
new/usr/src/uts/common/os/kstat_fr.c 1

**
 38881 Thu Jan 31 12:29:30 2013
new/usr/src/uts/common/os/kstat_fr.c
XXXX Check for uninitialized kernel statistics
**
______unchanged_portion_omitted_

1132 /*
1133 * Activate a fully initialized kstat and make it visible to /dev/kstat.
1134 */
1135 void
1136 kstat_install(kstat_t *ksp)
1137 {
1138 zoneid_t zoneid = ((ekstat_t *)ksp)->e_zone.zoneid;

1140 /*
1141 * If this is a variable-size kstat, it MUST provide kstat data locking
1142 * to prevent data-size races with kstat readers.
1143 */
1144 if ((ksp->ks_flags & KSTAT_FLAG_VAR_SIZE) && ksp->ks_lock == NULL) {
1145 panic("kstat_install(’%s’, %d, ’%s’): "
1146 "cannot create variable-size kstat without data lock",
1147 ksp->ks_module, ksp->ks_instance, ksp->ks_name);
1148 }

1150 if (kstat_hold_bykid(ksp->ks_kid, zoneid) != ksp) {
1151 cmn_err(CE_WARN, "kstat_install(%p): does not exist",
1152 (void *)ksp);
1153 return;
1154 }

1156 if (ksp->ks_type == KSTAT_TYPE_NAMED && ksp->ks_data != NULL) {
1157 int has_long_strings = 0;
1158 uint_t i;
1159 kstat_named_t *knp = KSTAT_NAMED_PTR(ksp);

1161 for (i = 0; i < ksp->ks_ndata; i++, knp++) {
1162 if (knp->data_type == KSTAT_DATA_STRING) {
1163 has_long_strings = 1;
1164 break;
1165 }
1166 }
1167 /*
1168 * It is an error for a named kstat with fields of
1169 * KSTAT_DATA_STRING to be non-virtual.
1170 */
1171 if (has_long_strings && !(ksp->ks_flags & KSTAT_FLAG_VIRTUAL)) {
1172 panic("kstat_install(’%s’, %d, ’%s’): "
1173 "named kstat containing KSTAT_DATA_STRING "
1174 "is not virtual",
1175 ksp->ks_module, ksp->ks_instance,
1176 ksp->ks_name);
1177 }
1178 /*
1179 * The default snapshot routine does not handle KSTAT_WRITE
1180 * for long strings.
1181 */
1182 if (has_long_strings && (ksp->ks_flags & KSTAT_FLAG_WRITABLE) &&
1183 (ksp->ks_snapshot == default_kstat_snapshot)) {
1184 panic("kstat_install(’%s’, %d, ’%s’): "
1185 "named kstat containing KSTAT_DATA_STRING "
1186 "is writable but uses default snapshot routine",
1187 ksp->ks_module, ksp->ks_instance, ksp->ks_name);
1188 }
1189 }

new/usr/src/uts/common/os/kstat_fr.c 2

1191 if (ksp->ks_flags & KSTAT_FLAG_DORMANT) {

1193 /*
1194 * We are reactivating a dormant kstat. Initialize the
1195 * caller’s underlying data to the value it had when the
1196 * kstat went dormant, and mark the kstat as active.
1197 * Grab the provider’s kstat lock if it’s not already held.
1198 */
1199 kmutex_t *lp = ksp->ks_lock;
1200 if (lp != NULL && MUTEX_NOT_HELD(lp)) {
1201 mutex_enter(lp);
1202 (void) KSTAT_UPDATE(ksp, KSTAT_WRITE);
1203 mutex_exit(lp);
1204 } else {
1205 (void) KSTAT_UPDATE(ksp, KSTAT_WRITE);
1206 }
1207 ksp->ks_flags &= ~KSTAT_FLAG_DORMANT;
1208 }

1210 #ifdef DEBUG
1211 /*
1212 * Search for uninitialized kstats.
1213 */
1214 switch (ksp->ks_type) {
1215 case KSTAT_TYPE_NAMED: {
1216 uint_t i;
1217 kstat_named_t *knp = KSTAT_NAMED_PTR(ksp);

1219 for (i = 0; i < ksp->ks_ndata; i++, knp++) {
1220 if (knp->data_type > KSTAT_DATA_STRING) {
1221 cmn_err(CE_WARN,
1222 "kstat_install(’%s’, %d, ’%s’): "
1223 "invalid data type",
1224 ksp->ks_module, ksp->ks_instance,
1225 ksp->ks_name);
1226 }

