new usr/src/cnd/ stat/ Makefile

R R R R

1267 Wed Nov 28 23:08:57 2012

new usr/src/cnd/ stat/ Makefile

749 "/usr/bin/kstat" should be rewitten in C

Revi ewed by: Garrett D Anpre <garrett @anore. org>
Revi ewed by: Brendan G egg <brendan. gregg@ oyent. conp

kst at

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok k k&

H*

HEHHEHHHHFH A EHHEH RS

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and |limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END
Copyri ght 2006 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

dent " 9%Z%AW6 % % YE% SM "

crd/ st at/ Makefile

nclude ../ Makefile.cnd

SUBDI RS= iostat npstat vnstat fsstat kstat
SUBDI RS= iostat npstat vnstat fsstat
all := TARCET = all
install := TARCET = install
clean : = TARGET = cl ean
cl obber := TARGET = cl obber
lint := TARGET = |int
_msg i = TARGET = _nsg
. KEEP_STATE:
all install lint clean clobber _nmsg: $(SUBDI RS)
$(SUBDIRS): FRC
@d $@ pwd; $(MAKE) $(MFLAGS) $(TARCET)
FRC:

new usr/src/cnd/ stat/kstat/ Makefile 1 new usr/src/cnd/ stat/kstat/ Makefile

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 ||nt Ilnt SRCS

1613 Wed Nov 28 23:08:57 2012
new usr/src/cnd/ stat/kstat/ Makefile 61 include $(SRC)/cnd/ Makefile.targ
749 "/usr/bin/kstat" should be rewitten in C 62 #endif /* | codereview */

Revi ewed by: Garrett D Anpre <garrett @anore. org>
Revi ewed by: Brendan G egg <brendan. gregg@ oyent. conp

kst at

IR R R R R R R R SRR RS RS RS RS E RS RS ERREREEERERERREREREREEREEEEEEE]
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel oprent and Distribution License (the "License")
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun M crosystens, Inc. Al rights reserved.
23 # Use is subject to license terns.
24 #
26 PROG = kst at

27 OBJS = kstat.o
28 SRCS =$(OBJS' % 0=% c) $(COMMON_SRCS)

30 include $(SRC)/cnd/ Makefile.cnd
31 include $(SRC)/cnd/ stat/ Mkefile.stat

33 LDLIBS += -lavl -lcndutils -Idevinfo -1gen -1 kstat
34 CFLAGS += $(CCVERBOSE) - | ${ STATCOVWMONDI R}

35 CERRWARN += - _gcc=-Who-uninitialized

36 CERRWARN += -_gcc=- Who-swi tch

37 CERRWARN += - _gcc=- Who- par ent heses

38 FI LEMODE= 0555

40 lint := LINTFLAGS = -nuxs -I|$(STATCOMONDI R)

42 . KEEP_STATE:

44 all: $(PROG

46 install: all $(ROOTPROG)

48 $(PROO: $((BJS) $(COWDON_0BJS)

49 $(LINK. c) -0 $(PROG $(0BIS) $(COMDN _OBJIS) $(LDLIBS)
50 $(POST_PROCESS)

52 %o : $(STATCOWONDI R)/ % c

53 $(COWPILE.c) -0 $@ $<

54 $(POST_PROCESS_O)

56 cl ean:

57 " -$(RV) $(OBJS) $(COVMON_OBIS)

new usr/src/cnd/ stat/kstat/kstat.c

R R R R

34125 Wed Nov 28 23:08:58 2012
new usr/src/cnd/ stat/kstat/kstat.c
749 "/usr/bin/kstat" should be rewitten in C
Revi ewed by: Garrett D Anpre <garrett @anore. org>
Revi ewed by: Brendan G egg <brendan. gregg@ oyent. conp

kst at

IR R R R R R R R SRR RS RS RS RS E RS RS ERREREEERERERREREREREEREEEEEEE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License")
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww:.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 *
13 * \Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 /*

23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. Al rights reserved.

24 * Copyright (c) 2012 David Hoeppner. All rights reserved.
*
/

25
27 |*
28 * Display kernel statistics
29 *
30 * This is a reinplenentation of the perl kstat command originally found
31 * under usr/src/cnd/ kstat/kstat. pl
32 *
33 * Inconpatibilities:
34 = - perl regular expressions not |onger supported
35 * - options checking is stricter
36 *
37 * Flags added:
38 * -C simlar to the -p option but value is separated by a colon
39 = -h di splay help
40 * - j son fornmat
*

/

43 #incl ude <assert.h>
44 #incl ude <ctype. h>
45 #incl ude <errno. h>
46 #incl ude <kstat.h>
47 #incl ude <l angi nfo. h>
48 #include <l ibgen. h>
49 #include <limts. h>
50 #include <l ocal e. h>
51 #include <signal.h>
52 #include <stddef.h>
53 #include <stdio. h>
54 #include <stdlib.h>
55 #include <string.h>
56 #i nclude <strings. h>
57 #include <tine.h>

58 #i ncl ude <unistd. h>

new usr/src/cnd/ stat/kstat/kstat.c

59
60
61

63
64

66
67

69

119

123
124

#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude
#i ncl ude

char
int

static u

/* Hel pe
static b

/* Saved
static b
static b
static b
static b
static b
static c

/* Retur
static i

/* Sorte
static |
static |

int
mai n(i nt

#if !def
#def i ne
#endi f

<sys/list.h>
<sys/time. h>

<sys/types. h>

"kstat.h"

"st at common. h"

cndname = "kstat"; / Nane of this command */
caught _cont = 0; /* Have caught a SI GCONT */

int_t g_timestanp_fn = NODATE;

r flag - header was printed already? */

ool ean_t g_headerfl g;
command |ine options */
ool ean_t g_cflg = B_FALSE
oolean_t g_jflg = B_FALSE;
oolean_t g_Iflg = B_FALSE;
ool ean_t g_pflg = B_FALSE;
ool ean_t g_qfl g = B_FALSE;
har *g_ks_class = "*";

n zero if a selector did match */
nt g_nmatched = 1;

d list of kstat instances */
ist_t instances_list;
ist_t sel ector_list;

argc, char **argv)

ks_sel ector _t *nsel ector;
ks_sel ector _t *usel ector;

kstat_ctl _t *kc;

hrtime_t start_n;

hrtime_t period_n;

bool ean_t errflg = B_FALSE;

bool ean_t nsel flg = B_FALSE;

bool ean_t usel fl g = B_FALSE;

char *q;

int count = 1;

i nt infinite_cycles = 0;

int interval = 0;

int n = 0;

int c, m tnp;

(void) setlocal e(LC_ALL, "");

i ned(TEXT_| DOVAI N) /* Shoul d be defined by cc -D */
TEXT_DOWVAI N " SYS_TEST" /* Use this only if it wasn't */

(voi d) textdomai n(TEXT_DOVAIN) ;

/*
* Create the selector list and a dummy default selector to match
* everything. Wiile we process the cndline options we will add
* selectors to this list.
*/
list_create(&selector_list, sizeof (ks_selector_t),
of f set of (ks_sel ector _t, ks_next));

nsel ector = new_sel ector();

/*
* Parse nanmed command |ine argunents.

new usr/src/cnd/ stat/kstat/kstat.c

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

189
190

*/
while ((c = getopt(argc,
switch (c) {

case 'h':
case ' ?':
usage();
exit(0);
br eak;
case 'C:
g_pflg =
break;
case ' :
g qflg =
break;
case 'j':
g_jflg =
br eak
case '|’:
g_pflg =
break;
case 'p’:
g_pflg =
break;
case 'T:

argv, "h?CqgjlpT:mi:n:s:c:"))

g_cflg = B_TRUE;

B_TRUE;

B_TRUE;

g_lflg = B_TRUE;

B_TRUE;

swit Chd(*optarg) {

f

defaul t:

break;
case 'm:

g_tinmestanp_fnt = DDATE;
br eak;

u:
g_tinmestanp_fnt = UDATE;
break;

errflg = B_TRUE;

nsel flg = B_TRUE;
nsel ect or- >ks_nodul e =
(char *)safe_strdup(optarg);

break;

case

hselflg =

B_TRUE;

nsel ect or- >ks_i nst ance =
(char *)safe_strdup(optarg);

br eak;

case

hselflg =

B_TRUE;

nsel ector - >ks_nanme =
(char *)safe_strdup(optarg);

br eak;
case 's’:

hselflg =

B_TRUE;

nsel ector->ks_statistic =
(char *)safe_strdup(optarg);

br eak;
case 'c’:

Q_ks_cl ass =
(char *)safe_strdup(optarg);

br eak;
defaul t:

errflg =

br eak;

}
if (g_aflg && (g_jflg

|l
(void) fprintf(st

B_TRUE;

g_pflg)) {
derr, gettext(

I = EOF)

new usr/src/cnd/ stat/kstat/kstat.c

191
192
193

195
196
197
198

200
201

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

222
223
224
225
226
227
228
229
230
231

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

"-q and -Ipj
errflg = B_TRUE;
}
if (errflg) {
usage();
exit(2);
}

argc -= optind;
argv += optind;

/*

are nmutual ly exclusive\n"));

* Consune the rest of the command l|ine.
* unnaned command |ine argunents.
*

/
while (argc--) {
errno = 0;

tnp = strtoul (*argv, &q, 10);
if (tnp == ULONG MAX && errno == ERANGE) {

if (n ==

usage();
) exit(2);

Parsing the

) A
(void) fprintf(stderr, gettext(
"Interval is too large\n"));
} elseif (n==1) {
id) fprintf(stderr, gettext(
"Count is too large\n"));

(vo

if (errmo!=01]] *q!="\0") {
m= 0;

usel ecto
while ((

r =
q =
mt+
if

}
if

new_sel ector();
(char *)strsep(argv, ":")) !'= NULL) {

(m> 4) {

free(usel ector);

usage();
exit(2);

(*q1="\0)

switch (ET) {

case 1:

case 2:

case 3:

case 4:

defaul t:

}

usel ector->ks_nodul e =
(char *)safe_strdup(q);
break;

usel ector- >ks_i nstance =
(char *)safe_strdup(q);
break;

usel ect or - >ks_nane =
(char *)safe_strdup(q);
br eak;

usel ector->ks_statistic =
(char *)safe_strdup(q);
break;

assert (B_FALSE);

new usr/src/cnd/ stat/kstat/kstat.c

257
258
259
260
261

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

310

312
313

315
316
317
318
319

321
322

} else {

ar gv++;

}

*

if (m<4) {

free(usel ector);
usage();

) exit(2);

usel flg = B_TRUE;
list_insert_tail(&selector_list, uselector);

if (tmp < 1) {
if (n==0) {
(void) fprintf(stderr, gettext(
"Interval nust be an "
"integer >= 1"));
} elseif (n==1) {
(void) fprintf(stderr, gettext(
"Count nust be an integer >= 1"));
}
usage();
exit(2);
} else {
if (n==0) {
interval = tnp;
count = -1;
} elseif (n==1) {
count = tnp;
} else {
usage();
exit(2);
}
n++;

* Check if we founded a naned sel ector on the cndline.

