Print this page
dccp: MIB-II
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/inet/mib2.h
+++ new/usr/src/uts/common/inet/mib2.h
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 *
21 21 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
22 22 */
23 23 /* Copyright (c) 1990 Mentat Inc. */
24 24
25 25 #ifndef _INET_MIB2_H
26 26 #define _INET_MIB2_H
27 27
28 28 #include <netinet/in.h> /* For in6_addr_t */
29 29 #include <sys/tsol/label.h> /* For brange_t */
30 30 #include <sys/tsol/label_macro.h> /* For brange_t */
31 31
32 32 #ifdef __cplusplus
33 33 extern "C" {
34 34 #endif
35 35
36 36 /*
37 37 * The IPv6 parts of this are derived from:
38 38 * RFC 2465
39 39 * RFC 2466
40 40 * RFC 2452
41 41 * RFC 2454
42 42 */
43 43
44 44 /*
45 45 * SNMP set/get via M_PROTO T_OPTMGMT_REQ. Structure is that used
46 46 * for [gs]etsockopt() calls. get uses T_CURRENT, set uses T_NEOGTIATE
47 47 * MGMT_flags value. The following definition of opthdr is taken from
48 48 * socket.h:
49 49 *
50 50 * An option specification consists of an opthdr, followed by the value of
51 51 * the option. An options buffer contains one or more options. The len
52 52 * field of opthdr specifies the length of the option value in bytes. This
53 53 * length must be a multiple of sizeof(long) (use OPTLEN macro).
54 54 *
55 55 * struct opthdr {
56 56 * long level; protocol level affected
57 57 * long name; option to modify
58 58 * long len; length of option value
59 59 * };
60 60 *
61 61 * #define OPTLEN(x) ((((x) + sizeof(long) - 1) / sizeof(long)) * sizeof(long))
62 62 * #define OPTVAL(opt) ((char *)(opt + 1))
63 63 *
64 64 * For get requests (T_CURRENT), any MIB2_xxx value can be used (only
65 65 * "get all" is supported, so all modules get a copy of the request to
66 66 * return everything it knows. In general, we use MIB2_IP. There is
67 67 * one exception: in general, IP will not report information related to
68 68 * ire_testhidden and IRE_IF_CLONE routes (e.g., in the MIB2_IP_ROUTE
69 69 * table). However, using the special value EXPER_IP_AND_ALL_IRES will cause
70 70 * all information to be reported. This special value should only be
71 71 * used by IPMP-aware low-level utilities (e.g. in.mpathd).
72 72 *
73 73 * IMPORTANT: some fields are grouped in a different structure than
74 74 * suggested by MIB-II, e.g., checksum error counts. The original MIB-2
75 75 * field name has been retained. Field names beginning with "mi" are not
76 76 * defined in the MIB but contain important & useful information maintained
77 77 * by the corresponding module.
78 78 */
79 79 #ifndef IPPROTO_MAX
80 80 #define IPPROTO_MAX 256
81 81 #endif
82 82
83 83 #define MIB2_SYSTEM (IPPROTO_MAX+1)
84 84 #define MIB2_INTERFACES (IPPROTO_MAX+2)
85 85 #define MIB2_AT (IPPROTO_MAX+3)
86 86 #define MIB2_IP (IPPROTO_MAX+4)
87 87 #define MIB2_ICMP (IPPROTO_MAX+5)
88 88 #define MIB2_TCP (IPPROTO_MAX+6)
↓ open down ↓ |
88 lines elided |
↑ open up ↑ |
89 89 #define MIB2_UDP (IPPROTO_MAX+7)
90 90 #define MIB2_EGP (IPPROTO_MAX+8)
91 91 #define MIB2_CMOT (IPPROTO_MAX+9)
92 92 #define MIB2_TRANSMISSION (IPPROTO_MAX+10)
93 93 #define MIB2_SNMP (IPPROTO_MAX+11)
94 94 #define MIB2_IP6 (IPPROTO_MAX+12)
95 95 #define MIB2_ICMP6 (IPPROTO_MAX+13)
96 96 #define MIB2_TCP6 (IPPROTO_MAX+14)
97 97 #define MIB2_UDP6 (IPPROTO_MAX+15)
98 98 #define MIB2_SCTP (IPPROTO_MAX+16)
99 +#define MIB2_DCCP (IPPROTO_MAX+17)
100 +#define MIB2_DCCP6 (IPPROTO_MAX+18)
99 101
100 102 /*
101 103 * Define range of levels for use with MIB2_*
102 104 */
103 105 #define MIB2_RANGE_START (IPPROTO_MAX+1)
104 -#define MIB2_RANGE_END (IPPROTO_MAX+16)
106 +#define MIB2_RANGE_END (IPPROTO_MAX+18)
105 107
106 108
107 109 #define EXPER 1024 /* experimental - not part of mib */
108 110 #define EXPER_IGMP (EXPER+1)
109 111 #define EXPER_DVMRP (EXPER+2)
110 112 #define EXPER_RAWIP (EXPER+3)
111 113 #define EXPER_IP_AND_ALL_IRES (EXPER+4)
112 114
113 115 /*
114 116 * Define range of levels for experimental use
115 117 */
116 118 #define EXPER_RANGE_START (EXPER+1)
117 119 #define EXPER_RANGE_END (EXPER+4)
118 120
119 121 #define BUMP_MIB(s, x) { \
120 122 extern void __dtrace_probe___mib_##x(int, void *); \
121 123 void *stataddr = &((s)->x); \
122 124 __dtrace_probe___mib_##x(1, stataddr); \
123 125 (s)->x++; \
124 126 }
125 127
126 128 #define UPDATE_MIB(s, x, y) { \
127 129 extern void __dtrace_probe___mib_##x(int, void *); \
128 130 void *stataddr = &((s)->x); \
129 131 __dtrace_probe___mib_##x(y, stataddr); \
130 132 (s)->x += (y); \
131 133 }
132 134
133 135 #define SET_MIB(x, y) x = y
134 136 #define BUMP_LOCAL(x) (x)++
135 137 #define UPDATE_LOCAL(x, y) (x) += (y)
136 138 #define SYNC32_MIB(s, m32, m64) SET_MIB((s)->m32, (s)->m64 & 0xffffffff)
137 139
138 140 /*
139 141 * Each struct that has been extended have a macro (MIB_FIRST_NEW_ELM_type)
140 142 * that is set to the first new element of the extended struct.
141 143 * The LEGACY_MIB_SIZE macro can be used to determine the size of MIB
142 144 * objects that needs to be returned to older applications unaware of
143 145 * these extensions.
144 146 */
145 147 #define MIB_PTRDIFF(s, e) (caddr_t)e - (caddr_t)s
146 148 #define LEGACY_MIB_SIZE(s, t) MIB_PTRDIFF(s, &(s)->MIB_FIRST_NEW_ELM_##t)
147 149
148 150 #define OCTET_LENGTH 32 /* Must be at least LIFNAMSIZ */
149 151 typedef struct Octet_s {
150 152 int o_length;
151 153 char o_bytes[OCTET_LENGTH];
152 154 } Octet_t;
153 155
154 156 typedef uint32_t Counter;
155 157 typedef uint32_t Counter32;
156 158 typedef uint64_t Counter64;
157 159 typedef uint32_t Gauge;
158 160 typedef uint32_t IpAddress;
159 161 typedef struct in6_addr Ip6Address;
160 162 typedef Octet_t DeviceName;
161 163 typedef Octet_t PhysAddress;
162 164 typedef uint32_t DeviceIndex; /* Interface index */
163 165
164 166 #define MIB2_UNKNOWN_INTERFACE 0
165 167 #define MIB2_UNKNOWN_PROCESS 0
166 168
167 169 /*
168 170 * IP group
169 171 */
170 172 #define MIB2_IP_ADDR 20 /* ipAddrEntry */
171 173 #define MIB2_IP_ROUTE 21 /* ipRouteEntry */
172 174 #define MIB2_IP_MEDIA 22 /* ipNetToMediaEntry */
173 175 #define MIB2_IP6_ROUTE 23 /* ipv6RouteEntry */
174 176 #define MIB2_IP6_MEDIA 24 /* ipv6NetToMediaEntry */
175 177 #define MIB2_IP6_ADDR 25 /* ipv6AddrEntry */
176 178 #define MIB2_IP_TRAFFIC_STATS 31 /* ipIfStatsEntry (IPv4) */
177 179 #define EXPER_IP_GROUP_MEMBERSHIP 100
178 180 #define EXPER_IP6_GROUP_MEMBERSHIP 101
179 181 #define EXPER_IP_GROUP_SOURCES 102
180 182 #define EXPER_IP6_GROUP_SOURCES 103
181 183 #define EXPER_IP_RTATTR 104
182 184 #define EXPER_IP_DCE 105
183 185
184 186 /*
185 187 * There can be one of each of these tables per transport (MIB2_* above).
186 188 */
187 189 #define EXPER_XPORT_MLP 105 /* transportMLPEntry */
188 190
189 191 /* Old names retained for compatibility */
190 192 #define MIB2_IP_20 MIB2_IP_ADDR
191 193 #define MIB2_IP_21 MIB2_IP_ROUTE
192 194 #define MIB2_IP_22 MIB2_IP_MEDIA
193 195
194 196 typedef struct mib2_ip {
195 197 /* forwarder? 1 gateway, 2 NOT gateway {ip 1} RW */
196 198 int ipForwarding;
197 199 /* default Time-to-Live for iph {ip 2} RW */
198 200 int ipDefaultTTL;
199 201 /* # of input datagrams {ip 3} */
200 202 Counter ipInReceives;
201 203 /* # of dg discards for iph error {ip 4} */
202 204 Counter ipInHdrErrors;
203 205 /* # of dg discards for bad addr {ip 5} */
204 206 Counter ipInAddrErrors;
205 207 /* # of dg being forwarded {ip 6} */
206 208 Counter ipForwDatagrams;
207 209 /* # of dg discards for unk protocol {ip 7} */
208 210 Counter ipInUnknownProtos;
209 211 /* # of dg discards of good dg's {ip 8} */
210 212 Counter ipInDiscards;
211 213 /* # of dg sent upstream {ip 9} */
212 214 Counter ipInDelivers;
213 215 /* # of outdgs recv'd from upstream {ip 10} */
214 216 Counter ipOutRequests;
215 217 /* # of good outdgs discarded {ip 11} */
216 218 Counter ipOutDiscards;
217 219 /* # of outdg discards: no route found {ip 12} */
218 220 Counter ipOutNoRoutes;
219 221 /* sec's recv'd frags held for reass. {ip 13} */
220 222 int ipReasmTimeout;
221 223 /* # of ip frags needing reassembly {ip 14} */
222 224 Counter ipReasmReqds;
223 225 /* # of dg's reassembled {ip 15} */
224 226 Counter ipReasmOKs;
225 227 /* # of reassembly failures (not dg cnt){ip 16} */
226 228 Counter ipReasmFails;
227 229 /* # of dg's fragged {ip 17} */
228 230 Counter ipFragOKs;
229 231 /* # of dg discards for no frag set {ip 18} */
230 232 Counter ipFragFails;
231 233 /* # of dg frags from fragmentation {ip 19} */
232 234 Counter ipFragCreates;
233 235 /* {ip 20} */
234 236 int ipAddrEntrySize;
235 237 /* {ip 21} */
236 238 int ipRouteEntrySize;
237 239 /* {ip 22} */
238 240 int ipNetToMediaEntrySize;
239 241 /* # of valid route entries discarded {ip 23} */
240 242 Counter ipRoutingDiscards;
241 243 /*
242 244 * following defined in MIB-II as part of TCP & UDP groups:
243 245 */
244 246 /* total # of segments recv'd with error { tcp 14 } */
245 247 Counter tcpInErrs;
246 248 /* # of recv'd dg's not deliverable (no appl.) { udp 2 } */
247 249 Counter udpNoPorts;
248 250 /*
249 251 * In addition to MIB-II
250 252 */
251 253 /* # of bad IP header checksums */
252 254 Counter ipInCksumErrs;
253 255 /* # of complete duplicates in reassembly */
254 256 Counter ipReasmDuplicates;
255 257 /* # of partial duplicates in reassembly */
256 258 Counter ipReasmPartDups;
257 259 /* # of packets not forwarded due to adminstrative reasons */
258 260 Counter ipForwProhibits;
259 261 /* # of UDP packets with bad UDP checksums */
260 262 Counter udpInCksumErrs;
261 263 /* # of UDP packets droped due to queue overflow */
262 264 Counter udpInOverflows;
263 265 /*
264 266 * # of RAW IP packets (all IP protocols except UDP, TCP
265 267 * and ICMP) droped due to queue overflow
266 268 */
267 269 Counter rawipInOverflows;
268 270
269 271 /*
270 272 * Folowing are private IPSEC MIB.
