1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2011 Joyent, Inc. All rights reserved. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/suntpi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 #include <sys/taskq.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <sys/mac.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <inet/iptun/iptun_impl.h> 101 #include <inet/ipdrop.h> 102 #include <inet/ip_netinfo.h> 103 #include <inet/ilb_ip.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/pattr.h> 114 #include <inet/dccp.h> 115 #include <inet/dccp_impl.h> 116 #include <inet/dccp_ip.h> 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 124 #include <sys/tsol/label.h> 125 #include <sys/tsol/tnet.h> 126 127 #include <sys/squeue_impl.h> 128 #include <inet/ip_arp.h> 129 130 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 131 132 /* 133 * Values for squeue switch: 134 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 135 * IP_SQUEUE_ENTER: SQ_PROCESS 136 * IP_SQUEUE_FILL: SQ_FILL 137 */ 138 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 139 140 int ip_squeue_flag; 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 uint_t ird_flags; /* see below */ 176 listptr_t ird_route; /* ipRouteEntryTable */ 177 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 178 listptr_t ird_attrs; /* ipRouteAttributeTable */ 179 } iproutedata_t; 180 181 /* Include ire_testhidden and IRE_IF_CLONE routes */ 182 #define IRD_REPORT_ALL 0x01 183 184 /* 185 * Cluster specific hooks. These should be NULL when booted as a non-cluster 186 */ 187 188 /* 189 * Hook functions to enable cluster networking 190 * On non-clustered systems these vectors must always be NULL. 191 * 192 * Hook function to Check ip specified ip address is a shared ip address 193 * in the cluster 194 * 195 */ 196 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 197 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 198 199 /* 200 * Hook function to generate cluster wide ip fragment identifier 201 */ 202 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 203 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 204 void *args) = NULL; 205 206 /* 207 * Hook function to generate cluster wide SPI. 208 */ 209 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 210 void *) = NULL; 211 212 /* 213 * Hook function to verify if the SPI is already utlized. 214 */ 215 216 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 217 218 /* 219 * Hook function to delete the SPI from the cluster wide repository. 220 */ 221 222 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 223 224 /* 225 * Hook function to inform the cluster when packet received on an IDLE SA 226 */ 227 228 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 229 in6_addr_t, in6_addr_t, void *) = NULL; 230 231 /* 232 * Synchronization notes: 233 * 234 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 235 * MT level protection given by STREAMS. IP uses a combination of its own 236 * internal serialization mechanism and standard Solaris locking techniques. 237 * The internal serialization is per phyint. This is used to serialize 238 * plumbing operations, IPMP operations, most set ioctls, etc. 239 * 240 * Plumbing is a long sequence of operations involving message 241 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 242 * involved in plumbing operations. A natural model is to serialize these 243 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 244 * parallel without any interference. But various set ioctls on hme0 are best 245 * serialized, along with IPMP operations and processing of DLPI control 246 * messages received from drivers on a per phyint basis. This serialization is 247 * provided by the ipsq_t and primitives operating on this. Details can 248 * be found in ip_if.c above the core primitives operating on ipsq_t. 249 * 250 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 251 * Simiarly lookup of an ire by a thread also returns a refheld ire. 252 * In addition ipif's and ill's referenced by the ire are also indirectly 253 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * one such exclusive operation proceeds at any time on the ipif. It then 257 * waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and ncec_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 306 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 307 * uniqueness check also done atomically. 308 * 309 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 310 * group list linked by ill_usesrc_grp_next. It also protects the 311 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 312 * group is being added or deleted. This lock is taken as a reader when 313 * walking the list/group(eg: to get the number of members in a usesrc group). 314 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 315 * field is changing state i.e from NULL to non-NULL or vice-versa. For 316 * example, it is not necessary to take this lock in the initial portion 317 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 318 * operations are executed exclusively and that ensures that the "usesrc 319 * group state" cannot change. The "usesrc group state" change can happen 320 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 321 * 322 * Changing <ill-phyint>, <ipsq-xop> assocications: 323 * 324 * To change the <ill-phyint> association, the ill_g_lock must be held 325 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 326 * must be held. 327 * 328 * To change the <ipsq-xop> association, the ill_g_lock must be held as 329 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 330 * This is only done when ills are added or removed from IPMP groups. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 353 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 354 * arl_lock -> ill_lock 355 * ips_ire_dep_lock -> irb_lock 356 * 357 * When more than 1 ill lock is needed to be held, all ill lock addresses 358 * are sorted on address and locked starting from highest addressed lock 359 * downward. 360 * 361 * Multicast scenarios 362 * ips_ill_g_lock -> ill_mcast_lock 363 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 368 * 369 * IPsec scenarios 370 * 371 * ipsa_lock -> ill_g_lock -> ill_lock 372 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 373 * 374 * Trusted Solaris scenarios 375 * 376 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 377 * igsa_lock -> gcdb_lock 378 * gcgrp_rwlock -> ire_lock 379 * gcgrp_rwlock -> gcdb_lock 380 * 381 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 382 * 383 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 384 * sq_lock -> conn_lock -> QLOCK(q) 385 * ill_lock -> ft_lock -> fe_lock 386 * 387 * Routing/forwarding table locking notes: 388 * 389 * Lock acquisition order: Radix tree lock, irb_lock. 390 * Requirements: 391 * i. Walker must not hold any locks during the walker callback. 392 * ii Walker must not see a truncated tree during the walk because of any node 393 * deletion. 394 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 395 * in many places in the code to walk the irb list. Thus even if all the 396 * ires in a bucket have been deleted, we still can't free the radix node 397 * until the ires have actually been inactive'd (freed). 398 * 399 * Tree traversal - Need to hold the global tree lock in read mode. 400 * Before dropping the global tree lock, need to either increment the ire_refcnt 401 * to ensure that the radix node can't be deleted. 402 * 403 * Tree add - Need to hold the global tree lock in write mode to add a 404 * radix node. To prevent the node from being deleted, increment the 405 * irb_refcnt, after the node is added to the tree. The ire itself is 406 * added later while holding the irb_lock, but not the tree lock. 407 * 408 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 409 * All associated ires must be inactive (i.e. freed), and irb_refcnt 410 * must be zero. 411 * 412 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 413 * global tree lock (read mode) for traversal. 414 * 415 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 416 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 417 * 418 * IPsec notes : 419 * 420 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 421 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 422 * ip_xmit_attr_t has the 423 * information used by the IPsec code for applying the right level of 424 * protection. The information initialized by IP in the ip_xmit_attr_t 425 * is determined by the per-socket policy or global policy in the system. 426 * For inbound datagrams, the ip_recv_attr_t 427 * starts out with nothing in it. It gets filled 428 * with the right information if it goes through the AH/ESP code, which 429 * happens if the incoming packet is secure. The information initialized 430 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 431 * the policy requirements needed by per-socket policy or global policy 432 * is met or not. 433 * 434 * For fully connected sockets i.e dst, src [addr, port] is known, 435 * conn_policy_cached is set indicating that policy has been cached. 436 * conn_in_enforce_policy may or may not be set depending on whether 437 * there is a global policy match or per-socket policy match. 438 * Policy inheriting happpens in ip_policy_set once the destination is known. 439 * Once the right policy is set on the conn_t, policy cannot change for 440 * this socket. This makes life simpler for TCP (UDP ?) where 441 * re-transmissions go out with the same policy. For symmetry, policy 442 * is cached for fully connected UDP sockets also. Thus if policy is cached, 443 * it also implies that policy is latched i.e policy cannot change 444 * on these sockets. As we have the right policy on the conn, we don't 445 * have to lookup global policy for every outbound and inbound datagram 446 * and thus serving as an optimization. Note that a global policy change 447 * does not affect fully connected sockets if they have policy. If fully 448 * connected sockets did not have any policy associated with it, global 449 * policy change may affect them. 450 * 451 * IP Flow control notes: 452 * --------------------- 453 * Non-TCP streams are flow controlled by IP. The way this is accomplished 454 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 455 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 456 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 457 * functions. 458 * 459 * Per Tx ring udp flow control: 460 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 461 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 462 * 463 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 464 * To achieve best performance, outgoing traffic need to be fanned out among 465 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 466 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 467 * the address of connp as fanout hint to mac_tx(). Under flow controlled 468 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 469 * cookie points to a specific Tx ring that is blocked. The cookie is used to 470 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 471 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 472 * connp's. The drain list is not a single list but a configurable number of 473 * lists. 474 * 475 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 476 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 477 * which is equal to 128. This array in turn contains a pointer to idl_t[], 478 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 479 * list will point to the list of connp's that are flow controlled. 480 * 481 * --------------- ------- ------- ------- 482 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 483 * | --------------- ------- ------- ------- 484 * | --------------- ------- ------- ------- 485 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 486 * ---------------- | --------------- ------- ------- ------- 487 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 488 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 489 * | --------------- ------- ------- ------- 490 * . . . . . 491 * | --------------- ------- ------- ------- 492 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 493 * --------------- ------- ------- ------- 494 * --------------- ------- ------- ------- 495 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 496 * | --------------- ------- ------- ------- 497 * | --------------- ------- ------- ------- 498 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 499 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 500 * ---------------- | . . . . 501 * | --------------- ------- ------- ------- 502 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 503 * --------------- ------- ------- ------- 504 * ..... 505 * ---------------- 506 * |idl_tx_list[n]|-> ... 507 * ---------------- 508 * 509 * When mac_tx() returns a cookie, the cookie is hashed into an index into 510 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 511 * to insert the conn onto. conn_drain_insert() asserts flow control for the 512 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 513 * Further, conn_blocked is set to indicate that the conn is blocked. 514 * 515 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 516 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 517 * is again hashed to locate the appropriate idl_tx_list, which is then 518 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 519 * the drain list and calls conn_drain_remove() to clear flow control (via 520 * calling su_txq_full() or clearing QFULL), and remove the conn from the 521 * drain list. 522 * 523 * Note that the drain list is not a single list but a (configurable) array of 524 * lists (8 elements by default). Synchronization between drain insertion and 525 * flow control wakeup is handled by using idl_txl->txl_lock, and only 526 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 527 * 528 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 529 * On the send side, if the packet cannot be sent down to the driver by IP 530 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 531 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 532 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 533 * control has been relieved, the blocked conns in the 0'th drain list are 534 * drained as in the non-STREAMS case. 535 * 536 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 537 * is done when the conn is inserted into the drain list (conn_drain_insert()) 538 * and cleared when the conn is removed from the it (conn_drain_remove()). 539 * 540 * IPQOS notes: 541 * 542 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 543 * and IPQoS modules. IPPF includes hooks in IP at different control points 544 * (callout positions) which direct packets to IPQoS modules for policy 545 * processing. Policies, if present, are global. 546 * 547 * The callout positions are located in the following paths: 548 * o local_in (packets destined for this host) 549 * o local_out (packets orginating from this host ) 550 * o fwd_in (packets forwarded by this m/c - inbound) 551 * o fwd_out (packets forwarded by this m/c - outbound) 552 * Hooks at these callout points can be enabled/disabled using the ndd variable 553 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 554 * By default all the callout positions are enabled. 555 * 556 * Outbound (local_out) 557 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 558 * 559 * Inbound (local_in) 560 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 561 * 562 * Forwarding (in and out) 563 * Hooks are placed in ire_recv_forward_v4/v6. 564 * 565 * IP Policy Framework processing (IPPF processing) 566 * Policy processing for a packet is initiated by ip_process, which ascertains 567 * that the classifier (ipgpc) is loaded and configured, failing which the 568 * packet resumes normal processing in IP. If the clasifier is present, the 569 * packet is acted upon by one or more IPQoS modules (action instances), per 570 * filters configured in ipgpc and resumes normal IP processing thereafter. 571 * An action instance can drop a packet in course of its processing. 572 * 573 * Zones notes: 574 * 575 * The partitioning rules for networking are as follows: 576 * 1) Packets coming from a zone must have a source address belonging to that 577 * zone. 578 * 2) Packets coming from a zone can only be sent on a physical interface on 579 * which the zone has an IP address. 580 * 3) Between two zones on the same machine, packet delivery is only allowed if 581 * there's a matching route for the destination and zone in the forwarding 582 * table. 583 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 584 * different zones can bind to the same port with the wildcard address 585 * (INADDR_ANY). 586 * 587 * The granularity of interface partitioning is at the logical interface level. 588 * Therefore, every zone has its own IP addresses, and incoming packets can be 589 * attributed to a zone unambiguously. A logical interface is placed into a zone 590 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 591 * structure. Rule (1) is implemented by modifying the source address selection 592 * algorithm so that the list of eligible addresses is filtered based on the 593 * sending process zone. 594 * 595 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 596 * across all zones, depending on their type. Here is the break-up: 597 * 598 * IRE type Shared/exclusive 599 * -------- ---------------- 600 * IRE_BROADCAST Exclusive 601 * IRE_DEFAULT (default routes) Shared (*) 602 * IRE_LOCAL Exclusive (x) 603 * IRE_LOOPBACK Exclusive 604 * IRE_PREFIX (net routes) Shared (*) 605 * IRE_IF_NORESOLVER (interface routes) Exclusive 606 * IRE_IF_RESOLVER (interface routes) Exclusive 607 * IRE_IF_CLONE (interface routes) Exclusive 608 * IRE_HOST (host routes) Shared (*) 609 * 610 * (*) A zone can only use a default or off-subnet route if the gateway is 611 * directly reachable from the zone, that is, if the gateway's address matches 612 * one of the zone's logical interfaces. 613 * 614 * (x) IRE_LOCAL are handled a bit differently. 615 * When ip_restrict_interzone_loopback is set (the default), 616 * ire_route_recursive restricts loopback using an IRE_LOCAL 617 * between zone to the case when L2 would have conceptually looped the packet 618 * back, i.e. the loopback which is required since neither Ethernet drivers 619 * nor Ethernet hardware loops them back. This is the case when the normal 620 * routes (ignoring IREs with different zoneids) would send out the packet on 621 * the same ill as the ill with which is IRE_LOCAL is associated. 622 * 623 * Multiple zones can share a common broadcast address; typically all zones 624 * share the 255.255.255.255 address. Incoming as well as locally originated 625 * broadcast packets must be dispatched to all the zones on the broadcast 626 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 627 * since some zones may not be on the 10.16.72/24 network. To handle this, each 628 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 629 * sent to every zone that has an IRE_BROADCAST entry for the destination 630 * address on the input ill, see ip_input_broadcast(). 631 * 632 * Applications in different zones can join the same multicast group address. 633 * The same logic applies for multicast as for broadcast. ip_input_multicast 634 * dispatches packets to all zones that have members on the physical interface. 635 */ 636 637 /* 638 * Squeue Fanout flags: 639 * 0: No fanout. 640 * 1: Fanout across all squeues 641 */ 642 boolean_t ip_squeue_fanout = 0; 643 644 /* 645 * Maximum dups allowed per packet. 646 */ 647 uint_t ip_max_frag_dups = 10; 648 649 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 650 cred_t *credp, boolean_t isv6); 651 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 652 653 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 654 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 655 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 656 ip_recv_attr_t *); 657 static void icmp_options_update(ipha_t *); 658 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 659 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 660 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 661 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 662 ip_recv_attr_t *); 663 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 664 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 665 ip_recv_attr_t *); 666 667 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 668 char *ip_dot_addr(ipaddr_t, char *); 669 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 670 int ip_close(queue_t *, int); 671 static char *ip_dot_saddr(uchar_t *, char *); 672 static void ip_lrput(queue_t *, mblk_t *); 673 ipaddr_t ip_net_mask(ipaddr_t); 674 char *ip_nv_lookup(nv_t *, int); 675 void ip_rput(queue_t *, mblk_t *); 676 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 677 void *dummy_arg); 678 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 680 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 681 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 682 ip_stack_t *, boolean_t); 683 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 684 boolean_t); 685 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 690 ip_stack_t *ipst, boolean_t); 691 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 692 ip_stack_t *ipst, boolean_t); 693 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 706 ip_stack_t *ipst); 707 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 708 ip_stack_t *ipst); 709 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 710 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 711 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 712 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 713 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 714 715 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 716 mblk_t *); 717 718 static void conn_drain_init(ip_stack_t *); 719 static void conn_drain_fini(ip_stack_t *); 720 static void conn_drain(conn_t *connp, boolean_t closing); 721 722 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 723 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 724 725 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 726 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 727 static void ip_stack_fini(netstackid_t stackid, void *arg); 728 729 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 730 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 731 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 732 const in6_addr_t *); 733 734 static int ip_squeue_switch(int); 735 736 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 737 static void ip_kstat_fini(netstackid_t, kstat_t *); 738 static int ip_kstat_update(kstat_t *kp, int rw); 739 static void *icmp_kstat_init(netstackid_t); 740 static void icmp_kstat_fini(netstackid_t, kstat_t *); 741 static int icmp_kstat_update(kstat_t *kp, int rw); 742 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 743 static void ip_kstat2_fini(netstackid_t, kstat_t *); 744 745 static void ipobs_init(ip_stack_t *); 746 static void ipobs_fini(ip_stack_t *); 747 748 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 749 750 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 751 752 static long ip_rput_pullups; 753 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 754 755 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 756 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 757 758 int ip_debug; 759 760 /* 761 * Multirouting/CGTP stuff 762 */ 763 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 764 765 /* 766 * IP tunables related declarations. Definitions are in ip_tunables.c 767 */ 768 extern mod_prop_info_t ip_propinfo_tbl[]; 769 extern int ip_propinfo_count; 770 771 /* 772 * Table of IP ioctls encoding the various properties of the ioctl and 773 * indexed based on the last byte of the ioctl command. Occasionally there 774 * is a clash, and there is more than 1 ioctl with the same last byte. 775 * In such a case 1 ioctl is encoded in the ndx table and the remaining 776 * ioctls are encoded in the misc table. An entry in the ndx table is 777 * retrieved by indexing on the last byte of the ioctl command and comparing 778 * the ioctl command with the value in the ndx table. In the event of a 779 * mismatch the misc table is then searched sequentially for the desired 780 * ioctl command. 781 * 782 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 783 */ 784 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 785 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 794 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 795 796 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 797 MISC_CMD, ip_siocaddrt, NULL }, 798 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 799 MISC_CMD, ip_siocdelrt, NULL }, 800 801 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 802 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 803 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 804 IF_CMD, ip_sioctl_get_addr, NULL }, 805 806 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 807 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 808 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 809 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 810 811 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 812 IPI_PRIV | IPI_WR, 813 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 814 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 815 IPI_MODOK | IPI_GET_CMD, 816 IF_CMD, ip_sioctl_get_flags, NULL }, 817 818 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 819 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 820 821 /* copyin size cannot be coded for SIOCGIFCONF */ 822 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 823 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 824 825 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 826 IF_CMD, ip_sioctl_mtu, NULL }, 827 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 828 IF_CMD, ip_sioctl_get_mtu, NULL }, 829 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 830 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 831 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 832 IF_CMD, ip_sioctl_brdaddr, NULL }, 833 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 834 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 835 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 836 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 837 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 838 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 839 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 840 IF_CMD, ip_sioctl_metric, NULL }, 841 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 842 843 /* See 166-168 below for extended SIOC*XARP ioctls */ 844 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 847 ARP_CMD, ip_sioctl_arp, NULL }, 848 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 849 ARP_CMD, ip_sioctl_arp, NULL }, 850 851 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 873 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 874 MISC_CMD, if_unitsel, if_unitsel_restart }, 875 876 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 894 895 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 896 IPI_PRIV | IPI_WR | IPI_MODOK, 897 IF_CMD, ip_sioctl_sifname, NULL }, 898 899 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 911 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 912 913 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 914 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 915 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 916 IF_CMD, ip_sioctl_get_muxid, NULL }, 917 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 918 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 919 920 /* Both if and lif variants share same func */ 921 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 922 IF_CMD, ip_sioctl_get_lifindex, NULL }, 923 /* Both if and lif variants share same func */ 924 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 925 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 926 927 /* copyin size cannot be coded for SIOCGIFCONF */ 928 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 929 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 930 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 948 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 949 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 950 ip_sioctl_removeif_restart }, 951 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 952 IPI_GET_CMD | IPI_PRIV | IPI_WR, 953 LIF_CMD, ip_sioctl_addif, NULL }, 954 #define SIOCLIFADDR_NDX 112 955 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 956 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 957 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 958 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 959 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 960 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 961 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 962 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 963 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 964 IPI_PRIV | IPI_WR, 965 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 966 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 967 IPI_GET_CMD | IPI_MODOK, 968 LIF_CMD, ip_sioctl_get_flags, NULL }, 969 970 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 973 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 974 ip_sioctl_get_lifconf, NULL }, 975 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 976 LIF_CMD, ip_sioctl_mtu, NULL }, 977 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 978 LIF_CMD, ip_sioctl_get_mtu, NULL }, 979 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 980 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 981 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 982 LIF_CMD, ip_sioctl_brdaddr, NULL }, 983 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 984 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 985 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 986 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 987 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 988 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 989 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 990 LIF_CMD, ip_sioctl_metric, NULL }, 991 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 992 IPI_PRIV | IPI_WR | IPI_MODOK, 993 LIF_CMD, ip_sioctl_slifname, 994 ip_sioctl_slifname_restart }, 995 996 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 997 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 998 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 999 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1000 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1001 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1002 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1003 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1004 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1005 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1006 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1007 LIF_CMD, ip_sioctl_token, NULL }, 1008 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1009 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1010 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1011 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1012 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1013 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1014 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1015 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1016 1017 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1018 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1019 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1020 LIF_CMD, ip_siocdelndp_v6, NULL }, 1021 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1022 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1023 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1024 LIF_CMD, ip_siocsetndp_v6, NULL }, 1025 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1026 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1027 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1028 MISC_CMD, ip_sioctl_tonlink, NULL }, 1029 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1030 MISC_CMD, ip_sioctl_tmysite, NULL }, 1031 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1034 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1035 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1036 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1037 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1038 1039 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 1041 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1042 LIF_CMD, ip_sioctl_get_binding, NULL }, 1043 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1044 IPI_PRIV | IPI_WR, 1045 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1046 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1047 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1048 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1049 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1050 1051 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1052 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 1056 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* These are handled in ip_sioctl_copyin_setup itself */ 1059 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1060 MISC_CMD, NULL, NULL }, 1061 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1062 MISC_CMD, NULL, NULL }, 1063 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1064 1065 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1066 ip_sioctl_get_lifconf, NULL }, 1067 1068 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1069 XARP_CMD, ip_sioctl_arp, NULL }, 1070 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1071 XARP_CMD, ip_sioctl_arp, NULL }, 1072 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1073 XARP_CMD, ip_sioctl_arp, NULL }, 1074 1075 /* SIOCPOPSOCKFS is not handled by IP */ 1076 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1077 1078 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1079 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1080 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1081 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1082 ip_sioctl_slifzone_restart }, 1083 /* 172-174 are SCTP ioctls and not handled by IP */ 1084 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1088 IPI_GET_CMD, LIF_CMD, 1089 ip_sioctl_get_lifusesrc, 0 }, 1090 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1091 IPI_PRIV | IPI_WR, 1092 LIF_CMD, ip_sioctl_slifusesrc, 1093 NULL }, 1094 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1095 ip_sioctl_get_lifsrcof, NULL }, 1096 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1097 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1098 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1099 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1100 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1101 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1102 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1103 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1104 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* SIOCSENABLESDP is handled by SDP */ 1106 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1107 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1108 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1109 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1110 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1111 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1112 ip_sioctl_ilb_cmd, NULL }, 1113 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1114 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1115 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1116 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1117 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1118 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1119 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1120 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1121 }; 1122 1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1124 1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1126 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1130 { ND_GET, 0, 0, 0, NULL, NULL }, 1131 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1132 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1133 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1134 MISC_CMD, mrt_ioctl}, 1135 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1136 MISC_CMD, mrt_ioctl}, 1137 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1138 MISC_CMD, mrt_ioctl} 1139 }; 1140 1141 int ip_misc_ioctl_count = 1142 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1143 1144 int conn_drain_nthreads; /* Number of drainers reqd. */ 1145 /* Settable in /etc/system */ 1146 /* Defined in ip_ire.c */ 1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1150 1151 static nv_t ire_nv_arr[] = { 1152 { IRE_BROADCAST, "BROADCAST" }, 1153 { IRE_LOCAL, "LOCAL" }, 1154 { IRE_LOOPBACK, "LOOPBACK" }, 1155 { IRE_DEFAULT, "DEFAULT" }, 1156 { IRE_PREFIX, "PREFIX" }, 1157 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1158 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1159 { IRE_IF_CLONE, "IF_CLONE" }, 1160 { IRE_HOST, "HOST" }, 1161 { IRE_MULTICAST, "MULTICAST" }, 1162 { IRE_NOROUTE, "NOROUTE" }, 1163 { 0 } 1164 }; 1165 1166 nv_t *ire_nv_tbl = ire_nv_arr; 1167 1168 /* Simple ICMP IP Header Template */ 1169 static ipha_t icmp_ipha = { 1170 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1171 }; 1172 1173 struct module_info ip_mod_info = { 1174 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1175 IP_MOD_LOWAT 1176 }; 1177 1178 /* 1179 * Duplicate static symbols within a module confuses mdb; so we avoid the 1180 * problem by making the symbols here distinct from those in udp.c. 1181 */ 1182 1183 /* 1184 * Entry points for IP as a device and as a module. 1185 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1186 */ 1187 static struct qinit iprinitv4 = { 1188 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1189 &ip_mod_info 1190 }; 1191 1192 struct qinit iprinitv6 = { 1193 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1194 &ip_mod_info 1195 }; 1196 1197 static struct qinit ipwinit = { 1198 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1199 &ip_mod_info 1200 }; 1201 1202 static struct qinit iplrinit = { 1203 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1204 &ip_mod_info 1205 }; 1206 1207 static struct qinit iplwinit = { 1208 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1209 &ip_mod_info 1210 }; 1211 1212 /* For AF_INET aka /dev/ip */ 1213 struct streamtab ipinfov4 = { 1214 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1215 }; 1216 1217 /* For AF_INET6 aka /dev/ip6 */ 1218 struct streamtab ipinfov6 = { 1219 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1220 }; 1221 1222 #ifdef DEBUG 1223 boolean_t skip_sctp_cksum = B_FALSE; 1224 #endif 1225 1226 /* 1227 * Generate an ICMP fragmentation needed message. 1228 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1229 * constructed by the caller. 1230 */ 1231 void 1232 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1233 { 1234 icmph_t icmph; 1235 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1236 1237 mp = icmp_pkt_err_ok(mp, ira); 1238 if (mp == NULL) 1239 return; 1240 1241 bzero(&icmph, sizeof (icmph_t)); 1242 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1243 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1244 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1246 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1247 1248 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1249 } 1250 1251 /* 1252 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1253 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1254 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1255 * Likewise, if the ICMP error is misformed (too short, etc), then it 1256 * returns NULL. The caller uses this to determine whether or not to send 1257 * to raw sockets. 1258 * 1259 * All error messages are passed to the matching transport stream. 1260 * 1261 * The following cases are handled by icmp_inbound: 1262 * 1) It needs to send a reply back and possibly delivering it 1263 * to the "interested" upper clients. 1264 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1265 * 3) It needs to change some values in IP only. 1266 * 4) It needs to change some values in IP and upper layers e.g TCP 1267 * by delivering an error to the upper layers. 1268 * 1269 * We handle the above three cases in the context of IPsec in the 1270 * following way : 1271 * 1272 * 1) Send the reply back in the same way as the request came in. 1273 * If it came in encrypted, it goes out encrypted. If it came in 1274 * clear, it goes out in clear. Thus, this will prevent chosen 1275 * plain text attack. 1276 * 2) The client may or may not expect things to come in secure. 1277 * If it comes in secure, the policy constraints are checked 1278 * before delivering it to the upper layers. If it comes in 1279 * clear, ipsec_inbound_accept_clear will decide whether to 1280 * accept this in clear or not. In both the cases, if the returned 1281 * message (IP header + 8 bytes) that caused the icmp message has 1282 * AH/ESP headers, it is sent up to AH/ESP for validation before 1283 * sending up. If there are only 8 bytes of returned message, then 1284 * upper client will not be notified. 1285 * 3) Check with global policy to see whether it matches the constaints. 1286 * But this will be done only if icmp_accept_messages_in_clear is 1287 * zero. 1288 * 4) If we need to change both in IP and ULP, then the decision taken 1289 * while affecting the values in IP and while delivering up to TCP 1290 * should be the same. 1291 * 1292 * There are two cases. 1293 * 1294 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1295 * failed), we will not deliver it to the ULP, even though they 1296 * are *willing* to accept in *clear*. This is fine as our global 1297 * disposition to icmp messages asks us reject the datagram. 1298 * 1299 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1300 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1301 * to deliver it to ULP (policy failed), it can lead to 1302 * consistency problems. The cases known at this time are 1303 * ICMP_DESTINATION_UNREACHABLE messages with following code 1304 * values : 1305 * 1306 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1307 * and Upper layer rejects. Then the communication will 1308 * come to a stop. This is solved by making similar decisions 1309 * at both levels. Currently, when we are unable to deliver 1310 * to the Upper Layer (due to policy failures) while IP has 1311 * adjusted dce_pmtu, the next outbound datagram would 1312 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1313 * will be with the right level of protection. Thus the right 1314 * value will be communicated even if we are not able to 1315 * communicate when we get from the wire initially. But this 1316 * assumes there would be at least one outbound datagram after 1317 * IP has adjusted its dce_pmtu value. To make things 1318 * simpler, we accept in clear after the validation of 1319 * AH/ESP headers. 1320 * 1321 * - Other ICMP ERRORS : We may not be able to deliver it to the 1322 * upper layer depending on the level of protection the upper 1323 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1324 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1325 * should be accepted in clear when the Upper layer expects secure. 1326 * Thus the communication may get aborted by some bad ICMP 1327 * packets. 1328 */ 1329 mblk_t * 1330 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1331 { 1332 icmph_t *icmph; 1333 ipha_t *ipha; /* Outer header */ 1334 int ip_hdr_length; /* Outer header length */ 1335 boolean_t interested; 1336 ipif_t *ipif; 1337 uint32_t ts; 1338 uint32_t *tsp; 1339 timestruc_t now; 1340 ill_t *ill = ira->ira_ill; 1341 ip_stack_t *ipst = ill->ill_ipst; 1342 zoneid_t zoneid = ira->ira_zoneid; 1343 int len_needed; 1344 mblk_t *mp_ret = NULL; 1345 1346 ipha = (ipha_t *)mp->b_rptr; 1347 1348 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1349 1350 ip_hdr_length = ira->ira_ip_hdr_length; 1351 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1352 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1354 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1355 freemsg(mp); 1356 return (NULL); 1357 } 1358 /* Last chance to get real. */ 1359 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1360 if (ipha == NULL) { 1361 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1362 freemsg(mp); 1363 return (NULL); 1364 } 1365 } 1366 1367 /* The IP header will always be a multiple of four bytes */ 1368 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1369 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1370 icmph->icmph_code)); 1371 1372 /* 1373 * We will set "interested" to "true" if we should pass a copy to 1374 * the transport or if we handle the packet locally. 1375 */ 1376 interested = B_FALSE; 1377 switch (icmph->icmph_type) { 1378 case ICMP_ECHO_REPLY: 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1380 break; 1381 case ICMP_DEST_UNREACHABLE: 1382 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1383 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1384 interested = B_TRUE; /* Pass up to transport */ 1385 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1386 break; 1387 case ICMP_SOURCE_QUENCH: 1388 interested = B_TRUE; /* Pass up to transport */ 1389 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1390 break; 1391 case ICMP_REDIRECT: 1392 if (!ipst->ips_ip_ignore_redirect) 1393 interested = B_TRUE; 1394 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1395 break; 1396 case ICMP_ECHO_REQUEST: 1397 /* 1398 * Whether to respond to echo requests that come in as IP 1399 * broadcasts or as IP multicast is subject to debate 1400 * (what isn't?). We aim to please, you pick it. 1401 * Default is do it. 1402 */ 1403 if (ira->ira_flags & IRAF_MULTICAST) { 1404 /* multicast: respond based on tunable */ 1405 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1406 } else if (ira->ira_flags & IRAF_BROADCAST) { 1407 /* broadcast: respond based on tunable */ 1408 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1409 } else { 1410 /* unicast: always respond */ 1411 interested = B_TRUE; 1412 } 1413 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1414 if (!interested) { 1415 /* We never pass these to RAW sockets */ 1416 freemsg(mp); 1417 return (NULL); 1418 } 1419 1420 /* Check db_ref to make sure we can modify the packet. */ 1421 if (mp->b_datap->db_ref > 1) { 1422 mblk_t *mp1; 1423 1424 mp1 = copymsg(mp); 1425 freemsg(mp); 1426 if (!mp1) { 1427 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1428 return (NULL); 1429 } 1430 mp = mp1; 1431 ipha = (ipha_t *)mp->b_rptr; 1432 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1433 } 1434 icmph->icmph_type = ICMP_ECHO_REPLY; 1435 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1436 icmp_send_reply_v4(mp, ipha, icmph, ira); 1437 return (NULL); 1438 1439 case ICMP_ROUTER_ADVERTISEMENT: 1440 case ICMP_ROUTER_SOLICITATION: 1441 break; 1442 case ICMP_TIME_EXCEEDED: 1443 interested = B_TRUE; /* Pass up to transport */ 1444 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1445 break; 1446 case ICMP_PARAM_PROBLEM: 1447 interested = B_TRUE; /* Pass up to transport */ 1448 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1449 break; 1450 case ICMP_TIME_STAMP_REQUEST: 1451 /* Response to Time Stamp Requests is local policy. */ 1452 if (ipst->ips_ip_g_resp_to_timestamp) { 1453 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1454 interested = 1455 ipst->ips_ip_g_resp_to_timestamp_bcast; 1456 else 1457 interested = B_TRUE; 1458 } 1459 if (!interested) { 1460 /* We never pass these to RAW sockets */ 1461 freemsg(mp); 1462 return (NULL); 1463 } 1464 1465 /* Make sure we have enough of the packet */ 1466 len_needed = ip_hdr_length + ICMPH_SIZE + 1467 3 * sizeof (uint32_t); 1468 1469 if (mp->b_wptr - mp->b_rptr < len_needed) { 1470 ipha = ip_pullup(mp, len_needed, ira); 1471 if (ipha == NULL) { 1472 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1473 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1474 mp, ill); 1475 freemsg(mp); 1476 return (NULL); 1477 } 1478 /* Refresh following the pullup. */ 1479 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1480 } 1481 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1482 /* Check db_ref to make sure we can modify the packet. */ 1483 if (mp->b_datap->db_ref > 1) { 1484 mblk_t *mp1; 1485 1486 mp1 = copymsg(mp); 1487 freemsg(mp); 1488 if (!mp1) { 1489 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1490 return (NULL); 1491 } 1492 mp = mp1; 1493 ipha = (ipha_t *)mp->b_rptr; 1494 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1495 } 1496 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1497 tsp = (uint32_t *)&icmph[1]; 1498 tsp++; /* Skip past 'originate time' */ 1499 /* Compute # of milliseconds since midnight */ 1500 gethrestime(&now); 1501 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1502 now.tv_nsec / (NANOSEC / MILLISEC); 1503 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1504 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1505 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1506 icmp_send_reply_v4(mp, ipha, icmph, ira); 1507 return (NULL); 1508 1509 case ICMP_TIME_STAMP_REPLY: 1510 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1511 break; 1512 case ICMP_INFO_REQUEST: 1513 /* Per RFC 1122 3.2.2.7, ignore this. */ 1514 case ICMP_INFO_REPLY: 1515 break; 1516 case ICMP_ADDRESS_MASK_REQUEST: 1517 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1518 interested = 1519 ipst->ips_ip_respond_to_address_mask_broadcast; 1520 } else { 1521 interested = B_TRUE; 1522 } 1523 if (!interested) { 1524 /* We never pass these to RAW sockets */ 1525 freemsg(mp); 1526 return (NULL); 1527 } 1528 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1529 if (mp->b_wptr - mp->b_rptr < len_needed) { 1530 ipha = ip_pullup(mp, len_needed, ira); 1531 if (ipha == NULL) { 1532 BUMP_MIB(ill->ill_ip_mib, 1533 ipIfStatsInTruncatedPkts); 1534 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1535 ill); 1536 freemsg(mp); 1537 return (NULL); 1538 } 1539 /* Refresh following the pullup. */ 1540 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1541 } 1542 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1543 /* Check db_ref to make sure we can modify the packet. */ 1544 if (mp->b_datap->db_ref > 1) { 1545 mblk_t *mp1; 1546 1547 mp1 = copymsg(mp); 1548 freemsg(mp); 1549 if (!mp1) { 1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1551 return (NULL); 1552 } 1553 mp = mp1; 1554 ipha = (ipha_t *)mp->b_rptr; 1555 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1556 } 1557 /* 1558 * Need the ipif with the mask be the same as the source 1559 * address of the mask reply. For unicast we have a specific 1560 * ipif. For multicast/broadcast we only handle onlink 1561 * senders, and use the source address to pick an ipif. 1562 */ 1563 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1564 if (ipif == NULL) { 1565 /* Broadcast or multicast */ 1566 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1567 if (ipif == NULL) { 1568 freemsg(mp); 1569 return (NULL); 1570 } 1571 } 1572 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1573 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1574 ipif_refrele(ipif); 1575 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1576 icmp_send_reply_v4(mp, ipha, icmph, ira); 1577 return (NULL); 1578 1579 case ICMP_ADDRESS_MASK_REPLY: 1580 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1581 break; 1582 default: 1583 interested = B_TRUE; /* Pass up to transport */ 1584 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1585 break; 1586 } 1587 /* 1588 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1589 * if there isn't one. 1590 */ 1591 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1592 /* If there is an ICMP client and we want one too, copy it. */ 1593 1594 if (!interested) { 1595 /* Caller will deliver to RAW sockets */ 1596 return (mp); 1597 } 1598 mp_ret = copymsg(mp); 1599 if (mp_ret == NULL) { 1600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1601 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1602 } 1603 } else if (!interested) { 1604 /* Neither we nor raw sockets are interested. Drop packet now */ 1605 freemsg(mp); 1606 return (NULL); 1607 } 1608 1609 /* 1610 * ICMP error or redirect packet. Make sure we have enough of 1611 * the header and that db_ref == 1 since we might end up modifying 1612 * the packet. 1613 */ 1614 if (mp->b_cont != NULL) { 1615 if (ip_pullup(mp, -1, ira) == NULL) { 1616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1617 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1618 mp, ill); 1619 freemsg(mp); 1620 return (mp_ret); 1621 } 1622 } 1623 1624 if (mp->b_datap->db_ref > 1) { 1625 mblk_t *mp1; 1626 1627 mp1 = copymsg(mp); 1628 if (mp1 == NULL) { 1629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1630 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1631 freemsg(mp); 1632 return (mp_ret); 1633 } 1634 freemsg(mp); 1635 mp = mp1; 1636 } 1637 1638 /* 1639 * In case mp has changed, verify the message before any further 1640 * processes. 1641 */ 1642 ipha = (ipha_t *)mp->b_rptr; 1643 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1644 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1645 freemsg(mp); 1646 return (mp_ret); 1647 } 1648 1649 switch (icmph->icmph_type) { 1650 case ICMP_REDIRECT: 1651 icmp_redirect_v4(mp, ipha, icmph, ira); 1652 break; 1653 case ICMP_DEST_UNREACHABLE: 1654 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1655 /* Update DCE and adjust MTU is icmp header if needed */ 1656 icmp_inbound_too_big_v4(icmph, ira); 1657 } 1658 /* FALLTHRU */ 1659 default: 1660 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1661 break; 1662 } 1663 return (mp_ret); 1664 } 1665 1666 /* 1667 * Send an ICMP echo, timestamp or address mask reply. 1668 * The caller has already updated the payload part of the packet. 1669 * We handle the ICMP checksum, IP source address selection and feed 1670 * the packet into ip_output_simple. 1671 */ 1672 static void 1673 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1674 ip_recv_attr_t *ira) 1675 { 1676 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1677 ill_t *ill = ira->ira_ill; 1678 ip_stack_t *ipst = ill->ill_ipst; 1679 ip_xmit_attr_t ixas; 1680 1681 /* Send out an ICMP packet */ 1682 icmph->icmph_checksum = 0; 1683 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1684 /* Reset time to live. */ 1685 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1686 { 1687 /* Swap source and destination addresses */ 1688 ipaddr_t tmp; 1689 1690 tmp = ipha->ipha_src; 1691 ipha->ipha_src = ipha->ipha_dst; 1692 ipha->ipha_dst = tmp; 1693 } 1694 ipha->ipha_ident = 0; 1695 if (!IS_SIMPLE_IPH(ipha)) 1696 icmp_options_update(ipha); 1697 1698 bzero(&ixas, sizeof (ixas)); 1699 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1700 ixas.ixa_zoneid = ira->ira_zoneid; 1701 ixas.ixa_cred = kcred; 1702 ixas.ixa_cpid = NOPID; 1703 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1704 ixas.ixa_ifindex = 0; 1705 ixas.ixa_ipst = ipst; 1706 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1707 1708 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1709 /* 1710 * This packet should go out the same way as it 1711 * came in i.e in clear, independent of the IPsec policy 1712 * for transmitting packets. 1713 */ 1714 ixas.ixa_flags |= IXAF_NO_IPSEC; 1715 } else { 1716 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1718 /* Note: mp already consumed and ip_drop_packet done */ 1719 return; 1720 } 1721 } 1722 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1723 /* 1724 * Not one or our addresses (IRE_LOCALs), thus we let 1725 * ip_output_simple pick the source. 1726 */ 1727 ipha->ipha_src = INADDR_ANY; 1728 ixas.ixa_flags |= IXAF_SET_SOURCE; 1729 } 1730 /* Should we send with DF and use dce_pmtu? */ 1731 if (ipst->ips_ipv4_icmp_return_pmtu) { 1732 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1733 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1734 } 1735 1736 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1737 1738 (void) ip_output_simple(mp, &ixas); 1739 ixa_cleanup(&ixas); 1740 } 1741 1742 /* 1743 * Verify the ICMP messages for either for ICMP error or redirect packet. 1744 * The caller should have fully pulled up the message. If it's a redirect 1745 * packet, only basic checks on IP header will be done; otherwise, verify 1746 * the packet by looking at the included ULP header. 1747 * 1748 * Called before icmp_inbound_error_fanout_v4 is called. 1749 */ 1750 static boolean_t 1751 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1752 { 1753 ill_t *ill = ira->ira_ill; 1754 int hdr_length; 1755 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1756 conn_t *connp; 1757 ipha_t *ipha; /* Inner IP header */ 1758 1759 ipha = (ipha_t *)&icmph[1]; 1760 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1761 goto truncated; 1762 1763 hdr_length = IPH_HDR_LENGTH(ipha); 1764 1765 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1766 goto discard_pkt; 1767 1768 if (hdr_length < sizeof (ipha_t)) 1769 goto truncated; 1770 1771 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1772 goto truncated; 1773 1774 /* 1775 * Stop here for ICMP_REDIRECT. 1776 */ 1777 if (icmph->icmph_type == ICMP_REDIRECT) 1778 return (B_TRUE); 1779 1780 /* 1781 * ICMP errors only. 1782 */ 1783 switch (ipha->ipha_protocol) { 1784 case IPPROTO_UDP: 1785 /* 1786 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1787 * transport header. 1788 */ 1789 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1790 mp->b_wptr) 1791 goto truncated; 1792 break; 1793 case IPPROTO_TCP: { 1794 tcpha_t *tcpha; 1795 1796 /* 1797 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1798 * transport header. 1799 */ 1800 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1801 mp->b_wptr) 1802 goto truncated; 1803 1804 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1805 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1806 ipst); 1807 if (connp == NULL) 1808 goto discard_pkt; 1809 1810 if ((connp->conn_verifyicmp != NULL) && 1811 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1812 CONN_DEC_REF(connp); 1813 goto discard_pkt; 1814 } 1815 CONN_DEC_REF(connp); 1816 break; 1817 } 1818 case IPPROTO_SCTP: 1819 /* 1820 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1821 * transport header. 1822 */ 1823 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1824 mp->b_wptr) 1825 goto truncated; 1826 break; 1827 case IPPROTO_DCCP: { 1828 dccpha_t *dccpha; 1829 1830 /* 1831 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1832 * transport header. 