
new/usr/src/cmd/stat/Makefile 1

**
 1267 Thu Aug 30 18:01:15 2012
new/usr/src/cmd/stat/Makefile
749 "/usr/bin/kstat" should be rewritten in C
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"
26 #
25 # cmd/stat/Makefile
26 #

28 include ../Makefile.cmd

30 SUBDIRS= iostat mpstat vmstat fsstat kstat
32 SUBDIRS= iostat mpstat vmstat fsstat

32 all := TARGET = all
33 install := TARGET = install
34 clean := TARGET = clean
35 clobber := TARGET = clobber
36 lint := TARGET = lint
37 _msg := TARGET = _msg

39 .KEEP_STATE:

41 all install lint clean clobber _msg: $(SUBDIRS)

43 $(SUBDIRS): FRC
44 @cd $@; pwd; $(MAKE) $(MFLAGS) $(TARGET)

46 FRC:

new/usr/src/cmd/stat/kstat/Makefile 1

**
 1511 Thu Aug 30 18:01:15 2012
new/usr/src/cmd/stat/kstat/Makefile
749 "/usr/bin/kstat" should be rewritten in C
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 PROG = kstat
27 OBJS = kstat.o
28 SRCS =$(OBJS:%.o=%.c) $(COMMON_SRCS)

30 include $(SRC)/cmd/Makefile.cmd
31 include $(SRC)/cmd/stat/Makefile.stat

33 LDLIBS += -lavl -lcmdutils -ldevinfo -lgen -lkstat
34 CFLAGS += $(CCVERBOSE) -I${STATCOMMONDIR}
35 FILEMODE= 0555

37 lint := LINTFLAGS = -muxs -I$(STATCOMMONDIR)

39 .KEEP_STATE:

41 all: $(PROG)

43 install: all $(ROOTPROG)

45 $(PROG): $(OBJS) $(COMMON_OBJS)
46 $(LINK.c) -o $(PROG) $(OBJS) $(COMMON_OBJS) $(LDLIBS)
47 $(POST_PROCESS)

49 %.o : $(STATCOMMONDIR)/%.c
50 $(COMPILE.c) -o $@ $<
51 $(POST_PROCESS_O)

53 clean:
54 -$(RM) $(OBJS) $(COMMON_OBJS)

56 lint: lint_SRCS

58 include $(SRC)/cmd/Makefile.targ
59 #endif /* ! codereview */

new/usr/src/cmd/stat/kstat/kstat.c 1

**
 33403 Thu Aug 30 18:01:16 2012
new/usr/src/cmd/stat/kstat/kstat.c
749 "/usr/bin/kstat" should be rewritten in C
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 David Hoeppner. All rights reserved.
25 */

27 /*
28 * Display kernel statistics
29 *
30 * This is a reimplementation of the perl kstat command originally found
31 * under usr/src/cmd/kstat/kstat.pl
32 *
33 * Incompatibilities:
34 * - perl regular expressions not longer supported
35 * - options checking is stricter
36 *
37 * Flags added:
38 * -C similar to the -p option but value is separated by a colon
39 * -h display help
40 * -j json format
41 */

43 #include <assert.h>
44 #include <ctype.h>
45 #include <errno.h>
46 #include <kstat.h>
47 #include <langinfo.h>
48 #include <libgen.h>
49 #include <limits.h>
50 #include <locale.h>
51 #include <stddef.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54 #include <string.h>
55 #include <strings.h>
56 #include <time.h>
57 #include <unistd.h>
58 #include <sys/list.h>
59 #include <sys/time.h>
60 #include <sys/types.h>

new/usr/src/cmd/stat/kstat/kstat.c 2

62 #include "kstat.h"
63 #include "statcommon.h"

65 char *cmdname = "kstat";
66 int caught_cont = 0;

68 static uint_t g_timestamp_fmt = NODATE;

70 /* Helper flag - header was printed already? */
71 static boolean_t g_headerflg;

73 /* Saved command line options */
74 static boolean_t g_cflg = B_FALSE;
75 static boolean_t g_jflg = B_FALSE;
76 static boolean_t g_lflg = B_FALSE;
77 static boolean_t g_pflg = B_FALSE;
78 static boolean_t g_qflg = B_FALSE;
79 static char *g_ks_class = "*";

81 /* Return zero if a selector did match */
82 static int g_matched = 1;

84 /* Sorted list of kstat instances */
85 static list_t instances_list;
86 static list_t selector_list;

88 int
89 main(int argc, char **argv)
90 {
91 ks_selector_t *nselector;
92 ks_selector_t *uselector;
93 kstat_ctl_t *kc;
94 hrtime_t start_n;
95 hrtime_t period_n;
96 boolean_t errflg = B_FALSE;
97 boolean_t nselflg = B_FALSE;
98 boolean_t uselflg = B_FALSE;
99 char *q;
100 int count = 1;
101 int infinite_cycles = 0;
102 int interval = 0;
103 int n = 0;
104 int c, m, tmp;

106 (void) setlocale(LC_ALL, "");
107 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
108 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it wasn’t */
109 #endif
110 (void) textdomain(TEXT_DOMAIN);

112 /*
113 * Create the selector list and a dummy default selector to match
114 * everything. While we process the cmdline options we will add
115 * selectors to this list.
116 */
117 (void) list_create(&selector_list, sizeof (ks_selector_t),
118 offsetof(ks_selector_t, ks_next));

120 nselector = new_selector();

122 /*
123 * Parse named command line arguments.
124 */
125 while ((c = getopt(argc, argv, "h?CqjlpT:m:i:n:s:c:")) != EOF)
126 switch (c) {
127 case ’h’:

new/usr/src/cmd/stat/kstat/kstat.c 3

128 case ’?’:
129 usage();
130 exit(0);
131 break;
132 case ’C’:
133 g_pflg = g_cflg = B_TRUE;
134 break;
135 case ’q’:
136 g_qflg = B_TRUE;
137 break;
138 case ’j’:
139 g_jflg = B_TRUE;
140 break;
141 case ’l’:
142 g_pflg = g_lflg = B_TRUE;
143 break;
144 case ’p’:
145 g_pflg = B_TRUE;
146 break;
147 case ’T’:
148 switch (*optarg) {
149 case ’d’:
150 g_timestamp_fmt = DDATE;
151 break;
152 case ’u’:
153 g_timestamp_fmt = UDATE;
154 break;
155 default:
156 errflg = B_TRUE;
157 }
158 break;
159 case ’m’:
160 nselflg = B_TRUE;
161 nselector->ks_module =
162 (char *)safe_strdup(optarg);
163 break;
164 case ’i’:
165 nselflg = B_TRUE;
166 nselector->ks_instance =
167 (char *)safe_strdup(optarg);
168 break;
169 case ’n’:
170 nselflg = B_TRUE;
171 nselector->ks_name =
172 (char *)safe_strdup(optarg);
173 break;
174 case ’s’:
175 nselflg = B_TRUE;
176 nselector->ks_statistic =
177 (char *)safe_strdup(optarg);
178 break;
179 case ’c’:
180 g_ks_class =
181 (char *)safe_strdup(optarg);
182 break;
183 default:
184 errflg = B_TRUE;
185 break;
186 }

188 if (g_qflg && (g_jflg || g_pflg)) {
189 (void) fprintf(stderr, gettext(
190 "-q and -lpj are mutually exclusive\n"));
191 errflg = B_TRUE;
192 }

new/usr/src/cmd/stat/kstat/kstat.c 4

194 if (errflg) {
195 usage();
196 exit(2);
197 }

199 argc -= optind;
200 argv += optind;

202 /*
203 * Consume the rest of the command line. Parsing the
204 * unnamed command line arguments.
205 */
206 while (argc--) {
207 errno = 0;
208 tmp = strtoul(*argv, &q, 10);
209 if (tmp == ULONG_MAX && errno == ERANGE) {
210 if (n == 0) {
211 (void) fprintf(stderr, gettext(
212 "Interval is too large\n"));
213 } else if (n == 1) {
214 (void) fprintf(stderr, gettext(
215 "Count is too large\n"));
216 }
217 usage();
218 exit(2);
219 }