1228 /*
1229 * If the name of this kstat is empty
1230 * we assume it is uninitialized.
1231 */
1232 if (knp->name[0] == ’\0’) {
1233 cmn_err(CE_WARN,
1234 "kstat_install(’%s’, %d, ’%s’): "
1235 "uninitialized kstat",
1236 ksp->ks_module, ksp->ks_instance,
1237 ksp->ks_name);
1238 }
1239 }

1241 break;
1242 }
1243 default:
1244 break;
1245 }
1246 #endif

1248 #endif /* ! codereview */
1249 /*
1250 * Now that the kstat is active, make it visible to the kstat driver.
1251 */
1252 ksp->ks_flags &= ~KSTAT_FLAG_INVALID;
1253 kstat_rele(ksp);
1254 }

1256 /*

new/usr/src/uts/common/os/kstat_fr.c 3

1257 * Remove a kstat from the system. Or, if it’s a persistent kstat,
1258 * just update the data and mark it as dormant.
1259 */
1260 void
1261 kstat_delete(kstat_t *ksp)
1262 {
1263 kmutex_t *lp;
1264 ekstat_t *e = (ekstat_t *)ksp;
1265 zoneid_t zoneid;
1266 kstat_zone_t *kz;

1268 ASSERT(ksp != NULL);

1270 if (ksp == NULL)
1271 return;

1273 zoneid = e->e_zone.zoneid;

1275 lp = ksp->ks_lock;

1277 if (lp != NULL && MUTEX_HELD(lp)) {
1278 panic("kstat_delete(%p): caller holds data lock %p",
1279 (void *)ksp, (void *)lp);
1280 }

1282 if (kstat_hold_bykid(ksp->ks_kid, zoneid) != ksp) {
1283 cmn_err(CE_WARN, "kstat_delete(%p): does not exist",
1284 (void *)ksp);
1285 return;
1286 }

1288 if (ksp->ks_flags & KSTAT_FLAG_PERSISTENT) {
1289 /*
1290 * Update the data one last time, so that all activity
1291 * prior to going dormant has been accounted for.
1292 */
1293 KSTAT_ENTER(ksp);
1294 (void) KSTAT_UPDATE(ksp, KSTAT_READ);
1295 KSTAT_EXIT(ksp);

1297 /*
1298 * Mark the kstat as dormant and restore caller-modifiable
1299 * fields to default values, so the kstat is readable during
1300 * the dormant phase.
1301 */
1302 ksp->ks_flags |= KSTAT_FLAG_DORMANT;
1303 ksp->ks_lock = NULL;
1304 ksp->ks_update = default_kstat_update;
1305 ksp->ks_private = NULL;
1306 ksp->ks_snapshot = default_kstat_snapshot;
1307 kstat_rele(ksp);
1308 return;
1309 }

1311 /*
1312 * Remove the kstat from the framework’s AVL trees,
1313 * free the allocated memory, and increment kstat_chain_id so
1314 * /dev/kstat clients can detect the event.
1315 */
1316 mutex_enter(&kstat_chain_lock);
1317 avl_remove(&kstat_avl_bykid, e);
1318 avl_remove(&kstat_avl_byname, e);
1319 kstat_chain_id++;
1320 mutex_exit(&kstat_chain_lock);

1322 kz = e->e_zone.next;

new/usr/src/uts/common/os/kstat_fr.c 4

1323 while (kz != NULL) {
1324 kstat_zone_t *t = kz;

1326 kz = kz->next;
1327 kmem_free(t, sizeof (*t));
1328 }
1329 kstat_rele(ksp);
1330 kstat_free(e);
1331 }

1333 void
1334 kstat_delete_byname_zone(const char *ks_module, int ks_instance,
1335 const char *ks_name, zoneid_t ks_zoneid)
1336 {
1337 kstat_t *ksp;

1339 ksp = kstat_hold_byname(ks_module, ks_instance, ks_name, ks_zoneid);
1340 if (ksp != NULL) {
1341 kstat_rele(ksp);
1342 kstat_delete(ksp);
1343 }
1344 }

1346 void
1347 kstat_delete_byname(const char *ks_module, int ks_instance, const char *ks_name)
1348 {
1349 kstat_delete_byname_zone(ks_module, ks_instance, ks_name, ALL_ZONES);
1350 }

1352 /*
1353 * The sparc V9 versions of these routines can be much cheaper than
1354 * the poor 32-bit compiler can comprehend, so they’re in sparcv9_subr.s.
1355 * For simplicity, however, we always feed the C versions to lint.
1356 */
1357 #if !defined(__sparc) || defined(lint) || defined(__lint)

