new usr/src/cnd/ stat/ Makefile

R R R R

1267 Thu Aug 30 18:01: 15 2012
new usr/src/cnd/ stat/ Makefile

749 "/usr/bin/kstat" should be rewitten in
LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE]
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
23 # Use is subject to license terns.
24 #
25 #ident "%&Z%4W6 % % %E% SM "
26 #
25 # cnd/ stat/ Makefile

28 include ../ Mkefile.cnd

30 SUBDI RS= iostat npstat vnmstat fsstat kstat
32 SUBDI RS= iostat npstat vnstat fsstat

32 all := TARCET = all

33 install := TARCGET = install

34 clean : = TARGET = cl ean

35 cl obber : = TARCET = cl obber

36 lint : = TARCET = lint

37 _msg = TARCET = _nsg

39 . KEEP_STATE:
41 all install lint clean clobber _nsg: $(SUBD RS)

43 $(SUBDIRS): FRC
a4 @d $@ pwd; $(MAKE) $(MFLAGS) $(TARGET)

46 FRC:

new usr/src/cnd/ stat/kstat/ Makefile

R R R R

1511 Thu Aug 30 18:01: 15 2012
new usr/src/cnd/ stat/kstat/ Makefile
749 "/usr/bin/kstat" should be rewitten

*

in
IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER i n each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 #

26 PROG = kstat

27 OBJS = kstat.o

28 SRCS =$(OBJS: % 0=% c) $(COMVON_SRCS)

30 include $(SRC)/cnd/ Makefile.cnd
31 include $(SRC)/cnd/stat/ Mkefile.stat

33 LDLIBS += -lavl -lcndutils -lIdevinfo -1gen -1kstat
34 CFLAGS += $(CCVERBOSE) - | ${ STATCOMVONDI R}

35 FI LEMODE= 0555

37 lint := LINTFLAGS = -nuxs -I|$(STATCOVWONDI R)

39 . KEEP_STATE:

41 all: $(PROG

43 install: all $(ROOTPROG)

45 $(PROG): $(0BJS) $(COVMON _0OBJS)

46 $(LINK. c) -0 $(PROG $(OBIS) $(COMMON_OBJS) $(LDLI BS)
47 $(POST_PROCESS)

49 %o : $(STATCOWONDI R)/ % c

50 $(COWPILE. c) -0 $@ $<

51 $(POST_PROCESS_0O)

53 cl ean:

54 -$(RM $(0BJS) $(COWON _OBJIS)

56 lint: |int_SRCS

58 include $(SRC)/cnd/ Makefile.targ
59 #endif /* | codereview */

new usr/src/cnd/ stat/kstat/kstat.c

R R R R

33403 Thu Aug 30 18:01: 16 2012
new usr/src/cnd/ stat/kstat/kstat.c

749
1

"/usr/bin/kstat"

P R R R

/*

/*
*
*

B 2

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

B T 2 T
~

shoul d be rewitten in

P]

CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 1999, 2010, Oracle and/or its affiliates. Al rights reserved.
Copyright (c) 2012 David Hoeppner. All rights reserved.
*/

Di spl ay kernel statistics
This is a reinplenentation of the perl kstat command originally found
under usr/src/cnd/ kstat/kstat. pl
I ncompatibilities:
- perl regul ar expressions not |onger supported
- options checking is stricter
Fl ags added:
-C simlar to the -p option but value is separated by a col on
-h di spl ay hel p

- j son fornat

/

ncl ude <assert.h>
ncl ude <ctype. h>
ncl ude <errno. h>
ncl ude <kstat.h>
ncl ude <l angi nf o. h>
ncl ude <libgen. h>
nclude <limts. h>
ncl ude <l ocal e. h>
ncl ude <stddef.h>
ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <string. h>
ncl ude <strings. h>
ncl ude <tine. h>

ncl ude <uni std. h>
ncl ude <sys/list.h>
ncl ude <sys/tinme. h>
ncl ude <sys/types. h>

new usr/src/cnd/ stat/kstat/kstat.c

62 #include "kstat.h"

63 #i ncl ude "statcommon. h"

65 char *cndname = "kstat";

66 int caught _cont = 0;

68 static uint_t g_timestanp_fnt = NODATE;

70 /* Hel per flag - header was printed already? */

71 static bool ean_t g_headerflg;

73 /* Saved command |ine options */

74 static boolean_t g_cflg = B_FALSE;

75 static boolean_t g_jflg = B_FALSE;

76 static boolean_t g_Iflg = B_FALSE;

77 static boolean_t g_pflg = B_FALSE;

78 static boolean_t g_qfl g = B_FALSE;

79 static char *g_ks_class = "*";

81 /* Return zero if a selector did match */

82 static int g_matched = 1;

84 /* Sorted list of kstat instances */

85 static list_t instances_list;

86 static list_t sel ector_list;

88 int

89 nmin(int argc, char **argv)

90 {

91 ks_sel ector _t *nsel ector;

92 ks_sel ector _t *usel ector;

93 kstat_ctl _t *kc;

94 hrtime_t start_n;

95 hrtime_t period_n;

96 bool ean_t errflg = B_FALSE;

97 bool ean_t nsel flg = B_FALSE;

98 bool ean_t usel flg = B_FALSE;

99 char *q;

100 int count = 1,

101 int infinite cycles = 0;

102 int interval = 0;

103 int n = 0;

104 int c, m tnp;

106 (void) setlocal e(LC_ALL, "");

107 #if !defined(TEXT_ DOVAI N) /* Shoul d be defined by cc -D */
108 #define TEXT_DOVAIN "SYS_TEST" /* Use this only if it wasn't */
109 #endi f

110 (voi d) textdomai n(TEXT_DOVAIN) ;

112 /*

113 * Create the selector list and a dummy default selector to match
114 * everything. While we process the cndline options we will add
115 * selectors to this |ist.

116 */

117 (void) list_create(&selector_list, sizeof (ks_selector_t),
118 of fset of (ks_sel ector _t, ks next))

120 nsel ector = new_sel ector();

122 /*

123 * Parse naned command |ine argunents.

124 */

125 while ((c = getopt(argc, argv, "h?CgjlpT:mi:n:s:c:")) != ECF)
126 switch (c) {

127 case 'h':

new usr/src/cnd/ stat/kstat/kstat.c

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

188
189
190
191
192

case ' ?':
usage();
exit(0);
br eak;
case 'C:
g_pflg = g_cflg = B_TRUE;
br eak;
case ' :
g_qgflg = B_TRUE;
break;
case 'j’:
g_jflg = B_TRUE
br eak;
case '|’:
g_pflg = g_Iflg = B_TRUE;
break;
case 'p’:
g_pflg = B_TRUE;
break;
case 'T:
switch (*optarg) {
case 'd’:
g_tinmestanp_fnt = DDATE;
br eak;
case U :
g_tinmestanp_fnt = UDATE;
break;
defaul t:
errflg = B_TRUE;
break;
case 'm:
nsel flg = B_TRUE;
nsel ector->ks_nodul e =
(char *)safe_strdup(optarg);
break;
case 'i’:
nsel flg = B_TRUE;
nsel ect or - >ks_i nst ance =
(char *)safe_strdup(optarg);
br eak;
case 'n’:
nsel flg = B_TRUE;
nsel ector - >ks_nanme =
(char *)safe_strdup(optarg);
br eak;
case 's’:
nsel flg = B_TRUE;
nsel ector->ks_statistic =
(char *)safe_strdup(optarg);
br eak;
case 'c’:
g_ks_class =
(char *)safe_strdup(optarg);
br eak;
defaul t:
errflg = B_TRUE;
br eak;
}
if (g_aflg & (g_jflg || g_pflg)) {
(void) fprintf(stderr, gettext(
"-q and -l1pj are nutually exclusive\n"));
errflg = B_TRUE;

new usr/src/cnd/ stat/kstat/kstat.c

194
195
196
197

199
200

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

221
222
223
224
225
226
227
228
229
230

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

256
257
258
259

if (errflg) {
usage();
) exit(2);

argc -= optind;
argv += optind;

/*

* Consune the rest of the command |ine. Parsing the
* unnaned command |ine argunents.
*

/
while (argc--) {
errno = 0;
tnp = strtoul (*argv, &q,
if (tnmp ':f: (ULO\IG_NAX &&
] n ==

10);
errno == ERANGE) ({

) A
(void) fprintf(stderr, gettext(

"Interval is too large\n"));

} elseif (n ==

1

) A
(void) fprintf(stderr, gettext(
"Count is too large\n"));

usage
exit(

()
2);
}

if (errno!=01]] *q!=
m=ho:

usel ector = new_:
= (char *)strsep(argv, ":")) !'= NULL) {

while ((q

if km>

if (*q!