271 273 */
272 274 /* # of incoming packets that succeeded policy checks */
273 275 Counter ipsecInSucceeded;
274 276 /* # of incoming packets that failed policy checks */
275 277 Counter ipsecInFailed;
276 278 /* Compatible extensions added here */
277 279 int ipMemberEntrySize; /* Size of ip_member_t */
278 280 int ipGroupSourceEntrySize; /* Size of ip_grpsrc_t */
279 281
280 282 Counter ipInIPv6; /* # of IPv6 packets received by IPv4 and dropped */
281 283 Counter ipOutIPv6; /* No longer used */
282 284 Counter ipOutSwitchIPv6; /* No longer used */
283 285
284 286 int ipRouteAttributeSize; /* Size of mib2_ipAttributeEntry_t */
285 287 int transportMLPSize; /* Size of mib2_transportMLPEntry_t */
286 288 int ipDestEntrySize; /* Size of dest_cache_entry_t */
287 289 } mib2_ip_t;
288 290
289 291 /*
290 292 * ipv6IfStatsEntry OBJECT-TYPE
291 293 * SYNTAX Ipv6IfStatsEntry
292 294 * MAX-ACCESS not-accessible
293 295 * STATUS current
294 296 * DESCRIPTION
295 297 * "An interface statistics entry containing objects
296 298 * at a particular IPv6 interface."
297 299 * AUGMENTS { ipv6IfEntry }
298 300 * ::= { ipv6IfStatsTable 1 }
299 301 *
300 302 * Per-interface IPv6 statistics table
301 303 */
302 304
303 305 typedef struct mib2_ipv6IfStatsEntry {
304 306 /* Local ifindex to identify the interface */
305 307 DeviceIndex ipv6IfIndex;
306 308
307 309 /* forwarder? 1 gateway, 2 NOT gateway {ipv6MIBObjects 1} RW */
308 310 int ipv6Forwarding;
309 311 /* default Hoplimit for IPv6 {ipv6MIBObjects 2} RW */
310 312 int ipv6DefaultHopLimit;
311 313
312 314 int ipv6IfStatsEntrySize;
313 315 int ipv6AddrEntrySize;
314 316 int ipv6RouteEntrySize;
315 317 int ipv6NetToMediaEntrySize;
316 318 int ipv6MemberEntrySize; /* Size of ipv6_member_t */
317 319 int ipv6GroupSourceEntrySize; /* Size of ipv6_grpsrc_t */
318 320
319 321 /* # input datagrams (incl errors) { ipv6IfStatsEntry 1 } */
320 322 Counter ipv6InReceives;
321 323 /* # errors in IPv6 headers and options { ipv6IfStatsEntry 2 } */
322 324 Counter ipv6InHdrErrors;
323 325 /* # exceeds outgoing link MTU { ipv6IfStatsEntry 3 } */
324 326 Counter ipv6InTooBigErrors;
325 327 /* # discarded due to no route to dest { ipv6IfStatsEntry 4 } */
326 328 Counter ipv6InNoRoutes;
327 329 /* # invalid or unsupported addresses { ipv6IfStatsEntry 5 } */
328 330 Counter ipv6InAddrErrors;
329 331 /* # unknown next header { ipv6IfStatsEntry 6 } */
330 332 Counter ipv6InUnknownProtos;
331 333 /* # too short packets { ipv6IfStatsEntry 7 } */
332 334 Counter ipv6InTruncatedPkts;
333 335 /* # discarded e.g. due to no buffers { ipv6IfStatsEntry 8 } */
334 336 Counter ipv6InDiscards;
335 337 /* # delivered to upper layer protocols { ipv6IfStatsEntry 9 } */
336 338 Counter ipv6InDelivers;
337 339 /* # forwarded out interface { ipv6IfStatsEntry 10 } */
338 340 Counter ipv6OutForwDatagrams;
339 341 /* # originated out interface { ipv6IfStatsEntry 11 } */
340 342 Counter ipv6OutRequests;
341 343 /* # discarded e.g. due to no buffers { ipv6IfStatsEntry 12 } */
342 344 Counter ipv6OutDiscards;
343 345 /* # sucessfully fragmented packets { ipv6IfStatsEntry 13 } */
344 346 Counter ipv6OutFragOKs;
345 347 /* # fragmentation failed { ipv6IfStatsEntry 14 } */
346 348 Counter ipv6OutFragFails;
347 349 /* # fragments created { ipv6IfStatsEntry 15 } */
348 350 Counter ipv6OutFragCreates;
349 351 /* # fragments to reassemble { ipv6IfStatsEntry 16 } */
350 352 Counter ipv6ReasmReqds;
351 353 /* # packets after reassembly { ipv6IfStatsEntry 17 } */
352 354 Counter ipv6ReasmOKs;
353 355 /* # reassembly failed { ipv6IfStatsEntry 18 } */
354 356 Counter ipv6ReasmFails;
355 357 /* # received multicast packets { ipv6IfStatsEntry 19 } */
356 358 Counter ipv6InMcastPkts;
357 359 /* # transmitted multicast packets { ipv6IfStatsEntry 20 } */
358 360 Counter ipv6OutMcastPkts;
359 361 /*
360 362 * In addition to defined MIBs
361 363 */
362 364 /* # discarded due to no route to dest */
363 365 Counter ipv6OutNoRoutes;
364 366 /* # of complete duplicates in reassembly */
365 367 Counter ipv6ReasmDuplicates;
366 368 /* # of partial duplicates in reassembly */
367 369 Counter ipv6ReasmPartDups;
368 370 /* # of packets not forwarded due to adminstrative reasons */
369 371 Counter ipv6ForwProhibits;
370 372 /* # of UDP packets with bad UDP checksums */
371 373 Counter udpInCksumErrs;
372 374 /* # of UDP packets droped due to queue overflow */
373 375 Counter udpInOverflows;
374 376 /*
375 377 * # of RAW IPv6 packets (all IPv6 protocols except UDP, TCP
376 378 * and ICMPv6) droped due to queue overflow
377 379 */
378 380 Counter rawipInOverflows;
379 381
380 382 /* # of IPv4 packets received by IPv6 and dropped */
381 383 Counter ipv6InIPv4;
382 384 /* # of IPv4 packets transmitted by ip_wput_wput */
383 385 Counter ipv6OutIPv4;
384 386 /* # of times ip_wput_v6 has switched to become ip_wput */
385 387 Counter ipv6OutSwitchIPv4;
386 388 } mib2_ipv6IfStatsEntry_t;
387 389
388 390 /*
389 391 * Per interface IP statistics, both v4 and v6.
390 392 *
391 393 * Some applications expect to get mib2_ipv6IfStatsEntry_t structs back when
392 394 * making a request. To ensure backwards compatability, the first
393 395 * sizeof(mib2_ipv6IfStatsEntry_t) bytes of the structure is identical to
394 396 * mib2_ipv6IfStatsEntry_t. This should work as long the application is
395 397 * written correctly (i.e., using ipv6IfStatsEntrySize to get the size of
396 398 * the struct)
397 399 *
398 400 * RFC4293 introduces several new counters, as well as defining 64-bit
399 401 * versions of existing counters. For a new counters, if they have both 32-
400 402 * and 64-bit versions, then we only added the latter. However, for already
401 403 * existing counters, we have added the 64-bit versions without removing the
402 404 * old (32-bit) ones. The 64- and 32-bit counters will only be synchronized
403 405 * when the structure contains IPv6 statistics, which is done to ensure
404 406 * backwards compatibility.
405 407 */
406 408
407 409 /* The following are defined in RFC 4001 and are used for ipIfStatsIPVersion */
408 410 #define MIB2_INETADDRESSTYPE_unknown 0
409 411 #define MIB2_INETADDRESSTYPE_ipv4 1
410 412 #define MIB2_INETADDRESSTYPE_ipv6 2
411 413
412 414 /*
413 415 * On amd64, the alignment requirements for long long's is different for
414 416 * 32 and 64 bits. If we have a struct containing long long's that is being
415 417 * passed between a 64-bit kernel to a 32-bit application, then it is very
416 418 * likely that the size of the struct will differ due to padding. Therefore, we
417 419 * pack the data to ensure that the struct size is the same for 32- and
418 420 * 64-bits.
419 421 */
420 422 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
421 423 #pragma pack(4)
422 424 #endif
423 425
424 426 typedef struct mib2_ipIfStatsEntry {
425 427
426 428 /* Local ifindex to identify the interface */
427 429 DeviceIndex ipIfStatsIfIndex;
428 430
429 431 /* forwarder? 1 gateway, 2 NOT gateway { ipv6MIBObjects 1} RW */
430 432 int ipIfStatsForwarding;
431 433 /* default Hoplimit for IPv6 { ipv6MIBObjects 2} RW */
432 434 int ipIfStatsDefaultHopLimit;
433 435 #define ipIfStatsDefaultTTL ipIfStatsDefaultHopLimit
434 436
435 437 int ipIfStatsEntrySize;
436 438 int ipIfStatsAddrEntrySize;
437 439 int ipIfStatsRouteEntrySize;
438 440 int ipIfStatsNetToMediaEntrySize;
439 441 int ipIfStatsMemberEntrySize;
440 442 int ipIfStatsGroupSourceEntrySize;
441 443
442 444 /* # input datagrams (incl errors) { ipIfStatsEntry 3 } */
443 445 Counter ipIfStatsInReceives;
444 446 /* # errors in IP headers and options { ipIfStatsEntry 7 } */
445 447 Counter ipIfStatsInHdrErrors;
446 448 /* # exceeds outgoing link MTU(v6 only) { ipv6IfStatsEntry 3 } */
447 449 Counter ipIfStatsInTooBigErrors;
448 450 /* # discarded due to no route to dest { ipIfStatsEntry 8 } */
449 451 Counter ipIfStatsInNoRoutes;
450 452 /* # invalid or unsupported addresses { ipIfStatsEntry 9 } */
451 453 Counter ipIfStatsInAddrErrors;
452 454 /* # unknown next header { ipIfStatsEntry 10 } */
453 455 Counter ipIfStatsInUnknownProtos;
454 456 /* # too short packets { ipIfStatsEntry 11 } */
455 457 Counter ipIfStatsInTruncatedPkts;
456 458 /* # discarded e.g. due to no buffers { ipIfStatsEntry 17 } */
457 459 Counter ipIfStatsInDiscards;
458 460 /* # delivered to upper layer protocols { ipIfStatsEntry 18 } */
459 461 Counter ipIfStatsInDelivers;
460 462 /* # forwarded out interface { ipIfStatsEntry 23 } */
461 463 Counter ipIfStatsOutForwDatagrams;
462 464 /* # originated out interface { ipIfStatsEntry 20 } */
463 465 Counter ipIfStatsOutRequests;
464 466 /* # discarded e.g. due to no buffers { ipIfStatsEntry 25 } */
465 467 Counter ipIfStatsOutDiscards;
466 468 /* # sucessfully fragmented packets { ipIfStatsEntry 27 } */
467 469 Counter ipIfStatsOutFragOKs;
468 470 /* # fragmentation failed { ipIfStatsEntry 28 } */
469 471 Counter ipIfStatsOutFragFails;
470 472 /* # fragments created { ipIfStatsEntry 29 } */
471 473 Counter ipIfStatsOutFragCreates;
472 474 /* # fragments to reassemble { ipIfStatsEntry 14 } */
473 475 Counter ipIfStatsReasmReqds;
474 476 /* # packets after reassembly { ipIfStatsEntry 15 } */
475 477 Counter ipIfStatsReasmOKs;
476 478 /* # reassembly failed { ipIfStatsEntry 16 } */
477 479 Counter ipIfStatsReasmFails;
478 480 /* # received multicast packets { ipIfStatsEntry 34 } */
479 481 Counter ipIfStatsInMcastPkts;
480 482 /* # transmitted multicast packets { ipIfStatsEntry 38 } */
481 483 Counter ipIfStatsOutMcastPkts;
482 484
483 485 /*
484 486 * In addition to defined MIBs
485 487 */
486 488
487 489 /* # discarded due to no route to dest { ipSystemStatsEntry 22 } */
488 490 Counter ipIfStatsOutNoRoutes;
489 491 /* # of complete duplicates in reassembly */
490 492 Counter ipIfStatsReasmDuplicates;
491 493 /* # of partial duplicates in reassembly */
492 494 Counter ipIfStatsReasmPartDups;
493 495 /* # of packets not forwarded due to adminstrative reasons */
494 496 Counter ipIfStatsForwProhibits;
495 497 /* # of UDP packets with bad UDP checksums */
496 498 Counter udpInCksumErrs;
497 499 #define udpIfStatsInCksumErrs udpInCksumErrs
498 500 /* # of UDP packets droped due to queue overflow */
499 501 Counter udpInOverflows;
500 502 #define udpIfStatsInOverflows udpInOverflows
501 503 /*
502 504 * # of RAW IP packets (all IP protocols except UDP, TCP
503 505 * and ICMP) droped due to queue overflow
504 506 */
505 507 Counter rawipInOverflows;
506 508 #define rawipIfStatsInOverflows rawipInOverflows
507 509
508 510 /*
509 511 * # of IP packets received with the wrong version (i.e., not equal
510 512 * to ipIfStatsIPVersion) and that were dropped.