*/
if (uselflg)

if (n{selflg){

} else {

} else {

(v0|d) fprintf(stderr, gettext(
"nodul e: i nst ance: nane: statistic and "
"-m-i -n -s are nutually exclusive"));
usage();
exit(2);

free(nsel ector);

list_insert_tail(&selector_list, nselector);

}

assert(!list_is_enpty(&selector_list));

list_create(& nstances_list, sizeof (ks_instance_t),
of f set of (ks_i nstance_t, ks_next));

kc = kstat_open();

if (kc == NULL)

perror("kstat_open");

exit(3);

}

if (count > 1)

{
if (signal (SIGCONT, cont_handler) == SIGERR) {

new usr/src/cnd/ stat/kstat/kstat.c

323 (voi d) fprlntf(stderr gettext(
324 "signal failed"));

325 exit(3);

326 }

327 }

329 period_n = (hrtime_t)interval * NANOSEC,

330 start_n = gethrtine();

332 while (count == -1 || count-- > 0) {

333 ks_i nst ances_r ead(kc);

334 ks_i nstances_print();

336 if (interval & count) {

337 sleep_until (&tart_n, period_n, infinite_cycles,
338 &caught _cont) ;

339 (voi d) kstat_chai n_updat e(kc);
340 (void) putchar(’\n7);

341 }

342 }

344 (voi d) kstat_cl ose(kc);

346 return (g_matched);

347 }

349 /*

350 * Print usage.

351 */

352 static void

353 usage(voi d)

354

355 (voi d) fprlntf(stderr get text (

356 Usage: \n

357 "kstat [-Clpg] [-Tdlu] [-c class]\n"
358 " [-mmdule] [-1 instance] [-n nane] [-s statistic]\n"
359 " [interval [count]]J\n"

360 "kstat [-Clpg] [-Tdlu] [-c class J\n"
361 " [modul e: 1 nstance: nane: statistic ...]\n"
362 [interval [count]]\n"));

363 }

365 /*

366 * Sort conpare function.
367 */
368 static int

369 conpare_instances(ks_i nstance_

370 {
371 int rval ;

t *l_arg, ks_instance_t *r_arg)

373 rval = strcasecnp(l_arg->ks_nodul e, r_arg->ks_nodul e);

374 if (rval == {

375 if (I_arg->ks
376 retur
377 } elseif (I
378 retur
379 } else {

380 retur
381 }

382 } else {

_instance == r_arg->ks_i nstance) {
n (strcasecnp(l_arg->ks_nanme, r_arg->ks_nane));

_arg->ks_instance < r_arg->ks_i nstance) {

n (-1);
n (1);

383 return (rval);

384
385 }

387 /*
388 * Inserts an instance in the

per selector list.

new usr/src/cnd/ stat/kstat/kstat.c 7 new usr/src/cnd/ stat/kstat/kstat.c 8
389 */
390 static void 456 for (f = name; *f !="\0"; f++ t++) {
391 nvpair_insert(ks_instance_t *ksi, char *name, ks_value_t *val ue, 457 while (*f 1="\0 && isdigit(*f))
392 uchar_t data_type) 458 f++;
393 { 459 *t o= *f;
394 ks_nvpai r_t *i nst ance; 460 }
395 ks_nvpair_t *tnp; 461 *t =\0;
397 instance = (ks_nvpair_t *)malloc(sizeof (ks_nvpair_t)); 463 while (ks_raw_| ookup[n].fn !'= NULL) {
398 if (instance == NULL) { 464 i (strncrp(ks_raw | ookup[n].name, key, strlen(key)) == 0)
399 perror("malloc"); 465 return (ks_raw_| ookup[n].fn);
400 exit(3); 466 n++;
401 } 467 }
403 (void) strlcpy(instance->nanme, nanme, KSTAT_STRLEN); 469 return (0);
404 (void) mencpy(& nstance->val ue, val ue, sizeof (ks_value_t)); 470 }
405 i nstance->data_type = data_type;
472 | *
407 tnp = list_head(&ksi->ks_nvlist); 473 * lterate over all kernel statistics and save matches.
408 while (t np 1= NULL && strcasecnp(l nst ance- >nane, tnp->nane) > 0) 474 x|
409 tmp = list_next(&ksi->ks_nvlist, tnp); 475 static void
476 ks_instances_read(kstat_ctl _t *kc)
411 list_insert_before(&si->ks_nvlist, tnp, instance); 477 {
412 } 478 kstat _raw_reader _t save_raw = NULL;
479 ki d_t id;
414 | * 480 ks_sel ector _t *sel ector;
415 * Allocates a new all-matching selector. 481 ks_i nstance_t *Kksi ;
416 */ 482 ks_i nstance_t *tnp;
417 static ks_selector_t * 483 kstat _t *kp;
418 new_sel ect or (voi d) 484 bool ean_t ski p;
419 { 485 char *ks_nunber ;
420 ks_sel ector _t *sel ector;
487 for (kp = kc->kc_chain; kp !'= NULL; kp = kp->ks_next) {
422 sel ector = (ks_selector_t *)malloc(sizeof (ks_selector_t)); 488 /* Don't bother storing the kstat headers */
423 if (selector == NULL) { 489 if (strncnp(kp->ks_nane, "kstat_", 6) == 0) {
424 perror("malloc"); 490 conti nue;
425 exit(3); 491 }
426 }
493 /* Don't bother storing raw stats we don’t understand */
428 list_link_init(&selector->ks_next); 494 if (kp->ks_type == KSTAT_TYPE_RAW {
495 save_raw = | ookup_raw_ kst at _f n(kp->ks_nodul e,
430 sel ector->ks_nodule = "*"; 496 kp- >ks_nane) ;
431 sel ector->ks_instance = "*"; 497 if (save_raw == NULL) {
432 sel ector->ks_nane = "*"; 498 #i fdef REPORT_UNKNOWN
433 sel ector->ks_statistic = "*"; 499 (void) fprintf(stderr,
500 "Unknown kst at type %:9%d: % - "
435 return (selector); 501 "% of size %l\n", kp->ks_nodule,
436 } 502 kp- >ks_i nst ance, kp >ks_nane,
503 kp- >ks_ndat a, kp >ks_dat a_si ze)
438 [* 504 #endi f
439 * This function was taken fromthe perl kstat nodul e code - please 505 conti nue;
440 * see for further comments there. 506 }
441 */ 507 }
442 static kstat_raw reader _t
443 | ookup_raw_kstat _fn(char *npdul e, char *nane) 509 1=
444 { 510 * |terate over the list of selectors and skip
445 char key[KSTAT_STRLEN * 2]; 511 * instances we dont want. We filter for statistics
446 regi ster char *f, *t; 512 * later, as we dont know them yet.
447 int n = 0; 513 */
514 skip = B_FALSE;
449 for (f = nodule, t = key; *f I="'\0"; f++ t++) { 515 (voi d) aspri ntf(&ks nunber, "%l", kp->ks_instance);
450 while (*f '="\0 &k isdigit(*f)) 516 selector = list head(&selector list);
451 f++; 517 while (selector !'= NULL)
452 *t o= *f, 518 if (!(gmatch(kp->ks_nodul e, sel ector->ks_nodule) !'= 0 &&
453 } 519 gmat ch(ks_nunber, sel ect or - >ks _instance) !'= 0
454 *t++ =700 520 gmat ch(kp- >ks_nane, sel ector->ks_nane) != 0 &&

new usr/src/cnd/ stat/kstat/kstat.c

521
522
523
524
525

527

529
530
531

533
534
535
536
537
538
539
540
541

543

545
546
547

549
550
551

553
554

556
557
558
559
560

562
563
564
565

567

569
570
571
572
573
574

576
577
578
579
580
581
582
583
584
585
586

gmat ch(kp->ks_cl ass, g_ks_class))) {
skip = B_TRUE;

sel ector = list_next(&selector_list, selector);
}
free(ks_nunber);
if (skip) {
cont i nue;
}
/*
* Allocate a new instance and fill in the val ues
* we know so far.
*/
ksi = (ks_instance_t *)nmalloc(sizeof (ks_instance_t));
if (ksi == NULL) {
perror("malloc");
exit(3);
}

list_link_init(&ksi->ks_next);

(void) strlcpy(ksi->ks_nodul e, kp->ks_nodule, KSTAT_STRLEN);

(void) strlcpy(ksi->ks_nane, kp >ks_nanme, KSTAT_STRLEN);
(void) strlcpy(ksi->ks class, kp->ks class KSTAT STRLEN)

ksi - >ks_i nst ance kp- >ks_i nst ance;
ksi - >ks_ snaptl e kp- >ks_snapti ne;
ksi - >ks_type = kp->ks_type;

l'ist_create(&si->ks_nvlist, sizeof (ks_nvpair_t),
of f set of (ks_nvpair_t, nv_next));

SAVE_HRTI ME_X(ksi, "crtime" kp >ks_crtine);
SAVE_HRTI ME_X(ksi, "snapti me" kp->ks_snapt i ne) ;

if (g_pflg) {)
SAVE_STRI NG _X(ksi, "class", kp->ks_class);

}
/* Insert this instance into a sorted list */
tnp = |ist_head(& nstances_list);
while (tnp !'= NULL && conpare_i nstances(ksi, tnmp) > 0)

tnp = list_next (& nstances_list, tnp);
list_insert_before(& nstances_list, tnmp, ksi);

/* Read the actual statistics */
id = kstat_read(kc, kp, NULL);
if (id==-1)
perror ("kstat_read");
conti nue;

}

switch (kp->ks_type) {

case KSTAT_TYPE_RAW
save_raw(kp, ksi);
br eak;

case KSTAT_TYPE_NAMED:
save_naned(kp, ksi);
br eak;

case KSTAT_TYPE_INTR
save_intr(kp, ksi);
br eak;

case KSTAT_ TYPE 1O

new usr/src/cnd/ stat/kstat/kstat.c

587 save_i o(kp, ksi);

588 br eak;

589 case KSTAT_ TYPE_TI MVER:

590 save_timer(kp, ksi);

591 br eak;

592 defaul t:

593 assert (B_FALSE); /* Invalid type */
594 br eak;

595 }

596 }

597 }

599 /*

600 * Print the value of a nane-val ue pair.

