
new/usr/src/cmd/Makefile 1

**
 11468 Sun Feb 24 04:11:46 2013
new/usr/src/cmd/Makefile
30 Need iconv
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2010 Nexenta Systems, Inc. All rights reserved.
24 # Copyright 2011 Joyent, Inc. All rights reserved.
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 # Copyright (c) 2013 DEY Storage Systems, Inc. All rights reserved.

28 include ../Makefile.master

30 #
31 # Note that the commands ’agents’, ’lp’, ’perl’, and ’man’ are first in
32 # the list, violating alphabetical order. This is because they are very
33 # long-running and should be given the most wall-clock time for a
34 # parallel build.
35 #
36 # Commands in the FIRST_SUBDIRS list are built before starting the build
37 # of other commands. Currently this includes only ’isaexec’ and
38 # ’platexec’. This is necessary because $(ROOT)/usr/lib/isaexec or
39 # $(ROOT)/usr/lib/platexec must exist when some other commands are built
40 # because their ’make install’ creates a hard link to one of them.
41 #
42 # Commands are listed one per line so that TeamWare can auto-merge most
43 # changes.
44 #

46 FIRST_SUBDIRS= \
47 isaexec \
48 platexec

50 COMMON_SUBDIRS= \
51 allocate \
52 availdevs \
53 lp \
54 perl \
55 man \
56 Adm \
57 abi \
58 adbgen \
59 acct \
60 acctadm \
61 arch \

new/usr/src/cmd/Makefile 2

62 asa \
63 ast \
64 audio \
65 auths \
66 autopush \
67 avs \
68 awk \
69 awk_xpg4 \
70 backup \
71 banner \
72 bart \
73 basename \
74 bc \
75 bdiff \
76 beadm \
77 bfs \
78 bnu \
79 boot \
80 busstat \
81 cal \
82 calendar \
83 captoinfo \
84 cat \
85 cdrw \
86 cfgadm \
87 checkeq \
88 checknr \
89 chgrp \
90 chmod \
91 chown \
92 chroot \
93 clear \
94 clinfo \
95 cmd-crypto \
96 cmd-inet \
97 col \
98 compress \
99 consadm \
100 coreadm \
101 cpio \
102 cpc \
103 cron \
104 crypt \
105 csh \
106 csplit \
107 ctrun \
108 ctstat \
109 ctwatch \
110 datadm \
111 date \
112 dc \
113 dd \
114 deroff \
115 devfsadm \
116 syseventd \
117 devctl \
118 devinfo \
119 devmgmt \
120 devprop \
121 dfs.cmds \
122 diff \
123 diff3 \
124 diffmk \
125 dircmp \
126 dirname \
127 dis \

new/usr/src/cmd/Makefile 3

128 diskmgtd \
129 dispadmin \
130 dladm \
131 dlstat \
132 dmesg \
133 dodatadm \
134 dtrace \
135 du \
136 dumpadm \
137 dumpcs \
138 echo \
139 ed \
140 eeprom \
141 egrep \
142 eject \
143 emul64ioctl \
144 enhance \
145 env \
146 eqn \
147 expand \
148 expr \
149 exstr \
150 factor \
151 false \
152 fcinfo \
153 fcoesvc \
154 fdetach \
155 fdformat \
156 fdisk \
157 filesync \
158 fgrep \
159 file \
160 filebench \
161 find \
162 flowadm \
163 flowstat \
164 fm \
165 fmt \
166 fmthard \
167 fmtmsg \
168 fold \
169 format \
170 fs.d \
171 fstyp \
172 fuser \
173 fwflash \
174 gcore \
175 gencat \
176 geniconvtbl \
177 genmsg \
178 getconf \
179 getdevpolicy \
180 getent \
181 getfacl \
182 getmajor \
183 getopt \
184 gettext \
185 gettxt \
186 grep \
187 grep_xpg4 \
188 groups \
189 grpck \
190 gss \
191 hal \
192 halt \
193 head \

new/usr/src/cmd/Makefile 4

194 hostid \
195 hostname \
196 hotplug \
197 hotplugd \
198 hwdata \
199 ibd_upgrade \
200 iconv \
201 #endif /* ! codereview */
202 id \
203 idmap \
204 infocmp \
205 init \
206 initpkg \
207 install.d \
208 intrd \
209 intrstat \
210 ipcrm \
211 ipcs \
212 ipf \
213 isainfo \
214 isalist \
215 itutools \
216 iscsiadm \
217 iscsid \
218 iscsitsvc \
219 isns \
220 itadm \
221 java \
222 kbd \
223 keyserv \
224 killall \
225 krb5 \
226 ksh \
227 kvmstat \
228 last \
229 lastcomm \
230 latencytop \
231 ldap \
232 ldapcachemgr \
233 lgrpinfo \
234 line \
235 link \
236 dlmgmtd \
237 listen \
238 loadkeys \
239 locale \
240 localedef \
241 lockstat \
242 locator \
243 lofiadm \
244 logadm \
245 logger \
246 login \
247 logins \
248 look \
249 ls \
250 luxadm \
251 lvm \
252 mach \
253 machid \
254 mail \
255 mailx \
256 makekey \
257 mdb \
258 mesg \
259 mkdir \

new/usr/src/cmd/Makefile 5

260 mkfifo \
261 mkfile \
262 mkmsgs \
263 mknod \
264 mkpwdict \
265 mktemp \
266 modload \
267 more \
268 mpathadm \
269 msgfmt \
270 msgid \
271 mt \
272 mv \
273 mvdir \
274 ndmpadm \
275 ndmpd \
276 ndmpstat \
277 netadm \
278 netfiles \
279 newform \
280 newgrp \
281 news \
282 newtask \
283 nice \
284 nl \
285 nlsadmin \
286 nohup \
287 nsadmin \
288 nscd \
289 oamuser \
290 oawk \
291 od \
292 pack \
293 pagesize \
294 passmgmt \
295 passwd \
296 pathchk \
297 pbind \
298 pcidr \
299 pcitool \
300 pfexec \
301 pfexecd \
302 pginfo \
303 pgstat \
304 pgrep \
305 picl \
306 plimit \
307 policykit \
308 pools \
309 power \
310 powertop \
311 ppgsz \
312 pg \
313 plockstat \
314 pr \
315 prctl \
316 print \
317 printf \
318 priocntl \
319 profiles \
320 projadd \
321 projects \
322 prstat \
323 prtconf \
324 prtdiag \
325 prtvtoc \

new/usr/src/cmd/Makefile 6

326 ps \
327 psradm \
328 psrinfo \
329 psrset \
330 ptools \
331 pwck \
332 pwconv \
333 pwd \
334 pyzfs \
335 raidctl \
336 ramdiskadm \
337 rcap \
338 rcm_daemon \
339 rctladm \
340 refer \
341 regcmp \
342 renice \
343 rexd \
344 rm \
345 rmdir \
346 rmformat \
347 rmmount \
348 rmt \
349 rmvolmgr \
350 roles \
351 rpcbind \
352 rpcgen \
353 rpcinfo \
354 rpcsvc \
355 runat \
356 sa \
357 saf \
358 sasinfo \
359 savecore \
360 sbdadm \
361 script \
362 scsi \
363 sdiff \
364 sdpadm \
365 sed \
366 sendmail \
367 setfacl \
368 setmnt \
369 setpgrp \
370 setuname \
371 sgs \
372 sh \
373 shcomp \
374 smbios \
375 smbsrv \
376 smserverd \
377 soelim \
378 sort \
379 spell \
380 split \
381 sqlite \
382 srchtxt \
383 srptadm \
384 srptsvc \
385 ssh \
386 stat \
387 stmfadm \
388 stmfproxy \
389 stmfsvc \
390 stmsboot \
391 streams \

