
new/usr/src/cmd/stat/Makefile 1

**
 1267 Wed Nov 28 23:08:57 2012
new/usr/src/cmd/stat/Makefile
749 "/usr/bin/kstat" should be rewritten in C
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
kstat
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"
26 #
25 # cmd/stat/Makefile
26 #

28 include ../Makefile.cmd

30 SUBDIRS= iostat mpstat vmstat fsstat kstat
32 SUBDIRS= iostat mpstat vmstat fsstat

32 all := TARGET = all
33 install := TARGET = install
34 clean := TARGET = clean
35 clobber := TARGET = clobber
36 lint := TARGET = lint
37 _msg := TARGET = _msg

39 .KEEP_STATE:

41 all install lint clean clobber _msg: $(SUBDIRS)

43 $(SUBDIRS): FRC
44 @cd $@; pwd; $(MAKE) $(MFLAGS) $(TARGET)

46 FRC:

new/usr/src/cmd/stat/kstat/Makefile 1

**
 1613 Wed Nov 28 23:08:57 2012
new/usr/src/cmd/stat/kstat/Makefile
749 "/usr/bin/kstat" should be rewritten in C
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
kstat
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 PROG = kstat
27 OBJS = kstat.o
28 SRCS =$(OBJS:%.o=%.c) $(COMMON_SRCS)

30 include $(SRC)/cmd/Makefile.cmd
31 include $(SRC)/cmd/stat/Makefile.stat

33 LDLIBS += -lavl -lcmdutils -ldevinfo -lgen -lkstat
34 CFLAGS += $(CCVERBOSE) -I${STATCOMMONDIR}
35 CERRWARN += -_gcc=-Wno-uninitialized
36 CERRWARN += -_gcc=-Wno-switch
37 CERRWARN += -_gcc=-Wno-parentheses
38 FILEMODE= 0555

40 lint := LINTFLAGS = -muxs -I$(STATCOMMONDIR)

42 .KEEP_STATE:

44 all: $(PROG)

46 install: all $(ROOTPROG)

48 $(PROG): $(OBJS) $(COMMON_OBJS)
49 $(LINK.c) -o $(PROG) $(OBJS) $(COMMON_OBJS) $(LDLIBS)
50 $(POST_PROCESS)

52 %.o : $(STATCOMMONDIR)/%.c
53 $(COMPILE.c) -o $@ $<
54 $(POST_PROCESS_O)

56 clean:
57 -$(RM) $(OBJS) $(COMMON_OBJS)

new/usr/src/cmd/stat/kstat/Makefile 2

59 lint: lint_SRCS

61 include $(SRC)/cmd/Makefile.targ
62 #endif /* ! codereview */

new/usr/src/cmd/stat/kstat/kstat.c 1

**
 34125 Wed Nov 28 23:08:58 2012
new/usr/src/cmd/stat/kstat/kstat.c
749 "/usr/bin/kstat" should be rewritten in C
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
kstat
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 David Hoeppner. All rights reserved.
25 */

27 /*
28 * Display kernel statistics
29 *
30 * This is a reimplementation of the perl kstat command originally found
31 * under usr/src/cmd/kstat/kstat.pl
32 *
33 * Incompatibilities:
34 * - perl regular expressions not longer supported
35 * - options checking is stricter
36 *
37 * Flags added:
38 * -C similar to the -p option but value is separated by a colon
39 * -h display help
40 * -j json format
41 */

43 #include <assert.h>
44 #include <ctype.h>
45 #include <errno.h>
46 #include <kstat.h>
47 #include <langinfo.h>
48 #include <libgen.h>
49 #include <limits.h>
50 #include <locale.h>
51 #include <signal.h>
52 #include <stddef.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <strings.h>
57 #include <time.h>
58 #include <unistd.h>

new/usr/src/cmd/stat/kstat/kstat.c 2

59 #include <sys/list.h>
60 #include <sys/time.h>
61 #include <sys/types.h>

63 #include "kstat.h"
64 #include "statcommon.h"

66 char *cmdname = "kstat"; /* Name of this command */
67 int caught_cont = 0; /* Have caught a SIGCONT */

69 static uint_t g_timestamp_fmt = NODATE;

71 /* Helper flag - header was printed already? */
72 static boolean_t g_headerflg;

74 /* Saved command line options */
75 static boolean_t g_cflg = B_FALSE;
76 static boolean_t g_jflg = B_FALSE;
77 static boolean_t g_lflg = B_FALSE;
78 static boolean_t g_pflg = B_FALSE;
79 static boolean_t g_qflg = B_FALSE;
80 static char *g_ks_class = "*";

82 /* Return zero if a selector did match */
83 static int g_matched = 1;

85 /* Sorted list of kstat instances */
86 static list_t instances_list;
87 static list_t selector_list;

89 int
90 main(int argc, char **argv)
91 {
92 ks_selector_t *nselector;
93 ks_selector_t *uselector;
94 kstat_ctl_t *kc;
95 hrtime_t start_n;
96 hrtime_t period_n;
97 boolean_t errflg = B_FALSE;
98 boolean_t nselflg = B_FALSE;
99 boolean_t uselflg = B_FALSE;
100 char *q;
101 int count = 1;
102 int infinite_cycles = 0;
103 int interval = 0;
104 int n = 0;
105 int c, m, tmp;

107 (void) setlocale(LC_ALL, "");
108 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
109 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it wasn’t */
110 #endif
111 (void) textdomain(TEXT_DOMAIN);

113 /*
114 * Create the selector list and a dummy default selector to match
115 * everything. While we process the cmdline options we will add
116 * selectors to this list.
117 */
118 list_create(&selector_list, sizeof (ks_selector_t),
119 offsetof(ks_selector_t, ks_next));

121 nselector = new_selector();

123 /*
124 * Parse named command line arguments.

new/usr/src/cmd/stat/kstat/kstat.c 3

125 */
126 while ((c = getopt(argc, argv, "h?CqjlpT:m:i:n:s:c:")) != EOF)
127 switch (c) {
128 case ’h’:
129 case ’?’:
130 usage();
131 exit(0);
132 break;
133 case ’C’:
134 g_pflg = g_cflg = B_TRUE;
135 break;
136 case ’q’:
137 g_qflg = B_TRUE;
138 break;
139 case ’j’:
140 g_jflg = B_TRUE;
141 break;
142 case ’l’:
143 g_pflg = g_lflg = B_TRUE;
144 break;
145 case ’p’:
146 g_pflg = B_TRUE;
147 break;
148 case ’T’:
149 switch (*optarg) {
150 case ’d’:
151 g_timestamp_fmt = DDATE;
152 break;
153 case ’u’:
154 g_timestamp_fmt = UDATE;
155 break;
156 default:
157 errflg = B_TRUE;
158 }
159 break;
160 case ’m’:
161 nselflg = B_TRUE;
162 nselector->ks_module =
163 (char *)safe_strdup(optarg);
164 break;
165 case ’i’:
166 nselflg = B_TRUE;
167 nselector->ks_instance =
168 (char *)safe_strdup(optarg);
169 break;
170 case ’n’:
171 nselflg = B_TRUE;
172 nselector->ks_name =
173 (char *)safe_strdup(optarg);
174 break;
175 case ’s’:
176 nselflg = B_TRUE;
177 nselector->ks_statistic =
178 (char *)safe_strdup(optarg);
179 break;
180 case ’c’:
181 g_ks_class =
182 (char *)safe_strdup(optarg);
183 break;
184 default:
185 errflg = B_TRUE;
186 break;
187 }

189 if (g_qflg && (g_jflg || g_pflg)) {
190 (void) fprintf(stderr, gettext(

new/usr/src/cmd/stat/kstat/kstat.c 4

191 "-q and -lpj are mutually exclusive\n"));
192 errflg = B_TRUE;
193 }

195 if (errflg) {
196 usage();
197 exit(2);
198 }

200 argc -= optind;
201 argv += optind;

203 /*
204 * Consume the rest of the command line. Parsing the
205 * unnamed command line arguments.
206 */
207 while (argc--) {
208 errno = 0;
209 tmp = strtoul(*argv, &q, 10);
210 if (tmp == ULONG_MAX && errno == ERANGE) {
211 if (n == 0) {
212 (void) fprintf(stderr, gettext(
213 "Interval is too large\n"));
214 } else if (n == 1) {
215 (void) fprintf(stderr, gettext(
216 "Count is too large\n"));
217 }
218 usage();
219 exit(2);
220 }

222 if (errno != 0 || *q != ’\0’) {
223 m = 0;
224 uselector = new_selector();
225 while ((q = (char *)strsep(argv, ":")) != NULL) {
226 m++;
227 if (m > 4) {
228 free(uselector);
229 usage();
230 exit(2);
231 }

233 if (*q != ’\0’) {
234 switch (m) {
235 case 1:
236 uselector->ks_module =
237 (char *)safe_strdup(q);
238 break;
239 case 2:
240 uselector->ks_instance =
241 (char *)safe_strdup(q);
242 break;
243 case 3:
244 uselector->ks_name =
245 (char *)safe_strdup(q);
246 break;
247 case 4:
248 uselector->ks_statistic =
249 (char *)safe_strdup(q);
250 break;
251 default:
252 assert(B_FALSE);
253 }
254 }
255 }

new/usr/src/cmd/stat/kstat/kstat.c 5

257 if (m < 4) {
258 free(uselector);
259 usage();
260 exit(2);
261 }

263 uselflg = B_TRUE;
264 list_insert_tail(&selector_list, uselector);
265 } else {
266 if (tmp < 1) {
267 if (n == 0) {
268 (void) fprintf(stderr, gettext(
269 "Interval must be an "
270 "integer >= 1"));
271 } else if (n == 1) {
272 (void) fprintf(stderr, gettext(
273 "Count must be an integer >= 1"));
274 }
275 usage();
276 exit(2);
277 } else {
278 if (n == 0) {
279 interval = tmp;
280 count = -1;
281 } else if (n == 1) {
282 count = tmp;
283 } else {
284 usage();
285 exit(2);
286 }
287 }
288 n++;
289 }
290 argv++;
291 }