601 */

602 static void

603 ks_val ue_print(ks_nvpair_t *nvpair)

604 {

605 switch (nvpair->data_type) {

606 case KSTAT_DATA CHAR:

607 (v0| d) fprintf(stdout, "%", nvpair->val ue.c);
608 br eak;

609 case KSTAT DATA | NT32:

610 (v0| d) fprintf(stdout, "9d", nvpair->val ue.i32);
611 rea

612 case KSTAT DATA_Ul NT32:

613 (voi d) fprintf(stdout, "%", nvpair->val ue. ui 32);
614 br eak

615 case KSTAT_ DATA | NT64

616 (void) fopri ntf(st dout, "9%1d", nvpair->value.i64);
617 br eak;

618 case KSTAT_DATA Ul NT64:

619 (voi d) fprintf(stdout, "%l u", nvpair->val ue. ui64);
620 br eak

621 case KSTAT DATA STRI NG

622 (v0| d) fprintf(stdout, "%", KSTAT_NAMED STR PTR(nvpair));
623 r eak;

624 case KSTAT_ DATA HRTI ME:

625 i f (nvpair->val ue. ui 64 == 0

626 (void) fprintf(stdout, "0");

627 el se

628 (void) fprintf(stdout, "%9f",

629 nvpal r - >val ue. ui 64 / 1000000000. 0);
630 br eak;

631 defaul t:

632 assert (B_FALSE);

633 }

634 }

636 /*

637 * Print a single instance.

638 */

639 static void

640 i(s_i nstance_print (ks_instance_t *ksi, ks_nvpair_t *nvpair)

641

642 if (g_headerflg)

643 if (lg_pflg)

644 (void) fprintf(stdout, DFLT_FMI,

645 ksi - >ks_nodul e, ksi->ks_i nstance,
646 ksi - >ks_name, ksi->ks_cl ass);

647 }

648 g_headerflg = B_FALSE;

649 }

651 if (g_pflg) {

652 (void) fprintf(stdout, KS_PFM,

10

new usr/src/cnd/ stat/kstat/kstat.c

653 ksi - >ks_nodul e, ksi->ks_i nstance,

654 ksi - >ks_nane, nvpair->nane);

655 if (1g_Iflg)

656 (void) putchar(g_cflg ? ":": "\t");
657 ks_val ue_print(nvpair);

658 }

659 } else {

660 (void) fprintf(stdout, KS_DFMI, nvpair->nane);
661 ks_val ue_pri nt (nvpai r)

662 }

664 (void) putchar(’\n’);

665 }

667 /*

668 * Print a single instance in JSON fornat.

669 */

670 static void

671 ks_instance_print_json(ks_instance_t *ksi, ks_nvpair_t *nvpair)

672 {

673 if (g_headerflg) {

674 (void) fprintf(stdout, JSON_FMT,

675 ksi - >ks_nodul e, ksi->ks_i nstance,

676 ksi - >ks_nane, ksi->ks_cl ass,

677 ksi ->ks_type);

679 if (ksi->ks_snaptinme == 0)

680 (void) fprintf(stdout, "\t\"snaptine\":
681 el se

682 (void) fprintf(stdout, "\t\"snaptinme\":
683 ksi - >ks_snaptime / 1000000000. 0);
685 (void) fprintf(stdout, "\t\"data\": {\n");
687 g_headerfl g = B_FALSE;

688 1

690 (void) fprintf(stdout, KS_JFMI, nvpair->nane);

691 if (nvpalr->data_type == KSTAT_DATA_STRING ({

692 (void) putchar(’'\"");

693 ks_val ue_print(nvpair);

694 (void) putchar(’\"");

695 } else {

696 ks_val ue_print(nvpair);

697 }

698 if (nvpair !'= list_tail (&si->ks_nvlist))

699 (void) putchar(’,");

701 (void) putchar(’\n’);

702 }

704 | *

705 * Print all instances.

706 */

707 static void
708 ks_instances_print(void)

709 {

710 ks_sel ector _t *sel ector;

711 ks_i nstance_t *ksi, *ktnp;

712 ks_nvpai r_t *nvpair, *ntnp;

713 voi d (*ks_print_fn)(ks_instance_t *, ks_nvpair_t *);
715 if (g_tinestanp_fnt != NODATE)

716 print_timestanp(g_timestanp_fnt);

718 if (g_iflo) {

11

new usr/src/cnd/ stat/kstat/kstat.c

719 ks_print_fn = &ks_| |nst ance_print_json;

720 (voi d) putchar([’

721 } else {

722 ks_print_fn = &s_instance_print;

723 }

725 /* Iterate over each selector */

726 selector = list_head(&selector_list);

727 while (selector !'= NULL) {

729 /* Iterate over each instance */

730 for (ksi = list_head(& nstances_|ist); ksi != NULL;
731 ksi = I i st_next (& nstances_Ti st, ksi)) {

733 /* Finally iterate over each statistic */
734 g_headerflg = BT)

735 for (nvpair = |ist_head(&ksi->ks_nvlist);
736 nvpair != NULL;

737 nvpair = |ist_next(&ksi->ks_nvlist, nvpair)) {
738 if (gmatch(nvpair->nane,

739 sel ector->ks_statistic) == 0)
740 conti nue;

742 g_mat ched = 0;

743 if (lg_qflg)

744 (*ks_print_fn)(ksi, nvpair);
745 }

747 if (!g_headerflg) {

748 if (g_jflg) {

749 (void) fprintf(stdout, "\t}\n}");
750 if (ksi I=1list tall(&lnstancesllst))
751 (void) putchar(’,
752 } elseif (!'g_pflg

753 (void) putchar(’\n’);

754 }

755 }

756 }

758 selector = list_next(&selector_list, selector);

759 }

761 if (g_jflg)

762 (void) fprintf(stdout, "]\n");

764 (void) fflush(stdout);

766 /* Free the instances list */

767 ksi = list_head(& nstances_list);

768 while (ksi !'= NULL) {

769 nvpair = |ist_head(&ksi->ks_nvlist);

770 whi l e (nvpal ro= NULL) {

771 ntnp = nvpair;

772 nvpair = 1li st_next (&ksi->ks_nvlist, nvpair);
773 |'i st_renpve(&ksi->ks_ nvI ist, ntnp);

774 if (ntnp->data_type == KSTAT DATA STRI NG
775 free(nt np->val ue. str. addr. ptr);

776 free(ntm);

777 }

779 ktmp = ksi;

780 ksi = list_next(& nstances_list, ksi);

781 |ist_remove(& nstances_list, ktnp);

782 |ist_destroy(&tnp->ks_nvlist);

783 free(ktnp);

784 }

12

new usr/src/cnd/ stat/kstat/kstat.c

785 }

787 static void
788 save_cpu_stat(kstat_t *kp, ks_instance_t *ksi)

789 {
790
791
792
793

795
796
797
798

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

cpu_stat _t *stat;
cpu_sysinfo_t *sysi nf o;
cpu_syswait _t *syswai t;
cpu_vm nfo_t *vm nf o;

stat = (cpu_stat_t *)(kp->ks_data);
sysinfo &st at - >cpu_sysi nf o;
syswai t &stat->cpu_syswait;

vm nf o &st at - >cpu_vm nf o;

SAVE_UI NT32_X(Ksi
SAVE_UI NT32_X(Ksi
SAVE_UI NT32_X(ksi
SAVE_Ul NT32_X(Ksi
SAVE_Ul NT32_X(Ksi

"user", sysinfo->cpu[CPU_US|
"kernel ", sysinfo->cpu[CPU_
"wait", sysinfo->cpul CPU WAIT]);
"wai t_io", sysinfo->cpu[WIQ);

"idle", sysinfo->cpu[CPU_| DLE]
R]

SAVE_UI NT32_X(ksi, "wait_swap", sysinfo->cpu[WSWAP]);
SAVE_Ul NT32_X(ksi, "wait_pio", sysinfo->pu[WPIQ);

SAVE_Ul NT32(ksi, sysinfo, bread);
SAVE_UI NT32(ksi, sysinfo, bwite);
SAVE_UI NT32(ksi, sysinfo, Iread);
SAVE_UI NT32(ksi, sysinfo, lwite);
SAVE_UI NT32(ksi, sysinfo, phread);
SAVE_UI NT32(ksi, sysinfo, phwite);
SAVE_UI NT32(ksi, sysinfo, pswitch);
SAVE_UI NT32(ksi, sysinfo, trap);
SAVE_UI NT32(ksi, sysinfo, intr);
SAVE_Ul NT32(ksi, sysinfo, syscall);
SAVE_UI NT32(ksi, sysinfo, sysread);
SAVE_UI NT32(ksi, sysinfo, syswite);
SAVE_UI NT32(ksi, sysinfo, sysfork);
SAVE_Ul NT32(ksi, sysinfo, sysvfork);
SAVE_Ul NT32(ksi info, sysexec);
SAVE_UI NT32(ksi, sysinfo, readch);
SAVE_UI NT32(ksi, sysinfo, witech);
SAVE_Ul NT32(ksi, sysinfo, rcvint);
SAVE_UI NT32(ksi, sysinfo, xntint);
SAVE_UI NT32(ksi, sysinfo, mdmint);
SAVE_Ul NT32(ksi, sysinfo, rawch);
SAVE_Ul NT32(ksi, sysinfo, canch);
SAVE_UI NT32(ksi, sysinfo, outch);
SAVE_UI NT32(ksi, sysinfo, nsg);
SAVE_UI NT32(ksi, sysinfo, sem);
SAVE_Ul NT32(ksi, sysinfo, nanel);
SAVE_UI NT32(ksi, sysinfo, ufsiget);
SAVE_UI NT32(ksi, sysinfo, ufsdirblk);
SAVE_UI NT32(ksi, sysinfo, ufsipage);
SAVE_UI NT32(ksi, sysinfo, ufsinopage);
SAVE_UI NT32(ksi, sysinfo, inodeovf);
SAVE_UI NT32(ksi, sysinfo, fileovf);
SAVE_UI NT32(ksi, sysinfo, procovf);
SAVE_UI NT32(ksi, sysinfo, intrthread);
SAVE_Ul NT32(ksi, sysinfo, intrblk);
SAVE_UI NT32(ksi, sysinfo, idlethread);
SAVE_UI NT32(ksi, sysinfo, inv_swch);
SAVE_UI NT32(ksi, sysinfo, nthreads);
SAVE_Ul NT32(ksi, sysinfo, cpumigrate);
SAVE_UI NT32(ksi, sysinfo, xcalls);
SAVE_UI NT32(ksi, sysinfo, mutex_adenters);
SAVE_UI NT32(ksi, sysinfo, rw_rdfails);
SAVE Ul NT32(ksi, sysinfo, rwwfails);
SAVE_Ul NT32(ksi, sysinfo, nodload);