511 513 */
512 514 Counter ipIfStatsInWrongIPVersion;
513 515 /*
514 516 * This counter is no longer used
515 517 */
516 518 Counter ipIfStatsOutWrongIPVersion;
517 519 /*
518 520 * This counter is no longer used
519 521 */
520 522 Counter ipIfStatsOutSwitchIPVersion;
521 523
522 524 /*
523 525 * Fields defined in RFC 4293
524 526 */
525 527
526 528 /* ip version { ipIfStatsEntry 1 } */
527 529 int ipIfStatsIPVersion;
528 530 /* # input datagrams (incl errors) { ipIfStatsEntry 4 } */
529 531 Counter64 ipIfStatsHCInReceives;
530 532 /* # input octets (incl errors) { ipIfStatsEntry 6 } */
531 533 Counter64 ipIfStatsHCInOctets;
532 534 /*
533 535 * { ipIfStatsEntry 13 }
534 536 * # input datagrams for which a forwarding attempt was made
535 537 */
536 538 Counter64 ipIfStatsHCInForwDatagrams;
537 539 /* # delivered to upper layer protocols { ipIfStatsEntry 19 } */
538 540 Counter64 ipIfStatsHCInDelivers;
539 541 /* # originated out interface { ipIfStatsEntry 21 } */
540 542 Counter64 ipIfStatsHCOutRequests;
541 543 /* # forwarded out interface { ipIfStatsEntry 23 } */
542 544 Counter64 ipIfStatsHCOutForwDatagrams;
543 545 /* # dg's requiring fragmentation { ipIfStatsEntry 26 } */
544 546 Counter ipIfStatsOutFragReqds;
545 547 /* # output datagrams { ipIfStatsEntry 31 } */
546 548 Counter64 ipIfStatsHCOutTransmits;
547 549 /* # output octets { ipIfStatsEntry 33 } */
548 550 Counter64 ipIfStatsHCOutOctets;
549 551 /* # received multicast datagrams { ipIfStatsEntry 35 } */
550 552 Counter64 ipIfStatsHCInMcastPkts;
551 553 /* # received multicast octets { ipIfStatsEntry 37 } */
552 554 Counter64 ipIfStatsHCInMcastOctets;
553 555 /* # transmitted multicast datagrams { ipIfStatsEntry 39 } */
554 556 Counter64 ipIfStatsHCOutMcastPkts;
555 557 /* # transmitted multicast octets { ipIfStatsEntry 41 } */
556 558 Counter64 ipIfStatsHCOutMcastOctets;
557 559 /* # received broadcast datagrams { ipIfStatsEntry 43 } */
558 560 Counter64 ipIfStatsHCInBcastPkts;
559 561 /* # transmitted broadcast datagrams { ipIfStatsEntry 45 } */
560 562 Counter64 ipIfStatsHCOutBcastPkts;
561 563
562 564 /*
563 565 * Fields defined in mib2_ip_t
564 566 */
565 567
566 568 /* # of incoming packets that succeeded policy checks */
567 569 Counter ipsecInSucceeded;
568 570 #define ipsecIfStatsInSucceeded ipsecInSucceeded
569 571 /* # of incoming packets that failed policy checks */
570 572 Counter ipsecInFailed;
571 573 #define ipsecIfStatsInFailed ipsecInFailed
572 574 /* # of bad IP header checksums */
573 575 Counter ipInCksumErrs;
574 576 #define ipIfStatsInCksumErrs ipInCksumErrs
575 577 /* total # of segments recv'd with error { tcp 14 } */
576 578 Counter tcpInErrs;
577 579 #define tcpIfStatsInErrs tcpInErrs
578 580 /* # of recv'd dg's not deliverable (no appl.) { udp 2 } */
579 581 Counter udpNoPorts;
580 582 #define udpIfStatsNoPorts udpNoPorts
581 583 } mib2_ipIfStatsEntry_t;
582 584 #define MIB_FIRST_NEW_ELM_mib2_ipIfStatsEntry_t ipIfStatsIPVersion
583 585
584 586 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
585 587 #pragma pack()
586 588 #endif
587 589
588 590 /*
589 591 * The IP address table contains this entity's IP addressing information.
590 592 *
591 593 * ipAddrTable OBJECT-TYPE
592 594 * SYNTAX SEQUENCE OF IpAddrEntry
593 595 * ACCESS not-accessible
594 596 * STATUS mandatory
595 597 * DESCRIPTION
596 598 * "The table of addressing information relevant to
597 599 * this entity's IP addresses."
598 600 * ::= { ip 20 }
599 601 */
600 602
601 603 typedef struct mib2_ipAddrEntry {
602 604 /* IP address of this entry {ipAddrEntry 1} */
603 605 IpAddress ipAdEntAddr;
604 606 /* Unique interface index {ipAddrEntry 2} */
605 607 DeviceName ipAdEntIfIndex;
606 608 /* Subnet mask for this IP addr {ipAddrEntry 3} */
607 609 IpAddress ipAdEntNetMask;
608 610 /* 2^lsb of IP broadcast addr {ipAddrEntry 4} */
609 611 int ipAdEntBcastAddr;
610 612 /* max size for dg reassembly {ipAddrEntry 5} */
611 613 int ipAdEntReasmMaxSize;
612 614 /* additional ipif_t fields */
613 615 struct ipAdEntInfo_s {
614 616 Gauge ae_mtu;
615 617 /* BSD if metric */
616 618 int ae_metric;
617 619 /* ipif broadcast addr. relation to above?? */
618 620 IpAddress ae_broadcast_addr;
619 621 /* point-point dest addr */
620 622 IpAddress ae_pp_dst_addr;
621 623 int ae_flags; /* IFF_* flags in if.h */
622 624 Counter ae_ibcnt; /* Inbound packets */
623 625 Counter ae_obcnt; /* Outbound packets */
624 626 Counter ae_focnt; /* Forwarded packets */
625 627 IpAddress ae_subnet; /* Subnet prefix */
626 628 int ae_subnet_len; /* Subnet prefix length */
627 629 IpAddress ae_src_addr; /* Source address */
628 630 } ipAdEntInfo;
629 631 uint32_t ipAdEntRetransmitTime; /* ipInterfaceRetransmitTime */
630 632 } mib2_ipAddrEntry_t;
631 633 #define MIB_FIRST_NEW_ELM_mib2_ipAddrEntry_t ipAdEntRetransmitTime
632 634
633 635 /*
634 636 * ipv6AddrTable OBJECT-TYPE
635 637 * SYNTAX SEQUENCE OF Ipv6AddrEntry
636 638 * MAX-ACCESS not-accessible
637 639 * STATUS current
638 640 * DESCRIPTION
639 641 * "The table of addressing information relevant to
640 642 * this node's interface addresses."
641 643 * ::= { ipv6MIBObjects 8 }
642 644 */
643 645
644 646 typedef struct mib2_ipv6AddrEntry {
645 647 /* Unique interface index { Part of INDEX } */
646 648 DeviceName ipv6AddrIfIndex;
647 649
648 650 /* IPv6 address of this entry { ipv6AddrEntry 1 } */
649 651 Ip6Address ipv6AddrAddress;
650 652 /* Prefix length { ipv6AddrEntry 2 } */
651 653 uint_t ipv6AddrPfxLength;
652 654 /* Type: stateless(1), stateful(2), unknown(3) { ipv6AddrEntry 3 } */
653 655 uint_t ipv6AddrType;
654 656 /* Anycast: true(1), false(2) { ipv6AddrEntry 4 } */
655 657 uint_t ipv6AddrAnycastFlag;
656 658 /*
657 659 * Address status: preferred(1), deprecated(2), invalid(3),
658 660 * inaccessible(4), unknown(5) { ipv6AddrEntry 5 }
659 661 */
660 662 uint_t ipv6AddrStatus;
661 663 struct ipv6AddrInfo_s {
662 664 Gauge ae_mtu;
663 665 /* BSD if metric */
664 666 int ae_metric;
665 667 /* point-point dest addr */
666 668 Ip6Address ae_pp_dst_addr;
667 669 int ae_flags; /* IFF_* flags in if.h */
668 670 Counter ae_ibcnt; /* Inbound packets */
669 671 Counter ae_obcnt; /* Outbound packets */
670 672 Counter ae_focnt; /* Forwarded packets */
671 673 Ip6Address ae_subnet; /* Subnet prefix */
672 674 int ae_subnet_len; /* Subnet prefix length */
673 675 Ip6Address ae_src_addr; /* Source address */
674 676 } ipv6AddrInfo;
675 677 uint32_t ipv6AddrReasmMaxSize; /* InterfaceReasmMaxSize */
676 678 Ip6Address ipv6AddrIdentifier; /* InterfaceIdentifier */
677 679 uint32_t ipv6AddrIdentifierLen;
678 680 uint32_t ipv6AddrReachableTime; /* InterfaceReachableTime */
679 681 uint32_t ipv6AddrRetransmitTime; /* InterfaceRetransmitTime */
680 682 } mib2_ipv6AddrEntry_t;
681 683 #define MIB_FIRST_NEW_ELM_mib2_ipv6AddrEntry_t ipv6AddrReasmMaxSize
682 684
683 685 /*
684 686 * The IP routing table contains an entry for each route presently known to
685 687 * this entity. (for IPv4 routes)
686 688 *
687 689 * ipRouteTable OBJECT-TYPE
688 690 * SYNTAX SEQUENCE OF IpRouteEntry
689 691 * ACCESS not-accessible
690 692 * STATUS mandatory
691 693 * DESCRIPTION
692 694 * "This entity's IP Routing table."
693 695 * ::= { ip 21 }
694 696 */
695 697
696 698 typedef struct mib2_ipRouteEntry {
697 699 /* dest ip addr for this route {ipRouteEntry 1 } RW */
698 700 IpAddress ipRouteDest;
699 701 /* unique interface index for this hop {ipRouteEntry 2 } RW */
700 702 DeviceName ipRouteIfIndex;
701 703 /* primary route metric {ipRouteEntry 3 } RW */
702 704 int ipRouteMetric1;
703 705 /* alternate route metric {ipRouteEntry 4 } RW */
704 706 int ipRouteMetric2;
705 707 /* alternate route metric {ipRouteEntry 5 } RW */
706 708 int ipRouteMetric3;
707 709 /* alternate route metric {ipRouteEntry 6 } RW */
708 710 int ipRouteMetric4;
709 711 /* ip addr of next hop on this route {ipRouteEntry 7 } RW */
710 712 IpAddress ipRouteNextHop;
711 713 /* other(1), inval(2), dir(3), indir(4) {ipRouteEntry 8 } RW */
712 714 int ipRouteType;
713 715 /* mechanism by which route was learned {ipRouteEntry 9 } */
714 716 int ipRouteProto;
715 717 /* sec's since last update of route {ipRouteEntry 10} RW */
716 718 int ipRouteAge;
717 719 /* {ipRouteEntry 11} RW */
718 720 IpAddress ipRouteMask;
719 721 /* alternate route metric {ipRouteEntry 12} RW */
720 722 int ipRouteMetric5;
721 723 /* additional info from ire's {ipRouteEntry 13 } */
722 724 struct ipRouteInfo_s {
723 725 Gauge re_max_frag;
724 726 Gauge re_rtt;
725 727 Counter re_ref;
726 728 int re_frag_flag;
727 729 IpAddress re_src_addr;
728 730 int re_ire_type;
729 731 Counter re_obpkt;
730 732 Counter re_ibpkt;
731 733 int re_flags;
732 734 /*
733 735 * The following two elements (re_in_ill and re_in_src_addr)
734 736 * are no longer used but are left here for the benefit of
735 737 * old Apps that won't be able to handle the change in the
736 738 * size of this struct. These elements will always be
737 739 * set to zeroes.
