new usr/src/uts/ comon/os/kstat_fr.c 1

R R R R

38881 Thu Jan 31 12:29: 30 2013
new usr/src/uts/comon/os/ kstat_fr.c
XXXX Check for uninitialized kernel statistics

R R R R R

__unchanged_portion_onitted_

1132 /*
1133 * Activate a fully initialized kstat and nake it visible to /dev/kstat.
1134 */

1135 void

1136 kstat_install (kstat_t *ksp)

1137 {

1138 zonei d_t zoneid = ((ekstat_t *)ksp)->e_zone. zonei d;

1140 /*

1141 * |f this is a variable-size kstat, it MJST provide kstat data | ocking
1142 * to prevent data-size races with kstat readers.

1143 */

1144 if ((ksp->ks_flags & KSTAT FLAG VAR SI ZE) && ksp->ks_| ock == NULL) {
1145 pani c("kst at _install (’%; %, ‘U’):

1146 ‘cannot create vari abl e-size kstat without data | ock",
1147 ksp->ks_nodul e, ksp->ks_instance, ksp->ks_nane);

1148 }

1150 if (kstat_hol d_bykid(ksp- >ks_ki d, zoneid) != ksp)

1151 cnm_err (CE_WARN, "kstat_install(%): does not exist",

1152 (void *)ksp);

1153 return;

1154 }

1156 if (ksp->ks_type == KSTAT_TYPE_NAMED && ksp->ks_data != NULL) {

1157 int has Iong strings = 0;

1158 uint_t 1;

1159 kstat _named_t *knp = KSTAT_NAMED PTR(ksp);

1161 for (i = 0; i < ksp->ks_ndata; i++, knp++) {

1162 if (knp->data_type == KSTAT_DATA STRING ({

1163 has_l ong_strings = 1;

1164 break;

1165 }

1166 }

1167 /*

1168 * It is an error for a named kstat with fields of

1169 * KSTAT_DATA_STRING to be non-virtual

1170 */

1171 if (has_long_strings && ! (ksp->ks_flags & KSTAT FLAG VI RTUAL)) {
1172 pani c(kstat _install (' %', %, '%’ "

1173 "named kstat cont ai ni ng KSTAT_DATA_STRI NG "

1174 "is not virtual",

1175 ksp- >ks_nodul e, ksp->ks_i nstance,

1176 ksp- >ks_nane) ;

1177 }

1178 /*

1179 * The default snapshot routine does not handl e KSTAT_WRI TE
1180 * for long strings.

1181 */

1182 if (has_long_strings &% (ksp->ks_flags & KSTAT_FLAG WRI TABLE) &&
1183 (ksp->ks_snapshot == defaul t _kstat snapshot)) {

1184 pani c("kstat _install (" %", %, ' %’

1185 "named kstat contai n| ng KSTAT_DATA_STRI NG "

1186 "is witable but uses default snapshot routine",
1187 ksp- >ks_nodul e, ksp->ks_i nstance, ksp->ks_nane);
1188 }

1189 1

new usr/src/uts/comon/os/ kstat_fr.c

1191

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

1210 #if def
1211
1212
1213
1214
1215
1216
1217

1219
1220
1221
1222
1223
1224
1225
1226

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

1241
1242
1243
1244
1245
1246 #endi f

1248 #endi f
1249

1250

1251

1252

1253

1254 }

1256 /*

if (ksp->ks_flags & KSTAT_FLAG DORMANT) {

}
DEBUG
/*

/

* Ok Ok k% %

/
kmut ex
if (lp

} else

kstat went dornmant,

t *Ip = ksp->ks_|
1= NULL && MJTEX |
mut ex_enter (1 p);

We are reactivating a dormant kstat. Initialize the
caller’s underlying data to the value it had when the
and nmark the kstat as active.

Grab the provider’s kstat lock if it’s not already held.

ock;
NOT_HELI(I p)) {

(voi d) KSTAT UPDATE(ksp, KSTAT VRl TE)

mut ex_exi t (1p);

{

(voi d) KSTAT_UPDATE(ksp, KSTAT WRI TE);

}
ksp->ks_fl ags & ~KSTAT_FLAG DORMANT;

* Search for uninitialized kstats.

*/

switch (ksp->ks_type) {
case KSTAT_TYPE_NAMED: {

ui nt _t

i

kstat _naned_t *knp = KSTAT_NAMED PTR(ksp);

for (i

br eak;

}
defaul t:

br eak;

-0 i < ksp->ks_|

ndata; i++, knp++

{
f (knp->data_type > KSTAT_DATA STRING {
cm err(CE WARN,
"kst at |nstall(‘0/s %, 9%’):
"invalid data type",

ksp-
ksp-

}
/*

>ks_nodul e, ksp— >ks_i nst ance,
>ks_nane) ;

* |f the nane of this kstat is enpty

* we assune it
*

i f (knp->nane[0]

is uninitialized.