L I I S I I I |
"
<
1%

13 new usr/src/cnd/ stat/kstat/kstat.c
851 SAVE_UI NT32(ksi, sysinfo, npdunl oad);
852 SAVE_UI NT32(ksi, sysinfo, bawite);
853 #ifdef STATISTICS /* see header file */
854 SAVE_UI NT32(ksi, sysinfo, rw.enters);
855 SAVE_UI NT32(ksi, sysinfo, win_uo_cnt);
856 SAVE_UI NT32(ksi, sysinfo, win_uu_cnt);
857 SAVE_UI NT32(ksi, sysinfo, win_so_cnt);
858 SAVE_UI NT32(ksi, sysinfo, win_su_cnt);
859 SAVE_UI NT32(ksi, sysinfo, w n_suo_cnt);
860 #endi f
862 SAVE | NT32(ksi, syswait, iowait);
863 SAVE_| NT32(ksi, syswait, swap);
864 SAVE_| NT32(ksi, syswait, physio);
866 SAVE_Ul NT32(ksi, vm nfo, pgrec);
867 SAVE_UI NT32(ksi, vm nfo, pgfrec);
868 SAVE_UI NT32(ksi, vminfo, pgin);
869 SAVE_Ul NT32(ksi, vm nfo, pgpgin);
870 SAVE_UI NT32(ksi, vm nfo, pgout);
871 SAVE_UI NT32(ksi, vm nfo, pgpgout);
872 SAVE_Ul NT32(ksi, vm nfo, swapin);
873 SAVE_Ul NT32(ksi, vm nfo, pgswapin);
874 SAVE_Ul NT32(ksi, vm nfo, swapout);
875 SAVE_UI NT32(ksi, vm nfo, pgswapout);
876 SAVE_UI NT32(ksi, vm nfo, zfod);
877 SAVE_UI NT32(ksi, vminfo, dfree);
878 SAVE_Ul NT32(ksi, vm nfo, scan);
879 SAVE_UI NT32(ksi, vminfo, rev);
880 SAVE_UI NT32(ksi, vm nfo, hat_fault);
881 SAVE_UI NT32(ksi, vminfo, as_fault);
882 SAVE Ul NT32(ksi, vm nfo, maj_fault);
883 SAVE_UlI NT32(ksi, vm nfo, cow fault);
884 SAVE_UI NT32(ksi, vm nfo, prot_fault);
885 SAVE_UI NT32(ksi, vminfo, softlock);
886 SAVE_Ul NT32(ksi, vm nfo, kernel _asflt);
887 SAVE_UI NT32(ksi, vmi nfo, pgrrun);
888 SAVE_UI NT32(ksi, vm nfo, execpgin);
889 SAVE_UI NT32(ksi, vmi nfo, execpgout);
890 SAVE_Ul NT32(ksi, vm nfo, execfree);
891 SAVE_Ul NT32(ksi, vm nfo, anonpgin);
892 SAVE_UI NT32(ksi, vm nfo, anonpgout);
893 SAVE_Ul NT32(ksi, vm nfo, anonfree);
894 SAVE_Ul NT32(ksi, vm nfo, fspgin);
895 SAVE_Ul NT32(ksi, vm nfo, fspgout);
896 SAVE_U NT32(ksi, vmnfo, fsfree);
897 }
899 static void
900 {save_var (kstat_t *kp, ks_instance_t *ksi)
901
902 struct var *var = (struct var *)(kp->ks_data);
904 assert (kp->ks_data_si ze == si zeof (struct var));
906 SAVE_| NT32(ksi, var, v_buf);
907 SAVE | NT32(ksi, var, v_call);
908 SAVE_| NT32(ksi, var, v_proc);
909 SAVE_| NT32(ksi, var, v_maxupttl);
910 SAVE_| NT32(ksi, var, v_nglobpris);
911 SAVE | NT32(ksi, var, v_maxsyspri);
912 SAVE_I NT32(ksi, var, v_clist);
913 SAVE_| NT32(ksi, var, v_maxup);
914 SAVE_I NT32(ksi, var, v_hbuf);
915 SAVE | NT32(ksi, var, v_hmask);
916 SAVE_I NT32(ksi, var, v_pbuf);

14

new usr/src/cnd/ stat/kstat/kstat.c 15 new usr/src/cnd/ stat/kstat/kstat.c
917 SAVE_| NT32(ksi, var, v_sptmap); 983 SAVE_| NT32(ksi, mtinfo, mk_tineo);
918 SAVE_| NT32(ksi, var, v_maxpmen); 984 SAVE_| NT32(ksi, mtinfo, mik_retrans);
919 SAVE_| NT32(ksi, var, v_autoup); 985 SAVE_UI NT32(ksi , mtinfo, mk_acregmn);
920 SAVE_| NT32(ksi, var, v_bufhwm; 986 SAVE_UI NT32(ksi, mtinfo, mk_acregmax);
921 } 987 SAVE_UI NT32(ksi, mtinfo, mk_acdirnin);
988 SAVE_UI NT32(ksi, mntinfo, mk_acdirnmax);
923 static void 989 SAVE_UI NT32 X(k3| , "lookup_srtt", mtinfo->mk_timers[0].srtt);
924 save_ncstats(kstat_t *kp, ks_instance_t *ksi) 990 SAVE_UI NT32_X(ksi, "l ookup_devi at e", mtinfo->m k_tiners[0].deviate);
925 { 991 SAVE_UI NT32_X(ksi , "I ookup_rtxcur mnt i nfo->m k_tinmers[0].rtxcur);
926 struct ncstats *ncstats = (struct ncstats *)(kp->ks_data); 992 SAVE_UI NT32_X(ksi, "read_srtt" rmtl nfo->m k_timers[1].srtt);
993 SAVE_UI NT32_X(ksi, "read_devi at e mtinfo->mk_timers[1]. devi at e);
928 assert (kp->ks_data_size == sizeof (struct ncstats)); 994 SAVE_UI NT32_X(ksi, "read_rtxcur" "mmti nf o- >mi k_timers[1].rtxcur);
995 SAVE_UI NT32_X(ksi, "wite_srtt" "mmti nf o- >mi k_timers[2].srtt);
930 SAVE_I NT32(ksi, ncstats, hits); 996 SAVE_UI NT32_X(ksi, "write_deviat e", mt i nfo->m k_timers[2].deviate);
931 SAVE_| NT32(ksi, ncstats, misses); 997 SAVE_UI NT32_X(ksi, "write_rtxcur", mtinfo->mk_timers[2].rtxcur);
932 SAVE_|I NT32(ksi, ncstats, enters); 998 SAVE_UI NT32(ksi, mtinfo, mk_nor esponse)
933 SAVE_| NT32(ksi, ncstats, dbl_enters); 999 SAVE_UI NT32(ksi, mtinfo, mik_failover);
934 SAVE_|I NT32(ksi, ncstats, |ong_enter); 1000 SAVE_UI NT32(ksi, mtinfo, nik_remap);
935 SAVE_| NT32(ksi, ncstats, |ong_| ook); 1001 SAVE_STRI NG(ksi, mtinfo, mk_cur server);
936 SAVE_| NT32(ksi, ncstats, move_to_front); 1002 }
937 SAVE_| NT32(ksi, ncstats, purges);
938 } 1004 #ifdef __sparc
1005 static void
940 static void 1006 save_sfmu_gl obal _stat (kstat_t *kp, ks_instance_t *ksi)
941 save_sysinfo(kstat_t *kp, ks_instance_t *ksi) 1007 {
942 { 1008 struct sfmmu_gl obal _stat *sfmug =
943 sysinfo_t *sysinfo = (sysinfo_t *)(kp->ks_data); 1009 (struct sfmmu_gl obal _stat *)(kp->ks_data);
945 assert (kp->ks_data_si ze == sizeof (sysinfo_t)); 1011 assert (kp->ks_data_si ze == sizeof (struct sfmmu_global _stat));
947 SAVE_UI NT32(ksi, sysinfo, updates); 1013 SAVE_I NT32(ksi, sfmmug, sf_tsb_exceptions);
948 SAVE_Ul NT32(ksi, sysinfo, runque); 1014 SAVE | NT32(ksi, sfmrug, sf_tsb_raise_exception);
949 SAVE_UI NT32(ksi, sysinfo, runocc); 1015 SAVE_I NT32(ksi, sfmmug, sf_pagefaults);
950 SAVE_UI NT32(ksi, sysinfo, swpque); 1016 SAVE_| NT32(ksi, sfrmmug, sf_uhash_searches);
951 SAVE_UI NT32(ksi, sysinfo, swpocc); 1017 SAVE_| NT32(ksi, sfnmug, sf_uhash_links);
952 SAVE_UI NT32(ksi, sysinfo, waiting); 1018 SAVE_| NT32(ksi, sfmmug, sf_khash searches)
953 } 1019 SAVE_| NT32(ksi, sfmmug, sf_khash_links);
1020 SAVE_| NT32(ksi, sfmmug, sf_swapout);
955 static void 1021 SAVE_| NT32(ksi, sfmmug, sf_tsb_all oc);
956 save_vm nfo(kstat_t *kp, ks_instance_t *ksi) 1022 SAVE_| NT32(ksi, sfmmug, sf_tsb_allocfail);
957 { 1023 SAVE_|I NT32(ksi, sfmmug, sf_tsb_sectsb_create);
958 vm nfo_t *vmnfo = (vmnfo_t *)(kp->ks_data); 1024 SAVE_| NT32(ksi, sfrmug, sf_scd_1sttsb_alloc);
1025 SAVE | NT32(ksi, sfrmug, sf_scd_2ndtsb_al |l oc);
960 assert (kp->ks_data_size == sizeof (vminfo_t)); 1026 SAVE_| NT32(ksi, sfnmug, sf_scd_1sttsb_allocfail);
1027 SAVE_| NT32(ksi, sfmmug, sf_scd_2ndtsb_allocfail);
962 SAVE_Ul NT64(ksi, vmnfo, freenmen; 1028 SAVE_| NT32(ksi, sfrmmug, sf_tteload8k);
963 SAVE_Ul NT64(ksi, vm nfo, swap_resv); 1029 SAVE | NT32(ksi, sfrmmug, sf_ttel 0ad64k);
964 SAVE_Ul NT64(ksi, vm nfo, swap_alloc); 1030 SAVE_| NT32(ksi, sfmmug, sf_ttel oad512k);
965 SAVE_UI NT64(ksi, vmi nfo, swap_avail); 1031 SAVE_| NT32(ksi, sfmmug, sf_ttel oad4m;
966 SAVE_UI NT64(ksi, vminfo, swap_free); 1032 SAVE_| NT32(ksi, sfrmmug, sf_ttel oad32m;
967 SAVE_UI NT64(ksi, vnminfo, updates); 1033 SAVE_| NT32(ksi, sfrmmug, sf_ttel oad256m;
968 } 1034 SAVE_| NT32(ksi, sfmmug, sf_tsb_| oad8k);
1035 SAVE_| NT32(ksi, sfmmug, sf_tsb_| oad4m;
970 static void 1036 SAVE_| NT32(ksi, sfmmug, sf_hblk_hit);
971 save_nfs(kstat_t *kp, ks_instance_t *ksi) 1037 SAVE_| NT32(ksi, sfrmug, sf_hbl k8 _ncreate);
972 { 1038 SAVE_| NT32(ksi, sfmmug, sf_hbl k8_nall oc);
973 struct mtinfo_kstat *mtinfo = (struct mmtinfo_kstat *)(kp->ks_data); 1039 SAVE_| NT32(ksi, sfmmug, sf_hbl ki ncreat e)
1040 SAVE_I NT32(ksi, sfmmug, sf_hbl k1 nalloc);
975 assert (kp->ks_data_si ze == sizeof (struct mmtinfo_kstat)); 1041 SAVE_| NT32(ksi, sfrmmug, sf_hbl k_sl abfcnt)
1042 SAVE_| NT32(ksi, sfmmug, sf_hbl k_reserve cnt)
977 SAVE_STRI NG ksi, mmtinfo, mk_proto); 1043 SAVE_| NT32(ksi, sfmmug, sf_hblk_recurse _cnt);
978 SAVE_UI NT32(ksi, mtinfo, mk_vers); 1044 SAVE_| NT32(ksi, sfrmug, sf_hblk_reserve_hit);
979 SAVE_UI NT32(ksi, mtinfo, mik_flags); 1045 SAVE | NT32(ksi, sfrmug, sf_get_free_success);
980 SAVE_UI NT32(ksi, mtinfo, mk_ secrmd) 1046 SAVE_I NT32(ksi, sfmmug, sf_get free throttl e)
981 SAVE_UI NT32(ksi, mtinfo, mk curread) 1047 SAVE_| NT32(ksi, sfmmug, sf_get free fail);
982 SAVE_UI NT32(ksi, mtinfo, mk_curwi te) 1048 SAVE_| NT32(ksi, sfnmug, sf_put _f ree_success) ;