293 /*
294 * Check if we founded a named selector on the cmdline.
295 */
296 if (uselflg) {
297 if (nselflg) {
298 (void) fprintf(stderr, gettext(
299 "module:instance:name:statistic and "
300 "-m -i -n -s are mutually exclusive"));
301 usage();
302 exit(2);
303 } else {
304 free(nselector);
305 }
306 } else {
307 list_insert_tail(&selector_list, nselector);
308 }

310 assert(!list_is_empty(&selector_list));

312 list_create(&instances_list, sizeof (ks_instance_t),
313 offsetof(ks_instance_t, ks_next));

315 kc = kstat_open();
316 if (kc == NULL) {
317 perror("kstat_open");
318 exit(3);
319 }

321 if (count > 1) {
322 if (signal(SIGCONT, cont_handler) == SIG_ERR) {

new/usr/src/cmd/stat/kstat/kstat.c 6

323 (void) fprintf(stderr, gettext(
324 "signal failed"));
325 exit(3);
326 }
327 }

329 period_n = (hrtime_t)interval * NANOSEC;
330 start_n = gethrtime();

332 while (count == -1 || count-- > 0) {
333 ks_instances_read(kc);
334 ks_instances_print();

336 if (interval && count) {
337 sleep_until(&start_n, period_n, infinite_cycles,
338 &caught_cont);
339 (void) kstat_chain_update(kc);
340 (void) putchar(’\n’);
341 }
342 }

344 (void) kstat_close(kc);

346 return (g_matched);
347 }

349 /*
350 * Print usage.
351 */
352 static void
353 usage(void)
354 {
355 (void) fprintf(stderr, gettext(
356 "Usage:\n"
357 "kstat [-Cjlpq] [-T d|u] [-c class]\n"
358 " [-m module] [-i instance] [-n name] [-s statistic]\n"
359 " [interval [count]]\n"
360 "kstat [-Cjlpq] [-T d|u] [-c class]\n"
361 " [module:instance:name:statistic ...]\n"
362 " [interval [count]]\n"));
363 }

365 /*
366 * Sort compare function.
367 */
368 static int
369 compare_instances(ks_instance_t *l_arg, ks_instance_t *r_arg)
370 {
371 int rval;

373 rval = strcasecmp(l_arg->ks_module, r_arg->ks_module);
374 if (rval == 0) {
375 if (l_arg->ks_instance == r_arg->ks_instance) {
376 return (strcasecmp(l_arg->ks_name, r_arg->ks_name));
377 } else if (l_arg->ks_instance < r_arg->ks_instance) {
378 return (-1);
379 } else {
380 return (1);
381 }
382 } else {
383 return (rval);
384 }
385 }

387 /*
388 * Inserts an instance in the per selector list.

new/usr/src/cmd/stat/kstat/kstat.c 7

389 */
390 static void
391 nvpair_insert(ks_instance_t *ksi, char *name, ks_value_t *value,
392 uchar_t data_type)
393 {
394 ks_nvpair_t *instance;
395 ks_nvpair_t *tmp;

397 instance = (ks_nvpair_t *)malloc(sizeof (ks_nvpair_t));
398 if (instance == NULL) {
399 perror("malloc");
400 exit(3);
401 }

403 (void) strlcpy(instance->name, name, KSTAT_STRLEN);
404 (void) memcpy(&instance->value, value, sizeof (ks_value_t));
405 instance->data_type = data_type;

407 tmp = list_head(&ksi->ks_nvlist);
408 while (tmp != NULL && strcasecmp(instance->name, tmp->name) > 0)
409 tmp = list_next(&ksi->ks_nvlist, tmp);

411 list_insert_before(&ksi->ks_nvlist, tmp, instance);
412 }

414 /*
415 * Allocates a new all-matching selector.
416 */
417 static ks_selector_t *
418 new_selector(void)
419 {
420 ks_selector_t *selector;

422 selector = (ks_selector_t *)malloc(sizeof (ks_selector_t));
423 if (selector == NULL) {
424 perror("malloc");
425 exit(3);
426 }

428 list_link_init(&selector->ks_next);

430 selector->ks_module = "*";
431 selector->ks_instance = "*";
432 selector->ks_name = "*";
433 selector->ks_statistic = "*";

435 return (selector);
436 }

438 /*
439 * This function was taken from the perl kstat module code - please
440 * see for further comments there.
441 */
442 static kstat_raw_reader_t
443 lookup_raw_kstat_fn(char *module, char *name)
444 {
445 char key[KSTAT_STRLEN * 2];
446 register char *f, *t;
447 int n = 0;

449 for (f = module, t = key; *f != ’\0’; f++, t++) {
450 while (*f != ’\0’ && isdigit(*f))
451 f++;
452 *t = *f;
453 }
454 *t++ = ’:’;

new/usr/src/cmd/stat/kstat/kstat.c 8

456 for (f = name; *f != ’\0’; f++, t++) {
457 while (*f != ’\0’ && isdigit(*f))
458 f++;
459 *t = *f;
460 }
461 *t = ’\0’;

463 while (ks_raw_lookup[n].fn != NULL) {
464 if (strncmp(ks_raw_lookup[n].name, key, strlen(key)) == 0)
465 return (ks_raw_lookup[n].fn);
466 n++;
467 }

469 return (0);
470 }

472 /*
473 * Iterate over all kernel statistics and save matches.
474 */
475 static void
476 ks_instances_read(kstat_ctl_t *kc)
477 {
478 kstat_raw_reader_t save_raw = NULL;
479 kid_t id;
480 ks_selector_t *selector;
481 ks_instance_t *ksi;
482 ks_instance_t *tmp;
483 kstat_t *kp;
484 boolean_t skip;
485 char *ks_number;

487 for (kp = kc->kc_chain; kp != NULL; kp = kp->ks_next) {
488 /* Don’t bother storing the kstat headers */
489 if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
490 continue;
491 }

493 /* Don’t bother storing raw stats we don’t understand */
494 if (kp->ks_type == KSTAT_TYPE_RAW) {
495 save_raw = lookup_raw_kstat_fn(kp->ks_module,
496 kp->ks_name);
497 if (save_raw == NULL) {
498 #ifdef REPORT_UNKNOWN
499 (void) fprintf(stderr,
500 "Unknown kstat type %s:%d:%s - "
501 "%d of size %d\n", kp->ks_module,
502 kp->ks_instance, kp->ks_name,
503 kp->ks_ndata, kp->ks_data_size);
504 #endif
505 continue;
506 }
507 }

509 /*
510 * Iterate over the list of selectors and skip
511 * instances we dont want. We filter for statistics
512 * later, as we dont know them yet.
513 */
514 skip = B_FALSE;
515 (void) asprintf(&ks_number, "%d", kp->ks_instance);
516 selector = list_head(&selector_list);
517 while (selector != NULL) {
518 if (!(gmatch(kp->ks_module, selector->ks_module) != 0 &&
519 gmatch(ks_number, selector->ks_instance) != 0 &&
520 gmatch(kp->ks_name, selector->ks_name) != 0 &&

new/usr/src/cmd/stat/kstat/kstat.c 9

521 gmatch(kp->ks_class, g_ks_class))) {
522 skip = B_TRUE;
523 }
524 selector = list_next(&selector_list, selector);
525 }

527 free(ks_number);

529 if (skip) {
530 continue;
531 }

533 /*
534 * Allocate a new instance and fill in the values
535 * we know so far.
536 */
537 ksi = (ks_instance_t *)malloc(sizeof (ks_instance_t));
538 if (ksi == NULL) {
539 perror("malloc");
540 exit(3);
541 }

543 list_link_init(&ksi->ks_next);

545 (void) strlcpy(ksi->ks_module, kp->ks_module, KSTAT_STRLEN);
546 (void) strlcpy(ksi->ks_name, kp->ks_name, KSTAT_STRLEN);
547 (void) strlcpy(ksi->ks_class, kp->ks_class, KSTAT_STRLEN);

549 ksi->ks_instance = kp->ks_instance;
550 ksi->ks_snaptime = kp->ks_snaptime;
551 ksi->ks_type = kp->ks_type;

553 list_create(&ksi->ks_nvlist, sizeof (ks_nvpair_t),
554 offsetof(ks_nvpair_t, nv_next));

556 SAVE_HRTIME_X(ksi, "crtime", kp->ks_crtime);
557 SAVE_HRTIME_X(ksi, "snaptime", kp->ks_snaptime);
558 if (g_pflg) {
559 SAVE_STRING_X(ksi, "class", kp->ks_class);
560 }

562 /* Insert this instance into a sorted list */
563 tmp = list_head(&instances_list);
564 while (tmp != NULL && compare_instances(ksi, tmp) > 0)
565 tmp = list_next(&instances_list, tmp);

567 list_insert_before(&instances_list, tmp, ksi);

569 /* Read the actual statistics */
570 id = kstat_read(kc, kp, NULL);
571 if (id == -1) {
572 perror("kstat_read");
573 continue;
574 }

576 switch (kp->ks_type) {
577 case KSTAT_TYPE_RAW:
578 save_raw(kp, ksi);
579 break;
580 case KSTAT_TYPE_NAMED:
581 save_named(kp, ksi);
582 break;
583 case KSTAT_TYPE_INTR:
584 save_intr(kp, ksi);
585 break;
586 case KSTAT_TYPE_IO:

new/usr/src/cmd/stat/kstat/kstat.c 10

587 save_io(kp, ksi);
588 break;
589 case KSTAT_TYPE_TIMER:
590 save_timer(kp, ksi);
591 break;
592 default:
593 assert(B_FALSE); /* Invalid type */
594 break;
595 }
596 }
597 }

