1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /*
  26  * Architecture-independent CPU control functions.
  27  */
  28 
  29 #include <sys/types.h>
  30 #include <sys/param.h>
  31 #include <sys/var.h>
  32 #include <sys/thread.h>
  33 #include <sys/cpuvar.h>
  34 #include <sys/cpu_event.h>
  35 #include <sys/kstat.h>
  36 #include <sys/uadmin.h>
  37 #include <sys/systm.h>
  38 #include <sys/errno.h>
  39 #include <sys/cmn_err.h>
  40 #include <sys/procset.h>
  41 #include <sys/processor.h>
  42 #include <sys/debug.h>
  43 #include <sys/cpupart.h>
  44 #include <sys/lgrp.h>
  45 #include <sys/pset.h>
  46 #include <sys/pghw.h>
  47 #include <sys/kmem.h>
  48 #include <sys/kmem_impl.h>        /* to set per-cpu kmem_cache offset */
  49 #include <sys/atomic.h>
  50 #include <sys/callb.h>
  51 #include <sys/vtrace.h>
  52 #include <sys/cyclic.h>
  53 #include <sys/bitmap.h>
  54 #include <sys/nvpair.h>
  55 #include <sys/pool_pset.h>
  56 #include <sys/msacct.h>
  57 #include <sys/time.h>
  58 #include <sys/archsystm.h>
  59 #include <sys/sdt.h>
  60 #if defined(__x86) || defined(__amd64)
  61 #include <sys/x86_archext.h>
  62 #endif
  63 #include <sys/callo.h>
  64 
  65 extern int      mp_cpu_start(cpu_t *);
  66 extern int      mp_cpu_stop(cpu_t *);
  67 extern int      mp_cpu_poweron(cpu_t *);
  68 extern int      mp_cpu_poweroff(cpu_t *);
  69 extern int      mp_cpu_configure(int);
  70 extern int      mp_cpu_unconfigure(int);
  71 extern void     mp_cpu_faulted_enter(cpu_t *);
  72 extern void     mp_cpu_faulted_exit(cpu_t *);
  73 
  74 extern int cmp_cpu_to_chip(processorid_t cpuid);
  75 #ifdef __sparcv9
  76 extern char *cpu_fru_fmri(cpu_t *cp);
  77 #endif
  78 
  79 static void cpu_add_active_internal(cpu_t *cp);
  80 static void cpu_remove_active(cpu_t *cp);
  81 static void cpu_info_kstat_create(cpu_t *cp);
  82 static void cpu_info_kstat_destroy(cpu_t *cp);
  83 static void cpu_stats_kstat_create(cpu_t *cp);
  84 static void cpu_stats_kstat_destroy(cpu_t *cp);
  85 
  86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
  87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
  88 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
  89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
  90 
  91 /*
  92  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
  93  * max_cpu_seqid_ever, and dispatch queue reallocations.  The lock ordering with
  94  * respect to related locks is:
  95  *
  96  *      cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
  97  *
  98  * Warning:  Certain sections of code do not use the cpu_lock when
  99  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
 100  * all cpus are paused during modifications to this list, a solution
 101  * to protect the list is too either disable kernel preemption while
 102  * walking the list, *or* recheck the cpu_next pointer at each
 103  * iteration in the loop.  Note that in no cases can any cached
 104  * copies of the cpu pointers be kept as they may become invalid.
 105  */
 106 kmutex_t        cpu_lock;
 107 cpu_t           *cpu_list;              /* list of all CPUs */
 108 cpu_t           *clock_cpu_list;        /* used by clock to walk CPUs */
 109 cpu_t           *cpu_active;            /* list of active CPUs */
 110 static cpuset_t cpu_available;          /* set of available CPUs */
 111 cpuset_t        cpu_seqid_inuse;        /* which cpu_seqids are in use */
 112 
 113 cpu_t           **cpu_seq;              /* ptrs to CPUs, indexed by seq_id */
 114 
 115 /*
 116  * max_ncpus keeps the max cpus the system can have. Initially
 117  * it's NCPU, but since most archs scan the devtree for cpus
 118  * fairly early on during boot, the real max can be known before
 119  * ncpus is set (useful for early NCPU based allocations).
 120  */
 121 int max_ncpus = NCPU;
 122 /*
 123  * platforms that set max_ncpus to maxiumum number of cpus that can be
 124  * dynamically added will set boot_max_ncpus to the number of cpus found
 125  * at device tree scan time during boot.
 126  */
 127 int boot_max_ncpus = -1;
 128 int boot_ncpus = -1;
 129 /*
 130  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
 131  * used to size arrays that are indexed by CPU id.
 132  */
 133 processorid_t max_cpuid = NCPU - 1;
 134 
 135 /*
 136  * Maximum cpu_seqid was given. This number can only grow and never shrink. It
 137  * can be used to optimize NCPU loops to avoid going through CPUs which were
 138  * never on-line.
 139  */
 140 processorid_t max_cpu_seqid_ever = 0;
 141 
 142 int ncpus = 1;
 143 int ncpus_online = 1;
 144 
 145 /*
 146  * CPU that we're trying to offline.  Protected by cpu_lock.
 147  */
 148 cpu_t *cpu_inmotion;
 149 
 150 /*
 151  * Can be raised to suppress further weakbinding, which are instead
 152  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
 153  * while individual thread weakbinding synchronization is done under thread
 154  * lock.
 155  */
 156 int weakbindingbarrier;
 157 
 158 /*
 159  * Variables used in pause_cpus().
 160  */
 161 static volatile char safe_list[NCPU];
 162 
 163 static struct _cpu_pause_info {
 164         int             cp_spl;         /* spl saved in pause_cpus() */
 165         volatile int    cp_go;          /* Go signal sent after all ready */
 166         int             cp_count;       /* # of CPUs to pause */
 167         ksema_t         cp_sem;         /* synch pause_cpus & cpu_pause */
 168         kthread_id_t    cp_paused;
 169 } cpu_pause_info;
 170 
 171 static kmutex_t pause_free_mutex;
 172 static kcondvar_t pause_free_cv;
 173 
 174 void *(*cpu_pause_func)(void *) = NULL;
 175 
 176 
 177 static struct cpu_sys_stats_ks_data {
 178         kstat_named_t cpu_ticks_idle;
 179         kstat_named_t cpu_ticks_user;
 180         kstat_named_t cpu_ticks_kernel;
 181         kstat_named_t cpu_ticks_wait;
 182         kstat_named_t cpu_nsec_idle;
 183         kstat_named_t cpu_nsec_user;
 184         kstat_named_t cpu_nsec_kernel;
 185         kstat_named_t cpu_nsec_intr;
 186         kstat_named_t cpu_load_intr;
 187         kstat_named_t wait_ticks_io;
 188         kstat_named_t bread;
 189         kstat_named_t bwrite;
 190         kstat_named_t lread;
 191         kstat_named_t lwrite;
 192         kstat_named_t phread;
 193         kstat_named_t phwrite;
 194         kstat_named_t pswitch;
 195         kstat_named_t trap;
 196         kstat_named_t intr;
 197         kstat_named_t syscall;
 198         kstat_named_t sysread;
 199         kstat_named_t syswrite;
 200         kstat_named_t sysfork;
 201         kstat_named_t sysvfork;
 202         kstat_named_t sysexec;
 203         kstat_named_t readch;
 204         kstat_named_t writech;
 205         kstat_named_t rcvint;
 206         kstat_named_t xmtint;
 207         kstat_named_t mdmint;
 208         kstat_named_t rawch;
 209         kstat_named_t canch;
 210         kstat_named_t outch;
 211         kstat_named_t msg;
 212         kstat_named_t sema;
 213         kstat_named_t namei;
 214         kstat_named_t ufsiget;
 215         kstat_named_t ufsdirblk;
 216         kstat_named_t ufsipage;
 217         kstat_named_t ufsinopage;
 218         kstat_named_t procovf;
 219         kstat_named_t intrthread;
 220         kstat_named_t intrblk;
 221         kstat_named_t intrunpin;
 222         kstat_named_t idlethread;
 223         kstat_named_t inv_swtch;
 224         kstat_named_t nthreads;
 225         kstat_named_t cpumigrate;
 226         kstat_named_t xcalls;
 227         kstat_named_t mutex_adenters;
 228         kstat_named_t rw_rdfails;
 229         kstat_named_t rw_wrfails;
 230         kstat_named_t modload;
 231         kstat_named_t modunload;
 232         kstat_named_t bawrite;
 233         kstat_named_t iowait;
 234 } cpu_sys_stats_ks_data_template = {
 235         { "cpu_ticks_idle",     KSTAT_DATA_UINT64 },
 236         { "cpu_ticks_user",     KSTAT_DATA_UINT64 },
 237         { "cpu_ticks_kernel",   KSTAT_DATA_UINT64 },
 238         { "cpu_ticks_wait",     KSTAT_DATA_UINT64 },
 239         { "cpu_nsec_idle",      KSTAT_DATA_UINT64 },
 240         { "cpu_nsec_user",      KSTAT_DATA_UINT64 },
 241         { "cpu_nsec_kernel",    KSTAT_DATA_UINT64 },
 242         { "cpu_nsec_intr",      KSTAT_DATA_UINT64 },
 243         { "cpu_load_intr",      KSTAT_DATA_UINT64 },
 244         { "wait_ticks_io",      KSTAT_DATA_UINT64 },
 245         { "bread",              KSTAT_DATA_UINT64 },
 246         { "bwrite",             KSTAT_DATA_UINT64 },
 247         { "lread",              KSTAT_DATA_UINT64 },
 248         { "lwrite",             KSTAT_DATA_UINT64 },
 249         { "phread",             KSTAT_DATA_UINT64 },
 250         { "phwrite",            KSTAT_DATA_UINT64 },
 251         { "pswitch",            KSTAT_DATA_UINT64 },
 252         { "trap",               KSTAT_DATA_UINT64 },
 253         { "intr",               KSTAT_DATA_UINT64 },
 254         { "syscall",            KSTAT_DATA_UINT64 },
 255         { "sysread",            KSTAT_DATA_UINT64 },
 256         { "syswrite",           KSTAT_DATA_UINT64 },
 257         { "sysfork",            KSTAT_DATA_UINT64 },
 258         { "sysvfork",           KSTAT_DATA_UINT64 },
 259         { "sysexec",            KSTAT_DATA_UINT64 },
 260         { "readch",             KSTAT_DATA_UINT64 },
 261         { "writech",            KSTAT_DATA_UINT64 },
 262         { "rcvint",             KSTAT_DATA_UINT64 },
 263         { "xmtint",             KSTAT_DATA_UINT64 },
 264         { "mdmint",             KSTAT_DATA_UINT64 },
 265         { "rawch",              KSTAT_DATA_UINT64 },
 266         { "canch",              KSTAT_DATA_UINT64 },
 267         { "outch",              KSTAT_DATA_UINT64 },
 268         { "msg",                KSTAT_DATA_UINT64 },
 269         { "sema",               KSTAT_DATA_UINT64 },
 270         { "namei",              KSTAT_DATA_UINT64 },
 271         { "ufsiget",            KSTAT_DATA_UINT64 },
 272         { "ufsdirblk",          KSTAT_DATA_UINT64 },
 273         { "ufsipage",           KSTAT_DATA_UINT64 },
 274         { "ufsinopage",         KSTAT_DATA_UINT64 },
 275         { "procovf",            KSTAT_DATA_UINT64 },
 276         { "intrthread",         KSTAT_DATA_UINT64 },
 277         { "intrblk",            KSTAT_DATA_UINT64 },
 278         { "intrunpin",          KSTAT_DATA_UINT64 },
 279         { "idlethread",         KSTAT_DATA_UINT64 },
 280         { "inv_swtch",          KSTAT_DATA_UINT64 },
 281         { "nthreads",           KSTAT_DATA_UINT64 },
 282         { "cpumigrate",         KSTAT_DATA_UINT64 },
 283         { "xcalls",             KSTAT_DATA_UINT64 },
 284         { "mutex_adenters",     KSTAT_DATA_UINT64 },
 285         { "rw_rdfails",         KSTAT_DATA_UINT64 },
 286         { "rw_wrfails",         KSTAT_DATA_UINT64 },
 287         { "modload",            KSTAT_DATA_UINT64 },
 288         { "modunload",          KSTAT_DATA_UINT64 },
 289         { "bawrite",            KSTAT_DATA_UINT64 },
 290         { "iowait",             KSTAT_DATA_UINT64 },
 291 };
 292 
 293 static struct cpu_vm_stats_ks_data {
 294         kstat_named_t pgrec;
 295         kstat_named_t pgfrec;
 296         kstat_named_t pgin;
 297         kstat_named_t pgpgin;
 298         kstat_named_t pgout;
 299         kstat_named_t pgpgout;
 300         kstat_named_t swapin;
 301         kstat_named_t pgswapin;
 302         kstat_named_t swapout;
 303         kstat_named_t pgswapout;
 304         kstat_named_t zfod;
 305         kstat_named_t dfree;
 306         kstat_named_t scan;
 307         kstat_named_t rev;
 308         kstat_named_t hat_fault;
 309         kstat_named_t as_fault;
 310         kstat_named_t maj_fault;
 311         kstat_named_t cow_fault;
 312         kstat_named_t prot_fault;
 313         kstat_named_t softlock;
 314         kstat_named_t kernel_asflt;
 315         kstat_named_t pgrrun;
 316         kstat_named_t execpgin;
 317         kstat_named_t execpgout;
 318         kstat_named_t execfree;
 319         kstat_named_t anonpgin;
 320         kstat_named_t anonpgout;
 321         kstat_named_t anonfree;
 322         kstat_named_t fspgin;
 323         kstat_named_t fspgout;
 324         kstat_named_t fsfree;
 325 } cpu_vm_stats_ks_data_template = {
 326         { "pgrec",              KSTAT_DATA_UINT64 },
 327         { "pgfrec",             KSTAT_DATA_UINT64 },
 328         { "pgin",               KSTAT_DATA_UINT64 },
 329         { "pgpgin",             KSTAT_DATA_UINT64 },
 330         { "pgout",              KSTAT_DATA_UINT64 },
 331         { "pgpgout",            KSTAT_DATA_UINT64 },
 332         { "swapin",             KSTAT_DATA_UINT64 },
 333         { "pgswapin",           KSTAT_DATA_UINT64 },
 334         { "swapout",            KSTAT_DATA_UINT64 },
 335         { "pgswapout",          KSTAT_DATA_UINT64 },
 336         { "zfod",               KSTAT_DATA_UINT64 },
 337         { "dfree",              KSTAT_DATA_UINT64 },
 338         { "scan",               KSTAT_DATA_UINT64 },
 339         { "rev",                KSTAT_DATA_UINT64 },
 340         { "hat_fault",          KSTAT_DATA_UINT64 },
 341         { "as_fault",           KSTAT_DATA_UINT64 },
 342         { "maj_fault",          KSTAT_DATA_UINT64 },
 343         { "cow_fault",          KSTAT_DATA_UINT64 },
 344         { "prot_fault",         KSTAT_DATA_UINT64 },
 345         { "softlock",           KSTAT_DATA_UINT64 },
 346         { "kernel_asflt",       KSTAT_DATA_UINT64 },
 347         { "pgrrun",             KSTAT_DATA_UINT64 },
 348         { "execpgin",           KSTAT_DATA_UINT64 },
 349         { "execpgout",          KSTAT_DATA_UINT64 },
 350         { "execfree",           KSTAT_DATA_UINT64 },
 351         { "anonpgin",           KSTAT_DATA_UINT64 },
 352         { "anonpgout",          KSTAT_DATA_UINT64 },
 353         { "anonfree",           KSTAT_DATA_UINT64 },
 354         { "fspgin",             KSTAT_DATA_UINT64 },
 355         { "fspgout",            KSTAT_DATA_UINT64 },
 356         { "fsfree",             KSTAT_DATA_UINT64 },
 357 };
 358 
 359 /*
 360  * Force the specified thread to migrate to the appropriate processor.