16

new usr/src/cnd/ stat/kstat/kstat.c

1049 SAVE_| NT32(ksi, sfrnmug, sf_put_free_fail);

1050 SAVE_| NT32(ksi, sfmmug, sf_pgcol or_conflict);
1051 SAVE_| NT32(ksi, sfnmug, sf _uncache_conflict);
1052 SAVE_| NT32(ksi, sfmmug, sf_unload_conflict);
1053 SAVE_| NT32(ksi, sfmmug, sf_ismuncache);

1054 SAVE_| NT32(ksi, sfrmug, sf_ismr ecache);

1055 SAVE_| NT32(ksi, sfmmug, sf_recache);

1056 SAVE_| NT32(ksi, sfmmug, sf_steal _count);

1057 SAVE_| NT32(ksi, sfmmg, sf_pagesync);

1058 SAVE_| NT32(ksi, sfmmug, sf_clrwt);

1059 SAVE_| NT32(ksi, sfmmug, sf_pagesync_invalid);
1060 SAVE | NT32(ksi, sfrmmug, sf_kernel _xcalls);

1061 SAVE_| NT32(ksi, sfmmug, sf_user_xcalls);

1062 SAVE_| NT32(ksi, sfmmug, sf_tsb_grow);

1063 SAVE_| NT32(ksi, sfmmug, sf_tsb_shrink);

1064 SAVE_|I NT32(ksi, sfnmug, sf_tsb_resize failures);
1065 SAVE_|I NT32(ksi, sfmmg, sf_tsb_reloc);

1066 SAVE_| NT32(ksi, sfmmug, sf_user_vtop);

1067 SAVE_| NT32(ksi, sfmmug, sf_ctx_inv);

1068 SAVE_|I NT32(ksi, sfmmug, sf_tlb_reprog _pgsz);

1069 SAVE_| NT32(ksi, sfmmug, sf_region_remap_ derrap)
1070 SAVE | NT32(ksi, sfmmug, sf_create_scd);

1071 SAVE_| NT32(ksi, sfmmug, sf_join_scd);

1072 SAVE_| NT32(ksi, sfnmug, sf_| eave_scd)

1073 SAVE_I NT32(ksi, sfmmg, sf_destr oy_scd) ;

1074 }

1075 #endi f

1077 #ifdef __sparc

1078 static void

1079 save_sfmmu_t sbsi ze_stat(kstat _t *kp, ks_instance_t *ksi)
1080 {

1081 struct sfmmu_tsbsize_stat *sfmmut;

1083 assert (kp->ks_data_si ze == sizeof (struct sfmu_tsbhsize_stat));
1084 sfmmut = (struct sfmmu_tsbsize_stat *)(kp->ks_data);
1086 SAVE_| NT32(ksi, sfmmt, sf_tsbsz_8k);

1087 SAVE_| NT32(ksi, sfmmut, sf_tsbsz_16k);

1088 SAVE_| NT32(ksi, sfmmut, sf_tsbsz 32k);

1089 SAVE_| NT32(ksi, sfmmut, sf_tsbsz_64k);

1090 SAVE_| NT32(ksi, sfmmut, sf_tsbsz_128k);

1091 SAVE | NT32(ksi, sfmmut, sf_tsbsz_256k);

1092 SAVE_| NT32(ksi, sfmmut, sf_tsbsz 512k);

1093 SAVE_| NT32(ksi, sfrmmut, sf_tsbsz_1m;

1094 SAVE_| NT32(ksi, sfrmut, sf_tshsz_2m;

1095 SAVE | NT32(ksi, sfrmut, sf_tshsz_4m;

1096 }

1097 #endi f

1099 #ifdef __sparc

1100 static void

1101 save_si mstat (kstat_t *kp, ks_instance_t *ksi)

1102 {

1103 uchar _t *simmstat;

1104 char *si nm_buf ;

1105 char *list = NULL;

1106 int i;

1108 assert (kp->ks_data_si ze == sizeof (uchar_t) * S| MM COUNT);
1110 for (i =0, simmstat = (uchar_t *)(kp->ks_data); i < SIMVM COUNT - 1;
1111 i ++, simmstat ++)

1112 if (list == NULL) {

1113 (void) asprintf(&immbuf, "%, ", *simstat);
1114 } else {

17

new usr/src/cnd/ stat/kstat/kstat.c

1115 (voi d) asprintf(&immbuf, "%%,", |ist,
1116 free(list);

1117

1118 list = simmbuf;

1119 }

1121 (void) asprintf(&simmbuf, "9%%l", list, *simmstat);
1122 SAVE_STRI NG _X(ksi, "status", sinmmbuf);

1123 free(list);

1124 free(si nmbuf);

1125 }

1126 #endif

1128 #ifdef __sparc

1129 /*

1130 * Hel per function for save_tenperature().

1131 */

1132 static char *

1133 short_array_to_string(short *shortp, int Ien)

1134 {

1135 char *list = NULL;

1136 char *|ist_buf;

1138 for (; len > 1; len--, shortp++) {

1139 if (list == NULL)

1140 (void) asprintf(& ist_buf, "%, ", *shortp);
1141 } else {

1142 (voi d) asprintf(&ist_buf, "%%, ", list,
1143 free(list);

1144

1145 list = 1ist_buf;

1146 1

1148 (void) asprintf(& ist_buf, "%%", list, *shortp);
1149 free(list);

1150 return (list_buf);

1151 }

1153 static void

1154 save_tenperature(kstat_t *kp, ks_instance_t *ksi)

1155 {

1156 struct tenp_stats *tenps = (struct tenp_stats *)(kp->ks_data);
1157 char *buf ;

1158 int n=1;

1160 assert (kp->ks_data_si ze == sizeof (struct tenp_stats));
1162 SAVE_Ul NT32(ksi, tenps, index);

1164 buf = short_array_to_string(tenps->l1, L1_SZ);

1165 SAVE_STRI NG X(ksi, "T1", buf)

1166 free(buf);

1168 buf = short_array_to_string(tenps->12, L2_SZ);

1169 SAVE_STRI NG X(ksi, "T2", buf);

1170 free(buf);

1172 buf = short_array_to_string(tenps->l3, L3_SZ);

1173 SAVE_STRI NG X(ksi, "T3", buf);

1174 free(buf);

1176 buf = short_array_to_string(tenps->l4, L4_SZ);

1177 SAVE_STRI NG X(ksi, "T4", buf);

1178 free(buf);

1180 buf = short_array_to_string(tenps->I5, L5_SZ);

*simstat);