new/usr/src/cmd/Makefile 7

392 strings \
393 su \
394 sulogin \
395 sunpc \
396 svc \
397 svr4pkg \
398 swap \
399 sync \
400 sysdef \
401 syseventadm \
402 syslogd \
403 tabs \
404 tail \
405 tar \
406 tbl \
407 tcopy \
408 tcpd \
409 terminfo \
410 th_tools \
411 tic \
412 time \
413 tip \
414 tnf \
415 touch \
416 tput \
417 tr \
418 trapstat \
419 troff \
420 true \
421 truss \
422 tsol \
423 tty \
424 ttymon \
425 tzreload \
426 uadmin \
427 ul \
428 uname \
429 units \
430 unlink \
431 unpack \
432 userattr \
433 users \
434 utmp_update \
435 utmpd \
436 valtools \
437 vgrind \
438 vi \
439 volcheck \
440 volrmmount \
441 vrrpadm \
442 vscan \
443 vt \
444 w \
445 wall \
446 which \
447 who \
448 whodo \
449 wracct \
450 write \
451 wusbadm \
452 xargs \
453 xstr \
454 yes \
455 ypcmd \
456 yppasswd \
457 zdb \

new/usr/src/cmd/Makefile 8

458 zdump \
459 zfs \
460 zhack \
461 zic \
462 zinject \
463 zlogin \
464 zoneadm \
465 zoneadmd \
466 zonecfg \
467 zonename \
468 zpool \
469 zlook \
470 zonestat \
471 zstreamdump \
472 ztest

474 $(CLOSED_BUILD)COMMON_SUBDIRS += \
475 $(CLOSED)/cmd/iconv \
476 $(CLOSED)/cmd/ksh \
477 $(CLOSED)/cmd/localedef \
478 $(CLOSED)/cmd/more_xpg4 \
479 $(CLOSED)/cmd/mtst \
480 $(CLOSED)/cmd/od \
481 $(CLOSED)/cmd/patch \
482 $(CLOSED)/cmd/pax \
483 $(CLOSED)/cmd/printf \
484 $(CLOSED)/cmd/sed \
485 $(CLOSED)/cmd/sed_xpg4

487 i386_SUBDIRS= \
488 acpihpd \
489 addbadsec \
490 biosdev \
491 diskscan \
492 lms \
493 ntfsprogs \
494 parted \
495 rtc \
496 ucodeadm \
497 xvm

499 sparc_SUBDIRS= \
500 cvcd \
501 dcs \
502 device_remap \
503 drd \
504 fruadm \
505 ldmad \
506 oplhpd \
507 prtdscp \
508 prtfru \
509 scadm \
510 sckmd \
511 sf880drd \
512 virtinfo \
513 vntsd

515 #
516 # Commands that are messaged. Note that ’lp’ and ’man’ come first
517 # (see previous comment about ’lp’ and ’man’).
518 #
519 MSGSUBDIRS= \
520 lp \
521 man \
522 abi \
523 acctadm \

new/usr/src/cmd/Makefile 9

524 allocate \
525 asa \
526 audio \
527 audit \
528 auditconfig \
529 auditd \
530 auditrecord \
531 auditset \
532 auths \
533 autopush \
534 avs \
535 awk \
536 awk_xpg4 \
537 backup \
538 banner \
539 bart \
540 basename \
541 beadm \
542 bnu \
543 busstat \
544 cal \
545 cat \
546 cdrw \
547 cfgadm \
548 checkeq \
549 checknr \
550 chgrp \
551 chmod \
552 chown \
553 cmd-crypto \
554 cmd-inet \
555 col \
556 compress \
557 consadm \
558 coreadm \
559 cpio \
560 cpc \
561 cron \
562 csh \
563 csplit \
564 ctrun \
565 ctstat \
566 ctwatch \
567 datadm \
568 date \
569 dc \
570 dcs \
571 dd \
572 deroff \
573 devfsadm \
574 dfs.cmds \
575 diff \
576 diffmk \
577 dladm \
578 dlstat \
579 du \
580 dumpcs \
581 ed \
582 eject \
583 env \
584 eqn \
585 expand \
586 expr \
587 fcinfo \
588 fgrep \
589 file \

new/usr/src/cmd/Makefile 10

590 filesync \
591 find \
592 flowadm \
593 flowstat \
594 fm \
595 fold \
596 fs.d \
597 fwflash \
598 geniconvtbl \
599 genmsg \
600 getconf \
601 getent \
602 gettext \
603 gettxt \
604 grep \
605 grep_xpg4 \
606 grpck \
607 gss \
608 halt \
609 head \
610 hostname \
611 hotplug \
612 id \
613 idmap \
614 isaexec \
615 iscsiadm \
616 iscsid \
617 isns \
618 itadm \
619 kbd \
620 krb5 \
621 ksh \
622 last \
623 ldap \
624 ldapcachemgr \
625 lgrpinfo \
626 locale \
627 lofiadm \
628 logadm \
629 logger \
630 logins \
631 ls \
632 luxadm \
633 lvm \
634 mailx \
635 mesg \
636 mkdir \
637 mkpwdict \
638 mktemp \
639 more \
640 mpathadm \
641 msgfmt \
642 mv \
643 ndmpadm \
644 ndmpstat \
645 newgrp \
646 newtask \
647 nice \
648 nohup \
649 oawk \
650 pack \
651 passwd \
652 passmgmt \
653 pathchk \
654 pfexec \
655 pg \

new/usr/src/cmd/Makefile 11

656 pgrep \
657 picl \
658 pools \
659 power \
660 pr \
661 praudit \
662 print \
663 profiles \
664 projadd \
665 projects \
666 prstat \
667 prtdiag \
668 ps \
669 psrinfo \
670 ptools \
671 pwconv \
672 pwd \
673 pyzfs \
674 raidctl \
675 ramdiskadm \
676 rcap \
677 rcm_daemon \
678 refer \
679 regcmp \
680 renice \
681 roles \
682 rm \
683 rmdir \
684 rmformat \
685 rmmount \
686 rmvolmgr \
687 sasinfo \
688 sbdadm \
689 scadm \
690 script \
691 scsi \
692 sdiff \
693 sdpadm \
694 sgs \
695 sh \
696 shcomp \
697 smbsrv \
698 sort \
699 split \
700 srptadm \
701 ssh \
702 stat \
703 stmfadm \
704 stmsboot \
705 strings \
706 su \
707 svc \
708 svr4pkg \
709 swap \
710 syseventadm \
711 syseventd \
712 tabs \
713 tar \
714 tbl \
715 time \
716 tnf \
717 touch \
718 tput \
719 troff \
720 tsol \
721 tty \

new/usr/src/cmd/Makefile 12

722 ttymon \
723 tzreload \
724 ul \
725 uname \
726 units \
727 unlink \
728 unpack \
729 userattr \
730 valtools \
731 vgrind \
732 vi \
733 volcheck \
734 volrmmount \
735 vrrpadm \
736 vscan \
737 w \
738 who \
739 whodo \
740 wracct \
741 write \
742 wusbadm \
743 xargs \
744 yppasswd \
745 zdump \
746 zfs \
747 zic \
748 zlogin \
749 zoneadm \
750 zoneadmd \
751 zonecfg \
752 zonename \
753 zpool \
754 zonestat

