the number of CPU shares assigned to the project of which
764 it is a member. Therefore, a deny action is not allowed on the
765 \fBproject.cpu-shares\fR resource control.
766 .sp
767 .LP
768 Due to implementation restrictions, the global properties of each control can
769 restrict the range of available actions that can be set on the threshold value.
770 (See \fBrctladm\fR(1M).) A list of available signal actions is presented in the
771 following list. For additional information about signals, see
772 \fBsignal\fR(3HEAD).
773 .sp
774 .LP
775 The following are the signals available to resource control values:
776 .sp
777 .ne 2
778 .na
779 \fB\fBSIGABRT\fR\fR
780 .ad
781 .sp .6
782 .RS 4n
783 Terminate the process.
784 .RE

786 .sp

new/usr/src/man/man5/resource_controls.5 13

787 .ne 2
788 .na
789 \fB\fBSIGHUP\fR\fR
790 .ad
791 .sp .6
792 .RS 4n
793 Send a hangup signal. Occurs when carrier drops on an open line. Signal sent to
794 the process group that controls the terminal.
795 .RE

797 .sp
798 .ne 2
799 .na
800 \fB\fBSIGTERM\fR\fR
801 .ad
802 .sp .6
803 .RS 4n
804 Terminate the process. Termination signal sent by software.
805 .RE

807 .sp
808 .ne 2
809 .na
810 \fB\fBSIGKILL\fR\fR
811 .ad
812 .sp .6
813 .RS 4n
814 Terminate the process and kill the program.
815 .RE

817 .sp
818 .ne 2
819 .na
820 \fB\fBSIGSTOP\fR\fR
821 .ad
822 .sp .6
823 .RS 4n
824 Stop the process. Job control signal.
825 .RE

827 .sp
828 .ne 2
829 .na
830 \fB\fBSIGXRES\fR\fR
831 .ad
832 .sp .6
833 .RS 4n
834 Resource control limit exceeded. Generated by resource control facility.
835 .RE

837 .sp
838 .ne 2
839 .na
840 \fB\fBSIGXFSZ\fR\fR
841 .ad
842 .sp .6
843 .RS 4n
844 Terminate the process. File size limit exceeded. Available only to resource
845 controls with the \fBRCTL_GLOBAL_FILE_SIZE\fR property
846 (\fBprocess.max-file-size\fR). See \fBrctlblk_set_value\fR(3C).
847 .RE

849 .sp
850 .ne 2
851 .na
852 \fB\fBSIGXCPU\fR\fR

new/usr/src/man/man5/resource_controls.5 14

853 .ad
854 .sp .6
855 .RS 4n
856 Terminate the process. CPU time limit exceeded. Available only to resource
857 controls with the \fBRCTL_GLOBAL_CPUTIME\fR property
858 (\fBprocess.max-cpu-time\fR). See \fBrctlblk_set_value\fR(3C).
859 .RE

861 .SS "Resource Control Flags and Properties"
862 .sp
863 .LP
864 Each resource control on the system has a certain set of associated properties.
865 This set of properties is defined as a set of flags, which are associated with
866 all controlled instances of that resource. Global flags cannot be modified, but
867 the flags can be retrieved by using either \fBrctladm\fR(1M) or the
868 \fBsetrctl\fR(2) system call.
869 .sp
870 .LP
871 Local flags define the default behavior and configuration for a specific
872 threshold value of that resource control on a specific process or process
873 collective. The local flags for one threshold value do not affect the behavior
874 of other defined threshold values for the same resource control. However, the
875 global flags affect the behavior for every value associated with a particular
876 control. Local flags can be modified, within the constraints supplied by their
877 corresponding global flags, by the \fBprctl\fR command or the \fBsetrctl\fR
878 system call. See \fBsetrctl\fR(2).
879 .sp
880 .LP
881 For the complete list of local flags, global flags, and their definitions, see
882 \fBrctlblk_set_value\fR(3C).
883 .sp
884 .LP
885 To determine system behavior when a threshold value for a particular resource
886 control is reached, use \fBrctladm\fR to display the global flags for the
887 resource control . For example, to display the values for
888 \fBprocess.max-cpu-time\fR, enter:
889 .sp
890 .in +2
891 .nf
892 $ rctladm process.max-cpu-time
893 process.max-cpu-time syslog=off [lowerable no-deny cpu-time inf seconds]
894 .fi
895 .in -2

897 .sp
898 .LP
899 The global flags indicate the following:
900 .sp
901 .ne 2
902 .na
903 \fB\fBlowerable\fR\fR
904 .ad
905 .sp .6
906 .RS 4n
907 Superuser privileges are not required to lower the privileged values for this
908 control.
909 .RE

911 .sp
912 .ne 2
913 .na
914 \fB\fBno-deny\fR\fR
915 .ad
916 .sp .6
917 .RS 4n
918 Even when threshold values are exceeded, access to the resource is never

new/usr/src/man/man5/resource_controls.5 15

919 denied.
920 .RE

922 .sp
923 .ne 2
924 .na
925 \fB\fBcpu-time\fR\fR
926 .ad
927 .sp .6
928 .RS 4n
929 \fBSIGXCPU\fR is available to be sent when threshold values of this resource
930 are reached.
931 .RE

933 .sp
934 .ne 2
935 .na
936 \fB\fBseconds\fR\fR
937 .ad
938 .sp .6
939 .RS 4n
940 The time value for the resource control.
941 .RE