*shortp);

new usr/src/cnd/ stat/kstat/kstat.c 19 new usr/src/cnd/ stat/kstat/kstat.c 20
1181 SAVE_STRING X(ksi, "I5", buf);
1182 free(buf); 1248 for (i =1, fault = (struct ft_list *)(kp->ks_data);
1249 i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list);
1184 SAVE_| NT32(ksi, tenps, max); 1250 i++, fault++)
1185 SAVE_| NT32(ksi, tenps, mn); 1251 (void) snprintf(name, sizeof (nanme), "unit_%", i);
1186 SAVE_| NT32(ksi, tenps, state); 1252 SAVE | NT32 X(ksi, name, fault->unit);
1187 SAVE | NT32(ksi, tenps, tenp_cnt); 1253 (void) snpri ntf(name si zeof (nane), "type_%l", i);
1188 SAVE_| NT32(ksi, tenps, shutdown_cnt); 1254 SAVE_I NT32_X(ksi, name, fault->type);
1189 SAVE_| NT32(ksi, tenps, version); 1255 (void) snprintf(name, sizeof (nanme), "fclass_%", i);
1190 SAVE_| NT32(ksi, tenps, trend); 1256 SAVE | NT32_X(ksi, nanme, fault->fclass);
1191 SAVE_| NT32(ksi, tenps, override); 1257 (void) snprintf(nanme, sizeof (nane), "create_tine_%", i);
1192 } 1258 SAVE_HRTI ME_X(ksi, nane, fault->create_tine);
1193 #endi f 1259 (void) snprintf(name, sizeof (name), "msg_%", i);
1260 SAVE_STRI NG _X(ksi, nane, faultp->nsg);
1195 #ifdef __sparc 1261 }
1196 static void 1262 }
1197 save_tenp_over (kstat_t *kp, ks_instance_t *ksi) 1263 #endi f
1198 {
1199 short *sh = (short *)(kp->ks_data); 1265 static void
1200 char *val ue; 1266 {save_namad(kst at_t *kp, ks_instance_t *ksi)
1267
1202 assert (kp->ks_data_size == sizeof (short)); 1268 kstat _named_t *knp;
1269 int n;
1204 (void) asprintf(&alue, "%u", *sh);
1205 SAVE_STRI NG X(ksi, "override", value); 1271 for (n = kp->ks_ndata, knp = KSTAT_NAMED PTR(kp); n > 0; n--, knp++) {
1206 free(val ue); 1272 switch (knp- >dat a _type) {
1207 } 1273 case KSTAT_DATA CHAR:
1208 #endi f 1274 nvpair_i nsert (ksi, knp->nane,
1275 (ks_val ue_t *)&knp->val ue, KSTAT_DATA CHAR);
1210 #ifdef __sparc 1276 br eak;
1211 static void 1277 case KSTAT_DATA | NT32:
1212 save_ps_shadow kstat _t *kp, ks_instance_t *ksi) 1278 nvpai r_insert (ksi, knp->nane,
1213 { 1279 (ks_val ue_t *)&knp->val ue, KSTAT_DATA | NT32);
1214 uchar _t *uchar = (uchar_t *)(kp->ks_data); 1280 br eak;
1281 case KSTAT_DATA Ul NT32:
1216 assert (kp->ks_data_size == SYS_PS_COUNT) ; 1282 nvpai r_insert (ksi, knp->nane,
1283 (ks_val ue_t *)&knp->val ue, KSTAT_DATA_ Ul NT32);
1218 SAVE_CHAR X(ksi, "core_0", *uchar++); 1284 br eak;
1219 SAVE_CHAR X(ksi, "core_1", *uchar++); 1285 case KSTAT_DATA | NT64:
1220 SAVE_CHAR X(ksi, "core_2", *uchar++); 1286 nvpair_insert (ksi, knp->nane,
1221 SAVE_CHAR X(ksi, "core_3", *uchar++); 1287 (ks_val ue_t *)&knp->val ue, KSTAT_DATA_| NT64);
1222 SAVE_CHAR X(ksi, "core_4", *uchar++); 1288 br eak;
1223 SAVE_CHAR_X(ksi , "core_5", *uchar ++) ; 1289 case KSTAT_DATA Ul NT64:
1224 SAVE_CHAR X(ksi, "core_6", *uchar++); 1290 nvpai r_insert (ksi, knp->nane,
1225 SAVE_CHAR X(ksi, "core_7", *uchar++); 1291 (ks_val ue_t *)&knp->val ue, KSTAT_DATA_Ul NT64);
1226 SAVE_CHAR X(ksi, "pps_0", *uchar++); 1292 br eak;
1227 SAVE_CHAR X(ksi, "cl k_33", *uchar ++) ; 1293 case KSTAT_DATA STRING
1228 SAVE_CHAR X(ksi, "clk_50", *uchar++); 1294 SAVE_STRI NG X(ksi, knp->nane, KSTAT NAMED STR PTR(knp));
1229 SAVE_CHAR X(ksi, "v5_p", *uchar++); 1295 br eak;
1230 SAVE_CHAR_X(ksi , "v12 _p", *uchar++); 1296 defaul t:
1231 SAVE_CHAR X(ksi, "v5_aux", *uchar++); 1297 assert (B_FALSE); /* Invalid data type */
1232 SAVE_CHAR_X(ksi , "v5_p_pch", *uchar ++) ; 1298 br eak;
1233 SAVE_CHAR X(ksi, "v12_p_pch", *uchar++); 1299 }
1234 SAVE_CHAR X(ksi, "v3_pch", *uchar++); 1300 }
1235 SAVE_CHAR X(ksi, "v5_pch", *uchar++); 1301 }
1236 SAVE_CHAR X(ksi, "p_fan", *uchar++);
1237 } 1303 static void
1238 #endi f 1304 {save_i ntr(kstat_t *kp, ks_instance_t *ksi)
1305
1240 #ifdef __sparc 1306 kstat_intr_t *intr = KSTAT_I NTR PTR(kp)
1241 static void 1307 char *intr_names[] = {"hard", "soft", "watchdog", "spurious",
1242 save_fault_list(kstat_t *kp, ks_instance_t *ksi) 1308 "mul tiple_service"};
1243 { 1309 int n;
1244 struct ft_list *fault;
1245 char nanme[KSTAT_STRLEN + 7]; 1311 for (n = 0; n < KSTAT_NUM | NTRS; n++)
1246 int i; 1312 SAVE Ul NT32_X(ksi, i ntr_narres[n], intr->intrs[n]);

new usr/src/cnd/ stat/kstat/kstat.c

1313 }

1315 static void
1316 save_io(kstat_t *kp,

1317 {

1318 kstat_io_t

1320 SAVE_Ul NT64(ksi, ksio,
1321 SAVE_UI NT64(ksi, ksio,
1322 SAVE_UI NT32(ksi, ksi o,
1323 SAVE_UI NT32(ksi, ksio,
1324 SAVE_HRTI ME(ksi, ksi o,
1325 SAVE_HRTI ME(ksi, ksi o,
1326 SAVE_HRTI ME(ksi, ksi o,
1327 SAVE_HRTI ME(ksi, ksi o,
1328 SAVE_HRTI ME(ksi, ksi o,
1329 SAVE_HRTI ME(ksi, ksio,
1330 SAVE_UI NT32(ksi, ksi o,
1331 SAVE_UI NT32(ksi, ksi o,
1332 }

1334 static void

1335 save_tiner(kstat_t *kp, ks_inst
1336 {

1337 kstat _timer_t *Kkti mer
1339 SAVE_STRI NG(ksi, ktiner
1340 SAVE_Ul NT64(ksi, ktiner
1341 SAVE_HRTI ME(ksi, ktimer
1342 SAVE_HRTI ME(ksi, ktinmer
1343 SAVE_HRTI ME(ksi, ktiner
1344 SAVE_HRTI ME(ksi, ktimer
1345 SAVE_HRTI ME(ksi, ktiner
1346 }

1347 #endif /* | codereview */

21

ks_instance_t *ksi)

*ksi o = KSTAT_I O PTR(kp);

nread) ;
nwitten);
reads) ;
wites);
wine);

w entine);

w ast updat e) ;
rtime);
rlentine);

rl astupdate);
went) ;

rcent);

ance_t

KSTAT_TI MER_PTR(kp) ;

*Kksi)

, hame);

, numevents);

, el apsed_tine);
, mn_tinme);

, max_time);

, start_tinme);

, stop_tinme);

new usr/src/cnd/ stat/kstat/kstat. h 1

R R R R

6701 Wed Nov 28 23:08:58 2012

new usr/src/cnd/ stat/kstat/kstat. h

749 "/usr/bin/kstat" should be rewitten in C

Revi ewed by: Garrett D Anpre <garrett @anore. org>

Revi ewed by: Brendan G egg <brendan. gregg@ oyent. conp

I:fi?i***
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the foll ow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END
/

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

-
B I I

22 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
23 * Copyright 2012 David Hoeppner. All rights reserved.

*

/

24

26 #i fndef _STAT_KSTAT_H

27 #define ~STAT _KSTAT H

29 /*

30 * Structures needed by the kstat reader functions
31 */

32 #include <sys/var.h>

33 #include <sys/utsnane. h>
34 #include <sys/sysinfo. h>
35 #include <sys/flock. h>

36 #include <sys/dnlc. h>

37 #include <nfs/nfs.h>

38 #include <nfs/nfs_clnt.h>

40 #ifdef __sparc

41 #i ncl ude <vni hat _sf mu. h>
42 #incl ude <sys/sinmstat. h>
43 #incl ude <sys/sysctrl.h>
44 #include <sys/fhc. h>

45 #endi f

47 #define KSTAT_DATA HRTI ME (KSTAT_DATA STRING + 1)

49 typedef union ks_value {

new usr/src/cnd/ stat/kstat/kstat. h

59 } str;
61 int64_t i 64;
62 ui nt 64_t ui 64;

63 } ks_value_t;
65 #define SAVE HRTIME(l, S, N)
{

67 ks_val ue_t v;

68 V.ui 64 = S->N,

69 nvpair_insert(l, #N, &, KSTAT_DATA Ul NT64);
70 }

72 #define SAVE_INT32(l, S, N)

73 {

74 ks_val ue_t v;

75 v.i32 = S->N,

76 nvpair_insert(l, #N, &, KSTAT_DATA | NT32);
77 }

79 #define SAVE_U NT32(1, S, N

80 {

81 ks_val ue_t v;

82 V. ui 32 = S->N;

83 nvpair_insert(l, #N, &, KSTAT_DATA Ul NT32);
84 }

86 #define SAVE INT64(1, S, N)

87 {

88 ks_val ue_t v;

89 V.i64 = S->N;

90 nvpair_insert(l, #N, &, KSTAT_DATA | NT64);
91 }

93 #define SAVE_U NT64(1, S, N)

94 {

95 ks_val ue_t v;

96 V. ui 64 = S >N

97 nvpair_insert(l, #N, &, KSTAT_DATA Ul NT64);
98 }

100 /*

101 * We dont want const "string
102 * the instances later.
*

104 #define SAVE_STRING(I, S, N
{

s"

because we free

50 char c[16];

51 int32_t i 32;

52 ui nt 32_t ui 32;

53 struct {

54 uni on {

55 char *ptr;

56 char __pad[8];
57 } addr;

58 ui nt 32_t | en;

106 ks_val ue_t v;

107 v.str.addr.ptr = safe_strdup(S->N);

108 v.str.len = strlen(S->N);