1833 */ 1834 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1835 mp->b_wptr) 1836 goto truncated; 1837 1838 cmn_err(CE_NOTE, "icmp_inbound_verify_v4"); 1839 1840 dccpha = (dccpha_t *)((uchar_t *)ipha + hdr_length); 1841 /* XXX:DCCP */ 1842 /* 1843 connp = ipcl_dccp_lookup_reversed_ipv4(ipha, dccpha, 1844 DCCPS_LISTEN, ipst); 1845 if (connp == NULL) { 1846 goto discard_pkt; 1847 } 1848 1849 if ((connp->conn_verifyicmp != NULL) && 1850 !connp->conn_verifyicmp(connp, dccpha, icmph, NULL, ira)) { 1851 CONN_DEC_REF(connp); 1852 goto discard_pkt; 1853 } 1854 1855 CONN_DEC_REF(connp); 1856 */ 1857 break; 1858 } 1859 case IPPROTO_ESP: 1860 case IPPROTO_AH: 1861 break; 1862 case IPPROTO_ENCAP: 1863 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1864 mp->b_wptr) 1865 goto truncated; 1866 break; 1867 default: 1868 break; 1869 } 1870 1871 return (B_TRUE); 1872 1873 discard_pkt: 1874 /* Bogus ICMP error. */ 1875 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1876 return (B_FALSE); 1877 1878 truncated: 1879 /* We pulled up everthing already. Must be truncated */ 1880 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1881 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1882 return (B_FALSE); 1883 } 1884 1885 /* Table from RFC 1191 */ 1886 static int icmp_frag_size_table[] = 1887 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1888 1889 /* 1890 * Process received ICMP Packet too big. 1891 * Just handles the DCE create/update, including using the above table of 1892 * PMTU guesses. The caller is responsible for validating the packet before 1893 * passing it in and also to fanout the ICMP error to any matching transport 1894 * conns. Assumes the message has been fully pulled up and verified. 1895 * 1896 * Before getting here, the caller has called icmp_inbound_verify_v4() 1897 * that should have verified with ULP to prevent undoing the changes we're 1898 * going to make to DCE. For example, TCP might have verified that the packet 1899 * which generated error is in the send window. 1900 * 1901 * In some cases modified this MTU in the ICMP header packet; the caller 1902 * should pass to the matching ULP after this returns. 1903 */ 1904 static void 1905 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1906 { 1907 dce_t *dce; 1908 int old_mtu; 1909 int mtu, orig_mtu; 1910 ipaddr_t dst; 1911 boolean_t disable_pmtud; 1912 ill_t *ill = ira->ira_ill; 1913 ip_stack_t *ipst = ill->ill_ipst; 1914 uint_t hdr_length; 1915 ipha_t *ipha; 1916 1917 /* Caller already pulled up everything. */ 1918 ipha = (ipha_t *)&icmph[1]; 1919 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1920 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1921 ASSERT(ill != NULL); 1922 1923 hdr_length = IPH_HDR_LENGTH(ipha); 1924 1925 /* 1926 * We handle path MTU for source routed packets since the DCE 1927 * is looked up using the final destination. 1928 */ 1929 dst = ip_get_dst(ipha); 1930 1931 dce = dce_lookup_and_add_v4(dst, ipst); 1932 if (dce == NULL) { 1933 /* Couldn't add a unique one - ENOMEM */ 1934 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1935 ntohl(dst))); 1936 return; 1937 } 1938 1939 /* Check for MTU discovery advice as described in RFC 1191 */ 1940 mtu = ntohs(icmph->icmph_du_mtu); 1941 orig_mtu = mtu; 1942 disable_pmtud = B_FALSE; 1943 1944 mutex_enter(&dce->dce_lock); 1945 if (dce->dce_flags & DCEF_PMTU) 1946 old_mtu = dce->dce_pmtu; 1947 else 1948 old_mtu = ill->ill_mtu; 1949 1950 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1951 uint32_t length; 1952 int i; 1953 1954 /* 1955 * Use the table from RFC 1191 to figure out 1956 * the next "plateau" based on the length in 1957 * the original IP packet. 1958 */ 1959 length = ntohs(ipha->ipha_length); 1960 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1961 uint32_t, length); 1962 if (old_mtu <= length && 1963 old_mtu >= length - hdr_length) { 1964 /* 1965 * Handle broken BSD 4.2 systems that 1966 * return the wrong ipha_length in ICMP 1967 * errors. 1968 */ 1969 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1970 length, old_mtu)); 1971 length -= hdr_length; 1972 } 1973 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1974 if (length > icmp_frag_size_table[i]) 1975 break; 1976 } 1977 if (i == A_CNT(icmp_frag_size_table)) { 1978 /* Smaller than IP_MIN_MTU! */ 1979 ip1dbg(("Too big for packet size %d\n", 1980 length)); 1981 disable_pmtud = B_TRUE; 1982 mtu = ipst->ips_ip_pmtu_min; 1983 } else { 1984 mtu = icmp_frag_size_table[i]; 1985 ip1dbg(("Calculated mtu %d, packet size %d, " 1986 "before %d\n", mtu, length, old_mtu)); 1987 if (mtu < ipst->ips_ip_pmtu_min) { 1988 mtu = ipst->ips_ip_pmtu_min; 1989 disable_pmtud = B_TRUE; 1990 } 1991 } 1992 } 1993 if (disable_pmtud) 1994 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1995 else 1996 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1997 1998 dce->dce_pmtu = MIN(old_mtu, mtu); 1999 /* Prepare to send the new max frag size for the ULP. */ 2000 icmph->icmph_du_zero = 0; 2001 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 2002 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 2003 dce, int, orig_mtu, int, mtu); 2004 2005 /* We now have a PMTU for sure */ 2006 dce->dce_flags |= DCEF_PMTU; 2007 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 2008 mutex_exit(&dce->dce_lock); 2009 /* 2010 * After dropping the lock the new value is visible to everyone. 2011 * Then we bump the generation number so any cached values reinspect 2012 * the dce_t. 2013 */ 2014 dce_increment_generation(dce); 2015 dce_refrele(dce); 2016 } 2017 2018 /* 2019 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 2020 * calls this function. 2021 */ 2022 static mblk_t * 2023 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 2024 { 2025 int length; 2026 2027 ASSERT(mp->b_datap->db_type == M_DATA); 2028 2029 /* icmp_inbound_v4 has already pulled up the whole error packet */ 2030 ASSERT(mp->b_cont == NULL); 2031 2032 /* 2033 * The length that we want to overlay is the inner header 2034 * and what follows it. 2035 */ 2036 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2037 2038 /* 2039 * Overlay the inner header and whatever follows it over the 2040 * outer header. 2041 */ 2042 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2043 2044 /* Adjust for what we removed */ 2045 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2046 return (mp); 2047 } 2048 2049 /* 2050 * Try to pass the ICMP message upstream in case the ULP cares. 2051 * 2052 * If the packet that caused the ICMP error is secure, we send 2053 * it to AH/ESP to make sure that the attached packet has a 2054 * valid association. ipha in the code below points to the 2055 * IP header of the packet that caused the error. 2056 * 2057 * For IPsec cases, we let the next-layer-up (which has access to 2058 * cached policy on the conn_t, or can query the SPD directly) 2059 * subtract out any IPsec overhead if they must. We therefore make no 2060 * adjustments here for IPsec overhead. 2061 * 2062 * IFN could have been generated locally or by some router. 2063 * 2064 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2065 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2066 * This happens because IP adjusted its value of MTU on an 2067 * earlier IFN message and could not tell the upper layer, 2068 * the new adjusted value of MTU e.g. Packet was encrypted 2069 * or there was not enough information to fanout to upper 2070 * layers. Thus on the next outbound datagram, ire_send_wire 2071 * generates the IFN, where IPsec processing has *not* been 2072 * done. 2073 * 2074 * Note that we retain ixa_fragsize across IPsec thus once 2075 * we have picking ixa_fragsize and entered ipsec_out_process we do 2076 * no change the fragsize even if the path MTU changes before 2077 * we reach ip_output_post_ipsec. 2078 * 2079 * In the local case, IRAF_LOOPBACK will be set indicating 2080 * that IFN was generated locally. 2081 * 2082 * ROUTER : IFN could be secure or non-secure. 2083 * 2084 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2085 * packet in error has AH/ESP headers to validate the AH/ESP 2086 * headers. AH/ESP will verify whether there is a valid SA or 2087 * not and send it back. We will fanout again if we have more 2088 * data in the packet. 2089 * 2090 * If the packet in error does not have AH/ESP, we handle it 2091 * like any other case. 2092 * 2093 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2094 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2095 * valid SA or not and send it back. We will fanout again if 2096 * we have more data in the packet. 2097 * 2098 * If the packet in error does not have AH/ESP, we handle it 2099 * like any other case. 2100 * 2101 * The caller must have called icmp_inbound_verify_v4. 2102 */ 2103 static void 2104 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2105 { 2106 uint16_t *up; /* Pointer to ports in ULP header */ 2107 uint32_t ports; /* reversed ports for fanout */ 2108 ipha_t ripha; /* With reversed addresses */ 2109 ipha_t *ipha; /* Inner IP header */ 2110 uint_t hdr_length; /* Inner IP header length */ 2111 tcpha_t *tcpha; 2112 conn_t *connp; 2113 ill_t *ill = ira->ira_ill; 2114 ip_stack_t *ipst = ill->ill_ipst; 2115 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2116 ill_t *rill = ira->ira_rill; 2117 2118 /* Caller already pulled up everything. */ 2119 ipha = (ipha_t *)&icmph[1]; 2120 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2121 ASSERT(mp->b_cont == NULL); 2122 2123 hdr_length = IPH_HDR_LENGTH(ipha); 2124 ira->ira_protocol = ipha->ipha_protocol; 2125 2126 /* 2127 * We need a separate IP header with the source and destination 2128 * addresses reversed to do fanout/classification because the ipha in 2129 * the ICMP error is in the form we sent it out. 2130 */ 2131 ripha.ipha_src = ipha->ipha_dst; 2132 ripha.ipha_dst = ipha->ipha_src; 2133 ripha.ipha_protocol = ipha->ipha_protocol; 2134 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2135 2136 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2137 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2138 ntohl(ipha->ipha_dst), 2139 icmph->icmph_type, icmph->icmph_code)); 2140 2141 switch (ipha->ipha_protocol) { 2142 case IPPROTO_UDP: 2143 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2144 2145 /* Attempt to find a client stream based on port. */ 2146 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2147 ntohs(up[0]), ntohs(up[1]))); 2148 2149 /* Note that we send error to all matches. */ 2150 ira->ira_flags |= IRAF_ICMP_ERROR; 2151 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2152 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2153 return; 2154 2155 case IPPROTO_TCP: 2156 /* 2157 * Find a TCP client stream for this packet. 2158 * Note that we do a reverse lookup since the header is 2159 * in the form we sent it out. 2160 */ 2161 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2162 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2163 ipst); 2164 if (connp == NULL) 2165 goto discard_pkt; 2166 2167 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2168 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2169 mp = ipsec_check_inbound_policy(mp, connp, 2170 ipha, NULL, ira); 2171 if (mp == NULL) { 2172 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2173 /* Note that mp is NULL */ 2174 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2175 CONN_DEC_REF(connp); 2176 return; 2177 } 2178 } 2179 2180 ira->ira_flags |= IRAF_ICMP_ERROR; 2181 ira->ira_ill = ira->ira_rill = NULL; 2182 if (IPCL_IS_TCP(connp)) { 2183 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2184 connp->conn_recvicmp, connp, ira, SQ_FILL, 2185 SQTAG_TCP_INPUT_ICMP_ERR); 2186 } else { 2187 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2188 (connp->conn_recv)(connp, mp, NULL, ira); 2189 CONN_DEC_REF(connp); 2190 } 2191 ira->ira_ill = ill; 2192 ira->ira_rill = rill; 2193 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2194 return; 2195 2196 case IPPROTO_SCTP: 2197 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2198 /* Find a SCTP client stream for this packet. */ 2199 ((uint16_t *)&ports)[0] = up[1]; 2200 ((uint16_t *)&ports)[1] = up[0]; 2201 2202 ira->ira_flags |= IRAF_ICMP_ERROR; 2203 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2204 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2205 return; 2206 2207 case IPPROTO_DCCP: 2208 cmn_err(CE_NOTE, "icmp_inbound_error_fanout_v4"); 2209 return; 2210 2211 case IPPROTO_ESP: 2212 case IPPROTO_AH: 2213 if (!ipsec_loaded(ipss)) { 2214 ip_proto_not_sup(mp, ira); 2215 return; 2216 } 2217 2218 if (ipha->ipha_protocol == IPPROTO_ESP) 2219 mp = ipsecesp_icmp_error(mp, ira); 2220 else 2221 mp = ipsecah_icmp_error(mp, ira); 2222 if (mp == NULL) 2223 return; 2224 2225 /* Just in case ipsec didn't preserve the NULL b_cont */ 2226 if (mp->b_cont != NULL) { 2227 if (!pullupmsg(mp, -1)) 2228 goto discard_pkt; 2229 } 2230 2231 /* 2232 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2233 * correct, but we don't use them any more here. 2234 * 2235 * If succesful, the mp has been modified to not include 2236 * the ESP/AH header so we can fanout to the ULP's icmp 2237 * error handler. 2238 */ 2239 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2240 goto truncated; 2241 2242 /* Verify the modified message before any further processes. */ 2243 ipha = (ipha_t *)mp->b_rptr; 2244 hdr_length = IPH_HDR_LENGTH(ipha); 2245 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2246 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2247 freemsg(mp); 2248 return; 2249 } 2250 2251 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2252 return; 2253 2254 case IPPROTO_ENCAP: { 2255 /* Look for self-encapsulated packets that caused an error */ 2256 ipha_t *in_ipha; 2257 2258 /* 2259 * Caller has verified that length has to be 2260 * at least the size of IP header. 2261 */ 2262 ASSERT(hdr_length >= sizeof (ipha_t)); 2263 /* 2264 * Check the sanity of the inner IP header like 2265 * we did for the outer header. 2266 */ 2267 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2268 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2269 goto discard_pkt; 2270 } 2271 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2272 goto discard_pkt; 2273 } 2274 /* Check for Self-encapsulated tunnels */ 2275 if (in_ipha->ipha_src == ipha->ipha_src && 2276 in_ipha->ipha_dst == ipha->ipha_dst) { 2277 2278 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2279 in_ipha); 2280 if (mp == NULL) 2281 goto discard_pkt; 2282 2283 /* 2284 * Just in case self_encap didn't preserve the NULL 2285 * b_cont 2286 */ 2287 if (mp->b_cont != NULL) { 2288 if (!pullupmsg(mp, -1)) 2289 goto discard_pkt; 2290 } 2291 /* 2292 * Note that ira_pktlen and ira_ip_hdr_length are no 2293 * longer correct, but we don't use them any more here. 2294 */ 2295 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2296 goto truncated; 2297 2298 /* 2299 * Verify the modified message before any further 2300 * processes. 2301 */ 2302 ipha = (ipha_t *)mp->b_rptr; 2303 hdr_length = IPH_HDR_LENGTH(ipha); 2304 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2305 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2306 freemsg(mp); 2307 return; 2308 } 2309 2310 /* 2311 * The packet in error is self-encapsualted. 2312 * And we are finding it further encapsulated 2313 * which we could not have possibly generated. 2314 */ 2315 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2316 goto discard_pkt; 2317 } 2318 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2319 return; 2320 } 2321 /* No self-encapsulated */ 2322 /* FALLTHRU */ 2323 } 2324 case IPPROTO_IPV6: 2325 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2326 &ripha.ipha_dst, ipst)) != NULL) { 2327 ira->ira_flags |= IRAF_ICMP_ERROR; 2328 connp->conn_recvicmp(connp, mp, NULL, ira); 2329 CONN_DEC_REF(connp); 2330 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2331 return; 2332 } 2333 /* 2334 * No IP tunnel is interested, fallthrough and see 2335 * if a raw socket will want it. 2336 */ 2337 /* FALLTHRU */ 2338 default: 2339 ira->ira_flags |= IRAF_ICMP_ERROR; 2340 ip_fanout_proto_v4(mp, &ripha, ira); 2341 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2342 return; 2343 } 2344 /* NOTREACHED */ 2345 discard_pkt: 2346 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2347 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2348 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2349 freemsg(mp); 2350 return; 2351 2352 truncated: 2353 /* We pulled up everthing already. Must be truncated */ 2354 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2355 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2356 freemsg(mp); 2357 } 2358 2359 /* 2360 * Common IP options parser. 2361 * 2362 * Setup routine: fill in *optp with options-parsing state, then 2363 * tail-call ipoptp_next to return the first option. 2364 */ 2365 uint8_t 2366 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2367 { 2368 uint32_t totallen; /* total length of all options */ 2369 2370 totallen = ipha->ipha_version_and_hdr_length - 2371 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2372 totallen <<= 2; 2373 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2374 optp->ipoptp_end = optp->ipoptp_next + totallen; 2375 optp->ipoptp_flags = 0; 2376 return (ipoptp_next(optp)); 2377 } 2378 2379 /* Like above but without an ipha_t */ 2380 uint8_t 2381 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2382 { 2383 optp->ipoptp_next = opt; 2384 optp->ipoptp_end = optp->ipoptp_next + totallen; 2385 optp->ipoptp_flags = 0; 2386 return (ipoptp_next(optp)); 2387 } 2388 2389 /* 2390 * Common IP options parser: extract next option. 2391 */ 2392 uint8_t 2393 ipoptp_next(ipoptp_t *optp) 2394 { 2395 uint8_t *end = optp->ipoptp_end; 2396 uint8_t *cur = optp->ipoptp_next; 2397 uint8_t opt, len, pointer; 2398 2399 /* 2400 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2401 * has been corrupted. 2402 */ 2403 ASSERT(cur <= end); 2404 2405 if (cur == end) 2406 return (IPOPT_EOL); 2407 2408 opt = cur[IPOPT_OPTVAL]; 2409 2410 /* 2411 * Skip any NOP options. 2412 */ 2413 while (opt == IPOPT_NOP) { 2414 cur++; 2415 if (cur == end) 2416 return (IPOPT_EOL); 2417 opt = cur[IPOPT_OPTVAL]; 2418 } 2419 2420 if (opt == IPOPT_EOL) 2421 return (IPOPT_EOL); 2422 2423 /* 2424 * Option requiring a length. 2425 */ 2426 if ((cur + 1) >= end) { 2427 optp->ipoptp_flags |= IPOPTP_ERROR; 2428 return (IPOPT_EOL); 2429 } 2430 len = cur[IPOPT_OLEN]; 2431 if (len < 2) { 2432 optp->ipoptp_flags |= IPOPTP_ERROR; 2433 return (IPOPT_EOL); 2434 } 2435 optp->ipoptp_cur = cur; 2436 optp->ipoptp_len = len; 2437 optp->ipoptp_next = cur + len; 2438 if (cur + len > end) { 2439 optp->ipoptp_flags |= IPOPTP_ERROR; 2440 return (IPOPT_EOL); 2441 } 2442 2443 /* 2444 * For the options which require a pointer field, make sure 2445 * its there, and make sure it points to either something 2446 * inside this option, or the end of the option. 2447 */ 2448 switch (opt) { 2449 case IPOPT_RR: 2450 case IPOPT_TS: 2451 case IPOPT_LSRR: 2452 case IPOPT_SSRR: 2453 if (len <= IPOPT_OFFSET) { 2454 optp->ipoptp_flags |= IPOPTP_ERROR; 2455 return (opt); 2456 } 2457 pointer = cur[IPOPT_OFFSET]; 2458 if (pointer - 1 > len) { 2459 optp->ipoptp_flags |= IPOPTP_ERROR; 2460 return (opt); 2461 } 2462 break; 2463 } 2464 2465 /* 2466 * Sanity check the pointer field based on the type of the 2467 * option. 2468 */ 2469 switch (opt) { 2470 case IPOPT_RR: 2471 case IPOPT_SSRR: 2472 case IPOPT_LSRR: 2473 if (pointer < IPOPT_MINOFF_SR) 2474 optp->ipoptp_flags |= IPOPTP_ERROR; 2475 break; 2476 case IPOPT_TS: 2477 if (pointer < IPOPT_MINOFF_IT) 2478 optp->ipoptp_flags |= IPOPTP_ERROR; 2479 /* 2480 * Note that the Internet Timestamp option also 2481 * contains two four bit fields (the Overflow field, 2482 * and the Flag field), which follow the pointer 2483 * field. We don't need to check that these fields 2484 * fall within the length of the option because this 2485 * was implicitely done above. We've checked that the 2486 * pointer value is at least IPOPT_MINOFF_IT, and that 2487 * it falls within the option. Since IPOPT_MINOFF_IT > 2488 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2489 */ 2490 ASSERT(len > IPOPT_POS_OV_FLG); 2491 break; 2492 } 2493 2494 return (opt); 2495 } 2496 2497 /* 2498 * Use the outgoing IP header to create an IP_OPTIONS option the way 2499 * it was passed down from the application. 2500 * 2501 * This is compatible with BSD in that it returns 2502 * the reverse source route with the final destination 2503 * as the last entry. The first 4 bytes of the option 2504 * will contain the final destination. 2505 */ 2506 int 2507 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2508 { 2509 ipoptp_t opts; 2510 uchar_t *opt; 2511 uint8_t optval; 2512 uint8_t optlen; 2513 uint32_t len = 0; 2514 uchar_t *buf1 = buf; 2515 uint32_t totallen; 2516 ipaddr_t dst; 2517 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2518 2519 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2520 return (0); 2521 2522 totallen = ipp->ipp_ipv4_options_len; 2523 if (totallen & 0x3) 2524 return (0); 2525 2526 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2527 len += IP_ADDR_LEN; 2528 bzero(buf1, IP_ADDR_LEN); 2529 2530 dst = connp->conn_faddr_v4; 2531 2532 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2533 optval != IPOPT_EOL; 2534 optval = ipoptp_next(&opts)) { 2535 int off; 2536 2537 opt = opts.ipoptp_cur; 2538 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2539 break; 2540 } 2541 optlen = opts.ipoptp_len; 2542 2543 switch (optval) { 2544 case IPOPT_SSRR: 2545 case IPOPT_LSRR: 2546 2547 /* 2548 * Insert destination as the first entry in the source 2549 * route and move down the entries on step. 2550 * The last entry gets placed at buf1. 2551 */ 2552 buf[IPOPT_OPTVAL] = optval; 2553 buf[IPOPT_OLEN] = optlen; 2554 buf[IPOPT_OFFSET] = optlen; 2555 2556 off = optlen - IP_ADDR_LEN; 2557 if (off < 0) { 2558 /* No entries in source route */ 2559 break; 2560 } 2561 /* Last entry in source route if not already set */ 2562 if (dst == INADDR_ANY) 2563 bcopy(opt + off, buf1, IP_ADDR_LEN); 2564 off -= IP_ADDR_LEN; 2565 2566 while (off > 0) { 2567 bcopy(opt + off, 2568 buf + off + IP_ADDR_LEN, 2569 IP_ADDR_LEN); 2570 off -= IP_ADDR_LEN; 2571 } 2572 /* ipha_dst into first slot */ 2573 bcopy(&dst, buf + off + IP_ADDR_LEN, 2574 IP_ADDR_LEN); 2575 buf += optlen; 2576 len += optlen; 2577 break; 2578 2579 default: 2580 bcopy(opt, buf, optlen); 2581 buf += optlen; 2582 len += optlen; 2583 break; 2584 } 2585 } 2586 done: 2587 /* Pad the resulting options */ 2588 while (len & 0x3) { 2589 *buf++ = IPOPT_EOL; 2590 len++; 2591 } 2592 return (len); 2593 } 2594 2595 /* 2596 * Update any record route or timestamp options to include this host. 2597 * Reverse any source route option. 2598 * This routine assumes that the options are well formed i.e. that they 2599 * have already been checked. 2600 */ 2601 static void 2602 icmp_options_update(ipha_t *ipha) 2603 { 2604 ipoptp_t opts; 2605 uchar_t *opt; 2606 uint8_t optval; 2607 ipaddr_t src; /* Our local address */ 2608 ipaddr_t dst; 2609 2610 ip2dbg(("icmp_options_update\n")); 2611 src = ipha->ipha_src; 2612 dst = ipha->ipha_dst; 2613 2614 for (optval = ipoptp_first(&opts, ipha); 2615 optval != IPOPT_EOL; 2616 optval = ipoptp_next(&opts)) { 2617 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2618 opt = opts.ipoptp_cur; 2619 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2620 optval, opts.ipoptp_len)); 2621 switch (optval) { 2622 int off1, off2; 2623 case IPOPT_SSRR: 2624 case IPOPT_LSRR: 2625 /* 2626 * Reverse the source route. The first entry 2627 * should be the next to last one in the current 2628 * source route (the last entry is our address). 2629 * The last entry should be the final destination. 2630 */ 2631 off1 = IPOPT_MINOFF_SR - 1; 2632 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2633 if (off2 < 0) { 2634 /* No entries in source route */ 2635 ip1dbg(( 2636 "icmp_options_update: bad src route\n")); 2637 break; 2638 } 2639 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2640 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2641 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2642 off2 -= IP_ADDR_LEN; 2643 2644 while (off1 < off2) { 2645 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2646 bcopy((char *)opt + off2, (char *)opt + off1, 2647 IP_ADDR_LEN); 2648 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2649 off1 += IP_ADDR_LEN; 2650 off2 -= IP_ADDR_LEN; 2651 } 2652 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2653 break; 2654 } 2655 } 2656 } 2657 2658 /* 2659 * Process received ICMP Redirect messages. 2660 * Assumes the caller has verified that the headers are in the pulled up mblk. 2661 * Consumes mp. 2662 */ 2663 static void 2664 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2665 { 2666 ire_t *ire, *nire; 2667 ire_t *prev_ire; 2668 ipaddr_t src, dst, gateway; 2669 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2670 ipha_t *inner_ipha; /* Inner IP header */ 2671 2672 /* Caller already pulled up everything. */ 2673 inner_ipha = (ipha_t *)&icmph[1]; 2674 src = ipha->ipha_src; 2675 dst = inner_ipha->ipha_dst; 2676 gateway = icmph->icmph_rd_gateway; 2677 /* Make sure the new gateway is reachable somehow. */ 2678 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2679 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2680 /* 2681 * Make sure we had a route for the dest in question and that 2682 * that route was pointing to the old gateway (the source of the 2683 * redirect packet.) 2684 * We do longest match and then compare ire_gateway_addr below. 2685 */ 2686 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2687 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2688 /* 2689 * Check that 2690 * the redirect was not from ourselves 2691 * the new gateway and the old gateway are directly reachable 2692 */ 2693 if (prev_ire == NULL || ire == NULL || 2694 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2695 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2696 !(ire->ire_type & IRE_IF_ALL) || 2697 prev_ire->ire_gateway_addr != src) { 2698 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2699 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2700 freemsg(mp); 2701 if (ire != NULL) 2702 ire_refrele(ire); 2703 if (prev_ire != NULL) 2704 ire_refrele(prev_ire); 2705 return; 2706 } 2707 2708 ire_refrele(prev_ire); 2709 ire_refrele(ire); 2710 2711 /* 2712 * TODO: more precise handling for cases 0, 2, 3, the latter two 2713 * require TOS routing 2714 */ 2715 switch (icmph->icmph_code) { 2716 case 0: 2717 case 1: 2718 /* TODO: TOS specificity for cases 2 and 3 */ 2719 case 2: 2720 case 3: 2721 break; 2722 default: 2723 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2724 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2725 freemsg(mp); 2726 return; 2727 } 2728 /* 2729 * Create a Route Association. This will allow us to remember that 2730 * someone we believe told us to use the particular gateway. 2731 */ 2732 ire = ire_create( 2733 (uchar_t *)&dst, /* dest addr */ 2734 (uchar_t *)&ip_g_all_ones, /* mask */ 2735 (uchar_t *)&gateway, /* gateway addr */ 2736 IRE_HOST, 2737 NULL, /* ill */ 2738 ALL_ZONES, 2739 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2740 NULL, /* tsol_gc_t */ 2741 ipst); 2742 2743 if (ire == NULL) { 2744 freemsg(mp); 2745 return; 2746 } 2747 nire = ire_add(ire); 2748 /* Check if it was a duplicate entry */ 2749 if (nire != NULL && nire != ire) { 2750 ASSERT(nire->ire_identical_ref > 1); 2751 ire_delete(nire); 2752 ire_refrele(nire); 2753 nire = NULL; 2754 } 2755 ire = nire; 2756 if (ire != NULL) { 2757 ire_refrele(ire); /* Held in ire_add */ 2758 2759 /* tell routing sockets that we received a redirect */ 2760 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2761 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2762 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2763 } 2764 2765 /* 2766 * Delete any existing IRE_HOST type redirect ires for this destination. 2767 * This together with the added IRE has the effect of 2768 * modifying an existing redirect. 2769 */ 2770 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2771 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2772 if (prev_ire != NULL) { 2773 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2774 ire_delete(prev_ire); 2775 ire_refrele(prev_ire); 2776 } 2777 2778 freemsg(mp); 2779 } 2780 2781 /* 2782 * Generate an ICMP parameter problem message. 2783 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2784 * constructed by the caller. 2785 */ 2786 static void 2787 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2788 { 2789 icmph_t icmph; 2790 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2791 2792 mp = icmp_pkt_err_ok(mp, ira); 2793 if (mp == NULL) 2794 return; 2795 2796 bzero(&icmph, sizeof (icmph_t)); 2797 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2798 icmph.icmph_pp_ptr = ptr; 2799 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2800 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2801 } 2802 2803 /* 2804 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2805 * the ICMP header pointed to by "stuff". (May be called as writer.) 2806 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2807 * an icmp error packet can be sent. 2808 * Assigns an appropriate source address to the packet. If ipha_dst is 2809 * one of our addresses use it for source. Otherwise let ip_output_simple 2810 * pick the source address. 2811 */ 2812 static void 2813 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2814 { 2815 ipaddr_t dst; 2816 icmph_t *icmph; 2817 ipha_t *ipha; 2818 uint_t len_needed; 2819 size_t msg_len; 2820 mblk_t *mp1; 2821 ipaddr_t src; 2822 ire_t *ire; 2823 ip_xmit_attr_t ixas; 2824 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2825 2826 ipha = (ipha_t *)mp->b_rptr; 2827 2828 bzero(&ixas, sizeof (ixas)); 2829 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2830 ixas.ixa_zoneid = ira->ira_zoneid; 2831 ixas.ixa_ifindex = 0; 2832 ixas.ixa_ipst = ipst; 2833 ixas.ixa_cred = kcred; 2834 ixas.ixa_cpid = NOPID; 2835 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2836 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2837 2838 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2839 /* 2840 * Apply IPsec based on how IPsec was applied to 2841 * the packet that had the error. 2842 * 2843 * If it was an outbound packet that caused the ICMP 2844 * error, then the caller will have setup the IRA 2845 * appropriately. 2846 */ 2847 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2848 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2849 /* Note: mp already consumed and ip_drop_packet done */ 2850 return; 2851 } 2852 } else { 2853 /* 2854 * This is in clear. The icmp message we are building 2855 * here should go out in clear, independent of our policy. 2856 */ 2857 ixas.ixa_flags |= IXAF_NO_IPSEC; 2858 } 2859 2860 /* Remember our eventual destination */ 2861 dst = ipha->ipha_src; 2862 2863 /* 2864 * If the packet was for one of our unicast addresses, make 2865 * sure we respond with that as the source. Otherwise 2866 * have ip_output_simple pick the source address. 2867 */ 2868 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2869 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2870 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2871 if (ire != NULL) { 2872 ire_refrele(ire); 2873 src = ipha->ipha_dst; 2874 } else { 2875 src = INADDR_ANY; 2876 ixas.ixa_flags |= IXAF_SET_SOURCE; 2877 } 2878 2879 /* 2880 * Check if we can send back more then 8 bytes in addition to 2881 * the IP header. We try to send 64 bytes of data and the internal 2882 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2883 */ 2884 len_needed = IPH_HDR_LENGTH(ipha); 2885 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2886 ipha->ipha_protocol == IPPROTO_IPV6) { 2887 if (!pullupmsg(mp, -1)) { 2888 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2889 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2890 freemsg(mp); 2891 return; 2892 } 2893 ipha = (ipha_t *)mp->b_rptr; 2894 2895 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2896 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2897 len_needed)); 2898 } else { 2899 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2900 2901 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2902 len_needed += ip_hdr_length_v6(mp, ip6h); 2903 } 2904 } 2905 len_needed += ipst->ips_ip_icmp_return; 2906 msg_len = msgdsize(mp); 2907 if (msg_len > len_needed) { 2908 (void) adjmsg(mp, len_needed - msg_len); 2909 msg_len = len_needed; 2910 } 2911 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2912 if (mp1 == NULL) { 2913 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2914 freemsg(mp); 2915 return; 2916 } 2917 mp1->b_cont = mp; 2918 mp = mp1; 2919 2920 /* 2921 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2922 * node generates be accepted in peace by all on-host destinations. 2923 * If we do NOT assume that all on-host destinations trust 2924 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2925 * (Look for IXAF_TRUSTED_ICMP). 2926 */ 2927 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2928 2929 ipha = (ipha_t *)mp->b_rptr; 2930 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2931 *ipha = icmp_ipha; 2932 ipha->ipha_src = src; 2933 ipha->ipha_dst = dst; 2934 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2935 msg_len += sizeof (icmp_ipha) + len; 2936 if (msg_len > IP_MAXPACKET) { 2937 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2938 msg_len = IP_MAXPACKET; 2939 } 2940 ipha->ipha_length = htons((uint16_t)msg_len); 2941 icmph = (icmph_t *)&ipha[1]; 2942 bcopy(stuff, icmph, len); 2943 icmph->icmph_checksum = 0; 2944 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2945 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2946 2947 (void) ip_output_simple(mp, &ixas); 2948 ixa_cleanup(&ixas); 2949 } 2950 2951 /* 2952 * Determine if an ICMP error packet can be sent given the rate limit. 2953 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2954 * in milliseconds) and a burst size. Burst size number of packets can 2955 * be sent arbitrarely closely spaced. 2956 * The state is tracked using two variables to implement an approximate 2957 * token bucket filter: 2958 * icmp_pkt_err_last - lbolt value when the last burst started 2959 * icmp_pkt_err_sent - number of packets sent in current burst 2960 */ 2961 boolean_t 2962 icmp_err_rate_limit(ip_stack_t *ipst) 2963 { 2964 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2965 uint_t refilled; /* Number of packets refilled in tbf since last */ 2966 /* Guard against changes by loading into local variable */ 2967 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2968 2969 if (err_interval == 0) 2970 return (B_FALSE); 2971 2972 if (ipst->ips_icmp_pkt_err_last > now) { 2973 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2974 ipst->ips_icmp_pkt_err_last = 0; 2975 ipst->ips_icmp_pkt_err_sent = 0; 2976 } 2977 /* 2978 * If we are in a burst update the token bucket filter. 2979 * Update the "last" time to be close to "now" but make sure 2980 * we don't loose precision. 2981 */ 2982 if (ipst->ips_icmp_pkt_err_sent != 0) { 2983 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2984 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2985 ipst->ips_icmp_pkt_err_sent = 0; 2986 } else { 2987 ipst->ips_icmp_pkt_err_sent -= refilled; 2988 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2989 } 2990 } 2991 if (ipst->ips_icmp_pkt_err_sent == 0) { 2992 /* Start of new burst */ 2993 ipst->ips_icmp_pkt_err_last = now; 2994 } 2995 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2996 ipst->ips_icmp_pkt_err_sent++; 2997 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2998 ipst->ips_icmp_pkt_err_sent)); 2999 return (B_FALSE); 3000 } 3001 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3002 return (B_TRUE); 3003 } 3004 3005 /* 3006 * Check if it is ok to send an IPv4 ICMP error packet in 3007 * response to the IPv4 packet in mp. 3008 * Free the message and return null if no 3009 * ICMP error packet should be sent. 3010 */ 3011 static mblk_t * 3012 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 3013 { 3014 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3015 icmph_t *icmph; 3016 ipha_t *ipha; 3017 uint_t len_needed; 3018 3019 if (!mp) 3020 return (NULL); 3021 ipha = (ipha_t *)mp->b_rptr; 3022 if (ip_csum_hdr(ipha)) { 3023 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3024 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 3025 freemsg(mp); 3026 return (NULL); 3027 } 3028 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 3029 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 3030 CLASSD(ipha->ipha_dst) || 3031 CLASSD(ipha->ipha_src) || 3032 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3033 /* Note: only errors to the fragment with offset 0 */ 3034 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3035 freemsg(mp); 3036 return (NULL); 3037 } 3038 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3039 /* 3040 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3041 * errors in response to any ICMP errors. 3042 */ 3043 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3044 if (mp->b_wptr - mp->b_rptr < len_needed) { 3045 if (!pullupmsg(mp, len_needed)) { 3046 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3047 freemsg(mp); 3048 return (NULL); 3049 } 3050 ipha = (ipha_t *)mp->b_rptr; 3051 } 3052 icmph = (icmph_t *) 3053 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3054 switch (icmph->icmph_type) { 3055 case ICMP_DEST_UNREACHABLE: 3056 case ICMP_SOURCE_QUENCH: 3057 case ICMP_TIME_EXCEEDED: 3058 case ICMP_PARAM_PROBLEM: 3059 case ICMP_REDIRECT: 3060 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3061 freemsg(mp); 3062 return (NULL); 3063 default: 3064 break; 3065 } 3066 } 3067 /* 3068 * If this is a labeled system, then check to see if we're allowed to 3069 * send a response to this particular sender. If not, then just drop. 3070 */ 3071 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3072 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3073 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3074 freemsg(mp); 3075 return (NULL); 3076 } 3077 if (icmp_err_rate_limit(ipst)) { 3078 /* 3079 * Only send ICMP error packets every so often. 3080 * This should be done on a per port/source basis, 3081 * but for now this will suffice. 3082 */ 3083 freemsg(mp); 3084 return (NULL); 3085 } 3086 return (mp); 3087 } 3088 3089 /* 3090 * Called when a packet was sent out the same link that it arrived on. 3091 * Check if it is ok to send a redirect and then send it. 3092 */ 3093 void 3094 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3095 ip_recv_attr_t *ira) 3096 { 3097 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3098 ipaddr_t src, nhop; 3099 mblk_t *mp1; 3100 ire_t *nhop_ire; 3101 3102 /* 3103 * Check the source address to see if it originated 3104 * on the same logical subnet it is going back out on. 3105 * If so, we should be able to send it a redirect. 3106 * Avoid sending a redirect if the destination 3107 * is directly connected (i.e., we matched an IRE_ONLINK), 3108 * or if the packet was source routed out this interface. 3109 * 3110 * We avoid sending a redirect if the 3111 * destination is directly connected 3112 * because it is possible that multiple 3113 * IP subnets may have been configured on 3114 * the link, and the source may not 3115 * be on the same subnet as ip destination, 3116 * even though they are on the same 3117 * physical link. 3118 */ 3119 if ((ire->ire_type & IRE_ONLINK) || 3120 ip_source_routed(ipha, ipst)) 3121 return; 3122 3123 nhop_ire = ire_nexthop(ire); 3124 if (nhop_ire == NULL) 3125 return; 3126 3127 nhop = nhop_ire->ire_addr; 3128 3129 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3130 ire_t *ire2; 3131 3132 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3133 mutex_enter(&nhop_ire->ire_lock); 3134 ire2 = nhop_ire->ire_dep_parent; 3135 if (ire2 != NULL) 3136 ire_refhold(ire2); 3137 mutex_exit(&nhop_ire->ire_lock); 3138 ire_refrele(nhop_ire); 3139 nhop_ire = ire2; 3140 } 3141 if (nhop_ire == NULL) 3142 return; 3143 3144 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3145 3146 src = ipha->ipha_src; 3147 3148 /* 3149 * We look at the interface ire for the nexthop, 3150 * to see if ipha_src is in the same subnet 3151 * as the nexthop. 3152 */ 3153 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3154 /* 3155 * The source is directly connected. 3156 */ 3157 mp1 = copymsg(mp); 3158 if (mp1 != NULL) { 3159 icmp_send_redirect(mp1, nhop, ira); 3160 } 3161 } 3162 ire_refrele(nhop_ire); 3163 } 3164 3165 /* 3166 * Generate an ICMP redirect message. 3167 */ 3168 static void 3169 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3170 { 3171 icmph_t icmph; 3172 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3173 3174 mp = icmp_pkt_err_ok(mp, ira); 3175 if (mp == NULL) 3176 return; 3177 3178 bzero(&icmph, sizeof (icmph_t)); 3179 icmph.icmph_type = ICMP_REDIRECT; 3180 icmph.icmph_code = 1; 3181 icmph.icmph_rd_gateway = gateway; 3182 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3183 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3184 } 3185 3186 /* 3187 * Generate an ICMP time exceeded message. 3188 */ 3189 void 3190 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3191 { 3192 icmph_t icmph; 3193 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3194 3195 mp = icmp_pkt_err_ok(mp, ira); 3196 if (mp == NULL) 3197 return; 3198 3199 bzero(&icmph, sizeof (icmph_t)); 3200 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3201 icmph.icmph_code = code; 3202 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3203 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3204 } 3205 3206 /* 3207 * Generate an ICMP unreachable message. 3208 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3209 * constructed by the caller. 3210 */ 3211 void 3212 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3213 { 3214 icmph_t icmph; 3215 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3216 3217 mp = icmp_pkt_err_ok(mp, ira); 3218 if (mp == NULL) 3219 return; 3220 3221 bzero(&icmph, sizeof (icmph_t)); 3222 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3223 icmph.icmph_code = code; 3224 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3225 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3226 } 3227 3228 /* 3229 * Latch in the IPsec state for a stream based the policy in the listener 3230 * and the actions in the ip_recv_attr_t. 3231 * Called directly from TCP and SCTP. 3232 */ 3233 boolean_t 3234 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3235 { 3236 ASSERT(lconnp->conn_policy != NULL); 3237 ASSERT(connp->conn_policy == NULL); 3238 3239 IPPH_REFHOLD(lconnp->conn_policy); 3240 connp->conn_policy = lconnp->conn_policy; 3241 3242 if (ira->ira_ipsec_action != NULL) { 3243 if (connp->conn_latch == NULL) { 3244 connp->conn_latch = iplatch_create(); 3245 if (connp->conn_latch == NULL) 3246 return (B_FALSE); 3247 } 3248 ipsec_latch_inbound(connp, ira); 3249 } 3250 return (B_TRUE); 3251 } 3252 3253 /* 3254 * Verify whether or not the IP address is a valid local address. 3255 * Could be a unicast, including one for a down interface. 3256 * If allow_mcbc then a multicast or broadcast address is also 3257 * acceptable. 3258 * 3259 * In the case of a broadcast/multicast address, however, the 3260 * upper protocol is expected to reset the src address 3261 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3262 * no packets are emitted with broadcast/multicast address as 3263 * source address (that violates hosts requirements RFC 1122) 3264 * The addresses valid for bind are: 3265 * (1) - INADDR_ANY (0) 3266 * (2) - IP address of an UP interface 3267 * (3) - IP address of a DOWN interface 3268 * (4) - valid local IP broadcast addresses. In this case 3269 * the conn will only receive packets destined to 3270 * the specified broadcast address. 3271 * (5) - a multicast address. In this case 3272 * the conn will only receive packets destined to 3273 * the specified multicast address. Note: the 3274 * application still has to issue an 3275 * IP_ADD_MEMBERSHIP socket option. 3276 * 3277 * In all the above cases, the bound address must be valid in the current zone. 3278 * When the address is loopback, multicast or broadcast, there might be many 3279 * matching IREs so bind has to look up based on the zone. 3280 */ 3281 ip_laddr_t 3282 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3283 ip_stack_t *ipst, boolean_t allow_mcbc) 3284 { 3285 ire_t *src_ire; 3286 3287 ASSERT(src_addr != INADDR_ANY); 3288 3289 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3290 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3291 3292 /* 3293 * If an address other than in6addr_any is requested, 3294 * we verify that it is a valid address for bind 3295 * Note: Following code is in if-else-if form for 3296 * readability compared to a condition check. 3297 */ 3298 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3299 /* 3300 * (2) Bind to address of local UP interface 3301 */ 3302 ire_refrele(src_ire); 3303 return (IPVL_UNICAST_UP); 3304 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3305 /* 3306 * (4) Bind to broadcast address 3307 */ 3308 ire_refrele(src_ire); 3309 if (allow_mcbc) 3310 return (IPVL_BCAST); 3311 else 3312 return (IPVL_BAD); 3313 } else if (CLASSD(src_addr)) { 3314 /* (5) bind to multicast address. */ 3315 if (src_ire != NULL) 3316 ire_refrele(src_ire); 3317 3318 if (allow_mcbc) 3319 return (IPVL_MCAST); 3320 else 3321 return (IPVL_BAD); 3322 } else { 3323 ipif_t *ipif; 3324 3325 /* 3326 * (3) Bind to address of local DOWN interface? 3327 * (ipif_lookup_addr() looks up all interfaces 3328 * but we do not get here for UP interfaces 3329 * - case (2) above) 3330 */ 3331 if (src_ire != NULL) 3332 ire_refrele(src_ire); 3333 3334 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3335 if (ipif == NULL) 3336 return (IPVL_BAD); 3337 3338 /* Not a useful source? */ 3339 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3340 ipif_refrele(ipif); 3341 return (IPVL_BAD); 3342 } 3343 ipif_refrele(ipif); 3344 return (IPVL_UNICAST_DOWN); 3345 } 3346 } 3347 3348 /* 3349 * Insert in the bind fanout for IPv4 and IPv6. 3350 * The caller should already have used ip_laddr_verify_v*() before calling 3351 * this. 3352 */ 3353 int 3354 ip_laddr_fanout_insert(conn_t *connp) 3355 { 3356 int error; 3357 3358 /* 3359 * Allow setting new policies. For example, disconnects result 3360 * in us being called. As we would have set conn_policy_cached 3361 * to B_TRUE before, we should set it to B_FALSE, so that policy 3362 * can change after the disconnect. 3363 */ 3364 connp->conn_policy_cached = B_FALSE; 3365 3366 error = ipcl_bind_insert(connp); 3367 if (error != 0) { 3368 if (connp->conn_anon_port) { 3369 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3370 connp->conn_mlp_type, connp->conn_proto, 3371 ntohs(connp->conn_lport), B_FALSE); 3372 } 3373 connp->conn_mlp_type = mlptSingle; 3374 } 3375 return (error); 3376 } 3377 3378 /* 3379 * Verify that both the source and destination addresses are valid. If 3380 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3381 * i.e. have no route to it. Protocols like TCP want to verify destination 3382 * reachability, while tunnels do not. 3383 * 3384 * Determine the route, the interface, and (optionally) the source address 3385 * to use to reach a given destination. 3386 * Note that we allow connect to broadcast and multicast addresses when 3387 * IPDF_ALLOW_MCBC is set. 3388 * first_hop and dst_addr are normally the same, but if source routing 3389 * they will differ; in that case the first_hop is what we'll use for the 3390 * routing lookup but the dce and label checks will be done on dst_addr, 3391 * 3392 * If uinfo is set, then we fill in the best available information 3393 * we have for the destination. This is based on (in priority order) any 3394 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3395 * ill_mtu/ill_mc_mtu. 3396 * 3397 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3398 * always do the label check on dst_addr. 3399 */ 3400 int 3401 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3402 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3403 { 3404 ire_t *ire = NULL; 3405 int error = 0; 3406 ipaddr_t setsrc; /* RTF_SETSRC */ 3407 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3408 ip_stack_t *ipst = ixa->ixa_ipst; 3409 dce_t *dce; 3410 uint_t pmtu; 3411 uint_t generation; 3412 nce_t *nce; 3413 ill_t *ill = NULL; 3414 boolean_t multirt = B_FALSE; 3415 3416 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3417 3418 /* 3419 * We never send to zero; the ULPs map it to the loopback address. 3420 * We can't allow it since we use zero to mean unitialized in some 3421 * places. 3422 */ 3423 ASSERT(dst_addr != INADDR_ANY); 3424 3425 if (is_system_labeled()) { 3426 ts_label_t *tsl = NULL; 3427 3428 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3429 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3430 if (error != 0) 3431 return (error); 3432 if (tsl != NULL) { 3433 /* Update the label */ 3434 ip_xmit_attr_replace_tsl(ixa, tsl); 3435 } 3436 } 3437 3438 setsrc = INADDR_ANY; 3439 /* 3440 * Select a route; For IPMP interfaces, we would only select 3441 * a "hidden" route (i.e., going through a specific under_ill) 3442 * if ixa_ifindex has been specified. 3443 */ 3444 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3445 &generation, &setsrc, &error, &multirt); 3446 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3447 if (error != 0) 3448 goto bad_addr; 3449 3450 /* 3451 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3452 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3453 * Otherwise the destination needn't be reachable. 3454 * 3455 * If we match on a reject or black hole, then we've got a 3456 * local failure. May as well fail out the connect() attempt, 3457 * since it's never going to succeed. 3458 */ 3459 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3460 /* 3461 * If we're verifying destination reachability, we always want 3462 * to complain here. 3463 * 3464 * If we're not verifying destination reachability but the 3465 * destination has a route, we still want to fail on the 3466 * temporary address and broadcast address tests. 3467 * 3468 * In both cases do we let the code continue so some reasonable 3469 * information is returned to the caller. That enables the 3470 * caller to use (and even cache) the IRE. conn_ip_ouput will 3471 * use the generation mismatch path to check for the unreachable 3472 * case thereby avoiding any specific check in the main path. 3473 */ 3474 ASSERT(generation == IRE_GENERATION_VERIFY); 3475 if (flags & IPDF_VERIFY_DST) { 3476 /* 3477 * Set errno but continue to set up ixa_ire to be 3478 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3479 * That allows callers to use ip_output to get an 3480 * ICMP error back. 3481 */ 3482 if (!(ire->ire_type & IRE_HOST)) 3483 error = ENETUNREACH; 3484 else 3485 error = EHOSTUNREACH; 3486 } 3487 } 3488 3489 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3490 !(flags & IPDF_ALLOW_MCBC)) { 3491 ire_refrele(ire); 3492 ire = ire_reject(ipst, B_FALSE); 3493 generation = IRE_GENERATION_VERIFY; 3494 error = ENETUNREACH; 3495 } 3496 3497 /* Cache things */ 3498 if (ixa->ixa_ire != NULL) 3499 ire_refrele_notr(ixa->ixa_ire); 3500 #ifdef DEBUG 3501 ire_refhold_notr(ire); 3502 ire_refrele(ire); 3503 #endif 3504 ixa->ixa_ire = ire; 3505 ixa->ixa_ire_generation = generation; 3506 3507 /* 3508 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3509 * since some callers will send a packet to conn_ip_output() even if 3510 * there's an error. 3511 */ 3512 if (flags & IPDF_UNIQUE_DCE) { 3513 /* Fallback to the default dce if allocation fails */ 3514 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3515 if (dce != NULL) 3516 generation = dce->dce_generation; 3517 else 3518 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3519 } else { 3520 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3521 } 3522 ASSERT(dce != NULL); 3523 if (ixa->ixa_dce != NULL) 3524 dce_refrele_notr(ixa->ixa_dce); 3525 #ifdef DEBUG 3526 dce_refhold_notr(dce); 3527 dce_refrele(dce); 3528 #endif 3529 ixa->ixa_dce = dce; 3530 ixa->ixa_dce_generation = generation; 3531 3532 /* 3533 * For multicast with multirt we have a flag passed back from 3534 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3535 * possible multicast address. 3536 * We also need a flag for multicast since we can't check 3537 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3538 */ 3539 if (multirt) { 3540 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3541 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3542 } else { 3543 ixa->ixa_postfragfn = ire->ire_postfragfn; 3544 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3545 } 3546 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3547 /* Get an nce to cache. */ 3548 nce = ire_to_nce(ire, firsthop, NULL); 3549 if (nce == NULL) { 3550 /* Allocation failure? */ 3551 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3552 } else { 3553 if (ixa->ixa_nce != NULL) 3554 nce_refrele(ixa->ixa_nce); 3555 ixa->ixa_nce = nce; 3556 } 3557 } 3558 3559 /* 3560 * If the source address is a loopback address, the 3561 * destination had best be local or multicast. 3562 * If we are sending to an IRE_LOCAL using a loopback source then 3563 * it had better be the same zoneid. 3564 */ 3565 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3566 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3567 ire = NULL; /* Stored in ixa_ire */ 3568 error = EADDRNOTAVAIL; 3569 goto bad_addr; 3570 } 3571 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3572 ire = NULL; /* Stored in ixa_ire */ 3573 error = EADDRNOTAVAIL; 3574 goto bad_addr; 3575 } 3576 } 3577 if (ire->ire_type & IRE_BROADCAST) { 3578 /* 3579 * If the ULP didn't have a specified source, then we 3580 * make sure we reselect the source when sending 3581 * broadcasts out different interfaces. 3582 */ 3583 if (flags & IPDF_SELECT_SRC) 3584 ixa->ixa_flags |= IXAF_SET_SOURCE; 3585 else 3586 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3587 } 3588 3589 /* 3590 * Does the caller want us to pick a source address? 3591 */ 3592 if (flags & IPDF_SELECT_SRC) { 3593 ipaddr_t src_addr; 3594 3595 /* 3596 * We use use ire_nexthop_ill to avoid the under ipmp 3597 * interface for source address selection. Note that for ipmp 3598 * probe packets, ixa_ifindex would have been specified, and 3599 * the ip_select_route() invocation would have picked an ire 3600 * will ire_ill pointing at an under interface. 3601 */ 3602 ill = ire_nexthop_ill(ire); 3603 3604 /* If unreachable we have no ill but need some source */ 3605 if (ill == NULL) { 3606 src_addr = htonl(INADDR_LOOPBACK); 3607 /* Make sure we look for a better source address */ 3608 generation = SRC_GENERATION_VERIFY; 3609 } else { 3610 error = ip_select_source_v4(ill, setsrc, dst_addr, 3611 ixa->ixa_multicast_ifaddr, zoneid, 3612 ipst, &src_addr, &generation, NULL); 3613 if (error != 0) { 3614 ire = NULL; /* Stored in ixa_ire */ 3615 goto bad_addr; 3616 } 3617 } 3618 3619 /* 3620 * We allow the source address to to down. 3621 * However, we check that we don't use the loopback address 3622 * as a source when sending out on the wire. 3623 */ 3624 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3625 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3626 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3627 ire = NULL; /* Stored in ixa_ire */ 3628 error = EADDRNOTAVAIL; 3629 goto bad_addr; 3630 } 3631 3632 *src_addrp = src_addr; 3633 ixa->ixa_src_generation = generation; 3634 } 3635 3636 /* 3637 * Make sure we don't leave an unreachable ixa_nce in place 3638 * since ip_select_route is used when we unplumb i.e., remove 3639 * references on ixa_ire, ixa_nce, and ixa_dce. 3640 */ 3641 nce = ixa->ixa_nce; 3642 if (nce != NULL && nce->nce_is_condemned) { 3643 nce_refrele(nce); 3644 ixa->ixa_nce = NULL; 3645 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3646 } 3647 3648 /* 3649 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3650 * However, we can't do it for IPv4 multicast or broadcast. 3651 */ 3652 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3653 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3654 3655 /* 3656 * Set initial value for fragmentation limit. Either conn_ip_output 3657 * or ULP might updates it when there are routing changes. 3658 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3659 */ 3660 pmtu = ip_get_pmtu(ixa); 3661 ixa->ixa_fragsize = pmtu; 3662 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3663 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3664 ixa->ixa_pmtu = pmtu; 3665 3666 /* 3667 * Extract information useful for some transports. 3668 * First we look for DCE metrics. Then we take what we have in 3669 * the metrics in the route, where the offlink is used if we have 3670 * one. 3671 */ 3672 if (uinfo != NULL) { 3673 bzero(uinfo, sizeof (*uinfo)); 3674 3675 if (dce->dce_flags & DCEF_UINFO) 3676 *uinfo = dce->dce_uinfo; 3677 3678 rts_merge_metrics(uinfo, &ire->ire_metrics); 3679 3680 /* Allow ire_metrics to decrease the path MTU from above */ 3681 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3682 uinfo->iulp_mtu = pmtu; 3683 3684 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3685 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3686 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3687 } 3688 3689 if (ill != NULL) 3690 ill_refrele(ill); 3691 3692 return (error); 3693 3694 bad_addr: 3695 if (ire != NULL) 3696 ire_refrele(ire); 3697 3698 if (ill != NULL) 3699 ill_refrele(ill); 3700 3701 /* 3702 * Make sure we don't leave an unreachable ixa_nce in place 3703 * since ip_select_route is used when we unplumb i.e., remove 3704 * references on ixa_ire, ixa_nce, and ixa_dce. 3705 */ 3706 nce = ixa->ixa_nce; 3707 if (nce != NULL && nce->nce_is_condemned) { 3708 nce_refrele(nce); 3709 ixa->ixa_nce = NULL; 3710 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3711 } 3712 3713 return (error); 3714 } 3715 3716 3717 /* 3718 * Get the base MTU for the case when path MTU discovery is not used. 3719 * Takes the MTU of the IRE into account. 3720 */ 3721 uint_t 3722 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3723 { 3724 uint_t mtu; 3725 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3726 3727 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3728 mtu = ill->ill_mc_mtu; 3729 else 3730 mtu = ill->ill_mtu; 3731 3732 if (iremtu != 0 && iremtu < mtu) 3733 mtu = iremtu; 3734 3735 return (mtu); 3736 } 3737 3738 /* 3739 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3740 * Assumes that ixa_ire, dce, and nce have already been set up. 3741 * 3742 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3743 * We avoid path MTU discovery if it is disabled with ndd. 3744 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3745 * 3746 * NOTE: We also used to turn it off for source routed packets. That 3747 * is no longer required since the dce is per final destination. 3748 */ 3749 uint_t 3750 ip_get_pmtu(ip_xmit_attr_t *ixa) 3751 { 3752 ip_stack_t *ipst = ixa->ixa_ipst; 3753 dce_t *dce; 3754 nce_t *nce; 3755 ire_t *ire; 3756 uint_t pmtu; 3757 3758 ire = ixa->ixa_ire; 3759 dce = ixa->ixa_dce; 3760 nce = ixa->ixa_nce; 3761 3762 /* 3763 * If path MTU discovery has been turned off by ndd, then we ignore 3764 * any dce_pmtu and for IPv4 we will not set DF. 3765 */ 3766 if (!ipst->ips_ip_path_mtu_discovery) 3767 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3768 3769 pmtu = IP_MAXPACKET; 3770 /* 3771 * Decide whether whether IPv4 sets DF 3772 * For IPv6 "no DF" means to use the 1280 mtu 3773 */ 3774 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3775 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3776 } else { 3777 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3778 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3779 pmtu = IPV6_MIN_MTU; 3780 } 3781 3782 /* Check if the PMTU is to old before we use it */ 3783 if ((dce->dce_flags & DCEF_PMTU) && 3784 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3785 ipst->ips_ip_pathmtu_interval) { 3786 /* 3787 * Older than 20 minutes. Drop the path MTU information. 