599 /*
600 * Print the value of a name-value pair.
601 */
602 static void
603 ks_value_print(ks_nvpair_t *nvpair)
604 {
605 switch (nvpair->data_type) {
606 case KSTAT_DATA_CHAR:
607 (void) fprintf(stdout, "%s", nvpair->value.c);
608 break;
609 case KSTAT_DATA_INT32:
610 (void) fprintf(stdout, "%d", nvpair->value.i32);
611 break;
612 case KSTAT_DATA_UINT32:
613 (void) fprintf(stdout, "%u", nvpair->value.ui32);
614 break;
615 case KSTAT_DATA_INT64:
616 (void) fprintf(stdout, "%lld", nvpair->value.i64);
617 break;
618 case KSTAT_DATA_UINT64:
619 (void) fprintf(stdout, "%llu", nvpair->value.ui64);
620 break;
621 case KSTAT_DATA_STRING:
622 (void) fprintf(stdout, "%s", KSTAT_NAMED_STR_PTR(nvpair));
623 break;
624 case KSTAT_DATA_HRTIME:
625 if (nvpair->value.ui64 == 0)
626 (void) fprintf(stdout, "0");
627 else
628 (void) fprintf(stdout, "%.9f",
629 nvpair->value.ui64 / 1000000000.0);
630 break;
631 default:
632 assert(B_FALSE);
633 }
634 }

636 /*
637 * Print a single instance.
638 */
639 static void
640 ks_instance_print(ks_instance_t *ksi, ks_nvpair_t *nvpair)
641 {
642 if (g_headerflg) {
643 if (!g_pflg) {
644 (void) fprintf(stdout, DFLT_FMT,
645 ksi->ks_module, ksi->ks_instance,
646 ksi->ks_name, ksi->ks_class);
647 }
648 g_headerflg = B_FALSE;
649 }

651 if (g_pflg) {
652 (void) fprintf(stdout, KS_PFMT,

new/usr/src/cmd/stat/kstat/kstat.c 11

653 ksi->ks_module, ksi->ks_instance,
654 ksi->ks_name, nvpair->name);
655 if (!g_lflg) {
656 (void) putchar(g_cflg ? ’:’: ’\t’);
657 ks_value_print(nvpair);
658 }
659 } else {
660 (void) fprintf(stdout, KS_DFMT, nvpair->name);
661 ks_value_print(nvpair);
662 }

664 (void) putchar(’\n’);
665 }

667 /*
668 * Print a single instance in JSON format.
669 */
670 static void
671 ks_instance_print_json(ks_instance_t *ksi, ks_nvpair_t *nvpair)
672 {
673 if (g_headerflg) {
674 (void) fprintf(stdout, JSON_FMT,
675 ksi->ks_module, ksi->ks_instance,
676 ksi->ks_name, ksi->ks_class,
677 ksi->ks_type);

679 if (ksi->ks_snaptime == 0)
680 (void) fprintf(stdout, "\t\"snaptime\": 0,\n");
681 else
682 (void) fprintf(stdout, "\t\"snaptime\": %.9f,\n",
683 ksi->ks_snaptime / 1000000000.0);

685 (void) fprintf(stdout, "\t\"data\": {\n");

687 g_headerflg = B_FALSE;
688 }

690 (void) fprintf(stdout, KS_JFMT, nvpair->name);
691 if (nvpair->data_type == KSTAT_DATA_STRING) {
692 (void) putchar(’\"’);
693 ks_value_print(nvpair);
694 (void) putchar(’\"’);
695 } else {
696 ks_value_print(nvpair);
697 }
698 if (nvpair != list_tail(&ksi->ks_nvlist))
699 (void) putchar(’,’);

701 (void) putchar(’\n’);
702 }

704 /*
705 * Print all instances.
706 */
707 static void
708 ks_instances_print(void)
709 {
710 ks_selector_t *selector;
711 ks_instance_t *ksi, *ktmp;
712 ks_nvpair_t *nvpair, *ntmp;
713 void (*ks_print_fn)(ks_instance_t *, ks_nvpair_t *);

715 if (g_timestamp_fmt != NODATE)
716 print_timestamp(g_timestamp_fmt);

718 if (g_jflg) {

new/usr/src/cmd/stat/kstat/kstat.c 12

719 ks_print_fn = &ks_instance_print_json;
720 (void) putchar(’[’);
721 } else {
722 ks_print_fn = &ks_instance_print;
723 }

725 /* Iterate over each selector */
726 selector = list_head(&selector_list);
727 while (selector != NULL) {

729 /* Iterate over each instance */
730 for (ksi = list_head(&instances_list); ksi != NULL;
731 ksi = list_next(&instances_list, ksi)) {

733 /* Finally iterate over each statistic */
734 g_headerflg = B_TRUE;
735 for (nvpair = list_head(&ksi->ks_nvlist);
736 nvpair != NULL;
737 nvpair = list_next(&ksi->ks_nvlist, nvpair)) {
738 if (gmatch(nvpair->name,
739 selector->ks_statistic) == 0)
740 continue;

742 g_matched = 0;
743 if (!g_qflg)
744 (*ks_print_fn)(ksi, nvpair);
745 }

747 if (!g_headerflg) {
748 if (g_jflg) {
749 (void) fprintf(stdout, "\t}\n}");
750 if (ksi != list_tail(&instances_list))
751 (void) putchar(’,’);
752 } else if (!g_pflg) {
753 (void) putchar(’\n’);
754 }
755 }
756 }

758 selector = list_next(&selector_list, selector);
759 }

761 if (g_jflg)
762 (void) fprintf(stdout, "]\n");

764 (void) fflush(stdout);

766 /* Free the instances list */
767 ksi = list_head(&instances_list);
768 while (ksi != NULL) {
769 nvpair = list_head(&ksi->ks_nvlist);
770 while (nvpair != NULL) {
771 ntmp = nvpair;
772 nvpair = list_next(&ksi->ks_nvlist, nvpair);
773 list_remove(&ksi->ks_nvlist, ntmp);
774 if (ntmp->data_type == KSTAT_DATA_STRING)
775 free(ntmp->value.str.addr.ptr);
776 free(ntmp);
777 }

779 ktmp = ksi;
780 ksi = list_next(&instances_list, ksi);
781 list_remove(&instances_list, ktmp);
782 list_destroy(&ktmp->ks_nvlist);
783 free(ktmp);
784 }

new/usr/src/cmd/stat/kstat/kstat.c 13

785 }

787 static void
788 save_cpu_stat(kstat_t *kp, ks_instance_t *ksi)
789 {
790 cpu_stat_t *stat;
791 cpu_sysinfo_t *sysinfo;
792 cpu_syswait_t *syswait;
793 cpu_vminfo_t *vminfo;

795 stat = (cpu_stat_t *)(kp->ks_data);
796 sysinfo = &stat->cpu_sysinfo;
797 syswait = &stat->cpu_syswait;
798 vminfo = &stat->cpu_vminfo;

800 SAVE_UINT32_X(ksi, "idle", sysinfo->cpu[CPU_IDLE]);
801 SAVE_UINT32_X(ksi, "user", sysinfo->cpu[CPU_USER]);
802 SAVE_UINT32_X(ksi, "kernel", sysinfo->cpu[CPU_KERNEL]);
803 SAVE_UINT32_X(ksi, "wait", sysinfo->cpu[CPU_WAIT]);
804 SAVE_UINT32_X(ksi, "wait_io", sysinfo->cpu[W_IO]);
805 SAVE_UINT32_X(ksi, "wait_swap", sysinfo->cpu[W_SWAP]);
806 SAVE_UINT32_X(ksi, "wait_pio", sysinfo->cpu[W_PIO]);
807 SAVE_UINT32(ksi, sysinfo, bread);
808 SAVE_UINT32(ksi, sysinfo, bwrite);
809 SAVE_UINT32(ksi, sysinfo, lread);
810 SAVE_UINT32(ksi, sysinfo, lwrite);
811 SAVE_UINT32(ksi, sysinfo, phread);
812 SAVE_UINT32(ksi, sysinfo, phwrite);
813 SAVE_UINT32(ksi, sysinfo, pswitch);
814 SAVE_UINT32(ksi, sysinfo, trap);
815 SAVE_UINT32(ksi, sysinfo, intr);
816 SAVE_UINT32(ksi, sysinfo, syscall);
817 SAVE_UINT32(ksi, sysinfo, sysread);
818 SAVE_UINT32(ksi, sysinfo, syswrite);
819 SAVE_UINT32(ksi, sysinfo, sysfork);
820 SAVE_UINT32(ksi, sysinfo, sysvfork);
821 SAVE_UINT32(ksi, sysinfo, sysexec);
822 SAVE_UINT32(ksi, sysinfo, readch);
823 SAVE_UINT32(ksi, sysinfo, writech);
824 SAVE_UINT32(ksi, sysinfo, rcvint);
825 SAVE_UINT32(ksi, sysinfo, xmtint);
826 SAVE_UINT32(ksi, sysinfo, mdmint);
827 SAVE_UINT32(ksi, sysinfo, rawch);
828 SAVE_UINT32(ksi, sysinfo, canch);
829 SAVE_UINT32(ksi, sysinfo, outch);
830 SAVE_UINT32(ksi, sysinfo, msg);
831 SAVE_UINT32(ksi, sysinfo, sema);
832 SAVE_UINT32(ksi, sysinfo, namei);
833 SAVE_UINT32(ksi, sysinfo, ufsiget);
834 SAVE_UINT32(ksi, sysinfo, ufsdirblk);
835 SAVE_UINT32(ksi, sysinfo, ufsipage);
836 SAVE_UINT32(ksi, sysinfo, ufsinopage);
837 SAVE_UINT32(ksi, sysinfo, inodeovf);
838 SAVE_UINT32(ksi, sysinfo, fileovf);
839 SAVE_UINT32(ksi, sysinfo, procovf);
840 SAVE_UINT32(ksi, sysinfo, intrthread);
841 SAVE_UINT32(ksi, sysinfo, intrblk);
842 SAVE_UINT32(ksi, sysinfo, idlethread);
843 SAVE_UINT32(ksi, sysinfo, inv_swtch);
844 SAVE_UINT32(ksi, sysinfo, nthreads);
845 SAVE_UINT32(ksi, sysinfo, cpumigrate);
846 SAVE_UINT32(ksi, sysinfo, xcalls);
847 SAVE_UINT32(ksi, sysinfo, mutex_adenters);
848 SAVE_UINT32(ksi, sysinfo, rw_rdfails);
849 SAVE_UINT32(ksi, sysinfo, rw_wrfails);
850 SAVE_UINT32(ksi, sysinfo, modload);

new/usr/src/cmd/stat/kstat/kstat.c 14

851 SAVE_UINT32(ksi, sysinfo, modunload);
852 SAVE_UINT32(ksi, sysinfo, bawrite);
853 #ifdef STATISTICS /* see header file */
854 SAVE_UINT32(ksi, sysinfo, rw_enters);
855 SAVE_UINT32(ksi, sysinfo, win_uo_cnt);
856 SAVE_UINT32(ksi, sysinfo, win_uu_cnt);
857 SAVE_UINT32(ksi, sysinfo, win_so_cnt);
858 SAVE_UINT32(ksi, sysinfo, win_su_cnt);
859 SAVE_UINT32(ksi, sysinfo, win_suo_cnt);
860 #endif