}
if (m<4) {

o) {

selector();

4)

free(usel ector);
usage();
exit(2);

='\0") {
switch (m {
case 1:
usel ector->ks_nodul e =
(char *)safe_strdup(q);
break;
case 2:
usel ector->ks_i nstance =
(char *)safe_strdup(q);
break;
case 3:
usel ect or - >ks_nane =
(char *)safe_strdup(q);
break;
case 4:
usel ector->ks_statistic =
(char *)safe_strdup(q);
br eak;
defaul t:
) assert (B_FALSE);

free(usel ector);

usage();
exit(2);

new usr/src/cnd/ stat/kstat/kstat.c

260

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

309

311
312

314
315
316
317
318

320
321

323
324
325

}

usel flg = B_TRUE;
list_insert_tail(&selector_list, uselector);

} else {
if (tmp < 1) {
if (n==0)
(void) fprintf(stderr, gettext(
"Interval nust be an "
"integer >= 1"));
} elseif (n==1) {
(void) fprintf(stderr, gettext(
"Count nust be an integer >= 1"));
}
usage();
exit(2);
} else {
if (n==0) {
interval = tnp;
count = -1;
} elseif (n==1) {
count = tnp;
} else {
usage();
exit(2);
}
n++;
ar gv++;

}

*

* Check if we founded a nanmed sel ector on the cndline.
*
/
if (uselflg) {
if (nselflg) {
(void) fprintf(stderr, gettext(
“modul e: i nstance: name: statistic and "

"-m-i -n -s are nutually exclusive"));
usage();
exit(2);
} else {
free(nsel ector);
} else {
list_insert_tail(&selector_list, nselector);
}

assert(!list_is_enpty(&selector_list));

(void) list_create(& nstances_list, sizeof (ks_instance_t),
of fset of (ks_i nstance_t, ks_next));

kc = kstat_open();

if (kc == NULL)
perror("kstat_open");

) exit(3);

period_n = (hrtinme_t)interval * NANOSEC,
start_n = gethrtine();

while (count == -1 || count-- > 0) {
ks_i nst ances_r ead(kc);
ks_i nstances_print();

new usr/src/cnd/ stat/kstat/kstat.c

327
328
329
330
331
332
333

335

337
338

340
341
342
343
344

if (interval & count) {

sleep_until (&start_n, period_n, infinite_cycles,

&caught _cont) ;
(voi d) kstat_chai n_updat e(kc);
(void) putchar(’\n");

}
(voi d) kstat_cl ose(kc);

return (g_matched);

}

/*
* Print usage.
*/
static void
usage(voi d)

345 {

346
347
348
349
350
351
352
353
354

356
357
358
359
360

(void) fprintf(stderr, gettext(
"Usage: \n"

::kstat -Glpg] [-Tdju] [-c class]\n"

interval [count]]J\n"
"kst at -

Glpg] [-Tdlu]l [-c class]\n"
nmodul e: 1 nstance: nane: statistic ...]\n"
interval [count] J\n"));

—r——————

}

/*
* Sort conpare function.
*/

static int
conpar e_i nstances(ks_i nstance_t *| _arg, ks_instance_t *r_arg)

361 {

362

364
365
366
367
368
369
370
371
372
373
374
375
376

378
379
380
381
382

int rval ;

rval = strcasecnp(l _arg->ks_nodul e, r_arg->ks_nodul e);
if (rval ==
if (l_arg->ks_instance == r_arg->ks_i nstance) {

return (strcasecnp(l_arg->ks_nanme, r_arg->ks_nane));

} else if (I_arg->ks_instance < r_arg->ks_instance) {
return (-1);

} else {
return (1);

} else {
) return (rval);

}

/*
* |nserts an instance in the per selector list.
*/
static void))
nvpai r_insert(ks_instance_t *ksi, char *nane, ks_value_t *val ue,

383 uchar_t data_type)

384 {

385 ks_nvpai r_t *j nst ance;

386 ks_nvpair_t *t np;

388 instance = (ks_nvpair_t *)malloc(sizeof (ks_nvpair_t));
389 if (instance == NULL)

390 perror("malloc");

391 exit(3);

mnodule] [-1 instance] [-n name] [-s statistic]\n"

new usr/src/cnd/ stat/kstat/kstat.c

392 }

394 (void) strlcpy(instance->nanme, nane, KSTAT_STRLEN);
395 (voi d) nentpy(& nstance->val ue, val ue, sizeof (ks_value_t));
396 i nstance->data_type = data_type;

398 tmp = list_head(&ksi->ks_nvlist);

399 while (tnmp !'= NULL && strcasecnp(instance->nane, tnp->nanme) > 0)
400 tmp = list_next(&ksi->ks_nvlist, tnmp);

402 list_insert_before(&si->ks_nvlist, tnp, instance);
403 }

405 [/ *

406 * Allocates a new all-matching selector.

407 */

408 static ks_selector_t *

409 new_sel ect or (voi d)

410 {

411 ks_sel ector _t *sel ector;

413 sel ector = (ks_selector_t *)nmalloc(sizeof (ks_selector_t));
414 if (selector == NULL)

415 perror("nalloc");

416 exit(3);

417 }

419 (void) list_link_init(&selector->ks_next);

421 sel ector->ks_nodule = "*";

422 sel ector->ks_instance = "*";

423 sel ector->ks_nane = "*";

424 sel ector->ks_statistic = "*";

426 return (selector);

427 }

429 [*

430 * This function was taken fromthe perl kstat nodul e code - pl ease
431 * see for further conments there.

432 */

433 static kstat_raw reader_t

434 | ookup_raw_kstat _fn(char *nodul e, char *nane)

435 {

436 char key[KSTAT_STRLEN * 2];

437 regi ster char *f, *t;

438 int n = 0;

440 for (f = nodule, t = key; *f I="'\0"; f++ t++) {
441 while (*f 1="\0" && isdigit(*f))

442 f++;

443 *t o= *f;

444 }

445 o S

447 for (f = name; *f !="\0"; f++ t++) {

448 while (*f I'="\0" & isdigit(*f))

449 f++;

450 *t o= *f

451 }

452 *t ='\0";

454 while (ks_raw_| ookup[n].fn !'= NULL)

455 if (strncnp(ks_raw_| ookup[n].nane, key, strlen(key))
456 return (ks_raw_| ookup[n].fn);

457

n++;

new usr/src/cnd/ stat/kstat/kstat.c

458

460
461

463
464
465
466
467

469
470
471
472
473
474
475
476

478
479
480
481
482

484
485
486
487
488
489

491
492
493
494
495
496
497
498

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

518
520

521
522

}
/*

* Iterate over all

*/

}

return (0);

static void
ks_i nstances_read(kstat_ctl _t *kc)
468 {

kernel statistics and save natches.

kstat _raw_reader _t save_raw,

ki d_t

ks_sel ector _t
ks_i nstance_t
ks_i nstance_t
kstat _t

bool ean_t
char

id;

*sel ector;
*Kksi ;

*tnp;

ski p;
*ks_nunber ;

for (kp = kc->kc_chain; kp !'= NULL; kp = kp->ks_next) {

/* Don't

bot her storing the kstat headers */

if (strncnp(kp->ks_nane, "kstat_", 6) == 0) {

}
/* Don’t

conti nue;

bot her storing raw stats we don’t understand */

if (kp->ks_type == KSTAT_TYPE_RAW

#i f def REPORT_UNKNOWN

#endi f

}
/

*
*

i {
save_raw = | ookup_raw kstat_fn(kp->ks_nodul e,
kp- >ks_nane) ;
if (save_raw == NULL) {

(void) fprintf(stderr,
"Unknown kstat type %:%l: % -
"%l of size %\n", kp->ks_nodul e,
kp->ks_i nstance, kp->ks_nane,
kp- >ks_ndat a, kp->ks_dat a_si ze);

conti nue;

Iterate over the |ist of selectors and skip

* instances we dont want. We filter for statistics
* later, as we dont know them yet.