943 .sp
944 .LP
945 Use the \fBprctl\fR command to display local values and actions for the
946 resource control. For example:
947 .sp
948 .in +2
949 .nf
950 $ prctl -n process.max-cpu-time $$
951 process 353939: -ksh
952 NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
953 process.max-cpu-time
954 privileged 18.4Es inf signal=XCPU -
955 system 18.4Es inf none
956 .fi
957 .in -2

959 .sp
960 .LP
961 The \fBmax\fR (\fBRCTL_LOCAL_MAXIMAL\fR) flag is set for both threshold values,
962 and the \fBinf\fR (\fBRCTL_GLOBAL_INFINITE\fR) flag is defined for this
963 resource control. An \fBinf\fR value has an infinite quantity. The value is
964 never enforced. Hence, as configured, both threshold quantities represent
965 infinite values that are never exceeded.
966 .SS "Resource Control Enforcement"
967 .sp
968 .LP
969 More than one resource control can exist on a resource. A resource control can
970 exist at each containment level in the process model. If resource controls are
971 active on the same resource at different container levels, the smallest
972 container’s control is enforced first. Thus, action is taken on
973 \fBprocess.max-cpu-time\fR before \fBtask.max-cpu-time\fR if both controls are
974 encountered simultaneously.
975 .SH ATTRIBUTES
976 .sp
977 .LP
978 See \fBattributes\fR(5) for a description of the following attributes:
979 .sp

981 .sp
982 .TS
983 box;
984 c | c

new/usr/src/man/man5/resource_controls.5 16

985 l | l .
986 ATTRIBUTE TYPE ATTRIBUTE VALUE
987 _
988 Interface Stability Evolving
989 .TE

991 .SH SEE ALSO
992 .sp
993 .LP
994 \fBprctl\fR(1), \fBpooladm\fR(1M), \fBpoolcfg\fR(1M), \fBprojadd\fR(1M),
995 \fBprojmod\fR(1M), \fBrctladm\fR(1M), \fBsetrctl\fR(2),
996 \fBrctlblk_set_value\fR(3C), \fBlibpool\fR(3LIB), \fBproject\fR(4),
997 \fBattributes\fR(5), \fBFSS\fR(7)
998 .sp
999 .LP

1000 \fISystem Administration Guide: Virtualization Using the Solaris Operating
1001 System\fR

new/usr/src/uts/common/os/rctl_proc.c 1

**
 12538 Sat Jul 13 17:57:08 2013
new/usr/src/uts/common/os/rctl_proc.c
3830 SIGQUEUE_MAX’s limit of 32 is too low
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

26 #include <sys/types.h>
27 #include <sys/cmn_err.h>
28 #include <sys/sysmacros.h>
29 #include <sys/proc.h>
30 #include <sys/rctl.h>
31 #include <sys/rctl_impl.h>
32 #include <sys/port_kernel.h>
33 #include <sys/signal.h>
34 #endif /* ! codereview */

36 #include <sys/vmparam.h>
37 #include <sys/machparam.h>

39 /*
40 * Process-based resource controls
41 * The structure of the kernel leaves us no particular place where the process
42 * abstraction can be declared--it is intertwined with the growth of the Unix
43 * kernel. Accordingly, we place all of the resource control logic associated
44 * with processes, both existing and future, in this file.
45 */

47 rctl_hndl_t rctlproc_legacy[RLIM_NLIMITS];
48 uint_t rctlproc_flags[RLIM_NLIMITS] = {
49 RCTL_LOCAL_SIGNAL, /* RLIMIT_CPU */
50 RCTL_LOCAL_DENY | RCTL_LOCAL_SIGNAL, /* RLIMIT_FSIZE */
51 RCTL_LOCAL_DENY, /* RLIMIT_DATA */
52 RCTL_LOCAL_DENY, /* RLIMIT_STACK */
53 RCTL_LOCAL_DENY, /* RLIMIT_CORE */
54 RCTL_LOCAL_DENY, /* RLIMIT_NOFILE */
55 RCTL_LOCAL_DENY /* RLIMIT_VMEM */
56 };
57 int rctlproc_signals[RLIM_NLIMITS] = {
58 SIGXCPU, /* RLIMIT_CPU */
59 SIGXFSZ, /* RLIMIT_FSIZE */

new/usr/src/uts/common/os/rctl_proc.c 2

60 0, 0, 0, 0, 0 /* remainder do not signal */
61 };

63 rctl_hndl_t rc_process_msgmnb;
64 rctl_hndl_t rc_process_msgtql;
65 rctl_hndl_t rc_process_semmsl;
66 rctl_hndl_t rc_process_semopm;
67 rctl_hndl_t rc_process_portev;
68 rctl_hndl_t rc_process_sigqueue;
69 #endif /* ! codereview */

71 /*
72 * process.max-cpu-time / RLIMIT_CPU
73 */
74 /*ARGSUSED*/
75 static int
76 proc_cpu_time_test(struct rctl *rctl, struct proc *p, rctl_entity_p_t *e,
77 rctl_val_t *rval, rctl_qty_t inc, uint_t flags)
78 {
79 return (inc >= rval->rcv_value);
80 }

82 static rctl_ops_t proc_cpu_time_ops = {
83 rcop_no_action,
84 rcop_no_usage,
85 rcop_no_set,
86 proc_cpu_time_test
87 };