738 740 */
739 741 DeviceName re_in_ill; /* Input interface */
740 742 IpAddress re_in_src_addr; /* Input source address */
741 743 } ipRouteInfo;
742 744 } mib2_ipRouteEntry_t;
743 745
744 746 /*
745 747 * The IPv6 routing table contains an entry for each route presently known to
746 748 * this entity.
747 749 *
748 750 * ipv6RouteTable OBJECT-TYPE
749 751 * SYNTAX SEQUENCE OF IpRouteEntry
750 752 * ACCESS not-accessible
751 753 * STATUS current
752 754 * DESCRIPTION
753 755 * "IPv6 Routing table. This table contains
754 756 * an entry for each valid IPv6 unicast route
755 757 * that can be used for packet forwarding
756 758 * determination."
757 759 * ::= { ipv6MIBObjects 11 }
758 760 */
759 761
760 762 typedef struct mib2_ipv6RouteEntry {
761 763 /* dest ip addr for this route { ipv6RouteEntry 1 } */
762 764 Ip6Address ipv6RouteDest;
763 765 /* prefix length { ipv6RouteEntry 2 } */
764 766 int ipv6RoutePfxLength;
765 767 /* unique route index { ipv6RouteEntry 3 } */
766 768 unsigned ipv6RouteIndex;
767 769 /* unique interface index for this hop { ipv6RouteEntry 4 } */
768 770 DeviceName ipv6RouteIfIndex;
769 771 /* IPv6 addr of next hop on this route { ipv6RouteEntry 5 } */
770 772 Ip6Address ipv6RouteNextHop;
771 773 /* other(1), discard(2), local(3), remote(4) */
772 774 /* { ipv6RouteEntry 6 } */
773 775 int ipv6RouteType;
774 776 /* mechanism by which route was learned { ipv6RouteEntry 7 } */
775 777 /*
776 778 * other(1), local(2), netmgmt(3), ndisc(4), rip(5), ospf(6),
777 779 * bgp(7), idrp(8), igrp(9)
778 780 */
779 781 int ipv6RouteProtocol;
780 782 /* policy hook or traffic class { ipv6RouteEntry 8 } */
781 783 unsigned ipv6RoutePolicy;
782 784 /* sec's since last update of route { ipv6RouteEntry 9} */
783 785 int ipv6RouteAge;
784 786 /* Routing domain ID of the next hop { ipv6RouteEntry 10 } */
785 787 unsigned ipv6RouteNextHopRDI;
786 788 /* route metric { ipv6RouteEntry 11 } */
787 789 unsigned ipv6RouteMetric;
788 790 /* preference (impl specific) { ipv6RouteEntry 12 } */
789 791 unsigned ipv6RouteWeight;
790 792 /* additional info from ire's { } */
791 793 struct ipv6RouteInfo_s {
792 794 Gauge re_max_frag;
793 795 Gauge re_rtt;
794 796 Counter re_ref;
795 797 int re_frag_flag;
796 798 Ip6Address re_src_addr;
797 799 int re_ire_type;
798 800 Counter re_obpkt;
799 801 Counter re_ibpkt;
800 802 int re_flags;
801 803 } ipv6RouteInfo;
802 804 } mib2_ipv6RouteEntry_t;
803 805
804 806 /*
805 807 * The IPv4 and IPv6 routing table entries on a trusted system also have
806 808 * security attributes in the form of label ranges. This experimental
807 809 * interface provides information about these labels.
808 810 *
809 811 * Each entry in this table contains a label range and an index that refers
810 812 * back to the entry in the routing table to which it applies. There may be 0,
811 813 * 1, or many label ranges for each routing table entry.
812 814 *
813 815 * (opthdr.level is set to MIB2_IP for IPv4 entries and MIB2_IP6 for IPv6.
814 816 * opthdr.name is set to EXPER_IP_GWATTR.)
815 817 *
816 818 * ipRouteAttributeTable OBJECT-TYPE
817 819 * SYNTAX SEQUENCE OF IpAttributeEntry
818 820 * ACCESS not-accessible
819 821 * STATUS current
820 822 * DESCRIPTION
821 823 * "IPv4 routing attributes table. This table contains
822 824 * an entry for each valid trusted label attached to a
823 825 * route in the system."
824 826 * ::= { ip 102 }
825 827 *
826 828 * ipv6RouteAttributeTable OBJECT-TYPE
827 829 * SYNTAX SEQUENCE OF IpAttributeEntry
828 830 * ACCESS not-accessible
829 831 * STATUS current
830 832 * DESCRIPTION
831 833 * "IPv6 routing attributes table. This table contains
832 834 * an entry for each valid trusted label attached to a
833 835 * route in the system."
834 836 * ::= { ip6 102 }
835 837 */
836 838
837 839 typedef struct mib2_ipAttributeEntry {
838 840 uint_t iae_routeidx;
839 841 int iae_doi;
840 842 brange_t iae_slrange;
841 843 } mib2_ipAttributeEntry_t;
842 844
843 845 /*
844 846 * The IP address translation table contain the IpAddress to
845 847 * `physical' address equivalences. Some interfaces do not
846 848 * use translation tables for determining address
847 849 * equivalences (e.g., DDN-X.25 has an algorithmic method);
848 850 * if all interfaces are of this type, then the Address
849 851 * Translation table is empty, i.e., has zero entries.
850 852 *
851 853 * ipNetToMediaTable OBJECT-TYPE
852 854 * SYNTAX SEQUENCE OF IpNetToMediaEntry
853 855 * ACCESS not-accessible
854 856 * STATUS mandatory
855 857 * DESCRIPTION
856 858 * "The IP Address Translation table used for mapping
857 859 * from IP addresses to physical addresses."
858 860 * ::= { ip 22 }
859 861 */
860 862
861 863 typedef struct mib2_ipNetToMediaEntry {
862 864 /* Unique interface index { ipNetToMediaEntry 1 } RW */
863 865 DeviceName ipNetToMediaIfIndex;
864 866 /* Media dependent physical addr { ipNetToMediaEntry 2 } RW */
865 867 PhysAddress ipNetToMediaPhysAddress;
866 868 /* ip addr for this physical addr { ipNetToMediaEntry 3 } RW */
867 869 IpAddress ipNetToMediaNetAddress;
868 870 /* other(1), inval(2), dyn(3), stat(4) { ipNetToMediaEntry 4 } RW */
869 871 int ipNetToMediaType;
870 872 struct ipNetToMediaInfo_s {
871 873 PhysAddress ntm_mask; /* subnet mask for entry */
872 874 int ntm_flags; /* ACE_F_* flags in arp.h */
873 875 } ipNetToMediaInfo;
874 876 } mib2_ipNetToMediaEntry_t;
875 877
876 878 /*
877 879 * ipv6NetToMediaTable OBJECT-TYPE
878 880 * SYNTAX SEQUENCE OF Ipv6NetToMediaEntry
879 881 * MAX-ACCESS not-accessible
880 882 * STATUS current
881 883 * DESCRIPTION
882 884 * "The IPv6 Address Translation table used for
883 885 * mapping from IPv6 addresses to physical addresses.
884 886 *
885 887 * The IPv6 address translation table contain the
886 888 * Ipv6Address to `physical' address equivalencies.
887 889 * Some interfaces do not use translation tables
888 890 * for determining address equivalencies; if all
889 891 * interfaces are of this type, then the Address
890 892 * Translation table is empty, i.e., has zero
891 893 * entries."
892 894 * ::= { ipv6MIBObjects 12 }
893 895 */
894 896
895 897 typedef struct mib2_ipv6NetToMediaEntry {
896 898 /* Unique interface index { Part of INDEX } */
897 899 DeviceIndex ipv6NetToMediaIfIndex;
898 900
899 901 /* ip addr for this physical addr { ipv6NetToMediaEntry 1 } */
900 902 Ip6Address ipv6NetToMediaNetAddress;
901 903 /* Media dependent physical addr { ipv6NetToMediaEntry 2 } */
902 904 PhysAddress ipv6NetToMediaPhysAddress;
903 905 /*
904 906 * Type of mapping
905 907 * other(1), dynamic(2), static(3), local(4)
906 908 * { ipv6NetToMediaEntry 3 }
907 909 */
908 910 int ipv6NetToMediaType;
909 911 /*
910 912 * NUD state
911 913 * reachable(1), stale(2), delay(3), probe(4), invalid(5), unknown(6)
912 914 * Note: The kernel returns ND_* states.
913 915 * { ipv6NetToMediaEntry 4 }
914 916 */
915 917 int ipv6NetToMediaState;
916 918 /* sysUpTime last time entry was updated { ipv6NetToMediaEntry 5 } */
917 919 int ipv6NetToMediaLastUpdated;
918 920 } mib2_ipv6NetToMediaEntry_t;
919 921
920 922
921 923 /*
922 924 * List of group members per interface
923 925 */
924 926 typedef struct ip_member {
925 927 /* Interface index */
926 928 DeviceName ipGroupMemberIfIndex;
927 929 /* IP Multicast address */
928 930 IpAddress ipGroupMemberAddress;
929 931 /* Number of member sockets */
930 932 Counter ipGroupMemberRefCnt;
931 933 /* Filter mode: 1 => include, 2 => exclude */
932 934 int ipGroupMemberFilterMode;
933 935 } ip_member_t;
934 936
935 937
936 938 /*
937 939 * List of IPv6 group members per interface
938 940 */
939 941 typedef struct ipv6_member {
940 942 /* Interface index */
941 943 DeviceIndex ipv6GroupMemberIfIndex;
942 944 /* IP Multicast address */
943 945 Ip6Address ipv6GroupMemberAddress;
944 946 /* Number of member sockets */
945 947 Counter ipv6GroupMemberRefCnt;
946 948 /* Filter mode: 1 => include, 2 => exclude */
947 949 int ipv6GroupMemberFilterMode;
948 950 } ipv6_member_t;
949 951
950 952 /*
951 953 * This is used to mark transport layer entities (e.g., TCP connections) that
952 954 * are capable of receiving packets from a range of labels. 'level' is set to
953 955 * the protocol of interest (e.g., MIB2_TCP), and 'name' is set to
954 956 * EXPER_XPORT_MLP. The tme_connidx refers back to the entry in MIB2_TCP_CONN,
955 957 * MIB2_TCP6_CONN, or MIB2_SCTP_CONN.
956 958 *
957 959 * It is also used to report connections that receive packets at a single label
958 960 * that's other than the zone's label. This is the case when a TCP connection
959 961 * is accepted from a particular peer using an MLP listener.