3788 */ 3789 mutex_enter(&dce->dce_lock); 3790 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3791 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3792 mutex_exit(&dce->dce_lock); 3793 dce_increment_generation(dce); 3794 } 3795 3796 /* The metrics on the route can lower the path MTU */ 3797 if (ire->ire_metrics.iulp_mtu != 0 && 3798 ire->ire_metrics.iulp_mtu < pmtu) 3799 pmtu = ire->ire_metrics.iulp_mtu; 3800 3801 /* 3802 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3803 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3804 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3805 */ 3806 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3807 if (dce->dce_flags & DCEF_PMTU) { 3808 if (dce->dce_pmtu < pmtu) 3809 pmtu = dce->dce_pmtu; 3810 3811 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3812 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3813 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3814 } else { 3815 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3816 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3817 } 3818 } else { 3819 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3820 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3821 } 3822 } 3823 3824 /* 3825 * If we have an IRE_LOCAL we use the loopback mtu instead of 3826 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3827 * mtu as IRE_LOOPBACK. 3828 */ 3829 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3830 uint_t loopback_mtu; 3831 3832 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3833 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3834 3835 if (loopback_mtu < pmtu) 3836 pmtu = loopback_mtu; 3837 } else if (nce != NULL) { 3838 /* 3839 * Make sure we don't exceed the interface MTU. 3840 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3841 * an ill. We'd use the above IP_MAXPACKET in that case just 3842 * to tell the transport something larger than zero. 3843 */ 3844 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3845 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3846 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3847 if (nce->nce_common->ncec_ill != nce->nce_ill && 3848 nce->nce_ill->ill_mc_mtu < pmtu) { 3849 /* 3850 * for interfaces in an IPMP group, the mtu of 3851 * the nce_ill (under_ill) could be different 3852 * from the mtu of the ncec_ill, so we take the 3853 * min of the two. 3854 */ 3855 pmtu = nce->nce_ill->ill_mc_mtu; 3856 } 3857 } else { 3858 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3859 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3860 if (nce->nce_common->ncec_ill != nce->nce_ill && 3861 nce->nce_ill->ill_mtu < pmtu) { 3862 /* 3863 * for interfaces in an IPMP group, the mtu of 3864 * the nce_ill (under_ill) could be different 3865 * from the mtu of the ncec_ill, so we take the 3866 * min of the two. 3867 */ 3868 pmtu = nce->nce_ill->ill_mtu; 3869 } 3870 } 3871 } 3872 3873 /* 3874 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3875 * Only applies to IPv6. 3876 */ 3877 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3878 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3879 switch (ixa->ixa_use_min_mtu) { 3880 case IPV6_USE_MIN_MTU_MULTICAST: 3881 if (ire->ire_type & IRE_MULTICAST) 3882 pmtu = IPV6_MIN_MTU; 3883 break; 3884 case IPV6_USE_MIN_MTU_ALWAYS: 3885 pmtu = IPV6_MIN_MTU; 3886 break; 3887 case IPV6_USE_MIN_MTU_NEVER: 3888 break; 3889 } 3890 } else { 3891 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3892 if (ire->ire_type & IRE_MULTICAST) 3893 pmtu = IPV6_MIN_MTU; 3894 } 3895 } 3896 3897 /* 3898 * After receiving an ICMPv6 "packet too big" message with a 3899 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3900 * will insert a 8-byte fragment header in every packet. We compensate 3901 * for those cases by returning a smaller path MTU to the ULP. 3902 * 3903 * In the case of CGTP then ip_output will add a fragment header. 3904 * Make sure there is room for it by telling a smaller number 3905 * to the transport. 3906 * 3907 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3908 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3909 * which is the size of the packets it can send. 3910 */ 3911 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3912 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3913 (ire->ire_flags & RTF_MULTIRT) || 3914 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3915 pmtu -= sizeof (ip6_frag_t); 3916 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3917 } 3918 } 3919 3920 return (pmtu); 3921 } 3922 3923 /* 3924 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3925 * the final piece where we don't. Return a pointer to the first mblk in the 3926 * result, and update the pointer to the next mblk to chew on. If anything 3927 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3928 * NULL pointer. 3929 */ 3930 mblk_t * 3931 ip_carve_mp(mblk_t **mpp, ssize_t len) 3932 { 3933 mblk_t *mp0; 3934 mblk_t *mp1; 3935 mblk_t *mp2; 3936 3937 if (!len || !mpp || !(mp0 = *mpp)) 3938 return (NULL); 3939 /* If we aren't going to consume the first mblk, we need a dup. */ 3940 if (mp0->b_wptr - mp0->b_rptr > len) { 3941 mp1 = dupb(mp0); 3942 if (mp1) { 3943 /* Partition the data between the two mblks. */ 3944 mp1->b_wptr = mp1->b_rptr + len; 3945 mp0->b_rptr = mp1->b_wptr; 3946 /* 3947 * after adjustments if mblk not consumed is now 3948 * unaligned, try to align it. If this fails free 3949 * all messages and let upper layer recover. 3950 */ 3951 if (!OK_32PTR(mp0->b_rptr)) { 3952 if (!pullupmsg(mp0, -1)) { 3953 freemsg(mp0); 3954 freemsg(mp1); 3955 *mpp = NULL; 3956 return (NULL); 3957 } 3958 } 3959 } 3960 return (mp1); 3961 } 3962 /* Eat through as many mblks as we need to get len bytes. */ 3963 len -= mp0->b_wptr - mp0->b_rptr; 3964 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3965 if (mp2->b_wptr - mp2->b_rptr > len) { 3966 /* 3967 * We won't consume the entire last mblk. Like 3968 * above, dup and partition it. 3969 */ 3970 mp1->b_cont = dupb(mp2); 3971 mp1 = mp1->b_cont; 3972 if (!mp1) { 3973 /* 3974 * Trouble. Rather than go to a lot of 3975 * trouble to clean up, we free the messages. 3976 * This won't be any worse than losing it on 3977 * the wire. 3978 */ 3979 freemsg(mp0); 3980 freemsg(mp2); 3981 *mpp = NULL; 3982 return (NULL); 3983 } 3984 mp1->b_wptr = mp1->b_rptr + len; 3985 mp2->b_rptr = mp1->b_wptr; 3986 /* 3987 * after adjustments if mblk not consumed is now 3988 * unaligned, try to align it. If this fails free 3989 * all messages and let upper layer recover. 3990 */ 3991 if (!OK_32PTR(mp2->b_rptr)) { 3992 if (!pullupmsg(mp2, -1)) { 3993 freemsg(mp0); 3994 freemsg(mp2); 3995 *mpp = NULL; 3996 return (NULL); 3997 } 3998 } 3999 *mpp = mp2; 4000 return (mp0); 4001 } 4002 /* Decrement len by the amount we just got. */ 4003 len -= mp2->b_wptr - mp2->b_rptr; 4004 } 4005 /* 4006 * len should be reduced to zero now. If not our caller has 4007 * screwed up. 4008 */ 4009 if (len) { 4010 /* Shouldn't happen! */ 4011 freemsg(mp0); 4012 *mpp = NULL; 4013 return (NULL); 4014 } 4015 /* 4016 * We consumed up to exactly the end of an mblk. Detach the part 4017 * we are returning from the rest of the chain. 4018 */ 4019 mp1->b_cont = NULL; 4020 *mpp = mp2; 4021 return (mp0); 4022 } 4023 4024 /* The ill stream is being unplumbed. Called from ip_close */ 4025 int 4026 ip_modclose(ill_t *ill) 4027 { 4028 boolean_t success; 4029 ipsq_t *ipsq; 4030 ipif_t *ipif; 4031 queue_t *q = ill->ill_rq; 4032 ip_stack_t *ipst = ill->ill_ipst; 4033 int i; 4034 arl_ill_common_t *ai = ill->ill_common; 4035 4036 /* 4037 * The punlink prior to this may have initiated a capability 4038 * negotiation. But ipsq_enter will block until that finishes or 4039 * times out. 4040 */ 4041 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4042 4043 /* 4044 * Open/close/push/pop is guaranteed to be single threaded 4045 * per stream by STREAMS. FS guarantees that all references 4046 * from top are gone before close is called. So there can't 4047 * be another close thread that has set CONDEMNED on this ill. 4048 * and cause ipsq_enter to return failure. 4049 */ 4050 ASSERT(success); 4051 ipsq = ill->ill_phyint->phyint_ipsq; 4052 4053 /* 4054 * Mark it condemned. No new reference will be made to this ill. 4055 * Lookup functions will return an error. Threads that try to 4056 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4057 * that the refcnt will drop down to zero. 4058 */ 4059 mutex_enter(&ill->ill_lock); 4060 ill->ill_state_flags |= ILL_CONDEMNED; 4061 for (ipif = ill->ill_ipif; ipif != NULL; 4062 ipif = ipif->ipif_next) { 4063 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4064 } 4065 /* 4066 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4067 * returns error if ILL_CONDEMNED is set 4068 */ 4069 cv_broadcast(&ill->ill_cv); 4070 mutex_exit(&ill->ill_lock); 4071 4072 /* 4073 * Send all the deferred DLPI messages downstream which came in 4074 * during the small window right before ipsq_enter(). We do this 4075 * without waiting for the ACKs because all the ACKs for M_PROTO 4076 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4077 */ 4078 ill_dlpi_send_deferred(ill); 4079 4080 /* 4081 * Shut down fragmentation reassembly. 4082 * ill_frag_timer won't start a timer again. 4083 * Now cancel any existing timer 4084 */ 4085 (void) untimeout(ill->ill_frag_timer_id); 4086 (void) ill_frag_timeout(ill, 0); 4087 4088 /* 4089 * Call ill_delete to bring down the ipifs, ilms and ill on 4090 * this ill. Then wait for the refcnts to drop to zero. 4091 * ill_is_freeable checks whether the ill is really quiescent. 4092 * Then make sure that threads that are waiting to enter the 4093 * ipsq have seen the error returned by ipsq_enter and have 4094 * gone away. Then we call ill_delete_tail which does the 4095 * DL_UNBIND_REQ with the driver and then qprocsoff. 4096 */ 4097 ill_delete(ill); 4098 mutex_enter(&ill->ill_lock); 4099 while (!ill_is_freeable(ill)) 4100 cv_wait(&ill->ill_cv, &ill->ill_lock); 4101 4102 while (ill->ill_waiters) 4103 cv_wait(&ill->ill_cv, &ill->ill_lock); 4104 4105 mutex_exit(&ill->ill_lock); 4106 4107 /* 4108 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4109 * it held until the end of the function since the cleanup 4110 * below needs to be able to use the ip_stack_t. 4111 */ 4112 netstack_hold(ipst->ips_netstack); 4113 4114 /* qprocsoff is done via ill_delete_tail */ 4115 ill_delete_tail(ill); 4116 /* 4117 * synchronously wait for arp stream to unbind. After this, we 4118 * cannot get any data packets up from the driver. 4119 */ 4120 arp_unbind_complete(ill); 4121 ASSERT(ill->ill_ipst == NULL); 4122 4123 /* 4124 * Walk through all conns and qenable those that have queued data. 4125 * Close synchronization needs this to 4126 * be done to ensure that all upper layers blocked 4127 * due to flow control to the closing device 4128 * get unblocked. 4129 */ 4130 ip1dbg(("ip_wsrv: walking\n")); 4131 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4132 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4133 } 4134 4135 /* 4136 * ai can be null if this is an IPv6 ill, or if the IPv4 4137 * stream is being torn down before ARP was plumbed (e.g., 4138 * /sbin/ifconfig plumbing a stream twice, and encountering 4139 * an error 4140 */ 4141 if (ai != NULL) { 4142 ASSERT(!ill->ill_isv6); 4143 mutex_enter(&ai->ai_lock); 4144 ai->ai_ill = NULL; 4145 if (ai->ai_arl == NULL) { 4146 mutex_destroy(&ai->ai_lock); 4147 kmem_free(ai, sizeof (*ai)); 4148 } else { 4149 cv_signal(&ai->ai_ill_unplumb_done); 4150 mutex_exit(&ai->ai_lock); 4151 } 4152 } 4153 4154 mutex_enter(&ipst->ips_ip_mi_lock); 4155 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4156 mutex_exit(&ipst->ips_ip_mi_lock); 4157 4158 /* 4159 * credp could be null if the open didn't succeed and ip_modopen 4160 * itself calls ip_close. 4161 */ 4162 if (ill->ill_credp != NULL) 4163 crfree(ill->ill_credp); 4164 4165 mutex_destroy(&ill->ill_saved_ire_lock); 4166 mutex_destroy(&ill->ill_lock); 4167 rw_destroy(&ill->ill_mcast_lock); 4168 mutex_destroy(&ill->ill_mcast_serializer); 4169 list_destroy(&ill->ill_nce); 4170 4171 /* 4172 * Now we are done with the module close pieces that 4173 * need the netstack_t. 4174 */ 4175 netstack_rele(ipst->ips_netstack); 4176 4177 mi_close_free((IDP)ill); 4178 q->q_ptr = WR(q)->q_ptr = NULL; 4179 4180 ipsq_exit(ipsq); 4181 4182 return (0); 4183 } 4184 4185 /* 4186 * This is called as part of close() for IP, UDP, ICMP, and RTS 4187 * in order to quiesce the conn. 4188 */ 4189 void 4190 ip_quiesce_conn(conn_t *connp) 4191 { 4192 boolean_t drain_cleanup_reqd = B_FALSE; 4193 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4194 boolean_t ilg_cleanup_reqd = B_FALSE; 4195 ip_stack_t *ipst; 4196 4197 ASSERT(!IPCL_IS_TCP(connp)); 4198 ipst = connp->conn_netstack->netstack_ip; 4199 4200 /* 4201 * Mark the conn as closing, and this conn must not be 4202 * inserted in future into any list. Eg. conn_drain_insert(), 4203 * won't insert this conn into the conn_drain_list. 4204 * 4205 * conn_idl, and conn_ilg cannot get set henceforth. 4206 */ 4207 mutex_enter(&connp->conn_lock); 4208 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4209 connp->conn_state_flags |= CONN_CLOSING; 4210 if (connp->conn_idl != NULL) 4211 drain_cleanup_reqd = B_TRUE; 4212 if (connp->conn_oper_pending_ill != NULL) 4213 conn_ioctl_cleanup_reqd = B_TRUE; 4214 if (connp->conn_dhcpinit_ill != NULL) { 4215 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4216 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4217 ill_set_inputfn(connp->conn_dhcpinit_ill); 4218 connp->conn_dhcpinit_ill = NULL; 4219 } 4220 if (connp->conn_ilg != NULL) 4221 ilg_cleanup_reqd = B_TRUE; 4222 mutex_exit(&connp->conn_lock); 4223 4224 if (conn_ioctl_cleanup_reqd) 4225 conn_ioctl_cleanup(connp); 4226 4227 if (is_system_labeled() && connp->conn_anon_port) { 4228 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4229 connp->conn_mlp_type, connp->conn_proto, 4230 ntohs(connp->conn_lport), B_FALSE); 4231 connp->conn_anon_port = 0; 4232 } 4233 connp->conn_mlp_type = mlptSingle; 4234 4235 /* 4236 * Remove this conn from any fanout list it is on. 4237 * and then wait for any threads currently operating 4238 * on this endpoint to finish 4239 */ 4240 ipcl_hash_remove(connp); 4241 4242 /* 4243 * Remove this conn from the drain list, and do any other cleanup that 4244 * may be required. (TCP conns are never flow controlled, and 4245 * conn_idl will be NULL.) 4246 */ 4247 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4248 idl_t *idl = connp->conn_idl; 4249 4250 mutex_enter(&idl->idl_lock); 4251 conn_drain(connp, B_TRUE); 4252 mutex_exit(&idl->idl_lock); 4253 } 4254 4255 if (connp == ipst->ips_ip_g_mrouter) 4256 (void) ip_mrouter_done(ipst); 4257 4258 if (ilg_cleanup_reqd) 4259 ilg_delete_all(connp); 4260 4261 /* 4262 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4263 * callers from write side can't be there now because close 4264 * is in progress. The only other caller is ipcl_walk 4265 * which checks for the condemned flag. 4266 */ 4267 mutex_enter(&connp->conn_lock); 4268 connp->conn_state_flags |= CONN_CONDEMNED; 4269 while (connp->conn_ref != 1) 4270 cv_wait(&connp->conn_cv, &connp->conn_lock); 4271 connp->conn_state_flags |= CONN_QUIESCED; 4272 mutex_exit(&connp->conn_lock); 4273 } 4274 4275 /* ARGSUSED */ 4276 int 4277 ip_close(queue_t *q, int flags) 4278 { 4279 conn_t *connp; 4280 4281 /* 4282 * Call the appropriate delete routine depending on whether this is 4283 * a module or device. 4284 */ 4285 if (WR(q)->q_next != NULL) { 4286 /* This is a module close */ 4287 return (ip_modclose((ill_t *)q->q_ptr)); 4288 } 4289 4290 connp = q->q_ptr; 4291 ip_quiesce_conn(connp); 4292 4293 qprocsoff(q); 4294 4295 /* 4296 * Now we are truly single threaded on this stream, and can 4297 * delete the things hanging off the connp, and finally the connp. 4298 * We removed this connp from the fanout list, it cannot be 4299 * accessed thru the fanouts, and we already waited for the 4300 * conn_ref to drop to 0. We are already in close, so 4301 * there cannot be any other thread from the top. qprocsoff 4302 * has completed, and service has completed or won't run in 4303 * future. 4304 */ 4305 ASSERT(connp->conn_ref == 1); 4306 4307 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4308 4309 connp->conn_ref--; 4310 ipcl_conn_destroy(connp); 4311 4312 q->q_ptr = WR(q)->q_ptr = NULL; 4313 return (0); 4314 } 4315 4316 /* 4317 * Wapper around putnext() so that ip_rts_request can merely use 4318 * conn_recv. 4319 */ 4320 /*ARGSUSED2*/ 4321 static void 4322 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4323 { 4324 conn_t *connp = (conn_t *)arg1; 4325 4326 putnext(connp->conn_rq, mp); 4327 } 4328 4329 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4330 /* ARGSUSED */ 4331 static void 4332 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4333 { 4334 freemsg(mp); 4335 } 4336 4337 /* 4338 * Called when the module is about to be unloaded 4339 */ 4340 void 4341 ip_ddi_destroy(void) 4342 { 4343 /* This needs to be called before destroying any transports. */ 4344 mutex_enter(&cpu_lock); 4345 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4346 mutex_exit(&cpu_lock); 4347 4348 tnet_fini(); 4349 4350 icmp_ddi_g_destroy(); 4351 rts_ddi_g_destroy(); 4352 udp_ddi_g_destroy(); 4353 dccp_ddi_g_destroy(); 4354 sctp_ddi_g_destroy(); 4355 tcp_ddi_g_destroy(); 4356 ilb_ddi_g_destroy(); 4357 dce_g_destroy(); 4358 ipsec_policy_g_destroy(); 4359 ipcl_g_destroy(); 4360 ip_net_g_destroy(); 4361 ip_ire_g_fini(); 4362 inet_minor_destroy(ip_minor_arena_sa); 4363 #if defined(_LP64) 4364 inet_minor_destroy(ip_minor_arena_la); 4365 #endif 4366 4367 #ifdef DEBUG 4368 list_destroy(&ip_thread_list); 4369 rw_destroy(&ip_thread_rwlock); 4370 tsd_destroy(&ip_thread_data); 4371 #endif 4372 4373 netstack_unregister(NS_IP); 4374 } 4375 4376 /* 4377 * First step in cleanup. 4378 */ 4379 /* ARGSUSED */ 4380 static void 4381 ip_stack_shutdown(netstackid_t stackid, void *arg) 4382 { 4383 ip_stack_t *ipst = (ip_stack_t *)arg; 4384 4385 #ifdef NS_DEBUG 4386 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4387 #endif 4388 4389 /* 4390 * Perform cleanup for special interfaces (loopback and IPMP). 4391 */ 4392 ip_interface_cleanup(ipst); 4393 4394 /* 4395 * The *_hook_shutdown()s start the process of notifying any 4396 * consumers that things are going away.... nothing is destroyed. 4397 */ 4398 ipv4_hook_shutdown(ipst); 4399 ipv6_hook_shutdown(ipst); 4400 arp_hook_shutdown(ipst); 4401 4402 mutex_enter(&ipst->ips_capab_taskq_lock); 4403 ipst->ips_capab_taskq_quit = B_TRUE; 4404 cv_signal(&ipst->ips_capab_taskq_cv); 4405 mutex_exit(&ipst->ips_capab_taskq_lock); 4406 } 4407 4408 /* 4409 * Free the IP stack instance. 4410 */ 4411 static void 4412 ip_stack_fini(netstackid_t stackid, void *arg) 4413 { 4414 ip_stack_t *ipst = (ip_stack_t *)arg; 4415 int ret; 4416 4417 #ifdef NS_DEBUG 4418 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4419 #endif 4420 /* 4421 * At this point, all of the notifications that the events and 4422 * protocols are going away have been run, meaning that we can 4423 * now set about starting to clean things up. 4424 */ 4425 ipobs_fini(ipst); 4426 ipv4_hook_destroy(ipst); 4427 ipv6_hook_destroy(ipst); 4428 arp_hook_destroy(ipst); 4429 ip_net_destroy(ipst); 4430 4431 ipmp_destroy(ipst); 4432 4433 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4434 ipst->ips_ip_mibkp = NULL; 4435 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4436 ipst->ips_icmp_mibkp = NULL; 4437 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4438 ipst->ips_ip_kstat = NULL; 4439 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4440 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4441 ipst->ips_ip6_kstat = NULL; 4442 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4443 4444 kmem_free(ipst->ips_propinfo_tbl, 4445 ip_propinfo_count * sizeof (mod_prop_info_t)); 4446 ipst->ips_propinfo_tbl = NULL; 4447 4448 dce_stack_destroy(ipst); 4449 ip_mrouter_stack_destroy(ipst); 4450 4451 ret = untimeout(ipst->ips_igmp_timeout_id); 4452 if (ret == -1) { 4453 ASSERT(ipst->ips_igmp_timeout_id == 0); 4454 } else { 4455 ASSERT(ipst->ips_igmp_timeout_id != 0); 4456 ipst->ips_igmp_timeout_id = 0; 4457 } 4458 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4459 if (ret == -1) { 4460 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4461 } else { 4462 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4463 ipst->ips_igmp_slowtimeout_id = 0; 4464 } 4465 ret = untimeout(ipst->ips_mld_timeout_id); 4466 if (ret == -1) { 4467 ASSERT(ipst->ips_mld_timeout_id == 0); 4468 } else { 4469 ASSERT(ipst->ips_mld_timeout_id != 0); 4470 ipst->ips_mld_timeout_id = 0; 4471 } 4472 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4473 if (ret == -1) { 4474 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4475 } else { 4476 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4477 ipst->ips_mld_slowtimeout_id = 0; 4478 } 4479 4480 ip_ire_fini(ipst); 4481 ip6_asp_free(ipst); 4482 conn_drain_fini(ipst); 4483 ipcl_destroy(ipst); 4484 4485 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4486 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4487 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4488 ipst->ips_ndp4 = NULL; 4489 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4490 ipst->ips_ndp6 = NULL; 4491 4492 if (ipst->ips_loopback_ksp != NULL) { 4493 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4494 ipst->ips_loopback_ksp = NULL; 4495 } 4496 4497 mutex_destroy(&ipst->ips_capab_taskq_lock); 4498 cv_destroy(&ipst->ips_capab_taskq_cv); 4499 4500 rw_destroy(&ipst->ips_srcid_lock); 4501 4502 mutex_destroy(&ipst->ips_ip_mi_lock); 4503 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4504 4505 mutex_destroy(&ipst->ips_igmp_timer_lock); 4506 mutex_destroy(&ipst->ips_mld_timer_lock); 4507 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4508 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4509 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4510 rw_destroy(&ipst->ips_ill_g_lock); 4511 4512 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4513 ipst->ips_phyint_g_list = NULL; 4514 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4515 ipst->ips_ill_g_heads = NULL; 4516 4517 ldi_ident_release(ipst->ips_ldi_ident); 4518 kmem_free(ipst, sizeof (*ipst)); 4519 } 4520 4521 /* 4522 * This function is called from the TSD destructor, and is used to debug 4523 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4524 * details. 4525 */ 4526 static void 4527 ip_thread_exit(void *phash) 4528 { 4529 th_hash_t *thh = phash; 4530 4531 rw_enter(&ip_thread_rwlock, RW_WRITER); 4532 list_remove(&ip_thread_list, thh); 4533 rw_exit(&ip_thread_rwlock); 4534 mod_hash_destroy_hash(thh->thh_hash); 4535 kmem_free(thh, sizeof (*thh)); 4536 } 4537 4538 /* 4539 * Called when the IP kernel module is loaded into the kernel 4540 */ 4541 void 4542 ip_ddi_init(void) 4543 { 4544 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4545 4546 /* 4547 * For IP and TCP the minor numbers should start from 2 since we have 4 4548 * initial devices: ip, ip6, tcp, tcp6. 4549 */ 4550 /* 4551 * If this is a 64-bit kernel, then create two separate arenas - 4552 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4553 * other for socket apps in the range 2^^18 through 2^^32-1. 4554 */ 4555 ip_minor_arena_la = NULL; 4556 ip_minor_arena_sa = NULL; 4557 #if defined(_LP64) 4558 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4559 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4560 cmn_err(CE_PANIC, 4561 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4562 } 4563 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4564 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4565 cmn_err(CE_PANIC, 4566 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4567 } 4568 #else 4569 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4570 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4571 cmn_err(CE_PANIC, 4572 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4573 } 4574 #endif 4575 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4576 4577 ipcl_g_init(); 4578 ip_ire_g_init(); 4579 ip_net_g_init(); 4580 4581 #ifdef DEBUG 4582 tsd_create(&ip_thread_data, ip_thread_exit); 4583 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4584 list_create(&ip_thread_list, sizeof (th_hash_t), 4585 offsetof(th_hash_t, thh_link)); 4586 #endif 4587 ipsec_policy_g_init(); 4588 tcp_ddi_g_init(); 4589 sctp_ddi_g_init(); 4590 dccp_ddi_g_init(); 4591 dce_g_init(); 4592 4593 /* 4594 * We want to be informed each time a stack is created or 4595 * destroyed in the kernel, so we can maintain the 4596 * set of udp_stack_t's. 4597 */ 4598 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4599 ip_stack_fini); 4600 4601 tnet_init(); 4602 4603 udp_ddi_g_init(); 4604 rts_ddi_g_init(); 4605 icmp_ddi_g_init(); 4606 ilb_ddi_g_init(); 4607 4608 /* This needs to be called after all transports are initialized. */ 4609 mutex_enter(&cpu_lock); 4610 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4611 mutex_exit(&cpu_lock); 4612 } 4613 4614 /* 4615 * Initialize the IP stack instance. 4616 */ 4617 static void * 4618 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4619 { 4620 ip_stack_t *ipst; 4621 size_t arrsz; 4622 major_t major; 4623 4624 #ifdef NS_DEBUG 4625 printf("ip_stack_init(stack %d)\n", stackid); 4626 #endif 4627 4628 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4629 ipst->ips_netstack = ns; 4630 4631 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4632 KM_SLEEP); 4633 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4634 KM_SLEEP); 4635 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4636 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4637 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4638 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4639 4640 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4641 ipst->ips_igmp_deferred_next = INFINITY; 4642 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4643 ipst->ips_mld_deferred_next = INFINITY; 4644 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4645 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4646 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4647 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4648 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4649 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4650 4651 ipcl_init(ipst); 4652 ip_ire_init(ipst); 4653 ip6_asp_init(ipst); 4654 ipif_init(ipst); 4655 conn_drain_init(ipst); 4656 ip_mrouter_stack_init(ipst); 4657 dce_stack_init(ipst); 4658 4659 ipst->ips_ip_multirt_log_interval = 1000; 4660 4661 ipst->ips_ill_index = 1; 4662 4663 ipst->ips_saved_ip_forwarding = -1; 4664 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4665 4666 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4667 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4668 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4669 4670 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4671 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4672 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4673 ipst->ips_ip6_kstat = 4674 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4675 4676 ipst->ips_ip_src_id = 1; 4677 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4678 4679 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4680 4681 ip_net_init(ipst, ns); 4682 ipv4_hook_init(ipst); 4683 ipv6_hook_init(ipst); 4684 arp_hook_init(ipst); 4685 ipmp_init(ipst); 4686 ipobs_init(ipst); 4687 4688 /* 4689 * Create the taskq dispatcher thread and initialize related stuff. 4690 */ 4691 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4692 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4693 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4694 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4695 4696 major = mod_name_to_major(INET_NAME); 4697 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4698 return (ipst); 4699 } 4700 4701 /* 4702 * Allocate and initialize a DLPI template of the specified length. (May be 4703 * called as writer.) 4704 */ 4705 mblk_t * 4706 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4707 { 4708 mblk_t *mp; 4709 4710 mp = allocb(len, BPRI_MED); 4711 if (!mp) 4712 return (NULL); 4713 4714 /* 4715 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4716 * of which we don't seem to use) are sent with M_PCPROTO, and 4717 * that other DLPI are M_PROTO. 4718 */ 4719 if (prim == DL_INFO_REQ) { 4720 mp->b_datap->db_type = M_PCPROTO; 4721 } else { 4722 mp->b_datap->db_type = M_PROTO; 4723 } 4724 4725 mp->b_wptr = mp->b_rptr + len; 4726 bzero(mp->b_rptr, len); 4727 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4728 return (mp); 4729 } 4730 4731 /* 4732 * Allocate and initialize a DLPI notification. (May be called as writer.) 4733 */ 4734 mblk_t * 4735 ip_dlnotify_alloc(uint_t notification, uint_t data) 4736 { 4737 dl_notify_ind_t *notifyp; 4738 mblk_t *mp; 4739 4740 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4741 return (NULL); 4742 4743 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4744 notifyp->dl_notification = notification; 4745 notifyp->dl_data = data; 4746 return (mp); 4747 } 4748 4749 mblk_t * 4750 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4751 { 4752 dl_notify_ind_t *notifyp; 4753 mblk_t *mp; 4754 4755 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4756 return (NULL); 4757 4758 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4759 notifyp->dl_notification = notification; 4760 notifyp->dl_data1 = data1; 4761 notifyp->dl_data2 = data2; 4762 return (mp); 4763 } 4764 4765 /* 4766 * Debug formatting routine. Returns a character string representation of the 4767 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4768 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4769 * 4770 * Once the ndd table-printing interfaces are removed, this can be changed to 4771 * standard dotted-decimal form. 4772 */ 4773 char * 4774 ip_dot_addr(ipaddr_t addr, char *buf) 4775 { 4776 uint8_t *ap = (uint8_t *)&addr; 4777 4778 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4779 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4780 return (buf); 4781 } 4782 4783 /* 4784 * Write the given MAC address as a printable string in the usual colon- 4785 * separated format. 4786 */ 4787 const char * 4788 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4789 { 4790 char *bp; 4791 4792 if (alen == 0 || buflen < 4) 4793 return ("?"); 4794 bp = buf; 4795 for (;;) { 4796 /* 4797 * If there are more MAC address bytes available, but we won't 4798 * have any room to print them, then add "..." to the string 4799 * instead. See below for the 'magic number' explanation. 4800 */ 4801 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4802 (void) strcpy(bp, "..."); 4803 break; 4804 } 4805 (void) sprintf(bp, "%02x", *addr++); 4806 bp += 2; 4807 if (--alen == 0) 4808 break; 4809 *bp++ = ':'; 4810 buflen -= 3; 4811 /* 4812 * At this point, based on the first 'if' statement above, 4813 * either alen == 1 and buflen >= 3, or alen > 1 and 4814 * buflen >= 4. The first case leaves room for the final "xx" 4815 * number and trailing NUL byte. The second leaves room for at 4816 * least "...". Thus the apparently 'magic' numbers chosen for 4817 * that statement. 4818 */ 4819 } 4820 return (buf); 4821 } 4822 4823 /* 4824 * Called when it is conceptually a ULP that would sent the packet 4825 * e.g., port unreachable and protocol unreachable. Check that the packet 4826 * would have passed the IPsec global policy before sending the error. 4827 * 4828 * Send an ICMP error after patching up the packet appropriately. 4829 * Uses ip_drop_input and bumps the appropriate MIB. 4830 */ 4831 void 4832 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4833 ip_recv_attr_t *ira) 4834 { 4835 ipha_t *ipha; 4836 boolean_t secure; 4837 ill_t *ill = ira->ira_ill; 4838 ip_stack_t *ipst = ill->ill_ipst; 4839 netstack_t *ns = ipst->ips_netstack; 4840 ipsec_stack_t *ipss = ns->netstack_ipsec; 4841 4842 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4843 4844 /* 4845 * We are generating an icmp error for some inbound packet. 4846 * Called from all ip_fanout_(udp, tcp, proto) functions. 4847 * Before we generate an error, check with global policy 4848 * to see whether this is allowed to enter the system. As 4849 * there is no "conn", we are checking with global policy. 4850 */ 4851 ipha = (ipha_t *)mp->b_rptr; 4852 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4853 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4854 if (mp == NULL) 4855 return; 4856 } 4857 4858 /* We never send errors for protocols that we do implement */ 4859 if (ira->ira_protocol == IPPROTO_ICMP || 4860 ira->ira_protocol == IPPROTO_IGMP) { 4861 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4862 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4863 freemsg(mp); 4864 return; 4865 } 4866 /* 4867 * Have to correct checksum since 4868 * the packet might have been 4869 * fragmented and the reassembly code in ip_rput 4870 * does not restore the IP checksum. 4871 */ 4872 ipha->ipha_hdr_checksum = 0; 4873 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4874 4875 switch (icmp_type) { 4876 case ICMP_DEST_UNREACHABLE: 4877 switch (icmp_code) { 4878 case ICMP_PROTOCOL_UNREACHABLE: 4879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4880 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4881 break; 4882 case ICMP_PORT_UNREACHABLE: 4883 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4884 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4885 break; 4886 } 4887 4888 icmp_unreachable(mp, icmp_code, ira); 4889 break; 4890 default: 4891 #ifdef DEBUG 4892 panic("ip_fanout_send_icmp_v4: wrong type"); 4893 /*NOTREACHED*/ 4894 #else 4895 freemsg(mp); 4896 break; 4897 #endif 4898 } 4899 } 4900 4901 /* 4902 * Used to send an ICMP error message when a packet is received for 4903 * a protocol that is not supported. The mblk passed as argument 4904 * is consumed by this function. 4905 */ 4906 void 4907 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4908 { 4909 ipha_t *ipha; 4910 4911 ipha = (ipha_t *)mp->b_rptr; 4912 if (ira->ira_flags & IRAF_IS_IPV4) { 4913 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4914 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4915 ICMP_PROTOCOL_UNREACHABLE, ira); 4916 } else { 4917 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4918 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4919 ICMP6_PARAMPROB_NEXTHEADER, ira); 4920 } 4921 } 4922 4923 /* 4924 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4925 * Handles IPv4 and IPv6. 4926 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4927 * Caller is responsible for dropping references to the conn. 4928 */ 4929 void 4930 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4931 ip_recv_attr_t *ira) 4932 { 4933 ill_t *ill = ira->ira_ill; 4934 ip_stack_t *ipst = ill->ill_ipst; 4935 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4936 boolean_t secure; 4937 uint_t protocol = ira->ira_protocol; 4938 iaflags_t iraflags = ira->ira_flags; 4939 queue_t *rq; 4940 4941 secure = iraflags & IRAF_IPSEC_SECURE; 4942 4943 rq = connp->conn_rq; 4944 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4945 switch (protocol) { 4946 case IPPROTO_ICMPV6: 4947 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4948 break; 4949 case IPPROTO_ICMP: 4950 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4951 break; 4952 default: 4953 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4954 break; 4955 } 4956 freemsg(mp); 4957 return; 4958 } 4959 4960 ASSERT(!(IPCL_IS_IPTUN(connp))); 4961 4962 if (((iraflags & IRAF_IS_IPV4) ? 4963 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4964 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4965 secure) { 4966 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4967 ip6h, ira); 4968 if (mp == NULL) { 4969 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4970 /* Note that mp is NULL */ 4971 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4972 return; 4973 } 4974 } 4975 4976 if (iraflags & IRAF_ICMP_ERROR) { 4977 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4978 } else { 4979 ill_t *rill = ira->ira_rill; 4980 4981 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4982 ira->ira_ill = ira->ira_rill = NULL; 4983 /* Send it upstream */ 4984 (connp->conn_recv)(connp, mp, NULL, ira); 4985 ira->ira_ill = ill; 4986 ira->ira_rill = rill; 4987 } 4988 } 4989 4990 /* 4991 * Handle protocols with which IP is less intimate. There 4992 * can be more than one stream bound to a particular 4993 * protocol. When this is the case, normally each one gets a copy 4994 * of any incoming packets. 4995 * 4996 * IPsec NOTE : 4997 * 4998 * Don't allow a secure packet going up a non-secure connection. 4999 * We don't allow this because 5000 * 5001 * 1) Reply might go out in clear which will be dropped at 5002 * the sending side. 5003 * 2) If the reply goes out in clear it will give the 5004 * adversary enough information for getting the key in 5005 * most of the cases. 5006 * 5007 * Moreover getting a secure packet when we expect clear 5008 * implies that SA's were added without checking for 5009 * policy on both ends. This should not happen once ISAKMP 5010 * is used to negotiate SAs as SAs will be added only after 5011 * verifying the policy. 5012 * 5013 * Zones notes: 5014 * Earlier in ip_input on a system with multiple shared-IP zones we 5015 * duplicate the multicast and broadcast packets and send them up 5016 * with each explicit zoneid that exists on that ill. 5017 * This means that here we can match the zoneid with SO_ALLZONES being special. 5018 */ 5019 void 5020 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5021 { 5022 mblk_t *mp1; 5023 ipaddr_t laddr; 5024 conn_t *connp, *first_connp, *next_connp; 5025 connf_t *connfp; 5026 ill_t *ill = ira->ira_ill; 5027 ip_stack_t *ipst = ill->ill_ipst; 5028 5029 laddr = ipha->ipha_dst; 5030 5031 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5032 mutex_enter(&connfp->connf_lock); 5033 connp = connfp->connf_head; 5034 for (connp = connfp->connf_head; connp != NULL; 5035 connp = connp->conn_next) { 5036 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5037 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5038 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5039 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5040 break; 5041 } 5042 } 5043 5044 if (connp == NULL) { 5045 /* 5046 * No one bound to these addresses. Is 5047 * there a client that wants all 5048 * unclaimed datagrams? 5049 */ 5050 mutex_exit(&connfp->connf_lock); 5051 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5052 ICMP_PROTOCOL_UNREACHABLE, ira); 5053 return; 5054 } 5055 5056 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5057 5058 CONN_INC_REF(connp); 5059 first_connp = connp; 5060 connp = connp->conn_next; 5061 5062 for (;;) { 5063 while (connp != NULL) { 5064 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5065 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5066 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5067 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5068 ira, connp))) 5069 break; 5070 connp = connp->conn_next; 5071 } 5072 5073 if (connp == NULL) { 5074 /* No more interested clients */ 5075 connp = first_connp; 5076 break; 5077 } 5078 if (((mp1 = dupmsg(mp)) == NULL) && 5079 ((mp1 = copymsg(mp)) == NULL)) { 5080 /* Memory allocation failed */ 5081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5082 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5083 connp = first_connp; 5084 break; 5085 } 5086 5087 CONN_INC_REF(connp); 5088 mutex_exit(&connfp->connf_lock); 5089 5090 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5091 ira); 5092 5093 mutex_enter(&connfp->connf_lock); 5094 /* Follow the next pointer before releasing the conn. */ 5095 next_connp = connp->conn_next; 5096 CONN_DEC_REF(connp); 5097 connp = next_connp; 5098 } 5099 5100 /* Last one. Send it upstream. */ 5101 mutex_exit(&connfp->connf_lock); 5102 5103 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5104 5105 CONN_DEC_REF(connp); 5106 } 5107 5108 /* 5109 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5110 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5111 * is not consumed. 5112 * 5113 * One of three things can happen, all of which affect the passed-in mblk: 5114 * 5115 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5116 * 5117 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5118 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5119 * 5120 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5121 */ 5122 mblk_t * 5123 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5124 { 5125 int shift, plen, iph_len; 5126 ipha_t *ipha; 5127 udpha_t *udpha; 5128 uint32_t *spi; 5129 uint32_t esp_ports; 5130 uint8_t *orptr; 5131 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5132 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5133 5134 ipha = (ipha_t *)mp->b_rptr; 5135 iph_len = ira->ira_ip_hdr_length; 5136 plen = ira->ira_pktlen; 5137 5138 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5139 /* 5140 * Most likely a keepalive for the benefit of an intervening 5141 * NAT. These aren't for us, per se, so drop it. 5142 * 5143 * RFC 3947/8 doesn't say for sure what to do for 2-3 5144 * byte packets (keepalives are 1-byte), but we'll drop them 5145 * also. 5146 */ 5147 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5148 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5149 return (NULL); 5150 } 5151 5152 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5153 /* might as well pull it all up - it might be ESP. */ 5154 if (!pullupmsg(mp, -1)) { 5155 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5156 DROPPER(ipss, ipds_esp_nomem), 5157 &ipss->ipsec_dropper); 5158 return (NULL); 5159 } 5160 5161 ipha = (ipha_t *)mp->b_rptr; 5162 } 5163 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5164 if (*spi == 0) { 5165 /* UDP packet - remove 0-spi. */ 5166 shift = sizeof (uint32_t); 5167 } else { 5168 /* ESP-in-UDP packet - reduce to ESP. */ 5169 ipha->ipha_protocol = IPPROTO_ESP; 5170 shift = sizeof (udpha_t); 5171 } 5172 5173 /* Fix IP header */ 5174 ira->ira_pktlen = (plen - shift); 5175 ipha->ipha_length = htons(ira->ira_pktlen); 5176 ipha->ipha_hdr_checksum = 0; 5177 5178 orptr = mp->b_rptr; 5179 mp->b_rptr += shift; 5180 5181 udpha = (udpha_t *)(orptr + iph_len); 5182 if (*spi == 0) { 5183 ASSERT((uint8_t *)ipha == orptr); 5184 udpha->uha_length = htons(plen - shift - iph_len); 5185 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5186 esp_ports = 0; 5187 } else { 5188 esp_ports = *((uint32_t *)udpha); 5189 ASSERT(esp_ports != 0); 5190 } 5191 ovbcopy(orptr, orptr + shift, iph_len); 5192 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5193 ipha = (ipha_t *)(orptr + shift); 5194 5195 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5196 ira->ira_esp_udp_ports = esp_ports; 5197 ip_fanout_v4(mp, ipha, ira); 5198 return (NULL); 5199 } 5200 return (mp); 5201 } 5202 5203 /* 5204 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5205 * Handles IPv4 and IPv6. 5206 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5207 * Caller is responsible for dropping references to the conn. 5208 */ 5209 void 5210 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5211 ip_recv_attr_t *ira) 5212 { 5213 ill_t *ill = ira->ira_ill; 5214 ip_stack_t *ipst = ill->ill_ipst; 5215 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5216 boolean_t secure; 5217 iaflags_t iraflags = ira->ira_flags; 5218 5219 secure = iraflags & IRAF_IPSEC_SECURE; 5220 5221 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5222 !canputnext(connp->conn_rq)) { 5223 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5224 freemsg(mp); 5225 return; 5226 } 5227 5228 if (((iraflags & IRAF_IS_IPV4) ? 5229 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5230 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5231 secure) { 5232 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5233 ip6h, ira); 5234 if (mp == NULL) { 5235 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5236 /* Note that mp is NULL */ 5237 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5238 return; 5239 } 5240 } 5241 5242 /* 5243 * Since this code is not used for UDP unicast we don't need a NAT_T 5244 * check. Only ip_fanout_v4 has that check. 5245 */ 5246 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5247 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5248 } else { 5249 ill_t *rill = ira->ira_rill; 5250 5251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5252 ira->ira_ill = ira->ira_rill = NULL; 5253 /* Send it upstream */ 5254 (connp->conn_recv)(connp, mp, NULL, ira); 5255 ira->ira_ill = ill; 5256 ira->ira_rill = rill; 5257 } 5258 } 5259 5260 /* 5261 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5262 * (Unicast fanout is handled in ip_input_v4.) 5263 * 5264 * If SO_REUSEADDR is set all multicast and broadcast packets 5265 * will be delivered to all conns bound to the same port. 5266 * 5267 * If there is at least one matching AF_INET receiver, then we will 5268 * ignore any AF_INET6 receivers. 5269 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5270 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5271 * packets. 5272 * 5273 * Zones notes: 5274 * Earlier in ip_input on a system with multiple shared-IP zones we 5275 * duplicate the multicast and broadcast packets and send them up 5276 * with each explicit zoneid that exists on that ill. 5277 * This means that here we can match the zoneid with SO_ALLZONES being special. 5278 */ 5279 void 5280 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5281 ip_recv_attr_t *ira) 5282 { 5283 ipaddr_t laddr; 5284 in6_addr_t v6faddr; 5285 conn_t *connp; 5286 connf_t *connfp; 5287 ipaddr_t faddr; 5288 ill_t *ill = ira->ira_ill; 5289 ip_stack_t *ipst = ill->ill_ipst; 5290 5291 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5292 5293 laddr = ipha->ipha_dst; 5294 faddr = ipha->ipha_src; 5295 5296 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5297 mutex_enter(&connfp->connf_lock); 5298 connp = connfp->connf_head; 5299 5300 /* 5301 * If SO_REUSEADDR has been set on the first we send the 5302 * packet to all clients that have joined the group and 5303 * match the port. 5304 */ 5305 while (connp != NULL) { 5306 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5307 conn_wantpacket(connp, ira, ipha) && 5308 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5309 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5310 break; 5311 connp = connp->conn_next; 5312 } 5313 5314 if (connp == NULL) 5315 goto notfound; 5316 5317 CONN_INC_REF(connp); 5318 5319 if (connp->conn_reuseaddr) { 5320 conn_t *first_connp = connp; 5321 conn_t *next_connp; 5322 mblk_t *mp1; 5323 5324 connp = connp->conn_next; 5325 for (;;) { 5326 while (connp != NULL) { 5327 if (IPCL_UDP_MATCH(connp, lport, laddr, 5328 fport, faddr) && 5329 conn_wantpacket(connp, ira, ipha) && 5330 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5331 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5332 ira, connp))) 5333 break; 5334 connp = connp->conn_next; 5335 } 5336 if (connp == NULL) { 5337 /* No more interested clients */ 5338 connp = first_connp; 5339 break; 5340 } 5341 if (((mp1 = dupmsg(mp)) == NULL) && 5342 ((mp1 = copymsg(mp)) == NULL)) { 5343 /* Memory allocation failed */ 5344 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5345 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5346 connp = first_connp; 5347 break; 5348 } 5349 CONN_INC_REF(connp); 5350 mutex_exit(&connfp->connf_lock); 5351 5352 IP_STAT(ipst, ip_udp_fanmb); 5353 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5354 NULL, ira); 5355 mutex_enter(&connfp->connf_lock); 5356 /* Follow the next pointer before releasing the conn */ 5357 next_connp = connp->conn_next; 5358 CONN_DEC_REF(connp); 5359 connp = next_connp; 5360 } 5361 } 5362 5363 /* Last one. Send it upstream. */ 5364 mutex_exit(&connfp->connf_lock); 5365 IP_STAT(ipst, ip_udp_fanmb); 5366 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5367 CONN_DEC_REF(connp); 5368 return; 5369 5370 notfound: 5371 mutex_exit(&connfp->connf_lock); 5372 /* 5373 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5374 * have already been matched above, since they live in the IPv4 5375 * fanout tables. This implies we only need to 5376 * check for IPv6 in6addr_any endpoints here. 5377 * Thus we compare using ipv6_all_zeros instead of the destination 5378 * address, except for the multicast group membership lookup which 5379 * uses the IPv4 destination. 5380 */ 5381 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5382 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5383 mutex_enter(&connfp->connf_lock); 5384 connp = connfp->connf_head; 5385 /* 5386 * IPv4 multicast packet being delivered to an AF_INET6 5387 * in6addr_any endpoint. 5388 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5389 * and not conn_wantpacket_v6() since any multicast membership is 5390 * for an IPv4-mapped multicast address. 5391 */ 5392 while (connp != NULL) { 5393 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5394 fport, v6faddr) && 5395 conn_wantpacket(connp, ira, ipha) && 5396 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5397 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5398 break; 5399 connp = connp->conn_next; 5400 } 5401 5402 if (connp == NULL) { 5403 /* 5404 * No one bound to this port. Is 5405 * there a client that wants all 5406 * unclaimed datagrams? 5407 */ 5408 mutex_exit(&connfp->connf_lock); 5409 5410 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5411 NULL) { 5412 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5413 ip_fanout_proto_v4(mp, ipha, ira); 5414 } else { 5415 /* 5416 * We used to attempt to send an icmp error here, but 5417 * since this is known to be a multicast packet 5418 * and we don't send icmp errors in response to 5419 * multicast, just drop the packet and give up sooner. 5420 */ 5421 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5422 freemsg(mp); 5423 } 5424 return; 5425 } 5426 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5427 5428 /* 5429 * If SO_REUSEADDR has been set on the first we send the 5430 * packet to all clients that have joined the group and 5431 * match the port. 5432 */ 5433 if (connp->conn_reuseaddr) { 5434 conn_t *first_connp = connp; 5435 conn_t *next_connp; 5436 mblk_t *mp1; 5437 5438 CONN_INC_REF(connp); 5439 connp = connp->conn_next; 5440 for (;;) { 5441 while (connp != NULL) { 5442 if (IPCL_UDP_MATCH_V6(connp, lport, 5443 ipv6_all_zeros, fport, v6faddr) && 5444 conn_wantpacket(connp, ira, ipha) && 5445 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5446 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5447 ira, connp))) 5448 break; 5449 connp = connp->conn_next; 5450 } 5451 if (connp == NULL) { 5452 /* No more interested clients */ 5453 connp = first_connp; 5454 break; 5455 } 5456 if (((mp1 = dupmsg(mp)) == NULL) && 5457 ((mp1 = copymsg(mp)) == NULL)) { 5458 /* Memory allocation failed */ 5459 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5460 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5461 connp = first_connp; 5462 break; 5463 } 5464 CONN_INC_REF(connp); 5465 mutex_exit(&connfp->connf_lock); 5466 5467 IP_STAT(ipst, ip_udp_fanmb); 5468 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5469 NULL, ira); 5470 mutex_enter(&connfp->connf_lock); 5471 /* Follow the next pointer before releasing the conn */ 5472 next_connp = connp->conn_next; 5473 CONN_DEC_REF(connp); 5474 connp = next_connp; 5475 } 5476 } 5477 5478 /* Last one. Send it upstream. */ 5479 mutex_exit(&connfp->connf_lock); 5480 IP_STAT(ipst, ip_udp_fanmb); 5481 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5482 CONN_DEC_REF(connp); 5483 } 5484 5485 /* 5486 * Split an incoming packet's IPv4 options into the label and the other options. 5487 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5488 * clearing out any leftover label or options. 5489 * Otherwise it just makes ipp point into the packet. 5490 * 5491 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5492 */ 5493 int 5494 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5495 { 5496 uchar_t *opt; 5497 uint32_t totallen; 5498 uint32_t optval; 5499 uint32_t optlen; 5500 5501 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5502 ipp->ipp_hoplimit = ipha->ipha_ttl; 5503 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5504 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5505 5506 /* 5507 * Get length (in 4 byte octets) of IP header options. 5508 */ 5509 totallen = ipha->ipha_version_and_hdr_length - 5510 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5511 5512 if (totallen == 0) { 5513 if (!allocate) 5514 return (0); 5515 5516 /* Clear out anything from a previous packet */ 5517 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5518 kmem_free(ipp->ipp_ipv4_options, 5519 ipp->ipp_ipv4_options_len); 5520 ipp->ipp_ipv4_options = NULL; 5521 ipp->ipp_ipv4_options_len = 0; 5522 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5523 } 5524 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5525 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5526 ipp->ipp_label_v4 = NULL; 5527 ipp->ipp_label_len_v4 = 0; 5528 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5529 } 5530 return (0); 5531 } 5532 5533 totallen <<= 2; 5534 opt = (uchar_t *)&ipha[1]; 5535 if (!is_system_labeled()) { 5536 5537 copyall: 5538 if (!allocate) { 5539 if (totallen != 0) { 5540 ipp->ipp_ipv4_options = opt; 5541 ipp->ipp_ipv4_options_len = totallen; 5542 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5543 } 5544 return (0); 5545 } 5546 /* Just copy all of options */ 5547 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5548 if (totallen == ipp->ipp_ipv4_options_len) { 5549 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5550 return (0); 5551 } 5552 kmem_free(ipp->ipp_ipv4_options, 5553 ipp->ipp_ipv4_options_len); 5554 ipp->ipp_ipv4_options = NULL; 5555 ipp->ipp_ipv4_options_len = 0; 5556 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5557 } 5558 if (totallen == 0) 5559 return (0); 5560 5561 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5562 if (ipp->ipp_ipv4_options == NULL) 5563 return (ENOMEM); 5564 ipp->ipp_ipv4_options_len = totallen; 5565 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5566 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5567 return (0); 5568 } 5569 5570 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5571 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5572 ipp->ipp_label_v4 = NULL; 5573 ipp->ipp_label_len_v4 = 0; 5574 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5575 } 5576 5577 /* 5578 * Search for CIPSO option. 5579 * We assume CIPSO is first in options if it is present. 5580 * If it isn't, then ipp_opt_ipv4_options will not include the options 5581 * prior to the CIPSO option. 5582 */ 5583 while (totallen != 0) { 5584 switch (optval = opt[IPOPT_OPTVAL]) { 5585 case IPOPT_EOL: 5586 return (0); 5587 case IPOPT_NOP: 5588 optlen = 1; 5589 break; 5590 default: 5591 if (totallen <= IPOPT_OLEN) 5592 return (EINVAL); 5593 optlen = opt[IPOPT_OLEN]; 5594 if (optlen < 2) 5595 return (EINVAL); 5596 } 5597 if (optlen > totallen) 5598 return (EINVAL); 5599 5600 switch (optval) { 5601 case IPOPT_COMSEC: 5602 if (!allocate) { 5603 ipp->ipp_label_v4 = opt; 5604 ipp->ipp_label_len_v4 = optlen; 5605 ipp->ipp_fields |= IPPF_LABEL_V4; 5606 } else { 5607 ipp->ipp_label_v4 = kmem_alloc(optlen, 5608 KM_NOSLEEP); 5609 if (ipp->ipp_label_v4 == NULL) 5610 return (ENOMEM); 5611 ipp->ipp_label_len_v4 = optlen; 5612 ipp->ipp_fields |= IPPF_LABEL_V4; 5613 bcopy(opt, ipp->ipp_label_v4, optlen); 5614 } 5615 totallen -= optlen; 5616 opt += optlen; 5617 5618 /* Skip padding bytes until we get to a multiple of 4 */ 5619 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5620 totallen--; 5621 opt++; 5622 } 5623 /* Remaining as ipp_ipv4_options */ 5624 goto copyall; 5625 } 5626 totallen -= optlen; 5627 opt += optlen; 5628 } 5629 /* No CIPSO found; return everything as ipp_ipv4_options */ 5630 totallen = ipha->ipha_version_and_hdr_length - 5631 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5632 totallen <<= 2; 5633 opt = (uchar_t *)&ipha[1]; 5634 goto copyall; 5635 } 5636 5637 /* 5638 * Efficient versions of lookup for an IRE when we only 5639 * match the address. 5640 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5641 * Does not handle multicast addresses. 5642 */ 5643 uint_t 5644 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5645 { 5646 ire_t *ire; 5647 uint_t result; 5648 5649 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5650 ASSERT(ire != NULL); 5651 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5652 result = IRE_NOROUTE; 5653 else 5654 result = ire->ire_type; 5655 ire_refrele(ire); 5656 return (result); 5657 } 5658 5659 /* 5660 * Efficient versions of lookup for an IRE when we only 5661 * match the address. 5662 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5663 * Does not handle multicast addresses. 5664 */ 5665 uint_t 5666 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5667 { 5668 ire_t *ire; 5669 uint_t result; 5670 5671 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5672 ASSERT(ire != NULL); 5673 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5674 result = IRE_NOROUTE; 5675 else 5676 result = ire->ire_type; 5677 ire_refrele(ire); 5678 return (result); 5679 } 5680 5681 /* 5682 * Nobody should be sending 5683 * packets up this stream 5684 */ 5685 static void 5686 ip_lrput(queue_t *q, mblk_t *mp) 5687 { 5688 switch (mp->b_datap->db_type) { 5689 case M_FLUSH: 5690 /* Turn around */ 5691 if (*mp->b_rptr & FLUSHW) { 5692 *mp->b_rptr &= ~FLUSHR; 5693 qreply(q, mp); 5694 return; 5695 } 5696 break; 5697 } 5698 freemsg(mp); 5699 } 5700 5701 /* Nobody should be sending packets down this stream */ 5702 /* ARGSUSED */ 5703 void 5704 ip_lwput(queue_t *q, mblk_t *mp) 5705 { 5706 freemsg(mp); 5707 } 5708 5709 /* 5710 * Move the first hop in any source route to ipha_dst and remove that part of 5711 * the source route. Called by other protocols. Errors in option formatting 5712 * are ignored - will be handled by ip_output_options. Return the final 5713 * destination (either ipha_dst or the last entry in a source route.) 5714 */ 5715 ipaddr_t 5716 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5717 { 5718 ipoptp_t opts; 5719 uchar_t *opt; 5720 uint8_t optval; 5721 uint8_t optlen; 5722 ipaddr_t dst; 5723 int i; 5724 ip_stack_t *ipst = ns->netstack_ip; 5725 5726 ip2dbg(("ip_massage_options\n")); 5727 dst = ipha->ipha_dst; 5728 for (optval = ipoptp_first(&opts, ipha); 5729 optval != IPOPT_EOL; 5730 optval = ipoptp_next(&opts)) { 5731 opt = opts.ipoptp_cur; 5732 switch (optval) { 5733 uint8_t off; 5734 case IPOPT_SSRR: 5735 case IPOPT_LSRR: 5736 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5737 ip1dbg(("ip_massage_options: bad src route\n")); 5738 break; 5739 } 5740 optlen = opts.ipoptp_len; 5741 off = opt[IPOPT_OFFSET]; 5742 off--; 5743 redo_srr: 5744 if (optlen < IP_ADDR_LEN || 5745 off > optlen - IP_ADDR_LEN) { 5746 /* End of source route */ 5747 ip1dbg(("ip_massage_options: end of SR\n")); 5748 break; 5749 } 5750 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5751 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5752 ntohl(dst))); 5753 /* 5754 * Check if our address is present more than 5755 * once as consecutive hops in source route. 5756 * XXX verify per-interface ip_forwarding 5757 * for source route? 5758 */ 5759 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5760 off += IP_ADDR_LEN; 5761 goto redo_srr; 5762 } 5763 if (dst == htonl(INADDR_LOOPBACK)) { 5764 ip1dbg(("ip_massage_options: loopback addr in " 5765 "source route!\n")); 5766 break; 5767 } 5768 /* 5769 * Update ipha_dst to be the first hop and remove the 5770 * first hop from the source route (by overwriting 5771 * part of the option with NOP options). 5772 */ 5773 ipha->ipha_dst = dst; 5774 /* Put the last entry in dst */ 5775 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5776 3; 5777 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5778 5779 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5780 ntohl(dst))); 5781 /* Move down and overwrite */ 5782 opt[IP_ADDR_LEN] = opt[0]; 5783 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5784 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5785 for (i = 0; i < IP_ADDR_LEN; i++) 5786 opt[i] = IPOPT_NOP; 5787 break; 5788 } 5789 } 5790 return (dst); 5791 } 5792 5793 /* 5794 * Return the network mask 5795 * associated with the specified address. 