756 $(CLOSED_BUILD)MSGSUBDIRS += \
757 $(CLOSED)/cmd/iconv \
758 $(CLOSED)/cmd/ksh \
759 $(CLOSED)/cmd/localedef \
760 $(CLOSED)/cmd/more_xpg4 \
761 $(CLOSED)/cmd/od \
762 $(CLOSED)/cmd/patch \
763 $(CLOSED)/cmd/pax \
764 $(CLOSED)/cmd/printf \
765 $(CLOSED)/cmd/sed \
766 $(CLOSED)/cmd/sed_xpg4

768 sparc_MSGSUBDIRS= \
769 fruadm \
770 prtdscp \
771 prtfru \
772 virtinfo \
773 vntsd

775 i386_MSGSUBDIRS= \
776 ucodeadm

778 #
779 # commands that use dcgettext for localized time, LC_TIME
780 #
781 DCSUBDIRS= \
782 cal \
783 cfgadm \
784 diff \
785 ls \
786 pr \
787 ps \

new/usr/src/cmd/Makefile 13

788 tar \
789 w \
790 who \
791 whodo \
792 write

794 $(CLOSED_BUILD)DCSUBDIRS += \
795 $(CLOSED)/cmd/pax

797 #
798 # commands that belong only to audit.
799 #
800 AUDITSUBDIRS= \
801 amt \
802 audit \
803 audit_warn \
804 auditconfig \
805 auditd \
806 auditrecord \
807 auditreduce \
808 auditset \
809 auditstat \
810 praudit

812 #
813 # commands not owned by the systems group
814 #
815 BWOSDIRS=

818 all := TARGET = all
819 install := TARGET = install
820 clean := TARGET = clean
821 clobber := TARGET = clobber
822 lint := TARGET = lint
823 _msg := TARGET = _msg
824 _dc := TARGET = _dc

826 .KEEP_STATE:

828 SUBDIRS = $(COMMON_SUBDIRS) $($(MACH)_SUBDIRS)

830 .PARALLEL: $(BWOSDIRS) $(SUBDIRS) $(MSGSUBDIRS) $(AUDITSUBDIRS)

832 all install clean clobber lint: $(FIRST_SUBDIRS) .WAIT $(SUBDIRS) \
833 $(AUDITSUBDIRS)

835 #
836 # Manifests cannot be checked in parallel, because we are using
837 # the global repository that is in $(SRC)/cmd/svc/seed/global.db.
838 # For this reason, to avoid .PARALLEL and .NO_PARALLEL conflicts,
839 # we spawn off a sub-make to perform the non-parallel ’make check’
840 #
841 check:
842 $(MAKE) -f Makefile.check check

844 #
845 # The .WAIT directive works around an apparent bug in parallel make.
846 # Evidently make was getting the target _msg vs. _dc confused under
847 # some level of parallelization, causing some of the _dc objects
848 # not to be built.
849 #
850 _msg: $(MSGSUBDIRS) $($(MACH)_MSGSUBDIRS) .WAIT _dc

852 _dc: $(DCSUBDIRS)

new/usr/src/cmd/Makefile 14

854 #
855 # Dependencies
856 #
857 fs.d: fstyp
858 ksh: shcomp isaexec
859 mdb: terminfo
860 print: lp

862 $(FIRST_SUBDIRS) $(BWOSDIRS) $(SUBDIRS) $(AUDITSUBDIRS): FRC
863 @if [-f $@/Makefile]; then \
864 cd $@; pwd; $(MAKE) $(TARGET); \
865 else \
866 true; \
867 fi

869 FRC:

new/usr/src/cmd/iconv/Makefile 1

**
 1417 Sun Feb 24 04:11:47 2013
new/usr/src/cmd/iconv/Makefile
30 Need iconv
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License, Version 1.0 only
6 # (the "License"). You may not use this file except in compliance
7 # with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 PROG= iconv

29 include ../Makefile.cmd

31 OBJS = charmap.o iconv.o parser.tab.o scanner.o

33 .KEEP_STATE:

35 CFLAGS += $(CCVERBOSE)

37 LDLIBS += -lcmdutils
38 LDLIBS += -lavl
39 YFLAGS = -d -b parser

41 CLEANFILES = $(OBJS) parser.tab.c parser.tab.h

43 all: $(PROG)

45 install: all $(ROOTPROG)

47 $(PROG): $(OBJS)
48 $(LINK.C) $(CFLAGS) $(OBJS) -o $@ $(LDLIBS)

50 $(OBJS): parser.tab.h

52 parser.tab.c parser.tab.h: parser.y
53 $(YACC) $(YFLAGS) parser.y

55 clean:
56 $(RM) $(CLEANFILES)

58 lint: lint_PROG

60 include ../Makefile.targ
61 #endif /* ! codereview */

new/usr/src/cmd/iconv/charmap.c 1

**
 3059 Sun Feb 24 04:11:47 2013
new/usr/src/cmd/iconv/charmap.c
30 Need iconv
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2010 Nexenta Systems, Inc. All rights reserved.
14 * Copyright 2013 David Hoeppner. All rights reserved.
15 */

17 /*
18 * Character map handling for iconv.
19 */

21 #include <sys/avl.h>

23 #include <stddef.h>

25 #include "iconv.h"
26 #include "parser.tab.h"

28 /*
29 * AVL trees for the from and to charmaps.
30 */
31 static avl_tree_t from_cmap_sym;
32 static avl_tree_t from_cmap_wc;
33 static avl_tree_t to_cmap_sym;
34 static avl_tree_t to_cmap_wc;

36 static avl_tree_t *current_cmap_sym = &from_cmap_sym;
37 static avl_tree_t *current_cmap_wc = &from_cmap_wc;

39 typedef struct charmap {
40 const char *name;
41 wchar_t wc;
42 avl_node_t avl_sym;
43 avl_node_t avl_wc;
44 } charmap_t;

46 static int
47 cmap_compare_sym(const void *n1, const void *n2)
48 {
49 const charmap_t *c1 = n1;
50 const charmap_t *c2 = n2;
51 int rv;

53 rv = strcmp(c1->name, c2->name);
54 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
55 }

57 static int
58 cmap_compare_wc(const void *n1, const void *n2)
59 {
60 const charmap_t *c1 = n1;
61 const charmap_t *c2 = n2;

new/usr/src/cmd/iconv/charmap.c 2

63 return ((c1->wc < c2->wc) ? -1 : (c1->wc > c2->wc) ? 1 : 0);
64 }

66 void
67 init_charmap(void)
68 {
69 avl_create(&from_cmap_sym, cmap_compare_sym, sizeof (charmap_t),
70 offsetof(charmap_t, avl_sym));

72 avl_create(&from_cmap_wc, cmap_compare_wc, sizeof (charmap_t),
73 offsetof(charmap_t, avl_wc));

75 avl_create(&to_cmap_sym, cmap_compare_sym, sizeof (charmap_t),
76 offsetof(charmap_t, avl_sym));

78 avl_create(&to_cmap_wc, cmap_compare_wc, sizeof (charmap_t),
79 offsetof(charmap_t, avl_wc));
80 }