 361  * Called with thread lock held, returns with it dropped.
 362  */
 363 static void
 364 force_thread_migrate(kthread_id_t tp)
 365 {
 366         ASSERT(THREAD_LOCK_HELD(tp));
 367         if (tp == curthread) {
 368                 THREAD_TRANSITION(tp);
 369                 CL_SETRUN(tp);
 370                 thread_unlock_nopreempt(tp);
 371                 swtch();
 372         } else {
 373                 if (tp->t_state == TS_ONPROC) {
 374                         cpu_surrender(tp);
 375                 } else if (tp->t_state == TS_RUN) {
 376                         (void) dispdeq(tp);
 377                         setbackdq(tp);
 378                 }
 379                 thread_unlock(tp);
 380         }
 381 }
 382 
 383 /*
 384  * Set affinity for a specified CPU.
 385  * A reference count is incremented and the affinity is held until the
 386  * reference count is decremented to zero by thread_affinity_clear().
 387  * This is so regions of code requiring affinity can be nested.
 388  * Caller needs to ensure that cpu_id remains valid, which can be
 389  * done by holding cpu_lock across this call, unless the caller
 390  * specifies CPU_CURRENT in which case the cpu_lock will be acquired
 391  * by thread_affinity_set and CPU->cpu_id will be the target CPU.
 392  */
 393 void
 394 thread_affinity_set(kthread_id_t t, int cpu_id)
 395 {
 396         cpu_t           *cp;
 397         int             c;
 398 
 399         ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
 400 
 401         if ((c = cpu_id) == CPU_CURRENT) {
 402                 mutex_enter(&cpu_lock);
 403                 cpu_id = CPU->cpu_id;
 404         }
 405         /*
 406          * We should be asserting that cpu_lock is held here, but
 407          * the NCA code doesn't acquire it.  The following assert
 408          * should be uncommented when the NCA code is fixed.
 409          *
 410          * ASSERT(MUTEX_HELD(&cpu_lock));
 411          */
 412         ASSERT((cpu_id >= 0) && (cpu_id < NCPU));
 413         cp = cpu[cpu_id];
 414         ASSERT(cp != NULL);             /* user must provide a good cpu_id */
 415         /*
 416          * If there is already a hard affinity requested, and this affinity
 417          * conflicts with that, panic.
 418          */
 419         thread_lock(t);
 420         if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
 421                 panic("affinity_set: setting %p but already bound to %p",
 422                     (void *)cp, (void *)t->t_bound_cpu);
 423         }
 424         t->t_affinitycnt++;
 425         t->t_bound_cpu = cp;
 426 
 427         /*
 428          * Make sure we're running on the right CPU.
 429          */
 430         if (cp != t->t_cpu || t != curthread) {
 431                 force_thread_migrate(t);        /* drops thread lock */
 432         } else {
 433                 thread_unlock(t);
 434         }
 435 
 436         if (c == CPU_CURRENT)
 437                 mutex_exit(&cpu_lock);
 438 }
 439 
 440 /*
 441  *      Wrapper for backward compatibility.
 442  */
 443 void
 444 affinity_set(int cpu_id)
 445 {
 446         thread_affinity_set(curthread, cpu_id);
 447 }
 448 
 449 /*
 450  * Decrement the affinity reservation count and if it becomes zero,
 451  * clear the CPU affinity for the current thread, or set it to the user's
 452  * software binding request.
 453  */
 454 void
 455 thread_affinity_clear(kthread_id_t t)
 456 {
 457         register processorid_t binding;
 458 
 459         thread_lock(t);
 460         if (--t->t_affinitycnt == 0) {
 461                 if ((binding = t->t_bind_cpu) == PBIND_NONE) {
 462                         /*
 463                          * Adjust disp_max_unbound_pri if necessary.
 464                          */
 465                         disp_adjust_unbound_pri(t);
 466                         t->t_bound_cpu = NULL;
 467                         if (t->t_cpu->cpu_part != t->t_cpupart) {
 468                                 force_thread_migrate(t);
 469                                 return;
 470                         }
 471                 } else {
 472                         t->t_bound_cpu = cpu[binding];
 473                         /*
 474                          * Make sure the thread is running on the bound CPU.
 475                          */
 476                         if (t->t_cpu != t->t_bound_cpu) {
 477                                 force_thread_migrate(t);
 478                                 return;         /* already dropped lock */
 479                         }
 480                 }
 481         }
 482         thread_unlock(t);
 483 }
 484 
 485 /*
 486  * Wrapper for backward compatibility.
 487  */
 488 void
 489 affinity_clear(void)
 490 {
 491         thread_affinity_clear(curthread);
 492 }
 493 
 494 /*
 495  * Weak cpu affinity.  Bind to the "current" cpu for short periods
 496  * of time during which the thread must not block (but may be preempted).
 497  * Use this instead of kpreempt_disable() when it is only "no migration"
 498  * rather than "no preemption" semantics that are required - disabling
 499  * preemption holds higher priority threads off of cpu and if the
 500  * operation that is protected is more than momentary this is not good
 501  * for realtime etc.
 502  *
 503  * Weakly bound threads will not prevent a cpu from being offlined -
 504  * we'll only run them on the cpu to which they are weakly bound but
 505  * (because they do not block) we'll always be able to move them on to
 506  * another cpu at offline time if we give them just a short moment to
 507  * run during which they will unbind.  To give a cpu a chance of offlining,
 508  * however, we require a barrier to weak bindings that may be raised for a
 509  * given cpu (offline/move code may set this and then wait a short time for
 510  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
 511  *
 512  * There are few restrictions on the calling context of thread_nomigrate.
 513  * The caller must not hold the thread lock.  Calls may be nested.
 514  *
 515  * After weakbinding a thread must not perform actions that may block.
 516  * In particular it must not call thread_affinity_set; calling that when
 517  * already weakbound is nonsensical anyway.
 518  *
 519  * If curthread is prevented from migrating for other reasons
 520  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
 521  * then the weak binding will succeed even if this cpu is the target of an
 522  * offline/move request.
 523  */
 524 void
 525 thread_nomigrate(void)
 526 {
 527         cpu_t *cp;
 528         kthread_id_t t = curthread;
 529 
 530 again:
 531         kpreempt_disable();
 532         cp = CPU;
 533 
 534         /*
 535          * A highlevel interrupt must not modify t_nomigrate or
 536          * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
 537          * interrupt thread cannot migrate and we can avoid the
 538          * thread_lock call below by short-circuiting here.  In either
 539          * case we can just return since no migration is possible and
 540          * the condition will persist (ie, when we test for these again
 541          * in thread_allowmigrate they can't have changed).   Migration
 542          * is also impossible if we're at or above DISP_LEVEL pil.
 543          */
 544         if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
 545             getpil() >= DISP_LEVEL) {
 546                 kpreempt_enable();
 547                 return;
 548         }
 549 
 550         /*
 551          * We must be consistent with existing weak bindings.  Since we
 552          * may be interrupted between the increment of t_nomigrate and
 553          * the store to t_weakbound_cpu below we cannot assume that
 554          * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
 555          * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
 556          * always the case.
 557          */
 558         if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
 559                 if (!panicstr)
 560                         panic("thread_nomigrate: binding to %p but already "
 561                             "bound to %p", (void *)cp,
 562                             (void *)t->t_weakbound_cpu);
 563         }
 564 
 565         /*
 566          * At this point we have preemption disabled and we don't yet hold
 567          * the thread lock.  So it's possible that somebody else could
 568          * set t_bind_cpu here and not be able to force us across to the
 569          * new cpu (since we have preemption disabled).
 570          */
 571         thread_lock(curthread);
 572 
 573         /*
 574          * If further weak bindings are being (temporarily) suppressed then
 575          * we'll settle for disabling kernel preemption (which assures
 576          * no migration provided the thread does not block which it is
 577          * not allowed to if using thread_nomigrate).  We must remember
 578          * this disposition so we can take appropriate action in
 579          * thread_allowmigrate.  If this is a nested call and the
 580          * thread is already weakbound then fall through as normal.
 581          * We remember the decision to settle for kpreempt_disable through
 582          * negative nesting counting in t_nomigrate.  Once a thread has had one
 583          * weakbinding request satisfied in this way any further (nested)
 584          * requests will continue to be satisfied in the same way,
 585          * even if weak bindings have recommenced.
 586          */
 587         if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
 588                 --t->t_nomigrate;
 589                 thread_unlock(curthread);
 590                 return;         /* with kpreempt_disable still active */
 591         }
 592 
 593         /*
 594          * We hold thread_lock so t_bind_cpu cannot change.  We could,
 595          * however, be running on a different cpu to which we are t_bound_cpu
 596          * to (as explained above).  If we grant the weak binding request
 597          * in that case then the dispatcher must favour our weak binding
 598          * over our strong (in which case, just as when preemption is
 599          * disabled, we can continue to run on a cpu other than the one to
 600          * which we are strongbound; the difference in this case is that
 601          * this thread can be preempted and so can appear on the dispatch
 602          * queues of a cpu other than the one it is strongbound to).
 603          *
 604          * If the cpu we are running on does not appear to be a current
 605          * offline target (we check cpu_inmotion to determine this - since
 606          * we don't hold cpu_lock we may not see a recent store to that,
 607          * so it's possible that we at times can grant a weak binding to a
 608          * cpu that is an offline target, but that one request will not
 609          * prevent the offline from succeeding) then we will always grant
 610          * the weak binding request.  This includes the case above where
 611          * we grant a weakbinding not commensurate with our strong binding.
 612          *
 613          * If our cpu does appear to be an offline target then we're inclined
 614          * not to grant the weakbinding request just yet - we'd prefer to
 615          * migrate to another cpu and grant the request there.  The
 616          * exceptions are those cases where going through preemption code
 617          * will not result in us changing cpu:
 618          *
 619          *      . interrupts have already bypassed this case (see above)
 620          *      . we are already weakbound to this cpu (dispatcher code will
 621          *        always return us to the weakbound cpu)
 622          *      . preemption was disabled even before we disabled it above
 623          *      . we are strongbound to this cpu (if we're strongbound to
 624          *      another and not yet running there the trip through the
 625          *      dispatcher will move us to the strongbound cpu and we
 626          *      will grant the weak binding there)
 627          */
 628         if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
 629             t->t_bound_cpu == cp) {
 630                 /*
 631                  * Don't be tempted to store to t_weakbound_cpu only on
 632                  * the first nested bind request - if we're interrupted
 633                  * after the increment of t_nomigrate and before the
 634                  * store to t_weakbound_cpu and the interrupt calls
 635                  * thread_nomigrate then the assertion in thread_allowmigrate
 636                  * would fail.
 637                  */
 638                 t->t_nomigrate++;
 639                 t->t_weakbound_cpu = cp;
 640                 membar_producer();
 641                 thread_unlock(curthread);
 642                 /*
 643                  * Now that we have dropped the thread_lock another thread
 644                  * can set our t_weakbound_cpu, and will try to migrate us
 645                  * to the strongbound cpu (which will not be prevented by
 646                  * preemption being disabled since we're about to enable
 647                  * preemption).  We have granted the weakbinding to the current
 648                  * cpu, so again we are in the position that is is is possible
 649                  * that our weak and strong bindings differ.  Again this
 650                  * is catered for by dispatcher code which will favour our
 651                  * weak binding.
 652                  */
 653                 kpreempt_enable();
 654         } else {
 655                 /*
 656                  * Move to another cpu before granting the request by
 657                  * forcing this thread through preemption code.  When we
 658                  * get to set{front,back}dq called from CL_PREEMPT()
 659                  * cpu_choose() will be used to select a cpu to queue
 660                  * us on - that will see cpu_inmotion and take
 661                  * steps to avoid returning us to this cpu.
 662                  */
 663                 cp->cpu_kprunrun = 1;
 664                 thread_unlock(curthread);
 665                 kpreempt_enable();      /* will call preempt() */
 666                 goto again;
 667         }
 668 }
 669 
 670 void
 671 thread_allowmigrate(void)
 672 {
 673         kthread_id_t t = curthread;
 674 
 675         ASSERT(t->t_weakbound_cpu == CPU ||
 676             (t->t_nomigrate < 0 && t->t_preempt > 0) ||
 677             CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
 678             getpil() >= DISP_LEVEL);
 679 
 680         if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
 681             getpil() >= DISP_LEVEL)
 682                 return;
 683 
 684         if (t->t_nomigrate < 0) {
 685                 /*
 686                  * This thread was granted "weak binding" in the
 687                  * stronger form of kernel preemption disabling.
 688                  * Undo a level of nesting for both t_nomigrate
 689                  * and t_preempt.
 690                  */
 691                 ++t->t_nomigrate;
 692                 kpreempt_enable();
 693         } else if (--t->t_nomigrate == 0) {
 694                 /*
 695                  * Time to drop the weak binding.  We need to cater
 696                  * for the case where we're weakbound to a different
 697                  * cpu than that to which we're strongbound (a very
 698                  * temporary arrangement that must only persist until
 699                  * weak binding drops).  We don't acquire thread_lock
 700                  * here so even as this code executes t_bound_cpu
 701                  * may be changing.  So we disable preemption and
 702                  * a) in the case that t_bound_cpu changes while we
 703                  * have preemption disabled kprunrun will be set
 704                  * asynchronously, and b) if before disabling
 705                  * preemption we were already on a different cpu to
 706                  * our t_bound_cpu then we set kprunrun ourselves
 707                  * to force a trip through the dispatcher when
 708                  * preemption is enabled.
 709                  */
 710                 kpreempt_disable();
 711                 if (t->t_bound_cpu &&
 712                     t->t_weakbound_cpu != t->t_bound_cpu)
 713                         CPU->cpu_kprunrun = 1;
 714                 t->t_weakbound_cpu = NULL;
 715                 membar_producer();
 716                 kpreempt_enable();
 717         }
 718 }
 719 
 720 /*
 721  * weakbinding_stop can be used to temporarily cause weakbindings made
 722  * with thread_nomigrate to be satisfied through the stronger action of
 723  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
 724  */
 725 
 726 void
 727 weakbinding_stop(void)
 728 {
 729         ASSERT(MUTEX_HELD(&cpu_lock));
 730         weakbindingbarrier = 1;
 731         membar_producer();      /* make visible before subsequent thread_lock */
 732 }
 733 
 734 void
 735 weakbinding_start(void)
 736 {
 737         ASSERT(MUTEX_HELD(&cpu_lock));
 738         weakbindingbarrier = 0;
 739 }
 740 
 741 void
 742 null_xcall(void)
 743 {
 744 }
 745 
 746 /*
 747  * This routine is called to place the CPUs in a safe place so that
 748  * one of them can be taken off line or placed on line.  What we are
 749  * trying to do here is prevent a thread from traversing the list
 750  * of active CPUs while we are changing it or from getting placed on
 751  * the run queue of a CPU that has just gone off line.  We do this by
 752  * creating a thread with the highest possible prio for each CPU and
 753  * having it call this routine.  The advantage of this method is that
 754  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
 755  * This makes disp faster at the expense of making p_online() slower
 756  * which is a good trade off.
 757  */
 758 static void
 759 cpu_pause(int index)
 760 {
 761         int s;
 762         struct _cpu_pause_info *cpi = &cpu_pause_info;
 763         volatile char *safe = &safe_list[index];
 764         long    lindex = index;
 765 
 766         ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
 767 
 768         while (*safe != PAUSE_DIE) {
 769                 *safe = PAUSE_READY;
 770                 membar_enter();         /* make sure stores are flushed */
 771                 sema_v(&cpi->cp_sem);    /* signal requesting thread */
 772 
 773                 /*
 774                  * Wait here until all pause threads are running.  That
 775                  * indicates that it's safe to do the spl.  Until
 776                  * cpu_pause_info.cp_go is set, we don't want to spl
 777                  * because that might block clock interrupts needed
 778                  * to preempt threads on other CPUs.