221 if (errno != 0 || *q != ’\0’) {
222 m = 0;
223 uselector = new_selector();
224 while ((q = (char *)strsep(argv, ":")) != NULL) {
225 m++;
226 if (m > 4) {
227 free(uselector);
228 usage();
229 exit(2);
230 }

232 if (*q != ’\0’) {
233 switch (m) {
234 case 1:
235 uselector->ks_module =
236 (char *)safe_strdup(q);
237 break;
238 case 2:
239 uselector->ks_instance =
240 (char *)safe_strdup(q);
241 break;
242 case 3:
243 uselector->ks_name =
244 (char *)safe_strdup(q);
245 break;
246 case 4:
247 uselector->ks_statistic =
248 (char *)safe_strdup(q);
249 break;
250 default:
251 assert(B_FALSE);
252 }
253 }
254 }

256 if (m < 4) {
257 free(uselector);
258 usage();
259 exit(2);

new/usr/src/cmd/stat/kstat/kstat.c 5

260 }

262 uselflg = B_TRUE;
263 list_insert_tail(&selector_list, uselector);
264 } else {
265 if (tmp < 1) {
266 if (n == 0) {
267 (void) fprintf(stderr, gettext(
268 "Interval must be an "
269 "integer >= 1"));
270 } else if (n == 1) {
271 (void) fprintf(stderr, gettext(
272 "Count must be an integer >= 1"));
273 }
274 usage();
275 exit(2);
276 } else {
277 if (n == 0) {
278 interval = tmp;
279 count = -1;
280 } else if (n == 1) {
281 count = tmp;
282 } else {
283 usage();
284 exit(2);
285 }
286 }
287 n++;
288 }
289 argv++;
290 }

292 /*
293 * Check if we founded a named selector on the cmdline.
294 */
295 if (uselflg) {
296 if (nselflg) {
297 (void) fprintf(stderr, gettext(
298 "module:instance:name:statistic and "
299 "-m -i -n -s are mutually exclusive"));
300 usage();
301 exit(2);
302 } else {
303 free(nselector);
304 }
305 } else {
306 list_insert_tail(&selector_list, nselector);
307 }

309 assert(!list_is_empty(&selector_list));

311 (void) list_create(&instances_list, sizeof (ks_instance_t),
312 offsetof(ks_instance_t, ks_next));

314 kc = kstat_open();
315 if (kc == NULL) {
316 perror("kstat_open");
317 exit(3);
318 }

320 period_n = (hrtime_t)interval * NANOSEC;
321 start_n = gethrtime();

323 while (count == -1 || count-- > 0) {
324 ks_instances_read(kc);
325 ks_instances_print();

new/usr/src/cmd/stat/kstat/kstat.c 6

327 if (interval && count) {
328 sleep_until(&start_n, period_n, infinite_cycles,
329 &caught_cont);
330 (void) kstat_chain_update(kc);
331 (void) putchar(’\n’);
332 }
333 }

335 (void) kstat_close(kc);

337 return (g_matched);
338 }

340 /*
341 * Print usage.
342 */
343 static void
344 usage(void)
345 {
346 (void) fprintf(stderr, gettext(
347 "Usage:\n"
348 "kstat [-Cjlpq] [-T d|u] [-c class]\n"
349 " [-m module] [-i instance] [-n name] [-s statistic]\n"
350 " [interval [count]]\n"
351 "kstat [-Cjlpq] [-T d|u] [-c class]\n"
352 " [module:instance:name:statistic ...]\n"
353 " [interval [count]]\n"));
354 }

356 /*
357 * Sort compare function.
358 */
359 static int
360 compare_instances(ks_instance_t *l_arg, ks_instance_t *r_arg)
361 {
362 int rval;

364 rval = strcasecmp(l_arg->ks_module, r_arg->ks_module);
365 if (rval == 0) {
366 if (l_arg->ks_instance == r_arg->ks_instance) {
367 return (strcasecmp(l_arg->ks_name, r_arg->ks_name));
368 } else if (l_arg->ks_instance < r_arg->ks_instance) {
369 return (-1);
370 } else {
371 return (1);
372 }
373 } else {
374 return (rval);
375 }
376 }

378 /*
379 * Inserts an instance in the per selector list.
380 */
381 static void
382 nvpair_insert(ks_instance_t *ksi, char *name, ks_value_t *value,
383 uchar_t data_type)
384 {
385 ks_nvpair_t *instance;
386 ks_nvpair_t *tmp;

388 instance = (ks_nvpair_t *)malloc(sizeof (ks_nvpair_t));
389 if (instance == NULL) {
390 perror("malloc");
391 exit(3);

new/usr/src/cmd/stat/kstat/kstat.c 7

392 }

394 (void) strlcpy(instance->name, name, KSTAT_STRLEN);
395 (void) memcpy(&instance->value, value, sizeof (ks_value_t));
396 instance->data_type = data_type;

398 tmp = list_head(&ksi->ks_nvlist);
399 while (tmp != NULL && strcasecmp(instance->name, tmp->name) > 0)
400 tmp = list_next(&ksi->ks_nvlist, tmp);

402 list_insert_before(&ksi->ks_nvlist, tmp, instance);
403 }

405 /*
406 * Allocates a new all-matching selector.
407 */
408 static ks_selector_t *
409 new_selector(void)
410 {
411 ks_selector_t *selector;

413 selector = (ks_selector_t *)malloc(sizeof (ks_selector_t));
414 if (selector == NULL) {
415 perror("malloc");
416 exit(3);
417 }

419 (void) list_link_init(&selector->ks_next);

421 selector->ks_module = "*";
422 selector->ks_instance = "*";
423 selector->ks_name = "*";
424 selector->ks_statistic = "*";

426 return (selector);
427 }

429 /*
430 * This function was taken from the perl kstat module code - please
431 * see for further comments there.
432 */
433 static kstat_raw_reader_t
434 lookup_raw_kstat_fn(char *module, char *name)
435 {
436 char key[KSTAT_STRLEN * 2];
437 register char *f, *t;
438 int n = 0;

440 for (f = module, t = key; *f != ’\0’; f++, t++) {
441 while (*f != ’\0’ && isdigit(*f))
442 f++;
443 *t = *f;
444 }
445 *t++ = ’:’;

447 for (f = name; *f != ’\0’; f++, t++) {
448 while (*f != ’\0’ && isdigit(*f))
449 f++;
450 *t = *f;
451 }
452 *t = ’\0’;

454 while (ks_raw_lookup[n].fn != NULL) {
455 if (strncmp(ks_raw_lookup[n].name, key, strlen(key)) == 0)
456 return (ks_raw_lookup[n].fn);
457 n++;

new/usr/src/cmd/stat/kstat/kstat.c 8

458 }

460 return (0);
461 }

463 /*
464 * Iterate over all kernel statistics and save matches.
465 */
466 static void
467 ks_instances_read(kstat_ctl_t *kc)
468 {
469 kstat_raw_reader_t save_raw;
470 kid_t id;
471 ks_selector_t *selector;
472 ks_instance_t *ksi;
473 ks_instance_t *tmp;
474 kstat_t *kp;
475 boolean_t skip;
476 char *ks_number;

478 for (kp = kc->kc_chain; kp != NULL; kp = kp->ks_next) {
479 /* Don’t bother storing the kstat headers */
480 if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
481 continue;
482 }

484 /* Don’t bother storing raw stats we don’t understand */
485 if (kp->ks_type == KSTAT_TYPE_RAW) {
486 save_raw = lookup_raw_kstat_fn(kp->ks_module,
487 kp->ks_name);
488 if (save_raw == NULL) {
489 #ifdef REPORT_UNKNOWN
490 (void) fprintf(stderr,
491 "Unknown kstat type %s:%d:%s - "
492 "%d of size %d\n", kp->ks_module,
493 kp->ks_instance, kp->ks_name,
494 kp->ks_ndata, kp->ks_data_size);
495 #endif
496 continue;
497 }
498 }

