new usr/src/cnd/ Makefile

R R R R

11468 Sun Feb 24 04:11:46 2013
new usr/src/cnd/ Makefile
30 Need iconv

R R R R R

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright 2010 Nexenta Systens, Inc. All rights reserved.
Copyright 2011 Joyent, Inc. Al rights reserved.

Copyright (c) 2012 by Del phix. Al rights reserved.

Copyright (c) 2013 DEY Storage Systens, Inc. Al rights reserved.

HEHEHHH HEHHHHHHHHHFHFHFFHR RS

include ../ Mkefile.nmaster

I ong-runni ng and should be given the nost wall-clock tine for a

paral lel build.

of other commands. Currently this includes only 'isaexec’ and

because their 'make install’ creates a hard link to one of them

changes.

HHFHHFHHFHEHF IR

FI RST_SUBDI RS= \
i saexec
pl at exec

COMMON_SUBDI RS=
al l ocate
avai |l devs

=
P

Note that the commands 'agents’, 'Ip’, 'perl’, and 'man’ are first
the list, violating al phabetical order. This is because they are very

"platexec’. This is necessary because $(ROOT)/usr/lib/isaexec or
$(ROOT) /usr/1ib/platexec must exist when sone other commands are built

Copyright (c) 1989, 2010, Oracle and/or its affiliates. Al rights reserved.

in

Commands in the FIRST_SUBDIRS |ist are built before starting the build

Comrends are listed one per line so that Tean\Ware can aut o- merge nost

new usr/src/cnd/ Makefile

62 asa
63 ast
64 audi o
65 aut hs
66 aut opush
67 avs
68 awk
69 awk_xpg4
70 backup
71 banner
72 bart
73 basenane
74 c
75 bdi f f
76 beadm
77 bf s
78 bnu
79 boot
80 busst at
81 cal
82 cal endar
83 capt oi nfo
84 cat
85 cdrw
86 cf gadm
87 checkeq
88 checknr
89 chgrp
90 chnod
91 chown
92 chr oot
93 cl ear
94 clinfo
95 cmd-crypto
96 cmd- i net
97 col
98 conpr ess
99 consadm
100 coreadm
101 cpio
102 cpc
103 cron
104 crypt
105 csh
106 csplit
107 ctrun
108 ctstat
109 ctwat ch
110 dat adm
111 date
112 dc
113 dd
114 der of f
115 devfsadm
116 syseventd
117 devct |
118 devi nfo
119 devngnt
120 devprop
121 df s. cnds
122 diff
123 diff3
124 di ffnk
125 dircnp
126 di rnane
127 dis

o e o e e e e e e e e e e o e o e e e e e e e

new usr/src/cnd/ Makefile

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

di skngt d
di spadnmi n
dl adm

dl st at
dnesg
dodat adm
dtrace
du
dunpadm
dunpcs
echo

ed
eeprom
egrep

ej ect
emnul 64i oct
enhance
env

eqgn
expand
expr
exstr
factor
fal se
fcinfo
fcoesvc
fdetach
f df or mat
i sk

il esync
ep

e
ebench
d

Q.

—————Q
5
Q
3

r
|
|
n
¢}
owst at

Q=
o

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
=1

»Q23333
azezs

— =
c n
» —~
o<
-T

fwflash

g

geni convtb
gennsg

get conf
get devpolicy
getent

get facl

get naj or
get opt
gett ext
get t xt
grep
grep_xpg4
groups

gr pck

gss

hal

hal t

head

e e o e e e e e e e e e e e o e o e e o e e e e e

new usr/src/cnd/ Makefile

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

#endi f /

hosti d

host nane
hot pl ug
hot pl ugd
hwdat a

i bd_upgr ade
i conv

* | codereview *
id

i
i dmap
i nf ocnp
init

i ni tpkg
install.d
intrd
intrstat

i pcrm

i pcs

i pf

i sai nfo

i salist
itutools

i scsiadm
iscsid

i scsitsve
i sns
itadm

j ava

kbd
keyserv
killall

kr b5

ksh
kvmst at

| ast

| ast conm

| at encyt op
| dap

| dapcachengr
I grpinfo
I'ine

I'i nk

dl ngnt d
listen

| oadkeys

| ocal e

| ocal edef
| ockst at

| ocat or

| of i adm

| ogadm

| ogger

I ogin

| ogi ns

| ook

I's

| uxadm
Ivm

mach
machi d
mai |

mai | x
makekey
ndb

nesg

mkdi r

o e o e e e e e e e e e e o e e o e o e e o e e e e e e

new usr/src/cnd/ Makefile

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

nkfifo
nkfile
nmknsgs
nknod
nkpwdi ct
mkt enp
nodl oad
nor e
npat hadm
msgf nt
msgi d

nt

nv

mvdi r
ndnpadm
ndnpd
ndnpst at
net adm
netfiles
newf orm
newgr p
news
newt ask
ni ce

n

nl sadmi n
nohup
nsadm n
nscd
oanuser
oawk

od

pack
pagesi ze
passngnt
passwd
pat hchk
pbi nd
pci dr
pcitoo
pf exec
pf execd
pgi nfo
pgst at
pgr ep
picl
plimt
pol i cyki t
pool s
power
power t op
ppgsz

Pg

pl ockst at
pr

prctl
print
printf
priocntl
profiles
proj add
proj ects
prstat
prtconf
prtdi ag
prtvtoc

o o o e e e e e e e e e e o e o e e o e e o o o e e e e e

new usr/src/cnd/ Makefile

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

ps
psradm
psrinfo
psrset
ptool s
pwek
pwconv

pwd

pyzfs

rai dct
ranmdi skadm
rcap

rcm daenon
rctladm
refer
regenp
renice
rexd

rm

rdi r
rnf or mat

r nmount

sendnai |
set facl
set mt
set pgrp
set uname
sgs

sh
shconp
snbi os
snmbsrv
snmserverd
soelim
sort
spel |
split
sqglite
srcht xt
srptadm
srptsvc
ssh

st at

st nfadm
st nf pr oxy
stnfsvec
st msboot
streans

o e o e o e e e e e e e e e e o e o e o e e e e e

new usr/src/cnd/ Makefile

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

strings
su

sul ogi n
sunpc
svec
svr4pkg
swap
sync
sysdef
sysevent adm
sysl ogd
t abs
tail

tar

tb

t copy
tcpd
termnfo

troff

ttynon
tzrel oad
uadni n

ul

unarme
units
unl i nk
unpack
userattr
users

ut np_updat e
ut
val t ool s
vgrind

v

vol check
vol r mount
vrrpadm
vscan

e o o e o e e e e e e e e o e e o e o e e e e e

new usr/src/cnd/ Makefile

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

474
475
476
477
478
479
480
481
482
483
484
485

487
488
489
490
491
492
493
494
495
496
497

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

515
516
517

519
520
521
522
523

zdunp
zfs
zhack
zic

zi nj ect
zl ogi n
zoneadm
zoneadnd
zonecfg
zonenamne
zpool

zl ook
zonest at
zstr eandunp
zt est

e e e —

$(CLOSED_BUI LD) COMMON_SUBDI RS += \

$(CLOSED) / cnd/ i conv

$(CLOSED) / cr/ ksh
$(CLOSED) / cnd/ | ocal edef
$(CLOSED) / cnd/ nor e_xpg4
$(CLOSED) / cil/ nt st

