1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * MAC Services Module 28 * 29 * The GLDv3 framework locking - The MAC layer 30 * -------------------------------------------- 31 * 32 * The MAC layer is central to the GLD framework and can provide the locking 33 * framework needed for itself and for the use of MAC clients. MAC end points 34 * are fairly disjoint and don't share a lot of state. So a coarse grained 35 * multi-threading scheme is to single thread all create/modify/delete or set 36 * type of control operations on a per mac end point while allowing data threads 37 * concurrently. 38 * 39 * Control operations (set) that modify a mac end point are always serialized on 40 * a per mac end point basis, We have at most 1 such thread per mac end point 41 * at a time. 42 * 43 * All other operations that are not serialized are essentially multi-threaded. 44 * For example a control operation (get) like getting statistics which may not 45 * care about reading values atomically or data threads sending or receiving 46 * data. Mostly these type of operations don't modify the control state. Any 47 * state these operations care about are protected using traditional locks. 48 * 49 * The perimeter only serializes serial operations. It does not imply there 50 * aren't any other concurrent operations. However a serialized operation may 51 * sometimes need to make sure it is the only thread. In this case it needs 52 * to use reference counting mechanisms to cv_wait until any current data 53 * threads are done. 54 * 55 * The mac layer itself does not hold any locks across a call to another layer. 56 * The perimeter is however held across a down call to the driver to make the 57 * whole control operation atomic with respect to other control operations. 58 * Also the data path and get type control operations may proceed concurrently. 59 * These operations synchronize with the single serial operation on a given mac 60 * end point using regular locks. The perimeter ensures that conflicting 61 * operations like say a mac_multicast_add and a mac_multicast_remove on the 62 * same mac end point don't interfere with each other and also ensures that the 63 * changes in the mac layer and the call to the underlying driver to say add a 64 * multicast address are done atomically without interference from a thread 65 * trying to delete the same address. 66 * 67 * For example, consider 68 * mac_multicst_add() 69 * { 70 * mac_perimeter_enter(); serialize all control operations 71 * 72 * grab list lock protect against access by data threads 73 * add to list 74 * drop list lock 75 * 76 * call driver's mi_multicst 77 * 78 * mac_perimeter_exit(); 79 * } 80 * 81 * To lessen the number of serialization locks and simplify the lock hierarchy, 82 * we serialize all the control operations on a per mac end point by using a 83 * single serialization lock called the perimeter. We allow recursive entry into 84 * the perimeter to facilitate use of this mechanism by both the mac client and 85 * the MAC layer itself. 86 * 87 * MAC client means an entity that does an operation on a mac handle 88 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 89 * an entity that does an operation on a mac handle obtained from a 90 * mac_register. An entity could be both client and driver but on different 91 * handles eg. aggr. and should only make the corresponding mac interface calls 92 * i.e. mac driver interface or mac client interface as appropriate for that 93 * mac handle. 94 * 95 * General rules. 96 * ------------- 97 * 98 * R1. The lock order of upcall threads is natually opposite to downcall 99 * threads. Hence upcalls must not hold any locks across layers for fear of 100 * recursive lock enter and lock order violation. This applies to all layers. 101 * 102 * R2. The perimeter is just another lock. Since it is held in the down 103 * direction, acquiring the perimeter in an upcall is prohibited as it would 104 * cause a deadlock. This applies to all layers. 105 * 106 * Note that upcalls that need to grab the mac perimeter (for example 107 * mac_notify upcalls) can still achieve that by posting the request to a 108 * thread, which can then grab all the required perimeters and locks in the 109 * right global order. Note that in the above example the mac layer iself 110 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 111 * to the client must do that. Please see the aggr code for an example. 112 * 113 * MAC client rules 114 * ---------------- 115 * 116 * R3. A MAC client may use the MAC provided perimeter facility to serialize 117 * control operations on a per mac end point. It does this by by acquring 118 * and holding the perimeter across a sequence of calls to the mac layer. 119 * This ensures atomicity across the entire block of mac calls. In this 120 * model the MAC client must not hold any client locks across the calls to 121 * the mac layer. This model is the preferred solution. 122 * 123 * R4. However if a MAC client has a lot of global state across all mac end 124 * points the per mac end point serialization may not be sufficient. In this 125 * case the client may choose to use global locks or use its own serialization. 126 * To avoid deadlocks, these client layer locks held across the mac calls 127 * in the control path must never be acquired by the data path for the reason 128 * mentioned below. 129 * 130 * (Assume that a control operation that holds a client lock blocks in the 131 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 132 * data thread that holds this reference count, tries to acquire the same 133 * client lock subsequently it will deadlock). 134 * 135 * A MAC client may follow either the R3 model or the R4 model, but can't 136 * mix both. In the former, the hierarchy is Perim -> client locks, but in 137 * the latter it is client locks -> Perim. 138 * 139 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 140 * context since they may block while trying to acquire the perimeter. 141 * In addition some calls may block waiting for upcall refcnts to come down to 142 * zero. 143 * 144 * R6. MAC clients must make sure that they are single threaded and all threads 145 * from the top (in particular data threads) have finished before calling 146 * mac_client_close. The MAC framework does not track the number of client 147 * threads using the mac client handle. Also mac clients must make sure 148 * they have undone all the control operations before calling mac_client_close. 149 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 150 * mac_unicast_add/mac_multicast_add. 151 * 152 * MAC framework rules 153 * ------------------- 154 * 155 * R7. The mac layer itself must not hold any mac layer locks (except the mac 156 * perimeter) across a call to any other layer from the mac layer. The call to 157 * any other layer could be via mi_* entry points, classifier entry points into 158 * the driver or via upcall pointers into layers above. The mac perimeter may 159 * be acquired or held only in the down direction, for e.g. when calling into 160 * a mi_* driver enty point to provide atomicity of the operation. 161 * 162 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 163 * mac driver interfaces, the MAC layer must provide a cut out for control 164 * interfaces like upcall notifications and start them in a separate thread. 165 * 166 * R9. Note that locking order also implies a plumbing order. For example 167 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 168 * to plumb in any other order must be failed at mac_open time, otherwise it 169 * could lead to deadlocks due to inverse locking order. 170 * 171 * R10. MAC driver interfaces must not block since the driver could call them 172 * in interrupt context. 173 * 174 * R11. Walkers must preferably not hold any locks while calling walker 175 * callbacks. Instead these can operate on reference counts. In simple 176 * callbacks it may be ok to hold a lock and call the callbacks, but this is 177 * harder to maintain in the general case of arbitrary callbacks. 178 * 179 * R12. The MAC layer must protect upcall notification callbacks using reference 180 * counts rather than holding locks across the callbacks. 181 * 182 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 183 * sure that any pointers (such as mac ring pointers) it passes to the driver 184 * remain valid until mac unregister time. Currently the mac layer achieves 185 * this by using generation numbers for rings and freeing the mac rings only 186 * at unregister time. The MAC layer must provide a layer of indirection and 187 * must not expose underlying driver rings or driver data structures/pointers 188 * directly to MAC clients. 189 * 190 * MAC driver rules 191 * ---------------- 192 * 193 * R14. It would be preferable if MAC drivers don't hold any locks across any 194 * mac call. However at a minimum they must not hold any locks across data 195 * upcalls. They must also make sure that all references to mac data structures 196 * are cleaned up and that it is single threaded at mac_unregister time. 197 * 198 * R15. MAC driver interfaces don't block and so the action may be done 199 * asynchronously in a separate thread as for example handling notifications. 200 * The driver must not assume that the action is complete when the call 201 * returns. 202 * 203 * R16. Drivers must maintain a generation number per Rx ring, and pass it 204 * back to mac_rx_ring(); They are expected to increment the generation 205 * number whenever the ring's stop routine is invoked. 206 * See comments in mac_rx_ring(); 207 * 208 * R17 Similarly mi_stop is another synchronization point and the driver must 209 * ensure that all upcalls are done and there won't be any future upcall 210 * before returning from mi_stop. 211 * 212 * R18. The driver may assume that all set/modify control operations via 213 * the mi_* entry points are single threaded on a per mac end point. 214 * 215 * Lock and Perimeter hierarchy scenarios 216 * --------------------------------------- 217 * 218 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 219 * 220 * ft_lock -> fe_lock [mac_flow_lookup] 221 * 222 * mi_rw_lock -> fe_lock [mac_bcast_send] 223 * 224 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 225 * 226 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 227 * 228 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 229 * 230 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 231 * client to driver. In the case of clients that explictly use the mac provided 232 * perimeter mechanism for its serialization, the hierarchy is 233 * Perimeter -> mac layer locks, since the client never holds any locks across 234 * the mac calls. In the case of clients that use its own locks the hierarchy 235 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 236 * calls mac_perim_enter/exit in this case. 237 * 238 * Subflow creation rules 239 * --------------------------- 240 * o In case of a user specified cpulist present on underlying link and flows, 241 * the flows cpulist must be a subset of the underlying link. 242 * o In case of a user specified fanout mode present on link and flow, the 243 * subflow fanout count has to be less than or equal to that of the 244 * underlying link. The cpu-bindings for the subflows will be a subset of 245 * the underlying link. 246 * o In case if no cpulist specified on both underlying link and flow, the 247 * underlying link relies on a MAC tunable to provide out of box fanout. 248 * The subflow will have no cpulist (the subflow will be unbound) 249 * o In case if no cpulist is specified on the underlying link, a subflow can 250 * carry either a user-specified cpulist or fanout count. The cpu-bindings 251 * for the subflow will not adhere to restriction that they need to be subset 252 * of the underlying link. 253 * o In case where the underlying link is carrying either a user specified 254 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 255 * created unbound. 256 * o While creating unbound subflows, bandwidth mode changes attempt to 257 * figure a right fanout count. In such cases the fanout count will override 258 * the unbound cpu-binding behavior. 259 * o In addition to this, while cycling between flow and link properties, we 260 * impose a restriction that if a link property has a subflow with 261 * user-specified attributes, we will not allow changing the link property. 262 * The administrator needs to reset all the user specified properties for the 263 * subflows before attempting a link property change. 264 * Some of the above rules can be overridden by specifying additional command 265 * line options while creating or modifying link or subflow properties. 266 */ 267 268 #include <sys/types.h> 269 #include <sys/conf.h> 270 #include <sys/id_space.h> 271 #include <sys/esunddi.h> 272 #include <sys/stat.h> 273 #include <sys/mkdev.h> 274 #include <sys/stream.h> 275 #include <sys/strsun.h> 276 #include <sys/strsubr.h> 277 #include <sys/dlpi.h> 278 #include <sys/list.h> 279 #include <sys/modhash.h> 280 #include <sys/mac_provider.h> 281 #include <sys/mac_client_impl.h> 282 #include <sys/mac_soft_ring.h> 283 #include <sys/mac_stat.h> 284 #include <sys/mac_impl.h> 285 #include <sys/mac.h> 286 #include <sys/dls.h> 287 #include <sys/dld.h> 288 #include <sys/modctl.h> 289 #include <sys/fs/dv_node.h> 290 #include <sys/thread.h> 291 #include <sys/proc.h> 292 #include <sys/callb.h> 293 #include <sys/cpuvar.h> 294 #include <sys/atomic.h> 295 #include <sys/bitmap.h> 296 #include <sys/sdt.h> 297 #include <sys/mac_flow.h> 298 #include <sys/ddi_intr_impl.h> 299 #include <sys/disp.h> 300 #include <sys/sdt.h> 301 #include <sys/vnic.h> 302 #include <sys/vnic_impl.h> 303 #include <sys/vlan.h> 304 #include <inet/ip.h> 305 #include <inet/ip6.h> 306 #include <sys/exacct.h> 307 #include <sys/exacct_impl.h> 308 #include <inet/nd.h> 309 #include <sys/ethernet.h> 310 #include <sys/pool.h> 311 #include <sys/pool_pset.h> 312 #include <sys/cpupart.h> 313 #include <inet/wifi_ioctl.h> 314 #include <net/wpa.h> 315 316 #define IMPL_HASHSZ 67 /* prime */ 317 318 kmem_cache_t *i_mac_impl_cachep; 319 mod_hash_t *i_mac_impl_hash; 320 krwlock_t i_mac_impl_lock; 321 uint_t i_mac_impl_count; 322 static kmem_cache_t *mac_ring_cache; 323 static id_space_t *minor_ids; 324 static uint32_t minor_count; 325 static pool_event_cb_t mac_pool_event_reg; 326 327 /* 328 * Logging stuff. Perhaps mac_logging_interval could be broken into 329 * mac_flow_log_interval and mac_link_log_interval if we want to be 330 * able to schedule them differently. 331 */ 332 uint_t mac_logging_interval; 333 boolean_t mac_flow_log_enable; 334 boolean_t mac_link_log_enable; 335 timeout_id_t mac_logging_timer; 336 337 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 338 int mac_dbg = 0; 339 340 #define MACTYPE_KMODDIR "mac" 341 #define MACTYPE_HASHSZ 67 342 static mod_hash_t *i_mactype_hash; 343 /* 344 * i_mactype_lock synchronizes threads that obtain references to mactype_t 345 * structures through i_mactype_getplugin(). 346 */ 347 static kmutex_t i_mactype_lock; 348 349 /* 350 * mac_tx_percpu_cnt 351 * 352 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 353 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 354 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 355 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 356 */ 357 int mac_tx_percpu_cnt; 358 int mac_tx_percpu_cnt_max = 128; 359 360 /* 361 * Call back functions for the bridge module. These are guaranteed to be valid 362 * when holding a reference on a link or when holding mip->mi_bridge_lock and 363 * mi_bridge_link is non-NULL. 364 */ 365 mac_bridge_tx_t mac_bridge_tx_cb; 366 mac_bridge_rx_t mac_bridge_rx_cb; 367 mac_bridge_ref_t mac_bridge_ref_cb; 368 mac_bridge_ls_t mac_bridge_ls_cb; 369 370 static int i_mac_constructor(void *, void *, int); 371 static void i_mac_destructor(void *, void *); 372 static int i_mac_ring_ctor(void *, void *, int); 373 static void i_mac_ring_dtor(void *, void *); 374 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 375 void mac_tx_client_flush(mac_client_impl_t *); 376 void mac_tx_client_block(mac_client_impl_t *); 377 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 378 static int mac_start_group_and_rings(mac_group_t *); 379 static void mac_stop_group_and_rings(mac_group_t *); 380 static void mac_pool_event_cb(pool_event_t, int, void *); 381 382 typedef struct netinfo_s { 383 list_node_t ni_link; 384 void *ni_record; 385 int ni_size; 386 int ni_type; 387 } netinfo_t; 388 389 /* 390 * Module initialization functions. 391 */ 392 393 void 394 mac_init(void) 395 { 396 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 397 boot_max_ncpus); 398 399 /* Upper bound is mac_tx_percpu_cnt_max */ 400 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 401 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 402 403 if (mac_tx_percpu_cnt < 1) { 404 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 405 mac_tx_percpu_cnt = 1; 406 } 407 408 ASSERT(mac_tx_percpu_cnt >= 1); 409 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 410 /* 411 * Make it of the form 2**N - 1 in the range 412 * [0 .. mac_tx_percpu_cnt_max - 1] 413 */ 414 mac_tx_percpu_cnt--; 415 416 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 417 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 418 NULL, NULL, NULL, 0); 419 ASSERT(i_mac_impl_cachep != NULL); 420 421 mac_ring_cache = kmem_cache_create("mac_ring_cache", 422 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 423 NULL, NULL, 0); 424 ASSERT(mac_ring_cache != NULL); 425 426 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 427 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 428 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 429 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 430 431 mac_flow_init(); 432 mac_soft_ring_init(); 433 mac_bcast_init(); 434 mac_client_init(); 435 436 i_mac_impl_count = 0; 437 438 i_mactype_hash = mod_hash_create_extended("mactype_hash", 439 MACTYPE_HASHSZ, 440 mod_hash_null_keydtor, mod_hash_null_valdtor, 441 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 442 443 /* 444 * Allocate an id space to manage minor numbers. The range of the 445 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 446 * leaves half of the 32-bit minors available for driver private use. 447 */ 448 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 449 MAC_PRIVATE_MINOR-1); 450 ASSERT(minor_ids != NULL); 451 minor_count = 0; 452 453 /* Let's default to 20 seconds */ 454 mac_logging_interval = 20; 455 mac_flow_log_enable = B_FALSE; 456 mac_link_log_enable = B_FALSE; 457 mac_logging_timer = 0; 458 459 /* Register to be notified of noteworthy pools events */ 460 mac_pool_event_reg.pec_func = mac_pool_event_cb; 461 mac_pool_event_reg.pec_arg = NULL; 462 pool_event_cb_register(&mac_pool_event_reg); 463 } 464 465 int 466 mac_fini(void) 467 { 468 469 if (i_mac_impl_count > 0 || minor_count > 0) 470 return (EBUSY); 471 472 pool_event_cb_unregister(&mac_pool_event_reg); 473 474 id_space_destroy(minor_ids); 475 mac_flow_fini(); 476 477 mod_hash_destroy_hash(i_mac_impl_hash); 478 rw_destroy(&i_mac_impl_lock); 479 480 mac_client_fini(); 481 kmem_cache_destroy(mac_ring_cache); 482 483 mod_hash_destroy_hash(i_mactype_hash); 484 mac_soft_ring_finish(); 485 486 487 return (0); 488 } 489 490 /* 491 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 492 * (e.g. softmac) may pass in a NULL ops argument. 493 */ 494 void 495 mac_init_ops(struct dev_ops *ops, const char *name) 496 { 497 major_t major = ddi_name_to_major((char *)name); 498 499 /* 500 * By returning on error below, we are not letting the driver continue 501 * in an undefined context. The mac_register() function will faill if 502 * DN_GLDV3_DRIVER isn't set. 503 */ 504 if (major == DDI_MAJOR_T_NONE) 505 return; 506 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 507 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 508 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 509 if (ops != NULL) 510 dld_init_ops(ops, name); 511 } 512 513 void 514 mac_fini_ops(struct dev_ops *ops) 515 { 516 dld_fini_ops(ops); 517 } 518 519 /*ARGSUSED*/ 520 static int 521 i_mac_constructor(void *buf, void *arg, int kmflag) 522 { 523 mac_impl_t *mip = buf; 524 525 bzero(buf, sizeof (mac_impl_t)); 526 527 mip->mi_linkstate = LINK_STATE_UNKNOWN; 528 529 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 530 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 531 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 532 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 533 534 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 535 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 536 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 537 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 538 539 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 540 541 return (0); 542 } 543 544 /*ARGSUSED*/ 545 static void 546 i_mac_destructor(void *buf, void *arg) 547 { 548 mac_impl_t *mip = buf; 549 mac_cb_info_t *mcbi; 550 551 ASSERT(mip->mi_ref == 0); 552 ASSERT(mip->mi_active == 0); 553 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 554 ASSERT(mip->mi_devpromisc == 0); 555 ASSERT(mip->mi_ksp == NULL); 556 ASSERT(mip->mi_kstat_count == 0); 557 ASSERT(mip->mi_nclients == 0); 558 ASSERT(mip->mi_nactiveclients == 0); 559 ASSERT(mip->mi_single_active_client == NULL); 560 ASSERT(mip->mi_state_flags == 0); 561 ASSERT(mip->mi_factory_addr == NULL); 562 ASSERT(mip->mi_factory_addr_num == 0); 563 ASSERT(mip->mi_default_tx_ring == NULL); 564 565 mcbi = &mip->mi_notify_cb_info; 566 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 567 ASSERT(mip->mi_notify_bits == 0); 568 ASSERT(mip->mi_notify_thread == NULL); 569 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 570 mcbi->mcbi_lockp = NULL; 571 572 mcbi = &mip->mi_promisc_cb_info; 573 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 574 ASSERT(mip->mi_promisc_list == NULL); 575 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 576 mcbi->mcbi_lockp = NULL; 577 578 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 579 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 580 581 rw_destroy(&mip->mi_rw_lock); 582 583 mutex_destroy(&mip->mi_promisc_lock); 584 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 585 mutex_destroy(&mip->mi_notify_lock); 586 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 587 mutex_destroy(&mip->mi_ring_lock); 588 589 ASSERT(mip->mi_bridge_link == NULL); 590 } 591 592 /* ARGSUSED */ 593 static int 594 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 595 { 596 mac_ring_t *ring = (mac_ring_t *)buf; 597 598 bzero(ring, sizeof (mac_ring_t)); 599 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 600 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 601 ring->mr_state = MR_FREE; 602 return (0); 603 } 604 605 /* ARGSUSED */ 606 static void 607 i_mac_ring_dtor(void *buf, void *arg) 608 { 609 mac_ring_t *ring = (mac_ring_t *)buf; 610 611 cv_destroy(&ring->mr_cv); 612 mutex_destroy(&ring->mr_lock); 613 } 614 615 /* 616 * Common functions to do mac callback addition and deletion. Currently this is 617 * used by promisc callbacks and notify callbacks. List addition and deletion 618 * need to take care of list walkers. List walkers in general, can't hold list 619 * locks and make upcall callbacks due to potential lock order and recursive 620 * reentry issues. Instead list walkers increment the list walker count to mark 621 * the presence of a walker thread. Addition can be carefully done to ensure 622 * that the list walker always sees either the old list or the new list. 623 * However the deletion can't be done while the walker is active, instead the 624 * deleting thread simply marks the entry as logically deleted. The last walker 625 * physically deletes and frees up the logically deleted entries when the walk 626 * is complete. 627 */ 628 void 629 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 630 mac_cb_t *mcb_elem) 631 { 632 mac_cb_t *p; 633 mac_cb_t **pp; 634 635 /* Verify it is not already in the list */ 636 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 637 if (p == mcb_elem) 638 break; 639 } 640 VERIFY(p == NULL); 641 642 /* 643 * Add it to the head of the callback list. The membar ensures that 644 * the following list pointer manipulations reach global visibility 645 * in exactly the program order below. 646 */ 647 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 648 649 mcb_elem->mcb_nextp = *mcb_head; 650 membar_producer(); 651 *mcb_head = mcb_elem; 652 } 653 654 /* 655 * Mark the entry as logically deleted. If there aren't any walkers unlink 656 * from the list. In either case return the corresponding status. 657 */ 658 boolean_t 659 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 660 mac_cb_t *mcb_elem) 661 { 662 mac_cb_t *p; 663 mac_cb_t **pp; 664 665 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 666 /* 667 * Search the callback list for the entry to be removed 668 */ 669 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 670 if (p == mcb_elem) 671 break; 672 } 673 VERIFY(p != NULL); 674 675 /* 676 * If there are walkers just mark it as deleted and the last walker 677 * will remove from the list and free it. 678 */ 679 if (mcbi->mcbi_walker_cnt != 0) { 680 p->mcb_flags |= MCB_CONDEMNED; 681 mcbi->mcbi_del_cnt++; 682 return (B_FALSE); 683 } 684 685 ASSERT(mcbi->mcbi_del_cnt == 0); 686 *pp = p->mcb_nextp; 687 p->mcb_nextp = NULL; 688 return (B_TRUE); 689 } 690 691 /* 692 * Wait for all pending callback removals to be completed 693 */ 694 void 695 mac_callback_remove_wait(mac_cb_info_t *mcbi) 696 { 697 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 698 while (mcbi->mcbi_del_cnt != 0) { 699 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 700 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 701 } 702 } 703 704 /* 705 * The last mac callback walker does the cleanup. Walk the list and unlik 706 * all the logically deleted entries and construct a temporary list of 707 * removed entries. Return the list of removed entries to the caller. 708 */ 709 mac_cb_t * 710 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 711 { 712 mac_cb_t *p; 713 mac_cb_t **pp; 714 mac_cb_t *rmlist = NULL; /* List of removed elements */ 715 int cnt = 0; 716 717 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 718 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 719 720 pp = mcb_head; 721 while (*pp != NULL) { 722 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 723 p = *pp; 724 *pp = p->mcb_nextp; 725 p->mcb_nextp = rmlist; 726 rmlist = p; 727 cnt++; 728 continue; 729 } 730 pp = &(*pp)->mcb_nextp; 731 } 732 733 ASSERT(mcbi->mcbi_del_cnt == cnt); 734 mcbi->mcbi_del_cnt = 0; 735 return (rmlist); 736 } 737 738 boolean_t 739 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 740 { 741 mac_cb_t *mcb; 742 743 /* Verify it is not already in the list */ 744 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 745 if (mcb == mcb_elem) 746 return (B_TRUE); 747 } 748 749 return (B_FALSE); 750 } 751 752 boolean_t 753 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 754 { 755 boolean_t found; 756 757 mutex_enter(mcbi->mcbi_lockp); 758 found = mac_callback_lookup(mcb_headp, mcb_elem); 759 mutex_exit(mcbi->mcbi_lockp); 760 761 return (found); 762 } 763 764 /* Free the list of removed callbacks */ 765 void 766 mac_callback_free(mac_cb_t *rmlist) 767 { 768 mac_cb_t *mcb; 769 mac_cb_t *mcb_next; 770 771 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 772 mcb_next = mcb->mcb_nextp; 773 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 774 } 775 } 776 777 /* 778 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 779 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 780 * is only a single shared total walker count, and an entry can't be physically 781 * unlinked if a walker is active on either list. The last walker does this 782 * cleanup of logically deleted entries. 783 */ 784 void 785 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 786 { 787 mac_cb_t *rmlist; 788 mac_cb_t *mcb; 789 mac_cb_t *mcb_next; 790 mac_promisc_impl_t *mpip; 791 792 /* 793 * Construct a temporary list of deleted callbacks by walking the 794 * the mi_promisc_list. Then for each entry in the temporary list, 795 * remove it from the mci_promisc_list and free the entry. 796 */ 797 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 798 &mip->mi_promisc_list); 799 800 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 801 mcb_next = mcb->mcb_nextp; 802 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 803 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 804 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 805 mcb->mcb_flags = 0; 806 mcb->mcb_nextp = NULL; 807 kmem_cache_free(mac_promisc_impl_cache, mpip); 808 } 809 } 810 811 void 812 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 813 { 814 mac_cb_info_t *mcbi; 815 816 /* 817 * Signal the notify thread even after mi_ref has become zero and 818 * mi_disabled is set. The synchronization with the notify thread 819 * happens in mac_unregister and that implies the driver must make 820 * sure it is single-threaded (with respect to mac calls) and that 821 * all pending mac calls have returned before it calls mac_unregister 822 */ 823 rw_enter(&i_mac_impl_lock, RW_READER); 824 if (mip->mi_state_flags & MIS_DISABLED) 825 goto exit; 826 827 /* 828 * Guard against incorrect notifications. (Running a newer 829 * mac client against an older implementation?) 