500 /*
501 * Iterate over the list of selectors and skip
502 * instances we dont want. We filter for statistics
503 * later, as we dont know them yet.
504 */
505 skip = B_FALSE;
506 (void) asprintf(&ks_number, "%d", kp->ks_instance);
507 selector = list_head(&selector_list);
508 while (selector != NULL) {
509 if (!(gmatch(kp->ks_module, selector->ks_module) != 0 &&
510 gmatch(ks_number, selector->ks_instance) != 0 &&
511 gmatch(kp->ks_name, selector->ks_name) != 0 &&
512 gmatch(kp->ks_class, g_ks_class))) {
513 skip = B_TRUE;
514 }
515 selector = list_next(&selector_list, selector);
516 }

518 free(ks_number);

520 if (skip) {
521 continue;
522 }

new/usr/src/cmd/stat/kstat/kstat.c 9

524 /*
525 * Allocate a new instance and fill in the values
526 * we know so far.
527 */
528 ksi = (ks_instance_t *)malloc(sizeof (ks_instance_t));
529 if (ksi == NULL) {
530 perror("malloc");
531 exit(3);
532 }

534 (void) list_link_init(&ksi->ks_next);

536 (void) strlcpy(ksi->ks_module, kp->ks_module, KSTAT_STRLEN);
537 (void) strlcpy(ksi->ks_name, kp->ks_name, KSTAT_STRLEN);
538 (void) strlcpy(ksi->ks_class, kp->ks_class, KSTAT_STRLEN);

540 ksi->ks_instance = kp->ks_instance;

542 (void) list_create(&ksi->ks_nvlist, sizeof (ks_nvpair_t),
543 offsetof(ks_nvpair_t, nv_next));

545 SAVE_HRTIME_X(ksi, "crtime", kp->ks_crtime);
546 SAVE_HRTIME_X(ksi, "snaptime", kp->ks_snaptime);
547 if (g_pflg) {
548 SAVE_STRING_X(ksi, "class", kp->ks_class);
549 }

551 /* Insert this instance into a sorted list */
552 tmp = list_head(&instances_list);
553 while (tmp != NULL && compare_instances(ksi, tmp) > 0)
554 tmp = list_next(&instances_list, tmp);

556 list_insert_before(&instances_list, tmp, ksi);

558 /* Read the actual statistics */
559 id = kstat_read(kc, kp, NULL);
560 if (id == -1) {
561 perror("kstat_read");
562 continue;
563 }

565 switch (kp->ks_type) {
566 case KSTAT_TYPE_RAW:
567 save_raw(kp, ksi);
568 break;
569 case KSTAT_TYPE_NAMED:
570 save_named(kp, ksi);
571 break;
572 case KSTAT_TYPE_INTR:
573 save_intr(kp, ksi);
574 break;
575 case KSTAT_TYPE_IO:
576 save_io(kp, ksi);
577 break;
578 case KSTAT_TYPE_TIMER:
579 save_timer(kp, ksi);
580 break;
581 default:
582 assert(B_FALSE); /* Invalid type */
583 break;
584 }
585 }
586 }

588 /*
589 * Print the value of a name-value pair.

new/usr/src/cmd/stat/kstat/kstat.c 10

590 */
591 static void
592 ks_value_print(ks_nvpair_t *nvpair)
593 {
594 switch (nvpair->data_type) {
595 case KSTAT_DATA_CHAR:
596 (void) fprintf(stdout, "%s", nvpair->value.c);
597 break;
598 case KSTAT_DATA_INT32:
599 (void) fprintf(stdout, "%d", nvpair->value.i32);
600 break;
601 case KSTAT_DATA_UINT32:
602 (void) fprintf(stdout, "%u", nvpair->value.ui32);
603 break;
604 case KSTAT_DATA_INT64:
605 (void) fprintf(stdout, "%lld", nvpair->value.i64);
606 break;
607 case KSTAT_DATA_UINT64:
608 (void) fprintf(stdout, "%llu", nvpair->value.ui64);
609 break;
610 case KSTAT_DATA_STRING:
611 (void) fprintf(stdout, "%s", KSTAT_NAMED_STR_PTR(nvpair));
612 break;
613 case KSTAT_DATA_HRTIME:
614 if (nvpair->value.ui64 == 0)
615 (void) fprintf(stdout, "0");
616 else
617 (void) fprintf(stdout, "%.9f",
618 nvpair->value.ui64 / 1000000000.0);
619 break;
620 default:
621 assert(B_FALSE);
622 }
623 }

625 /*
626 * Print a single instance.
627 */
628 static void
629 ks_instance_print(ks_instance_t *ksi, ks_nvpair_t *nvpair)
630 {
631 if (g_headerflg) {
632 if (g_jflg) {
633 (void) fprintf(stdout, JSON_FMT,
634 ksi->ks_module, ksi->ks_instance,
635 ksi->ks_name, ksi->ks_class);
636 } else if (!g_pflg) {
637 (void) fprintf(stdout, DFLT_FMT,
638 ksi->ks_module, ksi->ks_instance,
639 ksi->ks_name, ksi->ks_class);
640 }
641 g_headerflg = B_FALSE;
642 }

644 if (g_jflg) {
645 (void) fprintf(stdout, KS_JFMT, nvpair->name);
646 if (nvpair->data_type == KSTAT_DATA_STRING) {
647 (void) putchar(’\"’);
648 ks_value_print(nvpair);
649 (void) putchar(’\"’);
650 } else {
651 ks_value_print(nvpair);
652 }
653 if (nvpair != list_tail(&ksi->ks_nvlist))
654 (void) putchar(’,’);
655 } else if (g_pflg) {

new/usr/src/cmd/stat/kstat/kstat.c 11

656 (void) fprintf(stdout, KS_PFMT,
657 ksi->ks_module, ksi->ks_instance,
658 ksi->ks_name, nvpair->name);
659 if (!g_lflg) {
660 (void) putchar(g_cflg ? ’:’: ’\t’);
661 ks_value_print(nvpair);
662 }
663 } else {
664 (void) fprintf(stdout, KS_DFMT, nvpair->name);
665 ks_value_print(nvpair);
666 }

668 (void) putchar(’\n’);
669 }

671 /*
672 * Print all instances.
673 */
674 static void
675 ks_instances_print(void)
676 {
677 ks_selector_t *selector;
678 ks_instance_t *ksi, *ktmp;
679 ks_nvpair_t *nvpair, *ntmp;

681 if (g_timestamp_fmt != NODATE)
682 print_timestamp(g_timestamp_fmt);

684 if (g_jflg)
685 (void) putchar(’[’);

687 /* Iterate over each selector */
688 selector = list_head(&selector_list);
689 while (selector != NULL) {

691 /* Iterate over each instance */
692 for (ksi = list_head(&instances_list); ksi != NULL;
693 ksi = list_next(&instances_list, ksi)) {

695 /* Finally iterate over each statistic */
696 g_headerflg = B_TRUE;
697 for (nvpair = list_head(&ksi->ks_nvlist);
698 nvpair != NULL;
699 nvpair = list_next(&ksi->ks_nvlist, nvpair)) {
700 if (gmatch(nvpair->name,
701 selector->ks_statistic) == 0)
702 continue;

704 g_matched = 0;
705 if (!g_qflg) {
706 ks_instance_print(ksi, nvpair);
707 }
708 }

710 if (!g_headerflg) {
711 if (g_jflg) {
712 (void) fprintf(stdout, "\t}\n}");
713 if (ksi != list_tail(&instances_list))
714 (void) putchar(’,’);
715 } else if (!g_pflg) {
716 (void) putchar(’\n’);
717 }
718 }
719 }

721 selector = list_next(&selector_list, selector);

new/usr/src/cmd/stat/kstat/kstat.c 12

722 }

724 if (g_jflg)
725 (void) fprintf(stdout, "]\n");

727 (void) fflush(stdout);

729 /* Free the instances list */
730 ksi = list_head(&instances_list);
731 while (ksi != NULL) {
732 nvpair = list_head(&ksi->ks_nvlist);
733 while (nvpair != NULL) {
734 ntmp = nvpair;
735 nvpair = list_next(&ksi->ks_nvlist, nvpair);
736 list_remove(&ksi->ks_nvlist, ntmp);
737 if (ntmp->data_type == KSTAT_DATA_STRING)
738 free(ntmp->value.str.addr.ptr);
739 free(ntmp);
740 }