$(CLOSED) / cnd/ od

$(CLOSED) / cnd/ pat ch

$(CLOSED) / cnd/ pax

$(CLOSED) / cnd/ pri nt f

$(CLOSED) / cnd/ sed

e —

$(CLOSED) / cnd/ sed_xpg4
i 386_SUBDI RS=

acpi hpd
addbadsec
bi osdev
di skscan
I ms

nt f sprogs
parted
rtc
ucodeadm
xvm

spar c_SUBDI RS=

#

Conmands t hat

cved

dcs

devi ce_renap
drd
fruadm

| dmad
opl hpd
prtdscp
prtfru
scadm
scknd

sf 880drd
virtinfo
vnt sd

e e e —

e e e —

are nmessaged. Note that 'Ip and 'man’ cone first

(see previous conment about 'Ip’ and 'man’)
#

MBGSUBDI RS=

I'p

man

abi
acctadm

—— e ——

new usr/src/cnd/ Makefile

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
551
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
5145]
576
577
578
579
580
581
582
583
584
585
586
587
588
589

al | ocate
asa

audi o

audi t
auditconfig
audi td
auditrecord
audi t set

aut hs

aut opush
avs

awk
awk_xpg4
backup
banner
bart
basenane
beadm
bnu
busst at
ca

cat

cdrw

cf gadm
checkeq
checknr
chgrp
chnod
chown
cnmd-crypto
cmd- i net
co

conpr ess
consadm
cor eadm
cpio

cpc

cron

csh
csplit
ctrun
ctstat
ctwat ch
dat adm
date

dc

dcs

dd

der of f
devfsadm
df s. cnds
diff

di ffnk

dl adm

dl st at

e o o e o e e e e e e e e o e e e o e e e e e e e e

new usr/src/cnd/ Makefile

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

geni convtb
gennsg
get conf
get ent
get t ext
get t xt
grep
grep_xpg4
gr pck
gss

hal t
head
host name
hot pl ug
id

i dmap

i saexec
i scsi adm
iscsid

i sns
itadm
kbd

kr b5

ksh

| ast

| dap

| dapcachengr
I grpinfo
| ocal e

| of i adm
| ogadm

| ogger

| ogi ns
I's

| uxadm
Ivm
mai | x
nesg
nkdir
mkpwdi ct
nkt enp
nor e
npat hadm
msgf nt
nv
ndnpadm
ndnpst at
newgr p
newt ask
ni ce
nohup
oawk
pack
passwd
passngnt
pat hchk
pf exec
P9

o o e e o e e e e e e e e e e o e e e e e e e

10

new usr/src/cnd/ Makefile

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

pgr ep

pi cl

pool s

power

pr

praudi t

print

profiles

proj add

projects

prst at

prtdi ag
s

R
psrinfo
pt ool s
pwconv

p

pyzfs
rai dct
randi skadm
rcap
rcm daenon
refer
regenp
renice
rol es
rm
rdi r
rnf or mat
r nmount
r mvol mgr
sasi nfo
shdadm
scadm
script
scsi

sdi ff
sdpadm
sgs

sh
shconp
snmbsrv
sort
split
srptadm
ssh

st at

st nf adm
st nsboot
strings
su

svc
svr4pkg
swap
sysevent adm
syseventd
t abs

tar

th

tine

t nf
touch

t put
troff
tsol

tty

e o o e o e o e e e e e e e e o e o e e e e e e

11

new usr/src/cnd/ Makefile

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

ttynon
tzrel oad
u

unarme
units
unl i nk
unpack
userattr
val tool s
vgrind

\Y

vol check
vol r mount
vrrpadm
vscan

w
who
whodo

wr acct
wite
wusbadm
xar gs
yppasswd
zdunp
zfs

zic

zl ogi n
zoneadm
zoneadnd
zonecfg
zonenane
zpool
zonest at

e e e e e e e e e e e

756 $(CLOSED_BUI LD) MSGSUBDI RS += \

757

779 # commands that use dcgettext for localized tinme, LC TIME

$(CLOSED) / cmd/ i conv

758 $(CLOSED) / cnd/ ksh

759 $(CLCSED) / cnd/ | ocal edef
760 $(CLOSED) / cnd/ nor e_xpg4
761 $(CLOSED) / cmd/ od

762 $(CLOSED) / cnmd/ pat ch
763 $(CLCSED) / cnd/ pax

764 $(CLCSED) / cnd/ pri nt f
765 $(CLOSED) / cnd/ sed

766 $(CLCSED) / cnd/ sed_xpg4
768 spar c_MSGSUBDI RS= \

769 fruadm \

770 prtdscp \

771 prtfru \

772 virtinfo \

773 vnt sd

775 i 386_MSGSUBDI RS= \

776 ucodeadm

778 #

780 #

781 DCSUBDI RS= \

782 cal \

783 cf gadm \

784 diff \

785 I's \

786 pr \

787 ps \

e —

12

new usr/src/cnd/ Makefile

788 tar \

789 w \

790 who \

791 whodo \

792 wite

794 $(CLOSED_BUI LD) DCSUBDI RS += \

795 $(CLOSED) / cnd/ pax

797 #

798 # commands that belong only to audit.

799 #

800 AUDI TSUBDI RS= \

801 ant \

802 audi t \

803 audi t _warn \

804 auditconfig \

805 audi td \

806 auditrecord \

807 audi treduce \

808 audi t set \

809 audi t st at \

810 praudi t

812 #

813 # conmands not owned by the systens group

814 #

815 BWOSDI RS=

818 all := TARGET = all

819 install := TARGET = install

820 clean : = TARGET = cl ean

821 cl obber : = TARGET = cl obber

822 lint := TARGET = |int

823 nsg := TARGET = _nsg

824 _dc : = TARCGET = _dc

826 . KEEP_STATE:

828 SUBDI RS = $(COWWON_SUBDI RS) $($(MACH) _SUBDI RS)

830 . PARALLEL: $(BWOSDI RS) $(SUBDI RS) $(MSGSUBDI RS) $(AUDI TSUBDI RS)
832 all install clean clobber lint: $(FIRST_SUBDI RS) .WAI T $(SUBDI RS) \
833 $(AUDI TSUBDI RS)

835 #

836 # Mani fests cannot be checked in parallel, because we are using
837 # the global repository that is in $(SRC)/cnd/ svc/seed/ gl obal . db.
838 # For this reason, to avoid .PARALLEL and . NO PARALLEL conflicts,
839 # we spawn off a sub-nake to performthe non-parallel 'make check’
840 #

841 check:

842 $(MAKE) -f Makefile.check check

844 #

845 # The .WAIT directive works around an apparent bug in parallel make.
846 # Evidently nmake was getting the target _nmsg vs. _dc confused under
847 # sonme | evel of parallelization, causing sone of the _dc objects
848 # not to be built.