109 nvpai r_insert(l, #N, &, KSTAT_DATA STRING;
110 }

112 #define SAVE_HRTIME_X(I, N, V)

113 {

114 ks_val ue_t v;

115 V.ui 64 =V,

116 nvpair_insert(l, N &v, KSTAT_DATA_HRTI ME);
117 }

119 #define SAVE INT32_X(I, N, V)

120 {

121 ks_val ue_t v;

122 v.i32 =V,

123 nvpair_insert(l, N, &, KSTAT_DATA |INT32);
124 }

——— —— ——— — — ——— ——

——— ——

——— —— ——— - ——

——— ——

new usr/src/cnd/ stat/kstat/kstat. h

126 #define SAVE_UINT32_X(I, N V)

127 {

128 ks_val ue_t v;

129 v.ui 32 =V

130 nvpair_insert(l, N &, KSTAT_DATA Ul NT32);
131 }

133 #define SAVE_U NT64_X(I, N, V)

134 {

135 ks_val ue_t v;

136 V. ui 64 =V,

137 nvpair_insert(l, N, &, KSTAT_DATA Ul NT64);
138 }

140 #define SAVE_STRING X(I, N, V)

141 {

142 ks_val ue_t v;

143 v.str.addr.ptr = safe_strdup(V);

144 v.str.len = strlen(V);

145 nvpair_insert(l, N, &v KSTAT_DATA_STRI NG) ;
146 }

148 #define SAVE _CHAR X(I, N, V)

149 {

150 ks_val ue_t v;

151 asprintf(&v. str.addr. ptr, "%", V);
152 v.str.len = 1,

153 nvpair_insert(l, N &, KSTAT_DATA STRING;
154 }

156 #define DFLT_FMI

157 "modul e: % 30.30s instance: % 6d\n"
158 "name: % 30.30s cl ass: % . 30s\ n"
160 #define JSON_FMr

161 “{\nVt\"nmodul e\": \"%\", \n"

162 "\t\"instance\": %, \n"

163 “\t\"nane\": \"%;\ “\n"

164 "\t\"class\": \"%\",\n"

165 "\t\"type\": %, \n"

167 #define KS_DFMI "\t % 30s

168 #define KS_JFMI "\t\t\"os\":

169 #define KS_PFMI "%s: %: %s: %"

171 typedef struct ks_instance {

172 i st_node_t ks_next;

173 char ks narre[KSTAT STRLEN] ;
174 char ks_nodul e[KSTAT STRLEN]
175 char ks_cl ass[KSTAT_STRLEN] ;
176 int ks_i nst ance;

177 uchar _t ks_type;

178 hrtime_t ks_snapti nme;

179 list_t ks_nvlist;

180 } ks_instance_t;

182 typedef struct ks_nvpair {

183 list_node_t nv_next ;

184 char name[KSTAT_STRLEN] ;
185 uchar _t dat a_t ype;

186 ks_val ue_t val ue;

187 } ks_nvpair_t

189 typedef struct ks_selector {

190

list_node_t ks_next;

——— —— — ——— —— ——— ——

——— —— —

——— ——

new usr/src/cnd/ stat/kstat/kstat. h

191
192
193
194
195

197
198
199
200
201
202
203
204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

225
226
227
228
229

231
232

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

char *ks_nodul e;
char *Kks_i nst ance;
char *ks_naneg;
char *ks_statistic;
} ks_selector_t;
static void usage(void);
static int conpar e_i nst ances(ks_i nstance_t *, ks_instance_t *);
static void nvpair_insert(ks_instance_t *, char *, ks_value_t *,
static ks_sel ector_t *new_sel ector (voi d) ;
static void ks_i nstances_read(kstat _ctl _t *);
static void ks_val ue _print(ks_nvpair_t e
static void ks_i nstance_pri nt (ks_instance_t *, ks_nvpair_t *);
static void ks_i nstances_pri nt (voi d);
/* Raw kstat readers */

static void
static void
static void
static void
static void
static void
#i f def sparc
static void
static void
static void

save_cpu_stat(kstat_t *,
save_var (kstat _t *,
save_ncstat s(kstat _t
save_sysinfo(kstat _t *,
save_vm nfo(kstat_t *,
save_nfs(kstat _t *,
save_sfmu_gl obal _stat (kstat_t *, ks_instance_t *);
save_sfmmu_t sbsi ze_stat (kstat_t *, ks_instance_t *
save_si mst at (kstat _t *,

ks_instance_t *);

ks_i nstance_t *);

ks_i nstance_t *);
ks_i nstance_t *);

ks_instance_t *);
ks_i nstance_t *);

j;

ks_instance_t *);

/* Hel per function for save_tenperature() */

static char
static void
static void
static void

*short _array_to_string(short *, int);

save_tenperature(kstat_t *, ks_instance_t *);
save_t enp_over (kstat _t *,
save_ps_shadow(kst at _t

ks_i nstance_t *);
ks_i nstance_t *);
*

static void save_fault_list(kstat_t *, ks_instance_t)
#endi f
/* Nanmed kstat readers */

static void
static void
static void
static void

save_naned(kstat _t *,
save_intr(kstat _t
save_i o(kstat _t *
save_tiner(kstat _

ks_i nstance_t *);
ks_i nstance_t *);
_instance_t *);

ks_i nstance_t *);

/* Typedef for raw kstat reader functions */
typedef void (*kstat_raw_reader _t)(kstat_t *, ks_instance_t *);

static struct
kstat_raw reader_t fn;
char *nane;

} ks_raw_| ookup[] = {
/*

Function nane kstat nane */
save_cpu_stat, "cpu_stat:cpu_stat"},
save_var, "uni x: var"},

save_ncstats,
save_sysi nfo,
save_vm nfo,
save_nfs,

#i fdef __sparc

save_sfmmu_gl obal _stat, "uni x: sf mmu_gl obal _stat"},
save_sfmmu_t sbsi ze_stat, "uni x: sf mmu_t sbsi ze_stat"},
save_si mst at , "uni x: si nm status"},
save_t enperat ure, "uni x: tenperature"},
save_t enp_over, "uni x: tenperature override"},
save_ps_shadow, "uni x: ps_shadow'},
save_faul t_list, "uni x:fault_list"},
#endi f
{NULL, NULL},
e

"uni x: ncstats"},
“uni x: sysinfo"},
"uni x: vm nfo"},
"nfs:mtinfo"},

uchar _t);

new usr/src/cnd/ stat/kstat/kstat. h
257 static kstat_raw reader_t | ookup_raw_kstat _fn(char *, char *);

259 #endif /* _STAT_KSTAT_H */
260 #endif /* ! codereview */

new usr/src/ man/ manlnf kst at. 1m 1

R R R R

8971 Wed Nov 28 23:08:58 2012

new usr/src/ man/ manln kstat. 1m

749 "/usr/bin/kstat" should be rewitten in C

Revi ewed by: Garrett D Anpre <garrett @anore. org>
Revi ewed by: Brendan G egg <brendan. gregg@ oyent. conp

kst at

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok k k&

O©ONOOUTAWN

"\" te

.\" Copyright (c) 2000, Sun Mcrosystens, Inc. All Rights Reserved

.\" The contents of this file are subject to the terns of the Common Devel opnent
.\" See the License for the specific |anguage governing perm ssions and |initat
.\" the fields enclosed by brackets "[]" replaced with your own identifying info
. TH KSTAT 1M "Nov 22, 2012

. TH KSTAT 1M "Mar 23, 2009"

SH NAME
kstat \- dlspl ay kernel statistics
. SH SYNOPSI S
.LP
nf
\kastat\fR[\fBlepq\fR] [\fB-T\fRu | d] [\fB-c\fR\flclass\fR] [\fB-mMfR\f
\fBkstat\fR [\fB-1pg\fR] [\fB-T\fRu | d] [\fB-c\fR\flclass\fR] [\fB-mMfR\fIm
[\fB-i\fR\flinstance\fR] [\fB-n\fR \flnane\fR] [\fB-s\fR \flstatistic\fR]
f [interval [count]]
i
.LP
. nf
\fBkstat\fR [\fB-Glpg\fR [\fB-T\fRu | d] [\fB-c\fR\flclass\fR]
\fBkstat\fR [\fB-1pg\fR] [\fB-T\fRu | d] [\fB-c\fR\flclass\fR]
[\flrmodul e\ fR \flinstance\fR \flnane\fR \flstatistic\fR]...
[interval [count]]

fi

The \fBkstat\fR utility exam nes the avail abl e kernel statistics, or kstats, on
the system and reports those statistics which match the criteria specified on

the command |ine. Each matching statistic is printed with its nodul e, instance,
and name fields, as well as its actual val ue.

sp

LP

Kernel statistics may be published by various kernel subsystens, such as

drivers or |oadable nodul es; each kstat has a nmpdule field that denotes its
publ i sher. Since each nodul e m ght have countable entities (such as nultiple
di sks associated with the \fBsd\fR(7D) driver) for which it w shes to report
statistics, the kstat also has an instance field to index the statistics for
each entity; kstat instances are nunbered starting fromzero. Finally, the
kstat is given a nanme unique within its nodul e.

.sp
.LP

Each kstat may be a special kstat type, an array of nane-value pairs, or raw
data. In the name-val ue case, each reported value is given a |abel, which we

refer to as the statistic. Known raw and special kstats are given statistic
| abel s for each of their values by \fBkstat\fR, thus, all published val ues can
be referenced as \flmodule\fR \flinstance\fR \flnane\fR \flstatistic\fR
.sp
.LP
When i nvoked wi t hout any nodul e operands or options, kstat will match all
defined statistics on the system Exanple invocations are provided below. All
tines are displayed as fracti onal seconds since system boot.
. SH OPTI ONS
.sp
.LP

The tests specified by the follow ng options are logically ANDed, and all

new usr/src/ man/ manlnf kst at. 1m

114
115
116

mat ching kstats will be selected. A regular expression containing shell

nmet acharacters nust be protected fromthe shell by enclosing it with the
appropri ate quotes.

.sp

.LP

The argunent for the \fB-c\fR \fB-i\fR \fB-mfR
options may be specified as a shell glob pattern.
.sp

.ne 2

\fB-n\fR, and \fB-s\fR

.na
\fB\fB-QAfRfR

.ad

.RS 16n

Di spl ays output in parseable format with a colon as separator.
.RE

options may be specified as a shell glob pattern, or a Perl
enclosed in '/’ characters.