960 962 */
961 963 typedef struct mib2_transportMLPEntry {
962 964 uint_t tme_connidx;
963 965 uint_t tme_flags;
964 966 int tme_doi;
965 967 bslabel_t tme_label;
966 968 } mib2_transportMLPEntry_t;
967 969
968 970 #define MIB2_TMEF_PRIVATE 0x00000001 /* MLP on private addresses */
969 971 #define MIB2_TMEF_SHARED 0x00000002 /* MLP on shared addresses */
970 972 #define MIB2_TMEF_ANONMLP 0x00000004 /* Anonymous MLP port */
971 973 #define MIB2_TMEF_MACEXEMPT 0x00000008 /* MAC-Exempt port */
972 974 #define MIB2_TMEF_IS_LABELED 0x00000010 /* tme_doi & tme_label exists */
973 975 #define MIB2_TMEF_MACIMPLICIT 0x00000020 /* MAC-Implicit */
974 976 /*
975 977 * List of IPv4 source addresses being filtered per interface
976 978 */
977 979 typedef struct ip_grpsrc {
978 980 /* Interface index */
979 981 DeviceName ipGroupSourceIfIndex;
980 982 /* IP Multicast address */
981 983 IpAddress ipGroupSourceGroup;
982 984 /* IP Source address */
983 985 IpAddress ipGroupSourceAddress;
984 986 } ip_grpsrc_t;
985 987
986 988
987 989 /*
988 990 * List of IPv6 source addresses being filtered per interface
989 991 */
990 992 typedef struct ipv6_grpsrc {
991 993 /* Interface index */
992 994 DeviceIndex ipv6GroupSourceIfIndex;
993 995 /* IP Multicast address */
994 996 Ip6Address ipv6GroupSourceGroup;
995 997 /* IP Source address */
996 998 Ip6Address ipv6GroupSourceAddress;
997 999 } ipv6_grpsrc_t;
998 1000
999 1001
1000 1002 /*
1001 1003 * List of destination cache entries
1002 1004 */
1003 1005 typedef struct dest_cache_entry {
1004 1006 /* IP Multicast address */
1005 1007 IpAddress DestIpv4Address;
1006 1008 Ip6Address DestIpv6Address;
1007 1009 uint_t DestFlags; /* DCEF_* */
1008 1010 uint32_t DestPmtu; /* Path MTU if DCEF_PMTU */
1009 1011 uint32_t DestIdent; /* Per destination IP ident. */
1010 1012 DeviceIndex DestIfindex; /* For IPv6 link-locals */
1011 1013 uint32_t DestAge; /* Age of MTU info in seconds */
1012 1014 } dest_cache_entry_t;
1013 1015
1014 1016
1015 1017 /*
1016 1018 * ICMP Group
1017 1019 */
1018 1020 typedef struct mib2_icmp {
1019 1021 /* total # of recv'd ICMP msgs { icmp 1 } */
1020 1022 Counter icmpInMsgs;
1021 1023 /* recv'd ICMP msgs with errors { icmp 2 } */
1022 1024 Counter icmpInErrors;
1023 1025 /* recv'd "dest unreachable" msg's { icmp 3 } */
1024 1026 Counter icmpInDestUnreachs;
1025 1027 /* recv'd "time exceeded" msg's { icmp 4 } */
1026 1028 Counter icmpInTimeExcds;
1027 1029 /* recv'd "parameter problem" msg's { icmp 5 } */
1028 1030 Counter icmpInParmProbs;
1029 1031 /* recv'd "source quench" msg's { icmp 6 } */
1030 1032 Counter icmpInSrcQuenchs;
1031 1033 /* recv'd "ICMP redirect" msg's { icmp 7 } */
1032 1034 Counter icmpInRedirects;
1033 1035 /* recv'd "echo request" msg's { icmp 8 } */
1034 1036 Counter icmpInEchos;
1035 1037 /* recv'd "echo reply" msg's { icmp 9 } */
1036 1038 Counter icmpInEchoReps;
1037 1039 /* recv'd "timestamp" msg's { icmp 10 } */
1038 1040 Counter icmpInTimestamps;
1039 1041 /* recv'd "timestamp reply" msg's { icmp 11 } */
1040 1042 Counter icmpInTimestampReps;
1041 1043 /* recv'd "address mask request" msg's { icmp 12 } */
1042 1044 Counter icmpInAddrMasks;
1043 1045 /* recv'd "address mask reply" msg's { icmp 13 } */
1044 1046 Counter icmpInAddrMaskReps;
1045 1047 /* total # of sent ICMP msg's { icmp 14 } */
1046 1048 Counter icmpOutMsgs;
1047 1049 /* # of msg's not sent for internal icmp errors { icmp 15 } */
1048 1050 Counter icmpOutErrors;
1049 1051 /* # of "dest unreachable" msg's sent { icmp 16 } */
1050 1052 Counter icmpOutDestUnreachs;
1051 1053 /* # of "time exceeded" msg's sent { icmp 17 } */
1052 1054 Counter icmpOutTimeExcds;
1053 1055 /* # of "parameter problme" msg's sent { icmp 18 } */
1054 1056 Counter icmpOutParmProbs;
1055 1057 /* # of "source quench" msg's sent { icmp 19 } */
1056 1058 Counter icmpOutSrcQuenchs;
1057 1059 /* # of "ICMP redirect" msg's sent { icmp 20 } */
1058 1060 Counter icmpOutRedirects;
1059 1061 /* # of "Echo request" msg's sent { icmp 21 } */
1060 1062 Counter icmpOutEchos;
1061 1063 /* # of "Echo reply" msg's sent { icmp 22 } */
1062 1064 Counter icmpOutEchoReps;
1063 1065 /* # of "timestamp request" msg's sent { icmp 23 } */
1064 1066 Counter icmpOutTimestamps;
1065 1067 /* # of "timestamp reply" msg's sent { icmp 24 } */
1066 1068 Counter icmpOutTimestampReps;
1067 1069 /* # of "address mask request" msg's sent { icmp 25 } */
1068 1070 Counter icmpOutAddrMasks;
1069 1071 /* # of "address mask reply" msg's sent { icmp 26 } */
1070 1072 Counter icmpOutAddrMaskReps;
1071 1073 /*
1072 1074 * In addition to MIB-II
1073 1075 */
1074 1076 /* # of received packets with checksum errors */
1075 1077 Counter icmpInCksumErrs;
1076 1078 /* # of received packets with unknow codes */
1077 1079 Counter icmpInUnknowns;
1078 1080 /* # of received unreachables with "fragmentation needed" */
1079 1081 Counter icmpInFragNeeded;
1080 1082 /* # of sent unreachables with "fragmentation needed" */
1081 1083 Counter icmpOutFragNeeded;
1082 1084 /*
1083 1085 * # of msg's not sent since original packet was broadcast/multicast
1084 1086 * or an ICMP error packet
1085 1087 */
1086 1088 Counter icmpOutDrops;
1087 1089 /* # of ICMP packets droped due to queue overflow */
1088 1090 Counter icmpInOverflows;
1089 1091 /* recv'd "ICMP redirect" msg's that are bad thus ignored */
1090 1092 Counter icmpInBadRedirects;
1091 1093 } mib2_icmp_t;
1092 1094
1093 1095
1094 1096 /*
1095 1097 * ipv6IfIcmpEntry OBJECT-TYPE
1096 1098 * SYNTAX Ipv6IfIcmpEntry
1097 1099 * MAX-ACCESS not-accessible
1098 1100 * STATUS current
1099 1101 * DESCRIPTION
1100 1102 * "An ICMPv6 statistics entry containing
1101 1103 * objects at a particular IPv6 interface.
1102 1104 *
1103 1105 * Note that a receiving interface is
1104 1106 * the interface to which a given ICMPv6 message
1105 1107 * is addressed which may not be necessarily
1106 1108 * the input interface for the message.
1107 1109 *
1108 1110 * Similarly, the sending interface is
1109 1111 * the interface that sources a given
1110 1112 * ICMP message which is usually but not
1111 1113 * necessarily the output interface for the message."
1112 1114 * AUGMENTS { ipv6IfEntry }
1113 1115 * ::= { ipv6IfIcmpTable 1 }
1114 1116 *
1115 1117 * Per-interface ICMPv6 statistics table
1116 1118 */
1117 1119
1118 1120 typedef struct mib2_ipv6IfIcmpEntry {
1119 1121 /* Local ifindex to identify the interface */
1120 1122 DeviceIndex ipv6IfIcmpIfIndex;
1121 1123
1122 1124 int ipv6IfIcmpEntrySize; /* Size of ipv6IfIcmpEntry */
1123 1125
1124 1126 /* The total # ICMP msgs rcvd includes ipv6IfIcmpInErrors */
1125 1127 Counter32 ipv6IfIcmpInMsgs;
1126 1128 /* # ICMP with ICMP-specific errors (bad checkum, length, etc) */
1127 1129 Counter32 ipv6IfIcmpInErrors;
1128 1130 /* # ICMP Destination Unreachable */
1129 1131 Counter32 ipv6IfIcmpInDestUnreachs;
1130 1132 /* # ICMP destination unreachable/communication admin prohibited */
1131 1133 Counter32 ipv6IfIcmpInAdminProhibs;
1132 1134 Counter32 ipv6IfIcmpInTimeExcds;
1133 1135 Counter32 ipv6IfIcmpInParmProblems;
1134 1136 Counter32 ipv6IfIcmpInPktTooBigs;
1135 1137 Counter32 ipv6IfIcmpInEchos;
1136 1138 Counter32 ipv6IfIcmpInEchoReplies;
1137 1139 Counter32 ipv6IfIcmpInRouterSolicits;
1138 1140 Counter32 ipv6IfIcmpInRouterAdvertisements;
1139 1141 Counter32 ipv6IfIcmpInNeighborSolicits;
1140 1142 Counter32 ipv6IfIcmpInNeighborAdvertisements;
1141 1143 Counter32 ipv6IfIcmpInRedirects;
1142 1144 Counter32 ipv6IfIcmpInGroupMembQueries;
1143 1145 Counter32 ipv6IfIcmpInGroupMembResponses;
1144 1146 Counter32 ipv6IfIcmpInGroupMembReductions;
1145 1147 /* Total # ICMP messages attempted to send (includes OutErrors) */
1146 1148 Counter32 ipv6IfIcmpOutMsgs;
1147 1149 /* # ICMP messages not sent due to ICMP problems (e.g. no buffers) */
1148 1150 Counter32 ipv6IfIcmpOutErrors;
1149 1151 Counter32 ipv6IfIcmpOutDestUnreachs;
1150 1152 Counter32 ipv6IfIcmpOutAdminProhibs;
1151 1153 Counter32 ipv6IfIcmpOutTimeExcds;
1152 1154 Counter32 ipv6IfIcmpOutParmProblems;
1153 1155 Counter32 ipv6IfIcmpOutPktTooBigs;
1154 1156 Counter32 ipv6IfIcmpOutEchos;
1155 1157 Counter32 ipv6IfIcmpOutEchoReplies;
1156 1158 Counter32 ipv6IfIcmpOutRouterSolicits;
1157 1159 Counter32 ipv6IfIcmpOutRouterAdvertisements;
1158 1160 Counter32 ipv6IfIcmpOutNeighborSolicits;
1159 1161 Counter32 ipv6IfIcmpOutNeighborAdvertisements;
1160 1162 Counter32 ipv6IfIcmpOutRedirects;
1161 1163 Counter32 ipv6IfIcmpOutGroupMembQueries;
1162 1164 Counter32 ipv6IfIcmpOutGroupMembResponses;
1163 1165 Counter32 ipv6IfIcmpOutGroupMembReductions;
1164 1166 /* Additions beyond the MIB */
1165 1167 Counter32 ipv6IfIcmpInOverflows;
1166 1168 /* recv'd "ICMPv6 redirect" msg's that are bad thus ignored */
1167 1169 Counter32 ipv6IfIcmpBadHoplimit;
1168 1170 Counter32 ipv6IfIcmpInBadNeighborAdvertisements;
1169 1171 Counter32 ipv6IfIcmpInBadNeighborSolicitations;
1170 1172 Counter32 ipv6IfIcmpInBadRedirects;
1171 1173 Counter32 ipv6IfIcmpInGroupMembTotal;
1172 1174 Counter32 ipv6IfIcmpInGroupMembBadQueries;
1173 1175 Counter32 ipv6IfIcmpInGroupMembBadReports;
1174 1176 Counter32 ipv6IfIcmpInGroupMembOurReports;
1175 1177 } mib2_ipv6IfIcmpEntry_t;
1176 1178
1177 1179 /*
1178 1180 * the TCP group
1179 1181 *
1180 1182 * Note that instances of object types that represent
1181 1183 * information about a particular TCP connection are
1182 1184 * transient; they persist only as long as the connection
1183 1185 * in question.