82 /*
83 * Switches from fromcharmap to tocharmap.
84 */
85 void
86 switch_charmap(void)
87 {
88 current_cmap_sym = &to_cmap_sym;
89 current_cmap_wc = &to_cmap_wc;
90 }

92 static void
93 add_charmap_impl(char *sym, wchar_t wc, int nodups)
94 {
95 charmap_t srch;
96 charmap_t *n = NULL;
97 avl_index_t where;

99 srch.wc = wc;
100 srch.name = sym;

102 /*
103 * Also possibly insert the wide mapping, although note that there
104 * can only be one of these per wide character code.
105 */
106 if ((wc != -1) && ((avl_find(current_cmap_wc, &srch, &where)) == NULL))
107 if ((n = calloc(1, sizeof (*n))) == NULL) {
108 errf(_("out of memory"));
109 return;
110 }

112 n->wc = wc;
113 avl_insert(current_cmap_wc, n, where);
114 }

116 if (sym != NULL) {
117 if (avl_find(current_cmap_sym, &srch, &where) != NULL) {
118 if (nodups == 1) {
119 errf(_("duplicate character definition"));
120 }

122 return;
123 }

125 if ((n == NULL) && ((n = calloc(1, sizeof (*n))) == NULL)) {
126 errf(_("out of memory"));
127 return;

new/usr/src/cmd/iconv/charmap.c 3

128 }

130 n->wc = wc;
131 n->name = sym;
132 printf("ADDING %s\n", sym);
133 avl_insert(current_cmap_sym, n, where);
134 }
135 }

137 void
138 add_charmap(char *sym, int c)
139 {
140 add_charmap_impl(sym, c, 1);
141 }

143 void
144 add_charmap_range(char *s, char *e, int wc)
145 {

147 }
148 #endif /* ! codereview */

new/usr/src/cmd/iconv/iconv.c 1

**
 8954 Sun Feb 24 04:11:47 2013
new/usr/src/cmd/iconv/iconv.c
30 Need iconv
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 * Copyright 2013 David Hoeppner. All rights reserved.
15 */

17 /*
18 * POSIX iconv.
19 */

21 #include <sys/list.h>

23 #include <errno.h>
24 #include <glob.h>
25 #include <iconv.h>
26 #include <langinfo.h>
27 #include <libnvpair.h>
28 #include <locale.h>
29 #include <stddef.h>
30 #include <string.h>
31 #include <unistd.h>

33 #include "iconv.h"

35 static const char *g_progname = "iconv";

37 static char *g_from_cs = "UTF-8";
38 static char *g_to_cs = "UTF-8";
39 static iconv_t g_ich; /* iconv(3c) lib handle */
40 static int g_errcnt;
41 static boolean_t g_cflag = B_FALSE; /* Skip invalid characters */
42 static boolean_t g_sflag = B_FALSE; /* Silent */
43 static boolean_t g_lflag = B_FALSE; /* List conversions */

46 /*
47 * Forward declarations.
48 */
49 static void usage(void) __NORETURN;
50 static void do_iconv(FILE *, const char *);
51 static void list_codesets(void);
52 int yyparse(void);

54 typedef struct _iconv_item {
55 list_node_t ii_next;
56 list_t ii_alias_list;
57 char *ii_name;
58 } iconv_item_t;

60 typedef struct _iconv_alias {
61 list_node_t ia_next;

new/usr/src/cmd/iconv/iconv.c 2

62 char *ia_name;
63 } iconv_alias_t;

65 /*
66 * Print usage.
67 */
68 static void
69 usage(void)
70 {
71 (void) fprintf(stderr, _(
72 "usage:"
73 "\ticonv [-cs] [-f fromcode] [-t tocode] [file ...]\n"
74 "\ticonv [-cs] -f frommap -t tomap [file ...]\n"
75 "\ticonv -l\n"));
76 exit(1);
77 }

80 int
81 main(int argc, char **argv)
82 {
83 char *fname;
84 FILE *fp;
85 int c;

87 init_charmap();

89 /* XXX */
90 yydebug = 1;

92 (void) setlocale(LC_ALL, "");
93 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
94 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it weren’t */
95 #endif
96 (void) textdomain(TEXT_DOMAIN);

98 while ((c = getopt(argc, argv, "clsf:t:?")) != EOF) {
99 switch (c) {
100 case ’c’:
101 g_cflag = B_TRUE;
102 break;
103 case ’l’:
104 g_lflag = B_TRUE;
105 break;
106 case ’s’:
107 g_sflag = B_TRUE;
108 break;
109 case ’f’:
110 g_from_cs = optarg;
111 break;
112 case ’t’:
113 g_to_cs = optarg;
114 break;
115 case ’?’:
116 usage();
117 }
118 }

120 if (g_lflag) {
121 if (optind != argc)
122 usage();
123 list_codesets();
124 exit(0);
125 }

127 /* Charmaps and codesets can’t be mixed */

new/usr/src/cmd/iconv/iconv.c 3

128 if ((strchr(g_from_cs, ’/’) == NULL) !=
129 (strchr(g_to_cs, ’/’) == NULL)) {
130 usage();
131 }

133 /* XXX form_cs not only codeset */
134 if (strchr(g_from_cs, ’/’) != NULL) {
135 reset_scanner(g_from_cs);
136 (void) yyparse();

138 switch_charmap();

140 reset_scanner(g_to_cs);
141 (void) yyparse();
142 }

144 /* XXX empty string "" current encoding */
145 if (g_from_cs == NULL) {
146 g_from_cs = nl_langinfo(CODESET);
147 printf("%s\n", g_from_cs);
148 }
149 if (g_to_cs == NULL)
150 g_to_cs = nl_langinfo(CODESET);

152 /*
153 * XXX todo: deal with charmap files (/paths)
154 */

156 g_ich = iconv_open(g_to_cs, g_from_cs);
157 if (g_ich == ((iconv_t)-1)) {
158 if (errno == EINVAL) {
159 (void) fprintf(stderr, gettext("Not supported %s to %s\n
160 g_from_cs, g_to_cs);
161 } else {
162 (void) fprintf(stderr, "iconv_open failed\n");
163 }
164 exit(1);
165 }

167 if (optind == argc || (optind == argc - 1 &&
168 0 == strcmp(argv[optind], "-"))) {
169 do_iconv(stdin, "stdin");
170 exit(0);
171 }

173 for (; optind < argc; optind++) {
174 fp = fopen(argv[optind], "r");
175 if (fp == NULL) {
176 perror(argv[optind]);
177 exit(1);
178 }
179 do_iconv(fp, argv[optind]);
180 (void) fclose(fp);
181 }

183 return (EXIT_SUCCESS);
184 }

186 /*
187 * Do actual conversion, copying *fp to stdout.
188 *
189 * Conversions may grow or shrink data, so using a larger output buffer
190 * to reduce the likelihood of leftover input buffer data in each pass.
191 */

193 #define IBUFSIZ 1024

new/usr/src/cmd/iconv/iconv.c 4

194 #define OBUFSIZ (2*IBUFSIZ)

196 void
197 do_iconv(FILE *fp, const char *fname)
198 {
199 const char *iptr;
200 char ibuf[IBUFSIZ];
201 char obuf[OBUFSIZ];
202 char *optr;
203 size_t ileft, icnt, oleft, ocnt;
204 int nr, nw, rc;

206 while ((nr = fread(ibuf, 1, IBUFSIZ, fp)) > 0) {

208 iptr = ibuf;
209 ileft = nr;