862 SAVE_INT32(ksi, syswait, iowait);
863 SAVE_INT32(ksi, syswait, swap);
864 SAVE_INT32(ksi, syswait, physio);

866 SAVE_UINT32(ksi, vminfo, pgrec);
867 SAVE_UINT32(ksi, vminfo, pgfrec);
868 SAVE_UINT32(ksi, vminfo, pgin);
869 SAVE_UINT32(ksi, vminfo, pgpgin);
870 SAVE_UINT32(ksi, vminfo, pgout);
871 SAVE_UINT32(ksi, vminfo, pgpgout);
872 SAVE_UINT32(ksi, vminfo, swapin);
873 SAVE_UINT32(ksi, vminfo, pgswapin);
874 SAVE_UINT32(ksi, vminfo, swapout);
875 SAVE_UINT32(ksi, vminfo, pgswapout);
876 SAVE_UINT32(ksi, vminfo, zfod);
877 SAVE_UINT32(ksi, vminfo, dfree);
878 SAVE_UINT32(ksi, vminfo, scan);
879 SAVE_UINT32(ksi, vminfo, rev);
880 SAVE_UINT32(ksi, vminfo, hat_fault);
881 SAVE_UINT32(ksi, vminfo, as_fault);
882 SAVE_UINT32(ksi, vminfo, maj_fault);
883 SAVE_UINT32(ksi, vminfo, cow_fault);
884 SAVE_UINT32(ksi, vminfo, prot_fault);
885 SAVE_UINT32(ksi, vminfo, softlock);
886 SAVE_UINT32(ksi, vminfo, kernel_asflt);
887 SAVE_UINT32(ksi, vminfo, pgrrun);
888 SAVE_UINT32(ksi, vminfo, execpgin);
889 SAVE_UINT32(ksi, vminfo, execpgout);
890 SAVE_UINT32(ksi, vminfo, execfree);
891 SAVE_UINT32(ksi, vminfo, anonpgin);
892 SAVE_UINT32(ksi, vminfo, anonpgout);
893 SAVE_UINT32(ksi, vminfo, anonfree);
894 SAVE_UINT32(ksi, vminfo, fspgin);
895 SAVE_UINT32(ksi, vminfo, fspgout);
896 SAVE_UINT32(ksi, vminfo, fsfree);
897 }

899 static void
900 save_var(kstat_t *kp, ks_instance_t *ksi)
901 {
902 struct var *var = (struct var *)(kp->ks_data);

904 assert(kp->ks_data_size == sizeof (struct var));

906 SAVE_INT32(ksi, var, v_buf);
907 SAVE_INT32(ksi, var, v_call);
908 SAVE_INT32(ksi, var, v_proc);
909 SAVE_INT32(ksi, var, v_maxupttl);
910 SAVE_INT32(ksi, var, v_nglobpris);
911 SAVE_INT32(ksi, var, v_maxsyspri);
912 SAVE_INT32(ksi, var, v_clist);
913 SAVE_INT32(ksi, var, v_maxup);
914 SAVE_INT32(ksi, var, v_hbuf);
915 SAVE_INT32(ksi, var, v_hmask);
916 SAVE_INT32(ksi, var, v_pbuf);

new/usr/src/cmd/stat/kstat/kstat.c 15

917 SAVE_INT32(ksi, var, v_sptmap);
918 SAVE_INT32(ksi, var, v_maxpmem);
919 SAVE_INT32(ksi, var, v_autoup);
920 SAVE_INT32(ksi, var, v_bufhwm);
921 }

923 static void
924 save_ncstats(kstat_t *kp, ks_instance_t *ksi)
925 {
926 struct ncstats *ncstats = (struct ncstats *)(kp->ks_data);

928 assert(kp->ks_data_size == sizeof (struct ncstats));

930 SAVE_INT32(ksi, ncstats, hits);
931 SAVE_INT32(ksi, ncstats, misses);
932 SAVE_INT32(ksi, ncstats, enters);
933 SAVE_INT32(ksi, ncstats, dbl_enters);
934 SAVE_INT32(ksi, ncstats, long_enter);
935 SAVE_INT32(ksi, ncstats, long_look);
936 SAVE_INT32(ksi, ncstats, move_to_front);
937 SAVE_INT32(ksi, ncstats, purges);
938 }

940 static void
941 save_sysinfo(kstat_t *kp, ks_instance_t *ksi)
942 {
943 sysinfo_t *sysinfo = (sysinfo_t *)(kp->ks_data);

945 assert(kp->ks_data_size == sizeof (sysinfo_t));

947 SAVE_UINT32(ksi, sysinfo, updates);
948 SAVE_UINT32(ksi, sysinfo, runque);
949 SAVE_UINT32(ksi, sysinfo, runocc);
950 SAVE_UINT32(ksi, sysinfo, swpque);
951 SAVE_UINT32(ksi, sysinfo, swpocc);
952 SAVE_UINT32(ksi, sysinfo, waiting);
953 }

955 static void
956 save_vminfo(kstat_t *kp, ks_instance_t *ksi)
957 {
958 vminfo_t *vminfo = (vminfo_t *)(kp->ks_data);

960 assert(kp->ks_data_size == sizeof (vminfo_t));

962 SAVE_UINT64(ksi, vminfo, freemem);
963 SAVE_UINT64(ksi, vminfo, swap_resv);
964 SAVE_UINT64(ksi, vminfo, swap_alloc);
965 SAVE_UINT64(ksi, vminfo, swap_avail);
966 SAVE_UINT64(ksi, vminfo, swap_free);
967 SAVE_UINT64(ksi, vminfo, updates);
968 }

970 static void
971 save_nfs(kstat_t *kp, ks_instance_t *ksi)
972 {
973 struct mntinfo_kstat *mntinfo = (struct mntinfo_kstat *)(kp->ks_data);

975 assert(kp->ks_data_size == sizeof (struct mntinfo_kstat));

977 SAVE_STRING(ksi, mntinfo, mik_proto);
978 SAVE_UINT32(ksi, mntinfo, mik_vers);
979 SAVE_UINT32(ksi, mntinfo, mik_flags);
980 SAVE_UINT32(ksi, mntinfo, mik_secmod);
981 SAVE_UINT32(ksi, mntinfo, mik_curread);
982 SAVE_UINT32(ksi, mntinfo, mik_curwrite);

new/usr/src/cmd/stat/kstat/kstat.c 16

983 SAVE_INT32(ksi, mntinfo, mik_timeo);
984 SAVE_INT32(ksi, mntinfo, mik_retrans);
985 SAVE_UINT32(ksi, mntinfo, mik_acregmin);
986 SAVE_UINT32(ksi, mntinfo, mik_acregmax);
987 SAVE_UINT32(ksi, mntinfo, mik_acdirmin);
988 SAVE_UINT32(ksi, mntinfo, mik_acdirmax);
989 SAVE_UINT32_X(ksi, "lookup_srtt", mntinfo->mik_timers[0].srtt);
990 SAVE_UINT32_X(ksi, "lookup_deviate", mntinfo->mik_timers[0].deviate);
991 SAVE_UINT32_X(ksi, "lookup_rtxcur", mntinfo->mik_timers[0].rtxcur);
992 SAVE_UINT32_X(ksi, "read_srtt", mntinfo->mik_timers[1].srtt);
993 SAVE_UINT32_X(ksi, "read_deviate", mntinfo->mik_timers[1].deviate);
994 SAVE_UINT32_X(ksi, "read_rtxcur", mntinfo->mik_timers[1].rtxcur);
995 SAVE_UINT32_X(ksi, "write_srtt", mntinfo->mik_timers[2].srtt);
996 SAVE_UINT32_X(ksi, "write_deviate", mntinfo->mik_timers[2].deviate);
997 SAVE_UINT32_X(ksi, "write_rtxcur", mntinfo->mik_timers[2].rtxcur);
998 SAVE_UINT32(ksi, mntinfo, mik_noresponse);
999 SAVE_UINT32(ksi, mntinfo, mik_failover);

1000 SAVE_UINT32(ksi, mntinfo, mik_remap);
1001 SAVE_STRING(ksi, mntinfo, mik_curserver);
1002 }

1004 #ifdef __sparc
1005 static void
1006 save_sfmmu_global_stat(kstat_t *kp, ks_instance_t *ksi)
1007 {
1008 struct sfmmu_global_stat *sfmmug =
1009 (struct sfmmu_global_stat *)(kp->ks_data);

1011 assert(kp->ks_data_size == sizeof (struct sfmmu_global_stat));