5796 */ 5797 ipaddr_t 5798 ip_net_mask(ipaddr_t addr) 5799 { 5800 uchar_t *up = (uchar_t *)&addr; 5801 ipaddr_t mask = 0; 5802 uchar_t *maskp = (uchar_t *)&mask; 5803 5804 #if defined(__i386) || defined(__amd64) 5805 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5806 #endif 5807 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5808 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5809 #endif 5810 if (CLASSD(addr)) { 5811 maskp[0] = 0xF0; 5812 return (mask); 5813 } 5814 5815 /* We assume Class E default netmask to be 32 */ 5816 if (CLASSE(addr)) 5817 return (0xffffffffU); 5818 5819 if (addr == 0) 5820 return (0); 5821 maskp[0] = 0xFF; 5822 if ((up[0] & 0x80) == 0) 5823 return (mask); 5824 5825 maskp[1] = 0xFF; 5826 if ((up[0] & 0xC0) == 0x80) 5827 return (mask); 5828 5829 maskp[2] = 0xFF; 5830 if ((up[0] & 0xE0) == 0xC0) 5831 return (mask); 5832 5833 /* Otherwise return no mask */ 5834 return ((ipaddr_t)0); 5835 } 5836 5837 /* Name/Value Table Lookup Routine */ 5838 char * 5839 ip_nv_lookup(nv_t *nv, int value) 5840 { 5841 if (!nv) 5842 return (NULL); 5843 for (; nv->nv_name; nv++) { 5844 if (nv->nv_value == value) 5845 return (nv->nv_name); 5846 } 5847 return ("unknown"); 5848 } 5849 5850 static int 5851 ip_wait_for_info_ack(ill_t *ill) 5852 { 5853 int err; 5854 5855 mutex_enter(&ill->ill_lock); 5856 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5857 /* 5858 * Return value of 0 indicates a pending signal. 5859 */ 5860 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5861 if (err == 0) { 5862 mutex_exit(&ill->ill_lock); 5863 return (EINTR); 5864 } 5865 } 5866 mutex_exit(&ill->ill_lock); 5867 /* 5868 * ip_rput_other could have set an error in ill_error on 5869 * receipt of M_ERROR. 5870 */ 5871 return (ill->ill_error); 5872 } 5873 5874 /* 5875 * This is a module open, i.e. this is a control stream for access 5876 * to a DLPI device. We allocate an ill_t as the instance data in 5877 * this case. 5878 */ 5879 static int 5880 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5881 { 5882 ill_t *ill; 5883 int err; 5884 zoneid_t zoneid; 5885 netstack_t *ns; 5886 ip_stack_t *ipst; 5887 5888 /* 5889 * Prevent unprivileged processes from pushing IP so that 5890 * they can't send raw IP. 5891 */ 5892 if (secpolicy_net_rawaccess(credp) != 0) 5893 return (EPERM); 5894 5895 ns = netstack_find_by_cred(credp); 5896 ASSERT(ns != NULL); 5897 ipst = ns->netstack_ip; 5898 ASSERT(ipst != NULL); 5899 5900 /* 5901 * For exclusive stacks we set the zoneid to zero 5902 * to make IP operate as if in the global zone. 5903 */ 5904 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5905 zoneid = GLOBAL_ZONEID; 5906 else 5907 zoneid = crgetzoneid(credp); 5908 5909 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5910 q->q_ptr = WR(q)->q_ptr = ill; 5911 ill->ill_ipst = ipst; 5912 ill->ill_zoneid = zoneid; 5913 5914 /* 5915 * ill_init initializes the ill fields and then sends down 5916 * down a DL_INFO_REQ after calling qprocson. 5917 */ 5918 err = ill_init(q, ill); 5919 5920 if (err != 0) { 5921 mi_free(ill); 5922 netstack_rele(ipst->ips_netstack); 5923 q->q_ptr = NULL; 5924 WR(q)->q_ptr = NULL; 5925 return (err); 5926 } 5927 5928 /* 5929 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5930 * 5931 * ill_init initializes the ipsq marking this thread as 5932 * writer 5933 */ 5934 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5935 err = ip_wait_for_info_ack(ill); 5936 if (err == 0) 5937 ill->ill_credp = credp; 5938 else 5939 goto fail; 5940 5941 crhold(credp); 5942 5943 mutex_enter(&ipst->ips_ip_mi_lock); 5944 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5945 sflag, credp); 5946 mutex_exit(&ipst->ips_ip_mi_lock); 5947 fail: 5948 if (err) { 5949 (void) ip_close(q, 0); 5950 return (err); 5951 } 5952 return (0); 5953 } 5954 5955 /* For /dev/ip aka AF_INET open */ 5956 int 5957 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5958 { 5959 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5960 } 5961 5962 /* For /dev/ip6 aka AF_INET6 open */ 5963 int 5964 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5965 { 5966 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5967 } 5968 5969 /* IP open routine. */ 5970 int 5971 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5972 boolean_t isv6) 5973 { 5974 conn_t *connp; 5975 major_t maj; 5976 zoneid_t zoneid; 5977 netstack_t *ns; 5978 ip_stack_t *ipst; 5979 5980 /* Allow reopen. */ 5981 if (q->q_ptr != NULL) 5982 return (0); 5983 5984 if (sflag & MODOPEN) { 5985 /* This is a module open */ 5986 return (ip_modopen(q, devp, flag, sflag, credp)); 5987 } 5988 5989 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5990 /* 5991 * Non streams based socket looking for a stream 5992 * to access IP 5993 */ 5994 return (ip_helper_stream_setup(q, devp, flag, sflag, 5995 credp, isv6)); 5996 } 5997 5998 ns = netstack_find_by_cred(credp); 5999 ASSERT(ns != NULL); 6000 ipst = ns->netstack_ip; 6001 ASSERT(ipst != NULL); 6002 6003 /* 6004 * For exclusive stacks we set the zoneid to zero 6005 * to make IP operate as if in the global zone. 6006 */ 6007 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6008 zoneid = GLOBAL_ZONEID; 6009 else 6010 zoneid = crgetzoneid(credp); 6011 6012 /* 6013 * We are opening as a device. This is an IP client stream, and we 6014 * allocate an conn_t as the instance data. 6015 */ 6016 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6017 6018 /* 6019 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6020 * done by netstack_find_by_cred() 6021 */ 6022 netstack_rele(ipst->ips_netstack); 6023 6024 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6025 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6026 connp->conn_ixa->ixa_zoneid = zoneid; 6027 connp->conn_zoneid = zoneid; 6028 6029 connp->conn_rq = q; 6030 q->q_ptr = WR(q)->q_ptr = connp; 6031 6032 /* Minor tells us which /dev entry was opened */ 6033 if (isv6) { 6034 connp->conn_family = AF_INET6; 6035 connp->conn_ipversion = IPV6_VERSION; 6036 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6037 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6038 } else { 6039 connp->conn_family = AF_INET; 6040 connp->conn_ipversion = IPV4_VERSION; 6041 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6042 } 6043 6044 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6045 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6046 connp->conn_minor_arena = ip_minor_arena_la; 6047 } else { 6048 /* 6049 * Either minor numbers in the large arena were exhausted 6050 * or a non socket application is doing the open. 6051 * Try to allocate from the small arena. 6052 */ 6053 if ((connp->conn_dev = 6054 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6055 /* CONN_DEC_REF takes care of netstack_rele() */ 6056 q->q_ptr = WR(q)->q_ptr = NULL; 6057 CONN_DEC_REF(connp); 6058 return (EBUSY); 6059 } 6060 connp->conn_minor_arena = ip_minor_arena_sa; 6061 } 6062 6063 maj = getemajor(*devp); 6064 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6065 6066 /* 6067 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6068 */ 6069 connp->conn_cred = credp; 6070 connp->conn_cpid = curproc->p_pid; 6071 /* Cache things in ixa without an extra refhold */ 6072 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6073 connp->conn_ixa->ixa_cred = connp->conn_cred; 6074 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6075 if (is_system_labeled()) 6076 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6077 6078 /* 6079 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6080 */ 6081 connp->conn_recv = ip_conn_input; 6082 connp->conn_recvicmp = ip_conn_input_icmp; 6083 6084 crhold(connp->conn_cred); 6085 6086 /* 6087 * If the caller has the process-wide flag set, then default to MAC 6088 * exempt mode. This allows read-down to unlabeled hosts. 6089 */ 6090 if (getpflags(NET_MAC_AWARE, credp) != 0) 6091 connp->conn_mac_mode = CONN_MAC_AWARE; 6092 6093 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6094 6095 connp->conn_rq = q; 6096 connp->conn_wq = WR(q); 6097 6098 /* Non-zero default values */ 6099 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6100 6101 /* 6102 * Make the conn globally visible to walkers 6103 */ 6104 ASSERT(connp->conn_ref == 1); 6105 mutex_enter(&connp->conn_lock); 6106 connp->conn_state_flags &= ~CONN_INCIPIENT; 6107 mutex_exit(&connp->conn_lock); 6108 6109 qprocson(q); 6110 6111 return (0); 6112 } 6113 6114 /* 6115 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6116 * all of them are copied to the conn_t. If the req is "zero", the policy is 6117 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6118 * fields. 6119 * We keep only the latest setting of the policy and thus policy setting 6120 * is not incremental/cumulative. 6121 * 6122 * Requests to set policies with multiple alternative actions will 6123 * go through a different API. 6124 */ 6125 int 6126 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6127 { 6128 uint_t ah_req = 0; 6129 uint_t esp_req = 0; 6130 uint_t se_req = 0; 6131 ipsec_act_t *actp = NULL; 6132 uint_t nact; 6133 ipsec_policy_head_t *ph; 6134 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6135 int error = 0; 6136 netstack_t *ns = connp->conn_netstack; 6137 ip_stack_t *ipst = ns->netstack_ip; 6138 ipsec_stack_t *ipss = ns->netstack_ipsec; 6139 6140 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6141 6142 /* 6143 * The IP_SEC_OPT option does not allow variable length parameters, 6144 * hence a request cannot be NULL. 6145 */ 6146 if (req == NULL) 6147 return (EINVAL); 6148 6149 ah_req = req->ipsr_ah_req; 6150 esp_req = req->ipsr_esp_req; 6151 se_req = req->ipsr_self_encap_req; 6152 6153 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6154 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6155 return (EINVAL); 6156 6157 /* 6158 * Are we dealing with a request to reset the policy (i.e. 6159 * zero requests). 6160 */ 6161 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6162 (esp_req & REQ_MASK) == 0 && 6163 (se_req & REQ_MASK) == 0); 6164 6165 if (!is_pol_reset) { 6166 /* 6167 * If we couldn't load IPsec, fail with "protocol 6168 * not supported". 6169 * IPsec may not have been loaded for a request with zero 6170 * policies, so we don't fail in this case. 6171 */ 6172 mutex_enter(&ipss->ipsec_loader_lock); 6173 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6174 mutex_exit(&ipss->ipsec_loader_lock); 6175 return (EPROTONOSUPPORT); 6176 } 6177 mutex_exit(&ipss->ipsec_loader_lock); 6178 6179 /* 6180 * Test for valid requests. Invalid algorithms 6181 * need to be tested by IPsec code because new 6182 * algorithms can be added dynamically. 6183 */ 6184 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6185 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6186 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6187 return (EINVAL); 6188 } 6189 6190 /* 6191 * Only privileged users can issue these 6192 * requests. 6193 */ 6194 if (((ah_req & IPSEC_PREF_NEVER) || 6195 (esp_req & IPSEC_PREF_NEVER) || 6196 (se_req & IPSEC_PREF_NEVER)) && 6197 secpolicy_ip_config(cr, B_FALSE) != 0) { 6198 return (EPERM); 6199 } 6200 6201 /* 6202 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6203 * are mutually exclusive. 6204 */ 6205 if (((ah_req & REQ_MASK) == REQ_MASK) || 6206 ((esp_req & REQ_MASK) == REQ_MASK) || 6207 ((se_req & REQ_MASK) == REQ_MASK)) { 6208 /* Both of them are set */ 6209 return (EINVAL); 6210 } 6211 } 6212 6213 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6214 6215 /* 6216 * If we have already cached policies in conn_connect(), don't 6217 * let them change now. We cache policies for connections 6218 * whose src,dst [addr, port] is known. 6219 */ 6220 if (connp->conn_policy_cached) { 6221 return (EINVAL); 6222 } 6223 6224 /* 6225 * We have a zero policies, reset the connection policy if already 6226 * set. This will cause the connection to inherit the 6227 * global policy, if any. 6228 */ 6229 if (is_pol_reset) { 6230 if (connp->conn_policy != NULL) { 6231 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6232 connp->conn_policy = NULL; 6233 } 6234 connp->conn_in_enforce_policy = B_FALSE; 6235 connp->conn_out_enforce_policy = B_FALSE; 6236 return (0); 6237 } 6238 6239 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6240 ipst->ips_netstack); 6241 if (ph == NULL) 6242 goto enomem; 6243 6244 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6245 if (actp == NULL) 6246 goto enomem; 6247 6248 /* 6249 * Always insert IPv4 policy entries, since they can also apply to 6250 * ipv6 sockets being used in ipv4-compat mode. 6251 */ 6252 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6253 IPSEC_TYPE_INBOUND, ns)) 6254 goto enomem; 6255 is_pol_inserted = B_TRUE; 6256 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6257 IPSEC_TYPE_OUTBOUND, ns)) 6258 goto enomem; 6259 6260 /* 6261 * We're looking at a v6 socket, also insert the v6-specific 6262 * entries. 6263 */ 6264 if (connp->conn_family == AF_INET6) { 6265 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6266 IPSEC_TYPE_INBOUND, ns)) 6267 goto enomem; 6268 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6269 IPSEC_TYPE_OUTBOUND, ns)) 6270 goto enomem; 6271 } 6272 6273 ipsec_actvec_free(actp, nact); 6274 6275 /* 6276 * If the requests need security, set enforce_policy. 6277 * If the requests are IPSEC_PREF_NEVER, one should 6278 * still set conn_out_enforce_policy so that ip_set_destination 6279 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6280 * for connections that we don't cache policy in at connect time, 6281 * if global policy matches in ip_output_attach_policy, we 6282 * don't wrongly inherit global policy. Similarly, we need 6283 * to set conn_in_enforce_policy also so that we don't verify 6284 * policy wrongly. 6285 */ 6286 if ((ah_req & REQ_MASK) != 0 || 6287 (esp_req & REQ_MASK) != 0 || 6288 (se_req & REQ_MASK) != 0) { 6289 connp->conn_in_enforce_policy = B_TRUE; 6290 connp->conn_out_enforce_policy = B_TRUE; 6291 } 6292 6293 return (error); 6294 #undef REQ_MASK 6295 6296 /* 6297 * Common memory-allocation-failure exit path. 6298 */ 6299 enomem: 6300 if (actp != NULL) 6301 ipsec_actvec_free(actp, nact); 6302 if (is_pol_inserted) 6303 ipsec_polhead_flush(ph, ns); 6304 return (ENOMEM); 6305 } 6306 6307 /* 6308 * Set socket options for joining and leaving multicast groups. 6309 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6310 * The caller has already check that the option name is consistent with 6311 * the address family of the socket. 6312 */ 6313 int 6314 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6315 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6316 { 6317 int *i1 = (int *)invalp; 6318 int error = 0; 6319 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6320 struct ip_mreq *v4_mreqp; 6321 struct ipv6_mreq *v6_mreqp; 6322 struct group_req *greqp; 6323 ire_t *ire; 6324 boolean_t done = B_FALSE; 6325 ipaddr_t ifaddr; 6326 in6_addr_t v6group; 6327 uint_t ifindex; 6328 boolean_t mcast_opt = B_TRUE; 6329 mcast_record_t fmode; 6330 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6331 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6332 6333 switch (name) { 6334 case IP_ADD_MEMBERSHIP: 6335 case IPV6_JOIN_GROUP: 6336 mcast_opt = B_FALSE; 6337 /* FALLTHRU */ 6338 case MCAST_JOIN_GROUP: 6339 fmode = MODE_IS_EXCLUDE; 6340 optfn = ip_opt_add_group; 6341 break; 6342 6343 case IP_DROP_MEMBERSHIP: 6344 case IPV6_LEAVE_GROUP: 6345 mcast_opt = B_FALSE; 6346 /* FALLTHRU */ 6347 case MCAST_LEAVE_GROUP: 6348 fmode = MODE_IS_INCLUDE; 6349 optfn = ip_opt_delete_group; 6350 break; 6351 default: 6352 ASSERT(0); 6353 } 6354 6355 if (mcast_opt) { 6356 struct sockaddr_in *sin; 6357 struct sockaddr_in6 *sin6; 6358 6359 greqp = (struct group_req *)i1; 6360 if (greqp->gr_group.ss_family == AF_INET) { 6361 sin = (struct sockaddr_in *)&(greqp->gr_group); 6362 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6363 } else { 6364 if (!inet6) 6365 return (EINVAL); /* Not on INET socket */ 6366 6367 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6368 v6group = sin6->sin6_addr; 6369 } 6370 ifaddr = INADDR_ANY; 6371 ifindex = greqp->gr_interface; 6372 } else if (inet6) { 6373 v6_mreqp = (struct ipv6_mreq *)i1; 6374 v6group = v6_mreqp->ipv6mr_multiaddr; 6375 ifaddr = INADDR_ANY; 6376 ifindex = v6_mreqp->ipv6mr_interface; 6377 } else { 6378 v4_mreqp = (struct ip_mreq *)i1; 6379 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6380 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6381 ifindex = 0; 6382 } 6383 6384 /* 6385 * In the multirouting case, we need to replicate 6386 * the request on all interfaces that will take part 6387 * in replication. We do so because multirouting is 6388 * reflective, thus we will probably receive multi- 6389 * casts on those interfaces. 6390 * The ip_multirt_apply_membership() succeeds if 6391 * the operation succeeds on at least one interface. 6392 */ 6393 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6394 ipaddr_t group; 6395 6396 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6397 6398 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6399 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6400 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6401 } else { 6402 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6403 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6404 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6405 } 6406 if (ire != NULL) { 6407 if (ire->ire_flags & RTF_MULTIRT) { 6408 error = ip_multirt_apply_membership(optfn, ire, connp, 6409 checkonly, &v6group, fmode, &ipv6_all_zeros); 6410 done = B_TRUE; 6411 } 6412 ire_refrele(ire); 6413 } 6414 6415 if (!done) { 6416 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6417 fmode, &ipv6_all_zeros); 6418 } 6419 return (error); 6420 } 6421 6422 /* 6423 * Set socket options for joining and leaving multicast groups 6424 * for specific sources. 6425 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6426 * The caller has already check that the option name is consistent with 6427 * the address family of the socket. 6428 */ 6429 int 6430 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6431 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6432 { 6433 int *i1 = (int *)invalp; 6434 int error = 0; 6435 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6436 struct ip_mreq_source *imreqp; 6437 struct group_source_req *gsreqp; 6438 in6_addr_t v6group, v6src; 6439 uint32_t ifindex; 6440 ipaddr_t ifaddr; 6441 boolean_t mcast_opt = B_TRUE; 6442 mcast_record_t fmode; 6443 ire_t *ire; 6444 boolean_t done = B_FALSE; 6445 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6446 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6447 6448 switch (name) { 6449 case IP_BLOCK_SOURCE: 6450 mcast_opt = B_FALSE; 6451 /* FALLTHRU */ 6452 case MCAST_BLOCK_SOURCE: 6453 fmode = MODE_IS_EXCLUDE; 6454 optfn = ip_opt_add_group; 6455 break; 6456 6457 case IP_UNBLOCK_SOURCE: 6458 mcast_opt = B_FALSE; 6459 /* FALLTHRU */ 6460 case MCAST_UNBLOCK_SOURCE: 6461 fmode = MODE_IS_EXCLUDE; 6462 optfn = ip_opt_delete_group; 6463 break; 6464 6465 case IP_ADD_SOURCE_MEMBERSHIP: 6466 mcast_opt = B_FALSE; 6467 /* FALLTHRU */ 6468 case MCAST_JOIN_SOURCE_GROUP: 6469 fmode = MODE_IS_INCLUDE; 6470 optfn = ip_opt_add_group; 6471 break; 6472 6473 case IP_DROP_SOURCE_MEMBERSHIP: 6474 mcast_opt = B_FALSE; 6475 /* FALLTHRU */ 6476 case MCAST_LEAVE_SOURCE_GROUP: 6477 fmode = MODE_IS_INCLUDE; 6478 optfn = ip_opt_delete_group; 6479 break; 6480 default: 6481 ASSERT(0); 6482 } 6483 6484 if (mcast_opt) { 6485 gsreqp = (struct group_source_req *)i1; 6486 ifindex = gsreqp->gsr_interface; 6487 if (gsreqp->gsr_group.ss_family == AF_INET) { 6488 struct sockaddr_in *s; 6489 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6490 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6491 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6492 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6493 } else { 6494 struct sockaddr_in6 *s6; 6495 6496 if (!inet6) 6497 return (EINVAL); /* Not on INET socket */ 6498 6499 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6500 v6group = s6->sin6_addr; 6501 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6502 v6src = s6->sin6_addr; 6503 } 6504 ifaddr = INADDR_ANY; 6505 } else { 6506 imreqp = (struct ip_mreq_source *)i1; 6507 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6508 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6509 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6510 ifindex = 0; 6511 } 6512 6513 /* 6514 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6515 */ 6516 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6517 v6src = ipv6_all_zeros; 6518 6519 /* 6520 * In the multirouting case, we need to replicate 6521 * the request as noted in the mcast cases above. 6522 */ 6523 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6524 ipaddr_t group; 6525 6526 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6527 6528 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6529 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6530 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6531 } else { 6532 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6533 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6534 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6535 } 6536 if (ire != NULL) { 6537 if (ire->ire_flags & RTF_MULTIRT) { 6538 error = ip_multirt_apply_membership(optfn, ire, connp, 6539 checkonly, &v6group, fmode, &v6src); 6540 done = B_TRUE; 6541 } 6542 ire_refrele(ire); 6543 } 6544 if (!done) { 6545 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6546 fmode, &v6src); 6547 } 6548 return (error); 6549 } 6550 6551 /* 6552 * Given a destination address and a pointer to where to put the information 6553 * this routine fills in the mtuinfo. 6554 * The socket must be connected. 6555 * For sctp conn_faddr is the primary address. 6556 */ 6557 int 6558 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6559 { 6560 uint32_t pmtu = IP_MAXPACKET; 6561 uint_t scopeid; 6562 6563 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6564 return (-1); 6565 6566 /* In case we never sent or called ip_set_destination_v4/v6 */ 6567 if (ixa->ixa_ire != NULL) 6568 pmtu = ip_get_pmtu(ixa); 6569 6570 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6571 scopeid = ixa->ixa_scopeid; 6572 else 6573 scopeid = 0; 6574 6575 bzero(mtuinfo, sizeof (*mtuinfo)); 6576 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6577 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6578 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6579 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6580 mtuinfo->ip6m_mtu = pmtu; 6581 6582 return (sizeof (struct ip6_mtuinfo)); 6583 } 6584 6585 /* 6586 * When the src multihoming is changed from weak to [strong, preferred] 6587 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6588 * and identify routes that were created by user-applications in the 6589 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6590 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6591 * is selected by finding an interface route for the gateway. 6592 */ 6593 /* ARGSUSED */ 6594 void 6595 ip_ire_rebind_walker(ire_t *ire, void *notused) 6596 { 6597 if (!ire->ire_unbound || ire->ire_ill != NULL) 6598 return; 6599 ire_rebind(ire); 6600 ire_delete(ire); 6601 } 6602 6603 /* 6604 * When the src multihoming is changed from [strong, preferred] to weak, 6605 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6606 * set any entries that were created by user-applications in the unbound state 6607 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6608 */ 6609 /* ARGSUSED */ 6610 void 6611 ip_ire_unbind_walker(ire_t *ire, void *notused) 6612 { 6613 ire_t *new_ire; 6614 6615 if (!ire->ire_unbound || ire->ire_ill == NULL) 6616 return; 6617 if (ire->ire_ipversion == IPV6_VERSION) { 6618 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6619 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6620 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6621 } else { 6622 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6623 (uchar_t *)&ire->ire_mask, 6624 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6625 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6626 } 6627 if (new_ire == NULL) 6628 return; 6629 new_ire->ire_unbound = B_TRUE; 6630 /* 6631 * The bound ire must first be deleted so that we don't return 6632 * the existing one on the attempt to add the unbound new_ire. 6633 */ 6634 ire_delete(ire); 6635 new_ire = ire_add(new_ire); 6636 if (new_ire != NULL) 6637 ire_refrele(new_ire); 6638 } 6639 6640 /* 6641 * When the settings of ip*_strict_src_multihoming tunables are changed, 6642 * all cached routes need to be recomputed. This recomputation needs to be 6643 * done when going from weaker to stronger modes so that the cached ire 6644 * for the connection does not violate the current ip*_strict_src_multihoming 6645 * setting. It also needs to be done when going from stronger to weaker modes, 6646 * so that we fall back to matching on the longest-matching-route (as opposed 6647 * to a shorter match that may have been selected in the strong mode 6648 * to satisfy src_multihoming settings). 6649 * 6650 * The cached ixa_ire entires for all conn_t entries are marked as 6651 * "verify" so that they will be recomputed for the next packet. 6652 */ 6653 void 6654 conn_ire_revalidate(conn_t *connp, void *arg) 6655 { 6656 boolean_t isv6 = (boolean_t)arg; 6657 6658 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6659 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6660 return; 6661 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6662 } 6663 6664 /* 6665 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6666 * When an ipf is passed here for the first time, if 6667 * we already have in-order fragments on the queue, we convert from the fast- 6668 * path reassembly scheme to the hard-case scheme. From then on, additional 6669 * fragments are reassembled here. We keep track of the start and end offsets 6670 * of each piece, and the number of holes in the chain. When the hole count 6671 * goes to zero, we are done! 6672 * 6673 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6674 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6675 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6676 * after the call to ip_reassemble(). 6677 */ 6678 int 6679 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6680 size_t msg_len) 6681 { 6682 uint_t end; 6683 mblk_t *next_mp; 6684 mblk_t *mp1; 6685 uint_t offset; 6686 boolean_t incr_dups = B_TRUE; 6687 boolean_t offset_zero_seen = B_FALSE; 6688 boolean_t pkt_boundary_checked = B_FALSE; 6689 6690 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6691 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6692 6693 /* Add in byte count */ 6694 ipf->ipf_count += msg_len; 6695 if (ipf->ipf_end) { 6696 /* 6697 * We were part way through in-order reassembly, but now there 6698 * is a hole. We walk through messages already queued, and 6699 * mark them for hard case reassembly. We know that up till 6700 * now they were in order starting from offset zero. 6701 */ 6702 offset = 0; 6703 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6704 IP_REASS_SET_START(mp1, offset); 6705 if (offset == 0) { 6706 ASSERT(ipf->ipf_nf_hdr_len != 0); 6707 offset = -ipf->ipf_nf_hdr_len; 6708 } 6709 offset += mp1->b_wptr - mp1->b_rptr; 6710 IP_REASS_SET_END(mp1, offset); 6711 } 6712 /* One hole at the end. */ 6713 ipf->ipf_hole_cnt = 1; 6714 /* Brand it as a hard case, forever. */ 6715 ipf->ipf_end = 0; 6716 } 6717 /* Walk through all the new pieces. */ 6718 do { 6719 end = start + (mp->b_wptr - mp->b_rptr); 6720 /* 6721 * If start is 0, decrease 'end' only for the first mblk of 6722 * the fragment. Otherwise 'end' can get wrong value in the 6723 * second pass of the loop if first mblk is exactly the 6724 * size of ipf_nf_hdr_len. 6725 */ 6726 if (start == 0 && !offset_zero_seen) { 6727 /* First segment */ 6728 ASSERT(ipf->ipf_nf_hdr_len != 0); 6729 end -= ipf->ipf_nf_hdr_len; 6730 offset_zero_seen = B_TRUE; 6731 } 6732 next_mp = mp->b_cont; 6733 /* 6734 * We are checking to see if there is any interesing data 6735 * to process. If there isn't and the mblk isn't the 6736 * one which carries the unfragmentable header then we 6737 * drop it. It's possible to have just the unfragmentable 6738 * header come through without any data. That needs to be 6739 * saved. 6740 * 6741 * If the assert at the top of this function holds then the 6742 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6743 * is infrequently traveled enough that the test is left in 6744 * to protect against future code changes which break that 6745 * invariant. 6746 */ 6747 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6748 /* Empty. Blast it. */ 6749 IP_REASS_SET_START(mp, 0); 6750 IP_REASS_SET_END(mp, 0); 6751 /* 6752 * If the ipf points to the mblk we are about to free, 6753 * update ipf to point to the next mblk (or NULL 6754 * if none). 6755 */ 6756 if (ipf->ipf_mp->b_cont == mp) 6757 ipf->ipf_mp->b_cont = next_mp; 6758 freeb(mp); 6759 continue; 6760 } 6761 mp->b_cont = NULL; 6762 IP_REASS_SET_START(mp, start); 6763 IP_REASS_SET_END(mp, end); 6764 if (!ipf->ipf_tail_mp) { 6765 ipf->ipf_tail_mp = mp; 6766 ipf->ipf_mp->b_cont = mp; 6767 if (start == 0 || !more) { 6768 ipf->ipf_hole_cnt = 1; 6769 /* 6770 * if the first fragment comes in more than one 6771 * mblk, this loop will be executed for each 6772 * mblk. Need to adjust hole count so exiting 6773 * this routine will leave hole count at 1. 6774 */ 6775 if (next_mp) 6776 ipf->ipf_hole_cnt++; 6777 } else 6778 ipf->ipf_hole_cnt = 2; 6779 continue; 6780 } else if (ipf->ipf_last_frag_seen && !more && 6781 !pkt_boundary_checked) { 6782 /* 6783 * We check datagram boundary only if this fragment 6784 * claims to be the last fragment and we have seen a 6785 * last fragment in the past too. We do this only 6786 * once for a given fragment. 6787 * 6788 * start cannot be 0 here as fragments with start=0 6789 * and MF=0 gets handled as a complete packet. These 6790 * fragments should not reach here. 6791 */ 6792 6793 if (start + msgdsize(mp) != 6794 IP_REASS_END(ipf->ipf_tail_mp)) { 6795 /* 6796 * We have two fragments both of which claim 6797 * to be the last fragment but gives conflicting 6798 * information about the whole datagram size. 6799 * Something fishy is going on. Drop the 6800 * fragment and free up the reassembly list. 6801 */ 6802 return (IP_REASS_FAILED); 6803 } 6804 6805 /* 6806 * We shouldn't come to this code block again for this 6807 * particular fragment. 6808 */ 6809 pkt_boundary_checked = B_TRUE; 6810 } 6811 6812 /* New stuff at or beyond tail? */ 6813 offset = IP_REASS_END(ipf->ipf_tail_mp); 6814 if (start >= offset) { 6815 if (ipf->ipf_last_frag_seen) { 6816 /* current fragment is beyond last fragment */ 6817 return (IP_REASS_FAILED); 6818 } 6819 /* Link it on end. */ 6820 ipf->ipf_tail_mp->b_cont = mp; 6821 ipf->ipf_tail_mp = mp; 6822 if (more) { 6823 if (start != offset) 6824 ipf->ipf_hole_cnt++; 6825 } else if (start == offset && next_mp == NULL) 6826 ipf->ipf_hole_cnt--; 6827 continue; 6828 } 6829 mp1 = ipf->ipf_mp->b_cont; 6830 offset = IP_REASS_START(mp1); 6831 /* New stuff at the front? */ 6832 if (start < offset) { 6833 if (start == 0) { 6834 if (end >= offset) { 6835 /* Nailed the hole at the begining. */ 6836 ipf->ipf_hole_cnt--; 6837 } 6838 } else if (end < offset) { 6839 /* 6840 * A hole, stuff, and a hole where there used 6841 * to be just a hole. 6842 */ 6843 ipf->ipf_hole_cnt++; 6844 } 6845 mp->b_cont = mp1; 6846 /* Check for overlap. */ 6847 while (end > offset) { 6848 if (end < IP_REASS_END(mp1)) { 6849 mp->b_wptr -= end - offset; 6850 IP_REASS_SET_END(mp, offset); 6851 BUMP_MIB(ill->ill_ip_mib, 6852 ipIfStatsReasmPartDups); 6853 break; 6854 } 6855 /* Did we cover another hole? */ 6856 if ((mp1->b_cont && 6857 IP_REASS_END(mp1) != 6858 IP_REASS_START(mp1->b_cont) && 6859 end >= IP_REASS_START(mp1->b_cont)) || 6860 (!ipf->ipf_last_frag_seen && !more)) { 6861 ipf->ipf_hole_cnt--; 6862 } 6863 /* Clip out mp1. */ 6864 if ((mp->b_cont = mp1->b_cont) == NULL) { 6865 /* 6866 * After clipping out mp1, this guy 6867 * is now hanging off the end. 6868 */ 6869 ipf->ipf_tail_mp = mp; 6870 } 6871 IP_REASS_SET_START(mp1, 0); 6872 IP_REASS_SET_END(mp1, 0); 6873 /* Subtract byte count */ 6874 ipf->ipf_count -= mp1->b_datap->db_lim - 6875 mp1->b_datap->db_base; 6876 freeb(mp1); 6877 BUMP_MIB(ill->ill_ip_mib, 6878 ipIfStatsReasmPartDups); 6879 mp1 = mp->b_cont; 6880 if (!mp1) 6881 break; 6882 offset = IP_REASS_START(mp1); 6883 } 6884 ipf->ipf_mp->b_cont = mp; 6885 continue; 6886 } 6887 /* 6888 * The new piece starts somewhere between the start of the head 6889 * and before the end of the tail. 6890 */ 6891 for (; mp1; mp1 = mp1->b_cont) { 6892 offset = IP_REASS_END(mp1); 6893 if (start < offset) { 6894 if (end <= offset) { 6895 /* Nothing new. */ 6896 IP_REASS_SET_START(mp, 0); 6897 IP_REASS_SET_END(mp, 0); 6898 /* Subtract byte count */ 6899 ipf->ipf_count -= mp->b_datap->db_lim - 6900 mp->b_datap->db_base; 6901 if (incr_dups) { 6902 ipf->ipf_num_dups++; 6903 incr_dups = B_FALSE; 6904 } 6905 freeb(mp); 6906 BUMP_MIB(ill->ill_ip_mib, 6907 ipIfStatsReasmDuplicates); 6908 break; 6909 } 6910 /* 6911 * Trim redundant stuff off beginning of new 6912 * piece. 6913 */ 6914 IP_REASS_SET_START(mp, offset); 6915 mp->b_rptr += offset - start; 6916 BUMP_MIB(ill->ill_ip_mib, 6917 ipIfStatsReasmPartDups); 6918 start = offset; 6919 if (!mp1->b_cont) { 6920 /* 6921 * After trimming, this guy is now 6922 * hanging off the end. 6923 */ 6924 mp1->b_cont = mp; 6925 ipf->ipf_tail_mp = mp; 6926 if (!more) { 6927 ipf->ipf_hole_cnt--; 6928 } 6929 break; 6930 } 6931 } 6932 if (start >= IP_REASS_START(mp1->b_cont)) 6933 continue; 6934 /* Fill a hole */ 6935 if (start > offset) 6936 ipf->ipf_hole_cnt++; 6937 mp->b_cont = mp1->b_cont; 6938 mp1->b_cont = mp; 6939 mp1 = mp->b_cont; 6940 offset = IP_REASS_START(mp1); 6941 if (end >= offset) { 6942 ipf->ipf_hole_cnt--; 6943 /* Check for overlap. */ 6944 while (end > offset) { 6945 if (end < IP_REASS_END(mp1)) { 6946 mp->b_wptr -= end - offset; 6947 IP_REASS_SET_END(mp, offset); 6948 /* 6949 * TODO we might bump 6950 * this up twice if there is 6951 * overlap at both ends. 6952 */ 6953 BUMP_MIB(ill->ill_ip_mib, 6954 ipIfStatsReasmPartDups); 6955 break; 6956 } 6957 /* Did we cover another hole? */ 6958 if ((mp1->b_cont && 6959 IP_REASS_END(mp1) 6960 != IP_REASS_START(mp1->b_cont) && 6961 end >= 6962 IP_REASS_START(mp1->b_cont)) || 6963 (!ipf->ipf_last_frag_seen && 6964 !more)) { 6965 ipf->ipf_hole_cnt--; 6966 } 6967 /* Clip out mp1. */ 6968 if ((mp->b_cont = mp1->b_cont) == 6969 NULL) { 6970 /* 6971 * After clipping out mp1, 6972 * this guy is now hanging 6973 * off the end. 6974 */ 6975 ipf->ipf_tail_mp = mp; 6976 } 6977 IP_REASS_SET_START(mp1, 0); 6978 IP_REASS_SET_END(mp1, 0); 6979 /* Subtract byte count */ 6980 ipf->ipf_count -= 6981 mp1->b_datap->db_lim - 6982 mp1->b_datap->db_base; 6983 freeb(mp1); 6984 BUMP_MIB(ill->ill_ip_mib, 6985 ipIfStatsReasmPartDups); 6986 mp1 = mp->b_cont; 6987 if (!mp1) 6988 break; 6989 offset = IP_REASS_START(mp1); 6990 } 6991 } 6992 break; 6993 } 6994 } while (start = end, mp = next_mp); 6995 6996 /* Fragment just processed could be the last one. Remember this fact */ 6997 if (!more) 6998 ipf->ipf_last_frag_seen = B_TRUE; 6999 7000 /* Still got holes? */ 7001 if (ipf->ipf_hole_cnt) 7002 return (IP_REASS_PARTIAL); 7003 /* Clean up overloaded fields to avoid upstream disasters. */ 7004 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 7005 IP_REASS_SET_START(mp1, 0); 7006 IP_REASS_SET_END(mp1, 0); 7007 } 7008 return (IP_REASS_COMPLETE); 7009 } 7010 7011 /* 7012 * Fragmentation reassembly. Each ILL has a hash table for 7013 * queuing packets undergoing reassembly for all IPIFs 7014 * associated with the ILL. The hash is based on the packet 7015 * IP ident field. The ILL frag hash table was allocated 7016 * as a timer block at the time the ILL was created. Whenever 7017 * there is anything on the reassembly queue, the timer will 7018 * be running. Returns the reassembled packet if reassembly completes. 7019 */ 7020 mblk_t * 7021 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7022 { 7023 uint32_t frag_offset_flags; 7024 mblk_t *t_mp; 7025 ipaddr_t dst; 7026 uint8_t proto = ipha->ipha_protocol; 7027 uint32_t sum_val; 7028 uint16_t sum_flags; 7029 ipf_t *ipf; 7030 ipf_t **ipfp; 7031 ipfb_t *ipfb; 7032 uint16_t ident; 7033 uint32_t offset; 7034 ipaddr_t src; 7035 uint_t hdr_length; 7036 uint32_t end; 7037 mblk_t *mp1; 7038 mblk_t *tail_mp; 7039 size_t count; 7040 size_t msg_len; 7041 uint8_t ecn_info = 0; 7042 uint32_t packet_size; 7043 boolean_t pruned = B_FALSE; 7044 ill_t *ill = ira->ira_ill; 7045 ip_stack_t *ipst = ill->ill_ipst; 7046 7047 /* 7048 * Drop the fragmented as early as possible, if 7049 * we don't have resource(s) to re-assemble. 7050 */ 7051 if (ipst->ips_ip_reass_queue_bytes == 0) { 7052 freemsg(mp); 7053 return (NULL); 7054 } 7055 7056 /* Check for fragmentation offset; return if there's none */ 7057 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7058 (IPH_MF | IPH_OFFSET)) == 0) 7059 return (mp); 7060 7061 /* 7062 * We utilize hardware computed checksum info only for UDP since 7063 * IP fragmentation is a normal occurrence for the protocol. In 7064 * addition, checksum offload support for IP fragments carrying 7065 * UDP payload is commonly implemented across network adapters. 7066 */ 7067 ASSERT(ira->ira_rill != NULL); 7068 if (proto == IPPROTO_UDP && dohwcksum && 7069 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7070 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7071 mblk_t *mp1 = mp->b_cont; 7072 int32_t len; 7073 7074 /* Record checksum information from the packet */ 7075 sum_val = (uint32_t)DB_CKSUM16(mp); 7076 sum_flags = DB_CKSUMFLAGS(mp); 7077 7078 /* IP payload offset from beginning of mblk */ 7079 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7080 7081 if ((sum_flags & HCK_PARTIALCKSUM) && 7082 (mp1 == NULL || mp1->b_cont == NULL) && 7083 offset >= DB_CKSUMSTART(mp) && 7084 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7085 uint32_t adj; 7086 /* 7087 * Partial checksum has been calculated by hardware 7088 * and attached to the packet; in addition, any 7089 * prepended extraneous data is even byte aligned. 7090 * If any such data exists, we adjust the checksum; 7091 * this would also handle any postpended data. 7092 */ 7093 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7094 mp, mp1, len, adj); 7095 7096 /* One's complement subtract extraneous checksum */ 7097 if (adj >= sum_val) 7098 sum_val = ~(adj - sum_val) & 0xFFFF; 7099 else 7100 sum_val -= adj; 7101 } 7102 } else { 7103 sum_val = 0; 7104 sum_flags = 0; 7105 } 7106 7107 /* Clear hardware checksumming flag */ 7108 DB_CKSUMFLAGS(mp) = 0; 7109 7110 ident = ipha->ipha_ident; 7111 offset = (frag_offset_flags << 3) & 0xFFFF; 7112 src = ipha->ipha_src; 7113 dst = ipha->ipha_dst; 7114 hdr_length = IPH_HDR_LENGTH(ipha); 7115 end = ntohs(ipha->ipha_length) - hdr_length; 7116 7117 /* If end == 0 then we have a packet with no data, so just free it */ 7118 if (end == 0) { 7119 freemsg(mp); 7120 return (NULL); 7121 } 7122 7123 /* Record the ECN field info. */ 7124 ecn_info = (ipha->ipha_type_of_service & 0x3); 7125 if (offset != 0) { 7126 /* 7127 * If this isn't the first piece, strip the header, and 7128 * add the offset to the end value. 7129 */ 7130 mp->b_rptr += hdr_length; 7131 end += offset; 7132 } 7133 7134 /* Handle vnic loopback of fragments */ 7135 if (mp->b_datap->db_ref > 2) 7136 msg_len = 0; 7137 else 7138 msg_len = MBLKSIZE(mp); 7139 7140 tail_mp = mp; 7141 while (tail_mp->b_cont != NULL) { 7142 tail_mp = tail_mp->b_cont; 7143 if (tail_mp->b_datap->db_ref <= 2) 7144 msg_len += MBLKSIZE(tail_mp); 7145 } 7146 7147 /* If the reassembly list for this ILL will get too big, prune it */ 7148 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7149 ipst->ips_ip_reass_queue_bytes) { 7150 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7151 uint_t, ill->ill_frag_count, 7152 uint_t, ipst->ips_ip_reass_queue_bytes); 7153 ill_frag_prune(ill, 7154 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7155 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7156 pruned = B_TRUE; 7157 } 7158 7159 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7160 mutex_enter(&ipfb->ipfb_lock); 7161 7162 ipfp = &ipfb->ipfb_ipf; 7163 /* Try to find an existing fragment queue for this packet. */ 7164 for (;;) { 7165 ipf = ipfp[0]; 7166 if (ipf != NULL) { 7167 /* 7168 * It has to match on ident and src/dst address. 7169 */ 7170 if (ipf->ipf_ident == ident && 7171 ipf->ipf_src == src && 7172 ipf->ipf_dst == dst && 7173 ipf->ipf_protocol == proto) { 7174 /* 7175 * If we have received too many 7176 * duplicate fragments for this packet 7177 * free it. 7178 */ 7179 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7180 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7181 freemsg(mp); 7182 mutex_exit(&ipfb->ipfb_lock); 7183 return (NULL); 7184 } 7185 /* Found it. */ 7186 break; 7187 } 7188 ipfp = &ipf->ipf_hash_next; 7189 continue; 7190 } 7191 7192 /* 7193 * If we pruned the list, do we want to store this new 7194 * fragment?. We apply an optimization here based on the 7195 * fact that most fragments will be received in order. 7196 * So if the offset of this incoming fragment is zero, 7197 * it is the first fragment of a new packet. We will 7198 * keep it. Otherwise drop the fragment, as we have 7199 * probably pruned the packet already (since the 7200 * packet cannot be found). 7201 */ 7202 if (pruned && offset != 0) { 7203 mutex_exit(&ipfb->ipfb_lock); 7204 freemsg(mp); 7205 return (NULL); 7206 } 7207 7208 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7209 /* 7210 * Too many fragmented packets in this hash 7211 * bucket. Free the oldest. 7212 */ 7213 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7214 } 7215 7216 /* New guy. Allocate a frag message. */ 7217 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7218 if (mp1 == NULL) { 7219 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7220 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7221 freemsg(mp); 7222 reass_done: 7223 mutex_exit(&ipfb->ipfb_lock); 7224 return (NULL); 7225 } 7226 7227 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7228 mp1->b_cont = mp; 7229 7230 /* Initialize the fragment header. */ 7231 ipf = (ipf_t *)mp1->b_rptr; 7232 ipf->ipf_mp = mp1; 7233 ipf->ipf_ptphn = ipfp; 7234 ipfp[0] = ipf; 7235 ipf->ipf_hash_next = NULL; 7236 ipf->ipf_ident = ident; 7237 ipf->ipf_protocol = proto; 7238 ipf->ipf_src = src; 7239 ipf->ipf_dst = dst; 7240 ipf->ipf_nf_hdr_len = 0; 7241 /* Record reassembly start time. */ 7242 ipf->ipf_timestamp = gethrestime_sec(); 7243 /* Record ipf generation and account for frag header */ 7244 ipf->ipf_gen = ill->ill_ipf_gen++; 7245 ipf->ipf_count = MBLKSIZE(mp1); 7246 ipf->ipf_last_frag_seen = B_FALSE; 7247 ipf->ipf_ecn = ecn_info; 7248 ipf->ipf_num_dups = 0; 7249 ipfb->ipfb_frag_pkts++; 7250 ipf->ipf_checksum = 0; 7251 ipf->ipf_checksum_flags = 0; 7252 7253 /* Store checksum value in fragment header */ 7254 if (sum_flags != 0) { 7255 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7256 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7257 ipf->ipf_checksum = sum_val; 7258 ipf->ipf_checksum_flags = sum_flags; 7259 } 7260 7261 /* 7262 * We handle reassembly two ways. In the easy case, 7263 * where all the fragments show up in order, we do 7264 * minimal bookkeeping, and just clip new pieces on 7265 * the end. If we ever see a hole, then we go off 7266 * to ip_reassemble which has to mark the pieces and 7267 * keep track of the number of holes, etc. Obviously, 7268 * the point of having both mechanisms is so we can 7269 * handle the easy case as efficiently as possible. 7270 */ 7271 if (offset == 0) { 7272 /* Easy case, in-order reassembly so far. */ 7273 ipf->ipf_count += msg_len; 7274 ipf->ipf_tail_mp = tail_mp; 7275 /* 7276 * Keep track of next expected offset in 7277 * ipf_end. 7278 */ 7279 ipf->ipf_end = end; 7280 ipf->ipf_nf_hdr_len = hdr_length; 7281 } else { 7282 /* Hard case, hole at the beginning. */ 7283 ipf->ipf_tail_mp = NULL; 7284 /* 7285 * ipf_end == 0 means that we have given up 7286 * on easy reassembly. 7287 */ 7288 ipf->ipf_end = 0; 7289 7290 /* Forget checksum offload from now on */ 7291 ipf->ipf_checksum_flags = 0; 7292 7293 /* 7294 * ipf_hole_cnt is set by ip_reassemble. 7295 * ipf_count is updated by ip_reassemble. 7296 * No need to check for return value here 7297 * as we don't expect reassembly to complete 7298 * or fail for the first fragment itself. 7299 */ 7300 (void) ip_reassemble(mp, ipf, 7301 (frag_offset_flags & IPH_OFFSET) << 3, 7302 (frag_offset_flags & IPH_MF), ill, msg_len); 7303 } 7304 /* Update per ipfb and ill byte counts */ 7305 ipfb->ipfb_count += ipf->ipf_count; 7306 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7307 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7308 /* If the frag timer wasn't already going, start it. */ 7309 mutex_enter(&ill->ill_lock); 7310 ill_frag_timer_start(ill); 7311 mutex_exit(&ill->ill_lock); 7312 goto reass_done; 7313 } 7314 7315 /* 7316 * If the packet's flag has changed (it could be coming up 7317 * from an interface different than the previous, therefore 7318 * possibly different checksum capability), then forget about 7319 * any stored checksum states. Otherwise add the value to 7320 * the existing one stored in the fragment header. 7321 */ 7322 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7323 sum_val += ipf->ipf_checksum; 7324 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7325 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7326 ipf->ipf_checksum = sum_val; 7327 } else if (ipf->ipf_checksum_flags != 0) { 7328 /* Forget checksum offload from now on */ 7329 ipf->ipf_checksum_flags = 0; 7330 } 7331 7332 /* 7333 * We have a new piece of a datagram which is already being 7334 * reassembled. Update the ECN info if all IP fragments 7335 * are ECN capable. If there is one which is not, clear 7336 * all the info. If there is at least one which has CE 7337 * code point, IP needs to report that up to transport. 7338 */ 7339 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7340 if (ecn_info == IPH_ECN_CE) 7341 ipf->ipf_ecn = IPH_ECN_CE; 7342 } else { 7343 ipf->ipf_ecn = IPH_ECN_NECT; 7344 } 7345 if (offset && ipf->ipf_end == offset) { 7346 /* The new fragment fits at the end */ 7347 ipf->ipf_tail_mp->b_cont = mp; 7348 /* Update the byte count */ 7349 ipf->ipf_count += msg_len; 7350 /* Update per ipfb and ill byte counts */ 7351 ipfb->ipfb_count += msg_len; 7352 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7353 atomic_add_32(&ill->ill_frag_count, msg_len); 7354 if (frag_offset_flags & IPH_MF) { 7355 /* More to come. */ 7356 ipf->ipf_end = end; 7357 ipf->ipf_tail_mp = tail_mp; 7358 goto reass_done; 7359 } 7360 } else { 7361 /* Go do the hard cases. */ 7362 int ret; 7363 7364 if (offset == 0) 7365 ipf->ipf_nf_hdr_len = hdr_length; 7366 7367 /* Save current byte count */ 7368 count = ipf->ipf_count; 7369 ret = ip_reassemble(mp, ipf, 7370 (frag_offset_flags & IPH_OFFSET) << 3, 7371 (frag_offset_flags & IPH_MF), ill, msg_len); 7372 /* Count of bytes added and subtracted (freeb()ed) */ 7373 count = ipf->ipf_count - count; 7374 if (count) { 7375 /* Update per ipfb and ill byte counts */ 7376 ipfb->ipfb_count += count; 7377 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7378 atomic_add_32(&ill->ill_frag_count, count); 7379 } 7380 if (ret == IP_REASS_PARTIAL) { 7381 goto reass_done; 7382 } else if (ret == IP_REASS_FAILED) { 7383 /* Reassembly failed. Free up all resources */ 7384 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7385 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7386 IP_REASS_SET_START(t_mp, 0); 7387 IP_REASS_SET_END(t_mp, 0); 7388 } 7389 freemsg(mp); 7390 goto reass_done; 7391 } 7392 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7393 } 7394 /* 7395 * We have completed reassembly. Unhook the frag header from 7396 * the reassembly list. 7397 * 7398 * Before we free the frag header, record the ECN info 7399 * to report back to the transport. 7400 */ 7401 ecn_info = ipf->ipf_ecn; 7402 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7403 ipfp = ipf->ipf_ptphn; 7404 7405 /* We need to supply these to caller */ 7406 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7407 sum_val = ipf->ipf_checksum; 7408 else 7409 sum_val = 0; 7410 7411 mp1 = ipf->ipf_mp; 7412 count = ipf->ipf_count; 7413 ipf = ipf->ipf_hash_next; 7414 if (ipf != NULL) 7415 ipf->ipf_ptphn = ipfp; 7416 ipfp[0] = ipf; 7417 atomic_add_32(&ill->ill_frag_count, -count); 7418 ASSERT(ipfb->ipfb_count >= count); 7419 ipfb->ipfb_count -= count; 7420 ipfb->ipfb_frag_pkts--; 7421 mutex_exit(&ipfb->ipfb_lock); 7422 /* Ditch the frag header. */ 7423 mp = mp1->b_cont; 7424 7425 freeb(mp1); 7426 7427 /* Restore original IP length in header. */ 7428 packet_size = (uint32_t)msgdsize(mp); 7429 if (packet_size > IP_MAXPACKET) { 7430 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7431 ip_drop_input("Reassembled packet too large", mp, ill); 7432 freemsg(mp); 7433 return (NULL); 7434 } 7435 7436 if (DB_REF(mp) > 1) { 7437 mblk_t *mp2 = copymsg(mp); 7438 7439 if (mp2 == NULL) { 7440 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7441 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7442 freemsg(mp); 7443 return (NULL); 7444 } 7445 freemsg(mp); 7446 mp = mp2; 7447 } 7448 ipha = (ipha_t *)mp->b_rptr; 7449 7450 ipha->ipha_length = htons((uint16_t)packet_size); 7451 /* We're now complete, zip the frag state */ 7452 ipha->ipha_fragment_offset_and_flags = 0; 7453 /* Record the ECN info. */ 7454 ipha->ipha_type_of_service &= 0xFC; 7455 ipha->ipha_type_of_service |= ecn_info; 7456 7457 /* Update the receive attributes */ 7458 ira->ira_pktlen = packet_size; 7459 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7460 7461 /* Reassembly is successful; set checksum information in packet */ 7462 DB_CKSUM16(mp) = (uint16_t)sum_val; 7463 DB_CKSUMFLAGS(mp) = sum_flags; 7464 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7465 7466 return (mp); 7467 } 7468 7469 /* 7470 * Pullup function that should be used for IP input in order to 7471 * ensure we do not loose the L2 source address; we need the l2 source 7472 * address for IP_RECVSLLA and for ndp_input. 7473 * 7474 * We return either NULL or b_rptr. 7475 */ 7476 void * 7477 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7478 { 7479 ill_t *ill = ira->ira_ill; 7480 7481 if (ip_rput_pullups++ == 0) { 7482 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7483 "ip_pullup: %s forced us to " 7484 " pullup pkt, hdr len %ld, hdr addr %p", 7485 ill->ill_name, len, (void *)mp->b_rptr); 7486 } 7487 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7488 ip_setl2src(mp, ira, ira->ira_rill); 7489 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7490 if (!pullupmsg(mp, len)) 7491 return (NULL); 7492 else 7493 return (mp->b_rptr); 7494 } 7495 7496 /* 7497 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7498 * When called from the ULP ira_rill will be NULL hence the caller has to 7499 * pass in the ill. 7500 */ 7501 /* ARGSUSED */ 7502 void 7503 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7504 { 7505 const uchar_t *addr; 7506 int alen; 7507 7508 if (ira->ira_flags & IRAF_L2SRC_SET) 7509 return; 7510 7511 ASSERT(ill != NULL); 7512 alen = ill->ill_phys_addr_length; 7513 ASSERT(alen <= sizeof (ira->ira_l2src)); 7514 if (ira->ira_mhip != NULL && 7515 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7516 bcopy(addr, ira->ira_l2src, alen); 7517 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7518 (addr = ill->ill_phys_addr) != NULL) { 7519 bcopy(addr, ira->ira_l2src, alen); 7520 } else { 7521 bzero(ira->ira_l2src, alen); 7522 } 7523 ira->ira_flags |= IRAF_L2SRC_SET; 7524 } 7525 7526 /* 7527 * check ip header length and align it. 7528 */ 7529 mblk_t * 7530 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7531 { 7532 ill_t *ill = ira->ira_ill; 7533 ssize_t len; 7534 7535 len = MBLKL(mp); 7536 7537 if (!OK_32PTR(mp->b_rptr)) 7538 IP_STAT(ill->ill_ipst, ip_notaligned); 7539 else 7540 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7541 7542 /* Guard against bogus device drivers */ 7543 if (len < 0) { 7544 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7545 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7546 freemsg(mp); 7547 return (NULL); 7548 } 7549 7550 if (len == 0) { 7551 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7552 mblk_t *mp1 = mp->b_cont; 7553 7554 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7555 ip_setl2src(mp, ira, ira->ira_rill); 7556 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7557 7558 freeb(mp); 7559 mp = mp1; 7560 if (mp == NULL) 7561 return (NULL); 7562 7563 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7564 return (mp); 7565 } 7566 if (ip_pullup(mp, min_size, ira) == NULL) { 7567 if (msgdsize(mp) < min_size) { 7568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7569 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7570 } else { 7571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7572 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7573 } 7574 freemsg(mp); 7575 return (NULL); 7576 } 7577 return (mp); 7578 } 7579 7580 /* 7581 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7582 */ 7583 mblk_t * 7584 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7585 uint_t min_size, ip_recv_attr_t *ira) 7586 { 7587 ill_t *ill = ira->ira_ill; 7588 7589 /* 7590 * Make sure we have data length consistent 7591 * with the IP header. 7592 */ 7593 if (mp->b_cont == NULL) { 7594 /* pkt_len is based on ipha_len, not the mblk length */ 7595 if (pkt_len < min_size) { 7596 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7597 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7598 freemsg(mp); 7599 return (NULL); 7600 } 7601 if (len < 0) { 7602 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7603 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7604 freemsg(mp); 7605 return (NULL); 7606 } 7607 /* Drop any pad */ 7608 mp->b_wptr = rptr + pkt_len; 7609 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7610 ASSERT(pkt_len >= min_size); 7611 if (pkt_len < min_size) { 7612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7613 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7614 freemsg(mp); 7615 return (NULL); 7616 } 7617 if (len < 0) { 7618 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7619 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7620 freemsg(mp); 7621 return (NULL); 7622 } 7623 /* Drop any pad */ 7624 (void) adjmsg(mp, -len); 7625 /* 7626 * adjmsg may have freed an mblk from the chain, hence 7627 * invalidate any hw checksum here. This will force IP to 7628 * calculate the checksum in sw, but only for this packet. 7629 */ 7630 DB_CKSUMFLAGS(mp) = 0; 7631 IP_STAT(ill->ill_ipst, ip_multimblk); 7632 } 7633 return (mp); 7634 } 7635 7636 /* 7637 * Check that the IPv4 opt_len is consistent with the packet and pullup 7638 * the options. 7639 */ 7640 mblk_t * 7641 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7642 ip_recv_attr_t *ira) 7643 { 7644 ill_t *ill = ira->ira_ill; 7645 ssize_t len; 7646 7647 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7648 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7650 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7651 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7652 freemsg(mp); 7653 return (NULL); 7654 } 7655 7656 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7657 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7658 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7659 freemsg(mp); 7660 return (NULL); 7661 } 7662 /* 7663 * Recompute complete header length and make sure we 7664 * have access to all of it. 7665 */ 7666 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7667 if (len > (mp->b_wptr - mp->b_rptr)) { 7668 if (len > pkt_len) { 7669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7670 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7671 freemsg(mp); 7672 return (NULL); 7673 } 7674 if (ip_pullup(mp, len, ira) == NULL) { 7675 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7676 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7677 freemsg(mp); 7678 return (NULL); 7679 } 7680 } 7681 return (mp); 7682 } 7683 7684 /* 7685 * Returns a new ire, or the same ire, or NULL. 7686 * If a different IRE is returned, then it is held; the caller 7687 * needs to release it. 7688 * In no case is there any hold/release on the ire argument. 7689 */ 7690 ire_t * 7691 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7692 { 7693 ire_t *new_ire; 7694 ill_t *ire_ill; 7695 uint_t ifindex; 7696 ip_stack_t *ipst = ill->ill_ipst; 7697 boolean_t strict_check = B_FALSE; 7698 7699 /* 7700 * IPMP common case: if IRE and ILL are in the same group, there's no 7701 * issue (e.g. packet received on an underlying interface matched an 7702 * IRE_LOCAL on its associated group interface). 7703 */ 7704 ASSERT(ire->ire_ill != NULL); 7705 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7706 return (ire); 7707 7708 /* 7709 * Do another ire lookup here, using the ingress ill, to see if the 7710 * interface is in a usesrc group. 7711 * As long as the ills belong to the same group, we don't consider 7712 * them to be arriving on the wrong interface. Thus, if the switch 7713 * is doing inbound load spreading, we won't drop packets when the 7714 * ip*_strict_dst_multihoming switch is on. 7715 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7716 * where the local address may not be unique. In this case we were 7717 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7718 * actually returned. The new lookup, which is more specific, should 7719 * only find the IRE_LOCAL associated with the ingress ill if one 7720 * exists. 7721 */ 7722 if (ire->ire_ipversion == IPV4_VERSION) { 7723 if (ipst->ips_ip_strict_dst_multihoming) 7724 strict_check = B_TRUE; 7725 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7726 IRE_LOCAL, ill, ALL_ZONES, NULL, 7727 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7728 } else { 7729 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7730 if (ipst->ips_ipv6_strict_dst_multihoming) 7731 strict_check = B_TRUE; 7732 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7733 IRE_LOCAL, ill, ALL_ZONES, NULL, 7734 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7735 } 7736 /* 7737 * If the same ire that was returned in ip_input() is found then this 7738 * is an indication that usesrc groups are in use. The packet 7739 * arrived on a different ill in the group than the one associated with 7740 * the destination address. If a different ire was found then the same 7741 * IP address must be hosted on multiple ills. This is possible with 7742 * unnumbered point2point interfaces. We switch to use this new ire in 7743 * order to have accurate interface statistics. 7744 */ 7745 if (new_ire != NULL) { 7746 /* Note: held in one case but not the other? Caller handles */ 7747 if (new_ire != ire) 7748 return (new_ire); 7749 /* Unchanged */ 7750 ire_refrele(new_ire); 7751 return (ire); 7752 } 7753 7754 /* 7755 * Chase pointers once and store locally. 7756 */ 7757 ASSERT(ire->ire_ill != NULL); 7758 ire_ill = ire->ire_ill; 7759 ifindex = ill->ill_usesrc_ifindex; 7760 7761 /* 7762 * Check if it's a legal address on the 'usesrc' interface. 7763 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7764 * can just check phyint_ifindex. 7765 */ 7766 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7767 return (ire); 7768 } 7769 7770 /* 7771 * If the ip*_strict_dst_multihoming switch is on then we can 7772 * only accept this packet if the interface is marked as routing. 7773 */ 7774 if (!