1184 1186 */
1185 1187 #define MIB2_TCP_CONN 13 /* tcpConnEntry */
1186 1188 #define MIB2_TCP6_CONN 14 /* tcp6ConnEntry */
1187 1189
1188 1190 /* Old name retained for compatibility */
1189 1191 #define MIB2_TCP_13 MIB2_TCP_CONN
1190 1192
1191 1193 /* Pack data in mib2_tcp to make struct size the same for 32- and 64-bits */
1192 1194 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1193 1195 #pragma pack(4)
1194 1196 #endif
1195 1197 typedef struct mib2_tcp {
1196 1198 /* algorithm used for transmit timeout value { tcp 1 } */
1197 1199 int tcpRtoAlgorithm;
1198 1200 /* minimum retransmit timeout (ms) { tcp 2 } */
1199 1201 int tcpRtoMin;
1200 1202 /* maximum retransmit timeout (ms) { tcp 3 } */
1201 1203 int tcpRtoMax;
1202 1204 /* maximum # of connections supported { tcp 4 } */
1203 1205 int tcpMaxConn;
1204 1206 /* # of direct transitions CLOSED -> SYN-SENT { tcp 5 } */
1205 1207 Counter tcpActiveOpens;
1206 1208 /* # of direct transitions LISTEN -> SYN-RCVD { tcp 6 } */
1207 1209 Counter tcpPassiveOpens;
1208 1210 /* # of direct SIN-SENT/RCVD -> CLOSED/LISTEN { tcp 7 } */
1209 1211 Counter tcpAttemptFails;
1210 1212 /* # of direct ESTABLISHED/CLOSE-WAIT -> CLOSED { tcp 8 } */
1211 1213 Counter tcpEstabResets;
1212 1214 /* # of connections ESTABLISHED or CLOSE-WAIT { tcp 9 } */
1213 1215 Gauge tcpCurrEstab;
1214 1216 /* total # of segments recv'd { tcp 10 } */
1215 1217 Counter tcpInSegs;
1216 1218 /* total # of segments sent { tcp 11 } */
1217 1219 Counter tcpOutSegs;
1218 1220 /* total # of segments retransmitted { tcp 12 } */
1219 1221 Counter tcpRetransSegs;
1220 1222 /* {tcp 13} */
1221 1223 int tcpConnTableSize; /* Size of tcpConnEntry_t */
1222 1224 /* in ip {tcp 14} */
1223 1225 /* # of segments sent with RST flag { tcp 15 } */
1224 1226 Counter tcpOutRsts;
1225 1227 /* In addition to MIB-II */
1226 1228 /* Sender */
1227 1229 /* total # of data segments sent */
1228 1230 Counter tcpOutDataSegs;
1229 1231 /* total # of bytes in data segments sent */
1230 1232 Counter tcpOutDataBytes;
1231 1233 /* total # of bytes in segments retransmitted */
1232 1234 Counter tcpRetransBytes;
1233 1235 /* total # of acks sent */
1234 1236 Counter tcpOutAck;
1235 1237 /* total # of delayed acks sent */
1236 1238 Counter tcpOutAckDelayed;
1237 1239 /* total # of segments sent with the urg flag on */
1238 1240 Counter tcpOutUrg;
1239 1241 /* total # of window updates sent */
1240 1242 Counter tcpOutWinUpdate;
1241 1243 /* total # of zero window probes sent */
1242 1244 Counter tcpOutWinProbe;
1243 1245 /* total # of control segments sent (syn, fin, rst) */
1244 1246 Counter tcpOutControl;
1245 1247 /* total # of segments sent due to "fast retransmit" */
1246 1248 Counter tcpOutFastRetrans;
1247 1249 /* Receiver */
1248 1250 /* total # of ack segments received */
1249 1251 Counter tcpInAckSegs;
1250 1252 /* total # of bytes acked */
1251 1253 Counter tcpInAckBytes;
1252 1254 /* total # of duplicate acks */
1253 1255 Counter tcpInDupAck;
1254 1256 /* total # of acks acking unsent data */
1255 1257 Counter tcpInAckUnsent;
1256 1258 /* total # of data segments received in order */
1257 1259 Counter tcpInDataInorderSegs;
1258 1260 /* total # of data bytes received in order */
1259 1261 Counter tcpInDataInorderBytes;
1260 1262 /* total # of data segments received out of order */
1261 1263 Counter tcpInDataUnorderSegs;
1262 1264 /* total # of data bytes received out of order */
1263 1265 Counter tcpInDataUnorderBytes;
1264 1266 /* total # of complete duplicate data segments received */
1265 1267 Counter tcpInDataDupSegs;
1266 1268 /* total # of bytes in the complete duplicate data segments received */
1267 1269 Counter tcpInDataDupBytes;
1268 1270 /* total # of partial duplicate data segments received */
1269 1271 Counter tcpInDataPartDupSegs;
1270 1272 /* total # of bytes in the partial duplicate data segments received */
1271 1273 Counter tcpInDataPartDupBytes;
1272 1274 /* total # of data segments received past the window */
1273 1275 Counter tcpInDataPastWinSegs;
1274 1276 /* total # of data bytes received part the window */
1275 1277 Counter tcpInDataPastWinBytes;
1276 1278 /* total # of zero window probes received */
1277 1279 Counter tcpInWinProbe;
1278 1280 /* total # of window updates received */
1279 1281 Counter tcpInWinUpdate;
1280 1282 /* total # of data segments received after the connection has closed */
1281 1283 Counter tcpInClosed;
1282 1284 /* Others */
1283 1285 /* total # of failed attempts to update the rtt estimate */
1284 1286 Counter tcpRttNoUpdate;
1285 1287 /* total # of successful attempts to update the rtt estimate */
1286 1288 Counter tcpRttUpdate;
1287 1289 /* total # of retransmit timeouts */
1288 1290 Counter tcpTimRetrans;
1289 1291 /* total # of retransmit timeouts dropping the connection */
1290 1292 Counter tcpTimRetransDrop;
1291 1293 /* total # of keepalive timeouts */
1292 1294 Counter tcpTimKeepalive;
1293 1295 /* total # of keepalive timeouts sending a probe */
1294 1296 Counter tcpTimKeepaliveProbe;
1295 1297 /* total # of keepalive timeouts dropping the connection */
1296 1298 Counter tcpTimKeepaliveDrop;
1297 1299 /* total # of connections refused due to backlog full on listen */
1298 1300 Counter tcpListenDrop;
1299 1301 /* total # of connections refused due to half-open queue (q0) full */
1300 1302 Counter tcpListenDropQ0;
1301 1303 /* total # of connections dropped from a full half-open queue (q0) */
1302 1304 Counter tcpHalfOpenDrop;
1303 1305 /* total # of retransmitted segments by SACK retransmission */
1304 1306 Counter tcpOutSackRetransSegs;
1305 1307
1306 1308 int tcp6ConnTableSize; /* Size of tcp6ConnEntry_t */
1307 1309
1308 1310 /*
1309 1311 * fields from RFC 4022
1310 1312 */
1311 1313
1312 1314 /* total # of segments recv'd { tcp 17 } */
1313 1315 Counter64 tcpHCInSegs;
1314 1316 /* total # of segments sent { tcp 18 } */
1315 1317 Counter64 tcpHCOutSegs;
1316 1318 } mib2_tcp_t;
1317 1319 #define MIB_FIRST_NEW_ELM_mib2_tcp_t tcpHCInSegs
1318 1320
1319 1321 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1320 1322 #pragma pack()
1321 1323 #endif
1322 1324
1323 1325 /*
1324 1326 * The TCP/IPv4 connection table {tcp 13} contains information about this
1325 1327 * entity's existing TCP connections over IPv4.
1326 1328 */
1327 1329 /* For tcpConnState and tcp6ConnState */
1328 1330 #define MIB2_TCP_closed 1
1329 1331 #define MIB2_TCP_listen 2
1330 1332 #define MIB2_TCP_synSent 3
1331 1333 #define MIB2_TCP_synReceived 4
1332 1334 #define MIB2_TCP_established 5
1333 1335 #define MIB2_TCP_finWait1 6
1334 1336 #define MIB2_TCP_finWait2 7
1335 1337 #define MIB2_TCP_closeWait 8
1336 1338 #define MIB2_TCP_lastAck 9
1337 1339 #define MIB2_TCP_closing 10
1338 1340 #define MIB2_TCP_timeWait 11
1339 1341 #define MIB2_TCP_deleteTCB 12 /* only writeable value */
1340 1342
1341 1343 /* Pack data to make struct size the same for 32- and 64-bits */
1342 1344 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1343 1345 #pragma pack(4)
1344 1346 #endif
1345 1347 typedef struct mib2_tcpConnEntry {
1346 1348 /* state of tcp connection { tcpConnEntry 1} RW */
1347 1349 int tcpConnState;
1348 1350 /* local ip addr for this connection { tcpConnEntry 2 } */
1349 1351 IpAddress tcpConnLocalAddress;
1350 1352 /* local port for this connection { tcpConnEntry 3 } */
1351 1353 int tcpConnLocalPort; /* In host byte order */
1352 1354 /* remote ip addr for this connection { tcpConnEntry 4 } */
1353 1355 IpAddress tcpConnRemAddress;
1354 1356 /* remote port for this connection { tcpConnEntry 5 } */
1355 1357 int tcpConnRemPort; /* In host byte order */
1356 1358 struct tcpConnEntryInfo_s {
1357 1359 /* seq # of next segment to send */
1358 1360 Gauge ce_snxt;
1359 1361 /* seq # of of last segment unacknowledged */
1360 1362 Gauge ce_suna;
1361 1363 /* currect send window size */
1362 1364 Gauge ce_swnd;
1363 1365 /* seq # of next expected segment */
1364 1366 Gauge ce_rnxt;
1365 1367 /* seq # of last ack'd segment */
1366 1368 Gauge ce_rack;
1367 1369 /* currenct receive window size */
1368 1370 Gauge ce_rwnd;
1369 1371 /* current rto (retransmit timeout) */
1370 1372 Gauge ce_rto;
1371 1373 /* current max segment size */
1372 1374 Gauge ce_mss;
1373 1375 /* actual internal state */
1374 1376 int ce_state;
1375 1377 } tcpConnEntryInfo;
1376 1378
1377 1379 /* pid of the processes that created this connection */
1378 1380 uint32_t tcpConnCreationProcess;
1379 1381 /* system uptime when the connection was created */
1380 1382 uint64_t tcpConnCreationTime;
1381 1383 } mib2_tcpConnEntry_t;
1382 1384 #define MIB_FIRST_NEW_ELM_mib2_tcpConnEntry_t tcpConnCreationProcess
1383 1385
1384 1386 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1385 1387 #pragma pack()
1386 1388 #endif
1387 1389
1388 1390
1389 1391 /*
1390 1392 * The TCP/IPv6 connection table {tcp 14} contains information about this
1391 1393 * entity's existing TCP connections over IPv6.