*/

skip = B_FALSE;
(voi d) asprintf(&s_nunber, "%", kp->ks_instance);

selector = list_head(&selector_list);
while (selector != NULL)

if (!(gmatch(kp->ks_nodul e, selector->ks_nodule) !'= 0 &&
!

gmat ch(ks_nunber, sel ector->ks_instance) != 0

gmat ch(kp- >ks_nane, sel ector->ks_nane) = 0 &&

gmat ch(kp->ks_cl ass, g_ks_class))) {
skip = B_TRUE;

sel ector = |ist_next(&selector_list, selector);
}
free(ks_nunber);
if (skip) {
conti nue;
}

new usr/src/cnd/ stat/kstat/kstat.c

524
525
526
527
528
529
530
531
532

534

536
537
538

540

542
543

545
546
547
548
549

551
552
553
554

556

558
559
560
561
562
563

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586 }

588 /*

/*
* Allocate a new instance and fill in the val ues
* we know so far.
*/
ksi = (ks_instance_t *)malloc(sizeof (ks_instance_t));
if (ksi == NULL) {
perror("nmalloc");
) exit(3);

(void) list_link_init(&ksi->ks_next);

(void) strlcpy(ksi->ks_nodul e, kp->ks_nodule, KSTAT_STRLEN);

(void) strlcpy(ksi->ks_name, kp->ks_name, KSTAT_STRLEN);
(void) strlcpy(ksi->ks class, kp->ks. class KSTAT STRLEN)

ksi ->ks_i nstance = kp->ks_i nstance;

(void) list_create(&ksi->ks_nvlist, sizeof (ks_nvpair_t),
of f set of (ks_nvpair_t, nv_next));

SAVE_HRTI ME_X(ksi, "crtinme", kp->ks_crtine);
SAVE_HRTI ME_X(ksi, "snaptime", kp->ks_snaptine);
if (g_pflg) { _

SAVE_STRI NG _X(ksi, "class", kp->ks_class);

}

/* Insert this instance into a sorted list */

tmp = list_head(& nstances_list);

while (tnmp !'= NULL && conpare_i nstances(ksi, tnmp) > 0)

tnp = list_next (& nstances_list, tnp);
list_insert_before(& nstances_list, tnp, ksi);

/* Read the actual statistics */

id = kstat_read(kc, kp, NULL);

if (id==-1) {
perror("kstat_read");
conti nue;

}

switch (kp->ks_type) {

case KSTAT_TYPE_RAW
save_raw(kp, ksi);
br eak;

case KSTAT_ TYPE NAVED:
save_named(kp, ksi);
break;

case KSTAT_TYPE_ I NTR:
save_intr(kp, ksi);
br eak;

case KSTAT_TYPE | O
save_i o(kp, ksi);
br eak;

case KSTAT_TYPE_TI MER
save_timer(kp, ksi);

break;

defaul t:
assert(B_FALSE); /* Invalid type */
break;

}

589 * Print the value of a nane-value pair.

new usr/src/cnd/ stat/kstat/kstat.c 10

590

591 static void
592 ks_val ue_print(ks_nvpair_t *nvpair)

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

625
626
627
628
629

631
632
633
634
635
636
637
638
639
640
641
642

644
645
646
647
648
649
650
651
652
653
654
655

{

}

/*
* Print a single instance.
/

switch (nvpair->data_type) {
case KSTAT_DATA CHAR:
(voi d) fprintf(stdout, "9%", nvpair->val ue.c);
br eak
case KSTAT_DATA | NT32:
(void) fprintf(stdout, "%l", nvpair->val ue.i32);
br eak;
case KSTAT_ DATA_UI NT32:
(v0| d) fprintf(stdout, "%", nvpair->val ue. ui 32);
br eak;
case KSTAT_DATA | NT64:
(v0| d) fprintf(stdout, "9%Id", nvpair->val ue.i64);
br eak
case KSTAT DATA Ul NT64:
(voi d) fprintf(stdout, "% Ilu", nvpair->val ue. ui 64);
br eak
case KSTAT_ DATA STRI NG
(void) fprintf(stdout, "%", KSTAT _NAMED STR PTR(nvpair));
br eak;
case KSTAT_DATA_HRTI ME:
i f (nvpair->val ue. ui 64 == 0)
(void) fpri ntf(stdout "0");
el se
(void) fprintf(stdout, "% of"
nvpai r - >val ue. ui 64 / 1000000000. 0);
br eak;
defaul t:
assert (B_FALSE);
}

static void
ks_i nstance_print(ks_i nstance_t *ksi, ks_nvpair_t *nvpair)
630 {

if (g_headerflg) {
if (g_jflg) {
(void) fprintf(stdout, JSON_FM,
ksi - >ks_nodul e, ksi - >ks_i nst ance,
ksi - >ks_nane, ksi - >ks_cl ass);
} elseif ('g_pflg) {
(void) fprintf(stdout, DFLT_FM,
ksi - >ks_nmodul e, ksi->ks_i nst ance,
ksi - >ks_name, ksi->ks_cl ass);

}
g_headerfl g = B_FALSE;
}

if (g_jflg) {))
(void) fprintf(stdout, KS_JFMI, nvpair->nane);
if (nvpalr->data_type == KSTAT_DATA STRING {
(void) putchar('\"");
ks_val ue_print(nvpair);
(void) putchar(’\"");
} else {
ks_val ue_print(nvpair);

}
1f (nvpair !'=1list tall(&k3| >ks_nvlist))
(voi d) putchar(’
} else if (g_pflg) {

new usr/src/cnd/ stat/kstat/kstat.c

656
657
658
659
660
661
662
663
664
665
666

668
669

671
672
673
674
675

(voi d) f
ksi -
ksi -

if (gl

} else {
(void) f

printf(stdout,
>ks_nodul e, ksi -
>ks_nane, nvpair->nane);
flg) {

(void) putchar(g_cflg ? ':
ks_val ue_print(nvpair);

KS_PFM,

7 a

printf(stdout, KS_DFM,

ks_val ue_pri nt (nvpai r)

}

) (voi d) putchar(’

| *

* Print all instances.
S

static void
ks_i nstances_print (voi d)

676 {

677
678
679

681
682

684
685

687
688
689

691
692
693

695
696
697
698
699
700
701
702

704
705
706
707
708

710
711
712
713
714
715
716
717
718
719

ks_sel ector _t
ks_i nstance_t
ks_nvpair_t

if (g_tinestanp

print_tii

if (g_jflg)

\n');

*sel ector;
*Kksi, *ktnp;
*nvpair, *ntnp;

fnt !'= NODATE)
mestanp(g_ti mestanp_fnt);

(v0| d) putchar('[');

/* lterate over
sel ector = list
whil e (sel ector

each selector */
head(&sel ector _list);

= NULL) {

/* Iterate over each instance */

for (ksi
ksi

}

sel ector

= |list_head(& nstances_list); ksi

= |ist_next(& nstances_Iist,

>ks_i nst ance,

Nt

nvpair - >nane) ;

ksi)) {

I'= NULL;

/* Finally iterate over each statistic */

g_headerfl g = B_TRUE;
for (nvpair | T'st_head(&ksi
nvpai r ! NULL;
nvpair = |ist next(&ksn
if (gmatch(nvpair->n

sel ector->ks_statistic)

conti nue;

hed =

g_mat che
it qf'Q)

c
9_

ks_i nstance_|

}
}

if (!g_headerflg
f

it (g9 fprin
i

} elseif (!g I g)
) (0|d) putch

= list_next(&selector_list,

->ks_nvlist);

>ks_nvlist,
ane,

print(ksi,

t f (stdout,

{
ar(’\n’);

sel ector);

nvpair)) {
0)

nvpair);

“\t}\n}");

)
si I=1list tall(&lnstances Ilst))
(v0| d) putchar(’,

E

11

new usr/src/cnd/ stat/kstat/kstat.c

722 }

724 if (g_jflg)

725 (void) fprintf(stdout, "]\n");

727 (void) fflush(stdout);

729 /* Free the instances list */

730 ksi = list_head(& nstances_|ist);

731 while (ksi !'= NULL) {

732 nvpair I st_head(&si->ks_nvlist);

733 whil e (nvpai r = NULL) {

734 ntnp = nvpair;

735 nvpair = |ist_next(&ksi->ks_nvlist, nvpair);
736 l'ist_remve(&ksi->ks_nvlist, ntnp);
737 if (ntnp->data type == KSTAT DATA STRI NG)
738 free(ntnp- >va| ue.str.addr.ptr);
739 free(ntnp);