1013 SAVE_INT32(ksi, sfmmug, sf_tsb_exceptions);
1014 SAVE_INT32(ksi, sfmmug, sf_tsb_raise_exception);
1015 SAVE_INT32(ksi, sfmmug, sf_pagefaults);
1016 SAVE_INT32(ksi, sfmmug, sf_uhash_searches);
1017 SAVE_INT32(ksi, sfmmug, sf_uhash_links);
1018 SAVE_INT32(ksi, sfmmug, sf_khash_searches);
1019 SAVE_INT32(ksi, sfmmug, sf_khash_links);
1020 SAVE_INT32(ksi, sfmmug, sf_swapout);
1021 SAVE_INT32(ksi, sfmmug, sf_tsb_alloc);
1022 SAVE_INT32(ksi, sfmmug, sf_tsb_allocfail);
1023 SAVE_INT32(ksi, sfmmug, sf_tsb_sectsb_create);
1024 SAVE_INT32(ksi, sfmmug, sf_scd_1sttsb_alloc);
1025 SAVE_INT32(ksi, sfmmug, sf_scd_2ndtsb_alloc);
1026 SAVE_INT32(ksi, sfmmug, sf_scd_1sttsb_allocfail);
1027 SAVE_INT32(ksi, sfmmug, sf_scd_2ndtsb_allocfail);
1028 SAVE_INT32(ksi, sfmmug, sf_tteload8k);
1029 SAVE_INT32(ksi, sfmmug, sf_tteload64k);
1030 SAVE_INT32(ksi, sfmmug, sf_tteload512k);
1031 SAVE_INT32(ksi, sfmmug, sf_tteload4m);
1032 SAVE_INT32(ksi, sfmmug, sf_tteload32m);
1033 SAVE_INT32(ksi, sfmmug, sf_tteload256m);
1034 SAVE_INT32(ksi, sfmmug, sf_tsb_load8k);
1035 SAVE_INT32(ksi, sfmmug, sf_tsb_load4m);
1036 SAVE_INT32(ksi, sfmmug, sf_hblk_hit);
1037 SAVE_INT32(ksi, sfmmug, sf_hblk8_ncreate);
1038 SAVE_INT32(ksi, sfmmug, sf_hblk8_nalloc);
1039 SAVE_INT32(ksi, sfmmug, sf_hblk1_ncreate);
1040 SAVE_INT32(ksi, sfmmug, sf_hblk1_nalloc);
1041 SAVE_INT32(ksi, sfmmug, sf_hblk_slab_cnt);
1042 SAVE_INT32(ksi, sfmmug, sf_hblk_reserve_cnt);
1043 SAVE_INT32(ksi, sfmmug, sf_hblk_recurse_cnt);
1044 SAVE_INT32(ksi, sfmmug, sf_hblk_reserve_hit);
1045 SAVE_INT32(ksi, sfmmug, sf_get_free_success);
1046 SAVE_INT32(ksi, sfmmug, sf_get_free_throttle);
1047 SAVE_INT32(ksi, sfmmug, sf_get_free_fail);
1048 SAVE_INT32(ksi, sfmmug, sf_put_free_success);

new/usr/src/cmd/stat/kstat/kstat.c 17

1049 SAVE_INT32(ksi, sfmmug, sf_put_free_fail);
1050 SAVE_INT32(ksi, sfmmug, sf_pgcolor_conflict);
1051 SAVE_INT32(ksi, sfmmug, sf_uncache_conflict);
1052 SAVE_INT32(ksi, sfmmug, sf_unload_conflict);
1053 SAVE_INT32(ksi, sfmmug, sf_ism_uncache);
1054 SAVE_INT32(ksi, sfmmug, sf_ism_recache);
1055 SAVE_INT32(ksi, sfmmug, sf_recache);
1056 SAVE_INT32(ksi, sfmmug, sf_steal_count);
1057 SAVE_INT32(ksi, sfmmug, sf_pagesync);
1058 SAVE_INT32(ksi, sfmmug, sf_clrwrt);
1059 SAVE_INT32(ksi, sfmmug, sf_pagesync_invalid);
1060 SAVE_INT32(ksi, sfmmug, sf_kernel_xcalls);
1061 SAVE_INT32(ksi, sfmmug, sf_user_xcalls);
1062 SAVE_INT32(ksi, sfmmug, sf_tsb_grow);
1063 SAVE_INT32(ksi, sfmmug, sf_tsb_shrink);
1064 SAVE_INT32(ksi, sfmmug, sf_tsb_resize_failures);
1065 SAVE_INT32(ksi, sfmmug, sf_tsb_reloc);
1066 SAVE_INT32(ksi, sfmmug, sf_user_vtop);
1067 SAVE_INT32(ksi, sfmmug, sf_ctx_inv);
1068 SAVE_INT32(ksi, sfmmug, sf_tlb_reprog_pgsz);
1069 SAVE_INT32(ksi, sfmmug, sf_region_remap_demap);
1070 SAVE_INT32(ksi, sfmmug, sf_create_scd);
1071 SAVE_INT32(ksi, sfmmug, sf_join_scd);
1072 SAVE_INT32(ksi, sfmmug, sf_leave_scd);
1073 SAVE_INT32(ksi, sfmmug, sf_destroy_scd);
1074 }
1075 #endif

1077 #ifdef __sparc
1078 static void
1079 save_sfmmu_tsbsize_stat(kstat_t *kp, ks_instance_t *ksi)
1080 {
1081 struct sfmmu_tsbsize_stat *sfmmut;

1083 assert(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat));
1084 sfmmut = (struct sfmmu_tsbsize_stat *)(kp->ks_data);

1086 SAVE_INT32(ksi, sfmmut, sf_tsbsz_8k);
1087 SAVE_INT32(ksi, sfmmut, sf_tsbsz_16k);
1088 SAVE_INT32(ksi, sfmmut, sf_tsbsz_32k);
1089 SAVE_INT32(ksi, sfmmut, sf_tsbsz_64k);
1090 SAVE_INT32(ksi, sfmmut, sf_tsbsz_128k);
1091 SAVE_INT32(ksi, sfmmut, sf_tsbsz_256k);
1092 SAVE_INT32(ksi, sfmmut, sf_tsbsz_512k);
1093 SAVE_INT32(ksi, sfmmut, sf_tsbsz_1m);
1094 SAVE_INT32(ksi, sfmmut, sf_tsbsz_2m);
1095 SAVE_INT32(ksi, sfmmut, sf_tsbsz_4m);
1096 }
1097 #endif

1099 #ifdef __sparc
1100 static void
1101 save_simmstat(kstat_t *kp, ks_instance_t *ksi)
1102 {
1103 uchar_t *simmstat;
1104 char *simm_buf;
1105 char *list = NULL;
1106 int i;

1108 assert(kp->ks_data_size == sizeof (uchar_t) * SIMM_COUNT);

1110 for (i = 0, simmstat = (uchar_t *)(kp->ks_data); i < SIMM_COUNT - 1;
1111 i++, simmstat++) {
1112 if (list == NULL) {
1113 (void) asprintf(&simm_buf, "%d,", *simmstat);
1114 } else {

new/usr/src/cmd/stat/kstat/kstat.c 18

1115 (void) asprintf(&simm_buf, "%s%d,", list, *simmstat);
1116 free(list);
1117 }
1118 list = simm_buf;
1119 }

1121 (void) asprintf(&simm_buf, "%s%d", list, *simmstat);
1122 SAVE_STRING_X(ksi, "status", simm_buf);
1123 free(list);
1124 free(simm_buf);
1125 }
1126 #endif

1128 #ifdef __sparc
1129 /*
1130 * Helper function for save_temperature().
1131 */
1132 static char *
1133 short_array_to_string(short *shortp, int len)
1134 {
1135 char *list = NULL;
1136 char *list_buf;

1138 for (; len > 1; len--, shortp++) {
1139 if (list == NULL) {
1140 (void) asprintf(&list_buf, "%d,", *shortp);
1141 } else {
1142 (void) asprintf(&list_buf, "%s%d,", list, *shortp);
1143 free(list);
1144 }
1145 list = list_buf;
1146 }

1148 (void) asprintf(&list_buf, "%s%s", list, *shortp);
1149 free(list);
1150 return (list_buf);
1151 }

1153 static void
1154 save_temperature(kstat_t *kp, ks_instance_t *ksi)
1155 {
1156 struct temp_stats *temps = (struct temp_stats *)(kp->ks_data);
1157 char *buf;
1158 int n = 1;

1160 assert(kp->ks_data_size == sizeof (struct temp_stats));

1162 SAVE_UINT32(ksi, temps, index);

1164 buf = short_array_to_string(temps->l1, L1_SZ);
1165 SAVE_STRING_X(ksi, "l1", buf);
1166 free(buf);

1168 buf = short_array_to_string(temps->l2, L2_SZ);
1169 SAVE_STRING_X(ksi, "l2", buf);
1170 free(buf);

1172 buf = short_array_to_string(temps->l3, L3_SZ);
1173 SAVE_STRING_X(ksi, "l3", buf);
1174 free(buf);

1176 buf = short_array_to_string(temps->l4, L4_SZ);
1177 SAVE_STRING_X(ksi, "l4", buf);
1178 free(buf);

1180 buf = short_array_to_string(temps->l5, L5_SZ);

new/usr/src/cmd/stat/kstat/kstat.c 19

1181 SAVE_STRING_X(ksi, "l5", buf);
1182 free(buf);

1184 SAVE_INT32(ksi, temps, max);
1185 SAVE_INT32(ksi, temps, min);
1186 SAVE_INT32(ksi, temps, state);
1187 SAVE_INT32(ksi, temps, temp_cnt);
1188 SAVE_INT32(ksi, temps, shutdown_cnt);
1189 SAVE_INT32(ksi, temps, version);
1190 SAVE_INT32(ksi, temps, trend);
1191 SAVE_INT32(ksi, temps, override);
1192 }
1193 #endif

1195 #ifdef __sparc
1196 static void
1197 save_temp_over(kstat_t *kp, ks_instance_t *ksi)
1198 {
1199 short *sh = (short *)(kp->ks_data);
1200 char *value;

1202 assert(kp->ks_data_size == sizeof (short));

1204 (void) asprintf(&value, "%hu", *sh);
1205 SAVE_STRING_X(ksi, "override", value);
1206 free(value);
1207 }
1208 #endif