== "10) {

cm err(CE
"kst at |nstall(%', %, '9%’):

"uni

ksp-
ksp-

/* 1 codereview */

/*

* Now that the kstat is active,

*/

nitialized kstat",
>ks_modul e, ksp->ks_i nstance,
>ks_nane) ;

make it visible to the kstat driver.

ksp->ks_f|ags & ~KSTAT_FLAG | NVALI D;

kst at

_rele(ksp);

new usr/src/uts/comon/os/ kstat_fr.c

1257 * Renpve a kstat fromthe system O, if it’'s a persistent kstat,
1258 * just update the data and nark it as dornant.

1259 */

1260 void

1261 kstat_del ete(kstat_t *ksp)

1262 {

1263 knmutex_t *Ip;

1264 ekstat _t *e = (ekstat_t *)ksp;

1265 zonei d_t zonei d;

1266 kst at _zone_t *kz

1268 ASSERT(ksp != NULL)

1270 if (ksp == NULL)

1271 return;

1273 zonei d = e->e_zone. zonei d;

1275 I p = ksp->ks_I| ock;

1277 if (Ip!= NULL & MJUTEX HELD(Ip)) {

1278 pani c("kst at _del ete(%)) call er holds data | ock %",
1279 (void *)ksp, (void *)Ip);

1280 }

1282 if (kstat_hol d_byki d(ksp- >ks_ki d, zoneid) != ksp) {

1283 cnm_err (CE_WARN, "kstat_del ete(%): does not exist",
1284 (void *)ksp);

1285 return;

1286 }

1288 if (ksp->ks_flags & KSTAT_FLAG PERSI STENT) {

1289 /*

1290 * Update the data one last tine, so that all activity
1291 * prior to going dornmant has been accounted for.
1292 */

1293 KSTAT _ ENTER(ksp) ;

1294 (voi d) KSTAT UPDATE(ksp, KSTAT_READ);

1295 KSTAT_EXI T(ksp) ;

1297 /*

1298 * Mark the kstat as dormant and restore caller-nodifiable
1299 * fields to default values, so the kstat is readabl e during
1300 * the dormant phase.

1301 *

1302 ksp->ks_flags | = KSTAT_FLAG_DORMANT;

1303 ksp->ks_l ock = NULL;

1304 ksp- >ks_updat e = defaul t _kstat _updat e;

1305 ksp->ks_private = NULL;

1306 ksp->ks_snapshot = defaul t_kstat_snapshot;

1307 kst at _rel e(ksp);

1308 return;

1309 }

1311 /*

1312 * Renpve the kstat fromthe framework’s AVL trees,

1313 * free the allocated nenory, and increnent kstat cha| n_id so
1314 * [/dev/kstat clients can detect the event.

1315 */

1316 mut ex_ent er (&st at _chai n_| ock) ;

1317 avl _renove(&kstat_avl _bykid, e);

1318 avl _renove(&st at _avl bynama e);

1319 kstat _chai n_i d++;

1320 mut ex_exi t (&st at _chai n_| ock) ;

1322 kz = e->e_zone. next;

new usr/src/uts/comon/os/ kstat_fr.c

1323 whil e (kz I'= NULL) {

1324 kstat_zone_t *t = kz;

1326 kz = kz->next;

1327 kmem free(t, sizeof (*t));
1328 }

1329 kstat_rel e(ksp);

1330 kstat_free(e);

1331 }

1333 void

1334 kstat_del et e_bynanme_zone(const char *ks_nodul e, int ks_instance,
1335 const char *ks_nane, zoneid_t ks_zoneid)
1336 {

1337 kstat _t *ksp;

1339 ksp = kstat_hol d_bynane(ks_nodul e, ks_instance, ks_nane, ks_zoneid);
1340 if (ksp !'= NULL) {

1341 kstat _rel e(ksp);

1342 kst at _del et e(ksp);

1343 }

1344 }

1346 void

1347 kst at_del et e_bynane(const char *ks_nodul e,
1348 {

1349 kst at _del et e_bynanme_zone(ks_nodul e,

1350 }

1352 /*
1353 * The sparc V9 versions of these routines

1354 * the poor 32-bit conpiler can conprehend,

int ks_instance, const char *ks_nane)

ks_i nstance, ks_nanme, ALL_ZONES);

can be nuch cheaper than
so they're in sparcv9_subr.s.