740 }

742 ktnp = ksi;

743 ksi = list_next(& nstances_list, ksi);

744 list_remove(& nstances_list, kt rrp) ;

745 |i st_destroy(&ktnp->ks_nvl i st);

746 free(kt np);

747 }

748 }

750 static void

751 save_cpu_stat(kstat_t *kp, ks_instance_t *ksi)

752 {

753 cpu_stat _t *stat;

754 cpu_sysinfo_t *sysi nfo;

755 cpu_syswait _t *syswai t;

756 cpu_vm nfo_t *vmi nf o;

758 stat = (cpu_stat_t *)(kp->ks_data);

759 sysi nfo = &stat->cpu_sysinfo;

760 syswait = &stat->cpu_syswait;

761 vm nfo = &stat->cpu_vm nfo;

763 SAVE_UI NT32_X(ksi, "idle", sysinfo->cpu[CPU | DLE]);
764 SAVE_UI NT32_X(ksi, "user", sysinfo->cpu[CPU_USER]);
765 SAVE_UI NT32_X(ksi, "kernel", sysinfo->cpu[CPU_KERNEL]);
766 SAVE_Ul NT32_X(ksi, "wait", sysinfo->cpul CPU WAIT]);
767 SAVE_UI NT32_X(ksi, "wait_io", sysinfo->cpu[WIQ);
768 SAVE_UI NT32_X(ksi, "wai t_swap", sysi nf o->cpu[W SWAP]) ;
769 SAVE_UI NT32_X(ksi, "wait_pio", sysinfo->cpu[WPIQ);
770 SAVE_Ul NT32(ksi, sysinfo, bread)

771 SAVE_UI NT32(ksi, sysinfo, bwi te)

772 SAVE_UI NT32(ksi, sysinfo, |read);

773 SAVE_UI NT32(ksi, sysinfo, lwite);

774 SAVE_UI NT32(ksi, sysinfo, phread);

775 SAVE_UI NT32(ksi, sysinfo, phwit e)

776 SAVE_UI NT32(ksi, sysinfo, pswitch);

777 SAVE_UI NT32(ksi, sysinfo, trap);

778 SAVE_Ul NT32(ksi, sysinfo, intr);

779 SAVE_UI NT32(ksi, sysinfo, syscall);

780 SAVE_UI NT32(ksi, sysinfo, sysread);

781 SAVE_UI NT32(ksi, sysinfo, syswite);

782 SAVE_Ul NT32(ksi, sysinfo, sysfork);

783 SAVE_Ul NT32(ksi, sysinfo, sysvfork);

784 SAVE_UI NT32(ksi, sysinfo, sysexec);

785 SAVE_UI NT32(ksi, sysinfo, readch);

786 SAVE_UI NT32(ksi, sysinfo, witech);

787 SAVE_UI NT32(ksi, sysinfo, rcvint);

12

new usr/src/cnd/ stat/kstat/kstat.c 13 new usr/src/cnd/ stat/kstat/kstat.c
788 SAVE_UI NT32(ksi, sysinfo, xntint); 854 SAVE_UI NT32(ksi, vm nfo, anonpgin);
789 SAVE_UI NT32(ksi, sysinfo, ndmint); 855 SAVE_UI NT32(ksi, vmi nfo, anonpgout);
790 SAVE_UI NT32(ksi, sysinfo, rawch); 856 SAVE_UI NT32(ksi, vm nfo, anonfree);
791 SAVE_UI NT32(ksi, sysinfo, canch); 857 SAVE_UI NT32(ksi, vmi nfo, fspgin);
792 SAVE_UI NT32(ksi, sysinfo, outch); 858 SAVE_UI NT32(ksi, vm nfo, fspgout);
793 SAVE_UI NT32(ksi, sysinfo, nsg); 859 SAVE_UI NT32(ksi, vminfo, fsfree);
794 SAVE_UI NT32(ksi, sysinfo, senm); 860 }
795 SAVE_UI NT32(ksi, sysinfo, namei);
796 SAVE_UI NT32(ksi, sysinfo, ufsiget); 862 static void
797 SAVE_UI NT32(ksi, sysinfo, ufsdirblk); 863 save_var(kstat_t *kp, ks_instance_t *ksi)
798 SAVE_Ul NT32(ksi, sysinfo, ufsipage); 864 {
799 SAVE_Ul NT32(ksi, sysinfo, ufsinopage); 865 struct var *var = (struct var *)(kp->ks_data);
800 SAVE_UI NT32(ksi, sysinfo, inodeovf);
801 SAVE_UI NT32(ksi, sysinfo, fileovf); 867 assert (kp->ks_data_si ze == sizeof (struct var));
802 SAVE_Ul NT32(ksi, sysinfo, procovf);
803 SAVE_UI NT32(ksi, sysinfo, intrthread); 869 SAVE_I NT32(ksi, var, v_buf);
804 SAVE_UI NT32(ksi, sysinfo, intrblk); 870 SAVE_| NT32(ksi, var, v_call);
805 SAVE_UI NT32(ksi, sysinfo, idlethread); 871 SAVE_| NT32(ksi, var, v_proc);
806 SAVE_Ul NT32(ksi, sysinfo, inv_swch); 872 SAVE | NT32(ksi, var, v_maxupttl);
807 SAVE_UI NT32(ksi, sysinfo, nthreads); 873 SAVE_I NT32(ksi, var, v_nglobpris);
808 SAVE_UI NT32(ksi, sysinfo, cpum grate); 874 SAVE_| NT32(ksi, var, v_maxsyspri);
809 SAVE_Ul NT32(ksi, sysinfo, xcalls); 875 SAVE | NT32(ksi, var, v_clist);
810 SAVE_Ul NT32(ksi, sysinfo, nutex_adenters); 876 SAVE | NT32(ksi, var, v_maxup);
811 SAVE_Ul NT32(ksi, sysinfo, rw.rdfails); 877 SAVE | NT32(ksi, var, v_hbuf);
812 SAVE_UI NT32(ksi, sysinfo, rwwfails); 878 SAVE_I NT32(ksi, var, v_hmask);
813 SAVE_UI NT32(ksi, sysinfo, nodload); 879 SAVE_| NT32(ksi, var, v_pbuf);
814 SAVE_UI NT32(ksi, sysinfo, nodunl oad); 880 SAVE_| NT32(ksi, var, v_sptnap);
815 SAVE_UI NT32(ksi, sysinfo, bawite); 881 SAVE_| NT32(ksi, var, v_maxpnen);
816 #ifdef STATISTICS /* see header file */ 882 SAVE_| NT32(ksi, var, v_autoup);
817 SAVE_UI NT32(ksi, sysinfo, rw_ enters); 883 SAVE_| NT32(ksi, var, v_bufhwm;
818 SAVE_UI NT32(ksi, sysinfo, win_uo_cnt); 884 }
819 SAVE_Ul NT32(ksi, sysinfo, win_uu_cnt);
820 SAVE_UI NT32(ksi, sysinfo, win_so_cnt); 886 static void
821 SAVE_UI NT32(ksi, sysinfo, win_su_cnt); 887 save_ncstats(kstat_t *kp, ks_instance_t *ksi)
822 SAVE_UI NT32(ksi, sysinfo, wi n_suo_cnt); 888 {
823 #endi f 889 struct ncstats *ncstats = (struct ncstats *)(kp->ks_data);
825 SAVE_| NT32(ksi, syswait, iowait); 891 assert (kp->ks_data_si ze == sizeof (struct ncstats));
826 SAVE_| NT32(ksi, syswait, swap);
827 SAVE | NT32(ksi, syswait, physio); 893 SAVE | NT32(ksi, ncstats, hits);
894 SAVE | NT32(ksi, ncstats, msses);
829 SAVE_UI NT32(ksi, vm nfo, pgrec); 895 SAVE_| NT32(ksi, ncstats, enters);
830 SAVE_Ul NT32(ksi, vm nfo, pgfrec); 896 SAVE | NT32(ksi, ncstats, dbl_enters);
831 SAVE_Ul NT32(ksi, vm nfo, pgin); 897 SAVE | NT32(ksi, ncstats, |ong_enter);
832 SAVE_Ul NT32(ksi, vm nfo, pgpgin); 898 SAVE | NT32(ksi, ncstats, |ong_| ook);
833 SAVE_UI NT32(ksi, vm nfo, pgout); 899 SAVE_| NT32(ksi, ncstats, nove_to_front);
834 SAVE_UI NT32(ksi, vm nfo, pgpgout); 900 SAVE_| NT32(ksi, ncstats, purges);
835 SAVE_Ul NT32(ksi, vm nfo, swapin); 901 }
836 SAVE_UI NT32(ksi, vm nfo, pgswapin);
837 SAVE_UI NT32(ksi, vm nfo, swapout); 903 static void
838 SAVE_UI NT32(ksi, vm nfo, pgswapout); 904 save_sysinfo(kstat_t *kp, ks_instance_t *ksi)
839 SAVE_UI NT32(ksi, vminfo, zfod); 905 {
840 SAVE_UI NT32(ksi, vm nfo, dfree); 906 sysinfo_t *sysinfo = (sysinfo_t *)(kp->ks_data);
841 SAVE_UI NT32(ksi, vm nfo, scan);
842 SAVE_UI NT32(ksi, vmnfo, rev); 908 assert (kp->ks_data_si ze == sizeof (sysinfo_t));
843 SAVE_UI NT32(ksi, vminfo, hat_fault);
844 SAVE_Ul NT32(ksi, vm nfo, as_fault); 910 SAVE_Ul NT32(ksi, sysinfo, updates);
845 SAVE_UI NT32(ksi, vmnfo, maj_fault); 911 SAVE_UI NT32(ksi, sysinfo, runque);
846 SAVE_UI NT32(ksi, vmnfo, cow fault); 912 SAVE_UI NT32(ksi, sysinfo, runocc);
847 SAVE_UI NT32(ksi, vminfo, prot_fault); 913 SAVE_UI NT32(ksi, sysinfo, swpque);
848 SAVE_Ul NT32(ksi, vm nfo, softlock); 914 SAVE_Ul NT32(ksi, sysinfo, swpocc);
849 SAVE_UI NT32(ksi, vm nfo, kernel _asflt); 915 SAVE_Ul NT32(ksi, sysinfo, waiting);
850 SAVE_UI NT32(ksi, vm nfo, pgrrun); 916 }
851 SAVE_UI NT32(ksi, vminfo, execpgin);
852 SAVE_Ul NT32(ksi, vm nfo, execpgout); 918 static void
853 SAVE_UI NT32(ksi, vm nfo, execfree); 919 save_vminfo(kstat_t *kp, ks_instance_t *ksi)