(strict_check)) 7775 return (ire); 7776 7777 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7778 return (ire); 7779 } 7780 return (NULL); 7781 } 7782 7783 /* 7784 * This function is used to construct a mac_header_info_s from a 7785 * DL_UNITDATA_IND message. 7786 * The address fields in the mhi structure points into the message, 7787 * thus the caller can't use those fields after freeing the message. 7788 * 7789 * We determine whether the packet received is a non-unicast packet 7790 * and in doing so, determine whether or not it is broadcast vs multicast. 7791 * For it to be a broadcast packet, we must have the appropriate mblk_t 7792 * hanging off the ill_t. If this is either not present or doesn't match 7793 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7794 * to be multicast. Thus NICs that have no broadcast address (or no 7795 * capability for one, such as point to point links) cannot return as 7796 * the packet being broadcast. 7797 */ 7798 void 7799 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7800 { 7801 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7802 mblk_t *bmp; 7803 uint_t extra_offset; 7804 7805 bzero(mhip, sizeof (struct mac_header_info_s)); 7806 7807 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7808 7809 if (ill->ill_sap_length < 0) 7810 extra_offset = 0; 7811 else 7812 extra_offset = ill->ill_sap_length; 7813 7814 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7815 extra_offset; 7816 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7817 extra_offset; 7818 7819 if (!ind->dl_group_address) 7820 return; 7821 7822 /* Multicast or broadcast */ 7823 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7824 7825 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7826 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7827 (bmp = ill->ill_bcast_mp) != NULL) { 7828 dl_unitdata_req_t *dlur; 7829 uint8_t *bphys_addr; 7830 7831 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7832 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7833 extra_offset; 7834 7835 if (bcmp(mhip->mhi_daddr, bphys_addr, 7836 ind->dl_dest_addr_length) == 0) 7837 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7838 } 7839 } 7840 7841 /* 7842 * This function is used to construct a mac_header_info_s from a 7843 * M_DATA fastpath message from a DLPI driver. 7844 * The address fields in the mhi structure points into the message, 7845 * thus the caller can't use those fields after freeing the message. 7846 * 7847 * We determine whether the packet received is a non-unicast packet 7848 * and in doing so, determine whether or not it is broadcast vs multicast. 7849 * For it to be a broadcast packet, we must have the appropriate mblk_t 7850 * hanging off the ill_t. If this is either not present or doesn't match 7851 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7852 * to be multicast. Thus NICs that have no broadcast address (or no 7853 * capability for one, such as point to point links) cannot return as 7854 * the packet being broadcast. 7855 */ 7856 void 7857 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7858 { 7859 mblk_t *bmp; 7860 struct ether_header *pether; 7861 7862 bzero(mhip, sizeof (struct mac_header_info_s)); 7863 7864 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7865 7866 pether = (struct ether_header *)((char *)mp->b_rptr 7867 - sizeof (struct ether_header)); 7868 7869 /* 7870 * Make sure the interface is an ethernet type, since we don't 7871 * know the header format for anything but Ethernet. Also make 7872 * sure we are pointing correctly above db_base. 7873 */ 7874 if (ill->ill_type != IFT_ETHER) 7875 return; 7876 7877 retry: 7878 if ((uchar_t *)pether < mp->b_datap->db_base) 7879 return; 7880 7881 /* Is there a VLAN tag? */ 7882 if (ill->ill_isv6) { 7883 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7884 pether = (struct ether_header *)((char *)pether - 4); 7885 goto retry; 7886 } 7887 } else { 7888 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7889 pether = (struct ether_header *)((char *)pether - 4); 7890 goto retry; 7891 } 7892 } 7893 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7894 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7895 7896 if (!(mhip->mhi_daddr[0] & 0x01)) 7897 return; 7898 7899 /* Multicast or broadcast */ 7900 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7901 7902 if ((bmp = ill->ill_bcast_mp) != NULL) { 7903 dl_unitdata_req_t *dlur; 7904 uint8_t *bphys_addr; 7905 uint_t addrlen; 7906 7907 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7908 addrlen = dlur->dl_dest_addr_length; 7909 if (ill->ill_sap_length < 0) { 7910 bphys_addr = (uchar_t *)dlur + 7911 dlur->dl_dest_addr_offset; 7912 addrlen += ill->ill_sap_length; 7913 } else { 7914 bphys_addr = (uchar_t *)dlur + 7915 dlur->dl_dest_addr_offset + 7916 ill->ill_sap_length; 7917 addrlen -= ill->ill_sap_length; 7918 } 7919 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7920 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7921 } 7922 } 7923 7924 /* 7925 * Handle anything but M_DATA messages 7926 * We see the DL_UNITDATA_IND which are part 7927 * of the data path, and also the other messages from the driver. 7928 */ 7929 void 7930 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7931 { 7932 mblk_t *first_mp; 7933 struct iocblk *iocp; 7934 struct mac_header_info_s mhi; 7935 7936 switch (DB_TYPE(mp)) { 7937 case M_PROTO: 7938 case M_PCPROTO: { 7939 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7940 DL_UNITDATA_IND) { 7941 /* Go handle anything other than data elsewhere. */ 7942 ip_rput_dlpi(ill, mp); 7943 return; 7944 } 7945 7946 first_mp = mp; 7947 mp = first_mp->b_cont; 7948 first_mp->b_cont = NULL; 7949 7950 if (mp == NULL) { 7951 freeb(first_mp); 7952 return; 7953 } 7954 ip_dlur_to_mhi(ill, first_mp, &mhi); 7955 if (ill->ill_isv6) 7956 ip_input_v6(ill, NULL, mp, &mhi); 7957 else 7958 ip_input(ill, NULL, mp, &mhi); 7959 7960 /* Ditch the DLPI header. */ 7961 freeb(first_mp); 7962 return; 7963 } 7964 case M_IOCACK: 7965 iocp = (struct iocblk *)mp->b_rptr; 7966 switch (iocp->ioc_cmd) { 7967 case DL_IOC_HDR_INFO: 7968 ill_fastpath_ack(ill, mp); 7969 return; 7970 default: 7971 putnext(ill->ill_rq, mp); 7972 return; 7973 } 7974 /* FALLTHRU */ 7975 case M_ERROR: 7976 case M_HANGUP: 7977 mutex_enter(&ill->ill_lock); 7978 if (ill->ill_state_flags & ILL_CONDEMNED) { 7979 mutex_exit(&ill->ill_lock); 7980 freemsg(mp); 7981 return; 7982 } 7983 ill_refhold_locked(ill); 7984 mutex_exit(&ill->ill_lock); 7985 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7986 B_FALSE); 7987 return; 7988 case M_CTL: 7989 putnext(ill->ill_rq, mp); 7990 return; 7991 case M_IOCNAK: 7992 ip1dbg(("got iocnak ")); 7993 iocp = (struct iocblk *)mp->b_rptr; 7994 switch (iocp->ioc_cmd) { 7995 case DL_IOC_HDR_INFO: 7996 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7997 return; 7998 default: 7999 break; 8000 } 8001 /* FALLTHRU */ 8002 default: 8003 putnext(ill->ill_rq, mp); 8004 return; 8005 } 8006 } 8007 8008 /* Read side put procedure. Packets coming from the wire arrive here. */ 8009 void 8010 ip_rput(queue_t *q, mblk_t *mp) 8011 { 8012 ill_t *ill; 8013 union DL_primitives *dl; 8014 8015 ill = (ill_t *)q->q_ptr; 8016 8017 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8018 /* 8019 * If things are opening or closing, only accept high-priority 8020 * DLPI messages. (On open ill->ill_ipif has not yet been 8021 * created; on close, things hanging off the ill may have been 8022 * freed already.) 8023 */ 8024 dl = (union DL_primitives *)mp->b_rptr; 8025 if (DB_TYPE(mp) != M_PCPROTO || 8026 dl->dl_primitive == DL_UNITDATA_IND) { 8027 inet_freemsg(mp); 8028 return; 8029 } 8030 } 8031 if (DB_TYPE(mp) == M_DATA) { 8032 struct mac_header_info_s mhi; 8033 8034 ip_mdata_to_mhi(ill, mp, &mhi); 8035 ip_input(ill, NULL, mp, &mhi); 8036 } else { 8037 ip_rput_notdata(ill, mp); 8038 } 8039 } 8040 8041 /* 8042 * Move the information to a copy. 8043 */ 8044 mblk_t * 8045 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8046 { 8047 mblk_t *mp1; 8048 ill_t *ill = ira->ira_ill; 8049 ip_stack_t *ipst = ill->ill_ipst; 8050 8051 IP_STAT(ipst, ip_db_ref); 8052 8053 /* Make sure we have ira_l2src before we loose the original mblk */ 8054 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8055 ip_setl2src(mp, ira, ira->ira_rill); 8056 8057 mp1 = copymsg(mp); 8058 if (mp1 == NULL) { 8059 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8060 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8061 freemsg(mp); 8062 return (NULL); 8063 } 8064 /* preserve the hardware checksum flags and data, if present */ 8065 if (DB_CKSUMFLAGS(mp) != 0) { 8066 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8067 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8068 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8069 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8070 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8071 } 8072 freemsg(mp); 8073 return (mp1); 8074 } 8075 8076 static void 8077 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8078 t_uscalar_t err) 8079 { 8080 if (dl_err == DL_SYSERR) { 8081 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8082 "%s: %s failed: DL_SYSERR (errno %u)\n", 8083 ill->ill_name, dl_primstr(prim), err); 8084 return; 8085 } 8086 8087 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8088 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8089 dl_errstr(dl_err)); 8090 } 8091 8092 /* 8093 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8094 * than DL_UNITDATA_IND messages. If we need to process this message 8095 * exclusively, we call qwriter_ip, in which case we also need to call 8096 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8097 */ 8098 void 8099 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8100 { 8101 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8102 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8103 queue_t *q = ill->ill_rq; 8104 t_uscalar_t prim = dloa->dl_primitive; 8105 t_uscalar_t reqprim = DL_PRIM_INVAL; 8106 8107 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8108 char *, dl_primstr(prim), ill_t *, ill); 8109 ip1dbg(("ip_rput_dlpi")); 8110 8111 /* 8112 * If we received an ACK but didn't send a request for it, then it 8113 * can't be part of any pending operation; discard up-front. 8114 */ 8115 switch (prim) { 8116 case DL_ERROR_ACK: 8117 reqprim = dlea->dl_error_primitive; 8118 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8119 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8120 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8121 dlea->dl_unix_errno)); 8122 break; 8123 case DL_OK_ACK: 8124 reqprim = dloa->dl_correct_primitive; 8125 break; 8126 case DL_INFO_ACK: 8127 reqprim = DL_INFO_REQ; 8128 break; 8129 case DL_BIND_ACK: 8130 reqprim = DL_BIND_REQ; 8131 break; 8132 case DL_PHYS_ADDR_ACK: 8133 reqprim = DL_PHYS_ADDR_REQ; 8134 break; 8135 case DL_NOTIFY_ACK: 8136 reqprim = DL_NOTIFY_REQ; 8137 break; 8138 case DL_CAPABILITY_ACK: 8139 reqprim = DL_CAPABILITY_REQ; 8140 break; 8141 } 8142 8143 if (prim != DL_NOTIFY_IND) { 8144 if (reqprim == DL_PRIM_INVAL || 8145 !ill_dlpi_pending(ill, reqprim)) { 8146 /* Not a DLPI message we support or expected */ 8147 freemsg(mp); 8148 return; 8149 } 8150 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8151 dl_primstr(reqprim))); 8152 } 8153 8154 switch (reqprim) { 8155 case DL_UNBIND_REQ: 8156 /* 8157 * NOTE: we mark the unbind as complete even if we got a 8158 * DL_ERROR_ACK, since there's not much else we can do. 8159 */ 8160 mutex_enter(&ill->ill_lock); 8161 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8162 cv_signal(&ill->ill_cv); 8163 mutex_exit(&ill->ill_lock); 8164 break; 8165 8166 case DL_ENABMULTI_REQ: 8167 if (prim == DL_OK_ACK) { 8168 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8169 ill->ill_dlpi_multicast_state = IDS_OK; 8170 } 8171 break; 8172 } 8173 8174 /* 8175 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8176 * need to become writer to continue to process it. Because an 8177 * exclusive operation doesn't complete until replies to all queued 8178 * DLPI messages have been received, we know we're in the middle of an 8179 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8180 * 8181 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8182 * Since this is on the ill stream we unconditionally bump up the 8183 * refcount without doing ILL_CAN_LOOKUP(). 8184 */ 8185 ill_refhold(ill); 8186 if (prim == DL_NOTIFY_IND) 8187 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8188 else 8189 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8190 } 8191 8192 /* 8193 * Handling of DLPI messages that require exclusive access to the ipsq. 8194 * 8195 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8196 * happen here. (along with mi_copy_done) 8197 */ 8198 /* ARGSUSED */ 8199 static void 8200 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8201 { 8202 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8203 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8204 int err = 0; 8205 ill_t *ill = (ill_t *)q->q_ptr; 8206 ipif_t *ipif = NULL; 8207 mblk_t *mp1 = NULL; 8208 conn_t *connp = NULL; 8209 t_uscalar_t paddrreq; 8210 mblk_t *mp_hw; 8211 boolean_t success; 8212 boolean_t ioctl_aborted = B_FALSE; 8213 boolean_t log = B_TRUE; 8214 8215 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8216 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8217 8218 ip1dbg(("ip_rput_dlpi_writer ..")); 8219 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8220 ASSERT(IAM_WRITER_ILL(ill)); 8221 8222 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8223 /* 8224 * The current ioctl could have been aborted by the user and a new 8225 * ioctl to bring up another ill could have started. We could still 8226 * get a response from the driver later. 8227 */ 8228 if (ipif != NULL && ipif->ipif_ill != ill) 8229 ioctl_aborted = B_TRUE; 8230 8231 switch (dloa->dl_primitive) { 8232 case DL_ERROR_ACK: 8233 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8234 dl_primstr(dlea->dl_error_primitive))); 8235 8236 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8237 char *, dl_primstr(dlea->dl_error_primitive), 8238 ill_t *, ill); 8239 8240 switch (dlea->dl_error_primitive) { 8241 case DL_DISABMULTI_REQ: 8242 ill_dlpi_done(ill, dlea->dl_error_primitive); 8243 break; 8244 case DL_PROMISCON_REQ: 8245 case DL_PROMISCOFF_REQ: 8246 case DL_UNBIND_REQ: 8247 case DL_ATTACH_REQ: 8248 case DL_INFO_REQ: 8249 ill_dlpi_done(ill, dlea->dl_error_primitive); 8250 break; 8251 case DL_NOTIFY_REQ: 8252 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8253 log = B_FALSE; 8254 break; 8255 case DL_PHYS_ADDR_REQ: 8256 /* 8257 * For IPv6 only, there are two additional 8258 * phys_addr_req's sent to the driver to get the 8259 * IPv6 token and lla. This allows IP to acquire 8260 * the hardware address format for a given interface 8261 * without having built in knowledge of the hardware 8262 * address. ill_phys_addr_pend keeps track of the last 8263 * DL_PAR sent so we know which response we are 8264 * dealing with. ill_dlpi_done will update 8265 * ill_phys_addr_pend when it sends the next req. 8266 * We don't complete the IOCTL until all three DL_PARs 8267 * have been attempted, so set *_len to 0 and break. 8268 */ 8269 paddrreq = ill->ill_phys_addr_pend; 8270 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8271 if (paddrreq == DL_IPV6_TOKEN) { 8272 ill->ill_token_length = 0; 8273 log = B_FALSE; 8274 break; 8275 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8276 ill->ill_nd_lla_len = 0; 8277 log = B_FALSE; 8278 break; 8279 } 8280 /* 8281 * Something went wrong with the DL_PHYS_ADDR_REQ. 8282 * We presumably have an IOCTL hanging out waiting 8283 * for completion. Find it and complete the IOCTL 8284 * with the error noted. 8285 * However, ill_dl_phys was called on an ill queue 8286 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8287 * set. But the ioctl is known to be pending on ill_wq. 8288 */ 8289 if (!ill->ill_ifname_pending) 8290 break; 8291 ill->ill_ifname_pending = 0; 8292 if (!ioctl_aborted) 8293 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8294 if (mp1 != NULL) { 8295 /* 8296 * This operation (SIOCSLIFNAME) must have 8297 * happened on the ill. Assert there is no conn 8298 */ 8299 ASSERT(connp == NULL); 8300 q = ill->ill_wq; 8301 } 8302 break; 8303 case DL_BIND_REQ: 8304 ill_dlpi_done(ill, DL_BIND_REQ); 8305 if (ill->ill_ifname_pending) 8306 break; 8307 mutex_enter(&ill->ill_lock); 8308 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8309 mutex_exit(&ill->ill_lock); 8310 /* 8311 * Something went wrong with the bind. We presumably 8312 * have an IOCTL hanging out waiting for completion. 8313 * Find it, take down the interface that was coming 8314 * up, and complete the IOCTL with the error noted. 8315 */ 8316 if (!ioctl_aborted) 8317 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8318 if (mp1 != NULL) { 8319 /* 8320 * This might be a result of a DL_NOTE_REPLUMB 8321 * notification. In that case, connp is NULL. 8322 */ 8323 if (connp != NULL) 8324 q = CONNP_TO_WQ(connp); 8325 8326 (void) ipif_down(ipif, NULL, NULL); 8327 /* error is set below the switch */ 8328 } 8329 break; 8330 case DL_ENABMULTI_REQ: 8331 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8332 8333 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8334 ill->ill_dlpi_multicast_state = IDS_FAILED; 8335 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8336 8337 printf("ip: joining multicasts failed (%d)" 8338 " on %s - will use link layer " 8339 "broadcasts for multicast\n", 8340 dlea->dl_errno, ill->ill_name); 8341 8342 /* 8343 * Set up for multi_bcast; We are the 8344 * writer, so ok to access ill->ill_ipif 8345 * without any lock. 8346 */ 8347 mutex_enter(&ill->ill_phyint->phyint_lock); 8348 ill->ill_phyint->phyint_flags |= 8349 PHYI_MULTI_BCAST; 8350 mutex_exit(&ill->ill_phyint->phyint_lock); 8351 8352 } 8353 freemsg(mp); /* Don't want to pass this up */ 8354 return; 8355 case DL_CAPABILITY_REQ: 8356 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8357 "DL_CAPABILITY REQ\n")); 8358 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8359 ill->ill_dlpi_capab_state = IDCS_FAILED; 8360 ill_capability_done(ill); 8361 freemsg(mp); 8362 return; 8363 } 8364 /* 8365 * Note the error for IOCTL completion (mp1 is set when 8366 * ready to complete ioctl). If ill_ifname_pending_err is 8367 * set, an error occured during plumbing (ill_ifname_pending), 8368 * so we want to report that error. 8369 * 8370 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8371 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8372 * expected to get errack'd if the driver doesn't support 8373 * these flags (e.g. ethernet). log will be set to B_FALSE 8374 * if these error conditions are encountered. 8375 */ 8376 if (mp1 != NULL) { 8377 if (ill->ill_ifname_pending_err != 0) { 8378 err = ill->ill_ifname_pending_err; 8379 ill->ill_ifname_pending_err = 0; 8380 } else { 8381 err = dlea->dl_unix_errno ? 8382 dlea->dl_unix_errno : ENXIO; 8383 } 8384 /* 8385 * If we're plumbing an interface and an error hasn't already 8386 * been saved, set ill_ifname_pending_err to the error passed 8387 * up. Ignore the error if log is B_FALSE (see comment above). 8388 */ 8389 } else if (log && ill->ill_ifname_pending && 8390 ill->ill_ifname_pending_err == 0) { 8391 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8392 dlea->dl_unix_errno : ENXIO; 8393 } 8394 8395 if (log) 8396 ip_dlpi_error(ill, dlea->dl_error_primitive, 8397 dlea->dl_errno, dlea->dl_unix_errno); 8398 break; 8399 case DL_CAPABILITY_ACK: 8400 ill_capability_ack(ill, mp); 8401 /* 8402 * The message has been handed off to ill_capability_ack 8403 * and must not be freed below 8404 */ 8405 mp = NULL; 8406 break; 8407 8408 case DL_INFO_ACK: 8409 /* Call a routine to handle this one. */ 8410 ill_dlpi_done(ill, DL_INFO_REQ); 8411 ip_ll_subnet_defaults(ill, mp); 8412 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8413 return; 8414 case DL_BIND_ACK: 8415 /* 8416 * We should have an IOCTL waiting on this unless 8417 * sent by ill_dl_phys, in which case just return 8418 */ 8419 ill_dlpi_done(ill, DL_BIND_REQ); 8420 8421 if (ill->ill_ifname_pending) { 8422 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8423 ill_t *, ill, mblk_t *, mp); 8424 break; 8425 } 8426 mutex_enter(&ill->ill_lock); 8427 ill->ill_dl_up = 1; 8428 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8429 mutex_exit(&ill->ill_lock); 8430 8431 if (!ioctl_aborted) 8432 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8433 if (mp1 == NULL) { 8434 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8435 break; 8436 } 8437 /* 8438 * mp1 was added by ill_dl_up(). if that is a result of 8439 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8440 */ 8441 if (connp != NULL) 8442 q = CONNP_TO_WQ(connp); 8443 /* 8444 * We are exclusive. So nothing can change even after 8445 * we get the pending mp. 8446 */ 8447 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8448 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8449 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8450 8451 /* 8452 * Now bring up the resolver; when that is complete, we'll 8453 * create IREs. Note that we intentionally mirror what 8454 * ipif_up() would have done, because we got here by way of 8455 * ill_dl_up(), which stopped ipif_up()'s processing. 8456 */ 8457 if (ill->ill_isv6) { 8458 /* 8459 * v6 interfaces. 8460 * Unlike ARP which has to do another bind 8461 * and attach, once we get here we are 8462 * done with NDP 8463 */ 8464 (void) ipif_resolver_up(ipif, Res_act_initial); 8465 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8466 err = ipif_up_done_v6(ipif); 8467 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8468 /* 8469 * ARP and other v4 external resolvers. 8470 * Leave the pending mblk intact so that 8471 * the ioctl completes in ip_rput(). 8472 */ 8473 if (connp != NULL) 8474 mutex_enter(&connp->conn_lock); 8475 mutex_enter(&ill->ill_lock); 8476 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8477 mutex_exit(&ill->ill_lock); 8478 if (connp != NULL) 8479 mutex_exit(&connp->conn_lock); 8480 if (success) { 8481 err = ipif_resolver_up(ipif, Res_act_initial); 8482 if (err == EINPROGRESS) { 8483 freemsg(mp); 8484 return; 8485 } 8486 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8487 } else { 8488 /* The conn has started closing */ 8489 err = EINTR; 8490 } 8491 } else { 8492 /* 8493 * This one is complete. Reply to pending ioctl. 8494 */ 8495 (void) ipif_resolver_up(ipif, Res_act_initial); 8496 err = ipif_up_done(ipif); 8497 } 8498 8499 if ((err == 0) && (ill->ill_up_ipifs)) { 8500 err = ill_up_ipifs(ill, q, mp1); 8501 if (err == EINPROGRESS) { 8502 freemsg(mp); 8503 return; 8504 } 8505 } 8506 8507 /* 8508 * If we have a moved ipif to bring up, and everything has 8509 * succeeded to this point, bring it up on the IPMP ill. 8510 * Otherwise, leave it down -- the admin can try to bring it 8511 * up by hand if need be. 8512 */ 8513 if (ill->ill_move_ipif != NULL) { 8514 if (err != 0) { 8515 ill->ill_move_ipif = NULL; 8516 } else { 8517 ipif = ill->ill_move_ipif; 8518 ill->ill_move_ipif = NULL; 8519 err = ipif_up(ipif, q, mp1); 8520 if (err == EINPROGRESS) { 8521 freemsg(mp); 8522 return; 8523 } 8524 } 8525 } 8526 break; 8527 8528 case DL_NOTIFY_IND: { 8529 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8530 uint_t orig_mtu, orig_mc_mtu; 8531 8532 switch (notify->dl_notification) { 8533 case DL_NOTE_PHYS_ADDR: 8534 err = ill_set_phys_addr(ill, mp); 8535 break; 8536 8537 case DL_NOTE_REPLUMB: 8538 /* 8539 * Directly return after calling ill_replumb(). 8540 * Note that we should not free mp as it is reused 8541 * in the ill_replumb() function. 8542 */ 8543 err = ill_replumb(ill, mp); 8544 return; 8545 8546 case DL_NOTE_FASTPATH_FLUSH: 8547 nce_flush(ill, B_FALSE); 8548 break; 8549 8550 case DL_NOTE_SDU_SIZE: 8551 case DL_NOTE_SDU_SIZE2: 8552 /* 8553 * The dce and fragmentation code can cope with 8554 * this changing while packets are being sent. 8555 * When packets are sent ip_output will discover 8556 * a change. 8557 * 8558 * Change the MTU size of the interface. 8559 */ 8560 mutex_enter(&ill->ill_lock); 8561 orig_mtu = ill->ill_mtu; 8562 orig_mc_mtu = ill->ill_mc_mtu; 8563 switch (notify->dl_notification) { 8564 case DL_NOTE_SDU_SIZE: 8565 ill->ill_current_frag = 8566 (uint_t)notify->dl_data; 8567 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8568 break; 8569 case DL_NOTE_SDU_SIZE2: 8570 ill->ill_current_frag = 8571 (uint_t)notify->dl_data1; 8572 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8573 break; 8574 } 8575 if (ill->ill_current_frag > ill->ill_max_frag) 8576 ill->ill_max_frag = ill->ill_current_frag; 8577 8578 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8579 ill->ill_mtu = ill->ill_current_frag; 8580 8581 /* 8582 * If ill_user_mtu was set (via 8583 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8584 */ 8585 if (ill->ill_user_mtu != 0 && 8586 ill->ill_user_mtu < ill->ill_mtu) 8587 ill->ill_mtu = ill->ill_user_mtu; 8588 8589 if (ill->ill_user_mtu != 0 && 8590 ill->ill_user_mtu < ill->ill_mc_mtu) 8591 ill->ill_mc_mtu = ill->ill_user_mtu; 8592 8593 if (ill->ill_isv6) { 8594 if (ill->ill_mtu < IPV6_MIN_MTU) 8595 ill->ill_mtu = IPV6_MIN_MTU; 8596 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8597 ill->ill_mc_mtu = IPV6_MIN_MTU; 8598 } else { 8599 if (ill->ill_mtu < IP_MIN_MTU) 8600 ill->ill_mtu = IP_MIN_MTU; 8601 if (ill->ill_mc_mtu < IP_MIN_MTU) 8602 ill->ill_mc_mtu = IP_MIN_MTU; 8603 } 8604 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8605 ill->ill_mc_mtu = ill->ill_mtu; 8606 } 8607 8608 mutex_exit(&ill->ill_lock); 8609 /* 8610 * Make sure all dce_generation checks find out 8611 * that ill_mtu/ill_mc_mtu has changed. 8612 */ 8613 if (orig_mtu != ill->ill_mtu || 8614 orig_mc_mtu != ill->ill_mc_mtu) { 8615 dce_increment_all_generations(ill->ill_isv6, 8616 ill->ill_ipst); 8617 } 8618 8619 /* 8620 * Refresh IPMP meta-interface MTU if necessary. 8621 */ 8622 if (IS_UNDER_IPMP(ill)) 8623 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8624 break; 8625 8626 case DL_NOTE_LINK_UP: 8627 case DL_NOTE_LINK_DOWN: { 8628 /* 8629 * We are writer. ill / phyint / ipsq assocs stable. 8630 * The RUNNING flag reflects the state of the link. 8631 */ 8632 phyint_t *phyint = ill->ill_phyint; 8633 uint64_t new_phyint_flags; 8634 boolean_t changed = B_FALSE; 8635 boolean_t went_up; 8636 8637 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8638 mutex_enter(&phyint->phyint_lock); 8639 8640 new_phyint_flags = went_up ? 8641 phyint->phyint_flags | PHYI_RUNNING : 8642 phyint->phyint_flags & ~PHYI_RUNNING; 8643 8644 if (IS_IPMP(ill)) { 8645 new_phyint_flags = went_up ? 8646 new_phyint_flags & ~PHYI_FAILED : 8647 new_phyint_flags | PHYI_FAILED; 8648 } 8649 8650 if (new_phyint_flags != phyint->phyint_flags) { 8651 phyint->phyint_flags = new_phyint_flags; 8652 changed = B_TRUE; 8653 } 8654 mutex_exit(&phyint->phyint_lock); 8655 /* 8656 * ill_restart_dad handles the DAD restart and routing 8657 * socket notification logic. 8658 */ 8659 if (changed) { 8660 ill_restart_dad(phyint->phyint_illv4, went_up); 8661 ill_restart_dad(phyint->phyint_illv6, went_up); 8662 } 8663 break; 8664 } 8665 case DL_NOTE_PROMISC_ON_PHYS: { 8666 phyint_t *phyint = ill->ill_phyint; 8667 8668 mutex_enter(&phyint->phyint_lock); 8669 phyint->phyint_flags |= PHYI_PROMISC; 8670 mutex_exit(&phyint->phyint_lock); 8671 break; 8672 } 8673 case DL_NOTE_PROMISC_OFF_PHYS: { 8674 phyint_t *phyint = ill->ill_phyint; 8675 8676 mutex_enter(&phyint->phyint_lock); 8677 phyint->phyint_flags &= ~PHYI_PROMISC; 8678 mutex_exit(&phyint->phyint_lock); 8679 break; 8680 } 8681 case DL_NOTE_CAPAB_RENEG: 8682 /* 8683 * Something changed on the driver side. 8684 * It wants us to renegotiate the capabilities 8685 * on this ill. One possible cause is the aggregation 8686 * interface under us where a port got added or 8687 * went away. 8688 * 8689 * If the capability negotiation is already done 8690 * or is in progress, reset the capabilities and 8691 * mark the ill's ill_capab_reneg to be B_TRUE, 8692 * so that when the ack comes back, we can start 8693 * the renegotiation process. 8694 * 8695 * Note that if ill_capab_reneg is already B_TRUE 8696 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8697 * the capability resetting request has been sent 8698 * and the renegotiation has not been started yet; 8699 * nothing needs to be done in this case. 8700 */ 8701 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8702 ill_capability_reset(ill, B_TRUE); 8703 ipsq_current_finish(ipsq); 8704 break; 8705 8706 case DL_NOTE_ALLOWED_IPS: 8707 ill_set_allowed_ips(ill, mp); 8708 break; 8709 default: 8710 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8711 "type 0x%x for DL_NOTIFY_IND\n", 8712 notify->dl_notification)); 8713 break; 8714 } 8715 8716 /* 8717 * As this is an asynchronous operation, we 8718 * should not call ill_dlpi_done 8719 */ 8720 break; 8721 } 8722 case DL_NOTIFY_ACK: { 8723 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8724 8725 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8726 ill->ill_note_link = 1; 8727 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8728 break; 8729 } 8730 case DL_PHYS_ADDR_ACK: { 8731 /* 8732 * As part of plumbing the interface via SIOCSLIFNAME, 8733 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8734 * whose answers we receive here. As each answer is received, 8735 * we call ill_dlpi_done() to dispatch the next request as 8736 * we're processing the current one. Once all answers have 8737 * been received, we use ipsq_pending_mp_get() to dequeue the 8738 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8739 * is invoked from an ill queue, conn_oper_pending_ill is not 8740 * available, but we know the ioctl is pending on ill_wq.) 8741 */ 8742 uint_t paddrlen, paddroff; 8743 uint8_t *addr; 8744 8745 paddrreq = ill->ill_phys_addr_pend; 8746 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8747 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8748 addr = mp->b_rptr + paddroff; 8749 8750 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8751 if (paddrreq == DL_IPV6_TOKEN) { 8752 /* 8753 * bcopy to low-order bits of ill_token 8754 * 8755 * XXX Temporary hack - currently, all known tokens 8756 * are 64 bits, so I'll cheat for the moment. 8757 */ 8758 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8759 ill->ill_token_length = paddrlen; 8760 break; 8761 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8762 ASSERT(ill->ill_nd_lla_mp == NULL); 8763 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8764 mp = NULL; 8765 break; 8766 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8767 ASSERT(ill->ill_dest_addr_mp == NULL); 8768 ill->ill_dest_addr_mp = mp; 8769 ill->ill_dest_addr = addr; 8770 mp = NULL; 8771 if (ill->ill_isv6) { 8772 ill_setdesttoken(ill); 8773 ipif_setdestlinklocal(ill->ill_ipif); 8774 } 8775 break; 8776 } 8777 8778 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8779 ASSERT(ill->ill_phys_addr_mp == NULL); 8780 if (!ill->ill_ifname_pending) 8781 break; 8782 ill->ill_ifname_pending = 0; 8783 if (!ioctl_aborted) 8784 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8785 if (mp1 != NULL) { 8786 ASSERT(connp == NULL); 8787 q = ill->ill_wq; 8788 } 8789 /* 8790 * If any error acks received during the plumbing sequence, 8791 * ill_ifname_pending_err will be set. Break out and send up 8792 * the error to the pending ioctl. 8793 */ 8794 if (ill->ill_ifname_pending_err != 0) { 8795 err = ill->ill_ifname_pending_err; 8796 ill->ill_ifname_pending_err = 0; 8797 break; 8798 } 8799 8800 ill->ill_phys_addr_mp = mp; 8801 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8802 mp = NULL; 8803 8804 /* 8805 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8806 * provider doesn't support physical addresses. We check both 8807 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8808 * not have physical addresses, but historically adversises a 8809 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8810 * its DL_PHYS_ADDR_ACK. 8811 */ 8812 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8813 ill->ill_phys_addr = NULL; 8814 } else if (paddrlen != ill->ill_phys_addr_length) { 8815 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8816 paddrlen, ill->ill_phys_addr_length)); 8817 err = EINVAL; 8818 break; 8819 } 8820 8821 if (ill->ill_nd_lla_mp == NULL) { 8822 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8823 err = ENOMEM; 8824 break; 8825 } 8826 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8827 } 8828 8829 if (ill->ill_isv6) { 8830 ill_setdefaulttoken(ill); 8831 ipif_setlinklocal(ill->ill_ipif); 8832 } 8833 break; 8834 } 8835 case DL_OK_ACK: 8836 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8837 dl_primstr((int)dloa->dl_correct_primitive), 8838 dloa->dl_correct_primitive)); 8839 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8840 char *, dl_primstr(dloa->dl_correct_primitive), 8841 ill_t *, ill); 8842 8843 switch (dloa->dl_correct_primitive) { 8844 case DL_ENABMULTI_REQ: 8845 case DL_DISABMULTI_REQ: 8846 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8847 break; 8848 case DL_PROMISCON_REQ: 8849 case DL_PROMISCOFF_REQ: 8850 case DL_UNBIND_REQ: 8851 case DL_ATTACH_REQ: 8852 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8853 break; 8854 } 8855 break; 8856 default: 8857 break; 8858 } 8859 8860 freemsg(mp); 8861 if (mp1 == NULL) 8862 return; 8863 8864 /* 8865 * The operation must complete without EINPROGRESS since 8866 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8867 * the operation will be stuck forever inside the IPSQ. 8868 */ 8869 ASSERT(err != EINPROGRESS); 8870 8871 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8872 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8873 ipif_t *, NULL); 8874 8875 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8876 case 0: 8877 ipsq_current_finish(ipsq); 8878 break; 8879 8880 case SIOCSLIFNAME: 8881 case IF_UNITSEL: { 8882 ill_t *ill_other = ILL_OTHER(ill); 8883 8884 /* 8885 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8886 * ill has a peer which is in an IPMP group, then place ill 8887 * into the same group. One catch: although ifconfig plumbs 8888 * the appropriate IPMP meta-interface prior to plumbing this 8889 * ill, it is possible for multiple ifconfig applications to 8890 * race (or for another application to adjust plumbing), in 8891 * which case the IPMP meta-interface we need will be missing. 8892 * If so, kick the phyint out of the group. 8893 */ 8894 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8895 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8896 ipmp_illgrp_t *illg; 8897 8898 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8899 if (illg == NULL) 8900 ipmp_phyint_leave_grp(ill->ill_phyint); 8901 else 8902 ipmp_ill_join_illgrp(ill, illg); 8903 } 8904 8905 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8906 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8907 else 8908 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8909 break; 8910 } 8911 case SIOCLIFADDIF: 8912 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8913 break; 8914 8915 default: 8916 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8917 break; 8918 } 8919 } 8920 8921 /* 8922 * ip_rput_other is called by ip_rput to handle messages modifying the global 8923 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8924 */ 8925 /* ARGSUSED */ 8926 void 8927 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8928 { 8929 ill_t *ill = q->q_ptr; 8930 struct iocblk *iocp; 8931 8932 ip1dbg(("ip_rput_other ")); 8933 if (ipsq != NULL) { 8934 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8935 ASSERT(ipsq->ipsq_xop == 8936 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8937 } 8938 8939 switch (mp->b_datap->db_type) { 8940 case M_ERROR: 8941 case M_HANGUP: 8942 /* 8943 * The device has a problem. We force the ILL down. It can 8944 * be brought up again manually using SIOCSIFFLAGS (via 8945 * ifconfig or equivalent). 8946 */ 8947 ASSERT(ipsq != NULL); 8948 if (mp->b_rptr < mp->b_wptr) 8949 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8950 if (ill->ill_error == 0) 8951 ill->ill_error = ENXIO; 8952 if (!ill_down_start(q, mp)) 8953 return; 8954 ipif_all_down_tail(ipsq, q, mp, NULL); 8955 break; 8956 case M_IOCNAK: { 8957 iocp = (struct iocblk *)mp->b_rptr; 8958 8959 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8960 /* 8961 * If this was the first attempt, turn off the fastpath 8962 * probing. 8963 */ 8964 mutex_enter(&ill->ill_lock); 8965 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8966 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8967 mutex_exit(&ill->ill_lock); 8968 /* 8969 * don't flush the nce_t entries: we use them 8970 * as an index to the ncec itself. 8971 */ 8972 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8973 ill->ill_name)); 8974 } else { 8975 mutex_exit(&ill->ill_lock); 8976 } 8977 freemsg(mp); 8978 break; 8979 } 8980 default: 8981 ASSERT(0); 8982 break; 8983 } 8984 } 8985 8986 /* 8987 * Update any source route, record route or timestamp options 8988 * When it fails it has consumed the message and BUMPed the MIB. 8989 */ 8990 boolean_t 8991 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8992 ip_recv_attr_t *ira) 8993 { 8994 ipoptp_t opts; 8995 uchar_t *opt; 8996 uint8_t optval; 8997 uint8_t optlen; 8998 ipaddr_t dst; 8999 ipaddr_t ifaddr; 9000 uint32_t ts; 9001 timestruc_t now; 9002 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9003 9004 ip2dbg(("ip_forward_options\n")); 9005 dst = ipha->ipha_dst; 9006 for (optval = ipoptp_first(&opts, ipha); 9007 optval != IPOPT_EOL; 9008 optval = ipoptp_next(&opts)) { 9009 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9010 opt = opts.ipoptp_cur; 9011 optlen = opts.ipoptp_len; 9012 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9013 optval, opts.ipoptp_len)); 9014 switch (optval) { 9015 uint32_t off; 9016 case IPOPT_SSRR: 9017 case IPOPT_LSRR: 9018 /* Check if adminstratively disabled */ 9019 if (!ipst->ips_ip_forward_src_routed) { 9020 BUMP_MIB(dst_ill->ill_ip_mib, 9021 ipIfStatsForwProhibits); 9022 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9023 mp, dst_ill); 9024 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9025 ira); 9026 return (B_FALSE); 9027 } 9028 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9029 /* 9030 * Must be partial since ip_input_options 9031 * checked for strict. 9032 */ 9033 break; 9034 } 9035 off = opt[IPOPT_OFFSET]; 9036 off--; 9037 redo_srr: 9038 if (optlen < IP_ADDR_LEN || 9039 off > optlen - IP_ADDR_LEN) { 9040 /* End of source route */ 9041 ip1dbg(( 9042 "ip_forward_options: end of SR\n")); 9043 break; 9044 } 9045 /* Pick a reasonable address on the outbound if */ 9046 ASSERT(dst_ill != NULL); 9047 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9048 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9049 NULL) != 0) { 9050 /* No source! Shouldn't happen */ 9051 ifaddr = INADDR_ANY; 9052 } 9053 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9054 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9055 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9056 ntohl(dst))); 9057 9058 /* 9059 * Check if our address is present more than 9060 * once as consecutive hops in source route. 9061 */ 9062 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9063 off += IP_ADDR_LEN; 9064 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9065 goto redo_srr; 9066 } 9067 ipha->ipha_dst = dst; 9068 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9069 break; 9070 case IPOPT_RR: 9071 off = opt[IPOPT_OFFSET]; 9072 off--; 9073 if (optlen < IP_ADDR_LEN || 9074 off > optlen - IP_ADDR_LEN) { 9075 /* No more room - ignore */ 9076 ip1dbg(( 9077 "ip_forward_options: end of RR\n")); 9078 break; 9079 } 9080 /* Pick a reasonable address on the outbound if */ 9081 ASSERT(dst_ill != NULL); 9082 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9083 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9084 NULL) != 0) { 9085 /* No source! Shouldn't happen */ 9086 ifaddr = INADDR_ANY; 9087 } 9088 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9089 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9090 break; 9091 case IPOPT_TS: 9092 /* Insert timestamp if there is room */ 9093 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9094 case IPOPT_TS_TSONLY: 9095 off = IPOPT_TS_TIMELEN; 9096 break; 9097 case IPOPT_TS_PRESPEC: 9098 case IPOPT_TS_PRESPEC_RFC791: 9099 /* Verify that the address matched */ 9100 off = opt[IPOPT_OFFSET] - 1; 9101 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9102 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9103 /* Not for us */ 9104 break; 9105 } 9106 /* FALLTHRU */ 9107 case IPOPT_TS_TSANDADDR: 9108 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9109 break; 9110 default: 9111 /* 9112 * ip_*put_options should have already 9113 * dropped this packet. 9114 */ 9115 cmn_err(CE_PANIC, "ip_forward_options: " 9116 "unknown IT - bug in ip_input_options?\n"); 9117 return (B_TRUE); /* Keep "lint" happy */ 9118 } 9119 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9120 /* Increase overflow counter */ 9121 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9122 opt[IPOPT_POS_OV_FLG] = 9123 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9124 (off << 4)); 9125 break; 9126 } 9127 off = opt[IPOPT_OFFSET] - 1; 9128 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9129 case IPOPT_TS_PRESPEC: 9130 case IPOPT_TS_PRESPEC_RFC791: 9131 case IPOPT_TS_TSANDADDR: 9132 /* Pick a reasonable addr on the outbound if */ 9133 ASSERT(dst_ill != NULL); 9134 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9135 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9136 NULL, NULL) != 0) { 9137 /* No source! Shouldn't happen */ 9138 ifaddr = INADDR_ANY; 9139 } 9140 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9141 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9142 /* FALLTHRU */ 9143 case IPOPT_TS_TSONLY: 9144 off = opt[IPOPT_OFFSET] - 1; 9145 /* Compute # of milliseconds since midnight */ 9146 gethrestime(&now); 9147 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9148 now.tv_nsec / (NANOSEC / MILLISEC); 9149 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9150 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9151 break; 9152 } 9153 break; 9154 } 9155 } 9156 return (B_TRUE); 9157 } 9158 9159 /* 9160 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9161 * returns 'true' if there are still fragments left on the queue, in 9162 * which case we restart the timer. 9163 */ 9164 void 9165 ill_frag_timer(void *arg) 9166 { 9167 ill_t *ill = (ill_t *)arg; 9168 boolean_t frag_pending; 9169 ip_stack_t *ipst = ill->ill_ipst; 9170 time_t timeout; 9171 9172 mutex_enter(&ill->ill_lock); 9173 ASSERT(!ill->ill_fragtimer_executing); 9174 if (ill->ill_state_flags & ILL_CONDEMNED) { 9175 ill->ill_frag_timer_id = 0; 9176 mutex_exit(&ill->ill_lock); 9177 return; 9178 } 9179 ill->ill_fragtimer_executing = 1; 9180 mutex_exit(&ill->ill_lock); 9181 9182 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9183 ipst->ips_ip_reassembly_timeout); 9184 9185 frag_pending = ill_frag_timeout(ill, timeout); 9186 9187 /* 9188 * Restart the timer, if we have fragments pending or if someone 9189 * wanted us to be scheduled again. 9190 */ 9191 mutex_enter(&ill->ill_lock); 9192 ill->ill_fragtimer_executing = 0; 9193 ill->ill_frag_timer_id = 0; 9194 if (frag_pending || ill->ill_fragtimer_needrestart) 9195 ill_frag_timer_start(ill); 9196 mutex_exit(&ill->ill_lock); 9197 } 9198 9199 void 9200 ill_frag_timer_start(ill_t *ill) 9201 { 9202 ip_stack_t *ipst = ill->ill_ipst; 9203 clock_t timeo_ms; 9204 9205 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9206 9207 /* If the ill is closing or opening don't proceed */ 9208 if (ill->ill_state_flags & ILL_CONDEMNED) 9209 return; 9210 9211 if (ill->ill_fragtimer_executing) { 9212 /* 9213 * ill_frag_timer is currently executing. Just record the 9214 * the fact that we want the timer to be restarted. 9215 * ill_frag_timer will post a timeout before it returns, 9216 * ensuring it will be called again. 9217 */ 9218 ill->ill_fragtimer_needrestart = 1; 9219 return; 9220 } 9221 9222 if (ill->ill_frag_timer_id == 0) { 9223 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9224 ipst->ips_ip_reassembly_timeout) * SECONDS; 9225 9226 /* 9227 * The timer is neither running nor is the timeout handler 9228 * executing. Post a timeout so that ill_frag_timer will be 9229 * called 9230 */ 9231 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9232 MSEC_TO_TICK(timeo_ms >> 1)); 9233 ill->ill_fragtimer_needrestart = 0; 9234 } 9235 } 9236 9237 /* 9238 * Update any source route, record route or timestamp options. 9239 * Check that we are at end of strict source route. 9240 * The options have already been checked for sanity in ip_input_options(). 9241 */ 9242 boolean_t 9243 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9244 { 9245 ipoptp_t opts; 9246 uchar_t *opt; 9247 uint8_t optval; 9248 uint8_t optlen; 9249 ipaddr_t dst; 9250 ipaddr_t ifaddr; 9251 uint32_t ts; 9252 timestruc_t now; 9253 ill_t *ill = ira->ira_ill; 9254 ip_stack_t *ipst = ill->ill_ipst; 9255 9256 ip2dbg(("ip_input_local_options\n")); 9257 9258 for (optval = ipoptp_first(&opts, ipha); 9259 optval != IPOPT_EOL; 9260 optval = ipoptp_next(&opts)) { 9261 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9262 opt = opts.ipoptp_cur; 9263 optlen = opts.ipoptp_len; 9264 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9265 optval, optlen)); 9266 switch (optval) { 9267 uint32_t off; 9268 case IPOPT_SSRR: 9269 case IPOPT_LSRR: 9270 off = opt[IPOPT_OFFSET]; 9271 off--; 9272 if (optlen < IP_ADDR_LEN || 9273 off > optlen - IP_ADDR_LEN) { 9274 /* End of source route */ 9275 ip1dbg(("ip_input_local_options: end of SR\n")); 9276 break; 9277 } 9278 /* 9279 * This will only happen if two consecutive entries 9280 * in the source route contains our address or if 9281 * it is a packet with a loose source route which 9282 * reaches us before consuming the whole source route 9283 */ 9284 ip1dbg(("ip_input_local_options: not end of SR\n")); 9285 if (optval == IPOPT_SSRR) { 9286 goto bad_src_route; 9287 } 9288 /* 9289 * Hack: instead of dropping the packet truncate the 9290 * source route to what has been used by filling the 9291 * rest with IPOPT_NOP. 9292 */ 9293 opt[IPOPT_OLEN] = (uint8_t)off; 9294 while (off < optlen) { 9295 opt[off++] = IPOPT_NOP; 9296 } 9297 break; 9298 case IPOPT_RR: 9299 off = opt[IPOPT_OFFSET]; 9300 off--; 9301 if (optlen < IP_ADDR_LEN || 9302 off > optlen - IP_ADDR_LEN) { 9303 /* No more room - ignore */ 9304 ip1dbg(( 9305 "ip_input_local_options: end of RR\n")); 9306 break; 9307 } 9308 /* Pick a reasonable address on the outbound if */ 9309 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9310 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9311 NULL) != 0) { 9312 /* No source! Shouldn't happen */ 9313 ifaddr = INADDR_ANY; 9314 } 9315 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9316 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9317 break; 9318 case IPOPT_TS: 9319 /* Insert timestamp if there is romm */ 9320 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9321 case IPOPT_TS_TSONLY: 9322 off = IPOPT_TS_TIMELEN; 9323 break; 9324 case IPOPT_TS_PRESPEC: 9325 case IPOPT_TS_PRESPEC_RFC791: 9326 /* Verify that the address matched */ 9327 off = opt[IPOPT_OFFSET] - 1; 9328 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9329 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9330 /* Not for us */ 9331 break; 9332 } 9333 /* FALLTHRU */ 9334 case IPOPT_TS_TSANDADDR: 9335 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9336 break; 9337 default: 9338 /* 9339 * ip_*put_options should have already 9340 * dropped this packet. 9341 */ 9342 cmn_err(CE_PANIC, "ip_input_local_options: " 9343 "unknown IT - bug in ip_input_options?\n"); 9344 return (B_TRUE); /* Keep "lint" happy */ 9345 } 9346 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9347 /* Increase overflow counter */ 9348 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9349 opt[IPOPT_POS_OV_FLG] = 9350 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9351 (off << 4)); 9352 break; 9353 } 9354 off = opt[IPOPT_OFFSET] - 1; 9355 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9356 case IPOPT_TS_PRESPEC: 9357 case IPOPT_TS_PRESPEC_RFC791: 9358 case IPOPT_TS_TSANDADDR: 9359 /* Pick a reasonable addr on the outbound if */ 9360 if (ip_select_source_v4(ill, INADDR_ANY, 9361 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9362 &ifaddr, NULL, NULL) != 0) { 9363 /* No source! Shouldn't happen */ 9364 ifaddr = INADDR_ANY; 9365 } 9366 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9367 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9368 /* FALLTHRU */ 9369 case IPOPT_TS_TSONLY: 9370 off = opt[IPOPT_OFFSET] - 1; 9371 /* Compute # of milliseconds since midnight */ 9372 gethrestime(&now); 9373 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9374 now.tv_nsec / (NANOSEC / MILLISEC); 9375 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9376 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9377 break; 9378 } 9379 break; 9380 } 9381 } 9382 return (B_TRUE); 9383 9384 bad_src_route: 9385 /* make sure we clear any indication of a hardware checksum */ 9386 DB_CKSUMFLAGS(mp) = 0; 9387 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9388 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9389 return (B_FALSE); 9390 9391 } 9392 9393 /* 9394 * Process IP options in an inbound packet. Always returns the nexthop. 9395 * Normally this is the passed in nexthop, but if there is an option 9396 * that effects the nexthop (such as a source route) that will be returned. 9397 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9398 * and mp freed. 9399 */ 9400 ipaddr_t 9401 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9402 ip_recv_attr_t *ira, int *errorp) 9403 { 9404 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9405 ipoptp_t opts; 9406 uchar_t *opt; 9407 uint8_t optval; 9408 uint8_t optlen; 9409 intptr_t code = 0; 9410 ire_t *ire; 9411 9412 ip2dbg(("ip_input_options\n")); 9413 *errorp = 0; 9414 for (optval = ipoptp_first(&opts, ipha); 9415 optval != IPOPT_EOL; 9416 optval = ipoptp_next(&opts)) { 9417 opt = opts.ipoptp_cur; 9418 optlen = opts.ipoptp_len; 9419 ip2dbg(("ip_input_options: opt %d, len %d\n", 9420 optval, optlen)); 9421 /* 9422 * Note: we need to verify the checksum before we 9423 * modify anything thus this routine only extracts the next 9424 * hop dst from any source route. 9425 */ 9426 switch (optval) { 9427 uint32_t off; 9428 case IPOPT_SSRR: 9429 case IPOPT_LSRR: 9430 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9431 if (optval == IPOPT_SSRR) { 9432 ip1dbg(("ip_input_options: not next" 9433 " strict source route 0x%x\n", 9434 ntohl(dst))); 9435 code = (char *)&ipha->ipha_dst - 9436 (char *)ipha; 9437 goto param_prob; /* RouterReq's */ 9438 } 9439 ip2dbg(("ip_input_options: " 9440 "not next source route 0x%x\n", 9441 ntohl(dst))); 9442 break; 9443 } 9444 9445 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9446 ip1dbg(( 9447 "ip_input_options: bad option offset\n")); 9448 code = (char *)&opt[IPOPT_OLEN] - 9449 (char *)ipha; 9450 goto param_prob; 9451 } 9452 off = opt[IPOPT_OFFSET]; 9453 off--; 9454 redo_srr: 9455 if (optlen < IP_ADDR_LEN || 9456 off > optlen - IP_ADDR_LEN) { 9457 /* End of source route */ 9458 ip1dbg(("ip_input_options: end of SR\n")); 9459 break; 9460 } 9461 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9462 ip1dbg(("ip_input_options: next hop 0x%x\n", 9463 ntohl(dst))); 9464 9465 /* 9466 * Check if our address is present more than 9467 * once as consecutive hops in source route. 9468 * XXX verify per-interface ip_forwarding 9469 * for source route? 9470 */ 9471 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9472 off += IP_ADDR_LEN; 9473 goto redo_srr; 9474 } 9475 9476 if (dst == htonl(INADDR_LOOPBACK)) { 9477 ip1dbg(("ip_input_options: loopback addr in " 9478 "source route!\n")); 9479 goto bad_src_route; 9480 } 9481 /* 9482 * For strict: verify that dst is directly 9483 * reachable. 9484 */ 9485 if (optval == IPOPT_SSRR) { 9486 ire = ire_ftable_lookup_v4(dst, 0, 0, 9487 IRE_INTERFACE, NULL, ALL_ZONES, 9488 ira->ira_tsl, 9489 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9490 NULL); 9491 if (ire == NULL) { 9492 ip1dbg(("ip_input_options: SSRR not " 9493 "directly reachable: 0x%x\n", 9494 ntohl(dst))); 9495 goto bad_src_route; 9496 } 9497 ire_refrele(ire); 9498 } 9499 /* 9500 * Defer update of the offset and the record route 9501 * until the packet is forwarded. 9502 */ 9503 break; 9504 case IPOPT_RR: 9505 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9506 ip1dbg(( 9507 "ip_input_options: bad option offset\n")); 9508 code = (char *)&opt[IPOPT_OLEN] - 9509 (char *)ipha; 9510 goto param_prob; 9511 } 9512 break; 9513 case IPOPT_TS: 9514 /* 9515 * Verify that length >= 5 and that there is either 9516 * room for another timestamp or that the overflow 9517 * counter is not maxed out. 9518 */ 9519 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9520 if (optlen < IPOPT_MINLEN_IT) { 9521 goto param_prob; 9522 } 9523 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9524 ip1dbg(( 9525 "ip_input_options: bad option offset\n")); 9526 code = (char *)&opt[IPOPT_OFFSET] - 9527 (char *)ipha; 9528 goto param_prob; 9529 } 9530 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9531 case IPOPT_TS_TSONLY: 9532 off = IPOPT_TS_TIMELEN; 9533 break; 9534 case IPOPT_TS_TSANDADDR: 9535 case IPOPT_TS_PRESPEC: 9536 case IPOPT_TS_PRESPEC_RFC791: 9537 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9538 break; 9539 default: 9540 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9541 (char *)ipha; 9542 goto param_prob; 9543 } 9544 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9545 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9546 /* 9547 * No room and the overflow counter is 15 9548 * already. 9549 */ 9550 goto param_prob; 9551 } 9552 break; 9553 } 9554 } 9555 9556 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9557 return (dst); 9558 } 9559 9560 ip1dbg(("ip_input_options: error processing IP options.")); 9561 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9562 9563 param_prob: 9564 /* make sure we clear any indication of a hardware checksum */ 9565 DB_CKSUMFLAGS(mp) = 0; 9566 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9567 icmp_param_problem(mp, (uint8_t)code, ira); 9568 *errorp = -1; 9569 return (dst); 9570 9571 bad_src_route: 9572 /* make sure we clear any indication of a hardware checksum */ 9573 DB_CKSUMFLAGS(mp) = 0; 9574 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9575 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9576 *errorp = -1; 9577 return (dst); 9578 } 9579 9580 /* 9581 * IP & ICMP info in >=14 msg's ... 9582 * - ip fixed part (mib2_ip_t) 9583 * - icmp fixed part (mib2_icmp_t) 9584 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9585 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9586 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9587 * - ipRouteAttributeTable (ip 102) labeled routes 9588 * - ip multicast membership (ip_member_t) 9589 * - ip multicast source filtering (ip_grpsrc_t) 9590 * - igmp fixed part (struct igmpstat) 9591 * - multicast routing stats (struct mrtstat) 9592 * - multicast routing vifs (array of struct vifctl) 9593 * - multicast routing routes (array of struct mfcctl) 9594 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9595 * One per ill plus one generic 9596 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9597 * One per ill plus one generic 9598 * - ipv6RouteEntry all IPv6 IREs 9599 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9600 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9601 * - ipv6AddrEntry all IPv6 ipifs 9602 * - ipv6 multicast membership (ipv6_member_t) 9603 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9604 * 9605 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9606 * already filled in by the caller. 9607 * If legacy_req is true then MIB structures needs to be truncated to their 9608 * legacy sizes before being returned. 9609 * Return value of 0 indicates that no messages were sent and caller 9610 * should free mpctl. 9611 */ 9612 int 9613 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9614 { 9615 ip_stack_t *ipst; 9616 sctp_stack_t *sctps; 9617 9618 if (q->q_next != NULL) { 9619 ipst = ILLQ_TO_IPST(q); 9620 } else { 9621 ipst = CONNQ_TO_IPST(q); 9622 } 9623 ASSERT(ipst != NULL); 9624 sctps = ipst->ips_netstack->netstack_sctp; 9625 9626 if (mpctl == NULL || mpctl->b_cont == NULL) { 9627 return (0); 9628 } 9629 9630 /* 9631 * For the purposes of the (broken) packet shell use 9632 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9633 * to make TCP and UDP appear first in the list of mib items. 9634 * TBD: We could expand this and use it in netstat so that 9635 * the kernel doesn't have to produce large tables (connections, 9636 * routes, etc) when netstat only wants the statistics or a particular 9637 * table. 