849 #

850 _nmsg: $(MSGSUBDI RS) $($(MACH) _MSGSUBDIRS) .WAIT _dc

852 _dc: $(DCSUBDI RS)

13

new usr/src/cnd/ Makefile

854 #

855 # Dependenci es

856 #

857 fs.d: fstyp

858 ksh: shconp i saexec
859 ndb: termnfo

860 print: Ip

863 -f $@Makefile 1; then

864 cd $@ pwd; $(MAKE) $(TARGET); \
865 el se \

866 true; \

867 fi

869 FRC:

862 $(FI RST_SUBDI RS) $(BWOSDI RS) $(SUBDI RS) $(AUDI TSUBDI RS) :
af [\

FRC

14

new usr/src/cnd/ i conv/ Makefile

R R R R

1417 Sun Feb 24 04:11:47 2013
new usr/src/cnd/ i conv/ Makefile
30 Need iconv

R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License, Version 1.0 only

6 # (the "License"). You nmay not use this file except in conpliance
7 # with the License.

8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governi ng perni ssions
12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER i n each
15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
17 # fields encl osed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy]l [nane of copyright owner]
19 #

20 # CDDL HEADER END

21 #

22 #

23 # Copyright 2004 Sun M crosystens, Inc. Al rights reserved.

24 # Use is subject to license terns.

25 #

27 PROG= iconv

29 include ../ Mkefile.cnd

31 OBJS = charmap. o iconv.o parser.tab.o scanner.o
33 . KEEP_STATE:

35 CFLAGS += $(CCVERBCSE)

37 LDLIBS += -lcndutils
38 LDLIBS += -l avl

39 YFLAGS = -d -b parser

41 CLEANFI LES = $(0BJS) parser.tab.c parser.tab.h
43 all: $(PROG

45 install: all $(ROOTPROG)

47 $(PROO): $(OBIS)

48 $(LINK. C) $(CFLAGS) $(0BJS) -0 $@ $(LDLIBS)
50 $(0OBIY): parser.tab. h

52 parser.tab.c parser.tab.h: parser.y

53 $(YACC) $(YFLAGS) parser.y

55 cl ean:

56 $(RM) $(CLEANFI LES)

58 lint: i nt _PROG

60 include ../ Mkefile.targ
61 #endif /* | codereview */

new usr/src/cnd/ i conv/charnmap. c 1

R R R R

3059 Sun Feb 24 04:11:47 2013
new usr/src/cnd/ i conv/ char map. ¢
30 Need iconv

R R R R R

1/*

2 * This file and its contents are supplied under the terms of the

3 * Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this

8 * source. A copy of the CDDL is also available via the Internet at
9 * http://ww.illunos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2010 Nexenta Systens, Inc. Al rights reserved.
14 * Copyright 2013 David Hoeppner. All rights reserved.

*

/

15

17 [*

18 * Character map handling for iconv.
19 */

21 #include <sys/avl.h>
23 #include <stddef.h>

25 #include "iconv. h"
26 #include "parser.tab.h"

28 /*

29 * AVL trees for the fromand to charmaps.
30 */

31 static avl _tree_t fromcmap_sym

32 static avl _tree_t fromcmap_wc;

33 static avl _tree_t to_cnmap_sym

34 static avl _tree_t to_cnap_wc;

36 static avl _tree_t
37 static avl _tree_t

*current _cmap_sym = & rom cnap_sym
*current_cmap_we = & rom crmap_wc;

39 typedef struct charmap {

40 const char *nare;
41 wchar _t W

42 avl _node_t avl _sym
43 avl _node_t avl _wc;

44 } charmap_t;

46 static int
47 cmap_conpare_syn(const void *nl, const void *n2)
{

48

49 const charmap_t *cl = nl;

50 const charmap_t *c2 = n2;

51 int rv;

53 rv = strcnp(cl->nanme, c2->nane);

54 return ((rv <0) ?2 -1: (rv>0) ?21: 0);
55 }

57 static int
58 cnmap_conpare_wc(const void *nl, const void *n2)

59 {
60 const charmap_t *cl = nl;
61 const charmap_t *c2 = n2;

new usr/src/cnd/ i conv/ char map. ¢

63 return ((cl->w < c2->w) ? -1 : (cl->wc > c2->wc) ? 1 : 0);
64 }

66 void

67 init_charmap(void)

68 {

69 avl _create(& rom. cmap sym cmap_conpare_sym sizeof (charmap_t),
70 “of fsetof (charmap_t, avl_sym);

72 avl _create(& romcnap_wc, cnap_conpare_wc, sizeof (charmap_t),
73 of f setof (charmap_t, avl_wc));

75 avl _create(& o_cnmap_sym cnmap_conpare_sym sizeof (charmap_t),
76 of f setof (charmap_t, avl_syn));

78 avl _create(& o_cnmap_wc, crmap_conpare_wc, sizeof (charmap_t),
79 of f setof (charmap_t, avl_wc));

80 }

82 /*

83 * Switches from frontharmap to tocharmap.
84 */

85 voi d

86 switch_charmap(voi d)

87

88 current _cmap_sym = & o_cnap_sym
89 current_crmap_we = & 0_ChMap_Wc;
90 }

92 static void

93 add_charmap_i npl (char *sym wchar_t wc, int nodup
94 {

95 char map_t srch;

96 char map_t *n = NULL;

97 avl _i ndex_t wher e;

99 srch.we = we;

100 srch. nane = sym

102 /*

103 * Also possibly insert the wi de nmapping,
104 * can only be one of these per w de char
105 *

106 if ((we !=-1) & ((avl_find(current_cnmap
107 if ((n =-calloc(l, sizeof (*n)))

108 errf(_("out of nenory"));
109 return;

110 }

112 n->wc = Wc;

113 avl |nsert(current _cmap_we, n, wh
114 1

116 if (sym!= NULL)

117 if (avl_find(current crmp sym &s
118 if (nodups ==

119 errf (_("duplicate
120 }

122 return;

123 }

125 if ((n == NULL) &&((nzcalloc(l
126 errf(_("out of menory"));

127 return;

s)

al t hough note that there
acter code.

we, &src?, &nhere)) == NULL))

== NULL)

ere);

rch, &ishere) !'= NULL) {

character definition"));

sizeof (*n))) == NULL)) {

new usr/src/cnd/ i conv/ char map. ¢

128 }

130 n->wc = Wc;

131 n->nanme = sym

132 printf("ADDI NG %\ n", sym;

133 avl _insert(current_cmap_sym n, where);
134 }

135 }

137 void

138 add_char map(char *sym int c)

139 {

140 add_charmap_i npl (sym c, 1);
141 }

143 voi d

144 add_char map_range(char *s, char *e, int wc)
145 {

147 }
148 #endif /* ! codereview */

new usr/src/cnd/iconv/iconv.c

R R R R

8954 Sun Feb 24 04:11:47 2013
new usr/src/cnd/iconv/iconv.c
30 Need iconv

LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE]
This file and its contents are supplied under the terms of the

1.0 of the CDDL.

source. A copy
http://ww.illunmos. org/license/ CDDL.

13 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
14 * Copyright 2013 David Hoeppner. All rights reserved.