742 ktmp = ksi;
743 ksi = list_next(&instances_list, ksi);
744 list_remove(&instances_list, ktmp);
745 list_destroy(&ktmp->ks_nvlist);
746 free(ktmp);
747 }
748 }

750 static void
751 save_cpu_stat(kstat_t *kp, ks_instance_t *ksi)
752 {
753 cpu_stat_t *stat;
754 cpu_sysinfo_t *sysinfo;
755 cpu_syswait_t *syswait;
756 cpu_vminfo_t *vminfo;

758 stat = (cpu_stat_t *)(kp->ks_data);
759 sysinfo = &stat->cpu_sysinfo;
760 syswait = &stat->cpu_syswait;
761 vminfo = &stat->cpu_vminfo;

763 SAVE_UINT32_X(ksi, "idle", sysinfo->cpu[CPU_IDLE]);
764 SAVE_UINT32_X(ksi, "user", sysinfo->cpu[CPU_USER]);
765 SAVE_UINT32_X(ksi, "kernel", sysinfo->cpu[CPU_KERNEL]);
766 SAVE_UINT32_X(ksi, "wait", sysinfo->cpu[CPU_WAIT]);
767 SAVE_UINT32_X(ksi, "wait_io", sysinfo->cpu[W_IO]);
768 SAVE_UINT32_X(ksi, "wait_swap", sysinfo->cpu[W_SWAP]);
769 SAVE_UINT32_X(ksi, "wait_pio", sysinfo->cpu[W_PIO]);
770 SAVE_UINT32(ksi, sysinfo, bread);
771 SAVE_UINT32(ksi, sysinfo, bwrite);
772 SAVE_UINT32(ksi, sysinfo, lread);
773 SAVE_UINT32(ksi, sysinfo, lwrite);
774 SAVE_UINT32(ksi, sysinfo, phread);
775 SAVE_UINT32(ksi, sysinfo, phwrite);
776 SAVE_UINT32(ksi, sysinfo, pswitch);
777 SAVE_UINT32(ksi, sysinfo, trap);
778 SAVE_UINT32(ksi, sysinfo, intr);
779 SAVE_UINT32(ksi, sysinfo, syscall);
780 SAVE_UINT32(ksi, sysinfo, sysread);
781 SAVE_UINT32(ksi, sysinfo, syswrite);
782 SAVE_UINT32(ksi, sysinfo, sysfork);
783 SAVE_UINT32(ksi, sysinfo, sysvfork);
784 SAVE_UINT32(ksi, sysinfo, sysexec);
785 SAVE_UINT32(ksi, sysinfo, readch);
786 SAVE_UINT32(ksi, sysinfo, writech);
787 SAVE_UINT32(ksi, sysinfo, rcvint);

new/usr/src/cmd/stat/kstat/kstat.c 13

788 SAVE_UINT32(ksi, sysinfo, xmtint);
789 SAVE_UINT32(ksi, sysinfo, mdmint);
790 SAVE_UINT32(ksi, sysinfo, rawch);
791 SAVE_UINT32(ksi, sysinfo, canch);
792 SAVE_UINT32(ksi, sysinfo, outch);
793 SAVE_UINT32(ksi, sysinfo, msg);
794 SAVE_UINT32(ksi, sysinfo, sema);
795 SAVE_UINT32(ksi, sysinfo, namei);
796 SAVE_UINT32(ksi, sysinfo, ufsiget);
797 SAVE_UINT32(ksi, sysinfo, ufsdirblk);
798 SAVE_UINT32(ksi, sysinfo, ufsipage);
799 SAVE_UINT32(ksi, sysinfo, ufsinopage);
800 SAVE_UINT32(ksi, sysinfo, inodeovf);
801 SAVE_UINT32(ksi, sysinfo, fileovf);
802 SAVE_UINT32(ksi, sysinfo, procovf);
803 SAVE_UINT32(ksi, sysinfo, intrthread);
804 SAVE_UINT32(ksi, sysinfo, intrblk);
805 SAVE_UINT32(ksi, sysinfo, idlethread);
806 SAVE_UINT32(ksi, sysinfo, inv_swtch);
807 SAVE_UINT32(ksi, sysinfo, nthreads);
808 SAVE_UINT32(ksi, sysinfo, cpumigrate);
809 SAVE_UINT32(ksi, sysinfo, xcalls);
810 SAVE_UINT32(ksi, sysinfo, mutex_adenters);
811 SAVE_UINT32(ksi, sysinfo, rw_rdfails);
812 SAVE_UINT32(ksi, sysinfo, rw_wrfails);
813 SAVE_UINT32(ksi, sysinfo, modload);
814 SAVE_UINT32(ksi, sysinfo, modunload);
815 SAVE_UINT32(ksi, sysinfo, bawrite);
816 #ifdef STATISTICS /* see header file */
817 SAVE_UINT32(ksi, sysinfo, rw_enters);
818 SAVE_UINT32(ksi, sysinfo, win_uo_cnt);
819 SAVE_UINT32(ksi, sysinfo, win_uu_cnt);
820 SAVE_UINT32(ksi, sysinfo, win_so_cnt);
821 SAVE_UINT32(ksi, sysinfo, win_su_cnt);
822 SAVE_UINT32(ksi, sysinfo, win_suo_cnt);
823 #endif

825 SAVE_INT32(ksi, syswait, iowait);
826 SAVE_INT32(ksi, syswait, swap);
827 SAVE_INT32(ksi, syswait, physio);

829 SAVE_UINT32(ksi, vminfo, pgrec);
830 SAVE_UINT32(ksi, vminfo, pgfrec);
831 SAVE_UINT32(ksi, vminfo, pgin);
832 SAVE_UINT32(ksi, vminfo, pgpgin);
833 SAVE_UINT32(ksi, vminfo, pgout);
834 SAVE_UINT32(ksi, vminfo, pgpgout);
835 SAVE_UINT32(ksi, vminfo, swapin);
836 SAVE_UINT32(ksi, vminfo, pgswapin);
837 SAVE_UINT32(ksi, vminfo, swapout);
838 SAVE_UINT32(ksi, vminfo, pgswapout);
839 SAVE_UINT32(ksi, vminfo, zfod);
840 SAVE_UINT32(ksi, vminfo, dfree);
841 SAVE_UINT32(ksi, vminfo, scan);
842 SAVE_UINT32(ksi, vminfo, rev);
843 SAVE_UINT32(ksi, vminfo, hat_fault);
844 SAVE_UINT32(ksi, vminfo, as_fault);
845 SAVE_UINT32(ksi, vminfo, maj_fault);
846 SAVE_UINT32(ksi, vminfo, cow_fault);
847 SAVE_UINT32(ksi, vminfo, prot_fault);
848 SAVE_UINT32(ksi, vminfo, softlock);
849 SAVE_UINT32(ksi, vminfo, kernel_asflt);
850 SAVE_UINT32(ksi, vminfo, pgrrun);
851 SAVE_UINT32(ksi, vminfo, execpgin);
852 SAVE_UINT32(ksi, vminfo, execpgout);
853 SAVE_UINT32(ksi, vminfo, execfree);

new/usr/src/cmd/stat/kstat/kstat.c 14

854 SAVE_UINT32(ksi, vminfo, anonpgin);
855 SAVE_UINT32(ksi, vminfo, anonpgout);
856 SAVE_UINT32(ksi, vminfo, anonfree);
857 SAVE_UINT32(ksi, vminfo, fspgin);
858 SAVE_UINT32(ksi, vminfo, fspgout);
859 SAVE_UINT32(ksi, vminfo, fsfree);
860 }

862 static void
863 save_var(kstat_t *kp, ks_instance_t *ksi)
864 {
865 struct var *var = (struct var *)(kp->ks_data);

867 assert(kp->ks_data_size == sizeof (struct var));