211 while (ileft > 0) {
212 optr = obuf;
213 oleft = OBUFSIZ;
214 rc = iconv(g_ich, &iptr, &ileft, &optr, &oleft);
215 if (rc == (size_t)-1) {
216 /*
217 * XXX todo: deal with skipping invalid
218 * input characters and continue...
219 */
220 g_errcnt++;
221 break;
222 }
223 ocnt = OBUFSIZ - oleft;
224 nw = fwrite(obuf, 1, ocnt, stdout);
225 if (nw != ocnt) {
226 perror("write");
227 exit(1);
228 }
229 }
230 }

232 /*
233 * End of file. Flush any shift encodings.
234 */
235 iptr = NULL;
236 ileft = 0;
237 optr = obuf;
238 oleft = OBUFSIZ;
239 iconv(g_ich, &iptr, &ileft, &optr, &oleft);
240 ocnt = OBUFSIZ - oleft;
241 fwrite(obuf, 1, ocnt, stdout);
242 }

244 /*
245 * Item is in the list?
246 */
247 static boolean_t
248 iconv_find(list_t *list, const char *name)
249 {
250 iconv_item_t *head;
251 boolean_t found = B_FALSE;

253 head = list_head(list);
254 while (head != NULL) {
255 if (strcmp(head->ii_name, name) == 0) {
256 found = B_TRUE;
257 break;
258 }
259 head = list_next(list, head);

new/usr/src/cmd/iconv/iconv.c 5

260 }

262 return (found);
263 }

265 /*
266 * Insert into a sorted list.
267 */
268 static void
269 iconv_insert(list_t *list, const char *name)
270 {
271 iconv_item_t *head;
272 iconv_item_t *item;

274 head = list_head(list);
275 while (head != NULL && strcmp(head->ii_name, name) < 0)
276 head = list_next(list, head);

278 item = (iconv_item_t *)malloc(sizeof (iconv_item_t));

280 list_link_init(&item->ii_next);
281 list_create(&item->ii_alias_list, sizeof (iconv_alias_t),
282 offsetof(iconv_alias_t, ia_next));

284 item->ii_name = strdup(name);

286 list_insert_before(list, head, item);
287 }

289 static void
290 iconv_insert_create(list_t *list, const char *name)
291 {
292 if (!iconv_find(list, name))
293 iconv_insert(list, name);
294 }

296 static void
297 iconv_print(list_t *list)
298 {
299 iconv_item_t *head;
300 iconv_alias_t *alias_head;

302 (void) fprintf(stdout, gettext(
303 "The following are all supported code set names. All combinations\n
304 "of those names are not necessarily available for the pair of the\n"
305 "fromcode-tocode. Some of those code set names have aliases, which\
306 "are case-insensitive and shown after the canonical name:\n"));

308 head = list_head(list);
309 while (head != NULL) {
310 (void) fprintf(stdout, "%s", head->ii_name);

312 if (!list_is_empty(&head->ii_alias_list)) {
313 printf(" (");
314 alias_head = list_head(&head->ii_alias_list);
315 while (alias_head != NULL) {
316 (void) fprintf(stdout, "%s",
317 alias_head->ia_name);

319 alias_head = list_next(&head->ii_alias_list,
320 alias_head);

322 if (alias_head != NULL)
323 (void) fprintf(stdout, ", ");
324 }
325 (void) fprintf(stdout, ")");

new/usr/src/cmd/iconv/iconv.c 6

326 }

328 (void) fprintf(stdout, ",\n");

330 head = list_next(list, head);
331 }
332 }

334 /*
335 * List all codesets available.
336 */
337 static void
338 list_codesets(void)
339 {
340 list_t item_list;
341 glob_t globbuf;
342 FILE *fp;
343 char *alias, *ptr, *chomp;
344 char buf[1024];
345 int i;

347 list_create(&item_list, sizeof (iconv_item_t),
348 offsetof(iconv_item_t, ii_next));

350 #define _ICONV_PATH "/usr/lib/iconv/"

352 /* XXX search path depends on arch amd64 etc */
353 (void) chdir(_ICONV_PATH);
354 (void) glob("*%*.so", GLOB_NOSORT, NULL, &globbuf);
355 (void) chdir("geniconvtbl/binarytables");
356 (void) glob("*%*.bt", GLOB_NOSORT|GLOB_APPEND, NULL, &globbuf);

358 for (i = 0; i < globbuf.gl_pathc; i++) {

360 ptr = globbuf.gl_pathv[i];
361 alias = strsep(&ptr, "%");

363 chomp = ptr;
364 for (; *chomp; chomp++) {
365 if (*chomp == ’.’)
366 *chomp = ’\0’;
367 }

369 iconv_insert_create(&item_list, ptr);
370 iconv_insert_create(&item_list, alias);
371 }

373 globfree(&globbuf);

375 (void) chdir(_ICONV_PATH);
376 (void) glob("*.*.t", GLOB_NOSORT, NULL, &globbuf);

378 for (i = 0; i < globbuf.gl_pathc; i++) {

380 ptr = globbuf.gl_pathv[i];
381 alias = strsep(&ptr, ".");
382 printf("%s\n", ptr);
383 chomp = ptr;
384 for (; *chomp; chomp++) {
385 if (*chomp == ’.’)
386 *chomp = ’\0’;
387 }

389 iconv_insert_create(&item_list, ptr);
390 iconv_insert_create(&item_list, alias);
391 }

new/usr/src/cmd/iconv/iconv.c 7

393 globfree(&globbuf);

395 /*
396 * Read in the alias file and build up a list of
397 * encoding aliases.
398 */
399 fp = fopen("alias", "r");
400 if (fp == NULL) {
401 fprintf(stderr, gettext(
402 "Failed to open the conversion alias file: %s\n"),
403 "XXX");

405 /* XXX free list */
406 return;
407 }

409 while (fgets(buf, sizeof (buf), fp) != NULL) {
410 iconv_item_t *head;
411 iconv_alias_t *alias_head;

413 /* Skip comments */
414 if (buf[0] == ’#’)
415 continue;

417 ptr = buf;
418 alias = strsep(&ptr, " \t");

420 chomp = ptr;
421 for (; *chomp; chomp++) {
422 if (*chomp == ’\n’)
423 *chomp = ’\0’;
424 }

426 head = list_head(&item_list);
427 while (head != NULL &&
428 strcmp(head->ii_name, ptr) < 0)
429 head = list_next(&item_list, head);

431 if (head != NULL) {
432 alias_head = (iconv_alias_t *)malloc(
433 sizeof (iconv_alias_t));
434 list_link_init(&alias_head->ia_next);
435 alias_head->ia_name = strdup(alias);

437 list_insert_tail(&head->ii_alias_list, alias_head);
438 }
439 }

441 iconv_print(&item_list);

443 /* XXX free list */

445 (void) fclose(fp);
446 }
447 #endif /* ! codereview */

new/usr/src/cmd/iconv/iconv.h 1

**
 1287 Sun Feb 24 04:11:48 2013
new/usr/src/cmd/iconv/iconv.h
30 Need iconv
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy is of the CDDL is also available via the Internet
9 * at http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2013 David Hoeppner. All rights reserved.
14 */

16 /*
17 * POSIX iconv.
18 */

20 #include <sys/types.h>

22 #include <libintl.h>
23 #include <stdarg.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <strings.h>

28 /*
29 * Macros.
30 */
31 #define _(x) gettext(x)

33 extern int com_char; /* Comment character */
34 extern int esc_char; /* Escape character */
35 extern int mb_cur_max;
36 extern int mb_cur_min;

38 extern int yydebug;
39 extern int lineno;

41 /*
42 * Functions from scanner.c
43 */
44 char *to_mb_string(const wchar_t *);
45 void set_wide_encoding(const char *);
46 void add_wcs(wchar_t);
47 wchar_t *get_wcs(void);
48 void reset_scanner(const char *);
49 void yyerror(const char *);
50 void errf(const char *, ...);
51 void scan_to_eol(void);

53 /*
54 * Functions from charmap.c
55 */
56 void init_charmap(void);
57 void switch_charmap(void);
58 void add_charmap(char *, int);
59 void add_charmap_range(char *, char *, int);
60 #endif /* ! codereview */

new/usr/src/cmd/iconv/parser.y 1

**
 2483 Sun Feb 24 04:11:48 2013
new/usr/src/cmd/iconv/parser.y
30 Need iconv
**

1 %{
2 /*
3 * This file and its contents are supplied under the terms of the
4 * Common Development and Distribution License ("CDDL"), version 1.0.
5 * You may only use this file in accordance with the terms of version
6 * 1.0 of the CDDL.
7 *
8 * A full copy of the text of the CDDL should have accompanied this
9 * source. A copy of the CDDL is also available via the Internet at
10 * http://www.illumos.org/license/CDDL.
11 */

13 /*
14 * Copyright 2010 Nexenta Systems, Inc. All rights reserved.
15 */

17 /*
18 * POSIX charmap grammar.
19 */

21 #include <wchar.h>
22 #include <stdio.h>
23 #include <limits.h>
24 #include "iconv.h"

26 %}
27 %union {
28 int num;
29 wchar_t wc;
30 char *token;
31 }

33 %token T_CODE_SET
34 %token T_MB_CUR_MAX
35 %token T_MB_CUR_MIN
36 %token T_COM_CHAR
37 %token T_ESC_CHAR
38 %token T_LT
39 %token T_GT
40 %token T_NL
41 %token T_SEMI
42 %token T_COMMA
43 %token T_ELLIPSIS
44 %token T_RPAREN
45 %token T_LPAREN
46 %token T_QUOTE
47 %token T_NULL
48 %token T_WS
49 %token T_END
50 %token T_COPY
51 %token T_CHARMAP
52 %token T_WIDTH
53 %token T_WIDTH_DEFAULT
54 %token <wc> T_CHAR
55 %token <token> T_NAME
56 %token <num> T_NUMBER
57 %token <token> T_SYMBOL

59 %%

61 iconv : setting_list categories

new/usr/src/cmd/iconv/parser.y 2

62 | categories
63 ;

66 setting_list : setting_list setting
67 | setting
68 ;

70 setting : T_COM_CHAR T_CHAR T_NL
71 {
72 printf("SEtting comment\n");
73 com_char = $2;
74 }
75 | T_ESC_CHAR T_CHAR T_NL
76 {
77 esc_char = $2;
78 }
79 | T_MB_CUR_MAX T_NUMBER T_NL
80 {
81 mb_cur_max = $2;
82 }
83 | T_MB_CUR_MIN T_NUMBER T_NL
84 {
85 mb_cur_min = $2;
86 }
87 | T_CODE_SET string T_NL
88 {
89 wchar_t *w = get_wcs();

91 set_wide_encoding(to_mb_string(w));
92 free(w);
93 }
94 | T_CODE_SET T_NAME T_NL
95 {
96 set_wide_encoding($2);
97 }
98 ;

100 categories : categories category
101 | category
102 ;

104 category : charmap
105 | width
106 ;

108 charmap : T_CHARMAP T_NL charmap_list T_END T_CHARMAP T_NL

110 charmap_list : charmap_list charmap_entry
111 | charmap_entry
112 ;

114 charmap_entry : T_SYMBOL T_CHAR
115 {
116 add_charmap($1, $2);
117 scan_to_eol();
118 }
119 | T_SYMBOL T_ELLIPSIS T_SYMBOL T_CHAR
120 {
121 add_charmap_range($1, $3, $4);
122 scan_to_eol();
123 }
124 | T_NL
125 ;

127 width : T_WIDTH T_NL width_list T_END T_WIDTH T_NL

new/usr/src/cmd/iconv/parser.y 3

129 width_list : width_list width_entry
130 | width_entry
131 ;

133 width_entry : T_SYMBOL T_NUMBER
134 {
135 printf("WIDTH ENTRY\n");
136 }
137 | T_SYMBOL T_ELLIPSIS T_SYMBOL T_NUMBER
138 {
139 printf("WIDTH ENTY ELL\n");
140 }
141 | T_NL
142 ;

144 string : T_QUOTE charlist T_QUOTE
145 | T_QUOTE T_QUOTE
146 ;

148 charlist : charlist T_CHAR
149 {
150 add_wcs($2);
151 }
152 | T_CHAR
153 {
154 add_wcs($1);
155 }
156 ;
157 #endif /* ! codereview */

new/usr/src/cmd/iconv/scanner.c 1

**
 11574 Sun Feb 24 04:11:48 2013
new/usr/src/cmd/iconv/scanner.c
30 Need iconv
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2010 Nexenta Systems, Inc. All rights reserved.
14 * Copyright 2013 David Hoeppner. All rights reserved.
15 */

17 /*
18 * Functions to charmap .
19 */

21 #include <assert.h>
22 #include <ctype.h>
23 #include <limits.h>
24 #include <widec.h>

26 #include "iconv.h"
27 #include "parser.tab.h"

29 /*
30 * Helper macros.
31 */
32 #define hex(x) \
33 (isdigit(x) ? (x - ’0’) : ((islower(x) ? (x - ’a’) : (x - ’A’)) + 10))

35 #define isodigit(x) ((x >= ’0’) && (x <= ’7’))

37 /*
38 * Charmap specific.
39 */
40 int com_char = ’#’;
41 int esc_char = ’\\’;
42 int mb_cur_max = 1;
43 int mb_cur_min = 1;

45 int lineno = 1;
46 static FILE *input = stdin;
47 static const char *filename = "<stdin>";
48 static int escaped = 0;
49 static int instring = 0;
50 static int nextline;

52 /*
53 * Tokens.
54 */
55 static char *token = NULL;
56 static int tokidx;
57 static int toksz = 0;
58 static int hadtok = 0;

60 /*
61 * Wide strings.

new/usr/src/cmd/iconv/scanner.c 2

62 */
63 static wchar_t *widestr = NULL;
64 static int wideidx = 0;
65 static int widesz = 0;

67 /*
68 * Keywords related.
69 */
70 int last_kw = 0;
71 static int category = T_END;

73 static struct token {
74 int id;
75 const char *name;
76 } keywords[] = {
77 { T_COM_CHAR, "comment_char" },
78 { T_ESC_CHAR, "escape_char" },
79 { T_END, "END" },
80 { T_CHARMAP, "CHARMAP" },
81 { T_WIDTH, "WIDTH" },
82 { T_WIDTH_DEFAULT, "WIDTH_DEFAULT" },
83 { -1, NULL },
84 };

86 /*
87 * Charmap reserved keywords.
88 */
89 static struct token symwords[] = {
90 { T_COM_CHAR, "comment_char" },
91 { T_ESC_CHAR, "escape_char" },
92 { T_CODE_SET, "code_set_name" },
93 { T_MB_CUR_MAX, "mb_cur_max" },
94 { T_MB_CUR_MIN, "mb_cur_min" },
95 { -1, NULL },
96 };

98 static int categories[] = {
99 T_CHARMAP,
100 T_WIDTH,
101 0,
102 };

104 char *
105 to_mb_string(const wchar_t *wcs)
106 {
107 return (NULL);
108 }

110 void
111 set_wide_encoding(const char *encoding)
112 {
113 }

115 /*
116 * Reset the scanner variables and open the supplied charmap file.
117 */
118 void
119 reset_scanner(const char *fname)
120 {
121 input = fopen(fname, "r");
122 if (input == NULL) {
123 perror("fopen");
124 exit(4);
125 }

127 filename = fname;

new/usr/src/cmd/iconv/scanner.c 3

128 com_char = ’#’;
129 esc_char = ’\\’;
130 instring = 0;
131 escaped = 0;
132 lineno = 1;
133 nextline = 1;
134 tokidx = 0;
135 wideidx = 0;
136 }

138 static int
139 scanc(void)
140 {
141 int c;

143 c = getc(input);
144 lineno = nextline;
145 if (c == ’\n’) {
146 nextline++;
147 }

149 return (c);
150 }

152 static void
153 unscanc(int c)
154 {
155 if (c == ’\n’) {
156 nextline--;
157 }

159 if (ungetc(c, input) < 0) {
160 yyerror(_("ungetc failed"));
161 }
162 }

164 static int
165 scan_hex_byte(void)
166 {
167 int c1, c2;
168 int v;

170 c1 = scanc();
171 if (!isxdigit(c1)) {
172 yyerror(_("malformed hex digit"));
173 return (0);
174 }
175 c2 = scanc();
176 if (!isxdigit(c2)) {
177 yyerror(_("malformed hex digit"));
178 return (0);
179 }
180 v = ((hex(c1) << 4) | hex(c2));
181 return (v);
182 }

184 static int
185 scan_dec_byte(void)
186 {
187 int c1, c2, c3;
188 int b;

190 c1 = scanc();
191 if (!isdigit(c1)) {
192 yyerror(_("malformed decimal digit"));
193 return (0);

new/usr/src/cmd/iconv/scanner.c 4

194 }
195 b = c1 - ’0’;
196 c2 = scanc();
197 if (!isdigit(c2)) {
198 yyerror(_("malformed decimal digit"));
199 return (0);
200 }
201 b *= 10;
202 b += (c2 - ’0’);
203 c3 = scanc();
204 if (!isdigit(c3)) {
205 unscanc(c3);
206 } else {
207 b *= 10;
208 b += (c3 - ’0’);
209 }
210 return (b);
211 }

213 static int
214 scan_oct_byte(void)
215 {
216 int c1, c2, c3;
217 int b;

219 b = 0;

221 c1 = scanc();
222 if (!isodigit(c1)) {
223 yyerror(_("malformed octal digit"));
224 return (0);
225 }
226 b = c1 - ’0’;
227 c2 = scanc();
228 if (!isodigit(c2)) {
229 yyerror(_("malformed octal digit"));
230 return (0);
231 }
232 b *= 8;
233 b += (c2 - ’0’);
234 c3 = scanc();
235 if (!isodigit(c3)) {
236 unscanc(c3);
237 } else {
238 b *= 8;
239 b += (c3 - ’0’);
240 }
241 return (b);
242 }

244 void
245 add_tok(int c)
246 {
247 if ((tokidx + 1) >= toksz) {
248 toksz += 64;

250 if ((token = realloc(token, toksz)) == NULL) {
251 yyerror(_("out of memory"));
252 tokidx = 0;
253 toksz = 0;
254 return;
255 }
256 }

258 token[tokidx++] = (char)c;
259 token[tokidx] = 0;

new/usr/src/cmd/iconv/scanner.c 5

260 }

262 void
263 add_wcs(wchar_t c)
264 {
265 if ((wideidx + 1) >= widesz) {
266 widesz += 64;
267 widestr = realloc(widestr, (widesz * sizeof (wchar_t)));
268 if (widestr == NULL) {
269 yyerror(_("out of memory"));
270 wideidx = 0;
271 widesz = 0;
272 return;
273 }
274 }

276 widestr[wideidx++] = c;
277 widestr[wideidx] = 0;
278 }

280 wchar_t *
281 get_wcs(void)
282 {
283 wchar_t *ws = widestr;

285 wideidx = 0;
286 widestr = NULL;
287 widesz = 0;

289 if (ws == NULL) {
290 if ((ws = wsdup(L"")) == NULL) {
291 yyerror(_("out of memory"));
292 }
293 }

295 return (ws);
296 }

298 static int
299 get_byte(void)
300 {
301 int c;

303 if ((c = scanc()) != esc_char) {
304 unscanc(c);
305 return (EOF);
306 }

308 c = scanc();

310 switch (c) {
311 case ’d’:
312 case ’D’:
313 return (scan_dec_byte());
314 case ’x’:
315 case ’X’:
316 return (scan_hex_byte());
317 case ’0’ ... ’7’:
318 /* Put the character back so we can get it */
319 unscanc(c);
320 return (scan_oct_byte());
321 default:
322 unscanc(c);
323 unscanc(esc_char);
324 return (EOF);
325 }

new/usr/src/cmd/iconv/scanner.c 6

326 }

328 int
329 get_escaped(int c)
330 {
331 switch (c) {
332 case ’n’:
333 return (’\n’);
334 case ’r’:
335 return (’\r’);
336 case ’t’:
337 return (’\t’);
338 case ’f’:
339 return (’\f’);
340 case ’v’:
341 return (’\v’);
342 case ’b’:
343 return (’\b’);
344 case ’a’:
345 return (’\a’);
346 default:
347 return (c);
348 }
349 }

351 int
352 get_wide(void)
353 {
354 char mbs[MB_LEN_MAX + 1] = "";
355 int mbi = 0;
356 int c;
357 wchar_t wc;

359 if (mb_cur_max >= sizeof (mbs)) {
360 yyerror(_("max multibyte character size too big"));
361 mbi = 0;
362 return (T_NULL);
363 }

365 for (;;) {
366 if ((mbi == mb_cur_max) || ((c = get_byte()) == EOF)) {
367 /*
368 * End of the byte sequence reached, but no
369 * valid wide decoding. Fatal error.
370 */
371 mbi = 0;
372 yyerror(_("not a valid character encoding"));
373 return (T_NULL);
374 }

376 mbs[mbi++] = c;
377 mbs[mbi] = 0;

379 if (mbi == mb_cur_max) {
380 break;
381 }
382 }

384 mbi = 0;
385 /* XXX */
386 yylval.wc = (uint8_t)*mbs;

388 return (T_CHAR);
389 }

391 int

new/usr/src/cmd/iconv/scanner.c 7

392 get_symbol(void)
393 {
394 int c;

396 while ((c = scanc()) != EOF) {
397 if (escaped == 1) {
398 escaped = 0;
399 if (c == ’\n’) {
400 continue;
401 }

403 add_tok(get_escaped(c));
404 continue;
405 }

407 if (c == esc_char) {
408 escaped = 1;
409 continue;
410 }

412 if (c == ’\n’) { /* Well that’s strange! */
413 yyerror(_("unterminated symbolic name"));
414 continue;
415 }