9638 */ 9639 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9640 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9641 return (1); 9642 } 9643 } 9644 9645 if (level != MIB2_TCP) { 9646 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9647 return (1); 9648 } 9649 } 9650 9651 if (level != MIB2_UDP) { 9652 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9653 return (1); 9654 } 9655 } 9656 9657 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9658 ipst, legacy_req)) == NULL) { 9659 return (1); 9660 } 9661 9662 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9663 legacy_req)) == NULL) { 9664 return (1); 9665 } 9666 9667 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9668 return (1); 9669 } 9670 9671 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9672 return (1); 9673 } 9674 9675 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9676 return (1); 9677 } 9678 9679 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9680 return (1); 9681 } 9682 9683 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9684 legacy_req)) == NULL) { 9685 return (1); 9686 } 9687 9688 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9689 legacy_req)) == NULL) { 9690 return (1); 9691 } 9692 9693 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9694 return (1); 9695 } 9696 9697 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9698 return (1); 9699 } 9700 9701 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9702 return (1); 9703 } 9704 9705 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9706 return (1); 9707 } 9708 9709 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9710 return (1); 9711 } 9712 9713 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9714 return (1); 9715 } 9716 9717 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9718 if (mpctl == NULL) 9719 return (1); 9720 9721 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9722 if (mpctl == NULL) 9723 return (1); 9724 9725 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9726 return (1); 9727 } 9728 9729 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9730 return (1); 9731 } 9732 9733 if ((mpctl = dccp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9734 return (1); 9735 } 9736 9737 freemsg(mpctl); 9738 return (1); 9739 } 9740 9741 /* Get global (legacy) IPv4 statistics */ 9742 static mblk_t * 9743 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9744 ip_stack_t *ipst, boolean_t legacy_req) 9745 { 9746 mib2_ip_t old_ip_mib; 9747 struct opthdr *optp; 9748 mblk_t *mp2ctl; 9749 mib2_ipAddrEntry_t mae; 9750 9751 /* 9752 * make a copy of the original message 9753 */ 9754 mp2ctl = copymsg(mpctl); 9755 9756 /* fixed length IP structure... */ 9757 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9758 optp->level = MIB2_IP; 9759 optp->name = 0; 9760 SET_MIB(old_ip_mib.ipForwarding, 9761 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9762 SET_MIB(old_ip_mib.ipDefaultTTL, 9763 (uint32_t)ipst->ips_ip_def_ttl); 9764 SET_MIB(old_ip_mib.ipReasmTimeout, 9765 ipst->ips_ip_reassembly_timeout); 9766 SET_MIB(old_ip_mib.ipAddrEntrySize, 9767 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9768 sizeof (mib2_ipAddrEntry_t)); 9769 SET_MIB(old_ip_mib.ipRouteEntrySize, 9770 sizeof (mib2_ipRouteEntry_t)); 9771 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9772 sizeof (mib2_ipNetToMediaEntry_t)); 9773 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9774 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9775 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9776 sizeof (mib2_ipAttributeEntry_t)); 9777 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9778 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9779 9780 /* 9781 * Grab the statistics from the new IP MIB 9782 */ 9783 SET_MIB(old_ip_mib.ipInReceives, 9784 (uint32_t)ipmib->ipIfStatsHCInReceives); 9785 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9786 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9787 SET_MIB(old_ip_mib.ipForwDatagrams, 9788 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9789 SET_MIB(old_ip_mib.ipInUnknownProtos, 9790 ipmib->ipIfStatsInUnknownProtos); 9791 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9792 SET_MIB(old_ip_mib.ipInDelivers, 9793 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9794 SET_MIB(old_ip_mib.ipOutRequests, 9795 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9796 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9797 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9798 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9799 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9800 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9801 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9802 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9803 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9804 9805 /* ipRoutingDiscards is not being used */ 9806 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9807 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9808 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9809 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9810 SET_MIB(old_ip_mib.ipReasmDuplicates, 9811 ipmib->ipIfStatsReasmDuplicates); 9812 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9813 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9814 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9815 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9816 SET_MIB(old_ip_mib.rawipInOverflows, 9817 ipmib->rawipIfStatsInOverflows); 9818 9819 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9820 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9821 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9822 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9823 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9824 ipmib->ipIfStatsOutSwitchIPVersion); 9825 9826 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9827 (int)sizeof (old_ip_mib))) { 9828 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9829 (uint_t)sizeof (old_ip_mib))); 9830 } 9831 9832 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9833 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9834 (int)optp->level, (int)optp->name, (int)optp->len)); 9835 qreply(q, mpctl); 9836 return (mp2ctl); 9837 } 9838 9839 /* Per interface IPv4 statistics */ 9840 static mblk_t * 9841 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9842 boolean_t legacy_req) 9843 { 9844 struct opthdr *optp; 9845 mblk_t *mp2ctl; 9846 ill_t *ill; 9847 ill_walk_context_t ctx; 9848 mblk_t *mp_tail = NULL; 9849 mib2_ipIfStatsEntry_t global_ip_mib; 9850 mib2_ipAddrEntry_t mae; 9851 9852 /* 9853 * Make a copy of the original message 9854 */ 9855 mp2ctl = copymsg(mpctl); 9856 9857 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9858 optp->level = MIB2_IP; 9859 optp->name = MIB2_IP_TRAFFIC_STATS; 9860 /* Include "unknown interface" ip_mib */ 9861 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9862 ipst->ips_ip_mib.ipIfStatsIfIndex = 9863 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9864 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9865 (ipst->ips_ip_forwarding ? 1 : 2)); 9866 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9867 (uint32_t)ipst->ips_ip_def_ttl); 9868 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9869 sizeof (mib2_ipIfStatsEntry_t)); 9870 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9871 sizeof (mib2_ipAddrEntry_t)); 9872 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9873 sizeof (mib2_ipRouteEntry_t)); 9874 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9875 sizeof (mib2_ipNetToMediaEntry_t)); 9876 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9877 sizeof (ip_member_t)); 9878 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9879 sizeof (ip_grpsrc_t)); 9880 9881 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9882 9883 if (legacy_req) { 9884 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9885 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9886 } 9887 9888 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9889 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9890 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9891 "failed to allocate %u bytes\n", 9892 (uint_t)sizeof (global_ip_mib))); 9893 } 9894 9895 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9896 ill = ILL_START_WALK_V4(&ctx, ipst); 9897 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9898 ill->ill_ip_mib->ipIfStatsIfIndex = 9899 ill->ill_phyint->phyint_ifindex; 9900 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9901 (ipst->ips_ip_forwarding ? 1 : 2)); 9902 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9903 (uint32_t)ipst->ips_ip_def_ttl); 9904 9905 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9906 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9907 (char *)ill->ill_ip_mib, 9908 (int)sizeof (*ill->ill_ip_mib))) { 9909 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9910 "failed to allocate %u bytes\n", 9911 (uint_t)sizeof (*ill->ill_ip_mib))); 9912 } 9913 } 9914 rw_exit(&ipst->ips_ill_g_lock); 9915 9916 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9917 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9918 "level %d, name %d, len %d\n", 9919 (int)optp->level, (int)optp->name, (int)optp->len)); 9920 qreply(q, mpctl); 9921 9922 if (mp2ctl == NULL) 9923 return (NULL); 9924 9925 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9926 legacy_req)); 9927 } 9928 9929 /* Global IPv4 ICMP statistics */ 9930 static mblk_t * 9931 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9932 { 9933 struct opthdr *optp; 9934 mblk_t *mp2ctl; 9935 9936 /* 9937 * Make a copy of the original message 9938 */ 9939 mp2ctl = copymsg(mpctl); 9940 9941 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9942 optp->level = MIB2_ICMP; 9943 optp->name = 0; 9944 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9945 (int)sizeof (ipst->ips_icmp_mib))) { 9946 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9947 (uint_t)sizeof (ipst->ips_icmp_mib))); 9948 } 9949 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9950 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9951 (int)optp->level, (int)optp->name, (int)optp->len)); 9952 qreply(q, mpctl); 9953 return (mp2ctl); 9954 } 9955 9956 /* Global IPv4 IGMP statistics */ 9957 static mblk_t * 9958 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9959 { 9960 struct opthdr *optp; 9961 mblk_t *mp2ctl; 9962 9963 /* 9964 * make a copy of the original message 9965 */ 9966 mp2ctl = copymsg(mpctl); 9967 9968 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9969 optp->level = EXPER_IGMP; 9970 optp->name = 0; 9971 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9972 (int)sizeof (ipst->ips_igmpstat))) { 9973 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9974 (uint_t)sizeof (ipst->ips_igmpstat))); 9975 } 9976 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9977 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9978 (int)optp->level, (int)optp->name, (int)optp->len)); 9979 qreply(q, mpctl); 9980 return (mp2ctl); 9981 } 9982 9983 /* Global IPv4 Multicast Routing statistics */ 9984 static mblk_t * 9985 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9986 { 9987 struct opthdr *optp; 9988 mblk_t *mp2ctl; 9989 9990 /* 9991 * make a copy of the original message 9992 */ 9993 mp2ctl = copymsg(mpctl); 9994 9995 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9996 optp->level = EXPER_DVMRP; 9997 optp->name = 0; 9998 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9999 ip0dbg(("ip_mroute_stats: failed\n")); 10000 } 10001 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10002 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 10003 (int)optp->level, (int)optp->name, (int)optp->len)); 10004 qreply(q, mpctl); 10005 return (mp2ctl); 10006 } 10007 10008 /* IPv4 address information */ 10009 static mblk_t * 10010 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10011 boolean_t legacy_req) 10012 { 10013 struct opthdr *optp; 10014 mblk_t *mp2ctl; 10015 mblk_t *mp_tail = NULL; 10016 ill_t *ill; 10017 ipif_t *ipif; 10018 uint_t bitval; 10019 mib2_ipAddrEntry_t mae; 10020 size_t mae_size; 10021 zoneid_t zoneid; 10022 ill_walk_context_t ctx; 10023 10024 /* 10025 * make a copy of the original message 10026 */ 10027 mp2ctl = copymsg(mpctl); 10028 10029 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10030 sizeof (mib2_ipAddrEntry_t); 10031 10032 /* ipAddrEntryTable */ 10033 10034 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10035 optp->level = MIB2_IP; 10036 optp->name = MIB2_IP_ADDR; 10037 zoneid = Q_TO_CONN(q)->conn_zoneid; 10038 10039 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10040 ill = ILL_START_WALK_V4(&ctx, ipst); 10041 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10042 for (ipif = ill->ill_ipif; ipif != NULL; 10043 ipif = ipif->ipif_next) { 10044 if (ipif->ipif_zoneid != zoneid && 10045 ipif->ipif_zoneid != ALL_ZONES) 10046 continue; 10047 /* Sum of count from dead IRE_LO* and our current */ 10048 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10049 if (ipif->ipif_ire_local != NULL) { 10050 mae.ipAdEntInfo.ae_ibcnt += 10051 ipif->ipif_ire_local->ire_ib_pkt_count; 10052 } 10053 mae.ipAdEntInfo.ae_obcnt = 0; 10054 mae.ipAdEntInfo.ae_focnt = 0; 10055 10056 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10057 OCTET_LENGTH); 10058 mae.ipAdEntIfIndex.o_length = 10059 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10060 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10061 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10062 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10063 mae.ipAdEntInfo.ae_subnet_len = 10064 ip_mask_to_plen(ipif->ipif_net_mask); 10065 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10066 for (bitval = 1; 10067 bitval && 10068 !(bitval & ipif->ipif_brd_addr); 10069 bitval <<= 1) 10070 noop; 10071 mae.ipAdEntBcastAddr = bitval; 10072 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10073 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10074 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10075 mae.ipAdEntInfo.ae_broadcast_addr = 10076 ipif->ipif_brd_addr; 10077 mae.ipAdEntInfo.ae_pp_dst_addr = 10078 ipif->ipif_pp_dst_addr; 10079 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10080 ill->ill_flags | ill->ill_phyint->phyint_flags; 10081 mae.ipAdEntRetransmitTime = 10082 ill->ill_reachable_retrans_time; 10083 10084 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10085 (char *)&mae, (int)mae_size)) { 10086 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10087 "allocate %u bytes\n", (uint_t)mae_size)); 10088 } 10089 } 10090 } 10091 rw_exit(&ipst->ips_ill_g_lock); 10092 10093 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10094 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10095 (int)optp->level, (int)optp->name, (int)optp->len)); 10096 qreply(q, mpctl); 10097 return (mp2ctl); 10098 } 10099 10100 /* IPv6 address information */ 10101 static mblk_t * 10102 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10103 boolean_t legacy_req) 10104 { 10105 struct opthdr *optp; 10106 mblk_t *mp2ctl; 10107 mblk_t *mp_tail = NULL; 10108 ill_t *ill; 10109 ipif_t *ipif; 10110 mib2_ipv6AddrEntry_t mae6; 10111 size_t mae6_size; 10112 zoneid_t zoneid; 10113 ill_walk_context_t ctx; 10114 10115 /* 10116 * make a copy of the original message 10117 */ 10118 mp2ctl = copymsg(mpctl); 10119 10120 mae6_size = (legacy_req) ? 10121 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10122 sizeof (mib2_ipv6AddrEntry_t); 10123 10124 /* ipv6AddrEntryTable */ 10125 10126 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10127 optp->level = MIB2_IP6; 10128 optp->name = MIB2_IP6_ADDR; 10129 zoneid = Q_TO_CONN(q)->conn_zoneid; 10130 10131 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10132 ill = ILL_START_WALK_V6(&ctx, ipst); 10133 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10134 for (ipif = ill->ill_ipif; ipif != NULL; 10135 ipif = ipif->ipif_next) { 10136 if (ipif->ipif_zoneid != zoneid && 10137 ipif->ipif_zoneid != ALL_ZONES) 10138 continue; 10139 /* Sum of count from dead IRE_LO* and our current */ 10140 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10141 if (ipif->ipif_ire_local != NULL) { 10142 mae6.ipv6AddrInfo.ae_ibcnt += 10143 ipif->ipif_ire_local->ire_ib_pkt_count; 10144 } 10145 mae6.ipv6AddrInfo.ae_obcnt = 0; 10146 mae6.ipv6AddrInfo.ae_focnt = 0; 10147 10148 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10149 OCTET_LENGTH); 10150 mae6.ipv6AddrIfIndex.o_length = 10151 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10152 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10153 mae6.ipv6AddrPfxLength = 10154 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10155 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10156 mae6.ipv6AddrInfo.ae_subnet_len = 10157 mae6.ipv6AddrPfxLength; 10158 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10159 10160 /* Type: stateless(1), stateful(2), unknown(3) */ 10161 if (ipif->ipif_flags & IPIF_ADDRCONF) 10162 mae6.ipv6AddrType = 1; 10163 else 10164 mae6.ipv6AddrType = 2; 10165 /* Anycast: true(1), false(2) */ 10166 if (ipif->ipif_flags & IPIF_ANYCAST) 10167 mae6.ipv6AddrAnycastFlag = 1; 10168 else 10169 mae6.ipv6AddrAnycastFlag = 2; 10170 10171 /* 10172 * Address status: preferred(1), deprecated(2), 10173 * invalid(3), inaccessible(4), unknown(5) 10174 */ 10175 if (ipif->ipif_flags & IPIF_NOLOCAL) 10176 mae6.ipv6AddrStatus = 3; 10177 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10178 mae6.ipv6AddrStatus = 2; 10179 else 10180 mae6.ipv6AddrStatus = 1; 10181 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10182 mae6.ipv6AddrInfo.ae_metric = 10183 ipif->ipif_ill->ill_metric; 10184 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10185 ipif->ipif_v6pp_dst_addr; 10186 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10187 ill->ill_flags | ill->ill_phyint->phyint_flags; 10188 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10189 mae6.ipv6AddrIdentifier = ill->ill_token; 10190 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10191 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10192 mae6.ipv6AddrRetransmitTime = 10193 ill->ill_reachable_retrans_time; 10194 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10195 (char *)&mae6, (int)mae6_size)) { 10196 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10197 "allocate %u bytes\n", 10198 (uint_t)mae6_size)); 10199 } 10200 } 10201 } 10202 rw_exit(&ipst->ips_ill_g_lock); 10203 10204 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10205 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10206 (int)optp->level, (int)optp->name, (int)optp->len)); 10207 qreply(q, mpctl); 10208 return (mp2ctl); 10209 } 10210 10211 /* IPv4 multicast group membership. */ 10212 static mblk_t * 10213 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10214 { 10215 struct opthdr *optp; 10216 mblk_t *mp2ctl; 10217 ill_t *ill; 10218 ipif_t *ipif; 10219 ilm_t *ilm; 10220 ip_member_t ipm; 10221 mblk_t *mp_tail = NULL; 10222 ill_walk_context_t ctx; 10223 zoneid_t zoneid; 10224 10225 /* 10226 * make a copy of the original message 10227 */ 10228 mp2ctl = copymsg(mpctl); 10229 zoneid = Q_TO_CONN(q)->conn_zoneid; 10230 10231 /* ipGroupMember table */ 10232 optp = (struct opthdr *)&mpctl->b_rptr[ 10233 sizeof (struct T_optmgmt_ack)]; 10234 optp->level = MIB2_IP; 10235 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10236 10237 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10238 ill = ILL_START_WALK_V4(&ctx, ipst); 10239 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10240 /* Make sure the ill isn't going away. */ 10241 if (!ill_check_and_refhold(ill)) 10242 continue; 10243 rw_exit(&ipst->ips_ill_g_lock); 10244 rw_enter(&ill->ill_mcast_lock, RW_READER); 10245 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10246 if (ilm->ilm_zoneid != zoneid && 10247 ilm->ilm_zoneid != ALL_ZONES) 10248 continue; 10249 10250 /* Is there an ipif for ilm_ifaddr? */ 10251 for (ipif = ill->ill_ipif; ipif != NULL; 10252 ipif = ipif->ipif_next) { 10253 if (!IPIF_IS_CONDEMNED(ipif) && 10254 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10255 ilm->ilm_ifaddr != INADDR_ANY) 10256 break; 10257 } 10258 if (ipif != NULL) { 10259 ipif_get_name(ipif, 10260 ipm.ipGroupMemberIfIndex.o_bytes, 10261 OCTET_LENGTH); 10262 } else { 10263 ill_get_name(ill, 10264 ipm.ipGroupMemberIfIndex.o_bytes, 10265 OCTET_LENGTH); 10266 } 10267 ipm.ipGroupMemberIfIndex.o_length = 10268 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10269 10270 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10271 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10272 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10273 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10274 (char *)&ipm, (int)sizeof (ipm))) { 10275 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10276 "failed to allocate %u bytes\n", 10277 (uint_t)sizeof (ipm))); 10278 } 10279 } 10280 rw_exit(&ill->ill_mcast_lock); 10281 ill_refrele(ill); 10282 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10283 } 10284 rw_exit(&ipst->ips_ill_g_lock); 10285 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10286 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10287 (int)optp->level, (int)optp->name, (int)optp->len)); 10288 qreply(q, mpctl); 10289 return (mp2ctl); 10290 } 10291 10292 /* IPv6 multicast group membership. */ 10293 static mblk_t * 10294 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10295 { 10296 struct opthdr *optp; 10297 mblk_t *mp2ctl; 10298 ill_t *ill; 10299 ilm_t *ilm; 10300 ipv6_member_t ipm6; 10301 mblk_t *mp_tail = NULL; 10302 ill_walk_context_t ctx; 10303 zoneid_t zoneid; 10304 10305 /* 10306 * make a copy of the original message 10307 */ 10308 mp2ctl = copymsg(mpctl); 10309 zoneid = Q_TO_CONN(q)->conn_zoneid; 10310 10311 /* ip6GroupMember table */ 10312 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10313 optp->level = MIB2_IP6; 10314 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10315 10316 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10317 ill = ILL_START_WALK_V6(&ctx, ipst); 10318 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10319 /* Make sure the ill isn't going away. */ 10320 if (!ill_check_and_refhold(ill)) 10321 continue; 10322 rw_exit(&ipst->ips_ill_g_lock); 10323 /* 10324 * Normally we don't have any members on under IPMP interfaces. 10325 * We report them as a debugging aid. 10326 */ 10327 rw_enter(&ill->ill_mcast_lock, RW_READER); 10328 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10329 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10330 if (ilm->ilm_zoneid != zoneid && 10331 ilm->ilm_zoneid != ALL_ZONES) 10332 continue; /* not this zone */ 10333 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10334 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10335 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10336 if (!snmp_append_data2(mpctl->b_cont, 10337 &mp_tail, 10338 (char *)&ipm6, (int)sizeof (ipm6))) { 10339 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10340 "failed to allocate %u bytes\n", 10341 (uint_t)sizeof (ipm6))); 10342 } 10343 } 10344 rw_exit(&ill->ill_mcast_lock); 10345 ill_refrele(ill); 10346 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10347 } 10348 rw_exit(&ipst->ips_ill_g_lock); 10349 10350 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10351 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10352 (int)optp->level, (int)optp->name, (int)optp->len)); 10353 qreply(q, mpctl); 10354 return (mp2ctl); 10355 } 10356 10357 /* IP multicast filtered sources */ 10358 static mblk_t * 10359 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10360 { 10361 struct opthdr *optp; 10362 mblk_t *mp2ctl; 10363 ill_t *ill; 10364 ipif_t *ipif; 10365 ilm_t *ilm; 10366 ip_grpsrc_t ips; 10367 mblk_t *mp_tail = NULL; 10368 ill_walk_context_t ctx; 10369 zoneid_t zoneid; 10370 int i; 10371 slist_t *sl; 10372 10373 /* 10374 * make a copy of the original message 10375 */ 10376 mp2ctl = copymsg(mpctl); 10377 zoneid = Q_TO_CONN(q)->conn_zoneid; 10378 10379 /* ipGroupSource table */ 10380 optp = (struct opthdr *)&mpctl->b_rptr[ 10381 sizeof (struct T_optmgmt_ack)]; 10382 optp->level = MIB2_IP; 10383 optp->name = EXPER_IP_GROUP_SOURCES; 10384 10385 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10386 ill = ILL_START_WALK_V4(&ctx, ipst); 10387 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10388 /* Make sure the ill isn't going away. */ 10389 if (!ill_check_and_refhold(ill)) 10390 continue; 10391 rw_exit(&ipst->ips_ill_g_lock); 10392 rw_enter(&ill->ill_mcast_lock, RW_READER); 10393 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10394 sl = ilm->ilm_filter; 10395 if (ilm->ilm_zoneid != zoneid && 10396 ilm->ilm_zoneid != ALL_ZONES) 10397 continue; 10398 if (SLIST_IS_EMPTY(sl)) 10399 continue; 10400 10401 /* Is there an ipif for ilm_ifaddr? */ 10402 for (ipif = ill->ill_ipif; ipif != NULL; 10403 ipif = ipif->ipif_next) { 10404 if (!IPIF_IS_CONDEMNED(ipif) && 10405 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10406 ilm->ilm_ifaddr != INADDR_ANY) 10407 break; 10408 } 10409 if (ipif != NULL) { 10410 ipif_get_name(ipif, 10411 ips.ipGroupSourceIfIndex.o_bytes, 10412 OCTET_LENGTH); 10413 } else { 10414 ill_get_name(ill, 10415 ips.ipGroupSourceIfIndex.o_bytes, 10416 OCTET_LENGTH); 10417 } 10418 ips.ipGroupSourceIfIndex.o_length = 10419 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10420 10421 ips.ipGroupSourceGroup = ilm->ilm_addr; 10422 for (i = 0; i < sl->sl_numsrc; i++) { 10423 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10424 continue; 10425 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10426 ips.ipGroupSourceAddress); 10427 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10428 (char *)&ips, (int)sizeof (ips)) == 0) { 10429 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10430 " failed to allocate %u bytes\n", 10431 (uint_t)sizeof (ips))); 10432 } 10433 } 10434 } 10435 rw_exit(&ill->ill_mcast_lock); 10436 ill_refrele(ill); 10437 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10438 } 10439 rw_exit(&ipst->ips_ill_g_lock); 10440 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10441 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10442 (int)optp->level, (int)optp->name, (int)optp->len)); 10443 qreply(q, mpctl); 10444 return (mp2ctl); 10445 } 10446 10447 /* IPv6 multicast filtered sources. */ 10448 static mblk_t * 10449 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10450 { 10451 struct opthdr *optp; 10452 mblk_t *mp2ctl; 10453 ill_t *ill; 10454 ilm_t *ilm; 10455 ipv6_grpsrc_t ips6; 10456 mblk_t *mp_tail = NULL; 10457 ill_walk_context_t ctx; 10458 zoneid_t zoneid; 10459 int i; 10460 slist_t *sl; 10461 10462 /* 10463 * make a copy of the original message 10464 */ 10465 mp2ctl = copymsg(mpctl); 10466 zoneid = Q_TO_CONN(q)->conn_zoneid; 10467 10468 /* ip6GroupMember table */ 10469 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10470 optp->level = MIB2_IP6; 10471 optp->name = EXPER_IP6_GROUP_SOURCES; 10472 10473 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10474 ill = ILL_START_WALK_V6(&ctx, ipst); 10475 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10476 /* Make sure the ill isn't going away. */ 10477 if (!ill_check_and_refhold(ill)) 10478 continue; 10479 rw_exit(&ipst->ips_ill_g_lock); 10480 /* 10481 * Normally we don't have any members on under IPMP interfaces. 10482 * We report them as a debugging aid. 10483 */ 10484 rw_enter(&ill->ill_mcast_lock, RW_READER); 10485 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10486 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10487 sl = ilm->ilm_filter; 10488 if (ilm->ilm_zoneid != zoneid && 10489 ilm->ilm_zoneid != ALL_ZONES) 10490 continue; 10491 if (SLIST_IS_EMPTY(sl)) 10492 continue; 10493 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10494 for (i = 0; i < sl->sl_numsrc; i++) { 10495 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10496 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10497 (char *)&ips6, (int)sizeof (ips6))) { 10498 ip1dbg(("ip_snmp_get_mib2_ip6_" 10499 "group_src: failed to allocate " 10500 "%u bytes\n", 10501 (uint_t)sizeof (ips6))); 10502 } 10503 } 10504 } 10505 rw_exit(&ill->ill_mcast_lock); 10506 ill_refrele(ill); 10507 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10508 } 10509 rw_exit(&ipst->ips_ill_g_lock); 10510 10511 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10512 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10513 (int)optp->level, (int)optp->name, (int)optp->len)); 10514 qreply(q, mpctl); 10515 return (mp2ctl); 10516 } 10517 10518 /* Multicast routing virtual interface table. */ 10519 static mblk_t * 10520 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10521 { 10522 struct opthdr *optp; 10523 mblk_t *mp2ctl; 10524 10525 /* 10526 * make a copy of the original message 10527 */ 10528 mp2ctl = copymsg(mpctl); 10529 10530 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10531 optp->level = EXPER_DVMRP; 10532 optp->name = EXPER_DVMRP_VIF; 10533 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10534 ip0dbg(("ip_mroute_vif: failed\n")); 10535 } 10536 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10537 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10538 (int)optp->level, (int)optp->name, (int)optp->len)); 10539 qreply(q, mpctl); 10540 return (mp2ctl); 10541 } 10542 10543 /* Multicast routing table. */ 10544 static mblk_t * 10545 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10546 { 10547 struct opthdr *optp; 10548 mblk_t *mp2ctl; 10549 10550 /* 10551 * make a copy of the original message 10552 */ 10553 mp2ctl = copymsg(mpctl); 10554 10555 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10556 optp->level = EXPER_DVMRP; 10557 optp->name = EXPER_DVMRP_MRT; 10558 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10559 ip0dbg(("ip_mroute_mrt: failed\n")); 10560 } 10561 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10562 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10563 (int)optp->level, (int)optp->name, (int)optp->len)); 10564 qreply(q, mpctl); 10565 return (mp2ctl); 10566 } 10567 10568 /* 10569 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10570 * in one IRE walk. 10571 */ 10572 static mblk_t * 10573 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10574 ip_stack_t *ipst) 10575 { 10576 struct opthdr *optp; 10577 mblk_t *mp2ctl; /* Returned */ 10578 mblk_t *mp3ctl; /* nettomedia */ 10579 mblk_t *mp4ctl; /* routeattrs */ 10580 iproutedata_t ird; 10581 zoneid_t zoneid; 10582 10583 /* 10584 * make copies of the original message 10585 * - mp2ctl is returned unchanged to the caller for his use 10586 * - mpctl is sent upstream as ipRouteEntryTable 10587 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10588 * - mp4ctl is sent upstream as ipRouteAttributeTable 10589 */ 10590 mp2ctl = copymsg(mpctl); 10591 mp3ctl = copymsg(mpctl); 10592 mp4ctl = copymsg(mpctl); 10593 if (mp3ctl == NULL || mp4ctl == NULL) { 10594 freemsg(mp4ctl); 10595 freemsg(mp3ctl); 10596 freemsg(mp2ctl); 10597 freemsg(mpctl); 10598 return (NULL); 10599 } 10600 10601 bzero(&ird, sizeof (ird)); 10602 10603 ird.ird_route.lp_head = mpctl->b_cont; 10604 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10605 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10606 /* 10607 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10608 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10609 * intended a temporary solution until a proper MIB API is provided 10610 * that provides complete filtering/caller-opt-in. 10611 */ 10612 if (level == EXPER_IP_AND_ALL_IRES) 10613 ird.ird_flags |= IRD_REPORT_ALL; 10614 10615 zoneid = Q_TO_CONN(q)->conn_zoneid; 10616 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10617 10618 /* ipRouteEntryTable in mpctl */ 10619 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10620 optp->level = MIB2_IP; 10621 optp->name = MIB2_IP_ROUTE; 10622 optp->len = msgdsize(ird.ird_route.lp_head); 10623 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10624 (int)optp->level, (int)optp->name, (int)optp->len)); 10625 qreply(q, mpctl); 10626 10627 /* ipNetToMediaEntryTable in mp3ctl */ 10628 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10629 10630 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10631 optp->level = MIB2_IP; 10632 optp->name = MIB2_IP_MEDIA; 10633 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10634 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10635 (int)optp->level, (int)optp->name, (int)optp->len)); 10636 qreply(q, mp3ctl); 10637 10638 /* ipRouteAttributeTable in mp4ctl */ 10639 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10640 optp->level = MIB2_IP; 10641 optp->name = EXPER_IP_RTATTR; 10642 optp->len = msgdsize(ird.ird_attrs.lp_head); 10643 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10644 (int)optp->level, (int)optp->name, (int)optp->len)); 10645 if (optp->len == 0) 10646 freemsg(mp4ctl); 10647 else 10648 qreply(q, mp4ctl); 10649 10650 return (mp2ctl); 10651 } 10652 10653 /* 10654 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10655 * ipv6NetToMediaEntryTable in an NDP walk. 10656 */ 10657 static mblk_t * 10658 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10659 ip_stack_t *ipst) 10660 { 10661 struct opthdr *optp; 10662 mblk_t *mp2ctl; /* Returned */ 10663 mblk_t *mp3ctl; /* nettomedia */ 10664 mblk_t *mp4ctl; /* routeattrs */ 10665 iproutedata_t ird; 10666 zoneid_t zoneid; 10667 10668 /* 10669 * make copies of the original message 10670 * - mp2ctl is returned unchanged to the caller for his use 10671 * - mpctl is sent upstream as ipv6RouteEntryTable 10672 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10673 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10674 */ 10675 mp2ctl = copymsg(mpctl); 10676 mp3ctl = copymsg(mpctl); 10677 mp4ctl = copymsg(mpctl); 10678 if (mp3ctl == NULL || mp4ctl == NULL) { 10679 freemsg(mp4ctl); 10680 freemsg(mp3ctl); 10681 freemsg(mp2ctl); 10682 freemsg(mpctl); 10683 return (NULL); 10684 } 10685 10686 bzero(&ird, sizeof (ird)); 10687 10688 ird.ird_route.lp_head = mpctl->b_cont; 10689 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10690 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10691 /* 10692 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10693 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10694 * intended a temporary solution until a proper MIB API is provided 10695 * that provides complete filtering/caller-opt-in. 10696 */ 10697 if (level == EXPER_IP_AND_ALL_IRES) 10698 ird.ird_flags |= IRD_REPORT_ALL; 10699 10700 zoneid = Q_TO_CONN(q)->conn_zoneid; 10701 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10702 10703 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10704 optp->level = MIB2_IP6; 10705 optp->name = MIB2_IP6_ROUTE; 10706 optp->len = msgdsize(ird.ird_route.lp_head); 10707 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10708 (int)optp->level, (int)optp->name, (int)optp->len)); 10709 qreply(q, mpctl); 10710 10711 /* ipv6NetToMediaEntryTable in mp3ctl */ 10712 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10713 10714 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10715 optp->level = MIB2_IP6; 10716 optp->name = MIB2_IP6_MEDIA; 10717 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10718 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10719 (int)optp->level, (int)optp->name, (int)optp->len)); 10720 qreply(q, mp3ctl); 10721 10722 /* ipv6RouteAttributeTable in mp4ctl */ 10723 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10724 optp->level = MIB2_IP6; 10725 optp->name = EXPER_IP_RTATTR; 10726 optp->len = msgdsize(ird.ird_attrs.lp_head); 10727 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10728 (int)optp->level, (int)optp->name, (int)optp->len)); 10729 if (optp->len == 0) 10730 freemsg(mp4ctl); 10731 else 10732 qreply(q, mp4ctl); 10733 10734 return (mp2ctl); 10735 } 10736 10737 /* 10738 * IPv6 mib: One per ill 10739 */ 10740 static mblk_t * 10741 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10742 boolean_t legacy_req) 10743 { 10744 struct opthdr *optp; 10745 mblk_t *mp2ctl; 10746 ill_t *ill; 10747 ill_walk_context_t ctx; 10748 mblk_t *mp_tail = NULL; 10749 mib2_ipv6AddrEntry_t mae6; 10750 mib2_ipIfStatsEntry_t *ise; 10751 size_t ise_size, iae_size; 10752 10753 /* 10754 * Make a copy of the original message 10755 */ 10756 mp2ctl = copymsg(mpctl); 10757 10758 /* fixed length IPv6 structure ... */ 10759 10760 if (legacy_req) { 10761 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10762 mib2_ipIfStatsEntry_t); 10763 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10764 } else { 10765 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10766 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10767 } 10768 10769 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10770 optp->level = MIB2_IP6; 10771 optp->name = 0; 10772 /* Include "unknown interface" ip6_mib */ 10773 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10774 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10775 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10776 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10777 ipst->ips_ipv6_forwarding ? 1 : 2); 10778 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10779 ipst->ips_ipv6_def_hops); 10780 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10781 sizeof (mib2_ipIfStatsEntry_t)); 10782 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10783 sizeof (mib2_ipv6AddrEntry_t)); 10784 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10785 sizeof (mib2_ipv6RouteEntry_t)); 10786 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10787 sizeof (mib2_ipv6NetToMediaEntry_t)); 10788 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10789 sizeof (ipv6_member_t)); 10790 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10791 sizeof (ipv6_grpsrc_t)); 10792 10793 /* 10794 * Synchronize 64- and 32-bit counters 10795 */ 10796 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10797 ipIfStatsHCInReceives); 10798 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10799 ipIfStatsHCInDelivers); 10800 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10801 ipIfStatsHCOutRequests); 10802 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10803 ipIfStatsHCOutForwDatagrams); 10804 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10805 ipIfStatsHCOutMcastPkts); 10806 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10807 ipIfStatsHCInMcastPkts); 10808 10809 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10810 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10811 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10812 (uint_t)ise_size)); 10813 } else if (legacy_req) { 10814 /* Adjust the EntrySize fields for legacy requests. */ 10815 ise = 10816 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10817 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10818 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10819 } 10820 10821 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10822 ill = ILL_START_WALK_V6(&ctx, ipst); 10823 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10824 ill->ill_ip_mib->ipIfStatsIfIndex = 10825 ill->ill_phyint->phyint_ifindex; 10826 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10827 ipst->ips_ipv6_forwarding ? 1 : 2); 10828 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10829 ill->ill_max_hops); 10830 10831 /* 10832 * Synchronize 64- and 32-bit counters 10833 */ 10834 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10835 ipIfStatsHCInReceives); 10836 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10837 ipIfStatsHCInDelivers); 10838 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10839 ipIfStatsHCOutRequests); 10840 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10841 ipIfStatsHCOutForwDatagrams); 10842 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10843 ipIfStatsHCOutMcastPkts); 10844 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10845 ipIfStatsHCInMcastPkts); 10846 10847 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10848 (char *)ill->ill_ip_mib, (int)ise_size)) { 10849 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10850 "%u bytes\n", (uint_t)ise_size)); 10851 } else if (legacy_req) { 10852 /* Adjust the EntrySize fields for legacy requests. */ 10853 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10854 (int)ise_size); 10855 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10856 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10857 } 10858 } 10859 rw_exit(&ipst->ips_ill_g_lock); 10860 10861 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10862 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10863 (int)optp->level, (int)optp->name, (int)optp->len)); 10864 qreply(q, mpctl); 10865 return (mp2ctl); 10866 } 10867 10868 /* 10869 * ICMPv6 mib: One per ill 10870 */ 10871 static mblk_t * 10872 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10873 { 10874 struct opthdr *optp; 10875 mblk_t *mp2ctl; 10876 ill_t *ill; 10877 ill_walk_context_t ctx; 10878 mblk_t *mp_tail = NULL; 10879 /* 10880 * Make a copy of the original message 10881 */ 10882 mp2ctl = copymsg(mpctl); 10883 10884 /* fixed length ICMPv6 structure ... */ 10885 10886 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10887 optp->level = MIB2_ICMP6; 10888 optp->name = 0; 10889 /* Include "unknown interface" icmp6_mib */ 10890 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10891 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10892 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10893 sizeof (mib2_ipv6IfIcmpEntry_t); 10894 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10895 (char *)&ipst->ips_icmp6_mib, 10896 (int)sizeof (ipst->ips_icmp6_mib))) { 10897 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10898 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10899 } 10900 10901 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10902 ill = ILL_START_WALK_V6(&ctx, ipst); 10903 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10904 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10905 ill->ill_phyint->phyint_ifindex; 10906 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10907 (char *)ill->ill_icmp6_mib, 10908 (int)sizeof (*ill->ill_icmp6_mib))) { 10909 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10910 "%u bytes\n", 10911 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10912 } 10913 } 10914 rw_exit(&ipst->ips_ill_g_lock); 10915 10916 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10917 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10918 (int)optp->level, (int)optp->name, (int)optp->len)); 10919 qreply(q, mpctl); 10920 return (mp2ctl); 10921 } 10922 10923 /* 10924 * ire_walk routine to create both ipRouteEntryTable and 10925 * ipRouteAttributeTable in one IRE walk 10926 */ 10927 static void 10928 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10929 { 10930 ill_t *ill; 10931 mib2_ipRouteEntry_t *re; 10932 mib2_ipAttributeEntry_t iaes; 10933 tsol_ire_gw_secattr_t *attrp; 10934 tsol_gc_t *gc = NULL; 10935 tsol_gcgrp_t *gcgrp = NULL; 10936 ip_stack_t *ipst = ire->ire_ipst; 10937 10938 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10939 10940 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10941 if (ire->ire_testhidden) 10942 return; 10943 if (ire->ire_type & IRE_IF_CLONE) 10944 return; 10945 } 10946 10947 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10948 return; 10949 10950 if ((attrp = ire->ire_gw_secattr) != NULL) { 10951 mutex_enter(&attrp->igsa_lock); 10952 if ((gc = attrp->igsa_gc) != NULL) { 10953 gcgrp = gc->gc_grp; 10954 ASSERT(gcgrp != NULL); 10955 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10956 } 10957 mutex_exit(&attrp->igsa_lock); 10958 } 10959 /* 10960 * Return all IRE types for route table... let caller pick and choose 10961 */ 10962 re->ipRouteDest = ire->ire_addr; 10963 ill = ire->ire_ill; 10964 re->ipRouteIfIndex.o_length = 0; 10965 if (ill != NULL) { 10966 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10967 re->ipRouteIfIndex.o_length = 10968 mi_strlen(re->ipRouteIfIndex.o_bytes); 10969 } 10970 re->ipRouteMetric1 = -1; 10971 re->ipRouteMetric2 = -1; 10972 re->ipRouteMetric3 = -1; 10973 re->ipRouteMetric4 = -1; 10974 10975 re->ipRouteNextHop = ire->ire_gateway_addr; 10976 /* indirect(4), direct(3), or invalid(2) */ 10977 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10978 re->ipRouteType = 2; 10979 else if (ire->ire_type & IRE_ONLINK) 10980 re->ipRouteType = 3; 10981 else 10982 re->ipRouteType = 4; 10983 10984 re->ipRouteProto = -1; 10985 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10986 re->ipRouteMask = ire->ire_mask; 10987 re->ipRouteMetric5 = -1; 10988 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10989 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10990 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10991 10992 re->ipRouteInfo.re_frag_flag = 0; 10993 re->ipRouteInfo.re_rtt = 0; 10994 re->ipRouteInfo.re_src_addr = 0; 10995 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10996 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10997 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10998 re->ipRouteInfo.re_flags = ire->ire_flags; 10999 11000 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11001 if (ire->ire_type & IRE_INTERFACE) { 11002 ire_t *child; 11003 11004 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11005 child = ire->ire_dep_children; 11006 while (child != NULL) { 11007 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 11008 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11009 child = child->ire_dep_sib_next; 11010 } 11011 rw_exit(&ipst->ips_ire_dep_lock); 11012 } 11013 11014 if (ire->ire_flags & RTF_DYNAMIC) { 11015 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11016 } else { 11017 re->ipRouteInfo.re_ire_type = ire->ire_type; 11018 } 11019 11020 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11021 (char *)re, (int)sizeof (*re))) { 11022 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11023 (uint_t)sizeof (*re))); 11024 } 11025 11026 if (gc != NULL) { 11027 iaes.iae_routeidx = ird->ird_idx; 11028 iaes.iae_doi = gc->gc_db->gcdb_doi; 11029 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11030 11031 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11032 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11033 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11034 "bytes\n", (uint_t)sizeof (iaes))); 11035 } 11036 } 11037 11038 /* bump route index for next pass */ 11039 ird->ird_idx++; 11040 11041 kmem_free(re, sizeof (*re)); 11042 if (gcgrp != NULL) 11043 rw_exit(&gcgrp->gcgrp_rwlock); 11044 } 11045 11046 /* 11047 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11048 */ 11049 static void 11050 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11051 { 11052 ill_t *ill; 11053 mib2_ipv6RouteEntry_t *re; 11054 mib2_ipAttributeEntry_t iaes; 11055 tsol_ire_gw_secattr_t *attrp; 11056 tsol_gc_t *gc = NULL; 11057 tsol_gcgrp_t *gcgrp = NULL; 11058 ip_stack_t *ipst = ire->ire_ipst; 11059 11060 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11061 11062 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11063 if (ire->ire_testhidden) 11064 return; 11065 if (ire->ire_type & IRE_IF_CLONE) 11066 return; 11067 } 11068 11069 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11070 return; 11071 11072 if ((attrp = ire->ire_gw_secattr) != NULL) { 11073 mutex_enter(&attrp->igsa_lock); 11074 if ((gc = attrp->igsa_gc) != NULL) { 11075 gcgrp = gc->gc_grp; 11076 ASSERT(gcgrp != NULL); 11077 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11078 } 11079 mutex_exit(&attrp->igsa_lock); 11080 } 11081 /* 11082 * Return all IRE types for route table... let caller pick and choose 11083 */ 11084 re->ipv6RouteDest = ire->ire_addr_v6; 11085 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11086 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11087 re->ipv6RouteIfIndex.o_length = 0; 11088 ill = ire->ire_ill; 11089 if (ill != NULL) { 11090 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11091 re->ipv6RouteIfIndex.o_length = 11092 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11093 } 11094 11095 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11096 11097 mutex_enter(&ire->ire_lock); 11098 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11099 mutex_exit(&ire->ire_lock); 11100 11101 /* remote(4), local(3), or discard(2) */ 11102 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11103 re->ipv6RouteType = 2; 11104 else if (ire->ire_type & IRE_ONLINK) 11105 re->ipv6RouteType = 3; 11106 else 11107 re->ipv6RouteType = 4; 11108 11109 re->ipv6RouteProtocol = -1; 11110 re->ipv6RoutePolicy = 0; 11111 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11112 re->ipv6RouteNextHopRDI = 0; 11113 re->ipv6RouteWeight = 0; 11114 re->ipv6RouteMetric = 0; 11115 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11116 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11117 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11118 11119 re->ipv6RouteInfo.re_frag_flag = 0; 11120 re->ipv6RouteInfo.re_rtt = 0; 11121 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11122 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11123 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11124 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11125 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11126 11127 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11128 if (ire->ire_type & IRE_INTERFACE) { 11129 ire_t *child; 11130 11131 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11132 child = ire->ire_dep_children; 11133 while (child != NULL) { 11134 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11135 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11136 child = child->ire_dep_sib_next; 11137 } 11138 rw_exit(&ipst->ips_ire_dep_lock); 11139 } 11140 if (ire->ire_flags & RTF_DYNAMIC) { 11141 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11142 } else { 11143 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11144 } 11145 11146 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11147 (char *)re, (int)sizeof (*re))) { 11148 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11149 (uint_t)sizeof (*re))); 11150 } 11151 11152 if (gc != NULL) { 11153 iaes.iae_routeidx = ird->ird_idx; 11154 iaes.iae_doi = gc->gc_db->gcdb_doi; 11155 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11156 11157 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11158 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11159 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11160 "bytes\n", (uint_t)sizeof (iaes))); 11161 } 11162 } 11163 11164 /* bump route index for next pass */ 11165 ird->ird_idx++; 11166 11167 kmem_free(re, sizeof (*re)); 11168 if (gcgrp != NULL) 11169 rw_exit(&gcgrp->gcgrp_rwlock); 11170 } 11171 11172 /* 11173 * ncec_walk routine to create ipv6NetToMediaEntryTable 11174 */ 11175 static int 11176 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11177 { 11178 ill_t *ill; 11179 mib2_ipv6NetToMediaEntry_t ntme; 11180 11181 ill = ncec->ncec_ill; 11182 /* skip arpce entries, and loopback ncec entries */ 11183 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11184 return (0); 11185 /* 11186 * Neighbor cache entry attached to IRE with on-link 11187 * destination. 11188 * We report all IPMP groups on ncec_ill which is normally the upper. 11189 */ 11190 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11191 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11192 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11193 if (ncec->ncec_lladdr != NULL) { 11194 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11195 ntme.ipv6NetToMediaPhysAddress.o_length); 11196 } 11197 /* 11198 * Note: Returns ND_* states. Should be: 11199 * reachable(1), stale(2), delay(3), probe(4), 11200 * invalid(5), unknown(6) 11201 */ 11202 ntme.ipv6NetToMediaState = ncec->ncec_state; 11203 ntme.ipv6NetToMediaLastUpdated = 0; 11204 11205 /* other(1), dynamic(2), static(3), local(4) */ 11206 if (NCE_MYADDR(ncec)) { 11207 ntme.ipv6NetToMediaType = 4; 11208 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11209 ntme.ipv6NetToMediaType = 1; /* proxy */ 11210 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11211 ntme.ipv6NetToMediaType = 3; 11212 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11213 ntme.ipv6NetToMediaType = 1; 11214 } else { 11215 ntme.ipv6NetToMediaType = 2; 11216 } 11217 11218 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11219 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11220 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11221 (uint_t)sizeof (ntme))); 11222 } 11223 return (0); 11224 } 11225 11226 int 11227 nce2ace(ncec_t *ncec) 11228 { 11229 int flags = 0; 11230 11231 if (NCE_ISREACHABLE(ncec)) 11232 flags |= ACE_F_RESOLVED; 11233 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11234 flags |= ACE_F_AUTHORITY; 11235 if (ncec->ncec_flags & NCE_F_PUBLISH) 11236 flags |= ACE_F_PUBLISH; 11237 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11238 flags |= ACE_F_PERMANENT; 11239 if (NCE_MYADDR(ncec)) 11240 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11241 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11242 flags |= ACE_F_UNVERIFIED; 11243 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11244 flags |= ACE_F_AUTHORITY; 11245 if (ncec->ncec_flags & NCE_F_DELAYED) 11246 flags |= ACE_F_DELAYED; 11247 return (flags); 11248 } 11249 11250 /* 11251 * ncec_walk routine to create ipNetToMediaEntryTable 11252 */ 11253 static int 11254 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11255 { 11256 ill_t *ill; 11257 mib2_ipNetToMediaEntry_t ntme; 11258 const char *name = "unknown"; 11259 ipaddr_t ncec_addr; 11260 11261 ill = ncec->ncec_ill; 11262 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11263 ill->ill_net_type == IRE_LOOPBACK) 11264 return (0); 11265 11266 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11267 name = ill->ill_name; 11268 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11269 if (NCE_MYADDR(ncec)) { 11270 ntme.ipNetToMediaType = 4; 11271 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11272 ntme.ipNetToMediaType = 1; 11273 } else { 11274 ntme.ipNetToMediaType = 3; 11275 } 11276 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11277 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11278 ntme.ipNetToMediaIfIndex.o_length); 11279 11280 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11281 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11282 11283 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11284 ncec_addr = INADDR_BROADCAST; 11285 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11286 sizeof (ncec_addr)); 11287 /* 11288 * map all the flags to the ACE counterpart. 11289 */ 11290 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11291 11292 ntme.ipNetToMediaPhysAddress.o_length = 11293 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11294 11295 if (!NCE_ISREACHABLE(ncec)) 11296 ntme.ipNetToMediaPhysAddress.o_length = 0; 11297 else { 11298 if (ncec->ncec_lladdr != NULL) { 11299 bcopy(ncec->ncec_lladdr, 11300 ntme.ipNetToMediaPhysAddress.o_bytes, 11301 ntme.ipNetToMediaPhysAddress.o_length); 11302 } 11303 } 11304 11305 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11306 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11307 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11308 (uint_t)sizeof (ntme))); 11309 } 11310 return (0); 11311 } 11312 11313 /* 11314 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11315 */ 11316 /* ARGSUSED */ 11317 int 11318 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11319 { 11320 switch (level) { 11321 case MIB2_IP: 11322 case MIB2_ICMP: 11323 switch (name) { 11324 default: 11325 break; 11326 } 11327 return (1); 11328 default: 11329 return (1); 11330 } 11331 } 11332 11333 /* 11334 * When there exists both a 64- and 32-bit counter of a particular type 11335 * (i.e., InReceives), only the 64-bit counters are added. 11336 */ 11337 void 11338 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11339 { 11340 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11341 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11342 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11343 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11344 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11345 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11346 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11347 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11348 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11349 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11350 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11351 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11352 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11353 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11354 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11355 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11356 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11357 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11358 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11359 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11360 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11361 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11362 o2->ipIfStatsInWrongIPVersion); 11363 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11364 o2->ipIfStatsInWrongIPVersion); 11365 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11366 o2->ipIfStatsOutSwitchIPVersion); 11367 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11368 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11369 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11370 o2->ipIfStatsHCInForwDatagrams); 11371 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11372 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11373 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11374 o2->ipIfStatsHCOutForwDatagrams); 11375 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11376 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11377 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11378 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11379 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11380 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11381 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11382 o2->ipIfStatsHCOutMcastOctets); 11383 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11384 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11385 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11386 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11387 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11388 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11389 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11390 } 11391 11392 void 11393 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11394 { 11395 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11396 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11397 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11398 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11399 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11400 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11401 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11402 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11403 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11404 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11405 o2->ipv6IfIcmpInRouterSolicits); 11406 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11407 o2->ipv6IfIcmpInRouterAdvertisements); 11408 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11409 o2->ipv6IfIcmpInNeighborSolicits); 11410 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11411 o2->ipv6IfIcmpInNeighborAdvertisements); 11412 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11413 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11414 o2->ipv6IfIcmpInGroupMembQueries); 11415 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11416 o2->ipv6IfIcmpInGroupMembResponses); 11417 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11418 o2->ipv6IfIcmpInGroupMembReductions); 11419 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11420 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11421 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11422 o2->ipv6IfIcmpOutDestUnreachs); 11423 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11424 o2->ipv6IfIcmpOutAdminProhibs); 11425 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11426 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11427 o2->ipv6IfIcmpOutParmProblems); 11428 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11429 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11430 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11431 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11432 o2->ipv6IfIcmpOutRouterSolicits); 11433 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11434 o2->ipv6IfIcmpOutRouterAdvertisements); 11435 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11436 o2->ipv6IfIcmpOutNeighborSolicits); 11437 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11438 o2->ipv6IfIcmpOutNeighborAdvertisements); 11439 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11440 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11441 o2->ipv6IfIcmpOutGroupMembQueries); 11442 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11443 o2->ipv6IfIcmpOutGroupMembResponses); 11444 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11445 o2->ipv6IfIcmpOutGroupMembReductions); 11446 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11447 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11448 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11449 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11450 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11451 o2->ipv6IfIcmpInBadNeighborSolicitations); 11452 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11453 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11454 o2->ipv6IfIcmpInGroupMembTotal); 11455 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11456 o2->ipv6IfIcmpInGroupMembBadQueries); 11457 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11458 o2->ipv6IfIcmpInGroupMembBadReports); 11459 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11460 o2->ipv6IfIcmpInGroupMembOurReports); 11461 } 11462 11463 /* 11464 * Called before the options are updated to check if this packet will 11465 * be source routed from here. 11466 * This routine assumes that the options are well formed i.e. that they 11467 * have already been checked. 11468 */ 11469 boolean_t 11470 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11471 { 11472 ipoptp_t opts; 11473 uchar_t *opt; 11474 uint8_t optval; 11475 uint8_t optlen; 11476 ipaddr_t dst; 11477 11478 if (IS_SIMPLE_IPH(ipha)) { 11479 ip2dbg(("not source routed\n")); 11480 return (B_FALSE); 11481 } 11482 dst = ipha->ipha_dst; 11483 for (optval = ipoptp_first(&opts, ipha); 11484 optval != IPOPT_EOL; 11485 optval = ipoptp_next(&opts)) { 11486 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11487 opt = opts.ipoptp_cur; 11488 optlen = opts.ipoptp_len; 11489 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11490 optval, optlen)); 11491 switch (optval) { 11492 uint32_t off; 11493 case IPOPT_SSRR: 11494 case IPOPT_LSRR: 11495 /* 11496 * If dst is one of our addresses and there are some 11497 * entries left in the source route return (true). 11498 */ 11499 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11500 ip2dbg(("ip_source_routed: not next" 11501 " source route 0x%x\n", 11502 ntohl(dst))); 11503 return (B_FALSE); 11504 } 11505 off = opt[IPOPT_OFFSET]; 11506 off--; 11507 if (optlen < IP_ADDR_LEN || 11508 off > optlen - IP_ADDR_LEN) { 11509 /* End of source route */ 11510 ip1dbg(("ip_source_routed: end of SR\n")); 11511 return (B_FALSE); 11512 } 11513 return (B_TRUE); 11514 } 11515 } 11516 ip2dbg(("not source routed\n")); 11517 return (B_FALSE); 11518 } 11519 11520 /* 11521 * ip_unbind is called by the transports to remove a conn from 11522 * the fanout table. 11523 */ 11524 void 11525 ip_unbind(conn_t *connp) 11526 { 11527 11528 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11529 11530 if (is_system_labeled() && connp->conn_anon_port) { 11531 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11532 connp->conn_mlp_type, connp->conn_proto, 11533 ntohs(connp->conn_lport), B_FALSE); 11534 connp->conn_anon_port = 0; 11535 } 11536 connp->conn_mlp_type = mlptSingle; 11537 11538 ipcl_hash_remove(connp); 11539 } 11540 11541 /* 11542 * Used for deciding the MSS size for the upper layer. Thus 11543 * we need to check the outbound policy values in the conn. 11544 */ 11545 int 11546 conn_ipsec_length(conn_t *connp) 11547 { 11548 ipsec_latch_t *ipl; 11549 11550 ipl = connp->conn_latch; 11551 if (ipl == NULL) 11552 return (0); 11553 11554 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11555 return (0); 11556 11557 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11558 } 11559 11560 /* 11561 * Returns an estimate of the IPsec headers size. This is used if 11562 * we don't want to call into IPsec to get the exact size. 11563 */ 11564 int 11565 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11566 { 11567 ipsec_action_t *a; 11568 11569 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11570 return (0); 11571 11572 a = ixa->ixa_ipsec_action; 11573 if (a == NULL) { 11574 ASSERT(ixa->ixa_ipsec_policy != NULL); 11575 a = ixa->ixa_ipsec_policy->ipsp_act; 11576 } 11577 ASSERT(a != NULL); 11578 11579 return (a->ipa_ovhd); 11580 } 11581 11582 /* 11583 * If there are any source route options, return the true final 11584 * destination. Otherwise, return the destination. 11585 */ 11586 ipaddr_t 11587 ip_get_dst(ipha_t *ipha) 11588 { 11589 ipoptp_t opts; 11590 uchar_t *opt; 11591 uint8_t optval; 11592 uint8_t optlen; 11593 ipaddr_t dst; 11594 uint32_t off; 11595 11596 dst = ipha->ipha_dst; 11597 11598 if (IS_SIMPLE_IPH(ipha)) 11599 return (dst); 11600 11601 for (optval = ipoptp_first(&opts, ipha); 11602 optval != IPOPT_EOL; 11603 optval = ipoptp_next(&opts)) { 11604 opt = opts.ipoptp_cur; 11605 optlen = opts.ipoptp_len; 11606 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11607 switch (optval) { 11608 case IPOPT_SSRR: 11609 case IPOPT_LSRR: 11610 off = opt[IPOPT_OFFSET]; 11611 /* 11612 * If one of the conditions is true, it means 11613 * end of options and dst already has the right 11614 * value. 11615 */ 11616 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11617 off = optlen - IP_ADDR_LEN; 11618 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11619 } 11620 return (dst); 11621 default: 11622 break; 11623 } 11624 } 11625 11626 return (dst); 11627 } 11628 11629 /* 11630 * Outbound IP fragmentation routine. 11631 * Assumes the caller has checked whether or not fragmentation should 11632 * be allowed. Here we copy the DF bit from the header to all the generated 11633 * fragments. 11634 */ 11635 int 11636 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11637 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11638 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11639 { 11640 int i1; 11641 int hdr_len; 11642 mblk_t *hdr_mp; 11643 ipha_t *ipha; 11644 int ip_data_end; 11645 int len; 11646 mblk_t *mp = mp_orig; 11647 int offset; 11648 ill_t *ill = nce->nce_ill; 11649 ip_stack_t *ipst = ill->ill_ipst; 11650 mblk_t *carve_mp; 11651 uint32_t frag_flag; 11652 uint_t priority = mp->b_band; 11653 int error = 0; 11654 11655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11656 11657 if (pkt_len != msgdsize(mp)) { 11658 ip0dbg(("Packet length mismatch: %d, %ld\n", 11659 pkt_len, msgdsize(mp))); 11660 freemsg(mp); 11661 return (EINVAL); 11662 } 11663 11664 if (max_frag == 0) { 11665 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11666 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11667 ip_drop_output("FragFails: zero max_frag", mp, ill); 11668 freemsg(mp); 11669 return (EINVAL); 11670 } 11671 11672 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11673 ipha = (ipha_t *)mp->b_rptr; 11674 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11675 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11676 11677 /* 11678 * Establish the starting offset. May not be zero if we are fragging 11679 * a fragment that is being forwarded. 11680 */ 11681 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11682 11683 /* TODO why is this test needed? */ 11684 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11685 /* TODO: notify ulp somehow */ 11686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11687 ip_drop_output("FragFails: bad starting offset", mp, ill); 11688 freemsg(mp); 11689 return (EINVAL); 11690 } 11691 11692 hdr_len = IPH_HDR_LENGTH(ipha); 11693 ipha->ipha_hdr_checksum = 0; 11694 11695 /* 11696 * Establish the number of bytes maximum per frag, after putting 11697 * in the header. 11698 */ 11699 len = (max_frag - hdr_len) & ~7; 11700 11701 /* Get a copy of the header for the trailing frags */ 11702 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11703 mp); 11704 if (hdr_mp == NULL) { 11705 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11706 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11707 freemsg(mp); 11708 return (ENOBUFS); 11709 } 11710 11711 /* Store the starting offset, with the MoreFrags flag. */ 11712 i1 = offset | IPH_MF | frag_flag; 11713 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11714 11715 /* Establish the ending byte offset, based on the starting offset. */ 11716 offset <<= 3; 11717 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11718 11719 /* Store the length of the first fragment in the IP header. */ 11720 i1 = len + hdr_len; 11721 ASSERT(i1 <= IP_MAXPACKET); 11722 ipha->ipha_length = htons((uint16_t)i1); 11723 11724 /* 11725 * Compute the IP header checksum for the first frag. We have to 11726 * watch out that we stop at the end of the header. 11727 */ 11728 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11729 11730 /* 11731 * Now carve off the first frag. Note that this will include the 11732 * original IP header. 11733 */ 11734 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11735 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11736 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11737 freeb(hdr_mp); 11738 freemsg(mp_orig); 11739 return (ENOBUFS); 11740 } 11741 11742 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11743 11744 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11745 ixa_cookie); 11746 if (error != 0 && error != EWOULDBLOCK) { 11747 /* No point in sending the other fragments */ 11748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11749 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11750 freeb(hdr_mp); 11751 freemsg(mp_orig); 11752 return (error); 11753 } 11754 11755 /* No need to redo state machine in loop */ 11756 ixaflags &= ~IXAF_REACH_CONF; 11757 11758 /* Advance the offset to the second frag starting point. */ 11759 offset += len; 11760 /* 11761 * Update hdr_len from the copied header - there might be less options 11762 * in the later fragments. 11763 */ 11764 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11765 /* Loop until done. */ 11766 for (;;) { 11767 uint16_t offset_and_flags; 11768 uint16_t ip_len; 11769 11770 if (ip_data_end - offset > len) { 11771 /* 11772 * Carve off the appropriate amount from the original 11773 * datagram. 11774 */ 11775 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11776 mp = NULL; 11777 break; 11778 } 11779 /* 11780 * More frags after this one. Get another copy 11781 * of the header. 11782 */ 11783 if (carve_mp->b_datap->db_ref == 1 && 11784 hdr_mp->b_wptr - hdr_mp->b_rptr < 11785 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11786 /* Inline IP header */ 11787 carve_mp->b_rptr -= hdr_mp->b_wptr - 11788 hdr_mp->b_rptr; 11789 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11790 hdr_mp->b_wptr - hdr_mp->b_rptr); 11791 mp = carve_mp; 11792 } else { 11793 if (!(mp = copyb(hdr_mp))) { 11794 freemsg(carve_mp); 11795 break; 11796 } 11797 /* Get priority marking, if any. */ 11798 mp->b_band = priority; 11799 mp->b_cont = carve_mp; 11800 } 11801 ipha = (ipha_t *)mp->b_rptr; 11802 offset_and_flags = IPH_MF; 11803 } else { 11804 /* 11805 * Last frag. Consume the header. Set len to 11806 * the length of this last piece. 11807 */ 11808 len = ip_data_end - offset; 11809 11810 /* 11811 * Carve off the appropriate amount from the original 11812 * datagram. 11813 */ 11814 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11815 mp = NULL; 11816 break; 11817 } 11818 if (carve_mp->b_datap->db_ref == 1 && 11819 hdr_mp->b_wptr - hdr_mp->b_rptr < 11820 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11821 /* Inline IP header */ 11822 carve_mp->b_rptr -= hdr_mp->b_wptr - 11823 hdr_mp->b_rptr; 11824 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11825 hdr_mp->b_wptr - hdr_mp->b_rptr); 11826 mp = carve_mp; 11827 freeb(hdr_mp); 11828 hdr_mp = mp; 11829 } else { 11830 mp = hdr_mp; 11831 /* Get priority marking, if any. */ 11832 mp->b_band = priority; 11833 mp->b_cont = carve_mp; 11834 } 11835 ipha = (ipha_t *)mp->b_rptr; 11836 /* A frag of a frag might have IPH_MF non-zero */ 11837 offset_and_flags = 11838 ntohs(ipha->ipha_fragment_offset_and_flags) & 11839 IPH_MF; 11840 } 11841 offset_and_flags |= (uint16_t)(offset >> 3); 11842 offset_and_flags |= (uint16_t)frag_flag; 11843 /* Store the offset and flags in the IP header. */ 11844 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11845 11846 /* Store the length in the IP header. */ 11847 ip_len = (uint16_t)(len + hdr_len); 11848 ipha->ipha_length = htons(ip_len); 11849 11850 /* 11851 * Set the IP header checksum. Note that mp is just 11852 * the header, so this is easy to pass to ip_csum. 11853 */ 11854 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11855 11856 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11857 11858 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11859 nolzid, ixa_cookie); 11860 /* All done if we just consumed the hdr_mp. */ 11861 if (mp == hdr_mp) { 11862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11863 return (error); 11864 } 11865 if (error != 0 && error != EWOULDBLOCK) { 11866 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11867 mblk_t *, hdr_mp); 11868 /* No point in sending the other fragments */ 11869 break; 11870 } 11871 11872 /* Otherwise, advance and loop. */ 11873 offset += len; 11874 } 11875 /* Clean up following allocation failure. */ 11876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11877 ip_drop_output("FragFails: loop ended", NULL, ill); 11878 if (mp != hdr_mp) 11879 freeb(hdr_mp); 11880 if (mp != mp_orig) 11881 freemsg(mp_orig); 11882 return (error); 11883 } 11884 11885 /* 11886 * Copy the header plus those options which have the copy bit set 11887 */ 11888 static mblk_t * 11889 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11890 mblk_t *src) 11891 { 11892 mblk_t *mp; 11893 uchar_t *up; 11894 11895 /* 11896 * Quick check if we need to look for options without the copy bit 11897 * set 11898 */ 11899 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11900 if (!mp) 11901 return (mp); 11902 mp->b_rptr += ipst->ips_ip_wroff_extra; 11903 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11904 bcopy(rptr, mp->b_rptr, hdr_len); 11905 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11906 return (mp); 11907 } 11908 up = mp->b_rptr; 11909 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11910 up += IP_SIMPLE_HDR_LENGTH; 11911 rptr += IP_SIMPLE_HDR_LENGTH; 11912 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11913 while (hdr_len > 0) { 11914 uint32_t optval; 11915 uint32_t optlen; 11916 11917 optval = *rptr; 11918 if (optval == IPOPT_EOL) 11919 break; 11920 if (optval == IPOPT_NOP) 11921 optlen = 1; 11922 else 11923 optlen = rptr[1]; 11924 if (optval & IPOPT_COPY) { 11925 bcopy(rptr, up, optlen); 11926 up += optlen; 11927 } 11928 rptr += optlen; 11929 hdr_len -= optlen; 11930 } 11931 /* 11932 * Make sure that we drop an even number of words by filling 11933 * with EOL to the next word boundary. 11934 */ 11935 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11936 hdr_len & 0x3; hdr_len++) 11937 *up++ = IPOPT_EOL; 11938 mp->b_wptr = up; 11939 /* Update header length */ 11940 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11941 return (mp); 11942 } 11943 11944 /* 11945 * Update any source route, record route, or timestamp options when 11946 * sending a packet back to ourselves. 11947 * Check that we are at end of strict source route. 11948 * The options have been sanity checked by ip_output_options(). 11949 */ 11950 void 11951 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11952 { 11953 ipoptp_t opts; 11954 uchar_t *opt; 11955 uint8_t optval; 11956 uint8_t optlen; 11957 ipaddr_t dst; 11958 uint32_t ts; 11959 timestruc_t now; 11960 11961 for (optval = ipoptp_first(&opts, ipha); 11962 optval != IPOPT_EOL; 11963 optval = ipoptp_next(&opts)) { 11964 opt = opts.ipoptp_cur; 11965 optlen = opts.ipoptp_len; 11966 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11967 switch (optval) { 11968 uint32_t off; 11969 case IPOPT_SSRR: 11970 case IPOPT_LSRR: 11971 off = opt[IPOPT_OFFSET]; 11972 off--; 11973 if (optlen < IP_ADDR_LEN || 11974 off > optlen - IP_ADDR_LEN) { 11975 /* End of source route */ 11976 break; 11977 } 11978 /* 11979 * This will only happen if two consecutive entries 11980 * in the source route contains our address or if 11981 * it is a packet with a loose source route which 11982 * reaches us before consuming the whole source route 11983 */ 11984 11985 if (optval == IPOPT_SSRR) { 11986 return; 11987 } 11988 /* 11989 * Hack: instead of dropping the packet truncate the 11990 * source route to what has been used by filling the 11991 * rest with IPOPT_NOP. 11992 */ 11993 opt[IPOPT_OLEN] = (uint8_t)off; 11994 while (off < optlen) { 11995 opt[off++] = IPOPT_NOP; 11996 } 11997 break; 11998 case IPOPT_RR: 11999 off = opt[IPOPT_OFFSET]; 12000 off--; 12001 if (optlen < IP_ADDR_LEN || 12002 off > optlen - IP_ADDR_LEN) { 12003 /* No more room - ignore */ 12004 ip1dbg(( 12005 "ip_output_local_options: end of RR\n")); 12006 break; 12007 } 12008 dst = htonl(INADDR_LOOPBACK); 12009 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12010 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12011 break; 12012 case IPOPT_TS: 12013 /* Insert timestamp if there is romm */ 12014 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12015 case IPOPT_TS_TSONLY: 12016 off = IPOPT_TS_TIMELEN; 12017 break; 12018 case IPOPT_TS_PRESPEC: 12019 case IPOPT_TS_PRESPEC_RFC791: 12020 /* Verify that the address matched */ 12021 off = opt[IPOPT_OFFSET] - 1; 12022 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12023 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12024 /* Not for us */ 12025 break; 12026 } 12027 /* FALLTHRU */ 12028 case IPOPT_TS_TSANDADDR: 12029 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12030 break; 12031 default: 12032 /* 12033 * ip_*put_options should have already 12034 * dropped this packet. 12035 */ 12036 cmn_err(CE_PANIC, "ip_output_local_options: " 12037 "unknown IT - bug in ip_output_options?\n"); 12038 return; /* Keep "lint" happy */ 12039 } 12040 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12041 /* Increase overflow counter */ 12042 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12043 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12044 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12045 (off << 4); 12046 break; 12047 } 12048 off = opt[IPOPT_OFFSET] - 1; 12049 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12050 case IPOPT_TS_PRESPEC: 12051 case IPOPT_TS_PRESPEC_RFC791: 12052 case IPOPT_TS_TSANDADDR: 12053 dst = htonl(INADDR_LOOPBACK); 12054 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12055 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12056 /* FALLTHRU */ 12057 case IPOPT_TS_TSONLY: 12058 off = opt[IPOPT_OFFSET] - 1; 12059 /* Compute # of milliseconds since midnight */ 12060 gethrestime(&now); 12061 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12062 now.tv_nsec / (NANOSEC / MILLISEC); 12063 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12064 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12065 break; 12066 } 12067 break; 12068 } 12069 } 12070 } 12071 12072 /* 12073 * Prepend an M_DATA fastpath header, and if none present prepend a 12074 * DL_UNITDATA_REQ. Frees the mblk on failure. 12075 * 12076 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12077 * If there is a change to them, the nce will be deleted (condemned) and 12078 * a new nce_t will be created when packets are sent. Thus we need no locks 12079 * to access those fields. 12080 * 12081 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12082 * we place b_band in dl_priority.dl_max. 12083 */ 12084 static mblk_t * 12085 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12086 { 12087 uint_t hlen; 12088 mblk_t *mp1; 12089 uint_t priority; 12090 uchar_t *rptr; 12091 12092 rptr = mp->b_rptr; 12093 12094 ASSERT(DB_TYPE(mp) == M_DATA); 12095 priority = mp->b_band; 12096 12097 ASSERT(nce != NULL); 12098 if ((mp1 = nce->nce_fp_mp) != NULL) { 12099 hlen = MBLKL(mp1); 12100 /* 12101 * Check if we have enough room to prepend fastpath 12102 * header 12103 */ 12104 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12105 rptr -= hlen; 12106 bcopy(mp1->b_rptr, rptr, hlen); 12107 /* 12108 * Set the b_rptr to the start of the link layer 12109 * header 12110 */ 12111 mp->b_rptr = rptr; 12112 return (mp); 12113 } 12114 mp1 = copyb(mp1); 12115 if (mp1 == NULL) { 12116 ill_t *ill = nce->nce_ill; 12117 12118 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12119 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12120 freemsg(mp); 12121 return (NULL); 12122 } 12123 mp1->b_band = priority; 12124 mp1->b_cont = mp; 12125 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12126 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12127 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12128 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12129 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12130 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12131 /* 12132 * XXX disable ICK_VALID and compute checksum 12133 * here; can happen if nce_fp_mp changes and 12134 * it can't be copied now due to insufficient 12135 * space. (unlikely, fp mp can change, but it 12136 * does not increase in length) 12137 */ 12138 return (mp1); 12139 } 12140 mp1 = copyb(nce->nce_dlur_mp); 12141 12142 if (mp1 == NULL) { 12143 ill_t *ill = nce->nce_ill; 12144 12145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12146 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12147 freemsg(mp); 12148 return (NULL); 12149 } 12150 mp1->b_cont = mp; 12151 if (priority != 0) { 12152 mp1->b_band = priority; 12153 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12154 priority; 12155 } 12156 return (mp1); 12157 #undef rptr 12158 } 12159 12160 /* 12161 * Finish the outbound IPsec processing. This function is called from 12162 * ipsec_out_process() if the IPsec packet was processed 12163 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12164 * asynchronously. 12165 * 12166 * This is common to IPv4 and IPv6. 12167 */ 12168 int 12169 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12170 { 12171 iaflags_t ixaflags = ixa->ixa_flags; 12172 uint_t pktlen; 12173 12174 12175 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12176 if (ixaflags & IXAF_IS_IPV4) { 12177 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12178 12179 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12180 pktlen = ntohs(ipha->ipha_length); 12181 } else { 12182 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12183 12184 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12185 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12186 } 12187 12188 /* 12189 * We release any hard reference on the SAs here to make 12190 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12191 * on the SAs. 12192 * If in the future we want the hard latching of the SAs in the 12193 * ip_xmit_attr_t then we should remove this. 12194 */ 12195 if (ixa->ixa_ipsec_esp_sa != NULL) { 12196 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12197 ixa->ixa_ipsec_esp_sa = NULL; 12198 } 12199 if (ixa->ixa_ipsec_ah_sa != NULL) { 12200 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12201 ixa->ixa_ipsec_ah_sa = NULL; 12202 } 12203 12204 /* Do we need to fragment? */ 12205 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12206 pktlen > ixa->ixa_fragsize) { 12207 if (ixaflags & IXAF_IS_IPV4) { 12208 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12209 /* 12210 * We check for the DF case in ipsec_out_process 12211 * hence this only handles the non-DF case. 12212 */ 12213 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12214 pktlen, ixa->ixa_fragsize, 12215 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12216 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12217 &ixa->ixa_cookie)); 12218 } else { 12219 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12220 if (mp == NULL) { 12221 /* MIB and ip_drop_output already done */ 12222 return (ENOMEM); 12223 } 12224 pktlen += sizeof (ip6_frag_t); 12225 if (pktlen > ixa->ixa_fragsize) { 12226 return (ip_fragment_v6(mp, ixa->ixa_nce, 12227 ixa->ixa_flags, pktlen, 12228 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12229 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12230 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12231 } 12232 } 12233 } 12234 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12235 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12236 ixa->ixa_no_loop_zoneid, NULL)); 12237 } 12238 12239 /* 12240 * Finish the inbound IPsec processing. This function is called from 12241 * ipsec_out_process() if the IPsec packet was processed 12242 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12243 * asynchronously. 12244 * 12245 * This is common to IPv4 and IPv6. 12246 */ 12247 void 12248 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12249 { 12250 iaflags_t iraflags = ira->ira_flags; 12251 12252 /* Length might have changed */ 12253 if (iraflags & IRAF_IS_IPV4) { 12254 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12255 12256 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12257 ira->ira_pktlen = ntohs(ipha->ipha_length); 12258 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12259 ira->ira_protocol = ipha->ipha_protocol; 12260 12261 ip_fanout_v4(mp, ipha, ira); 12262 } else { 12263 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12264 uint8_t *nexthdrp; 12265 12266 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12267 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12268 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12269 &nexthdrp)) { 12270 /* Malformed packet */ 12271 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12272 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12273 freemsg(mp); 12274 return; 12275 } 12276 ira->ira_protocol = *nexthdrp; 12277 ip_fanout_v6(mp, ip6h, ira); 12278 } 12279 } 12280 12281 /* 12282 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12283 * 12284 * If this function returns B_TRUE, the requested SA's have been filled 12285 * into the ixa_ipsec_*_sa pointers. 12286 * 12287 * If the function returns B_FALSE, the packet has been "consumed", most 12288 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12289 * 12290 * The SA references created by the protocol-specific "select" 12291 * function will be released in ip_output_post_ipsec. 12292 */ 12293 static boolean_t 12294 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12295 { 12296 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12297 ipsec_policy_t *pp; 12298 ipsec_action_t *ap; 12299 12300 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12301 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12302 (ixa->ixa_ipsec_action != NULL)); 12303 12304 ap = ixa->ixa_ipsec_action; 12305 if (ap == NULL) { 12306 pp = ixa->ixa_ipsec_policy; 12307 ASSERT(pp != NULL); 12308 ap = pp->ipsp_act; 12309 ASSERT(ap != NULL); 12310 } 12311 12312 /* 12313 * We have an action. now, let's select SA's. 12314 * A side effect of setting ixa_ipsec_*_sa is that it will 12315 * be cached in the conn_t. 12316 */ 12317 if (ap->ipa_want_esp) { 12318 if (ixa->ixa_ipsec_esp_sa == NULL) { 12319 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12320 IPPROTO_ESP); 12321 } 12322 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12323 } 12324 12325 if (ap->ipa_want_ah) { 12326 if (ixa->ixa_ipsec_ah_sa == NULL) { 12327 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12328 IPPROTO_AH); 12329 } 12330 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12331 /* 12332 * The ESP and AH processing order needs to be preserved 12333 * when both protocols are required (ESP should be applied 12334 * before AH for an outbound packet). Force an ESP ACQUIRE 12335 * when both ESP and AH are required, and an AH ACQUIRE 12336 * is needed. 12337 */ 12338 if (ap->ipa_want_esp && need_ah_acquire) 12339 need_esp_acquire = B_TRUE; 12340 } 12341 12342 /* 12343 * Send an ACQUIRE (extended, regular, or both) if we need one. 12344 * Release SAs that got referenced, but will not be used until we 12345 * acquire _all_ of the SAs we need. 12346 */ 12347 if (need_ah_acquire || need_esp_acquire) { 12348 if (ixa->ixa_ipsec_ah_sa != NULL) { 12349 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12350 ixa->ixa_ipsec_ah_sa = NULL; 12351 } 12352 if (ixa->ixa_ipsec_esp_sa != NULL) { 12353 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12354 ixa->ixa_ipsec_esp_sa = NULL; 12355 } 12356 12357 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12358 return (B_FALSE); 12359 } 12360 12361 return (B_TRUE); 12362 } 12363 12364 /* 12365 * Handle IPsec output processing. 12366 * This function is only entered once for a given packet. 12367 * We try to do things synchronously, but if we need to have user-level 12368 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12369 * will be completed 12370 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12371 * - when asynchronous ESP is done it will do AH 12372 * 12373 * In all cases we come back in ip_output_post_ipsec() to fragment and 12374 * send out the packet. 12375 */ 12376 int 12377 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12378 { 12379 ill_t *ill = ixa->ixa_nce->nce_ill; 12380 ip_stack_t *ipst = ixa->ixa_ipst; 12381 ipsec_stack_t *ipss; 12382 ipsec_policy_t *pp; 12383 ipsec_action_t *ap; 12384 12385 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12386 12387 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12388 (ixa->ixa_ipsec_action != NULL)); 12389 12390 ipss = ipst->ips_netstack->netstack_ipsec; 12391 if (!ipsec_loaded(ipss)) { 12392 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12393 ip_drop_packet(mp, B_TRUE, ill, 12394 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12395 &ipss->ipsec_dropper); 12396 return (ENOTSUP); 12397 } 12398 12399 ap = ixa->ixa_ipsec_action; 12400 if (ap == NULL) { 12401 pp = ixa->ixa_ipsec_policy; 12402 ASSERT(pp != NULL); 12403 ap = pp->ipsp_act; 12404 ASSERT(ap != NULL); 12405 } 12406 12407 /* Handle explicit drop action and bypass. */ 12408 switch (ap->ipa_act.ipa_type) { 12409 case IPSEC_ACT_DISCARD: 12410 case IPSEC_ACT_REJECT: 12411 ip_drop_packet(mp, B_FALSE, ill, 12412 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12413 return (EHOSTUNREACH); /* IPsec policy failure */ 12414 case IPSEC_ACT_BYPASS: 12415 return (ip_output_post_ipsec(mp, ixa)); 12416 } 12417 12418 /* 12419 * The order of processing is first insert a IP header if needed. 12420 * Then insert the ESP header and then the AH header. 12421 */ 12422 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12423 /* 12424 * First get the outer IP header before sending 12425 * it to ESP. 12426 */ 12427 ipha_t *oipha, *iipha; 12428 mblk_t *outer_mp, *inner_mp; 12429 12430 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12431 (void) mi_strlog(ill->ill_rq, 0, 12432 SL_ERROR|SL_TRACE|SL_CONSOLE, 12433 "ipsec_out_process: " 12434 "Self-Encapsulation failed: Out of memory\n"); 12435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12436 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12437 freemsg(mp); 12438 return (ENOBUFS); 12439 } 12440 inner_mp = mp; 12441 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12442 oipha = (ipha_t *)outer_mp->b_rptr; 12443 iipha = (ipha_t *)inner_mp->b_rptr; 12444 *oipha = *iipha; 12445 outer_mp->b_wptr += sizeof (ipha_t); 12446 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12447 sizeof (ipha_t)); 12448 oipha->ipha_protocol = IPPROTO_ENCAP; 12449 oipha->ipha_version_and_hdr_length = 12450 IP_SIMPLE_HDR_VERSION; 12451 oipha->ipha_hdr_checksum = 0; 12452 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12453 outer_mp->b_cont = inner_mp; 12454 mp = outer_mp; 12455 12456 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12457 } 12458 12459 /* If we need to wait for a SA then we can't return any errno */ 12460 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12461 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12462 !ipsec_out_select_sa(mp, ixa)) 12463 return (0); 12464 12465 /* 12466 * By now, we know what SA's to use. Toss over to ESP & AH 12467 * to do the heavy lifting. 12468 */ 12469 if (ap->ipa_want_esp) { 12470 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12471 12472 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12473 if (mp == NULL) { 12474 /* 12475 * Either it failed or is pending. In the former case 12476 * ipIfStatsInDiscards was increased. 12477 */ 12478 return (0); 12479 } 12480 } 12481 12482 if (ap->ipa_want_ah) { 12483 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12484 12485 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12486 if (mp == NULL) { 12487 /* 12488 * Either it failed or is pending. In the former case 12489 * ipIfStatsInDiscards was increased. 12490 */ 12491 return (0); 12492 } 12493 } 12494 /* 12495 * We are done with IPsec processing. Send it over 12496 * the wire. 12497 */ 12498 return (ip_output_post_ipsec(mp, ixa)); 12499 } 12500 12501 /* 12502 * ioctls that go through a down/up sequence may need to wait for the down 12503 * to complete. This involves waiting for the ire and ipif refcnts to go down 12504 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12505 */ 12506 /* ARGSUSED */ 12507 void 12508 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12509 { 12510 struct iocblk *iocp; 12511 mblk_t *mp1; 12512 ip_ioctl_cmd_t *ipip; 12513 int err; 12514 sin_t *sin; 12515 struct lifreq *lifr; 12516 struct ifreq *ifr; 12517 12518 iocp = (struct iocblk *)mp->b_rptr; 12519 ASSERT(ipsq != NULL); 12520 /* Existence of mp1 verified in ip_wput_nondata */ 12521 mp1 = mp->b_cont->b_cont; 12522 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12523 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12524 /* 12525 * Special case where ipx_current_ipif is not set: 12526 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12527 * We are here as were not able to complete the operation in 12528 * ipif_set_values because we could not become exclusive on 12529 * the new ipsq. 12530 */ 12531 ill_t *ill = q->q_ptr; 12532 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12533 } 12534 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12535 12536 if (ipip->ipi_cmd_type == IF_CMD) { 12537 /* This a old style SIOC[GS]IF* command */ 12538 ifr = (struct ifreq *)mp1->b_rptr; 12539 sin = (sin_t *)&ifr->ifr_addr; 12540 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12541 /* This a new style SIOC[GS]LIF* command */ 12542 lifr = (struct lifreq *)mp1->b_rptr; 12543 sin = (sin_t *)&lifr->lifr_addr; 12544 } else { 12545 sin = NULL; 12546 } 12547 12548 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12549 q, mp, ipip, mp1->b_rptr); 12550 12551 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12552 int, ipip->ipi_cmd, 12553 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12554 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12555 12556 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12557 } 12558 12559 /* 12560 * ioctl processing 12561 * 12562 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12563 * the ioctl command in the ioctl tables, determines the copyin data size 12564 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12565 * 12566 * ioctl processing then continues when the M_IOCDATA makes its way down to 12567 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12568 * associated 'conn' is refheld till the end of the ioctl and the general 12569 * ioctl processing function ip_process_ioctl() is called to extract the 12570 * arguments and process the ioctl. To simplify extraction, ioctl commands 12571 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12572 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12573 * is used to extract the ioctl's arguments. 12574 * 12575 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12576 * so goes thru the serialization primitive ipsq_try_enter. Then the 12577 * appropriate function to handle the ioctl is called based on the entry in 12578 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12579 * which also refreleases the 'conn' that was refheld at the start of the 12580 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12581 * 12582 * Many exclusive ioctls go thru an internal down up sequence as part of 12583 * the operation. For example an attempt to change the IP address of an 12584 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12585 * does all the cleanup such as deleting all ires that use this address. 12586 * Then we need to wait till all references to the interface go away. 12587 */ 12588 void 12589 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12590 { 12591 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12592 ip_ioctl_cmd_t *ipip = arg; 12593 ip_extract_func_t *extract_funcp; 12594 cmd_info_t ci; 12595 int err; 12596 boolean_t entered_ipsq = B_FALSE; 12597 12598 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12599 12600 if (ipip == NULL) 12601 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12602 12603 /* 12604 * SIOCLIFADDIF needs to go thru a special path since the 12605 * ill may not exist yet. This happens in the case of lo0 12606 * which is created using this ioctl. 12607 */ 12608 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12609 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12610 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12611 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12612 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12613 return; 12614 } 12615 12616 ci.ci_ipif = NULL; 12617 switch (ipip->ipi_cmd_type) { 12618 case MISC_CMD: 12619 case MSFILT_CMD: 12620 /* 12621 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12622 */ 12623 if (ipip->ipi_cmd == IF_UNITSEL) { 12624 /* ioctl comes down the ill */ 12625 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12626 ipif_refhold(ci.ci_ipif); 12627 } 12628 err = 0; 12629 ci.ci_sin = NULL; 12630 ci.ci_sin6 = NULL; 12631 ci.ci_lifr = NULL; 12632 extract_funcp = NULL; 12633 break; 12634 12635 case IF_CMD: 12636 case LIF_CMD: 12637 extract_funcp = ip_extract_lifreq; 12638 break; 12639 12640 case ARP_CMD: 12641 case XARP_CMD: 12642 extract_funcp = ip_extract_arpreq; 12643 break; 12644 12645 default: 12646 ASSERT(0); 12647 } 12648 12649 if (extract_funcp != NULL) { 12650 err = (*extract_funcp)(q, mp, ipip, &ci); 12651 if (err != 0) { 12652 DTRACE_PROBE4(ipif__ioctl, 12653 char *, "ip_process_ioctl finish err", 12654 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12655 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12656 return; 12657 } 12658 12659 /* 12660 * All of the extraction functions return a refheld ipif. 12661 */ 12662 ASSERT(ci.ci_ipif != NULL); 12663 } 12664 12665 if (!(ipip->ipi_flags & IPI_WR)) { 12666 /* 12667 * A return value of EINPROGRESS means the ioctl is 12668 * either queued and waiting for some reason or has 12669 * already completed. 12670 */ 12671 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12672 ci.ci_lifr); 12673 if (ci.ci_ipif != NULL) { 12674 DTRACE_PROBE4(ipif__ioctl, 12675 char *, "ip_process_ioctl finish RD", 12676 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12677 ipif_t *, ci.ci_ipif); 12678 ipif_refrele(ci.ci_ipif); 12679 } else { 12680 DTRACE_PROBE4(ipif__ioctl, 12681 char *, "ip_process_ioctl finish RD", 12682 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12683 } 12684 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12685 return; 12686 } 12687 12688 ASSERT(ci.ci_ipif != NULL); 12689 12690 /* 12691 * If ipsq is non-NULL, we are already being called exclusively 12692 */ 12693 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12694 if (ipsq == NULL) { 12695 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12696 NEW_OP, B_TRUE); 12697 if (ipsq == NULL) { 12698 ipif_refrele(ci.ci_ipif); 12699 return; 12700 } 12701 entered_ipsq = B_TRUE; 12702 } 12703 /* 12704 * Release the ipif so that ipif_down and friends that wait for 12705 * references to go away are not misled about the current ipif_refcnt 12706 * values. We are writer so we can access the ipif even after releasing 12707 * the ipif. 12708 */ 12709 ipif_refrele(ci.ci_ipif); 12710 12711 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12712 12713 /* 12714 * A return value of EINPROGRESS means the ioctl is 12715 * either queued and waiting for some reason or has 12716 * already completed. 12717 */ 12718 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12719 12720 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12721 int, ipip->ipi_cmd, 12722 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12723 ipif_t *, ci.ci_ipif); 12724 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12725 12726 if (entered_ipsq) 12727 ipsq_exit(ipsq); 12728 } 12729 12730 /* 12731 * Complete the ioctl. Typically ioctls use the mi package and need to 12732 * do mi_copyout/mi_copy_done. 12733 */ 12734 void 12735 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12736 { 12737 conn_t *connp = NULL; 12738 12739 if (err == EINPROGRESS) 12740 return; 12741 12742 if (CONN_Q(q)) { 12743 connp = Q_TO_CONN(q); 12744 ASSERT(connp->conn_ref >= 2); 12745 } 12746 12747 switch (mode) { 12748 case COPYOUT: 12749 if (err == 0) 12750 mi_copyout(q, mp); 12751 else 12752 mi_copy_done(q, mp, err); 12753 break; 12754 12755 case NO_COPYOUT: 12756 mi_copy_done(q, mp, err); 12757 break; 12758 12759 default: 12760 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12761 break; 12762 } 12763 12764 /* 12765 * The conn refhold and ioctlref placed on the conn at the start of the 12766 * ioctl are released here. 12767 */ 12768 if (connp != NULL) { 12769 CONN_DEC_IOCTLREF(connp); 12770 CONN_OPER_PENDING_DONE(connp); 12771 } 12772 12773 if (ipsq != NULL) 12774 ipsq_current_finish(ipsq); 12775 } 12776 12777 /* Handles all non data messages */ 12778 void 12779 ip_wput_nondata(queue_t *q, mblk_t *mp) 12780 { 12781 mblk_t *mp1; 12782 struct iocblk *iocp; 12783 ip_ioctl_cmd_t *ipip; 12784 conn_t *connp; 12785 cred_t *cr; 12786 char *proto_str; 12787 12788 if (CONN_Q(q)) 12789 connp = Q_TO_CONN(q); 12790 else 12791 connp = NULL; 12792 12793 switch (DB_TYPE(mp)) { 12794 case M_IOCTL: 12795 /* 12796 * IOCTL processing begins in ip_sioctl_copyin_setup which 12797 * will arrange to copy in associated control structures. 12798 */ 12799 ip_sioctl_copyin_setup(q, mp); 12800 return; 12801 case M_IOCDATA: 12802 /* 12803 * Ensure that this is associated with one of our trans- 12804 * parent ioctls. If it's not ours, discard it if we're 12805 * running as a driver, or pass it on if we're a module. 12806 */ 12807 iocp = (struct iocblk *)mp->b_rptr; 12808 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12809 if (ipip == NULL) { 12810 if (q->q_next == NULL) { 12811 goto nak; 12812 } else { 12813 putnext(q, mp); 12814 } 12815 return; 12816 } 12817 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12818 /* 12819 * The ioctl is one we recognise, but is not consumed 12820 * by IP as a module and we are a module, so we drop 12821 */ 12822 goto nak; 12823 } 12824 12825 /* IOCTL continuation following copyin or copyout. */ 12826 if (mi_copy_state(q, mp, NULL) == -1) { 12827 /* 12828 * The copy operation failed. mi_copy_state already 12829 * cleaned up, so we're out of here. 12830 */ 12831 return; 12832 } 12833 /* 12834 * If we just completed a copy in, we become writer and 12835 * continue processing in ip_sioctl_copyin_done. If it 12836 * was a copy out, we call mi_copyout again. If there is 12837 * nothing more to copy out, it will complete the IOCTL. 12838 */ 12839 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12840 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12841 mi_copy_done(q, mp, EPROTO); 12842 return; 12843 } 12844 /* 12845 * Check for cases that need more copying. A return 12846 * value of 0 means a second copyin has been started, 12847 * so we return; a return value of 1 means no more 12848 * copying is needed, so we continue. 12849 */ 12850 if (ipip->ipi_cmd_type == MSFILT_CMD && 12851 MI_COPY_COUNT(mp) == 1) { 12852 if (ip_copyin_msfilter(q, mp) == 0) 12853 return; 12854 } 12855 /* 12856 * Refhold the conn, till the ioctl completes. This is 12857 * needed in case the ioctl ends up in the pending mp 12858 * list. Every mp in the ipx_pending_mp list must have 12859 * a refhold on the conn to resume processing. The 12860 * refhold is released when the ioctl completes 12861 * (whether normally or abnormally). An ioctlref is also 12862 * placed on the conn to prevent TCP from removing the 12863 * queue needed to send the ioctl reply back. 12864 * In all cases ip_ioctl_finish is called to finish 12865 * the ioctl and release the refholds. 12866 */ 12867 if (connp != NULL) { 12868 /* This is not a reentry */ 12869 CONN_INC_REF(connp); 12870 CONN_INC_IOCTLREF(connp); 12871 } else { 12872 if (!(ipip->ipi_flags & IPI_MODOK)) { 12873 mi_copy_done(q, mp, EINVAL); 12874 return; 12875 } 12876 } 12877 12878 ip_process_ioctl(NULL, q, mp, ipip); 12879 12880 } else { 12881 mi_copyout(q, mp); 12882 } 12883 return; 12884 12885 case M_IOCNAK: 12886 /* 12887 * The only way we could get here is if a resolver didn't like 12888 * an IOCTL we sent it. This shouldn't happen. 12889 */ 12890 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12891 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12892 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12893 freemsg(mp); 12894 return; 12895 case M_IOCACK: 12896 /* /dev/ip shouldn't see this */ 12897 goto nak; 12898 case M_FLUSH: 12899 if (*mp->b_rptr & FLUSHW) 12900 flushq(q, FLUSHALL); 12901 if (q->q_next) { 12902 putnext(q, mp); 12903 return; 12904 } 12905 if (*mp->b_rptr & FLUSHR) { 12906 *mp->b_rptr &= ~FLUSHW; 12907 qreply(q, mp); 12908 return; 12909 } 12910 freemsg(mp); 12911 return; 12912 case M_CTL: 12913 break; 12914 case M_PROTO: 12915 case M_PCPROTO: 12916 /* 12917 * The only PROTO messages we expect are SNMP-related. 12918 */ 12919 switch (((union T_primitives *)mp->b_rptr)->type) { 12920 case T_SVR4_OPTMGMT_REQ: 12921 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12922 "flags %x\n", 12923 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12924 12925 if (connp == NULL) { 12926 proto_str = "T_SVR4_OPTMGMT_REQ"; 12927 goto protonak; 12928 } 12929 12930 /* 12931 * All Solaris components should pass a db_credp 12932 * for this TPI message, hence we ASSERT. 12933 * But in case there is some other M_PROTO that looks 12934 * like a TPI message sent by some other kernel 12935 * component, we check and return an error. 12936 */ 12937 cr = msg_getcred(mp, NULL); 12938 ASSERT(cr != NULL); 12939 if (cr == NULL) { 12940 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12941 if (mp != NULL) 12942 qreply(q, mp); 12943 return; 12944 } 12945 12946 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12947 proto_str = "Bad SNMPCOM request?"; 12948 goto protonak; 12949 } 12950 return; 12951 default: 12952 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12953 (int)*(uint_t *)mp->b_rptr)); 12954 freemsg(mp); 12955 return; 12956 } 12957 default: 12958 break; 12959 } 12960 if (q->q_next) { 12961 putnext(q, mp); 12962 } else 12963 freemsg(mp); 12964 return; 12965 12966 nak: 12967 iocp->ioc_error = EINVAL; 12968 mp->b_datap->db_type = M_IOCNAK; 12969 iocp->ioc_count = 0; 12970 qreply(q, mp); 12971 return; 12972 12973 protonak: 12974 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12975 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12976 qreply(q, mp); 12977 } 12978 12979 /* 12980 * Process IP options in an outbound packet. Verify that the nexthop in a 12981 * strict source route is onlink. 12982 * Returns non-zero if something fails in which case an ICMP error has been 12983 * sent and mp freed. 12984 * 12985 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12986 */ 12987 int 12988 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12989 { 12990 ipoptp_t opts; 12991 uchar_t *opt; 12992 uint8_t optval; 12993 uint8_t optlen; 12994 ipaddr_t dst; 12995 intptr_t code = 0; 12996 ire_t *ire; 12997 ip_stack_t *ipst = ixa->ixa_ipst; 12998 ip_recv_attr_t iras; 12999 13000 ip2dbg(("ip_output_options\n")); 13001 13002 dst = ipha->ipha_dst; 13003 for (optval = ipoptp_first(&opts, ipha); 13004 optval != IPOPT_EOL; 13005 optval = ipoptp_next(&opts)) { 13006 opt = opts.ipoptp_cur; 13007 optlen = opts.ipoptp_len; 13008 ip2dbg(("ip_output_options: opt %d, len %d\n", 13009 optval, optlen)); 13010 switch (optval) { 13011 uint32_t off; 13012 case IPOPT_SSRR: 13013 case IPOPT_LSRR: 13014 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13015 ip1dbg(( 13016 "ip_output_options: bad option offset\n")); 13017 code = (char *)&opt[IPOPT_OLEN] - 13018 (char *)ipha; 13019 goto param_prob; 13020 } 13021 off = opt[IPOPT_OFFSET]; 13022 ip1dbg(("ip_output_options: next hop 0x%x\n", 13023 ntohl(dst))); 13024 /* 13025 * For strict: verify that dst is directly 13026 * reachable. 13027 */ 13028 if (optval == IPOPT_SSRR) { 13029 ire = ire_ftable_lookup_v4(dst, 0, 0, 13030 IRE_INTERFACE, NULL, ALL_ZONES, 13031 ixa->ixa_tsl, 13032 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13033 NULL); 13034 if (ire == NULL) { 13035 ip1dbg(("ip_output_options: SSRR not" 13036 " directly reachable: 0x%x\n", 13037 ntohl(dst))); 13038 goto bad_src_route; 13039 } 13040 ire_refrele(ire); 13041 } 13042 break; 13043 case IPOPT_RR: 13044 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13045 ip1dbg(( 13046 "ip_output_options: bad option offset\n")); 13047 code = (char *)&opt[IPOPT_OLEN] - 13048 (char *)ipha; 13049 goto param_prob; 13050 } 13051 break; 13052 case IPOPT_TS: 13053 /* 13054 * Verify that length >=5 and that there is either 13055 * room for another timestamp or that the overflow 13056 * counter is not maxed out. 13057 */ 13058 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13059 if (optlen < IPOPT_MINLEN_IT) { 13060 goto param_prob; 13061 } 13062 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13063 ip1dbg(( 13064 "ip_output_options: bad option offset\n")); 13065 code = (char *)&opt[IPOPT_OFFSET] - 13066 (char *)ipha; 13067 goto param_prob; 13068 } 13069 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13070 case IPOPT_TS_TSONLY: 13071 off = IPOPT_TS_TIMELEN; 13072 break; 13073 case IPOPT_TS_TSANDADDR: 13074 case IPOPT_TS_PRESPEC: 13075 case IPOPT_TS_PRESPEC_RFC791: 13076 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13077 break; 13078 default: 13079 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13080 (char *)ipha; 13081 goto param_prob; 13082 } 13083 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13084 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13085 /* 13086 * No room and the overflow counter is 15 13087 * already. 13088 */ 13089 goto param_prob; 13090 } 13091 break; 13092 } 13093 } 13094 13095 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13096 return (0); 13097 13098 ip1dbg(("ip_output_options: error processing IP options.")); 13099 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13100 13101 param_prob: 13102 bzero(&iras, sizeof (iras)); 13103 iras.ira_ill = iras.ira_rill = ill; 13104 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13105 iras.ira_rifindex = iras.ira_ruifindex; 13106 iras.ira_flags = IRAF_IS_IPV4; 13107 13108 ip_drop_output("ip_output_options", mp, ill); 13109 icmp_param_problem(mp, (uint8_t)code, &iras); 13110 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13111 return (-1); 13112 13113 bad_src_route: 13114 bzero(&iras, sizeof (iras)); 13115 iras.ira_ill = iras.ira_rill = ill; 13116 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13117 iras.ira_rifindex = iras.ira_ruifindex; 13118 iras.ira_flags = IRAF_IS_IPV4; 13119 13120 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13121 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13122 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13123 return (-1); 13124 } 13125 13126 /* 13127 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13128 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13129 * thru /etc/system. 13130 */ 13131 #define CONN_MAXDRAINCNT 64 13132 13133 static void 13134 conn_drain_init(ip_stack_t *ipst) 13135 { 13136 int i, j; 13137 idl_tx_list_t *itl_tx; 13138 13139 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13140 13141 if ((ipst->ips_conn_drain_list_cnt == 0) || 13142 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13143 /* 13144 * Default value of the number of drainers is the 13145 * number of cpus, subject to maximum of 8 drainers. 13146 */ 13147 if (boot_max_ncpus != -1) 13148 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13149 else 13150 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13151 } 13152 13153 ipst->ips_idl_tx_list = 13154 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13155 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13156 itl_tx = &ipst->ips_idl_tx_list[i]; 13157 itl_tx->txl_drain_list = 13158 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13159 sizeof (idl_t), KM_SLEEP); 13160 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13161 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13162 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13163 MUTEX_DEFAULT, NULL); 13164 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13165 } 13166 } 13167 } 13168 13169 static void 13170 conn_drain_fini(ip_stack_t *ipst) 13171 { 13172 int i; 13173 idl_tx_list_t *itl_tx; 13174 13175 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13176 itl_tx = &ipst->ips_idl_tx_list[i]; 13177 kmem_free(itl_tx->txl_drain_list, 13178 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13179 } 13180 kmem_free(ipst->ips_idl_tx_list, 13181 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13182 ipst->ips_idl_tx_list = NULL; 13183 } 13184 13185 /* 13186 * Flow control has blocked us from proceeding. Insert the given conn in one 13187 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13188 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13189 * will call conn_walk_drain(). See the flow control notes at the top of this 13190 * file for more details. 13191 */ 13192 void 13193 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13194 { 13195 idl_t *idl = tx_list->txl_drain_list; 13196 uint_t index; 13197 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13198 13199 mutex_enter(&connp->conn_lock); 13200 if (connp->conn_state_flags & CONN_CLOSING) { 13201 /* 13202 * The conn is closing as a result of which CONN_CLOSING 13203 * is set. Return. 13204 */ 13205 mutex_exit(&connp->conn_lock); 13206 return; 13207 } else if (connp->conn_idl == NULL) { 13208 /* 13209 * Assign the next drain list round robin. We dont' use 13210 * a lock, and thus it may not be strictly round robin. 13211 * Atomicity of load/stores is enough to make sure that 13212 * conn_drain_list_index is always within bounds. 13213 */ 13214 index = tx_list->txl_drain_index; 13215 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13216 connp->conn_idl = &tx_list->txl_drain_list[index]; 13217 index++; 13218 if (index == ipst->ips_conn_drain_list_cnt) 13219 index = 0; 13220 tx_list->txl_drain_index = index; 13221 } else { 13222 ASSERT(connp->conn_idl->idl_itl == tx_list); 13223 } 13224 mutex_exit(&connp->conn_lock); 13225 13226 idl = connp->conn_idl; 13227 mutex_enter(&idl->idl_lock); 13228 if ((connp->conn_drain_prev != NULL) || 13229 (connp->conn_state_flags & CONN_CLOSING)) { 13230 /* 13231 * The conn is either already in the drain list or closing. 13232 * (We needed to check for CONN_CLOSING again since close can 13233 * sneak in between dropping conn_lock and acquiring idl_lock.) 13234 */ 13235 mutex_exit(&idl->idl_lock); 13236 return; 13237 } 13238 13239 /* 13240 * The conn is not in the drain list. Insert it at the 13241 * tail of the drain list. The drain list is circular 13242 * and doubly linked. idl_conn points to the 1st element 13243 * in the list. 13244 */ 13245 if (idl->idl_conn == NULL) { 13246 idl->idl_conn = connp; 13247 connp->conn_drain_next = connp; 13248 connp->conn_drain_prev = connp; 13249 } else { 13250 conn_t *head = idl->idl_conn; 13251 13252 connp->conn_drain_next = head; 13253 connp->conn_drain_prev = head->conn_drain_prev; 13254 head->conn_drain_prev->conn_drain_next = connp; 13255 head->conn_drain_prev = connp; 13256 } 13257 /* 13258 * For non streams based sockets assert flow control. 13259 */ 13260 conn_setqfull(connp, NULL); 13261 mutex_exit(&idl->idl_lock); 13262 } 13263 13264 static void 13265 conn_drain_remove(conn_t *connp) 13266 { 13267 idl_t *idl = connp->conn_idl; 13268 13269 if (idl != NULL) { 13270 /* 13271 * Remove ourself from the drain list. 13272 */ 13273 if (connp->conn_drain_next == connp) { 13274 /* Singleton in the list */ 13275 ASSERT(connp->conn_drain_prev == connp); 13276 idl->idl_conn = NULL; 13277 } else { 13278 connp->conn_drain_prev->conn_drain_next = 13279 connp->conn_drain_next; 13280 connp->conn_drain_next->conn_drain_prev = 13281 connp->conn_drain_prev; 13282 if (idl->idl_conn == connp) 13283 idl->idl_conn = connp->conn_drain_next; 13284 } 13285 13286 /* 13287 * NOTE: because conn_idl is associated with a specific drain 13288 * list which in turn is tied to the index the TX ring 13289 * (txl_cookie) hashes to, and because the TX ring can change 13290 * over the lifetime of the conn_t, we must clear conn_idl so 13291 * a subsequent conn_drain_insert() will set conn_idl again 13292 * based on the latest txl_cookie. 13293 */ 13294 connp->conn_idl = NULL; 13295 } 13296 connp->conn_drain_next = NULL; 13297 connp->conn_drain_prev = NULL; 13298 13299 conn_clrqfull(connp, NULL); 13300 /* 13301 * For streams based sockets open up flow control. 13302 */ 13303 if (!IPCL_IS_NONSTR(connp)) 13304 enableok(connp->conn_wq); 13305 } 13306 13307 /* 13308 * This conn is closing, and we are called from ip_close. OR 13309 * this conn is draining because flow-control on the ill has been relieved. 13310 * 13311 * We must also need to remove conn's on this idl from the list, and also 13312 * inform the sockfs upcalls about the change in flow-control. 13313 */ 13314 static void 13315 conn_drain(conn_t *connp, boolean_t closing) 13316 { 13317 idl_t *idl; 13318 conn_t *next_connp; 13319 13320 /* 13321 * connp->conn_idl is stable at this point, and no lock is needed 13322 * to check it. If we are called from ip_close, close has already 13323 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13324 * called us only because conn_idl is non-null. If we are called thru 13325 * service, conn_idl could be null, but it cannot change because 13326 * service is single-threaded per queue, and there cannot be another 13327 * instance of service trying to call conn_drain_insert on this conn 13328 * now. 13329 */ 13330 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13331 13332 /* 13333 * If the conn doesn't exist or is not on a drain list, bail. 13334 */ 13335 if (connp == NULL || connp->conn_idl == NULL || 13336 connp->conn_drain_prev == NULL) { 13337 return; 13338 } 13339 13340 idl = connp->conn_idl; 13341 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13342 13343 if (!closing) { 13344 next_connp = connp->conn_drain_next; 13345 while (next_connp != connp) { 13346 conn_t *delconnp = next_connp; 13347 13348 next_connp = next_connp->conn_drain_next; 13349 conn_drain_remove(delconnp); 13350 } 13351 ASSERT(connp->conn_drain_next == idl->idl_conn); 13352 } 13353 conn_drain_remove(connp); 13354 } 13355 13356 /* 13357 * Write service routine. Shared perimeter entry point. 13358 * The device queue's messages has fallen below the low water mark and STREAMS 13359 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13360 * each waiting conn. 13361 */ 13362 void 13363 ip_wsrv(queue_t *q) 13364 { 13365 ill_t *ill; 13366 13367 ill = (ill_t *)q->q_ptr; 13368 if (ill->ill_state_flags == 0) { 13369 ip_stack_t *ipst = ill->ill_ipst; 13370 13371 /* 13372 * The device flow control has opened up. 13373 * Walk through conn drain lists and qenable the 13374 * first conn in each list. This makes sense only 13375 * if the stream is fully plumbed and setup. 13376 * Hence the ill_state_flags check above. 13377 */ 13378 ip1dbg(("ip_wsrv: walking\n")); 13379 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13380 enableok(ill->ill_wq); 13381 } 13382 } 13383 13384 /* 13385 * Callback to disable flow control in IP. 13386 * 13387 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13388 * is enabled. 13389 * 13390 * When MAC_TX() is not able to send any more packets, dld sets its queue 13391 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13392 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13393 * function and wakes up corresponding mac worker threads, which in turn 13394 * calls this callback function, and disables flow control. 13395 */ 13396 void 13397 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13398 { 13399 ill_t *ill = (ill_t *)arg; 13400 ip_stack_t *ipst = ill->ill_ipst; 13401 idl_tx_list_t *idl_txl; 13402 13403 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13404 mutex_enter(&idl_txl->txl_lock); 13405 /* add code to to set a flag to indicate idl_txl is enabled */ 13406 conn_walk_drain(ipst, idl_txl); 13407 mutex_exit(&idl_txl->txl_lock); 13408 } 13409 13410 /* 13411 * Flow control has been relieved and STREAMS has backenabled us; drain 13412 * all the conn lists on `tx_list'. 