*

/

17 /*
18 * POCsSI X iconv.
19 */

21 #include <sys/list.h>

23 #include <errno. h>

24 #include <gl ob. h>

25 #include <iconv. h>

26 #incl ude <lI angi nfo. h>
27 #include <libnvpair.h>
28 #include <l ocal e. h>

29 #include <stddef.h>

30 #include <string. h>

31 #include <unistd. h>

33 #include "iconv. h"

35 static const char *g_prognane = "iconv";

37 static char *g_fromcs = "UTF-8";

38 static char *g_to_cs = "UTF-8";

39 static iconv_t g_ich; /* iconv(3c) lib handle */
40 static int g_errcnt;

41 static boolean_t g_cflag = B_FALSE; /* Skip invalid characters */
42 static boolean_t g_sflag = B_FALSE; /* Silent */

43 static boolean_t g_|Iflag = B_FALSE; /* List conversions */

46 /*

47 * Forward decl arations.

48 */

49 static void
50 static void
51 static void

usage(voi d) __ NORETURN,
do_i conv(FILE *, const char *);
list_codesets(void);

52 int yypar se(voi d);

54 typedef struct _iconv_item {

55 i st_node_t ii_next;

56 list_t ii_alias_list;
57 char *ii_naneg;

58 } iconv_itemt;

60 typedef struct _iconv_alias {
61 list_node_t i a_next;

Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terms of version

A full copy of the text of the CDDL shoul d have acconpanied this
of the CDDL is also available via the Internet at

new usr/src/cnd/iconv/iconv.c

62
63

125
127

char *ia_nane;
} iconv_alias_t;
/*
* Print usage.
*/
static void
usage(voi d)
(void) fprintf(stderr, _(
"usage: "
"\ticonv [-cs] [-f frontode] [-t tocode]
"\ticonv [-cs] -f frommap -t tomap [file
"\ticonv -1\n"));
exit(1);
}
int
mai n(int argc, char **argv)
char *f nane;
FI LE *fp;
int (0N

init_charmap();

[* XXX */
yydebug = 1;

(void) setlocal e(LC_ALL, "");

#if 1 defi ned(TEXT_DOMAI
#def i ne TEXT_DOMAI N " SYS_TEST"
#endi f
(voi d) textdomai n(TEXT_DOVAIN) ;
while ((c = getopt(argc, argv, "clsf:t:?"))
switch (c) {
case 'c¢’:
g_cflag = B_TRUE;
break;
case '|’:
g_l flag = B_TRUE;
break;
case 's’:
g_sflag = B_TRUE;
br eak;
case 'f’:
g_fromcs = optarg;
br eak;
case 't’:
g_to_cs = optarg;
break;
case '?':
usage();
}
}
if (g_lflag) {
if (optind !'= argc)
usage();
list_codesets();
exit(0);
}
/* Charmaps and codesets can’t be mi xed

[file ...]\n"
o]\n"

= EOF) {

/* Shoul d be defined by cc -D */
/* Use this only if it weren't

*/

new usr/src/cnd/iconv/iconv.c

128
129
130
131

133
134
135
136

138

140
141
142

144
145
146
147
148
149
150

152
153
154

156
157
158
159
160
161
162
163
164
165

167
168
169
170
171

173
174
175
176
177
178
179
180
181

183
184

186
187
188
189
190
191

193

if ((strchr(g_fromcs, '/’) == NULL) !=
(strchr(g_to_cs, /') == NULL)) {
usage() ;

/* XXX formcs not only codeset */

if (strchr(g_fromes, "/’) !'= NULL) {
reset _scanner(g_fromcs);
(void) yyparse();

swi t ch_charmap();

reset _scanner(g_to_cs);
(void) yyparse();

/* XXX enpty string

if (g_fromcs == NULL)
g_fromcs = nl _I angi nf o(CODESET) ;
printf(" 0/s\ n", g_fromcs);

current encoding */
{

}
1f (g_to_cs == NULL)

g_to_cs = nl_l angi nf o(CODESET) ;
/*

* XXX todo: deal with charmap files (/paths)

= jconv_open(g_to_cs, g_fromcs);
ich == ((iconv_t)-1)) {
if (errno == EINVAL) {

(void) fprintf(stderr, gettext("Not supported % to %\n

g_fromcs, g_to_cs);
} else {
(void) fprintf(stderr, "iconv_open failed\n");
}
exit(1);
}

if (optind == argc || (optind == argc - 1 &&
0 == strcnp(argv[optind], "-"))) {
do_i conv(stdin, "stdin");
exit(0);
}

for (; optind < argc; optind++) {
fp = fopen(argv[optind], "r");
if (fp == NULL) {
perror (argv[optind]);
exit(1);

}
do_i conv(fp, argv[optind]);

. (void) fclose(fp);

return (EXI T_SUCCESS);

* Do actual conversion, copying *fp to stdout.
*

* Conversions may grow or shrink data, so using a |larger output buffer
* to reduce the likelihood of |eftover input buffer data in each pass.

*/

#define 1 BUFSI Z 1024

new usr/src/cnd/iconv/iconv.c

194 #define OBUFSI Z (2*I BUFSI 2)

196 void

197 ?o_i conv(FILE *fp, const char *fnane)

198

199 const char *iptr;

200 char i buf [| BUFSI 7] ;

201 char obuf [OBUFSI Z] ;

202 char *optr;

203 size_t ileft, icnt, oleft, ocnt;

204 int nr, nw, rc;

206 while ((nr = fread(ibuf, 1, IBUFSIZ, fp)) > 0) {
208 iptr = ibuf;

209 ileft = nr;

211 while (ileft > 0) {

212 optr = obuf;

213 ol ef t OBUFSI Z;

214 rc=|conv(g|ch & ptr, &left, &optr, &oleft);
215 if (rc ==(S|zet) 1) {

216 l*

217 * XXX todo: deal with skipping invalid
218 * input characters and continue.
219 */

220 g_errcnt ++;

221 br eak;

222 }

223 ocnt = OBUFSIZ - ol eft;

224 nw = fwite(obuf, 1, ocnt, stdout);
225 if (nw!= ocnt) {

226 perror("wite");

227 exit(1);

228 }

229 }

230 }

232 /*

233 * End of file. Flush any shift encodings.

234 */

235 iptr = NULL

236 ileft = 0;

237 optr = obuf

238 ol eft = OBUFSI Z;

239 iconv(g_lch & ptr, & left, &optr, &oleft);

240 ocnt = OBUFSIZ - ol eft;

241 fwite(obuf, 1, ocnt, stdout);

242 }

244 | *

245 * |temis in the list?