new usr/src/cnd/ stat/kstat/kstat.c 15 new usr/src/cnd/ stat/kstat/kstat.c
920 { 986 SAVE_I NT32(ksi, sfmmg, sf_tsb_sectsb_create);
921 vm nfo_t *vmnfo = (vmnfo_t *)(kp->ks_data); 987 SAVE_| NT32(ksi, sfmmug, sf_scd_1sttsb_alloc);
988 SAVE_| NT32(ksi, sfmmug, sf_scd_2ndtsb_alloc);
923 assert (kp->ks_data_si ze == sizeof (vminfo_t)); 989 SAVE_| NT32(ksi, sfmmg, sf_scd_1sttsb_allocfail);
990 SAVE_| NT32(ksi, sfmmg, sf_scd_2ndtsb_allocfail);
925 SAVE_UI NT64(ksi, vmi nfo, freenen); 991 SAVE_| NT32(ksi, sfmmug, sf_ttel oad8k);
926 SAVE_Ul NT64(ksi, vm nfo, swap_resv); 992 SAVE_I NT32(ksi, sfmmug, sf_ttel oad64k);
927 SAVE_UI NT64(ksi, vm nfo, swap_alloc); 993 SAVE_I NT32(ksi, sfrmmug, sf_ttel oad512k);
928 SAVE_UI NT64(ksi, vm nfo, swap_avail); 994 SAVE_I NT32(ksi, sfmmg, sf_ttel oad4m);
929 SAVE_UI NT64(ksi, vmi nfo, swap_free); 995 SAVE_| NT32(ksi, sfmmug, sf_ttel oad32m;
930 SAVE_Ul NT64(ksi, vm nfo, updates); 996 SAVE | NT32(ksi, sfmrug, sf_ttel oad256m);
931 } 997 SAVE | NT32(ksi, sfmrug, sf_tsb_| oad8k);
998 SAVE_| NT32(ksi, sfmmg, sf_tsb_| oad4m;
933 static void 999 SAVE_| NT32(ksi, sfmmug, sf_hblk_hit);
934 save_nfs(kstat_t *kp, ks_instance_t *ksi) 1000 SAVE | NT32(ksi, sfmrug, sf_hbl k8 _ncreate);
935 { 1001 SAVE_I NT32(ksi, sfmmug, sf_hbl k8_nall oc);
936 struct mtinfo_kstat *mtinfo = (struct mmtinfo_kstat *)(kp->ks_data); 1002 SAVE_| NT32(ksi, sfmmug, sf_hbl kl_ncreate);
1003 SAVE_I NT32(ksi, sfmmug, sf_hbl kl_nall oc);
938 assert (kp->ks_data_size == sizeof (struct mmtinfo_kstat)); 1004 SAVE_| NT32(ksi, sfrmmug, sf_hblk_slab_cnt);
1005 SAVE_I NT32(ksi, sfmmug, sf_hblk_reserve_cnt);
940 SAVE_STRI NG(ksi, mtinfo, mk_proto); 1006 SAVE_| NT32(ksi, sfmmug, sf_hblk_recurse_cnt);
941 SAVE_Ul NT32(ksi, mtinfo, mk_vers); 1007 SAVE_| NT32(ksi, sfmmug, sf_hblk_reserve_hit);
942 SAVE_Ul NT32(ksi, mtinfo, mk_flags); 1008 SAVE | NT32(ksi, sfmmug, sf_get_free_success);
943 SAVE_Ul NT32(ksi, mtinfo, mk_secnod); 1009 SAVE | NT32(ksi, sfmrug, sf_get_free_throttle);
944 SAVE_UI NT32(ksi, mtinfo, mk_curread); 1010 SAVE_| NT32(ksi, sfrmmug, sf_get_free_fail);
945 SAVE_UI NT32(ksi, mtinfo, mk_curwite); 1011 SAVE_| NT32(ksi, sfmmg, sf_put_free_success);
946 SAVE_I NT32(ksi, mtinfo, mk_tineo); 1012 SAVE_| NT32(ksi, sfmmug, sf_put_free fail);
947 SAVE_I NT32(ksi, mtinfo, mk_retrans); 1013 SAVE_I NT32(ksi, sfmmug, sf_pgcol or_conflict);
948 SAVE_UI NT32(ksi, mtinfo, mk_acregmn); 1014 SAVE_| NT32(ksi, sfmmg, sf_uncache_conflict);
949 SAVE_UI NT32(ksi, mtinfo, mk_acregnex); 1015 SAVE_|I NT32(ksi, sfmmug, sf_unload_conflict);
950 SAVE_UI NT32(ksi, mmtinfo, m k_acdirmn); 1016 SAVE_| NT32(ksi, sfmmug, sf_ismuncache);
951 SAVE_Ul NT32(ksi, mtinfo, m k_acdirnax); 1017 SAVE | NT32(ksi, sfmmug, sf_ismrecache);
952 SAVE_UI NT32_X(ksi, "lookup_srtt", mmtinfo->m k_timers[0].srtt); 1018 SAVE_| NT32(ksi, sfmmug, sf_recache);
953 SAVE_UI NT32_X(ksi, "I ookup_deviate", mtinfo->m k_tinmers[0].deviate); 1019 SAVE_| NT32(ksi, sfmmg, sf_steal _count);
954 SAVE_UI NT32_X(ksi, "lookup_rtxcur", mmtinfo->mk_timers[O0].rtxcur); 1020 SAVE_| NT32(ksi, sfmmug, sf_pagesync);
955 SAVE Ul NT32_X(ksi, "read_srtt", mtinfo->m k_tiners[1].srtt); 1021 SAVE_I NT32(ksi, sfrmmug, sf_clrwt);
956 SAVE_UI NT32_X(ksi, "read_deviate", mtinfo->mk_tinmers[1].deviate); 1022 SAVE_| NT32(ksi, sfmmug, sf_pagesync_invalid);
957 SAVE_UI NT32_X(ksi, "read_rtxcur", mmtinfo->m k_tinmers[1].rtxcur); 1023 SAVE_| NT32(ksi, sfmmg, sf_kernel _xcalls);
958 SAVE_UI NT32_X(ksi, "wite_srtt", mmtinfo->m k_timers[2].srtt); 1024 SAVE_| NT32(ksi, sfmmug, sf_user_xcalls);
959 SAVE_UI NT32_X(ksi, "wite_deviate", mtinfo->m k_tiners[2].deviate); 1025 SAVE | NT32(ksi, sfmmug, sf_tsb_grow);
960 SAVE_UI NT32_X(ksi, "wite_rtxcur", mtinfo->mk_timers[2].rtxcur); 1026 SAVE_I NT32(ksi, sfmmug, sf_tsb_shrink);
961 SAVE_UI NT32(ksi, mtinfo, mk_noresponse); 1027 SAVE_| NT32(ksi, sfmmg, sf_tsb_resize_failures);
962 SAVE_Ul NT32(ksi, mtinfo, mk_failover); 1028 SAVE | NT32(ksi, sfmmug, sf_tsb_reloc);
963 SAVE_Ul NT32(ksi, mtinfo, mk_remap); 1029 SAVE | NT32(ksi, sfmrug, sf_user_vtop);
964 SAVE_STRI NG(ksi, mtinfo, mk_curserver); 1030 SAVE_I NT32(ksi, sfmmug, sf_ctx_inv);
965 } 1031 SAVE_| NT32(ksi, sfrmmug, sf_tlb_reprog_pgsz);
1032 SAVE_| NT32(ksi, sfmmug, sf_region_remap_denmap);
967 #ifdef __sparc 1033 SAVE | NT32(ksi, sfmmug, sf_create_scd);
968 static void 1034 SAVE | NT32(ksi, sfmrug, sf_join_scd);
969 save_sfrmmu_gl obal _stat (kstat_t *kp, ks_instance_t *ksi) 1035 SAVE_| NT32(ksi, sfmmg, sf_|eave_scd);
970 { 1036 SAVE_I NT32(ksi, sfmmg, sf_destroy_scd);
971 struct sfmu_gl obal _stat *sfmmug = 1037 }
972 (struct sfrmmu_gl obal _stat *)(kp->ks_data); 1038 #endi f
974 assert (kp->ks_data_si ze == sizeof (struct sfmmu_global _stat)); 1040 #ifdef __sparc
1041 static void
976 SAVE | NT32(ksi, sfmmug, sf_tsb_exceptions); 1042 save_sfmmu_t sbsize_stat(kstat_t *kp, ks_instance_t *ksi)
977 SAVE_I NT32(ksi, sfmmug, sf_tsb_rai se_exception); 1043 {
978 SAVE_| NT32(ksi, sfmmg, sf_pagefaults); 1044 struct sfmmu_tsbsize_stat *sfnmmut;
979 SAVE_I NT32(ksi, sfmmug, sf_uhash_searches);
980 SAVE | NT32(ksi, sfmrug, sf_uhash_Ilinks); 1046 assert (kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat));
981 SAVE_| NT32(ksi, sfmrug, sf_khash_searches); 1047 sfmmut = (struct sfmmu_tsbsize_stat *)(kp->ks_data);
982 SAVE_I NT32(ksi, sfmmg, sf_khash_links);
983 SAVE_| NT32(ksi, sfmmug, sf_swapout); 1049 SAVE_| NT32(ksi, sfmmut, sf_tsbsz_8k);
984 SAVE | NT32(ksi, sfmmug, sf_tsb_alloc); 1050 SAVE | NT32(ksi, sfmmut, sf_tsbsz_16k);
985 SAVE | NT32(ksi, sfmrug, sf_tsb_allocfail); 1051 SAVE | NT32(ksi, sfmmut, sf_tsbsz_32k);

