new usr/src/cnd/ | ocal edef/ctype. c

R R R R

8725 Mon Sep 10 00: 05: 32 2012
new usr/src/cnd/ | ocal edef/ctype.c
3154 Nonconforming tol ower and toupper with UTF-8 | ocal es
Revi ewed by: Garrett D Anore <garrett.danore@nuil.conp

LR

__unchanged_portion_omtted_

205 void

206 dunp_ctype(void)

207 {

208 FI LE *f;

209 _Fil eRuneLocal e rl;

210 ctype_node_t *ctn, *last_ct, *last_|lo, *last_up;

211 _FileRuneEntry *ct = NULL;

212 _FileRuneEntry *lo = NULL;

213 _FileRuneEntry *up = NULL;

214 wchar _t WC;

215 #endif /* | codereview */

217 (voi d) memset(&rl 0, sizeof (rl));

218 last _ct = NULL;

219 last | o = NULL;

220 last _up = NULL;

222 if ((f = open_category()) == NULL)

223 return;

225 (void) nencpy(rl.magic, _FILE_ RUNE.MAG C 1, 8);

226 (void) strncpy(rl.encoding, get_wide_ encodi ng(), sizeof (rl.encoding));
228 I*

229 * Initialize the identity map.

230 */

231 for (we = 0; (unsigned)we < _CACHED _RUNES; wc++) {

232 rl. mapl oner[we] = we;

233 rl. mapupper[wc] = wc;

234 }

236 #endif /* | codereview */

237 for (ctn = avl _first(&types); ctn; ctn = AVL_NEXT(&ctypes, ctn)) {
238 int conflict = O;

239 #endif /* | codereview */

241 wec = ctn->wc;

214 wchar _t wc = ctn->wc;

215 int conflict = O;

243 /*

244 * POSI X requires certain portable characters have
245 * certain types. Add themif they are m ssing.
246 */

247 if ((we >=1) && (wc <= 127)) {

248 if ((we >="A) & (w <='272"))

249 ctn->ctype | = _| SUPPER

250 if ((we>"a") & (w <="2"))

251 ctn->ctype | = _I SLOAER,

252 if ((we >='0") && (wc <='9"))

253 ctn->ctype |= _ISDIGAT,;

254 if (strchr(" \finmr\t\v", (char)wc) != NULL)
255 ctn->ctype | = ISSPACE

256 if (strchr("0123456789ABCDEFabcdef ", (char)we) !'= NULL)
257 ctn- >ctype |= _ISXDIGT;

258 if (strchr(" (char)we))

259 ctn- >ct ype | = _1 SBLANK;

new usr/src/cnd/ | ocal edef/ctype. c

261
262
263
264
265
266
267
268
269
270
271
272
273
274

276
277
278
279
280
281
282
283
284
285
286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
294
295
324

* Technically these settings are only
* required for the Clocale. However, it
* turns out that because of the historical
* version of isprint(), we need themfor all
* |ocales as well. Note that these are not
* necessarily valid punctation characters in
* the current |anguage, but ispunct() needs
* to return TRUE for them
*

/
f

(strchr("!\ " #$9%&R()*+, -./:; <=>2@\\1"_“{|}~",
(char)we))
ctn->ctype | = _| SPUNCT;

/*
* POSI X al so requires that certain types inply
* others. Add any inferred types here.

if (ctn->ctype & (_I SUPPER | _| SLOVER))

ctn->ctype | = _| SALPHA;
if (ctn->ctype & _ISDIAT)
ctn—>ctype |= _ISXDIG T,
if (ctn->ctype & _I SBLANK)
ctn->ctype | = _| SSPACE;
if (ctn->ctype & (_I SALPHA| ISDIGT| _ISXDIGAT))
ctn->ctype | = _| SGRAPH,
if (ctn->ctype & _I SGRAPH)
ctn->ctype | = _I SPRINT;