1210 #ifdef __sparc
1211 static void
1212 save_ps_shadow(kstat_t *kp, ks_instance_t *ksi)
1213 {
1214 uchar_t *uchar = (uchar_t *)(kp->ks_data);

1216 assert(kp->ks_data_size == SYS_PS_COUNT);

1218 SAVE_CHAR_X(ksi, "core_0", *uchar++);
1219 SAVE_CHAR_X(ksi, "core_1", *uchar++);
1220 SAVE_CHAR_X(ksi, "core_2", *uchar++);
1221 SAVE_CHAR_X(ksi, "core_3", *uchar++);
1222 SAVE_CHAR_X(ksi, "core_4", *uchar++);
1223 SAVE_CHAR_X(ksi, "core_5", *uchar++);
1224 SAVE_CHAR_X(ksi, "core_6", *uchar++);
1225 SAVE_CHAR_X(ksi, "core_7", *uchar++);
1226 SAVE_CHAR_X(ksi, "pps_0", *uchar++);
1227 SAVE_CHAR_X(ksi, "clk_33", *uchar++);
1228 SAVE_CHAR_X(ksi, "clk_50", *uchar++);
1229 SAVE_CHAR_X(ksi, "v5_p", *uchar++);
1230 SAVE_CHAR_X(ksi, "v12_p", *uchar++);
1231 SAVE_CHAR_X(ksi, "v5_aux", *uchar++);
1232 SAVE_CHAR_X(ksi, "v5_p_pch", *uchar++);
1233 SAVE_CHAR_X(ksi, "v12_p_pch", *uchar++);
1234 SAVE_CHAR_X(ksi, "v3_pch", *uchar++);
1235 SAVE_CHAR_X(ksi, "v5_pch", *uchar++);
1236 SAVE_CHAR_X(ksi, "p_fan", *uchar++);
1237 }
1238 #endif

1240 #ifdef __sparc
1241 static void
1242 save_fault_list(kstat_t *kp, ks_instance_t *ksi)
1243 {
1244 struct ft_list *fault;
1245 char name[KSTAT_STRLEN + 7];
1246 int i;

new/usr/src/cmd/stat/kstat/kstat.c 20

1248 for (i = 1, fault = (struct ft_list *)(kp->ks_data);
1249 i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list);
1250 i++, fault++) {
1251 (void) snprintf(name, sizeof (name), "unit_%d", i);
1252 SAVE_INT32_X(ksi, name, fault->unit);
1253 (void) snprintf(name, sizeof (name), "type_%d", i);
1254 SAVE_INT32_X(ksi, name, fault->type);
1255 (void) snprintf(name, sizeof (name), "fclass_%d", i);
1256 SAVE_INT32_X(ksi, name, fault->fclass);
1257 (void) snprintf(name, sizeof (name), "create_time_%d", i);
1258 SAVE_HRTIME_X(ksi, name, fault->create_time);
1259 (void) snprintf(name, sizeof (name), "msg_%d", i);
1260 SAVE_STRING_X(ksi, name, faultp->msg);
1261 }
1262 }
1263 #endif

1265 static void
1266 save_named(kstat_t *kp, ks_instance_t *ksi)
1267 {
1268 kstat_named_t *knp;
1269 int n;

1271 for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) {
1272 switch (knp->data_type) {
1273 case KSTAT_DATA_CHAR:
1274 nvpair_insert(ksi, knp->name,
1275 (ks_value_t *)&knp->value, KSTAT_DATA_CHAR);
1276 break;
1277 case KSTAT_DATA_INT32:
1278 nvpair_insert(ksi, knp->name,
1279 (ks_value_t *)&knp->value, KSTAT_DATA_INT32);
1280 break;
1281 case KSTAT_DATA_UINT32:
1282 nvpair_insert(ksi, knp->name,
1283 (ks_value_t *)&knp->value, KSTAT_DATA_UINT32);
1284 break;
1285 case KSTAT_DATA_INT64:
1286 nvpair_insert(ksi, knp->name,
1287 (ks_value_t *)&knp->value, KSTAT_DATA_INT64);
1288 break;
1289 case KSTAT_DATA_UINT64:
1290 nvpair_insert(ksi, knp->name,
1291 (ks_value_t *)&knp->value, KSTAT_DATA_UINT64);
1292 break;
1293 case KSTAT_DATA_STRING:
1294 SAVE_STRING_X(ksi, knp->name, KSTAT_NAMED_STR_PTR(knp));
1295 break;
1296 default:
1297 assert(B_FALSE); /* Invalid data type */
1298 break;
1299 }
1300 }
1301 }

1303 static void
1304 save_intr(kstat_t *kp, ks_instance_t *ksi)
1305 {
1306 kstat_intr_t *intr = KSTAT_INTR_PTR(kp);
1307 char *intr_names[] = {"hard", "soft", "watchdog", "spurious",
1308 "multiple_service"};
1309 int n;

1311 for (n = 0; n < KSTAT_NUM_INTRS; n++)
1312 SAVE_UINT32_X(ksi, intr_names[n], intr->intrs[n]);

new/usr/src/cmd/stat/kstat/kstat.c 21

1313 }

1315 static void
1316 save_io(kstat_t *kp, ks_instance_t *ksi)
1317 {
1318 kstat_io_t *ksio = KSTAT_IO_PTR(kp);

1320 SAVE_UINT64(ksi, ksio, nread);
1321 SAVE_UINT64(ksi, ksio, nwritten);
1322 SAVE_UINT32(ksi, ksio, reads);
1323 SAVE_UINT32(ksi, ksio, writes);
1324 SAVE_HRTIME(ksi, ksio, wtime);
1325 SAVE_HRTIME(ksi, ksio, wlentime);
1326 SAVE_HRTIME(ksi, ksio, wlastupdate);
1327 SAVE_HRTIME(ksi, ksio, rtime);
1328 SAVE_HRTIME(ksi, ksio, rlentime);
1329 SAVE_HRTIME(ksi, ksio, rlastupdate);
1330 SAVE_UINT32(ksi, ksio, wcnt);
1331 SAVE_UINT32(ksi, ksio, rcnt);
1332 }

1334 static void
1335 save_timer(kstat_t *kp, ks_instance_t *ksi)
1336 {
1337 kstat_timer_t *ktimer = KSTAT_TIMER_PTR(kp);

1339 SAVE_STRING(ksi, ktimer, name);
1340 SAVE_UINT64(ksi, ktimer, num_events);
1341 SAVE_HRTIME(ksi, ktimer, elapsed_time);
1342 SAVE_HRTIME(ksi, ktimer, min_time);
1343 SAVE_HRTIME(ksi, ktimer, max_time);
1344 SAVE_HRTIME(ksi, ktimer, start_time);
1345 SAVE_HRTIME(ksi, ktimer, stop_time);
1346 }
1347 #endif /* ! codereview */

new/usr/src/cmd/stat/kstat/kstat.h 1

**
 6701 Wed Nov 28 23:08:58 2012
new/usr/src/cmd/stat/kstat/kstat.h
749 "/usr/bin/kstat" should be rewritten in C
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
kstat
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Copyright 2012 David Hoeppner. All rights reserved.
24 */

26 #ifndef _STAT_KSTAT_H
27 #define _STAT_KSTAT_H

29 /*
30 * Structures needed by the kstat reader functions
31 */
32 #include <sys/var.h>
33 #include <sys/utsname.h>
34 #include <sys/sysinfo.h>
35 #include <sys/flock.h>
36 #include <sys/dnlc.h>
37 #include <nfs/nfs.h>
38 #include <nfs/nfs_clnt.h>

40 #ifdef __sparc
41 #include <vm/hat_sfmmu.h>
42 #include <sys/simmstat.h>
43 #include <sys/sysctrl.h>
44 #include <sys/fhc.h>
45 #endif

47 #define KSTAT_DATA_HRTIME (KSTAT_DATA_STRING + 1)

49 typedef union ks_value {
50 char c[16];
51 int32_t i32;
52 uint32_t ui32;
53 struct {
54 union {
55 char *ptr;
56 char __pad[8];
57 } addr;
58 uint32_t len;

new/usr/src/cmd/stat/kstat/kstat.h 2

59 } str;

61 int64_t i64;
62 uint64_t ui64;
63 } ks_value_t;

65 #define SAVE_HRTIME(I, S, N) \
66 { \
67 ks_value_t v; \
68 v.ui64 = S->N; \
69 nvpair_insert(I, #N, &v, KSTAT_DATA_UINT64); \
70 }

72 #define SAVE_INT32(I, S, N) \
73 { \
74 ks_value_t v; \
75 v.i32 = S->N; \
76 nvpair_insert(I, #N, &v, KSTAT_DATA_INT32); \
77 }

79 #define SAVE_UINT32(I, S, N) \
80 { \
81 ks_value_t v; \
82 v.ui32 = S->N; \
83 nvpair_insert(I, #N, &v, KSTAT_DATA_UINT32); \
84 }

86 #define SAVE_INT64(I, S, N) \
87 { \
88 ks_value_t v; \
89 v.i64 = S->N; \
90 nvpair_insert(I, #N, &v, KSTAT_DATA_INT64); \
91 }

93 #define SAVE_UINT64(I, S, N) \
94 { \
95 ks_value_t v; \
96 v.ui64 = S->N; \
97 nvpair_insert(I, #N, &v, KSTAT_DATA_UINT64); \
98 }

100 /*
101 * We dont want const "strings" because we free
102 * the instances later.
103 */
104 #define SAVE_STRING(I, S, N) \
105 { \
106 ks_value_t v; \
107 v.str.addr.ptr = safe_strdup(S->N); \
108 v.str.len = strlen(S->N); \
109 nvpair_insert(I, #N, &v, KSTAT_DATA_STRING); \
110 }

112 #define SAVE_HRTIME_X(I, N, V) \
113 { \
114 ks_value_t v; \
115 v.ui64 = V; \
116 nvpair_insert(I, N, &v, KSTAT_DATA_HRTIME); \
117 }