1359 void
1360 kstat_waitq_enter(kstat_io_t *kiop)
1361 {
1362 hrtime_t new, delta;
1363 ulong_t wcnt;

1365 new = gethrtime_unscaled();
1366 delta = new - kiop->wlastupdate;
1367 kiop->wlastupdate = new;
1368 wcnt = kiop->wcnt++;
1369 if (wcnt != 0) {
1370 kiop->wlentime += delta * wcnt;
1371 kiop->wtime += delta;
1372 }
1373 }

1375 void
1376 kstat_waitq_exit(kstat_io_t *kiop)
1377 {
1378 hrtime_t new, delta;
1379 ulong_t wcnt;

1381 new = gethrtime_unscaled();
1382 delta = new - kiop->wlastupdate;
1383 kiop->wlastupdate = new;
1384 wcnt = kiop->wcnt--;
1385 ASSERT((int)wcnt > 0);
1386 kiop->wlentime += delta * wcnt;
1387 kiop->wtime += delta;
1388 }

new/usr/src/uts/common/os/kstat_fr.c 5

1390 void
1391 kstat_runq_enter(kstat_io_t *kiop)
1392 {
1393 hrtime_t new, delta;
1394 ulong_t rcnt;

1396 new = gethrtime_unscaled();
1397 delta = new - kiop->rlastupdate;
1398 kiop->rlastupdate = new;
1399 rcnt = kiop->rcnt++;
1400 if (rcnt != 0) {
1401 kiop->rlentime += delta * rcnt;
1402 kiop->rtime += delta;
1403 }
1404 }

1406 void
1407 kstat_runq_exit(kstat_io_t *kiop)
1408 {
1409 hrtime_t new, delta;
1410 ulong_t rcnt;

1412 new = gethrtime_unscaled();
1413 delta = new - kiop->rlastupdate;
1414 kiop->rlastupdate = new;
1415 rcnt = kiop->rcnt--;
1416 ASSERT((int)rcnt > 0);
1417 kiop->rlentime += delta * rcnt;
1418 kiop->rtime += delta;
1419 }

1421 void
1422 kstat_waitq_to_runq(kstat_io_t *kiop)
1423 {
1424 hrtime_t new, delta;
1425 ulong_t wcnt, rcnt;

1427 new = gethrtime_unscaled();

1429 delta = new - kiop->wlastupdate;
1430 kiop->wlastupdate = new;
1431 wcnt = kiop->wcnt--;
1432 ASSERT((int)wcnt > 0);
1433 kiop->wlentime += delta * wcnt;
1434 kiop->wtime += delta;

1436 delta = new - kiop->rlastupdate;
1437 kiop->rlastupdate = new;
1438 rcnt = kiop->rcnt++;
1439 if (rcnt != 0) {
1440 kiop->rlentime += delta * rcnt;
1441 kiop->rtime += delta;
1442 }
1443 }

1445 void
1446 kstat_runq_back_to_waitq(kstat_io_t *kiop)
1447 {
1448 hrtime_t new, delta;
1449 ulong_t wcnt, rcnt;

1451 new = gethrtime_unscaled();

1453 delta = new - kiop->rlastupdate;
1454 kiop->rlastupdate = new;

new/usr/src/uts/common/os/kstat_fr.c 6

1455 rcnt = kiop->rcnt--;
1456 ASSERT((int)rcnt > 0);
1457 kiop->rlentime += delta * rcnt;
1458 kiop->rtime += delta;

1460 delta = new - kiop->wlastupdate;
1461 kiop->wlastupdate = new;
1462 wcnt = kiop->wcnt++;
1463 if (wcnt != 0) {
1464 kiop->wlentime += delta * wcnt;
1465 kiop->wtime += delta;
1466 }
1467 }

1469 #endif

1471 void
1472 kstat_timer_start(kstat_timer_t *ktp)
1473 {
1474 ktp->start_time = gethrtime();
1475 }

1477 void
1478 kstat_timer_stop(kstat_timer_t *ktp)
1479 {
1480 hrtime_t etime;
1481 u_longlong_t num_events;

1483 ktp->stop_time = etime = gethrtime();
1484 etime -= ktp->start_time;
1485 num_events = ktp->num_events;
1486 if (etime < ktp->min_time || num_events == 0)
1487 ktp->min_time = etime;
1488 if (etime > ktp->max_time)
1489 ktp->max_time = etime;
1490 ktp->elapsed_time += etime;
1491 ktp->num_events = num_events + 1;
1492 }