246 */

247 static bool ean_t

248 iconv_find(list_t *list, const char *nane)

249 {

250 iconv_itemt *head;

251 bool ean_t found = B_FALSE;

253 head = |ist_head(list);

254 while (head !'= NULL) {

255 if (strcnp(head- > | i_name, nane) == 0) {
256 found = B_TRUE,

257 break;

258 }

259 head = list_next(list, head);

new usr/src/cnd/iconv/iconv.c 5 new usr/src/cnd/iconv/iconv.c

260 } 326 }
262} return (found); 328 (void) fprintf(stdout, ",\n");
263
330 head = list_next(list, head);
265 /* 331 }
266 * Insert into a sorted list. 332 }
267 */
268 static void 334 /*
269 iconv_insert(list_t *list, const char *nane) 335 * List all codesets avail able.
270 { 336 */
271 iconv_itemt *head; 337 static void
272 iconv_itemt *item 338 |ist_codesets(void)
339 {
274 head = |ist_head(list); 340 list_t itemlist;
275 while (head != NULL && strcnp(head->ii_nane, name) < 0) 341 glob_t gl obbuf;
276 head = list_next(list, head); 342 FI LE *fp;
343 char *alias, *ptr, *chonp;
278 item= (iconv_itemt *)malloc(sizeof (iconv_itemt)); 344 char buf[1024];
345 int i;
280 list_link_init(& tem>ii_next);
281 list_create(& tem>ii_alias_|ist, sizeof (iconv_alias_t), 347 list_create(& temlist, sizeof (iconv_itemt),
282 of fsetof (iconv_alias_t, ia next)); 348 of fsetof (iconv_itemt, ii_next));
284 item>ii_name = strdup(nane); 350 #define _| CONV_PATH "lusr/libliconv/"
286 list_insert_before(list, head, item; 352 /* XXX search path depends on arch and64 etc */
287 } 353 (voi d) chdir(_| CONV_PATH);
354 (void) glob("*%.so", GLCB NOSORT, NULL &gl obbuf) ;
289 static void 355 (voi d) chdi r(geni convt bl / bi nar yt abl es")
290 iconv_insert_create(list_t *list, const char *nane) 356 (void) glob("*%.bt", GLOB_NOSORT| GLOB_APPEND, NULL, &gl obbuf);
291 {
292 if (liconv_find(list, name)) 358 for (i = 0; i < globbuf.gl_pathc; i++) {
293 iconv_insert(list, nane);
294 } 360 ptr = gl obbuf. gl _pathv[i];
361 alias = strsep(&ptr, "%);
296 static void
297 iconv_print(list_t *list) 363 chonp = ptr;
298 { 364 for (; *chonp, chonp++) {
299 iconv_itemt *head; 365 if (*chomp = M)
300 iconv_alias_t *al i as_head; 366) *choer N0 ;
367
302 (void) fprintf(stdout, gettext(
303 "The following are all supported code set names. All conbinations\n 369 iconv_insert_create(& temlist, ptr);
304 "of those nanes are not necessarily available for the pair of the\n" 370 iconv_insert_create(& temlist, alias);
305 "frontode-tocode. Sone of those code set nanes have aliases, which\ 371 }
306 "are case-insensitive and shown after the canonical name:\n"));
373 gl obf ree(&gl obbuf);
308 head = |ist_head(list);
309 while (head !'= NULL) { 375 (voi d) chdir(_I CONV_PATH);
310 (void) fprintf(stdout, "%", head->ii_nane); 376 (void) glob("*.*.t", GLOB_NOSORT, NULL, &gl obbuf);
312 if (!list_is_i errpty(&head >ii_alias_list)) { 378 for (i = 0; i < globbuf.gl_pathc; i++) {
313 printf(" (");
314 alias_head = |ist_head(&head->ii_alias_list); 380 ptr = gl obbuf. gl _pat hv[i 1;
315 whil e (alias_head != NULL) { 381 alias = strsep(&ptr, ".),
316 (void) fprintf(stdout, "9%", 382 printf("%\n", ptr);
317 al i as_head->i a_nane) ; 383 chonp = ptr;
384 for (; *chonp; chorrp++) {
319 alias_head = |ist_next(&head->ii_alias_|ist, 385 if (*chomp == ".
320 al i as_head); 386 *chomp = "\ 0" ;
387 }
322 if (alias_head != NULL)
323 (void) fprintf(stdout, ", "); 389 iconv_insert_create(& temlist, ptr);

324 } 390 iconv_insert_create(& temli st: alias);
325 (void) fprintf(stdout, ")"); 391 }

new usr/src/cnd/iconv/iconv.c

393

395
396
397
398
399
400
401
402
403

405
406
407

409
410
411

413
414
415

417
418

420
421
422
423
424

426
427
428
429

431
432
433
434
435

437
438
439
441
443

445

446 }

gl obf ree(&gl obbuf);

| *

* Read in the alias file and build up a |ist of
* encodi ng aliases.
*

/

fp = fopen("alias", "r");

if (fp

}

== NULL)
fprintf(stderr, gettext(

"Failed to open the conversion alias file:

0

/* XXX free list */
return;

whil e (fgets(buf, sizeof (buf), fp) !'= NULL) {

}

iconv_itemt *head;
iconv_alias_t *alias_head;

/* Skip comments */

if (buf[0] == "#")
conti nue;
ptr = buf;
alias = strsep(&ptr, " \t");
chonp = ptr;
for (; *chonp; chonp++) {
if (*chomp == "\n")
*chomp = "\ 0" ;
}
head = list_head(& temlist);

while (head !'= NULL &&
strcnp(head->ii _name, ptr) < 0)
head = list_next(& temlist,

if (head !'= NULL) {
alias_head = (iconv_alias_t
sizeof (iconv_alias_t));

head) ;

*)mal | oc(

list_link_init(&alias_head->i a_next);
al i as_head->i a_nane = strdup(alias);

list_insert_tail(&ead->ii_alias_|ist,

iconv_print(&temlist);

[* XXX free list */

(voi d)

fclose(fp);

447 #endif /* | codereview */

%s\n"),

al i as_head);

new usr/src/cnd/iconv/iconv.h 1

R R R R

1287 Sun Feb 24 04:11:48 2013
new usr/src/cnd/iconv/iconv. h
30 Need iconv

R R R R R

1/*

2 * This file and its contents are supplied under the terms of the

3 * Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this

8 * source. A copy is of the CODL is also available via the Internet
9 * at http://ww.illunos.org/license/ CDDL.

10 */

12 /*

ii :/Oopyright 2013 Davi d Hoeppner. Al rights reserved.

16 /*

17 * PCSI X iconv.

18 */

20 #include <sys/types. h>

22 #include <libintl.h>
23 #include <stdarg. h>
24 #include <stdio. h>
25 #include <stdlib.h>
26 #include <strings. h>

28 | *

29 * Macros.

