
new/usr/src/cmd/localedef/ctype.c 1

**
 8725 Mon Sep 10 00:05:32 2012
new/usr/src/cmd/localedef/ctype.c
3154 Nonconforming tolower and toupper with UTF-8 locales
Reviewed by: Garrett D’Amore <garrett.damore@gmail.com>
**
______unchanged_portion_omitted_

205 void
206 dump_ctype(void)
207 {
208 FILE *f;
209 _FileRuneLocale rl;
210 ctype_node_t *ctn, *last_ct, *last_lo, *last_up;
211 _FileRuneEntry *ct = NULL;
212 _FileRuneEntry *lo = NULL;
213 _FileRuneEntry *up = NULL;
214 wchar_t wc;
215 #endif /* ! codereview */

217 (void) memset(&rl, 0, sizeof (rl));
218 last_ct = NULL;
219 last_lo = NULL;
220 last_up = NULL;

222 if ((f = open_category()) == NULL)
223 return;

225 (void) memcpy(rl.magic, _FILE_RUNE_MAGIC_1, 8);
226 (void) strncpy(rl.encoding, get_wide_encoding(), sizeof (rl.encoding));

228 /*
229 * Initialize the identity map.
230 */
231 for (wc = 0; (unsigned)wc < _CACHED_RUNES; wc++) {
232 rl.maplower[wc] = wc;
233 rl.mapupper[wc] = wc;
234 }

236 #endif /* ! codereview */
237 for (ctn = avl_first(&ctypes); ctn; ctn = AVL_NEXT(&ctypes, ctn)) {
238 int conflict = 0;
239 #endif /* ! codereview */

241 wc = ctn->wc;
214 wchar_t wc = ctn->wc;
215 int conflict = 0;

243 /*
244 * POSIX requires certain portable characters have
245 * certain types. Add them if they are missing.
246 */
247 if ((wc >= 1) && (wc <= 127)) {
248 if ((wc >= ’A’) && (wc <= ’Z’))
249 ctn->ctype |= _ISUPPER;
250 if ((wc >= ’a’) && (wc <= ’z’))
251 ctn->ctype |= _ISLOWER;
252 if ((wc >= ’0’) && (wc <= ’9’))
253 ctn->ctype |= _ISDIGIT;
254 if (strchr(" \f\n\r\t\v", (char)wc) != NULL)
255 ctn->ctype |= _ISSPACE;
256 if (strchr("0123456789ABCDEFabcdef", (char)wc) != NULL)
257 ctn->ctype |= _ISXDIGIT;
258 if (strchr(" \t", (char)wc))
259 ctn->ctype |= _ISBLANK;

new/usr/src/cmd/localedef/ctype.c 2

261 /*
262 * Technically these settings are only
263 * required for the C locale. However, it
264 * turns out that because of the historical
265 * version of isprint(), we need them for all
266 * locales as well. Note that these are not
267 * necessarily valid punctation characters in
268 * the current language, but ispunct() needs
269 * to return TRUE for them.
270 */
271 if (strchr("!\"’#$%&()*+,-./:;<=>?@[\\]^_‘{|}~",
272 (char)wc))
273 ctn->ctype |= _ISPUNCT;
274 }

276 /*
277 * POSIX also requires that certain types imply
278 * others. Add any inferred types here.
279 */
280 if (ctn->ctype & (_ISUPPER |_ISLOWER))
281 ctn->ctype |= _ISALPHA;
282 if (ctn->ctype & _ISDIGIT)
283 ctn->ctype |= _ISXDIGIT;
284 if (ctn->ctype & _ISBLANK)
285 ctn->ctype |= _ISSPACE;
286 if (ctn->ctype & (_ISALPHA|_ISDIGIT|_ISXDIGIT))
287 ctn->ctype |= _ISGRAPH;
288 if (ctn->ctype & _ISGRAPH)
289 ctn->ctype |= _ISPRINT;