417 if (c == ’>’) { /* End of symbol */
418 /*
419 * This restarts the token from the beginning
420 * the next time we scan a character. (This
421 * token is complete.)
422 */
423 if (token == NULL) {
424 yyerror(_("missing symbolic name"));
425 return (T_NULL);
426 }

428 tokidx = 0;

430 /*
431 * A few symbols are handled as keywords outside
432 * of the normal categories.
433 */
434 if (category == T_END) {
435 int i;

437 for (i = 0; symwords[i].name != 0; i++) {
438 if (strcmp(token, symwords[i].name) ==
439 0) {
440 last_kw = symwords[i].id;
441 return (last_kw);
442 }
443 }
444 }

446 /* XXX */

448 /* Its an undefined symbol */
449 yylval.token = strdup(token);
450 token = NULL;
451 toksz = 0;
452 tokidx = 0;
453 printf("returning SYMBOL %s\n", yylval.token);
454 return (T_SYMBOL);
455 }

457 add_tok(c);

new/usr/src/cmd/iconv/scanner.c 8

458 }

460 yyerror(_("unterminated symbolic name"));

462 return (EOF);
463 }

465 static int
466 consume_token(void)
467 {
468 int len = tokidx;
469 int i;

471 tokidx = 0;
472 if (token == NULL) {
473 return (T_NULL);
474 }

476 /*
477 * This one is special, because we don’t want it to alter the
478 * last_kw field.
479 */
480 if (strcmp(token, "...") == 0) {
481 return (T_ELLIPSIS);
482 }

484 /* Search for reserved words first */
485 for (i = 0; keywords[i].name; i++) {
486 int j;

488 if (strcmp(keywords[i].name, token)) {
489 continue;
490 }

492 last_kw = keywords[i].id;

494 /* Clear the top level category if we’re done with it */
495 if (last_kw == T_END) {
496 category = T_END;
497 }

499 /* Set the top level category if we’re changing */
500 for (j = 0; categories[j]; j++) {
501 if (categories[j] != last_kw) {
502 continue;
503 }
504 category = last_kw;
505 }

507 return (keywords[i].id);
508 }

510 /* Maybe its a numeric constant? */
511 if (isdigit(*token) || (*token == ’-’ && isdigit(token[1]))) {
512 char *eptr;

514 yylval.num = strtol(token, &eptr, 10);
515 if (*eptr != 0) {
516 yyerror(_("malformed number"));
517 }

519 return (T_NUMBER);
520 }

522 /*
523 * A single lone character is treated as a character literal.

new/usr/src/cmd/iconv/scanner.c 9

524 * To avoid duplication of effort, we stick in the charmap.
525 */
526 if (len == 1) {
527 yylval.wc = token[0];
528 return (T_CHAR);
529 }

531 /* Anything else is treated as a symbolic name */
532 yylval.token = strdup(token);
533 token = NULL;
534 toksz = 0;
535 tokidx = 0;

537 return (T_NAME);
538 }

540 void
541 scan_to_eol(void)
542 {
543 int c;

545 while ((c = scanc()) != ’\n’) {
546 if (c == EOF) {
547 /* end of file without newline! */
548 errf(_("missing newline"));
549 return;
550 }
551 }

553 assert(c == ’\n’);
554 }

556 int
557 yylex(void)
558 {
559 int c;

561 while ((c = scanc()) != EOF) {
562 printf("--- yylex --%c--\n", c);

564 /* Special handling for quoted strings */
565 if (instring == 1) {
566 if (escaped == 1) {
567 escaped = 0;

569 /* If newline, just eat and forget it */
570 if (c == ’\n’) {
571 continue;
572 }

574 if (strchr("xd01234567", c)) {
575 unscanc(c);
576 unscanc(esc_char);
577 return (get_wide());
578 }

580 yylval.wc = get_escaped(c);
581 return (T_CHAR);
582 }

584 if (c == esc_char) {
585 escaped = 1;
586 continue;
587 }

589 switch (c) {

new/usr/src/cmd/iconv/scanner.c 10

590 case ’<’:
591 return (get_symbol());
592 case ’>’:
593 /* Opps! Should generate syntax error */
594 return (T_GT);
595 case ’"’:
596 instring = 0;
597 return (T_QUOTE);
598 default:
599 yylval.wc = c;
600 return (T_CHAR);
601 }
602 }

604 /* Escaped characters first */
605 if (escaped == 1) {
606 escaped = 0;
607 if (c == ’\n’) {
608 /* Eat the newline */
609 continue;
610 }
611 hadtok = 1;
612 if (tokidx != 0) {
613 /* An escape mid-token is nonsense */
614 return (T_NULL);
615 }

617 /* Numeric escapes are treated as wide characters */
618 if (strchr("xXd01234567", c)) {
619 unscanc(c);
620 unscanc(esc_char);
621 return (get_wide());
622 }

624 add_tok(get_escaped(c));
625 continue;
626 }

628 /* If it is the escape character itself note it */
629 if (c == esc_char) {
630 escaped = 1;
631 continue;
632 }

634 /* Remove from the comment character to end of line */
635 if (c == com_char) {
636 while (c != ’\n’) {
637 if ((c = scanc()) == EOF) {
638 /* End of file without newline */
639 return (EOF);
640 }
641 }

643 assert(c == ’\n’);

645 if (hadtok == 0) {
646 /*
647 * If there were no tokens on this line,
648 * then just pretend it didn’t exist at all.
649 */
650 continue;
651 }

653 hadtok = 0;
654 return (T_NL);
655 }

new/usr/src/cmd/iconv/scanner.c 11

657 if (strchr(" \t\n;()<>,\"", c) && (tokidx != 0)) {
658 /*
659 * These are all token delimiters. If there
660 * is a token already in progress, we need to
661 * process it.
662 */
663 unscanc(c);
664 return (consume_token());
665 }

667 switch (c) {
668 case ’\n’:
669 if (hadtok == 0) {
670 /*
671 * If the line was completely devoid of tokens,
672 * then just ignore it.
673 */
674 continue;
675 }

677 /* We’re starting a new line, reset the token state */
678 hadtok = 0;
679 return (T_NL);
680 case ’>’:
681 hadtok = 1;
682 return (T_GT);
683 case ’<’:
684 /* Symbol start! */
685 hadtok = 1;
686 return (get_symbol());
687 case ’ ’:
688 case ’\t’:
689 /* Whitespace, just ignore */
690 continue;
691 case ’"’:
692 hadtok = 1;
693 instring = 1;
694 return (T_QUOTE);
695 default:
696 //printf("--- adding %c to token\n", c);
697 hadtok = 1;
698 add_tok(c);
699 continue;
700 }
701 }

703 return (EOF);
704 }

706 void
707 yyerror(const char *msg)
708 {
709 (void) fprintf(stderr, _("%s: %d: error: %s\n"),
710 filename, lineno, msg);
711 exit(4);
712 }

714 void
715 errf(const char *fmt, ...)
716 {
717 char *msg;
718 va_list va;

720 va_start(va, fmt);
721 (void) vasprintf(&msg, fmt, va);

new/usr/src/cmd/iconv/scanner.c 12

722 va_end(va);

724 (void) fprintf(stderr, _("%s: %d: error: %s\n"),
725 filename, lineno, msg);
726 free(msg);
727 exit(4);
728 }
729 #endif /* ! codereview */