 779                  */
 780                 while (cpi->cp_go == 0)
 781                         ;
 782                 /*
 783                  * Even though we are at the highest disp prio, we need
 784                  * to block out all interrupts below LOCK_LEVEL so that
 785                  * an intr doesn't come in, wake up a thread, and call
 786                  * setbackdq/setfrontdq.
 787                  */
 788                 s = splhigh();
 789                 /*
 790                  * if cpu_pause_func() has been set then call it using
 791                  * index as the argument, currently only used by
 792                  * cpr_suspend_cpus().  This function is used as the
 793                  * code to execute on the "paused" cpu's when a machine
 794                  * comes out of a sleep state and CPU's were powered off.
 795                  * (could also be used for hotplugging CPU's).
 796                  */
 797                 if (cpu_pause_func != NULL)
 798                         (*cpu_pause_func)((void *)lindex);
 799 
 800                 mach_cpu_pause(safe);
 801 
 802                 splx(s);
 803                 /*
 804                  * Waiting is at an end. Switch out of cpu_pause
 805                  * loop and resume useful work.
 806                  */
 807                 swtch();
 808         }
 809 
 810         mutex_enter(&pause_free_mutex);
 811         *safe = PAUSE_DEAD;
 812         cv_broadcast(&pause_free_cv);
 813         mutex_exit(&pause_free_mutex);
 814 }
 815 
 816 /*
 817  * Allow the cpus to start running again.
 818  */
 819 void
 820 start_cpus()
 821 {
 822         int i;
 823 
 824         ASSERT(MUTEX_HELD(&cpu_lock));
 825         ASSERT(cpu_pause_info.cp_paused);
 826         cpu_pause_info.cp_paused = NULL;
 827         for (i = 0; i < NCPU; i++)
 828                 safe_list[i] = PAUSE_IDLE;
 829         membar_enter();                 /* make sure stores are flushed */
 830         affinity_clear();
 831         splx(cpu_pause_info.cp_spl);
 832         kpreempt_enable();
 833 }
 834 
 835 /*
 836  * Allocate a pause thread for a CPU.
 837  */
 838 static void
 839 cpu_pause_alloc(cpu_t *cp)
 840 {
 841         kthread_id_t    t;
 842         long            cpun = cp->cpu_id;
 843 
 844         /*
 845          * Note, v.v_nglobpris will not change value as long as I hold
 846          * cpu_lock.
 847          */
 848         t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
 849             0, &p0, TS_STOPPED, v.v_nglobpris - 1);
 850         thread_lock(t);
 851         t->t_bound_cpu = cp;
 852         t->t_disp_queue = cp->cpu_disp;
 853         t->t_affinitycnt = 1;
 854         t->t_preempt = 1;
 855         thread_unlock(t);
 856         cp->cpu_pause_thread = t;
 857         /*
 858          * Registering a thread in the callback table is usually done
 859          * in the initialization code of the thread.  In this
 860          * case, we do it right after thread creation because the
 861          * thread itself may never run, and we need to register the
 862          * fact that it is safe for cpr suspend.
 863          */
 864         CALLB_CPR_INIT_SAFE(t, "cpu_pause");
 865 }
 866 
 867 /*
 868  * Free a pause thread for a CPU.
 869  */
 870 static void
 871 cpu_pause_free(cpu_t *cp)
 872 {
 873         kthread_id_t    t;
 874         int             cpun = cp->cpu_id;
 875 
 876         ASSERT(MUTEX_HELD(&cpu_lock));
 877         /*
 878          * We have to get the thread and tell him to die.
 879          */
 880         if ((t = cp->cpu_pause_thread) == NULL) {
 881                 ASSERT(safe_list[cpun] == PAUSE_IDLE);
 882                 return;
 883         }
 884         thread_lock(t);
 885         t->t_cpu = CPU;              /* disp gets upset if last cpu is quiesced. */
 886         t->t_bound_cpu = NULL;       /* Must un-bind; cpu may not be running. */
 887         t->t_pri = v.v_nglobpris - 1;
 888         ASSERT(safe_list[cpun] == PAUSE_IDLE);
 889         safe_list[cpun] = PAUSE_DIE;
 890         THREAD_TRANSITION(t);
 891         setbackdq(t);
 892         thread_unlock_nopreempt(t);
 893 
 894         /*
 895          * If we don't wait for the thread to actually die, it may try to
 896          * run on the wrong cpu as part of an actual call to pause_cpus().
 897          */
 898         mutex_enter(&pause_free_mutex);
 899         while (safe_list[cpun] != PAUSE_DEAD) {
 900                 cv_wait(&pause_free_cv, &pause_free_mutex);
 901         }
 902         mutex_exit(&pause_free_mutex);
 903         safe_list[cpun] = PAUSE_IDLE;
 904 
 905         cp->cpu_pause_thread = NULL;
 906 }
 907 
 908 /*
 909  * Initialize basic structures for pausing CPUs.
 910  */
 911 void
 912 cpu_pause_init()
 913 {
 914         sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
 915         /*
 916          * Create initial CPU pause thread.
 917          */
 918         cpu_pause_alloc(CPU);
 919 }
 920 
 921 /*
 922  * Start the threads used to pause another CPU.
 923  */
 924 static int
 925 cpu_pause_start(processorid_t cpu_id)
 926 {
 927         int     i;
 928         int     cpu_count = 0;
 929 
 930         for (i = 0; i < NCPU; i++) {
 931                 cpu_t           *cp;
 932                 kthread_id_t    t;
 933 
 934                 cp = cpu[i];
 935                 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
 936                         safe_list[i] = PAUSE_WAIT;
 937                         continue;
 938                 }
 939 
 940                 /*
 941                  * Skip CPU if it is quiesced or not yet started.
 942                  */
 943                 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
 944                         safe_list[i] = PAUSE_WAIT;
 945                         continue;
 946                 }
 947 
 948                 /*
 949                  * Start this CPU's pause thread.
 950                  */
 951                 t = cp->cpu_pause_thread;
 952                 thread_lock(t);
 953                 /*
 954                  * Reset the priority, since nglobpris may have
 955                  * changed since the thread was created, if someone
 956                  * has loaded the RT (or some other) scheduling
 957                  * class.
 958                  */
 959                 t->t_pri = v.v_nglobpris - 1;
 960                 THREAD_TRANSITION(t);
 961                 setbackdq(t);
 962                 thread_unlock_nopreempt(t);
 963                 ++cpu_count;
 964         }
 965         return (cpu_count);
 966 }
 967 
 968 
 969 /*
 970  * Pause all of the CPUs except the one we are on by creating a high
 971  * priority thread bound to those CPUs.
 972  *
 973  * Note that one must be extremely careful regarding code
 974  * executed while CPUs are paused.  Since a CPU may be paused
 975  * while a thread scheduling on that CPU is holding an adaptive
 976  * lock, code executed with CPUs paused must not acquire adaptive
 977  * (or low-level spin) locks.  Also, such code must not block,
 978  * since the thread that is supposed to initiate the wakeup may
 979  * never run.
 980  *
 981  * With a few exceptions, the restrictions on code executed with CPUs
 982  * paused match those for code executed at high-level interrupt
 983  * context.
 984  */
 985 void
 986 pause_cpus(cpu_t *off_cp)
 987 {
 988         processorid_t   cpu_id;
 989         int             i;
 990         struct _cpu_pause_info  *cpi = &cpu_pause_info;
 991 
 992         ASSERT(MUTEX_HELD(&cpu_lock));
 993         ASSERT(cpi->cp_paused == NULL);
 994         cpi->cp_count = 0;
 995         cpi->cp_go = 0;
 996         for (i = 0; i < NCPU; i++)
 997                 safe_list[i] = PAUSE_IDLE;
 998         kpreempt_disable();
 999 
1000         /*
1001          * If running on the cpu that is going offline, get off it.
1002          * This is so that it won't be necessary to rechoose a CPU
1003          * when done.
1004          */
1005         if (CPU == off_cp)
1006                 cpu_id = off_cp->cpu_next_part->cpu_id;
1007         else
1008                 cpu_id = CPU->cpu_id;
1009         affinity_set(cpu_id);
1010 
1011         /*
1012          * Start the pause threads and record how many were started
1013          */
1014         cpi->cp_count = cpu_pause_start(cpu_id);
1015 
1016         /*
1017          * Now wait for all CPUs to be running the pause thread.
1018          */
1019         while (cpi->cp_count > 0) {
1020                 /*
1021                  * Spin reading the count without grabbing the disp
1022                  * lock to make sure we don't prevent the pause
1023                  * threads from getting the lock.
1024                  */
1025                 while (sema_held(&cpi->cp_sem))
1026                         ;
1027                 if (sema_tryp(&cpi->cp_sem))
1028                         --cpi->cp_count;
1029         }
1030         cpi->cp_go = 1;                      /* all have reached cpu_pause */
1031 
1032         /*
1033          * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1034          * to PAUSE_WAIT.)
1035          */
1036         for (i = 0; i < NCPU; i++) {
1037                 while (safe_list[i] != PAUSE_WAIT)
1038                         ;
1039         }
1040         cpi->cp_spl = splhigh();     /* block dispatcher on this CPU */
1041         cpi->cp_paused = curthread;
1042 }
1043 
1044 /*
1045  * Check whether the current thread has CPUs paused
1046  */
1047 int
1048 cpus_paused(void)
1049 {
1050         if (cpu_pause_info.cp_paused != NULL) {
1051                 ASSERT(cpu_pause_info.cp_paused == curthread);
1052                 return (1);
1053         }
1054         return (0);
1055 }
1056 
1057 static cpu_t *
1058 cpu_get_all(processorid_t cpun)
1059 {
1060         ASSERT(MUTEX_HELD(&cpu_lock));
1061 
1062         if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1063                 return (NULL);
1064         return (cpu[cpun]);
1065 }
1066 
1067 /*
1068  * Check whether cpun is a valid processor id and whether it should be
1069  * visible from the current zone. If it is, return a pointer to the
1070  * associated CPU structure.
1071  */
1072 cpu_t *
1073 cpu_get(processorid_t cpun)
1074 {
1075         cpu_t *c;
1076 
1077         ASSERT(MUTEX_HELD(&cpu_lock));
1078         c = cpu_get_all(cpun);
1079         if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1080             zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1081                 return (NULL);
1082         return (c);
1083 }
1084 
1085 /*
1086  * The following functions should be used to check CPU states in the kernel.
1087  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1088  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1089  * states.  Those are for user-land (and system call) use only.
1090  */
1091 
1092 /*
1093  * Determine whether the CPU is online and handling interrupts.
1094  */
1095 int
1096 cpu_is_online(cpu_t *cpu)
1097 {
1098         ASSERT(MUTEX_HELD(&cpu_lock));
1099         return (cpu_flagged_online(cpu->cpu_flags));
1100 }
1101 
1102 /*
1103  * Determine whether the CPU is offline (this includes spare and faulted).
1104  */
1105 int
1106 cpu_is_offline(cpu_t *cpu)
1107 {
1108         ASSERT(MUTEX_HELD(&cpu_lock));
1109         return (cpu_flagged_offline(cpu->cpu_flags));
1110 }
1111 
1112 /*
1113  * Determine whether the CPU is powered off.
1114  */
1115 int
1116 cpu_is_poweredoff(cpu_t *cpu)
1117 {
1118         ASSERT(MUTEX_HELD(&cpu_lock));
1119         return (cpu_flagged_poweredoff(cpu->cpu_flags));
1120 }
1121 
1122 /*
1123  * Determine whether the CPU is handling interrupts.
1124  */
1125 int
1126 cpu_is_nointr(cpu_t *cpu)
1127 {
1128         ASSERT(MUTEX_HELD(&cpu_lock));
1129         return (cpu_flagged_nointr(cpu->cpu_flags));
1130 }
1131 
1132 /*
1133  * Determine whether the CPU is active (scheduling threads).
1134  */
1135 int
1136 cpu_is_active(cpu_t *cpu)
1137 {
1138         ASSERT(MUTEX_HELD(&cpu_lock));
1139         return (cpu_flagged_active(cpu->cpu_flags));
1140 }
1141 
1142 /*
1143  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1144  */
1145 int
1146 cpu_flagged_online(cpu_flag_t cpu_flags)
1147 {
1148         return (cpu_flagged_active(cpu_flags) &&
1149             (cpu_flags & CPU_ENABLE));
1150 }
1151 
1152 int
1153 cpu_flagged_offline(cpu_flag_t cpu_flags)
1154 {
1155         return (((cpu_flags & CPU_POWEROFF) == 0) &&
1156             ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1157 }
1158 
1159 int
1160 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1161 {
1162         return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1163 }
1164 
1165 int
1166 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1167 {
1168         return (cpu_flagged_active(cpu_flags) &&
1169             (cpu_flags & CPU_ENABLE) == 0);
1170 }
1171 
1172 int
1173 cpu_flagged_active(cpu_flag_t cpu_flags)
1174 {
1175         return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1176             ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1177 }
1178 
1179 /*
1180  * Bring the indicated CPU online.
1181  */
1182 int
1183 cpu_online(cpu_t *cp)
1184 {
1185         int     error = 0;
1186 
1187         /*
1188          * Handle on-line request.
1189          *      This code must put the new CPU on the active list before
1190          *      starting it because it will not be paused, and will start
1191          *      using the active list immediately.  The real start occurs
1192          *      when the CPU_QUIESCED flag is turned off.
1193          */
1194 
1195         ASSERT(MUTEX_HELD(&cpu_lock));
1196 
1197         /*
1198          * Put all the cpus into a known safe place.
1199          * No mutexes can be entered while CPUs are paused.
1200          */
1201         error = mp_cpu_start(cp);       /* arch-dep hook */
1202         if (error == 0) {
1203                 pg_cpupart_in(cp, cp->cpu_part);
1204                 pause_cpus(NULL);
1205                 cpu_add_active_internal(cp);
1206                 if (cp->cpu_flags & CPU_FAULTED) {
1207                         cp->cpu_flags &= ~CPU_FAULTED;
1208                         mp_cpu_faulted_exit(cp);
1209                 }
1210                 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1211                     CPU_SPARE);
1212                 CPU_NEW_GENERATION(cp);
1213                 start_cpus();
1214                 cpu_stats_kstat_create(cp);
1215                 cpu_create_intrstat(cp);
1216                 lgrp_kstat_create(cp);
1217                 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1218                 cpu_intr_enable(cp);    /* arch-dep hook */
1219                 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1220                 cpu_set_state(cp);
1221                 cyclic_online(cp);
1222                 /*
1223                  * This has to be called only after cyclic_online(). This
1224                  * function uses cyclics.
1225                  */
1226                 callout_cpu_online(cp);
1227                 poke_cpu(cp->cpu_id);
1228         }
1229 
1230         return (error);
1231 }
1232 
1233 /*
1234  * Take the indicated CPU offline.
1235  */
1236 int
1237 cpu_offline(cpu_t *cp, int flags)
1238 {
1239         cpupart_t *pp;
1240         int     error = 0;
1241         cpu_t   *ncp;
1242         int     intr_enable;
1243         int     cyclic_off = 0;
1244         int     callout_off = 0;
1245         int     loop_count;
1246         int     no_quiesce = 0;
1247         int     (*bound_func)(struct cpu *, int);
1248         kthread_t *t;
1249         lpl_t   *cpu_lpl;
1250         proc_t  *p;
1251         int     lgrp_diff_lpl;
1252         boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1253 
1254         ASSERT(MUTEX_HELD(&cpu_lock));
1255 
1256         /*
1257          * If we're going from faulted or spare to offline, just
1258          * clear these flags and update CPU state.