291 /*
292 * Finally, POSIX requires that certain combinations
293 * are invalid. We don’t flag this as a fatal error,
294 * but we will warn about.
295 */
296 if ((ctn->ctype & _ISALPHA) &&
297 (ctn->ctype & (_ISPUNCT|_ISDIGIT)))
298 conflict++;
299 if ((ctn->ctype & _ISPUNCT) &
300 (ctn->ctype & (_ISDIGIT|_ISALPHA|_ISXDIGIT)))
301 conflict++;
302 if ((ctn->ctype & _ISSPACE) && (ctn->ctype & _ISGRAPH))
303 conflict++;
304 if ((ctn->ctype & _ISCNTRL) & _ISPRINT)
305 conflict++;
306 if ((wc == ’ ’) && (ctn->ctype & (_ISPUNCT|_ISGRAPH)))
307 conflict++;

309 if (conflict) {
310 warn("conflicting classes for character 0x%x (%x)",
311 wc, ctn->ctype);
312 }
313 /*
314 * Handle the lower 256 characters using the simple
315 * optimization. Note that if we have not defined the
316 * upper/lower case, then we identity map it.
317 */
318 if ((unsigned)wc < _CACHED_RUNES) {
319 rl.runetype[wc] = ctn->ctype;
320 if (ctn->tolower)
321 rl.maplower[wc] = ctn->tolower;
322 if (ctn->toupper)
323 rl.mapupper[wc] = ctn->toupper;
294 rl.maplower[wc] = ctn->tolower ? ctn->tolower : wc;
295 rl.mapupper[wc] = ctn->toupper ? ctn->toupper : wc;
324 continue;

new/usr/src/cmd/localedef/ctype.c 3

325 }

327 if ((last_ct != NULL) && (last_ct->ctype == ctn->ctype)) {
328 ct[rl.runetype_ext_nranges-1].max = wc;
329 last_ct = ctn;
330 } else {
331 rl.runetype_ext_nranges++;
332 ct = realloc(ct,
333 sizeof (*ct) * rl.runetype_ext_nranges);
334 ct[rl.runetype_ext_nranges - 1].min = wc;
335 ct[rl.runetype_ext_nranges - 1].max = wc;
336 ct[rl.runetype_ext_nranges - 1].map = ctn->ctype;
337 last_ct = ctn;
338 }
339 if (ctn->tolower == 0) {
340 last_lo = NULL;
341 } else if ((last_lo != NULL) &&
342 (last_lo->tolower + 1 == ctn->tolower)) {
343 lo[rl.maplower_ext_nranges-1].max = wc;
344 last_lo = ctn;
345 } else {
346 rl.maplower_ext_nranges++;
347 lo = realloc(lo,
348 sizeof (*lo) * rl.maplower_ext_nranges);
349 lo[rl.maplower_ext_nranges - 1].min = wc;
350 lo[rl.maplower_ext_nranges - 1].max = wc;
351 lo[rl.maplower_ext_nranges - 1].map = ctn->tolower;
352 last_lo = ctn;
353 }

355 if (ctn->toupper == 0) {
356 last_up = NULL;
357 } else if ((last_up != NULL) &&
358 (last_up->toupper + 1 == ctn->toupper)) {
359 up[rl.mapupper_ext_nranges-1].max = wc;
360 last_up = ctn;
361 } else {
362 rl.mapupper_ext_nranges++;
363 up = realloc(up,
364 sizeof (*up) * rl.mapupper_ext_nranges);
365 up[rl.mapupper_ext_nranges - 1].min = wc;
366 up[rl.mapupper_ext_nranges - 1].max = wc;
367 up[rl.mapupper_ext_nranges - 1].map = ctn->toupper;
368 last_up = ctn;
369 }
370 }

372 if ((wr_category(&rl, sizeof (rl), f) < 0) ||
373 (wr_category(ct, sizeof (*ct) * rl.runetype_ext_nranges, f) < 0) ||
374 (wr_category(lo, sizeof (*lo) * rl.maplower_ext_nranges, f) < 0) ||
375 (wr_category(up, sizeof (*up) * rl.mapupper_ext_nranges, f) < 0)) {
376 return;
377 }

379 close_category(f);
380 }

______unchanged_portion_omitted_