new usr/src/cnd/ stat/kstat/kstat.c

1052

1053

1054

1055

1056

1057

1058

1059 }

1060 #endi f

1062 #i f def

SAVE_| NT32(ks
SAVE_| NT32(ks
SAVE | NT32(ks
SAVE_| NT32(ks
SAVE_| NT32(ks
SAVE_| NT32(ks
SAVE_| NT32(ks

sfmmut, sf_tsbsz_64k);
sfmmut, sf_tsbsz_128k);
sfmmut, sf_tsbsz_256k);
sfmut, sf_tsbsz_512k);
sfmmut, sf_tsbsz_1m;
sfrmmut, sf_tsbsz_2m;
sfmut, sf_tsbsz_4m;

__sparc

1063 static void
1064 save_si mstat (kstat_t *kp, ks_instance_t *ksi)

1065 {
1066
1067
1068
1069

1071

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1084

1085

1086

1087

1088 }

1089 #endi f

1091 #i f def
1092 /*

1093
1094

uchar_t *sinmstat;

char *si mm_buf ;
char *list = NULL;
int i;

assert (kp->ks_data_si ze == sizeof (uchar_t) * SI MM COUNT);

for (i =0, sinmmstat = (uchar_t *)(kp->ks_data); i
I ++, simstat++)
if (list == NULL) {
(void) asprintf(&immbuf, "%, ", *simmstat);
} else {
(void) asprintf(&simmbuf, "%%,", list, *simstat);
free(list);

< SI MM _COUNT - 1

list = sinmmbuf;

}

(void) asprintf(&sinmmbuf, "%%", list, *simstat);
SAVE_STRI NG_X(ksi, "status", sinmm buf)

free(list);

free(si nmbuf);

__sparc

* Hel per function for save_tenperature().
=Y

1095 static char *
1096 short_array_to_string(short *shortp, int |en)

1097 {
1098
1099

1101
1102
1103
1104
1105
1106
1107
1108
1109

1111
1112
1113
1114 }

char *|ist = NULL;
char *|ist_buf;
for (; len > 1; len--, shortp++) {
if (list == NULL)

(void) asprintf(&ist_buf, "%l, ", *shortp);
} else {
(void) asprintf(&ist_buf, "%%l,", list, *shortp);
free(list);
}
list = list_buf;
}
(void) asprintf(&ist_buf, "%%", list, *shortp);
free(list);

return (list_buf);

1116 static void
1117 save_tenperature(kstat_t *kp, ks_instance_t *ksi)

17

new usr/src/cnd/ stat/kstat/kstat.c

1118 {

1119 struct tenp_stats *tenps = (struct tenp_stats *)(kp->ks_data);
1120 char *buf ;

1121 int n=1;

1123 assert (kp->ks_data_si ze == sizeof (struct tenp_stats));
1125 SAVE_Ul NT32(ksi, tenps, index);

1127 buf = short_array_to_string(tenps->l1, L1_SZ);
1128 SAVE_STRING X(ksi, "T1", buf)

1129 free(buf);

1131 buf = short_array_to_string(tenps->l2, L2_SZ);
1132 SAVE_STRING X(ksi, "T2", buf)

1133 free(buf);

1135 buf = short_array_to_string(tenps->I3, L3_S7);
1136 SAVE_STRI NG X(ksi, "T3", buf)

1137 free(buf);

1139 buf = short_array_to_string(tenps->l4, L4_SZ);
1140 SAVE STRI NG X(ksi, "T4", buf)

1141 free(buf);

1143 buf = short_array_to_string(tenmps->l5, L5_SZ);
1144 SAVE_STRI NG X(ksi, "T5", buf)

1145 free(buf);

1147 SAVE_| NT32(ksi, tenps, max);

1148 SAVE_| NT32(ksi, tenps, min);

1149 SAVE | NT32(ksi, tenps, state);

1150 SAVE_| NT32(ksi, tenps, tenp_cnt);

1151 SAVE_| NT32(ksi, tenps, shutdown_cnt);

1152 SAVE_| NT32(ksi, tenps, version);

1153 SAVE | NT32(ksi, tenps, trend);

1154 SAVE | NT32(ksi, tenps, override);

1155 }

1156 #endi f

1158 #ifdef __sparc

1159 static void

1160 save_tenp_over (kstat_t *kp, ks_instance_t *ksi)
1161 {

1162 short *sh = (short *)(kp->ks_data);
1163 char *val ue;

1165 assert (kp->ks_data_size == sizeof (short));
1167 (void) asprintf(&value, "%u", *sh);