13413 */ 13414 static void 13415 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13416 { 13417 int i; 13418 idl_t *idl; 13419 13420 IP_STAT(ipst, ip_conn_walk_drain); 13421 13422 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13423 idl = &tx_list->txl_drain_list[i]; 13424 mutex_enter(&idl->idl_lock); 13425 conn_drain(idl->idl_conn, B_FALSE); 13426 mutex_exit(&idl->idl_lock); 13427 } 13428 } 13429 13430 /* 13431 * Determine if the ill and multicast aspects of that packets 13432 * "matches" the conn. 13433 */ 13434 boolean_t 13435 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13436 { 13437 ill_t *ill = ira->ira_rill; 13438 zoneid_t zoneid = ira->ira_zoneid; 13439 uint_t in_ifindex; 13440 ipaddr_t dst, src; 13441 13442 dst = ipha->ipha_dst; 13443 src = ipha->ipha_src; 13444 13445 /* 13446 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13447 * unicast, broadcast and multicast reception to 13448 * conn_incoming_ifindex. 13449 * conn_wantpacket is called for unicast, broadcast and 13450 * multicast packets. 13451 */ 13452 in_ifindex = connp->conn_incoming_ifindex; 13453 13454 /* mpathd can bind to the under IPMP interface, which we allow */ 13455 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13456 if (!IS_UNDER_IPMP(ill)) 13457 return (B_FALSE); 13458 13459 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13460 return (B_FALSE); 13461 } 13462 13463 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13464 return (B_FALSE); 13465 13466 if (!(ira->ira_flags & IRAF_MULTICAST)) 13467 return (B_TRUE); 13468 13469 if (connp->conn_multi_router) { 13470 /* multicast packet and multicast router socket: send up */ 13471 return (B_TRUE); 13472 } 13473 13474 if (ipha->ipha_protocol == IPPROTO_PIM || 13475 ipha->ipha_protocol == IPPROTO_RSVP) 13476 return (B_TRUE); 13477 13478 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13479 } 13480 13481 void 13482 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13483 { 13484 if (IPCL_IS_NONSTR(connp)) { 13485 (*connp->conn_upcalls->su_txq_full) 13486 (connp->conn_upper_handle, B_TRUE); 13487 if (flow_stopped != NULL) 13488 *flow_stopped = B_TRUE; 13489 } else { 13490 queue_t *q = connp->conn_wq; 13491 13492 ASSERT(q != NULL); 13493 if (!(q->q_flag & QFULL)) { 13494 mutex_enter(QLOCK(q)); 13495 if (!(q->q_flag & QFULL)) { 13496 /* still need to set QFULL */ 13497 q->q_flag |= QFULL; 13498 /* set flow_stopped to true under QLOCK */ 13499 if (flow_stopped != NULL) 13500 *flow_stopped = B_TRUE; 13501 mutex_exit(QLOCK(q)); 13502 } else { 13503 /* flow_stopped is left unchanged */ 13504 mutex_exit(QLOCK(q)); 13505 } 13506 } 13507 } 13508 } 13509 13510 void 13511 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13512 { 13513 if (IPCL_IS_NONSTR(connp)) { 13514 (*connp->conn_upcalls->su_txq_full) 13515 (connp->conn_upper_handle, B_FALSE); 13516 if (flow_stopped != NULL) 13517 *flow_stopped = B_FALSE; 13518 } else { 13519 queue_t *q = connp->conn_wq; 13520 13521 ASSERT(q != NULL); 13522 if (q->q_flag & QFULL) { 13523 mutex_enter(QLOCK(q)); 13524 if (q->q_flag & QFULL) { 13525 q->q_flag &= ~QFULL; 13526 /* set flow_stopped to false under QLOCK */ 13527 if (flow_stopped != NULL) 13528 *flow_stopped = B_FALSE; 13529 mutex_exit(QLOCK(q)); 13530 if (q->q_flag & QWANTW) 13531 qbackenable(q, 0); 13532 } else { 13533 /* flow_stopped is left unchanged */ 13534 mutex_exit(QLOCK(q)); 13535 } 13536 } 13537 } 13538 13539 mutex_enter(&connp->conn_lock); 13540 connp->conn_blocked = B_FALSE; 13541 mutex_exit(&connp->conn_lock); 13542 } 13543 13544 /* 13545 * Return the length in bytes of the IPv4 headers (base header, label, and 13546 * other IP options) that will be needed based on the 13547 * ip_pkt_t structure passed by the caller. 13548 * 13549 * The returned length does not include the length of the upper level 13550 * protocol (ULP) header. 13551 * The caller needs to check that the length doesn't exceed the max for IPv4. 13552 */ 13553 int 13554 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13555 { 13556 int len; 13557 13558 len = IP_SIMPLE_HDR_LENGTH; 13559 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13560 ASSERT(ipp->ipp_label_len_v4 != 0); 13561 /* We need to round up here */ 13562 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13563 } 13564 13565 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13566 ASSERT(ipp->ipp_ipv4_options_len != 0); 13567 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13568 len += ipp->ipp_ipv4_options_len; 13569 } 13570 return (len); 13571 } 13572 13573 /* 13574 * All-purpose routine to build an IPv4 header with options based 13575 * on the abstract ip_pkt_t. 13576 * 13577 * The caller has to set the source and destination address as well as 13578 * ipha_length. The caller has to massage any source route and compensate 13579 * for the ULP pseudo-header checksum due to the source route. 13580 */ 13581 void 13582 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13583 uint8_t protocol) 13584 { 13585 ipha_t *ipha = (ipha_t *)buf; 13586 uint8_t *cp; 13587 13588 /* Initialize IPv4 header */ 13589 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13590 ipha->ipha_length = 0; /* Caller will set later */ 13591 ipha->ipha_ident = 0; 13592 ipha->ipha_fragment_offset_and_flags = 0; 13593 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13594 ipha->ipha_protocol = protocol; 13595 ipha->ipha_hdr_checksum = 0; 13596 13597 if ((ipp->ipp_fields & IPPF_ADDR) && 13598 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13599 ipha->ipha_src = ipp->ipp_addr_v4; 13600 13601 cp = (uint8_t *)&ipha[1]; 13602 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13603 ASSERT(ipp->ipp_label_len_v4 != 0); 13604 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13605 cp += ipp->ipp_label_len_v4; 13606 /* We need to round up here */ 13607 while ((uintptr_t)cp & 0x3) { 13608 *cp++ = IPOPT_NOP; 13609 } 13610 } 13611 13612 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13613 ASSERT(ipp->ipp_ipv4_options_len != 0); 13614 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13615 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13616 cp += ipp->ipp_ipv4_options_len; 13617 } 13618 ipha->ipha_version_and_hdr_length = 13619 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13620 13621 ASSERT((int)(cp - buf) == buf_len); 13622 } 13623 13624 /* Allocate the private structure */ 13625 static int 13626 ip_priv_alloc(void **bufp) 13627 { 13628 void *buf; 13629 13630 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13631 return (ENOMEM); 13632 13633 *bufp = buf; 13634 return (0); 13635 } 13636 13637 /* Function to delete the private structure */ 13638 void 13639 ip_priv_free(void *buf) 13640 { 13641 ASSERT(buf != NULL); 13642 kmem_free(buf, sizeof (ip_priv_t)); 13643 } 13644 13645 /* 13646 * The entry point for IPPF processing. 13647 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13648 * routine just returns. 13649 * 13650 * When called, ip_process generates an ipp_packet_t structure 13651 * which holds the state information for this packet and invokes the 13652 * the classifier (via ipp_packet_process). The classification, depending on 13653 * configured filters, results in a list of actions for this packet. Invoking 13654 * an action may cause the packet to be dropped, in which case we return NULL. 13655 * proc indicates the callout position for 13656 * this packet and ill is the interface this packet arrived on or will leave 13657 * on (inbound and outbound resp.). 13658 * 13659 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13660 * on the ill corrsponding to the destination IP address. 13661 */ 13662 mblk_t * 13663 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13664 { 13665 ip_priv_t *priv; 13666 ipp_action_id_t aid; 13667 int rc = 0; 13668 ipp_packet_t *pp; 13669 13670 /* If the classifier is not loaded, return */ 13671 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13672 return (mp); 13673 } 13674 13675 ASSERT(mp != NULL); 13676 13677 /* Allocate the packet structure */ 13678 rc = ipp_packet_alloc(&pp, "ip", aid); 13679 if (rc != 0) 13680 goto drop; 13681 13682 /* Allocate the private structure */ 13683 rc = ip_priv_alloc((void **)&priv); 13684 if (rc != 0) { 13685 ipp_packet_free(pp); 13686 goto drop; 13687 } 13688 priv->proc = proc; 13689 priv->ill_index = ill_get_upper_ifindex(rill); 13690 13691 ipp_packet_set_private(pp, priv, ip_priv_free); 13692 ipp_packet_set_data(pp, mp); 13693 13694 /* Invoke the classifier */ 13695 rc = ipp_packet_process(&pp); 13696 if (pp != NULL) { 13697 mp = ipp_packet_get_data(pp); 13698 ipp_packet_free(pp); 13699 if (rc != 0) 13700 goto drop; 13701 return (mp); 13702 } else { 13703 /* No mp to trace in ip_drop_input/ip_drop_output */ 13704 mp = NULL; 13705 } 13706 drop: 13707 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13709 ip_drop_input("ip_process", mp, ill); 13710 } else { 13711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13712 ip_drop_output("ip_process", mp, ill); 13713 } 13714 freemsg(mp); 13715 return (NULL); 13716 } 13717 13718 /* 13719 * Propagate a multicast group membership operation (add/drop) on 13720 * all the interfaces crossed by the related multirt routes. 13721 * The call is considered successful if the operation succeeds 13722 * on at least one interface. 13723 * 13724 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13725 * multicast addresses with the ire argument being the first one. 13726 * We walk the bucket to find all the of those. 13727 * 13728 * Common to IPv4 and IPv6. 13729 */ 13730 static int 13731 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13732 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13733 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13734 mcast_record_t fmode, const in6_addr_t *v6src) 13735 { 13736 ire_t *ire_gw; 13737 irb_t *irb; 13738 int ifindex; 13739 int error = 0; 13740 int result; 13741 ip_stack_t *ipst = ire->ire_ipst; 13742 ipaddr_t group; 13743 boolean_t isv6; 13744 int match_flags; 13745 13746 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13747 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13748 isv6 = B_FALSE; 13749 } else { 13750 isv6 = B_TRUE; 13751 } 13752 13753 irb = ire->ire_bucket; 13754 ASSERT(irb != NULL); 13755 13756 result = 0; 13757 irb_refhold(irb); 13758 for (; ire != NULL; ire = ire->ire_next) { 13759 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13760 continue; 13761 13762 /* We handle -ifp routes by matching on the ill if set */ 13763 match_flags = MATCH_IRE_TYPE; 13764 if (ire->ire_ill != NULL) 13765 match_flags |= MATCH_IRE_ILL; 13766 13767 if (isv6) { 13768 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13769 continue; 13770 13771 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13772 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13773 match_flags, 0, ipst, NULL); 13774 } else { 13775 if (ire->ire_addr != group) 13776 continue; 13777 13778 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13779 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13780 match_flags, 0, ipst, NULL); 13781 } 13782 /* No interface route exists for the gateway; skip this ire. */ 13783 if (ire_gw == NULL) 13784 continue; 13785 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13786 ire_refrele(ire_gw); 13787 continue; 13788 } 13789 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13790 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13791 13792 /* 13793 * The operation is considered a success if 13794 * it succeeds at least once on any one interface. 13795 */ 13796 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13797 fmode, v6src); 13798 if (error == 0) 13799 result = CGTP_MCAST_SUCCESS; 13800 13801 ire_refrele(ire_gw); 13802 } 13803 irb_refrele(irb); 13804 /* 13805 * Consider the call as successful if we succeeded on at least 13806 * one interface. Otherwise, return the last encountered error. 13807 */ 13808 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13809 } 13810 13811 /* 13812 * Return the expected CGTP hooks version number. 13813 */ 13814 int 13815 ip_cgtp_filter_supported(void) 13816 { 13817 return (ip_cgtp_filter_rev); 13818 } 13819 13820 /* 13821 * CGTP hooks can be registered by invoking this function. 13822 * Checks that the version number matches. 13823 */ 13824 int 13825 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13826 { 13827 netstack_t *ns; 13828 ip_stack_t *ipst; 13829 13830 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13831 return (ENOTSUP); 13832 13833 ns = netstack_find_by_stackid(stackid); 13834 if (ns == NULL) 13835 return (EINVAL); 13836 ipst = ns->netstack_ip; 13837 ASSERT(ipst != NULL); 13838 13839 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13840 netstack_rele(ns); 13841 return (EALREADY); 13842 } 13843 13844 ipst->ips_ip_cgtp_filter_ops = ops; 13845 13846 ill_set_inputfn_all(ipst); 13847 13848 netstack_rele(ns); 13849 return (0); 13850 } 13851 13852 /* 13853 * CGTP hooks can be unregistered by invoking this function. 13854 * Returns ENXIO if there was no registration. 13855 * Returns EBUSY if the ndd variable has not been turned off. 13856 */ 13857 int 13858 ip_cgtp_filter_unregister(netstackid_t stackid) 13859 { 13860 netstack_t *ns; 13861 ip_stack_t *ipst; 13862 13863 ns = netstack_find_by_stackid(stackid); 13864 if (ns == NULL) 13865 return (EINVAL); 13866 ipst = ns->netstack_ip; 13867 ASSERT(ipst != NULL); 13868 13869 if (ipst->ips_ip_cgtp_filter) { 13870 netstack_rele(ns); 13871 return (EBUSY); 13872 } 13873 13874 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13875 netstack_rele(ns); 13876 return (ENXIO); 13877 } 13878 ipst->ips_ip_cgtp_filter_ops = NULL; 13879 13880 ill_set_inputfn_all(ipst); 13881 13882 netstack_rele(ns); 13883 return (0); 13884 } 13885 13886 /* 13887 * Check whether there is a CGTP filter registration. 13888 * Returns non-zero if there is a registration, otherwise returns zero. 13889 * Note: returns zero if bad stackid. 13890 */ 13891 int 13892 ip_cgtp_filter_is_registered(netstackid_t stackid) 13893 { 13894 netstack_t *ns; 13895 ip_stack_t *ipst; 13896 int ret; 13897 13898 ns = netstack_find_by_stackid(stackid); 13899 if (ns == NULL) 13900 return (0); 13901 ipst = ns->netstack_ip; 13902 ASSERT(ipst != NULL); 13903 13904 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13905 ret = 1; 13906 else 13907 ret = 0; 13908 13909 netstack_rele(ns); 13910 return (ret); 13911 } 13912 13913 static int 13914 ip_squeue_switch(int val) 13915 { 13916 int rval; 13917 13918 switch (val) { 13919 case IP_SQUEUE_ENTER_NODRAIN: 13920 rval = SQ_NODRAIN; 13921 break; 13922 case IP_SQUEUE_ENTER: 13923 rval = SQ_PROCESS; 13924 break; 13925 case IP_SQUEUE_FILL: 13926 default: 13927 rval = SQ_FILL; 13928 break; 13929 } 13930 return (rval); 13931 } 13932 13933 static void * 13934 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13935 { 13936 kstat_t *ksp; 13937 13938 ip_stat_t template = { 13939 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13940 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13941 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13942 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13943 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13944 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13945 { "ip_opt", KSTAT_DATA_UINT64 }, 13946 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13947 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13948 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13949 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13950 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13951 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13952 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13953 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13954 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13955 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13956 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13957 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13958 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13959 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13960 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13961 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13962 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13963 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13964 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13965 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13966 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13967 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13968 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13969 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13970 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13971 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13972 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13973 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13974 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13975 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13976 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13977 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13978 }; 13979 13980 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13981 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13982 KSTAT_FLAG_VIRTUAL, stackid); 13983 13984 if (ksp == NULL) 13985 return (NULL); 13986 13987 bcopy(&template, ip_statisticsp, sizeof (template)); 13988 ksp->ks_data = (void *)ip_statisticsp; 13989 ksp->ks_private = (void *)(uintptr_t)stackid; 13990 13991 kstat_install(ksp); 13992 return (ksp); 13993 } 13994 13995 static void 13996 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13997 { 13998 if (ksp != NULL) { 13999 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14000 kstat_delete_netstack(ksp, stackid); 14001 } 14002 } 14003 14004 static void * 14005 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 14006 { 14007 kstat_t *ksp; 14008 14009 ip_named_kstat_t template = { 14010 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14011 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14012 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14013 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14014 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14015 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14016 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14017 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14018 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14019 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14020 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14021 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14022 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14023 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14024 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14025 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14026 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14027 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14028 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14029 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14030 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14031 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14032 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14033 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14034 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14035 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14036 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14037 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14038 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14039 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14040 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14041 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14042 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14043 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14044 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14045 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14046 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14047 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14048 }; 14049 14050 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14051 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14052 if (ksp == NULL || ksp->ks_data == NULL) 14053 return (NULL); 14054 14055 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14056 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14057 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14058 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14059 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14060 14061 template.netToMediaEntrySize.value.i32 = 14062 sizeof (mib2_ipNetToMediaEntry_t); 14063 14064 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14065 14066 bcopy(&template, ksp->ks_data, sizeof (template)); 14067 ksp->ks_update = ip_kstat_update; 14068 ksp->ks_private = (void *)(uintptr_t)stackid; 14069 14070 kstat_install(ksp); 14071 return (ksp); 14072 } 14073 14074 static void 14075 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14076 { 14077 if (ksp != NULL) { 14078 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14079 kstat_delete_netstack(ksp, stackid); 14080 } 14081 } 14082 14083 static int 14084 ip_kstat_update(kstat_t *kp, int rw) 14085 { 14086 ip_named_kstat_t *ipkp; 14087 mib2_ipIfStatsEntry_t ipmib; 14088 ill_walk_context_t ctx; 14089 ill_t *ill; 14090 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14091 netstack_t *ns; 14092 ip_stack_t *ipst; 14093 14094 if (kp == NULL || kp->ks_data == NULL) 14095 return (EIO); 14096 14097 if (rw == KSTAT_WRITE) 14098 return (EACCES); 14099 14100 ns = netstack_find_by_stackid(stackid); 14101 if (ns == NULL) 14102 return (-1); 14103 ipst = ns->netstack_ip; 14104 if (ipst == NULL) { 14105 netstack_rele(ns); 14106 return (-1); 14107 } 14108 ipkp = (ip_named_kstat_t *)kp->ks_data; 14109 14110 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14111 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14112 ill = ILL_START_WALK_V4(&ctx, ipst); 14113 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14114 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14115 rw_exit(&ipst->ips_ill_g_lock); 14116 14117 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14118 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14119 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14120 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14121 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14122 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14123 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14124 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14125 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14126 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14127 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14128 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14129 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14130 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14131 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14132 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14133 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14134 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14135 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14136 14137 ipkp->routingDiscards.value.ui32 = 0; 14138 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14139 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14140 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14141 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14142 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14143 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14144 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14145 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14146 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14147 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14148 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14149 14150 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14151 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14152 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14153 14154 netstack_rele(ns); 14155 14156 return (0); 14157 } 14158 14159 static void * 14160 icmp_kstat_init(netstackid_t stackid) 14161 { 14162 kstat_t *ksp; 14163 14164 icmp_named_kstat_t template = { 14165 { "inMsgs", KSTAT_DATA_UINT32 }, 14166 { "inErrors", KSTAT_DATA_UINT32 }, 14167 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14168 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14169 { "inParmProbs", KSTAT_DATA_UINT32 }, 14170 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14171 { "inRedirects", KSTAT_DATA_UINT32 }, 14172 { "inEchos", KSTAT_DATA_UINT32 }, 14173 { "inEchoReps", KSTAT_DATA_UINT32 }, 14174 { "inTimestamps", KSTAT_DATA_UINT32 }, 14175 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14176 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14177 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14178 { "outMsgs", KSTAT_DATA_UINT32 }, 14179 { "outErrors", KSTAT_DATA_UINT32 }, 14180 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14181 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14182 { "outParmProbs", KSTAT_DATA_UINT32 }, 14183 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14184 { "outRedirects", KSTAT_DATA_UINT32 }, 14185 { "outEchos", KSTAT_DATA_UINT32 }, 14186 { "outEchoReps", KSTAT_DATA_UINT32 }, 14187 { "outTimestamps", KSTAT_DATA_UINT32 }, 14188 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14189 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14190 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14191 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14192 { "inUnknowns", KSTAT_DATA_UINT32 }, 14193 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14194 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14195 { "outDrops", KSTAT_DATA_UINT32 }, 14196 { "inOverFlows", KSTAT_DATA_UINT32 }, 14197 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14198 }; 14199 14200 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14201 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14202 if (ksp == NULL || ksp->ks_data == NULL) 14203 return (NULL); 14204 14205 bcopy(&template, ksp->ks_data, sizeof (template)); 14206 14207 ksp->ks_update = icmp_kstat_update; 14208 ksp->ks_private = (void *)(uintptr_t)stackid; 14209 14210 kstat_install(ksp); 14211 return (ksp); 14212 } 14213 14214 static void 14215 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14216 { 14217 if (ksp != NULL) { 14218 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14219 kstat_delete_netstack(ksp, stackid); 14220 } 14221 } 14222 14223 static int 14224 icmp_kstat_update(kstat_t *kp, int rw) 14225 { 14226 icmp_named_kstat_t *icmpkp; 14227 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14228 netstack_t *ns; 14229 ip_stack_t *ipst; 14230 14231 if ((kp == NULL) || (kp->ks_data == NULL)) 14232 return (EIO); 14233 14234 if (rw == KSTAT_WRITE) 14235 return (EACCES); 14236 14237 ns = netstack_find_by_stackid(stackid); 14238 if (ns == NULL) 14239 return (-1); 14240 ipst = ns->netstack_ip; 14241 if (ipst == NULL) { 14242 netstack_rele(ns); 14243 return (-1); 14244 } 14245 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14246 14247 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14248 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14249 icmpkp->inDestUnreachs.value.ui32 = 14250 ipst->ips_icmp_mib.icmpInDestUnreachs; 14251 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14252 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14253 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14254 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14255 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14256 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14257 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14258 icmpkp->inTimestampReps.value.ui32 = 14259 ipst->ips_icmp_mib.icmpInTimestampReps; 14260 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14261 icmpkp->inAddrMaskReps.value.ui32 = 14262 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14263 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14264 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14265 icmpkp->outDestUnreachs.value.ui32 = 14266 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14267 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14268 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14269 icmpkp->outSrcQuenchs.value.ui32 = 14270 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14271 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14272 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14273 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14274 icmpkp->outTimestamps.value.ui32 = 14275 ipst->ips_icmp_mib.icmpOutTimestamps; 14276 icmpkp->outTimestampReps.value.ui32 = 14277 ipst->ips_icmp_mib.icmpOutTimestampReps; 14278 icmpkp->outAddrMasks.value.ui32 = 14279 ipst->ips_icmp_mib.icmpOutAddrMasks; 14280 icmpkp->outAddrMaskReps.value.ui32 = 14281 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14282 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14283 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14284 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14285 icmpkp->outFragNeeded.value.ui32 = 14286 ipst->ips_icmp_mib.icmpOutFragNeeded; 14287 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14288 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14289 icmpkp->inBadRedirects.value.ui32 = 14290 ipst->ips_icmp_mib.icmpInBadRedirects; 14291 14292 netstack_rele(ns); 14293 return (0); 14294 } 14295 14296 /* 14297 * This is the fanout function for raw socket opened for SCTP. Note 14298 * that it is called after SCTP checks that there is no socket which 14299 * wants a packet. Then before SCTP handles this out of the blue packet, 14300 * this function is called to see if there is any raw socket for SCTP. 14301 * If there is and it is bound to the correct address, the packet will 14302 * be sent to that socket. Note that only one raw socket can be bound to 14303 * a port. This is assured in ipcl_sctp_hash_insert(); 14304 */ 14305 void 14306 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14307 ip_recv_attr_t *ira) 14308 { 14309 conn_t *connp; 14310 queue_t *rq; 14311 boolean_t secure; 14312 ill_t *ill = ira->ira_ill; 14313 ip_stack_t *ipst = ill->ill_ipst; 14314 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14315 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14316 iaflags_t iraflags = ira->ira_flags; 14317 ill_t *rill = ira->ira_rill; 14318 14319 secure = iraflags & IRAF_IPSEC_SECURE; 14320 14321 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14322 ira, ipst); 14323 if (connp == NULL) { 14324 /* 14325 * Although raw sctp is not summed, OOB chunks must be. 14326 * Drop the packet here if the sctp checksum failed. 14327 */ 14328 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14329 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14330 freemsg(mp); 14331 return; 14332 } 14333 ira->ira_ill = ira->ira_rill = NULL; 14334 sctp_ootb_input(mp, ira, ipst); 14335 ira->ira_ill = ill; 14336 ira->ira_rill = rill; 14337 return; 14338 } 14339 rq = connp->conn_rq; 14340 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14341 CONN_DEC_REF(connp); 14342 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14343 freemsg(mp); 14344 return; 14345 } 14346 if (((iraflags & IRAF_IS_IPV4) ? 14347 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14348 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14349 secure) { 14350 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14351 ip6h, ira); 14352 if (mp == NULL) { 14353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14354 /* Note that mp is NULL */ 14355 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14356 CONN_DEC_REF(connp); 14357 return; 14358 } 14359 } 14360 14361 if (iraflags & IRAF_ICMP_ERROR) { 14362 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14363 } else { 14364 ill_t *rill = ira->ira_rill; 14365 14366 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14367 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14368 ira->ira_ill = ira->ira_rill = NULL; 14369 (connp->conn_recv)(connp, mp, NULL, ira); 14370 ira->ira_ill = ill; 14371 ira->ira_rill = rill; 14372 } 14373 CONN_DEC_REF(connp); 14374 } 14375 14376 /* 14377 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14378 * header before the ip payload. 14379 */ 14380 static void 14381 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14382 { 14383 int len = (mp->b_wptr - mp->b_rptr); 14384 mblk_t *ip_mp; 14385 14386 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14387 if (is_fp_mp || len != fp_mp_len) { 14388 if (len > fp_mp_len) { 14389 /* 14390 * fastpath header and ip header in the first mblk 14391 */ 14392 mp->b_rptr += fp_mp_len; 14393 } else { 14394 /* 14395 * ip_xmit_attach_llhdr had to prepend an mblk to 14396 * attach the fastpath header before ip header. 14397 */ 14398 ip_mp = mp->b_cont; 14399 freeb(mp); 14400 mp = ip_mp; 14401 mp->b_rptr += (fp_mp_len - len); 14402 } 14403 } else { 14404 ip_mp = mp->b_cont; 14405 freeb(mp); 14406 mp = ip_mp; 14407 } 14408 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14409 freemsg(mp); 14410 } 14411 14412 /* 14413 * Normal post fragmentation function. 14414 * 14415 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14416 * using the same state machine. 14417 * 14418 * We return an error on failure. In particular we return EWOULDBLOCK 14419 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14420 * (currently by canputnext failure resulting in backenabling from GLD.) 14421 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14422 * indication that they can flow control until ip_wsrv() tells then to restart. 14423 * 14424 * If the nce passed by caller is incomplete, this function 14425 * queues the packet and if necessary, sends ARP request and bails. 14426 * If the Neighbor Cache passed is fully resolved, we simply prepend 14427 * the link-layer header to the packet, do ipsec hw acceleration 14428 * work if necessary, and send the packet out on the wire. 14429 */ 14430 /* ARGSUSED6 */ 14431 int 14432 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14433 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14434 { 14435 queue_t *wq; 14436 ill_t *ill = nce->nce_ill; 14437 ip_stack_t *ipst = ill->ill_ipst; 14438 uint64_t delta; 14439 boolean_t isv6 = ill->ill_isv6; 14440 boolean_t fp_mp; 14441 ncec_t *ncec = nce->nce_common; 14442 int64_t now = LBOLT_FASTPATH64; 14443 boolean_t is_probe; 14444 14445 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14446 14447 ASSERT(mp != NULL); 14448 ASSERT(mp->b_datap->db_type == M_DATA); 14449 ASSERT(pkt_len == msgdsize(mp)); 14450 14451 /* 14452 * If we have already been here and are coming back after ARP/ND. 14453 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14454 * in that case since they have seen the packet when it came here 14455 * the first time. 14456 */ 14457 if (ixaflags & IXAF_NO_TRACE) 14458 goto sendit; 14459 14460 if (ixaflags & IXAF_IS_IPV4) { 14461 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14462 14463 ASSERT(!isv6); 14464 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14465 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14466 !(ixaflags & IXAF_NO_PFHOOK)) { 14467 int error; 14468 14469 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14470 ipst->ips_ipv4firewall_physical_out, 14471 NULL, ill, ipha, mp, mp, 0, ipst, error); 14472 DTRACE_PROBE1(ip4__physical__out__end, 14473 mblk_t *, mp); 14474 if (mp == NULL) 14475 return (error); 14476 14477 /* The length could have changed */ 14478 pkt_len = msgdsize(mp); 14479 } 14480 if (ipst->ips_ip4_observe.he_interested) { 14481 /* 14482 * Note that for TX the zoneid is the sending 14483 * zone, whether or not MLP is in play. 14484 * Since the szone argument is the IP zoneid (i.e., 14485 * zero for exclusive-IP zones) and ipobs wants 14486 * the system zoneid, we map it here. 14487 */ 14488 szone = IP_REAL_ZONEID(szone, ipst); 14489 14490 /* 14491 * On the outbound path the destination zone will be 14492 * unknown as we're sending this packet out on the 14493 * wire. 14494 */ 14495 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14496 ill, ipst); 14497 } 14498 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14499 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14500 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14501 } else { 14502 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14503 14504 ASSERT(isv6); 14505 ASSERT(pkt_len == 14506 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14507 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14508 !(ixaflags & IXAF_NO_PFHOOK)) { 14509 int error; 14510 14511 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14512 ipst->ips_ipv6firewall_physical_out, 14513 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14514 DTRACE_PROBE1(ip6__physical__out__end, 14515 mblk_t *, mp); 14516 if (mp == NULL) 14517 return (error); 14518 14519 /* The length could have changed */ 14520 pkt_len = msgdsize(mp); 14521 } 14522 if (ipst->ips_ip6_observe.he_interested) { 14523 /* See above */ 14524 szone = IP_REAL_ZONEID(szone, ipst); 14525 14526 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14527 ill, ipst); 14528 } 14529 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14530 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14531 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14532 } 14533 14534 sendit: 14535 /* 14536 * We check the state without a lock because the state can never 14537 * move "backwards" to initial or incomplete. 14538 */ 14539 switch (ncec->ncec_state) { 14540 case ND_REACHABLE: 14541 case ND_STALE: 14542 case ND_DELAY: 14543 case ND_PROBE: 14544 mp = ip_xmit_attach_llhdr(mp, nce); 14545 if (mp == NULL) { 14546 /* 14547 * ip_xmit_attach_llhdr has increased 14548 * ipIfStatsOutDiscards and called ip_drop_output() 14549 */ 14550 return (ENOBUFS); 14551 } 14552 /* 14553 * check if nce_fastpath completed and we tagged on a 14554 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14555 */ 14556 fp_mp = (mp->b_datap->db_type == M_DATA); 14557 14558 if (fp_mp && 14559 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14560 ill_dld_direct_t *idd; 14561 14562 idd = &ill->ill_dld_capab->idc_direct; 14563 /* 14564 * Send the packet directly to DLD, where it 14565 * may be queued depending on the availability 14566 * of transmit resources at the media layer. 14567 * Return value should be taken into 14568 * account and flow control the TCP. 14569 */ 14570 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14571 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14572 pkt_len); 14573 14574 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14575 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14576 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14577 } else { 14578 uintptr_t cookie; 14579 14580 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14581 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14582 if (ixacookie != NULL) 14583 *ixacookie = cookie; 14584 return (EWOULDBLOCK); 14585 } 14586 } 14587 } else { 14588 wq = ill->ill_wq; 14589 14590 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14591 !canputnext(wq)) { 14592 if (ixacookie != NULL) 14593 *ixacookie = 0; 14594 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14595 nce->nce_fp_mp != NULL ? 14596 MBLKL(nce->nce_fp_mp) : 0); 14597 return (EWOULDBLOCK); 14598 } 14599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14600 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14601 pkt_len); 14602 putnext(wq, mp); 14603 } 14604 14605 /* 14606 * The rest of this function implements Neighbor Unreachability 14607 * detection. Determine if the ncec is eligible for NUD. 14608 */ 14609 if (ncec->ncec_flags & NCE_F_NONUD) 14610 return (0); 14611 14612 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14613 14614 /* 14615 * Check for upper layer advice 14616 */ 14617 if (ixaflags & IXAF_REACH_CONF) { 14618 timeout_id_t tid; 14619 14620 /* 14621 * It should be o.k. to check the state without 14622 * a lock here, at most we lose an advice. 14623 */ 14624 ncec->ncec_last = TICK_TO_MSEC(now); 14625 if (ncec->ncec_state != ND_REACHABLE) { 14626 mutex_enter(&ncec->ncec_lock); 14627 ncec->ncec_state = ND_REACHABLE; 14628 tid = ncec->ncec_timeout_id; 14629 ncec->ncec_timeout_id = 0; 14630 mutex_exit(&ncec->ncec_lock); 14631 (void) untimeout(tid); 14632 if (ip_debug > 2) { 14633 /* ip1dbg */ 14634 pr_addr_dbg("ip_xmit: state" 14635 " for %s changed to" 14636 " REACHABLE\n", AF_INET6, 14637 &ncec->ncec_addr); 14638 } 14639 } 14640 return (0); 14641 } 14642 14643 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14644 ip1dbg(("ip_xmit: delta = %" PRId64 14645 " ill_reachable_time = %d \n", delta, 14646 ill->ill_reachable_time)); 14647 if (delta > (uint64_t)ill->ill_reachable_time) { 14648 mutex_enter(&ncec->ncec_lock); 14649 switch (ncec->ncec_state) { 14650 case ND_REACHABLE: 14651 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14652 /* FALLTHROUGH */ 14653 case ND_STALE: 14654 /* 14655 * ND_REACHABLE is identical to 14656 * ND_STALE in this specific case. If 14657 * reachable time has expired for this 14658 * neighbor (delta is greater than 14659 * reachable time), conceptually, the 14660 * neighbor cache is no longer in 14661 * REACHABLE state, but already in 14662 * STALE state. So the correct 14663 * transition here is to ND_DELAY. 14664 */ 14665 ncec->ncec_state = ND_DELAY; 14666 mutex_exit(&ncec->ncec_lock); 14667 nce_restart_timer(ncec, 14668 ipst->ips_delay_first_probe_time); 14669 if (ip_debug > 3) { 14670 /* ip2dbg */ 14671 pr_addr_dbg("ip_xmit: state" 14672 " for %s changed to" 14673 " DELAY\n", AF_INET6, 14674 &ncec->ncec_addr); 14675 } 14676 break; 14677 case ND_DELAY: 14678 case ND_PROBE: 14679 mutex_exit(&ncec->ncec_lock); 14680 /* Timers have already started */ 14681 break; 14682 case ND_UNREACHABLE: 14683 /* 14684 * nce_timer has detected that this ncec 14685 * is unreachable and initiated deleting 14686 * this ncec. 14687 * This is a harmless race where we found the 14688 * ncec before it was deleted and have 14689 * just sent out a packet using this 14690 * unreachable ncec. 14691 */ 14692 mutex_exit(&ncec->ncec_lock); 14693 break; 14694 default: 14695 ASSERT(0); 14696 mutex_exit(&ncec->ncec_lock); 14697 } 14698 } 14699 return (0); 14700 14701 case ND_INCOMPLETE: 14702 /* 14703 * the state could have changed since we didn't hold the lock. 14704 * Re-verify state under lock. 14705 */ 14706 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14707 mutex_enter(&ncec->ncec_lock); 14708 if (NCE_ISREACHABLE(ncec)) { 14709 mutex_exit(&ncec->ncec_lock); 14710 goto sendit; 14711 } 14712 /* queue the packet */ 14713 nce_queue_mp(ncec, mp, is_probe); 14714 mutex_exit(&ncec->ncec_lock); 14715 DTRACE_PROBE2(ip__xmit__incomplete, 14716 (ncec_t *), ncec, (mblk_t *), mp); 14717 return (0); 14718 14719 case ND_INITIAL: 14720 /* 14721 * State could have changed since we didn't hold the lock, so 14722 * re-verify state. 14723 */ 14724 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14725 mutex_enter(&ncec->ncec_lock); 14726 if (NCE_ISREACHABLE(ncec)) { 14727 mutex_exit(&ncec->ncec_lock); 14728 goto sendit; 14729 } 14730 nce_queue_mp(ncec, mp, is_probe); 14731 if (ncec->ncec_state == ND_INITIAL) { 14732 ncec->ncec_state = ND_INCOMPLETE; 14733 mutex_exit(&ncec->ncec_lock); 14734 /* 14735 * figure out the source we want to use 14736 * and resolve it. 14737 */ 14738 ip_ndp_resolve(ncec); 14739 } else { 14740 mutex_exit(&ncec->ncec_lock); 14741 } 14742 return (0); 14743 14744 case ND_UNREACHABLE: 14745 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14746 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14747 mp, ill); 14748 freemsg(mp); 14749 return (0); 14750 14751 default: 14752 ASSERT(0); 14753 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14754 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14755 mp, ill); 14756 freemsg(mp); 14757 return (ENETUNREACH); 14758 } 14759 } 14760 14761 /* 14762 * Return B_TRUE if the buffers differ in length or content. 14763 * This is used for comparing extension header buffers. 14764 * Note that an extension header would be declared different 14765 * even if all that changed was the next header value in that header i.e. 14766 * what really changed is the next extension header. 14767 */ 14768 boolean_t 14769 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14770 uint_t blen) 14771 { 14772 if (!b_valid) 14773 blen = 0; 14774 14775 if (alen != blen) 14776 return (B_TRUE); 14777 if (alen == 0) 14778 return (B_FALSE); /* Both zero length */ 14779 return (bcmp(abuf, bbuf, alen)); 14780 } 14781 14782 /* 14783 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14784 * Return B_FALSE if memory allocation fails - don't change any state! 14785 */ 14786 boolean_t 14787 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14788 const void *src, uint_t srclen) 14789 { 14790 void *dst; 14791 14792 if (!src_valid) 14793 srclen = 0; 14794 14795 ASSERT(*dstlenp == 0); 14796 if (src != NULL && srclen != 0) { 14797 dst = mi_alloc(srclen, BPRI_MED); 14798 if (dst == NULL) 14799 return (B_FALSE); 14800 } else { 14801 dst = NULL; 14802 } 14803 if (*dstp != NULL) 14804 mi_free(*dstp); 14805 *dstp = dst; 14806 *dstlenp = dst == NULL ? 0 : srclen; 14807 return (B_TRUE); 14808 } 14809 14810 /* 14811 * Replace what is in *dst, *dstlen with the source. 14812 * Assumes ip_allocbuf has already been called. 14813 */ 14814 void 14815 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14816 const void *src, uint_t srclen) 14817 { 14818 if (!src_valid) 14819 srclen = 0; 14820 14821 ASSERT(*dstlenp == srclen); 14822 if (src != NULL && srclen != 0) 14823 bcopy(src, *dstp, srclen); 14824 } 14825 14826 /* 14827 * Free the storage pointed to by the members of an ip_pkt_t. 14828 */ 14829 void 14830 ip_pkt_free(ip_pkt_t *ipp) 14831 { 14832 uint_t fields = ipp->ipp_fields; 14833 14834 if (fields & IPPF_HOPOPTS) { 14835 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14836 ipp->ipp_hopopts = NULL; 14837 ipp->ipp_hopoptslen = 0; 14838 } 14839 if (fields & IPPF_RTHDRDSTOPTS) { 14840 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14841 ipp->ipp_rthdrdstopts = NULL; 14842 ipp->ipp_rthdrdstoptslen = 0; 14843 } 14844 if (fields & IPPF_DSTOPTS) { 14845 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14846 ipp->ipp_dstopts = NULL; 14847 ipp->ipp_dstoptslen = 0; 14848 } 14849 if (fields & IPPF_RTHDR) { 14850 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14851 ipp->ipp_rthdr = NULL; 14852 ipp->ipp_rthdrlen = 0; 14853 } 14854 if (fields & IPPF_IPV4_OPTIONS) { 14855 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14856 ipp->ipp_ipv4_options = NULL; 14857 ipp->ipp_ipv4_options_len = 0; 14858 } 14859 if (fields & IPPF_LABEL_V4) { 14860 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14861 ipp->ipp_label_v4 = NULL; 14862 ipp->ipp_label_len_v4 = 0; 14863 } 14864 if (fields & IPPF_LABEL_V6) { 14865 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14866 ipp->ipp_label_v6 = NULL; 14867 ipp->ipp_label_len_v6 = 0; 14868 } 14869 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14870 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14871 } 14872 14873 /* 14874 * Copy from src to dst and allocate as needed. 14875 * Returns zero or ENOMEM. 14876 * 14877 * The caller must initialize dst to zero. 14878 */ 14879 int 14880 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14881 { 14882 uint_t fields = src->ipp_fields; 14883 14884 /* Start with fields that don't require memory allocation */ 14885 dst->ipp_fields = fields & 14886 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14887 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14888 14889 dst->ipp_addr = src->ipp_addr; 14890 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14891 dst->ipp_hoplimit = src->ipp_hoplimit; 14892 dst->ipp_tclass = src->ipp_tclass; 14893 dst->ipp_type_of_service = src->ipp_type_of_service; 14894 14895 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14896 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14897 return (0); 14898 14899 if (fields & IPPF_HOPOPTS) { 14900 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14901 if (dst->ipp_hopopts == NULL) { 14902 ip_pkt_free(dst); 14903 return (ENOMEM); 14904 } 14905 dst->ipp_fields |= IPPF_HOPOPTS; 14906 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14907 src->ipp_hopoptslen); 14908 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14909 } 14910 if (fields & IPPF_RTHDRDSTOPTS) { 14911 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14912 kmflag); 14913 if (dst->ipp_rthdrdstopts == NULL) { 14914 ip_pkt_free(dst); 14915 return (ENOMEM); 14916 } 14917 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14918 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14919 src->ipp_rthdrdstoptslen); 14920 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14921 } 14922 if (fields & IPPF_DSTOPTS) { 14923 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14924 if (dst->ipp_dstopts == NULL) { 14925 ip_pkt_free(dst); 14926 return (ENOMEM); 14927 } 14928 dst->ipp_fields |= IPPF_DSTOPTS; 14929 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14930 src->ipp_dstoptslen); 14931 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14932 } 14933 if (fields & IPPF_RTHDR) { 14934 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14935 if (dst->ipp_rthdr == NULL) { 14936 ip_pkt_free(dst); 14937 return (ENOMEM); 14938 } 14939 dst->ipp_fields |= IPPF_RTHDR; 14940 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14941 src->ipp_rthdrlen); 14942 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14943 } 14944 if (fields & IPPF_IPV4_OPTIONS) { 14945 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14946 kmflag); 14947 if (dst->ipp_ipv4_options == NULL) { 14948 ip_pkt_free(dst); 14949 return (ENOMEM); 14950 } 14951 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14952 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14953 src->ipp_ipv4_options_len); 14954 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14955 } 14956 if (fields & IPPF_LABEL_V4) { 14957 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14958 if (dst->ipp_label_v4 == NULL) { 14959 ip_pkt_free(dst); 14960 return (ENOMEM); 14961 } 14962 dst->ipp_fields |= IPPF_LABEL_V4; 14963 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14964 src->ipp_label_len_v4); 14965 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14966 } 14967 if (fields & IPPF_LABEL_V6) { 14968 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14969 if (dst->ipp_label_v6 == NULL) { 14970 ip_pkt_free(dst); 14971 return (ENOMEM); 14972 } 14973 dst->ipp_fields |= IPPF_LABEL_V6; 14974 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14975 src->ipp_label_len_v6); 14976 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14977 } 14978 if (fields & IPPF_FRAGHDR) { 14979 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14980 if (dst->ipp_fraghdr == NULL) { 14981 ip_pkt_free(dst); 14982 return (ENOMEM); 14983 } 14984 dst->ipp_fields |= IPPF_FRAGHDR; 14985 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14986 src->ipp_fraghdrlen); 14987 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14988 } 14989 return (0); 14990 } 14991 14992 /* 14993 * Returns INADDR_ANY if no source route 14994 */ 14995 ipaddr_t 14996 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14997 { 14998 ipaddr_t nexthop = INADDR_ANY; 14999 ipoptp_t opts; 15000 uchar_t *opt; 15001 uint8_t optval; 15002 uint8_t optlen; 15003 uint32_t totallen; 15004 15005 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15006 return (INADDR_ANY); 15007 15008 totallen = ipp->ipp_ipv4_options_len; 15009 if (totallen & 0x3) 15010 return (INADDR_ANY); 15011 15012 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15013 optval != IPOPT_EOL; 15014 optval = ipoptp_next(&opts)) { 15015 opt = opts.ipoptp_cur; 15016 switch (optval) { 15017 uint8_t off; 15018 case IPOPT_SSRR: 15019 case IPOPT_LSRR: 15020 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15021 break; 15022 } 15023 optlen = opts.ipoptp_len; 15024 off = opt[IPOPT_OFFSET]; 15025 off--; 15026 if (optlen < IP_ADDR_LEN || 15027 off > optlen - IP_ADDR_LEN) { 15028 /* End of source route */ 15029 break; 15030 } 15031 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15032 if (nexthop == htonl(INADDR_LOOPBACK)) { 15033 /* Ignore */ 15034 nexthop = INADDR_ANY; 15035 break; 15036 } 15037 break; 15038 } 15039 } 15040 return (nexthop); 15041 } 15042 15043 /* 15044 * Reverse a source route. 15045 */ 15046 void 15047 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15048 { 15049 ipaddr_t tmp; 15050 ipoptp_t opts; 15051 uchar_t *opt; 15052 uint8_t optval; 15053 uint32_t totallen; 15054 15055 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15056 return; 15057 15058 totallen = ipp->ipp_ipv4_options_len; 15059 if (totallen & 0x3) 15060 return; 15061 15062 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15063 optval != IPOPT_EOL; 15064 optval = ipoptp_next(&opts)) { 15065 uint8_t off1, off2; 15066 15067 opt = opts.ipoptp_cur; 15068 switch (optval) { 15069 case IPOPT_SSRR: 15070 case IPOPT_LSRR: 15071 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15072 break; 15073 } 15074 off1 = IPOPT_MINOFF_SR - 1; 15075 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15076 while (off2 > off1) { 15077 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15078 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15079 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15080 off2 -= IP_ADDR_LEN; 15081 off1 += IP_ADDR_LEN; 15082 } 15083 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15084 break; 15085 } 15086 } 15087 } 15088 15089 /* 15090 * Returns NULL if no routing header 15091 */ 15092 in6_addr_t * 15093 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15094 { 15095 in6_addr_t *nexthop = NULL; 15096 ip6_rthdr0_t *rthdr; 15097 15098 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15099 return (NULL); 15100 15101 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15102 if (rthdr->ip6r0_segleft == 0) 15103 return (NULL); 15104 15105 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15106 return (nexthop); 15107 } 15108 15109 zoneid_t 15110 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15111 zoneid_t lookup_zoneid) 15112 { 15113 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15114 ire_t *ire; 15115 int ire_flags = MATCH_IRE_TYPE; 15116 zoneid_t zoneid = ALL_ZONES; 15117 15118 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15119 return (ALL_ZONES); 15120 15121 if (lookup_zoneid != ALL_ZONES) 15122 ire_flags |= MATCH_IRE_ZONEONLY; 15123 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15124 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15125 if (ire != NULL) { 15126 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15127 ire_refrele(ire); 15128 } 15129 return (zoneid); 15130 } 15131 15132 zoneid_t 15133 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15134 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15135 { 15136 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15137 ire_t *ire; 15138 int ire_flags = MATCH_IRE_TYPE; 15139 zoneid_t zoneid = ALL_ZONES; 15140 15141 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15142 return (ALL_ZONES); 15143 15144 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15145 ire_flags |= MATCH_IRE_ILL; 15146 15147 if (lookup_zoneid != ALL_ZONES) 15148 ire_flags |= MATCH_IRE_ZONEONLY; 15149 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15150 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15151 if (ire != NULL) { 15152 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15153 ire_refrele(ire); 15154 } 15155 return (zoneid); 15156 } 15157 15158 /* 15159 * IP obserability hook support functions. 15160 */ 15161 static void 15162 ipobs_init(ip_stack_t *ipst) 15163 { 15164 netid_t id; 15165 15166 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15167 15168 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15169 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15170 15171 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15172 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15173 } 15174 15175 static void 15176 ipobs_fini(ip_stack_t *ipst) 15177 { 15178 15179 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15180 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15181 } 15182 15183 /* 15184 * hook_pkt_observe_t is composed in network byte order so that the 15185 * entire mblk_t chain handed into hook_run can be used as-is. 15186 * The caveat is that use of the fields, such as the zone fields, 15187 * requires conversion into host byte order first. 15188 */ 15189 void 15190 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15191 const ill_t *ill, ip_stack_t *ipst) 15192 { 15193 hook_pkt_observe_t *hdr; 15194 uint64_t grifindex; 15195 mblk_t *imp; 15196 15197 imp = allocb(sizeof (*hdr), BPRI_HI); 15198 if (imp == NULL) 15199 return; 15200 15201 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15202 /* 15203 * b_wptr is set to make the apparent size of the data in the mblk_t 15204 * to exclude the pointers at the end of hook_pkt_observer_t. 15205 */ 15206 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15207 imp->b_cont = mp; 15208 15209 ASSERT(DB_TYPE(mp) == M_DATA); 15210 15211 if (IS_UNDER_IPMP(ill)) 15212 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15213 else 15214 grifindex = 0; 15215 15216 hdr->hpo_version = 1; 15217 hdr->hpo_htype = htons(htype); 15218 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15219 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15220 hdr->hpo_grifindex = htonl(grifindex); 15221 hdr->hpo_zsrc = htonl(zsrc); 15222 hdr->hpo_zdst = htonl(zdst); 15223 hdr->hpo_pkt = imp; 15224 hdr->hpo_ctx = ipst->ips_netstack; 15225 15226 if (ill->ill_isv6) { 15227 hdr->hpo_family = AF_INET6; 15228 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15229 ipst->ips_ipv6observing, (hook_data_t)hdr); 15230 } else { 15231 hdr->hpo_family = AF_INET; 15232 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15233 ipst->ips_ipv4observing, (hook_data_t)hdr); 15234 } 15235 15236 imp->b_cont = NULL; 15237 freemsg(imp); 15238 } 15239 15240 /* 15241 * Utility routine that checks if `v4srcp' is a valid address on underlying 15242 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15243 * associated with `v4srcp' on success. NOTE: if this is not called from 15244 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15245 * group during or after this lookup. 15246 */ 15247 boolean_t 15248 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15249 { 15250 ipif_t *ipif; 15251 15252 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15253 if (ipif != NULL) { 15254 if (ipifp != NULL) 15255 *ipifp = ipif; 15256 else 15257 ipif_refrele(ipif); 15258 return (B_TRUE); 15259 } 15260 15261 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15262 *v4srcp)); 15263 return (B_FALSE); 15264 } 15265 15266 /* 15267 * Transport protocol call back function for CPU state change. 15268 */ 15269 /* ARGSUSED */ 15270 static int 15271 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15272 { 15273 processorid_t cpu_seqid; 15274 netstack_handle_t nh; 15275 netstack_t *ns; 15276 15277 ASSERT(MUTEX_HELD(&cpu_lock)); 15278 15279 switch (what) { 15280 case CPU_CONFIG: 15281 case CPU_ON: 15282 case CPU_INIT: 15283 case CPU_CPUPART_IN: 15284 cpu_seqid = cpu[id]->cpu_seqid; 15285 netstack_next_init(&nh); 15286 while ((ns = netstack_next(&nh)) != NULL) { 15287 dccp_stack_cpu_add(ns->netstack_dccp, cpu_seqid); 15288 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15289 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15290 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15291 netstack_rele(ns); 15292 } 15293 netstack_next_fini(&nh); 15294 break; 15295 case CPU_UNCONFIG: 15296 case CPU_OFF: 15297 case CPU_CPUPART_OUT: 15298 /* 15299 * Nothing to do. We don't remove the per CPU stats from 15300 * the IP stack even when the CPU goes offline. 15301 */ 15302 break; 15303 default: 15304 break; 15305 } 15306 return (0); 15307 }