.sp

.ne 2

regul ar expression

.na
\fB\fB-c\fR \flclass\fRfR

.ad

. RS 16n

Di spl ays only kstats that match the specified class. \flclass\fRis a
kernel -defined string which classifies the "type" of the kstat.

. RE

.sp
.ne 2

. nha
\fB\fB-i\fR \flinstance\fRfR

. al
.RS 16n

Di splays only kstats that match the specified instance.
.RE

.sp
ne 2

\fB\fB-]\fR\fR
ad

.RS 16n
Di spl ays output in JSON fornat.
.RE

.sp
.ne 2

.na

#endif /* | codereview */

\fB\fB-I\fRfR

.ad

. RS 16n

Li sts matching kstat names without displaying val ues.
.RE

.sp
.ne 2

.na
\fB\fB-mMfR \flnodule\fRfR

.ad

. RS 16n

Di spl ays only kstats that match the specified nodul e.

117 .RE

.sp

new usr/src/ man/ manlnf kst at. 1m

120
121
122
123
124
125
126

128
129
130
131
132
133
134
135
136
137

139
140
141
142
143
144
145
146
147

149
150
151
152
153
154
155
156

158
159
160
161
162
163
164
165
166
167

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

87

.ne 2

.ha
\fB\fB-n\fR \flnane\fRfR

.ad

.RS 16n

Di spl ays only kstats that match the specified nane.
.RE

.sp
.ne 2

. ha
\fB\fB-p\fRfR
d

. al
. RS 16n

Di spl ays output in parseable format. Al exanple output in this docunment is
given in this format. If this option is not specified, \fBkstat\fR produces
output in a human-readable, table format.

. RE

.sp
.ne 2

. ha
\fB\fB-q\fR fR
ad

_RS 16n

Di spl ays no output, but return appropriate exit status for matches agai nst
given criteria.

. RE

.sp
.ne 2

.na
\fB\fB-s\fR \flstatistic\fRfR

.ad

. RS 16n

Di spl ays only kstats that match the specified statistic.
.RE

.sp
.ne 2

.na
\fB\fB-T\fRd | ufR
ad

_RS 16n

Di splays a time stanp before each statistics block, either in \fBdate\fR(1)
format (\fBd\fR) or as an al phanuneric representation of the value returned by
\fBtine\fR(2) (\fBU\fR).
. RE

. SH OPERANDS
.sp

.LP
The foll owi ng operands are supported:

.sp
.ne 2

.na
\fB\flnodule\fR \flinstance\fR \flname\fR \flstatistic\fRfR

.ad

.sp .6

. RS 4n

Al ternate nethod of specifying nodule, instance, nanme, and statistic as
descri bed above. Each of the nodule, instance, nane, or statistic specifiers
may be a shell glob pattern.

It is possible to use both specifier types within a single operand.

may be a shell glob pattern or a Perl regul ar expression enclosed by '/’

characters. It is possible to use both specifier types within a single operand.

new usr/src/ man/ manlnf kstat. 1m

184 Leaving a specifier enpty is equivalent to using the "*' glob pattern for that
185 specifier.

186 . RE

188 .sp

189 .ne 2

190 . na

191 \fB\flinterval \fRfR

192 . ad

193 .sp .6

194 . RS 4n

195 The nunber of seconds between reports.

196 . RE

198 .sp

199 .ne 2

200 .na

201 \fB\flcount\fRfR

202 . ad

203 .sp .6

204 . RS 4n

205 The nunber of reports to be printed.

206 . RE

208 . SH EXAMPLES

209 .sp

210 .LP

211 In the followi ng exanples, all the command lines in a block produce the same
212 output, as shown inmmedi ately bel ow. The exact statistics and values wll of
213 course vary from nachi ne to machine.

214 . LP

215 \fBExanple 1 \fRUsing the \fBkstat\fR Conmand
216 .sp

217 .in +2

218 . nf

219 exanple$ \fBkstat -p -munix -i 0 -n systemmnisc -s 'avenrun*'\fR
220 exanple$ \fBkstat -p -s "avenrun*'\fR

221 exanpl e$ \fBkstat -p 'unix:0:systemm sc:avenrun*’\fR
222 exanple$ \fBkstat -p ':::avenrun*'\fR

223 exanpl e$ \fBkstat -p ':::avenrun*m n$’ \fR

127 exanpl e$ \fBkstat -p ':::/”avenrun_\ed+m n$/’'\fR
225 uni x: 0: system mi sc: avenrun_15nmi n 3

226 uni x: 0: system mi sc:avenrun_1nmin 4

227 uni x: 0: system m sc: avenrun_5mn 2

228 . fi

229 .in -2

230 .sp

232 .LP

233 \fBExanpl e 2 \fRUsing the \fBkstat\fR Command
234 .s

235 .in +2

236 . nf

237 exanple$ \fBkstat -p -mcpu_stat -s 'intr*'\fR
238 exanpl e$ \fBkstat -p 'cpu_stat:::intr*' \fR

142 exanpl e$ \fBkstat -p cpu_stat:::/~intr/\fR

240 cpu_stat: 0:cpu_statO:intr 29682330

241 cpu_stat:0:cpu_statO:intrblk 87

242 cpu_stat:0:cpu_statO:intrthread 15054222

243 cpu_stat:1:cpu_statl:intr 426073

244 cpu_stat:1:cpu_statl:intrblk 51

245 cpu_stat: 1l:cpu_statl:intrthread 289668

246 cpu_stat:2:cpu_stat2:intr 134160

247 cpu_stat: 2:cpu_stat2:intrblk 0

new usr/src/ man/ manlnf kst at. 1m

248
249
250
251
252
253
254

256
257
258
259
260
261
166

263
264
265
266
267
268
269
270
271
272

274
275
276
277
278
279
280
281
282

284
285
286

288
289
290
291
292
293

295
296
297
298
299
300
301
302
303
304

306
307
308
309

310 .

311
312

cpu_stat:2:cpu_stat2:intrthread 131
cpu_stat:3:cpu_stat3:intr 196566
cpu_stat:3:cpu_stat3:intrblk 30
cpu_stat:3:cpu_stat3:intrthread 59626
i

.in -2

- Sp

.LP

\ f BExanpl e 3 \fRUsi ng the \fBkstat\fR Comrand
.sp

Lin +2

. nf

exanpl e$ \fBkstat -p :::state ':::avenrun*’\fR
exanpl e$ \fBkstat -p :::state :::/”avenrun/\fR

cpu_i nfo:0: cpu_i nfoO: state on-1ine
cpu_info: 1:cpu_infol:state on-line
cpu_info:2:cpu_info2: state on-line
cpu_info:3:cpu_info3:state on-line
uni x: 0: syst em mi sc: avenrun_15m n 4

uni x: 0: system mi sc: avenrun_1m n 10
uni x: 0: system mi sc: avenrun_5nin 3
Lfi

Sin -2

.sp

. LP
\fBExanpl e 4 \fRUsi ng the \fBkstat\fR Comrand

.sp
.in +2
nf
exaerI e$ \fBkstat -p 'unix:0:systemmsc:avenrun*’ 1 3\fR
uni x: 0: system mi sc: avenrun_15m n 15
uni x: 0: system mi sc: avenrun_1nin 11
uni x: 0: system m sc: avenrun_5m n 21
uni x: 0: syst em mi sc: avenrun_15mi n 15
uni x: 0: system m sc: avenrun_1m n 11
uni x: 0: system m sc: avenrun_5m n 21
uni x: 0: syst em mi sc: avenrun_15mi n 15
uni x: 0: system m sc: avenrun_1mn 11
uni x: 0: system m sc: avenrun_5m n 21
i
.in -2
.sp
. LP
\fBExanpl e 5 \fRUsi ng the \fBkstat\fR Comrand
.sp
.in +2
. nf

exanpl e$ \fBkstat -p -T d ’unix: 0: system m sc: avenrun*’
Thu Jul 22 19:39:50 1999

uni x: 0: system m sc: avenrun_15m n 12

uni x: 0: system mi sc: avenrun_inmin 0

uni x: 0: system mi sc: avenrun_5min 11

Thu Jul 22 19:39:55 1999

uni x: 0: system m sc: avenrun_15m n 12
uni x: 0: system mi sc: avenrun_1nin 0

uni x: 0: system mi sc: avenrun_5mn 11

fi

.in -2

.sp

5 2\fR

new usr/src/ man/ manlnf kst at. 1m

314
315
316
317
318
319
320
321
322
323

324 .

325
326

328
329
330
331
332
333

. LP

\f BExanpl e 6 \fRUsing the \fBkstat\fR Comrand
.sp

.in +2

. nf

exanpl e$ \fBkstat -p -T u 'unix:0:systemmnisc:avenrun*’'\fR
932668656

uni x: 0: system mi sc: avenrun_15m n 14
uni x: 0: system mi sc: avenrun_1nin 5

uni x: 0: syst em mi sc: avenrun_5nin 18

fi

.in -2

.sp

.SH EXIT STATUS

.sp
LP

The fol | ow ng exit values are returned:
- Sp

.ne 2

334 .na

335
336
337
338

\fB\fBO\fR fR

.ad

.RS 5n

One or nore statistics were matched.

339 .RE

341
342

.sp
.ne 2

343 .na

344
345
346
347

\fB\fBI\fRfR

.ad

.RS 5n

No statistics were matched.

348 . RE

350
351
352
353
354
355
356

.sp
.ne 2

.na
\fB\fB2\fRfR

.ad

. RS 5n

Invalid command |ine options were specified.

357 .RE

359
360
361
362
363
364
365

.sp
.ne 2

. na
\fB\fB3\fRfR

.ad

. RS 5n

A fatal error occurred.

366 . RE

368
369
370

. SH FI LES

.sp
.ne 2

371 .na

372
373
374
375

\fB\fB/dev/ kstat\fR fR
.ad

. RS 14n

kernel statistics driver

376 . RE

378

. SH SEE ALSO

new usr/src/ man/ manlnf kst at. 1m

379 .sp

380 .LP

381 \fBdate\fR(1), \fBsh\fR(1), \fBtinme\fR(2), \fBgmatch\fR(3CGEN),

382 \fBkstat\fR(3KSTAT), \fBattributes\fR(5), \fBkstat\fR(7D), \fBsd\fR(7D),
383 \fBkstat\fR(9S)

384 . SH NOTES

385 .sp

386 .LP

387 If the pattern argunent contains gl ob netacharacters which are al so

292 |f the pattern argunent contains glob or Perl RE netacharacters which are al so
388 shell netacharacters, it will be necessary to enclose the pattern with

389 appropriate shell quotes.