869 SAVE_INT32(ksi, var, v_buf);
870 SAVE_INT32(ksi, var, v_call);
871 SAVE_INT32(ksi, var, v_proc);
872 SAVE_INT32(ksi, var, v_maxupttl);
873 SAVE_INT32(ksi, var, v_nglobpris);
874 SAVE_INT32(ksi, var, v_maxsyspri);
875 SAVE_INT32(ksi, var, v_clist);
876 SAVE_INT32(ksi, var, v_maxup);
877 SAVE_INT32(ksi, var, v_hbuf);
878 SAVE_INT32(ksi, var, v_hmask);
879 SAVE_INT32(ksi, var, v_pbuf);
880 SAVE_INT32(ksi, var, v_sptmap);
881 SAVE_INT32(ksi, var, v_maxpmem);
882 SAVE_INT32(ksi, var, v_autoup);
883 SAVE_INT32(ksi, var, v_bufhwm);
884 }

886 static void
887 save_ncstats(kstat_t *kp, ks_instance_t *ksi)
888 {
889 struct ncstats *ncstats = (struct ncstats *)(kp->ks_data);

891 assert(kp->ks_data_size == sizeof (struct ncstats));

893 SAVE_INT32(ksi, ncstats, hits);
894 SAVE_INT32(ksi, ncstats, misses);
895 SAVE_INT32(ksi, ncstats, enters);
896 SAVE_INT32(ksi, ncstats, dbl_enters);
897 SAVE_INT32(ksi, ncstats, long_enter);
898 SAVE_INT32(ksi, ncstats, long_look);
899 SAVE_INT32(ksi, ncstats, move_to_front);
900 SAVE_INT32(ksi, ncstats, purges);
901 }

903 static void
904 save_sysinfo(kstat_t *kp, ks_instance_t *ksi)
905 {
906 sysinfo_t *sysinfo = (sysinfo_t *)(kp->ks_data);

908 assert(kp->ks_data_size == sizeof (sysinfo_t));

910 SAVE_UINT32(ksi, sysinfo, updates);
911 SAVE_UINT32(ksi, sysinfo, runque);
912 SAVE_UINT32(ksi, sysinfo, runocc);
913 SAVE_UINT32(ksi, sysinfo, swpque);
914 SAVE_UINT32(ksi, sysinfo, swpocc);
915 SAVE_UINT32(ksi, sysinfo, waiting);
916 }

918 static void
919 save_vminfo(kstat_t *kp, ks_instance_t *ksi)

new/usr/src/cmd/stat/kstat/kstat.c 15

920 {
921 vminfo_t *vminfo = (vminfo_t *)(kp->ks_data);

923 assert(kp->ks_data_size == sizeof (vminfo_t));

925 SAVE_UINT64(ksi, vminfo, freemem);
926 SAVE_UINT64(ksi, vminfo, swap_resv);
927 SAVE_UINT64(ksi, vminfo, swap_alloc);
928 SAVE_UINT64(ksi, vminfo, swap_avail);
929 SAVE_UINT64(ksi, vminfo, swap_free);
930 SAVE_UINT64(ksi, vminfo, updates);
931 }

933 static void
934 save_nfs(kstat_t *kp, ks_instance_t *ksi)
935 {
936 struct mntinfo_kstat *mntinfo = (struct mntinfo_kstat *)(kp->ks_data);

938 assert(kp->ks_data_size == sizeof (struct mntinfo_kstat));

940 SAVE_STRING(ksi, mntinfo, mik_proto);
941 SAVE_UINT32(ksi, mntinfo, mik_vers);
942 SAVE_UINT32(ksi, mntinfo, mik_flags);
943 SAVE_UINT32(ksi, mntinfo, mik_secmod);
944 SAVE_UINT32(ksi, mntinfo, mik_curread);
945 SAVE_UINT32(ksi, mntinfo, mik_curwrite);
946 SAVE_INT32(ksi, mntinfo, mik_timeo);
947 SAVE_INT32(ksi, mntinfo, mik_retrans);
948 SAVE_UINT32(ksi, mntinfo, mik_acregmin);
949 SAVE_UINT32(ksi, mntinfo, mik_acregmax);
950 SAVE_UINT32(ksi, mntinfo, mik_acdirmin);
951 SAVE_UINT32(ksi, mntinfo, mik_acdirmax);
952 SAVE_UINT32_X(ksi, "lookup_srtt", mntinfo->mik_timers[0].srtt);
953 SAVE_UINT32_X(ksi, "lookup_deviate", mntinfo->mik_timers[0].deviate);
954 SAVE_UINT32_X(ksi, "lookup_rtxcur", mntinfo->mik_timers[0].rtxcur);
955 SAVE_UINT32_X(ksi, "read_srtt", mntinfo->mik_timers[1].srtt);
956 SAVE_UINT32_X(ksi, "read_deviate", mntinfo->mik_timers[1].deviate);
957 SAVE_UINT32_X(ksi, "read_rtxcur", mntinfo->mik_timers[1].rtxcur);
958 SAVE_UINT32_X(ksi, "write_srtt", mntinfo->mik_timers[2].srtt);
959 SAVE_UINT32_X(ksi, "write_deviate", mntinfo->mik_timers[2].deviate);
960 SAVE_UINT32_X(ksi, "write_rtxcur", mntinfo->mik_timers[2].rtxcur);
961 SAVE_UINT32(ksi, mntinfo, mik_noresponse);
962 SAVE_UINT32(ksi, mntinfo, mik_failover);
963 SAVE_UINT32(ksi, mntinfo, mik_remap);
964 SAVE_STRING(ksi, mntinfo, mik_curserver);
965 }

967 #ifdef __sparc
968 static void
969 save_sfmmu_global_stat(kstat_t *kp, ks_instance_t *ksi)
970 {
971 struct sfmmu_global_stat *sfmmug =
972 (struct sfmmu_global_stat *)(kp->ks_data);

974 assert(kp->ks_data_size == sizeof (struct sfmmu_global_stat));

976 SAVE_INT32(ksi, sfmmug, sf_tsb_exceptions);
977 SAVE_INT32(ksi, sfmmug, sf_tsb_raise_exception);
978 SAVE_INT32(ksi, sfmmug, sf_pagefaults);
979 SAVE_INT32(ksi, sfmmug, sf_uhash_searches);
980 SAVE_INT32(ksi, sfmmug, sf_uhash_links);
981 SAVE_INT32(ksi, sfmmug, sf_khash_searches);
982 SAVE_INT32(ksi, sfmmug, sf_khash_links);
983 SAVE_INT32(ksi, sfmmug, sf_swapout);
984 SAVE_INT32(ksi, sfmmug, sf_tsb_alloc);
985 SAVE_INT32(ksi, sfmmug, sf_tsb_allocfail);

new/usr/src/cmd/stat/kstat/kstat.c 16

986 SAVE_INT32(ksi, sfmmug, sf_tsb_sectsb_create);
987 SAVE_INT32(ksi, sfmmug, sf_scd_1sttsb_alloc);
988 SAVE_INT32(ksi, sfmmug, sf_scd_2ndtsb_alloc);
989 SAVE_INT32(ksi, sfmmug, sf_scd_1sttsb_allocfail);
990 SAVE_INT32(ksi, sfmmug, sf_scd_2ndtsb_allocfail);
991 SAVE_INT32(ksi, sfmmug, sf_tteload8k);
992 SAVE_INT32(ksi, sfmmug, sf_tteload64k);
993 SAVE_INT32(ksi, sfmmug, sf_tteload512k);
994 SAVE_INT32(ksi, sfmmug, sf_tteload4m);
995 SAVE_INT32(ksi, sfmmug, sf_tteload32m);
996 SAVE_INT32(ksi, sfmmug, sf_tteload256m);
997 SAVE_INT32(ksi, sfmmug, sf_tsb_load8k);
998 SAVE_INT32(ksi, sfmmug, sf_tsb_load4m);
999 SAVE_INT32(ksi, sfmmug, sf_hblk_hit);