89 /*
90 * process.max-file-size / RLIMIT_FSIZE
91 */
92 static int
93 proc_filesize_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
94 rctl_qty_t nv)
95 {
96 if (p->p_model == DATAMODEL_NATIVE)
97 nv = MIN(nv, rctl->rc_dict_entry->rcd_max_native);
98 else
99 nv = MIN(nv, rctl->rc_dict_entry->rcd_max_ilp32);

101 ASSERT(e->rcep_t == RCENTITY_PROCESS);
102 e->rcep_p.proc->p_fsz_ctl = nv;

104 return (0);
105 }

107 static rctl_ops_t proc_filesize_ops = {
108 rcop_no_action,
109 rcop_no_usage,
110 proc_filesize_set,
111 rcop_no_test
112 };

114 /*
115 * process.max-data / RLIMIT_DATA
116 */

118 /*
119 * process.max-stack-size / RLIMIT_STACK
120 */
121 static int
122 proc_stack_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
123 rctl_qty_t nv)
124 {
125 klwp_t *lwp = ttolwp(curthread);

new/usr/src/uts/common/os/rctl_proc.c 3

127 if (p->p_model == DATAMODEL_NATIVE)
128 nv = MIN(nv, rctl->rc_dict_entry->rcd_max_native);
129 else
130 nv = MIN(nv, rctl->rc_dict_entry->rcd_max_ilp32);

132 /*
133 * In the process of changing the rlimit, this function actually
134 * gets called a number of times. We only want to save the current
135 * rlimit the first time we come through here. In post_syscall(),
136 * we copyin() the lwp’s ustack, and compare it to the rlimit we
137 * save here; if the two match, we adjust the ustack to reflect
138 * the new stack bounds.
139 *
140 * We check to make sure that we’re changing the rlimit of our
141 * own process rather than on behalf of some other process. The
142 * notion of changing this resource limit on behalf of another
143 * process is problematic at best, and changing the amount of stack
144 * space a process is allowed to consume is a rather antiquated
145 * notion that has limited applicability in our multithreaded
146 * process model.
147 */
148 ASSERT(e->rcep_t == RCENTITY_PROCESS);
149 if (lwp != NULL && lwp->lwp_procp == e->rcep_p.proc &&
150 lwp->lwp_ustack && lwp->lwp_old_stk_ctl == 0) {
151 lwp->lwp_old_stk_ctl = (size_t)e->rcep_p.proc->p_stk_ctl;
152 curthread->t_post_sys = 1;
153 }

155 e->rcep_p.proc->p_stk_ctl = nv;

157 return (0);
158 }

160 static rctl_ops_t proc_stack_ops = {
161 rcop_no_action,
162 rcop_no_usage,
163 proc_stack_set,
164 rcop_no_test
165 };

167 /*
168 * process.max-file-descriptors / RLIMIT_NOFILE
169 */
170 static int
171 proc_nofile_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
172 {
173 ASSERT(e->rcep_t == RCENTITY_PROCESS);
174 if (p->p_model == DATAMODEL_NATIVE)
175 nv = MIN(nv, rctl->rc_dict_entry->rcd_max_native);
176 else
177 nv = MIN(nv, rctl->rc_dict_entry->rcd_max_ilp32);

179 e->rcep_p.proc->p_fno_ctl = nv;

181 return (0);
182 }

184 static rctl_ops_t proc_nofile_ops = {
185 rcop_no_action,
186 rcop_no_usage,
187 proc_nofile_set,
188 rcop_absolute_test
189 };

191 /*

new/usr/src/uts/common/os/rctl_proc.c 4

192 * process.max-address-space / RLIMIT_VMEM
193 */
194 static int
195 proc_vmem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
196 {
197 ASSERT(e->rcep_t == RCENTITY_PROCESS);
198 if (p->p_model == DATAMODEL_ILP32)
199 nv = MIN(nv, rctl->rc_dict_entry->rcd_max_ilp32);
200 else
201 nv = MIN(nv, rctl->rc_dict_entry->rcd_max_native);

203 e->rcep_p.proc->p_vmem_ctl = nv;

205 return (0);
206 }

208 static rctl_ops_t proc_vmem_ops = {
209 rcop_no_action,
210 rcop_no_usage,
211 proc_vmem_set,
212 rcop_no_test
213 };

215 /*
216 * void rctlproc_default_init()
217 *
218 * Overview
219 * Establish default basic and privileged control values on the init process.
220 * These correspond to the soft and hard limits, respectively.
221 */
222 void
223 rctlproc_default_init(struct proc *initp, rctl_alloc_gp_t *gp)
224 {
225 struct rlimit64 rlp64;

227 /*
228 * RLIMIT_CPU: deny never, sigtoproc(pp, NULL, SIGXCPU).
229 */
230 rlp64.rlim_cur = rlp64.rlim_max = RLIM64_INFINITY;
231 (void) rctl_rlimit_set(rctlproc_legacy[RLIMIT_CPU], initp, &rlp64, gp,
232 RCTL_LOCAL_SIGNAL, SIGXCPU, kcred);

234 /*
235 * RLIMIT_FSIZE: deny always, sigtoproc(pp, NULL, SIGXFSZ).
236 */
237 rlp64.rlim_cur = rlp64.rlim_max = RLIM64_INFINITY;
238 (void) rctl_rlimit_set(rctlproc_legacy[RLIMIT_FSIZE], initp, &rlp64, gp,
239 RCTL_LOCAL_SIGNAL | RCTL_LOCAL_DENY, SIGXFSZ, kcred);