119 #define SAVE_INT32_X(I, N, V) \
120 { \
121 ks_value_t v; \
122 v.i32 = V; \
123 nvpair_insert(I, N, &v, KSTAT_DATA_INT32); \
124 }

new/usr/src/cmd/stat/kstat/kstat.h 3

126 #define SAVE_UINT32_X(I, N, V) \
127 { \
128 ks_value_t v; \
129 v.ui32 = V; \
130 nvpair_insert(I, N, &v, KSTAT_DATA_UINT32); \
131 }

133 #define SAVE_UINT64_X(I, N, V) \
134 { \
135 ks_value_t v; \
136 v.ui64 = V; \
137 nvpair_insert(I, N, &v, KSTAT_DATA_UINT64); \
138 }

140 #define SAVE_STRING_X(I, N, V) \
141 { \
142 ks_value_t v; \
143 v.str.addr.ptr = safe_strdup(V); \
144 v.str.len = strlen(V); \
145 nvpair_insert(I, N, &v, KSTAT_DATA_STRING); \
146 }

148 #define SAVE_CHAR_X(I, N, V) \
149 { \
150 ks_value_t v; \
151 asprintf(&v.str.addr.ptr, "%c", V); \
152 v.str.len = 1; \
153 nvpair_insert(I, N, &v, KSTAT_DATA_STRING); \
154 }

156 #define DFLT_FMT \
157 "module: %-30.30s instance: %-6d\n" \
158 "name: %-30.30s class: %-.30s\n"

160 #define JSON_FMT \
161 "{\n\t\"module\": \"%s\",\n" \
162 "\t\"instance\": %d,\n" \
163 "\t\"name\": \"%s\",\n" \
164 "\t\"class\": \"%s\",\n" \
165 "\t\"type\": %d,\n"

167 #define KS_DFMT "\t%-30s "
168 #define KS_JFMT "\t\t\"%s\": "
169 #define KS_PFMT "%s:%d:%s:%s"

171 typedef struct ks_instance {
172 list_node_t ks_next;
173 char ks_name[KSTAT_STRLEN];
174 char ks_module[KSTAT_STRLEN];
175 char ks_class[KSTAT_STRLEN];
176 int ks_instance;
177 uchar_t ks_type;
178 hrtime_t ks_snaptime;
179 list_t ks_nvlist;
180 } ks_instance_t;

182 typedef struct ks_nvpair {
183 list_node_t nv_next;
184 char name[KSTAT_STRLEN];
185 uchar_t data_type;
186 ks_value_t value;
187 } ks_nvpair_t;

189 typedef struct ks_selector {
190 list_node_t ks_next;

new/usr/src/cmd/stat/kstat/kstat.h 4

191 char *ks_module;
192 char *ks_instance;
193 char *ks_name;
194 char *ks_statistic;
195 } ks_selector_t;

197 static void usage(void);
198 static int compare_instances(ks_instance_t *, ks_instance_t *);
199 static void nvpair_insert(ks_instance_t *, char *, ks_value_t *, uchar_t);
200 static ks_selector_t *new_selector(void);
201 static void ks_instances_read(kstat_ctl_t *);
202 static void ks_value_print(ks_nvpair_t *);
203 static void ks_instance_print(ks_instance_t *, ks_nvpair_t *);
204 static void ks_instances_print(void);

206 /* Raw kstat readers */
207 static void save_cpu_stat(kstat_t *, ks_instance_t *);
208 static void save_var(kstat_t *, ks_instance_t *);
209 static void save_ncstats(kstat_t *, ks_instance_t *);
210 static void save_sysinfo(kstat_t *, ks_instance_t *);
211 static void save_vminfo(kstat_t *, ks_instance_t *);
212 static void save_nfs(kstat_t *, ks_instance_t *);
213 #ifdef __sparc
214 static void save_sfmmu_global_stat(kstat_t *, ks_instance_t *);
215 static void save_sfmmu_tsbsize_stat(kstat_t *, ks_instance_t *);
216 static void save_simmstat(kstat_t *, ks_instance_t *);
217 /* Helper function for save_temperature() */
218 static char *short_array_to_string(short *, int);
219 static void save_temperature(kstat_t *, ks_instance_t *);
220 static void save_temp_over(kstat_t *, ks_instance_t *);
221 static void save_ps_shadow(kstat_t *, ks_instance_t *);
222 static void save_fault_list(kstat_t *, ks_instance_t *);
223 #endif

225 /* Named kstat readers */
226 static void save_named(kstat_t *, ks_instance_t *);
227 static void save_intr(kstat_t *, ks_instance_t *);
228 static void save_io(kstat_t *, ks_instance_t *);
229 static void save_timer(kstat_t *, ks_instance_t *);

231 /* Typedef for raw kstat reader functions */
232 typedef void (*kstat_raw_reader_t)(kstat_t *, ks_instance_t *);

234 static struct {
235 kstat_raw_reader_t fn;
236 char *name;
237 } ks_raw_lookup[] = {
238 /* Function name kstat name */
239 {save_cpu_stat, "cpu_stat:cpu_stat"},
240 {save_var, "unix:var"},
241 {save_ncstats, "unix:ncstats"},
242 {save_sysinfo, "unix:sysinfo"},
243 {save_vminfo, "unix:vminfo"},
244 {save_nfs, "nfs:mntinfo"},
245 #ifdef __sparc
246 {save_sfmmu_global_stat, "unix:sfmmu_global_stat"},
247 {save_sfmmu_tsbsize_stat, "unix:sfmmu_tsbsize_stat"},
248 {save_simmstat, "unix:simm-status"},
249 {save_temperature, "unix:temperature"},
250 {save_temp_over, "unix:temperature override"},
251 {save_ps_shadow, "unix:ps_shadow"},
252 {save_fault_list, "unix:fault_list"},
253 #endif
254 {NULL, NULL},
255 };

new/usr/src/cmd/stat/kstat/kstat.h 5

257 static kstat_raw_reader_t lookup_raw_kstat_fn(char *, char *);

259 #endif /* _STAT_KSTAT_H */
260 #endif /* ! codereview */

new/usr/src/man/man1m/kstat.1m 1

**
 8971 Wed Nov 28 23:08:58 2012
new/usr/src/man/man1m/kstat.1m
749 "/usr/bin/kstat" should be rewritten in C
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
kstat
**

1 ’\" te
2 .\" Copyright (c) 2000, Sun Microsystems, Inc. All Rights Reserved
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" See the License for the specific language governing permissions and limitat
5 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
6 .TH KSTAT 1M "Nov 22, 2012"
6 .TH KSTAT 1M "Mar 23, 2009"
7 .SH NAME
8 kstat \- display kernel statistics
9 .SH SYNOPSIS

10 .LP
11 .nf
12 \fBkstat\fR [\fB-Cjlpq\fR] [\fB-T\fR u | d] [\fB-c\fR \fIclass\fR] [\fB-m\fR \f
12 \fBkstat\fR [\fB-lpq\fR] [\fB-T\fR u | d] [\fB-c\fR \fIclass\fR] [\fB-m\fR \fIm
13 [\fB-i\fR \fIinstance\fR] [\fB-n\fR \fIname\fR] [\fB-s\fR \fIstatistic\fR]
14 [interval [count]]
15 .fi

17 .LP
18 .nf
19 \fBkstat\fR [\fB-Cjlpq\fR] [\fB-T\fR u | d] [\fB-c\fR \fIclass\fR]
19 \fBkstat\fR [\fB-lpq\fR] [\fB-T\fR u | d] [\fB-c\fR \fIclass\fR]
20 [\fImodule\fR:\fIinstance\fR:\fIname\fR:\fIstatistic\fR]...
21 [interval [count]]
22 .fi

24 .SH DESCRIPTION
25 .sp
26 .LP
27 The \fBkstat\fR utility examines the available kernel statistics, or kstats, on
28 the system and reports those statistics which match the criteria specified on
29 the command line. Each matching statistic is printed with its module, instance,
30 and name fields, as well as its actual value.
31 .sp
32 .LP
33 Kernel statistics may be published by various kernel subsystems, such as
34 drivers or loadable modules; each kstat has a module field that denotes its
35 publisher. Since each module might have countable entities (such as multiple
36 disks associated with the \fBsd\fR(7D) driver) for which it wishes to report
37 statistics, the kstat also has an instance field to index the statistics for
38 each entity; kstat instances are numbered starting from zero. Finally, the
39 kstat is given a name unique within its module.
40 .sp
41 .LP
42 Each kstat may be a special kstat type, an array of name-value pairs, or raw
43 data. In the name-value case, each reported value is given a label, which we
44 refer to as the statistic. Known raw and special kstats are given statistic
45 labels for each of their values by \fBkstat\fR; thus, all published values can
46 be referenced as \fImodule\fR:\fIinstance\fR:\fIname\fR:\fIstatistic\fR.
47 .sp
48 .LP
49 When invoked without any module operands or options, kstat will match all
50 defined statistics on the system. Example invocations are provided below. All
51 times are displayed as fractional seconds since system boot.
52 .SH OPTIONS
53 .sp
54 .LP
55 The tests specified by the following options are logically ANDed, and all

new/usr/src/man/man1m/kstat.1m 2

56 matching kstats will be selected. A regular expression containing shell
57 metacharacters must be protected from the shell by enclosing it with the
58 appropriate quotes.
59 .sp
60 .LP
61 The argument for the \fB-c\fR, \fB-i\fR, \fB-m\fR, \fB-n\fR, and \fB-s\fR
62 options may be specified as a shell glob pattern.
63 .sp
64 .ne 2
65 .na
66 \fB\fB-C\fR\fR
67 .ad
68 .RS 16n
69 Displays output in parseable format with a colon as separator.
70 .RE

62 options may be specified as a shell glob pattern, or a Perl regular expression
63 enclosed in ’/’ characters.
72 .sp
73 .ne 2
74 .na
75 \fB\fB-c\fR \fIclass\fR\fR
76 .ad
77 .RS 16n
78 Displays only kstats that match the specified class. \fIclass\fR is a
79 kernel-defined string which classifies the "type" of the kstat.
80 .RE