1000 SAVE_INT32(ksi, sfmmug, sf_hblk8_ncreate);
1001 SAVE_INT32(ksi, sfmmug, sf_hblk8_nalloc);
1002 SAVE_INT32(ksi, sfmmug, sf_hblk1_ncreate);
1003 SAVE_INT32(ksi, sfmmug, sf_hblk1_nalloc);
1004 SAVE_INT32(ksi, sfmmug, sf_hblk_slab_cnt);
1005 SAVE_INT32(ksi, sfmmug, sf_hblk_reserve_cnt);
1006 SAVE_INT32(ksi, sfmmug, sf_hblk_recurse_cnt);
1007 SAVE_INT32(ksi, sfmmug, sf_hblk_reserve_hit);
1008 SAVE_INT32(ksi, sfmmug, sf_get_free_success);
1009 SAVE_INT32(ksi, sfmmug, sf_get_free_throttle);
1010 SAVE_INT32(ksi, sfmmug, sf_get_free_fail);
1011 SAVE_INT32(ksi, sfmmug, sf_put_free_success);
1012 SAVE_INT32(ksi, sfmmug, sf_put_free_fail);
1013 SAVE_INT32(ksi, sfmmug, sf_pgcolor_conflict);
1014 SAVE_INT32(ksi, sfmmug, sf_uncache_conflict);
1015 SAVE_INT32(ksi, sfmmug, sf_unload_conflict);
1016 SAVE_INT32(ksi, sfmmug, sf_ism_uncache);
1017 SAVE_INT32(ksi, sfmmug, sf_ism_recache);
1018 SAVE_INT32(ksi, sfmmug, sf_recache);
1019 SAVE_INT32(ksi, sfmmug, sf_steal_count);
1020 SAVE_INT32(ksi, sfmmug, sf_pagesync);
1021 SAVE_INT32(ksi, sfmmug, sf_clrwrt);
1022 SAVE_INT32(ksi, sfmmug, sf_pagesync_invalid);
1023 SAVE_INT32(ksi, sfmmug, sf_kernel_xcalls);
1024 SAVE_INT32(ksi, sfmmug, sf_user_xcalls);
1025 SAVE_INT32(ksi, sfmmug, sf_tsb_grow);
1026 SAVE_INT32(ksi, sfmmug, sf_tsb_shrink);
1027 SAVE_INT32(ksi, sfmmug, sf_tsb_resize_failures);
1028 SAVE_INT32(ksi, sfmmug, sf_tsb_reloc);
1029 SAVE_INT32(ksi, sfmmug, sf_user_vtop);
1030 SAVE_INT32(ksi, sfmmug, sf_ctx_inv);
1031 SAVE_INT32(ksi, sfmmug, sf_tlb_reprog_pgsz);
1032 SAVE_INT32(ksi, sfmmug, sf_region_remap_demap);
1033 SAVE_INT32(ksi, sfmmug, sf_create_scd);
1034 SAVE_INT32(ksi, sfmmug, sf_join_scd);
1035 SAVE_INT32(ksi, sfmmug, sf_leave_scd);
1036 SAVE_INT32(ksi, sfmmug, sf_destroy_scd);
1037 }
1038 #endif

1040 #ifdef __sparc
1041 static void
1042 save_sfmmu_tsbsize_stat(kstat_t *kp, ks_instance_t *ksi)
1043 {
1044 struct sfmmu_tsbsize_stat *sfmmut;

1046 assert(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat));
1047 sfmmut = (struct sfmmu_tsbsize_stat *)(kp->ks_data);

1049 SAVE_INT32(ksi, sfmmut, sf_tsbsz_8k);
1050 SAVE_INT32(ksi, sfmmut, sf_tsbsz_16k);
1051 SAVE_INT32(ksi, sfmmut, sf_tsbsz_32k);

new/usr/src/cmd/stat/kstat/kstat.c 17

1052 SAVE_INT32(ksi, sfmmut, sf_tsbsz_64k);
1053 SAVE_INT32(ksi, sfmmut, sf_tsbsz_128k);
1054 SAVE_INT32(ksi, sfmmut, sf_tsbsz_256k);
1055 SAVE_INT32(ksi, sfmmut, sf_tsbsz_512k);
1056 SAVE_INT32(ksi, sfmmut, sf_tsbsz_1m);
1057 SAVE_INT32(ksi, sfmmut, sf_tsbsz_2m);
1058 SAVE_INT32(ksi, sfmmut, sf_tsbsz_4m);
1059 }
1060 #endif

1062 #ifdef __sparc
1063 static void
1064 save_simmstat(kstat_t *kp, ks_instance_t *ksi)
1065 {
1066 uchar_t *simmstat;
1067 char *simm_buf;
1068 char *list = NULL;
1069 int i;

1071 assert(kp->ks_data_size == sizeof (uchar_t) * SIMM_COUNT);

1073 for (i = 0, simmstat = (uchar_t *)(kp->ks_data); i < SIMM_COUNT - 1;
1074 i++, simmstat++) {
1075 if (list == NULL) {
1076 (void) asprintf(&simm_buf, "%d,", *simmstat);
1077 } else {
1078 (void) asprintf(&simm_buf, "%s%d,", list, *simmstat);
1079 free(list);
1080 }
1081 list = simm_buf;
1082 }

1084 (void) asprintf(&simm_buf, "%s%d", list, *simmstat);
1085 SAVE_STRING_X(ksi, "status", simm_buf);
1086 free(list);
1087 free(simm_buf);
1088 }
1089 #endif

1091 #ifdef __sparc
1092 /*
1093 * Helper function for save_temperature().
1094 */
1095 static char *
1096 short_array_to_string(short *shortp, int len)
1097 {
1098 char *list = NULL;
1099 char *list_buf;

1101 for (; len > 1; len--, shortp++) {
1102 if (list == NULL) {
1103 (void) asprintf(&list_buf, "%d,", *shortp);
1104 } else {
1105 (void) asprintf(&list_buf, "%s%d,", list, *shortp);
1106 free(list);
1107 }
1108 list = list_buf;
1109 }

1111 (void) asprintf(&list_buf, "%s%s", list, *shortp);
1112 free(list);
1113 return (list_buf);
1114 }

1116 static void
1117 save_temperature(kstat_t *kp, ks_instance_t *ksi)

new/usr/src/cmd/stat/kstat/kstat.c 18

1118 {
1119 struct temp_stats *temps = (struct temp_stats *)(kp->ks_data);
1120 char *buf;
1121 int n = 1;

1123 assert(kp->ks_data_size == sizeof (struct temp_stats));

1125 SAVE_UINT32(ksi, temps, index);

1127 buf = short_array_to_string(temps->l1, L1_SZ);
1128 SAVE_STRING_X(ksi, "l1", buf);
1129 free(buf);

1131 buf = short_array_to_string(temps->l2, L2_SZ);
1132 SAVE_STRING_X(ksi, "l2", buf);
1133 free(buf);

1135 buf = short_array_to_string(temps->l3, L3_SZ);
1136 SAVE_STRING_X(ksi, "l3", buf);
1137 free(buf);

1139 buf = short_array_to_string(temps->l4, L4_SZ);
1140 SAVE_STRING_X(ksi, "l4", buf);
1141 free(buf);

1143 buf = short_array_to_string(temps->l5, L5_SZ);
1144 SAVE_STRING_X(ksi, "l5", buf);
1145 free(buf);

1147 SAVE_INT32(ksi, temps, max);
1148 SAVE_INT32(ksi, temps, min);
1149 SAVE_INT32(ksi, temps, state);
1150 SAVE_INT32(ksi, temps, temp_cnt);
1151 SAVE_INT32(ksi, temps, shutdown_cnt);
1152 SAVE_INT32(ksi, temps, version);
1153 SAVE_INT32(ksi, temps, trend);
1154 SAVE_INT32(ksi, temps, override);
1155 }
1156 #endif

1158 #ifdef __sparc
1159 static void
1160 save_temp_over(kstat_t *kp, ks_instance_t *ksi)
1161 {
1162 short *sh = (short *)(kp->ks_data);
1163 char *value;

1165 assert(kp->ks_data_size == sizeof (short));