241 /*
242 * RLIMIT_DATA: deny always, no default action.
243 */
244 rlp64.rlim_cur = rlp64.rlim_max = RLIM64_INFINITY;
245 (void) rctl_rlimit_set(rctlproc_legacy[RLIMIT_DATA], initp, &rlp64, gp,
246 RCTL_LOCAL_DENY, 0, kcred);

248 /*
249 * RLIMIT_STACK: deny always, no default action.
250 */
251 #ifdef __sparc
252 rlp64.rlim_cur = DFLSSIZ;
253 rlp64.rlim_max = LONG_MAX;
254 #else
255 rlp64.rlim_cur = DFLSSIZ;
256 rlp64.rlim_max = MAXSSIZ;
257 #endif

new/usr/src/uts/common/os/rctl_proc.c 5

258 (void) rctl_rlimit_set(rctlproc_legacy[RLIMIT_STACK], initp, &rlp64, gp,
259 RCTL_LOCAL_DENY, 0, kcred);

261 /*
262 * RLIMIT_CORE: deny always, no default action.
263 */
264 rlp64.rlim_cur = rlp64.rlim_max = RLIM64_INFINITY;
265 (void) rctl_rlimit_set(rctlproc_legacy[RLIMIT_CORE], initp, &rlp64, gp,
266 RCTL_LOCAL_DENY, 0, kcred);

268 /*
269 * RLIMIT_NOFILE: deny always, no action.
270 */
271 rlp64.rlim_cur = rlim_fd_cur;
272 rlp64.rlim_max = rlim_fd_max;
273 (void) rctl_rlimit_set(rctlproc_legacy[RLIMIT_NOFILE], initp, &rlp64,
274 gp, RCTL_LOCAL_DENY, 0, kcred);

276 /*
277 * RLIMIT_VMEM
278 */
279 rlp64.rlim_cur = rlp64.rlim_max = RLIM64_INFINITY;
280 (void) rctl_rlimit_set(rctlproc_legacy[RLIMIT_VMEM], initp, &rlp64, gp,
281 RCTL_LOCAL_DENY, 0, kcred);
282 }

284 /*
285 * void rctlproc_init()
286 *
287 * Overview
288 * Register the various resource controls associated with process entities.
289 * The historical rlim_infinity_map and rlim_infinity32_map are now encoded
290 * here as the native and ILP32 infinite values for each resource control.
291 */
292 void
293 rctlproc_init(void)
35 rctlproc_init()
294 {
295 rctl_set_t *set;
296 rctl_alloc_gp_t *gp;
297 rctl_entity_p_t e;

299 rctlproc_legacy[RLIMIT_CPU] = rctl_register("process.max-cpu-time",
300 RCENTITY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_NEVER |
301 RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE | RCTL_GLOBAL_SECONDS,
302 UINT64_MAX, UINT64_MAX, &proc_cpu_time_ops);
303 rctlproc_legacy[RLIMIT_FSIZE] = rctl_register("process.max-file-size",
304 RCENTITY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
305 RCTL_GLOBAL_FILE_SIZE | RCTL_GLOBAL_BYTES,
306 MAXOFFSET_T, MAXOFFSET_T, &proc_filesize_ops);
307 rctlproc_legacy[RLIMIT_DATA] = rctl_register("process.max-data-size",
308 RCENTITY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
309 RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_BYTES,
310 ULONG_MAX, UINT32_MAX, &rctl_default_ops);
311 #ifdef _LP64
312 #ifdef __sparc
313 rctlproc_legacy[RLIMIT_STACK] = rctl_register("process.max-stack-size",
314 RCENTITY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
315 RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_BYTES,
316 LONG_MAX, INT32_MAX, &proc_stack_ops);
317 #else /* __sparc */
318 rctlproc_legacy[RLIMIT_STACK] = rctl_register("process.max-stack-size",
319 RCENTITY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
320 RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_BYTES,
321 MAXSSIZ, USRSTACK32 - PAGESIZE, &proc_stack_ops);
322 #endif /* __sparc */

new/usr/src/uts/common/os/rctl_proc.c 6

323 #else /* _LP64 */
324 rctlproc_legacy[RLIMIT_STACK] = rctl_register("process.max-stack-size",
325 RCENTITY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
326 RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_BYTES,
327 USRSTACK - PAGESIZE, USRSTACK - PAGESIZE, &proc_stack_ops);
328 #endif
329 rctlproc_legacy[RLIMIT_CORE] = rctl_register("process.max-core-size",
330 RCENTITY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
331 RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_BYTES,
332 MIN(MAXOFFSET_T, ULONG_MAX), UINT32_MAX, &rctl_default_ops);
333 rctlproc_legacy[RLIMIT_NOFILE] = rctl_register(
334 "process.max-file-descriptor", RCENTITY_PROCESS,
335 RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
336 RCTL_GLOBAL_COUNT, INT32_MAX, INT32_MAX, &proc_nofile_ops);
337 rctlproc_legacy[RLIMIT_VMEM] =
338 rctl_register("process.max-address-space", RCENTITY_PROCESS,
339 RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
340 RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_BYTES,
341 ULONG_MAX, UINT32_MAX, &proc_vmem_ops);

343 rc_process_semmsl = rctl_register("process.max-sem-nsems",
344 RCENTITY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_COUNT,
345 SHRT_MAX, SHRT_MAX, &rctl_absolute_ops);
346 rctl_add_legacy_limit("process.max-sem-nsems", "semsys",
347 "seminfo_semmsl", 512, SHRT_MAX);