30 */

31 #define _(x) get t ext (x)

33 extern int com char; /* Comment character */
34 extern int esc_char; /* Escape character */
35 extern int nmb_cur _max;

36 extern int nb_cur_mn;

38 extern int yydebug;

39 extern int i neno;

41 /*

42 * Functions from scanner.c

43 */

44 char *to_nb_string(const wchar_t *);

45 void set _wi de_encodi ng(const char *)

46 void add_wcs(wchar _t);
47 wchar _t *get _wcs(void);

48 void reset _scanner (const char *);
49 voi d yyerror(const char *);

50 void errf(const char *,

51 void scan_t o_eol (void);

53 /*

54 * Functions from charmap.c

55 */

56 void init_charmap(void);

57 void swi t ch_char map(voi d);

58 void add_char map(char *, |nt)

59 void add_charmap_range(char *, char *, int);

60 #endif /* | codereview */

new usr/src/cnd/iconv/parser.y 1 new usr/src/cnd/iconv/parser.y

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 | CategOrIES
2483 Sun Feb 24 04:11:48 2013 63 ;

new usr/src/cnd/iconv/parser.y

30 Need iconv

LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE] 66 Setting ||St : Setting ||St Setting
1 % 67 setting
2 /* 68 5
3 * This file and its contents are supplied under the terms of the
4 * Common Devel opnent and Distribution License ("CDDL"), version 1.0. 70 setting : T_COM CHAR T_CHAR T_NL
5 * You may only use this file in accordance with the terms of version 71 {
6 * 1.0 of the CDDL. 72 printf("SEtting coment\n");
7 @ 73 com char = $2;
8 * Afull copy of the text of the CDDL shoul d have acconpanied this 74
9 * source. A copy of the CDDL is also available via the Internet at 75 T_ESC CHAR T_CHAR T_NL
10 * http://ww.illunps.org/license/ CDDL. 76
11 */ 77 esc_char = $2;
78
13 /* 79 T_MB_CUR_MAX T_NUMBER T_NL
14 * Copyright 2010 Nexenta Systens, Inc. Al rights reserved. 80
15 */ 81 nmb_cur_max = $2;
82
17 /* 83 T_MB_CUR M N T_NUMBER T_NL
18 * POCsSI X charmap granmmar. 84
19 */ 85 nb_cur_mn = $2;
86
21 #include <wchar. h> 87 T_CODE_SET string T_NL
22 #include <stdio. h> 88
23 #include <limts. h> 89 wchar _t *w = get _wes();
24 #include "iconv. h"
91 set _wi de_encodi ng(to_nb_string(w));
26 % 92 free(w;
27 %nion { 93
28 int num 94 T_CODE_SET T_NAME T_NL
29 wchar _t we; 95
30 char *t oken; 96 set _wi de_encodi ng($2);
31} 97 }
98 ;
33 % oken T_CODE_SET
34 % oken T_MB_CUR_MAX 100 categories . categories category
35 % oken T_MB_CUR M N 101 | category
36 % oken T_COM CHAR 102 ;
37 % oken T_ESC_CHAR
38 % oken T_LT 104 category : charmap
39 % oken T GT 105 | width
40 % oken T_NL 106 ;
41 % oken T_SEM
42 % oken T_COMVA 108 char map : T_CHARMAP T_NL charmap_list T_END T_CHARMVAP T_NL
43 % oken T_ELLIPSI S
44 % oken T_RPAREN 110 charmap_li st : charmap_list charmap_entry
45 % oken T_LPAREN 111 | charmap_entry
46 % oken T_QUOTE 112 ;
47 % oken T_NULL
48 % oken T_Ws 114 charmap_entry : T_SYMBOL T_CHAR
49 % oken T_END 115 {
50 % oken T_COPY 116 add_char map($1, $2);
51 % oken T_CHARVAP 117 scan_to_eol ();
52 % oken T_W DTH 118 }
53 % oken T_W DTH_DEFAULT 119 | T_SYMBOL T_ELLIPSIS T_SYMBOL T_CHAR
54 % oken <wc> T_CHAR 120 {
55 % oken <t oken> T_NAMVE 121 add_char map_range($1, $3, $4);
56 % oken <nun® T_NUMBER 122 scan_to_eol ();
57 % oken <token> T_SYMBOL 123 }
124 | T_NL
59 %% 125 ;

61 iconv . setting_list categories 127 width : T_WDTH T_NL width_list T_END T_WDTH T_NL

new usr/src/cnd/iconv/parser.y

129 width_list D width_|ist width_entry
130 | width_entry
131 ;

133 width_entry : T_SYMBOL T_NUMBER
134
135
136
137
138
139
140
141
142

printf("WDTH ENTR\\n");
T_SYMBOL T_ELLIPSIS T_SYMBOL T_NUMBER
printf("WDTH ENTY ELL\n");
T_NL

Com—=D e =n

144 string : T_QUOTE charlist T_QUOTE
145 | T_QUOTE T_QUOTE
146 ;

148 charli st : charlist T _CHAR
149
150
151
152
153
154 add_wes($1);
155 }

156 ;

157 #endif /* ! codereview */

add_wes($2) ;
T_CHAR

_———

new usr/src/cnd/ i conv/ scanner. c

R R R R

11574 Sun Feb 24 04:11:48 2013
new usr/src/cnd/ i conv/scanner. c
30 Need iconv

R R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunmos. org/license/ CDDL.

13 * Copyright 2010 Nexenta Systens, Inc. Al rights reserved.
14 * Copyright 2013 David Hoeppner. All rights reserved.

*

/

17 [*
18 * Functions to charmap .
19 */

21 #include <assert.h>
22 #include <ctype. h>
23 #include <limts. h>
24 #include <w dec. h>

26 #include "iconv. h"
27 #include "parser.tab.h"

29 [*

30 * Hel per nmcros.

31 *

32 #define hex(x) \

33 (isdigit(x) ? (x - "0") : ((islower(x) ? (x - 'a) : (x - "A)) + 10))
35 #define isodigit(x) ((x >="0") && (x <="7"))
37 |*

38 * Charmap specific.

39 */

40 int comchar = "#;

41 int esc_char = "\\";

42 int mb_cur_max = 1;

43 int nmb_cur_mn = 1;

45 int lineno = 1;

46 static FILE *input = stdin;

47 static const char *filename = "<stdi n>";
48 static int escaped = 0

49 static int instring =

50 static int next | i ne;

52 /*

53 * Tokens.

54 =/

55 static char *t oken = NULL;

56 static int t oki dx;

57 static int toksz = 0;

58 static int hadt ok = 0;

60 /*

61 * Wde strings.

new usr/src/cnd/ i conv/scanner.c

62 */

63 static wchar_t *w destr = NULL;

64 static int wi dei dx = 0;

65 static int wi desz = 0;

67 /*

68 * Keywords rel ated.

69 */

70 int | ast _kw = 0;

71 static int category = T_END;

73 static struct token {

74 int id;

75 const char *nane;

76 } keywords[] ={

77 { T_COM CHAR "comrent _char" },
78 { T_ESC CHAR, "escape_char" },
79 { T_END, "END" },

80 { T_CHARMAP, " CHARMAP' },

81 { T_WDTH, "W DTH' },

82 { T_W DTH_DEFAULT, "W DTH_DEFAULT" },
83 { -1, NULL },

84 };

86 /*

87 * Charmap reserved keywords.

