1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 14 * Copyright 2012 Garrett D'Amore <garrett@damore.org> All rights reserved. 15 */ 16 17 /* 18 * The functions in this file convert from the standard multibyte forms 19 * to the wide character forms used internally by libc. Unfortunately, 20 * this approach means that we need a method for each and every encoding. 21 */ 22 23 #include <stdlib.h> 24 #include <wchar.h> 25 #include <string.h> 26 #include <note.h> 27 #include <sys/types.h> 28 #include "localedef.h" 29 30 static int towide_none(wchar_t *, const char *, unsigned); 31 static int towide_utf8(wchar_t *, const char *, unsigned); 32 static int towide_big5(wchar_t *, const char *, unsigned); 33 static int towide_gbk(wchar_t *, const char *, unsigned); 34 static int towide_gb2312(wchar_t *, const char *, unsigned); 35 static int towide_gb18030(wchar_t *, const char *, unsigned); 36 static int towide_mskanji(wchar_t *, const char *, unsigned); 37 static int towide_euccn(wchar_t *, const char *, unsigned); 38 static int towide_eucjp(wchar_t *, const char *, unsigned); 39 static int towide_euckr(wchar_t *, const char *, unsigned); 40 static int towide_euctw(wchar_t *, const char *, unsigned); 41 42 static int tomb_none(char *, wchar_t); 43 static int tomb_utf8(char *, wchar_t); 44 static int tomb_mbs(char *, wchar_t); 45 46 static int (*_towide)(wchar_t *, const char *, unsigned) = towide_none; 47 static int (*_tomb)(char *, wchar_t) = tomb_none; 48 static const char *_encoding = "NONE"; 49 static int _nbits = 7; 50 51 /* 52 * Table of supported encodings. We only bother to list the multibyte 53 * encodings here, because single byte locales are handed by "NONE". 54 */ 55 static struct { 56 const char *name; 57 /* the name that the underlying libc implemenation uses */ 58 const char *cname; 59 /* the maximum number of bits required for priorities */ 60 int nbits; 61 int (*towide)(wchar_t *, const char *, unsigned); 62 int (*tomb)(char *, wchar_t); 63 } mb_encodings[] = { 64 /* 65 * UTF8 values max out at 0x1fffff (although in theory there could 66 * be later extensions, but it won't happen.) This means we only need 67 * 21 bits to be able to encode the entire range of priorities. 68 */ 69 { "UTF-8", "UTF-8", 21, towide_utf8, tomb_utf8 }, 70 { "UTF8", "UTF-8", 21, towide_utf8, tomb_utf8 }, 71 { "utf8", "UTF-8", 21, towide_utf8, tomb_utf8 }, 72 { "utf-8", "UTF-8", 21, towide_utf8, tomb_utf8 }, 73 74 { "EUC-CN", "EUC-CN", 16, towide_euccn, tomb_mbs }, 75 { "eucCN", "EUC-CN", 16, towide_euccn, tomb_mbs }, 76 /* 77 * Becuase the 3-byte form of EUC-JP use the same leading byte, 78 * only 17 bits required to provide unique priorities. (The low 79 * bit of that first byte is set.) By setting this value low, 80 * we can get by with only 3 bytes in the strxfrm expansion. 81 */ 82 { "EUC-JP", "EUC-JP", 17, towide_eucjp, tomb_mbs }, 83 { "eucJP", "EUC-JP", 17, towide_eucjp, tomb_mbs }, 84 85 { "EUC-KR", "EUC-KR", 16, towide_euckr, tomb_mbs }, 86 { "eucKR", "EUC-KR", 16, towide_euckr, tomb_mbs }, 87 /* 88 * EUC-TW uses 2 bytes most of the time, but 4 bytes if the 89 * high order byte is 0x8E. However, with 4 byte encodings, 90 * the third byte will be A0-B0. So we only need to consider 91 * the lower order 24 bits for collation. 92 */ 93 { "EUC-TW", "EUC-TW", 24, towide_euctw, tomb_mbs }, 94 { "eucTW", "EUC-TW", 24, towide_euctw, tomb_mbs }, 95 96 { "MS_Kanji", "MSKanji", 16, towide_mskanji, tomb_mbs }, 97 { "MSKanji", "MSKanji", 16, towide_mskanji, tomb_mbs }, 98 { "PCK", "MSKanji", 16, towide_mskanji, tomb_mbs }, 99 { "SJIS", "MSKanji", 16, towide_mskanji, tomb_mbs }, 100 { "Shift_JIS", "MSKanji", 16, towide_mskanji, tomb_mbs }, 101 102 { "BIG5", "BIG5", 16, towide_big5, tomb_mbs }, 103 { "big5", "BIG5", 16, towide_big5, tomb_mbs }, 104 { "Big5", "BIG5", 16, towide_big5, tomb_mbs }, 105 106 { "GBK", "GBK", 16, towide_gbk, tomb_mbs }, 107 108 /* 109 * GB18030 can get away with just 31 bits. This is because the 110 * high order bit is always set for 4 byte values, and the 111 * at least one of the other bits in that 4 byte value will 112 * be non-zero. 113 */ 114 { "GB18030", "GB18030", 31, towide_gb18030, tomb_mbs }, 115 116 /* 117 * This should probably be an aliase for euc-cn, or vice versa. 118 */ 119 { "GB2312", "GB2312", 16, towide_gb2312, tomb_mbs }, 120 121 { NULL, NULL }, 122 }; 123 124 static char * 125 show_mb(const char *mb) 126 { 127 static char buf[64]; 128 129 /* ASCII stuff we just print */ 130 if (isascii(*mb) && isgraph(*mb)) { 131 buf[0] = *mb; 132 buf[1] = 0; 133 return (buf); 134 } 135 buf[0] = 0; 136 while (*mb != 0) { 137 char scr[8]; 138 (void) snprintf(scr, sizeof (scr), "\\x%02x", *mb); 139 (void) strlcat(buf, scr, sizeof (buf)); 140 mb++; 141 } 142 return (buf); 143 } 144 145 static char *widemsg; 146 147 void 148 werr(const char *fmt, ...) 149 { 150 char *msg; 151 152 va_list va; 153 va_start(va, fmt); 154 (void) vasprintf(&msg, fmt, va); 155 va_end(va); 156 157 free(widemsg); 158 widemsg = msg; 159 } 160 161 /* 162 * This is used for 8-bit encodings. 163 */ 164 /* ARGSUSED */ 165 int 166 towide_none(wchar_t *c, const char *mb, unsigned n) 167 { 168 _NOTE(ARGUNUSED(n)); 169 170 if (mb_cur_max != 1) { 171 werr("invalid or unsupported multibyte locale"); 172 return (-1); 173 } 174 *c = (uint8_t)*mb; 175 return (1); 176 } 177 178 int 179 tomb_none(char *mb, wchar_t wc) 180 { 181 if (mb_cur_max != 1) { 182 werr("invalid or unsupported multibyte locale"); 183 return (-1); 184 } 185 *(uint8_t *)mb = (wc & 0xff); 186 mb[1] = 0; 187 return (1); 188 } 189 190 /* 191 * UTF-8 stores wide characters in UTF-32 form. 192 */ 193 int 194 towide_utf8(wchar_t *wc, const char *mb, unsigned n) 195 { 196 wchar_t c; 197 int nb; 198 int lv; /* lowest legal value */ 199 int i; 200 const uint8_t *s = (const uint8_t *)mb; 201 202 c = *s; 203 204 if ((c & 0x80) == 0) { 205 /* 7-bit ASCII */ 206 *wc = c; 207 return (1); 208 } else if ((c & 0xe0) == 0xc0) { 209 /* u80-u7ff - two bytes encoded */ 210 nb = 2; 211 lv = 0x80; 212 c &= ~0xe0; 213 } else if ((c & 0xf0) == 0xe0) { 214 /* u800-uffff - three bytes encoded */ 215 nb = 3; 216 lv = 0x800; 217 c &= ~0xf0; 218 } else if ((c & 0xf8) == 0xf0) { 219 /* u1000-u1fffff - four bytes encoded */ 220 nb = 4; 221 lv = 0x1000; 222 c &= ~0xf8; 223 } else { 224 /* 5 and 6 byte encodings are not legal unicode */ 225 werr("utf8 encoding too large (%s)", show_mb(mb)); 226 return (-1); 227 } 228 if (nb > n) { 229 werr("incomplete utf8 sequence (%s)", show_mb(mb)); 230 return (-1); 231 } 232 233 for (i = 1; i < nb; i++) { 234 if (((s[i]) & 0xc0) != 0x80) { 235 werr("illegal utf8 byte (%x)", s[i]); 236 return (-1); 237 } 238 c <<= 6; 239 c |= (s[i] & 0x3f); 240 } 241 242 if (c < lv) { 243 werr("illegal redundant utf8 encoding (%s)", show_mb(mb)); 244 return (-1); 245 } 246 *wc = c; 247 return (nb); 248 } 249 250 int 251 tomb_utf8(char *mb, wchar_t wc) 252 { 253 uint8_t *s = (uint8_t *)mb; 254 uint8_t msk; 255 int cnt; 256 int i; 257 258 if (wc <= 0x7f) { 259 s[0] = wc & 0x7f; 260 s[1] = 0; 261 return (1); 262 } 263 if (wc <= 0x7ff) { 264 cnt = 2; 265 msk = 0xc0; 266 } else if (wc <= 0xffff) { 267 cnt = 3; 268 msk = 0xe0; 269 } else if (wc <= 0x1fffff) { 270 cnt = 4; 271 msk = 0xf0; 272 } else { 273 werr("illegal uf8 char (%x)", wc); 274 return (-1); 275 } 276 for (i = cnt - 1; i; i--) { 277 s[i] = (wc & 0x3f) | 0x80; 278 wc >>= 6; 279 } 280 s[0] = (msk) | wc; 281 s[cnt] = 0; 282 return (cnt); 283 } 284 285 /* 286 * Several encodings share a simplistic dual byte encoding. In these 287 * forms, they all indicate that a two byte sequence is to be used if 288 * the first byte has its high bit set. They all store this simple 289 * encoding as a 16-bit value, although a great many of the possible 290 * code points are not used in most character sets. This gives a possible 291 * set of just over 32,000 valid code points. 292 * 293 * 0x00 - 0x7f - 1 byte encoding 294 * 0x80 - 0x7fff - illegal 295 * 0x8000 - 0xffff - 2 byte encoding 296 */ 297 static int 298 towide_dbcs(wchar_t *wc, const char *mb, unsigned n) 299 { 300 wchar_t c; 301 302 c = *(uint8_t *)mb; 303 304 if ((c & 0x80) == 0) { 305 /* 7-bit */ 306 *wc = c; 307 return (1); 308 } 309 if (n < 2) { 310 werr("incomplete character sequence (%s)", show_mb(mb)); 311 return (-1); 312 } 313 314 /* Store both bytes as a single 16-bit wide. */ 315 c <<= 8; 316 c |= (uint8_t)(mb[1]); 317 *wc = c; 318 return (2); 319 } 320 321 /* 322 * Most multibyte locales just convert the wide character to the multibyte 323 * form by stripping leading null bytes, and writing the 32-bit quantity 324 * in big-endian order. 325 */ 326 int 327 tomb_mbs(char *mb, wchar_t wc) 328 { 329 uint8_t *s = (uint8_t *)mb; 330 int n = 0, c; 331 332 if ((wc & 0xff000000U) != 0) { 333 n = 4; 334 } else if ((wc & 0x00ff0000U) != 0) { 335 n = 3; 336 } else if ((wc & 0x0000ff00U) != 0) { 337 n = 2; 338 } else { 339 n = 1; 340 } 341 c = n; 342 while (n) { 343 n--; 344 s[n] = wc & 0xff; 345 wc >>= 8; 346 } 347 /* ensure null termination */ 348 s[c] = 0; 349 return (c); 350 } 351 352 353 /* 354 * big5 is a simple dual byte character set. 355 */ 356 int 357 towide_big5(wchar_t *wc, const char *mb, unsigned n) 358 { 359 return (towide_dbcs(wc, mb, n)); 360 } 361 362 /* 363 * GBK encodes wides in the same way that big5 does, the high order 364 * bit of the first byte indicates a double byte character. 