349 rc_process_semopm = rctl_register("process.max-sem-ops",
350 RCENTITY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_COUNT,
351 INT_MAX, INT_MAX, &rctl_absolute_ops);
352 rctl_add_legacy_limit("process.max-sem-ops", "semsys",
353 "seminfo_semopm", 512, INT_MAX);

355 rc_process_msgmnb = rctl_register("process.max-msg-qbytes",
356 RCENTITY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_BYTES,
357 ULONG_MAX, ULONG_MAX, &rctl_absolute_ops);
358 rctl_add_legacy_limit("process.max-msg-qbytes", "msgsys",
359 "msginfo_msgmnb", 65536, ULONG_MAX);

361 rc_process_msgtql = rctl_register("process.max-msg-messages",
362 RCENTITY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_COUNT,
363 UINT_MAX, UINT_MAX, &rctl_absolute_ops);
364 rctl_add_legacy_limit("process.max-msg-messages", "msgsys",
365 "msginfo_msgtql", 8192, UINT_MAX);

367 rc_process_portev = rctl_register("process.max-port-events",
368 RCENTITY_PROCESS, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_COUNT,
369 PORT_MAX_EVENTS, PORT_MAX_EVENTS, &rctl_absolute_ops);
370 rctl_add_default_limit("process.max-port-events", PORT_DEFAULT_EVENTS,
371 RCPRIV_PRIVILEGED, RCTL_LOCAL_DENY);

373 rc_process_sigqueue = rctl_register("process.max-sigqueue-size",
374 RCENTITY_PROCESS, RCTL_GLOBAL_LOWERABLE | RCTL_GLOBAL_DENY_ALWAYS |
375 RCTL_GLOBAL_COUNT, _SIGQUEUE_SIZE_MAX, _SIGQUEUE_SIZE_MAX,
376 &rctl_absolute_ops);
377 rctl_add_default_limit("process.max-sigqueue-size",
378 _SIGQUEUE_SIZE_BASIC, RCPRIV_BASIC, RCTL_LOCAL_DENY);
379 rctl_add_default_limit("process.max-sigqueue-size",
380 _SIGQUEUE_SIZE_PRIVILEGED, RCPRIV_PRIVILEGED, RCTL_LOCAL_DENY);

382 #endif /* ! codereview */
383 /*
384 * Place minimal set of controls on "sched" process for inheritance by
385 * processes created via newproc().
386 */
387 set = rctl_set_create();
388 gp = rctl_set_init_prealloc(RCENTITY_PROCESS);

new/usr/src/uts/common/os/rctl_proc.c 7

389 mutex_enter(&curproc->p_lock);
390 e.rcep_p.proc = curproc;
391 e.rcep_t = RCENTITY_PROCESS;
392 curproc->p_rctls = rctl_set_init(RCENTITY_PROCESS, curproc, &e,
393 set, gp);
394 mutex_exit(&curproc->p_lock);
395 rctl_prealloc_destroy(gp);
396 }

new/usr/src/uts/common/os/sig.c 1

**
 73742 Sat Jul 13 17:57:08 2013
new/usr/src/uts/common/os/sig.c
3830 SIGQUEUE_MAX’s limit of 32 is too low
**
______unchanged_portion_omitted_

2376 #ifndef INT_MAX
2377 #define INT_MAX 2147483647
2376 #ifndef UCHAR_MAX
2377 #define UCHAR_MAX 255
2378 #endif

2380 #define _SIGQUEUE_PREALLOC 32 /* XXX: log scale? */

2382 #endif /* ! codereview */
2383 /*
2384 * The pre-allocated pool (with _SIGQUEUE_PREALLOC entries) is
2385 * allocated at the first sigqueue/signotify call.
2380 * The entire pool (with maxcount entries) is pre-allocated at
2381 * the first sigqueue/signotify call.
2386 */
2387 sigqhdr_t *
2388 sigqhdralloc(size_t size, uint_t maxcount)
2389 {
2390 size_t i;
2391 sigqueue_t *sq, *next;
2392 sigqhdr_t *sqh;

2394 i = (_SIGQUEUE_PREALLOC * size) + sizeof (sigqhdr_t);
2395 ASSERT(maxcount <= INT_MAX);
2390 i = (maxcount * size) + sizeof (sigqhdr_t);
2391 ASSERT(maxcount <= UCHAR_MAX && i <= USHRT_MAX);
2396 sqh = kmem_alloc(i, KM_SLEEP);
2397 sqh->sqb_count = maxcount;
2398 sqh->sqb_maxcount = maxcount;
2399 sqh->sqb_size = i;
2393 sqh->sqb_count = (uchar_t)maxcount;
2394 sqh->sqb_maxcount = (uchar_t)maxcount;
2395 sqh->sqb_size = (ushort_t)i;
2400 sqh->sqb_pexited = 0;
2401 sqh->sqb_sent = 0;
2402 sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2403 for (i = _SIGQUEUE_PREALLOC - 1; i != 0; i--) {
2399 for (i = maxcount - 1; i != 0; i--) {
2404 next = (sigqueue_t *)((uintptr_t)sq + size);
2405 sq->sq_next = next;
2406 sq = next;
2407 }
2408 sq->sq_next = NULL;
2409 cv_init(&sqh->sqb_cv, NULL, CV_DEFAULT, NULL);
2410 mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2411 return (sqh);
2412 }