1355 * For sinplicity, however, we always feed the C versions to lint.
*/

1356

1357 #if !defined(__sparc) || defined(lint) || defined(__lint)
1359 void

1360 kstat_waitq_enter(kstat_io_t *Kkiop)

1361 {

1362 hrtime_t new, delta;

1363 ul ong_t went;

1365 new = gethrtime_unscal ed();

1366 delta = new - ki op->w ast updat e;
1367 ki op- >W ast update = new,

1368 went = ki op->went ++;

1369 if (went !'= 0)

1370 ki op->W entinme += delta * went;
1371 ki op->wtinme += delta;
1372 }

1373 }

1375 voi d

1376 kstat_waitq_exit(kstat_io_t *kiop)

1377 {

1378 hrtime_t new, delta;

1379 ulong_t went;

1381 new = gethrtinme_unscal ed();

1382 delta = new - ki op->w ast updat e;
1383 ki op- >W ast update = new,

1384 went = ki op->went--;

1385 ASSERT((i nt)went > 0);

1386 ki op->M entime += delta * went;
1387 ki op->wtime += delta;

1388 }

new usr/src/uts/ comon/os/kstat_fr.c 5 new usr/src/uts/ comon/os/kstat_fr.c
1455 rcnt = kiop->rcnt--;
1390 void 1456 ASSERT((i nt)rcnt > 0);
1391 kstat _rung_enter(kstat_io_t *kiop) 1457 ki op->rlentime += delta * rcnt;
1392 { 1458 ki op->rtine += delta;
1393 hrtime_t new, delta;
1394 ulong_t rcnt; 1460 delta = new - ki op->w ast updat e;
1461 ki op- >W ast update = new;
1396 new = gethrtime_unscal ed(); 1462 went = ki op->went ++;
1397 delta = new - kiop->rlastupdate; 1463 if (went !'= 0)
1398 ki op->rl astupdate = new, 1464 ki op->W entinme += delta * went;
1399 rcnt = ki op->rcnt ++; 1465 ki op->wtinme += delta;
1400 if (rent '=0) { 1466 }
1401 ki op->rlentime += delta * rcnt; 1467 }
1402 ki op->rtime += delta;
1403 } 1469 #endi f
1404 }
1471 void
1406 void 1472 kstat_tinmer_start(kstat_timer_t *ktp)
1407 kstat_rung_exit(kstat_io_t *Kkiop) 1473 {
1408 { 1474 kt p->start_tinme = gethrtinme();
1409 hrtime_t new, delta; 1475 }
1410 ulong_t rcnt;
1477 void
1412 new = gethrtime_unscal ed(); 1478 kstat_timer_stop(kstat_timer_t *ktp)
1413 delta = new - kiop->rlastupdate; 1479 {
1414 ki op->rl astupdate = new; 1480 hrtime_t etine;
1415 rcnt = kiop->rcnt--; 1481 u_l ongl ong_t num events;
1416 ASSERT((int)rcnt > 0);
1417 ki op->rlentime += delta * rcnt; 1483 ktp->stop_time = etine = gethrtime();
1418 ki op->rtinme += delta; 1484 etine -= ktp->start_tine;
1419 } 1485 num events = ktp->num events;
1486 if (etime < ktp->min_time || numevents == 0)
1421 void 1487 ktp->mn_tinme = etimne;
1422 kstat _waitq_to_runq(kstat_io_t *kiop) 1488 if (etine > ktp->max_tine)
1423 { 1489 kt p->max_time = eting;
1424 hrtime_t new, delta; 1490 kt p->el apsed_tine += etine;
1425 ulong_t went, rcent; 1491 kt p- >num events = num events + 1;
1492 }
1427 new = gethrtinme_unscal ed();
1429 delta = new - ki op->w ast updat e;
1430 ki op- >W ast update = new;
1431 went = ki op->went - -;
1432 ASSERT((i nt)went > 0);
1433 ki op->W entinme += delta * went;
1434 ki op->wtinme += delta;
1436 delta = new - Kiop->rl astupdate;
1437 ki op->rl astupdate = new,
1438 rcnt = ki op->rcnt ++;
1439 if (rent '=0)
1440 kiop->rlentime += delta * rcnt;
1441 ki op->rtime += delta;
1442 }
1443 }
1445 void
1446 kstat _rung_back_to_waitq(kstat_io_t *kiop)
1447 {
1448 hrtime_t new, delta;
1449 ulong_t went, rcent;
1451 new = gethrtime_unscal ed();
1453 delta = new - Kkiop->rl astupdate;
1454 ki op->rl astupdate = new,