1259          */
1260         if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1261                 if (cp->cpu_flags & CPU_FAULTED) {
1262                         cp->cpu_flags &= ~CPU_FAULTED;
1263                         mp_cpu_faulted_exit(cp);
1264                 }
1265                 cp->cpu_flags &= ~CPU_SPARE;
1266                 cpu_set_state(cp);
1267                 return (0);
1268         }
1269 
1270         /*
1271          * Handle off-line request.
1272          */
1273         pp = cp->cpu_part;
1274         /*
1275          * Don't offline last online CPU in partition
1276          */
1277         if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1278                 return (EBUSY);
1279         /*
1280          * Unbind all soft-bound threads bound to our CPU and hard bound threads
1281          * if we were asked to.
1282          */
1283         error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1284         if (error != 0)
1285                 return (error);
1286         /*
1287          * We shouldn't be bound to this CPU ourselves.
1288          */
1289         if (curthread->t_bound_cpu == cp)
1290                 return (EBUSY);
1291 
1292         /*
1293          * Tell interested parties that this CPU is going offline.
1294          */
1295         CPU_NEW_GENERATION(cp);
1296         cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1297 
1298         /*
1299          * Tell the PG subsystem that the CPU is leaving the partition
1300          */
1301         pg_cpupart_out(cp, pp);
1302 
1303         /*
1304          * Take the CPU out of interrupt participation so we won't find
1305          * bound kernel threads.  If the architecture cannot completely
1306          * shut off interrupts on the CPU, don't quiesce it, but don't
1307          * run anything but interrupt thread... this is indicated by
1308          * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1309          * off.
1310          */
1311         intr_enable = cp->cpu_flags & CPU_ENABLE;
1312         if (intr_enable)
1313                 no_quiesce = cpu_intr_disable(cp);
1314 
1315         /*
1316          * Record that we are aiming to offline this cpu.  This acts as
1317          * a barrier to further weak binding requests in thread_nomigrate
1318          * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1319          * lean away from this cpu.  Further strong bindings are already
1320          * avoided since we hold cpu_lock.  Since threads that are set
1321          * runnable around now and others coming off the target cpu are
1322          * directed away from the target, existing strong and weak bindings
1323          * (especially the latter) to the target cpu stand maximum chance of
1324          * being able to unbind during the short delay loop below (if other
1325          * unbound threads compete they may not see cpu in time to unbind
1326          * even if they would do so immediately.
1327          */
1328         cpu_inmotion = cp;
1329         membar_enter();
1330 
1331         /*
1332          * Check for kernel threads (strong or weak) bound to that CPU.
1333          * Strongly bound threads may not unbind, and we'll have to return
1334          * EBUSY.  Weakly bound threads should always disappear - we've
1335          * stopped more weak binding with cpu_inmotion and existing
1336          * bindings will drain imminently (they may not block).  Nonetheless
1337          * we will wait for a fixed period for all bound threads to disappear.
1338          * Inactive interrupt threads are OK (they'll be in TS_FREE
1339          * state).  If test finds some bound threads, wait a few ticks
1340          * to give short-lived threads (such as interrupts) chance to
1341          * complete.  Note that if no_quiesce is set, i.e. this cpu
1342          * is required to service interrupts, then we take the route
1343          * that permits interrupt threads to be active (or bypassed).
1344          */
1345         bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1346 
1347 again:  for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1348                 if (loop_count >= 5) {
1349                         error = EBUSY;  /* some threads still bound */
1350                         break;
1351                 }
1352 
1353                 /*
1354                  * If some threads were assigned, give them
1355                  * a chance to complete or move.
1356                  *
1357                  * This assumes that the clock_thread is not bound
1358                  * to any CPU, because the clock_thread is needed to
1359                  * do the delay(hz/100).
1360                  *
1361                  * Note: we still hold the cpu_lock while waiting for
1362                  * the next clock tick.  This is OK since it isn't
1363                  * needed for anything else except processor_bind(2),
1364                  * and system initialization.  If we drop the lock,
1365                  * we would risk another p_online disabling the last
1366                  * processor.
1367                  */
1368                 delay(hz/100);
1369         }
1370 
1371         if (error == 0 && callout_off == 0) {
1372                 callout_cpu_offline(cp);
1373                 callout_off = 1;
1374         }
1375 
1376         if (error == 0 && cyclic_off == 0) {
1377                 if (!cyclic_offline(cp)) {
1378                         /*
1379                          * We must have bound cyclics...
1380                          */
1381                         error = EBUSY;
1382                         goto out;
1383                 }
1384                 cyclic_off = 1;
1385         }
1386 
1387         /*
1388          * Call mp_cpu_stop() to perform any special operations
1389          * needed for this machine architecture to offline a CPU.
1390          */
1391         if (error == 0)
1392                 error = mp_cpu_stop(cp);        /* arch-dep hook */
1393 
1394         /*
1395          * If that all worked, take the CPU offline and decrement
1396          * ncpus_online.
1397          */
1398         if (error == 0) {
1399                 /*
1400                  * Put all the cpus into a known safe place.
1401                  * No mutexes can be entered while CPUs are paused.
1402                  */
1403                 pause_cpus(cp);
1404                 /*
1405                  * Repeat the operation, if necessary, to make sure that
1406                  * all outstanding low-level interrupts run to completion
1407                  * before we set the CPU_QUIESCED flag.  It's also possible
1408                  * that a thread has weak bound to the cpu despite our raising
1409                  * cpu_inmotion above since it may have loaded that
1410                  * value before the barrier became visible (this would have
1411                  * to be the thread that was on the target cpu at the time
1412                  * we raised the barrier).
1413                  */
1414                 if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1415                     (*bound_func)(cp, 1)) {
1416                         start_cpus();
1417                         (void) mp_cpu_start(cp);
1418                         goto again;
1419                 }
1420                 ncp = cp->cpu_next_part;
1421                 cpu_lpl = cp->cpu_lpl;
1422                 ASSERT(cpu_lpl != NULL);
1423 
1424                 /*
1425                  * Remove the CPU from the list of active CPUs.
1426                  */
1427                 cpu_remove_active(cp);
1428 
1429                 /*
1430                  * Walk the active process list and look for threads
1431                  * whose home lgroup needs to be updated, or
1432                  * the last CPU they run on is the one being offlined now.
1433                  */
1434 
1435                 ASSERT(curthread->t_cpu != cp);
1436                 for (p = practive; p != NULL; p = p->p_next) {
1437 
1438                         t = p->p_tlist;
1439 
1440                         if (t == NULL)
1441                                 continue;
1442 
1443                         lgrp_diff_lpl = 0;
1444 
1445                         do {
1446                                 ASSERT(t->t_lpl != NULL);
1447                                 /*
1448                                  * Taking last CPU in lpl offline
1449                                  * Rehome thread if it is in this lpl
1450                                  * Otherwise, update the count of how many
1451                                  * threads are in this CPU's lgroup but have
1452                                  * a different lpl.
1453                                  */
1454 
1455                                 if (cpu_lpl->lpl_ncpu == 0) {
1456                                         if (t->t_lpl == cpu_lpl)
1457                                                 lgrp_move_thread(t,
1458                                                     lgrp_choose(t,
1459                                                     t->t_cpupart), 0);
1460                                         else if (t->t_lpl->lpl_lgrpid ==
1461                                             cpu_lpl->lpl_lgrpid)
1462                                                 lgrp_diff_lpl++;
1463                                 }
1464                                 ASSERT(t->t_lpl->lpl_ncpu > 0);
1465 
1466                                 /*
1467                                  * Update CPU last ran on if it was this CPU
1468                                  */
1469                                 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1470                                         t->t_cpu = disp_lowpri_cpu(ncp,
1471                                             t->t_lpl, t->t_pri, NULL);
1472                                 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1473                                     t->t_weakbound_cpu == cp);
1474 
1475                                 t = t->t_forw;
1476                         } while (t != p->p_tlist);
1477 
1478                         /*
1479                          * Didn't find any threads in the same lgroup as this
1480                          * CPU with a different lpl, so remove the lgroup from
1481                          * the process lgroup bitmask.
1482                          */
1483 
1484                         if (lgrp_diff_lpl == 0)
1485                                 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1486                 }
1487 
1488                 /*
1489                  * Walk thread list looking for threads that need to be
1490                  * rehomed, since there are some threads that are not in
1491                  * their process's p_tlist.
1492                  */
1493 
1494                 t = curthread;
1495                 do {
1496                         ASSERT(t != NULL && t->t_lpl != NULL);
1497 
1498                         /*
1499                          * Rehome threads with same lpl as this CPU when this
1500                          * is the last CPU in the lpl.
1501                          */
1502 
1503                         if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1504                                 lgrp_move_thread(t,
1505                                     lgrp_choose(t, t->t_cpupart), 1);
1506 
1507                         ASSERT(t->t_lpl->lpl_ncpu > 0);
1508 
1509                         /*
1510                          * Update CPU last ran on if it was this CPU
1511                          */
1512 
1513                         if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1514                                 t->t_cpu = disp_lowpri_cpu(ncp,
1515                                     t->t_lpl, t->t_pri, NULL);
1516                         }
1517                         ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1518                             t->t_weakbound_cpu == cp);
1519                         t = t->t_next;
1520 
1521                 } while (t != curthread);
1522                 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1523                 cp->cpu_flags |= CPU_OFFLINE;
1524                 disp_cpu_inactive(cp);
1525                 if (!no_quiesce)
1526                         cp->cpu_flags |= CPU_QUIESCED;
1527                 ncpus_online--;
1528                 cpu_set_state(cp);
1529                 cpu_inmotion = NULL;
1530                 start_cpus();
1531                 cpu_stats_kstat_destroy(cp);
1532                 cpu_delete_intrstat(cp);
1533                 lgrp_kstat_destroy(cp);
1534         }
1535 
1536 out:
1537         cpu_inmotion = NULL;
1538 
1539         /*
1540          * If we failed, re-enable interrupts.
1541          * Do this even if cpu_intr_disable returned an error, because
1542          * it may have partially disabled interrupts.
1543          */
1544         if (error && intr_enable)
1545                 cpu_intr_enable(cp);
1546 
1547         /*
1548          * If we failed, but managed to offline the cyclic subsystem on this
1549          * CPU, bring it back online.
1550          */
1551         if (error && cyclic_off)
1552                 cyclic_online(cp);
1553 
1554         /*
1555          * If we failed, but managed to offline callouts on this CPU,
1556          * bring it back online.
1557          */
1558         if (error && callout_off)
1559                 callout_cpu_online(cp);
1560 
1561         /*
1562          * If we failed, tell the PG subsystem that the CPU is back
1563          */
1564         pg_cpupart_in(cp, pp);
1565 
1566         /*
1567          * If we failed, we need to notify everyone that this CPU is back on.
1568          */
1569         if (error != 0) {
1570                 CPU_NEW_GENERATION(cp);
1571                 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1572                 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1573         }
1574 
1575         return (error);
1576 }
1577 
1578 /*
1579  * Mark the indicated CPU as faulted, taking it offline.
1580  */
1581 int
1582 cpu_faulted(cpu_t *cp, int flags)
1583 {
1584         int     error = 0;
1585 
1586         ASSERT(MUTEX_HELD(&cpu_lock));
1587         ASSERT(!cpu_is_poweredoff(cp));
1588 
1589         if (cpu_is_offline(cp)) {
1590                 cp->cpu_flags &= ~CPU_SPARE;
1591                 cp->cpu_flags |= CPU_FAULTED;
1592                 mp_cpu_faulted_enter(cp);
1593                 cpu_set_state(cp);
1594                 return (0);
1595         }
1596 
1597         if ((error = cpu_offline(cp, flags)) == 0) {
1598                 cp->cpu_flags |= CPU_FAULTED;
1599                 mp_cpu_faulted_enter(cp);
1600                 cpu_set_state(cp);
1601         }
1602 
1603         return (error);
1604 }
1605 
1606 /*
1607  * Mark the indicated CPU as a spare, taking it offline.
1608  */
1609 int
1610 cpu_spare(cpu_t *cp, int flags)
1611 {
1612         int     error = 0;
1613 
1614         ASSERT(MUTEX_HELD(&cpu_lock));
1615         ASSERT(!cpu_is_poweredoff(cp));
1616 
1617         if (cpu_is_offline(cp)) {
1618                 if (cp->cpu_flags & CPU_FAULTED) {
1619                         cp->cpu_flags &= ~CPU_FAULTED;
1620                         mp_cpu_faulted_exit(cp);
1621                 }
1622                 cp->cpu_flags |= CPU_SPARE;
1623                 cpu_set_state(cp);
1624                 return (0);
1625         }
1626 
1627         if ((error = cpu_offline(cp, flags)) == 0) {
1628                 cp->cpu_flags |= CPU_SPARE;
1629                 cpu_set_state(cp);
1630         }
1631 
1632         return (error);
1633 }
1634 
1635 /*
1636  * Take the indicated CPU from poweroff to offline.
1637  */
1638 int
1639 cpu_poweron(cpu_t *cp)
1640 {
1641         int     error = ENOTSUP;
1642 
1643         ASSERT(MUTEX_HELD(&cpu_lock));
1644         ASSERT(cpu_is_poweredoff(cp));
1645 
1646         error = mp_cpu_poweron(cp);     /* arch-dep hook */
1647         if (error == 0)
1648                 cpu_set_state(cp);
1649 
1650         return (error);
1651 }
1652 
1653 /*
1654  * Take the indicated CPU from any inactive state to powered off.
1655  */
1656 int
1657 cpu_poweroff(cpu_t *cp)
1658 {
1659         int     error = ENOTSUP;
1660 
1661         ASSERT(MUTEX_HELD(&cpu_lock));
1662         ASSERT(cpu_is_offline(cp));
1663 
1664         if (!(cp->cpu_flags & CPU_QUIESCED))
1665                 return (EBUSY);         /* not completely idle */
1666 
1667         error = mp_cpu_poweroff(cp);    /* arch-dep hook */
1668         if (error == 0)
1669                 cpu_set_state(cp);
1670 
1671         return (error);
1672 }
1673 
1674 /*
1675  * Initialize the Sequential CPU id lookup table
1676  */
1677 void
1678 cpu_seq_tbl_init()
1679 {
1680         cpu_t   **tbl;
1681 
1682         tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1683         tbl[0] = CPU;
1684 
1685         cpu_seq = tbl;
1686 }
1687 
1688 /*
1689  * Initialize the CPU lists for the first CPU.
1690  */
1691 void
1692 cpu_list_init(cpu_t *cp)
1693 {
1694         cp->cpu_next = cp;
1695         cp->cpu_prev = cp;
1696         cpu_list = cp;
1697         clock_cpu_list = cp;
1698 
1699         cp->cpu_next_onln = cp;
1700         cp->cpu_prev_onln = cp;
1701         cpu_active = cp;
1702 
1703         cp->cpu_seqid = 0;
1704         CPUSET_ADD(cpu_seqid_inuse, 0);
1705 
1706         /*
1707          * Bootstrap cpu_seq using cpu_list
1708          * The cpu_seq[] table will be dynamically allocated
1709          * when kmem later becomes available (but before going MP)
1710          */
1711         cpu_seq = &cpu_list;
1712 
1713         cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1714         cp_default.cp_cpulist = cp;
1715         cp_default.cp_ncpus = 1;
1716         cp->cpu_next_part = cp;
1717         cp->cpu_prev_part = cp;
1718         cp->cpu_part = &cp_default;
1719 
1720         CPUSET_ADD(cpu_available, cp->cpu_id);
1721 }
1722 
1723 /*
1724  * Insert a CPU into the list of available CPUs.