2414 static void sigqrel(sigqueue_t *);

2416 /*
2417 * Allocate a sigqueue/signotify structure from the per process
2418 * pre-allocated pool or allocate a new sigqueue/signotify structure
2419 * if the pre-allocated pool is exhausted.
2413 * allocate a sigqueue/signotify structure from the per process
2414 * pre-allocated pool.
2420 */
2421 sigqueue_t *
2422 sigqalloc(sigqhdr_t *sqh)

new/usr/src/uts/common/os/sig.c 2

2423 {
2424 sigqueue_t *sq = NULL;

2426 ASSERT(MUTEX_HELD(&curproc->p_lock));

2428 if (sqh != NULL) {
2429 mutex_enter(&sqh->sqb_lock);
2430 if (sqh->sqb_count > 0) {
2431 sqh->sqb_count--;
2432 if (sqh->sqb_free == NULL) {
2433 /*
2434 * The pre-allocated pool is exhausted.
2435 */
2436 sq = kmem_alloc(sizeof (sigqueue_t), KM_SLEEP);
2437 sq->sq_func = NULL;
2438 } else {
2439 #endif /* ! codereview */
2440 sq = sqh->sqb_free;
2441 sq->sq_func = sigqrel;
2442 #endif /* ! codereview */
2443 sqh->sqb_free = sq->sq_next;
2444 }
2445 #endif /* ! codereview */
2446 mutex_exit(&sqh->sqb_lock);
2447 bzero(&sq->sq_info, sizeof (k_siginfo_t));
2448 sq->sq_backptr = sqh;
2427 sq->sq_func = sigqrel;
2449 sq->sq_next = NULL;
2450 sq->sq_external = 0;
2451 } else {
2452 mutex_exit(&sqh->sqb_lock);
2453 }
2454 }
2455 return (sq);
2456 }
______unchanged_portion_omitted_

new/usr/src/uts/common/sys/signal.h 1

**
 10030 Sat Jul 13 17:57:09 2013
new/usr/src/uts/common/sys/signal.h
3830 SIGQUEUE_MAX’s limit of 32 is too low
**
______unchanged_portion_omitted_

303 typedef struct sigqhdr { /* sigqueue pool header */
304 sigqueue_t *sqb_free; /* free sigq struct list */
305 int sqb_count; /* sigq free count */
306 uint_t sqb_maxcount; /* sigq max free count */
307 size_t sqb_size; /* size of header+free structs */
306 uchar_t sqb_count; /* sigq free count */
307 uchar_t sqb_maxcount; /* sigq max free count */
308 ushort_t sqb_size; /* size of header+free structs */
308 uchar_t sqb_pexited; /* process has exited */
309 uint_t sqb_sent; /* number of sigq sent */
310 uchar_t sqb_sent; /* number of sigq sent */
310 kcondvar_t sqb_cv; /* waiting for a sigq struct */
311 kmutex_t sqb_lock; /* lock for sigq pool */
312 } sigqhdr_t;

314 #define _SIGQUEUE_SIZE_BASIC 128 /* basic limit */
315 #define _SIGQUEUE_SIZE_PRIVILEGED 512 /* privileged limit */
316 #define _SIGQUEUE_SIZE_MAX 8192 /* maximum limit */

315 #define _SIGQUEUE_MAX 32
318 #define _SIGNOTIFY_MAX 32

320 extern void setsigact(int, void (*)(int), const k_sigset_t *, int);
321 extern void sigorset(k_sigset_t *, const k_sigset_t *);
322 extern void sigandset(k_sigset_t *, const k_sigset_t *);
323 extern void sigdiffset(k_sigset_t *, const k_sigset_t *);
324 extern void sigintr(k_sigset_t *, int);
325 extern void sigunintr(k_sigset_t *);
326 extern void sigreplace(k_sigset_t *, k_sigset_t *);

328 extern int kill(pid_t, int);

330 #endif /* _KERNEL */

332 #ifdef __cplusplus
333 }

______unchanged_portion_omitted_

new/usr/src/uts/common/syscall/sigqueue.c 1

**
 5578 Sat Jul 13 17:57:09 2013
new/usr/src/uts/common/syscall/sigqueue.c
3830 SIGQUEUE_MAX’s limit of 32 is too low
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

29 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <sys/param.h>
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/systm.h>
33 #include <sys/errno.h>
34 #include <sys/proc.h>
35 #include <sys/procset.h>
36 #include <sys/fault.h>
37 #include <sys/signal.h>
38 #include <sys/siginfo.h>
39 #include <sys/debug.h>

41 extern rctl_hndl_t rc_process_sigqueue;

43 #endif /* ! codereview */
44 static int
45 sigqkill(pid_t pid, sigsend_t *sigsend)
46 {
47 proc_t *p;
48 int error;

50 if ((uint_t)sigsend->sig >= NSIG)
51 return (EINVAL);

53 if (pid == -1) {
54 procset_t set;

56 setprocset(&set, POP_AND, P_ALL, P_MYID, P_ALL, P_MYID);
57 error = sigsendset(&set, sigsend);
58 } else if (pid > 0) {
59 mutex_enter(&pidlock);

new/usr/src/uts/common/syscall/sigqueue.c 2

60 if ((p = prfind(pid)) == NULL || p->p_stat == SIDL)
61 error = ESRCH;
62 else {
63 error = sigsendproc(p, sigsend);
64 if (error == 0 && sigsend->perm == 0)
65 error = EPERM;
66 }
67 mutex_exit(&pidlock);
68 } else {
69 int nfound = 0;
70 pid_t pgid;