82 .sp
83 .ne 2
84 .na
85 \fB\fB-i\fR \fIinstance\fR\fR
86 .ad
87 .RS 16n
88 Displays only kstats that match the specified instance.
89 .RE

91 .sp
92 .ne 2
93 .na
94 \fB\fB-j\fR\fR
95 .ad
96 .RS 16n
97 Displays output in JSON format.
98 .RE

100 .sp
101 .ne 2
102 .na
103 #endif /* ! codereview */
104 \fB\fB-l\fR\fR
105 .ad
106 .RS 16n
107 Lists matching kstat names without displaying values.
108 .RE

110 .sp
111 .ne 2
112 .na
113 \fB\fB-m\fR \fImodule\fR\fR
114 .ad
115 .RS 16n
116 Displays only kstats that match the specified module.
117 .RE

119 .sp

new/usr/src/man/man1m/kstat.1m 3

120 .ne 2
121 .na
122 \fB\fB-n\fR \fIname\fR\fR
123 .ad
124 .RS 16n
125 Displays only kstats that match the specified name.
126 .RE

128 .sp
129 .ne 2
130 .na
131 \fB\fB-p\fR\fR
132 .ad
133 .RS 16n
134 Displays output in parseable format. All example output in this document is
135 given in this format. If this option is not specified, \fBkstat\fR produces
136 output in a human-readable, table format.
137 .RE

139 .sp
140 .ne 2
141 .na
142 \fB\fB-q\fR\fR
143 .ad
144 .RS 16n
145 Displays no output, but return appropriate exit status for matches against
146 given criteria.
147 .RE

149 .sp
150 .ne 2
151 .na
152 \fB\fB-s\fR \fIstatistic\fR\fR
153 .ad
154 .RS 16n
155 Displays only kstats that match the specified statistic.
156 .RE

158 .sp
159 .ne 2
160 .na
161 \fB\fB-T\fR d | u\fR
162 .ad
163 .RS 16n
164 Displays a time stamp before each statistics block, either in \fBdate\fR(1)
165 format (\fBd\fR) or as an alphanumeric representation of the value returned by
166 \fBtime\fR(2) (\fBu\fR).
167 .RE

169 .SH OPERANDS
170 .sp
171 .LP
172 The following operands are supported:
173 .sp
174 .ne 2
175 .na
176 \fB\fImodule\fR:\fIinstance\fR:\fIname\fR:\fIstatistic\fR\fR
177 .ad
178 .sp .6
179 .RS 4n
180 Alternate method of specifying module, instance, name, and statistic as
181 described above. Each of the module, instance, name, or statistic specifiers
182 may be a shell glob pattern.
183 It is possible to use both specifier types within a single operand.
86 may be a shell glob pattern or a Perl regular expression enclosed by ’/’
87 characters. It is possible to use both specifier types within a single operand.

new/usr/src/man/man1m/kstat.1m 4

184 Leaving a specifier empty is equivalent to using the ’*’ glob pattern for that
185 specifier.
186 .RE

188 .sp
189 .ne 2
190 .na
191 \fB\fIinterval\fR\fR
192 .ad
193 .sp .6
194 .RS 4n
195 The number of seconds between reports.
196 .RE

198 .sp
199 .ne 2
200 .na
201 \fB\fIcount\fR\fR
202 .ad
203 .sp .6
204 .RS 4n
205 The number of reports to be printed.
206 .RE

208 .SH EXAMPLES
209 .sp
210 .LP
211 In the following examples, all the command lines in a block produce the same
212 output, as shown immediately below. The exact statistics and values will of
213 course vary from machine to machine.
214 .LP
215 \fBExample 1 \fRUsing the \fBkstat\fR Command
216 .sp
217 .in +2
218 .nf
219 example$ \fBkstat -p -m unix -i 0 -n system_misc -s ’avenrun*’\fR
220 example$ \fBkstat -p -s ’avenrun*’\fR
221 example$ \fBkstat -p ’unix:0:system_misc:avenrun*’\fR
222 example$ \fBkstat -p ’:::avenrun*’\fR
223 example$ \fBkstat -p ’:::avenrun*min$’\fR
127 example$ \fBkstat -p ’:::/^avenrun_\ed+min$/’\fR

225 unix:0:system_misc:avenrun_15min 3
226 unix:0:system_misc:avenrun_1min 4
227 unix:0:system_misc:avenrun_5min 2
228 .fi
229 .in -2
230 .sp

232 .LP
233 \fBExample 2 \fRUsing the \fBkstat\fR Command
234 .sp
235 .in +2
236 .nf
237 example$ \fBkstat -p -m cpu_stat -s ’intr*’\fR
238 example$ \fBkstat -p ’cpu_stat:::intr*’\fR
142 example$ \fBkstat -p cpu_stat:::/^intr/\fR

240 cpu_stat:0:cpu_stat0:intr 29682330
241 cpu_stat:0:cpu_stat0:intrblk 87
242 cpu_stat:0:cpu_stat0:intrthread 15054222
243 cpu_stat:1:cpu_stat1:intr 426073
244 cpu_stat:1:cpu_stat1:intrblk 51
245 cpu_stat:1:cpu_stat1:intrthread 289668
246 cpu_stat:2:cpu_stat2:intr 134160
247 cpu_stat:2:cpu_stat2:intrblk 0

new/usr/src/man/man1m/kstat.1m 5

248 cpu_stat:2:cpu_stat2:intrthread 131
249 cpu_stat:3:cpu_stat3:intr 196566
250 cpu_stat:3:cpu_stat3:intrblk 30
251 cpu_stat:3:cpu_stat3:intrthread 59626
252 .fi
253 .in -2
254 .sp

256 .LP
257 \fBExample 3 \fRUsing the \fBkstat\fR Command
258 .sp
259 .in +2
260 .nf
261 example$ \fBkstat -p :::state ’:::avenrun*’\fR
166 example$ \fBkstat -p :::state :::/^avenrun/\fR

263 cpu_info:0:cpu_info0:state on-line
264 cpu_info:1:cpu_info1:state on-line
265 cpu_info:2:cpu_info2:state on-line
266 cpu_info:3:cpu_info3:state on-line
267 unix:0:system_misc:avenrun_15min 4
268 unix:0:system_misc:avenrun_1min 10
269 unix:0:system_misc:avenrun_5min 3
270 .fi
271 .in -2
272 .sp

274 .LP
275 \fBExample 4 \fRUsing the \fBkstat\fR Command
276 .sp
277 .in +2
278 .nf
279 example$ \fBkstat -p ’unix:0:system_misc:avenrun*’ 1 3\fR
280 unix:0:system_misc:avenrun_15min 15
281 unix:0:system_misc:avenrun_1min 11
282 unix:0:system_misc:avenrun_5min 21

284 unix:0:system_misc:avenrun_15min 15
285 unix:0:system_misc:avenrun_1min 11
286 unix:0:system_misc:avenrun_5min 21

288 unix:0:system_misc:avenrun_15min 15
289 unix:0:system_misc:avenrun_1min 11
290 unix:0:system_misc:avenrun_5min 21
291 .fi
292 .in -2
293 .sp

295 .LP
296 \fBExample 5 \fRUsing the \fBkstat\fR Command
297 .sp
298 .in +2
299 .nf
300 example$ \fBkstat -p -T d ’unix:0:system_misc:avenrun*’ 5 2\fR
301 Thu Jul 22 19:39:50 1999
302 unix:0:system_misc:avenrun_15min 12
303 unix:0:system_misc:avenrun_1min 0
304 unix:0:system_misc:avenrun_5min 11

306 Thu Jul 22 19:39:55 1999
307 unix:0:system_misc:avenrun_15min 12
308 unix:0:system_misc:avenrun_1min 0
309 unix:0:system_misc:avenrun_5min 11
310 .fi
311 .in -2
312 .sp

new/usr/src/man/man1m/kstat.1m 6

314 .LP
315 \fBExample 6 \fRUsing the \fBkstat\fR Command
316 .sp
317 .in +2
318 .nf
319 example$ \fBkstat -p -T u ’unix:0:system_misc:avenrun*’\fR
320 932668656
321 unix:0:system_misc:avenrun_15min 14
322 unix:0:system_misc:avenrun_1min 5
323 unix:0:system_misc:avenrun_5min 18
324 .fi
325 .in -2
326 .sp

328 .SH EXIT STATUS
329 .sp
330 .LP
331 The following exit values are returned:
332 .sp
333 .ne 2
334 .na
335 \fB\fB0\fR\fR
336 .ad
337 .RS 5n
338 One or more statistics were matched.
339 .RE

341 .sp
342 .ne 2
343 .na
344 \fB\fB1\fR\fR
345 .ad
346 .RS 5n
347 No statistics were matched.
348 .RE

350 .sp
351 .ne 2
352 .na
353 \fB\fB2\fR\fR
354 .ad
355 .RS 5n
356 Invalid command line options were specified.
357 .RE

359 .sp
360 .ne 2
361 .na
362 \fB\fB3\fR\fR
363 .ad
364 .RS 5n
365 A fatal error occurred.
366 .RE

368 .SH FILES
369 .sp
370 .ne 2
371 .na
372 \fB\fB/dev/kstat\fR\fR
373 .ad
374 .RS 14n
375 kernel statistics driver
376 .RE

378 .SH SEE ALSO

new/usr/src/man/man1m/kstat.1m 7

379 .sp
380 .LP
381 \fBdate\fR(1), \fBsh\fR(1), \fBtime\fR(2), \fBgmatch\fR(3GEN),
382 \fBkstat\fR(3KSTAT), \fBattributes\fR(5), \fBkstat\fR(7D), \fBsd\fR(7D),
383 \fBkstat\fR(9S)
384 .SH NOTES
385 .sp
386 .LP
387 If the pattern argument contains glob metacharacters which are also
292 If the pattern argument contains glob or Perl RE metacharacters which are also
388 shell metacharacters, it will be necessary to enclose the pattern with
389 appropriate shell quotes.