1725  */
1726 void
1727 cpu_add_unit(cpu_t *cp)
1728 {
1729         int seqid;
1730 
1731         ASSERT(MUTEX_HELD(&cpu_lock));
1732         ASSERT(cpu_list != NULL);       /* list started in cpu_list_init */
1733 
1734         lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1735 
1736         /*
1737          * Note: most users of the cpu_list will grab the
1738          * cpu_lock to insure that it isn't modified.  However,
1739          * certain users can't or won't do that.  To allow this
1740          * we pause the other cpus.  Users who walk the list
1741          * without cpu_lock, must disable kernel preemption
1742          * to insure that the list isn't modified underneath
1743          * them.  Also, any cached pointers to cpu structures
1744          * must be revalidated by checking to see if the
1745          * cpu_next pointer points to itself.  This check must
1746          * be done with the cpu_lock held or kernel preemption
1747          * disabled.  This check relies upon the fact that
1748          * old cpu structures are not free'ed or cleared after
1749          * then are removed from the cpu_list.
1750          *
1751          * Note that the clock code walks the cpu list dereferencing
1752          * the cpu_part pointer, so we need to initialize it before
1753          * adding the cpu to the list.
1754          */
1755         cp->cpu_part = &cp_default;
1756         (void) pause_cpus(NULL);
1757         cp->cpu_next = cpu_list;
1758         cp->cpu_prev = cpu_list->cpu_prev;
1759         cpu_list->cpu_prev->cpu_next = cp;
1760         cpu_list->cpu_prev = cp;
1761         start_cpus();
1762 
1763         for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1764                 continue;
1765         CPUSET_ADD(cpu_seqid_inuse, seqid);
1766         cp->cpu_seqid = seqid;
1767 
1768         if (seqid > max_cpu_seqid_ever)
1769                 max_cpu_seqid_ever = seqid;
1770 
1771         ASSERT(ncpus < max_ncpus);
1772         ncpus++;
1773         cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1774         cpu[cp->cpu_id] = cp;
1775         CPUSET_ADD(cpu_available, cp->cpu_id);
1776         cpu_seq[cp->cpu_seqid] = cp;
1777 
1778         /*
1779          * allocate a pause thread for this CPU.
1780          */
1781         cpu_pause_alloc(cp);
1782 
1783         /*
1784          * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1785          * link them into a list of just that CPU.
1786          * This is so that disp_lowpri_cpu will work for thread_create in
1787          * pause_cpus() when called from the startup thread in a new CPU.
1788          */
1789         cp->cpu_next_onln = cp;
1790         cp->cpu_prev_onln = cp;
1791         cpu_info_kstat_create(cp);
1792         cp->cpu_next_part = cp;
1793         cp->cpu_prev_part = cp;
1794 
1795         init_cpu_mstate(cp, CMS_SYSTEM);
1796 
1797         pool_pset_mod = gethrtime();
1798 }
1799 
1800 /*
1801  * Do the opposite of cpu_add_unit().
1802  */
1803 void
1804 cpu_del_unit(int cpuid)
1805 {
1806         struct cpu      *cp, *cpnext;
1807 
1808         ASSERT(MUTEX_HELD(&cpu_lock));
1809         cp = cpu[cpuid];
1810         ASSERT(cp != NULL);
1811 
1812         ASSERT(cp->cpu_next_onln == cp);
1813         ASSERT(cp->cpu_prev_onln == cp);
1814         ASSERT(cp->cpu_next_part == cp);
1815         ASSERT(cp->cpu_prev_part == cp);
1816 
1817         /*
1818          * Tear down the CPU's physical ID cache, and update any
1819          * processor groups
1820          */
1821         pg_cpu_fini(cp, NULL);
1822         pghw_physid_destroy(cp);
1823 
1824         /*
1825          * Destroy kstat stuff.
1826          */
1827         cpu_info_kstat_destroy(cp);
1828         term_cpu_mstate(cp);
1829         /*
1830          * Free up pause thread.
1831          */
1832         cpu_pause_free(cp);
1833         CPUSET_DEL(cpu_available, cp->cpu_id);
1834         cpu[cp->cpu_id] = NULL;
1835         cpu_seq[cp->cpu_seqid] = NULL;
1836 
1837         /*
1838          * The clock thread and mutex_vector_enter cannot hold the
1839          * cpu_lock while traversing the cpu list, therefore we pause
1840          * all other threads by pausing the other cpus. These, and any
1841          * other routines holding cpu pointers while possibly sleeping
1842          * must be sure to call kpreempt_disable before processing the
1843          * list and be sure to check that the cpu has not been deleted
1844          * after any sleeps (check cp->cpu_next != NULL). We guarantee
1845          * to keep the deleted cpu structure around.
1846          *
1847          * Note that this MUST be done AFTER cpu_available
1848          * has been updated so that we don't waste time
1849          * trying to pause the cpu we're trying to delete.
1850          */
1851         (void) pause_cpus(NULL);
1852 
1853         cpnext = cp->cpu_next;
1854         cp->cpu_prev->cpu_next = cp->cpu_next;
1855         cp->cpu_next->cpu_prev = cp->cpu_prev;
1856         if (cp == cpu_list)
1857                 cpu_list = cpnext;
1858 
1859         /*
1860          * Signals that the cpu has been deleted (see above).
1861          */
1862         cp->cpu_next = NULL;
1863         cp->cpu_prev = NULL;
1864 
1865         start_cpus();
1866 
1867         CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1868         ncpus--;
1869         lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1870 
1871         pool_pset_mod = gethrtime();
1872 }
1873 
1874 /*
1875  * Add a CPU to the list of active CPUs.
1876  *      This routine must not get any locks, because other CPUs are paused.
1877  */
1878 static void
1879 cpu_add_active_internal(cpu_t *cp)
1880 {
1881         cpupart_t       *pp = cp->cpu_part;
1882 
1883         ASSERT(MUTEX_HELD(&cpu_lock));
1884         ASSERT(cpu_list != NULL);       /* list started in cpu_list_init */
1885 
1886         ncpus_online++;
1887         cpu_set_state(cp);
1888         cp->cpu_next_onln = cpu_active;
1889         cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1890         cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1891         cpu_active->cpu_prev_onln = cp;
1892 
1893         if (pp->cp_cpulist) {
1894                 cp->cpu_next_part = pp->cp_cpulist;
1895                 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1896                 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1897                 pp->cp_cpulist->cpu_prev_part = cp;
1898         } else {
1899                 ASSERT(pp->cp_ncpus == 0);
1900                 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1901         }
1902         pp->cp_ncpus++;
1903         if (pp->cp_ncpus == 1) {
1904                 cp_numparts_nonempty++;
1905                 ASSERT(cp_numparts_nonempty != 0);
1906         }
1907 
1908         pg_cpu_active(cp);
1909         lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1910 
1911         bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1912 }
1913 
1914 /*
1915  * Add a CPU to the list of active CPUs.
1916  *      This is called from machine-dependent layers when a new CPU is started.
1917  */
1918 void
1919 cpu_add_active(cpu_t *cp)
1920 {
1921         pg_cpupart_in(cp, cp->cpu_part);
1922 
1923         pause_cpus(NULL);
1924         cpu_add_active_internal(cp);
1925         start_cpus();
1926 
1927         cpu_stats_kstat_create(cp);
1928         cpu_create_intrstat(cp);
1929         lgrp_kstat_create(cp);
1930         cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1931 }
1932 
1933 
1934 /*
1935  * Remove a CPU from the list of active CPUs.
1936  *      This routine must not get any locks, because other CPUs are paused.
1937  */
1938 /* ARGSUSED */
1939 static void
1940 cpu_remove_active(cpu_t *cp)
1941 {
1942         cpupart_t       *pp = cp->cpu_part;
1943 
1944         ASSERT(MUTEX_HELD(&cpu_lock));
1945         ASSERT(cp->cpu_next_onln != cp);     /* not the last one */
1946         ASSERT(cp->cpu_prev_onln != cp);     /* not the last one */
1947 
1948         pg_cpu_inactive(cp);
1949 
1950         lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1951 
1952         if (cp == clock_cpu_list)
1953                 clock_cpu_list = cp->cpu_next_onln;
1954 
1955         cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1956         cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1957         if (cpu_active == cp) {
1958                 cpu_active = cp->cpu_next_onln;
1959         }
1960         cp->cpu_next_onln = cp;
1961         cp->cpu_prev_onln = cp;
1962 
1963         cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1964         cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1965         if (pp->cp_cpulist == cp) {
1966                 pp->cp_cpulist = cp->cpu_next_part;
1967                 ASSERT(pp->cp_cpulist != cp);
1968         }
1969         cp->cpu_next_part = cp;
1970         cp->cpu_prev_part = cp;
1971         pp->cp_ncpus--;
1972         if (pp->cp_ncpus == 0) {
1973                 cp_numparts_nonempty--;
1974                 ASSERT(cp_numparts_nonempty != 0);
1975         }
1976 }
1977 
1978 /*
1979  * Routine used to setup a newly inserted CPU in preparation for starting
1980  * it running code.
1981  */
1982 int
1983 cpu_configure(int cpuid)
1984 {
1985         int retval = 0;
1986 
1987         ASSERT(MUTEX_HELD(&cpu_lock));
1988 
1989         /*
1990          * Some structures are statically allocated based upon
1991          * the maximum number of cpus the system supports.  Do not
1992          * try to add anything beyond this limit.
1993          */
1994         if (cpuid < 0 || cpuid >= NCPU) {
1995                 return (EINVAL);
1996         }
1997 
1998         if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
1999                 return (EALREADY);
2000         }
2001 
2002         if ((retval = mp_cpu_configure(cpuid)) != 0) {
2003                 return (retval);
2004         }
2005 
2006         cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2007         cpu_set_state(cpu[cpuid]);
2008         retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2009         if (retval != 0)
2010                 (void) mp_cpu_unconfigure(cpuid);
2011 
2012         return (retval);
2013 }
2014 
2015 /*
2016  * Routine used to cleanup a CPU that has been powered off.  This will
2017  * destroy all per-cpu information related to this cpu.
2018  */
2019 int
2020 cpu_unconfigure(int cpuid)
2021 {
2022         int error;
2023 
2024         ASSERT(MUTEX_HELD(&cpu_lock));
2025 
2026         if (cpu[cpuid] == NULL) {
2027                 return (ENODEV);
2028         }
2029 
2030         if (cpu[cpuid]->cpu_flags == 0) {
2031                 return (EALREADY);
2032         }
2033 
2034         if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2035                 return (EBUSY);
2036         }
2037 
2038         if (cpu[cpuid]->cpu_props != NULL) {
2039                 (void) nvlist_free(cpu[cpuid]->cpu_props);
2040                 cpu[cpuid]->cpu_props = NULL;
2041         }
2042 
2043         error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2044 
2045         if (error != 0)
2046                 return (error);
2047 
2048         return (mp_cpu_unconfigure(cpuid));
2049 }
2050 
2051 /*
2052  * Routines for registering and de-registering cpu_setup callback functions.
2053  *
2054  * Caller's context
2055  *      These routines must not be called from a driver's attach(9E) or
2056  *      detach(9E) entry point.
2057  *
2058  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2059  */
2060 
2061 /*
2062  * Ideally, these would be dynamically allocated and put into a linked
2063  * list; however that is not feasible because the registration routine
2064  * has to be available before the kmem allocator is working (in fact,
2065  * it is called by the kmem allocator init code).  In any case, there
2066  * are quite a few extra entries for future users.
2067  */
2068 #define NCPU_SETUPS     20
2069 
2070 struct cpu_setup {
2071         cpu_setup_func_t *func;
2072         void *arg;
2073 } cpu_setups[NCPU_SETUPS];
2074 
2075 void
2076 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2077 {
2078         int i;
2079 
2080         ASSERT(MUTEX_HELD(&cpu_lock));
2081 
2082         for (i = 0; i < NCPU_SETUPS; i++)
2083                 if (cpu_setups[i].func == NULL)
2084                         break;
2085         if (i >= NCPU_SETUPS)
2086                 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2087 
2088         cpu_setups[i].func = func;
2089         cpu_setups[i].arg = arg;
2090 }
2091 
2092 void
2093 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2094 {
2095         int i;
2096 
2097         ASSERT(MUTEX_HELD(&cpu_lock));
2098 
2099         for (i = 0; i < NCPU_SETUPS; i++)
2100                 if ((cpu_setups[i].func == func) &&
2101                     (cpu_setups[i].arg == arg))
2102                         break;
2103         if (i >= NCPU_SETUPS)
2104                 cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2105                     "deregister");
2106 
2107         cpu_setups[i].func = NULL;
2108         cpu_setups[i].arg = 0;
2109 }
2110 
2111 /*
2112  * Call any state change hooks for this CPU, ignore any errors.
2113  */
2114 void
2115 cpu_state_change_notify(int id, cpu_setup_t what)
2116 {
2117         int i;
2118 
2119         ASSERT(MUTEX_HELD(&cpu_lock));
2120 
2121         for (i = 0; i < NCPU_SETUPS; i++) {
2122                 if (cpu_setups[i].func != NULL) {
2123                         cpu_setups[i].func(what, id, cpu_setups[i].arg);
2124                 }
2125         }
2126 }
2127 
2128 /*
2129  * Call any state change hooks for this CPU, undo it if error found.
2130  */
2131 static int
2132 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2133 {
2134         int i;
2135         int retval = 0;
2136 
2137         ASSERT(MUTEX_HELD(&cpu_lock));
2138 
2139         for (i = 0; i < NCPU_SETUPS; i++) {
2140                 if (cpu_setups[i].func != NULL) {
2141                         retval = cpu_setups[i].func(what, id,
2142                             cpu_setups[i].arg);
2143                         if (retval) {
2144                                 for (i--; i >= 0; i--) {
2145                                         if (cpu_setups[i].func != NULL)
2146                                                 cpu_setups[i].func(undo,
2147                                                     id, cpu_setups[i].arg);
2148                                 }
2149                                 break;
2150                         }
2151                 }
2152         }
2153         return (retval);
2154 }
2155 
2156 /*
2157  * Export information about this CPU via the kstat mechanism.