72 if (pid == 0)
73 pgid = ttoproc(curthread)->p_pgrp;
74 else
75 pgid = -pid;

77 error = 0;
78 mutex_enter(&pidlock);
79 for (p = pgfind(pgid); p && !error; p = p->p_pglink) {
80 if (p->p_stat != SIDL) {
81 nfound++;
82 error = sigsendproc(p, sigsend);
83 }
84 }
85 mutex_exit(&pidlock);
86 if (nfound == 0)
87 error = ESRCH;
88 else if (error == 0 && sigsend->perm == 0)
89 error = EPERM;
90 }

92 return (error);
93 }

96 /*
97 * for implementations that don’t require binary compatibility,
98 * the kill system call may be made into a library call to the
99 * sigsend system call
100 */
101 int
102 kill(pid_t pid, int sig)
103 {
104 int error;
105 sigsend_t v;

107 bzero(&v, sizeof (v));
108 v.sig = sig;
109 v.checkperm = 1;
110 v.sicode = SI_USER;
111 if ((error = sigqkill(pid, &v)) != 0)
112 return (set_errno(error));
113 return (0);
114 }

116 /*
117 * The handling of small unions, like the sigval argument to sigqueue,
118 * is architecture dependent. We have adopted the convention that the
119 * value itself is passed in the storage which crosses the kernel
120 * protection boundary. This procedure will accept a scalar argument,
121 * and store it in the appropriate value member of the sigsend_t structure.
122 */
123 int
124 sigqueue(pid_t pid, int sig, /* union sigval */ void *value,
125 int si_code, int block)

new/usr/src/uts/common/syscall/sigqueue.c 3

126 {
127 int error;
128 sigsend_t v;
129 sigqhdr_t *sqh;
130 proc_t *p = curproc;

132 /* The si_code value must indicate the signal will be queued */
133 if (pid <= 0 || !sigwillqueue(sig, si_code))
134 return (set_errno(EINVAL));

136 if ((sqh = p->p_sigqhdr) == NULL) {
137 rlim64_t sigqsz_max;

139 mutex_enter(&p->p_lock);
140 sigqsz_max = rctl_enforced_value(rc_process_sigqueue,
141 p->p_rctls, p);
142 mutex_exit(&p->p_lock);

144 #endif /* ! codereview */
145 /* Allocate sigqueue pool first time */
146 sqh = sigqhdralloc(sizeof (sigqueue_t), (uint_t)sigqsz_max);
43 sqh = sigqhdralloc(sizeof (sigqueue_t), _SIGQUEUE_MAX);
147 mutex_enter(&p->p_lock);
148 if (p->p_sigqhdr == NULL) {
149 /* hang the pool head on proc */
150 p->p_sigqhdr = sqh;
151 } else {
152 /* another lwp allocated the pool, free ours */
153 sigqhdrfree(sqh);
154 sqh = p->p_sigqhdr;
155 }
156 mutex_exit(&p->p_lock);
157 }

159 do {
160 bzero(&v, sizeof (v));
161 v.sig = sig;
162 v.checkperm = 1;
163 v.sicode = si_code;
164 v.value.sival_ptr = value;
165 if ((error = sigqkill(pid, &v)) != EAGAIN || !block)
166 break;
167 /* block waiting for another chance to allocate a sigqueue_t */
168 mutex_enter(&sqh->sqb_lock);
169 while (sqh->sqb_count == 0) {
170 if (!cv_wait_sig(&sqh->sqb_cv, &sqh->sqb_lock)) {
171 error = EINTR;
172 break;
173 }
174 }
175 mutex_exit(&sqh->sqb_lock);
176 } while (error == EAGAIN);

178 if (error)
179 return (set_errno(error));
180 return (0);
181 }

______unchanged_portion_omitted_

new/usr/src/uts/common/syscall/sysconfig.c 1

**
 5280 Sat Jul 13 17:57:10 2013
new/usr/src/uts/common/syscall/sysconfig.c
3830 SIGQUEUE_MAX’s limit of 32 is too low
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */

30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/sysmacros.h>
33 #include <sys/systm.h>
34 #include <sys/tuneable.h>
35 #include <sys/errno.h>
36 #include <sys/var.h>
37 #include <sys/signal.h>
38 #include <sys/time.h>
39 #include <sys/sysconfig.h>
40 #include <sys/resource.h>
41 #include <sys/ulimit.h>
42 #include <sys/unistd.h>
43 #include <sys/debug.h>
44 #include <sys/cpuvar.h>
45 #include <sys/mman.h>
46 #include <sys/timer.h>
47 #include <sys/zone.h>
48 #include <sys/vm_usage.h>

50 extern rctl_hndl_t rc_process_sigqueue;

52 #endif /* ! codereview */
53 long
54 sysconfig(int which)
55 {
56 switch (which) {

58 /*
59 * if it is not handled in mach_sysconfig either
60 * it must be EINVAL.
61 */

new/usr/src/uts/common/syscall/sysconfig.c 2

62 default:
63 return (mach_sysconfig(which)); /* ‘uname -i‘/os */

65 case _CONFIG_CLK_TCK:
66 return ((long)hz); /* clock frequency per second */

68 case _CONFIG_PROF_TCK:
69 return ((long)hz); /* profiling clock freq per sec */