1392 1394 */
1393 1395
1394 1396 /* Pack data to make struct size the same for 32- and 64-bits */
1395 1397 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1396 1398 #pragma pack(4)
1397 1399 #endif
1398 1400 typedef struct mib2_tcp6ConnEntry {
1399 1401 /* local ip addr for this connection { ipv6TcpConnEntry 1 } */
1400 1402 Ip6Address tcp6ConnLocalAddress;
1401 1403 /* local port for this connection { ipv6TcpConnEntry 2 } */
1402 1404 int tcp6ConnLocalPort;
1403 1405 /* remote ip addr for this connection { ipv6TcpConnEntry 3 } */
1404 1406 Ip6Address tcp6ConnRemAddress;
1405 1407 /* remote port for this connection { ipv6TcpConnEntry 4 } */
1406 1408 int tcp6ConnRemPort;
1407 1409 /* interface index or zero { ipv6TcpConnEntry 5 } */
1408 1410 DeviceIndex tcp6ConnIfIndex;
1409 1411 /* state of tcp6 connection { ipv6TcpConnEntry 6 } RW */
1410 1412 int tcp6ConnState;
1411 1413 struct tcp6ConnEntryInfo_s {
1412 1414 /* seq # of next segment to send */
1413 1415 Gauge ce_snxt;
1414 1416 /* seq # of of last segment unacknowledged */
1415 1417 Gauge ce_suna;
1416 1418 /* currect send window size */
1417 1419 Gauge ce_swnd;
1418 1420 /* seq # of next expected segment */
1419 1421 Gauge ce_rnxt;
1420 1422 /* seq # of last ack'd segment */
1421 1423 Gauge ce_rack;
1422 1424 /* currenct receive window size */
1423 1425 Gauge ce_rwnd;
1424 1426 /* current rto (retransmit timeout) */
1425 1427 Gauge ce_rto;
1426 1428 /* current max segment size */
1427 1429 Gauge ce_mss;
1428 1430 /* actual internal state */
1429 1431 int ce_state;
1430 1432 } tcp6ConnEntryInfo;
1431 1433
1432 1434 /* pid of the processes that created this connection */
1433 1435 uint32_t tcp6ConnCreationProcess;
1434 1436 /* system uptime when the connection was created */
1435 1437 uint64_t tcp6ConnCreationTime;
1436 1438 } mib2_tcp6ConnEntry_t;
1437 1439 #define MIB_FIRST_NEW_ELM_mib2_tcp6ConnEntry_t tcp6ConnCreationProcess
1438 1440
1439 1441 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1440 1442 #pragma pack()
1441 1443 #endif
1442 1444
1443 1445 /*
1444 1446 * the UDP group
1445 1447 */
1446 1448 #define MIB2_UDP_ENTRY 5 /* udpEntry */
1447 1449 #define MIB2_UDP6_ENTRY 6 /* udp6Entry */
1448 1450
1449 1451 /* Old name retained for compatibility */
1450 1452 #define MIB2_UDP_5 MIB2_UDP_ENTRY
1451 1453
1452 1454 /* Pack data to make struct size the same for 32- and 64-bits */
1453 1455 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1454 1456 #pragma pack(4)
1455 1457 #endif
1456 1458 typedef struct mib2_udp {
1457 1459 /* total # of UDP datagrams sent upstream { udp 1 } */
1458 1460 Counter udpInDatagrams;
1459 1461 /* in ip { udp 2 } */
1460 1462 /* # of recv'd dg's not deliverable (other) { udp 3 } */
1461 1463 Counter udpInErrors;
1462 1464 /* total # of dg's sent { udp 4 } */
1463 1465 Counter udpOutDatagrams;
1464 1466 /* { udp 5 } */
1465 1467 int udpEntrySize; /* Size of udpEntry_t */
1466 1468 int udp6EntrySize; /* Size of udp6Entry_t */
1467 1469 Counter udpOutErrors;
1468 1470
1469 1471 /*
1470 1472 * fields from RFC 4113
1471 1473 */
1472 1474
1473 1475 /* total # of UDP datagrams sent upstream { udp 8 } */
1474 1476 Counter64 udpHCInDatagrams;
1475 1477 /* total # of dg's sent { udp 9 } */
1476 1478 Counter64 udpHCOutDatagrams;
1477 1479 } mib2_udp_t;
1478 1480 #define MIB_FIRST_NEW_ELM_mib2_udp_t udpHCInDatagrams
1479 1481
1480 1482 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1481 1483 #pragma pack()
1482 1484 #endif
1483 1485
1484 1486 /*
1485 1487 * The UDP listener table contains information about this entity's UDP
1486 1488 * end-points on which a local application is currently accepting datagrams.
1487 1489 */
1488 1490
1489 1491 /* For both IPv4 and IPv6 ue_state: */
1490 1492 #define MIB2_UDP_unbound 1
1491 1493 #define MIB2_UDP_idle 2
1492 1494 #define MIB2_UDP_connected 3
1493 1495 #define MIB2_UDP_unknown 4
1494 1496
1495 1497 /* Pack data to make struct size the same for 32- and 64-bits */
1496 1498 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1497 1499 #pragma pack(4)
1498 1500 #endif
1499 1501 typedef struct mib2_udpEntry {
1500 1502 /* local ip addr of listener { udpEntry 1 } */
1501 1503 IpAddress udpLocalAddress;
1502 1504 /* local port of listener { udpEntry 2 } */
1503 1505 int udpLocalPort; /* In host byte order */
1504 1506 struct udpEntryInfo_s {
1505 1507 int ue_state;
1506 1508 IpAddress ue_RemoteAddress;
1507 1509 int ue_RemotePort; /* In host byte order */
1508 1510 } udpEntryInfo;
1509 1511
1510 1512 /*
1511 1513 * RFC 4113
1512 1514 */
1513 1515
1514 1516 /* Unique id for this 4-tuple { udpEndpointEntry 7 } */
1515 1517 uint32_t udpInstance;
1516 1518 /* pid of the processes that created this endpoint */
1517 1519 uint32_t udpCreationProcess;
1518 1520 /* system uptime when the endpoint was created */
1519 1521 uint64_t udpCreationTime;
1520 1522 } mib2_udpEntry_t;
1521 1523 #define MIB_FIRST_NEW_ELM_mib2_udpEntry_t udpInstance
1522 1524
1523 1525 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1524 1526 #pragma pack()
1525 1527 #endif
1526 1528
1527 1529 /*
1528 1530 * The UDP (for IPv6) listener table contains information about this
1529 1531 * entity's UDP end-points on which a local application is
1530 1532 * currently accepting datagrams.
1531 1533 */
1532 1534
1533 1535 /* Pack data to make struct size the same for 32- and 64-bits */
1534 1536 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1535 1537 #pragma pack(4)
1536 1538 #endif
1537 1539 typedef struct mib2_udp6Entry {
1538 1540 /* local ip addr of listener { ipv6UdpEntry 1 } */
1539 1541 Ip6Address udp6LocalAddress;
1540 1542 /* local port of listener { ipv6UdpEntry 2 } */
1541 1543 int udp6LocalPort; /* In host byte order */
1542 1544 /* interface index or zero { ipv6UdpEntry 3 } */
1543 1545 DeviceIndex udp6IfIndex;
1544 1546 struct udp6EntryInfo_s {
1545 1547 int ue_state;
1546 1548 Ip6Address ue_RemoteAddress;
1547 1549 int ue_RemotePort; /* In host byte order */
1548 1550 } udp6EntryInfo;
1549 1551
1550 1552 /*
1551 1553 * RFC 4113
1552 1554 */
1553 1555
1554 1556 /* Unique id for this 4-tuple { udpEndpointEntry 7 } */
1555 1557 uint32_t udp6Instance;
1556 1558 /* pid of the processes that created this endpoint */
1557 1559 uint32_t udp6CreationProcess;
1558 1560 /* system uptime when the endpoint was created */
1559 1561 uint64_t udp6CreationTime;
1560 1562 } mib2_udp6Entry_t;
1561 1563 #define MIB_FIRST_NEW_ELM_mib2_udp6Entry_t udp6Instance
1562 1564
1563 1565 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1564 1566 #pragma pack()
1565 1567 #endif
1566 1568
1567 1569 /*
1568 1570 * the RAWIP group
1569 1571 */
1570 1572 typedef struct mib2_rawip {
1571 1573 /* total # of RAWIP datagrams sent upstream */
1572 1574 Counter rawipInDatagrams;
1573 1575 /* # of RAWIP packets with bad IPV6_CHECKSUM checksums */
1574 1576 Counter rawipInCksumErrs;
1575 1577 /* # of recv'd dg's not deliverable (other) */
1576 1578 Counter rawipInErrors;
1577 1579 /* total # of dg's sent */
1578 1580 Counter rawipOutDatagrams;
1579 1581 /* total # of dg's not sent (e.g. no memory) */
1580 1582 Counter rawipOutErrors;
1581 1583 } mib2_rawip_t;
1582 1584
1583 1585 /* DVMRP group */
1584 1586 #define EXPER_DVMRP_VIF 1
1585 1587 #define EXPER_DVMRP_MRT 2
1586 1588
1587 1589
1588 1590 /*
1589 1591 * The SCTP group
1590 1592 */
1591 1593 #define MIB2_SCTP_CONN 15
1592 1594 #define MIB2_SCTP_CONN_LOCAL 16
1593 1595 #define MIB2_SCTP_CONN_REMOTE 17
1594 1596
1595 1597 #define MIB2_SCTP_closed 1
1596 1598 #define MIB2_SCTP_cookieWait 2
1597 1599 #define MIB2_SCTP_cookieEchoed 3
1598 1600 #define MIB2_SCTP_established 4
1599 1601 #define MIB2_SCTP_shutdownPending 5
1600 1602 #define MIB2_SCTP_shutdownSent 6
1601 1603 #define MIB2_SCTP_shutdownReceived 7
1602 1604 #define MIB2_SCTP_shutdownAckSent 8
1603 1605 #define MIB2_SCTP_deleteTCB 9
1604 1606 #define MIB2_SCTP_listen 10 /* Not in the MIB */
1605 1607
1606 1608 #define MIB2_SCTP_ACTIVE 1
1607 1609 #define MIB2_SCTP_INACTIVE 2
1608 1610
1609 1611 #define MIB2_SCTP_ADDR_V4 1
1610 1612 #define MIB2_SCTP_ADDR_V6 2
1611 1613
1612 1614 #define MIB2_SCTP_RTOALGO_OTHER 1
1613 1615 #define MIB2_SCTP_RTOALGO_VANJ 2
1614 1616
1615 1617 typedef struct mib2_sctpConnEntry {
1616 1618 /* connection identifier { sctpAssocEntry 1 } */
1617 1619 uint32_t sctpAssocId;
1618 1620 /* remote hostname (not used) { sctpAssocEntry 2 } */
1619 1621 Octet_t sctpAssocRemHostName;
1620 1622 /* local port number { sctpAssocEntry 3 } */
1621 1623 uint32_t sctpAssocLocalPort;
1622 1624 /* remote port number { sctpAssocEntry 4 } */
1623 1625 uint32_t sctpAssocRemPort;
1624 1626 /* type of primary remote addr { sctpAssocEntry 5 } */
1625 1627 int sctpAssocRemPrimAddrType;
1626 1628 /* primary remote address { sctpAssocEntry 6 } */
1627 1629 Ip6Address sctpAssocRemPrimAddr;
1628 1630 /* local address */
1629 1631 Ip6Address sctpAssocLocPrimAddr;
1630 1632 /* current heartbeat interval { sctpAssocEntry 7 } */
1631 1633 uint32_t sctpAssocHeartBeatInterval;
1632 1634 /* state of this association { sctpAssocEntry 8 } */
1633 1635 int sctpAssocState;
1634 1636 /* # of inbound streams { sctpAssocEntry 9 } */
1635 1637 uint32_t sctpAssocInStreams;
1636 1638 /* # of outbound streams { sctpAssocEntry 10 } */
1637 1639 uint32_t sctpAssocOutStreams;
1638 1640 /* max # of data retans { sctpAssocEntry 11 } */
1639 1641 uint32_t sctpAssocMaxRetr;
1640 1642 /* sysId for assoc owner { sctpAssocEntry 12 } */
1641 1643 uint32_t sctpAssocPrimProcess;
1642 1644 /* # of rxmit timeouts during hanshake */
1643 1645 Counter32 sctpAssocT1expired; /* { sctpAssocEntry 13 } */
1644 1646 /* # of rxmit timeouts during shutdown */
1645 1647 Counter32 sctpAssocT2expired; /* { sctpAssocEntry 14 } */
1646 1648 /* # of rxmit timeouts during data transfer */
1647 1649 Counter32 sctpAssocRtxChunks; /* { sctpAssocEntry 15 } */
1648 1650 /* assoc start-up time { sctpAssocEntry 16 } */
1649 1651 uint32_t sctpAssocStartTime;
1650 1652 struct sctpConnEntryInfo_s {