1168 SAVE_STRI NG _X(ksi, "override", value);
1169 free(val ue);

1170 }

1171 #endi f

1173 #ifdef __sparc

1174 static void

1175 save_ps_shadow kstat_t *kp, ks_instance_t *ksi)
1176 {

1177 uchar _t *uchar = (uchar_t *)(kp->ks_data);
1179 assert (kp->ks_data_size == SYS_PS_COUNT) ;
1181 SAVE_CHAR X(ksi, "core_0", *uchar++);
1182 SAVE_CHAR X(ksi, "core_1", *uchar++);
1183 SAVE_CHAR X(ksi, "core_2", *uchar++);

new usr/src/cnd/ stat/kstat/kstat.c

1184 SAVE_CHAR X(ksi, "core_3", *uchar++);

1185 SAVE_CHAR X(ksi, "core_4", *uchar++);

1186 SAVE_CHAR X(ksi, "core_5", *uchar++);

1187 SAVE_CHAR_X(ksi , "core_6", *uchar ++) ;

1188 SAVE_CHAR X(ksi, "core_7", *uchar++);

1189 SAVE_CHAR X(ksi, "pps_0", *uchar++);

1190 SAVE_CHAR X(ksi, "clk 33", *uchar ++) ;

1191 SAVE_CHAR X(ksi, "cl k_50" *uchar ++) ;

1192 SAVE_CHAR X(ksi, "v5_p", *uchar ++);

1193 SAVE_CHAR X(ksi , "v12_p", *uchar ++) ;

1194 SAVE_CHAR X(ksi, "v5_aux", *uchar++);

1195 SAVE_CHAR_X(ksi , "v5 p_pch" *uchar ++) ;

1196 SAVE_CHAR X(ksi, "v12_p_| pch" *uchar ++) ;

1197 SAVE_CHAR X(ksi, "v3_pch", *uchar++);

1198 SAVE_CHAR X(ksi. "v5_pch". *uchar++)

1199 SAVE_CHAR X(ksi, "p_fan", *uchar++);

1200 }

1201 #endif

1203 #ifdef __sparc

1204 static void

1205 save_fault_list(kstat_t *kp, ks_instance_t *Kksi)

1206 {

1207 struct ft_list *fault;

1208 char nane[KSTAT_STRLEN + 7];

1209 int i;

1211 for (i =1, fault = (struct ft_list *)(kp->ks_data);

1212 i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list);
1213 i++, fault++) {

1214 (void) snprintf(name, sizeof (nane), "unit_%", i);
1215 SAVE | NT32_X(ksi, name, fault->unit);

1216 voi d) snprintf(name, sizeof (nane), "type_ %", i);
1217 SAVE_I NT32_X(ksi, name, fault->type);

1218 (void) snprintf(name, sizeof (nane), "fclass_%", i);
1219 SAVE_I NT32_X(ksi, name, fault->fclass);

1220 (void) snprintf(name, sizeof (name), "create_tine_%l", i);
1221 SAVE_HRTI ME_X(ksi, nane, fault->create_tine);

1222 (void) snprintf(name, sizeof (nane), "nsg_%", i);
1223 SAVE_STRI NG _X(ksi, nane, faultp->nmsg);

1224 }

1225 }

1226 #endif

1228 static void

1229 save_naned(kstat_t *kp, ks_instance_t *ksi)

1230 {

1231 kstat _nanmed_t *knp;

1232 int n;

1234 (n = kp->ks_ndata, knp = KSTAT_NAMED PTR(kp); n > 0; n--, knp++) {
1235 sw tch (knp->data type) {

1236 case KSTAT_DATA_ CHAR:

1237 nvpair_i nsert(k5| , knp->nane,

1238 (ks_val ue_t *) &knp->val ue, KSTAT_DATA CHAR);
1239 break;

1240 case KSTAT_DATA | NT32:

1241 nvpair_insert(ksi, knp->nane,

1242 (ks_value_t *) &knp->val ue, KSTAT_DATA | NT32);
1243 break;

1244 case KSTAT_DATA Ul NT32:

1245 nvpai r_insert (ksi, knp->nane,

1246 (ks_value_t *) &knp->val ue, KSTAT_DATA Ul NT32);
1247 break;

1248 case KSTAT_DATA | NT64:

1249 nvpai r_i nsert (ksi, knp->nane,

19

new usr/src/cnd/ stat/kstat/kstat.c

(ks_value_t *) &knp->val ue, KSTAT_DATA | NT64);

ak;
case KSTAT_ DATA Ul NT64:

nvpai r_insert (ksi,

knp- >nane,

(ks_value_t *) &knp->val ue, KSTAT_DATA Ul NT64);

case KSTAT DATA STRI NG

SAVE_STRI NG_X(ksi ,

assert (B_FALSE);

assert(sizeof (intr_nanes) / sizeof (char *)

ks_i nstance_t

n < KSTAT_NUM I NTRS;

knp->nane, KSTAT_NAMED_STR _PTR(knp));

/* Invalid data type */

*ksi)

*intr = KSTAT_I NTR_PTR(Kp);

= {"hard", "soft", "watchdog", "spurious",

== KSTAT_NUM_I NTRS) ;

n++)

mtr_narres[n], intr->intrs[n]);

ks_i nstance_t *ksi)

0 = KSTAT_I O PTR(kp)

nread) ;
nwitten);
reads) ;
wites);
wine);

w entine);

w ast update) ;
rtime);
rlentine);

rl astupdate);
went) ;

rcnt);

000000000000

nstance_t *ksi)

mer = KSTAT_TI MER_PTR(kp) ;
ner, nane);

mer, numevents);

mer, el apsed_tine);

ner, mn_time);

ner, max_tinme);

mer, start_ti n'e)

mer, stop_time);

1250

1251 bre
1252

1253

1254

1255 break;
1256

1257

1258 br eak;
1259 defaul t:

1260

1261 br eak;
1262 }

1263 }

1264 }

1266 static void

1267 save_intr(kstat_t *kp,

1268 {

1269 kstat_intr_t

1270 char *intr_names[]
1271 “"mul tiple_service"};
1272 int n;

1274

1276 for (n = 0;

1277 SAVE_UI NT32_X(ksi |
1278 }

1280 static void

1281 save_io(kstat_t *kp,

1282 {

1283 kstat_io_t *ksi
1285 SAVE_Ul NT64(ksi, ksi
1286 SAVE_UI NT64(ksi, ksi
1287 SAVE_UI NT32(ksi, ksi
1288 SAVE_UI NT32(ksi, ksi
1289 SAVE_HRTI ME(ksi, ksi
1290 SAVE_HRTI ME(ksi, ksi
1291 SAVE_HRTI ME(ksi, ksi
1292 SAVE_HRTI ME(ksi, ksi
1293 SAVE_HRTI ME(ksi, ksi
1294 SAVE_HRTI ME(ksi, ksi
1295 SAVE_UI NT32(ksi, ksi
1296 SAVE_UI NT32(ksi, ksi
1297 }

1299 static void

1300 save_tinmer(kstat_t *kp, ks_i
1301 {

1302 kstat _tinmer_t *Kkti
1304 SAVE_STRI N ksi, kti
1305 SAVE_UI NT64(ksi, Kkti
1306 SAVE_HRTI ME(ksi, kti
1307 SAVE_HRTI ME(ksi, Kkti
1308 SAVE_HRTI ME(ksi, kti
1309 SAVE_HRTI ME(ksi, kti
1310 SAVE_HRTI ME(ksi, kti
1311 }

1312 #endif /* ! codereview */

20

new usr/src/cnd/ stat/kstat/kstat. h 1

R R R R

6655 Thu Aug 30 18:01:16 2012
new usr/src/cnd/ stat/kstat/kstat.h

749 "/usr/bin/kstat" should be rewitten in
IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END

*/

*

21/
22 * Copyright 2006 Sun M crosystens, Inc. All rights reserved.
23 * Copyright 2012 David Hoeppner. Al rights reserved.