71 case _CONFIG_NGROUPS:
72 /*
73 * Maximum number of supplementary groups.
74 */
75 return (ngroups_max);

77 case _CONFIG_OPEN_FILES:
78 /*
79 * Maximum number of open files (soft limit).
80 */
81 {
82 rlim64_t fd_ctl;
83 mutex_enter(&curproc->p_lock);
84 fd_ctl = rctl_enforced_value(
85 rctlproc_legacy[RLIMIT_NOFILE], curproc->p_rctls,
86 curproc);
87 mutex_exit(&curproc->p_lock);
88 return ((ulong_t)fd_ctl);
89 }

91 case _CONFIG_CHILD_MAX:
92 /*
93 * Maximum number of processes.
94 */
95 return (v.v_maxup);

97 case _CONFIG_POSIX_VER:
98 return (_POSIX_VERSION); /* current POSIX version */

100 case _CONFIG_PAGESIZE:
101 return (PAGESIZE);

103 case _CONFIG_XOPEN_VER:
104 return (_XOPEN_VERSION); /* current XOPEN version */

106 case _CONFIG_NPROC_CONF:
107 return (zone_ncpus_get(curproc->p_zone));

109 case _CONFIG_NPROC_ONLN:
110 return (zone_ncpus_online_get(curproc->p_zone));

112 case _CONFIG_NPROC_MAX:
113 return (max_ncpus);

115 case _CONFIG_STACK_PROT:
116 return (curproc->p_stkprot & ~PROT_USER);

118 case _CONFIG_AIO_LISTIO_MAX:
119 return (_AIO_LISTIO_MAX);

121 case _CONFIG_AIO_MAX:
122 return (_AIO_MAX);

124 case _CONFIG_AIO_PRIO_DELTA_MAX:
125 return (0);

127 case _CONFIG_DELAYTIMER_MAX:

new/usr/src/uts/common/syscall/sysconfig.c 3

128 return (INT_MAX);

130 case _CONFIG_MQ_OPEN_MAX:
131 return (_MQ_OPEN_MAX);

133 case _CONFIG_MQ_PRIO_MAX:
134 return (_MQ_PRIO_MAX);

136 case _CONFIG_RTSIG_MAX:
137 return (_SIGRTMAX - _SIGRTMIN + 1);

139 case _CONFIG_SEM_NSEMS_MAX:
140 return (_SEM_NSEMS_MAX);

142 case _CONFIG_SEM_VALUE_MAX:
143 return (_SEM_VALUE_MAX);

145 case _CONFIG_SIGQUEUE_MAX:
146 /*
147 * Maximum number of outstanding queued signals.
148 */
149 {
150 rlim64_t sigqsz_max;
151 mutex_enter(&curproc->p_lock);
152 sigqsz_max = rctl_enforced_value(rc_process_sigqueue,
153 curproc->p_rctls, curproc);
154 mutex_exit(&curproc->p_lock);
155 return ((uint_t)sigqsz_max);
156 }
50 return (_SIGQUEUE_MAX);

158 case _CONFIG_SIGRT_MIN:
159 return (_SIGRTMIN);

161 case _CONFIG_SIGRT_MAX:
162 return (_SIGRTMAX);

164 case _CONFIG_TIMER_MAX:
165 return (timer_max);

167 case _CONFIG_PHYS_PAGES:
168 /*
169 * If the non-global zone has a phys. memory cap, use that.
170 * We always report the system-wide value for the global zone,
171 * even though rcapd can be used on the global zone too.
172 */
173 if (!INGLOBALZONE(curproc) &&
174 curproc->p_zone->zone_phys_mcap != 0)
175 return (MIN(btop(curproc->p_zone->zone_phys_mcap),
176 physinstalled));

178 return (physinstalled);

180 case _CONFIG_AVPHYS_PAGES:
181 /*
182 * If the non-global zone has a phys. memory cap, use
183 * the phys. memory cap - zone’s current rss. We always
184 * report the system-wide value for the global zone, even
185 * though rcapd can be used on the global zone too.
186 */
187 if (!INGLOBALZONE(curproc) &&
188 curproc->p_zone->zone_phys_mcap != 0) {
189 pgcnt_t cap, rss, free;
190 vmusage_t in_use;
191 size_t cnt = 1;

new/usr/src/uts/common/syscall/sysconfig.c 4

193 cap = btop(curproc->p_zone->zone_phys_mcap);
194 if (cap > physinstalled)
195 return (freemem);

197 if (vm_getusage(VMUSAGE_ZONE, 1, &in_use, &cnt,
198 FKIOCTL) != 0)
199 in_use.vmu_rss_all = 0;
200 rss = btop(in_use.vmu_rss_all);
201 /*
202 * Because rcapd implements a soft cap, it is possible
203 * for rss to be temporarily over the cap.
204 */
205 if (cap > rss)
206 free = cap - rss;
207 else
208 free = 0;
209 return (MIN(free, freemem));
210 }

212 return (freemem);

214 case _CONFIG_MAXPID:
215 return (maxpid);

217 case _CONFIG_CPUID_MAX:
218 return (max_cpuid);

220 case _CONFIG_EPHID_MAX:
221 return (MAXEPHUID);

223 case _CONFIG_SYMLOOP_MAX:
224 return (MAXSYMLINKS);
225 }
226 }

______unchanged_portion_omitted_