2158  */
2159 static struct {
2160         kstat_named_t ci_state;
2161         kstat_named_t ci_state_begin;
2162         kstat_named_t ci_cpu_type;
2163         kstat_named_t ci_fpu_type;
2164         kstat_named_t ci_clock_MHz;
2165         kstat_named_t ci_chip_id;
2166         kstat_named_t ci_implementation;
2167         kstat_named_t ci_brandstr;
2168         kstat_named_t ci_core_id;
2169         kstat_named_t ci_curr_clock_Hz;
2170         kstat_named_t ci_supp_freq_Hz;
2171         kstat_named_t ci_pg_id;
2172 #if defined(__sparcv9)
2173         kstat_named_t ci_device_ID;
2174         kstat_named_t ci_cpu_fru;
2175 #endif
2176 #if defined(__x86)
2177         kstat_named_t ci_vendorstr;
2178         kstat_named_t ci_family;
2179         kstat_named_t ci_model;
2180         kstat_named_t ci_step;
2181         kstat_named_t ci_clogid;
2182         kstat_named_t ci_pkg_core_id;
2183         kstat_named_t ci_ncpuperchip;
2184         kstat_named_t ci_ncoreperchip;
2185         kstat_named_t ci_max_cstates;
2186         kstat_named_t ci_curr_cstate;
2187         kstat_named_t ci_cacheid;
2188         kstat_named_t ci_sktstr;
2189 #endif
2190 } cpu_info_template = {
2191         { "state",                      KSTAT_DATA_CHAR },
2192         { "state_begin",                KSTAT_DATA_LONG },
2193         { "cpu_type",                   KSTAT_DATA_CHAR },
2194         { "fpu_type",                   KSTAT_DATA_CHAR },
2195         { "clock_MHz",                  KSTAT_DATA_LONG },
2196         { "chip_id",                    KSTAT_DATA_LONG },
2197         { "implementation",             KSTAT_DATA_STRING },
2198         { "brand",                      KSTAT_DATA_STRING },
2199         { "core_id",                    KSTAT_DATA_LONG },
2200         { "current_clock_Hz",           KSTAT_DATA_UINT64 },
2201         { "supported_frequencies_Hz",   KSTAT_DATA_STRING },
2202         { "pg_id",                      KSTAT_DATA_LONG },
2203 #if defined(__sparcv9)
2204         { "device_ID",                  KSTAT_DATA_UINT64 },
2205         { "cpu_fru",                    KSTAT_DATA_STRING },
2206 #endif
2207 #if defined(__x86)
2208         { "vendor_id",                  KSTAT_DATA_STRING },
2209         { "family",                     KSTAT_DATA_INT32 },
2210         { "model",                      KSTAT_DATA_INT32 },
2211         { "stepping",                   KSTAT_DATA_INT32 },
2212         { "clog_id",                    KSTAT_DATA_INT32 },
2213         { "pkg_core_id",                KSTAT_DATA_LONG },
2214         { "ncpu_per_chip",              KSTAT_DATA_INT32 },
2215         { "ncore_per_chip",             KSTAT_DATA_INT32 },
2216         { "supported_max_cstates",      KSTAT_DATA_INT32 },
2217         { "current_cstate",             KSTAT_DATA_INT32 },
2218         { "cache_id",                   KSTAT_DATA_INT32 },
2219         { "socket_type",                KSTAT_DATA_STRING },
2220 #endif
2221 };
2222 
2223 static kmutex_t cpu_info_template_lock;
2224 
2225 static int
2226 cpu_info_kstat_update(kstat_t *ksp, int rw)
2227 {
2228         cpu_t   *cp = ksp->ks_private;
2229         const char *pi_state;
2230 
2231         if (rw == KSTAT_WRITE)
2232                 return (EACCES);
2233 
2234 #if defined(__x86)
2235         /* Is the cpu still initialising itself? */
2236         if (cpuid_checkpass(cp, 1) == 0)
2237                 return (ENXIO);
2238 #endif
2239         switch (cp->cpu_type_info.pi_state) {
2240         case P_ONLINE:
2241                 pi_state = PS_ONLINE;
2242                 break;
2243         case P_POWEROFF:
2244                 pi_state = PS_POWEROFF;
2245                 break;
2246         case P_NOINTR:
2247                 pi_state = PS_NOINTR;
2248                 break;
2249         case P_FAULTED:
2250                 pi_state = PS_FAULTED;
2251                 break;
2252         case P_SPARE:
2253                 pi_state = PS_SPARE;
2254                 break;
2255         case P_OFFLINE:
2256                 pi_state = PS_OFFLINE;
2257                 break;
2258         default:
2259                 pi_state = "unknown";
2260         }
2261         (void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2262         cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2263         (void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2264             cp->cpu_type_info.pi_processor_type, 15);
2265         (void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2266             cp->cpu_type_info.pi_fputypes, 15);
2267         cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2268         cpu_info_template.ci_chip_id.value.l =
2269             pg_plat_hw_instance_id(cp, PGHW_CHIP);
2270         kstat_named_setstr(&cpu_info_template.ci_implementation,
2271             cp->cpu_idstr);
2272         kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2273         cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2274         cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2275             cp->cpu_curr_clock;
2276         cpu_info_template.ci_pg_id.value.l =
2277             cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2278             cp->cpu_pg->cmt_lineage->pg_id : -1;
2279         kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2280             cp->cpu_supp_freqs);
2281 #if defined(__sparcv9)
2282         cpu_info_template.ci_device_ID.value.ui64 =
2283             cpunodes[cp->cpu_id].device_id;
2284         kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2285 #endif
2286 #if defined(__x86)
2287         kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2288             cpuid_getvendorstr(cp));
2289         cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2290         cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2291         cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2292         cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2293         cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2294         cpu_info_template.ci_ncoreperchip.value.l =
2295             cpuid_get_ncore_per_chip(cp);
2296         cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2297         cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2298         cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2299         cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2300         kstat_named_setstr(&cpu_info_template.ci_sktstr,
2301             cpuid_getsocketstr(cp));
2302 #endif
2303 
2304         return (0);
2305 }
2306 
2307 static void
2308 cpu_info_kstat_create(cpu_t *cp)
2309 {
2310         zoneid_t zoneid;
2311 
2312         ASSERT(MUTEX_HELD(&cpu_lock));
2313 
2314         if (pool_pset_enabled())
2315                 zoneid = GLOBAL_ZONEID;
2316         else
2317                 zoneid = ALL_ZONES;
2318         if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2319             NULL, "misc", KSTAT_TYPE_NAMED,
2320             sizeof (cpu_info_template) / sizeof (kstat_named_t),
2321             KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2322                 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2323 #if defined(__sparcv9)
2324                 cp->cpu_info_kstat->ks_data_size +=
2325                     strlen(cpu_fru_fmri(cp)) + 1;
2326 #endif
2327 #if defined(__x86)
2328                 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2329 #endif
2330                 if (cp->cpu_supp_freqs != NULL)
2331                         cp->cpu_info_kstat->ks_data_size +=
2332                             strlen(cp->cpu_supp_freqs) + 1;
2333                 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2334                 cp->cpu_info_kstat->ks_data = &cpu_info_template;
2335                 cp->cpu_info_kstat->ks_private = cp;
2336                 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2337                 kstat_install(cp->cpu_info_kstat);
2338         }
2339 }
2340 
2341 static void
2342 cpu_info_kstat_destroy(cpu_t *cp)
2343 {
2344         ASSERT(MUTEX_HELD(&cpu_lock));
2345 
2346         kstat_delete(cp->cpu_info_kstat);
2347         cp->cpu_info_kstat = NULL;
2348 }
2349 
2350 /*
2351  * Create and install kstats for the boot CPU.
2352  */
2353 void
2354 cpu_kstat_init(cpu_t *cp)
2355 {
2356         mutex_enter(&cpu_lock);
2357         cpu_info_kstat_create(cp);
2358         cpu_stats_kstat_create(cp);
2359         cpu_create_intrstat(cp);
2360         cpu_set_state(cp);
2361         mutex_exit(&cpu_lock);
2362 }
2363 
2364 /*
2365  * Make visible to the zone that subset of the cpu information that would be
2366  * initialized when a cpu is configured (but still offline).
2367  */
2368 void
2369 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2370 {
2371         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2372 
2373         ASSERT(MUTEX_HELD(&cpu_lock));
2374         ASSERT(pool_pset_enabled());
2375         ASSERT(cp != NULL);
2376 
2377         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2378                 zone->zone_ncpus++;
2379                 ASSERT(zone->zone_ncpus <= ncpus);
2380         }
2381         if (cp->cpu_info_kstat != NULL)
2382                 kstat_zone_add(cp->cpu_info_kstat, zoneid);
2383 }
2384 
2385 /*
2386  * Make visible to the zone that subset of the cpu information that would be
2387  * initialized when a previously configured cpu is onlined.
2388  */
2389 void
2390 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2391 {
2392         kstat_t *ksp;
2393         char name[sizeof ("cpu_stat") + 10];    /* enough for 32-bit cpuids */
2394         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2395         processorid_t cpun;
2396 
2397         ASSERT(MUTEX_HELD(&cpu_lock));
2398         ASSERT(pool_pset_enabled());
2399         ASSERT(cp != NULL);
2400         ASSERT(cpu_is_active(cp));
2401 
2402         cpun = cp->cpu_id;
2403         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2404                 zone->zone_ncpus_online++;
2405                 ASSERT(zone->zone_ncpus_online <= ncpus_online);
2406         }
2407         (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2408         if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2409             != NULL) {
2410                 kstat_zone_add(ksp, zoneid);
2411                 kstat_rele(ksp);
2412         }
2413         if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2414                 kstat_zone_add(ksp, zoneid);
2415                 kstat_rele(ksp);
2416         }
2417         if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2418                 kstat_zone_add(ksp, zoneid);
2419                 kstat_rele(ksp);
2420         }
2421         if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2422             NULL) {
2423                 kstat_zone_add(ksp, zoneid);
2424                 kstat_rele(ksp);
2425         }
2426 }
2427 
2428 /*
2429  * Update relevant kstats such that cpu is now visible to processes
2430  * executing in specified zone.
2431  */
2432 void
2433 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2434 {
2435         cpu_visibility_configure(cp, zone);
2436         if (cpu_is_active(cp))
2437                 cpu_visibility_online(cp, zone);
2438 }
2439 
2440 /*
2441  * Make invisible to the zone that subset of the cpu information that would be
2442  * torn down when a previously offlined cpu is unconfigured.
2443  */
2444 void
2445 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2446 {
2447         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2448 
2449         ASSERT(MUTEX_HELD(&cpu_lock));
2450         ASSERT(pool_pset_enabled());
2451         ASSERT(cp != NULL);
2452 
2453         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2454                 ASSERT(zone->zone_ncpus != 0);
2455                 zone->zone_ncpus--;
2456         }
2457         if (cp->cpu_info_kstat)
2458                 kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2459 }
2460 
2461 /*
2462  * Make invisible to the zone that subset of the cpu information that would be
2463  * torn down when a cpu is offlined (but still configured).
2464  */
2465 void
2466 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2467 {
2468         kstat_t *ksp;
2469         char name[sizeof ("cpu_stat") + 10];    /* enough for 32-bit cpuids */
2470         zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2471         processorid_t cpun;
2472 
2473         ASSERT(MUTEX_HELD(&cpu_lock));
2474         ASSERT(pool_pset_enabled());
2475         ASSERT(cp != NULL);
2476         ASSERT(cpu_is_active(cp));
2477 
2478         cpun = cp->cpu_id;
2479         if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2480                 ASSERT(zone->zone_ncpus_online != 0);
2481                 zone->zone_ncpus_online--;
2482         }
2483 
2484         if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2485             NULL) {
2486                 kstat_zone_remove(ksp, zoneid);
2487                 kstat_rele(ksp);
2488         }
2489         if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2490                 kstat_zone_remove(ksp, zoneid);
2491                 kstat_rele(ksp);
2492         }
2493         if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2494                 kstat_zone_remove(ksp, zoneid);
2495                 kstat_rele(ksp);
2496         }
2497         (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2498         if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2499             != NULL) {
2500                 kstat_zone_remove(ksp, zoneid);
2501                 kstat_rele(ksp);
2502         }
2503 }
2504 
2505 /*
2506  * Update relevant kstats such that cpu is no longer visible to processes
2507  * executing in specified zone.
2508  */
2509 void
2510 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2511 {
2512         if (cpu_is_active(cp))
2513                 cpu_visibility_offline(cp, zone);
2514         cpu_visibility_unconfigure(cp, zone);
2515 }
2516 
2517 /*
2518  * Bind a thread to a CPU as requested.
2519  */
2520 int
2521 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2522     int *error)
2523 {
2524         processorid_t   binding;
2525         cpu_t           *cp = NULL;
2526 
2527         ASSERT(MUTEX_HELD(&cpu_lock));
2528         ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2529 
2530         thread_lock(tp);
2531 
2532         /*
2533          * Record old binding, but change the obind, which was initialized
2534          * to PBIND_NONE, only if this thread has a binding.  This avoids
2535          * reporting PBIND_NONE for a process when some LWPs are bound.
2536          */
2537         binding = tp->t_bind_cpu;
2538         if (binding != PBIND_NONE)
2539                 *obind = binding;       /* record old binding */
2540 
2541         switch (bind) {
2542         case PBIND_QUERY:
2543                 /* Just return the old binding */
2544                 thread_unlock(tp);
2545                 return (0);
2546 
2547         case PBIND_QUERY_TYPE:
2548                 /* Return the binding type */
2549                 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2550                 thread_unlock(tp);
2551                 return (0);
2552 
2553         case PBIND_SOFT:
2554                 /*
2555                  *  Set soft binding for this thread and return the actual
2556                  *  binding
2557                  */
2558                 TB_CPU_SOFT_SET(tp);
2559                 thread_unlock(tp);
2560                 return (0);
2561 
2562         case PBIND_HARD:
2563                 /*
2564                  *  Set hard binding for this thread and return the actual
2565                  *  binding
2566                  */
2567                 TB_CPU_HARD_SET(tp);
2568                 thread_unlock(tp);
2569                 return (0);
2570 
2571         default:
2572                 break;
2573         }
2574 
2575         /*
2576          * If this thread/LWP cannot be bound because of permission
2577          * problems, just note that and return success so that the
2578          * other threads/LWPs will be bound.  This is the way
2579          * processor_bind() is defined to work.
2580          *
2581          * Binding will get EPERM if the thread is of system class
2582          * or hasprocperm() fails.
2583          */
2584         if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2585                 *error = EPERM;
2586                 thread_unlock(tp);
2587                 return (0);
2588         }
2589 
2590         binding = bind;
2591         if (binding != PBIND_NONE) {
2592                 cp = cpu_get((processorid_t)binding);
2593                 /*
2594                  * Make sure binding is valid and is in right partition.
2595                  */
2596                 if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2597                         *error = EINVAL;
2598                         thread_unlock(tp);
2599                         return (0);
2600                 }
2601         }
2602         tp->t_bind_cpu = binding;    /* set new binding */
2603 
2604         /*
2605          * If there is no system-set reason for affinity, set
2606          * the t_bound_cpu field to reflect the binding.
2607          */
2608         if (tp->t_affinitycnt == 0) {
2609                 if (binding == PBIND_NONE) {
2610                         /*
2611                          * We may need to adjust disp_max_unbound_pri
2612                          * since we're becoming unbound.
2613                          */
2614                         disp_adjust_unbound_pri(tp);
2615 
2616                         tp->t_bound_cpu = NULL;      /* set new binding */
2617 
2618                         /*
2619                          * Move thread to lgroup with strongest affinity
2620                          * after unbinding
2621                          */
2622                         if (tp->t_lgrp_affinity)
2623                                 lgrp_move_thread(tp,
2624                                     lgrp_choose(tp, tp->t_cpupart), 1);
2625 
2626                         if (tp->t_state == TS_ONPROC &&
2627                             tp->t_cpu->cpu_part != tp->t_cpupart)
2628                                 cpu_surrender(tp);
2629                 } else {
2630                         lpl_t   *lpl;
2631 
2632                         tp->t_bound_cpu = cp;
2633                         ASSERT(cp->cpu_lpl != NULL);
2634 
2635                         /*
2636                          * Set home to lgroup with most affinity containing CPU
2637                          * that thread is being bound or minimum bounding
2638                          * lgroup if no affinities set
2639                          */
2640                         if (tp->t_lgrp_affinity)
2641                                 lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2642                                     LGRP_NONE, B_FALSE);
2643                         else
2644                                 lpl = cp->cpu_lpl;
2645 
2646                         if (tp->t_lpl != lpl) {
2647                                 /* can't grab cpu_lock */
2648                                 lgrp_move_thread(tp, lpl, 1);
2649                         }
2650 
2651                         /*
2652                          * Make the thread switch to the bound CPU.
2653                          * If the thread is runnable, we need to
2654                          * requeue it even if t_cpu is already set
2655                          * to the right CPU, since it may be on a
2656                          * kpreempt queue and need to move to a local
2657                          * queue.  We could check t_disp_queue to
2658                          * avoid unnecessary overhead if it's already
2659                          * on the right queue, but since this isn't
2660                          * a performance-critical operation it doesn't
2661                          * seem worth the extra code and complexity.
2662                          *
2663                          * If the thread is weakbound to the cpu then it will
2664                          * resist the new binding request until the weak
2665                          * binding drops.  The cpu_surrender or requeueing
2666                          * below could be skipped in such cases (since it
2667                          * will have no effect), but that would require
2668                          * thread_allowmigrate to acquire thread_lock so
2669                          * we'll take the very occasional hit here instead.
