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205 void

206 dunp_ctype(void)

207 {

208 FI LE *f;

209 _Fil eRuneLocal e rl;

210 ctype_node_t *ctn, *last_ct, *last_|lo, *last_up;

211 _FileRuneEntry *ct = NULL;

212 _FileRuneEntry *lo = NULL;

213 _FileRuneEntry *up = NULL;

214 wchar _t WC;

215 #endif /* | codereview */

217 (voi d) memset(&rl 0, sizeof (rl));

218 last _ct = NULL;

219 last | o = NULL;

220 last _up = NULL;

222 if ((f = open_category()) == NULL)

223 return;

225 (void) nencpy(rl.magic, _FILE_ RUNE.MAG C 1, 8);

226 (void) strncpy(rl.encoding, get_wide_ encodi ng(), sizeof (rl.encoding));
228 I*

229 * Initialize the identity map.

230 */

231 for (we = 0; (unsigned)we < _CACHED _RUNES; wc++) {

232 rl. mapl oner[we] = we;

233 rl. mapupper[wc] = wc;

234 }

236 #endif /* | codereview */

237 for (ctn = avl _first(&types); ctn; ctn = AVL_NEXT(&ctypes, ctn)) {
238 int conflict = O;

239 #endif /* | codereview */

241 wec = ctn->wc;

214 wchar _t wc = ctn->wc;

215 int conflict = O;

243 /*

244 * POSI X requires certain portable characters have
245 * certain types. Add themif they are m ssing.
246 */

247 if ((we >=1) && (wc <= 127)) {

248 if ((we >="A) & (w <='272"))

249 ctn->ctype | = _| SUPPER

250 if ((we>"a") & (w <="2"))

251 ctn->ctype | = _I SLOAER,

252 if ((we >='0") && (wc <='9"))

253 ctn->ctype |= _ISDIGAT,;

254 if (strchr(" \finmr\t\v", (char)wc) != NULL)
255 ctn->ctype | = ISSPACE

256 if (strchr("0123456789ABCDEFabcdef ", (char)we) !'= NULL)
257 ctn- >ctype |= _ISXDIGT;

258 if (strchr(" (char)we))

259 ctn- >ct ype | = _1 SBLANK;
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* Technically these settings are only
* required for the Clocale. However, it
* turns out that because of the historical
* version of isprint(), we need themfor all
* |ocales as well. Note that these are not
* necessarily valid punctation characters in
* the current |anguage, but ispunct() needs
* to return TRUE for them
*

/
f

(strchr("!\ " #$9%&R()*+, -./:; <=>2@\\1"_“{|}~",
(char)we))
ctn->ctype | = _| SPUNCT;

/*
* POSI X al so requires that certain types inply
* others. Add any inferred types here.

if (ctn->ctype & (_I SUPPER | _| SLOVER))

ctn->ctype | = _| SALPHA;
if (ctn->ctype & _ISDIAT)
ctn—>ctype |= _ISXDIG T,
if (ctn->ctype & _I SBLANK)
ctn->ctype | = _| SSPACE;
if (ctn->ctype & (_I SALPHA| ISDIGT| _ISXDIGAT))
ctn->ctype | = _| SGRAPH,
if (ctn->ctype & _I SGRAPH)
ctn->ctype | = _I SPRINT;

* Finally, POSIX requires that certain conbinations
* are invalid. W don't flag this as a fatal error,
* but we will warn about.
*
/
if ((ctn->ctype & _I SALPHA) &&
(ctn->ctype & (_ISPUNCT| _ISDIGAT)))
conflict++;
if ((ctn->ctype & _I SPUNCT) &
(ctn->ctype & (_ISDIG T| _I SALPHA| ISXDIG T)))
conflict++
if ((ctn->ctype & _I SSPACE) && (ctn->ctype & _| SGRAPH))
conflict++
if ((ctn->ctype & _I SCNTRL) & _I SPRINT)
confllct++
if ((we ==" ") & (ctn->ctype & (_I SPUNCT| _I SGRAPH)))
conflict++;

if (conflict) {
warn("conflicting classes for character Ox% (%)",
we, ctn->ctype);

*

* Handl e the | ower 256 characters using the sinple

* optimzation. Note that if we have not defined the
* upper/lower case, then we identity map it.

*/

}
/

if ((unsigned)we < _CACHED RUNES) {
rl.runetype[w] = ctn->ctype;
if (ctn->tol ower)
rl. mapl oner[wc] = ctn->tol ower;
if (ctn->toupper)
rl . mapupper[wc] = ctn->toupper;
rl. mapl ower[we] = ctn->tol ower ? ctn->tol ower : wc;
rl . mapupper[we] = ctn->toupper ? ctn->toupper : wc;
conti nue;
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__unchanged_portion_onitted_

}

if ((last_ct !'= NULL) && (last_ct->ctype == ctn->ctype)) {

ct[rl.runetype_ext_nranges-1].nmax = wc;
last_ct = ctn;
} else {
rl.runetype_ext_nranges++;
ct = realloc(ct,

sizeof (*ct) * rl.runetype_ext_nranges);

ct[rl.runetype_ext_nranges - 1].nmin = wc;
ct[rl.runetype_ext_nranges - 1].nax ;
ct[rl.runetype_ext_nranges - 1].nmap
last_ct = ctn;

i1f (ctn->tol ower == 0)

last _| o = NULL;

} elseif ((last_lo !'= NULL) &&

(last_l o->tolower + 1 == ctn->tolower)) {

I o[ rl. mapl ower _ext_nranges-1].max = wc;
last_lo = ctn;

} else {

| . mapl ower _ext _nranges++;

o =realloc(lo,

lo[rl.mapl ower _ext_nranges - 1].min = wc;
lo[rl.mapl ower _ext_nranges - 1].max = ;
o[ rl.mapl ower _ext_nranges - 1].map =
last_lo = ctn;

}

if (ctn->toupper == 0)

last _up = NUL
} else if ((last_up = NULL) &&
(1 ast _up->toupper + 1 == ctn->toupper)) {
up[rl. mapupper_ext_nranges-1].mx = wc;
last_up = ;

rl. mapupper _ext _nranges++;
up = realloc(up,

sizeof (*up) * rl.napupper_ext_nranges);

up[rl. mapupper_ext_nranges - 1].mn = wc;
up[rl. mapupper _ext_nranges - 1].max = wc;
up[rl. mapupper_ext_nranges - 1].nmap =
ast up = ctn;

}
if ((w_category(&l, sizeof (rl), f) <0)

(wr_category(ct, sizeof (*ct) * rl.runetype_ext_nranges,
(wr_category(lo, sizeof (*lo) * rl.napl ower_ext_nranges,
(wr_category(up, sizeof (*up) * rl.nmapupper_ext_nranges,

return;

}

cl ose_category(f);

sizeof (*1o) * rl.mapl ower _ext_nranges);

= wc;
= ctn->ctype;

Wwe;
ct n->t ol ower ;

ct n- >t oupper;

f)y <0) ||
f) <0) ||
f) <0)) {