*

/

26 #ifndef _STAT KSTAT H
27 #define _STAT_KSTAT H

29 /*
30 * Structures needed by the kstat reader functions
*/

32 #include <sys/var.h>

33 #include <sys/utsnane. h>
34 #include <sys/sysinfo.h>
35 #include <sys/flock. h>

36 #include <sys/dnlc. h>

37 #include <nfs/nfs.h>

38 #include <nfs/nfs_clnt.h>

40 #ifdef __sparc

41 #include <vm hat _sf nmu. h>
42 #incl ude <sys/simstat. h>
43 #include <sys/sysctrl.h>
44 #include <sys/fhc. h>

45 #endi f

47 #define KSTAT_DATA_HRTI ME (KSTAT_DATA_STRING + 1)

49 typedef union ks_val ue {

new usr/src/cnd/ stat/kstat/kstat. h

62 ui nt 64_t ui 64;
63 } ks_value_t;

65 #define SAVE_HRTIME(I, S, N)
{

67 ks_val ue_t v;

68 V. ui 64 = S->N;

69 nvpair_insert(l, #N, &v,
70 }

72 #define SAVE INT32(1, S, N

73 {

74 ks_val ue_t v;

75 V.i32 = S >N

76 nvpair_insert(l, #N, &v,
77 }

79 #define SAVE_UI NT32(1, S, N

80 {

81 ks_val ue_t v;

82 V. ui 32 = S >N,

83 nvpair_insert(l, #N, &v,
84 }

86 #define SAVE_INT64(I, S, N)
{

88 ks_val ue_t v;

89 V.i64 = S->N;

90 nvpair_insert(l, #N, &v,
91 }

93 #define SAVE_UINT64(1, S, N
{

KSTAT_DATA_Ul NT64) ;

KSTAT_DATA_| NT32) ;

KSTAT_DATA_UI NT32) ;

KSTAT_DATA_| NT64) ;

KSTAT_DATA_Ul NT64) ;

95 ks_val ue_t v;

96 V. ui 64 = S->N;

97 nvpair_insert(l, #N, &v,

98 }

100 /*

101 * We dont want const "strings" because we free
102 * the instances later

103 */

104 #define SAVE_ STRINGI, S, N

50 char c[16];

51 int32_t i 32;

52 ui nt 32_t ui 32;

53 struct {

54 uni on {

55 char *ptr;
56 char __pad[8];
57 } addr;

58 ui nt 32_t | en;
59 } str;

61 int64_t i 64;

106 ks_val ue_t v;

107 v.str.addr.ptr = safe_strdup(S->N);

108 v.str.len = strlen(S->N);

109 nvpair_insert(l, #N, &, KSTAT_DATA STRI NG ;
110 }

112 #define SAVE HRTIME X(I, N, V)

113 {

114 ks_val ue_t v;

115 V. ui 64 =V,

116 nvpair_insert(l, N, &, KSTAT_DATA HRTI ME);
117 }

119 #define SAVE_INT32_X(l, N, V)

120 {

121 ks_val ue_t v;

122 V.i32 =V,

123 nvpair_insert(l, N &, KSTAT_DATA |INT32);
124 }

126 #define SAVE U NT32 X(I, N, V)

127 {

——— — — ——— —— ——— ——

——— ——

——— —— ——— —— —

——— ——

new usr/src/cnd/ stat/kstat/kstat. h

128 ks_val ue_t v;

129 V.ui 32 =V,

130 nvpair_insert(l, N, &, KSTAT_DATA Ul NT32);
131 }

133 #define SAVE U NT64 X(I, N, V)

134 {

135 ks_val ue_t v;

136 V.ui 64 = V;

137 nvpair_insert(l, N, &, KSTAT_DATA Ul NT64);
138 }

140 #define SAVE_STRING X(I, N, V)

141 {

142 ks_val ue_t v;

143 v.str.addr.ptr = safe_strdup(V);

144 v.str.len = strlen(V);

145 nvpair_insert(l, N &, KSTAT_DATA_STRI NG ;
146 }

148 #define SAVE_CHAR X(I, N, V)

149 {

150 ks_val ue_t v;

151 asprmtf(&v str.addr. ptr, "%", V);

152 v.str.len = 1;

153 nvpair |nsert(| N, &, KSTAT_DATA STRI NG ;
154 }

156 #define DFL FMT

157 "nodul e: % 30.30s instance: % 6d\n"

158 "nane: % 30. 30s cl ass: % . 30s\ n"

160 #define JSON_FMI

161 "{An\t\"nmodule\": \"%\", \n"

162 "\t\"instance\": %, \n"

163 "\t\"nane\": \"%\",\n"

164 "\t\"class\": \"9%\",\n"

165 "\t\"statistics\": {\n"

167 #define KS DFMI "\t% 30s "
168 #define KS_JFMI "\t\t\"os\": "
169 #define KS_PFMI "%: %: %: 96"

171 typedef struct ks_instance {

172 I'ist_node_t ks_next:

173 char ks_nane[KSTAT _STRLEN ;
174 char ks_nodul e[KSTAT STRLEN]
175 char ks_cl ass[KSTAT_STRLEN] ;
176 int ks_i nstance;

177 list_t ks_nvlist;

178 } ks_instance_t;

180 typedef struct ks_nvpair {

181 list_node_t nv_next;

182 char nanme[KSTAT_STRLEN] ;
183 uchar _t data_type;

184 ks_val ue_t val ue;

185 } ks_nvpair_t;

187 typedef struct ks_sel ector {

188 list_node_t ks_next;
189 char *ks_nodul e;
190 char *ks_i nst ance;
191 char *Kks_nane;

192 char *ks_statistic;

193 } ks_selector_t;

——— ——— ——— ——

——— ———

——— ——

new usr/src/cnd/ stat/kstat/kstat. h

195 static void usage(voi d);

196 static int conpare_i nstances(ks_instance_t *, ks_instance_t *);
197 static void nvpair_insert(ks_instance_t *, char *, ks_value_t *,
198 static ks_sel ector_t *new_sel ector(void);

199 static void ks_instances_read(kstat _ctl _t *);

200 static void ks_val ue _print(ks_ nvpair_t *);

201 static void ks_i nstance_print(ks_instance_t *, ks_nvpair_t *);
202 static void ks_i nstances_print(void);

204 /* Raw kstat readers */
205 static void
206 static void
207 static void
208 static void
209 static void
210 static void
211 #if def sparc
212 static void
213 static void
214 static void

save_sf mu_gl obal
save_sfnmu_t sbsi ze_stat (kstat _t *, ks_instance_t
save_si mstat (kstat _t *,

save_cpu_stat (kstat _t *,
save_var (kstat _t *,
save_ncstats(kstat _t *, ks_instance_t *);
save_sysinfo(kstat_t *, ks_instance_t *);
save_vm nfo(kstat _t
save_nfs(kstat_t *,

_stat (kstat _t

215 /* Hel per function for save_tenperature()

216 static char
217 static void
218 static void
219 static void
220 static void
221 #endif

223 /* Naned kstat readers */
224 static void
225 static void
226 static void
227 static void

save_naned(kstat _t *,
save_intr(kstat_t
save_i o(kstat _t *,
save_tinmer(kstat_t *,

save_t enp_over (kstat _t *,
save_ps_shadow kstat _t *,
save_fault _list(kstat_t *

ks_i nstance_t *);

ks_instance_t *);

ks_instance_t *);
ks_instance_t *);

*, ks_instance_t *);
*

);

ks_instance_t *);

*/

*short _array_to_string(short
save_t enperature(kstat_t

int);

*, ks_instance_t *);
ks_i nstance_t

, ks_

*)s
ks_instance_t *);:
*

)i

i nstance_t

ks_instance_t *);

*, ks_instance_t *);
ks_instance_t *);

229 /* Typedef for raw kstat reader functions */
230 typedef void (*kstat_raw reader _t)(kstat _t *, ks_instance_t *);

232 static struct

233 kstat_raw reader_t fn;
234 char *nane;

235 } ks_raw_| ookup[] = {

236 /* Function nane

237 save_cpu_stat,

238 save_var,

239 save_ncstats,

240 save_sysi nfo,

241 save_vm nf o,

242 save_nfs,

243 #ifdef __sparc

244 save_sf mmu_gl obal _stat,
245 save_sf mu_t sbsi ze_st at
246 save_si rmst at ,

247 save_t enperat ure,

248 save_t enp_over,

249 save_ps_shadow,

250 save_faul t_list,

251 #endi f

252 {NULL, NULL},

253 };

255 static kstat_raw_reader_t

257 #endif /* _STAT_KSTAT_H */
258 #endif /* | codereview */

ks_instance_t *);

kstat name */
"cpu_stat:cpu_stat"},

"uni X:

"uni x:

"uni x:
"uni x:
"nfs:mtinfo"},

var"},

ncstats"},
sysinfo"},
vm nfo"},

:sfmmu_gl obal _stat"},
:sfnmmu_t sbsi ze_stat"},
:sinmstatus"},
:tenperature"},
:tenperature override"},
. ps_shadow'},

cfault _list"},

| ookup_raw kstat_fn(char *, char *);

uchar _t);