1167 (void) asprintf(&value, "%hu", *sh);
1168 SAVE_STRING_X(ksi, "override", value);
1169 free(value);
1170 }
1171 #endif

1173 #ifdef __sparc
1174 static void
1175 save_ps_shadow(kstat_t *kp, ks_instance_t *ksi)
1176 {
1177 uchar_t *uchar = (uchar_t *)(kp->ks_data);

1179 assert(kp->ks_data_size == SYS_PS_COUNT);

1181 SAVE_CHAR_X(ksi, "core_0", *uchar++);
1182 SAVE_CHAR_X(ksi, "core_1", *uchar++);
1183 SAVE_CHAR_X(ksi, "core_2", *uchar++);

new/usr/src/cmd/stat/kstat/kstat.c 19

1184 SAVE_CHAR_X(ksi, "core_3", *uchar++);
1185 SAVE_CHAR_X(ksi, "core_4", *uchar++);
1186 SAVE_CHAR_X(ksi, "core_5", *uchar++);
1187 SAVE_CHAR_X(ksi, "core_6", *uchar++);
1188 SAVE_CHAR_X(ksi, "core_7", *uchar++);
1189 SAVE_CHAR_X(ksi, "pps_0", *uchar++);
1190 SAVE_CHAR_X(ksi, "clk_33", *uchar++);
1191 SAVE_CHAR_X(ksi, "clk_50", *uchar++);
1192 SAVE_CHAR_X(ksi, "v5_p", *uchar++);
1193 SAVE_CHAR_X(ksi, "v12_p", *uchar++);
1194 SAVE_CHAR_X(ksi, "v5_aux", *uchar++);
1195 SAVE_CHAR_X(ksi, "v5_p_pch", *uchar++);
1196 SAVE_CHAR_X(ksi, "v12_p_pch", *uchar++);
1197 SAVE_CHAR_X(ksi, "v3_pch", *uchar++);
1198 SAVE_CHAR_X(ksi, "v5_pch", *uchar++);
1199 SAVE_CHAR_X(ksi, "p_fan", *uchar++);
1200 }
1201 #endif

1203 #ifdef __sparc
1204 static void
1205 save_fault_list(kstat_t *kp, ks_instance_t *ksi)
1206 {
1207 struct ft_list *fault;
1208 char name[KSTAT_STRLEN + 7];
1209 int i;

1211 for (i = 1, fault = (struct ft_list *)(kp->ks_data);
1212 i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list);
1213 i++, fault++) {
1214 (void) snprintf(name, sizeof (name), "unit_%d", i);
1215 SAVE_INT32_X(ksi, name, fault->unit);
1216 (void) snprintf(name, sizeof (name), "type_%d", i);
1217 SAVE_INT32_X(ksi, name, fault->type);
1218 (void) snprintf(name, sizeof (name), "fclass_%d", i);
1219 SAVE_INT32_X(ksi, name, fault->fclass);
1220 (void) snprintf(name, sizeof (name), "create_time_%d", i);
1221 SAVE_HRTIME_X(ksi, name, fault->create_time);
1222 (void) snprintf(name, sizeof (name), "msg_%d", i);
1223 SAVE_STRING_X(ksi, name, faultp->msg);
1224 }
1225 }
1226 #endif

1228 static void
1229 save_named(kstat_t *kp, ks_instance_t *ksi)
1230 {
1231 kstat_named_t *knp;
1232 int n;

1234 for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) {
1235 switch (knp->data_type) {
1236 case KSTAT_DATA_CHAR:
1237 nvpair_insert(ksi, knp->name,
1238 (ks_value_t *) &knp->value, KSTAT_DATA_CHAR);
1239 break;
1240 case KSTAT_DATA_INT32:
1241 nvpair_insert(ksi, knp->name,
1242 (ks_value_t *) &knp->value, KSTAT_DATA_INT32);
1243 break;
1244 case KSTAT_DATA_UINT32:
1245 nvpair_insert(ksi, knp->name,
1246 (ks_value_t *) &knp->value, KSTAT_DATA_UINT32);
1247 break;
1248 case KSTAT_DATA_INT64:
1249 nvpair_insert(ksi, knp->name,

new/usr/src/cmd/stat/kstat/kstat.c 20

1250 (ks_value_t *) &knp->value, KSTAT_DATA_INT64);
1251 break;
1252 case KSTAT_DATA_UINT64:
1253 nvpair_insert(ksi, knp->name,
1254 (ks_value_t *) &knp->value, KSTAT_DATA_UINT64);
1255 break;
1256 case KSTAT_DATA_STRING:
1257 SAVE_STRING_X(ksi, knp->name, KSTAT_NAMED_STR_PTR(knp));
1258 break;
1259 default:
1260 assert(B_FALSE); /* Invalid data type */
1261 break;
1262 }
1263 }
1264 }

1266 static void
1267 save_intr(kstat_t *kp, ks_instance_t *ksi)
1268 {
1269 kstat_intr_t *intr = KSTAT_INTR_PTR(kp);
1270 char *intr_names[] = {"hard", "soft", "watchdog", "spurious",
1271 "multiple_service"};
1272 int n;

1274 assert(sizeof (intr_names) / sizeof (char *) == KSTAT_NUM_INTRS);

1276 for (n = 0; n < KSTAT_NUM_INTRS; n++)
1277 SAVE_UINT32_X(ksi, intr_names[n], intr->intrs[n]);
1278 }

1280 static void
1281 save_io(kstat_t *kp, ks_instance_t *ksi)
1282 {
1283 kstat_io_t *ksio = KSTAT_IO_PTR(kp);

1285 SAVE_UINT64(ksi, ksio, nread);
1286 SAVE_UINT64(ksi, ksio, nwritten);
1287 SAVE_UINT32(ksi, ksio, reads);
1288 SAVE_UINT32(ksi, ksio, writes);
1289 SAVE_HRTIME(ksi, ksio, wtime);
1290 SAVE_HRTIME(ksi, ksio, wlentime);
1291 SAVE_HRTIME(ksi, ksio, wlastupdate);
1292 SAVE_HRTIME(ksi, ksio, rtime);
1293 SAVE_HRTIME(ksi, ksio, rlentime);
1294 SAVE_HRTIME(ksi, ksio, rlastupdate);
1295 SAVE_UINT32(ksi, ksio, wcnt);
1296 SAVE_UINT32(ksi, ksio, rcnt);
1297 }

1299 static void
1300 save_timer(kstat_t *kp, ks_instance_t *ksi)
1301 {
1302 kstat_timer_t *ktimer = KSTAT_TIMER_PTR(kp);

1304 SAVE_STRING(ksi, ktimer, name);
1305 SAVE_UINT64(ksi, ktimer, num_events);
1306 SAVE_HRTIME(ksi, ktimer, elapsed_time);
1307 SAVE_HRTIME(ksi, ktimer, min_time);
1308 SAVE_HRTIME(ksi, ktimer, max_time);
1309 SAVE_HRTIME(ksi, ktimer, start_time);
1310 SAVE_HRTIME(ksi, ktimer, stop_time);
1311 }
1312 #endif /* ! codereview */

new/usr/src/cmd/stat/kstat/kstat.h 1

**
 6655 Thu Aug 30 18:01:16 2012
new/usr/src/cmd/stat/kstat/kstat.h
749 "/usr/bin/kstat" should be rewritten in C
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Copyright 2012 David Hoeppner. All rights reserved.
24 */

26 #ifndef _STAT_KSTAT_H
27 #define _STAT_KSTAT_H

29 /*
30 * Structures needed by the kstat reader functions
31 */
32 #include <sys/var.h>
33 #include <sys/utsname.h>
34 #include <sys/sysinfo.h>
35 #include <sys/flock.h>
36 #include <sys/dnlc.h>
37 #include <nfs/nfs.h>
38 #include <nfs/nfs_clnt.h>

40 #ifdef __sparc
41 #include <vm/hat_sfmmu.h>
42 #include <sys/simmstat.h>
43 #include <sys/sysctrl.h>
44 #include <sys/fhc.h>
45 #endif

47 #define KSTAT_DATA_HRTIME (KSTAT_DATA_STRING + 1)