2670                          */
2671                         if (tp->t_state == TS_ONPROC) {
2672                                 cpu_surrender(tp);
2673                         } else if (tp->t_state == TS_RUN) {
2674                                 cpu_t *ocp = tp->t_cpu;
2675 
2676                                 (void) dispdeq(tp);
2677                                 setbackdq(tp);
2678                                 /*
2679                                  * Either on the bound CPU's disp queue now,
2680                                  * or swapped out or on the swap queue.
2681                                  */
2682                                 ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2683                                     tp->t_weakbound_cpu == ocp ||
2684                                     (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2685                                     != TS_LOAD);
2686                         }
2687                 }
2688         }
2689 
2690         /*
2691          * Our binding has changed; set TP_CHANGEBIND.
2692          */
2693         tp->t_proc_flag |= TP_CHANGEBIND;
2694         aston(tp);
2695 
2696         thread_unlock(tp);
2697 
2698         return (0);
2699 }
2700 
2701 #if CPUSET_WORDS > 1
2702 
2703 /*
2704  * Functions for implementing cpuset operations when a cpuset is more
2705  * than one word.  On platforms where a cpuset is a single word these
2706  * are implemented as macros in cpuvar.h.
2707  */
2708 
2709 void
2710 cpuset_all(cpuset_t *s)
2711 {
2712         int i;
2713 
2714         for (i = 0; i < CPUSET_WORDS; i++)
2715                 s->cpub[i] = ~0UL;
2716 }
2717 
2718 void
2719 cpuset_all_but(cpuset_t *s, uint_t cpu)
2720 {
2721         cpuset_all(s);
2722         CPUSET_DEL(*s, cpu);
2723 }
2724 
2725 void
2726 cpuset_only(cpuset_t *s, uint_t cpu)
2727 {
2728         CPUSET_ZERO(*s);
2729         CPUSET_ADD(*s, cpu);
2730 }
2731 
2732 int
2733 cpuset_isnull(cpuset_t *s)
2734 {
2735         int i;
2736 
2737         for (i = 0; i < CPUSET_WORDS; i++)
2738                 if (s->cpub[i] != 0)
2739                         return (0);
2740         return (1);
2741 }
2742 
2743 int
2744 cpuset_cmp(cpuset_t *s1, cpuset_t *s2)
2745 {
2746         int i;
2747 
2748         for (i = 0; i < CPUSET_WORDS; i++)
2749                 if (s1->cpub[i] != s2->cpub[i])
2750                         return (0);
2751         return (1);
2752 }
2753 
2754 uint_t
2755 cpuset_find(cpuset_t *s)
2756 {
2757 
2758         uint_t  i;
2759         uint_t  cpu = (uint_t)-1;
2760 
2761         /*
2762          * Find a cpu in the cpuset
2763          */
2764         for (i = 0; i < CPUSET_WORDS; i++) {
2765                 cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2766                 if (cpu != (uint_t)-1) {
2767                         cpu += i * BT_NBIPUL;
2768                         break;
2769                 }
2770         }
2771         return (cpu);
2772 }
2773 
2774 void
2775 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2776 {
2777         int     i, j;
2778         uint_t  bit;
2779 
2780         /*
2781          * First, find the smallest cpu id in the set.
2782          */
2783         for (i = 0; i < CPUSET_WORDS; i++) {
2784                 if (s->cpub[i] != 0) {
2785                         bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2786                         ASSERT(bit != (uint_t)-1);
2787                         *smallestid = bit + (i * BT_NBIPUL);
2788 
2789                         /*
2790                          * Now find the largest cpu id in
2791                          * the set and return immediately.
2792                          * Done in an inner loop to avoid
2793                          * having to break out of the first
2794                          * loop.
2795                          */
2796                         for (j = CPUSET_WORDS - 1; j >= i; j--) {
2797                                 if (s->cpub[j] != 0) {
2798                                         bit = (uint_t)(highbit(s->cpub[j]) - 1);
2799                                         ASSERT(bit != (uint_t)-1);
2800                                         *largestid = bit + (j * BT_NBIPUL);
2801                                         ASSERT(*largestid >= *smallestid);
2802                                         return;
2803                                 }
2804                         }
2805 
2806                         /*
2807                          * If this code is reached, a
2808                          * smallestid was found, but not a
2809                          * largestid. The cpuset must have
2810                          * been changed during the course
2811                          * of this function call.
2812                          */
2813                         ASSERT(0);
2814                 }
2815         }
2816         *smallestid = *largestid = CPUSET_NOTINSET;
2817 }
2818 
2819 #endif  /* CPUSET_WORDS */
2820 
2821 /*
2822  * Unbind threads bound to specified CPU.
2823  *
2824  * If `unbind_all_threads' is true, unbind all user threads bound to a given
2825  * CPU. Otherwise unbind all soft-bound user threads.
2826  */
2827 int
2828 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2829 {
2830         processorid_t obind;
2831         kthread_t *tp;
2832         int ret = 0;
2833         proc_t *pp;
2834         int err, berr = 0;
2835 
2836         ASSERT(MUTEX_HELD(&cpu_lock));
2837 
2838         mutex_enter(&pidlock);
2839         for (pp = practive; pp != NULL; pp = pp->p_next) {
2840                 mutex_enter(&pp->p_lock);
2841                 tp = pp->p_tlist;
2842                 /*
2843                  * Skip zombies, kernel processes, and processes in
2844                  * other zones, if called from a non-global zone.
2845                  */
2846                 if (tp == NULL || (pp->p_flag & SSYS) ||
2847                     !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2848                         mutex_exit(&pp->p_lock);
2849                         continue;
2850                 }
2851                 do {
2852                         if (tp->t_bind_cpu != cpu)
2853                                 continue;
2854                         /*
2855                          * Skip threads with hard binding when
2856                          * `unbind_all_threads' is not specified.
2857                          */
2858                         if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2859                                 continue;
2860                         err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2861                         if (ret == 0)
2862                                 ret = err;
2863                 } while ((tp = tp->t_forw) != pp->p_tlist);
2864                 mutex_exit(&pp->p_lock);
2865         }
2866         mutex_exit(&pidlock);
2867         if (ret == 0)
2868                 ret = berr;
2869         return (ret);
2870 }
2871 
2872 
2873 /*
2874  * Destroy all remaining bound threads on a cpu.
2875  */
2876 void
2877 cpu_destroy_bound_threads(cpu_t *cp)
2878 {
2879         extern id_t syscid;
2880         register kthread_id_t   t, tlist, tnext;
2881 
2882         /*
2883          * Destroy all remaining bound threads on the cpu.  This
2884          * should include both the interrupt threads and the idle thread.
2885          * This requires some care, since we need to traverse the
2886          * thread list with the pidlock mutex locked, but thread_free
2887          * also locks the pidlock mutex.  So, we collect the threads
2888          * we're going to reap in a list headed by "tlist", then we
2889          * unlock the pidlock mutex and traverse the tlist list,
2890          * doing thread_free's on the thread's.  Simple, n'est pas?
2891          * Also, this depends on thread_free not mucking with the
2892          * t_next and t_prev links of the thread.
2893          */
2894 
2895         if ((t = curthread) != NULL) {
2896 
2897                 tlist = NULL;
2898                 mutex_enter(&pidlock);
2899                 do {
2900                         tnext = t->t_next;
2901                         if (t->t_bound_cpu == cp) {
2902 
2903                                 /*
2904                                  * We've found a bound thread, carefully unlink
2905                                  * it out of the thread list, and add it to
2906                                  * our "tlist".  We "know" we don't have to
2907                                  * worry about unlinking curthread (the thread
2908                                  * that is executing this code).
2909                                  */
2910                                 t->t_next->t_prev = t->t_prev;
2911                                 t->t_prev->t_next = t->t_next;
2912                                 t->t_next = tlist;
2913                                 tlist = t;
2914                                 ASSERT(t->t_cid == syscid);
2915                                 /* wake up anyone blocked in thread_join */
2916                                 cv_broadcast(&t->t_joincv);
2917                                 /*
2918                                  * t_lwp set by interrupt threads and not
2919                                  * cleared.
2920                                  */
2921                                 t->t_lwp = NULL;
2922                                 /*
2923                                  * Pause and idle threads always have
2924                                  * t_state set to TS_ONPROC.
2925                                  */
2926                                 t->t_state = TS_FREE;
2927                                 t->t_prev = NULL;    /* Just in case */
2928                         }
2929 
2930                 } while ((t = tnext) != curthread);
2931 
2932                 mutex_exit(&pidlock);
2933 
2934                 mutex_sync();
2935                 for (t = tlist; t != NULL; t = tnext) {
2936                         tnext = t->t_next;
2937                         thread_free(t);
2938                 }
2939         }
2940 }
2941 
2942 /*
2943  * Update the cpu_supp_freqs of this cpu. This information is returned
2944  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
2945  * maintain the kstat data size.
2946  */
2947 void
2948 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
2949 {
2950         char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
2951         const char *lfreqs = clkstr;
2952         boolean_t kstat_exists = B_FALSE;
2953         kstat_t *ksp;
2954         size_t len;
2955 
2956         /*
2957          * A NULL pointer means we only support one speed.
2958          */
2959         if (freqs == NULL)
2960                 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
2961                     cp->cpu_curr_clock);
2962         else
2963                 lfreqs = freqs;
2964 
2965         /*
2966          * Make sure the frequency doesn't change while a snapshot is
2967          * going on. Of course, we only need to worry about this if
2968          * the kstat exists.
2969          */
2970         if ((ksp = cp->cpu_info_kstat) != NULL) {
2971                 mutex_enter(ksp->ks_lock);
2972                 kstat_exists = B_TRUE;
2973         }
2974 
2975         /*
2976          * Free any previously allocated string and if the kstat
2977          * already exists, then update its data size.
2978          */
2979         if (cp->cpu_supp_freqs != NULL) {
2980                 len = strlen(cp->cpu_supp_freqs) + 1;
2981                 kmem_free(cp->cpu_supp_freqs, len);
2982                 if (kstat_exists)
2983                         ksp->ks_data_size -= len;
2984         }
2985 
2986         /*
2987          * Allocate the new string and set the pointer.
2988          */
2989         len = strlen(lfreqs) + 1;
2990         cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
2991         (void) strcpy(cp->cpu_supp_freqs, lfreqs);
2992 
2993         /*
2994          * If the kstat already exists then update the data size and
2995          * free the lock.
2996          */
2997         if (kstat_exists) {
2998                 ksp->ks_data_size += len;
2999                 mutex_exit(ksp->ks_lock);
3000         }
3001 }
3002 
3003 /*
3004  * Indicate the current CPU's clock freqency (in Hz).
3005  * The calling context must be such that CPU references are safe.
3006  */
3007 void
3008 cpu_set_curr_clock(uint64_t new_clk)
3009 {
3010         uint64_t old_clk;
3011 
3012         old_clk = CPU->cpu_curr_clock;
3013         CPU->cpu_curr_clock = new_clk;
3014 
3015         /*
3016          * The cpu-change-speed DTrace probe exports the frequency in Hz
3017          */
3018         DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3019             uint64_t, old_clk, uint64_t, new_clk);
3020 }
3021 
3022 /*
3023  * processor_info(2) and p_online(2) status support functions
3024  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
3025  *   for use in communicating processor state information to userland.  Kernel
3026  *   subsystems should only be using the cpu_flags value directly.  Subsystems
3027  *   modifying cpu_flags should record the state change via a call to the
3028  *   cpu_set_state().
3029  */
3030 
3031 /*
3032  * Update the pi_state of this CPU.  This function provides the CPU status for
3033  * the information returned by processor_info(2).
3034  */
3035 void
3036 cpu_set_state(cpu_t *cpu)
3037 {
3038         ASSERT(MUTEX_HELD(&cpu_lock));
3039         cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3040         cpu->cpu_state_begin = gethrestime_sec();
3041         pool_cpu_mod = gethrtime();
3042 }
3043 
3044 /*
3045  * Return offline/online/other status for the indicated CPU.  Use only for
3046  * communication with user applications; cpu_flags provides the in-kernel
3047  * interface.
3048  */
3049 int
3050 cpu_get_state(cpu_t *cpu)
3051 {
3052         ASSERT(MUTEX_HELD(&cpu_lock));
3053         if (cpu->cpu_flags & CPU_POWEROFF)
3054                 return (P_POWEROFF);
3055         else if (cpu->cpu_flags & CPU_FAULTED)
3056                 return (P_FAULTED);
3057         else if (cpu->cpu_flags & CPU_SPARE)
3058                 return (P_SPARE);
3059         else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3060                 return (P_OFFLINE);
3061         else if (cpu->cpu_flags & CPU_ENABLE)
3062                 return (P_ONLINE);
3063         else
3064                 return (P_NOINTR);
3065 }
3066 
3067 /*
3068  * Return processor_info(2) state as a string.
3069  */
3070 const char *
3071 cpu_get_state_str(cpu_t *cpu)
3072 {
3073         const char *string;
3074 
3075         switch (cpu_get_state(cpu)) {
3076         case P_ONLINE:
3077                 string = PS_ONLINE;
3078                 break;
3079         case P_POWEROFF:
3080                 string = PS_POWEROFF;
3081                 break;
3082         case P_NOINTR:
3083                 string = PS_NOINTR;
3084                 break;
3085         case P_SPARE:
3086                 string = PS_SPARE;
3087                 break;
3088         case P_FAULTED:
3089                 string = PS_FAULTED;
3090                 break;
3091         case P_OFFLINE:
3092                 string = PS_OFFLINE;
3093                 break;
3094         default:
3095                 string = "unknown";
3096                 break;
3097         }
3098         return (string);
3099 }
3100 
3101 /*
3102  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3103  * kstats, respectively.  This is done when a CPU is initialized or placed
3104  * online via p_online(2).
3105  */
3106 static void
3107 cpu_stats_kstat_create(cpu_t *cp)
3108 {
3109         int     instance = cp->cpu_id;
3110         char    *module = "cpu";
3111         char    *class = "misc";
3112         kstat_t *ksp;
3113         zoneid_t zoneid;
3114 
3115         ASSERT(MUTEX_HELD(&cpu_lock));
3116 
3117         if (pool_pset_enabled())
3118                 zoneid = GLOBAL_ZONEID;
3119         else
3120                 zoneid = ALL_ZONES;
3121         /*
3122          * Create named kstats
3123          */
3124 #define CPU_STATS_KS_CREATE(name, template, update_func)                 \
3125         ksp = kstat_create_zone(module, instance, (name), class,         \
3126             KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),\
3127             0, zoneid);                                                  \
3128         if (ksp != NULL) {                                               \
3129                 bcopy(&template, ksp->ks_data, sizeof (template));       \
3130                 ksp->ks_private = cp;                                    \
3131                 ksp->ks_update = (update_func);                          \
3132                 kstat_install(ksp);                                      \
3133         } else {                                                         \
3134                 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3135                     module, instance, (name));                           \
3136         }                                                                \
3137 
3138         CPU_STATS_KS_CREATE("sys", cpu_sys_stats_ks_data_template,
3139             cpu_sys_stats_ks_update);
3140         CPU_STATS_KS_CREATE("vm", cpu_vm_stats_ks_data_template,
3141             cpu_vm_stats_ks_update);
3142 
3143         /*
3144          * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3145          */
3146         ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3147             "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3148         if (ksp != NULL) {
3149                 ksp->ks_update = cpu_stat_ks_update;
3150                 ksp->ks_private = cp;
3151                 kstat_install(ksp);
3152         }
3153 }
3154 
3155 static void
3156 cpu_stats_kstat_destroy(cpu_t *cp)
3157 {
3158         char ks_name[KSTAT_STRLEN];
3159 
3160         (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3161         kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3162 
3163         kstat_delete_byname("cpu", cp->cpu_id, "sys");
3164         kstat_delete_byname("cpu", cp->cpu_id, "vm");
3165 }
3166 
3167 static int
3168 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3169 {
3170         cpu_t *cp = (cpu_t *)ksp->ks_private;
3171         struct cpu_sys_stats_ks_data *csskd;
3172         cpu_sys_stats_t *css;
3173         hrtime_t msnsecs[NCMSTATES];
3174         int     i;
3175 
3176         if (rw == KSTAT_WRITE)
3177                 return (EACCES);
3178 
3179         csskd = ksp->ks_data;
3180         css = &cp->cpu_stats.sys;
3181 
3182         /*
3183          * Read CPU mstate, but compare with the last values we
3184          * received to make sure that the returned kstats never
3185          * decrease.