88 */

89 static struct token symwords[] = {

90 { T_COM CHAR "comnment _char" },
91 { T_ESC_CHAR, "escape_char" },
92 { T_CODE_SET, "code_set nane" },
93 { T_MB_CUR MAX, "nb_cur_nax" },
94 { T_MB_CUR_MN, "nb_cur_min" },
95 { -1, NULL },

96 };

98 static int categories[] = {

99 T_CHARVAP,

100 T_W DTH,

101 0,

102 };

104 char *

105 to_nb_string(const wchar_t *wcs)

106 {

107 return (NULL);

108 }

110 void

111 set_wi de_encodi ng(const char *encodi ng)

112 {

113 }

115 /*

116 * Reset the scanner variables and open the supplied charmap file.
117 */

118 void

119 reset_scanner(const char *fnane)

120 {

121 input = fopen(fname, "r");

122 if (input == NULL) {

123 perror ("fopen");

124 exit(4);

125 }

127 filenane = fnane;

new usr/src/cnd/ i conv/ scanner. c

128 comchar = "#;
129 esc_char = "\\’";
130 instring = 0;
131 escaped =

132 l'ineno = 1

133 nextline = 1;
134 tokidx = 0,

135 wi dei dx = 0;

136 }

138 static int

139 scanc(voi d)

140 {

141 int c;

= getc(input);
144 ineno = nextline;
145 f (c =="\n")

146 next | i ne++;
147 }

143 c
|
i

149 return (c);
150 }

152 static void
153 unscanc(int c)

154 {

155 if (c =="\n")

156 nextline--;

157 }

159 if (ungetc(c, input) < 0) {

160 yyerror(_("ungetc failed"));
161 }

162 }

164 static int
165 scan_hex_byt e(voi d)

166 {

167 int cl, c2;

168 int V;

170 cl = scanc();

171 if (lisxdigit(cl)) {

172 yyerror(_("mal forned hex digit"));
173 return (0);

174

175 c2 = scanc();

176 if ('|sxd|g|t(c2)) {

177 yyerror(_("mal forned hex digit"));
178 return (0);

179 }

180 v = ((hex(cl) << 4) | hex(c2));

181 return (v);

182 }

184 static int
185 scan_dec_byte(voi d)

186 {

187 int cl, c2, c3;

188 int b;

190 cl = scanc();

191 if (lisdigit(cl)) {

192 yyerror(_("mal forned deci mal digit"));

193 return (0);

new usr/src/cnd/ i conv/ scanner. c

194 }

195 b = cl -0

196 c2 = scanc();

197 if ('|sd|g|t(c2)) {

198 yyerror(_("mal forned decinmal digit"));

199 return (0);
200 }

201 b *= 10;

202 b += (c2 - '0");
203 c3 = scanc();

204 if (lisdigit(c3)) {
205 unscanc(c3);
206 } else {

207 b *= 10;
208 b += (c3 - '0");
209 }

210 return (b);

211 }

213 static int
214 scan_oct _byte(voi d)

215 {

216 int cl, c2, c3;

217 int b;

219 b = 0;

221 cl = scanc();

222 if ('|sod|g|t(cl)) {

223 yyerror(_("mal forned octal digit"));
224 return (0);

225 1

226 b=c1-"'0;

227 c2 = scanc();

228 if (lisodigit(c2)) {

229 yyerror(_("mal forned octal digit"));
230 return (0);

231

232 b *= 8;

233 b += (c2 - '0');

234 c3 = scanc();

235 if ('|sod|g|t(c3)) {

236 unscanc(c3);

237 } else {

238 b *= 8;

239 b += (c3 - '0");

240 }

241 return (b);

242 }

244 void

245 add_tok(int c)

246 {

247 if ((tokidx + 1) >= toksz) {

248 toksz += 64;

250 if ((token = realloc(token, toksz))
251 yyerror(_("out of nermory"));
252 tokidx = 0O;

253 toksz = 0;

254 return;

255 }

256 }

258 t oken[t oki dx++] = (char)c;

259 token[toki dx] = 0;

== NULL) {

new usr/src/cnd/ i conv/ scanner. c

260

262
263

}

voi d
add_wcs(wchar _t c)

264 {

265
266
267
268
269
270
271
272
273
274

276
277
278

280
281

if ((wideidx + 1) >= widesz) {
wi desz += 64;

wi destr = realloc(wi destr, (w desz * sizeof (wchar_t)));

if (wdestr == NULL) {
yyerror(_("out of nmenory"));
w dei dx = 0;
wi desz = 0;
return;

}

wi destr[w dei dx++]
wi destr[w dei dx] =

= C;
0;
}

wchar _t *
get _wecs(voi d)

282 {

283

285
286
287

289
290
291
292
293

295
296

298
299

300 {

301

303
304
305
306

308

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

wchar _t *ws = widestr;

W dei dx = 0;
wi destr = NULL;
wi desz = 0;

if (ws == NULL) {
if ((ws = wsdup(L"")) == NULL) {
) yyerror(_("out of nenory"));

}

return (ws);

}

static int
get _byte(void)

I nt C;

if ((c = scanc()) != esc_char) {
unscanc(c);

; return (EOF);

c = scanc();

switc’h ’(c) {

case 'D:
return (scan_dec_byte());
X'

return (scan_hex_byte());
) o

’

unscanc(c);

return (scan_oct_byte());
defaul t:

unscanc(c);

unscanc(esc_char);

return (EOF);

/* Put the character back so we can get it */

new usr/src/cnd/ i conv/scanner. c

326 }
328 int

329 get_escaped(int c)

330 {
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349 }

351 int

switch (c) {
case 'n’:
return ("\n");

return (\r);

case

case 't’:
return ("\t');
case 'f’':
return ("\f’);
case 'V’
return ("\v');
case 'b’:

return ("\b’);
case 'a’:

return ('\a');
defaul t:

return (c);
}

352 get_w de(void)

353 {
354
355
356
357

359
360
361
362
363

365
366
367
368
369
370
371
372
373
374

376
377

379
380
381
382

384
385
386

388
389 }

391 int

char mbs[MB_LEN_MAX + 1] = "";
int mi = 0;

int c;

wchar _t we;

if (mb_cur_max >= sizeof (nbs))

yyerror(_("max nultibyte character size too big"));
nbi = 0;

return (T_NULL):

EGF)) {

}
for (;;) {
if ((mbi == nmb_cur_max) || ((c = get_byte()) ==
/*
* End of the byte sequence reached, but no
* valid wide decoding. Fatal error.
nbi = 0;
yyerror(_("not a valid character encoding"));
return (T_NULL);
}
nbs[mbi ++] = c;
nbs[nbi] = 0O;
if (mbi == nb_cur_max) {
br eak;
}
}
nbi = 0;
[* XXX */

yylval .wec = (uint8_t)*nbs;
return (T_CHAR);

new usr/src/cnd/ i conv/ scanner. c

392 get_synbol (voi d)
393 {

394

396
397
398
399
400
401

403
404
405

407
408
409
410

412
413
414
415

417
418
419
420
421
422
423
424
425
426

428

430
431
432
433
434
435

437
438
439
440
441
442
443
444

446

448
449
450
451
452
453
454
455

457

c;

while ((c = scanc()) !'= EOF) {

if (escaped == 1) {
escaped = O;
if (c =="\n") {
conti nue;
}

add_t ok(get _escaped(c));
conti nue;

}

if (c == esc_char) {
escaped = 1;
cont i nue;

}

if (c =="\n") { /* Well that’'s strange! */
yyerror(_("unterm nated synbolic name"));
cont i nue;

}

’>‘) { /* End of synbol */

* This restarts the token fromthe begi nning
* the next time we scan a character. (This
* token is conplete.)
*/
if (token == NULL) {
yyerror((m ssing synbolic nane"));
LL);

return (T_NU
}
tokidx = 0;
/*

* A few synbol s are handl ed as keywords outside
* of the nornal categories.
*/
if (category == T_END) {
int i;

for (i = 0; symwrds[i].nane != 0; i++) {
if (strcnp(token, syr’rvvords[i].narre)
0

last _kw = symwords[i].id
return (last_kw);

}
[* XXX */

/* 1ts an undefined synbol */
yyl val . t oken = strdup(token);

token = NULL;
toksz = 0;
tokidx = 0;

printf("returning SYMBOL %\ n", yylval.token);

return (T_SYMBQOL);

add_t ok(c);

new usr/src/cnd/ i conv/ scanner. c

458 }

460 yyerror(_("unterm nated synbolic name"));

462 return (ECF);

463 }

465 static int

466 consune_t oken(voi d)

467 {

468 int l en = tokidx;

469 int i;

471 toki dx = 0;

472 if (token == NULL)

473 return (T_NULL);

474 }

476 /*

477 * This one is special, because we don’'t want it to alter the
478 * last_kw field.