49 typedef union ks_value {
50 char c[16];
51 int32_t i32;
52 uint32_t ui32;
53 struct {
54 union {
55 char *ptr;
56 char __pad[8];
57 } addr;
58 uint32_t len;
59 } str;

61 int64_t i64;

new/usr/src/cmd/stat/kstat/kstat.h 2

62 uint64_t ui64;
63 } ks_value_t;

65 #define SAVE_HRTIME(I, S, N) \
66 { \
67 ks_value_t v; \
68 v.ui64 = S->N; \
69 nvpair_insert(I, #N, &v, KSTAT_DATA_UINT64); \
70 }

72 #define SAVE_INT32(I, S, N) \
73 { \
74 ks_value_t v; \
75 v.i32 = S->N; \
76 nvpair_insert(I, #N, &v, KSTAT_DATA_INT32); \
77 }

79 #define SAVE_UINT32(I, S, N) \
80 { \
81 ks_value_t v; \
82 v.ui32 = S->N; \
83 nvpair_insert(I, #N, &v, KSTAT_DATA_UINT32); \
84 }

86 #define SAVE_INT64(I, S, N) \
87 { \
88 ks_value_t v; \
89 v.i64 = S->N; \
90 nvpair_insert(I, #N, &v, KSTAT_DATA_INT64); \
91 }

93 #define SAVE_UINT64(I, S, N) \
94 { \
95 ks_value_t v; \
96 v.ui64 = S->N; \
97 nvpair_insert(I, #N, &v, KSTAT_DATA_UINT64); \
98 }

100 /*
101 * We dont want const "strings" because we free
102 * the instances later
103 */
104 #define SAVE_STRING(I, S, N) \
105 { \
106 ks_value_t v; \
107 v.str.addr.ptr = safe_strdup(S->N); \
108 v.str.len = strlen(S->N); \
109 nvpair_insert(I, #N, &v, KSTAT_DATA_STRING); \
110 }

112 #define SAVE_HRTIME_X(I, N, V) \
113 { \
114 ks_value_t v; \
115 v.ui64 = V; \
116 nvpair_insert(I, N, &v, KSTAT_DATA_HRTIME); \
117 }

119 #define SAVE_INT32_X(I, N, V) \
120 { \
121 ks_value_t v; \
122 v.i32 = V; \
123 nvpair_insert(I, N, &v, KSTAT_DATA_INT32); \
124 }

126 #define SAVE_UINT32_X(I, N, V) \
127 { \

new/usr/src/cmd/stat/kstat/kstat.h 3

128 ks_value_t v; \
129 v.ui32 = V; \
130 nvpair_insert(I, N, &v, KSTAT_DATA_UINT32); \
131 }

133 #define SAVE_UINT64_X(I, N, V) \
134 { \
135 ks_value_t v; \
136 v.ui64 = V; \
137 nvpair_insert(I, N, &v, KSTAT_DATA_UINT64); \
138 }

140 #define SAVE_STRING_X(I, N, V) \
141 { \
142 ks_value_t v; \
143 v.str.addr.ptr = safe_strdup(V); \
144 v.str.len = strlen(V); \
145 nvpair_insert(I, N, &v, KSTAT_DATA_STRING); \
146 }

148 #define SAVE_CHAR_X(I, N, V) \
149 { \
150 ks_value_t v; \
151 asprintf(&v.str.addr.ptr, "%c", V); \
152 v.str.len = 1; \
153 nvpair_insert(I, N, &v, KSTAT_DATA_STRING); \
154 }

156 #define DFLT_FMT \
157 "module: %-30.30s instance: %-6d\n" \
158 "name: %-30.30s class: %-.30s\n"

160 #define JSON_FMT \
161 "{\n\t\"module\": \"%s\",\n" \
162 "\t\"instance\": %d,\n" \
163 "\t\"name\": \"%s\",\n" \
164 "\t\"class\": \"%s\",\n" \
165 "\t\"statistics\": {\n"

167 #define KS_DFMT "\t%-30s "
168 #define KS_JFMT "\t\t\"%s\": "
169 #define KS_PFMT "%s:%d:%s:%s"

171 typedef struct ks_instance {
172 list_node_t ks_next;
173 char ks_name[KSTAT_STRLEN];
174 char ks_module[KSTAT_STRLEN];
175 char ks_class[KSTAT_STRLEN];
176 int ks_instance;
177 list_t ks_nvlist;
178 } ks_instance_t;

180 typedef struct ks_nvpair {
181 list_node_t nv_next;
182 char name[KSTAT_STRLEN];
183 uchar_t data_type;
184 ks_value_t value;
185 } ks_nvpair_t;

187 typedef struct ks_selector {
188 list_node_t ks_next;
189 char *ks_module;
190 char *ks_instance;
191 char *ks_name;
192 char *ks_statistic;
193 } ks_selector_t;

new/usr/src/cmd/stat/kstat/kstat.h 4

195 static void usage(void);
196 static int compare_instances(ks_instance_t *, ks_instance_t *);
197 static void nvpair_insert(ks_instance_t *, char *, ks_value_t *, uchar_t);
198 static ks_selector_t *new_selector(void);
199 static void ks_instances_read(kstat_ctl_t *);
200 static void ks_value_print(ks_nvpair_t *);
201 static void ks_instance_print(ks_instance_t *, ks_nvpair_t *);
202 static void ks_instances_print(void);

204 /* Raw kstat readers */
205 static void save_cpu_stat(kstat_t *, ks_instance_t *);
206 static void save_var(kstat_t *, ks_instance_t *);
207 static void save_ncstats(kstat_t *, ks_instance_t *);
208 static void save_sysinfo(kstat_t *, ks_instance_t *);
209 static void save_vminfo(kstat_t *, ks_instance_t *);
210 static void save_nfs(kstat_t *, ks_instance_t *);
211 #ifdef __sparc
212 static void save_sfmmu_global_stat(kstat_t *, ks_instance_t *);
213 static void save_sfmmu_tsbsize_stat(kstat_t *, ks_instance_t *);
214 static void save_simmstat(kstat_t *, ks_instance_t *);
215 /* Helper function for save_temperature() */
216 static char *short_array_to_string(short *, int);
217 static void save_temperature(kstat_t *, ks_instance_t *);
218 static void save_temp_over(kstat_t *, ks_instance_t *);
219 static void save_ps_shadow(kstat_t *, ks_instance_t *);
220 static void save_fault_list(kstat_t *, ks_instance_t *);
221 #endif

223 /* Named kstat readers */
224 static void save_named(kstat_t *, ks_instance_t *);
225 static void save_intr(kstat_t *, ks_instance_t *);
226 static void save_io(kstat_t *, ks_instance_t *);
227 static void save_timer(kstat_t *, ks_instance_t *);

229 /* Typedef for raw kstat reader functions */
230 typedef void (*kstat_raw_reader_t)(kstat_t *, ks_instance_t *);

232 static struct {
233 kstat_raw_reader_t fn;
234 char *name;
235 } ks_raw_lookup[] = {
236 /* Function name kstat name */
237 {save_cpu_stat, "cpu_stat:cpu_stat"},
238 {save_var, "unix:var"},
239 {save_ncstats, "unix:ncstats"},
240 {save_sysinfo, "unix:sysinfo"},
241 {save_vminfo, "unix:vminfo"},
242 {save_nfs, "nfs:mntinfo"},
243 #ifdef __sparc
244 {save_sfmmu_global_stat, "unix:sfmmu_global_stat"},
245 {save_sfmmu_tsbsize_stat, "unix:sfmmu_tsbsize_stat"},
246 {save_simmstat, "unix:simm-status"},
247 {save_temperature, "unix:temperature"},
248 {save_temp_over, "unix:temperature override"},
249 {save_ps_shadow, "unix:ps_shadow"},
250 {save_fault_list, "unix:fault_list"},
251 #endif
252 {NULL, NULL},
253 };

255 static kstat_raw_reader_t lookup_raw_kstat_fn(char *, char *);

257 #endif /* _STAT_KSTAT_H */
258 #endif /* ! codereview */