* Finally, POSIX requires that certain conbinations
* are invalid. W don't flag this as a fatal error,
* but we will warn about.
*
/
if ((ctn->ctype & _I SALPHA) &&
(ctn->ctype & (_ISPUNCT| _ISDIGAT)))
conflict++;
if ((ctn->ctype & _I SPUNCT) &
(ctn->ctype & (_ISDIG T| _I SALPHA| ISXDIG T)))
conflict++
if ((ctn->ctype & _I SSPACE) && (ctn->ctype & _| SGRAPH))
conflict++
if ((ctn->ctype & _I SCNTRL) & _I SPRINT)
confllct++
if ((we ==" ") & (ctn->ctype & (_I SPUNCT| _I SGRAPH)))
conflict++;

if (conflict) {
warn("conflicting classes for character Ox% (%)",
we, ctn->ctype);

*

* Handl e the | ower 256 characters using the sinple

* optimzation. Note that if we have not defined the
* upper/lower case, then we identity map it.

*/

}
/

if ((unsigned)we < _CACHED RUNES) {
rl.runetype[w] = ctn->ctype;
if (ctn->tol ower)
rl. mapl oner[wc] = ctn->tol ower;
if (ctn->toupper)
rl . mapupper[wc] = ctn->toupper;
rl. mapl ower[we] = ctn->tol ower ? ctn->tol ower : wc;
rl . mapupper[we] = ctn->toupper ? ctn->toupper : wc;
conti nue;

new usr/src/cnd/ | ocal edef/ctype. c

325

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

372
373
374
375
376
377

379

380 }
__unchanged_portion_onitted_

}

if ((last_ct !'= NULL) && (last_ct->ctype == ctn->ctype)) {

ct[rl.runetype_ext_nranges-1].nmax = wc;
last_ct = ctn;
} else {
rl.runetype_ext_nranges++;
ct = realloc(ct,

sizeof (*ct) * rl.runetype_ext_nranges);

ct[rl.runetype_ext_nranges - 1].nmin = wc;
ct[rl.runetype_ext_nranges - 1].nax ;
ct[rl.runetype_ext_nranges - 1].nmap
last_ct = ctn;

i1f (ctn->tol ower == 0)

last _| o = NULL;

} elseif ((last_lo !'= NULL) &&

(last_l o->tolower + 1 == ctn->tolower)) {

I o[rl. mapl ower _ext_nranges-1].max = wc;
last_lo = ctn;

} else {

| . mapl ower _ext _nranges++;

o =realloc(lo,

lo[rl.mapl ower _ext_nranges - 1].min = wc;
lo[rl.mapl ower _ext_nranges - 1].max = ;
o[rl.mapl ower _ext_nranges - 1].map =
last_lo = ctn;

}

if (ctn->toupper == 0)

last _up = NUL
} else if ((last_up = NULL) &&
(1 ast _up->toupper + 1 == ctn->toupper)) {
up[rl. mapupper_ext_nranges-1].mx = wc;
last_up = ;

rl. mapupper _ext _nranges++;
up = realloc(up,

sizeof (*up) * rl.napupper_ext_nranges);

up[rl. mapupper_ext_nranges - 1].mn = wc;
up[rl. mapupper _ext_nranges - 1].max = wc;
up[rl. mapupper_ext_nranges - 1].nmap =
ast up = ctn;

}
if ((w_category(&l, sizeof (rl), f) <0)

(wr_category(ct, sizeof (*ct) * rl.runetype_ext_nranges,
(wr_category(lo, sizeof (*lo) * rl.napl ower_ext_nranges,
(wr_category(up, sizeof (*up) * rl.nmapupper_ext_nranges,

return;

}

cl ose_category(f);

sizeof (*1o) * rl.mapl ower _ext_nranges);

= wc;
= ctn->ctype;

Wwe;
ct n->t ol ower ;

ct n- >t oupper;

f)y <0) ||
f) <0) ||
f) <0)) {