830 */ 831 if (type >= MAC_NNOTE) 832 goto exit; 833 834 mcbi = &mip->mi_notify_cb_info; 835 mutex_enter(mcbi->mcbi_lockp); 836 mip->mi_notify_bits |= (1 << type); 837 cv_broadcast(&mcbi->mcbi_cv); 838 mutex_exit(mcbi->mcbi_lockp); 839 840 exit: 841 rw_exit(&i_mac_impl_lock); 842 } 843 844 /* 845 * Mac serialization primitives. Please see the block comment at the 846 * top of the file. 847 */ 848 void 849 i_mac_perim_enter(mac_impl_t *mip) 850 { 851 mac_client_impl_t *mcip; 852 853 if (mip->mi_state_flags & MIS_IS_VNIC) { 854 /* 855 * This is a VNIC. Return the lower mac since that is what 856 * we want to serialize on. 857 */ 858 mcip = mac_vnic_lower(mip); 859 mip = mcip->mci_mip; 860 } 861 862 mutex_enter(&mip->mi_perim_lock); 863 if (mip->mi_perim_owner == curthread) { 864 mip->mi_perim_ocnt++; 865 mutex_exit(&mip->mi_perim_lock); 866 return; 867 } 868 869 while (mip->mi_perim_owner != NULL) 870 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 871 872 mip->mi_perim_owner = curthread; 873 ASSERT(mip->mi_perim_ocnt == 0); 874 mip->mi_perim_ocnt++; 875 #ifdef DEBUG 876 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 877 MAC_PERIM_STACK_DEPTH); 878 #endif 879 mutex_exit(&mip->mi_perim_lock); 880 } 881 882 int 883 i_mac_perim_enter_nowait(mac_impl_t *mip) 884 { 885 /* 886 * The vnic is a special case, since the serialization is done based 887 * on the lower mac. If the lower mac is busy, it does not imply the 888 * vnic can't be unregistered. But in the case of other drivers, 889 * a busy perimeter or open mac handles implies that the mac is busy 890 * and can't be unregistered. 891 */ 892 if (mip->mi_state_flags & MIS_IS_VNIC) { 893 i_mac_perim_enter(mip); 894 return (0); 895 } 896 897 mutex_enter(&mip->mi_perim_lock); 898 if (mip->mi_perim_owner != NULL) { 899 mutex_exit(&mip->mi_perim_lock); 900 return (EBUSY); 901 } 902 ASSERT(mip->mi_perim_ocnt == 0); 903 mip->mi_perim_owner = curthread; 904 mip->mi_perim_ocnt++; 905 mutex_exit(&mip->mi_perim_lock); 906 907 return (0); 908 } 909 910 void 911 i_mac_perim_exit(mac_impl_t *mip) 912 { 913 mac_client_impl_t *mcip; 914 915 if (mip->mi_state_flags & MIS_IS_VNIC) { 916 /* 917 * This is a VNIC. Return the lower mac since that is what 918 * we want to serialize on. 919 */ 920 mcip = mac_vnic_lower(mip); 921 mip = mcip->mci_mip; 922 } 923 924 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 925 926 mutex_enter(&mip->mi_perim_lock); 927 if (--mip->mi_perim_ocnt == 0) { 928 mip->mi_perim_owner = NULL; 929 cv_signal(&mip->mi_perim_cv); 930 } 931 mutex_exit(&mip->mi_perim_lock); 932 } 933 934 /* 935 * Returns whether the current thread holds the mac perimeter. Used in making 936 * assertions. 937 */ 938 boolean_t 939 mac_perim_held(mac_handle_t mh) 940 { 941 mac_impl_t *mip = (mac_impl_t *)mh; 942 mac_client_impl_t *mcip; 943 944 if (mip->mi_state_flags & MIS_IS_VNIC) { 945 /* 946 * This is a VNIC. Return the lower mac since that is what 947 * we want to serialize on. 948 */ 949 mcip = mac_vnic_lower(mip); 950 mip = mcip->mci_mip; 951 } 952 return (mip->mi_perim_owner == curthread); 953 } 954 955 /* 956 * mac client interfaces to enter the mac perimeter of a mac end point, given 957 * its mac handle, or macname or linkid. 958 */ 959 void 960 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 961 { 962 mac_impl_t *mip = (mac_impl_t *)mh; 963 964 i_mac_perim_enter(mip); 965 /* 966 * The mac_perim_handle_t returned encodes the 'mip' and whether a 967 * mac_open has been done internally while entering the perimeter. 968 * This information is used in mac_perim_exit 969 */ 970 MAC_ENCODE_MPH(*mphp, mip, 0); 971 } 972 973 int 974 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 975 { 976 int err; 977 mac_handle_t mh; 978 979 if ((err = mac_open(name, &mh)) != 0) 980 return (err); 981 982 mac_perim_enter_by_mh(mh, mphp); 983 MAC_ENCODE_MPH(*mphp, mh, 1); 984 return (0); 985 } 986 987 int 988 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 989 { 990 int err; 991 mac_handle_t mh; 992 993 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 994 return (err); 995 996 mac_perim_enter_by_mh(mh, mphp); 997 MAC_ENCODE_MPH(*mphp, mh, 1); 998 return (0); 999 } 1000 1001 void 1002 mac_perim_exit(mac_perim_handle_t mph) 1003 { 1004 mac_impl_t *mip; 1005 boolean_t need_close; 1006 1007 MAC_DECODE_MPH(mph, mip, need_close); 1008 i_mac_perim_exit(mip); 1009 if (need_close) 1010 mac_close((mac_handle_t)mip); 1011 } 1012 1013 int 1014 mac_hold(const char *macname, mac_impl_t **pmip) 1015 { 1016 mac_impl_t *mip; 1017 int err; 1018 1019 /* 1020 * Check the device name length to make sure it won't overflow our 1021 * buffer. 1022 */ 1023 if (strlen(macname) >= MAXNAMELEN) 1024 return (EINVAL); 1025 1026 /* 1027 * Look up its entry in the global hash table. 1028 */ 1029 rw_enter(&i_mac_impl_lock, RW_WRITER); 1030 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1031 (mod_hash_val_t *)&mip); 1032 1033 if (err != 0) { 1034 rw_exit(&i_mac_impl_lock); 1035 return (ENOENT); 1036 } 1037 1038 if (mip->mi_state_flags & MIS_DISABLED) { 1039 rw_exit(&i_mac_impl_lock); 1040 return (ENOENT); 1041 } 1042 1043 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1044 rw_exit(&i_mac_impl_lock); 1045 return (EBUSY); 1046 } 1047 1048 mip->mi_ref++; 1049 rw_exit(&i_mac_impl_lock); 1050 1051 *pmip = mip; 1052 return (0); 1053 } 1054 1055 void 1056 mac_rele(mac_impl_t *mip) 1057 { 1058 rw_enter(&i_mac_impl_lock, RW_WRITER); 1059 ASSERT(mip->mi_ref != 0); 1060 if (--mip->mi_ref == 0) { 1061 ASSERT(mip->mi_nactiveclients == 0 && 1062 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1063 } 1064 rw_exit(&i_mac_impl_lock); 1065 } 1066 1067 /* 1068 * Private GLDv3 function to start a MAC instance. 1069 */ 1070 int 1071 mac_start(mac_handle_t mh) 1072 { 1073 mac_impl_t *mip = (mac_impl_t *)mh; 1074 int err = 0; 1075 mac_group_t *defgrp; 1076 1077 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1078 ASSERT(mip->mi_start != NULL); 1079 1080 /* 1081 * Check whether the device is already started. 1082 */ 1083 if (mip->mi_active++ == 0) { 1084 mac_ring_t *ring = NULL; 1085 1086 /* 1087 * Start the device. 1088 */ 1089 err = mip->mi_start(mip->mi_driver); 1090 if (err != 0) { 1091 mip->mi_active--; 1092 return (err); 1093 } 1094 1095 /* 1096 * Start the default tx ring. 1097 */ 1098 if (mip->mi_default_tx_ring != NULL) { 1099 1100 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1101 if (ring->mr_state != MR_INUSE) { 1102 err = mac_start_ring(ring); 1103 if (err != 0) { 1104 mip->mi_active--; 1105 return (err); 1106 } 1107 } 1108 } 1109 1110 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1111 /* 1112 * Start the default ring, since it will be needed 1113 * to receive broadcast and multicast traffic for 1114 * both primary and non-primary MAC clients. 1115 */ 1116 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1117 err = mac_start_group_and_rings(defgrp); 1118 if (err != 0) { 1119 mip->mi_active--; 1120 if ((ring != NULL) && 1121 (ring->mr_state == MR_INUSE)) 1122 mac_stop_ring(ring); 1123 return (err); 1124 } 1125 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1126 } 1127 } 1128 1129 return (err); 1130 } 1131 1132 /* 1133 * Private GLDv3 function to stop a MAC instance. 1134 */ 1135 void 1136 mac_stop(mac_handle_t mh) 1137 { 1138 mac_impl_t *mip = (mac_impl_t *)mh; 1139 mac_group_t *grp; 1140 1141 ASSERT(mip->mi_stop != NULL); 1142 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1143 1144 /* 1145 * Check whether the device is still needed. 1146 */ 1147 ASSERT(mip->mi_active != 0); 1148 if (--mip->mi_active == 0) { 1149 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1150 /* 1151 * There should be no more active clients since the 1152 * MAC is being stopped. Stop the default RX group 1153 * and transition it back to registered state. 1154 * 1155 * When clients are torn down, the groups 1156 * are release via mac_release_rx_group which 1157 * knows the the default group is always in 1158 * started mode since broadcast uses it. So 1159 * we can assert that their are no clients 1160 * (since mac_bcast_add doesn't register itself 1161 * as a client) and group is in SHARED state. 1162 */ 1163 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1164 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1165 mip->mi_nactiveclients == 0); 1166 mac_stop_group_and_rings(grp); 1167 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1168 } 1169 1170 if (mip->mi_default_tx_ring != NULL) { 1171 mac_ring_t *ring; 1172 1173 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1174 if (ring->mr_state == MR_INUSE) { 1175 mac_stop_ring(ring); 1176 ring->mr_flag = 0; 1177 } 1178 } 1179 1180 /* 1181 * Stop the device. 1182 */ 1183 mip->mi_stop(mip->mi_driver); 1184 } 1185 } 1186 1187 int 1188 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1189 { 1190 int err = 0; 1191 1192 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1193 ASSERT(mip->mi_setpromisc != NULL); 1194 1195 if (on) { 1196 /* 1197 * Enable promiscuous mode on the device if not yet enabled. 1198 */ 1199 if (mip->mi_devpromisc++ == 0) { 1200 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1201 if (err != 0) { 1202 mip->mi_devpromisc--; 1203 return (err); 1204 } 1205 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1206 } 1207 } else { 1208 if (mip->mi_devpromisc == 0) 1209 return (EPROTO); 1210 1211 /* 1212 * Disable promiscuous mode on the device if this is the last 1213 * enabling. 1214 */ 1215 if (--mip->mi_devpromisc == 0) { 1216 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1217 if (err != 0) { 1218 mip->mi_devpromisc++; 1219 return (err); 1220 } 1221 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1222 } 1223 } 1224 1225 return (0); 1226 } 1227 1228 /* 1229 * The promiscuity state can change any time. If the caller needs to take 1230 * actions that are atomic with the promiscuity state, then the caller needs 1231 * to bracket the entire sequence with mac_perim_enter/exit 1232 */ 1233 boolean_t 1234 mac_promisc_get(mac_handle_t mh) 1235 { 1236 mac_impl_t *mip = (mac_impl_t *)mh; 1237 1238 /* 1239 * Return the current promiscuity. 1240 */ 1241 return (mip->mi_devpromisc != 0); 1242 } 1243 1244 /* 1245 * Invoked at MAC instance attach time to initialize the list 1246 * of factory MAC addresses supported by a MAC instance. This function 1247 * builds a local cache in the mac_impl_t for the MAC addresses 1248 * supported by the underlying hardware. The MAC clients themselves 1249 * use the mac_addr_factory*() functions to query and reserve 1250 * factory MAC addresses. 1251 */ 1252 void 1253 mac_addr_factory_init(mac_impl_t *mip) 1254 { 1255 mac_capab_multifactaddr_t capab; 1256 uint8_t *addr; 1257 int i; 1258 1259 /* 1260 * First round to see how many factory MAC addresses are available. 1261 */ 1262 bzero(&capab, sizeof (capab)); 1263 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1264 &capab) || (capab.mcm_naddr == 0)) { 1265 /* 1266 * The MAC instance doesn't support multiple factory 1267 * MAC addresses, we're done here. 1268 */ 1269 return; 1270 } 1271 1272 /* 1273 * Allocate the space and get all the factory addresses. 1274 */ 1275 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1276 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1277 1278 mip->mi_factory_addr_num = capab.mcm_naddr; 1279 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1280 sizeof (mac_factory_addr_t), KM_SLEEP); 1281 1282 for (i = 0; i < capab.mcm_naddr; i++) { 1283 bcopy(addr + i * MAXMACADDRLEN, 1284 mip->mi_factory_addr[i].mfa_addr, 1285 mip->mi_type->mt_addr_length); 1286 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1287 } 1288 1289 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1290 } 1291 1292 void 1293 mac_addr_factory_fini(mac_impl_t *mip) 1294 { 1295 if (mip->mi_factory_addr == NULL) { 1296 ASSERT(mip->mi_factory_addr_num == 0); 1297 return; 1298 } 1299 1300 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1301 sizeof (mac_factory_addr_t)); 1302 1303 mip->mi_factory_addr = NULL; 1304 mip->mi_factory_addr_num = 0; 1305 } 1306 1307 /* 1308 * Reserve a factory MAC address. If *slot is set to -1, the function 1309 * attempts to reserve any of the available factory MAC addresses and 1310 * returns the reserved slot id. If no slots are available, the function 1311 * returns ENOSPC. If *slot is not set to -1, the function reserves 1312 * the specified slot if it is available, or returns EBUSY is the slot 1313 * is already used. Returns ENOTSUP if the underlying MAC does not 1314 * support multiple factory addresses. If the slot number is not -1 but 1315 * is invalid, returns EINVAL. 1316 */ 1317 int 1318 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1319 { 1320 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1321 mac_impl_t *mip = mcip->mci_mip; 1322 int i, ret = 0; 1323 1324 i_mac_perim_enter(mip); 1325 /* 1326 * Protect against concurrent readers that may need a self-consistent 1327 * view of the factory addresses 1328 */ 1329 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1330 1331 if (mip->mi_factory_addr_num == 0) { 1332 ret = ENOTSUP; 1333 goto bail; 1334 } 1335 1336 if (*slot != -1) { 1337 /* check the specified slot */ 1338 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1339 ret = EINVAL; 1340 goto bail; 1341 } 1342 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1343 ret = EBUSY; 1344 goto bail; 1345 } 1346 } else { 1347 /* pick the next available slot */ 1348 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1349 if (!mip->mi_factory_addr[i].mfa_in_use) 1350 break; 1351 } 1352 1353 if (i == mip->mi_factory_addr_num) { 1354 ret = ENOSPC; 1355 goto bail; 1356 } 1357 *slot = i+1; 1358 } 1359 1360 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1361 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1362 1363 bail: 1364 rw_exit(&mip->mi_rw_lock); 1365 i_mac_perim_exit(mip); 1366 return (ret); 1367 } 1368 1369 /* 1370 * Release the specified factory MAC address slot. 1371 */ 1372 void 1373 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1374 { 1375 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1376 mac_impl_t *mip = mcip->mci_mip; 1377 1378 i_mac_perim_enter(mip); 1379 /* 1380 * Protect against concurrent readers that may need a self-consistent 1381 * view of the factory addresses 1382 */ 1383 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1384 1385 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1386 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1387 1388 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1389 1390 rw_exit(&mip->mi_rw_lock); 1391 i_mac_perim_exit(mip); 1392 } 1393 1394 /* 1395 * Stores in mac_addr the value of the specified MAC address. Returns 1396 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1397 * The caller must provide a string of at least MAXNAMELEN bytes. 1398 */ 1399 void 1400 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1401 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1402 { 1403 mac_impl_t *mip = (mac_impl_t *)mh; 1404 boolean_t in_use; 1405 1406 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1407 1408 /* 1409 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1410 * and mi_rw_lock 1411 */ 1412 rw_enter(&mip->mi_rw_lock, RW_READER); 1413 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1414 *addr_len = mip->mi_type->mt_addr_length; 1415 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1416 if (in_use && client_name != NULL) { 1417 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1418 client_name, MAXNAMELEN); 1419 } 1420 if (in_use_arg != NULL) 1421 *in_use_arg = in_use; 1422 rw_exit(&mip->mi_rw_lock); 1423 } 1424 1425 /* 1426 * Returns the number of factory MAC addresses (in addition to the 1427 * primary MAC address), 0 if the underlying MAC doesn't support 1428 * that feature. 1429 */ 1430 uint_t 1431 mac_addr_factory_num(mac_handle_t mh) 1432 { 1433 mac_impl_t *mip = (mac_impl_t *)mh; 1434 1435 return (mip->mi_factory_addr_num); 1436 } 1437 1438 1439 void 1440 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1441 { 1442 mac_ring_t *ring; 1443 1444 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1445 ring->mr_flag &= ~flag; 1446 } 1447 1448 /* 1449 * The following mac_hwrings_xxx() functions are private mac client functions 1450 * used by the aggr driver to access and control the underlying HW Rx group 1451 * and rings. In this case, the aggr driver has exclusive control of the 1452 * underlying HW Rx group/rings, it calls the following functions to 1453 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1454 * addresses, or set up the Rx callback. 1455 */ 1456 /* ARGSUSED */ 1457 static void 1458 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1459 mblk_t *mp_chain, boolean_t loopback) 1460 { 1461 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1462 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1463 mac_direct_rx_t proc; 1464 void *arg1; 1465 mac_resource_handle_t arg2; 1466 1467 proc = srs_rx->sr_func; 1468 arg1 = srs_rx->sr_arg1; 1469 arg2 = mac_srs->srs_mrh; 1470 1471 proc(arg1, arg2, mp_chain, NULL); 1472 } 1473 1474 /* 1475 * This function is called to get the list of HW rings that are reserved by 1476 * an exclusive mac client. 1477 * 1478 * Return value: the number of HW rings. 1479 */ 1480 int 1481 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1482 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1483 { 1484 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1485 flow_entry_t *flent = mcip->mci_flent; 1486 mac_group_t *grp; 1487 mac_ring_t *ring; 1488 int cnt = 0; 1489 1490 if (rtype == MAC_RING_TYPE_RX) { 1491 grp = flent->fe_rx_ring_group; 1492 } else if (rtype == MAC_RING_TYPE_TX) { 1493 grp = flent->fe_tx_ring_group; 1494 } else { 1495 ASSERT(B_FALSE); 1496 return (-1); 1497 } 1498 /* 1499 * The mac client did not reserve any RX group, return directly. 1500 * This is probably because the underlying MAC does not support 1501 * any groups. 1502 */ 1503 if (hwgh != NULL) 1504 *hwgh = NULL; 1505 if (grp == NULL) 1506 return (0); 1507 /* 1508 * This group must be reserved by this mac client. 1509 */ 1510 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1511 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1512 1513 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1514 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1515 hwrh[cnt] = (mac_ring_handle_t)ring; 1516 } 1517 if (hwgh != NULL) 1518 *hwgh = (mac_group_handle_t)grp; 1519 1520 return (cnt); 1521 } 1522 1523 /* 1524 * This function is called to get info about Tx/Rx rings. 1525 * 1526 * Return value: returns uint_t which will have various bits set 1527 * that indicates different properties of the ring. 1528 */ 1529 uint_t 1530 mac_hwring_getinfo(mac_ring_handle_t rh) 1531 { 1532 mac_ring_t *ring = (mac_ring_t *)rh; 1533 mac_ring_info_t *info = &ring->mr_info; 1534 1535 return (info->mri_flags); 1536 } 1537 1538 /* 1539 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1540 * setup the RX callback of the mac client which exclusively controls 1541 * HW ring. 1542 */ 1543 void 1544 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1545 mac_ring_handle_t pseudo_rh) 1546 { 1547 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1548 mac_ring_t *pseudo_ring; 1549 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1550 1551 if (pseudo_rh != NULL) { 1552 pseudo_ring = (mac_ring_t *)pseudo_rh; 1553 /* Export the ddi handles to pseudo ring */ 1554 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1555 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1556 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1557 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1558 /* 1559 * Save a pointer to pseudo ring in the hw ring. If 1560 * interrupt handle changes, the hw ring will be 1561 * notified of the change (see mac_ring_intr_set()) 1562 * and the appropriate change has to be made to 1563 * the pseudo ring that has exported the ddi handle. 1564 */ 1565 hw_ring->mr_prh = pseudo_rh; 1566 } 1567 1568 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1569 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1570 mac_srs->srs_mrh = prh; 1571 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1572 } 1573 } 1574 1575 void 1576 mac_hwring_teardown(mac_ring_handle_t hwrh) 1577 { 1578 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1579 mac_soft_ring_set_t *mac_srs; 1580 1581 if (hw_ring == NULL) 1582 return; 1583 hw_ring->mr_prh = NULL; 1584 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1585 mac_srs = hw_ring->mr_srs; 1586 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1587 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1588 mac_srs->srs_mrh = NULL; 1589 } 1590 } 1591 1592 int 1593 mac_hwring_disable_intr(mac_ring_handle_t rh) 1594 { 1595 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1596 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1597 1598 return (intr->mi_disable(intr->mi_handle)); 1599 } 1600 1601 int 1602 mac_hwring_enable_intr(mac_ring_handle_t rh) 1603 { 1604 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1605 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1606 1607 return (intr->mi_enable(intr->mi_handle)); 1608 } 1609 1610 int 1611 mac_hwring_start(mac_ring_handle_t rh) 1612 { 1613 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1614 1615 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1616 return (0); 1617 } 1618 1619 void 1620 mac_hwring_stop(mac_ring_handle_t rh) 1621 { 1622 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1623 1624 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1625 } 1626 1627 mblk_t * 1628 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1629 { 1630 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1631 mac_ring_info_t *info = &rr_ring->mr_info; 1632 1633 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1634 } 1635 1636 /* 1637 * Send packets through a selected tx ring. 1638 */ 1639 mblk_t * 1640 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1641 { 1642 mac_ring_t *ring = (mac_ring_t *)rh; 1643 mac_ring_info_t *info = &ring->mr_info; 1644 1645 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1646 ring->mr_state >= MR_INUSE); 1647 return (info->mri_tx(info->mri_driver, mp)); 1648 } 1649 1650 /* 1651 * Query stats for a particular rx/tx ring 1652 */ 1653 int 1654 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1655 { 1656 mac_ring_t *ring = (mac_ring_t *)rh; 1657 mac_ring_info_t *info = &ring->mr_info; 1658 1659 return (info->mri_stat(info->mri_driver, stat, val)); 1660 } 1661 1662 /* 1663 * Private function that is only used by aggr to send packets through 1664 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1665 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1666 * access to mac_impl_t to send packets through m_tx() entry point. 1667 * It accomplishes this by calling mac_hwring_send_priv() function. 1668 */ 1669 mblk_t * 1670 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1671 { 1672 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1673 mac_impl_t *mip = mcip->mci_mip; 1674 1675 MAC_TX(mip, rh, mp, mcip); 1676 return (mp); 1677 } 1678 1679 int 1680 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1681 { 1682 mac_group_t *group = (mac_group_t *)gh; 1683 1684 return (mac_group_addmac(group, addr)); 1685 } 1686 1687 int 1688 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1689 { 1690 mac_group_t *group = (mac_group_t *)gh; 1691 1692 return (mac_group_remmac(group, addr)); 1693 } 1694 1695 /* 1696 * Set the RX group to be shared/reserved. Note that the group must be 1697 * started/stopped outside of this function. 1698 */ 1699 void 1700 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1701 { 1702 /* 1703 * If there is no change in the group state, just return. 1704 */ 1705 if (grp->mrg_state == state) 1706 return; 1707 1708 switch (state) { 1709 case MAC_GROUP_STATE_RESERVED: 1710 /* 1711 * Successfully reserved the group. 1712 * 1713 * Given that there is an exclusive client controlling this 1714 * group, we enable the group level polling when available, 1715 * so that SRSs get to turn on/off individual rings they's 1716 * assigned to. 1717 */ 1718 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1719 1720 if (grp->mrg_type == MAC_RING_TYPE_RX && 1721 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1722 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1723 } 1724 break; 1725 1726 case MAC_GROUP_STATE_SHARED: 1727 /* 1728 * Set all rings of this group to software classified. 1729 * If the group has an overriding interrupt, then re-enable it. 1730 */ 1731 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1732 1733 if (grp->mrg_type == MAC_RING_TYPE_RX && 1734 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 1735 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1736 } 1737 /* The ring is not available for reservations any more */ 1738 break; 1739 1740 case MAC_GROUP_STATE_REGISTERED: 1741 /* Also callable from mac_register, perim is not held */ 1742 break; 1743 1744 default: 1745 ASSERT(B_FALSE); 1746 break; 1747 } 1748 1749 grp->mrg_state = state; 1750 } 1751 1752 /* 1753 * Quiesce future hardware classified packets for the specified Rx ring 1754 */ 1755 static void 1756 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1757 { 1758 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1759 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1760 1761 mutex_enter(&rx_ring->mr_lock); 1762 rx_ring->mr_flag |= ring_flag; 1763 while (rx_ring->mr_refcnt != 0) 1764 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1765 mutex_exit(&rx_ring->mr_lock); 1766 } 1767 1768 /* 1769 * Please see mac_tx for details about the per cpu locking scheme 1770 */ 1771 static void 1772 mac_tx_lock_all(mac_client_impl_t *mcip) 1773 { 1774 int i; 1775 1776 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1777 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1778 } 1779 1780 static void 1781 mac_tx_unlock_all(mac_client_impl_t *mcip) 1782 { 1783 int i; 1784 1785 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1786 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1787 } 1788 1789 static void 1790 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1791 { 1792 int i; 1793 1794 for (i = mac_tx_percpu_cnt; i > 0; i--) 1795 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1796 } 1797 1798 static int 1799 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1800 { 1801 int i; 1802 int refcnt = 0; 1803 1804 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1805 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1806 1807 return (refcnt); 1808 } 1809 1810 /* 1811 * Stop future Tx packets coming down from the client in preparation for 1812 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1813 * of rings between clients 1814 */ 1815 void 1816 mac_tx_client_block(mac_client_impl_t *mcip) 1817 { 1818 mac_tx_lock_all(mcip); 1819 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1820 while (mac_tx_sum_refcnt(mcip) != 0) { 1821 mac_tx_unlock_allbutzero(mcip); 1822 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1823 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1824 mac_tx_lock_all(mcip); 1825 } 1826 mac_tx_unlock_all(mcip); 1827 } 1828 1829 void 1830 mac_tx_client_unblock(mac_client_impl_t *mcip) 1831 { 1832 mac_tx_lock_all(mcip); 1833 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1834 mac_tx_unlock_all(mcip); 1835 /* 1836 * We may fail to disable flow control for the last MAC_NOTE_TX 1837 * notification because the MAC client is quiesced. Send the 1838 * notification again. 1839 */ 1840 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1841 } 1842 1843 /* 1844 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1845 * quiesce is done. 1846 */ 1847 static void 1848 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1849 { 1850 mutex_enter(&srs->srs_lock); 1851 while (!(srs->srs_state & srs_flag)) 1852 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1853 mutex_exit(&srs->srs_lock); 1854 } 1855 1856 /* 1857 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1858 * works bottom up by cutting off packet flow from the bottommost point in the 1859 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1860 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1861 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1862 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1863 * for the SRS and MR flags. In the former case the threads pause waiting for 1864 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1865 * is also mostly similar to the above. 1866 * 1867 * 1. Stop future hardware classified packets at the lowest level in the mac. 1868 * Remove any hardware classification rule (CONDEMNED case) and mark the 1869 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1870 * from increasing. Upcalls from the driver that come through hardware 1871 * classification will be dropped in mac_rx from now on. Then we wait for 1872 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1873 * sure there aren't any upcall threads from the driver through hardware 1874 * classification. In the case of SRS teardown we also remove the 1875 * classification rule in the driver. 1876 * 1877 * 2. Stop future software classified packets by marking the flow entry with 1878 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1879 * increasing. We also remove the flow entry from the table in the latter 1880 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1881 * that indicates there aren't any active threads using that flow entry. 1882 * 1883 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1884 * SRS worker thread, and the soft ring threads are quiesced in sequence 1885 * with the SRS worker thread serving as a master controller. This 1886 * mechansim is explained in mac_srs_worker_quiesce(). 1887 * 1888 * The restart mechanism to reactivate the SRS and softrings is explained 1889 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1890 * restart sequence. 1891 */ 1892 void 1893 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1894 { 1895 flow_entry_t *flent = srs->srs_flent; 1896 uint_t mr_flag, srs_done_flag; 1897 1898 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1899 ASSERT(!(srs->srs_type & SRST_TX)); 1900 1901 if (srs_quiesce_flag == SRS_CONDEMNED) { 1902 mr_flag = MR_CONDEMNED; 1903 srs_done_flag = SRS_CONDEMNED_DONE; 1904 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1905 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1906 } else { 1907 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1908 mr_flag = MR_QUIESCE; 1909 srs_done_flag = SRS_QUIESCE_DONE; 1910 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1911 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1912 } 1913 1914 if (srs->srs_ring != NULL) { 1915 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1916 } else { 1917 /* 1918 * SRS is driven by software classification. In case 1919 * of CONDEMNED, the top level teardown functions will 1920 * deal with flow removal. 1921 */ 1922 if (srs_quiesce_flag != SRS_CONDEMNED) { 1923 FLOW_MARK(flent, FE_QUIESCE); 1924 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1925 } 1926 } 1927 1928 /* 1929 * Signal the SRS to quiesce itself, and then cv_wait for the 1930 * SRS quiesce to complete. The SRS worker thread will wake us 1931 * up when the quiesce is complete 1932 */ 1933 mac_srs_signal(srs, srs_quiesce_flag); 1934 mac_srs_quiesce_wait(srs, srs_done_flag); 1935 } 1936 1937 /* 1938 * Remove an SRS. 1939 */ 1940 void 1941 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1942 { 1943 flow_entry_t *flent = srs->srs_flent; 1944 int i; 1945 1946 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1947 /* 1948 * Locate and remove our entry in the fe_rx_srs[] array, and 1949 * adjust the fe_rx_srs array entries and array count by 1950 * moving the last entry into the vacated spot. 1951 */ 1952 mutex_enter(&flent->fe_lock); 1953 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1954 if (flent->fe_rx_srs[i] == srs) 1955 break; 1956 } 1957 1958 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1959 if (i != flent->fe_rx_srs_cnt - 1) { 1960 flent->fe_rx_srs[i] = 1961 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1962 i = flent->fe_rx_srs_cnt - 1; 1963 } 1964 1965 flent->fe_rx_srs[i] = NULL; 1966 flent->fe_rx_srs_cnt--; 1967 mutex_exit(&flent->fe_lock); 1968 1969 mac_srs_free(srs); 1970 } 1971 1972 static void 1973 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1974 { 1975 mutex_enter(&srs->srs_lock); 1976 srs->srs_state &= ~flag; 1977 mutex_exit(&srs->srs_lock); 1978 } 1979 1980 void 1981 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1982 { 1983 flow_entry_t *flent = srs->srs_flent; 1984 mac_ring_t *mr; 1985 1986 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1987 ASSERT((srs->srs_type & SRST_TX) == 0); 1988 1989 /* 1990 * This handles a change in the number of SRSs between the quiesce and 1991 * and restart operation of a flow. 1992 */ 1993 if (!SRS_QUIESCED(srs)) 1994 return; 1995 1996 /* 1997 * Signal the SRS to restart itself. Wait for the restart to complete 1998 * Note that we only restart the SRS if it is not marked as 1999 * permanently quiesced. 2000 */ 2001 if (!SRS_QUIESCED_PERMANENT(srs)) { 2002 mac_srs_signal(srs, SRS_RESTART); 2003 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2004 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2005 2006 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2007 } 2008 2009 /* Finally clear the flags to let the packets in */ 2010 mr = srs->srs_ring; 2011 if (mr != NULL) { 2012 MAC_RING_UNMARK(mr, MR_QUIESCE); 2013 /* In case the ring was stopped, safely restart it */ 2014 if (mr->mr_state != MR_INUSE) 2015 (void) mac_start_ring(mr); 2016 } else { 2017 FLOW_UNMARK(flent, FE_QUIESCE); 2018 } 2019 } 2020 2021 /* 2022 * Temporary quiesce of a flow and associated Rx SRS. 2023 * Please see block comment above mac_rx_classify_flow_rem. 2024 */ 2025 /* ARGSUSED */ 2026 int 2027 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2028 { 2029 int i; 2030 2031 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2032 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2033 SRS_QUIESCE); 2034 } 2035 return (0); 2036 } 2037 2038 /* 2039 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2040 * Please see block comment above mac_rx_classify_flow_rem 2041 */ 2042 /* ARGSUSED */ 2043 int 2044 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2045 { 2046 int i; 2047 2048 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2049 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2050 2051 return (0); 2052 } 2053 2054 void 2055 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2056 { 2057 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2058 flow_entry_t *flent = mcip->mci_flent; 2059 mac_impl_t *mip = mcip->mci_mip; 2060 mac_soft_ring_set_t *mac_srs; 2061 int i; 2062 2063 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2064 2065 if (flent == NULL) 2066 return; 2067 2068 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2069 mac_srs = flent->fe_rx_srs[i]; 2070 mutex_enter(&mac_srs->srs_lock); 2071 if (on) 2072 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2073 else 2074 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2075 mutex_exit(&mac_srs->srs_lock); 2076 } 2077 } 2078 2079 void 2080 mac_rx_client_quiesce(mac_client_handle_t mch) 2081 { 2082 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2083 mac_impl_t *mip = mcip->mci_mip; 2084 2085 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2086 2087 if (MCIP_DATAPATH_SETUP(mcip)) { 2088 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2089 NULL); 2090 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2091 mac_rx_classify_flow_quiesce, NULL); 2092 } 2093 } 2094 2095 void 2096 mac_rx_client_restart(mac_client_handle_t mch) 2097 { 2098 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2099 mac_impl_t *mip = mcip->mci_mip; 2100 2101 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2102 2103 if (MCIP_DATAPATH_SETUP(mcip)) { 2104 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2105 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2106 mac_rx_classify_flow_restart, NULL); 2107 } 2108 } 2109 2110 /* 2111 * This function only quiesces the Tx SRS and softring worker threads. Callers 2112 * need to make sure that there aren't any mac client threads doing current or 2113 * future transmits in the mac before calling this function. 2114 */ 2115 void 2116 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2117 { 2118 mac_client_impl_t *mcip = srs->srs_mcip; 2119 2120 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2121 2122 ASSERT(srs->srs_type & SRST_TX); 2123 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2124 srs_quiesce_flag == SRS_QUIESCE); 2125 2126 /* 2127 * Signal the SRS to quiesce itself, and then cv_wait for the 2128 * SRS quiesce to complete. The SRS worker thread will wake us 2129 * up when the quiesce is complete 2130 */ 2131 mac_srs_signal(srs, srs_quiesce_flag); 2132 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2133 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2134 } 2135 2136 void 2137 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2138 { 2139 /* 2140 * Resizing the fanout could result in creation of new SRSs. 2141 * They may not necessarily be in the quiesced state in which 2142 * case it need be restarted 2143 */ 2144 if (!SRS_QUIESCED(srs)) 2145 return; 2146 2147 mac_srs_signal(srs, SRS_RESTART); 2148 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2149 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2150 } 2151 2152 /* 2153 * Temporary quiesce of a flow and associated Rx SRS. 2154 * Please see block comment above mac_rx_srs_quiesce 2155 */ 2156 /* ARGSUSED */ 2157 int 2158 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2159 { 2160 /* 2161 * The fe_tx_srs is null for a subflow on an interface that is 2162 * not plumbed 2163 */ 2164 if (flent->fe_tx_srs != NULL) 2165 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2166 return (0); 2167 } 2168 2169 /* ARGSUSED */ 2170 int 2171 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2172 { 2173 /* 2174 * The fe_tx_srs is null for a subflow on an interface that is 2175 * not plumbed 2176 */ 2177 if (flent->fe_tx_srs != NULL) 2178 mac_tx_srs_restart(flent->fe_tx_srs); 2179 return (0); 2180 } 2181 2182 static void 2183 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2184 { 2185 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2186 2187 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2188 2189 mac_tx_client_block(mcip); 2190 if (MCIP_TX_SRS(mcip) != NULL) { 2191 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2192 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2193 mac_tx_flow_quiesce, NULL); 2194 } 2195 } 2196 2197 void 2198 mac_tx_client_quiesce(mac_client_handle_t mch) 2199 { 2200 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2201 } 2202 2203 void 2204 mac_tx_client_condemn(mac_client_handle_t mch) 2205 { 2206 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2207 } 2208 2209 void 2210 mac_tx_client_restart(mac_client_handle_t mch) 2211 { 2212 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2213 2214 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2215 2216 mac_tx_client_unblock(mcip); 2217 if (MCIP_TX_SRS(mcip) != NULL) { 2218 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2219 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2220 mac_tx_flow_restart, NULL); 2221 } 2222 } 2223 2224 void 2225 mac_tx_client_flush(mac_client_impl_t *mcip) 2226 { 2227 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2228 2229 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2230 mac_tx_client_restart((mac_client_handle_t)mcip); 2231 } 2232 2233 void 2234 mac_client_quiesce(mac_client_impl_t *mcip) 2235 { 2236 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2237 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2238 } 2239 2240 void 2241 mac_client_restart(mac_client_impl_t *mcip) 2242 { 2243 mac_rx_client_restart((mac_client_handle_t)mcip); 2244 mac_tx_client_restart((mac_client_handle_t)mcip); 2245 } 2246 2247 /* 2248 * Allocate a minor number. 2249 */ 2250 minor_t 2251 mac_minor_hold(boolean_t sleep) 2252 { 2253 minor_t minor; 2254 2255 /* 2256 * Grab a value from the arena. 2257 */ 2258 atomic_add_32(&minor_count, 1); 2259 2260 if (sleep) 2261 minor = (uint_t)id_alloc(minor_ids); 2262 else 2263 minor = (uint_t)id_alloc_nosleep(minor_ids); 2264 2265 if (minor == 0) { 2266 atomic_add_32(&minor_count, -1); 2267 return (0); 2268 } 2269 2270 return (minor); 2271 } 2272 2273 /* 2274 * Release a previously allocated minor number. 2275 */ 2276 void 2277 mac_minor_rele(minor_t minor) 2278 { 2279 /* 2280 * Return the value to the arena. 2281 */ 2282 id_free(minor_ids, minor); 2283 atomic_add_32(&minor_count, -1); 2284 } 2285 2286 uint32_t 2287 mac_no_notification(mac_handle_t mh) 2288 { 2289 mac_impl_t *mip = (mac_impl_t *)mh; 2290 2291 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2292 mip->mi_capab_legacy.ml_unsup_note : 0); 2293 } 2294 2295 /* 2296 * Prevent any new opens of this mac in preparation for unregister 2297 */ 2298 int 2299 i_mac_disable(mac_impl_t *mip) 2300 { 2301 mac_client_impl_t *mcip; 2302 2303 rw_enter(&i_mac_impl_lock, RW_WRITER); 2304 if (mip->mi_state_flags & MIS_DISABLED) { 2305 /* Already disabled, return success */ 2306 rw_exit(&i_mac_impl_lock); 2307 return (0); 2308 } 2309 /* 2310 * See if there are any other references to this mac_t (e.g., VLAN's). 2311 * If so return failure. If all the other checks below pass, then 2312 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2313 * any new VLAN's from being created or new mac client opens of this 2314 * mac end point. 2315 */ 2316 if (mip->mi_ref > 0) { 2317 rw_exit(&i_mac_impl_lock); 2318 return (EBUSY); 2319 } 2320 2321 /* 2322 * mac clients must delete all multicast groups they join before 2323 * closing. bcast groups are reference counted, the last client 2324 * to delete the group will wait till the group is physically 2325 * deleted. Since all clients have closed this mac end point 2326 * mi_bcast_ngrps must be zero at this point 2327 */ 2328 ASSERT(mip->mi_bcast_ngrps == 0); 2329 2330 /* 2331 * Don't let go of this if it has some flows. 2332 * All other code guarantees no flows are added to a disabled 2333 * mac, therefore it is sufficient to check for the flow table 2334 * only here. 2335 */ 2336 mcip = mac_primary_client_handle(mip); 2337 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2338 rw_exit(&i_mac_impl_lock); 2339 return (ENOTEMPTY); 2340 } 2341 2342 mip->mi_state_flags |= MIS_DISABLED; 2343 rw_exit(&i_mac_impl_lock); 2344 return (0); 2345 } 2346 2347 int 2348 mac_disable_nowait(mac_handle_t mh) 2349 { 2350 mac_impl_t *mip = (mac_impl_t *)mh; 2351 int err; 2352 2353 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2354 return (err); 2355 err = i_mac_disable(mip); 2356 i_mac_perim_exit(mip); 2357 return (err); 2358 } 2359 2360 int 2361 mac_disable(mac_handle_t mh) 2362 { 2363 mac_impl_t *mip = (mac_impl_t *)mh; 2364 int err; 2365 2366 i_mac_perim_enter(mip); 2367 err = i_mac_disable(mip); 2368 i_mac_perim_exit(mip); 2369 2370 /* 2371 * Clean up notification thread and wait for it to exit. 2372 */ 2373 if (err == 0) 2374 i_mac_notify_exit(mip); 2375 2376 return (err); 2377 } 2378 2379 /* 2380 * Called when the MAC instance has a non empty flow table, to de-multiplex 2381 * incoming packets to the right flow. 2382 * The MAC's rw lock is assumed held as a READER. 2383 */ 2384 /* ARGSUSED */ 2385 static mblk_t * 2386 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2387 { 2388 flow_entry_t *flent = NULL; 2389 uint_t flags = FLOW_INBOUND; 2390 int err; 2391 2392 /* 2393 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2394 * to mac_flow_lookup() so that the VLAN packets can be successfully 2395 * passed to the non-VLAN aggregation flows. 2396 * 2397 * Note that there is possibly a race between this and 2398 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2399 * classified to non-VLAN flows of non-aggregation mac clients. These 2400 * VLAN packets will be then filtered out by the mac module. 2401 */ 2402 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2403 flags |= FLOW_IGNORE_VLAN; 2404 2405 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2406 if (err != 0) { 2407 /* no registered receive function */ 2408 return (mp); 2409 } else { 2410 mac_client_impl_t *mcip; 2411 2412 /* 2413 * This flent might just be an additional one on the MAC client, 2414 * i.e. for classification purposes (different fdesc), however 2415 * the resources, SRS et. al., are in the mci_flent, so if 2416 * this isn't the mci_flent, we need to get it. 2417 */ 2418 if ((mcip = flent->fe_mcip) != NULL && 2419 mcip->mci_flent != flent) { 2420 FLOW_REFRELE(flent); 2421 flent = mcip->mci_flent; 2422 FLOW_TRY_REFHOLD(flent, err); 2423 if (err != 0) 2424 return (mp); 2425 } 2426 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2427 B_FALSE); 2428 FLOW_REFRELE(flent); 2429 } 2430 return (NULL); 2431 } 2432 2433 mblk_t * 2434 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2435 { 2436 mac_impl_t *mip = (mac_impl_t *)mh; 2437 mblk_t *bp, *bp1, **bpp, *list = NULL; 2438 2439 /* 2440 * We walk the chain and attempt to classify each packet. 2441 * The packets that couldn't be classified will be returned 2442 * back to the caller. 2443 */ 2444 bp = mp_chain; 2445 bpp = &list; 2446 while (bp != NULL) { 2447 bp1 = bp; 2448 bp = bp->b_next; 2449 bp1->b_next = NULL; 2450 2451 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2452 *bpp = bp1; 2453 bpp = &bp1->b_next; 2454 } 2455 } 2456 return (list); 2457 } 2458 2459 static int 2460 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2461 { 2462 mac_ring_handle_t ring = arg; 2463 2464 if (flent->fe_tx_srs) 2465 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2466 return (0); 2467 } 2468 2469 void 2470 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2471 { 2472 mac_client_impl_t *cclient; 2473 mac_soft_ring_set_t *mac_srs; 2474 2475 /* 2476 * After grabbing the mi_rw_lock, the list of clients can't change. 2477 * If there are any clients mi_disabled must be B_FALSE and can't 2478 * get set since there are clients. If there aren't any clients we 2479 * don't do anything. In any case the mip has to be valid. The driver 2480 * must make sure that it goes single threaded (with respect to mac 2481 * calls) and wait for all pending mac calls to finish before calling 2482 * mac_unregister. 2483 */ 2484 rw_enter(&i_mac_impl_lock, RW_READER); 2485 if (mip->mi_state_flags & MIS_DISABLED) { 2486 rw_exit(&i_mac_impl_lock); 2487 return; 2488 } 2489 2490 /* 2491 * Get MAC tx srs from walking mac_client_handle list. 2492 */ 2493 rw_enter(&mip->mi_rw_lock, RW_READER); 2494 for (cclient = mip->mi_clients_list; cclient != NULL; 2495 cclient = cclient->mci_client_next) { 2496 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2497 mac_tx_srs_wakeup(mac_srs, ring); 2498 } else { 2499 /* 2500 * Aggr opens underlying ports in exclusive mode 2501 * and registers flow control callbacks using 2502 * mac_tx_client_notify(). When opened in 2503 * exclusive mode, Tx SRS won't be created 2504 * during mac_unicast_add(). 2505 */ 2506 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2507 mac_tx_invoke_callbacks(cclient, 2508 (mac_tx_cookie_t)ring); 2509 } 2510 } 2511 (void) mac_flow_walk(cclient->mci_subflow_tab, 2512 mac_tx_flow_srs_wakeup, ring); 2513 } 2514 rw_exit(&mip->mi_rw_lock); 2515 rw_exit(&i_mac_impl_lock); 2516 } 2517 2518 /* ARGSUSED */ 2519 void 2520 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2521 boolean_t add) 2522 { 2523 mac_impl_t *mip = (mac_impl_t *)mh; 2524 2525 i_mac_perim_enter((mac_impl_t *)mh); 2526 /* 2527 * If no specific refresh function was given then default to the 2528 * driver's m_multicst entry point. 2529 */ 2530 if (refresh == NULL) { 2531 refresh = mip->mi_multicst; 2532 arg = mip->mi_driver; 2533 } 2534 2535 mac_bcast_refresh(mip, refresh, arg, add); 2536 i_mac_perim_exit((mac_impl_t *)mh); 2537 } 2538 2539 void 2540 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2541 { 2542 mac_impl_t *mip = (mac_impl_t *)mh; 2543 2544 /* 2545 * If no specific refresh function was given then default to the 2546 * driver's m_promisc entry point. 2547 */ 2548 if (refresh == NULL) { 2549 refresh = mip->mi_setpromisc; 2550 arg = mip->mi_driver; 2551 } 2552 ASSERT(refresh != NULL); 2553 2554 /* 2555 * Call the refresh function with the current promiscuity. 2556 */ 2557 refresh(arg, (mip->mi_devpromisc != 0)); 2558 } 2559 2560 /* 2561 * The mac client requests that the mac not to change its margin size to 2562 * be less than the specified value. If "current" is B_TRUE, then the client 2563 * requests the mac not to change its margin size to be smaller than the 2564 * current size. Further, return the current margin size value in this case. 2565 * 2566 * We keep every requested size in an ordered list from largest to smallest. 2567 */ 2568 int 2569 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2570 { 2571 mac_impl_t *mip = (mac_impl_t *)mh; 2572 mac_margin_req_t **pp, *p; 2573 int err = 0; 2574 2575 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2576 if (current) 2577 *marginp = mip->mi_margin; 2578 2579 /* 2580 * If the current margin value cannot satisfy the margin requested, 2581 * return ENOTSUP directly. 2582 */ 2583 if (*marginp > mip->mi_margin) { 2584 err = ENOTSUP; 2585 goto done; 2586 } 2587 2588 /* 2589 * Check whether the given margin is already in the list. If so, 2590 * bump the reference count. 2591 */ 2592 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2593 if (p->mmr_margin == *marginp) { 2594 /* 2595 * The margin requested is already in the list, 2596 * so just bump the reference count. 2597 */ 2598 p->mmr_ref++; 2599 goto done; 2600 } 2601 if (p->mmr_margin < *marginp) 2602 break; 2603 } 2604 2605 2606 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2607 p->mmr_margin = *marginp; 2608 p->mmr_ref++; 2609 p->mmr_nextp = *pp; 2610 *pp = p; 2611 2612 done: 2613 rw_exit(&(mip->mi_rw_lock)); 2614 return (err); 2615 } 2616 2617 /* 2618 * The mac client requests to cancel its previous mac_margin_add() request. 2619 * We remove the requested margin size from the list. 2620 */ 2621 int 2622 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2623 { 2624 mac_impl_t *mip = (mac_impl_t *)mh; 2625 mac_margin_req_t **pp, *p; 2626 int err = 0; 2627 2628 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2629 /* 2630 * Find the entry in the list for the given margin. 2631 */ 2632 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2633 if (p->mmr_margin == margin) { 2634 if (--p->mmr_ref == 0) 2635 break; 2636 2637 /* 2638 * There is still a reference to this address so 2639 * there's nothing more to do. 2640 */ 2641 goto done; 2642 } 2643 } 2644 2645 /* 2646 * We did not find an entry for the given margin. 2647 */ 2648 if (p == NULL) { 2649 err = ENOENT; 2650 goto done; 2651 } 2652 2653 ASSERT(p->mmr_ref == 0); 2654 2655 /* 2656 * Remove it from the list. 2657 */ 2658 *pp = p->mmr_nextp; 2659 kmem_free(p, sizeof (mac_margin_req_t)); 2660 done: 2661 rw_exit(&(mip->mi_rw_lock)); 2662 return (err); 2663 } 2664 2665 boolean_t 2666 mac_margin_update(mac_handle_t mh, uint32_t margin) 2667 { 2668 mac_impl_t *mip = (mac_impl_t *)mh; 2669 uint32_t margin_needed = 0; 2670 2671 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2672 2673 if (mip->mi_mmrp != NULL) 2674 margin_needed = mip->mi_mmrp->mmr_margin; 2675 2676 if (margin_needed <= margin) 2677 mip->mi_margin = margin; 2678 2679 rw_exit(&(mip->mi_rw_lock)); 2680 2681 if (margin_needed <= margin) 2682 i_mac_notify(mip, MAC_NOTE_MARGIN); 2683 2684 return (margin_needed <= margin); 2685 } 2686 2687 /* 2688 * MAC Type Plugin functions. 2689 */ 2690 2691 mactype_t * 2692 mactype_getplugin(const char *pname) 2693 { 2694 mactype_t *mtype = NULL; 2695 boolean_t tried_modload = B_FALSE; 2696 2697 mutex_enter(&i_mactype_lock); 2698 2699 find_registered_mactype: 2700 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2701 (mod_hash_val_t *)&mtype) != 0) { 2702 if (!tried_modload) { 2703 /* 2704 * If the plugin has not yet been loaded, then 2705 * attempt to load it now. If modload() succeeds, 2706 * the plugin should have registered using 2707 * mactype_register(), in which case we can go back 2708 * and attempt to find it again. 2709 */ 2710 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2711 tried_modload = B_TRUE; 2712 goto find_registered_mactype; 2713 } 2714 } 2715 } else { 2716 /* 2717 * Note that there's no danger that the plugin we've loaded 2718 * could be unloaded between the modload() step and the 2719 * reference count bump here, as we're holding 2720 * i_mactype_lock, which mactype_unregister() also holds. 2721 */ 2722 atomic_inc_32(&mtype->mt_ref); 2723 } 2724 2725 mutex_exit(&i_mactype_lock); 2726 return (mtype); 2727 } 2728 2729 mactype_register_t * 2730 mactype_alloc(uint_t mactype_version) 2731 { 2732 mactype_register_t *mtrp; 2733 2734 /* 2735 * Make sure there isn't a version mismatch between the plugin and 2736 * the framework. In the future, if multiple versions are 2737 * supported, this check could become more sophisticated. 2738 */ 2739 if (mactype_version != MACTYPE_VERSION) 2740 return (NULL); 2741 2742 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2743 mtrp->mtr_version = mactype_version; 2744 return (mtrp); 2745 } 2746 2747 void 2748 mactype_free(mactype_register_t *mtrp) 2749 { 2750 kmem_free(mtrp, sizeof (mactype_register_t)); 2751 } 2752 2753 int 2754 mactype_register(mactype_register_t *mtrp) 2755 { 2756 mactype_t *mtp; 2757 mactype_ops_t *ops = mtrp->mtr_ops; 2758 2759 /* Do some sanity checking before we register this MAC type. */ 2760 if (mtrp->mtr_ident == NULL || ops == NULL) 2761 return (EINVAL); 2762 2763 /* 2764 * Verify that all mandatory callbacks are set in the ops 2765 * vector. 2766 */ 2767 if (ops->mtops_unicst_verify == NULL || 2768 ops->mtops_multicst_verify == NULL || 2769 ops->mtops_sap_verify == NULL || 2770 ops->mtops_header == NULL || 2771 ops->mtops_header_info == NULL) { 2772 return (EINVAL); 2773 } 2774 2775 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2776 mtp->mt_ident = mtrp->mtr_ident; 2777 mtp->mt_ops = *ops; 2778 mtp->mt_type = mtrp->mtr_mactype; 2779 mtp->mt_nativetype = mtrp->mtr_nativetype; 2780 mtp->mt_addr_length = mtrp->mtr_addrlen; 2781 if (mtrp->mtr_brdcst_addr != NULL) { 2782 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2783 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2784 mtrp->mtr_addrlen); 2785 } 2786 2787 mtp->mt_stats = mtrp->mtr_stats; 2788 mtp->mt_statcount = mtrp->mtr_statcount; 2789 2790 mtp->mt_mapping = mtrp->mtr_mapping; 2791 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2792 2793 if (mod_hash_insert(i_mactype_hash, 2794 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2795 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2796 kmem_free(mtp, sizeof (*mtp)); 2797 return (EEXIST); 2798 } 2799 return (0); 2800 } 2801 2802 int 2803 mactype_unregister(const char *ident) 2804 { 2805 mactype_t *mtp; 2806 mod_hash_val_t val; 2807 int err; 2808 2809 /* 2810 * Let's not allow MAC drivers to use this plugin while we're 2811 * trying to unregister it. Holding i_mactype_lock also prevents a 2812 * plugin from unregistering while a MAC driver is attempting to 2813 * hold a reference to it in i_mactype_getplugin(). 2814 */ 2815 mutex_enter(&i_mactype_lock); 2816 2817 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2818 (mod_hash_val_t *)&mtp)) != 0) { 2819 /* A plugin is trying to unregister, but it never registered. */ 2820 err = ENXIO; 2821 goto done; 2822 } 2823 2824 if (mtp->mt_ref != 0) { 2825 err = EBUSY; 2826 goto done; 2827 } 2828 2829 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2830 ASSERT(err == 0); 2831 if (err != 0) { 2832 /* This should never happen, thus the ASSERT() above. */ 2833 err = EINVAL; 2834 goto done; 2835 } 2836 ASSERT(mtp == (mactype_t *)val); 2837 2838 if (mtp->mt_brdcst_addr != NULL) 2839 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2840 kmem_free(mtp, sizeof (mactype_t)); 2841 done: 2842 mutex_exit(&i_mactype_lock); 2843 return (err); 2844 } 2845 2846 /* 2847 * Checks the size of the value size specified for a property as 2848 * part of a property operation. Returns B_TRUE if the size is 2849 * correct, B_FALSE otherwise. 2850 */ 2851 boolean_t 2852 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 2853 { 2854 uint_t minsize = 0; 2855 2856 if (is_range) 2857 return (valsize >= sizeof (mac_propval_range_t)); 2858 2859 switch (id) { 2860 case MAC_PROP_ZONE: 2861 minsize = sizeof (dld_ioc_zid_t); 2862 break; 2863 case MAC_PROP_AUTOPUSH: 2864 if (valsize != 0) 2865 minsize = sizeof (struct dlautopush); 2866 break; 2867 case MAC_PROP_TAGMODE: 2868 minsize = sizeof (link_tagmode_t); 2869 break; 2870 case MAC_PROP_RESOURCE: 2871 case MAC_PROP_RESOURCE_EFF: 2872 minsize = sizeof (mac_resource_props_t); 2873 break; 2874 case MAC_PROP_DUPLEX: 2875 minsize = sizeof (link_duplex_t); 2876 break; 2877 case MAC_PROP_SPEED: 2878 minsize = sizeof (uint64_t); 2879 break; 2880 case MAC_PROP_STATUS: 2881 minsize = sizeof (link_state_t); 2882 break; 2883 case MAC_PROP_AUTONEG: 2884 case MAC_PROP_EN_AUTONEG: 2885 minsize = sizeof (uint8_t); 2886 break; 2887 case MAC_PROP_MTU: 2888 case MAC_PROP_LLIMIT: 2889 case MAC_PROP_LDECAY: 2890 minsize = sizeof (uint32_t); 2891 break; 2892 case MAC_PROP_FLOWCTRL: 2893 minsize = sizeof (link_flowctrl_t); 2894 break; 2895 case MAC_PROP_ADV_10GFDX_CAP: 2896 case MAC_PROP_EN_10GFDX_CAP: 2897 case MAC_PROP_ADV_1000HDX_CAP: 2898 case MAC_PROP_EN_1000HDX_CAP: 2899 case MAC_PROP_ADV_100FDX_CAP: 2900 case MAC_PROP_EN_100FDX_CAP: 2901 case MAC_PROP_ADV_100HDX_CAP: 2902 case MAC_PROP_EN_100HDX_CAP: 2903 case MAC_PROP_ADV_10FDX_CAP: 2904 case MAC_PROP_EN_10FDX_CAP: 2905 case MAC_PROP_ADV_10HDX_CAP: 2906 case MAC_PROP_EN_10HDX_CAP: 2907 case MAC_PROP_ADV_100T4_CAP: 2908 case MAC_PROP_EN_100T4_CAP: 2909 minsize = sizeof (uint8_t); 2910 break; 2911 case MAC_PROP_PVID: 2912 minsize = sizeof (uint16_t); 2913 break; 2914 case MAC_PROP_IPTUN_HOPLIMIT: 2915 minsize = sizeof (uint32_t); 2916 break; 2917 case MAC_PROP_IPTUN_ENCAPLIMIT: 2918 minsize = sizeof (uint32_t); 2919 break; 2920 case MAC_PROP_MAX_TX_RINGS_AVAIL: 2921 case MAC_PROP_MAX_RX_RINGS_AVAIL: 2922 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 2923 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 2924 minsize = sizeof (uint_t); 2925 break; 2926 case MAC_PROP_WL_ESSID: 2927 minsize = sizeof (wl_linkstatus_t); 2928 break; 2929 case MAC_PROP_WL_BSSID: 2930 minsize = sizeof (wl_bssid_t); 2931 break; 2932 case MAC_PROP_WL_BSSTYPE: 2933 minsize = sizeof (wl_bss_type_t); 2934 break; 2935 case MAC_PROP_WL_LINKSTATUS: 2936 minsize = sizeof (wl_linkstatus_t); 2937 break; 2938 case MAC_PROP_WL_DESIRED_RATES: 2939 minsize = sizeof (wl_rates_t); 2940 break; 2941 case MAC_PROP_WL_SUPPORTED_RATES: 2942 minsize = sizeof (wl_rates_t); 2943 break; 2944 case MAC_PROP_WL_AUTH_MODE: 2945 minsize = sizeof (wl_authmode_t); 2946 break; 2947 case MAC_PROP_WL_ENCRYPTION: 2948 minsize = sizeof (wl_encryption_t); 2949 break; 2950 case MAC_PROP_WL_RSSI: 2951 minsize = sizeof (wl_rssi_t); 2952 break; 2953 case MAC_PROP_WL_PHY_CONFIG: 2954 minsize = sizeof (wl_phy_conf_t); 2955 break; 2956 case MAC_PROP_WL_CAPABILITY: 2957 minsize = sizeof (wl_capability_t); 2958 break; 2959 case MAC_PROP_WL_WPA: 2960 minsize = sizeof (wl_wpa_t); 2961 break; 2962 case MAC_PROP_WL_SCANRESULTS: 2963 minsize = sizeof (wl_wpa_ess_t); 2964 break; 2965 case MAC_PROP_WL_POWER_MODE: 2966 minsize = sizeof (wl_ps_mode_t); 2967 break; 2968 case MAC_PROP_WL_RADIO: 2969 minsize = sizeof (wl_radio_t); 2970 break; 2971 case MAC_PROP_WL_ESS_LIST: 2972 minsize = sizeof (wl_ess_list_t); 2973 break; 2974 case MAC_PROP_WL_KEY_TAB: 2975 minsize = sizeof (wl_wep_key_tab_t); 2976 break; 2977 case MAC_PROP_WL_CREATE_IBSS: 2978 minsize = sizeof (wl_create_ibss_t); 2979 break; 2980 case MAC_PROP_WL_SETOPTIE: 2981 minsize = sizeof (wl_wpa_ie_t); 2982 break; 2983 case MAC_PROP_WL_DELKEY: 2984 minsize = sizeof (wl_del_key_t); 2985 break; 2986 case MAC_PROP_WL_KEY: 2987 minsize = sizeof (wl_key_t); 2988 break; 2989 case MAC_PROP_WL_MLME: 2990 minsize = sizeof (wl_mlme_t); 2991 break; 2992 case MAC_PROP_MACADDRESS: 2993 minsize = sizeof (mac_addrprop_t); 2994 } 2995 2996 return (valsize >= minsize); 2997 } 2998 2999 /* 3000 * mac_set_prop() sets MAC or hardware driver properties: 3001 * 3002 * - MAC-managed properties such as resource properties include maxbw, 3003 * priority, and cpu binding list, as well as the default port VID 3004 * used by bridging. These properties are consumed by the MAC layer 3005 * itself and not passed down to the driver. For resource control 3006 * properties, this function invokes mac_set_resources() which will 3007 * cache the property value in mac_impl_t and may call 3008 * mac_client_set_resource() to update property value of the primary 3009 * mac client, if it exists. 3010 * 3011 * - Properties which act on the hardware and must be passed to the 3012 * driver, such as MTU, through the driver's mc_setprop() entry point. 3013 */ 3014 int 3015 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3016 uint_t valsize) 3017 { 3018 int err = ENOTSUP; 3019 mac_impl_t *mip = (mac_impl_t *)mh; 3020 3021 ASSERT(MAC_PERIM_HELD(mh)); 3022 3023 switch (id) { 3024 case MAC_PROP_RESOURCE: { 3025 mac_resource_props_t *mrp; 3026 3027 /* call mac_set_resources() for MAC properties */ 3028 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3029 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3030 bcopy(val, mrp, sizeof (*mrp)); 3031 err = mac_set_resources(mh, mrp); 3032 kmem_free(mrp, sizeof (*mrp)); 3033 break; 3034 } 3035 3036 case MAC_PROP_PVID: 3037 ASSERT(valsize >= sizeof (uint16_t)); 3038 if (mip->mi_state_flags & MIS_IS_VNIC) 3039 return (EINVAL); 3040 err = mac_set_pvid(mh, *(uint16_t *)val); 3041 break; 3042 3043 case MAC_PROP_MTU: { 3044 uint32_t mtu; 3045 3046 ASSERT(valsize >= sizeof (uint32_t)); 3047 bcopy(val, &mtu, sizeof (mtu)); 3048 err = mac_set_mtu(mh, mtu, NULL); 3049 break; 3050 } 3051 3052 case MAC_PROP_LLIMIT: 3053 case MAC_PROP_LDECAY: { 3054 uint32_t learnval; 3055 3056 if (valsize < sizeof (learnval) || 3057 (mip->mi_state_flags & MIS_IS_VNIC)) 3058 return (EINVAL); 3059 bcopy(val, &learnval, sizeof (learnval)); 3060 if (learnval == 0 && id == MAC_PROP_LDECAY) 3061 return (EINVAL); 3062 if (id == MAC_PROP_LLIMIT) 3063 mip->mi_llimit = learnval; 3064 else 3065 mip->mi_ldecay = learnval; 3066 err = 0; 3067 break; 3068 } 3069 3070 case MAC_PROP_MACADDRESS: { 3071 mac_addrprop_t *addrprop = val; 3072 3073 if (addrprop->ma_len != mip->mi_type->mt_addr_length) 3074 return (EINVAL); 3075 3076 err = mac_unicast_primary_set(mh, addrprop->ma_addr); 3077 break; 3078 } 3079 3080 default: 3081 /* For other driver properties, call driver's callback */ 3082 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3083 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3084 name, id, valsize, val); 3085 } 3086 } 3087 return (err); 3088 } 3089 3090 /* 3091 * mac_get_prop() gets MAC or device driver properties. 3092 * 3093 * If the property is a driver property, mac_get_prop() calls driver's callback 3094 * entry point to get it. 3095 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3096 * which returns the cached value in mac_impl_t. 3097 */ 3098 int 3099 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3100 uint_t valsize) 3101 { 3102 int err = ENOTSUP; 3103 mac_impl_t *mip = (mac_impl_t *)mh; 3104 uint_t rings; 3105 uint_t vlinks; 3106 3107 bzero(val, valsize); 3108 3109 switch (id) { 3110 case MAC_PROP_RESOURCE: { 3111 mac_resource_props_t *mrp; 3112 3113 /* If mac property, read from cache */ 3114 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3115 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3116 mac_get_resources(mh, mrp); 3117 bcopy(mrp, val, sizeof (*mrp)); 3118 kmem_free(mrp, sizeof (*mrp)); 3119 return (0); 3120 } 3121 case MAC_PROP_RESOURCE_EFF: { 3122 mac_resource_props_t *mrp; 3123 3124 /* If mac effective property, read from client */ 3125 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3126 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3127 mac_get_effective_resources(mh, mrp); 3128 bcopy(mrp, val, sizeof (*mrp)); 3129 kmem_free(mrp, sizeof (*mrp)); 3130 return (0); 3131 } 3132 3133 case MAC_PROP_PVID: 3134 ASSERT(valsize >= sizeof (uint16_t)); 3135 if (mip->mi_state_flags & MIS_IS_VNIC) 3136 return (EINVAL); 3137 *(uint16_t *)val = mac_get_pvid(mh); 3138 return (0); 3139 3140 case MAC_PROP_LLIMIT: 3141 case MAC_PROP_LDECAY: 3142 ASSERT(valsize >= sizeof (uint32_t)); 3143 if (mip->mi_state_flags & MIS_IS_VNIC) 3144 return (EINVAL); 3145 if (id == MAC_PROP_LLIMIT) 3146 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3147 else 3148 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3149 return (0); 3150 3151 case MAC_PROP_MTU: { 3152 uint32_t sdu; 3153 3154 ASSERT(valsize >= sizeof (uint32_t)); 3155 mac_sdu_get2(mh, NULL, &sdu, NULL); 3156 bcopy(&sdu, val, sizeof (sdu)); 3157 3158 return (0); 3159 } 3160 case MAC_PROP_STATUS: { 3161 link_state_t link_state; 3162 3163 if (valsize < sizeof (link_state)) 3164 return (EINVAL); 3165 link_state = mac_link_get(mh); 3166 bcopy(&link_state, val, sizeof (link_state)); 3167 3168 return (0); 3169 } 3170 3171 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3172 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3173 ASSERT(valsize >= sizeof (uint_t)); 3174 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3175 mac_rxavail_get(mh) : mac_txavail_get(mh); 3176 bcopy(&rings, val, sizeof (uint_t)); 3177 return (0); 3178 3179 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3180 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3181 ASSERT(valsize >= sizeof (uint_t)); 3182 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3183 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3184 bcopy(&vlinks, val, sizeof (uint_t)); 3185 return (0); 3186 3187 case MAC_PROP_RXRINGSRANGE: 3188 case MAC_PROP_TXRINGSRANGE: 3189 /* 3190 * The value for these properties are returned through 3191 * the MAC_PROP_RESOURCE property. 3192 */ 3193 return (0); 3194 3195 case MAC_PROP_MACADDRESS: { 3196 mac_addrprop_t *addrprop = val; 3197 3198 if (valsize < sizeof (mac_addrprop_t)) 3199 return (EINVAL); 3200 mac_unicast_primary_get(mh, addrprop->ma_addr); 3201 addrprop->ma_len = mip->mi_type->mt_addr_length; 3202 return (0); 3203 } 3204 3205 default: 3206 break; 3207 3208 } 3209 3210 /* If driver property, request from driver */ 3211 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3212 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3213 valsize, val); 3214 } 3215 3216 return (err); 3217 } 3218 3219 /* 3220 * Helper function to initialize the range structure for use in 3221 * mac_get_prop. If the type can be other than uint32, we can 3222 * pass that as an arg. 3223 */ 3224 static void 3225 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3226 { 3227 range->mpr_count = 1; 3228 range->mpr_type = MAC_PROPVAL_UINT32; 3229 range->mpr_range_uint32[0].mpur_min = min; 3230 range->mpr_range_uint32[0].mpur_max = max; 3231 } 3232 3233 /* 3234 * Returns information about the specified property, such as default 3235 * values or permissions. 3236 */ 3237 int 3238 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3239 void *default_val, uint_t default_size, mac_propval_range_t *range, 3240 uint_t *perm) 3241 { 3242 mac_prop_info_state_t state; 3243 mac_impl_t *mip = (mac_impl_t *)mh; 3244 uint_t max; 3245 3246 /* 3247 * A property is read/write by default unless the driver says 3248 * otherwise. 3249 */ 3250 if (perm != NULL) 3251 *perm = MAC_PROP_PERM_RW; 3252 3253 if (default_val != NULL) 3254 bzero(default_val, default_size); 3255 3256 /* 3257 * First, handle framework properties for which we don't need to 3258 * involve the driver. 3259 */ 3260 switch (id) { 3261 case MAC_PROP_RESOURCE: 3262 case MAC_PROP_PVID: 3263 case MAC_PROP_LLIMIT: 3264 case MAC_PROP_LDECAY: 3265 return (0); 3266 3267 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3268 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3269 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3270 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3271 if (perm != NULL) 3272 *perm = MAC_PROP_PERM_READ; 3273 return (0); 3274 3275 case MAC_PROP_RXRINGSRANGE: 3276 case MAC_PROP_TXRINGSRANGE: 3277 /* 3278 * Currently, we support range for RX and TX rings properties. 3279 * When we extend this support to maxbw, cpus and priority, 3280 * we should move this to mac_get_resources. 3281 * There is no default value for RX or TX rings. 3282 */ 3283 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3284 mac_is_vnic_primary(mh)) { 3285 /* 3286 * We don't support setting rings for a VLAN 3287 * data link because it shares its ring with the 3288 * primary MAC client. 3289 */ 3290 if (perm != NULL) 3291 *perm = MAC_PROP_PERM_READ; 3292 if (range != NULL) 3293 range->mpr_count = 0; 3294 } else if (range != NULL) { 3295 if (mip->mi_state_flags & MIS_IS_VNIC) 3296 mh = mac_get_lower_mac_handle(mh); 3297 mip = (mac_impl_t *)mh; 3298 if ((id == MAC_PROP_RXRINGSRANGE && 3299 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3300 (id == MAC_PROP_TXRINGSRANGE && 3301 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3302 if (id == MAC_PROP_RXRINGSRANGE) { 3303 if ((mac_rxhwlnksavail_get(mh) + 3304 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3305 /* 3306 * doesn't support groups or 3307 * rings 3308 */ 3309 range->mpr_count = 0; 3310 } else { 3311 /* 3312 * supports specifying groups, 3313 * but not rings 3314 */ 3315 _mac_set_range(range, 0, 0); 3316 } 3317 } else { 3318 if ((mac_txhwlnksavail_get(mh) + 3319 mac_txhwlnksrsvd_get(mh)) <= 1) { 3320 /* 3321 * doesn't support groups or 3322 * rings 3323 */ 3324 range->mpr_count = 0; 3325 } else { 3326 /* 3327 * supports specifying groups, 3328 * but not rings 3329 */ 3330 _mac_set_range(range, 0, 0); 3331 } 3332 } 3333 } else { 3334 max = id == MAC_PROP_RXRINGSRANGE ? 3335 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3336 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3337 if (max <= 1) { 3338 /* 3339 * doesn't support groups or 3340 * rings 3341 */ 3342 range->mpr_count = 0; 3343 } else { 3344 /* 3345 * -1 because we have to leave out the 3346 * default ring. 3347 */ 3348 _mac_set_range(range, 1, max - 1); 3349 } 3350 } 3351 } 3352 return (0); 3353 3354 case MAC_PROP_STATUS: 3355 if (perm != NULL) 3356 *perm = MAC_PROP_PERM_READ; 3357 return (0); 3358 3359 case MAC_PROP_MACADDRESS: { 3360 mac_addrprop_t *defaddr = default_val; 3361 3362 if (defaddr != NULL) { 3363 if (default_size < sizeof (mac_addrprop_t)) 3364 return (EINVAL); 3365 bcopy(mip->mi_info.mi_unicst_addr, defaddr->ma_addr, 3366 mip->mi_type->mt_addr_length); 3367 defaddr->ma_len = mip->mi_type->mt_addr_length; 3368 } 3369 return (0); 3370 } 3371 } 3372 3373 /* 3374 * Get the property info from the driver if it implements the 3375 * property info entry point. 3376 */ 3377 bzero(&state, sizeof (state)); 3378 3379 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3380 state.pr_default = default_val; 3381 state.pr_default_size = default_size; 3382 3383 /* 3384 * The caller specifies the maximum number of ranges 3385 * it can accomodate using mpr_count. We don't touch 3386 * this value until the driver returns from its 3387 * mc_propinfo() callback, and ensure we don't exceed 3388 * this number of range as the driver defines 3389 * supported range from its mc_propinfo(). 3390 * 3391 * pr_range_cur_count keeps track of how many ranges 3392 * were defined by the driver from its mc_propinfo() 3393 * entry point. 3394 * 3395 * On exit, the user-specified range mpr_count returns 3396 * the number of ranges specified by the driver on 3397 * success, or the number of ranges it wanted to 3398 * define if that number of ranges could not be 3399 * accomodated by the specified range structure. In 3400 * the latter case, the caller will be able to 3401 * allocate a larger range structure, and query the 3402 * property again. 3403 */ 3404 state.pr_range_cur_count = 0; 3405 state.pr_range = range; 3406 3407 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3408 (mac_prop_info_handle_t)&state); 3409 3410 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3411 range->mpr_count = state.pr_range_cur_count; 3412 3413 /* 3414 * The operation could fail if the buffer supplied by 3415 * the user was too small for the range or default 3416 * value of the property. 3417 */ 3418 if (state.pr_errno != 0) 3419 return (state.pr_errno); 3420 3421 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3422 *perm = state.pr_perm; 3423 } 3424 3425 /* 3426 * The MAC layer may want to provide default values or allowed 3427 * ranges for properties if the driver does not provide a 3428 * property info entry point, or that entry point exists, but 3429 * it did not provide a default value or allowed ranges for 3430 * that property. 3431 */ 3432 switch (id) { 3433 case MAC_PROP_MTU: { 3434 uint32_t sdu; 3435 3436 mac_sdu_get2(mh, NULL, &sdu, NULL); 3437 3438 if (range != NULL && !(state.pr_flags & 3439 MAC_PROP_INFO_RANGE)) { 3440 /* MTU range */ 3441 _mac_set_range(range, sdu, sdu); 3442 } 3443 3444 if (default_val != NULL && !(state.pr_flags & 3445 MAC_PROP_INFO_DEFAULT)) { 3446 if (mip->mi_info.mi_media == DL_ETHER) 3447 sdu = ETHERMTU; 3448 /* default MTU value */ 3449 bcopy(&sdu, default_val, sizeof (sdu)); 3450 } 3451 } 3452 } 3453 3454 return (0); 3455 } 3456 3457 int 3458 mac_fastpath_disable(mac_handle_t mh) 3459 { 3460 mac_impl_t *mip = (mac_impl_t *)mh; 3461 3462 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3463 return (0); 3464 3465 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3466 } 3467 3468 void 3469 mac_fastpath_enable(mac_handle_t mh) 3470 { 3471 mac_impl_t *mip = (mac_impl_t *)mh; 3472 3473 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3474 return; 3475 3476 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3477 } 3478 3479 void 3480 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3481 { 3482 uint_t nprops, i; 3483 3484 if (priv_props == NULL) 3485 return; 3486 3487 nprops = 0; 3488 while (priv_props[nprops] != NULL) 3489 nprops++; 3490 if (nprops == 0) 3491 return; 3492 3493 3494 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3495 3496 for (i = 0; i < nprops; i++) { 3497 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3498 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3499 MAXLINKPROPNAME); 3500 } 3501 3502 mip->mi_priv_prop_count = nprops; 3503 } 3504 3505 void 3506 mac_unregister_priv_prop(mac_impl_t *mip) 3507 { 3508 uint_t i; 3509 3510 if (mip->mi_priv_prop_count == 0) { 3511 ASSERT(mip->mi_priv_prop == NULL); 3512 return; 3513 } 3514 3515 for (i = 0; i < mip->mi_priv_prop_count; i++) 3516 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3517 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3518 sizeof (char *)); 3519 3520 mip->mi_priv_prop = NULL; 3521 mip->mi_priv_prop_count = 0; 3522 } 3523 3524 /* 3525 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3526 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3527 * cases if MAC free's the ring structure after mac_stop_ring(), any 3528 * illegal access to the ring structure coming from the driver will panic 3529 * the system. In order to protect the system from such inadverent access, 3530 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3531 * When packets are received on free'd up rings, MAC (through the generation 3532 * count mechanism) will drop such packets. 3533 */ 3534 static mac_ring_t * 3535 mac_ring_alloc(mac_impl_t *mip) 3536 { 3537 mac_ring_t *ring; 3538 3539 mutex_enter(&mip->mi_ring_lock); 3540 if (mip->mi_ring_freelist != NULL) { 3541 ring = mip->mi_ring_freelist; 3542 mip->mi_ring_freelist = ring->mr_next; 3543 bzero(ring, sizeof (mac_ring_t)); 3544 mutex_exit(&mip->mi_ring_lock); 3545 } else { 3546 mutex_exit(&mip->mi_ring_lock); 3547 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3548 } 3549 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3550 return (ring); 3551 } 3552 3553 static void 3554 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3555 { 3556 ASSERT(ring->mr_state == MR_FREE); 3557 3558 mutex_enter(&mip->mi_ring_lock); 3559 ring->mr_state = MR_FREE; 3560 ring->mr_flag = 0; 3561 ring->mr_next = mip->mi_ring_freelist; 3562 ring->mr_mip = NULL; 3563 mip->mi_ring_freelist = ring; 3564 mac_ring_stat_delete(ring); 3565 mutex_exit(&mip->mi_ring_lock); 3566 } 3567 3568 static void 3569 mac_ring_freeall(mac_impl_t *mip) 3570 { 3571 mac_ring_t *ring_next; 3572 mutex_enter(&mip->mi_ring_lock); 3573 mac_ring_t *ring = mip->mi_ring_freelist; 3574 while (ring != NULL) { 3575 ring_next = ring->mr_next; 3576 kmem_cache_free(mac_ring_cache, ring); 3577 ring = ring_next; 3578 } 3579 mip->mi_ring_freelist = NULL; 3580 mutex_exit(&mip->mi_ring_lock); 3581 } 3582 3583 int 3584 mac_start_ring(mac_ring_t *ring) 3585 { 3586 int rv = 0; 3587 3588 ASSERT(ring->mr_state == MR_FREE); 3589 3590 if (ring->mr_start != NULL) { 3591 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3592 if (rv != 0) 3593 return (rv); 3594 } 3595 3596 ring->mr_state = MR_INUSE; 3597 return (rv); 3598 } 3599 3600 void 3601 mac_stop_ring(mac_ring_t *ring) 3602 { 3603 ASSERT(ring->mr_state == MR_INUSE); 3604 3605 if (ring->mr_stop != NULL) 3606 ring->mr_stop(ring->mr_driver); 3607 3608 ring->mr_state = MR_FREE; 3609 3610 /* 3611 * Increment the ring generation number for this ring. 3612 */ 3613 ring->mr_gen_num++; 3614 } 3615 3616 int 3617 mac_start_group(mac_group_t *group) 3618 { 3619 int rv = 0; 3620 3621 if (group->mrg_start != NULL) 3622 rv = group->mrg_start(group->mrg_driver); 3623 3624 return (rv); 3625 } 3626 3627 void 3628 mac_stop_group(mac_group_t *group) 3629 { 3630 if (group->mrg_stop != NULL) 3631 group->mrg_stop(group->mrg_driver); 3632 } 3633 3634 /* 3635 * Called from mac_start() on the default Rx group. Broadcast and multicast 3636 * packets are received only on the default group. Hence the default group 3637 * needs to be up even if the primary client is not up, for the other groups 3638 * to be functional. We do this by calling this function at mac_start time 3639 * itself. However the broadcast packets that are received can't make their 3640 * way beyond mac_rx until a mac client creates a broadcast flow. 3641 */ 3642 static int 3643 mac_start_group_and_rings(mac_group_t *group) 3644 { 3645 mac_ring_t *ring; 3646 int rv = 0; 3647 3648 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3649 if ((rv = mac_start_group(group)) != 0) 3650 return (rv); 3651 3652 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3653 ASSERT(ring->mr_state == MR_FREE); 3654 if ((rv = mac_start_ring(ring)) != 0) 3655 goto error; 3656 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3657 } 3658 return (0); 3659 3660 error: 3661 mac_stop_group_and_rings(group); 3662 return (rv); 3663 } 3664 3665 /* Called from mac_stop on the default Rx group */ 3666 static void 3667 mac_stop_group_and_rings(mac_group_t *group) 3668 { 3669 mac_ring_t *ring; 3670 3671 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3672 if (ring->mr_state != MR_FREE) { 3673 mac_stop_ring(ring); 3674 ring->mr_flag = 0; 3675 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3676 } 3677 } 3678 mac_stop_group(group); 3679 } 3680 3681 3682 static mac_ring_t * 3683 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3684 mac_capab_rings_t *cap_rings) 3685 { 3686 mac_ring_t *ring, *rnext; 3687 mac_ring_info_t ring_info; 3688 ddi_intr_handle_t ddi_handle; 3689 3690 ring = mac_ring_alloc(mip); 3691 3692 /* Prepare basic information of ring */ 3693 3694 /* 3695 * Ring index is numbered to be unique across a particular device. 3696 * Ring index computation makes following assumptions: 3697 * - For drivers with static grouping (e.g. ixgbe, bge), 3698 * ring index exchanged with the driver (e.g. during mr_rget) 3699 * is unique only across the group the ring belongs to. 3700 * - Drivers with dynamic grouping (e.g. nxge), start 3701 * with single group (mrg_index = 0). 3702 */ 3703 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 3704 ring->mr_type = group->mrg_type; 3705 ring->mr_gh = (mac_group_handle_t)group; 3706 3707 /* Insert the new ring to the list. */ 3708 ring->mr_next = group->mrg_rings; 3709 group->mrg_rings = ring; 3710 3711 /* Zero to reuse the info data structure */ 3712 bzero(&ring_info, sizeof (ring_info)); 3713 3714 /* Query ring information from driver */ 3715 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3716 index, &ring_info, (mac_ring_handle_t)ring); 3717 3718 ring->mr_info = ring_info; 3719 3720 /* 3721 * The interrupt handle could be shared among multiple rings. 3722 * Thus if there is a bunch of rings that are sharing an 3723 * interrupt, then only one ring among the bunch will be made 3724 * available for interrupt re-targeting; the rest will have 3725 * ddi_shared flag set to TRUE and would not be available for 3726 * be interrupt re-targeting. 3727 */ 3728 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 3729 rnext = ring->mr_next; 3730 while (rnext != NULL) { 3731 if (rnext->mr_info.mri_intr.mi_ddi_handle == 3732 ddi_handle) { 3733 /* 3734 * If default ring (mr_index == 0) is part 3735 * of a group of rings sharing an 3736 * interrupt, then set ddi_shared flag for 3737 * the default ring and give another ring 3738 * the chance to be re-targeted. 3739 */ 3740 if (rnext->mr_index == 0 && 3741 !rnext->mr_info.mri_intr.mi_ddi_shared) { 3742 rnext->mr_info.mri_intr.mi_ddi_shared = 3743 B_TRUE; 3744 } else { 3745 ring->mr_info.mri_intr.mi_ddi_shared = 3746 B_TRUE; 3747 } 3748 break; 3749 } 3750 rnext = rnext->mr_next; 3751 } 3752 /* 3753 * If rnext is NULL, then no matching ddi_handle was found. 3754 * Rx rings get registered first. So if this is a Tx ring, 3755 * then go through all the Rx rings and see if there is a 3756 * matching ddi handle. 3757 */ 3758 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 3759 mac_compare_ddi_handle(mip->mi_rx_groups, 3760 mip->mi_rx_group_count, ring); 3761 } 3762 } 3763 3764 /* Update ring's status */ 3765 ring->mr_state = MR_FREE; 3766 ring->mr_flag = 0; 3767 3768 /* Update the ring count of the group */ 3769 group->mrg_cur_count++; 3770 3771 /* Create per ring kstats */ 3772 if (ring->mr_stat != NULL) { 3773 ring->mr_mip = mip; 3774 mac_ring_stat_create(ring); 3775 } 3776 3777 return (ring); 3778 } 3779 3780 /* 3781 * Rings are chained together for easy regrouping. 3782 */ 3783 static void 3784 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3785 mac_capab_rings_t *cap_rings) 3786 { 3787 int index; 3788 3789 /* 3790 * Initialize all ring members of this group. Size of zero will not 3791 * enter the loop, so it's safe for initializing an empty group. 3792 */ 3793 for (index = size - 1; index >= 0; index--) 3794 (void) mac_init_ring(mip, group, index, cap_rings); 3795 } 3796 3797 int 3798 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3799 { 3800 mac_capab_rings_t *cap_rings; 3801 mac_group_t *group; 3802 mac_group_t *groups; 3803 mac_group_info_t group_info; 3804 uint_t group_free = 0; 3805 uint_t ring_left; 3806 mac_ring_t *ring; 3807 int g; 3808 int err = 0; 3809 uint_t grpcnt; 3810 boolean_t pseudo_txgrp = B_FALSE; 3811 3812 switch (rtype) { 3813 case MAC_RING_TYPE_RX: 3814 ASSERT(mip->mi_rx_groups == NULL); 3815 3816 cap_rings = &mip->mi_rx_rings_cap; 3817 cap_rings->mr_type = MAC_RING_TYPE_RX; 3818 break; 3819 case MAC_RING_TYPE_TX: 3820 ASSERT(mip->mi_tx_groups == NULL); 3821 3822 cap_rings = &mip->mi_tx_rings_cap; 3823 cap_rings->mr_type = MAC_RING_TYPE_TX; 3824 break; 3825 default: 3826 ASSERT(B_FALSE); 3827 } 3828 3829 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 3830 return (0); 3831 grpcnt = cap_rings->mr_gnum; 3832 3833 /* 3834 * If we have multiple TX rings, but only one TX group, we can 3835 * create pseudo TX groups (one per TX ring) in the MAC layer, 3836 * except for an aggr. For an aggr currently we maintain only 3837 * one group with all the rings (for all its ports), going 3838 * forwards we might change this. 3839 */ 3840 if (rtype == MAC_RING_TYPE_TX && 3841 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 3842 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 3843 /* 3844 * The -1 here is because we create a default TX group 3845 * with all the rings in it. 3846 */ 3847 grpcnt = cap_rings->mr_rnum - 1; 3848 pseudo_txgrp = B_TRUE; 3849 } 3850 3851 /* 3852 * Allocate a contiguous buffer for all groups. 3853 */ 3854 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 3855 3856 ring_left = cap_rings->mr_rnum; 3857 3858 /* 3859 * Get all ring groups if any, and get their ring members 3860 * if any. 3861 */ 3862 for (g = 0; g < grpcnt; g++) { 3863 group = groups + g; 3864 3865 /* Prepare basic information of the group */ 3866 group->mrg_index = g; 3867 group->mrg_type = rtype; 3868 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3869 group->mrg_mh = (mac_handle_t)mip; 3870 group->mrg_next = group + 1; 3871 3872 /* Zero to reuse the info data structure */ 3873 bzero(&group_info, sizeof (group_info)); 3874 3875 if (pseudo_txgrp) { 3876 /* 3877 * This is a pseudo group that we created, apart 3878 * from setting the state there is nothing to be 3879 * done. 3880 */ 3881 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 3882 group_free++; 3883 continue; 3884 } 3885 /* Query group information from driver */ 3886 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3887 (mac_group_handle_t)group); 3888 3889 switch (cap_rings->mr_group_type) { 3890 case MAC_GROUP_TYPE_DYNAMIC: 3891 if (cap_rings->mr_gaddring == NULL || 3892 cap_rings->mr_gremring == NULL) { 3893 DTRACE_PROBE3( 3894 mac__init__rings_no_addremring, 3895 char *, mip->mi_name, 3896 mac_group_add_ring_t, 3897 cap_rings->mr_gaddring, 3898 mac_group_add_ring_t, 3899 cap_rings->mr_gremring); 3900 err = EINVAL; 3901 goto bail; 3902 } 3903 3904 switch (rtype) { 3905 case MAC_RING_TYPE_RX: 3906 /* 3907 * The first RX group must have non-zero 3908 * rings, and the following groups must 3909 * have zero rings. 3910 */ 3911 if (g == 0 && group_info.mgi_count == 0) { 3912 DTRACE_PROBE1( 3913 mac__init__rings__rx__def__zero, 3914 char *, mip->mi_name); 3915 err = EINVAL; 3916 goto bail; 3917 } 3918 if (g > 0 && group_info.mgi_count != 0) { 3919 DTRACE_PROBE3( 3920 mac__init__rings__rx__nonzero, 3921 char *, mip->mi_name, 3922 int, g, int, group_info.mgi_count); 3923 err = EINVAL; 3924 goto bail; 3925 } 3926 break; 3927 case MAC_RING_TYPE_TX: 3928 /* 3929 * All TX ring groups must have zero rings. 3930 */ 3931 if (group_info.mgi_count != 0) { 3932 DTRACE_PROBE3( 3933 mac__init__rings__tx__nonzero, 3934 char *, mip->mi_name, 3935 int, g, int, group_info.mgi_count); 3936 err = EINVAL; 3937 goto bail; 3938 } 3939 break; 3940 } 3941 break; 3942 case MAC_GROUP_TYPE_STATIC: 3943 /* 3944 * Note that an empty group is allowed, e.g., an aggr 3945 * would start with an empty group. 3946 */ 3947 break; 3948 default: 3949 /* unknown group type */ 3950 DTRACE_PROBE2(mac__init__rings__unknown__type, 3951 char *, mip->mi_name, 3952 int, cap_rings->mr_group_type); 3953 err = EINVAL; 3954 goto bail; 3955 } 3956 3957 3958 /* 3959 * Driver must register group->mgi_addmac/remmac() for rx groups 3960 * to support multiple MAC addresses. 3961 */ 3962 if (rtype == MAC_RING_TYPE_RX) { 3963 if ((group_info.mgi_addmac == NULL) || 3964 (group_info.mgi_addmac == NULL)) { 3965 goto bail; 3966 } 3967 } 3968 3969 /* Cache driver-supplied information */ 3970 group->mrg_info = group_info; 3971 3972 /* Update the group's status and group count. */ 3973 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 3974 group_free++; 3975 3976 group->mrg_rings = NULL; 3977 group->mrg_cur_count = 0; 3978 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 3979 ring_left -= group_info.mgi_count; 3980 3981 /* The current group size should be equal to default value */ 3982 ASSERT(group->mrg_cur_count == group_info.mgi_count); 3983 } 3984 3985 /* Build up a dummy group for free resources as a pool */ 3986 group = groups + grpcnt; 3987 3988 /* Prepare basic information of the group */ 3989 group->mrg_index = -1; 3990 group->mrg_type = rtype; 3991 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3992 group->mrg_mh = (mac_handle_t)mip; 3993 group->mrg_next = NULL; 3994 3995 /* 3996 * If there are ungrouped rings, allocate a continuous buffer for 3997 * remaining resources. 3998 */ 3999 if (ring_left != 0) { 4000 group->mrg_rings = NULL; 4001 group->mrg_cur_count = 0; 4002 mac_init_group(mip, group, ring_left, cap_rings); 4003 4004 /* The current group size should be equal to ring_left */ 4005 ASSERT(group->mrg_cur_count == ring_left); 4006 4007 ring_left = 0; 4008 4009 /* Update this group's status */ 4010 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4011 } else 4012 group->mrg_rings = NULL; 4013 4014 ASSERT(ring_left == 0); 4015 4016 bail: 4017 4018 /* Cache other important information to finalize the initialization */ 4019 switch (rtype) { 4020 case MAC_RING_TYPE_RX: 4021 mip->mi_rx_group_type = cap_rings->mr_group_type; 4022 mip->mi_rx_group_count = cap_rings->mr_gnum; 4023 mip->mi_rx_groups = groups; 4024 mip->mi_rx_donor_grp = groups; 4025 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4026 /* 4027 * The default ring is reserved since it is 4028 * used for sending the broadcast etc. packets. 4029 */ 4030 mip->mi_rxrings_avail = 4031 mip->mi_rx_groups->mrg_cur_count - 1; 4032 mip->mi_rxrings_rsvd = 1; 4033 } 4034 /* 4035 * The default group cannot be reserved. It is used by 4036 * all the clients that do not have an exclusive group. 4037 */ 4038 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4039 mip->mi_rxhwclnt_used = 1; 4040 break; 4041 case MAC_RING_TYPE_TX: 4042 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4043 cap_rings->mr_group_type; 4044 mip->mi_tx_group_count = grpcnt; 4045 mip->mi_tx_group_free = group_free; 4046 mip->mi_tx_groups = groups; 4047 4048 group = groups + grpcnt; 4049 ring = group->mrg_rings; 4050 /* 4051 * The ring can be NULL in the case of aggr. Aggr will 4052 * have an empty Tx group which will get populated 4053 * later when pseudo Tx rings are added after 4054 * mac_register() is done. 4055 */ 4056 if (ring == NULL) { 4057 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4058 /* 4059 * pass the group to aggr so it can add Tx 4060 * rings to the group later. 4061 */ 4062 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4063 (mac_group_handle_t)group); 4064 /* 4065 * Even though there are no rings at this time 4066 * (rings will come later), set the group 4067 * state to registered. 4068 */ 4069 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4070 } else { 4071 /* 4072 * Ring 0 is used as the default one and it could be 4073 * assigned to a client as well. 4074 */ 4075 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4076 ring = ring->mr_next; 4077 ASSERT(ring->mr_index == 0); 4078 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4079 } 4080 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) 4081 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4082 /* 4083 * The default ring cannot be reserved. 4084 */ 4085 mip->mi_txrings_rsvd = 1; 4086 /* 4087 * The default group cannot be reserved. It will be shared 4088 * by clients that do not have an exclusive group. 4089 */ 4090 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4091 mip->mi_txhwclnt_used = 1; 4092 break; 4093 default: 4094 ASSERT(B_FALSE); 4095 } 4096 4097 if (err != 0) 4098 mac_free_rings(mip, rtype); 4099 4100 return (err); 4101 } 4102 4103 /* 4104 * The ddi interrupt handle could be shared amoung rings. If so, compare 4105 * the new ring's ddi handle with the existing ones and set ddi_shared 4106 * flag. 4107 */ 4108 void 4109 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4110 { 4111 mac_group_t *group; 4112 mac_ring_t *ring; 4113 ddi_intr_handle_t ddi_handle; 4114 int g; 4115 4116 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4117 for (g = 0; g < grpcnt; g++) { 4118 group = groups + g; 4119 for (ring = group->mrg_rings; ring != NULL; 4120 ring = ring->mr_next) { 4121 if (ring == cring) 4122 continue; 4123 if (ring->mr_info.mri_intr.mi_ddi_handle == 4124 ddi_handle) { 4125 if (cring->mr_type == MAC_RING_TYPE_RX && 4126 ring->mr_index == 0 && 4127 !ring->mr_info.mri_intr.mi_ddi_shared) { 4128 ring->mr_info.mri_intr.mi_ddi_shared = 4129 B_TRUE; 4130 } else { 4131 cring->mr_info.mri_intr.mi_ddi_shared = 4132 B_TRUE; 4133 } 4134 return; 4135 } 4136 } 4137 } 4138 } 4139 4140 /* 4141 * Called to free all groups of particular type (RX or TX). It's assumed that 4142 * no clients are using these groups. 4143 */ 4144 void 4145 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4146 { 4147 mac_group_t *group, *groups; 4148 uint_t group_count; 4149 4150 switch (rtype) { 4151 case MAC_RING_TYPE_RX: 4152 if (mip->mi_rx_groups == NULL) 4153 return; 4154 4155 groups = mip->mi_rx_groups; 4156 group_count = mip->mi_rx_group_count; 4157 4158 mip->mi_rx_groups = NULL; 4159 mip->mi_rx_donor_grp = NULL; 4160 mip->mi_rx_group_count = 0; 4161 break; 4162 case MAC_RING_TYPE_TX: 4163 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4164 4165 if (mip->mi_tx_groups == NULL) 4166 return; 4167 4168 groups = mip->mi_tx_groups; 4169 group_count = mip->mi_tx_group_count; 4170 4171 mip->mi_tx_groups = NULL; 4172 mip->mi_tx_group_count = 0; 4173 mip->mi_tx_group_free = 0; 4174 mip->mi_default_tx_ring = NULL; 4175 break; 4176 default: 4177 ASSERT(B_FALSE); 4178 } 4179 4180 for (group = groups; group != NULL; group = group->mrg_next) { 4181 mac_ring_t *ring; 4182 4183 if (group->mrg_cur_count == 0) 4184 continue; 4185 4186 ASSERT(group->mrg_rings != NULL); 4187 4188 while ((ring = group->mrg_rings) != NULL) { 4189 group->mrg_rings = ring->mr_next; 4190 mac_ring_free(mip, ring); 4191 } 4192 } 4193 4194 /* Free all the cached rings */ 4195 mac_ring_freeall(mip); 4196 /* Free the block of group data strutures */ 4197 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4198 } 4199 4200 /* 4201 * Associate a MAC address with a receive group. 4202 * 4203 * The return value of this function should always be checked properly, because 4204 * any type of failure could cause unexpected results. A group can be added 4205 * or removed with a MAC address only after it has been reserved. Ideally, 4206 * a successful reservation always leads to calling mac_group_addmac() to 4207 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4208 * always imply that the group is functioning abnormally. 4209 * 4210 * Currently this function is called everywhere, and it reflects assumptions 4211 * about MAC addresses in the implementation. CR 6735196. 4212 */ 4213 int 4214 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4215 { 4216 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4217 ASSERT(group->mrg_info.mgi_addmac != NULL); 4218 4219 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4220 } 4221 4222 /* 4223 * Remove the association between MAC address and receive group. 4224 */ 4225 int 4226 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4227 { 4228 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4229 ASSERT(group->mrg_info.mgi_remmac != NULL); 4230 4231 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4232 } 4233 4234 /* 4235 * This is the entry point for packets transmitted through the bridging code. 4236 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4237 * pointer may be NULL to select the default ring. 4238 */ 4239 mblk_t * 4240 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4241 { 4242 mac_handle_t mh; 4243 4244 /* 4245 * Once we take a reference on the bridge link, the bridge 4246 * module itself can't unload, so the callback pointers are 4247 * stable. 4248 */ 4249 mutex_enter(&mip->mi_bridge_lock); 4250 if ((mh = mip->mi_bridge_link) != NULL) 4251 mac_bridge_ref_cb(mh, B_TRUE); 4252 mutex_exit(&mip->mi_bridge_lock); 4253 if (mh == NULL) { 4254 MAC_RING_TX(mip, rh, mp, mp); 4255 } else { 4256 mp = mac_bridge_tx_cb(mh, rh, mp); 4257 mac_bridge_ref_cb(mh, B_FALSE); 4258 } 4259 4260 return (mp); 4261 } 4262 4263 /* 4264 * Find a ring from its index. 4265 */ 4266 mac_ring_handle_t 4267 mac_find_ring(mac_group_handle_t gh, int index) 4268 { 4269 mac_group_t *group = (mac_group_t *)gh; 4270 mac_ring_t *ring = group->mrg_rings; 4271 4272 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4273 if (ring->mr_index == index) 4274 break; 4275 4276 return ((mac_ring_handle_t)ring); 4277 } 4278 /* 4279 * Add a ring to an existing group. 4280 * 4281 * The ring must be either passed directly (for example if the ring 4282 * movement is initiated by the framework), or specified through a driver 4283 * index (for example when the ring is added by the driver. 4284 * 4285 * The caller needs to call mac_perim_enter() before calling this function. 4286 */ 4287 int 4288 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4289 { 4290 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4291 mac_capab_rings_t *cap_rings; 4292 boolean_t driver_call = (ring == NULL); 4293 mac_group_type_t group_type; 4294 int ret = 0; 4295 flow_entry_t *flent; 4296 4297 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4298 4299 switch (group->mrg_type) { 4300 case MAC_RING_TYPE_RX: 4301 cap_rings = &mip->mi_rx_rings_cap; 4302 group_type = mip->mi_rx_group_type; 4303 break; 4304 case MAC_RING_TYPE_TX: 4305 cap_rings = &mip->mi_tx_rings_cap; 4306 group_type = mip->mi_tx_group_type; 4307 break; 4308 default: 4309 ASSERT(B_FALSE); 4310 } 4311 4312 /* 4313 * There should be no ring with the same ring index in the target 4314 * group. 4315 */ 4316 ASSERT(mac_find_ring((mac_group_handle_t)group, 4317 driver_call ? index : ring->mr_index) == NULL); 4318 4319 if (driver_call) { 4320 /* 4321 * The function is called as a result of a request from 4322 * a driver to add a ring to an existing group, for example 4323 * from the aggregation driver. Allocate a new mac_ring_t 4324 * for that ring. 4325 */ 4326 ring = mac_init_ring(mip, group, index, cap_rings); 4327 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4328 } else { 4329 /* 4330 * The function is called as a result of a MAC layer request 4331 * to add a ring to an existing group. In this case the 4332 * ring is being moved between groups, which requires 4333 * the underlying driver to support dynamic grouping, 4334 * and the mac_ring_t already exists. 4335 */ 4336 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4337 ASSERT(group->mrg_driver == NULL || 4338 cap_rings->mr_gaddring != NULL); 4339 ASSERT(ring->mr_gh == NULL); 4340 } 4341 4342 /* 4343 * At this point the ring should not be in use, and it should be 4344 * of the right for the target group. 4345 */ 4346 ASSERT(ring->mr_state < MR_INUSE); 4347 ASSERT(ring->mr_srs == NULL); 4348 ASSERT(ring->mr_type == group->mrg_type); 4349 4350 if (!driver_call) { 4351 /* 4352 * Add the driver level hardware ring if the process was not 4353 * initiated by the driver, and the target group is not the 4354 * group. 4355 */ 4356 if (group->mrg_driver != NULL) { 4357 cap_rings->mr_gaddring(group->mrg_driver, 4358 ring->mr_driver, ring->mr_type); 4359 } 4360 4361 /* 4362 * Insert the ring ahead existing rings. 4363 */ 4364 ring->mr_next = group->mrg_rings; 4365 group->mrg_rings = ring; 4366 ring->mr_gh = (mac_group_handle_t)group; 4367 group->mrg_cur_count++; 4368 } 4369 4370 /* 4371 * If the group has not been actively used, we're done. 4372 */ 4373 if (group->mrg_index != -1 && 4374 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4375 return (0); 4376 4377 /* 4378 * Start the ring if needed. Failure causes to undo the grouping action. 4379 */ 4380 if (ring->mr_state != MR_INUSE) { 4381 if ((ret = mac_start_ring(ring)) != 0) { 4382 if (!driver_call) { 4383 cap_rings->mr_gremring(group->mrg_driver, 4384 ring->mr_driver, ring->mr_type); 4385 } 4386 group->mrg_cur_count--; 4387 group->mrg_rings = ring->mr_next; 4388 4389 ring->mr_gh = NULL; 4390 4391 if (driver_call) 4392 mac_ring_free(mip, ring); 4393 4394 return (ret); 4395 } 4396 } 4397 4398 /* 4399 * Set up SRS/SR according to the ring type. 4400 */ 4401 switch (ring->mr_type) { 4402 case MAC_RING_TYPE_RX: 4403 /* 4404 * Setup SRS on top of the new ring if the group is 4405 * reserved for someones exclusive use. 4406 */ 4407 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4408 mac_client_impl_t *mcip; 4409 4410 mcip = MAC_GROUP_ONLY_CLIENT(group); 4411 /* 4412 * Even though this group is reserved we migth still 4413 * have multiple clients, i.e a VLAN shares the 4414 * group with the primary mac client. 4415 */ 4416 if (mcip != NULL) { 4417 flent = mcip->mci_flent; 4418 ASSERT(flent->fe_rx_srs_cnt > 0); 4419 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4420 mac_fanout_setup(mcip, flent, 4421 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, 4422 mcip, NULL, NULL); 4423 } else { 4424 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4425 } 4426 } 4427 break; 4428 case MAC_RING_TYPE_TX: 4429 { 4430 mac_grp_client_t *mgcp = group->mrg_clients; 4431 mac_client_impl_t *mcip; 4432 mac_soft_ring_set_t *mac_srs; 4433 mac_srs_tx_t *tx; 4434 4435 if (MAC_GROUP_NO_CLIENT(group)) { 4436 if (ring->mr_state == MR_INUSE) 4437 mac_stop_ring(ring); 4438 ring->mr_flag = 0; 4439 break; 4440 } 4441 /* 4442 * If the rings are being moved to a group that has 4443 * clients using it, then add the new rings to the 4444 * clients SRS. 4445 */ 4446 while (mgcp != NULL) { 4447 boolean_t is_aggr; 4448 4449 mcip = mgcp->mgc_client; 4450 flent = mcip->mci_flent; 4451 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR); 4452 mac_srs = MCIP_TX_SRS(mcip); 4453 tx = &mac_srs->srs_tx; 4454 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4455 /* 4456 * If we are growing from 1 to multiple rings. 4457 */ 4458 if (tx->st_mode == SRS_TX_BW || 4459 tx->st_mode == SRS_TX_SERIALIZE || 4460 tx->st_mode == SRS_TX_DEFAULT) { 4461 mac_ring_t *tx_ring = tx->st_arg2; 4462 4463 tx->st_arg2 = NULL; 4464 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4465 mac_tx_srs_add_ring(mac_srs, tx_ring); 4466 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4467 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4468 SRS_TX_BW_FANOUT; 4469 } else { 4470 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4471 SRS_TX_FANOUT; 4472 } 4473 tx->st_func = mac_tx_get_func(tx->st_mode); 4474 } 4475 mac_tx_srs_add_ring(mac_srs, ring); 4476 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4477 mac_rx_deliver, mcip, NULL, NULL); 4478 mac_tx_client_restart((mac_client_handle_t)mcip); 4479 mgcp = mgcp->mgc_next; 4480 } 4481 break; 4482 } 4483 default: 4484 ASSERT(B_FALSE); 4485 } 4486 /* 4487 * For aggr, the default ring will be NULL to begin with. If it 4488 * is NULL, then pick the first ring that gets added as the 4489 * default ring. Any ring in an aggregation can be removed at 4490 * any time (by the user action of removing a link) and if the 4491 * current default ring gets removed, then a new one gets 4492 * picked (see i_mac_group_rem_ring()). 4493 */ 4494 if (mip->mi_state_flags & MIS_IS_AGGR && 4495 mip->mi_default_tx_ring == NULL && 4496 ring->mr_type == MAC_RING_TYPE_TX) { 4497 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4498 } 4499 4500 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4501 return (0); 4502 } 4503 4504 /* 4505 * Remove a ring from it's current group. MAC internal function for dynamic 4506 * grouping. 4507 * 4508 * The caller needs to call mac_perim_enter() before calling this function. 4509 */ 4510 void 4511 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4512 boolean_t driver_call) 4513 { 4514 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4515 mac_capab_rings_t *cap_rings = NULL; 4516 mac_group_type_t group_type; 4517 4518 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4519 4520 ASSERT(mac_find_ring((mac_group_handle_t)group, 4521 ring->mr_index) == (mac_ring_handle_t)ring); 4522 ASSERT((mac_group_t *)ring->mr_gh == group); 4523 ASSERT(ring->mr_type == group->mrg_type); 4524 4525 if (ring->mr_state == MR_INUSE) 4526 mac_stop_ring(ring); 4527 switch (ring->mr_type) { 4528 case MAC_RING_TYPE_RX: 4529 group_type = mip->mi_rx_group_type; 4530 cap_rings = &mip->mi_rx_rings_cap; 4531 4532 /* 4533 * Only hardware classified packets hold a reference to the 4534 * ring all the way up the Rx path. mac_rx_srs_remove() 4535 * will take care of quiescing the Rx path and removing the 4536 * SRS. The software classified path neither holds a reference 4537 * nor any association with the ring in mac_rx. 4538 */ 4539 if (ring->mr_srs != NULL) { 4540 mac_rx_srs_remove(ring->mr_srs); 4541 ring->mr_srs = NULL; 4542 } 4543 4544 break; 4545 case MAC_RING_TYPE_TX: 4546 { 4547 mac_grp_client_t *mgcp; 4548 mac_client_impl_t *mcip; 4549 mac_soft_ring_set_t *mac_srs; 4550 mac_srs_tx_t *tx; 4551 mac_ring_t *rem_ring; 4552 mac_group_t *defgrp; 4553 uint_t ring_info = 0; 4554 4555 /* 4556 * For TX this function is invoked in three 4557 * cases: 4558 * 4559 * 1) In the case of a failure during the 4560 * initial creation of a group when a share is 4561 * associated with a MAC client. So the SRS is not 4562 * yet setup, and will be setup later after the 4563 * group has been reserved and populated. 4564 * 4565 * 2) From mac_release_tx_group() when freeing 4566 * a TX SRS. 4567 * 4568 * 3) In the case of aggr, when a port gets removed, 4569 * the pseudo Tx rings that it exposed gets removed. 4570 * 4571 * In the first two cases the SRS and its soft 4572 * rings are already quiesced. 4573 */ 4574 if (driver_call) { 4575 mac_client_impl_t *mcip; 4576 mac_soft_ring_set_t *mac_srs; 4577 mac_soft_ring_t *sringp; 4578 mac_srs_tx_t *srs_tx; 4579 4580 if (mip->mi_state_flags & MIS_IS_AGGR && 4581 mip->mi_default_tx_ring == 4582 (mac_ring_handle_t)ring) { 4583 /* pick a new default Tx ring */ 4584 mip->mi_default_tx_ring = 4585 (group->mrg_rings != ring) ? 4586 (mac_ring_handle_t)group->mrg_rings : 4587 (mac_ring_handle_t)(ring->mr_next); 4588 } 4589 /* Presently only aggr case comes here */ 4590 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4591 break; 4592 4593 mcip = MAC_GROUP_ONLY_CLIENT(group); 4594 ASSERT(mcip != NULL); 4595 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR); 4596 mac_srs = MCIP_TX_SRS(mcip); 4597 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4598 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4599 srs_tx = &mac_srs->srs_tx; 4600 /* 4601 * Wakeup any callers blocked on this 4602 * Tx ring due to flow control. 4603 */ 4604 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4605 ASSERT(sringp != NULL); 4606 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4607 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4608 mac_tx_srs_del_ring(mac_srs, ring); 4609 mac_tx_client_restart((mac_client_handle_t)mcip); 4610 break; 4611 } 4612 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 4613 group_type = mip->mi_tx_group_type; 4614 cap_rings = &mip->mi_tx_rings_cap; 4615 /* 4616 * See if we need to take it out of the MAC clients using 4617 * this group 4618 */ 4619 if (MAC_GROUP_NO_CLIENT(group)) 4620 break; 4621 mgcp = group->mrg_clients; 4622 defgrp = MAC_DEFAULT_TX_GROUP(mip); 4623 while (mgcp != NULL) { 4624 mcip = mgcp->mgc_client; 4625 mac_srs = MCIP_TX_SRS(mcip); 4626 tx = &mac_srs->srs_tx; 4627 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4628 /* 4629 * If we are here when removing rings from the 4630 * defgroup, mac_reserve_tx_ring would have 4631 * already deleted the ring from the MAC 4632 * clients in the group. 4633 */ 4634 if (group != defgrp) { 4635 mac_tx_invoke_callbacks(mcip, 4636 (mac_tx_cookie_t) 4637 mac_tx_srs_get_soft_ring(mac_srs, ring)); 4638 mac_tx_srs_del_ring(mac_srs, ring); 4639 } 4640 /* 4641 * Additionally, if we are left with only 4642 * one ring in the group after this, we need 4643 * to modify the mode etc. to. (We haven't 4644 * yet taken the ring out, so we check with 2). 4645 */ 4646 if (group->mrg_cur_count == 2) { 4647 if (ring->mr_next == NULL) 4648 rem_ring = group->mrg_rings; 4649 else 4650 rem_ring = ring->mr_next; 4651 mac_tx_invoke_callbacks(mcip, 4652 (mac_tx_cookie_t) 4653 mac_tx_srs_get_soft_ring(mac_srs, 4654 rem_ring)); 4655 mac_tx_srs_del_ring(mac_srs, rem_ring); 4656 if (rem_ring->mr_state != MR_INUSE) { 4657 (void) mac_start_ring(rem_ring); 4658 } 4659 tx->st_arg2 = (void *)rem_ring; 4660 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 4661 ring_info = mac_hwring_getinfo( 4662 (mac_ring_handle_t)rem_ring); 4663 /* 4664 * We are shrinking from multiple 4665 * to 1 ring. 4666 */ 4667 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4668 tx->st_mode = SRS_TX_BW; 4669 } else if (mac_tx_serialize || 4670 (ring_info & MAC_RING_TX_SERIALIZE)) { 4671 tx->st_mode = SRS_TX_SERIALIZE; 4672 } else { 4673 tx->st_mode = SRS_TX_DEFAULT; 4674 } 4675 tx->st_func = mac_tx_get_func(tx->st_mode); 4676 } 4677 mac_tx_client_restart((mac_client_handle_t)mcip); 4678 mgcp = mgcp->mgc_next; 4679 } 4680 break; 4681 } 4682 default: 4683 ASSERT(B_FALSE); 4684 } 4685 4686 /* 4687 * Remove the ring from the group. 4688 */ 4689 if (ring == group->mrg_rings) 4690 group->mrg_rings = ring->mr_next; 4691 else { 4692 mac_ring_t *pre; 4693 4694 pre = group->mrg_rings; 4695 while (pre->mr_next != ring) 4696 pre = pre->mr_next; 4697 pre->mr_next = ring->mr_next; 4698 } 4699 group->mrg_cur_count--; 4700 4701 if (!driver_call) { 4702 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4703 ASSERT(group->mrg_driver == NULL || 4704 cap_rings->mr_gremring != NULL); 4705 4706 /* 4707 * Remove the driver level hardware ring. 4708 */ 4709 if (group->mrg_driver != NULL) { 4710 cap_rings->mr_gremring(group->mrg_driver, 4711 ring->mr_driver, ring->mr_type); 4712 } 4713 } 4714 4715 ring->mr_gh = NULL; 4716 if (driver_call) 4717 mac_ring_free(mip, ring); 4718 else 4719 ring->mr_flag = 0; 4720 } 4721 4722 /* 4723 * Move a ring to the target group. If needed, remove the ring from the group 4724 * that it currently belongs to. 4725 * 4726 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 4727 */ 4728 static int 4729 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 4730 { 4731 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 4732 int rv; 4733 4734 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4735 ASSERT(d_group != NULL); 4736 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 4737 4738 if (s_group == d_group) 4739 return (0); 4740 4741 /* 4742 * Remove it from current group first. 4743 */ 4744 if (s_group != NULL) 4745 i_mac_group_rem_ring(s_group, ring, B_FALSE); 4746 4747 /* 4748 * Add it to the new group. 4749 */ 4750 rv = i_mac_group_add_ring(d_group, ring, 0); 4751 if (rv != 0) { 4752 /* 4753 * Failed to add ring back to source group. If 4754 * that fails, the ring is stuck in limbo, log message. 4755 */ 4756 if (i_mac_group_add_ring(s_group, ring, 0)) { 4757 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 4758 mip->mi_name, (void *)ring); 4759 } 4760 } 4761 4762 return (rv); 4763 } 4764 4765 /* 4766 * Find a MAC address according to its value. 4767 */ 4768 mac_address_t * 4769 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 4770 { 4771 mac_address_t *map; 4772 4773 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4774 4775 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 4776 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 4777 break; 4778 } 4779 4780 return (map); 4781 } 4782 4783 /* 4784 * Check whether the MAC address is shared by multiple clients. 4785 */ 4786 boolean_t 4787 mac_check_macaddr_shared(mac_address_t *map) 4788 { 4789 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 4790 4791 return (map->ma_nusers > 1); 4792 } 4793 4794 /* 4795 * Remove the specified MAC address from the MAC address list and free it. 4796 */ 4797 static void 4798 mac_free_macaddr(mac_address_t *map) 4799 { 4800 mac_impl_t *mip = map->ma_mip; 4801 4802 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4803 ASSERT(mip->mi_addresses != NULL); 4804 4805 map = mac_find_macaddr(mip, map->ma_addr); 4806 4807 ASSERT(map != NULL); 4808 ASSERT(map->ma_nusers == 0); 4809 4810 if (map == mip->mi_addresses) { 4811 mip->mi_addresses = map->ma_next; 4812 } else { 4813 mac_address_t *pre; 4814 4815 pre = mip->mi_addresses; 4816 while (pre->ma_next != map) 4817 pre = pre->ma_next; 4818 pre->ma_next = map->ma_next; 4819 } 4820 4821 kmem_free(map, sizeof (mac_address_t)); 4822 } 4823 4824 /* 4825 * Add a MAC address reference for a client. If the desired MAC address 4826 * exists, add a reference to it. Otherwise, add the new address by adding 4827 * it to a reserved group or setting promiscuous mode. Won't try different 4828 * group is the group is non-NULL, so the caller must explictly share 4829 * default group when needed. 4830 * 4831 * Note, the primary MAC address is initialized at registration time, so 4832 * to add it to default group only need to activate it if its reference 4833 * count is still zero. Also, some drivers may not have advertised RINGS 4834 * capability. 4835 */ 4836 int 4837 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 4838 boolean_t use_hw) 4839 { 4840 mac_address_t *map; 4841 int err = 0; 4842 boolean_t allocated_map = B_FALSE; 4843 4844 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4845 4846 map = mac_find_macaddr(mip, mac_addr); 4847 4848 /* 4849 * If the new MAC address has not been added. Allocate a new one 4850 * and set it up. 4851 */ 4852 if (map == NULL) { 4853 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4854 map->ma_len = mip->mi_type->mt_addr_length; 4855 bcopy(mac_addr, map->ma_addr, map->ma_len); 4856 map->ma_nusers = 0; 4857 map->ma_group = group; 4858 map->ma_mip = mip; 4859 4860 /* add the new MAC address to the head of the address list */ 4861 map->ma_next = mip->mi_addresses; 4862 mip->mi_addresses = map; 4863 4864 allocated_map = B_TRUE; 4865 } 4866 4867 ASSERT(map->ma_group == NULL || map->ma_group == group); 4868 if (map->ma_group == NULL) 4869 map->ma_group = group; 4870 4871 /* 4872 * If the MAC address is already in use, simply account for the 4873 * new client. 4874 */ 4875 if (map->ma_nusers++ > 0) 4876 return (0); 4877 4878 /* 4879 * Activate this MAC address by adding it to the reserved group. 4880 */ 4881 if (group != NULL) { 4882 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 4883 if (err == 0) { 4884 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4885 return (0); 4886 } 4887 } 4888 4889 /* 4890 * The MAC address addition failed. If the client requires a 4891 * hardware classified MAC address, fail the operation. 4892 */ 4893 if (use_hw) { 4894 err = ENOSPC; 4895 goto bail; 4896 } 4897 4898 /* 4899 * Try promiscuous mode. 4900 * 4901 * For drivers that don't advertise RINGS capability, do 4902 * nothing for the primary address. 4903 */ 4904 if ((group == NULL) && 4905 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 4906 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4907 return (0); 4908 } 4909 4910 /* 4911 * Enable promiscuous mode in order to receive traffic 4912 * to the new MAC address. 4913 */ 4914 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 4915 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 4916 return (0); 4917 } 4918 4919 /* 4920 * Free the MAC address that could not be added. Don't free 4921 * a pre-existing address, it could have been the entry 4922 * for the primary MAC address which was pre-allocated by 4923 * mac_init_macaddr(), and which must remain on the list. 4924 */ 4925 bail: 4926 map->ma_nusers--; 4927 if (allocated_map) 4928 mac_free_macaddr(map); 4929 return (err); 4930 } 4931 4932 /* 4933 * Remove a reference to a MAC address. This may cause to remove the MAC 4934 * address from an associated group or to turn off promiscuous mode. 4935 * The caller needs to handle the failure properly. 4936 */ 4937 int 4938 mac_remove_macaddr(mac_address_t *map) 4939 { 4940 mac_impl_t *mip = map->ma_mip; 4941 int err = 0; 4942 4943 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4944 4945 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 4946 4947 /* 4948 * If it's not the last client using this MAC address, only update 4949 * the MAC clients count. 4950 */ 4951 if (--map->ma_nusers > 0) 4952 return (0); 4953 4954 /* 4955 * The MAC address is no longer used by any MAC client, so remove 4956 * it from its associated group, or turn off promiscuous mode 4957 * if it was enabled for the MAC address. 4958 */ 4959 switch (map->ma_type) { 4960 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 4961 /* 4962 * Don't free the preset primary address for drivers that 4963 * don't advertise RINGS capability. 4964 */ 4965 if (map->ma_group == NULL) 4966 return (0); 4967 4968 err = mac_group_remmac(map->ma_group, map->ma_addr); 4969 if (err == 0) 4970 map->ma_group = NULL; 4971 break; 4972 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4973 err = i_mac_promisc_set(mip, B_FALSE); 4974 break; 4975 default: 4976 ASSERT(B_FALSE); 4977 } 4978 4979 if (err != 0) 4980 return (err); 4981 4982 /* 4983 * We created MAC address for the primary one at registration, so we 4984 * won't free it here. mac_fini_macaddr() will take care of it. 4985 */ 4986 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 4987 mac_free_macaddr(map); 4988 4989 return (0); 4990 } 4991 4992 /* 4993 * Update an existing MAC address. The caller need to make sure that the new 4994 * value has not been used. 4995 */ 4996 int 4997 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 4998 { 4999 mac_impl_t *mip = map->ma_mip; 5000 int err = 0; 5001 5002 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5003 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5004 5005 switch (map->ma_type) { 5006 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5007 /* 5008 * Update the primary address for drivers that are not 5009 * RINGS capable. 5010 */ 5011 if (mip->mi_rx_groups == NULL) { 5012 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5013 mac_addr); 5014 if (err != 0) 5015 return (err); 5016 break; 5017 } 5018 5019 /* 5020 * If this MAC address is not currently in use, 5021 * simply break out and update the value. 5022 */ 5023 if (map->ma_nusers == 0) 5024 break; 5025 5026 /* 5027 * Need to replace the MAC address associated with a group. 5028 */ 5029 err = mac_group_remmac(map->ma_group, map->ma_addr); 5030 if (err != 0) 5031 return (err); 5032 5033 err = mac_group_addmac(map->ma_group, mac_addr); 5034 5035 /* 5036 * Failure hints hardware error. The MAC layer needs to 5037 * have error notification facility to handle this. 5038 * Now, simply try to restore the value. 5039 */ 5040 if (err != 0) 5041 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5042 5043 break; 5044 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5045 /* 5046 * Need to do nothing more if in promiscuous mode. 5047 */ 5048 break; 5049 default: 5050 ASSERT(B_FALSE); 5051 } 5052 5053 /* 5054 * Successfully replaced the MAC address. 5055 */ 5056 if (err == 0) 5057 bcopy(mac_addr, map->ma_addr, map->ma_len); 5058 5059 return (err); 5060 } 5061 5062 /* 5063 * Freshen the MAC address with new value. Its caller must have updated the 5064 * hardware MAC address before calling this function. 5065 * This funcitons is supposed to be used to handle the MAC address change 5066 * notification from underlying drivers. 5067 */ 5068 void 5069 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5070 { 5071 mac_impl_t *mip = map->ma_mip; 5072 5073 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5074 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5075 5076 /* 5077 * Freshen the MAC address with new value. 5078 */ 5079 bcopy(mac_addr, map->ma_addr, map->ma_len); 5080 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5081 5082 /* 5083 * Update all MAC clients that share this MAC address. 5084 */ 5085 mac_unicast_update_clients(mip, map); 5086 } 5087 5088 /* 5089 * Set up the primary MAC address. 5090 */ 5091 void 5092 mac_init_macaddr(mac_impl_t *mip) 5093 { 5094 mac_address_t *map; 5095 5096 /* 5097 * The reference count is initialized to zero, until it's really 5098 * activated. 5099 */ 5100 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5101 map->ma_len = mip->mi_type->mt_addr_length; 5102 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5103 5104 /* 5105 * If driver advertises RINGS capability, it shouldn't have initialized 5106 * its primary MAC address. For other drivers, including VNIC, the 5107 * primary address must work after registration. 5108 */ 5109 if (mip->mi_rx_groups == NULL) 5110 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5111 5112 map->ma_mip = mip; 5113 5114 mip->mi_addresses = map; 5115 } 5116 5117 /* 5118 * Clean up the primary MAC address. Note, only one primary MAC address 5119 * is allowed. All other MAC addresses must have been freed appropriately. 5120 */ 5121 void 5122 mac_fini_macaddr(mac_impl_t *mip) 5123 { 5124 mac_address_t *map = mip->mi_addresses; 5125 5126 if (map == NULL) 5127 return; 5128 5129 /* 5130 * If mi_addresses is initialized, there should be exactly one 5131 * entry left on the list with no users. 5132 */ 5133 ASSERT(map->ma_nusers == 0); 5134 ASSERT(map->ma_next == NULL); 5135 5136 kmem_free(map, sizeof (mac_address_t)); 5137 mip->mi_addresses = NULL; 5138 } 5139 5140 /* 5141 * Logging related functions. 5142 * 5143 * Note that Kernel statistics have been extended to maintain fine 5144 * granularity of statistics viz. hardware lane, software lane, fanout 5145 * stats etc. However, extended accounting continues to support only 5146 * aggregate statistics like before. 5147 */ 5148 5149 /* Write the flow description to a netinfo_t record */ 5150 static netinfo_t * 5151 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5152 { 5153 netinfo_t *ninfo; 5154 net_desc_t *ndesc; 5155 flow_desc_t *fdesc; 5156 mac_resource_props_t *mrp; 5157 5158 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5159 if (ninfo == NULL) 5160 return (NULL); 5161 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5162 if (ndesc == NULL) { 5163 kmem_free(ninfo, sizeof (netinfo_t)); 5164 return (NULL); 5165 } 5166 5167 /* 5168 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5169 * Updates to the fe_flow_desc are done under the fe_lock 5170 */ 5171 mutex_enter(&flent->fe_lock); 5172 fdesc = &flent->fe_flow_desc; 5173 mrp = &flent->fe_resource_props; 5174 5175 ndesc->nd_name = flent->fe_flow_name; 5176 ndesc->nd_devname = mcip->mci_name; 5177 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5178 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5179 ndesc->nd_sap = htonl(fdesc->fd_sap); 5180 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5181 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5182 if (ndesc->nd_isv4) { 5183 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5184 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5185 } else { 5186 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5187 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5188 } 5189 ndesc->nd_sport = htons(fdesc->fd_local_port); 5190 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5191 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5192 mutex_exit(&flent->fe_lock); 5193 5194 ninfo->ni_record = ndesc; 5195 ninfo->ni_size = sizeof (net_desc_t); 5196 ninfo->ni_type = EX_NET_FLDESC_REC; 5197 5198 return (ninfo); 5199 } 5200 5201 /* Write the flow statistics to a netinfo_t record */ 5202 static netinfo_t * 5203 mac_write_flow_stats(flow_entry_t *flent) 5204 { 5205 netinfo_t *ninfo; 5206 net_stat_t *nstat; 5207 mac_soft_ring_set_t *mac_srs; 5208 mac_rx_stats_t *mac_rx_stat; 5209 mac_tx_stats_t *mac_tx_stat; 5210 int i; 5211 5212 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5213 if (ninfo == NULL) 5214 return (NULL); 5215 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5216 if (nstat == NULL) { 5217 kmem_free(ninfo, sizeof (netinfo_t)); 5218 return (NULL); 5219 } 5220 5221 nstat->ns_name = flent->fe_flow_name; 5222 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5223 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5224 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5225 5226 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5227 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5228 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5229 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5230 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5231 } 5232 5233 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5234 if (mac_srs != NULL) { 5235 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5236 5237 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5238 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5239 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5240 } 5241 5242 ninfo->ni_record = nstat; 5243 ninfo->ni_size = sizeof (net_stat_t); 5244 ninfo->ni_type = EX_NET_FLSTAT_REC; 5245 5246 return (ninfo); 5247 } 5248 5249 /* Write the link description to a netinfo_t record */ 5250 static netinfo_t * 5251 mac_write_link_desc(mac_client_impl_t *mcip) 5252 { 5253 netinfo_t *ninfo; 5254 net_desc_t *ndesc; 5255 flow_entry_t *flent = mcip->mci_flent; 5256 5257 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5258 if (ninfo == NULL) 5259 return (NULL); 5260 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5261 if (ndesc == NULL) { 5262 kmem_free(ninfo, sizeof (netinfo_t)); 5263 return (NULL); 5264 } 5265 5266 ndesc->nd_name = mcip->mci_name; 5267 ndesc->nd_devname = mcip->mci_name; 5268 ndesc->nd_isv4 = B_TRUE; 5269 /* 5270 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5271 * Updates to the fe_flow_desc are done under the fe_lock 5272 * after removing the flent from the flow table. 5273 */ 5274 mutex_enter(&flent->fe_lock); 5275 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5276 mutex_exit(&flent->fe_lock); 5277 5278 ninfo->ni_record = ndesc; 5279 ninfo->ni_size = sizeof (net_desc_t); 5280 ninfo->ni_type = EX_NET_LNDESC_REC; 5281 5282 return (ninfo); 5283 } 5284 5285 /* Write the link statistics to a netinfo_t record */ 5286 static netinfo_t * 5287 mac_write_link_stats(mac_client_impl_t *mcip) 5288 { 5289 netinfo_t *ninfo; 5290 net_stat_t *nstat; 5291 flow_entry_t *flent; 5292 mac_soft_ring_set_t *mac_srs; 5293 mac_rx_stats_t *mac_rx_stat; 5294 mac_tx_stats_t *mac_tx_stat; 5295 int i; 5296 5297 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5298 if (ninfo == NULL) 5299 return (NULL); 5300 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5301 if (nstat == NULL) { 5302 kmem_free(ninfo, sizeof (netinfo_t)); 5303 return (NULL); 5304 } 5305 5306 nstat->ns_name = mcip->mci_name; 5307 flent = mcip->mci_flent; 5308 if (flent != NULL) { 5309 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5310 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5311 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5312 5313 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5314 mac_rx_stat->mrs_pollbytes + 5315 mac_rx_stat->mrs_lclbytes; 5316 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5317 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5318 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5319 } 5320 } 5321 5322 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5323 if (mac_srs != NULL) { 5324 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5325 5326 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5327 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5328 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5329 } 5330 5331 ninfo->ni_record = nstat; 5332 ninfo->ni_size = sizeof (net_stat_t); 5333 ninfo->ni_type = EX_NET_LNSTAT_REC; 5334 5335 return (ninfo); 5336 } 5337 5338 typedef struct i_mac_log_state_s { 5339 boolean_t mi_last; 5340 int mi_fenable; 5341 int mi_lenable; 5342 list_t *mi_list; 5343 } i_mac_log_state_t; 5344 5345 /* 5346 * For a given flow, if the description has not been logged before, do it now. 5347 * If it is a VNIC, then we have collected information about it from the MAC 5348 * table, so skip it. 5349 * 5350 * Called through mac_flow_walk_nolock() 5351 * 5352 * Return 0 if successful. 5353 */ 5354 static int 5355 mac_log_flowinfo(flow_entry_t *flent, void *arg) 5356 { 5357 mac_client_impl_t *mcip = flent->fe_mcip; 5358 i_mac_log_state_t *lstate = arg; 5359 netinfo_t *ninfo; 5360 5361 if (mcip == NULL) 5362 return (0); 5363 5364 /* 5365 * If the name starts with "vnic", and fe_user_generated is true (to 5366 * exclude the mcast and active flow entries created implicitly for 5367 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5368 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5369 */ 5370 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5371 (flent->fe_type & FLOW_USER) != 0) { 5372 return (0); 5373 } 5374 5375 if (!flent->fe_desc_logged) { 5376 /* 5377 * We don't return error because we want to continue the 5378 * walk in case this is the last walk which means we 5379 * need to reset fe_desc_logged in all the flows. 5380 */ 5381 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 5382 return (0); 5383 list_insert_tail(lstate->mi_list, ninfo); 5384 flent->fe_desc_logged = B_TRUE; 5385 } 5386 5387 /* 5388 * Regardless of the error, we want to proceed in case we have to 5389 * reset fe_desc_logged. 5390 */ 5391 ninfo = mac_write_flow_stats(flent); 5392 if (ninfo == NULL) 5393 return (-1); 5394 5395 list_insert_tail(lstate->mi_list, ninfo); 5396 5397 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5398 flent->fe_desc_logged = B_FALSE; 5399 5400 return (0); 5401 } 5402 5403 /* 5404 * Log the description for each mac client of this mac_impl_t, if it 5405 * hasn't already been done. Additionally, log statistics for the link as 5406 * well. Walk the flow table and log information for each flow as well. 5407 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5408 * also fe_desc_logged, if flow logging is on) since we want to log the 5409 * description if and when logging is restarted. 5410 * 5411 * Return 0 upon success or -1 upon failure 5412 */ 5413 static int 5414 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 5415 { 5416 mac_client_impl_t *mcip; 5417 netinfo_t *ninfo; 5418 5419 i_mac_perim_enter(mip); 5420 /* 5421 * Only walk the client list for NIC and etherstub 5422 */ 5423 if ((mip->mi_state_flags & MIS_DISABLED) || 5424 ((mip->mi_state_flags & MIS_IS_VNIC) && 5425 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 5426 i_mac_perim_exit(mip); 5427 return (0); 5428 } 5429 5430 for (mcip = mip->mi_clients_list; mcip != NULL; 5431 mcip = mcip->mci_client_next) { 5432 if (!MCIP_DATAPATH_SETUP(mcip)) 5433 continue; 5434 if (lstate->mi_lenable) { 5435 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 5436 ninfo = mac_write_link_desc(mcip); 5437 if (ninfo == NULL) { 5438 /* 5439 * We can't terminate it if this is the last 5440 * walk, else there might be some links with 5441 * mi_desc_logged set to true, which means 5442 * their description won't be logged the next 5443 * time logging is started (similarly for the 5444 * flows within such links). We can continue 5445 * without walking the flow table (i.e. to 5446 * set fe_desc_logged to false) because we 5447 * won't have written any flow stuff for this 5448 * link as we haven't logged the link itself. 5449 */ 5450 i_mac_perim_exit(mip); 5451 if (lstate->mi_last) 5452 return (0); 5453 else 5454 return (-1); 5455 } 5456 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 5457 list_insert_tail(lstate->mi_list, ninfo); 5458 } 5459 } 5460 5461 ninfo = mac_write_link_stats(mcip); 5462 if (ninfo == NULL && !lstate->mi_last) { 5463 i_mac_perim_exit(mip); 5464 return (-1); 5465 } 5466 list_insert_tail(lstate->mi_list, ninfo); 5467 5468 if (lstate->mi_last) 5469 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 5470 5471 if (lstate->mi_fenable) { 5472 if (mcip->mci_subflow_tab != NULL) { 5473 (void) mac_flow_walk_nolock( 5474 mcip->mci_subflow_tab, mac_log_flowinfo, 5475 lstate); 5476 } 5477 } 5478 } 5479 i_mac_perim_exit(mip); 5480 return (0); 5481 } 5482 5483 /* 5484 * modhash walker function to add a mac_impl_t to a list 5485 */ 5486 /*ARGSUSED*/ 5487 static uint_t 5488 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5489 { 5490 list_t *list = (list_t *)arg; 5491 mac_impl_t *mip = (mac_impl_t *)val; 5492 5493 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 5494 list_insert_tail(list, mip); 5495 mip->mi_ref++; 5496 } 5497 5498 return (MH_WALK_CONTINUE); 5499 } 5500 5501 void 5502 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 5503 { 5504 list_t mac_impl_list; 5505 mac_impl_t *mip; 5506 netinfo_t *ninfo; 5507 5508 /* Create list of mac_impls */ 5509 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 5510 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 5511 mi_node)); 5512 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 5513 rw_exit(&i_mac_impl_lock); 5514 5515 /* Create log entries for each mac_impl */ 5516 for (mip = list_head(&mac_impl_list); mip != NULL; 5517 mip = list_next(&mac_impl_list, mip)) { 5518 if (i_mac_impl_log(mip, lstate) != 0) 5519 continue; 5520 } 5521 5522 /* Remove elements and destroy list of mac_impls */ 5523 rw_enter(&i_mac_impl_lock, RW_WRITER); 5524 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 5525 mip->mi_ref--; 5526 } 5527 rw_exit(&i_mac_impl_lock); 5528 list_destroy(&mac_impl_list); 5529 5530 /* 5531 * Write log entries to files outside of locks, free associated 5532 * structures, and remove entries from the list. 5533 */ 5534 while ((ninfo = list_head(net_log_list)) != NULL) { 5535 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 5536 list_remove(net_log_list, ninfo); 5537 kmem_free(ninfo->ni_record, ninfo->ni_size); 5538 kmem_free(ninfo, sizeof (*ninfo)); 5539 } 5540 list_destroy(net_log_list); 5541 } 5542 5543 /* 5544 * The timer thread that runs every mac_logging_interval seconds and logs 5545 * link and/or flow information. 5546 */ 5547 /* ARGSUSED */ 5548 void 5549 mac_log_linkinfo(void *arg) 5550 { 5551 i_mac_log_state_t lstate; 5552 list_t net_log_list; 5553 5554 list_create(&net_log_list, sizeof (netinfo_t), 5555 offsetof(netinfo_t, ni_link)); 5556 5557 rw_enter(&i_mac_impl_lock, RW_READER); 5558 if (!mac_flow_log_enable && !mac_link_log_enable) { 5559 rw_exit(&i_mac_impl_lock); 5560 return; 5561 } 5562 lstate.mi_fenable = mac_flow_log_enable; 5563 lstate.mi_lenable = mac_link_log_enable; 5564 lstate.mi_last = B_FALSE; 5565 lstate.mi_list = &net_log_list; 5566 5567 /* Write log entries for each mac_impl in the list */ 5568 i_mac_log_info(&net_log_list, &lstate); 5569 5570 if (mac_flow_log_enable || mac_link_log_enable) { 5571 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 5572 SEC_TO_TICK(mac_logging_interval)); 5573 } 5574 } 5575 5576 typedef struct i_mac_fastpath_state_s { 5577 boolean_t mf_disable; 5578 int mf_err; 5579 } i_mac_fastpath_state_t; 5580 5581 /* modhash walker function to enable or disable fastpath */ 5582 /*ARGSUSED*/ 5583 static uint_t 5584 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 5585 void *arg) 5586 { 5587 i_mac_fastpath_state_t *state = arg; 5588 mac_handle_t mh = (mac_handle_t)val; 5589 5590 if (state->mf_disable) 5591 state->mf_err = mac_fastpath_disable(mh); 5592 else 5593 mac_fastpath_enable(mh); 5594 5595 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 5596 } 5597 5598 /* 5599 * Start the logging timer. 5600 */ 5601 int 5602 mac_start_logusage(mac_logtype_t type, uint_t interval) 5603 { 5604 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 5605 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5606 int err; 5607 5608 rw_enter(&i_mac_impl_lock, RW_WRITER); 5609 switch (type) { 5610 case MAC_LOGTYPE_FLOW: 5611 if (mac_flow_log_enable) { 5612 rw_exit(&i_mac_impl_lock); 5613 return (0); 5614 } 5615 /* FALLTHRU */ 5616 case MAC_LOGTYPE_LINK: 5617 if (mac_link_log_enable) { 5618 rw_exit(&i_mac_impl_lock); 5619 return (0); 5620 } 5621 break; 5622 default: 5623 ASSERT(0); 5624 } 5625 5626 /* Disable fastpath */ 5627 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 5628 if ((err = dstate.mf_err) != 0) { 5629 /* Reenable fastpath */ 5630 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5631 rw_exit(&i_mac_impl_lock); 5632 return (err); 5633 } 5634 5635 switch (type) { 5636 case MAC_LOGTYPE_FLOW: 5637 mac_flow_log_enable = B_TRUE; 5638 /* FALLTHRU */ 5639 case MAC_LOGTYPE_LINK: 5640 mac_link_log_enable = B_TRUE; 5641 break; 5642 } 5643 5644 mac_logging_interval = interval; 5645 rw_exit(&i_mac_impl_lock); 5646 mac_log_linkinfo(NULL); 5647 return (0); 5648 } 5649 5650 /* 5651 * Stop the logging timer if both link and flow logging are turned off. 5652 */ 5653 void 5654 mac_stop_logusage(mac_logtype_t type) 5655 { 5656 i_mac_log_state_t lstate; 5657 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5658 list_t net_log_list; 5659 5660 list_create(&net_log_list, sizeof (netinfo_t), 5661 offsetof(netinfo_t, ni_link)); 5662 5663 rw_enter(&i_mac_impl_lock, RW_WRITER); 5664 5665 lstate.mi_fenable = mac_flow_log_enable; 5666 lstate.mi_lenable = mac_link_log_enable; 5667 lstate.mi_list = &net_log_list; 5668 5669 /* Last walk */ 5670 lstate.mi_last = B_TRUE; 5671 5672 switch (type) { 5673 case MAC_LOGTYPE_FLOW: 5674 if (lstate.mi_fenable) { 5675 ASSERT(mac_link_log_enable); 5676 mac_flow_log_enable = B_FALSE; 5677 mac_link_log_enable = B_FALSE; 5678 break; 5679 } 5680 /* FALLTHRU */ 5681 case MAC_LOGTYPE_LINK: 5682 if (!lstate.mi_lenable || mac_flow_log_enable) { 5683 rw_exit(&i_mac_impl_lock); 5684 return; 5685 } 5686 mac_link_log_enable = B_FALSE; 5687 break; 5688 default: 5689 ASSERT(0); 5690 } 5691 5692 /* Reenable fastpath */ 5693 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5694 5695 (void) untimeout(mac_logging_timer); 5696 mac_logging_timer = 0; 5697 5698 /* Write log entries for each mac_impl in the list */ 5699 i_mac_log_info(&net_log_list, &lstate); 5700 } 5701 5702 /* 5703 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 5704 */ 5705 void 5706 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 5707 { 5708 pri_t pri; 5709 int count; 5710 mac_soft_ring_set_t *mac_srs; 5711 5712 if (flent->fe_rx_srs_cnt <= 0) 5713 return; 5714 5715 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 5716 SRST_FLOW) { 5717 pri = FLOW_PRIORITY(mcip->mci_min_pri, 5718 mcip->mci_max_pri, 5719 flent->fe_resource_props.mrp_priority); 5720 } else { 5721 pri = mcip->mci_max_pri; 5722 } 5723 5724 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 5725 mac_srs = flent->fe_rx_srs[count]; 5726 mac_update_srs_priority(mac_srs, pri); 5727 } 5728 /* 5729 * If we have a Tx SRS, we need to modify all the threads associated 5730 * with it. 5731 */ 5732 if (flent->fe_tx_srs != NULL) 5733 mac_update_srs_priority(flent->fe_tx_srs, pri); 5734 } 5735 5736 /* 5737 * RX and TX rings are reserved according to different semantics depending 5738 * on the requests from the MAC clients and type of rings: 5739 * 5740 * On the Tx side, by default we reserve individual rings, independently from 5741 * the groups. 5742 * 5743 * On the Rx side, the reservation is at the granularity of the group 5744 * of rings, and used for v12n level 1 only. It has a special case for the 5745 * primary client. 5746 * 5747 * If a share is allocated to a MAC client, we allocate a TX group and an 5748 * RX group to the client, and assign TX rings and RX rings to these 5749 * groups according to information gathered from the driver through 5750 * the share capability. 5751 * 5752 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 5753 * to allocate individual rings out of a group and program the hw classifier 5754 * based on IP address or higher level criteria. 5755 */ 5756 5757 /* 5758 * mac_reserve_tx_ring() 5759 * Reserve a unused ring by marking it with MR_INUSE state. 5760 * As reserved, the ring is ready to function. 5761 * 5762 * Notes for Hybrid I/O: 5763 * 5764 * If a specific ring is needed, it is specified through the desired_ring 5765 * argument. Otherwise that argument is set to NULL. 5766 * If the desired ring was previous allocated to another client, this 5767 * function swaps it with a new ring from the group of unassigned rings. 5768 */ 5769 mac_ring_t * 5770 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 5771 { 5772 mac_group_t *group; 5773 mac_grp_client_t *mgcp; 5774 mac_client_impl_t *mcip; 5775 mac_soft_ring_set_t *srs; 5776 5777 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5778 5779 /* 5780 * Find an available ring and start it before changing its status. 5781 * The unassigned rings are at the end of the mi_tx_groups 5782 * array. 5783 */ 5784 group = MAC_DEFAULT_TX_GROUP(mip); 5785 5786 /* Can't take the default ring out of the default group */ 5787 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 5788 5789 if (desired_ring->mr_state == MR_FREE) { 5790 ASSERT(MAC_GROUP_NO_CLIENT(group)); 5791 if (mac_start_ring(desired_ring) != 0) 5792 return (NULL); 5793 return (desired_ring); 5794 } 5795 /* 5796 * There are clients using this ring, so let's move the clients 5797 * away from using this ring. 5798 */ 5799 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 5800 mcip = mgcp->mgc_client; 5801 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5802 srs = MCIP_TX_SRS(mcip); 5803 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 5804 mac_tx_invoke_callbacks(mcip, 5805 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 5806 desired_ring)); 5807 mac_tx_srs_del_ring(srs, desired_ring); 5808 mac_tx_client_restart((mac_client_handle_t)mcip); 5809 } 5810 return (desired_ring); 5811 } 5812 5813 /* 5814 * For a reserved group with multiple clients, return the primary client. 5815 */ 5816 static mac_client_impl_t * 5817 mac_get_grp_primary(mac_group_t *grp) 5818 { 5819 mac_grp_client_t *mgcp = grp->mrg_clients; 5820 mac_client_impl_t *mcip; 5821 5822 while (mgcp != NULL) { 5823 mcip = mgcp->mgc_client; 5824 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 5825 return (mcip); 5826 mgcp = mgcp->mgc_next; 5827 } 5828 return (NULL); 5829 } 5830 5831 /* 5832 * Hybrid I/O specifies the ring that should be given to a share. 5833 * If the ring is already used by clients, then we need to release 5834 * the ring back to the default group so that we can give it to 5835 * the share. This means the clients using this ring now get a 5836 * replacement ring. If there aren't any replacement rings, this 5837 * function returns a failure. 5838 */ 5839 static int 5840 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 5841 mac_ring_t *ring, mac_ring_t **rings, int nrings) 5842 { 5843 mac_group_t *group = (mac_group_t *)ring->mr_gh; 5844 mac_resource_props_t *mrp; 5845 mac_client_impl_t *mcip; 5846 mac_group_t *defgrp; 5847 mac_ring_t *tring; 5848 mac_group_t *tgrp; 5849 int i; 5850 int j; 5851 5852 mcip = MAC_GROUP_ONLY_CLIENT(group); 5853 if (mcip == NULL) 5854 mcip = mac_get_grp_primary(group); 5855 ASSERT(mcip != NULL); 5856 ASSERT(mcip->mci_share == NULL); 5857 5858 mrp = MCIP_RESOURCE_PROPS(mcip); 5859 if (ring_type == MAC_RING_TYPE_RX) { 5860 defgrp = mip->mi_rx_donor_grp; 5861 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 5862 /* Need to put this mac client in the default group */ 5863 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 5864 return (ENOSPC); 5865 } else { 5866 /* 5867 * Switch this ring with some other ring from 5868 * the default group. 5869 */ 5870 for (tring = defgrp->mrg_rings; tring != NULL; 5871 tring = tring->mr_next) { 5872 if (tring->mr_index == 0) 5873 continue; 5874 for (j = 0; j < nrings; j++) { 5875 if (rings[j] == tring) 5876 break; 5877 } 5878 if (j >= nrings) 5879 break; 5880 } 5881 if (tring == NULL) 5882 return (ENOSPC); 5883 if (mac_group_mov_ring(mip, group, tring) != 0) 5884 return (ENOSPC); 5885 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 5886 (void) mac_group_mov_ring(mip, defgrp, tring); 5887 return (ENOSPC); 5888 } 5889 } 5890 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 5891 return (0); 5892 } 5893 5894 defgrp = MAC_DEFAULT_TX_GROUP(mip); 5895 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 5896 /* 5897 * See if we can get a spare ring to replace the default 5898 * ring. 5899 */ 5900 if (defgrp->mrg_cur_count == 1) { 5901 /* 5902 * Need to get a ring from another client, see if 5903 * there are any clients that can be moved to 5904 * the default group, thereby freeing some rings. 5905 */ 5906 for (i = 0; i < mip->mi_tx_group_count; i++) { 5907 tgrp = &mip->mi_tx_groups[i]; 5908 if (tgrp->mrg_state == 5909 MAC_GROUP_STATE_REGISTERED) { 5910 continue; 5911 } 5912 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 5913 if (mcip == NULL) 5914 mcip = mac_get_grp_primary(tgrp); 5915 ASSERT(mcip != NULL); 5916 mrp = MCIP_RESOURCE_PROPS(mcip); 5917 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 5918 ASSERT(tgrp->mrg_cur_count == 1); 5919 /* 5920 * If this ring is part of the 5921 * rings asked by the share we cannot 5922 * use it as the default ring. 5923 */ 5924 for (j = 0; j < nrings; j++) { 5925 if (rings[j] == tgrp->mrg_rings) 5926 break; 5927 } 5928 if (j < nrings) 5929 continue; 5930 mac_tx_client_quiesce( 5931 (mac_client_handle_t)mcip); 5932 mac_tx_switch_group(mcip, tgrp, 5933 defgrp); 5934 mac_tx_client_restart( 5935 (mac_client_handle_t)mcip); 5936 break; 5937 } 5938 } 5939 /* 5940 * All the rings are reserved, can't give up the 5941 * default ring. 5942 */ 5943 if (defgrp->mrg_cur_count <= 1) 5944 return (ENOSPC); 5945 } 5946 /* 5947 * Swap the default ring with another. 5948 */ 5949 for (tring = defgrp->mrg_rings; tring != NULL; 5950 tring = tring->mr_next) { 5951 /* 5952 * If this ring is part of the rings asked by the 5953 * share we cannot use it as the default ring. 5954 */ 5955 for (j = 0; j < nrings; j++) { 5956 if (rings[j] == tring) 5957 break; 5958 } 5959 if (j >= nrings) 5960 break; 5961 } 5962 ASSERT(tring != NULL); 5963 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 5964 return (0); 5965 } 5966 /* 5967 * The Tx ring is with a group reserved by a MAC client. See if 5968 * we can swap it. 5969 */ 5970 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 5971 mcip = MAC_GROUP_ONLY_CLIENT(group); 5972 if (mcip == NULL) 5973 mcip = mac_get_grp_primary(group); 5974 ASSERT(mcip != NULL); 5975 mrp = MCIP_RESOURCE_PROPS(mcip); 5976 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5977 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 5978 ASSERT(group->mrg_cur_count == 1); 5979 /* Put this mac client in the default group */ 5980 mac_tx_switch_group(mcip, group, defgrp); 5981 } else { 5982 /* 5983 * Switch this ring with some other ring from 5984 * the default group. 5985 */ 5986 for (tring = defgrp->mrg_rings; tring != NULL; 5987 tring = tring->mr_next) { 5988 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 5989 continue; 5990 /* 5991 * If this ring is part of the rings asked by the 5992 * share we cannot use it for swapping. 5993 */ 5994 for (j = 0; j < nrings; j++) { 5995 if (rings[j] == tring) 5996 break; 5997 } 5998 if (j >= nrings) 5999 break; 6000 } 6001 if (tring == NULL) { 6002 mac_tx_client_restart((mac_client_handle_t)mcip); 6003 return (ENOSPC); 6004 } 6005 if (mac_group_mov_ring(mip, group, tring) != 0) { 6006 mac_tx_client_restart((mac_client_handle_t)mcip); 6007 return (ENOSPC); 6008 } 6009 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6010 (void) mac_group_mov_ring(mip, defgrp, tring); 6011 mac_tx_client_restart((mac_client_handle_t)mcip); 6012 return (ENOSPC); 6013 } 6014 } 6015 mac_tx_client_restart((mac_client_handle_t)mcip); 6016 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6017 return (0); 6018 } 6019 6020 /* 6021 * Populate a zero-ring group with rings. If the share is non-NULL, 6022 * the rings are chosen according to that share. 6023 * Invoked after allocating a new RX or TX group through 6024 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6025 * Returns zero on success, an errno otherwise. 6026 */ 6027 int 6028 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6029 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6030 uint32_t ringcnt) 6031 { 6032 mac_ring_t **rings, *ring; 6033 uint_t nrings; 6034 int rv = 0, i = 0, j; 6035 6036 ASSERT((ring_type == MAC_RING_TYPE_RX && 6037 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6038 (ring_type == MAC_RING_TYPE_TX && 6039 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6040 6041 /* 6042 * First find the rings to allocate to the group. 6043 */ 6044 if (share != NULL) { 6045 /* get rings through ms_squery() */ 6046 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6047 ASSERT(nrings != 0); 6048 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6049 KM_SLEEP); 6050 mip->mi_share_capab.ms_squery(share, ring_type, 6051 (mac_ring_handle_t *)rings, &nrings); 6052 for (i = 0; i < nrings; i++) { 6053 /* 6054 * If we have given this ring to a non-default 6055 * group, we need to check if we can get this 6056 * ring. 6057 */ 6058 ring = rings[i]; 6059 if (ring->mr_gh != (mac_group_handle_t)src_group || 6060 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6061 if (mac_reclaim_ring_from_grp(mip, ring_type, 6062 ring, rings, nrings) != 0) { 6063 rv = ENOSPC; 6064 goto bail; 6065 } 6066 } 6067 } 6068 } else { 6069 /* 6070 * Pick one ring from default group. 6071 * 6072 * for now pick the second ring which requires the first ring 6073 * at index 0 to stay in the default group, since it is the 6074 * ring which carries the multicast traffic. 6075 * We need a better way for a driver to indicate this, 6076 * for example a per-ring flag. 6077 */ 6078 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6079 KM_SLEEP); 6080 for (ring = src_group->mrg_rings; ring != NULL; 6081 ring = ring->mr_next) { 6082 if (ring_type == MAC_RING_TYPE_RX && 6083 ring->mr_index == 0) { 6084 continue; 6085 } 6086 if (ring_type == MAC_RING_TYPE_TX && 6087 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6088 continue; 6089 } 6090 rings[i++] = ring; 6091 if (i == ringcnt) 6092 break; 6093 } 6094 ASSERT(ring != NULL); 6095 nrings = i; 6096 /* Not enough rings as required */ 6097 if (nrings != ringcnt) { 6098 rv = ENOSPC; 6099 goto bail; 6100 } 6101 } 6102 6103 switch (ring_type) { 6104 case MAC_RING_TYPE_RX: 6105 if (src_group->mrg_cur_count - nrings < 1) { 6106 /* we ran out of rings */ 6107 rv = ENOSPC; 6108 goto bail; 6109 } 6110 6111 /* move receive rings to new group */ 6112 for (i = 0; i < nrings; i++) { 6113 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6114 if (rv != 0) { 6115 /* move rings back on failure */ 6116 for (j = 0; j < i; j++) { 6117 (void) mac_group_mov_ring(mip, 6118 src_group, rings[j]); 6119 } 6120 goto bail; 6121 } 6122 } 6123 break; 6124 6125 case MAC_RING_TYPE_TX: { 6126 mac_ring_t *tmp_ring; 6127 6128 /* move the TX rings to the new group */ 6129 for (i = 0; i < nrings; i++) { 6130 /* get the desired ring */ 6131 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6132 if (tmp_ring == NULL) { 6133 rv = ENOSPC; 6134 goto bail; 6135 } 6136 ASSERT(tmp_ring == rings[i]); 6137 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6138 if (rv != 0) { 6139 /* cleanup on failure */ 6140 for (j = 0; j < i; j++) { 6141 (void) mac_group_mov_ring(mip, 6142 MAC_DEFAULT_TX_GROUP(mip), 6143 rings[j]); 6144 } 6145 goto bail; 6146 } 6147 } 6148 break; 6149 } 6150 } 6151 6152 /* add group to share */ 6153 if (share != NULL) 6154 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6155 6156 bail: 6157 /* free temporary array of rings */ 6158 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6159 6160 return (rv); 6161 } 6162 6163 void 6164 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6165 { 6166 mac_grp_client_t *mgcp; 6167 6168 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6169 if (mgcp->mgc_client == mcip) 6170 break; 6171 } 6172 6173 VERIFY(mgcp == NULL); 6174 6175 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6176 mgcp->mgc_client = mcip; 6177 mgcp->mgc_next = grp->mrg_clients; 6178 grp->mrg_clients = mgcp; 6179 6180 } 6181 6182 void 6183 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6184 { 6185 mac_grp_client_t *mgcp, **pprev; 6186 6187 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6188 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6189 if (mgcp->mgc_client == mcip) 6190 break; 6191 } 6192 6193 ASSERT(mgcp != NULL); 6194 6195 *pprev = mgcp->mgc_next; 6196 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6197 } 6198 6199 /* 6200 * mac_reserve_rx_group() 6201 * 6202 * Finds an available group and exclusively reserves it for a client. 6203 * The group is chosen to suit the flow's resource controls (bandwidth and 6204 * fanout requirements) and the address type. 6205 * If the requestor is the pimary MAC then return the group with the 6206 * largest number of rings, otherwise the default ring when available. 6207 */ 6208 mac_group_t * 6209 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6210 { 6211 mac_share_handle_t share = mcip->mci_share; 6212 mac_impl_t *mip = mcip->mci_mip; 6213 mac_group_t *grp = NULL; 6214 int i; 6215 int err = 0; 6216 mac_address_t *map; 6217 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6218 int nrings; 6219 int donor_grp_rcnt; 6220 boolean_t need_exclgrp = B_FALSE; 6221 int need_rings = 0; 6222 mac_group_t *candidate_grp = NULL; 6223 mac_client_impl_t *gclient; 6224 mac_resource_props_t *gmrp; 6225 mac_group_t *donorgrp = NULL; 6226 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6227 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6228 boolean_t isprimary; 6229 6230 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6231 6232 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6233 6234 /* 6235 * Check if a group already has this mac address (case of VLANs) 6236 * unless we are moving this MAC client from one group to another. 6237 */ 6238 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6239 if (map->ma_group != NULL) 6240 return (map->ma_group); 6241 } 6242 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6243 return (NULL); 6244 /* 6245 * If exclusive open, return NULL which will enable the 6246 * caller to use the default group. 6247 */ 6248 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6249 return (NULL); 6250 6251 /* For dynamic groups default unspecified to 1 */ 6252 if (rxhw && unspec && 6253 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6254 mrp->mrp_nrxrings = 1; 6255 } 6256 /* 6257 * For static grouping we allow only specifying rings=0 and 6258 * unspecified 6259 */ 6260 if (rxhw && mrp->mrp_nrxrings > 0 && 6261 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6262 return (NULL); 6263 } 6264 if (rxhw) { 6265 /* 6266 * We have explicitly asked for a group (with nrxrings, 6267 * if unspec). 6268 */ 6269 if (unspec || mrp->mrp_nrxrings > 0) { 6270 need_exclgrp = B_TRUE; 6271 need_rings = mrp->mrp_nrxrings; 6272 } else if (mrp->mrp_nrxrings == 0) { 6273 /* 6274 * We have asked for a software group. 6275 */ 6276 return (NULL); 6277 } 6278 } else if (isprimary && mip->mi_nactiveclients == 1 && 6279 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6280 /* 6281 * If the primary is the only active client on this 6282 * mip and we have not asked for any rings, we give 6283 * it the default group so that the primary gets to 6284 * use all the rings. 6285 */ 6286 return (NULL); 6287 } 6288 6289 /* The group that can donate rings */ 6290 donorgrp = mip->mi_rx_donor_grp; 6291 6292 /* 6293 * The number of rings that the default group can donate. 6294 * We need to leave at least one ring. 6295 */ 6296 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6297 6298 /* 6299 * Try to exclusively reserve a RX group. 6300 * 6301 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6302 * client), try to reserve the a non-default RX group and give 6303 * it all the rings from the donor group, except the default ring 6304 * 6305 * For flows requiring HW_RING (unicast flow of other clients), try 6306 * to reserve non-default RX group with the specified number of 6307 * rings, if available. 6308 * 6309 * For flows that have not asked for software or hardware ring, 6310 * try to reserve a non-default group with 1 ring, if available. 6311 */ 6312 for (i = 1; i < mip->mi_rx_group_count; i++) { 6313 grp = &mip->mi_rx_groups[i]; 6314 6315 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6316 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6317 6318 /* 6319 * Check if this group could be a candidate group for 6320 * eviction if we need a group for this MAC client, 6321 * but there aren't any. A candidate group is one 6322 * that didn't ask for an exclusive group, but got 6323 * one and it has enough rings (combined with what 6324 * the donor group can donate) for the new MAC 6325 * client 6326 */ 6327 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6328 /* 6329 * If the primary/donor group is not the default 6330 * group, don't bother looking for a candidate group. 6331 * If we don't have enough rings we will check 6332 * if the primary group can be vacated. 6333 */ 6334 if (candidate_grp == NULL && 6335 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6336 ASSERT(!MAC_GROUP_NO_CLIENT(grp)); 6337 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6338 if (gclient == NULL) 6339 gclient = mac_get_grp_primary(grp); 6340 ASSERT(gclient != NULL); 6341 gmrp = MCIP_RESOURCE_PROPS(gclient); 6342 if (gclient->mci_share == NULL && 6343 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 && 6344 (unspec || 6345 (grp->mrg_cur_count + donor_grp_rcnt >= 6346 need_rings))) { 6347 candidate_grp = grp; 6348 } 6349 } 6350 continue; 6351 } 6352 /* 6353 * This group could already be SHARED by other multicast 6354 * flows on this client. In that case, the group would 6355 * be shared and has already been started. 6356 */ 6357 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6358 6359 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6360 (mac_start_group(grp) != 0)) { 6361 continue; 6362 } 6363 6364 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6365 break; 6366 ASSERT(grp->mrg_cur_count == 0); 6367 6368 /* 6369 * Populate the group. Rings should be taken 6370 * from the donor group. 6371 */ 6372 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6373 6374 /* 6375 * If the donor group can't donate, let's just walk and 6376 * see if someone can vacate a group, so that we have 6377 * enough rings for this, unless we already have 6378 * identified a candiate group.. 6379 */ 6380 if (nrings <= donor_grp_rcnt) { 6381 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6382 donorgrp, grp, share, nrings); 6383 if (err == 0) { 6384 /* 6385 * For a share i_mac_group_allocate_rings gets 6386 * the rings from the driver, let's populate 6387 * the property for the client now. 6388 */ 6389 if (share != NULL) { 6390 mac_client_set_rings( 6391 (mac_client_handle_t)mcip, 6392 grp->mrg_cur_count, -1); 6393 } 6394 if (mac_is_primary_client(mcip) && !rxhw) 6395 mip->mi_rx_donor_grp = grp; 6396 break; 6397 } 6398 } 6399 6400 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6401 mip->mi_name, int, grp->mrg_index, int, err); 6402 6403 /* 6404 * It's a dynamic group but the grouping operation 6405 * failed. 6406 */ 6407 mac_stop_group(grp); 6408 } 6409 /* We didn't find an exclusive group for this MAC client */ 6410 if (i >= mip->mi_rx_group_count) { 6411 6412 if (!need_exclgrp) 6413 return (NULL); 6414 6415 /* 6416 * If we found a candidate group then we switch the 6417 * MAC client from the candidate_group to the default 6418 * group and give the group to this MAC client. If 6419 * we didn't find a candidate_group, check if the 6420 * primary is in its own group and if it can make way 6421 * for this MAC client. 6422 */ 6423 if (candidate_grp == NULL && 6424 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 6425 donorgrp->mrg_cur_count >= need_rings) { 6426 candidate_grp = donorgrp; 6427 } 6428 if (candidate_grp != NULL) { 6429 boolean_t prim_grp = B_FALSE; 6430 6431 /* 6432 * Switch the MAC client from the candidate group 6433 * to the default group.. If this group was the 6434 * donor group, then after the switch we need 6435 * to update the donor group too. 6436 */ 6437 grp = candidate_grp; 6438 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6439 if (gclient == NULL) 6440 gclient = mac_get_grp_primary(grp); 6441 if (grp == mip->mi_rx_donor_grp) 6442 prim_grp = B_TRUE; 6443 if (mac_rx_switch_group(gclient, grp, 6444 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 6445 return (NULL); 6446 } 6447 if (prim_grp) { 6448 mip->mi_rx_donor_grp = 6449 MAC_DEFAULT_RX_GROUP(mip); 6450 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 6451 } 6452 6453 6454 /* 6455 * Now give this group with the required rings 6456 * to this MAC client. 6457 */ 6458 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6459 if (mac_start_group(grp) != 0) 6460 return (NULL); 6461 6462 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6463 return (grp); 6464 6465 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6466 ASSERT(grp->mrg_cur_count == 0); 6467 ASSERT(donor_grp_rcnt >= need_rings); 6468 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6469 donorgrp, grp, share, need_rings); 6470 if (err == 0) { 6471 /* 6472 * For a share i_mac_group_allocate_rings gets 6473 * the rings from the driver, let's populate 6474 * the property for the client now. 6475 */ 6476 if (share != NULL) { 6477 mac_client_set_rings( 6478 (mac_client_handle_t)mcip, 6479 grp->mrg_cur_count, -1); 6480 } 6481 DTRACE_PROBE2(rx__group__reserved, 6482 char *, mip->mi_name, int, grp->mrg_index); 6483 return (grp); 6484 } 6485 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6486 mip->mi_name, int, grp->mrg_index, int, err); 6487 mac_stop_group(grp); 6488 } 6489 return (NULL); 6490 } 6491 ASSERT(grp != NULL); 6492 6493 DTRACE_PROBE2(rx__group__reserved, 6494 char *, mip->mi_name, int, grp->mrg_index); 6495 return (grp); 6496 } 6497 6498 /* 6499 * mac_rx_release_group() 6500 * 6501 * This is called when there are no clients left for the group. 6502 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 6503 * and if it is a non default group, the shares are removed and 6504 * all rings are assigned back to default group. 6505 */ 6506 void 6507 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 6508 { 6509 mac_impl_t *mip = mcip->mci_mip; 6510 mac_ring_t *ring; 6511 6512 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 6513 6514 if (mip->mi_rx_donor_grp == group) 6515 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 6516 6517 /* 6518 * This is the case where there are no clients left. Any 6519 * SRS etc on this group have also be quiesced. 6520 */ 6521 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 6522 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 6523 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6524 /* 6525 * Remove the SRS associated with the HW ring. 6526 * As a result, polling will be disabled. 6527 */ 6528 ring->mr_srs = NULL; 6529 } 6530 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 6531 ring->mr_state == MR_INUSE); 6532 if (ring->mr_state == MR_INUSE) { 6533 mac_stop_ring(ring); 6534 ring->mr_flag = 0; 6535 } 6536 } 6537 6538 /* remove group from share */ 6539 if (mcip->mci_share != NULL) { 6540 mip->mi_share_capab.ms_sremove(mcip->mci_share, 6541 group->mrg_driver); 6542 } 6543 6544 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6545 mac_ring_t *ring; 6546 6547 /* 6548 * Rings were dynamically allocated to group. 6549 * Move rings back to default group. 6550 */ 6551 while ((ring = group->mrg_rings) != NULL) { 6552 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 6553 ring); 6554 } 6555 } 6556 mac_stop_group(group); 6557 /* 6558 * Possible improvement: See if we can assign the group just released 6559 * to a another client of the mip 6560 */ 6561 } 6562 6563 /* 6564 * When we move the primary's mac address between groups, we need to also 6565 * take all the clients sharing the same mac address along with it (VLANs) 6566 * We remove the mac address for such clients from the group after quiescing 6567 * them. When we add the mac address we restart the client. Note that 6568 * the primary's mac address is removed from the group after all the 6569 * other clients sharing the address are removed. Similarly, the primary's 6570 * mac address is added before all the other client's mac address are 6571 * added. While grp is the group where the clients reside, tgrp is 6572 * the group where the addresses have to be added. 6573 */ 6574 static void 6575 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp, 6576 mac_group_t *tgrp, uint8_t *maddr, boolean_t add) 6577 { 6578 mac_impl_t *mip = mcip->mci_mip; 6579 mac_grp_client_t *mgcp = grp->mrg_clients; 6580 mac_client_impl_t *gmcip; 6581 boolean_t prim; 6582 6583 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6584 6585 /* 6586 * If the clients are in a non-default group, we just have to 6587 * walk the group's client list. If it is in the default group 6588 * (which will be shared by other clients as well, we need to 6589 * check if the unicast address matches mcip's unicast. 6590 */ 6591 while (mgcp != NULL) { 6592 gmcip = mgcp->mgc_client; 6593 if (gmcip != mcip && 6594 (grp != MAC_DEFAULT_RX_GROUP(mip) || 6595 mcip->mci_unicast == gmcip->mci_unicast)) { 6596 if (!add) { 6597 mac_rx_client_quiesce( 6598 (mac_client_handle_t)gmcip); 6599 (void) mac_remove_macaddr(mcip->mci_unicast); 6600 } else { 6601 (void) mac_add_macaddr(mip, tgrp, maddr, prim); 6602 mac_rx_client_restart( 6603 (mac_client_handle_t)gmcip); 6604 } 6605 } 6606 mgcp = mgcp->mgc_next; 6607 } 6608 } 6609 6610 6611 /* 6612 * Move the MAC address from fgrp to tgrp. If this is the primary client, 6613 * we need to take any VLANs etc. together too. 6614 */ 6615 static int 6616 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 6617 mac_group_t *tgrp) 6618 { 6619 mac_impl_t *mip = mcip->mci_mip; 6620 uint8_t maddr[MAXMACADDRLEN]; 6621 int err = 0; 6622 boolean_t prim; 6623 boolean_t multiclnt = B_FALSE; 6624 6625 mac_rx_client_quiesce((mac_client_handle_t)mcip); 6626 ASSERT(mcip->mci_unicast != NULL); 6627 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 6628 6629 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6630 if (mcip->mci_unicast->ma_nusers > 1) { 6631 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE); 6632 multiclnt = B_TRUE; 6633 } 6634 ASSERT(mcip->mci_unicast->ma_nusers == 1); 6635 err = mac_remove_macaddr(mcip->mci_unicast); 6636 if (err != 0) { 6637 mac_rx_client_restart((mac_client_handle_t)mcip); 6638 if (multiclnt) { 6639 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6640 B_TRUE); 6641 } 6642 return (err); 6643 } 6644 /* 6645 * Program the H/W Classifier first, if this fails we need 6646 * not proceed with the other stuff. 6647 */ 6648 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) { 6649 /* Revert back the H/W Classifier */ 6650 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) { 6651 /* 6652 * This should not fail now since it worked earlier, 6653 * should we panic? 6654 */ 6655 cmn_err(CE_WARN, 6656 "mac_rx_switch_group: switching %p back" 6657 " to group %p failed!!", (void *)mcip, 6658 (void *)fgrp); 6659 } 6660 mac_rx_client_restart((mac_client_handle_t)mcip); 6661 if (multiclnt) { 6662 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6663 B_TRUE); 6664 } 6665 return (err); 6666 } 6667 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 6668 mac_rx_client_restart((mac_client_handle_t)mcip); 6669 if (multiclnt) 6670 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE); 6671 return (err); 6672 } 6673 6674 /* 6675 * Switch the MAC client from one group to another. This means we need 6676 * to remove the MAC address from the group, remove the MAC client, 6677 * teardown the SRSs and revert the group state. Then, we add the client 6678 * to the destination group, set the SRSs, and add the MAC address to the 6679 * group. 6680 */ 6681 int 6682 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 6683 mac_group_t *tgrp) 6684 { 6685 int err; 6686 mac_group_state_t next_state; 6687 mac_client_impl_t *group_only_mcip; 6688 mac_client_impl_t *gmcip; 6689 mac_impl_t *mip = mcip->mci_mip; 6690 mac_grp_client_t *mgcp; 6691 6692 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group); 6693 6694 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 6695 return (err); 6696 6697 /* 6698 * The group might be reserved, but SRSs may not be set up, e.g. 6699 * primary and its vlans using a reserved group. 6700 */ 6701 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 6702 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 6703 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 6704 } 6705 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 6706 mgcp = fgrp->mrg_clients; 6707 while (mgcp != NULL) { 6708 gmcip = mgcp->mgc_client; 6709 mgcp = mgcp->mgc_next; 6710 mac_group_remove_client(fgrp, gmcip); 6711 mac_group_add_client(tgrp, gmcip); 6712 gmcip->mci_flent->fe_rx_ring_group = tgrp; 6713 } 6714 mac_release_rx_group(mcip, fgrp); 6715 ASSERT(MAC_GROUP_NO_CLIENT(fgrp)); 6716 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 6717 } else { 6718 mac_group_remove_client(fgrp, mcip); 6719 mac_group_add_client(tgrp, mcip); 6720 mcip->mci_flent->fe_rx_ring_group = tgrp; 6721 /* 6722 * If there are other clients (VLANs) sharing this address 6723 * we should be here only for the primary. 6724 */ 6725 if (mcip->mci_unicast->ma_nusers > 1) { 6726 /* 6727 * We need to move all the clients that are using 6728 * this h/w address. 6729 */ 6730 mgcp = fgrp->mrg_clients; 6731 while (mgcp != NULL) { 6732 gmcip = mgcp->mgc_client; 6733 mgcp = mgcp->mgc_next; 6734 if (mcip->mci_unicast == gmcip->mci_unicast) { 6735 mac_group_remove_client(fgrp, gmcip); 6736 mac_group_add_client(tgrp, gmcip); 6737 gmcip->mci_flent->fe_rx_ring_group = 6738 tgrp; 6739 } 6740 } 6741 } 6742 /* 6743 * The default group will still take the multicast, 6744 * broadcast traffic etc., so it won't go to 6745 * MAC_GROUP_STATE_REGISTERED. 6746 */ 6747 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 6748 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 6749 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 6750 } 6751 next_state = mac_group_next_state(tgrp, &group_only_mcip, 6752 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 6753 mac_set_group_state(tgrp, next_state); 6754 /* 6755 * If the destination group is reserved, setup the SRSs etc. 6756 */ 6757 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 6758 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 6759 mac_fanout_setup(mcip, mcip->mci_flent, 6760 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 6761 NULL); 6762 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 6763 } else { 6764 mac_rx_switch_grp_to_sw(tgrp); 6765 } 6766 return (0); 6767 } 6768 6769 /* 6770 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 6771 * when a share was allocated to the client. 6772 */ 6773 mac_group_t * 6774 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 6775 { 6776 mac_impl_t *mip = mcip->mci_mip; 6777 mac_group_t *grp = NULL; 6778 int rv; 6779 int i; 6780 int err; 6781 mac_group_t *defgrp; 6782 mac_share_handle_t share = mcip->mci_share; 6783 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6784 int nrings; 6785 int defnrings; 6786 boolean_t need_exclgrp = B_FALSE; 6787 int need_rings = 0; 6788 mac_group_t *candidate_grp = NULL; 6789 mac_client_impl_t *gclient; 6790 mac_resource_props_t *gmrp; 6791 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 6792 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 6793 boolean_t isprimary; 6794 6795 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6796 /* 6797 * When we come here for a VLAN on the primary (dladm create-vlan), 6798 * we need to pair it along with the primary (to keep it consistent 6799 * with the RX side). So, we check if the primary is already assigned 6800 * to a group and return the group if so. The other way is also 6801 * true, i.e. the VLAN is already created and now we are plumbing 6802 * the primary. 6803 */ 6804 if (!move && isprimary) { 6805 for (gclient = mip->mi_clients_list; gclient != NULL; 6806 gclient = gclient->mci_client_next) { 6807 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 6808 gclient->mci_flent->fe_tx_ring_group != NULL) { 6809 return (gclient->mci_flent->fe_tx_ring_group); 6810 } 6811 } 6812 } 6813 6814 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 6815 return (NULL); 6816 6817 /* For dynamic groups, default unspec to 1 */ 6818 if (txhw && unspec && 6819 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6820 mrp->mrp_ntxrings = 1; 6821 } 6822 /* 6823 * For static grouping we allow only specifying rings=0 and 6824 * unspecified 6825 */ 6826 if (txhw && mrp->mrp_ntxrings > 0 && 6827 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 6828 return (NULL); 6829 } 6830 6831 if (txhw) { 6832 /* 6833 * We have explicitly asked for a group (with ntxrings, 6834 * if unspec). 6835 */ 6836 if (unspec || mrp->mrp_ntxrings > 0) { 6837 need_exclgrp = B_TRUE; 6838 need_rings = mrp->mrp_ntxrings; 6839 } else if (mrp->mrp_ntxrings == 0) { 6840 /* 6841 * We have asked for a software group. 6842 */ 6843 return (NULL); 6844 } 6845 } 6846 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6847 /* 6848 * The number of rings that the default group can donate. 6849 * We need to leave at least one ring - the default ring - in 6850 * this group. 6851 */ 6852 defnrings = defgrp->mrg_cur_count - 1; 6853 6854 /* 6855 * Primary gets default group unless explicitly told not 6856 * to (i.e. rings > 0). 6857 */ 6858 if (isprimary && !need_exclgrp) 6859 return (NULL); 6860 6861 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 6862 for (i = 0; i < mip->mi_tx_group_count; i++) { 6863 grp = &mip->mi_tx_groups[i]; 6864 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 6865 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 6866 /* 6867 * Select a candidate for replacement if we don't 6868 * get an exclusive group. A candidate group is one 6869 * that didn't ask for an exclusive group, but got 6870 * one and it has enough rings (combined with what 6871 * the default group can donate) for the new MAC 6872 * client. 6873 */ 6874 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 6875 candidate_grp == NULL) { 6876 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6877 if (gclient == NULL) 6878 gclient = mac_get_grp_primary(grp); 6879 gmrp = MCIP_RESOURCE_PROPS(gclient); 6880 if (gclient->mci_share == NULL && 6881 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 6882 (unspec || 6883 (grp->mrg_cur_count + defnrings) >= 6884 need_rings)) { 6885 candidate_grp = grp; 6886 } 6887 } 6888 continue; 6889 } 6890 /* 6891 * If the default can't donate let's just walk and 6892 * see if someone can vacate a group, so that we have 6893 * enough rings for this. 6894 */ 6895 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 6896 nrings <= defnrings) { 6897 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 6898 rv = mac_start_group(grp); 6899 ASSERT(rv == 0); 6900 } 6901 break; 6902 } 6903 } 6904 6905 /* The default group */ 6906 if (i >= mip->mi_tx_group_count) { 6907 /* 6908 * If we need an exclusive group and have identified a 6909 * candidate group we switch the MAC client from the 6910 * candidate group to the default group and give the 6911 * candidate group to this client. 6912 */ 6913 if (need_exclgrp && candidate_grp != NULL) { 6914 /* 6915 * Switch the MAC client from the candidate group 6916 * to the default group. 6917 */ 6918 grp = candidate_grp; 6919 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6920 if (gclient == NULL) 6921 gclient = mac_get_grp_primary(grp); 6922 mac_tx_client_quiesce((mac_client_handle_t)gclient); 6923 mac_tx_switch_group(gclient, grp, defgrp); 6924 mac_tx_client_restart((mac_client_handle_t)gclient); 6925 6926 /* 6927 * Give the candidate group with the specified number 6928 * of rings to this MAC client. 6929 */ 6930 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6931 rv = mac_start_group(grp); 6932 ASSERT(rv == 0); 6933 6934 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6935 return (grp); 6936 6937 ASSERT(grp->mrg_cur_count == 0); 6938 ASSERT(defgrp->mrg_cur_count > need_rings); 6939 6940 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 6941 defgrp, grp, share, need_rings); 6942 if (err == 0) { 6943 /* 6944 * For a share i_mac_group_allocate_rings gets 6945 * the rings from the driver, let's populate 6946 * the property for the client now. 6947 */ 6948 if (share != NULL) { 6949 mac_client_set_rings( 6950 (mac_client_handle_t)mcip, -1, 6951 grp->mrg_cur_count); 6952 } 6953 mip->mi_tx_group_free--; 6954 return (grp); 6955 } 6956 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 6957 mip->mi_name, int, grp->mrg_index, int, err); 6958 mac_stop_group(grp); 6959 } 6960 return (NULL); 6961 } 6962 /* 6963 * We got an exclusive group, but it is not dynamic. 6964 */ 6965 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 6966 mip->mi_tx_group_free--; 6967 return (grp); 6968 } 6969 6970 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 6971 share, nrings); 6972 if (rv != 0) { 6973 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 6974 char *, mip->mi_name, int, grp->mrg_index, int, rv); 6975 mac_stop_group(grp); 6976 return (NULL); 6977 } 6978 /* 6979 * For a share i_mac_group_allocate_rings gets the rings from the 6980 * driver, let's populate the property for the client now. 6981 */ 6982 if (share != NULL) { 6983 mac_client_set_rings((mac_client_handle_t)mcip, -1, 6984 grp->mrg_cur_count); 6985 } 6986 mip->mi_tx_group_free--; 6987 return (grp); 6988 } 6989 6990 void 6991 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 6992 { 6993 mac_impl_t *mip = mcip->mci_mip; 6994 mac_share_handle_t share = mcip->mci_share; 6995 mac_ring_t *ring; 6996 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 6997 mac_group_t *defgrp; 6998 6999 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7000 if (srs != NULL) { 7001 if (srs->srs_soft_ring_count > 0) { 7002 for (ring = grp->mrg_rings; ring != NULL; 7003 ring = ring->mr_next) { 7004 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7005 mac_tx_invoke_callbacks(mcip, 7006 (mac_tx_cookie_t) 7007 mac_tx_srs_get_soft_ring(srs, ring)); 7008 mac_tx_srs_del_ring(srs, ring); 7009 } 7010 } else { 7011 ASSERT(srs->srs_tx.st_arg2 != NULL); 7012 srs->srs_tx.st_arg2 = NULL; 7013 mac_srs_stat_delete(srs); 7014 } 7015 } 7016 if (share != NULL) 7017 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7018 7019 /* move the ring back to the pool */ 7020 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7021 while ((ring = grp->mrg_rings) != NULL) 7022 (void) mac_group_mov_ring(mip, defgrp, ring); 7023 } 7024 mac_stop_group(grp); 7025 mip->mi_tx_group_free++; 7026 } 7027 7028 /* 7029 * Disassociate a MAC client from a group, i.e go through the rings in the 7030 * group and delete all the soft rings tied to them. 7031 */ 7032 static void 7033 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7034 { 7035 mac_client_impl_t *mcip = flent->fe_mcip; 7036 mac_soft_ring_set_t *tx_srs; 7037 mac_srs_tx_t *tx; 7038 mac_ring_t *ring; 7039 7040 tx_srs = flent->fe_tx_srs; 7041 tx = &tx_srs->srs_tx; 7042 7043 /* Single ring case we haven't created any soft rings */ 7044 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7045 tx->st_mode == SRS_TX_DEFAULT) { 7046 tx->st_arg2 = NULL; 7047 mac_srs_stat_delete(tx_srs); 7048 /* Fanout case, where we have to dismantle the soft rings */ 7049 } else { 7050 for (ring = fgrp->mrg_rings; ring != NULL; 7051 ring = ring->mr_next) { 7052 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7053 mac_tx_invoke_callbacks(mcip, 7054 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7055 ring)); 7056 mac_tx_srs_del_ring(tx_srs, ring); 7057 } 7058 ASSERT(tx->st_arg2 == NULL); 7059 } 7060 } 7061 7062 /* 7063 * Switch the MAC client from one group to another. This means we need 7064 * to remove the MAC client, teardown the SRSs and revert the group state. 7065 * Then, we add the client to the destination roup, set the SRSs etc. 7066 */ 7067 void 7068 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7069 mac_group_t *tgrp) 7070 { 7071 mac_client_impl_t *group_only_mcip; 7072 mac_impl_t *mip = mcip->mci_mip; 7073 flow_entry_t *flent = mcip->mci_flent; 7074 mac_group_t *defgrp; 7075 mac_grp_client_t *mgcp; 7076 mac_client_impl_t *gmcip; 7077 flow_entry_t *gflent; 7078 7079 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7080 ASSERT(fgrp == flent->fe_tx_ring_group); 7081 7082 if (fgrp == defgrp) { 7083 /* 7084 * If this is the primary we need to find any VLANs on 7085 * the primary and move them too. 7086 */ 7087 mac_group_remove_client(fgrp, mcip); 7088 mac_tx_dismantle_soft_rings(fgrp, flent); 7089 if (mcip->mci_unicast->ma_nusers > 1) { 7090 mgcp = fgrp->mrg_clients; 7091 while (mgcp != NULL) { 7092 gmcip = mgcp->mgc_client; 7093 mgcp = mgcp->mgc_next; 7094 if (mcip->mci_unicast != gmcip->mci_unicast) 7095 continue; 7096 mac_tx_client_quiesce( 7097 (mac_client_handle_t)gmcip); 7098 7099 gflent = gmcip->mci_flent; 7100 mac_group_remove_client(fgrp, gmcip); 7101 mac_tx_dismantle_soft_rings(fgrp, gflent); 7102 7103 mac_group_add_client(tgrp, gmcip); 7104 gflent->fe_tx_ring_group = tgrp; 7105 /* We could directly set this to SHARED */ 7106 tgrp->mrg_state = mac_group_next_state(tgrp, 7107 &group_only_mcip, defgrp, B_FALSE); 7108 7109 mac_tx_srs_group_setup(gmcip, gflent, 7110 SRST_LINK); 7111 mac_fanout_setup(gmcip, gflent, 7112 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7113 gmcip, NULL, NULL); 7114 7115 mac_tx_client_restart( 7116 (mac_client_handle_t)gmcip); 7117 } 7118 } 7119 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7120 mac_ring_t *ring; 7121 int cnt; 7122 int ringcnt; 7123 7124 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7125 /* 7126 * Additionally, we also need to stop all 7127 * the rings in the default group, except 7128 * the default ring. The reason being 7129 * this group won't be released since it is 7130 * the default group, so the rings won't 7131 * be stopped otherwise. 7132 */ 7133 ringcnt = fgrp->mrg_cur_count; 7134 ring = fgrp->mrg_rings; 7135 for (cnt = 0; cnt < ringcnt; cnt++) { 7136 if (ring->mr_state == MR_INUSE && 7137 ring != 7138 (mac_ring_t *)mip->mi_default_tx_ring) { 7139 mac_stop_ring(ring); 7140 ring->mr_flag = 0; 7141 } 7142 ring = ring->mr_next; 7143 } 7144 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7145 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7146 } else { 7147 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7148 } 7149 } else { 7150 /* 7151 * We could have VLANs sharing the non-default group with 7152 * the primary. 7153 */ 7154 mgcp = fgrp->mrg_clients; 7155 while (mgcp != NULL) { 7156 gmcip = mgcp->mgc_client; 7157 mgcp = mgcp->mgc_next; 7158 if (gmcip == mcip) 7159 continue; 7160 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7161 gflent = gmcip->mci_flent; 7162 7163 mac_group_remove_client(fgrp, gmcip); 7164 mac_tx_dismantle_soft_rings(fgrp, gflent); 7165 7166 mac_group_add_client(tgrp, gmcip); 7167 gflent->fe_tx_ring_group = tgrp; 7168 /* We could directly set this to SHARED */ 7169 tgrp->mrg_state = mac_group_next_state(tgrp, 7170 &group_only_mcip, defgrp, B_FALSE); 7171 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7172 mac_fanout_setup(gmcip, gflent, 7173 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7174 gmcip, NULL, NULL); 7175 7176 mac_tx_client_restart((mac_client_handle_t)gmcip); 7177 } 7178 mac_group_remove_client(fgrp, mcip); 7179 mac_release_tx_group(mcip, fgrp); 7180 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7181 } 7182 7183 /* Add it to the tgroup */ 7184 mac_group_add_client(tgrp, mcip); 7185 flent->fe_tx_ring_group = tgrp; 7186 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7187 defgrp, B_FALSE); 7188 7189 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7190 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7191 mac_rx_deliver, mcip, NULL, NULL); 7192 } 7193 7194 /* 7195 * This is a 1-time control path activity initiated by the client (IP). 7196 * The mac perimeter protects against other simultaneous control activities, 7197 * for example an ioctl that attempts to change the degree of fanout and 7198 * increase or decrease the number of softrings associated with this Tx SRS. 7199 */ 7200 static mac_tx_notify_cb_t * 7201 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7202 mac_tx_notify_t notify, void *arg) 7203 { 7204 mac_cb_info_t *mcbi; 7205 mac_tx_notify_cb_t *mtnfp; 7206 7207 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7208 7209 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7210 mtnfp->mtnf_fn = notify; 7211 mtnfp->mtnf_arg = arg; 7212 mtnfp->mtnf_link.mcb_objp = mtnfp; 7213 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7214 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7215 7216 mcbi = &mcip->mci_tx_notify_cb_info; 7217 mutex_enter(mcbi->mcbi_lockp); 7218 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7219 mutex_exit(mcbi->mcbi_lockp); 7220 return (mtnfp); 7221 } 7222 7223 static void 7224 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7225 { 7226 mac_cb_info_t *mcbi; 7227 mac_cb_t **cblist; 7228 7229 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7230 7231 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7232 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7233 cmn_err(CE_WARN, 7234 "mac_client_tx_notify_remove: callback not " 7235 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7236 return; 7237 } 7238 7239 mcbi = &mcip->mci_tx_notify_cb_info; 7240 cblist = &mcip->mci_tx_notify_cb_list; 7241 mutex_enter(mcbi->mcbi_lockp); 7242 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7243 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7244 else 7245 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7246 mutex_exit(mcbi->mcbi_lockp); 7247 } 7248 7249 /* 7250 * mac_client_tx_notify(): 7251 * call to add and remove flow control callback routine. 7252 */ 7253 mac_tx_notify_handle_t 7254 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7255 void *ptr) 7256 { 7257 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7258 mac_tx_notify_cb_t *mtnfp = NULL; 7259 7260 i_mac_perim_enter(mcip->mci_mip); 7261 7262 if (callb_func != NULL) { 7263 /* Add a notify callback */ 7264 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7265 } else { 7266 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7267 } 7268 i_mac_perim_exit(mcip->mci_mip); 7269 7270 return ((mac_tx_notify_handle_t)mtnfp); 7271 } 7272 7273 void 7274 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7275 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7276 { 7277 mac_bridge_tx_cb = txf; 7278 mac_bridge_rx_cb = rxf; 7279 mac_bridge_ref_cb = reff; 7280 mac_bridge_ls_cb = lsf; 7281 } 7282 7283 int 7284 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7285 { 7286 mac_impl_t *mip = (mac_impl_t *)mh; 7287 int retv; 7288 7289 mutex_enter(&mip->mi_bridge_lock); 7290 if (mip->mi_bridge_link == NULL) { 7291 mip->mi_bridge_link = link; 7292 retv = 0; 7293 } else { 7294 retv = EBUSY; 7295 } 7296 mutex_exit(&mip->mi_bridge_lock); 7297 if (retv == 0) { 7298 mac_poll_state_change(mh, B_FALSE); 7299 mac_capab_update(mh); 7300 } 7301 return (retv); 7302 } 7303 7304 /* 7305 * Disable bridging on the indicated link. 7306 */ 7307 void 7308 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7309 { 7310 mac_impl_t *mip = (mac_impl_t *)mh; 7311 7312 mutex_enter(&mip->mi_bridge_lock); 7313 ASSERT(mip->mi_bridge_link == link); 7314 mip->mi_bridge_link = NULL; 7315 mutex_exit(&mip->mi_bridge_lock); 7316 mac_poll_state_change(mh, B_TRUE); 7317 mac_capab_update(mh); 7318 } 7319 7320 void 7321 mac_no_active(mac_handle_t mh) 7322 { 7323 mac_impl_t *mip = (mac_impl_t *)mh; 7324 7325 i_mac_perim_enter(mip); 7326 mip->mi_state_flags |= MIS_NO_ACTIVE; 7327 i_mac_perim_exit(mip); 7328 } 7329 7330 /* 7331 * Walk the primary VLAN clients whenever the primary's rings property 7332 * changes and update the mac_resource_props_t for the VLAN's client. 7333 * We need to do this since we don't support setting these properties 7334 * on the primary's VLAN clients, but the VLAN clients have to 7335 * follow the primary w.r.t the rings property; 7336 */ 7337 void 7338 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7339 { 7340 mac_client_impl_t *vmcip; 7341 mac_resource_props_t *vmrp; 7342 7343 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7344 vmcip = vmcip->mci_client_next) { 7345 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7346 mac_client_vid((mac_client_handle_t)vmcip) == 7347 VLAN_ID_NONE) { 7348 continue; 7349 } 7350 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7351 7352 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7353 if (mrp->mrp_mask & MRP_RX_RINGS) 7354 vmrp->mrp_mask |= MRP_RX_RINGS; 7355 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7356 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7357 7358 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7359 if (mrp->mrp_mask & MRP_TX_RINGS) 7360 vmrp->mrp_mask |= MRP_TX_RINGS; 7361 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7362 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7363 7364 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7365 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7366 else 7367 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7368 7369 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7370 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7371 else 7372 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7373 } 7374 } 7375 7376 /* 7377 * We are adding or removing ring(s) from a group. The source for taking 7378 * rings is the default group. The destination for giving rings back is 7379 * the default group. 7380 */ 7381 int 7382 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7383 mac_group_t *defgrp) 7384 { 7385 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7386 uint_t modify; 7387 int count; 7388 mac_ring_t *ring; 7389 mac_ring_t *next; 7390 mac_impl_t *mip = mcip->mci_mip; 7391 mac_ring_t **rings; 7392 uint_t ringcnt; 7393 int i = 0; 7394 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7395 int start; 7396 int end; 7397 mac_group_t *tgrp; 7398 int j; 7399 int rv = 0; 7400 7401 /* 7402 * If we are asked for just a group, we give 1 ring, else 7403 * the specified number of rings. 7404 */ 7405 if (rx_group) { 7406 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 7407 mrp->mrp_nrxrings; 7408 } else { 7409 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 7410 mrp->mrp_ntxrings; 7411 } 7412 7413 /* don't allow modifying rings for a share for now. */ 7414 ASSERT(mcip->mci_share == NULL); 7415 7416 if (ringcnt == group->mrg_cur_count) 7417 return (0); 7418 7419 if (group->mrg_cur_count > ringcnt) { 7420 modify = group->mrg_cur_count - ringcnt; 7421 if (rx_group) { 7422 if (mip->mi_rx_donor_grp == group) { 7423 ASSERT(mac_is_primary_client(mcip)); 7424 mip->mi_rx_donor_grp = defgrp; 7425 } else { 7426 defgrp = mip->mi_rx_donor_grp; 7427 } 7428 } 7429 ring = group->mrg_rings; 7430 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 7431 KM_SLEEP); 7432 j = 0; 7433 for (count = 0; count < modify; count++) { 7434 next = ring->mr_next; 7435 rv = mac_group_mov_ring(mip, defgrp, ring); 7436 if (rv != 0) { 7437 /* cleanup on failure */ 7438 for (j = 0; j < count; j++) { 7439 (void) mac_group_mov_ring(mip, group, 7440 rings[j]); 7441 } 7442 break; 7443 } 7444 rings[j++] = ring; 7445 ring = next; 7446 } 7447 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 7448 return (rv); 7449 } 7450 if (ringcnt >= MAX_RINGS_PER_GROUP) 7451 return (EINVAL); 7452 7453 modify = ringcnt - group->mrg_cur_count; 7454 7455 if (rx_group) { 7456 if (group != mip->mi_rx_donor_grp) 7457 defgrp = mip->mi_rx_donor_grp; 7458 else 7459 /* 7460 * This is the donor group with all the remaining 7461 * rings. Default group now gets to be the donor 7462 */ 7463 mip->mi_rx_donor_grp = defgrp; 7464 start = 1; 7465 end = mip->mi_rx_group_count; 7466 } else { 7467 start = 0; 7468 end = mip->mi_tx_group_count - 1; 7469 } 7470 /* 7471 * If the default doesn't have any rings, lets see if we can 7472 * take rings given to an h/w client that doesn't need it. 7473 * For now, we just see if there is any one client that can donate 7474 * all the required rings. 7475 */ 7476 if (defgrp->mrg_cur_count < (modify + 1)) { 7477 for (i = start; i < end; i++) { 7478 if (rx_group) { 7479 tgrp = &mip->mi_rx_groups[i]; 7480 if (tgrp == group || tgrp->mrg_state < 7481 MAC_GROUP_STATE_RESERVED) { 7482 continue; 7483 } 7484 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7485 if (mcip == NULL) 7486 mcip = mac_get_grp_primary(tgrp); 7487 ASSERT(mcip != NULL); 7488 mrp = MCIP_RESOURCE_PROPS(mcip); 7489 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0) 7490 continue; 7491 if ((tgrp->mrg_cur_count + 7492 defgrp->mrg_cur_count) < (modify + 1)) { 7493 continue; 7494 } 7495 if (mac_rx_switch_group(mcip, tgrp, 7496 defgrp) != 0) { 7497 return (ENOSPC); 7498 } 7499 } else { 7500 tgrp = &mip->mi_tx_groups[i]; 7501 if (tgrp == group || tgrp->mrg_state < 7502 MAC_GROUP_STATE_RESERVED) { 7503 continue; 7504 } 7505 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7506 if (mcip == NULL) 7507 mcip = mac_get_grp_primary(tgrp); 7508 mrp = MCIP_RESOURCE_PROPS(mcip); 7509 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0) 7510 continue; 7511 if ((tgrp->mrg_cur_count + 7512 defgrp->mrg_cur_count) < (modify + 1)) { 7513 continue; 7514 } 7515 /* OK, we can switch this to s/w */ 7516 mac_tx_client_quiesce( 7517 (mac_client_handle_t)mcip); 7518 mac_tx_switch_group(mcip, tgrp, defgrp); 7519 mac_tx_client_restart( 7520 (mac_client_handle_t)mcip); 7521 } 7522 } 7523 if (defgrp->mrg_cur_count < (modify + 1)) 7524 return (ENOSPC); 7525 } 7526 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 7527 group, mcip->mci_share, modify)) != 0) { 7528 return (rv); 7529 } 7530 return (0); 7531 } 7532 7533 /* 7534 * Given the poolname in mac_resource_props, find the cpupart 7535 * that is associated with this pool. The cpupart will be used 7536 * later for finding the cpus to be bound to the networking threads. 7537 * 7538 * use_default is set B_TRUE if pools are enabled and pool_default 7539 * is returned. This avoids a 2nd lookup to set the poolname 7540 * for pool-effective. 7541 * 7542 * returns: 7543 * 7544 * NULL - pools are disabled or if the 'cpus' property is set. 7545 * cpupart of pool_default - pools are enabled and the pool 7546 * is not available or poolname is blank 7547 * cpupart of named pool - pools are enabled and the pool 7548 * is available. 7549 */ 7550 cpupart_t * 7551 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 7552 { 7553 pool_t *pool; 7554 cpupart_t *cpupart; 7555 7556 *use_default = B_FALSE; 7557 7558 /* CPUs property is set */ 7559 if (mrp->mrp_mask & MRP_CPUS) 7560 return (NULL); 7561 7562 ASSERT(pool_lock_held()); 7563 7564 /* Pools are disabled, no pset */ 7565 if (pool_state == POOL_DISABLED) 7566 return (NULL); 7567 7568 /* Pools property is set */ 7569 if (mrp->mrp_mask & MRP_POOL) { 7570 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 7571 /* Pool not found */ 7572 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 7573 mrp->mrp_pool); 7574 *use_default = B_TRUE; 7575 pool = pool_default; 7576 } 7577 /* Pools property is not set */ 7578 } else { 7579 *use_default = B_TRUE; 7580 pool = pool_default; 7581 } 7582 7583 /* Find the CPU pset that corresponds to the pool */ 7584 mutex_enter(&cpu_lock); 7585 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 7586 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 7587 pool->pool_pset->pset_id); 7588 } 7589 mutex_exit(&cpu_lock); 7590 7591 return (cpupart); 7592 } 7593 7594 void 7595 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 7596 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 7597 { 7598 ASSERT(pool_lock_held()); 7599 7600 if (cpupart != NULL) { 7601 emrp->mrp_mask |= MRP_POOL; 7602 if (use_default) { 7603 (void) strcpy(emrp->mrp_pool, 7604 "pool_default"); 7605 } else { 7606 ASSERT(strlen(mrp->mrp_pool) != 0); 7607 (void) strcpy(emrp->mrp_pool, 7608 mrp->mrp_pool); 7609 } 7610 } else { 7611 emrp->mrp_mask &= ~MRP_POOL; 7612 bzero(emrp->mrp_pool, MAXPATHLEN); 7613 } 7614 } 7615 7616 struct mac_pool_arg { 7617 char mpa_poolname[MAXPATHLEN]; 7618 pool_event_t mpa_what; 7619 }; 7620 7621 /*ARGSUSED*/ 7622 static uint_t 7623 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 7624 { 7625 struct mac_pool_arg *mpa = arg; 7626 mac_impl_t *mip = (mac_impl_t *)val; 7627 mac_client_impl_t *mcip; 7628 mac_resource_props_t *mrp, *emrp; 7629 boolean_t pool_update = B_FALSE; 7630 boolean_t pool_clear = B_FALSE; 7631 boolean_t use_default = B_FALSE; 7632 cpupart_t *cpupart = NULL; 7633 7634 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 7635 i_mac_perim_enter(mip); 7636 for (mcip = mip->mi_clients_list; mcip != NULL; 7637 mcip = mcip->mci_client_next) { 7638 pool_update = B_FALSE; 7639 pool_clear = B_FALSE; 7640 use_default = B_FALSE; 7641 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 7642 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7643 7644 /* 7645 * When pools are enabled 7646 */ 7647 if ((mpa->mpa_what == POOL_E_ENABLE) && 7648 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7649 mrp->mrp_mask |= MRP_POOL; 7650 pool_update = B_TRUE; 7651 } 7652 7653 /* 7654 * When pools are disabled 7655 */ 7656 if ((mpa->mpa_what == POOL_E_DISABLE) && 7657 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7658 mrp->mrp_mask |= MRP_POOL; 7659 pool_clear = B_TRUE; 7660 } 7661 7662 /* 7663 * Look for links with the pool property set and the poolname 7664 * matching the one which is changing. 7665 */ 7666 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 7667 /* 7668 * The pool associated with the link has changed. 7669 */ 7670 if (mpa->mpa_what == POOL_E_CHANGE) { 7671 mrp->mrp_mask |= MRP_POOL; 7672 pool_update = B_TRUE; 7673 } 7674 } 7675 7676 /* 7677 * This link is associated with pool_default and 7678 * pool_default has changed. 7679 */ 7680 if ((mpa->mpa_what == POOL_E_CHANGE) && 7681 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 7682 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 7683 mrp->mrp_mask |= MRP_POOL; 7684 pool_update = B_TRUE; 7685 } 7686 7687 /* 7688 * Get new list of cpus for the pool, bind network 7689 * threads to new list of cpus and update resources. 7690 */ 7691 if (pool_update) { 7692 if (MCIP_DATAPATH_SETUP(mcip)) { 7693 pool_lock(); 7694 cpupart = mac_pset_find(mrp, &use_default); 7695 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7696 mac_rx_deliver, mcip, NULL, cpupart); 7697 mac_set_pool_effective(use_default, cpupart, 7698 mrp, emrp); 7699 pool_unlock(); 7700 } 7701 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7702 B_FALSE); 7703 } 7704 7705 /* 7706 * Clear the effective pool and bind network threads 7707 * to any available CPU. 7708 */ 7709 if (pool_clear) { 7710 if (MCIP_DATAPATH_SETUP(mcip)) { 7711 emrp->mrp_mask &= ~MRP_POOL; 7712 bzero(emrp->mrp_pool, MAXPATHLEN); 7713 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7714 mac_rx_deliver, mcip, NULL, NULL); 7715 } 7716 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7717 B_FALSE); 7718 } 7719 } 7720 i_mac_perim_exit(mip); 7721 kmem_free(mrp, sizeof (*mrp)); 7722 return (MH_WALK_CONTINUE); 7723 } 7724 7725 static void 7726 mac_pool_update(void *arg) 7727 { 7728 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 7729 kmem_free(arg, sizeof (struct mac_pool_arg)); 7730 } 7731 7732 /* 7733 * Callback function to be executed when a noteworthy pool event 7734 * takes place. 7735 */ 7736 /* ARGSUSED */ 7737 static void 7738 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 7739 { 7740 pool_t *pool; 7741 char *poolname = NULL; 7742 struct mac_pool_arg *mpa; 7743 7744 pool_lock(); 7745 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 7746 7747 switch (what) { 7748 case POOL_E_ENABLE: 7749 case POOL_E_DISABLE: 7750 break; 7751 7752 case POOL_E_CHANGE: 7753 pool = pool_lookup_pool_by_id(id); 7754 if (pool == NULL) { 7755 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7756 pool_unlock(); 7757 return; 7758 } 7759 pool_get_name(pool, &poolname); 7760 (void) strlcpy(mpa->mpa_poolname, poolname, 7761 sizeof (mpa->mpa_poolname)); 7762 break; 7763 7764 default: 7765 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7766 pool_unlock(); 7767 return; 7768 } 7769 pool_unlock(); 7770 7771 mpa->mpa_what = what; 7772 7773 mac_pool_update(mpa); 7774 } 7775 7776 /* 7777 * Set effective rings property. This could be called from datapath_setup/ 7778 * datapath_teardown or set-linkprop. 7779 * If the group is reserved we just go ahead and set the effective rings. 7780 * Additionally, for TX this could mean the default group has lost/gained 7781 * some rings, so if the default group is reserved, we need to adjust the 7782 * effective rings for the default group clients. For RX, if we are working 7783 * with the non-default group, we just need * to reset the effective props 7784 * for the default group clients. 7785 */ 7786 void 7787 mac_set_rings_effective(mac_client_impl_t *mcip) 7788 { 7789 mac_impl_t *mip = mcip->mci_mip; 7790 mac_group_t *grp; 7791 mac_group_t *defgrp; 7792 flow_entry_t *flent = mcip->mci_flent; 7793 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 7794 mac_grp_client_t *mgcp; 7795 mac_client_impl_t *gmcip; 7796 7797 grp = flent->fe_rx_ring_group; 7798 if (grp != NULL) { 7799 defgrp = MAC_DEFAULT_RX_GROUP(mip); 7800 /* 7801 * If we have reserved a group, set the effective rings 7802 * to the ring count in the group. 7803 */ 7804 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7805 emrp->mrp_mask |= MRP_RX_RINGS; 7806 emrp->mrp_nrxrings = grp->mrg_cur_count; 7807 } 7808 7809 /* 7810 * We go through the clients in the shared group and 7811 * reset the effective properties. It is possible this 7812 * might have already been done for some client (i.e. 7813 * if some client is being moved to a group that is 7814 * already shared). The case where the default group is 7815 * RESERVED is taken care of above (note in the RX side if 7816 * there is a non-default group, the default group is always 7817 * SHARED). 7818 */ 7819 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7820 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 7821 mgcp = grp->mrg_clients; 7822 else 7823 mgcp = defgrp->mrg_clients; 7824 while (mgcp != NULL) { 7825 gmcip = mgcp->mgc_client; 7826 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7827 if (emrp->mrp_mask & MRP_RX_RINGS) { 7828 emrp->mrp_mask &= ~MRP_RX_RINGS; 7829 emrp->mrp_nrxrings = 0; 7830 } 7831 mgcp = mgcp->mgc_next; 7832 } 7833 } 7834 } 7835 7836 /* Now the TX side */ 7837 grp = flent->fe_tx_ring_group; 7838 if (grp != NULL) { 7839 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7840 7841 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7842 emrp->mrp_mask |= MRP_TX_RINGS; 7843 emrp->mrp_ntxrings = grp->mrg_cur_count; 7844 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7845 mgcp = grp->mrg_clients; 7846 while (mgcp != NULL) { 7847 gmcip = mgcp->mgc_client; 7848 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7849 if (emrp->mrp_mask & MRP_TX_RINGS) { 7850 emrp->mrp_mask &= ~MRP_TX_RINGS; 7851 emrp->mrp_ntxrings = 0; 7852 } 7853 mgcp = mgcp->mgc_next; 7854 } 7855 } 7856 7857 /* 7858 * If the group is not the default group and the default 7859 * group is reserved, the ring count in the default group 7860 * might have changed, update it. 7861 */ 7862 if (grp != defgrp && 7863 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7864 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 7865 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7866 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 7867 } 7868 } 7869 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7870 } 7871 7872 /* 7873 * Check if the primary is in the default group. If so, see if we 7874 * can give it a an exclusive group now that another client is 7875 * being configured. We take the primary out of the default group 7876 * because the multicast/broadcast packets for the all the clients 7877 * will land in the default ring in the default group which means 7878 * any client in the default group, even if it is the only on in 7879 * the group, will lose exclusive access to the rings, hence 7880 * polling. 7881 */ 7882 mac_client_impl_t * 7883 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 7884 { 7885 mac_impl_t *mip = mcip->mci_mip; 7886 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 7887 flow_entry_t *flent = mcip->mci_flent; 7888 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7889 uint8_t *mac_addr; 7890 mac_group_t *ngrp; 7891 7892 /* 7893 * Check if the primary is in the default group, if not 7894 * or if it is explicitly configured to be in the default 7895 * group OR set the RX rings property, return. 7896 */ 7897 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 7898 return (NULL); 7899 7900 /* 7901 * If the new client needs an exclusive group and we 7902 * don't have another for the primary, return. 7903 */ 7904 if (rxhw && mip->mi_rxhwclnt_avail < 2) 7905 return (NULL); 7906 7907 mac_addr = flent->fe_flow_desc.fd_dst_mac; 7908 /* 7909 * We call this when we are setting up the datapath for 7910 * the first non-primary. 7911 */ 7912 ASSERT(mip->mi_nactiveclients == 2); 7913 /* 7914 * OK, now we have the primary that needs to be relocated. 7915 */ 7916 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 7917 if (ngrp == NULL) 7918 return (NULL); 7919 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 7920 mac_stop_group(ngrp); 7921 return (NULL); 7922 } 7923 return (mcip); 7924 }