365 */ 366 int 367 towide_gbk(wchar_t *wc, const char *mb, unsigned n) 368 { 369 return (towide_dbcs(wc, mb, n)); 370 } 371 372 /* 373 * GB2312 is another DBCS. Its cleaner than others in that the second 374 * byte does not encode ASCII, but it supports characters. 375 */ 376 int 377 towide_gb2312(wchar_t *wc, const char *mb, unsigned n) 378 { 379 return (towide_dbcs(wc, mb, n)); 380 } 381 382 /* 383 * GB18030. This encodes as 8, 16, or 32-bits. 384 * 7-bit values are in 1 byte, 4 byte sequences are used when 385 * the second byte encodes 0x30-39 and all other sequences are 2 bytes. 386 */ 387 int 388 towide_gb18030(wchar_t *wc, const char *mb, unsigned n) 389 { 390 wchar_t c; 391 392 c = *(uint8_t *)mb; 393 394 if ((c & 0x80) == 0) { 395 /* 7-bit */ 396 *wc = c; 397 return (1); 398 } 399 if (n < 2) { 400 werr("incomplete character sequence (%s)", show_mb(mb)); 401 return (-1); 402 } 403 404 /* pull in the second byte */ 405 c <<= 8; 406 c |= (uint8_t)(mb[1]); 407 408 if (((c & 0xff) >= 0x30) && ((c & 0xff) <= 0x39)) { 409 if (n < 4) { 410 werr("incomplete 4-byte character sequence (%s)", 411 show_mb(mb)); 412 return (-1); 413 } 414 c <<= 8; 415 c |= (uint8_t)(mb[2]); 416 c <<= 8; 417 c |= (uint8_t)(mb[3]); 418 *wc = c; 419 return (4); 420 } 421 422 *wc = c; 423 return (2); 424 } 425 426 /* 427 * MS-Kanji (aka SJIS) is almost a clean DBCS like the others, but it 428 * also has a range of single byte characters above 0x80. (0xa1-0xdf). 429 */ 430 int 431 towide_mskanji(wchar_t *wc, const char *mb, unsigned n) 432 { 433 wchar_t c; 434 435 c = *(uint8_t *)mb; 436 437 if ((c < 0x80) || ((c > 0xa0) && (c < 0xe0))) { 438 /* 7-bit */ 439 *wc = c; 440 return (1); 441 } 442 443 if (n < 2) { 444 werr("incomplete character sequence (%s)", show_mb(mb)); 445 return (-1); 446 } 447 448 /* Store both bytes as a single 16-bit wide. */ 449 c <<= 8; 450 c |= (uint8_t)(mb[1]); 451 *wc = c; 452 return (2); 453 } 454 455 /* 456 * EUC forms. EUC encodings are "variable". FreeBSD carries some additional 457 * variable data to encode these, but we're going to treat each as independent 458 * instead. Its the only way we can sensibly move forward. 459 * 460 * Note that the way in which the different EUC forms vary is how wide 461 * CS2 and CS3 are and what the first byte of them is. 462 */ 463 static int 464 towide_euc_impl(wchar_t *wc, const char *mb, unsigned n, 465 uint8_t cs2, uint8_t cs2width, uint8_t cs3, uint8_t cs3width) 466 { 467 int i; 468 int width; 469 wchar_t c; 470 471 c = *(uint8_t *)mb; 472 473 /* 474 * All variations of EUC encode 7-bit ASCII as one byte, and use 475 * additional bytes for more than that. 476 */ 477 if ((c & 0x80) == 0) { 478 /* 7-bit */ 479 *wc = c; 480 return (1); 481 } 482 483 /* 484 * All EUC variants reserve 0xa1-0xff to identify CS1, which 485 * is always two bytes wide. Note that unused CS will be zero, 486 * and that cannot be true because we know that the high order 487 * bit must be set. 488 */ 489 if (c >= 0xa1) { 490 width = 2; 491 } else if (c == cs2) { 492 width = cs2width; 493 } else if (c == cs3) { 494 width = cs3width; 495 } 496 497 if (n < width) { 498 werr("incomplete character sequence (%s)", show_mb(mb)); 499 return (-1); 500 } 501 502 for (i = 1; i < width; i++) { 503 /* pull in the next byte */ 504 c <<= 8; 505 c |= (uint8_t)(mb[i]); 506 } 507 508 *wc = c; 509 return (width); 510 } 511 512 /* 513 * EUC-CN encodes as follows: 514 * 515 * Code set 0 (ASCII): 0x21-0x7E 516 * Code set 1 (CNS 11643-1992 Plane 1): 0xA1A1-0xFEFE 517 * Code set 2: unused 518 * Code set 3: unused 519 */ 520 int 521 towide_euccn(wchar_t *wc, const char *mb, unsigned n) 522 { 523 return (towide_euc_impl(wc, mb, n, 0x8e, 4, 0, 0)); 524 } 525 526 /* 527 * EUC-JP encodes as follows: 528 * 529 * Code set 0 (ASCII or JIS X 0201-1976 Roman): 0x21-0x7E 530 * Code set 1 (JIS X 0208): 0xA1A1-0xFEFE 531 * Code set 2 (half-width katakana): 0x8EA1-0x8EDF 532 * Code set 3 (JIS X 0212-1990): 0x8FA1A1-0x8FFEFE 533 */ 534 int 535 towide_eucjp(wchar_t *wc, const char *mb, unsigned n) 536 { 537 return (towide_euc_impl(wc, mb, n, 0x8e, 2, 0x8f, 3)); 538 } 539 540 /* 541 * EUC-KR encodes as follows: 542 * 543 * Code set 0 (ASCII or KS C 5636-1993): 0x21-0x7E 544 * Code set 1 (KS C 5601-1992): 0xA1A1-0xFEFE 545 * Code set 2: unused 546 * Code set 3: unused 547 */ 548 int 549 towide_euckr(wchar_t *wc, const char *mb, unsigned n) 550 { 551 return (towide_euc_impl(wc, mb, n, 0, 0, 0, 0)); 552 } 553 554 /* 555 * EUC-TW encodes as follows: 556 * 557 * Code set 0 (ASCII): 0x21-0x7E 558 * Code set 1 (CNS 11643-1992 Plane 1): 0xA1A1-0xFEFE 559 * Code set 2 (CNS 11643-1992 Planes 1-16): 0x8EA1A1A1-0x8EB0FEFE 560 * Code set 3: unused 561 */ 562 int 563 towide_euctw(wchar_t *wc, const char *mb, unsigned n) 564 { 565 return (towide_euc_impl(wc, mb, n, 0x8e, 4, 0, 0)); 566 } 567 568 /* 569 * Public entry points. 570 */ 571 572 int 573 to_wide(wchar_t *wc, const char *mb) 574 { 575 /* this won't fail hard */ 576 return (_towide(wc, mb, strlen(mb))); 577 } 578 579 int 580 to_mb(char *mb, wchar_t wc) 581 { 582 int rv; 583 584 if ((rv = _tomb(mb, wc)) < 0) { 585 errf(widemsg); 586 free(widemsg); 587 widemsg = NULL; 588 } 589 return (rv); 590 } 591 592 char * 593 to_mb_string(const wchar_t *wcs) 594 { 595 char *mbs; 596 char *ptr; 597 int len; 598 599 mbs = malloc((wcslen(wcs) * mb_cur_max) + 1); 600 if (mbs == NULL) { 601 errf("out of memory"); 602 return (NULL); 603 } 604 ptr = mbs; 605 while (*wcs) { 606 if ((len = to_mb(ptr, *wcs)) < 0) { 607 INTERR; 608 free(mbs); 609 return (NULL); 610 } 611 wcs++; 612 ptr += len; 613 } 614 *ptr = 0; 615 return (mbs); 616 } 617 618 void 619 set_wide_encoding(const char *encoding) 620 { 621 int i; 622 623 _towide = towide_none; 624 _tomb = tomb_none; 625 _encoding = "NONE"; 626 _nbits = 8; 627 628 for (i = 0; mb_encodings[i].name; i++) { 629 if (strcasecmp(encoding, mb_encodings[i].name) == 0) { 630 _towide = mb_encodings[i].towide; 631 _tomb = mb_encodings[i].tomb; 632 _encoding = mb_encodings[i].cname; 633 _nbits = mb_encodings[i].nbits; 634 break; 635 } 636 } 637 } 638 639 const char * 640 get_wide_encoding(void) 641 { 642 return (_encoding); 643 } 644 645 int 646 max_wide(void) 647 { 648 return ((int)((1U << _nbits) - 1)); 649 }