479 */

480 if (strcnp(token, "...") == 0) {

481 return (T_ELLIPSI S)

482 }

484 /* Search for reserved words first */

485 for (i = 0; keywords[i].nane; i++) {

486 int I

488 if (strcnp(keywords[i].nane, token)) {
489 cont i nue;

490 }

492 | ast _kw = keywords[i].id;

494 /* Clear the top level category if we're done with it */
495 if (last_kw == T_END) {

496 category = T_END;

497 }

499 /* Set the top level category if we're changing */
500 for (j = 0; categories[j]; j++) {

501 if (categories[j] != last_kw {
502 conti nue;

503

504 category = last_kw

505 }

507 return (keywords[i].id);

508 }

510 /* Maybe its a nuneric constant? */

511 if (isdigit(*token) || (*token == '-' && isdigit(token[1]))) {
512 char *eptr;

514 yylval . num = strtol (token, &eptr, 10);
515 if (*eptr '=0) {

516 yyerror(_("mal fornmed nunber"));
517 }

519 return (T_NUMBER);

520 }

522 /*

523 * A single lone character is treated as a character literal.

new usr/src/cnd/ i conv/ scanner. c 9 new usr/src/cnd/ i conv/ scanner. c
524 * To avoid duplication of effort, we stick in the charmap. 590 case '<':
525 */ 591 return (get_synbol ());
526 if (len == 1) { 592 case '>:
527 yylval .wec = token[O0]; 593 /* Opps! Shoul d generate syntax error */
528 return (T_CHAR); 594 return (T_GT);
529 } 595 case '"':
596 instring = 0;
531 /* Anything else is treated as a synbolic nane */ 597 return (T_QUOTE);
532 yyl val . t oken = strdup(token); 598 defaul t:
533 t oken = NULL; 599 yylval .we = c;
534 toksz = 0; 600 return (T_CHAR);
535 tokidx = 0O; 601 }
602 }
537 return (T_NAME);
538 } 604 /* Escaped characters first */
605 if (escaped == 1)
540 void 606 escaped = 0;
541 scan_t o_eol (voi d) 607 if (c =="\n") {
542 { 608 /* Eat the new ine */
543 int c; 609 continue;
610 }
545 while ((c = scanc()) !'="\n") { 611 hadt ok = 1;
546 if (c == EOF) { 612 if (tokidx !'=0) {
547 /* end of file without newine! */ 613 /* An escape m d-token is nonsense */
548 errf(_("mssing newine")); 614 return (T_NULL);
549 return; 615 }
550 }
551 } 617 /* Nuneric escapes are treated as w de characters */
618 if (strchr("xXd01234567", c)) {
553 assert(c == '\n"); 619 unscanc(c);
554 } 620 unscanc(esc_char);
621 return (get_w de());
556 int 622 }
557 yyl ex(voi d)
558 { 624 add_t ok(get _escaped(c));
559 int c; 625 cont i nue;
626 }
561 while ((c = scanc()) != EOF) {
562 printf("--- yylex --%--\n", c); 628 /* If it is the escape character itself note it */
629 if (c == esc_char) {
564 /* Special handling for quoted strings */ 630 escaped = 1;
565 if (instring == 1) { 631 conti nue;
566 if (escaped == 1) { 632 }
567 escaped = 0;
634 /* Renove fromthe comrent character to end of line */
569 /* If newine, just eat and forget it */ 635 if (c == comchar) {
570 if (c =="\n") { 636 while (c !'="\n") {
571 conti nue; 637 if ((c = scanc()) == EOF) {
572 } 638 /* End of file wthout newine */
639 return (EOF);
574 if (strchr("xd01234567", c)) { 640 }
575 unscanc(c); 641 }
576 unscanc(esc_char);
577) return (get_wide()); 643 assert(c == '\n");
578
645 if (hadtok == 0) {
580 yylval .wc = get_escaped(c); 646 I*
581 return (T_CHAR); 647 * |f there were no tokens on this |ine,
582 } 648 * then just pretend it didn't exist at all.
649 */
584 if (c == esc_char) { 650 conti nue;
585 escaped = 1; 651 }
586 conti nue;
587 } 653 hadt ok = 0;
654 return (T_NL);
589 switch (c) { 655 }

new usr/src/cnd/ i conv/ scanner. c 11

657 if (strchr(" \t\n;()<>\"", c) && (tokidx !'= 0)) {
658 /*

659 * These are all token delimters. |f there
660 * is a token already in progress, we need to
661 * process it.

662 */

663 unscanc(c);

664 return (consune_token());

665 }

667 switch (c) {

668 case '\n:

669 if (hadtok == 0) {

670 /*

671 * If the line was conpl etely devoid of tokens,
672 * then just ignore it.
673 */

674 cont i nue;

675 }

677 /* W’'re starting a new line, reset the token state */
678 hadt ok = 0;

679 return (T_NL);

680 case '>':

681 hadt ok = 1;

682 return (T_GT);

683 case '<':

684 /* Synbol start! */

685 hadt ok = 1;

686 return (get_synbol ());

687 case ' ':

688 case '\t':

689 /* \Ai tespace, just ignore */
690 cont i nue;

691 case '"':

692 hadt ok = 1;

693 instring = 1;

694 return (T_QUOTE);

695 defaul t:

696 //printf("--- adding % to token\n", c);

697 hadt ok = 1;

698 add_t ok(c);

699 cont i nue;

700 }

701 }

703 return (EOF);

704 }

706 void

707 yyerror(const char *nsg)

708 {

709 (void) fprintf(stderr, _("%: %l: error: %\n"),
710 filenarme, |ineno, nsgQ);

711 exit(4);

712 }

714 void

715 errf(const char *fnt,)

716 {

717 char *neg;

718 va_list va;

720 va_start(va, fnt);

721 (void) vasprintf(&rsg, fnt, va);

new usr/src/cnd/ i conv/scanner. c

722

724
725
726
727

728 }

va_end(va);

(void) fprintf(stderr,
filename, |ineno,

free(nsg);

exit(4);

729 #endif /* | codereview */

(" Y%:
nsg) ;

%l:

error:

9%\ n"),

12