3186          */
3187 
3188         get_cpu_mstate(cp, msnsecs);
3189         if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3190                 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3191         if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3192                 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3193         if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3194                 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3195 
3196         bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3197             sizeof (cpu_sys_stats_ks_data_template));
3198 
3199         csskd->cpu_ticks_wait.value.ui64 = 0;
3200         csskd->wait_ticks_io.value.ui64 = 0;
3201 
3202         csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3203         csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3204         csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3205         csskd->cpu_ticks_idle.value.ui64 =
3206             NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3207         csskd->cpu_ticks_user.value.ui64 =
3208             NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3209         csskd->cpu_ticks_kernel.value.ui64 =
3210             NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3211         csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3212         csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3213         csskd->bread.value.ui64 = css->bread;
3214         csskd->bwrite.value.ui64 = css->bwrite;
3215         csskd->lread.value.ui64 = css->lread;
3216         csskd->lwrite.value.ui64 = css->lwrite;
3217         csskd->phread.value.ui64 = css->phread;
3218         csskd->phwrite.value.ui64 = css->phwrite;
3219         csskd->pswitch.value.ui64 = css->pswitch;
3220         csskd->trap.value.ui64 = css->trap;
3221         csskd->intr.value.ui64 = 0;
3222         for (i = 0; i < PIL_MAX; i++)
3223                 csskd->intr.value.ui64 += css->intr[i];
3224         csskd->syscall.value.ui64 = css->syscall;
3225         csskd->sysread.value.ui64 = css->sysread;
3226         csskd->syswrite.value.ui64 = css->syswrite;
3227         csskd->sysfork.value.ui64 = css->sysfork;
3228         csskd->sysvfork.value.ui64 = css->sysvfork;
3229         csskd->sysexec.value.ui64 = css->sysexec;
3230         csskd->readch.value.ui64 = css->readch;
3231         csskd->writech.value.ui64 = css->writech;
3232         csskd->rcvint.value.ui64 = css->rcvint;
3233         csskd->xmtint.value.ui64 = css->xmtint;
3234         csskd->mdmint.value.ui64 = css->mdmint;
3235         csskd->rawch.value.ui64 = css->rawch;
3236         csskd->canch.value.ui64 = css->canch;
3237         csskd->outch.value.ui64 = css->outch;
3238         csskd->msg.value.ui64 = css->msg;
3239         csskd->sema.value.ui64 = css->sema;
3240         csskd->namei.value.ui64 = css->namei;
3241         csskd->ufsiget.value.ui64 = css->ufsiget;
3242         csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3243         csskd->ufsipage.value.ui64 = css->ufsipage;
3244         csskd->ufsinopage.value.ui64 = css->ufsinopage;
3245         csskd->procovf.value.ui64 = css->procovf;
3246         csskd->intrthread.value.ui64 = 0;
3247         for (i = 0; i < LOCK_LEVEL - 1; i++)
3248                 csskd->intrthread.value.ui64 += css->intr[i];
3249         csskd->intrblk.value.ui64 = css->intrblk;
3250         csskd->intrunpin.value.ui64 = css->intrunpin;
3251         csskd->idlethread.value.ui64 = css->idlethread;
3252         csskd->inv_swtch.value.ui64 = css->inv_swtch;
3253         csskd->nthreads.value.ui64 = css->nthreads;
3254         csskd->cpumigrate.value.ui64 = css->cpumigrate;
3255         csskd->xcalls.value.ui64 = css->xcalls;
3256         csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3257         csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3258         csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3259         csskd->modload.value.ui64 = css->modload;
3260         csskd->modunload.value.ui64 = css->modunload;
3261         csskd->bawrite.value.ui64 = css->bawrite;
3262         csskd->iowait.value.ui64 = css->iowait;
3263 
3264         return (0);
3265 }
3266 
3267 static int
3268 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3269 {
3270         cpu_t *cp = (cpu_t *)ksp->ks_private;
3271         struct cpu_vm_stats_ks_data *cvskd;
3272         cpu_vm_stats_t *cvs;
3273 
3274         if (rw == KSTAT_WRITE)
3275                 return (EACCES);
3276 
3277         cvs = &cp->cpu_stats.vm;
3278         cvskd = ksp->ks_data;
3279 
3280         bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3281             sizeof (cpu_vm_stats_ks_data_template));
3282         cvskd->pgrec.value.ui64 = cvs->pgrec;
3283         cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3284         cvskd->pgin.value.ui64 = cvs->pgin;
3285         cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3286         cvskd->pgout.value.ui64 = cvs->pgout;
3287         cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3288         cvskd->swapin.value.ui64 = cvs->swapin;
3289         cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3290         cvskd->swapout.value.ui64 = cvs->swapout;
3291         cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3292         cvskd->zfod.value.ui64 = cvs->zfod;
3293         cvskd->dfree.value.ui64 = cvs->dfree;
3294         cvskd->scan.value.ui64 = cvs->scan;
3295         cvskd->rev.value.ui64 = cvs->rev;
3296         cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3297         cvskd->as_fault.value.ui64 = cvs->as_fault;
3298         cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3299         cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3300         cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3301         cvskd->softlock.value.ui64 = cvs->softlock;
3302         cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3303         cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3304         cvskd->execpgin.value.ui64 = cvs->execpgin;
3305         cvskd->execpgout.value.ui64 = cvs->execpgout;
3306         cvskd->execfree.value.ui64 = cvs->execfree;
3307         cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3308         cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3309         cvskd->anonfree.value.ui64 = cvs->anonfree;
3310         cvskd->fspgin.value.ui64 = cvs->fspgin;
3311         cvskd->fspgout.value.ui64 = cvs->fspgout;
3312         cvskd->fsfree.value.ui64 = cvs->fsfree;
3313 
3314         return (0);
3315 }
3316 
3317 static int
3318 cpu_stat_ks_update(kstat_t *ksp, int rw)
3319 {
3320         cpu_stat_t *cso;
3321         cpu_t *cp;
3322         int i;
3323         hrtime_t msnsecs[NCMSTATES];
3324 
3325         cso = (cpu_stat_t *)ksp->ks_data;
3326         cp = (cpu_t *)ksp->ks_private;
3327 
3328         if (rw == KSTAT_WRITE)
3329                 return (EACCES);
3330 
3331         /*
3332          * Read CPU mstate, but compare with the last values we
3333          * received to make sure that the returned kstats never
3334          * decrease.
3335          */
3336 
3337         get_cpu_mstate(cp, msnsecs);
3338         msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3339         msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3340         msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3341         if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3342                 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3343         if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3344                 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3345         if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3346                 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3347         cso->cpu_sysinfo.cpu[CPU_WAIT]       = 0;
3348         cso->cpu_sysinfo.wait[W_IO]  = 0;
3349         cso->cpu_sysinfo.wait[W_SWAP]        = 0;
3350         cso->cpu_sysinfo.wait[W_PIO] = 0;
3351         cso->cpu_sysinfo.bread               = CPU_STATS(cp, sys.bread);
3352         cso->cpu_sysinfo.bwrite      = CPU_STATS(cp, sys.bwrite);
3353         cso->cpu_sysinfo.lread               = CPU_STATS(cp, sys.lread);
3354         cso->cpu_sysinfo.lwrite      = CPU_STATS(cp, sys.lwrite);
3355         cso->cpu_sysinfo.phread      = CPU_STATS(cp, sys.phread);
3356         cso->cpu_sysinfo.phwrite     = CPU_STATS(cp, sys.phwrite);
3357         cso->cpu_sysinfo.pswitch     = CPU_STATS(cp, sys.pswitch);
3358         cso->cpu_sysinfo.trap                = CPU_STATS(cp, sys.trap);
3359         cso->cpu_sysinfo.intr                = 0;
3360         for (i = 0; i < PIL_MAX; i++)
3361                 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3362         cso->cpu_sysinfo.syscall     = CPU_STATS(cp, sys.syscall);
3363         cso->cpu_sysinfo.sysread     = CPU_STATS(cp, sys.sysread);
3364         cso->cpu_sysinfo.syswrite    = CPU_STATS(cp, sys.syswrite);
3365         cso->cpu_sysinfo.sysfork     = CPU_STATS(cp, sys.sysfork);
3366         cso->cpu_sysinfo.sysvfork    = CPU_STATS(cp, sys.sysvfork);
3367         cso->cpu_sysinfo.sysexec     = CPU_STATS(cp, sys.sysexec);
3368         cso->cpu_sysinfo.readch              = CPU_STATS(cp, sys.readch);
3369         cso->cpu_sysinfo.writech     = CPU_STATS(cp, sys.writech);
3370         cso->cpu_sysinfo.rcvint              = CPU_STATS(cp, sys.rcvint);
3371         cso->cpu_sysinfo.xmtint              = CPU_STATS(cp, sys.xmtint);
3372         cso->cpu_sysinfo.mdmint              = CPU_STATS(cp, sys.mdmint);
3373         cso->cpu_sysinfo.rawch               = CPU_STATS(cp, sys.rawch);
3374         cso->cpu_sysinfo.canch               = CPU_STATS(cp, sys.canch);
3375         cso->cpu_sysinfo.outch               = CPU_STATS(cp, sys.outch);
3376         cso->cpu_sysinfo.msg         = CPU_STATS(cp, sys.msg);
3377         cso->cpu_sysinfo.sema                = CPU_STATS(cp, sys.sema);
3378         cso->cpu_sysinfo.namei               = CPU_STATS(cp, sys.namei);
3379         cso->cpu_sysinfo.ufsiget     = CPU_STATS(cp, sys.ufsiget);
3380         cso->cpu_sysinfo.ufsdirblk   = CPU_STATS(cp, sys.ufsdirblk);
3381         cso->cpu_sysinfo.ufsipage    = CPU_STATS(cp, sys.ufsipage);
3382         cso->cpu_sysinfo.ufsinopage  = CPU_STATS(cp, sys.ufsinopage);
3383         cso->cpu_sysinfo.inodeovf    = 0;
3384         cso->cpu_sysinfo.fileovf     = 0;
3385         cso->cpu_sysinfo.procovf     = CPU_STATS(cp, sys.procovf);
3386         cso->cpu_sysinfo.intrthread  = 0;
3387         for (i = 0; i < LOCK_LEVEL - 1; i++)
3388                 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3389         cso->cpu_sysinfo.intrblk     = CPU_STATS(cp, sys.intrblk);
3390         cso->cpu_sysinfo.idlethread  = CPU_STATS(cp, sys.idlethread);
3391         cso->cpu_sysinfo.inv_swtch   = CPU_STATS(cp, sys.inv_swtch);
3392         cso->cpu_sysinfo.nthreads    = CPU_STATS(cp, sys.nthreads);
3393         cso->cpu_sysinfo.cpumigrate  = CPU_STATS(cp, sys.cpumigrate);
3394         cso->cpu_sysinfo.xcalls              = CPU_STATS(cp, sys.xcalls);
3395         cso->cpu_sysinfo.mutex_adenters      = CPU_STATS(cp, sys.mutex_adenters);
3396         cso->cpu_sysinfo.rw_rdfails  = CPU_STATS(cp, sys.rw_rdfails);
3397         cso->cpu_sysinfo.rw_wrfails  = CPU_STATS(cp, sys.rw_wrfails);
3398         cso->cpu_sysinfo.modload     = CPU_STATS(cp, sys.modload);
3399         cso->cpu_sysinfo.modunload   = CPU_STATS(cp, sys.modunload);
3400         cso->cpu_sysinfo.bawrite     = CPU_STATS(cp, sys.bawrite);
3401         cso->cpu_sysinfo.rw_enters   = 0;
3402         cso->cpu_sysinfo.win_uo_cnt  = 0;
3403         cso->cpu_sysinfo.win_uu_cnt  = 0;
3404         cso->cpu_sysinfo.win_so_cnt  = 0;
3405         cso->cpu_sysinfo.win_su_cnt  = 0;
3406         cso->cpu_sysinfo.win_suo_cnt = 0;
3407 
3408         cso->cpu_syswait.iowait              = CPU_STATS(cp, sys.iowait);
3409         cso->cpu_syswait.swap                = 0;
3410         cso->cpu_syswait.physio              = 0;
3411 
3412         cso->cpu_vminfo.pgrec                = CPU_STATS(cp, vm.pgrec);
3413         cso->cpu_vminfo.pgfrec               = CPU_STATS(cp, vm.pgfrec);
3414         cso->cpu_vminfo.pgin         = CPU_STATS(cp, vm.pgin);
3415         cso->cpu_vminfo.pgpgin               = CPU_STATS(cp, vm.pgpgin);
3416         cso->cpu_vminfo.pgout                = CPU_STATS(cp, vm.pgout);
3417         cso->cpu_vminfo.pgpgout              = CPU_STATS(cp, vm.pgpgout);
3418         cso->cpu_vminfo.swapin               = CPU_STATS(cp, vm.swapin);
3419         cso->cpu_vminfo.pgswapin     = CPU_STATS(cp, vm.pgswapin);
3420         cso->cpu_vminfo.swapout              = CPU_STATS(cp, vm.swapout);
3421         cso->cpu_vminfo.pgswapout    = CPU_STATS(cp, vm.pgswapout);
3422         cso->cpu_vminfo.zfod         = CPU_STATS(cp, vm.zfod);
3423         cso->cpu_vminfo.dfree                = CPU_STATS(cp, vm.dfree);
3424         cso->cpu_vminfo.scan         = CPU_STATS(cp, vm.scan);
3425         cso->cpu_vminfo.rev          = CPU_STATS(cp, vm.rev);
3426         cso->cpu_vminfo.hat_fault    = CPU_STATS(cp, vm.hat_fault);
3427         cso->cpu_vminfo.as_fault     = CPU_STATS(cp, vm.as_fault);
3428         cso->cpu_vminfo.maj_fault    = CPU_STATS(cp, vm.maj_fault);
3429         cso->cpu_vminfo.cow_fault    = CPU_STATS(cp, vm.cow_fault);
3430         cso->cpu_vminfo.prot_fault   = CPU_STATS(cp, vm.prot_fault);
3431         cso->cpu_vminfo.softlock     = CPU_STATS(cp, vm.softlock);
3432         cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt);
3433         cso->cpu_vminfo.pgrrun               = CPU_STATS(cp, vm.pgrrun);
3434         cso->cpu_vminfo.execpgin     = CPU_STATS(cp, vm.execpgin);
3435         cso->cpu_vminfo.execpgout    = CPU_STATS(cp, vm.execpgout);
3436         cso->cpu_vminfo.execfree     = CPU_STATS(cp, vm.execfree);
3437         cso->cpu_vminfo.anonpgin     = CPU_STATS(cp, vm.anonpgin);
3438         cso->cpu_vminfo.anonpgout    = CPU_STATS(cp, vm.anonpgout);
3439         cso->cpu_vminfo.anonfree     = CPU_STATS(cp, vm.anonfree);
3440         cso->cpu_vminfo.fspgin               = CPU_STATS(cp, vm.fspgin);
3441         cso->cpu_vminfo.fspgout              = CPU_STATS(cp, vm.fspgout);
3442         cso->cpu_vminfo.fsfree               = CPU_STATS(cp, vm.fsfree);
3443 
3444         return (0);
3445 }