1651 1653 /* amount of data in send Q */
1652 1654 Gauge ce_sendq;
1653 1655 /* amount of data in recv Q */
1654 1656 Gauge ce_recvq;
1655 1657 /* currect send window size */
1656 1658 Gauge ce_swnd;
1657 1659 /* currenct receive window size */
1658 1660 Gauge ce_rwnd;
1659 1661 /* current max segment size */
1660 1662 Gauge ce_mss;
1661 1663 } sctpConnEntryInfo;
1662 1664 } mib2_sctpConnEntry_t;
1663 1665
1664 1666 typedef struct mib2_sctpConnLocalAddrEntry {
1665 1667 /* connection identifier */
1666 1668 uint32_t sctpAssocId;
1667 1669 /* type of local addr { sctpAssocLocalEntry 1 } */
1668 1670 int sctpAssocLocalAddrType;
1669 1671 /* local address { sctpAssocLocalEntry 2 } */
1670 1672 Ip6Address sctpAssocLocalAddr;
1671 1673 } mib2_sctpConnLocalEntry_t;
1672 1674
1673 1675 typedef struct mib2_sctpConnRemoteAddrEntry {
1674 1676 /* connection identier */
1675 1677 uint32_t sctpAssocId;
1676 1678 /* remote addr type { sctpAssocRemEntry 1 } */
1677 1679 int sctpAssocRemAddrType;
1678 1680 /* remote address { sctpAssocRemEntry 2 } */
1679 1681 Ip6Address sctpAssocRemAddr;
1680 1682 /* is the address active { sctpAssocRemEntry 3 } */
1681 1683 int sctpAssocRemAddrActive;
1682 1684 /* whether hearbeat is active { sctpAssocRemEntry 4 } */
1683 1685 int sctpAssocRemAddrHBActive;
1684 1686 /* current RTO { sctpAssocRemEntry 5 } */
1685 1687 uint32_t sctpAssocRemAddrRTO;
1686 1688 /* max # of rexmits before becoming inactive */
1687 1689 uint32_t sctpAssocRemAddrMaxPathRtx; /* {sctpAssocRemEntry 6} */
1688 1690 /* # of rexmits to this dest { sctpAssocRemEntry 7 } */
1689 1691 uint32_t sctpAssocRemAddrRtx;
1690 1692 } mib2_sctpConnRemoteEntry_t;
1691 1693
1692 1694
1693 1695
1694 1696 /* Pack data in mib2_sctp to make struct size the same for 32- and 64-bits */
1695 1697 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1696 1698 #pragma pack(4)
1697 1699 #endif
1698 1700
1699 1701 typedef struct mib2_sctp {
1700 1702 /* algorithm used to determine rto { sctpParams 1 } */
1701 1703 int sctpRtoAlgorithm;
1702 1704 /* min RTO in msecs { sctpParams 2 } */
1703 1705 uint32_t sctpRtoMin;
1704 1706 /* max RTO in msecs { sctpParams 3 } */
1705 1707 uint32_t sctpRtoMax;
1706 1708 /* initial RTO in msecs { sctpParams 4 } */
1707 1709 uint32_t sctpRtoInitial;
1708 1710 /* max # of assocs { sctpParams 5 } */
1709 1711 int32_t sctpMaxAssocs;
1710 1712 /* cookie lifetime in msecs { sctpParams 6 } */
1711 1713 uint32_t sctpValCookieLife;
1712 1714 /* max # of retrans in startup { sctpParams 7 } */
1713 1715 uint32_t sctpMaxInitRetr;
1714 1716 /* # of conns ESTABLISHED, SHUTDOWN-RECEIVED or SHUTDOWN-PENDING */
1715 1717 Counter32 sctpCurrEstab; /* { sctpStats 1 } */
1716 1718 /* # of active opens { sctpStats 2 } */
1717 1719 Counter32 sctpActiveEstab;
1718 1720 /* # of passive opens { sctpStats 3 } */
1719 1721 Counter32 sctpPassiveEstab;
1720 1722 /* # of aborted conns { sctpStats 4 } */
1721 1723 Counter32 sctpAborted;
1722 1724 /* # of graceful shutdowns { sctpStats 5 } */
1723 1725 Counter32 sctpShutdowns;
1724 1726 /* # of OOB packets { sctpStats 6 } */
1725 1727 Counter32 sctpOutOfBlue;
1726 1728 /* # of packets discarded due to cksum { sctpStats 7 } */
1727 1729 Counter32 sctpChecksumError;
1728 1730 /* # of control chunks sent { sctpStats 8 } */
1729 1731 Counter64 sctpOutCtrlChunks;
1730 1732 /* # of ordered data chunks sent { sctpStats 9 } */
1731 1733 Counter64 sctpOutOrderChunks;
1732 1734 /* # of unordered data chunks sent { sctpStats 10 } */
1733 1735 Counter64 sctpOutUnorderChunks;
1734 1736 /* # of retransmitted data chunks */
1735 1737 Counter64 sctpRetransChunks;
1736 1738 /* # of SACK chunks sent */
1737 1739 Counter sctpOutAck;
1738 1740 /* # of delayed ACK timeouts */
1739 1741 Counter sctpOutAckDelayed;
1740 1742 /* # of SACK chunks sent to update window */
1741 1743 Counter sctpOutWinUpdate;
1742 1744 /* # of fast retransmits */
1743 1745 Counter sctpOutFastRetrans;
1744 1746 /* # of window probes sent */
1745 1747 Counter sctpOutWinProbe;
1746 1748 /* # of control chunks received { sctpStats 11 } */
1747 1749 Counter64 sctpInCtrlChunks;
1748 1750 /* # of ordered data chunks rcvd { sctpStats 12 } */
1749 1751 Counter64 sctpInOrderChunks;
1750 1752 /* # of unord data chunks rcvd { sctpStats 13 } */
1751 1753 Counter64 sctpInUnorderChunks;
1752 1754 /* # of received SACK chunks */
1753 1755 Counter sctpInAck;
1754 1756 /* # of received SACK chunks with duplicate TSN */
1755 1757 Counter sctpInDupAck;
1756 1758 /* # of SACK chunks acking unsent data */
1757 1759 Counter sctpInAckUnsent;
1758 1760 /* # of Fragmented User Messages { sctpStats 14 } */
1759 1761 Counter64 sctpFragUsrMsgs;
1760 1762 /* # of Reassembled User Messages { sctpStats 15 } */
1761 1763 Counter64 sctpReasmUsrMsgs;
1762 1764 /* # of Sent SCTP Packets { sctpStats 16 } */
1763 1765 Counter64 sctpOutSCTPPkts;
1764 1766 /* # of Received SCTP Packets { sctpStats 17 } */
1765 1767 Counter64 sctpInSCTPPkts;
1766 1768 /* # of invalid cookies received */
1767 1769 Counter sctpInInvalidCookie;
1768 1770 /* total # of retransmit timeouts */
1769 1771 Counter sctpTimRetrans;
1770 1772 /* total # of retransmit timeouts dropping the connection */
1771 1773 Counter sctpTimRetransDrop;
1772 1774 /* total # of heartbeat probes */
1773 1775 Counter sctpTimHeartBeatProbe;
1774 1776 /* total # of heartbeat timeouts dropping the connection */
1775 1777 Counter sctpTimHeartBeatDrop;
1776 1778 /* total # of conns refused due to backlog full on listen */
1777 1779 Counter sctpListenDrop;
1778 1780 /* total # of pkts received after the association has closed */
↓ open down ↓ |
1664 lines elided |
↑ open up ↑ |
1779 1781 Counter sctpInClosed;
1780 1782 int sctpEntrySize;
1781 1783 int sctpLocalEntrySize;
1782 1784 int sctpRemoteEntrySize;
1783 1785 } mib2_sctp_t;
1784 1786
1785 1787 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1786 1788 #pragma pack()
1787 1789 #endif
1788 1790
1791 +/*
1792 + * the DCCP group
1793 + */
1794 +#define MIB2_DCCP_CONN 18
1795 +#define MIB2_DCCP6_CONN 19
1796 +
1797 +#define MIB2_DCCP_closed 1
1798 +#define MIB2_DCCP_listen 2
1799 +
1800 +/* Pack data to make struct size the same for 32- and 64-bits */
1801 +#if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1802 +#pragma pack(4)
1803 +#endif
1804 +
1805 +typedef struct mib2_dccp {
1806 +
1807 + /* # of direct transitions CLOSED -> ACK-SENT { dccp 5 } */
1808 + Counter dccpActiveOpens;
1809 + /* # of direct transitions LISTEN -> ACK-RCVD { dccp 6 } */
1810 + Counter dccpPassiveOpens;
1811 + /* # of direct SIN-SENT/RCVD -> CLOSED/LISTEN { dccp 7 } */
1812 + Counter dccpAttemptFails;
1813 + /* # of direct ESTABLISHED/CLOSE-WAIT -> CLOSED { dccp 8 } */
1814 + Counter dccpEstabResets;
1815 + /* # of connections ESTABLISHED or CLOSE-WAIT { dccp 9 } */
1816 + Gauge dccpCurrEstab;
1817 + /* total # of segments recv'd { dccp 10 } */
1818 + Counter dccpInSegs;
1819 + /* total # of segments sent { dccp 11 } */
1820 + Counter dccpOutSegs;
1821 + /* total # of segments retransmitted { dccp 12 } */
1822 + Counter dccpRetransSegs;
1823 +
1824 + Counter dccpOutDataSegs;
1825 + Counter dccpOutDataBytes;
1826 +
1827 + int dccpEntrySize;
1828 + int dccp6EntrySize;
1829 +
1830 + int dccpConnTableSize;
1831 + int dccp6ConnTableSize;
1832 +
1833 + Counter64 dccpHCInDatagrams;
1834 + /* total # of segments recv'd { tcp 17 } */
1835 + Counter64 dccpHCInSegs;
1836 + /* total # of segments sent { tcp 18 } */
1837 + Counter64 dccpHCOutSegs;
1838 +} mib2_dccp_t;
1839 +#define MIB_FIRST_NEW_ELM_mib2_dccp_t dccpHCInDatagrams
1840 +
1841 +#if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1842 +#pragma pack()
1843 +#endif
1844 +
1845 +/* Pack data to make struct size the same for 32- and 64-bits */
1846 +#if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1847 +#pragma pack(4)
1848 +#endif
1849 +
1850 +typedef struct mib2_dccpConnEntry {
1851 + int dccpConnState;
1852 + IpAddress dccpConnLocalAddress;
1853 + int dccpConnLocalPort;
1854 + IpAddress dccpConnRemAddress;
1855 + int dccpConnRemPort;
1856 +
1857 + struct dccpConnEntryInfo_s {
1858 + /* current rto (retransmit timeout) */
1859 + Gauge ce_rto;
1860 + /* current max segment size */
1861 + Gauge ce_mss;
1862 + /* actual internal state */
1863 + int ce_state;
1864 + } dccpConnEntryInfo;
1865 +
1866 + uint32_t dccpConnCreationProcess;
1867 + uint64_t dccpConnCreationTime;
1868 +} mib2_dccpConnEntry_t;
1869 +#define MIB_FIRST_NEW_ELM_mib2_dccpConnEntry_t dccpConnCreationProcess
1870 +
1871 +#if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1872 +#pragma pack()
1873 +#endif
1874 +
1875 +/* Pack data to make struct size the same for 32- and 64-bits */
1876 +#if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1877 +#pragma pack(4)
1878 +#endif
1879 +
1880 +typedef struct mib2_dccp6ConnEntry {
1881 + Ip6Address dccp6ConnLocalAddress;
1882 + int dccp6ConnLocalPort;
1883 + Ip6Address dccp6ConnRemAddress;
1884 + int dccp6ConnRemPort;
1885 + /* Interface index or zero { ipv6DccpConnEntry 5 } */
1886 + DeviceIndex dccp6ConnIfIndex;
1887 + /* State of dccp6 connection { ipv6DccpConnEntry 6 } RW */
1888 + int dccp6ConnState;
1889 +
1890 + struct dccp6ConnEntryInfo_s {
1891 + /* current rto (retransmit timeout) */
1892 + Gauge ce_rto;
1893 + /* current max segment size */
1894 + Gauge ce_mss;
1895 + /* actual internal state */
1896 + int ce_state;
1897 + } dccp6ConnEntryInfo;
1898 +
1899 + /* PID of the processes that created this connection */
1900 + uint32_t dccp6ConnCreationProcess;
1901 + /* System uptime when the connection was created */
1902 + uint64_t dccp6ConnCreationTime;
1903 +} mib2_dccp6ConnEntry_t;
1904 +#define MIB_FIRST_NEW_ELM_mib2_dccp6ConnEntry_t dccp6ConnCreationProcess
1905 +
1906 +#if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1907 +#pragma pack()
1908 +#endif
1789 1909
1790 1910 #ifdef __cplusplus
1791 1911 }
1792 1912 #endif
1793 1913
1794 1914 #endif /* _INET_MIB2_H */
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX