1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 */ 25 26 /* 27 * This file contains the interface control functions for IP. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/sysmacros.h> 36 #include <sys/strsubr.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/ctype.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 #include <sys/md5.h> 69 70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 71 #include <inet/mi.h> 72 #include <inet/nd.h> 73 #include <inet/tunables.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 #include <sys/mac_flow.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 #include <sys/tsol/tndb.h> 103 #include <sys/tsol/tnet.h> 104 105 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 106 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 107 #include <inet/dccp_stack.h> /* needed for dccp_stack_t */ 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 123 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 124 char *value, caddr_t cp, cred_t *ioc_cr); 125 126 static boolean_t ill_is_quiescent(ill_t *); 127 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 128 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 129 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 130 mblk_t *mp, boolean_t need_up); 131 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 134 queue_t *q, mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 136 mblk_t *mp); 137 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp); 139 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 142 int ioccmd, struct linkblk *li); 143 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 144 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 145 static void ipsq_flush(ill_t *ill); 146 147 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static void ipsq_delete(ipsq_t *); 150 151 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 152 boolean_t initialize, boolean_t insert, int *errorp); 153 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 154 static void ipif_delete_bcast_ires(ipif_t *ipif); 155 static int ipif_add_ires_v4(ipif_t *, boolean_t); 156 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 157 boolean_t isv6); 158 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 159 static void ipif_free(ipif_t *ipif); 160 static void ipif_free_tail(ipif_t *ipif); 161 static void ipif_set_default(ipif_t *ipif); 162 static int ipif_set_values(queue_t *q, mblk_t *mp, 163 char *interf_name, uint_t *ppa); 164 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 165 queue_t *q); 166 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 167 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 168 ip_stack_t *); 169 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 170 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 171 int *error, ip_stack_t *); 172 173 static int ill_alloc_ppa(ill_if_t *, ill_t *); 174 static void ill_delete_interface_type(ill_if_t *); 175 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 176 static void ill_dl_down(ill_t *ill); 177 static void ill_down(ill_t *ill); 178 static void ill_down_ipifs(ill_t *, boolean_t); 179 static void ill_free_mib(ill_t *ill); 180 static void ill_glist_delete(ill_t *); 181 static void ill_phyint_reinit(ill_t *ill); 182 static void ill_set_nce_router_flags(ill_t *, boolean_t); 183 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 184 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 185 186 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 187 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 188 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 189 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 190 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 191 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 192 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 193 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 194 static ip_v4mapinfo_func_t ip_mbcast_mapping; 195 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 196 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 197 static void phyint_free(phyint_t *); 198 199 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 200 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 201 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 204 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 205 dl_capability_sub_t *); 206 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 207 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 208 static void ill_capability_dld_ack(ill_t *, mblk_t *, 209 dl_capability_sub_t *); 210 static void ill_capability_dld_enable(ill_t *); 211 static void ill_capability_ack_thr(void *); 212 static void ill_capability_lso_enable(ill_t *); 213 214 static ill_t *ill_prev_usesrc(ill_t *); 215 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 216 static void ill_disband_usesrc_group(ill_t *); 217 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 218 219 #ifdef DEBUG 220 static void ill_trace_cleanup(const ill_t *); 221 static void ipif_trace_cleanup(const ipif_t *); 222 #endif 223 224 static void ill_dlpi_clear_deferred(ill_t *ill); 225 226 /* 227 * if we go over the memory footprint limit more than once in this msec 228 * interval, we'll start pruning aggressively. 229 */ 230 int ip_min_frag_prune_time = 0; 231 232 static ipft_t ip_ioctl_ftbl[] = { 233 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 234 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 235 IPFT_F_NO_REPLY }, 236 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 237 { 0 } 238 }; 239 240 /* Simple ICMP IP Header Template */ 241 static ipha_t icmp_ipha = { 242 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 243 }; 244 245 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 246 247 static ip_m_t ip_m_tbl[] = { 248 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 249 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 250 ip_nodef_v6intfid }, 251 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 252 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 253 ip_nodef_v6intfid }, 254 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 255 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 256 ip_nodef_v6intfid }, 257 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 258 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 259 ip_nodef_v6intfid }, 260 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 261 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 262 ip_nodef_v6intfid }, 263 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 264 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 265 ip_nodef_v6intfid }, 266 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 267 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 268 ip_ipv4_v6destintfid }, 269 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 270 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 271 ip_ipv6_v6destintfid }, 272 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 273 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 274 ip_nodef_v6intfid }, 275 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 276 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 277 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 278 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 279 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 280 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 281 ip_nodef_v6intfid } 282 }; 283 284 static ill_t ill_null; /* Empty ILL for init. */ 285 char ipif_loopback_name[] = "lo0"; 286 287 /* These are used by all IP network modules. */ 288 sin6_t sin6_null; /* Zero address for quick clears */ 289 sin_t sin_null; /* Zero address for quick clears */ 290 291 /* When set search for unused ipif_seqid */ 292 static ipif_t ipif_zero; 293 294 /* 295 * ppa arena is created after these many 296 * interfaces have been plumbed. 297 */ 298 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 299 300 /* 301 * Allocate per-interface mibs. 302 * Returns true if ok. False otherwise. 303 * ipsq may not yet be allocated (loopback case ). 304 */ 305 static boolean_t 306 ill_allocate_mibs(ill_t *ill) 307 { 308 /* Already allocated? */ 309 if (ill->ill_ip_mib != NULL) { 310 if (ill->ill_isv6) 311 ASSERT(ill->ill_icmp6_mib != NULL); 312 return (B_TRUE); 313 } 314 315 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 316 KM_NOSLEEP); 317 if (ill->ill_ip_mib == NULL) { 318 return (B_FALSE); 319 } 320 321 /* Setup static information */ 322 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 323 sizeof (mib2_ipIfStatsEntry_t)); 324 if (ill->ill_isv6) { 325 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 326 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 327 sizeof (mib2_ipv6AddrEntry_t)); 328 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 329 sizeof (mib2_ipv6RouteEntry_t)); 330 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 331 sizeof (mib2_ipv6NetToMediaEntry_t)); 332 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 333 sizeof (ipv6_member_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 335 sizeof (ipv6_grpsrc_t)); 336 } else { 337 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 338 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 339 sizeof (mib2_ipAddrEntry_t)); 340 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 341 sizeof (mib2_ipRouteEntry_t)); 342 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 343 sizeof (mib2_ipNetToMediaEntry_t)); 344 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 345 sizeof (ip_member_t)); 346 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 347 sizeof (ip_grpsrc_t)); 348 349 /* 350 * For a v4 ill, we are done at this point, because per ill 351 * icmp mibs are only used for v6. 352 */ 353 return (B_TRUE); 354 } 355 356 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 357 KM_NOSLEEP); 358 if (ill->ill_icmp6_mib == NULL) { 359 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 360 ill->ill_ip_mib = NULL; 361 return (B_FALSE); 362 } 363 /* static icmp info */ 364 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 365 sizeof (mib2_ipv6IfIcmpEntry_t); 366 /* 367 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 368 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 369 * -> ill_phyint_reinit 370 */ 371 return (B_TRUE); 372 } 373 374 /* 375 * Completely vaporize a lower level tap and all associated interfaces. 376 * ill_delete is called only out of ip_close when the device control 377 * stream is being closed. 378 */ 379 void 380 ill_delete(ill_t *ill) 381 { 382 ipif_t *ipif; 383 ill_t *prev_ill; 384 ip_stack_t *ipst = ill->ill_ipst; 385 386 /* 387 * ill_delete may be forcibly entering the ipsq. The previous 388 * ioctl may not have completed and may need to be aborted. 389 * ipsq_flush takes care of it. If we don't need to enter the 390 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 391 * ill_delete_tail is sufficient. 392 */ 393 ipsq_flush(ill); 394 395 /* 396 * Nuke all interfaces. ipif_free will take down the interface, 397 * remove it from the list, and free the data structure. 398 * Walk down the ipif list and remove the logical interfaces 399 * first before removing the main ipif. We can't unplumb 400 * zeroth interface first in the case of IPv6 as update_conn_ill 401 * -> ip_ll_multireq de-references ill_ipif for checking 402 * POINTOPOINT. 403 * 404 * If ill_ipif was not properly initialized (i.e low on memory), 405 * then no interfaces to clean up. In this case just clean up the 406 * ill. 407 */ 408 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 409 ipif_free(ipif); 410 411 /* 412 * clean out all the nce_t entries that depend on this 413 * ill for the ill_phys_addr. 414 */ 415 nce_flush(ill, B_TRUE); 416 417 /* Clean up msgs on pending upcalls for mrouted */ 418 reset_mrt_ill(ill); 419 420 update_conn_ill(ill, ipst); 421 422 /* 423 * Remove multicast references added as a result of calls to 424 * ip_join_allmulti(). 425 */ 426 ip_purge_allmulti(ill); 427 428 /* 429 * If the ill being deleted is under IPMP, boot it out of the illgrp. 430 */ 431 if (IS_UNDER_IPMP(ill)) 432 ipmp_ill_leave_illgrp(ill); 433 434 /* 435 * ill_down will arrange to blow off any IRE's dependent on this 436 * ILL, and shut down fragmentation reassembly. 437 */ 438 ill_down(ill); 439 440 /* Let SCTP know, so that it can remove this from its list. */ 441 sctp_update_ill(ill, SCTP_ILL_REMOVE); 442 443 /* 444 * Walk all CONNs that can have a reference on an ire or nce for this 445 * ill (we actually walk all that now have stale references). 446 */ 447 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 448 449 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 450 if (ill->ill_isv6) 451 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 452 453 /* 454 * If an address on this ILL is being used as a source address then 455 * clear out the pointers in other ILLs that point to this ILL. 456 */ 457 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 458 if (ill->ill_usesrc_grp_next != NULL) { 459 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 460 ill_disband_usesrc_group(ill); 461 } else { /* consumer of the usesrc ILL */ 462 prev_ill = ill_prev_usesrc(ill); 463 prev_ill->ill_usesrc_grp_next = 464 ill->ill_usesrc_grp_next; 465 } 466 } 467 rw_exit(&ipst->ips_ill_g_usesrc_lock); 468 } 469 470 static void 471 ipif_non_duplicate(ipif_t *ipif) 472 { 473 ill_t *ill = ipif->ipif_ill; 474 mutex_enter(&ill->ill_lock); 475 if (ipif->ipif_flags & IPIF_DUPLICATE) { 476 ipif->ipif_flags &= ~IPIF_DUPLICATE; 477 ASSERT(ill->ill_ipif_dup_count > 0); 478 ill->ill_ipif_dup_count--; 479 } 480 mutex_exit(&ill->ill_lock); 481 } 482 483 /* 484 * ill_delete_tail is called from ip_modclose after all references 485 * to the closing ill are gone. The wait is done in ip_modclose 486 */ 487 void 488 ill_delete_tail(ill_t *ill) 489 { 490 mblk_t **mpp; 491 ipif_t *ipif; 492 ip_stack_t *ipst = ill->ill_ipst; 493 494 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 495 ipif_non_duplicate(ipif); 496 (void) ipif_down_tail(ipif); 497 } 498 499 ASSERT(ill->ill_ipif_dup_count == 0); 500 501 /* 502 * If polling capability is enabled (which signifies direct 503 * upcall into IP and driver has ill saved as a handle), 504 * we need to make sure that unbind has completed before we 505 * let the ill disappear and driver no longer has any reference 506 * to this ill. 507 */ 508 mutex_enter(&ill->ill_lock); 509 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 510 cv_wait(&ill->ill_cv, &ill->ill_lock); 511 mutex_exit(&ill->ill_lock); 512 ASSERT(!(ill->ill_capabilities & 513 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 514 515 if (ill->ill_net_type != IRE_LOOPBACK) 516 qprocsoff(ill->ill_rq); 517 518 /* 519 * We do an ipsq_flush once again now. New messages could have 520 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 521 * could also have landed up if an ioctl thread had looked up 522 * the ill before we set the ILL_CONDEMNED flag, but not yet 523 * enqueued the ioctl when we did the ipsq_flush last time. 524 */ 525 ipsq_flush(ill); 526 527 /* 528 * Free capabilities. 529 */ 530 if (ill->ill_hcksum_capab != NULL) { 531 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 532 ill->ill_hcksum_capab = NULL; 533 } 534 535 if (ill->ill_zerocopy_capab != NULL) { 536 kmem_free(ill->ill_zerocopy_capab, 537 sizeof (ill_zerocopy_capab_t)); 538 ill->ill_zerocopy_capab = NULL; 539 } 540 541 if (ill->ill_lso_capab != NULL) { 542 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 543 ill->ill_lso_capab = NULL; 544 } 545 546 if (ill->ill_dld_capab != NULL) { 547 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 548 ill->ill_dld_capab = NULL; 549 } 550 551 /* Clean up ill_allowed_ips* related state */ 552 if (ill->ill_allowed_ips != NULL) { 553 ASSERT(ill->ill_allowed_ips_cnt > 0); 554 kmem_free(ill->ill_allowed_ips, 555 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 556 ill->ill_allowed_ips = NULL; 557 ill->ill_allowed_ips_cnt = 0; 558 } 559 560 while (ill->ill_ipif != NULL) 561 ipif_free_tail(ill->ill_ipif); 562 563 /* 564 * We have removed all references to ilm from conn and the ones joined 565 * within the kernel. 566 * 567 * We don't walk conns, mrts and ires because 568 * 569 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 570 * 2) ill_down ->ill_downi walks all the ires and cleans up 571 * ill references. 572 */ 573 574 /* 575 * If this ill is an IPMP meta-interface, blow away the illgrp. This 576 * is safe to do because the illgrp has already been unlinked from the 577 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 578 */ 579 if (IS_IPMP(ill)) { 580 ipmp_illgrp_destroy(ill->ill_grp); 581 ill->ill_grp = NULL; 582 } 583 584 if (ill->ill_mphysaddr_list != NULL) { 585 multiphysaddr_t *mpa, *tmpa; 586 587 mpa = ill->ill_mphysaddr_list; 588 ill->ill_mphysaddr_list = NULL; 589 while (mpa) { 590 tmpa = mpa->mpa_next; 591 kmem_free(mpa, sizeof (*mpa)); 592 mpa = tmpa; 593 } 594 } 595 /* 596 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 597 * could free the phyint. No more reference to the phyint after this 598 * point. 599 */ 600 (void) ill_glist_delete(ill); 601 602 if (ill->ill_frag_ptr != NULL) { 603 uint_t count; 604 605 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 606 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 607 } 608 mi_free(ill->ill_frag_ptr); 609 ill->ill_frag_ptr = NULL; 610 ill->ill_frag_hash_tbl = NULL; 611 } 612 613 freemsg(ill->ill_nd_lla_mp); 614 /* Free all retained control messages. */ 615 mpp = &ill->ill_first_mp_to_free; 616 do { 617 while (mpp[0]) { 618 mblk_t *mp; 619 mblk_t *mp1; 620 621 mp = mpp[0]; 622 mpp[0] = mp->b_next; 623 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 624 mp1->b_next = NULL; 625 mp1->b_prev = NULL; 626 } 627 freemsg(mp); 628 } 629 } while (mpp++ != &ill->ill_last_mp_to_free); 630 631 ill_free_mib(ill); 632 633 #ifdef DEBUG 634 ill_trace_cleanup(ill); 635 #endif 636 637 /* The default multicast interface might have changed */ 638 ire_increment_multicast_generation(ipst, ill->ill_isv6); 639 640 /* Drop refcnt here */ 641 netstack_rele(ill->ill_ipst->ips_netstack); 642 ill->ill_ipst = NULL; 643 } 644 645 static void 646 ill_free_mib(ill_t *ill) 647 { 648 ip_stack_t *ipst = ill->ill_ipst; 649 650 /* 651 * MIB statistics must not be lost, so when an interface 652 * goes away the counter values will be added to the global 653 * MIBs. 654 */ 655 if (ill->ill_ip_mib != NULL) { 656 if (ill->ill_isv6) { 657 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 658 ill->ill_ip_mib); 659 } else { 660 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 661 ill->ill_ip_mib); 662 } 663 664 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 665 ill->ill_ip_mib = NULL; 666 } 667 if (ill->ill_icmp6_mib != NULL) { 668 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 669 ill->ill_icmp6_mib); 670 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 671 ill->ill_icmp6_mib = NULL; 672 } 673 } 674 675 /* 676 * Concatenate together a physical address and a sap. 677 * 678 * Sap_lengths are interpreted as follows: 679 * sap_length == 0 ==> no sap 680 * sap_length > 0 ==> sap is at the head of the dlpi address 681 * sap_length < 0 ==> sap is at the tail of the dlpi address 682 */ 683 static void 684 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 685 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 686 { 687 uint16_t sap_addr = (uint16_t)sap_src; 688 689 if (sap_length == 0) { 690 if (phys_src == NULL) 691 bzero(dst, phys_length); 692 else 693 bcopy(phys_src, dst, phys_length); 694 } else if (sap_length < 0) { 695 if (phys_src == NULL) 696 bzero(dst, phys_length); 697 else 698 bcopy(phys_src, dst, phys_length); 699 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 700 } else { 701 bcopy(&sap_addr, dst, sizeof (sap_addr)); 702 if (phys_src == NULL) 703 bzero((char *)dst + sap_length, phys_length); 704 else 705 bcopy(phys_src, (char *)dst + sap_length, phys_length); 706 } 707 } 708 709 /* 710 * Generate a dl_unitdata_req mblk for the device and address given. 711 * addr_length is the length of the physical portion of the address. 712 * If addr is NULL include an all zero address of the specified length. 713 * TRUE? In any case, addr_length is taken to be the entire length of the 714 * dlpi address, including the absolute value of sap_length. 715 */ 716 mblk_t * 717 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 718 t_scalar_t sap_length) 719 { 720 dl_unitdata_req_t *dlur; 721 mblk_t *mp; 722 t_scalar_t abs_sap_length; /* absolute value */ 723 724 abs_sap_length = ABS(sap_length); 725 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 726 DL_UNITDATA_REQ); 727 if (mp == NULL) 728 return (NULL); 729 dlur = (dl_unitdata_req_t *)mp->b_rptr; 730 /* HACK: accomodate incompatible DLPI drivers */ 731 if (addr_length == 8) 732 addr_length = 6; 733 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 734 dlur->dl_dest_addr_offset = sizeof (*dlur); 735 dlur->dl_priority.dl_min = 0; 736 dlur->dl_priority.dl_max = 0; 737 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 738 (uchar_t *)&dlur[1]); 739 return (mp); 740 } 741 742 /* 743 * Add the pending mp to the list. There can be only 1 pending mp 744 * in the list. Any exclusive ioctl that needs to wait for a response 745 * from another module or driver needs to use this function to set 746 * the ipx_pending_mp to the ioctl mblk and wait for the response from 747 * the other module/driver. This is also used while waiting for the 748 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 749 */ 750 boolean_t 751 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 752 int waitfor) 753 { 754 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 755 756 ASSERT(IAM_WRITER_IPIF(ipif)); 757 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 758 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 759 ASSERT(ipx->ipx_pending_mp == NULL); 760 /* 761 * The caller may be using a different ipif than the one passed into 762 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 763 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 764 * that `ipx_current_ipif == ipif'. 765 */ 766 ASSERT(ipx->ipx_current_ipif != NULL); 767 768 /* 769 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 770 * driver. 771 */ 772 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 773 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 774 (DB_TYPE(add_mp) == M_PCPROTO)); 775 776 if (connp != NULL) { 777 ASSERT(MUTEX_HELD(&connp->conn_lock)); 778 /* 779 * Return error if the conn has started closing. The conn 780 * could have finished cleaning up the pending mp list, 781 * If so we should not add another mp to the list negating 782 * the cleanup. 783 */ 784 if (connp->conn_state_flags & CONN_CLOSING) 785 return (B_FALSE); 786 } 787 mutex_enter(&ipx->ipx_lock); 788 ipx->ipx_pending_ipif = ipif; 789 /* 790 * Note down the queue in b_queue. This will be returned by 791 * ipsq_pending_mp_get. Caller will then use these values to restart 792 * the processing 793 */ 794 add_mp->b_next = NULL; 795 add_mp->b_queue = q; 796 ipx->ipx_pending_mp = add_mp; 797 ipx->ipx_waitfor = waitfor; 798 mutex_exit(&ipx->ipx_lock); 799 800 if (connp != NULL) 801 connp->conn_oper_pending_ill = ipif->ipif_ill; 802 803 return (B_TRUE); 804 } 805 806 /* 807 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 808 * queued in the list. 809 */ 810 mblk_t * 811 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 812 { 813 mblk_t *curr = NULL; 814 ipxop_t *ipx = ipsq->ipsq_xop; 815 816 *connpp = NULL; 817 mutex_enter(&ipx->ipx_lock); 818 if (ipx->ipx_pending_mp == NULL) { 819 mutex_exit(&ipx->ipx_lock); 820 return (NULL); 821 } 822 823 /* There can be only 1 such excl message */ 824 curr = ipx->ipx_pending_mp; 825 ASSERT(curr->b_next == NULL); 826 ipx->ipx_pending_ipif = NULL; 827 ipx->ipx_pending_mp = NULL; 828 ipx->ipx_waitfor = 0; 829 mutex_exit(&ipx->ipx_lock); 830 831 if (CONN_Q(curr->b_queue)) { 832 /* 833 * This mp did a refhold on the conn, at the start of the ioctl. 834 * So we can safely return a pointer to the conn to the caller. 835 */ 836 *connpp = Q_TO_CONN(curr->b_queue); 837 } else { 838 *connpp = NULL; 839 } 840 curr->b_next = NULL; 841 curr->b_prev = NULL; 842 return (curr); 843 } 844 845 /* 846 * Cleanup the ioctl mp queued in ipx_pending_mp 847 * - Called in the ill_delete path 848 * - Called in the M_ERROR or M_HANGUP path on the ill. 849 * - Called in the conn close path. 850 * 851 * Returns success on finding the pending mblk associated with the ioctl or 852 * exclusive operation in progress, failure otherwise. 853 */ 854 boolean_t 855 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 856 { 857 mblk_t *mp; 858 ipxop_t *ipx; 859 queue_t *q; 860 ipif_t *ipif; 861 int cmd; 862 863 ASSERT(IAM_WRITER_ILL(ill)); 864 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 865 866 mutex_enter(&ipx->ipx_lock); 867 mp = ipx->ipx_pending_mp; 868 if (connp != NULL) { 869 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 870 /* 871 * Nothing to clean since the conn that is closing 872 * does not have a matching pending mblk in 873 * ipx_pending_mp. 874 */ 875 mutex_exit(&ipx->ipx_lock); 876 return (B_FALSE); 877 } 878 } else { 879 /* 880 * A non-zero ill_error signifies we are called in the 881 * M_ERROR or M_HANGUP path and we need to unconditionally 882 * abort any current ioctl and do the corresponding cleanup. 883 * A zero ill_error means we are in the ill_delete path and 884 * we do the cleanup only if there is a pending mp. 885 */ 886 if (mp == NULL && ill->ill_error == 0) { 887 mutex_exit(&ipx->ipx_lock); 888 return (B_FALSE); 889 } 890 } 891 892 /* Now remove from the ipx_pending_mp */ 893 ipx->ipx_pending_mp = NULL; 894 ipif = ipx->ipx_pending_ipif; 895 ipx->ipx_pending_ipif = NULL; 896 ipx->ipx_waitfor = 0; 897 ipx->ipx_current_ipif = NULL; 898 cmd = ipx->ipx_current_ioctl; 899 ipx->ipx_current_ioctl = 0; 900 ipx->ipx_current_done = B_TRUE; 901 mutex_exit(&ipx->ipx_lock); 902 903 if (mp == NULL) 904 return (B_FALSE); 905 906 q = mp->b_queue; 907 mp->b_next = NULL; 908 mp->b_prev = NULL; 909 mp->b_queue = NULL; 910 911 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 912 DTRACE_PROBE4(ipif__ioctl, 913 char *, "ipsq_pending_mp_cleanup", 914 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 915 ipif_t *, ipif); 916 if (connp == NULL) { 917 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 918 } else { 919 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 920 mutex_enter(&ipif->ipif_ill->ill_lock); 921 ipif->ipif_state_flags &= ~IPIF_CHANGING; 922 mutex_exit(&ipif->ipif_ill->ill_lock); 923 } 924 } else { 925 inet_freemsg(mp); 926 } 927 return (B_TRUE); 928 } 929 930 /* 931 * Called in the conn close path and ill delete path 932 */ 933 static void 934 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 935 { 936 ipsq_t *ipsq; 937 mblk_t *prev; 938 mblk_t *curr; 939 mblk_t *next; 940 queue_t *wq, *rq = NULL; 941 mblk_t *tmp_list = NULL; 942 943 ASSERT(IAM_WRITER_ILL(ill)); 944 if (connp != NULL) 945 wq = CONNP_TO_WQ(connp); 946 else 947 wq = ill->ill_wq; 948 949 /* 950 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 951 * against this here. 952 */ 953 if (wq != NULL) 954 rq = RD(wq); 955 956 ipsq = ill->ill_phyint->phyint_ipsq; 957 /* 958 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 959 * In the case of ioctl from a conn, there can be only 1 mp 960 * queued on the ipsq. If an ill is being unplumbed flush all 961 * the messages. 962 */ 963 mutex_enter(&ipsq->ipsq_lock); 964 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 965 curr = next) { 966 next = curr->b_next; 967 if (connp == NULL || 968 (curr->b_queue == wq || curr->b_queue == rq)) { 969 /* Unlink the mblk from the pending mp list */ 970 if (prev != NULL) { 971 prev->b_next = curr->b_next; 972 } else { 973 ASSERT(ipsq->ipsq_xopq_mphead == curr); 974 ipsq->ipsq_xopq_mphead = curr->b_next; 975 } 976 if (ipsq->ipsq_xopq_mptail == curr) 977 ipsq->ipsq_xopq_mptail = prev; 978 /* 979 * Create a temporary list and release the ipsq lock 980 * New elements are added to the head of the tmp_list 981 */ 982 curr->b_next = tmp_list; 983 tmp_list = curr; 984 } else { 985 prev = curr; 986 } 987 } 988 mutex_exit(&ipsq->ipsq_lock); 989 990 while (tmp_list != NULL) { 991 curr = tmp_list; 992 tmp_list = curr->b_next; 993 curr->b_next = NULL; 994 curr->b_prev = NULL; 995 wq = curr->b_queue; 996 curr->b_queue = NULL; 997 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 998 DTRACE_PROBE4(ipif__ioctl, 999 char *, "ipsq_xopq_mp_cleanup", 1000 int, 0, ill_t *, NULL, ipif_t *, NULL); 1001 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1002 CONN_CLOSE : NO_COPYOUT, NULL); 1003 } else { 1004 /* 1005 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1006 * this can't be just inet_freemsg. we have to 1007 * restart it otherwise the thread will be stuck. 1008 */ 1009 inet_freemsg(curr); 1010 } 1011 } 1012 } 1013 1014 /* 1015 * This conn has started closing. Cleanup any pending ioctl from this conn. 1016 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1017 */ 1018 void 1019 conn_ioctl_cleanup(conn_t *connp) 1020 { 1021 ipsq_t *ipsq; 1022 ill_t *ill; 1023 boolean_t refheld; 1024 1025 /* 1026 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1027 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1028 * started the mp could be present in ipx_pending_mp. Note that if 1029 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1030 * not yet queued anywhere. In this case, the conn close code will wait 1031 * until the conn_ref is dropped. If the stream was a tcp stream, then 1032 * tcp_close will wait first until all ioctls have completed for this 1033 * conn. 1034 */ 1035 mutex_enter(&connp->conn_lock); 1036 ill = connp->conn_oper_pending_ill; 1037 if (ill == NULL) { 1038 mutex_exit(&connp->conn_lock); 1039 return; 1040 } 1041 1042 /* 1043 * We may not be able to refhold the ill if the ill/ipif 1044 * is changing. But we need to make sure that the ill will 1045 * not vanish. So we just bump up the ill_waiter count. 1046 */ 1047 refheld = ill_waiter_inc(ill); 1048 mutex_exit(&connp->conn_lock); 1049 if (refheld) { 1050 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1051 ill_waiter_dcr(ill); 1052 /* 1053 * Check whether this ioctl has started and is 1054 * pending. If it is not found there then check 1055 * whether this ioctl has not even started and is in 1056 * the ipsq_xopq list. 1057 */ 1058 if (!ipsq_pending_mp_cleanup(ill, connp)) 1059 ipsq_xopq_mp_cleanup(ill, connp); 1060 ipsq = ill->ill_phyint->phyint_ipsq; 1061 ipsq_exit(ipsq); 1062 return; 1063 } 1064 } 1065 1066 /* 1067 * The ill is also closing and we could not bump up the 1068 * ill_waiter_count or we could not enter the ipsq. Leave 1069 * the cleanup to ill_delete 1070 */ 1071 mutex_enter(&connp->conn_lock); 1072 while (connp->conn_oper_pending_ill != NULL) 1073 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1074 mutex_exit(&connp->conn_lock); 1075 if (refheld) 1076 ill_waiter_dcr(ill); 1077 } 1078 1079 /* 1080 * ipcl_walk function for cleaning up conn_*_ill fields. 1081 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1082 * conn_bound_if in place. We prefer dropping 1083 * packets instead of sending them out the wrong interface, or accepting 1084 * packets from the wrong ifindex. 1085 */ 1086 static void 1087 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1088 { 1089 ill_t *ill = (ill_t *)arg; 1090 1091 mutex_enter(&connp->conn_lock); 1092 if (connp->conn_dhcpinit_ill == ill) { 1093 connp->conn_dhcpinit_ill = NULL; 1094 ASSERT(ill->ill_dhcpinit != 0); 1095 atomic_dec_32(&ill->ill_dhcpinit); 1096 ill_set_inputfn(ill); 1097 } 1098 mutex_exit(&connp->conn_lock); 1099 } 1100 1101 static int 1102 ill_down_ipifs_tail(ill_t *ill) 1103 { 1104 ipif_t *ipif; 1105 int err; 1106 1107 ASSERT(IAM_WRITER_ILL(ill)); 1108 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1109 ipif_non_duplicate(ipif); 1110 /* 1111 * ipif_down_tail will call arp_ll_down on the last ipif 1112 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1113 */ 1114 if ((err = ipif_down_tail(ipif)) != 0) 1115 return (err); 1116 } 1117 return (0); 1118 } 1119 1120 /* ARGSUSED */ 1121 void 1122 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1123 { 1124 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1125 (void) ill_down_ipifs_tail(q->q_ptr); 1126 freemsg(mp); 1127 ipsq_current_finish(ipsq); 1128 } 1129 1130 /* 1131 * ill_down_start is called when we want to down this ill and bring it up again 1132 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1133 * all interfaces, but don't tear down any plumbing. 1134 */ 1135 boolean_t 1136 ill_down_start(queue_t *q, mblk_t *mp) 1137 { 1138 ill_t *ill = q->q_ptr; 1139 ipif_t *ipif; 1140 1141 ASSERT(IAM_WRITER_ILL(ill)); 1142 /* 1143 * It is possible that some ioctl is already in progress while we 1144 * received the M_ERROR / M_HANGUP in which case, we need to abort 1145 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1146 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1147 * the in progress ioctl from ever completing. 1148 * 1149 * The thread that started the ioctl (if any) must have returned, 1150 * since we are now executing as writer. After the 2 calls below, 1151 * the state of the ipsq and the ill would reflect no trace of any 1152 * pending operation. Subsequently if there is any response to the 1153 * original ioctl from the driver, it would be discarded as an 1154 * unsolicited message from the driver. 1155 */ 1156 (void) ipsq_pending_mp_cleanup(ill, NULL); 1157 ill_dlpi_clear_deferred(ill); 1158 1159 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1160 (void) ipif_down(ipif, NULL, NULL); 1161 1162 ill_down(ill); 1163 1164 /* 1165 * Walk all CONNs that can have a reference on an ire or nce for this 1166 * ill (we actually walk all that now have stale references). 1167 */ 1168 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1169 1170 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1171 if (ill->ill_isv6) 1172 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1173 1174 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1175 1176 /* 1177 * Atomically test and add the pending mp if references are active. 1178 */ 1179 mutex_enter(&ill->ill_lock); 1180 if (!ill_is_quiescent(ill)) { 1181 /* call cannot fail since `conn_t *' argument is NULL */ 1182 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1183 mp, ILL_DOWN); 1184 mutex_exit(&ill->ill_lock); 1185 return (B_FALSE); 1186 } 1187 mutex_exit(&ill->ill_lock); 1188 return (B_TRUE); 1189 } 1190 1191 static void 1192 ill_down(ill_t *ill) 1193 { 1194 mblk_t *mp; 1195 ip_stack_t *ipst = ill->ill_ipst; 1196 1197 /* 1198 * Blow off any IREs dependent on this ILL. 1199 * The caller needs to handle conn_ixa_cleanup 1200 */ 1201 ill_delete_ires(ill); 1202 1203 ire_walk_ill(0, 0, ill_downi, ill, ill); 1204 1205 /* Remove any conn_*_ill depending on this ill */ 1206 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1207 1208 /* 1209 * Free state for additional IREs. 1210 */ 1211 mutex_enter(&ill->ill_saved_ire_lock); 1212 mp = ill->ill_saved_ire_mp; 1213 ill->ill_saved_ire_mp = NULL; 1214 ill->ill_saved_ire_cnt = 0; 1215 mutex_exit(&ill->ill_saved_ire_lock); 1216 freemsg(mp); 1217 } 1218 1219 /* 1220 * ire_walk routine used to delete every IRE that depends on 1221 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1222 * 1223 * Note: since the routes added by the kernel are deleted separately, 1224 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1225 * 1226 * We also remove references on ire_nce_cache entries that refer to the ill. 1227 */ 1228 void 1229 ill_downi(ire_t *ire, char *ill_arg) 1230 { 1231 ill_t *ill = (ill_t *)ill_arg; 1232 nce_t *nce; 1233 1234 mutex_enter(&ire->ire_lock); 1235 nce = ire->ire_nce_cache; 1236 if (nce != NULL && nce->nce_ill == ill) 1237 ire->ire_nce_cache = NULL; 1238 else 1239 nce = NULL; 1240 mutex_exit(&ire->ire_lock); 1241 if (nce != NULL) 1242 nce_refrele(nce); 1243 if (ire->ire_ill == ill) { 1244 /* 1245 * The existing interface binding for ire must be 1246 * deleted before trying to bind the route to another 1247 * interface. However, since we are using the contents of the 1248 * ire after ire_delete, the caller has to ensure that 1249 * CONDEMNED (deleted) ire's are not removed from the list 1250 * when ire_delete() returns. Currently ill_downi() is 1251 * only called as part of ire_walk*() routines, so that 1252 * the irb_refhold() done by ire_walk*() will ensure that 1253 * ire_delete() does not lead to ire_inactive(). 1254 */ 1255 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1256 ire_delete(ire); 1257 if (ire->ire_unbound) 1258 ire_rebind(ire); 1259 } 1260 } 1261 1262 /* Remove IRE_IF_CLONE on this ill */ 1263 void 1264 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1265 { 1266 ill_t *ill = (ill_t *)ill_arg; 1267 1268 ASSERT(ire->ire_type & IRE_IF_CLONE); 1269 if (ire->ire_ill == ill) 1270 ire_delete(ire); 1271 } 1272 1273 /* Consume an M_IOCACK of the fastpath probe. */ 1274 void 1275 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1276 { 1277 mblk_t *mp1 = mp; 1278 1279 /* 1280 * If this was the first attempt turn on the fastpath probing. 1281 */ 1282 mutex_enter(&ill->ill_lock); 1283 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1284 ill->ill_dlpi_fastpath_state = IDS_OK; 1285 mutex_exit(&ill->ill_lock); 1286 1287 /* Free the M_IOCACK mblk, hold on to the data */ 1288 mp = mp->b_cont; 1289 freeb(mp1); 1290 if (mp == NULL) 1291 return; 1292 if (mp->b_cont != NULL) 1293 nce_fastpath_update(ill, mp); 1294 else 1295 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1296 freemsg(mp); 1297 } 1298 1299 /* 1300 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1301 * The data portion of the request is a dl_unitdata_req_t template for 1302 * what we would send downstream in the absence of a fastpath confirmation. 1303 */ 1304 int 1305 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1306 { 1307 struct iocblk *ioc; 1308 mblk_t *mp; 1309 1310 if (dlur_mp == NULL) 1311 return (EINVAL); 1312 1313 mutex_enter(&ill->ill_lock); 1314 switch (ill->ill_dlpi_fastpath_state) { 1315 case IDS_FAILED: 1316 /* 1317 * Driver NAKed the first fastpath ioctl - assume it doesn't 1318 * support it. 1319 */ 1320 mutex_exit(&ill->ill_lock); 1321 return (ENOTSUP); 1322 case IDS_UNKNOWN: 1323 /* This is the first probe */ 1324 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1325 break; 1326 default: 1327 break; 1328 } 1329 mutex_exit(&ill->ill_lock); 1330 1331 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1332 return (EAGAIN); 1333 1334 mp->b_cont = copyb(dlur_mp); 1335 if (mp->b_cont == NULL) { 1336 freeb(mp); 1337 return (EAGAIN); 1338 } 1339 1340 ioc = (struct iocblk *)mp->b_rptr; 1341 ioc->ioc_count = msgdsize(mp->b_cont); 1342 1343 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1344 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1345 putnext(ill->ill_wq, mp); 1346 return (0); 1347 } 1348 1349 void 1350 ill_capability_probe(ill_t *ill) 1351 { 1352 mblk_t *mp; 1353 1354 ASSERT(IAM_WRITER_ILL(ill)); 1355 1356 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1357 ill->ill_dlpi_capab_state != IDCS_FAILED) 1358 return; 1359 1360 /* 1361 * We are starting a new cycle of capability negotiation. 1362 * Free up the capab reset messages of any previous incarnation. 1363 * We will do a fresh allocation when we get the response to our probe 1364 */ 1365 if (ill->ill_capab_reset_mp != NULL) { 1366 freemsg(ill->ill_capab_reset_mp); 1367 ill->ill_capab_reset_mp = NULL; 1368 } 1369 1370 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1371 1372 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1373 if (mp == NULL) 1374 return; 1375 1376 ill_capability_send(ill, mp); 1377 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1378 } 1379 1380 void 1381 ill_capability_reset(ill_t *ill, boolean_t reneg) 1382 { 1383 ASSERT(IAM_WRITER_ILL(ill)); 1384 1385 if (ill->ill_dlpi_capab_state != IDCS_OK) 1386 return; 1387 1388 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1389 1390 ill_capability_send(ill, ill->ill_capab_reset_mp); 1391 ill->ill_capab_reset_mp = NULL; 1392 /* 1393 * We turn off all capabilities except those pertaining to 1394 * direct function call capabilities viz. ILL_CAPAB_DLD* 1395 * which will be turned off by the corresponding reset functions. 1396 */ 1397 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1398 } 1399 1400 static void 1401 ill_capability_reset_alloc(ill_t *ill) 1402 { 1403 mblk_t *mp; 1404 size_t size = 0; 1405 int err; 1406 dl_capability_req_t *capb; 1407 1408 ASSERT(IAM_WRITER_ILL(ill)); 1409 ASSERT(ill->ill_capab_reset_mp == NULL); 1410 1411 if (ILL_HCKSUM_CAPABLE(ill)) { 1412 size += sizeof (dl_capability_sub_t) + 1413 sizeof (dl_capab_hcksum_t); 1414 } 1415 1416 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1417 size += sizeof (dl_capability_sub_t) + 1418 sizeof (dl_capab_zerocopy_t); 1419 } 1420 1421 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1422 size += sizeof (dl_capability_sub_t) + 1423 sizeof (dl_capab_dld_t); 1424 } 1425 1426 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1427 STR_NOSIG, &err); 1428 1429 mp->b_datap->db_type = M_PROTO; 1430 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1431 1432 capb = (dl_capability_req_t *)mp->b_rptr; 1433 capb->dl_primitive = DL_CAPABILITY_REQ; 1434 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1435 capb->dl_sub_length = size; 1436 1437 mp->b_wptr += sizeof (dl_capability_req_t); 1438 1439 /* 1440 * Each handler fills in the corresponding dl_capability_sub_t 1441 * inside the mblk, 1442 */ 1443 ill_capability_hcksum_reset_fill(ill, mp); 1444 ill_capability_zerocopy_reset_fill(ill, mp); 1445 ill_capability_dld_reset_fill(ill, mp); 1446 1447 ill->ill_capab_reset_mp = mp; 1448 } 1449 1450 static void 1451 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1452 { 1453 dl_capab_id_t *id_ic; 1454 uint_t sub_dl_cap = outers->dl_cap; 1455 dl_capability_sub_t *inners; 1456 uint8_t *capend; 1457 1458 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1459 1460 /* 1461 * Note: range checks here are not absolutely sufficient to 1462 * make us robust against malformed messages sent by drivers; 1463 * this is in keeping with the rest of IP's dlpi handling. 1464 * (Remember, it's coming from something else in the kernel 1465 * address space) 1466 */ 1467 1468 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1469 if (capend > mp->b_wptr) { 1470 cmn_err(CE_WARN, "ill_capability_id_ack: " 1471 "malformed sub-capability too long for mblk"); 1472 return; 1473 } 1474 1475 id_ic = (dl_capab_id_t *)(outers + 1); 1476 1477 if (outers->dl_length < sizeof (*id_ic) || 1478 (inners = &id_ic->id_subcap, 1479 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1480 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1481 "encapsulated capab type %d too long for mblk", 1482 inners->dl_cap); 1483 return; 1484 } 1485 1486 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1487 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1488 "isn't as expected; pass-thru module(s) detected, " 1489 "discarding capability\n", inners->dl_cap)); 1490 return; 1491 } 1492 1493 /* Process the encapsulated sub-capability */ 1494 ill_capability_dispatch(ill, mp, inners); 1495 } 1496 1497 static void 1498 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1499 { 1500 dl_capability_sub_t *dl_subcap; 1501 1502 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1503 return; 1504 1505 /* 1506 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1507 * initialized below since it is not used by DLD. 1508 */ 1509 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1510 dl_subcap->dl_cap = DL_CAPAB_DLD; 1511 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1512 1513 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1514 } 1515 1516 static void 1517 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1518 { 1519 /* 1520 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1521 * is only to get the VRRP capability. 1522 * 1523 * Note that we cannot check ill_ipif_up_count here since 1524 * ill_ipif_up_count is only incremented when the resolver is setup. 1525 * That is done asynchronously, and can race with this function. 1526 */ 1527 if (!ill->ill_dl_up) { 1528 if (subp->dl_cap == DL_CAPAB_VRRP) 1529 ill_capability_vrrp_ack(ill, mp, subp); 1530 return; 1531 } 1532 1533 switch (subp->dl_cap) { 1534 case DL_CAPAB_HCKSUM: 1535 ill_capability_hcksum_ack(ill, mp, subp); 1536 break; 1537 case DL_CAPAB_ZEROCOPY: 1538 ill_capability_zerocopy_ack(ill, mp, subp); 1539 break; 1540 case DL_CAPAB_DLD: 1541 ill_capability_dld_ack(ill, mp, subp); 1542 break; 1543 case DL_CAPAB_VRRP: 1544 break; 1545 default: 1546 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1547 subp->dl_cap)); 1548 } 1549 } 1550 1551 /* 1552 * Process the vrrp capability received from a DLS Provider. isub must point 1553 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1554 */ 1555 static void 1556 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1557 { 1558 dl_capab_vrrp_t *vrrp; 1559 uint_t sub_dl_cap = isub->dl_cap; 1560 uint8_t *capend; 1561 1562 ASSERT(IAM_WRITER_ILL(ill)); 1563 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1564 1565 /* 1566 * Note: range checks here are not absolutely sufficient to 1567 * make us robust against malformed messages sent by drivers; 1568 * this is in keeping with the rest of IP's dlpi handling. 1569 * (Remember, it's coming from something else in the kernel 1570 * address space) 1571 */ 1572 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1573 if (capend > mp->b_wptr) { 1574 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1575 "malformed sub-capability too long for mblk"); 1576 return; 1577 } 1578 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1579 1580 /* 1581 * Compare the IP address family and set ILLF_VRRP for the right ill. 1582 */ 1583 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1584 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1585 ill->ill_flags |= ILLF_VRRP; 1586 } 1587 } 1588 1589 /* 1590 * Process a hardware checksum offload capability negotiation ack received 1591 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1592 * of a DL_CAPABILITY_ACK message. 1593 */ 1594 static void 1595 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1596 { 1597 dl_capability_req_t *ocap; 1598 dl_capab_hcksum_t *ihck, *ohck; 1599 ill_hcksum_capab_t **ill_hcksum; 1600 mblk_t *nmp = NULL; 1601 uint_t sub_dl_cap = isub->dl_cap; 1602 uint8_t *capend; 1603 1604 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1605 1606 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1607 1608 /* 1609 * Note: range checks here are not absolutely sufficient to 1610 * make us robust against malformed messages sent by drivers; 1611 * this is in keeping with the rest of IP's dlpi handling. 1612 * (Remember, it's coming from something else in the kernel 1613 * address space) 1614 */ 1615 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1616 if (capend > mp->b_wptr) { 1617 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1618 "malformed sub-capability too long for mblk"); 1619 return; 1620 } 1621 1622 /* 1623 * There are two types of acks we process here: 1624 * 1. acks in reply to a (first form) generic capability req 1625 * (no ENABLE flag set) 1626 * 2. acks in reply to a ENABLE capability req. 1627 * (ENABLE flag set) 1628 */ 1629 ihck = (dl_capab_hcksum_t *)(isub + 1); 1630 1631 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1632 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1633 "unsupported hardware checksum " 1634 "sub-capability (version %d, expected %d)", 1635 ihck->hcksum_version, HCKSUM_VERSION_1); 1636 return; 1637 } 1638 1639 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1640 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1641 "checksum capability isn't as expected; pass-thru " 1642 "module(s) detected, discarding capability\n")); 1643 return; 1644 } 1645 1646 #define CURR_HCKSUM_CAPAB \ 1647 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1648 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1649 1650 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1651 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1652 /* do ENABLE processing */ 1653 if (*ill_hcksum == NULL) { 1654 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1655 KM_NOSLEEP); 1656 1657 if (*ill_hcksum == NULL) { 1658 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1659 "could not enable hcksum version %d " 1660 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1661 ill->ill_name); 1662 return; 1663 } 1664 } 1665 1666 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1667 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1668 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1669 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1670 "has enabled hardware checksumming\n ", 1671 ill->ill_name)); 1672 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1673 /* 1674 * Enabling hardware checksum offload 1675 * Currently IP supports {TCP,UDP}/IPv4 1676 * partial and full cksum offload and 1677 * IPv4 header checksum offload. 1678 * Allocate new mblk which will 1679 * contain a new capability request 1680 * to enable hardware checksum offload. 1681 */ 1682 uint_t size; 1683 uchar_t *rptr; 1684 1685 size = sizeof (dl_capability_req_t) + 1686 sizeof (dl_capability_sub_t) + isub->dl_length; 1687 1688 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1689 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1690 "could not enable hardware cksum for %s (ENOMEM)\n", 1691 ill->ill_name); 1692 return; 1693 } 1694 1695 rptr = nmp->b_rptr; 1696 /* initialize dl_capability_req_t */ 1697 ocap = (dl_capability_req_t *)nmp->b_rptr; 1698 ocap->dl_sub_offset = 1699 sizeof (dl_capability_req_t); 1700 ocap->dl_sub_length = 1701 sizeof (dl_capability_sub_t) + 1702 isub->dl_length; 1703 nmp->b_rptr += sizeof (dl_capability_req_t); 1704 1705 /* initialize dl_capability_sub_t */ 1706 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1707 nmp->b_rptr += sizeof (*isub); 1708 1709 /* initialize dl_capab_hcksum_t */ 1710 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1711 bcopy(ihck, ohck, sizeof (*ihck)); 1712 1713 nmp->b_rptr = rptr; 1714 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1715 1716 /* Set ENABLE flag */ 1717 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1718 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1719 1720 /* 1721 * nmp points to a DL_CAPABILITY_REQ message to enable 1722 * hardware checksum acceleration. 1723 */ 1724 ill_capability_send(ill, nmp); 1725 } else { 1726 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1727 "advertised %x hardware checksum capability flags\n", 1728 ill->ill_name, ihck->hcksum_txflags)); 1729 } 1730 } 1731 1732 static void 1733 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1734 { 1735 dl_capab_hcksum_t *hck_subcap; 1736 dl_capability_sub_t *dl_subcap; 1737 1738 if (!ILL_HCKSUM_CAPABLE(ill)) 1739 return; 1740 1741 ASSERT(ill->ill_hcksum_capab != NULL); 1742 1743 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1744 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1745 dl_subcap->dl_length = sizeof (*hck_subcap); 1746 1747 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1748 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1749 hck_subcap->hcksum_txflags = 0; 1750 1751 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1752 } 1753 1754 static void 1755 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1756 { 1757 mblk_t *nmp = NULL; 1758 dl_capability_req_t *oc; 1759 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1760 ill_zerocopy_capab_t **ill_zerocopy_capab; 1761 uint_t sub_dl_cap = isub->dl_cap; 1762 uint8_t *capend; 1763 1764 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1765 1766 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1767 1768 /* 1769 * Note: range checks here are not absolutely sufficient to 1770 * make us robust against malformed messages sent by drivers; 1771 * this is in keeping with the rest of IP's dlpi handling. 1772 * (Remember, it's coming from something else in the kernel 1773 * address space) 1774 */ 1775 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1776 if (capend > mp->b_wptr) { 1777 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1778 "malformed sub-capability too long for mblk"); 1779 return; 1780 } 1781 1782 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1783 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1784 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1785 "unsupported ZEROCOPY sub-capability (version %d, " 1786 "expected %d)", zc_ic->zerocopy_version, 1787 ZEROCOPY_VERSION_1); 1788 return; 1789 } 1790 1791 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1792 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1793 "capability isn't as expected; pass-thru module(s) " 1794 "detected, discarding capability\n")); 1795 return; 1796 } 1797 1798 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1799 if (*ill_zerocopy_capab == NULL) { 1800 *ill_zerocopy_capab = 1801 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1802 KM_NOSLEEP); 1803 1804 if (*ill_zerocopy_capab == NULL) { 1805 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1806 "could not enable Zero-copy version %d " 1807 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1808 ill->ill_name); 1809 return; 1810 } 1811 } 1812 1813 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1814 "supports Zero-copy version %d\n", ill->ill_name, 1815 ZEROCOPY_VERSION_1)); 1816 1817 (*ill_zerocopy_capab)->ill_zerocopy_version = 1818 zc_ic->zerocopy_version; 1819 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1820 zc_ic->zerocopy_flags; 1821 1822 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1823 } else { 1824 uint_t size; 1825 uchar_t *rptr; 1826 1827 size = sizeof (dl_capability_req_t) + 1828 sizeof (dl_capability_sub_t) + 1829 sizeof (dl_capab_zerocopy_t); 1830 1831 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1832 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1833 "could not enable zerocopy for %s (ENOMEM)\n", 1834 ill->ill_name); 1835 return; 1836 } 1837 1838 rptr = nmp->b_rptr; 1839 /* initialize dl_capability_req_t */ 1840 oc = (dl_capability_req_t *)rptr; 1841 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1842 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1843 sizeof (dl_capab_zerocopy_t); 1844 rptr += sizeof (dl_capability_req_t); 1845 1846 /* initialize dl_capability_sub_t */ 1847 bcopy(isub, rptr, sizeof (*isub)); 1848 rptr += sizeof (*isub); 1849 1850 /* initialize dl_capab_zerocopy_t */ 1851 zc_oc = (dl_capab_zerocopy_t *)rptr; 1852 *zc_oc = *zc_ic; 1853 1854 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1855 "to enable zero-copy version %d\n", ill->ill_name, 1856 ZEROCOPY_VERSION_1)); 1857 1858 /* set VMSAFE_MEM flag */ 1859 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1860 1861 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1862 ill_capability_send(ill, nmp); 1863 } 1864 } 1865 1866 static void 1867 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1868 { 1869 dl_capab_zerocopy_t *zerocopy_subcap; 1870 dl_capability_sub_t *dl_subcap; 1871 1872 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1873 return; 1874 1875 ASSERT(ill->ill_zerocopy_capab != NULL); 1876 1877 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1878 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1879 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1880 1881 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1882 zerocopy_subcap->zerocopy_version = 1883 ill->ill_zerocopy_capab->ill_zerocopy_version; 1884 zerocopy_subcap->zerocopy_flags = 0; 1885 1886 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1887 } 1888 1889 /* 1890 * DLD capability 1891 * Refer to dld.h for more information regarding the purpose and usage 1892 * of this capability. 1893 */ 1894 static void 1895 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1896 { 1897 dl_capab_dld_t *dld_ic, dld; 1898 uint_t sub_dl_cap = isub->dl_cap; 1899 uint8_t *capend; 1900 ill_dld_capab_t *idc; 1901 1902 ASSERT(IAM_WRITER_ILL(ill)); 1903 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1904 1905 /* 1906 * Note: range checks here are not absolutely sufficient to 1907 * make us robust against malformed messages sent by drivers; 1908 * this is in keeping with the rest of IP's dlpi handling. 1909 * (Remember, it's coming from something else in the kernel 1910 * address space) 1911 */ 1912 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1913 if (capend > mp->b_wptr) { 1914 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1915 "malformed sub-capability too long for mblk"); 1916 return; 1917 } 1918 dld_ic = (dl_capab_dld_t *)(isub + 1); 1919 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1920 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1921 "unsupported DLD sub-capability (version %d, " 1922 "expected %d)", dld_ic->dld_version, 1923 DLD_CURRENT_VERSION); 1924 return; 1925 } 1926 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1927 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1928 "capability isn't as expected; pass-thru module(s) " 1929 "detected, discarding capability\n")); 1930 return; 1931 } 1932 1933 /* 1934 * Copy locally to ensure alignment. 1935 */ 1936 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1937 1938 if ((idc = ill->ill_dld_capab) == NULL) { 1939 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1940 if (idc == NULL) { 1941 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1942 "could not enable DLD version %d " 1943 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1944 ill->ill_name); 1945 return; 1946 } 1947 ill->ill_dld_capab = idc; 1948 } 1949 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1950 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1951 ip1dbg(("ill_capability_dld_ack: interface %s " 1952 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1953 1954 ill_capability_dld_enable(ill); 1955 } 1956 1957 /* 1958 * Typically capability negotiation between IP and the driver happens via 1959 * DLPI message exchange. However GLD also offers a direct function call 1960 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1961 * But arbitrary function calls into IP or GLD are not permitted, since both 1962 * of them are protected by their own perimeter mechanism. The perimeter can 1963 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1964 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1965 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1966 * to enter the mac perimeter and then do the direct function calls into 1967 * GLD to enable squeue polling. The ring related callbacks from the mac into 1968 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1969 * protected by the mac perimeter. 1970 */ 1971 static void 1972 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1973 { 1974 ill_dld_capab_t *idc = ill->ill_dld_capab; 1975 int err; 1976 1977 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1978 DLD_ENABLE); 1979 ASSERT(err == 0); 1980 } 1981 1982 static void 1983 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1984 { 1985 ill_dld_capab_t *idc = ill->ill_dld_capab; 1986 int err; 1987 1988 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1989 DLD_DISABLE); 1990 ASSERT(err == 0); 1991 } 1992 1993 boolean_t 1994 ill_mac_perim_held(ill_t *ill) 1995 { 1996 ill_dld_capab_t *idc = ill->ill_dld_capab; 1997 1998 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1999 DLD_QUERY)); 2000 } 2001 2002 static void 2003 ill_capability_direct_enable(ill_t *ill) 2004 { 2005 ill_dld_capab_t *idc = ill->ill_dld_capab; 2006 ill_dld_direct_t *idd = &idc->idc_direct; 2007 dld_capab_direct_t direct; 2008 int rc; 2009 2010 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2011 2012 bzero(&direct, sizeof (direct)); 2013 direct.di_rx_cf = (uintptr_t)ip_input; 2014 direct.di_rx_ch = ill; 2015 2016 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2017 DLD_ENABLE); 2018 if (rc == 0) { 2019 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2020 idd->idd_tx_dh = direct.di_tx_dh; 2021 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2022 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2023 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2024 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2025 ASSERT(idd->idd_tx_cb_df != NULL); 2026 ASSERT(idd->idd_tx_fctl_df != NULL); 2027 ASSERT(idd->idd_tx_df != NULL); 2028 /* 2029 * One time registration of flow enable callback function 2030 */ 2031 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2032 ill_flow_enable, ill); 2033 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2034 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2035 } else { 2036 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2037 "capability, rc = %d\n", rc); 2038 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2039 } 2040 } 2041 2042 static void 2043 ill_capability_poll_enable(ill_t *ill) 2044 { 2045 ill_dld_capab_t *idc = ill->ill_dld_capab; 2046 dld_capab_poll_t poll; 2047 int rc; 2048 2049 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2050 2051 bzero(&poll, sizeof (poll)); 2052 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2053 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2054 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2055 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2056 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2057 poll.poll_ring_ch = ill; 2058 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2059 DLD_ENABLE); 2060 if (rc == 0) { 2061 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2062 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2063 } else { 2064 ip1dbg(("warning: could not enable POLL " 2065 "capability, rc = %d\n", rc)); 2066 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2067 } 2068 } 2069 2070 /* 2071 * Enable the LSO capability. 2072 */ 2073 static void 2074 ill_capability_lso_enable(ill_t *ill) 2075 { 2076 ill_dld_capab_t *idc = ill->ill_dld_capab; 2077 dld_capab_lso_t lso; 2078 int rc; 2079 2080 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2081 2082 if (ill->ill_lso_capab == NULL) { 2083 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2084 KM_NOSLEEP); 2085 if (ill->ill_lso_capab == NULL) { 2086 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2087 "could not enable LSO for %s (ENOMEM)\n", 2088 ill->ill_name); 2089 return; 2090 } 2091 } 2092 2093 bzero(&lso, sizeof (lso)); 2094 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2095 DLD_ENABLE)) == 0) { 2096 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2097 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2098 ill->ill_capabilities |= ILL_CAPAB_LSO; 2099 ip1dbg(("ill_capability_lso_enable: interface %s " 2100 "has enabled LSO\n ", ill->ill_name)); 2101 } else { 2102 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2103 ill->ill_lso_capab = NULL; 2104 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2105 } 2106 } 2107 2108 static void 2109 ill_capability_dld_enable(ill_t *ill) 2110 { 2111 mac_perim_handle_t mph; 2112 2113 ASSERT(IAM_WRITER_ILL(ill)); 2114 2115 if (ill->ill_isv6) 2116 return; 2117 2118 ill_mac_perim_enter(ill, &mph); 2119 if (!ill->ill_isv6) { 2120 ill_capability_direct_enable(ill); 2121 ill_capability_poll_enable(ill); 2122 ill_capability_lso_enable(ill); 2123 } 2124 ill->ill_capabilities |= ILL_CAPAB_DLD; 2125 ill_mac_perim_exit(ill, mph); 2126 } 2127 2128 static void 2129 ill_capability_dld_disable(ill_t *ill) 2130 { 2131 ill_dld_capab_t *idc; 2132 ill_dld_direct_t *idd; 2133 mac_perim_handle_t mph; 2134 2135 ASSERT(IAM_WRITER_ILL(ill)); 2136 2137 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2138 return; 2139 2140 ill_mac_perim_enter(ill, &mph); 2141 2142 idc = ill->ill_dld_capab; 2143 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2144 /* 2145 * For performance we avoid locks in the transmit data path 2146 * and don't maintain a count of the number of threads using 2147 * direct calls. Thus some threads could be using direct 2148 * transmit calls to GLD, even after the capability mechanism 2149 * turns it off. This is still safe since the handles used in 2150 * the direct calls continue to be valid until the unplumb is 2151 * completed. Remove the callback that was added (1-time) at 2152 * capab enable time. 2153 */ 2154 mutex_enter(&ill->ill_lock); 2155 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2156 mutex_exit(&ill->ill_lock); 2157 if (ill->ill_flownotify_mh != NULL) { 2158 idd = &idc->idc_direct; 2159 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2160 ill->ill_flownotify_mh); 2161 ill->ill_flownotify_mh = NULL; 2162 } 2163 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2164 NULL, DLD_DISABLE); 2165 } 2166 2167 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2168 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2169 ip_squeue_clean_all(ill); 2170 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2171 NULL, DLD_DISABLE); 2172 } 2173 2174 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2175 ASSERT(ill->ill_lso_capab != NULL); 2176 /* 2177 * Clear the capability flag for LSO but retain the 2178 * ill_lso_capab structure since it's possible that another 2179 * thread is still referring to it. The structure only gets 2180 * deallocated when we destroy the ill. 2181 */ 2182 2183 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2184 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2185 NULL, DLD_DISABLE); 2186 } 2187 2188 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2189 ill_mac_perim_exit(ill, mph); 2190 } 2191 2192 /* 2193 * Capability Negotiation protocol 2194 * 2195 * We don't wait for DLPI capability operations to finish during interface 2196 * bringup or teardown. Doing so would introduce more asynchrony and the 2197 * interface up/down operations will need multiple return and restarts. 2198 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2199 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2200 * exclusive operation won't start until the DLPI operations of the previous 2201 * exclusive operation complete. 2202 * 2203 * The capability state machine is shown below. 2204 * 2205 * state next state event, action 2206 * 2207 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2208 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2209 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2210 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2211 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2212 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2213 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2214 * ill_capability_probe. 2215 */ 2216 2217 /* 2218 * Dedicated thread started from ip_stack_init that handles capability 2219 * disable. This thread ensures the taskq dispatch does not fail by waiting 2220 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2221 * that direct calls to DLD are done in a cv_waitable context. 2222 */ 2223 void 2224 ill_taskq_dispatch(ip_stack_t *ipst) 2225 { 2226 callb_cpr_t cprinfo; 2227 char name[64]; 2228 mblk_t *mp; 2229 2230 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2231 ipst->ips_netstack->netstack_stackid); 2232 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2233 name); 2234 mutex_enter(&ipst->ips_capab_taskq_lock); 2235 2236 for (;;) { 2237 mp = ipst->ips_capab_taskq_head; 2238 while (mp != NULL) { 2239 ipst->ips_capab_taskq_head = mp->b_next; 2240 if (ipst->ips_capab_taskq_head == NULL) 2241 ipst->ips_capab_taskq_tail = NULL; 2242 mutex_exit(&ipst->ips_capab_taskq_lock); 2243 mp->b_next = NULL; 2244 2245 VERIFY(taskq_dispatch(system_taskq, 2246 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2247 mutex_enter(&ipst->ips_capab_taskq_lock); 2248 mp = ipst->ips_capab_taskq_head; 2249 } 2250 2251 if (ipst->ips_capab_taskq_quit) 2252 break; 2253 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2254 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2255 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2256 } 2257 VERIFY(ipst->ips_capab_taskq_head == NULL); 2258 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2259 CALLB_CPR_EXIT(&cprinfo); 2260 thread_exit(); 2261 } 2262 2263 /* 2264 * Consume a new-style hardware capabilities negotiation ack. 2265 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2266 */ 2267 static void 2268 ill_capability_ack_thr(void *arg) 2269 { 2270 mblk_t *mp = arg; 2271 dl_capability_ack_t *capp; 2272 dl_capability_sub_t *subp, *endp; 2273 ill_t *ill; 2274 boolean_t reneg; 2275 2276 ill = (ill_t *)mp->b_prev; 2277 mp->b_prev = NULL; 2278 2279 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2280 2281 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2282 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2283 /* 2284 * We have received the ack for our DL_CAPAB reset request. 2285 * There isnt' anything in the message that needs processing. 2286 * All message based capabilities have been disabled, now 2287 * do the function call based capability disable. 2288 */ 2289 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2290 ill_capability_dld_disable(ill); 2291 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2292 if (reneg) 2293 ill_capability_probe(ill); 2294 goto done; 2295 } 2296 2297 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2298 ill->ill_dlpi_capab_state = IDCS_OK; 2299 2300 capp = (dl_capability_ack_t *)mp->b_rptr; 2301 2302 if (capp->dl_sub_length == 0) { 2303 /* no new-style capabilities */ 2304 goto done; 2305 } 2306 2307 /* make sure the driver supplied correct dl_sub_length */ 2308 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2309 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2310 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2311 goto done; 2312 } 2313 2314 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2315 /* 2316 * There are sub-capabilities. Process the ones we know about. 2317 * Loop until we don't have room for another sub-cap header.. 2318 */ 2319 for (subp = SC(capp, capp->dl_sub_offset), 2320 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2321 subp <= endp; 2322 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2323 2324 switch (subp->dl_cap) { 2325 case DL_CAPAB_ID_WRAPPER: 2326 ill_capability_id_ack(ill, mp, subp); 2327 break; 2328 default: 2329 ill_capability_dispatch(ill, mp, subp); 2330 break; 2331 } 2332 } 2333 #undef SC 2334 done: 2335 inet_freemsg(mp); 2336 ill_capability_done(ill); 2337 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2338 } 2339 2340 /* 2341 * This needs to be started in a taskq thread to provide a cv_waitable 2342 * context. 2343 */ 2344 void 2345 ill_capability_ack(ill_t *ill, mblk_t *mp) 2346 { 2347 ip_stack_t *ipst = ill->ill_ipst; 2348 2349 mp->b_prev = (mblk_t *)ill; 2350 ASSERT(mp->b_next == NULL); 2351 2352 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2353 TQ_NOSLEEP) != 0) 2354 return; 2355 2356 /* 2357 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2358 * which will do the dispatch using TQ_SLEEP to guarantee success. 2359 */ 2360 mutex_enter(&ipst->ips_capab_taskq_lock); 2361 if (ipst->ips_capab_taskq_head == NULL) { 2362 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2363 ipst->ips_capab_taskq_head = mp; 2364 } else { 2365 ipst->ips_capab_taskq_tail->b_next = mp; 2366 } 2367 ipst->ips_capab_taskq_tail = mp; 2368 2369 cv_signal(&ipst->ips_capab_taskq_cv); 2370 mutex_exit(&ipst->ips_capab_taskq_lock); 2371 } 2372 2373 /* 2374 * This routine is called to scan the fragmentation reassembly table for 2375 * the specified ILL for any packets that are starting to smell. 2376 * dead_interval is the maximum time in seconds that will be tolerated. It 2377 * will either be the value specified in ip_g_frag_timeout, or zero if the 2378 * ILL is shutting down and it is time to blow everything off. 2379 * 2380 * It returns the number of seconds (as a time_t) that the next frag timer 2381 * should be scheduled for, 0 meaning that the timer doesn't need to be 2382 * re-started. Note that the method of calculating next_timeout isn't 2383 * entirely accurate since time will flow between the time we grab 2384 * current_time and the time we schedule the next timeout. This isn't a 2385 * big problem since this is the timer for sending an ICMP reassembly time 2386 * exceeded messages, and it doesn't have to be exactly accurate. 2387 * 2388 * This function is 2389 * sometimes called as writer, although this is not required. 2390 */ 2391 time_t 2392 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2393 { 2394 ipfb_t *ipfb; 2395 ipfb_t *endp; 2396 ipf_t *ipf; 2397 ipf_t *ipfnext; 2398 mblk_t *mp; 2399 time_t current_time = gethrestime_sec(); 2400 time_t next_timeout = 0; 2401 uint32_t hdr_length; 2402 mblk_t *send_icmp_head; 2403 mblk_t *send_icmp_head_v6; 2404 ip_stack_t *ipst = ill->ill_ipst; 2405 ip_recv_attr_t iras; 2406 2407 bzero(&iras, sizeof (iras)); 2408 iras.ira_flags = 0; 2409 iras.ira_ill = iras.ira_rill = ill; 2410 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2411 iras.ira_rifindex = iras.ira_ruifindex; 2412 2413 ipfb = ill->ill_frag_hash_tbl; 2414 if (ipfb == NULL) 2415 return (B_FALSE); 2416 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2417 /* Walk the frag hash table. */ 2418 for (; ipfb < endp; ipfb++) { 2419 send_icmp_head = NULL; 2420 send_icmp_head_v6 = NULL; 2421 mutex_enter(&ipfb->ipfb_lock); 2422 while ((ipf = ipfb->ipfb_ipf) != 0) { 2423 time_t frag_time = current_time - ipf->ipf_timestamp; 2424 time_t frag_timeout; 2425 2426 if (frag_time < dead_interval) { 2427 /* 2428 * There are some outstanding fragments 2429 * that will timeout later. Make note of 2430 * the time so that we can reschedule the 2431 * next timeout appropriately. 2432 */ 2433 frag_timeout = dead_interval - frag_time; 2434 if (next_timeout == 0 || 2435 frag_timeout < next_timeout) { 2436 next_timeout = frag_timeout; 2437 } 2438 break; 2439 } 2440 /* Time's up. Get it out of here. */ 2441 hdr_length = ipf->ipf_nf_hdr_len; 2442 ipfnext = ipf->ipf_hash_next; 2443 if (ipfnext) 2444 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2445 *ipf->ipf_ptphn = ipfnext; 2446 mp = ipf->ipf_mp->b_cont; 2447 for (; mp; mp = mp->b_cont) { 2448 /* Extra points for neatness. */ 2449 IP_REASS_SET_START(mp, 0); 2450 IP_REASS_SET_END(mp, 0); 2451 } 2452 mp = ipf->ipf_mp->b_cont; 2453 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2454 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2455 ipfb->ipfb_count -= ipf->ipf_count; 2456 ASSERT(ipfb->ipfb_frag_pkts > 0); 2457 ipfb->ipfb_frag_pkts--; 2458 /* 2459 * We do not send any icmp message from here because 2460 * we currently are holding the ipfb_lock for this 2461 * hash chain. If we try and send any icmp messages 2462 * from here we may end up via a put back into ip 2463 * trying to get the same lock, causing a recursive 2464 * mutex panic. Instead we build a list and send all 2465 * the icmp messages after we have dropped the lock. 2466 */ 2467 if (ill->ill_isv6) { 2468 if (hdr_length != 0) { 2469 mp->b_next = send_icmp_head_v6; 2470 send_icmp_head_v6 = mp; 2471 } else { 2472 freemsg(mp); 2473 } 2474 } else { 2475 if (hdr_length != 0) { 2476 mp->b_next = send_icmp_head; 2477 send_icmp_head = mp; 2478 } else { 2479 freemsg(mp); 2480 } 2481 } 2482 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2483 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2484 freeb(ipf->ipf_mp); 2485 } 2486 mutex_exit(&ipfb->ipfb_lock); 2487 /* 2488 * Now need to send any icmp messages that we delayed from 2489 * above. 2490 */ 2491 while (send_icmp_head_v6 != NULL) { 2492 ip6_t *ip6h; 2493 2494 mp = send_icmp_head_v6; 2495 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2496 mp->b_next = NULL; 2497 ip6h = (ip6_t *)mp->b_rptr; 2498 iras.ira_flags = 0; 2499 /* 2500 * This will result in an incorrect ALL_ZONES zoneid 2501 * for multicast packets, but we 2502 * don't send ICMP errors for those in any case. 2503 */ 2504 iras.ira_zoneid = 2505 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2506 ill, ipst); 2507 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2508 icmp_time_exceeded_v6(mp, 2509 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2510 &iras); 2511 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2512 } 2513 while (send_icmp_head != NULL) { 2514 ipaddr_t dst; 2515 2516 mp = send_icmp_head; 2517 send_icmp_head = send_icmp_head->b_next; 2518 mp->b_next = NULL; 2519 2520 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2521 2522 iras.ira_flags = IRAF_IS_IPV4; 2523 /* 2524 * This will result in an incorrect ALL_ZONES zoneid 2525 * for broadcast and multicast packets, but we 2526 * don't send ICMP errors for those in any case. 2527 */ 2528 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2529 ill, ipst); 2530 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2531 icmp_time_exceeded(mp, 2532 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2533 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2534 } 2535 } 2536 /* 2537 * A non-dying ILL will use the return value to decide whether to 2538 * restart the frag timer, and for how long. 2539 */ 2540 return (next_timeout); 2541 } 2542 2543 /* 2544 * This routine is called when the approximate count of mblk memory used 2545 * for the specified ILL has exceeded max_count. 2546 */ 2547 void 2548 ill_frag_prune(ill_t *ill, uint_t max_count) 2549 { 2550 ipfb_t *ipfb; 2551 ipf_t *ipf; 2552 size_t count; 2553 clock_t now; 2554 2555 /* 2556 * If we are here within ip_min_frag_prune_time msecs remove 2557 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2558 * ill_frag_free_num_pkts. 2559 */ 2560 mutex_enter(&ill->ill_lock); 2561 now = ddi_get_lbolt(); 2562 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2563 (ip_min_frag_prune_time != 0 ? 2564 ip_min_frag_prune_time : msec_per_tick)) { 2565 2566 ill->ill_frag_free_num_pkts++; 2567 2568 } else { 2569 ill->ill_frag_free_num_pkts = 0; 2570 } 2571 ill->ill_last_frag_clean_time = now; 2572 mutex_exit(&ill->ill_lock); 2573 2574 /* 2575 * free ill_frag_free_num_pkts oldest packets from each bucket. 2576 */ 2577 if (ill->ill_frag_free_num_pkts != 0) { 2578 int ix; 2579 2580 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2581 ipfb = &ill->ill_frag_hash_tbl[ix]; 2582 mutex_enter(&ipfb->ipfb_lock); 2583 if (ipfb->ipfb_ipf != NULL) { 2584 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2585 ill->ill_frag_free_num_pkts); 2586 } 2587 mutex_exit(&ipfb->ipfb_lock); 2588 } 2589 } 2590 /* 2591 * While the reassembly list for this ILL is too big, prune a fragment 2592 * queue by age, oldest first. 2593 */ 2594 while (ill->ill_frag_count > max_count) { 2595 int ix; 2596 ipfb_t *oipfb = NULL; 2597 uint_t oldest = UINT_MAX; 2598 2599 count = 0; 2600 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2601 ipfb = &ill->ill_frag_hash_tbl[ix]; 2602 mutex_enter(&ipfb->ipfb_lock); 2603 ipf = ipfb->ipfb_ipf; 2604 if (ipf != NULL && ipf->ipf_gen < oldest) { 2605 oldest = ipf->ipf_gen; 2606 oipfb = ipfb; 2607 } 2608 count += ipfb->ipfb_count; 2609 mutex_exit(&ipfb->ipfb_lock); 2610 } 2611 if (oipfb == NULL) 2612 break; 2613 2614 if (count <= max_count) 2615 return; /* Somebody beat us to it, nothing to do */ 2616 mutex_enter(&oipfb->ipfb_lock); 2617 ipf = oipfb->ipfb_ipf; 2618 if (ipf != NULL) { 2619 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2620 } 2621 mutex_exit(&oipfb->ipfb_lock); 2622 } 2623 } 2624 2625 /* 2626 * free 'free_cnt' fragmented packets starting at ipf. 2627 */ 2628 void 2629 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2630 { 2631 size_t count; 2632 mblk_t *mp; 2633 mblk_t *tmp; 2634 ipf_t **ipfp = ipf->ipf_ptphn; 2635 2636 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2637 ASSERT(ipfp != NULL); 2638 ASSERT(ipf != NULL); 2639 2640 while (ipf != NULL && free_cnt-- > 0) { 2641 count = ipf->ipf_count; 2642 mp = ipf->ipf_mp; 2643 ipf = ipf->ipf_hash_next; 2644 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2645 IP_REASS_SET_START(tmp, 0); 2646 IP_REASS_SET_END(tmp, 0); 2647 } 2648 atomic_add_32(&ill->ill_frag_count, -count); 2649 ASSERT(ipfb->ipfb_count >= count); 2650 ipfb->ipfb_count -= count; 2651 ASSERT(ipfb->ipfb_frag_pkts > 0); 2652 ipfb->ipfb_frag_pkts--; 2653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2654 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2655 freemsg(mp); 2656 } 2657 2658 if (ipf) 2659 ipf->ipf_ptphn = ipfp; 2660 ipfp[0] = ipf; 2661 } 2662 2663 /* 2664 * Helper function for ill_forward_set(). 2665 */ 2666 static void 2667 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2668 { 2669 ip_stack_t *ipst = ill->ill_ipst; 2670 2671 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2672 2673 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2674 (enable ? "Enabling" : "Disabling"), 2675 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2676 mutex_enter(&ill->ill_lock); 2677 if (enable) 2678 ill->ill_flags |= ILLF_ROUTER; 2679 else 2680 ill->ill_flags &= ~ILLF_ROUTER; 2681 mutex_exit(&ill->ill_lock); 2682 if (ill->ill_isv6) 2683 ill_set_nce_router_flags(ill, enable); 2684 /* Notify routing socket listeners of this change. */ 2685 if (ill->ill_ipif != NULL) 2686 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2687 } 2688 2689 /* 2690 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2691 * socket messages for each interface whose flags we change. 2692 */ 2693 int 2694 ill_forward_set(ill_t *ill, boolean_t enable) 2695 { 2696 ipmp_illgrp_t *illg; 2697 ip_stack_t *ipst = ill->ill_ipst; 2698 2699 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2700 2701 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2702 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2703 return (0); 2704 2705 if (IS_LOOPBACK(ill)) 2706 return (EINVAL); 2707 2708 if (enable && ill->ill_allowed_ips_cnt > 0) 2709 return (EPERM); 2710 2711 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2712 /* 2713 * Update all of the interfaces in the group. 2714 */ 2715 illg = ill->ill_grp; 2716 ill = list_head(&illg->ig_if); 2717 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2718 ill_forward_set_on_ill(ill, enable); 2719 2720 /* 2721 * Update the IPMP meta-interface. 2722 */ 2723 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2724 return (0); 2725 } 2726 2727 ill_forward_set_on_ill(ill, enable); 2728 return (0); 2729 } 2730 2731 /* 2732 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2733 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2734 * set or clear. 2735 */ 2736 static void 2737 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2738 { 2739 ipif_t *ipif; 2740 ncec_t *ncec; 2741 nce_t *nce; 2742 2743 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2744 /* 2745 * NOTE: we match across the illgrp because nce's for 2746 * addresses on IPMP interfaces have an nce_ill that points to 2747 * the bound underlying ill. 2748 */ 2749 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2750 if (nce != NULL) { 2751 ncec = nce->nce_common; 2752 mutex_enter(&ncec->ncec_lock); 2753 if (enable) 2754 ncec->ncec_flags |= NCE_F_ISROUTER; 2755 else 2756 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2757 mutex_exit(&ncec->ncec_lock); 2758 nce_refrele(nce); 2759 } 2760 } 2761 } 2762 2763 /* 2764 * Intializes the context structure and returns the first ill in the list 2765 * cuurently start_list and end_list can have values: 2766 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2767 * IP_V4_G_HEAD Traverse IPV4 list only. 2768 * IP_V6_G_HEAD Traverse IPV6 list only. 2769 */ 2770 2771 /* 2772 * We don't check for CONDEMNED ills here. Caller must do that if 2773 * necessary under the ill lock. 2774 */ 2775 ill_t * 2776 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2777 ip_stack_t *ipst) 2778 { 2779 ill_if_t *ifp; 2780 ill_t *ill; 2781 avl_tree_t *avl_tree; 2782 2783 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2784 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2785 2786 /* 2787 * setup the lists to search 2788 */ 2789 if (end_list != MAX_G_HEADS) { 2790 ctx->ctx_current_list = start_list; 2791 ctx->ctx_last_list = end_list; 2792 } else { 2793 ctx->ctx_last_list = MAX_G_HEADS - 1; 2794 ctx->ctx_current_list = 0; 2795 } 2796 2797 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2798 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2799 if (ifp != (ill_if_t *) 2800 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2801 avl_tree = &ifp->illif_avl_by_ppa; 2802 ill = avl_first(avl_tree); 2803 /* 2804 * ill is guaranteed to be non NULL or ifp should have 2805 * not existed. 2806 */ 2807 ASSERT(ill != NULL); 2808 return (ill); 2809 } 2810 ctx->ctx_current_list++; 2811 } 2812 2813 return (NULL); 2814 } 2815 2816 /* 2817 * returns the next ill in the list. ill_first() must have been called 2818 * before calling ill_next() or bad things will happen. 2819 */ 2820 2821 /* 2822 * We don't check for CONDEMNED ills here. Caller must do that if 2823 * necessary under the ill lock. 2824 */ 2825 ill_t * 2826 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2827 { 2828 ill_if_t *ifp; 2829 ill_t *ill; 2830 ip_stack_t *ipst = lastill->ill_ipst; 2831 2832 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2833 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2834 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2835 AVL_AFTER)) != NULL) { 2836 return (ill); 2837 } 2838 2839 /* goto next ill_ifp in the list. */ 2840 ifp = lastill->ill_ifptr->illif_next; 2841 2842 /* make sure not at end of circular list */ 2843 while (ifp == 2844 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2845 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2846 return (NULL); 2847 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2848 } 2849 2850 return (avl_first(&ifp->illif_avl_by_ppa)); 2851 } 2852 2853 /* 2854 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2855 * The final number (PPA) must not have any leading zeros. Upon success, a 2856 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2857 */ 2858 static char * 2859 ill_get_ppa_ptr(char *name) 2860 { 2861 int namelen = strlen(name); 2862 int end_ndx = namelen - 1; 2863 int ppa_ndx, i; 2864 2865 /* 2866 * Check that the first character is [a-zA-Z], and that the last 2867 * character is [0-9]. 2868 */ 2869 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2870 return (NULL); 2871 2872 /* 2873 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2874 */ 2875 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2876 if (!isdigit(name[ppa_ndx - 1])) 2877 break; 2878 2879 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2880 return (NULL); 2881 2882 /* 2883 * Check that the intermediate characters are [a-z0-9.] 2884 */ 2885 for (i = 1; i < ppa_ndx; i++) { 2886 if (!isalpha(name[i]) && !isdigit(name[i]) && 2887 name[i] != '.' && name[i] != '_') { 2888 return (NULL); 2889 } 2890 } 2891 2892 return (name + ppa_ndx); 2893 } 2894 2895 /* 2896 * use avl tree to locate the ill. 2897 */ 2898 static ill_t * 2899 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2900 { 2901 char *ppa_ptr = NULL; 2902 int len; 2903 uint_t ppa; 2904 ill_t *ill = NULL; 2905 ill_if_t *ifp; 2906 int list; 2907 2908 /* 2909 * get ppa ptr 2910 */ 2911 if (isv6) 2912 list = IP_V6_G_HEAD; 2913 else 2914 list = IP_V4_G_HEAD; 2915 2916 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2917 return (NULL); 2918 } 2919 2920 len = ppa_ptr - name + 1; 2921 2922 ppa = stoi(&ppa_ptr); 2923 2924 ifp = IP_VX_ILL_G_LIST(list, ipst); 2925 2926 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2927 /* 2928 * match is done on len - 1 as the name is not null 2929 * terminated it contains ppa in addition to the interface 2930 * name. 2931 */ 2932 if ((ifp->illif_name_len == len) && 2933 bcmp(ifp->illif_name, name, len - 1) == 0) { 2934 break; 2935 } else { 2936 ifp = ifp->illif_next; 2937 } 2938 } 2939 2940 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2941 /* 2942 * Even the interface type does not exist. 2943 */ 2944 return (NULL); 2945 } 2946 2947 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2948 if (ill != NULL) { 2949 mutex_enter(&ill->ill_lock); 2950 if (ILL_CAN_LOOKUP(ill)) { 2951 ill_refhold_locked(ill); 2952 mutex_exit(&ill->ill_lock); 2953 return (ill); 2954 } 2955 mutex_exit(&ill->ill_lock); 2956 } 2957 return (NULL); 2958 } 2959 2960 /* 2961 * comparison function for use with avl. 2962 */ 2963 static int 2964 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2965 { 2966 uint_t ppa; 2967 uint_t ill_ppa; 2968 2969 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2970 2971 ppa = *((uint_t *)ppa_ptr); 2972 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2973 /* 2974 * We want the ill with the lowest ppa to be on the 2975 * top. 2976 */ 2977 if (ill_ppa < ppa) 2978 return (1); 2979 if (ill_ppa > ppa) 2980 return (-1); 2981 return (0); 2982 } 2983 2984 /* 2985 * remove an interface type from the global list. 2986 */ 2987 static void 2988 ill_delete_interface_type(ill_if_t *interface) 2989 { 2990 ASSERT(interface != NULL); 2991 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2992 2993 avl_destroy(&interface->illif_avl_by_ppa); 2994 if (interface->illif_ppa_arena != NULL) 2995 vmem_destroy(interface->illif_ppa_arena); 2996 2997 remque(interface); 2998 2999 mi_free(interface); 3000 } 3001 3002 /* 3003 * remove ill from the global list. 3004 */ 3005 static void 3006 ill_glist_delete(ill_t *ill) 3007 { 3008 ip_stack_t *ipst; 3009 phyint_t *phyi; 3010 3011 if (ill == NULL) 3012 return; 3013 ipst = ill->ill_ipst; 3014 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3015 3016 /* 3017 * If the ill was never inserted into the AVL tree 3018 * we skip the if branch. 3019 */ 3020 if (ill->ill_ifptr != NULL) { 3021 /* 3022 * remove from AVL tree and free ppa number 3023 */ 3024 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3025 3026 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3027 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3028 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3029 } 3030 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3031 ill_delete_interface_type(ill->ill_ifptr); 3032 } 3033 3034 /* 3035 * Indicate ill is no longer in the list. 3036 */ 3037 ill->ill_ifptr = NULL; 3038 ill->ill_name_length = 0; 3039 ill->ill_name[0] = '\0'; 3040 ill->ill_ppa = UINT_MAX; 3041 } 3042 3043 /* Generate one last event for this ill. */ 3044 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3045 ill->ill_name_length); 3046 3047 ASSERT(ill->ill_phyint != NULL); 3048 phyi = ill->ill_phyint; 3049 ill->ill_phyint = NULL; 3050 3051 /* 3052 * ill_init allocates a phyint always to store the copy 3053 * of flags relevant to phyint. At that point in time, we could 3054 * not assign the name and hence phyint_illv4/v6 could not be 3055 * initialized. Later in ipif_set_values, we assign the name to 3056 * the ill, at which point in time we assign phyint_illv4/v6. 3057 * Thus we don't rely on phyint_illv6 to be initialized always. 3058 */ 3059 if (ill->ill_flags & ILLF_IPV6) 3060 phyi->phyint_illv6 = NULL; 3061 else 3062 phyi->phyint_illv4 = NULL; 3063 3064 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3065 rw_exit(&ipst->ips_ill_g_lock); 3066 return; 3067 } 3068 3069 /* 3070 * There are no ills left on this phyint; pull it out of the phyint 3071 * avl trees, and free it. 3072 */ 3073 if (phyi->phyint_ifindex > 0) { 3074 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3075 phyi); 3076 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3077 phyi); 3078 } 3079 rw_exit(&ipst->ips_ill_g_lock); 3080 3081 phyint_free(phyi); 3082 } 3083 3084 /* 3085 * allocate a ppa, if the number of plumbed interfaces of this type are 3086 * less than ill_no_arena do a linear search to find a unused ppa. 3087 * When the number goes beyond ill_no_arena switch to using an arena. 3088 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3089 * is the return value for an error condition, so allocation starts at one 3090 * and is decremented by one. 3091 */ 3092 static int 3093 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3094 { 3095 ill_t *tmp_ill; 3096 uint_t start, end; 3097 int ppa; 3098 3099 if (ifp->illif_ppa_arena == NULL && 3100 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3101 /* 3102 * Create an arena. 3103 */ 3104 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3105 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3106 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3107 /* allocate what has already been assigned */ 3108 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3109 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3110 tmp_ill, AVL_AFTER)) { 3111 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3112 1, /* size */ 3113 1, /* align/quantum */ 3114 0, /* phase */ 3115 0, /* nocross */ 3116 /* minaddr */ 3117 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3118 /* maxaddr */ 3119 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3120 VM_NOSLEEP|VM_FIRSTFIT); 3121 if (ppa == 0) { 3122 ip1dbg(("ill_alloc_ppa: ppa allocation" 3123 " failed while switching")); 3124 vmem_destroy(ifp->illif_ppa_arena); 3125 ifp->illif_ppa_arena = NULL; 3126 break; 3127 } 3128 } 3129 } 3130 3131 if (ifp->illif_ppa_arena != NULL) { 3132 if (ill->ill_ppa == UINT_MAX) { 3133 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3134 1, VM_NOSLEEP|VM_FIRSTFIT); 3135 if (ppa == 0) 3136 return (EAGAIN); 3137 ill->ill_ppa = --ppa; 3138 } else { 3139 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3140 1, /* size */ 3141 1, /* align/quantum */ 3142 0, /* phase */ 3143 0, /* nocross */ 3144 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3145 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3146 VM_NOSLEEP|VM_FIRSTFIT); 3147 /* 3148 * Most likely the allocation failed because 3149 * the requested ppa was in use. 3150 */ 3151 if (ppa == 0) 3152 return (EEXIST); 3153 } 3154 return (0); 3155 } 3156 3157 /* 3158 * No arena is in use and not enough (>ill_no_arena) interfaces have 3159 * been plumbed to create one. Do a linear search to get a unused ppa. 3160 */ 3161 if (ill->ill_ppa == UINT_MAX) { 3162 end = UINT_MAX - 1; 3163 start = 0; 3164 } else { 3165 end = start = ill->ill_ppa; 3166 } 3167 3168 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3169 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3170 if (start++ >= end) { 3171 if (ill->ill_ppa == UINT_MAX) 3172 return (EAGAIN); 3173 else 3174 return (EEXIST); 3175 } 3176 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3177 } 3178 ill->ill_ppa = start; 3179 return (0); 3180 } 3181 3182 /* 3183 * Insert ill into the list of configured ill's. Once this function completes, 3184 * the ill is globally visible and is available through lookups. More precisely 3185 * this happens after the caller drops the ill_g_lock. 3186 */ 3187 static int 3188 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3189 { 3190 ill_if_t *ill_interface; 3191 avl_index_t where = 0; 3192 int error; 3193 int name_length; 3194 int index; 3195 boolean_t check_length = B_FALSE; 3196 ip_stack_t *ipst = ill->ill_ipst; 3197 3198 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3199 3200 name_length = mi_strlen(name) + 1; 3201 3202 if (isv6) 3203 index = IP_V6_G_HEAD; 3204 else 3205 index = IP_V4_G_HEAD; 3206 3207 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3208 /* 3209 * Search for interface type based on name 3210 */ 3211 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3212 if ((ill_interface->illif_name_len == name_length) && 3213 (strcmp(ill_interface->illif_name, name) == 0)) { 3214 break; 3215 } 3216 ill_interface = ill_interface->illif_next; 3217 } 3218 3219 /* 3220 * Interface type not found, create one. 3221 */ 3222 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3223 ill_g_head_t ghead; 3224 3225 /* 3226 * allocate ill_if_t structure 3227 */ 3228 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3229 if (ill_interface == NULL) { 3230 return (ENOMEM); 3231 } 3232 3233 (void) strcpy(ill_interface->illif_name, name); 3234 ill_interface->illif_name_len = name_length; 3235 3236 avl_create(&ill_interface->illif_avl_by_ppa, 3237 ill_compare_ppa, sizeof (ill_t), 3238 offsetof(struct ill_s, ill_avl_byppa)); 3239 3240 /* 3241 * link the structure in the back to maintain order 3242 * of configuration for ifconfig output. 3243 */ 3244 ghead = ipst->ips_ill_g_heads[index]; 3245 insque(ill_interface, ghead.ill_g_list_tail); 3246 } 3247 3248 if (ill->ill_ppa == UINT_MAX) 3249 check_length = B_TRUE; 3250 3251 error = ill_alloc_ppa(ill_interface, ill); 3252 if (error != 0) { 3253 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3254 ill_delete_interface_type(ill->ill_ifptr); 3255 return (error); 3256 } 3257 3258 /* 3259 * When the ppa is choosen by the system, check that there is 3260 * enough space to insert ppa. if a specific ppa was passed in this 3261 * check is not required as the interface name passed in will have 3262 * the right ppa in it. 3263 */ 3264 if (check_length) { 3265 /* 3266 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3267 */ 3268 char buf[sizeof (uint_t) * 3]; 3269 3270 /* 3271 * convert ppa to string to calculate the amount of space 3272 * required for it in the name. 3273 */ 3274 numtos(ill->ill_ppa, buf); 3275 3276 /* Do we have enough space to insert ppa ? */ 3277 3278 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3279 /* Free ppa and interface type struct */ 3280 if (ill_interface->illif_ppa_arena != NULL) { 3281 vmem_free(ill_interface->illif_ppa_arena, 3282 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3283 } 3284 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3285 ill_delete_interface_type(ill->ill_ifptr); 3286 3287 return (EINVAL); 3288 } 3289 } 3290 3291 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3292 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3293 3294 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3295 &where); 3296 ill->ill_ifptr = ill_interface; 3297 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3298 3299 ill_phyint_reinit(ill); 3300 return (0); 3301 } 3302 3303 /* Initialize the per phyint ipsq used for serialization */ 3304 static boolean_t 3305 ipsq_init(ill_t *ill, boolean_t enter) 3306 { 3307 ipsq_t *ipsq; 3308 ipxop_t *ipx; 3309 3310 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3311 return (B_FALSE); 3312 3313 ill->ill_phyint->phyint_ipsq = ipsq; 3314 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3315 ipx->ipx_ipsq = ipsq; 3316 ipsq->ipsq_next = ipsq; 3317 ipsq->ipsq_phyint = ill->ill_phyint; 3318 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3319 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3320 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3321 if (enter) { 3322 ipx->ipx_writer = curthread; 3323 ipx->ipx_forced = B_FALSE; 3324 ipx->ipx_reentry_cnt = 1; 3325 #ifdef DEBUG 3326 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3327 #endif 3328 } 3329 return (B_TRUE); 3330 } 3331 3332 /* 3333 * ill_init is called by ip_open when a device control stream is opened. 3334 * It does a few initializations, and shoots a DL_INFO_REQ message down 3335 * to the driver. The response is later picked up in ip_rput_dlpi and 3336 * used to set up default mechanisms for talking to the driver. (Always 3337 * called as writer.) 3338 * 3339 * If this function returns error, ip_open will call ip_close which in 3340 * turn will call ill_delete to clean up any memory allocated here that 3341 * is not yet freed. 3342 */ 3343 int 3344 ill_init(queue_t *q, ill_t *ill) 3345 { 3346 int count; 3347 dl_info_req_t *dlir; 3348 mblk_t *info_mp; 3349 uchar_t *frag_ptr; 3350 3351 /* 3352 * The ill is initialized to zero by mi_alloc*(). In addition 3353 * some fields already contain valid values, initialized in 3354 * ip_open(), before we reach here. 3355 */ 3356 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3357 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3358 ill->ill_saved_ire_cnt = 0; 3359 3360 ill->ill_rq = q; 3361 ill->ill_wq = WR(q); 3362 3363 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3364 BPRI_HI); 3365 if (info_mp == NULL) 3366 return (ENOMEM); 3367 3368 /* 3369 * Allocate sufficient space to contain our fragment hash table and 3370 * the device name. 3371 */ 3372 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3373 if (frag_ptr == NULL) { 3374 freemsg(info_mp); 3375 return (ENOMEM); 3376 } 3377 ill->ill_frag_ptr = frag_ptr; 3378 ill->ill_frag_free_num_pkts = 0; 3379 ill->ill_last_frag_clean_time = 0; 3380 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3381 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3382 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3383 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3384 NULL, MUTEX_DEFAULT, NULL); 3385 } 3386 3387 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3388 if (ill->ill_phyint == NULL) { 3389 freemsg(info_mp); 3390 mi_free(frag_ptr); 3391 return (ENOMEM); 3392 } 3393 3394 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3395 /* 3396 * For now pretend this is a v4 ill. We need to set phyint_ill* 3397 * at this point because of the following reason. If we can't 3398 * enter the ipsq at some point and cv_wait, the writer that 3399 * wakes us up tries to locate us using the list of all phyints 3400 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3401 * If we don't set it now, we risk a missed wakeup. 3402 */ 3403 ill->ill_phyint->phyint_illv4 = ill; 3404 ill->ill_ppa = UINT_MAX; 3405 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3406 3407 ill_set_inputfn(ill); 3408 3409 if (!ipsq_init(ill, B_TRUE)) { 3410 freemsg(info_mp); 3411 mi_free(frag_ptr); 3412 mi_free(ill->ill_phyint); 3413 return (ENOMEM); 3414 } 3415 3416 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3417 3418 /* Frag queue limit stuff */ 3419 ill->ill_frag_count = 0; 3420 ill->ill_ipf_gen = 0; 3421 3422 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3423 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3424 ill->ill_global_timer = INFINITY; 3425 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3426 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3427 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3428 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3429 3430 /* 3431 * Initialize IPv6 configuration variables. The IP module is always 3432 * opened as an IPv4 module. Instead tracking down the cases where 3433 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3434 * here for convenience, this has no effect until the ill is set to do 3435 * IPv6. 3436 */ 3437 ill->ill_reachable_time = ND_REACHABLE_TIME; 3438 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3439 ill->ill_max_buf = ND_MAX_Q; 3440 ill->ill_refcnt = 0; 3441 3442 /* Send down the Info Request to the driver. */ 3443 info_mp->b_datap->db_type = M_PCPROTO; 3444 dlir = (dl_info_req_t *)info_mp->b_rptr; 3445 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3446 dlir->dl_primitive = DL_INFO_REQ; 3447 3448 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3449 3450 qprocson(q); 3451 ill_dlpi_send(ill, info_mp); 3452 3453 return (0); 3454 } 3455 3456 /* 3457 * ill_dls_info 3458 * creates datalink socket info from the device. 3459 */ 3460 int 3461 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3462 { 3463 size_t len; 3464 3465 sdl->sdl_family = AF_LINK; 3466 sdl->sdl_index = ill_get_upper_ifindex(ill); 3467 sdl->sdl_type = ill->ill_type; 3468 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3469 len = strlen(sdl->sdl_data); 3470 ASSERT(len < 256); 3471 sdl->sdl_nlen = (uchar_t)len; 3472 sdl->sdl_alen = ill->ill_phys_addr_length; 3473 sdl->sdl_slen = 0; 3474 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3475 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3476 3477 return (sizeof (struct sockaddr_dl)); 3478 } 3479 3480 /* 3481 * ill_xarp_info 3482 * creates xarp info from the device. 3483 */ 3484 static int 3485 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3486 { 3487 sdl->sdl_family = AF_LINK; 3488 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3489 sdl->sdl_type = ill->ill_type; 3490 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3491 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3492 sdl->sdl_alen = ill->ill_phys_addr_length; 3493 sdl->sdl_slen = 0; 3494 return (sdl->sdl_nlen); 3495 } 3496 3497 static int 3498 loopback_kstat_update(kstat_t *ksp, int rw) 3499 { 3500 kstat_named_t *kn; 3501 netstackid_t stackid; 3502 netstack_t *ns; 3503 ip_stack_t *ipst; 3504 3505 if (ksp == NULL || ksp->ks_data == NULL) 3506 return (EIO); 3507 3508 if (rw == KSTAT_WRITE) 3509 return (EACCES); 3510 3511 kn = KSTAT_NAMED_PTR(ksp); 3512 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3513 3514 ns = netstack_find_by_stackid(stackid); 3515 if (ns == NULL) 3516 return (-1); 3517 3518 ipst = ns->netstack_ip; 3519 if (ipst == NULL) { 3520 netstack_rele(ns); 3521 return (-1); 3522 } 3523 kn[0].value.ui32 = ipst->ips_loopback_packets; 3524 kn[1].value.ui32 = ipst->ips_loopback_packets; 3525 netstack_rele(ns); 3526 return (0); 3527 } 3528 3529 /* 3530 * Has ifindex been plumbed already? 3531 */ 3532 static boolean_t 3533 phyint_exists(uint_t index, ip_stack_t *ipst) 3534 { 3535 ASSERT(index != 0); 3536 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3537 3538 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3539 &index, NULL) != NULL); 3540 } 3541 3542 /* 3543 * Pick a unique ifindex. 3544 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3545 * flag is set so that next time time ip_assign_ifindex() is called, it 3546 * falls through and resets the index counter back to 1, the minimum value 3547 * for the interface index. The logic below assumes that ips_ill_index 3548 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3549 * (i.e. reset back to 0.) 3550 */ 3551 boolean_t 3552 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3553 { 3554 uint_t loops; 3555 3556 if (!ipst->ips_ill_index_wrap) { 3557 *indexp = ipst->ips_ill_index++; 3558 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3559 /* 3560 * Reached the maximum ifindex value, set the wrap 3561 * flag to indicate that it is no longer possible 3562 * to assume that a given index is unallocated. 3563 */ 3564 ipst->ips_ill_index_wrap = B_TRUE; 3565 } 3566 return (B_TRUE); 3567 } 3568 3569 if (ipst->ips_ill_index > IF_INDEX_MAX) 3570 ipst->ips_ill_index = 1; 3571 3572 /* 3573 * Start reusing unused indexes. Note that we hold the ill_g_lock 3574 * at this point and don't want to call any function that attempts 3575 * to get the lock again. 3576 */ 3577 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3578 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3579 /* found unused index - use it */ 3580 *indexp = ipst->ips_ill_index; 3581 return (B_TRUE); 3582 } 3583 3584 ipst->ips_ill_index++; 3585 if (ipst->ips_ill_index > IF_INDEX_MAX) 3586 ipst->ips_ill_index = 1; 3587 } 3588 3589 /* 3590 * all interface indicies are inuse. 3591 */ 3592 return (B_FALSE); 3593 } 3594 3595 /* 3596 * Assign a unique interface index for the phyint. 3597 */ 3598 static boolean_t 3599 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3600 { 3601 ASSERT(phyi->phyint_ifindex == 0); 3602 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3603 } 3604 3605 /* 3606 * Initialize the flags on `phyi' as per the provided mactype. 3607 */ 3608 static void 3609 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3610 { 3611 uint64_t flags = 0; 3612 3613 /* 3614 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3615 * we always presume the underlying hardware is working and set 3616 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3617 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3618 * there are no active interfaces in the group so we set PHYI_FAILED. 3619 */ 3620 if (mactype == SUNW_DL_IPMP) 3621 flags |= PHYI_FAILED; 3622 else 3623 flags |= PHYI_RUNNING; 3624 3625 switch (mactype) { 3626 case SUNW_DL_VNI: 3627 flags |= PHYI_VIRTUAL; 3628 break; 3629 case SUNW_DL_IPMP: 3630 flags |= PHYI_IPMP; 3631 break; 3632 case DL_LOOP: 3633 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3634 break; 3635 } 3636 3637 mutex_enter(&phyi->phyint_lock); 3638 phyi->phyint_flags |= flags; 3639 mutex_exit(&phyi->phyint_lock); 3640 } 3641 3642 /* 3643 * Return a pointer to the ill which matches the supplied name. Note that 3644 * the ill name length includes the null termination character. (May be 3645 * called as writer.) 3646 * If do_alloc and the interface is "lo0" it will be automatically created. 3647 * Cannot bump up reference on condemned ills. So dup detect can't be done 3648 * using this func. 3649 */ 3650 ill_t * 3651 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3652 boolean_t *did_alloc, ip_stack_t *ipst) 3653 { 3654 ill_t *ill; 3655 ipif_t *ipif; 3656 ipsq_t *ipsq; 3657 kstat_named_t *kn; 3658 boolean_t isloopback; 3659 in6_addr_t ov6addr; 3660 3661 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3662 3663 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3664 ill = ill_find_by_name(name, isv6, ipst); 3665 rw_exit(&ipst->ips_ill_g_lock); 3666 if (ill != NULL) 3667 return (ill); 3668 3669 /* 3670 * Couldn't find it. Does this happen to be a lookup for the 3671 * loopback device and are we allowed to allocate it? 3672 */ 3673 if (!isloopback || !do_alloc) 3674 return (NULL); 3675 3676 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3677 ill = ill_find_by_name(name, isv6, ipst); 3678 if (ill != NULL) { 3679 rw_exit(&ipst->ips_ill_g_lock); 3680 return (ill); 3681 } 3682 3683 /* Create the loopback device on demand */ 3684 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3685 sizeof (ipif_loopback_name), BPRI_MED)); 3686 if (ill == NULL) 3687 goto done; 3688 3689 *ill = ill_null; 3690 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3691 ill->ill_ipst = ipst; 3692 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3693 netstack_hold(ipst->ips_netstack); 3694 /* 3695 * For exclusive stacks we set the zoneid to zero 3696 * to make IP operate as if in the global zone. 3697 */ 3698 ill->ill_zoneid = GLOBAL_ZONEID; 3699 3700 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3701 if (ill->ill_phyint == NULL) 3702 goto done; 3703 3704 if (isv6) 3705 ill->ill_phyint->phyint_illv6 = ill; 3706 else 3707 ill->ill_phyint->phyint_illv4 = ill; 3708 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3709 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3710 3711 if (isv6) { 3712 ill->ill_isv6 = B_TRUE; 3713 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3714 } else { 3715 ill->ill_max_frag = ip_loopback_mtuplus; 3716 } 3717 if (!ill_allocate_mibs(ill)) 3718 goto done; 3719 ill->ill_current_frag = ill->ill_max_frag; 3720 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3721 ill->ill_mc_mtu = ill->ill_mtu; 3722 /* 3723 * ipif_loopback_name can't be pointed at directly because its used 3724 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3725 * from the glist, ill_glist_delete() sets the first character of 3726 * ill_name to '\0'. 3727 */ 3728 ill->ill_name = (char *)ill + sizeof (*ill); 3729 (void) strcpy(ill->ill_name, ipif_loopback_name); 3730 ill->ill_name_length = sizeof (ipif_loopback_name); 3731 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3732 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3733 3734 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3735 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3736 ill->ill_global_timer = INFINITY; 3737 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3738 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3739 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3740 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3741 3742 /* No resolver here. */ 3743 ill->ill_net_type = IRE_LOOPBACK; 3744 3745 /* Initialize the ipsq */ 3746 if (!ipsq_init(ill, B_FALSE)) 3747 goto done; 3748 3749 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3750 if (ipif == NULL) 3751 goto done; 3752 3753 ill->ill_flags = ILLF_MULTICAST; 3754 3755 ov6addr = ipif->ipif_v6lcl_addr; 3756 /* Set up default loopback address and mask. */ 3757 if (!isv6) { 3758 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3759 3760 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3761 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3762 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3763 ipif->ipif_v6subnet); 3764 ill->ill_flags |= ILLF_IPV4; 3765 } else { 3766 ipif->ipif_v6lcl_addr = ipv6_loopback; 3767 ipif->ipif_v6net_mask = ipv6_all_ones; 3768 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3769 ipif->ipif_v6subnet); 3770 ill->ill_flags |= ILLF_IPV6; 3771 } 3772 3773 /* 3774 * Chain us in at the end of the ill list. hold the ill 3775 * before we make it globally visible. 1 for the lookup. 3776 */ 3777 ill->ill_refcnt = 0; 3778 ill_refhold(ill); 3779 3780 ill->ill_frag_count = 0; 3781 ill->ill_frag_free_num_pkts = 0; 3782 ill->ill_last_frag_clean_time = 0; 3783 3784 ipsq = ill->ill_phyint->phyint_ipsq; 3785 3786 ill_set_inputfn(ill); 3787 3788 if (ill_glist_insert(ill, "lo", isv6) != 0) 3789 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3790 3791 /* Let SCTP know so that it can add this to its list */ 3792 sctp_update_ill(ill, SCTP_ILL_INSERT); 3793 3794 /* 3795 * We have already assigned ipif_v6lcl_addr above, but we need to 3796 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3797 * requires to be after ill_glist_insert() since we need the 3798 * ill_index set. Pass on ipv6_loopback as the old address. 3799 */ 3800 sctp_update_ipif_addr(ipif, ov6addr); 3801 3802 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3803 3804 /* 3805 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3806 * If so, free our original one. 3807 */ 3808 if (ipsq != ill->ill_phyint->phyint_ipsq) 3809 ipsq_delete(ipsq); 3810 3811 if (ipst->ips_loopback_ksp == NULL) { 3812 /* Export loopback interface statistics */ 3813 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3814 ipif_loopback_name, "net", 3815 KSTAT_TYPE_NAMED, 2, 0, 3816 ipst->ips_netstack->netstack_stackid); 3817 if (ipst->ips_loopback_ksp != NULL) { 3818 ipst->ips_loopback_ksp->ks_update = 3819 loopback_kstat_update; 3820 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3821 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3822 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3823 ipst->ips_loopback_ksp->ks_private = 3824 (void *)(uintptr_t)ipst->ips_netstack-> 3825 netstack_stackid; 3826 kstat_install(ipst->ips_loopback_ksp); 3827 } 3828 } 3829 3830 *did_alloc = B_TRUE; 3831 rw_exit(&ipst->ips_ill_g_lock); 3832 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3833 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3834 return (ill); 3835 done: 3836 if (ill != NULL) { 3837 if (ill->ill_phyint != NULL) { 3838 ipsq = ill->ill_phyint->phyint_ipsq; 3839 if (ipsq != NULL) { 3840 ipsq->ipsq_phyint = NULL; 3841 ipsq_delete(ipsq); 3842 } 3843 mi_free(ill->ill_phyint); 3844 } 3845 ill_free_mib(ill); 3846 if (ill->ill_ipst != NULL) 3847 netstack_rele(ill->ill_ipst->ips_netstack); 3848 mi_free(ill); 3849 } 3850 rw_exit(&ipst->ips_ill_g_lock); 3851 return (NULL); 3852 } 3853 3854 /* 3855 * For IPP calls - use the ip_stack_t for global stack. 3856 */ 3857 ill_t * 3858 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3859 { 3860 ip_stack_t *ipst; 3861 ill_t *ill; 3862 3863 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3864 if (ipst == NULL) { 3865 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3866 return (NULL); 3867 } 3868 3869 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3870 netstack_rele(ipst->ips_netstack); 3871 return (ill); 3872 } 3873 3874 /* 3875 * Return a pointer to the ill which matches the index and IP version type. 3876 */ 3877 ill_t * 3878 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3879 { 3880 ill_t *ill; 3881 phyint_t *phyi; 3882 3883 /* 3884 * Indexes are stored in the phyint - a common structure 3885 * to both IPv4 and IPv6. 3886 */ 3887 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3888 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3889 (void *) &index, NULL); 3890 if (phyi != NULL) { 3891 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3892 if (ill != NULL) { 3893 mutex_enter(&ill->ill_lock); 3894 if (!ILL_IS_CONDEMNED(ill)) { 3895 ill_refhold_locked(ill); 3896 mutex_exit(&ill->ill_lock); 3897 rw_exit(&ipst->ips_ill_g_lock); 3898 return (ill); 3899 } 3900 mutex_exit(&ill->ill_lock); 3901 } 3902 } 3903 rw_exit(&ipst->ips_ill_g_lock); 3904 return (NULL); 3905 } 3906 3907 /* 3908 * Verify whether or not an interface index is valid for the specified zoneid 3909 * to transmit packets. 3910 * It can be zero (meaning "reset") or an interface index assigned 3911 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3912 */ 3913 boolean_t 3914 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3915 ip_stack_t *ipst) 3916 { 3917 ill_t *ill; 3918 3919 if (ifindex == 0) 3920 return (B_TRUE); 3921 3922 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3923 if (ill == NULL) 3924 return (B_FALSE); 3925 if (IS_VNI(ill)) { 3926 ill_refrele(ill); 3927 return (B_FALSE); 3928 } 3929 ill_refrele(ill); 3930 return (B_TRUE); 3931 } 3932 3933 /* 3934 * Return the ifindex next in sequence after the passed in ifindex. 3935 * If there is no next ifindex for the given protocol, return 0. 3936 */ 3937 uint_t 3938 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3939 { 3940 phyint_t *phyi; 3941 phyint_t *phyi_initial; 3942 uint_t ifindex; 3943 3944 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3945 3946 if (index == 0) { 3947 phyi = avl_first( 3948 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3949 } else { 3950 phyi = phyi_initial = avl_find( 3951 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3952 (void *) &index, NULL); 3953 } 3954 3955 for (; phyi != NULL; 3956 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3957 phyi, AVL_AFTER)) { 3958 /* 3959 * If we're not returning the first interface in the tree 3960 * and we still haven't moved past the phyint_t that 3961 * corresponds to index, avl_walk needs to be called again 3962 */ 3963 if (!((index != 0) && (phyi == phyi_initial))) { 3964 if (isv6) { 3965 if ((phyi->phyint_illv6) && 3966 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3967 (phyi->phyint_illv6->ill_isv6 == 1)) 3968 break; 3969 } else { 3970 if ((phyi->phyint_illv4) && 3971 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3972 (phyi->phyint_illv4->ill_isv6 == 0)) 3973 break; 3974 } 3975 } 3976 } 3977 3978 rw_exit(&ipst->ips_ill_g_lock); 3979 3980 if (phyi != NULL) 3981 ifindex = phyi->phyint_ifindex; 3982 else 3983 ifindex = 0; 3984 3985 return (ifindex); 3986 } 3987 3988 /* 3989 * Return the ifindex for the named interface. 3990 * If there is no next ifindex for the interface, return 0. 3991 */ 3992 uint_t 3993 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3994 { 3995 phyint_t *phyi; 3996 avl_index_t where = 0; 3997 uint_t ifindex; 3998 3999 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4000 4001 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4002 name, &where)) == NULL) { 4003 rw_exit(&ipst->ips_ill_g_lock); 4004 return (0); 4005 } 4006 4007 ifindex = phyi->phyint_ifindex; 4008 4009 rw_exit(&ipst->ips_ill_g_lock); 4010 4011 return (ifindex); 4012 } 4013 4014 /* 4015 * Return the ifindex to be used by upper layer protocols for instance 4016 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4017 */ 4018 uint_t 4019 ill_get_upper_ifindex(const ill_t *ill) 4020 { 4021 if (IS_UNDER_IPMP(ill)) 4022 return (ipmp_ill_get_ipmp_ifindex(ill)); 4023 else 4024 return (ill->ill_phyint->phyint_ifindex); 4025 } 4026 4027 4028 /* 4029 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4030 * that gives a running thread a reference to the ill. This reference must be 4031 * released by the thread when it is done accessing the ill and related 4032 * objects. ill_refcnt can not be used to account for static references 4033 * such as other structures pointing to an ill. Callers must generally 4034 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4035 * or be sure that the ill is not being deleted or changing state before 4036 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4037 * ill won't change any of its critical state such as address, netmask etc. 4038 */ 4039 void 4040 ill_refhold(ill_t *ill) 4041 { 4042 mutex_enter(&ill->ill_lock); 4043 ill->ill_refcnt++; 4044 ILL_TRACE_REF(ill); 4045 mutex_exit(&ill->ill_lock); 4046 } 4047 4048 void 4049 ill_refhold_locked(ill_t *ill) 4050 { 4051 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4052 ill->ill_refcnt++; 4053 ILL_TRACE_REF(ill); 4054 } 4055 4056 /* Returns true if we managed to get a refhold */ 4057 boolean_t 4058 ill_check_and_refhold(ill_t *ill) 4059 { 4060 mutex_enter(&ill->ill_lock); 4061 if (!ILL_IS_CONDEMNED(ill)) { 4062 ill_refhold_locked(ill); 4063 mutex_exit(&ill->ill_lock); 4064 return (B_TRUE); 4065 } 4066 mutex_exit(&ill->ill_lock); 4067 return (B_FALSE); 4068 } 4069 4070 /* 4071 * Must not be called while holding any locks. Otherwise if this is 4072 * the last reference to be released, there is a chance of recursive mutex 4073 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4074 * to restart an ioctl. 4075 */ 4076 void 4077 ill_refrele(ill_t *ill) 4078 { 4079 mutex_enter(&ill->ill_lock); 4080 ASSERT(ill->ill_refcnt != 0); 4081 ill->ill_refcnt--; 4082 ILL_UNTRACE_REF(ill); 4083 if (ill->ill_refcnt != 0) { 4084 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4085 mutex_exit(&ill->ill_lock); 4086 return; 4087 } 4088 4089 /* Drops the ill_lock */ 4090 ipif_ill_refrele_tail(ill); 4091 } 4092 4093 /* 4094 * Obtain a weak reference count on the ill. This reference ensures the 4095 * ill won't be freed, but the ill may change any of its critical state 4096 * such as netmask, address etc. Returns an error if the ill has started 4097 * closing. 4098 */ 4099 boolean_t 4100 ill_waiter_inc(ill_t *ill) 4101 { 4102 mutex_enter(&ill->ill_lock); 4103 if (ill->ill_state_flags & ILL_CONDEMNED) { 4104 mutex_exit(&ill->ill_lock); 4105 return (B_FALSE); 4106 } 4107 ill->ill_waiters++; 4108 mutex_exit(&ill->ill_lock); 4109 return (B_TRUE); 4110 } 4111 4112 void 4113 ill_waiter_dcr(ill_t *ill) 4114 { 4115 mutex_enter(&ill->ill_lock); 4116 ill->ill_waiters--; 4117 if (ill->ill_waiters == 0) 4118 cv_broadcast(&ill->ill_cv); 4119 mutex_exit(&ill->ill_lock); 4120 } 4121 4122 /* 4123 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4124 * driver. We construct best guess defaults for lower level information that 4125 * we need. If an interface is brought up without injection of any overriding 4126 * information from outside, we have to be ready to go with these defaults. 4127 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4128 * we primarely want the dl_provider_style. 4129 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4130 * at which point we assume the other part of the information is valid. 4131 */ 4132 void 4133 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4134 { 4135 uchar_t *brdcst_addr; 4136 uint_t brdcst_addr_length, phys_addr_length; 4137 t_scalar_t sap_length; 4138 dl_info_ack_t *dlia; 4139 ip_m_t *ipm; 4140 dl_qos_cl_sel1_t *sel1; 4141 int min_mtu; 4142 4143 ASSERT(IAM_WRITER_ILL(ill)); 4144 4145 /* 4146 * Till the ill is fully up the ill is not globally visible. 4147 * So no need for a lock. 4148 */ 4149 dlia = (dl_info_ack_t *)mp->b_rptr; 4150 ill->ill_mactype = dlia->dl_mac_type; 4151 4152 ipm = ip_m_lookup(dlia->dl_mac_type); 4153 if (ipm == NULL) { 4154 ipm = ip_m_lookup(DL_OTHER); 4155 ASSERT(ipm != NULL); 4156 } 4157 ill->ill_media = ipm; 4158 4159 /* 4160 * When the new DLPI stuff is ready we'll pull lengths 4161 * from dlia. 4162 */ 4163 if (dlia->dl_version == DL_VERSION_2) { 4164 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4165 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4166 brdcst_addr_length); 4167 if (brdcst_addr == NULL) { 4168 brdcst_addr_length = 0; 4169 } 4170 sap_length = dlia->dl_sap_length; 4171 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4172 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4173 brdcst_addr_length, sap_length, phys_addr_length)); 4174 } else { 4175 brdcst_addr_length = 6; 4176 brdcst_addr = ip_six_byte_all_ones; 4177 sap_length = -2; 4178 phys_addr_length = brdcst_addr_length; 4179 } 4180 4181 ill->ill_bcast_addr_length = brdcst_addr_length; 4182 ill->ill_phys_addr_length = phys_addr_length; 4183 ill->ill_sap_length = sap_length; 4184 4185 /* 4186 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4187 * but we must ensure a minimum IP MTU is used since other bits of 4188 * IP will fly apart otherwise. 4189 */ 4190 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4191 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4192 ill->ill_current_frag = ill->ill_max_frag; 4193 ill->ill_mtu = ill->ill_max_frag; 4194 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4195 4196 ill->ill_type = ipm->ip_m_type; 4197 4198 if (!ill->ill_dlpi_style_set) { 4199 if (dlia->dl_provider_style == DL_STYLE2) 4200 ill->ill_needs_attach = 1; 4201 4202 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4203 4204 /* 4205 * Allocate the first ipif on this ill. We don't delay it 4206 * further as ioctl handling assumes at least one ipif exists. 4207 * 4208 * At this point we don't know whether the ill is v4 or v6. 4209 * We will know this whan the SIOCSLIFNAME happens and 4210 * the correct value for ill_isv6 will be assigned in 4211 * ipif_set_values(). We need to hold the ill lock and 4212 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4213 * the wakeup. 4214 */ 4215 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4216 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4217 mutex_enter(&ill->ill_lock); 4218 ASSERT(ill->ill_dlpi_style_set == 0); 4219 ill->ill_dlpi_style_set = 1; 4220 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4221 cv_broadcast(&ill->ill_cv); 4222 mutex_exit(&ill->ill_lock); 4223 freemsg(mp); 4224 return; 4225 } 4226 ASSERT(ill->ill_ipif != NULL); 4227 /* 4228 * We know whether it is IPv4 or IPv6 now, as this is the 4229 * second DL_INFO_ACK we are recieving in response to the 4230 * DL_INFO_REQ sent in ipif_set_values. 4231 */ 4232 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4233 /* 4234 * Clear all the flags that were set based on ill_bcast_addr_length 4235 * and ill_phys_addr_length (in ipif_set_values) as these could have 4236 * changed now and we need to re-evaluate. 4237 */ 4238 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4239 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4240 4241 /* 4242 * Free ill_bcast_mp as things could have changed now. 4243 * 4244 * NOTE: The IPMP meta-interface is special-cased because it starts 4245 * with no underlying interfaces (and thus an unknown broadcast 4246 * address length), but we enforce that an interface is broadcast- 4247 * capable as part of allowing it to join a group. 4248 */ 4249 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4250 if (ill->ill_bcast_mp != NULL) 4251 freemsg(ill->ill_bcast_mp); 4252 ill->ill_net_type = IRE_IF_NORESOLVER; 4253 4254 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4255 ill->ill_phys_addr_length, 4256 ill->ill_sap, 4257 ill->ill_sap_length); 4258 4259 if (ill->ill_isv6) 4260 /* 4261 * Note: xresolv interfaces will eventually need NOARP 4262 * set here as well, but that will require those 4263 * external resolvers to have some knowledge of 4264 * that flag and act appropriately. Not to be changed 4265 * at present. 4266 */ 4267 ill->ill_flags |= ILLF_NONUD; 4268 else 4269 ill->ill_flags |= ILLF_NOARP; 4270 4271 if (ill->ill_mactype == SUNW_DL_VNI) { 4272 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4273 } else if (ill->ill_phys_addr_length == 0 || 4274 ill->ill_mactype == DL_IPV4 || 4275 ill->ill_mactype == DL_IPV6) { 4276 /* 4277 * The underying link is point-to-point, so mark the 4278 * interface as such. We can do IP multicast over 4279 * such a link since it transmits all network-layer 4280 * packets to the remote side the same way. 4281 */ 4282 ill->ill_flags |= ILLF_MULTICAST; 4283 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4284 } 4285 } else { 4286 ill->ill_net_type = IRE_IF_RESOLVER; 4287 if (ill->ill_bcast_mp != NULL) 4288 freemsg(ill->ill_bcast_mp); 4289 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4290 ill->ill_bcast_addr_length, ill->ill_sap, 4291 ill->ill_sap_length); 4292 /* 4293 * Later detect lack of DLPI driver multicast 4294 * capability by catching DL_ENABMULTI errors in 4295 * ip_rput_dlpi. 4296 */ 4297 ill->ill_flags |= ILLF_MULTICAST; 4298 if (!ill->ill_isv6) 4299 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4300 } 4301 4302 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4303 if (ill->ill_mactype == SUNW_DL_IPMP) 4304 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4305 4306 /* By default an interface does not support any CoS marking */ 4307 ill->ill_flags &= ~ILLF_COS_ENABLED; 4308 4309 /* 4310 * If we get QoS information in DL_INFO_ACK, the device supports 4311 * some form of CoS marking, set ILLF_COS_ENABLED. 4312 */ 4313 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4314 dlia->dl_qos_length); 4315 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4316 ill->ill_flags |= ILLF_COS_ENABLED; 4317 } 4318 4319 /* Clear any previous error indication. */ 4320 ill->ill_error = 0; 4321 freemsg(mp); 4322 } 4323 4324 /* 4325 * Perform various checks to verify that an address would make sense as a 4326 * local, remote, or subnet interface address. 4327 */ 4328 static boolean_t 4329 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4330 { 4331 ipaddr_t net_mask; 4332 4333 /* 4334 * Don't allow all zeroes, or all ones, but allow 4335 * all ones netmask. 4336 */ 4337 if ((net_mask = ip_net_mask(addr)) == 0) 4338 return (B_FALSE); 4339 /* A given netmask overrides the "guess" netmask */ 4340 if (subnet_mask != 0) 4341 net_mask = subnet_mask; 4342 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4343 (addr == (addr | ~net_mask)))) { 4344 return (B_FALSE); 4345 } 4346 4347 /* 4348 * Even if the netmask is all ones, we do not allow address to be 4349 * 255.255.255.255 4350 */ 4351 if (addr == INADDR_BROADCAST) 4352 return (B_FALSE); 4353 4354 if (CLASSD(addr)) 4355 return (B_FALSE); 4356 4357 return (B_TRUE); 4358 } 4359 4360 #define V6_IPIF_LINKLOCAL(p) \ 4361 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4362 4363 /* 4364 * Compare two given ipifs and check if the second one is better than 4365 * the first one using the order of preference (not taking deprecated 4366 * into acount) specified in ipif_lookup_multicast(). 4367 */ 4368 static boolean_t 4369 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4370 { 4371 /* Check the least preferred first. */ 4372 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4373 /* If both ipifs are the same, use the first one. */ 4374 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4375 return (B_FALSE); 4376 else 4377 return (B_TRUE); 4378 } 4379 4380 /* For IPv6, check for link local address. */ 4381 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4382 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4383 V6_IPIF_LINKLOCAL(new_ipif)) { 4384 /* The second one is equal or less preferred. */ 4385 return (B_FALSE); 4386 } else { 4387 return (B_TRUE); 4388 } 4389 } 4390 4391 /* Then check for point to point interface. */ 4392 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4393 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4394 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4395 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4396 return (B_FALSE); 4397 } else { 4398 return (B_TRUE); 4399 } 4400 } 4401 4402 /* old_ipif is a normal interface, so no need to use the new one. */ 4403 return (B_FALSE); 4404 } 4405 4406 /* 4407 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4408 * The ipif must be up, and its ill must multicast-capable, not 4409 * condemned, not an underlying interface in an IPMP group, and 4410 * not a VNI interface. Order of preference: 4411 * 4412 * 1a. normal 4413 * 1b. normal, but deprecated 4414 * 2a. point to point 4415 * 2b. point to point, but deprecated 4416 * 3a. link local 4417 * 3b. link local, but deprecated 4418 * 4. loopback. 4419 */ 4420 static ipif_t * 4421 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4422 { 4423 ill_t *ill; 4424 ill_walk_context_t ctx; 4425 ipif_t *ipif; 4426 ipif_t *saved_ipif = NULL; 4427 ipif_t *dep_ipif = NULL; 4428 4429 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4430 if (isv6) 4431 ill = ILL_START_WALK_V6(&ctx, ipst); 4432 else 4433 ill = ILL_START_WALK_V4(&ctx, ipst); 4434 4435 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4436 mutex_enter(&ill->ill_lock); 4437 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4438 ILL_IS_CONDEMNED(ill) || 4439 !(ill->ill_flags & ILLF_MULTICAST)) { 4440 mutex_exit(&ill->ill_lock); 4441 continue; 4442 } 4443 for (ipif = ill->ill_ipif; ipif != NULL; 4444 ipif = ipif->ipif_next) { 4445 if (zoneid != ipif->ipif_zoneid && 4446 zoneid != ALL_ZONES && 4447 ipif->ipif_zoneid != ALL_ZONES) { 4448 continue; 4449 } 4450 if (!(ipif->ipif_flags & IPIF_UP) || 4451 IPIF_IS_CONDEMNED(ipif)) { 4452 continue; 4453 } 4454 4455 /* 4456 * Found one candidate. If it is deprecated, 4457 * remember it in dep_ipif. If it is not deprecated, 4458 * remember it in saved_ipif. 4459 */ 4460 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4461 if (dep_ipif == NULL) { 4462 dep_ipif = ipif; 4463 } else if (ipif_comp_multi(dep_ipif, ipif, 4464 isv6)) { 4465 /* 4466 * If the previous dep_ipif does not 4467 * belong to the same ill, we've done 4468 * a ipif_refhold() on it. So we need 4469 * to release it. 4470 */ 4471 if (dep_ipif->ipif_ill != ill) 4472 ipif_refrele(dep_ipif); 4473 dep_ipif = ipif; 4474 } 4475 continue; 4476 } 4477 if (saved_ipif == NULL) { 4478 saved_ipif = ipif; 4479 } else { 4480 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4481 if (saved_ipif->ipif_ill != ill) 4482 ipif_refrele(saved_ipif); 4483 saved_ipif = ipif; 4484 } 4485 } 4486 } 4487 /* 4488 * Before going to the next ill, do a ipif_refhold() on the 4489 * saved ones. 4490 */ 4491 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4492 ipif_refhold_locked(saved_ipif); 4493 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4494 ipif_refhold_locked(dep_ipif); 4495 mutex_exit(&ill->ill_lock); 4496 } 4497 rw_exit(&ipst->ips_ill_g_lock); 4498 4499 /* 4500 * If we have only the saved_ipif, return it. But if we have both 4501 * saved_ipif and dep_ipif, check to see which one is better. 4502 */ 4503 if (saved_ipif != NULL) { 4504 if (dep_ipif != NULL) { 4505 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4506 ipif_refrele(saved_ipif); 4507 return (dep_ipif); 4508 } else { 4509 ipif_refrele(dep_ipif); 4510 return (saved_ipif); 4511 } 4512 } 4513 return (saved_ipif); 4514 } else { 4515 return (dep_ipif); 4516 } 4517 } 4518 4519 ill_t * 4520 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4521 { 4522 ipif_t *ipif; 4523 ill_t *ill; 4524 4525 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4526 if (ipif == NULL) 4527 return (NULL); 4528 4529 ill = ipif->ipif_ill; 4530 ill_refhold(ill); 4531 ipif_refrele(ipif); 4532 return (ill); 4533 } 4534 4535 /* 4536 * This function is called when an application does not specify an interface 4537 * to be used for multicast traffic (joining a group/sending data). It 4538 * calls ire_lookup_multi() to look for an interface route for the 4539 * specified multicast group. Doing this allows the administrator to add 4540 * prefix routes for multicast to indicate which interface to be used for 4541 * multicast traffic in the above scenario. The route could be for all 4542 * multicast (224.0/4), for a single multicast group (a /32 route) or 4543 * anything in between. If there is no such multicast route, we just find 4544 * any multicast capable interface and return it. The returned ipif 4545 * is refhold'ed. 4546 * 4547 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4548 * unicast table. This is used by CGTP. 4549 */ 4550 ill_t * 4551 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4552 boolean_t *multirtp, ipaddr_t *setsrcp) 4553 { 4554 ill_t *ill; 4555 4556 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4557 if (ill != NULL) 4558 return (ill); 4559 4560 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4561 } 4562 4563 /* 4564 * Look for an ipif with the specified interface address and destination. 4565 * The destination address is used only for matching point-to-point interfaces. 4566 */ 4567 ipif_t * 4568 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4569 { 4570 ipif_t *ipif; 4571 ill_t *ill; 4572 ill_walk_context_t ctx; 4573 4574 /* 4575 * First match all the point-to-point interfaces 4576 * before looking at non-point-to-point interfaces. 4577 * This is done to avoid returning non-point-to-point 4578 * ipif instead of unnumbered point-to-point ipif. 4579 */ 4580 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4581 ill = ILL_START_WALK_V4(&ctx, ipst); 4582 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4583 mutex_enter(&ill->ill_lock); 4584 for (ipif = ill->ill_ipif; ipif != NULL; 4585 ipif = ipif->ipif_next) { 4586 /* Allow the ipif to be down */ 4587 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4588 (ipif->ipif_lcl_addr == if_addr) && 4589 (ipif->ipif_pp_dst_addr == dst)) { 4590 if (!IPIF_IS_CONDEMNED(ipif)) { 4591 ipif_refhold_locked(ipif); 4592 mutex_exit(&ill->ill_lock); 4593 rw_exit(&ipst->ips_ill_g_lock); 4594 return (ipif); 4595 } 4596 } 4597 } 4598 mutex_exit(&ill->ill_lock); 4599 } 4600 rw_exit(&ipst->ips_ill_g_lock); 4601 4602 /* lookup the ipif based on interface address */ 4603 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4604 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4605 return (ipif); 4606 } 4607 4608 /* 4609 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4610 */ 4611 static ipif_t * 4612 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4613 zoneid_t zoneid, ip_stack_t *ipst) 4614 { 4615 ipif_t *ipif; 4616 ill_t *ill; 4617 boolean_t ptp = B_FALSE; 4618 ill_walk_context_t ctx; 4619 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4620 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4621 4622 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4623 /* 4624 * Repeat twice, first based on local addresses and 4625 * next time for pointopoint. 4626 */ 4627 repeat: 4628 ill = ILL_START_WALK_V4(&ctx, ipst); 4629 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4630 if (match_ill != NULL && ill != match_ill && 4631 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4632 continue; 4633 } 4634 mutex_enter(&ill->ill_lock); 4635 for (ipif = ill->ill_ipif; ipif != NULL; 4636 ipif = ipif->ipif_next) { 4637 if (zoneid != ALL_ZONES && 4638 zoneid != ipif->ipif_zoneid && 4639 ipif->ipif_zoneid != ALL_ZONES) 4640 continue; 4641 4642 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4643 continue; 4644 4645 /* Allow the ipif to be down */ 4646 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4647 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4648 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4649 (ipif->ipif_pp_dst_addr == addr))) { 4650 if (!IPIF_IS_CONDEMNED(ipif)) { 4651 ipif_refhold_locked(ipif); 4652 mutex_exit(&ill->ill_lock); 4653 rw_exit(&ipst->ips_ill_g_lock); 4654 return (ipif); 4655 } 4656 } 4657 } 4658 mutex_exit(&ill->ill_lock); 4659 } 4660 4661 /* If we already did the ptp case, then we are done */ 4662 if (ptp) { 4663 rw_exit(&ipst->ips_ill_g_lock); 4664 return (NULL); 4665 } 4666 ptp = B_TRUE; 4667 goto repeat; 4668 } 4669 4670 /* 4671 * Lookup an ipif with the specified address. For point-to-point links we 4672 * look for matches on either the destination address or the local address, 4673 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4674 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4675 * (or illgrp if `match_ill' is in an IPMP group). 4676 */ 4677 ipif_t * 4678 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4679 ip_stack_t *ipst) 4680 { 4681 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4682 zoneid, ipst)); 4683 } 4684 4685 /* 4686 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4687 * except that we will only return an address if it is not marked as 4688 * IPIF_DUPLICATE 4689 */ 4690 ipif_t * 4691 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4692 ip_stack_t *ipst) 4693 { 4694 return (ipif_lookup_addr_common(addr, match_ill, 4695 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4696 zoneid, ipst)); 4697 } 4698 4699 /* 4700 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4701 * `match_ill' across the IPMP group. This function is only needed in some 4702 * corner-cases; almost everything should use ipif_lookup_addr(). 4703 */ 4704 ipif_t * 4705 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4706 { 4707 ASSERT(match_ill != NULL); 4708 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4709 ipst)); 4710 } 4711 4712 /* 4713 * Look for an ipif with the specified address. For point-point links 4714 * we look for matches on either the destination address and the local 4715 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4716 * is set. 4717 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4718 * ill (or illgrp if `match_ill' is in an IPMP group). 4719 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4720 */ 4721 zoneid_t 4722 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4723 { 4724 zoneid_t zoneid; 4725 ipif_t *ipif; 4726 ill_t *ill; 4727 boolean_t ptp = B_FALSE; 4728 ill_walk_context_t ctx; 4729 4730 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4731 /* 4732 * Repeat twice, first based on local addresses and 4733 * next time for pointopoint. 4734 */ 4735 repeat: 4736 ill = ILL_START_WALK_V4(&ctx, ipst); 4737 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4738 if (match_ill != NULL && ill != match_ill && 4739 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4740 continue; 4741 } 4742 mutex_enter(&ill->ill_lock); 4743 for (ipif = ill->ill_ipif; ipif != NULL; 4744 ipif = ipif->ipif_next) { 4745 /* Allow the ipif to be down */ 4746 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4747 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4748 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4749 (ipif->ipif_pp_dst_addr == addr)) && 4750 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4751 zoneid = ipif->ipif_zoneid; 4752 mutex_exit(&ill->ill_lock); 4753 rw_exit(&ipst->ips_ill_g_lock); 4754 /* 4755 * If ipif_zoneid was ALL_ZONES then we have 4756 * a trusted extensions shared IP address. 4757 * In that case GLOBAL_ZONEID works to send. 4758 */ 4759 if (zoneid == ALL_ZONES) 4760 zoneid = GLOBAL_ZONEID; 4761 return (zoneid); 4762 } 4763 } 4764 mutex_exit(&ill->ill_lock); 4765 } 4766 4767 /* If we already did the ptp case, then we are done */ 4768 if (ptp) { 4769 rw_exit(&ipst->ips_ill_g_lock); 4770 return (ALL_ZONES); 4771 } 4772 ptp = B_TRUE; 4773 goto repeat; 4774 } 4775 4776 /* 4777 * Look for an ipif that matches the specified remote address i.e. the 4778 * ipif that would receive the specified packet. 4779 * First look for directly connected interfaces and then do a recursive 4780 * IRE lookup and pick the first ipif corresponding to the source address in the 4781 * ire. 4782 * Returns: held ipif 4783 * 4784 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4785 */ 4786 ipif_t * 4787 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4788 { 4789 ipif_t *ipif; 4790 4791 ASSERT(!ill->ill_isv6); 4792 4793 /* 4794 * Someone could be changing this ipif currently or change it 4795 * after we return this. Thus a few packets could use the old 4796 * old values. However structure updates/creates (ire, ilg, ilm etc) 4797 * will atomically be updated or cleaned up with the new value 4798 * Thus we don't need a lock to check the flags or other attrs below. 4799 */ 4800 mutex_enter(&ill->ill_lock); 4801 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4802 if (IPIF_IS_CONDEMNED(ipif)) 4803 continue; 4804 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4805 ipif->ipif_zoneid != ALL_ZONES) 4806 continue; 4807 /* Allow the ipif to be down */ 4808 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4809 if ((ipif->ipif_pp_dst_addr == addr) || 4810 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4811 ipif->ipif_lcl_addr == addr)) { 4812 ipif_refhold_locked(ipif); 4813 mutex_exit(&ill->ill_lock); 4814 return (ipif); 4815 } 4816 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4817 ipif_refhold_locked(ipif); 4818 mutex_exit(&ill->ill_lock); 4819 return (ipif); 4820 } 4821 } 4822 mutex_exit(&ill->ill_lock); 4823 /* 4824 * For a remote destination it isn't possible to nail down a particular 4825 * ipif. 4826 */ 4827 4828 /* Pick the first interface */ 4829 ipif = ipif_get_next_ipif(NULL, ill); 4830 return (ipif); 4831 } 4832 4833 /* 4834 * This func does not prevent refcnt from increasing. But if 4835 * the caller has taken steps to that effect, then this func 4836 * can be used to determine whether the ill has become quiescent 4837 */ 4838 static boolean_t 4839 ill_is_quiescent(ill_t *ill) 4840 { 4841 ipif_t *ipif; 4842 4843 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4844 4845 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4846 if (ipif->ipif_refcnt != 0) 4847 return (B_FALSE); 4848 } 4849 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4850 return (B_FALSE); 4851 } 4852 return (B_TRUE); 4853 } 4854 4855 boolean_t 4856 ill_is_freeable(ill_t *ill) 4857 { 4858 ipif_t *ipif; 4859 4860 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4861 4862 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4863 if (ipif->ipif_refcnt != 0) { 4864 return (B_FALSE); 4865 } 4866 } 4867 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4868 return (B_FALSE); 4869 } 4870 return (B_TRUE); 4871 } 4872 4873 /* 4874 * This func does not prevent refcnt from increasing. But if 4875 * the caller has taken steps to that effect, then this func 4876 * can be used to determine whether the ipif has become quiescent 4877 */ 4878 static boolean_t 4879 ipif_is_quiescent(ipif_t *ipif) 4880 { 4881 ill_t *ill; 4882 4883 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4884 4885 if (ipif->ipif_refcnt != 0) 4886 return (B_FALSE); 4887 4888 ill = ipif->ipif_ill; 4889 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4890 ill->ill_logical_down) { 4891 return (B_TRUE); 4892 } 4893 4894 /* This is the last ipif going down or being deleted on this ill */ 4895 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4896 return (B_FALSE); 4897 } 4898 4899 return (B_TRUE); 4900 } 4901 4902 /* 4903 * return true if the ipif can be destroyed: the ipif has to be quiescent 4904 * with zero references from ire/ilm to it. 4905 */ 4906 static boolean_t 4907 ipif_is_freeable(ipif_t *ipif) 4908 { 4909 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4910 ASSERT(ipif->ipif_id != 0); 4911 return (ipif->ipif_refcnt == 0); 4912 } 4913 4914 /* 4915 * The ipif/ill/ire has been refreled. Do the tail processing. 4916 * Determine if the ipif or ill in question has become quiescent and if so 4917 * wakeup close and/or restart any queued pending ioctl that is waiting 4918 * for the ipif_down (or ill_down) 4919 */ 4920 void 4921 ipif_ill_refrele_tail(ill_t *ill) 4922 { 4923 mblk_t *mp; 4924 conn_t *connp; 4925 ipsq_t *ipsq; 4926 ipxop_t *ipx; 4927 ipif_t *ipif; 4928 dl_notify_ind_t *dlindp; 4929 4930 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4931 4932 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4933 /* ip_modclose() may be waiting */ 4934 cv_broadcast(&ill->ill_cv); 4935 } 4936 4937 ipsq = ill->ill_phyint->phyint_ipsq; 4938 mutex_enter(&ipsq->ipsq_lock); 4939 ipx = ipsq->ipsq_xop; 4940 mutex_enter(&ipx->ipx_lock); 4941 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4942 goto unlock; 4943 4944 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4945 4946 ipif = ipx->ipx_pending_ipif; 4947 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4948 goto unlock; 4949 4950 switch (ipx->ipx_waitfor) { 4951 case IPIF_DOWN: 4952 if (!ipif_is_quiescent(ipif)) 4953 goto unlock; 4954 break; 4955 case IPIF_FREE: 4956 if (!ipif_is_freeable(ipif)) 4957 goto unlock; 4958 break; 4959 case ILL_DOWN: 4960 if (!ill_is_quiescent(ill)) 4961 goto unlock; 4962 break; 4963 case ILL_FREE: 4964 /* 4965 * ILL_FREE is only for loopback; normal ill teardown waits 4966 * synchronously in ip_modclose() without using ipx_waitfor, 4967 * handled by the cv_broadcast() at the top of this function. 4968 */ 4969 if (!ill_is_freeable(ill)) 4970 goto unlock; 4971 break; 4972 default: 4973 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4974 (void *)ipsq, ipx->ipx_waitfor); 4975 } 4976 4977 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4978 mutex_exit(&ipx->ipx_lock); 4979 mp = ipsq_pending_mp_get(ipsq, &connp); 4980 mutex_exit(&ipsq->ipsq_lock); 4981 mutex_exit(&ill->ill_lock); 4982 4983 ASSERT(mp != NULL); 4984 /* 4985 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4986 * we can only get here when the current operation decides it 4987 * it needs to quiesce via ipsq_pending_mp_add(). 4988 */ 4989 switch (mp->b_datap->db_type) { 4990 case M_PCPROTO: 4991 case M_PROTO: 4992 /* 4993 * For now, only DL_NOTIFY_IND messages can use this facility. 4994 */ 4995 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4996 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4997 4998 switch (dlindp->dl_notification) { 4999 case DL_NOTE_PHYS_ADDR: 5000 qwriter_ip(ill, ill->ill_rq, mp, 5001 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5002 return; 5003 case DL_NOTE_REPLUMB: 5004 qwriter_ip(ill, ill->ill_rq, mp, 5005 ill_replumb_tail, CUR_OP, B_TRUE); 5006 return; 5007 default: 5008 ASSERT(0); 5009 ill_refrele(ill); 5010 } 5011 break; 5012 5013 case M_ERROR: 5014 case M_HANGUP: 5015 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5016 B_TRUE); 5017 return; 5018 5019 case M_IOCTL: 5020 case M_IOCDATA: 5021 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5022 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5023 return; 5024 5025 default: 5026 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5027 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5028 } 5029 return; 5030 unlock: 5031 mutex_exit(&ipsq->ipsq_lock); 5032 mutex_exit(&ipx->ipx_lock); 5033 mutex_exit(&ill->ill_lock); 5034 } 5035 5036 #ifdef DEBUG 5037 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5038 static void 5039 th_trace_rrecord(th_trace_t *th_trace) 5040 { 5041 tr_buf_t *tr_buf; 5042 uint_t lastref; 5043 5044 lastref = th_trace->th_trace_lastref; 5045 lastref++; 5046 if (lastref == TR_BUF_MAX) 5047 lastref = 0; 5048 th_trace->th_trace_lastref = lastref; 5049 tr_buf = &th_trace->th_trbuf[lastref]; 5050 tr_buf->tr_time = ddi_get_lbolt(); 5051 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5052 } 5053 5054 static void 5055 th_trace_free(void *value) 5056 { 5057 th_trace_t *th_trace = value; 5058 5059 ASSERT(th_trace->th_refcnt == 0); 5060 kmem_free(th_trace, sizeof (*th_trace)); 5061 } 5062 5063 /* 5064 * Find or create the per-thread hash table used to track object references. 5065 * The ipst argument is NULL if we shouldn't allocate. 5066 * 5067 * Accesses per-thread data, so there's no need to lock here. 5068 */ 5069 static mod_hash_t * 5070 th_trace_gethash(ip_stack_t *ipst) 5071 { 5072 th_hash_t *thh; 5073 5074 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5075 mod_hash_t *mh; 5076 char name[256]; 5077 size_t objsize, rshift; 5078 int retv; 5079 5080 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5081 return (NULL); 5082 (void) snprintf(name, sizeof (name), "th_trace_%p", 5083 (void *)curthread); 5084 5085 /* 5086 * We use mod_hash_create_extended here rather than the more 5087 * obvious mod_hash_create_ptrhash because the latter has a 5088 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5089 * block. 5090 */ 5091 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5092 MAX(sizeof (ire_t), sizeof (ncec_t))); 5093 rshift = highbit(objsize); 5094 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5095 th_trace_free, mod_hash_byptr, (void *)rshift, 5096 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5097 if (mh == NULL) { 5098 kmem_free(thh, sizeof (*thh)); 5099 return (NULL); 5100 } 5101 thh->thh_hash = mh; 5102 thh->thh_ipst = ipst; 5103 /* 5104 * We trace ills, ipifs, ires, and nces. All of these are 5105 * per-IP-stack, so the lock on the thread list is as well. 5106 */ 5107 rw_enter(&ip_thread_rwlock, RW_WRITER); 5108 list_insert_tail(&ip_thread_list, thh); 5109 rw_exit(&ip_thread_rwlock); 5110 retv = tsd_set(ip_thread_data, thh); 5111 ASSERT(retv == 0); 5112 } 5113 return (thh != NULL ? thh->thh_hash : NULL); 5114 } 5115 5116 boolean_t 5117 th_trace_ref(const void *obj, ip_stack_t *ipst) 5118 { 5119 th_trace_t *th_trace; 5120 mod_hash_t *mh; 5121 mod_hash_val_t val; 5122 5123 if ((mh = th_trace_gethash(ipst)) == NULL) 5124 return (B_FALSE); 5125 5126 /* 5127 * Attempt to locate the trace buffer for this obj and thread. 5128 * If it does not exist, then allocate a new trace buffer and 5129 * insert into the hash. 5130 */ 5131 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5132 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5133 if (th_trace == NULL) 5134 return (B_FALSE); 5135 5136 th_trace->th_id = curthread; 5137 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5138 (mod_hash_val_t)th_trace) != 0) { 5139 kmem_free(th_trace, sizeof (th_trace_t)); 5140 return (B_FALSE); 5141 } 5142 } else { 5143 th_trace = (th_trace_t *)val; 5144 } 5145 5146 ASSERT(th_trace->th_refcnt >= 0 && 5147 th_trace->th_refcnt < TR_BUF_MAX - 1); 5148 5149 th_trace->th_refcnt++; 5150 th_trace_rrecord(th_trace); 5151 return (B_TRUE); 5152 } 5153 5154 /* 5155 * For the purpose of tracing a reference release, we assume that global 5156 * tracing is always on and that the same thread initiated the reference hold 5157 * is releasing. 5158 */ 5159 void 5160 th_trace_unref(const void *obj) 5161 { 5162 int retv; 5163 mod_hash_t *mh; 5164 th_trace_t *th_trace; 5165 mod_hash_val_t val; 5166 5167 mh = th_trace_gethash(NULL); 5168 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5169 ASSERT(retv == 0); 5170 th_trace = (th_trace_t *)val; 5171 5172 ASSERT(th_trace->th_refcnt > 0); 5173 th_trace->th_refcnt--; 5174 th_trace_rrecord(th_trace); 5175 } 5176 5177 /* 5178 * If tracing has been disabled, then we assume that the reference counts are 5179 * now useless, and we clear them out before destroying the entries. 5180 */ 5181 void 5182 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5183 { 5184 th_hash_t *thh; 5185 mod_hash_t *mh; 5186 mod_hash_val_t val; 5187 th_trace_t *th_trace; 5188 int retv; 5189 5190 rw_enter(&ip_thread_rwlock, RW_READER); 5191 for (thh = list_head(&ip_thread_list); thh != NULL; 5192 thh = list_next(&ip_thread_list, thh)) { 5193 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5194 &val) == 0) { 5195 th_trace = (th_trace_t *)val; 5196 if (trace_disable) 5197 th_trace->th_refcnt = 0; 5198 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5199 ASSERT(retv == 0); 5200 } 5201 } 5202 rw_exit(&ip_thread_rwlock); 5203 } 5204 5205 void 5206 ipif_trace_ref(ipif_t *ipif) 5207 { 5208 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5209 5210 if (ipif->ipif_trace_disable) 5211 return; 5212 5213 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5214 ipif->ipif_trace_disable = B_TRUE; 5215 ipif_trace_cleanup(ipif); 5216 } 5217 } 5218 5219 void 5220 ipif_untrace_ref(ipif_t *ipif) 5221 { 5222 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5223 5224 if (!ipif->ipif_trace_disable) 5225 th_trace_unref(ipif); 5226 } 5227 5228 void 5229 ill_trace_ref(ill_t *ill) 5230 { 5231 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5232 5233 if (ill->ill_trace_disable) 5234 return; 5235 5236 if (!th_trace_ref(ill, ill->ill_ipst)) { 5237 ill->ill_trace_disable = B_TRUE; 5238 ill_trace_cleanup(ill); 5239 } 5240 } 5241 5242 void 5243 ill_untrace_ref(ill_t *ill) 5244 { 5245 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5246 5247 if (!ill->ill_trace_disable) 5248 th_trace_unref(ill); 5249 } 5250 5251 /* 5252 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5253 * failure, ipif_trace_disable is set. 5254 */ 5255 static void 5256 ipif_trace_cleanup(const ipif_t *ipif) 5257 { 5258 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5259 } 5260 5261 /* 5262 * Called when ill is unplumbed or when memory alloc fails. Note that on 5263 * failure, ill_trace_disable is set. 5264 */ 5265 static void 5266 ill_trace_cleanup(const ill_t *ill) 5267 { 5268 th_trace_cleanup(ill, ill->ill_trace_disable); 5269 } 5270 #endif /* DEBUG */ 5271 5272 void 5273 ipif_refhold_locked(ipif_t *ipif) 5274 { 5275 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5276 ipif->ipif_refcnt++; 5277 IPIF_TRACE_REF(ipif); 5278 } 5279 5280 void 5281 ipif_refhold(ipif_t *ipif) 5282 { 5283 ill_t *ill; 5284 5285 ill = ipif->ipif_ill; 5286 mutex_enter(&ill->ill_lock); 5287 ipif->ipif_refcnt++; 5288 IPIF_TRACE_REF(ipif); 5289 mutex_exit(&ill->ill_lock); 5290 } 5291 5292 /* 5293 * Must not be called while holding any locks. Otherwise if this is 5294 * the last reference to be released there is a chance of recursive mutex 5295 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5296 * to restart an ioctl. 5297 */ 5298 void 5299 ipif_refrele(ipif_t *ipif) 5300 { 5301 ill_t *ill; 5302 5303 ill = ipif->ipif_ill; 5304 5305 mutex_enter(&ill->ill_lock); 5306 ASSERT(ipif->ipif_refcnt != 0); 5307 ipif->ipif_refcnt--; 5308 IPIF_UNTRACE_REF(ipif); 5309 if (ipif->ipif_refcnt != 0) { 5310 mutex_exit(&ill->ill_lock); 5311 return; 5312 } 5313 5314 /* Drops the ill_lock */ 5315 ipif_ill_refrele_tail(ill); 5316 } 5317 5318 ipif_t * 5319 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5320 { 5321 ipif_t *ipif; 5322 5323 mutex_enter(&ill->ill_lock); 5324 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5325 ipif != NULL; ipif = ipif->ipif_next) { 5326 if (IPIF_IS_CONDEMNED(ipif)) 5327 continue; 5328 ipif_refhold_locked(ipif); 5329 mutex_exit(&ill->ill_lock); 5330 return (ipif); 5331 } 5332 mutex_exit(&ill->ill_lock); 5333 return (NULL); 5334 } 5335 5336 /* 5337 * TODO: make this table extendible at run time 5338 * Return a pointer to the mac type info for 'mac_type' 5339 */ 5340 static ip_m_t * 5341 ip_m_lookup(t_uscalar_t mac_type) 5342 { 5343 ip_m_t *ipm; 5344 5345 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5346 if (ipm->ip_m_mac_type == mac_type) 5347 return (ipm); 5348 return (NULL); 5349 } 5350 5351 /* 5352 * Make a link layer address from the multicast IP address *addr. 5353 * To form the link layer address, invoke the ip_m_v*mapping function 5354 * associated with the link-layer type. 5355 */ 5356 void 5357 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5358 { 5359 ip_m_t *ipm; 5360 5361 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5362 return; 5363 5364 ASSERT(addr != NULL); 5365 5366 ipm = ip_m_lookup(ill->ill_mactype); 5367 if (ipm == NULL || 5368 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5369 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5370 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5371 ill->ill_name, ill->ill_mactype)); 5372 return; 5373 } 5374 if (ill->ill_isv6) 5375 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5376 else 5377 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5378 } 5379 5380 /* 5381 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5382 * Otherwise returns B_TRUE. 5383 * 5384 * The netmask can be verified to be contiguous with 32 shifts and or 5385 * operations. Take the contiguous mask (in host byte order) and compute 5386 * mask | mask << 1 | mask << 2 | ... | mask << 31 5387 * the result will be the same as the 'mask' for contiguous mask. 5388 */ 5389 static boolean_t 5390 ip_contiguous_mask(uint32_t mask) 5391 { 5392 uint32_t m = mask; 5393 int i; 5394 5395 for (i = 1; i < 32; i++) 5396 m |= (mask << i); 5397 5398 return (m == mask); 5399 } 5400 5401 /* 5402 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5403 * ill is passed in to associate it with the correct interface. 5404 * If ire_arg is set, then we return the held IRE in that location. 5405 */ 5406 int 5407 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5408 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5409 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5410 { 5411 ire_t *ire, *nire; 5412 ire_t *gw_ire = NULL; 5413 ipif_t *ipif = NULL; 5414 uint_t type; 5415 int match_flags = MATCH_IRE_TYPE; 5416 tsol_gc_t *gc = NULL; 5417 tsol_gcgrp_t *gcgrp = NULL; 5418 boolean_t gcgrp_xtraref = B_FALSE; 5419 boolean_t cgtp_broadcast; 5420 boolean_t unbound = B_FALSE; 5421 5422 ip1dbg(("ip_rt_add:")); 5423 5424 if (ire_arg != NULL) 5425 *ire_arg = NULL; 5426 5427 /* disallow non-contiguous netmasks */ 5428 if (!ip_contiguous_mask(ntohl(mask))) 5429 return (ENOTSUP); 5430 5431 /* 5432 * If this is the case of RTF_HOST being set, then we set the netmask 5433 * to all ones (regardless if one was supplied). 5434 */ 5435 if (flags & RTF_HOST) 5436 mask = IP_HOST_MASK; 5437 5438 /* 5439 * Prevent routes with a zero gateway from being created (since 5440 * interfaces can currently be plumbed and brought up no assigned 5441 * address). 5442 */ 5443 if (gw_addr == 0) 5444 return (ENETUNREACH); 5445 /* 5446 * Get the ipif, if any, corresponding to the gw_addr 5447 * If -ifp was specified we restrict ourselves to the ill, otherwise 5448 * we match on the gatway and destination to handle unnumbered pt-pt 5449 * interfaces. 5450 */ 5451 if (ill != NULL) 5452 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5453 else 5454 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5455 if (ipif != NULL) { 5456 if (IS_VNI(ipif->ipif_ill)) { 5457 ipif_refrele(ipif); 5458 return (EINVAL); 5459 } 5460 } 5461 5462 /* 5463 * GateD will attempt to create routes with a loopback interface 5464 * address as the gateway and with RTF_GATEWAY set. We allow 5465 * these routes to be added, but create them as interface routes 5466 * since the gateway is an interface address. 5467 */ 5468 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5469 flags &= ~RTF_GATEWAY; 5470 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5471 mask == IP_HOST_MASK) { 5472 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5473 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5474 NULL); 5475 if (ire != NULL) { 5476 ire_refrele(ire); 5477 ipif_refrele(ipif); 5478 return (EEXIST); 5479 } 5480 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5481 "for 0x%x\n", (void *)ipif, 5482 ipif->ipif_ire_type, 5483 ntohl(ipif->ipif_lcl_addr))); 5484 ire = ire_create( 5485 (uchar_t *)&dst_addr, /* dest address */ 5486 (uchar_t *)&mask, /* mask */ 5487 NULL, /* no gateway */ 5488 ipif->ipif_ire_type, /* LOOPBACK */ 5489 ipif->ipif_ill, 5490 zoneid, 5491 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5492 NULL, 5493 ipst); 5494 5495 if (ire == NULL) { 5496 ipif_refrele(ipif); 5497 return (ENOMEM); 5498 } 5499 /* src address assigned by the caller? */ 5500 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5501 ire->ire_setsrc_addr = src_addr; 5502 5503 nire = ire_add(ire); 5504 if (nire == NULL) { 5505 /* 5506 * In the result of failure, ire_add() will have 5507 * already deleted the ire in question, so there 5508 * is no need to do that here. 5509 */ 5510 ipif_refrele(ipif); 5511 return (ENOMEM); 5512 } 5513 /* 5514 * Check if it was a duplicate entry. This handles 5515 * the case of two racing route adds for the same route 5516 */ 5517 if (nire != ire) { 5518 ASSERT(nire->ire_identical_ref > 1); 5519 ire_delete(nire); 5520 ire_refrele(nire); 5521 ipif_refrele(ipif); 5522 return (EEXIST); 5523 } 5524 ire = nire; 5525 goto save_ire; 5526 } 5527 } 5528 5529 /* 5530 * The routes for multicast with CGTP are quite special in that 5531 * the gateway is the local interface address, yet RTF_GATEWAY 5532 * is set. We turn off RTF_GATEWAY to provide compatibility with 5533 * this undocumented and unusual use of multicast routes. 5534 */ 5535 if ((flags & RTF_MULTIRT) && ipif != NULL) 5536 flags &= ~RTF_GATEWAY; 5537 5538 /* 5539 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5540 * and the gateway address provided is one of the system's interface 5541 * addresses. By using the routing socket interface and supplying an 5542 * RTA_IFP sockaddr with an interface index, an alternate method of 5543 * specifying an interface route to be created is available which uses 5544 * the interface index that specifies the outgoing interface rather than 5545 * the address of an outgoing interface (which may not be able to 5546 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5547 * flag, routes can be specified which not only specify the next-hop to 5548 * be used when routing to a certain prefix, but also which outgoing 5549 * interface should be used. 5550 * 5551 * Previously, interfaces would have unique addresses assigned to them 5552 * and so the address assigned to a particular interface could be used 5553 * to identify a particular interface. One exception to this was the 5554 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5555 * 5556 * With the advent of IPv6 and its link-local addresses, this 5557 * restriction was relaxed and interfaces could share addresses between 5558 * themselves. In fact, typically all of the link-local interfaces on 5559 * an IPv6 node or router will have the same link-local address. In 5560 * order to differentiate between these interfaces, the use of an 5561 * interface index is necessary and this index can be carried inside a 5562 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5563 * of using the interface index, however, is that all of the ipif's that 5564 * are part of an ill have the same index and so the RTA_IFP sockaddr 5565 * cannot be used to differentiate between ipif's (or logical 5566 * interfaces) that belong to the same ill (physical interface). 5567 * 5568 * For example, in the following case involving IPv4 interfaces and 5569 * logical interfaces 5570 * 5571 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5572 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5573 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5574 * 5575 * the ipif's corresponding to each of these interface routes can be 5576 * uniquely identified by the "gateway" (actually interface address). 5577 * 5578 * In this case involving multiple IPv6 default routes to a particular 5579 * link-local gateway, the use of RTA_IFP is necessary to specify which 5580 * default route is of interest: 5581 * 5582 * default fe80::123:4567:89ab:cdef U if0 5583 * default fe80::123:4567:89ab:cdef U if1 5584 */ 5585 5586 /* RTF_GATEWAY not set */ 5587 if (!(flags & RTF_GATEWAY)) { 5588 if (sp != NULL) { 5589 ip2dbg(("ip_rt_add: gateway security attributes " 5590 "cannot be set with interface route\n")); 5591 if (ipif != NULL) 5592 ipif_refrele(ipif); 5593 return (EINVAL); 5594 } 5595 5596 /* 5597 * Whether or not ill (RTA_IFP) is set, we require that 5598 * the gateway is one of our local addresses. 5599 */ 5600 if (ipif == NULL) 5601 return (ENETUNREACH); 5602 5603 /* 5604 * We use MATCH_IRE_ILL here. If the caller specified an 5605 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5606 * we use the ill derived from the gateway address. 5607 * We can always match the gateway address since we record it 5608 * in ire_gateway_addr. 5609 * We don't allow RTA_IFP to specify a different ill than the 5610 * one matching the ipif to make sure we can delete the route. 5611 */ 5612 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5613 if (ill == NULL) { 5614 ill = ipif->ipif_ill; 5615 } else if (ill != ipif->ipif_ill) { 5616 ipif_refrele(ipif); 5617 return (EINVAL); 5618 } 5619 5620 /* 5621 * We check for an existing entry at this point. 5622 * 5623 * Since a netmask isn't passed in via the ioctl interface 5624 * (SIOCADDRT), we don't check for a matching netmask in that 5625 * case. 5626 */ 5627 if (!ioctl_msg) 5628 match_flags |= MATCH_IRE_MASK; 5629 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5630 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5631 NULL); 5632 if (ire != NULL) { 5633 ire_refrele(ire); 5634 ipif_refrele(ipif); 5635 return (EEXIST); 5636 } 5637 5638 /* 5639 * Some software (for example, GateD and Sun Cluster) attempts 5640 * to create (what amount to) IRE_PREFIX routes with the 5641 * loopback address as the gateway. This is primarily done to 5642 * set up prefixes with the RTF_REJECT flag set (for example, 5643 * when generating aggregate routes.) 5644 * 5645 * If the IRE type (as defined by ill->ill_net_type) would be 5646 * IRE_LOOPBACK, then we map the request into a 5647 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5648 * these interface routes, by definition, can only be that. 5649 * 5650 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5651 * routine, but rather using ire_create() directly. 5652 * 5653 */ 5654 type = ill->ill_net_type; 5655 if (type == IRE_LOOPBACK) { 5656 type = IRE_IF_NORESOLVER; 5657 flags |= RTF_BLACKHOLE; 5658 } 5659 5660 /* 5661 * Create a copy of the IRE_IF_NORESOLVER or 5662 * IRE_IF_RESOLVER with the modified address, netmask, and 5663 * gateway. 5664 */ 5665 ire = ire_create( 5666 (uchar_t *)&dst_addr, 5667 (uint8_t *)&mask, 5668 (uint8_t *)&gw_addr, 5669 type, 5670 ill, 5671 zoneid, 5672 flags, 5673 NULL, 5674 ipst); 5675 if (ire == NULL) { 5676 ipif_refrele(ipif); 5677 return (ENOMEM); 5678 } 5679 5680 /* src address assigned by the caller? */ 5681 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5682 ire->ire_setsrc_addr = src_addr; 5683 5684 nire = ire_add(ire); 5685 if (nire == NULL) { 5686 /* 5687 * In the result of failure, ire_add() will have 5688 * already deleted the ire in question, so there 5689 * is no need to do that here. 5690 */ 5691 ipif_refrele(ipif); 5692 return (ENOMEM); 5693 } 5694 /* 5695 * Check if it was a duplicate entry. This handles 5696 * the case of two racing route adds for the same route 5697 */ 5698 if (nire != ire) { 5699 ire_delete(nire); 5700 ire_refrele(nire); 5701 ipif_refrele(ipif); 5702 return (EEXIST); 5703 } 5704 ire = nire; 5705 goto save_ire; 5706 } 5707 5708 /* 5709 * Get an interface IRE for the specified gateway. 5710 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5711 * gateway, it is currently unreachable and we fail the request 5712 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5713 * is an IRE_LOCAL or IRE_LOOPBACK. 5714 * If RTA_IFP was specified we look on that particular ill. 5715 */ 5716 if (ill != NULL) 5717 match_flags |= MATCH_IRE_ILL; 5718 5719 /* Check whether the gateway is reachable. */ 5720 again: 5721 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5722 if (flags & RTF_INDIRECT) 5723 type |= IRE_OFFLINK; 5724 5725 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5726 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5727 if (gw_ire == NULL) { 5728 /* 5729 * With IPMP, we allow host routes to influence in.mpathd's 5730 * target selection. However, if the test addresses are on 5731 * their own network, the above lookup will fail since the 5732 * underlying IRE_INTERFACEs are marked hidden. So allow 5733 * hidden test IREs to be found and try again. 5734 */ 5735 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5736 match_flags |= MATCH_IRE_TESTHIDDEN; 5737 goto again; 5738 } 5739 if (ipif != NULL) 5740 ipif_refrele(ipif); 5741 return (ENETUNREACH); 5742 } 5743 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5744 ire_refrele(gw_ire); 5745 if (ipif != NULL) 5746 ipif_refrele(ipif); 5747 return (ENETUNREACH); 5748 } 5749 5750 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5751 unbound = B_TRUE; 5752 if (ipst->ips_ip_strict_src_multihoming > 0) 5753 ill = gw_ire->ire_ill; 5754 } 5755 5756 /* 5757 * We create one of three types of IREs as a result of this request 5758 * based on the netmask. A netmask of all ones (which is automatically 5759 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5760 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5761 * created. Otherwise, an IRE_PREFIX route is created for the 5762 * destination prefix. 5763 */ 5764 if (mask == IP_HOST_MASK) 5765 type = IRE_HOST; 5766 else if (mask == 0) 5767 type = IRE_DEFAULT; 5768 else 5769 type = IRE_PREFIX; 5770 5771 /* check for a duplicate entry */ 5772 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5773 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5774 0, ipst, NULL); 5775 if (ire != NULL) { 5776 if (ipif != NULL) 5777 ipif_refrele(ipif); 5778 ire_refrele(gw_ire); 5779 ire_refrele(ire); 5780 return (EEXIST); 5781 } 5782 5783 /* Security attribute exists */ 5784 if (sp != NULL) { 5785 tsol_gcgrp_addr_t ga; 5786 5787 /* find or create the gateway credentials group */ 5788 ga.ga_af = AF_INET; 5789 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5790 5791 /* we hold reference to it upon success */ 5792 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5793 if (gcgrp == NULL) { 5794 if (ipif != NULL) 5795 ipif_refrele(ipif); 5796 ire_refrele(gw_ire); 5797 return (ENOMEM); 5798 } 5799 5800 /* 5801 * Create and add the security attribute to the group; a 5802 * reference to the group is made upon allocating a new 5803 * entry successfully. If it finds an already-existing 5804 * entry for the security attribute in the group, it simply 5805 * returns it and no new reference is made to the group. 5806 */ 5807 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5808 if (gc == NULL) { 5809 if (ipif != NULL) 5810 ipif_refrele(ipif); 5811 /* release reference held by gcgrp_lookup */ 5812 GCGRP_REFRELE(gcgrp); 5813 ire_refrele(gw_ire); 5814 return (ENOMEM); 5815 } 5816 } 5817 5818 /* Create the IRE. */ 5819 ire = ire_create( 5820 (uchar_t *)&dst_addr, /* dest address */ 5821 (uchar_t *)&mask, /* mask */ 5822 (uchar_t *)&gw_addr, /* gateway address */ 5823 (ushort_t)type, /* IRE type */ 5824 ill, 5825 zoneid, 5826 flags, 5827 gc, /* security attribute */ 5828 ipst); 5829 5830 /* 5831 * The ire holds a reference to the 'gc' and the 'gc' holds a 5832 * reference to the 'gcgrp'. We can now release the extra reference 5833 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5834 */ 5835 if (gcgrp_xtraref) 5836 GCGRP_REFRELE(gcgrp); 5837 if (ire == NULL) { 5838 if (gc != NULL) 5839 GC_REFRELE(gc); 5840 if (ipif != NULL) 5841 ipif_refrele(ipif); 5842 ire_refrele(gw_ire); 5843 return (ENOMEM); 5844 } 5845 5846 /* Before we add, check if an extra CGTP broadcast is needed */ 5847 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5848 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5849 5850 /* src address assigned by the caller? */ 5851 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5852 ire->ire_setsrc_addr = src_addr; 5853 5854 ire->ire_unbound = unbound; 5855 5856 /* 5857 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5858 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5859 */ 5860 5861 /* Add the new IRE. */ 5862 nire = ire_add(ire); 5863 if (nire == NULL) { 5864 /* 5865 * In the result of failure, ire_add() will have 5866 * already deleted the ire in question, so there 5867 * is no need to do that here. 5868 */ 5869 if (ipif != NULL) 5870 ipif_refrele(ipif); 5871 ire_refrele(gw_ire); 5872 return (ENOMEM); 5873 } 5874 /* 5875 * Check if it was a duplicate entry. This handles 5876 * the case of two racing route adds for the same route 5877 */ 5878 if (nire != ire) { 5879 ire_delete(nire); 5880 ire_refrele(nire); 5881 if (ipif != NULL) 5882 ipif_refrele(ipif); 5883 ire_refrele(gw_ire); 5884 return (EEXIST); 5885 } 5886 ire = nire; 5887 5888 if (flags & RTF_MULTIRT) { 5889 /* 5890 * Invoke the CGTP (multirouting) filtering module 5891 * to add the dst address in the filtering database. 5892 * Replicated inbound packets coming from that address 5893 * will be filtered to discard the duplicates. 5894 * It is not necessary to call the CGTP filter hook 5895 * when the dst address is a broadcast or multicast, 5896 * because an IP source address cannot be a broadcast 5897 * or a multicast. 5898 */ 5899 if (cgtp_broadcast) { 5900 ip_cgtp_bcast_add(ire, ipst); 5901 goto save_ire; 5902 } 5903 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5904 !CLASSD(ire->ire_addr)) { 5905 int res; 5906 ipif_t *src_ipif; 5907 5908 /* Find the source address corresponding to gw_ire */ 5909 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5910 NULL, zoneid, ipst); 5911 if (src_ipif != NULL) { 5912 res = ipst->ips_ip_cgtp_filter_ops-> 5913 cfo_add_dest_v4( 5914 ipst->ips_netstack->netstack_stackid, 5915 ire->ire_addr, 5916 ire->ire_gateway_addr, 5917 ire->ire_setsrc_addr, 5918 src_ipif->ipif_lcl_addr); 5919 ipif_refrele(src_ipif); 5920 } else { 5921 res = EADDRNOTAVAIL; 5922 } 5923 if (res != 0) { 5924 if (ipif != NULL) 5925 ipif_refrele(ipif); 5926 ire_refrele(gw_ire); 5927 ire_delete(ire); 5928 ire_refrele(ire); /* Held in ire_add */ 5929 return (res); 5930 } 5931 } 5932 } 5933 5934 save_ire: 5935 if (gw_ire != NULL) { 5936 ire_refrele(gw_ire); 5937 gw_ire = NULL; 5938 } 5939 if (ill != NULL) { 5940 /* 5941 * Save enough information so that we can recreate the IRE if 5942 * the interface goes down and then up. The metrics associated 5943 * with the route will be saved as well when rts_setmetrics() is 5944 * called after the IRE has been created. In the case where 5945 * memory cannot be allocated, none of this information will be 5946 * saved. 5947 */ 5948 ill_save_ire(ill, ire); 5949 } 5950 if (ioctl_msg) 5951 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5952 if (ire_arg != NULL) { 5953 /* 5954 * Store the ire that was successfully added into where ire_arg 5955 * points to so that callers don't have to look it up 5956 * themselves (but they are responsible for ire_refrele()ing 5957 * the ire when they are finished with it). 5958 */ 5959 *ire_arg = ire; 5960 } else { 5961 ire_refrele(ire); /* Held in ire_add */ 5962 } 5963 if (ipif != NULL) 5964 ipif_refrele(ipif); 5965 return (0); 5966 } 5967 5968 /* 5969 * ip_rt_delete is called to delete an IPv4 route. 5970 * ill is passed in to associate it with the correct interface. 5971 */ 5972 /* ARGSUSED4 */ 5973 int 5974 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5975 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5976 ip_stack_t *ipst, zoneid_t zoneid) 5977 { 5978 ire_t *ire = NULL; 5979 ipif_t *ipif; 5980 uint_t type; 5981 uint_t match_flags = MATCH_IRE_TYPE; 5982 int err = 0; 5983 5984 ip1dbg(("ip_rt_delete:")); 5985 /* 5986 * If this is the case of RTF_HOST being set, then we set the netmask 5987 * to all ones. Otherwise, we use the netmask if one was supplied. 5988 */ 5989 if (flags & RTF_HOST) { 5990 mask = IP_HOST_MASK; 5991 match_flags |= MATCH_IRE_MASK; 5992 } else if (rtm_addrs & RTA_NETMASK) { 5993 match_flags |= MATCH_IRE_MASK; 5994 } 5995 5996 /* 5997 * Note that RTF_GATEWAY is never set on a delete, therefore 5998 * we check if the gateway address is one of our interfaces first, 5999 * and fall back on RTF_GATEWAY routes. 6000 * 6001 * This makes it possible to delete an original 6002 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6003 * However, we have RTF_KERNEL set on the ones created by ipif_up 6004 * and those can not be deleted here. 6005 * 6006 * We use MATCH_IRE_ILL if we know the interface. If the caller 6007 * specified an interface (from the RTA_IFP sockaddr) we use it, 6008 * otherwise we use the ill derived from the gateway address. 6009 * We can always match the gateway address since we record it 6010 * in ire_gateway_addr. 6011 * 6012 * For more detail on specifying routes by gateway address and by 6013 * interface index, see the comments in ip_rt_add(). 6014 */ 6015 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6016 if (ipif != NULL) { 6017 ill_t *ill_match; 6018 6019 if (ill != NULL) 6020 ill_match = ill; 6021 else 6022 ill_match = ipif->ipif_ill; 6023 6024 match_flags |= MATCH_IRE_ILL; 6025 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6026 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6027 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6028 match_flags, 0, ipst, NULL); 6029 } 6030 if (ire == NULL) { 6031 match_flags |= MATCH_IRE_GW; 6032 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6033 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6034 match_flags, 0, ipst, NULL); 6035 } 6036 /* Avoid deleting routes created by kernel from an ipif */ 6037 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6038 ire_refrele(ire); 6039 ire = NULL; 6040 } 6041 6042 /* Restore in case we didn't find a match */ 6043 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6044 } 6045 6046 if (ire == NULL) { 6047 /* 6048 * At this point, the gateway address is not one of our own 6049 * addresses or a matching interface route was not found. We 6050 * set the IRE type to lookup based on whether 6051 * this is a host route, a default route or just a prefix. 6052 * 6053 * If an ill was passed in, then the lookup is based on an 6054 * interface index so MATCH_IRE_ILL is added to match_flags. 6055 */ 6056 match_flags |= MATCH_IRE_GW; 6057 if (ill != NULL) 6058 match_flags |= MATCH_IRE_ILL; 6059 if (mask == IP_HOST_MASK) 6060 type = IRE_HOST; 6061 else if (mask == 0) 6062 type = IRE_DEFAULT; 6063 else 6064 type = IRE_PREFIX; 6065 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6066 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6067 } 6068 6069 if (ipif != NULL) { 6070 ipif_refrele(ipif); 6071 ipif = NULL; 6072 } 6073 6074 if (ire == NULL) 6075 return (ESRCH); 6076 6077 if (ire->ire_flags & RTF_MULTIRT) { 6078 /* 6079 * Invoke the CGTP (multirouting) filtering module 6080 * to remove the dst address from the filtering database. 6081 * Packets coming from that address will no longer be 6082 * filtered to remove duplicates. 6083 */ 6084 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6085 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6086 ipst->ips_netstack->netstack_stackid, 6087 ire->ire_addr, ire->ire_gateway_addr); 6088 } 6089 ip_cgtp_bcast_delete(ire, ipst); 6090 } 6091 6092 ill = ire->ire_ill; 6093 if (ill != NULL) 6094 ill_remove_saved_ire(ill, ire); 6095 if (ioctl_msg) 6096 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6097 ire_delete(ire); 6098 ire_refrele(ire); 6099 return (err); 6100 } 6101 6102 /* 6103 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6104 */ 6105 /* ARGSUSED */ 6106 int 6107 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6108 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6109 { 6110 ipaddr_t dst_addr; 6111 ipaddr_t gw_addr; 6112 ipaddr_t mask; 6113 int error = 0; 6114 mblk_t *mp1; 6115 struct rtentry *rt; 6116 ipif_t *ipif = NULL; 6117 ip_stack_t *ipst; 6118 6119 ASSERT(q->q_next == NULL); 6120 ipst = CONNQ_TO_IPST(q); 6121 6122 ip1dbg(("ip_siocaddrt:")); 6123 /* Existence of mp1 verified in ip_wput_nondata */ 6124 mp1 = mp->b_cont->b_cont; 6125 rt = (struct rtentry *)mp1->b_rptr; 6126 6127 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6128 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6129 6130 /* 6131 * If the RTF_HOST flag is on, this is a request to assign a gateway 6132 * to a particular host address. In this case, we set the netmask to 6133 * all ones for the particular destination address. Otherwise, 6134 * determine the netmask to be used based on dst_addr and the interfaces 6135 * in use. 6136 */ 6137 if (rt->rt_flags & RTF_HOST) { 6138 mask = IP_HOST_MASK; 6139 } else { 6140 /* 6141 * Note that ip_subnet_mask returns a zero mask in the case of 6142 * default (an all-zeroes address). 6143 */ 6144 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6145 } 6146 6147 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6148 B_TRUE, NULL, ipst, ALL_ZONES); 6149 if (ipif != NULL) 6150 ipif_refrele(ipif); 6151 return (error); 6152 } 6153 6154 /* 6155 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6156 */ 6157 /* ARGSUSED */ 6158 int 6159 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6160 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6161 { 6162 ipaddr_t dst_addr; 6163 ipaddr_t gw_addr; 6164 ipaddr_t mask; 6165 int error; 6166 mblk_t *mp1; 6167 struct rtentry *rt; 6168 ipif_t *ipif = NULL; 6169 ip_stack_t *ipst; 6170 6171 ASSERT(q->q_next == NULL); 6172 ipst = CONNQ_TO_IPST(q); 6173 6174 ip1dbg(("ip_siocdelrt:")); 6175 /* Existence of mp1 verified in ip_wput_nondata */ 6176 mp1 = mp->b_cont->b_cont; 6177 rt = (struct rtentry *)mp1->b_rptr; 6178 6179 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6180 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6181 6182 /* 6183 * If the RTF_HOST flag is on, this is a request to delete a gateway 6184 * to a particular host address. In this case, we set the netmask to 6185 * all ones for the particular destination address. Otherwise, 6186 * determine the netmask to be used based on dst_addr and the interfaces 6187 * in use. 6188 */ 6189 if (rt->rt_flags & RTF_HOST) { 6190 mask = IP_HOST_MASK; 6191 } else { 6192 /* 6193 * Note that ip_subnet_mask returns a zero mask in the case of 6194 * default (an all-zeroes address). 6195 */ 6196 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6197 } 6198 6199 error = ip_rt_delete(dst_addr, mask, gw_addr, 6200 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6201 ipst, ALL_ZONES); 6202 if (ipif != NULL) 6203 ipif_refrele(ipif); 6204 return (error); 6205 } 6206 6207 /* 6208 * Enqueue the mp onto the ipsq, chained by b_next. 6209 * b_prev stores the function to be executed later, and b_queue the queue 6210 * where this mp originated. 6211 */ 6212 void 6213 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6214 ill_t *pending_ill) 6215 { 6216 conn_t *connp; 6217 ipxop_t *ipx = ipsq->ipsq_xop; 6218 6219 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6220 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6221 ASSERT(func != NULL); 6222 6223 mp->b_queue = q; 6224 mp->b_prev = (void *)func; 6225 mp->b_next = NULL; 6226 6227 switch (type) { 6228 case CUR_OP: 6229 if (ipx->ipx_mptail != NULL) { 6230 ASSERT(ipx->ipx_mphead != NULL); 6231 ipx->ipx_mptail->b_next = mp; 6232 } else { 6233 ASSERT(ipx->ipx_mphead == NULL); 6234 ipx->ipx_mphead = mp; 6235 } 6236 ipx->ipx_mptail = mp; 6237 break; 6238 6239 case NEW_OP: 6240 if (ipsq->ipsq_xopq_mptail != NULL) { 6241 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6242 ipsq->ipsq_xopq_mptail->b_next = mp; 6243 } else { 6244 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6245 ipsq->ipsq_xopq_mphead = mp; 6246 } 6247 ipsq->ipsq_xopq_mptail = mp; 6248 ipx->ipx_ipsq_queued = B_TRUE; 6249 break; 6250 6251 case SWITCH_OP: 6252 ASSERT(ipsq->ipsq_swxop != NULL); 6253 /* only one switch operation is currently allowed */ 6254 ASSERT(ipsq->ipsq_switch_mp == NULL); 6255 ipsq->ipsq_switch_mp = mp; 6256 ipx->ipx_ipsq_queued = B_TRUE; 6257 break; 6258 default: 6259 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6260 } 6261 6262 if (CONN_Q(q) && pending_ill != NULL) { 6263 connp = Q_TO_CONN(q); 6264 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6265 connp->conn_oper_pending_ill = pending_ill; 6266 } 6267 } 6268 6269 /* 6270 * Dequeue the next message that requested exclusive access to this IPSQ's 6271 * xop. Specifically: 6272 * 6273 * 1. If we're still processing the current operation on `ipsq', then 6274 * dequeue the next message for the operation (from ipx_mphead), or 6275 * return NULL if there are no queued messages for the operation. 6276 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6277 * 6278 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6279 * not set) see if the ipsq has requested an xop switch. If so, switch 6280 * `ipsq' to a different xop. Xop switches only happen when joining or 6281 * leaving IPMP groups and require a careful dance -- see the comments 6282 * in-line below for details. If we're leaving a group xop or if we're 6283 * joining a group xop and become writer on it, then we proceed to (3). 6284 * Otherwise, we return NULL and exit the xop. 6285 * 6286 * 3. For each IPSQ in the xop, return any switch operation stored on 6287 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6288 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6289 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6290 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6291 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6292 * each phyint in the group, including the IPMP meta-interface phyint. 6293 */ 6294 static mblk_t * 6295 ipsq_dq(ipsq_t *ipsq) 6296 { 6297 ill_t *illv4, *illv6; 6298 mblk_t *mp; 6299 ipsq_t *xopipsq; 6300 ipsq_t *leftipsq = NULL; 6301 ipxop_t *ipx; 6302 phyint_t *phyi = ipsq->ipsq_phyint; 6303 ip_stack_t *ipst = ipsq->ipsq_ipst; 6304 boolean_t emptied = B_FALSE; 6305 6306 /* 6307 * Grab all the locks we need in the defined order (ill_g_lock -> 6308 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6309 */ 6310 rw_enter(&ipst->ips_ill_g_lock, 6311 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6312 mutex_enter(&ipsq->ipsq_lock); 6313 ipx = ipsq->ipsq_xop; 6314 mutex_enter(&ipx->ipx_lock); 6315 6316 /* 6317 * Dequeue the next message associated with the current exclusive 6318 * operation, if any. 6319 */ 6320 if ((mp = ipx->ipx_mphead) != NULL) { 6321 ipx->ipx_mphead = mp->b_next; 6322 if (ipx->ipx_mphead == NULL) 6323 ipx->ipx_mptail = NULL; 6324 mp->b_next = (void *)ipsq; 6325 goto out; 6326 } 6327 6328 if (ipx->ipx_current_ipif != NULL) 6329 goto empty; 6330 6331 if (ipsq->ipsq_swxop != NULL) { 6332 /* 6333 * The exclusive operation that is now being completed has 6334 * requested a switch to a different xop. This happens 6335 * when an interface joins or leaves an IPMP group. Joins 6336 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6337 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6338 * (phyint_free()), or interface plumb for an ill type 6339 * not in the IPMP group (ip_rput_dlpi_writer()). 6340 * 6341 * Xop switches are not allowed on the IPMP meta-interface. 6342 */ 6343 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6344 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6345 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6346 6347 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6348 /* 6349 * We're switching back to our own xop, so we have two 6350 * xop's to drain/exit: our own, and the group xop 6351 * that we are leaving. 6352 * 6353 * First, pull ourselves out of the group ipsq list. 6354 * This is safe since we're writer on ill_g_lock. 6355 */ 6356 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6357 6358 xopipsq = ipx->ipx_ipsq; 6359 while (xopipsq->ipsq_next != ipsq) 6360 xopipsq = xopipsq->ipsq_next; 6361 6362 xopipsq->ipsq_next = ipsq->ipsq_next; 6363 ipsq->ipsq_next = ipsq; 6364 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6365 ipsq->ipsq_swxop = NULL; 6366 6367 /* 6368 * Second, prepare to exit the group xop. The actual 6369 * ipsq_exit() is done at the end of this function 6370 * since we cannot hold any locks across ipsq_exit(). 6371 * Note that although we drop the group's ipx_lock, no 6372 * threads can proceed since we're still ipx_writer. 6373 */ 6374 leftipsq = xopipsq; 6375 mutex_exit(&ipx->ipx_lock); 6376 6377 /* 6378 * Third, set ipx to point to our own xop (which was 6379 * inactive and therefore can be entered). 6380 */ 6381 ipx = ipsq->ipsq_xop; 6382 mutex_enter(&ipx->ipx_lock); 6383 ASSERT(ipx->ipx_writer == NULL); 6384 ASSERT(ipx->ipx_current_ipif == NULL); 6385 } else { 6386 /* 6387 * We're switching from our own xop to a group xop. 6388 * The requestor of the switch must ensure that the 6389 * group xop cannot go away (e.g. by ensuring the 6390 * phyint associated with the xop cannot go away). 6391 * 6392 * If we can become writer on our new xop, then we'll 6393 * do the drain. Otherwise, the current writer of our 6394 * new xop will do the drain when it exits. 6395 * 6396 * First, splice ourselves into the group IPSQ list. 6397 * This is safe since we're writer on ill_g_lock. 6398 */ 6399 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6400 6401 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6402 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6403 xopipsq = xopipsq->ipsq_next; 6404 6405 xopipsq->ipsq_next = ipsq; 6406 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6407 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6408 ipsq->ipsq_swxop = NULL; 6409 6410 /* 6411 * Second, exit our own xop, since it's now unused. 6412 * This is safe since we've got the only reference. 6413 */ 6414 ASSERT(ipx->ipx_writer == curthread); 6415 ipx->ipx_writer = NULL; 6416 VERIFY(--ipx->ipx_reentry_cnt == 0); 6417 ipx->ipx_ipsq_queued = B_FALSE; 6418 mutex_exit(&ipx->ipx_lock); 6419 6420 /* 6421 * Third, set ipx to point to our new xop, and check 6422 * if we can become writer on it. If we cannot, then 6423 * the current writer will drain the IPSQ group when 6424 * it exits. Our ipsq_xop is guaranteed to be stable 6425 * because we're still holding ipsq_lock. 6426 */ 6427 ipx = ipsq->ipsq_xop; 6428 mutex_enter(&ipx->ipx_lock); 6429 if (ipx->ipx_writer != NULL || 6430 ipx->ipx_current_ipif != NULL) { 6431 goto out; 6432 } 6433 } 6434 6435 /* 6436 * Fourth, become writer on our new ipx before we continue 6437 * with the drain. Note that we never dropped ipsq_lock 6438 * above, so no other thread could've raced with us to 6439 * become writer first. Also, we're holding ipx_lock, so 6440 * no other thread can examine the ipx right now. 6441 */ 6442 ASSERT(ipx->ipx_current_ipif == NULL); 6443 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6444 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6445 ipx->ipx_writer = curthread; 6446 ipx->ipx_forced = B_FALSE; 6447 #ifdef DEBUG 6448 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6449 #endif 6450 } 6451 6452 xopipsq = ipsq; 6453 do { 6454 /* 6455 * So that other operations operate on a consistent and 6456 * complete phyint, a switch message on an IPSQ must be 6457 * handled prior to any other operations on that IPSQ. 6458 */ 6459 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6460 xopipsq->ipsq_switch_mp = NULL; 6461 ASSERT(mp->b_next == NULL); 6462 mp->b_next = (void *)xopipsq; 6463 goto out; 6464 } 6465 6466 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6467 xopipsq->ipsq_xopq_mphead = mp->b_next; 6468 if (xopipsq->ipsq_xopq_mphead == NULL) 6469 xopipsq->ipsq_xopq_mptail = NULL; 6470 mp->b_next = (void *)xopipsq; 6471 goto out; 6472 } 6473 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6474 empty: 6475 /* 6476 * There are no messages. Further, we are holding ipx_lock, hence no 6477 * new messages can end up on any IPSQ in the xop. 6478 */ 6479 ipx->ipx_writer = NULL; 6480 ipx->ipx_forced = B_FALSE; 6481 VERIFY(--ipx->ipx_reentry_cnt == 0); 6482 ipx->ipx_ipsq_queued = B_FALSE; 6483 emptied = B_TRUE; 6484 #ifdef DEBUG 6485 ipx->ipx_depth = 0; 6486 #endif 6487 out: 6488 mutex_exit(&ipx->ipx_lock); 6489 mutex_exit(&ipsq->ipsq_lock); 6490 6491 /* 6492 * If we completely emptied the xop, then wake up any threads waiting 6493 * to enter any of the IPSQ's associated with it. 6494 */ 6495 if (emptied) { 6496 xopipsq = ipsq; 6497 do { 6498 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6499 continue; 6500 6501 illv4 = phyi->phyint_illv4; 6502 illv6 = phyi->phyint_illv6; 6503 6504 GRAB_ILL_LOCKS(illv4, illv6); 6505 if (illv4 != NULL) 6506 cv_broadcast(&illv4->ill_cv); 6507 if (illv6 != NULL) 6508 cv_broadcast(&illv6->ill_cv); 6509 RELEASE_ILL_LOCKS(illv4, illv6); 6510 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6511 } 6512 rw_exit(&ipst->ips_ill_g_lock); 6513 6514 /* 6515 * Now that all locks are dropped, exit the IPSQ we left. 6516 */ 6517 if (leftipsq != NULL) 6518 ipsq_exit(leftipsq); 6519 6520 return (mp); 6521 } 6522 6523 /* 6524 * Return completion status of previously initiated DLPI operations on 6525 * ills in the purview of an ipsq. 6526 */ 6527 static boolean_t 6528 ipsq_dlpi_done(ipsq_t *ipsq) 6529 { 6530 ipsq_t *ipsq_start; 6531 phyint_t *phyi; 6532 ill_t *ill; 6533 6534 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6535 ipsq_start = ipsq; 6536 6537 do { 6538 /* 6539 * The only current users of this function are ipsq_try_enter 6540 * and ipsq_enter which have made sure that ipsq_writer is 6541 * NULL before we reach here. ill_dlpi_pending is modified 6542 * only by an ipsq writer 6543 */ 6544 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6545 phyi = ipsq->ipsq_phyint; 6546 /* 6547 * phyi could be NULL if a phyint that is part of an 6548 * IPMP group is being unplumbed. A more detailed 6549 * comment is in ipmp_grp_update_kstats() 6550 */ 6551 if (phyi != NULL) { 6552 ill = phyi->phyint_illv4; 6553 if (ill != NULL && 6554 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6555 ill->ill_arl_dlpi_pending)) 6556 return (B_FALSE); 6557 6558 ill = phyi->phyint_illv6; 6559 if (ill != NULL && 6560 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6561 return (B_FALSE); 6562 } 6563 6564 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6565 6566 return (B_TRUE); 6567 } 6568 6569 /* 6570 * Enter the ipsq corresponding to ill, by waiting synchronously till 6571 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6572 * will have to drain completely before ipsq_enter returns success. 6573 * ipx_current_ipif will be set if some exclusive op is in progress, 6574 * and the ipsq_exit logic will start the next enqueued op after 6575 * completion of the current op. If 'force' is used, we don't wait 6576 * for the enqueued ops. This is needed when a conn_close wants to 6577 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6578 * of an ill can also use this option. But we dont' use it currently. 6579 */ 6580 #define ENTER_SQ_WAIT_TICKS 100 6581 boolean_t 6582 ipsq_enter(ill_t *ill, boolean_t force, int type) 6583 { 6584 ipsq_t *ipsq; 6585 ipxop_t *ipx; 6586 boolean_t waited_enough = B_FALSE; 6587 ip_stack_t *ipst = ill->ill_ipst; 6588 6589 /* 6590 * Note that the relationship between ill and ipsq is fixed as long as 6591 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6592 * relationship between the IPSQ and xop cannot change. However, 6593 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6594 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6595 * waking up all ills in the xop when it becomes available. 6596 */ 6597 for (;;) { 6598 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6599 mutex_enter(&ill->ill_lock); 6600 if (ill->ill_state_flags & ILL_CONDEMNED) { 6601 mutex_exit(&ill->ill_lock); 6602 rw_exit(&ipst->ips_ill_g_lock); 6603 return (B_FALSE); 6604 } 6605 6606 ipsq = ill->ill_phyint->phyint_ipsq; 6607 mutex_enter(&ipsq->ipsq_lock); 6608 ipx = ipsq->ipsq_xop; 6609 mutex_enter(&ipx->ipx_lock); 6610 6611 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6612 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6613 waited_enough)) 6614 break; 6615 6616 rw_exit(&ipst->ips_ill_g_lock); 6617 6618 if (!force || ipx->ipx_writer != NULL) { 6619 mutex_exit(&ipx->ipx_lock); 6620 mutex_exit(&ipsq->ipsq_lock); 6621 cv_wait(&ill->ill_cv, &ill->ill_lock); 6622 } else { 6623 mutex_exit(&ipx->ipx_lock); 6624 mutex_exit(&ipsq->ipsq_lock); 6625 (void) cv_reltimedwait(&ill->ill_cv, 6626 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6627 waited_enough = B_TRUE; 6628 } 6629 mutex_exit(&ill->ill_lock); 6630 } 6631 6632 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6633 ASSERT(ipx->ipx_reentry_cnt == 0); 6634 ipx->ipx_writer = curthread; 6635 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6636 ipx->ipx_reentry_cnt++; 6637 #ifdef DEBUG 6638 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6639 #endif 6640 mutex_exit(&ipx->ipx_lock); 6641 mutex_exit(&ipsq->ipsq_lock); 6642 mutex_exit(&ill->ill_lock); 6643 rw_exit(&ipst->ips_ill_g_lock); 6644 6645 return (B_TRUE); 6646 } 6647 6648 /* 6649 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6650 * across the call to the core interface ipsq_try_enter() and hence calls this 6651 * function directly. This is explained more fully in ipif_set_values(). 6652 * In order to support the above constraint, ipsq_try_enter is implemented as 6653 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6654 */ 6655 static ipsq_t * 6656 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6657 int type, boolean_t reentry_ok) 6658 { 6659 ipsq_t *ipsq; 6660 ipxop_t *ipx; 6661 ip_stack_t *ipst = ill->ill_ipst; 6662 6663 /* 6664 * lock ordering: 6665 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6666 * 6667 * ipx of an ipsq can't change when ipsq_lock is held. 6668 */ 6669 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6670 GRAB_CONN_LOCK(q); 6671 mutex_enter(&ill->ill_lock); 6672 ipsq = ill->ill_phyint->phyint_ipsq; 6673 mutex_enter(&ipsq->ipsq_lock); 6674 ipx = ipsq->ipsq_xop; 6675 mutex_enter(&ipx->ipx_lock); 6676 6677 /* 6678 * 1. Enter the ipsq if we are already writer and reentry is ok. 6679 * (Note: If the caller does not specify reentry_ok then neither 6680 * 'func' nor any of its callees must ever attempt to enter the ipsq 6681 * again. Otherwise it can lead to an infinite loop 6682 * 2. Enter the ipsq if there is no current writer and this attempted 6683 * entry is part of the current operation 6684 * 3. Enter the ipsq if there is no current writer and this is a new 6685 * operation and the operation queue is empty and there is no 6686 * operation currently in progress and if all previously initiated 6687 * DLPI operations have completed. 6688 */ 6689 if ((ipx->ipx_writer == curthread && reentry_ok) || 6690 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6691 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6692 ipsq_dlpi_done(ipsq))))) { 6693 /* Success. */ 6694 ipx->ipx_reentry_cnt++; 6695 ipx->ipx_writer = curthread; 6696 ipx->ipx_forced = B_FALSE; 6697 mutex_exit(&ipx->ipx_lock); 6698 mutex_exit(&ipsq->ipsq_lock); 6699 mutex_exit(&ill->ill_lock); 6700 RELEASE_CONN_LOCK(q); 6701 #ifdef DEBUG 6702 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6703 #endif 6704 return (ipsq); 6705 } 6706 6707 if (func != NULL) 6708 ipsq_enq(ipsq, q, mp, func, type, ill); 6709 6710 mutex_exit(&ipx->ipx_lock); 6711 mutex_exit(&ipsq->ipsq_lock); 6712 mutex_exit(&ill->ill_lock); 6713 RELEASE_CONN_LOCK(q); 6714 return (NULL); 6715 } 6716 6717 /* 6718 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6719 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6720 * There is one ipsq per phyint. The ipsq 6721 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6722 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6723 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6724 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6725 * up the interface) and are enqueued in ipx_mphead. 6726 * 6727 * If a thread does not want to reenter the ipsq when it is already writer, 6728 * it must make sure that the specified reentry point to be called later 6729 * when the ipsq is empty, nor any code path starting from the specified reentry 6730 * point must never ever try to enter the ipsq again. Otherwise it can lead 6731 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6732 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6733 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6734 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6735 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6736 * ioctl if the current ioctl has completed. If the current ioctl is still 6737 * in progress it simply returns. The current ioctl could be waiting for 6738 * a response from another module (the driver or could be waiting for 6739 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6740 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6741 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6742 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6743 * all associated DLPI operations have completed. 6744 */ 6745 6746 /* 6747 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6748 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6749 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6750 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6751 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6752 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6753 */ 6754 ipsq_t * 6755 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6756 ipsq_func_t func, int type, boolean_t reentry_ok) 6757 { 6758 ip_stack_t *ipst; 6759 ipsq_t *ipsq; 6760 6761 /* Only 1 of ipif or ill can be specified */ 6762 ASSERT((ipif != NULL) ^ (ill != NULL)); 6763 6764 if (ipif != NULL) 6765 ill = ipif->ipif_ill; 6766 ipst = ill->ill_ipst; 6767 6768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6769 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6770 rw_exit(&ipst->ips_ill_g_lock); 6771 6772 return (ipsq); 6773 } 6774 6775 /* 6776 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6777 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6778 * cannot be entered, the mp is queued for completion. 6779 */ 6780 void 6781 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6782 boolean_t reentry_ok) 6783 { 6784 ipsq_t *ipsq; 6785 6786 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6787 6788 /* 6789 * Drop the caller's refhold on the ill. This is safe since we either 6790 * entered the IPSQ (and thus are exclusive), or failed to enter the 6791 * IPSQ, in which case we return without accessing ill anymore. This 6792 * is needed because func needs to see the correct refcount. 6793 * e.g. removeif can work only then. 6794 */ 6795 ill_refrele(ill); 6796 if (ipsq != NULL) { 6797 (*func)(ipsq, q, mp, NULL); 6798 ipsq_exit(ipsq); 6799 } 6800 } 6801 6802 /* 6803 * Exit the specified IPSQ. If this is the final exit on it then drain it 6804 * prior to exiting. Caller must be writer on the specified IPSQ. 6805 */ 6806 void 6807 ipsq_exit(ipsq_t *ipsq) 6808 { 6809 mblk_t *mp; 6810 ipsq_t *mp_ipsq; 6811 queue_t *q; 6812 phyint_t *phyi; 6813 ipsq_func_t func; 6814 6815 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6816 6817 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6818 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6819 ipsq->ipsq_xop->ipx_reentry_cnt--; 6820 return; 6821 } 6822 6823 for (;;) { 6824 phyi = ipsq->ipsq_phyint; 6825 mp = ipsq_dq(ipsq); 6826 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6827 6828 /* 6829 * If we've changed to a new IPSQ, and the phyint associated 6830 * with the old one has gone away, free the old IPSQ. Note 6831 * that this cannot happen while the IPSQ is in a group. 6832 */ 6833 if (mp_ipsq != ipsq && phyi == NULL) { 6834 ASSERT(ipsq->ipsq_next == ipsq); 6835 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6836 ipsq_delete(ipsq); 6837 } 6838 6839 if (mp == NULL) 6840 break; 6841 6842 q = mp->b_queue; 6843 func = (ipsq_func_t)mp->b_prev; 6844 ipsq = mp_ipsq; 6845 mp->b_next = mp->b_prev = NULL; 6846 mp->b_queue = NULL; 6847 6848 /* 6849 * If 'q' is an conn queue, it is valid, since we did a 6850 * a refhold on the conn at the start of the ioctl. 6851 * If 'q' is an ill queue, it is valid, since close of an 6852 * ill will clean up its IPSQ. 6853 */ 6854 (*func)(ipsq, q, mp, NULL); 6855 } 6856 } 6857 6858 /* 6859 * Used to start any igmp or mld timers that could not be started 6860 * while holding ill_mcast_lock. The timers can't be started while holding 6861 * the lock, since mld/igmp_start_timers may need to call untimeout() 6862 * which can't be done while holding the lock which the timeout handler 6863 * acquires. Otherwise 6864 * there could be a deadlock since the timeout handlers 6865 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6866 * ill_mcast_lock. 6867 */ 6868 void 6869 ill_mcast_timer_start(ip_stack_t *ipst) 6870 { 6871 int next; 6872 6873 mutex_enter(&ipst->ips_igmp_timer_lock); 6874 next = ipst->ips_igmp_deferred_next; 6875 ipst->ips_igmp_deferred_next = INFINITY; 6876 mutex_exit(&ipst->ips_igmp_timer_lock); 6877 6878 if (next != INFINITY) 6879 igmp_start_timers(next, ipst); 6880 6881 mutex_enter(&ipst->ips_mld_timer_lock); 6882 next = ipst->ips_mld_deferred_next; 6883 ipst->ips_mld_deferred_next = INFINITY; 6884 mutex_exit(&ipst->ips_mld_timer_lock); 6885 6886 if (next != INFINITY) 6887 mld_start_timers(next, ipst); 6888 } 6889 6890 /* 6891 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6892 * and `ioccmd'. 6893 */ 6894 void 6895 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6896 { 6897 ill_t *ill = ipif->ipif_ill; 6898 ipxop_t *ipx = ipsq->ipsq_xop; 6899 6900 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6901 ASSERT(ipx->ipx_current_ipif == NULL); 6902 ASSERT(ipx->ipx_current_ioctl == 0); 6903 6904 ipx->ipx_current_done = B_FALSE; 6905 ipx->ipx_current_ioctl = ioccmd; 6906 mutex_enter(&ipx->ipx_lock); 6907 ipx->ipx_current_ipif = ipif; 6908 mutex_exit(&ipx->ipx_lock); 6909 6910 /* 6911 * Set IPIF_CHANGING on one or more ipifs associated with the 6912 * current exclusive operation. IPIF_CHANGING prevents any new 6913 * references to the ipif (so that the references will eventually 6914 * drop to zero) and also prevents any "get" operations (e.g., 6915 * SIOCGLIFFLAGS) from being able to access the ipif until the 6916 * operation has completed and the ipif is again in a stable state. 6917 * 6918 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6919 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6920 * on the ill are marked with IPIF_CHANGING since it's unclear which 6921 * ipifs will be affected. 6922 * 6923 * Note that SIOCLIFREMOVEIF is a special case as it sets 6924 * IPIF_CONDEMNED internally after identifying the right ipif to 6925 * operate on. 6926 */ 6927 switch (ioccmd) { 6928 case SIOCLIFREMOVEIF: 6929 break; 6930 case 0: 6931 mutex_enter(&ill->ill_lock); 6932 ipif = ipif->ipif_ill->ill_ipif; 6933 for (; ipif != NULL; ipif = ipif->ipif_next) 6934 ipif->ipif_state_flags |= IPIF_CHANGING; 6935 mutex_exit(&ill->ill_lock); 6936 break; 6937 default: 6938 mutex_enter(&ill->ill_lock); 6939 ipif->ipif_state_flags |= IPIF_CHANGING; 6940 mutex_exit(&ill->ill_lock); 6941 } 6942 } 6943 6944 /* 6945 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6946 * the next exclusive operation to begin once we ipsq_exit(). However, if 6947 * pending DLPI operations remain, then we will wait for the queue to drain 6948 * before allowing the next exclusive operation to begin. This ensures that 6949 * DLPI operations from one exclusive operation are never improperly processed 6950 * as part of a subsequent exclusive operation. 6951 */ 6952 void 6953 ipsq_current_finish(ipsq_t *ipsq) 6954 { 6955 ipxop_t *ipx = ipsq->ipsq_xop; 6956 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6957 ipif_t *ipif = ipx->ipx_current_ipif; 6958 6959 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6960 6961 /* 6962 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6963 * (but in that case, IPIF_CHANGING will already be clear and no 6964 * pending DLPI messages can remain). 6965 */ 6966 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6967 ill_t *ill = ipif->ipif_ill; 6968 6969 mutex_enter(&ill->ill_lock); 6970 dlpi_pending = ill->ill_dlpi_pending; 6971 if (ipx->ipx_current_ioctl == 0) { 6972 ipif = ill->ill_ipif; 6973 for (; ipif != NULL; ipif = ipif->ipif_next) 6974 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6975 } else { 6976 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6977 } 6978 mutex_exit(&ill->ill_lock); 6979 } 6980 6981 ASSERT(!ipx->ipx_current_done); 6982 ipx->ipx_current_done = B_TRUE; 6983 ipx->ipx_current_ioctl = 0; 6984 if (dlpi_pending == DL_PRIM_INVAL) { 6985 mutex_enter(&ipx->ipx_lock); 6986 ipx->ipx_current_ipif = NULL; 6987 mutex_exit(&ipx->ipx_lock); 6988 } 6989 } 6990 6991 /* 6992 * The ill is closing. Flush all messages on the ipsq that originated 6993 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6994 * for this ill since ipsq_enter could not have entered until then. 6995 * New messages can't be queued since the CONDEMNED flag is set. 6996 */ 6997 static void 6998 ipsq_flush(ill_t *ill) 6999 { 7000 queue_t *q; 7001 mblk_t *prev; 7002 mblk_t *mp; 7003 mblk_t *mp_next; 7004 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7005 7006 ASSERT(IAM_WRITER_ILL(ill)); 7007 7008 /* 7009 * Flush any messages sent up by the driver. 7010 */ 7011 mutex_enter(&ipx->ipx_lock); 7012 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7013 mp_next = mp->b_next; 7014 q = mp->b_queue; 7015 if (q == ill->ill_rq || q == ill->ill_wq) { 7016 /* dequeue mp */ 7017 if (prev == NULL) 7018 ipx->ipx_mphead = mp->b_next; 7019 else 7020 prev->b_next = mp->b_next; 7021 if (ipx->ipx_mptail == mp) { 7022 ASSERT(mp_next == NULL); 7023 ipx->ipx_mptail = prev; 7024 } 7025 inet_freemsg(mp); 7026 } else { 7027 prev = mp; 7028 } 7029 } 7030 mutex_exit(&ipx->ipx_lock); 7031 (void) ipsq_pending_mp_cleanup(ill, NULL); 7032 ipsq_xopq_mp_cleanup(ill, NULL); 7033 } 7034 7035 /* 7036 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7037 * and return the associated ipif. 7038 * Return value: 7039 * Non zero: An error has occurred. ci may not be filled out. 7040 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7041 * a held ipif in ci.ci_ipif. 7042 */ 7043 int 7044 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7045 cmd_info_t *ci) 7046 { 7047 char *name; 7048 struct ifreq *ifr; 7049 struct lifreq *lifr; 7050 ipif_t *ipif = NULL; 7051 ill_t *ill; 7052 conn_t *connp; 7053 boolean_t isv6; 7054 int err; 7055 mblk_t *mp1; 7056 zoneid_t zoneid; 7057 ip_stack_t *ipst; 7058 7059 if (q->q_next != NULL) { 7060 ill = (ill_t *)q->q_ptr; 7061 isv6 = ill->ill_isv6; 7062 connp = NULL; 7063 zoneid = ALL_ZONES; 7064 ipst = ill->ill_ipst; 7065 } else { 7066 ill = NULL; 7067 connp = Q_TO_CONN(q); 7068 isv6 = (connp->conn_family == AF_INET6); 7069 zoneid = connp->conn_zoneid; 7070 if (zoneid == GLOBAL_ZONEID) { 7071 /* global zone can access ipifs in all zones */ 7072 zoneid = ALL_ZONES; 7073 } 7074 ipst = connp->conn_netstack->netstack_ip; 7075 } 7076 7077 /* Has been checked in ip_wput_nondata */ 7078 mp1 = mp->b_cont->b_cont; 7079 7080 if (ipip->ipi_cmd_type == IF_CMD) { 7081 /* This a old style SIOC[GS]IF* command */ 7082 ifr = (struct ifreq *)mp1->b_rptr; 7083 /* 7084 * Null terminate the string to protect against buffer 7085 * overrun. String was generated by user code and may not 7086 * be trusted. 7087 */ 7088 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7089 name = ifr->ifr_name; 7090 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7091 ci->ci_sin6 = NULL; 7092 ci->ci_lifr = (struct lifreq *)ifr; 7093 } else { 7094 /* This a new style SIOC[GS]LIF* command */ 7095 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7096 lifr = (struct lifreq *)mp1->b_rptr; 7097 /* 7098 * Null terminate the string to protect against buffer 7099 * overrun. String was generated by user code and may not 7100 * be trusted. 7101 */ 7102 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7103 name = lifr->lifr_name; 7104 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7105 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7106 ci->ci_lifr = lifr; 7107 } 7108 7109 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7110 /* 7111 * The ioctl will be failed if the ioctl comes down 7112 * an conn stream 7113 */ 7114 if (ill == NULL) { 7115 /* 7116 * Not an ill queue, return EINVAL same as the 7117 * old error code. 7118 */ 7119 return (ENXIO); 7120 } 7121 ipif = ill->ill_ipif; 7122 ipif_refhold(ipif); 7123 } else { 7124 /* 7125 * Ensure that ioctls don't see any internal state changes 7126 * caused by set ioctls by deferring them if IPIF_CHANGING is 7127 * set. 7128 */ 7129 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7130 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7131 if (ipif == NULL) { 7132 if (err == EINPROGRESS) 7133 return (err); 7134 err = 0; /* Ensure we don't use it below */ 7135 } 7136 } 7137 7138 /* 7139 * Old style [GS]IFCMD does not admit IPv6 ipif 7140 */ 7141 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7142 ipif_refrele(ipif); 7143 return (ENXIO); 7144 } 7145 7146 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7147 name[0] == '\0') { 7148 /* 7149 * Handle a or a SIOC?IF* with a null name 7150 * during plumb (on the ill queue before the I_PLINK). 7151 */ 7152 ipif = ill->ill_ipif; 7153 ipif_refhold(ipif); 7154 } 7155 7156 if (ipif == NULL) 7157 return (ENXIO); 7158 7159 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7160 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7161 7162 ci->ci_ipif = ipif; 7163 return (0); 7164 } 7165 7166 /* 7167 * Return the total number of ipifs. 7168 */ 7169 static uint_t 7170 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7171 { 7172 uint_t numifs = 0; 7173 ill_t *ill; 7174 ill_walk_context_t ctx; 7175 ipif_t *ipif; 7176 7177 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7178 ill = ILL_START_WALK_V4(&ctx, ipst); 7179 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7180 if (IS_UNDER_IPMP(ill)) 7181 continue; 7182 for (ipif = ill->ill_ipif; ipif != NULL; 7183 ipif = ipif->ipif_next) { 7184 if (ipif->ipif_zoneid == zoneid || 7185 ipif->ipif_zoneid == ALL_ZONES) 7186 numifs++; 7187 } 7188 } 7189 rw_exit(&ipst->ips_ill_g_lock); 7190 return (numifs); 7191 } 7192 7193 /* 7194 * Return the total number of ipifs. 7195 */ 7196 static uint_t 7197 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7198 { 7199 uint_t numifs = 0; 7200 ill_t *ill; 7201 ipif_t *ipif; 7202 ill_walk_context_t ctx; 7203 7204 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7205 7206 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7207 if (family == AF_INET) 7208 ill = ILL_START_WALK_V4(&ctx, ipst); 7209 else if (family == AF_INET6) 7210 ill = ILL_START_WALK_V6(&ctx, ipst); 7211 else 7212 ill = ILL_START_WALK_ALL(&ctx, ipst); 7213 7214 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7215 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7216 continue; 7217 7218 for (ipif = ill->ill_ipif; ipif != NULL; 7219 ipif = ipif->ipif_next) { 7220 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7221 !(lifn_flags & LIFC_NOXMIT)) 7222 continue; 7223 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7224 !(lifn_flags & LIFC_TEMPORARY)) 7225 continue; 7226 if (((ipif->ipif_flags & 7227 (IPIF_NOXMIT|IPIF_NOLOCAL| 7228 IPIF_DEPRECATED)) || 7229 IS_LOOPBACK(ill) || 7230 !(ipif->ipif_flags & IPIF_UP)) && 7231 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7232 continue; 7233 7234 if (zoneid != ipif->ipif_zoneid && 7235 ipif->ipif_zoneid != ALL_ZONES && 7236 (zoneid != GLOBAL_ZONEID || 7237 !(lifn_flags & LIFC_ALLZONES))) 7238 continue; 7239 7240 numifs++; 7241 } 7242 } 7243 rw_exit(&ipst->ips_ill_g_lock); 7244 return (numifs); 7245 } 7246 7247 uint_t 7248 ip_get_lifsrcofnum(ill_t *ill) 7249 { 7250 uint_t numifs = 0; 7251 ill_t *ill_head = ill; 7252 ip_stack_t *ipst = ill->ill_ipst; 7253 7254 /* 7255 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7256 * other thread may be trying to relink the ILLs in this usesrc group 7257 * and adjusting the ill_usesrc_grp_next pointers 7258 */ 7259 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7260 if ((ill->ill_usesrc_ifindex == 0) && 7261 (ill->ill_usesrc_grp_next != NULL)) { 7262 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7263 ill = ill->ill_usesrc_grp_next) 7264 numifs++; 7265 } 7266 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7267 7268 return (numifs); 7269 } 7270 7271 /* Null values are passed in for ipif, sin, and ifreq */ 7272 /* ARGSUSED */ 7273 int 7274 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7275 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7276 { 7277 int *nump; 7278 conn_t *connp = Q_TO_CONN(q); 7279 7280 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7281 7282 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7283 nump = (int *)mp->b_cont->b_cont->b_rptr; 7284 7285 *nump = ip_get_numifs(connp->conn_zoneid, 7286 connp->conn_netstack->netstack_ip); 7287 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7288 return (0); 7289 } 7290 7291 /* Null values are passed in for ipif, sin, and ifreq */ 7292 /* ARGSUSED */ 7293 int 7294 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7295 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7296 { 7297 struct lifnum *lifn; 7298 mblk_t *mp1; 7299 conn_t *connp = Q_TO_CONN(q); 7300 7301 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7302 7303 /* Existence checked in ip_wput_nondata */ 7304 mp1 = mp->b_cont->b_cont; 7305 7306 lifn = (struct lifnum *)mp1->b_rptr; 7307 switch (lifn->lifn_family) { 7308 case AF_UNSPEC: 7309 case AF_INET: 7310 case AF_INET6: 7311 break; 7312 default: 7313 return (EAFNOSUPPORT); 7314 } 7315 7316 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7317 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7318 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7319 return (0); 7320 } 7321 7322 /* ARGSUSED */ 7323 int 7324 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7325 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7326 { 7327 STRUCT_HANDLE(ifconf, ifc); 7328 mblk_t *mp1; 7329 struct iocblk *iocp; 7330 struct ifreq *ifr; 7331 ill_walk_context_t ctx; 7332 ill_t *ill; 7333 ipif_t *ipif; 7334 struct sockaddr_in *sin; 7335 int32_t ifclen; 7336 zoneid_t zoneid; 7337 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7338 7339 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7340 7341 ip1dbg(("ip_sioctl_get_ifconf")); 7342 /* Existence verified in ip_wput_nondata */ 7343 mp1 = mp->b_cont->b_cont; 7344 iocp = (struct iocblk *)mp->b_rptr; 7345 zoneid = Q_TO_CONN(q)->conn_zoneid; 7346 7347 /* 7348 * The original SIOCGIFCONF passed in a struct ifconf which specified 7349 * the user buffer address and length into which the list of struct 7350 * ifreqs was to be copied. Since AT&T Streams does not seem to 7351 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7352 * the SIOCGIFCONF operation was redefined to simply provide 7353 * a large output buffer into which we are supposed to jam the ifreq 7354 * array. The same ioctl command code was used, despite the fact that 7355 * both the applications and the kernel code had to change, thus making 7356 * it impossible to support both interfaces. 7357 * 7358 * For reasons not good enough to try to explain, the following 7359 * algorithm is used for deciding what to do with one of these: 7360 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7361 * form with the output buffer coming down as the continuation message. 7362 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7363 * and we have to copy in the ifconf structure to find out how big the 7364 * output buffer is and where to copy out to. Sure no problem... 7365 * 7366 */ 7367 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7368 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7369 int numifs = 0; 7370 size_t ifc_bufsize; 7371 7372 /* 7373 * Must be (better be!) continuation of a TRANSPARENT 7374 * IOCTL. We just copied in the ifconf structure. 7375 */ 7376 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7377 (struct ifconf *)mp1->b_rptr); 7378 7379 /* 7380 * Allocate a buffer to hold requested information. 7381 * 7382 * If ifc_len is larger than what is needed, we only 7383 * allocate what we will use. 7384 * 7385 * If ifc_len is smaller than what is needed, return 7386 * EINVAL. 7387 * 7388 * XXX: the ill_t structure can hava 2 counters, for 7389 * v4 and v6 (not just ill_ipif_up_count) to store the 7390 * number of interfaces for a device, so we don't need 7391 * to count them here... 7392 */ 7393 numifs = ip_get_numifs(zoneid, ipst); 7394 7395 ifclen = STRUCT_FGET(ifc, ifc_len); 7396 ifc_bufsize = numifs * sizeof (struct ifreq); 7397 if (ifc_bufsize > ifclen) { 7398 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7399 /* old behaviour */ 7400 return (EINVAL); 7401 } else { 7402 ifc_bufsize = ifclen; 7403 } 7404 } 7405 7406 mp1 = mi_copyout_alloc(q, mp, 7407 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7408 if (mp1 == NULL) 7409 return (ENOMEM); 7410 7411 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7412 } 7413 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7414 /* 7415 * the SIOCGIFCONF ioctl only knows about 7416 * IPv4 addresses, so don't try to tell 7417 * it about interfaces with IPv6-only 7418 * addresses. (Last parm 'isv6' is B_FALSE) 7419 */ 7420 7421 ifr = (struct ifreq *)mp1->b_rptr; 7422 7423 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7424 ill = ILL_START_WALK_V4(&ctx, ipst); 7425 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7426 if (IS_UNDER_IPMP(ill)) 7427 continue; 7428 for (ipif = ill->ill_ipif; ipif != NULL; 7429 ipif = ipif->ipif_next) { 7430 if (zoneid != ipif->ipif_zoneid && 7431 ipif->ipif_zoneid != ALL_ZONES) 7432 continue; 7433 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7434 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7435 /* old behaviour */ 7436 rw_exit(&ipst->ips_ill_g_lock); 7437 return (EINVAL); 7438 } else { 7439 goto if_copydone; 7440 } 7441 } 7442 ipif_get_name(ipif, ifr->ifr_name, 7443 sizeof (ifr->ifr_name)); 7444 sin = (sin_t *)&ifr->ifr_addr; 7445 *sin = sin_null; 7446 sin->sin_family = AF_INET; 7447 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7448 ifr++; 7449 } 7450 } 7451 if_copydone: 7452 rw_exit(&ipst->ips_ill_g_lock); 7453 mp1->b_wptr = (uchar_t *)ifr; 7454 7455 if (STRUCT_BUF(ifc) != NULL) { 7456 STRUCT_FSET(ifc, ifc_len, 7457 (int)((uchar_t *)ifr - mp1->b_rptr)); 7458 } 7459 return (0); 7460 } 7461 7462 /* 7463 * Get the interfaces using the address hosted on the interface passed in, 7464 * as a source adddress 7465 */ 7466 /* ARGSUSED */ 7467 int 7468 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7469 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7470 { 7471 mblk_t *mp1; 7472 ill_t *ill, *ill_head; 7473 ipif_t *ipif, *orig_ipif; 7474 int numlifs = 0; 7475 size_t lifs_bufsize, lifsmaxlen; 7476 struct lifreq *lifr; 7477 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7478 uint_t ifindex; 7479 zoneid_t zoneid; 7480 boolean_t isv6 = B_FALSE; 7481 struct sockaddr_in *sin; 7482 struct sockaddr_in6 *sin6; 7483 STRUCT_HANDLE(lifsrcof, lifs); 7484 ip_stack_t *ipst; 7485 7486 ipst = CONNQ_TO_IPST(q); 7487 7488 ASSERT(q->q_next == NULL); 7489 7490 zoneid = Q_TO_CONN(q)->conn_zoneid; 7491 7492 /* Existence verified in ip_wput_nondata */ 7493 mp1 = mp->b_cont->b_cont; 7494 7495 /* 7496 * Must be (better be!) continuation of a TRANSPARENT 7497 * IOCTL. We just copied in the lifsrcof structure. 7498 */ 7499 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7500 (struct lifsrcof *)mp1->b_rptr); 7501 7502 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7503 return (EINVAL); 7504 7505 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7506 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7507 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7508 if (ipif == NULL) { 7509 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7510 ifindex)); 7511 return (ENXIO); 7512 } 7513 7514 /* Allocate a buffer to hold requested information */ 7515 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7516 lifs_bufsize = numlifs * sizeof (struct lifreq); 7517 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7518 /* The actual size needed is always returned in lifs_len */ 7519 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7520 7521 /* If the amount we need is more than what is passed in, abort */ 7522 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7523 ipif_refrele(ipif); 7524 return (0); 7525 } 7526 7527 mp1 = mi_copyout_alloc(q, mp, 7528 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7529 if (mp1 == NULL) { 7530 ipif_refrele(ipif); 7531 return (ENOMEM); 7532 } 7533 7534 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7535 bzero(mp1->b_rptr, lifs_bufsize); 7536 7537 lifr = (struct lifreq *)mp1->b_rptr; 7538 7539 ill = ill_head = ipif->ipif_ill; 7540 orig_ipif = ipif; 7541 7542 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7543 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7544 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7545 7546 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7547 for (; (ill != NULL) && (ill != ill_head); 7548 ill = ill->ill_usesrc_grp_next) { 7549 7550 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7551 break; 7552 7553 ipif = ill->ill_ipif; 7554 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7555 if (ipif->ipif_isv6) { 7556 sin6 = (sin6_t *)&lifr->lifr_addr; 7557 *sin6 = sin6_null; 7558 sin6->sin6_family = AF_INET6; 7559 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7560 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7561 &ipif->ipif_v6net_mask); 7562 } else { 7563 sin = (sin_t *)&lifr->lifr_addr; 7564 *sin = sin_null; 7565 sin->sin_family = AF_INET; 7566 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7567 lifr->lifr_addrlen = ip_mask_to_plen( 7568 ipif->ipif_net_mask); 7569 } 7570 lifr++; 7571 } 7572 rw_exit(&ipst->ips_ill_g_lock); 7573 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7574 ipif_refrele(orig_ipif); 7575 mp1->b_wptr = (uchar_t *)lifr; 7576 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7577 7578 return (0); 7579 } 7580 7581 /* ARGSUSED */ 7582 int 7583 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7584 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7585 { 7586 mblk_t *mp1; 7587 int list; 7588 ill_t *ill; 7589 ipif_t *ipif; 7590 int flags; 7591 int numlifs = 0; 7592 size_t lifc_bufsize; 7593 struct lifreq *lifr; 7594 sa_family_t family; 7595 struct sockaddr_in *sin; 7596 struct sockaddr_in6 *sin6; 7597 ill_walk_context_t ctx; 7598 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7599 int32_t lifclen; 7600 zoneid_t zoneid; 7601 STRUCT_HANDLE(lifconf, lifc); 7602 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7603 7604 ip1dbg(("ip_sioctl_get_lifconf")); 7605 7606 ASSERT(q->q_next == NULL); 7607 7608 zoneid = Q_TO_CONN(q)->conn_zoneid; 7609 7610 /* Existence verified in ip_wput_nondata */ 7611 mp1 = mp->b_cont->b_cont; 7612 7613 /* 7614 * An extended version of SIOCGIFCONF that takes an 7615 * additional address family and flags field. 7616 * AF_UNSPEC retrieve both IPv4 and IPv6. 7617 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7618 * interfaces are omitted. 7619 * Similarly, IPIF_TEMPORARY interfaces are omitted 7620 * unless LIFC_TEMPORARY is specified. 7621 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7622 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7623 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7624 * has priority over LIFC_NOXMIT. 7625 */ 7626 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7627 7628 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7629 return (EINVAL); 7630 7631 /* 7632 * Must be (better be!) continuation of a TRANSPARENT 7633 * IOCTL. We just copied in the lifconf structure. 7634 */ 7635 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7636 7637 family = STRUCT_FGET(lifc, lifc_family); 7638 flags = STRUCT_FGET(lifc, lifc_flags); 7639 7640 switch (family) { 7641 case AF_UNSPEC: 7642 /* 7643 * walk all ILL's. 7644 */ 7645 list = MAX_G_HEADS; 7646 break; 7647 case AF_INET: 7648 /* 7649 * walk only IPV4 ILL's. 7650 */ 7651 list = IP_V4_G_HEAD; 7652 break; 7653 case AF_INET6: 7654 /* 7655 * walk only IPV6 ILL's. 7656 */ 7657 list = IP_V6_G_HEAD; 7658 break; 7659 default: 7660 return (EAFNOSUPPORT); 7661 } 7662 7663 /* 7664 * Allocate a buffer to hold requested information. 7665 * 7666 * If lifc_len is larger than what is needed, we only 7667 * allocate what we will use. 7668 * 7669 * If lifc_len is smaller than what is needed, return 7670 * EINVAL. 7671 */ 7672 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7673 lifc_bufsize = numlifs * sizeof (struct lifreq); 7674 lifclen = STRUCT_FGET(lifc, lifc_len); 7675 if (lifc_bufsize > lifclen) { 7676 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7677 return (EINVAL); 7678 else 7679 lifc_bufsize = lifclen; 7680 } 7681 7682 mp1 = mi_copyout_alloc(q, mp, 7683 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7684 if (mp1 == NULL) 7685 return (ENOMEM); 7686 7687 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7688 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7689 7690 lifr = (struct lifreq *)mp1->b_rptr; 7691 7692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7693 ill = ill_first(list, list, &ctx, ipst); 7694 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7695 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7696 continue; 7697 7698 for (ipif = ill->ill_ipif; ipif != NULL; 7699 ipif = ipif->ipif_next) { 7700 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7701 !(flags & LIFC_NOXMIT)) 7702 continue; 7703 7704 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7705 !(flags & LIFC_TEMPORARY)) 7706 continue; 7707 7708 if (((ipif->ipif_flags & 7709 (IPIF_NOXMIT|IPIF_NOLOCAL| 7710 IPIF_DEPRECATED)) || 7711 IS_LOOPBACK(ill) || 7712 !(ipif->ipif_flags & IPIF_UP)) && 7713 (flags & LIFC_EXTERNAL_SOURCE)) 7714 continue; 7715 7716 if (zoneid != ipif->ipif_zoneid && 7717 ipif->ipif_zoneid != ALL_ZONES && 7718 (zoneid != GLOBAL_ZONEID || 7719 !(flags & LIFC_ALLZONES))) 7720 continue; 7721 7722 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7723 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7724 rw_exit(&ipst->ips_ill_g_lock); 7725 return (EINVAL); 7726 } else { 7727 goto lif_copydone; 7728 } 7729 } 7730 7731 ipif_get_name(ipif, lifr->lifr_name, 7732 sizeof (lifr->lifr_name)); 7733 lifr->lifr_type = ill->ill_type; 7734 if (ipif->ipif_isv6) { 7735 sin6 = (sin6_t *)&lifr->lifr_addr; 7736 *sin6 = sin6_null; 7737 sin6->sin6_family = AF_INET6; 7738 sin6->sin6_addr = 7739 ipif->ipif_v6lcl_addr; 7740 lifr->lifr_addrlen = 7741 ip_mask_to_plen_v6( 7742 &ipif->ipif_v6net_mask); 7743 } else { 7744 sin = (sin_t *)&lifr->lifr_addr; 7745 *sin = sin_null; 7746 sin->sin_family = AF_INET; 7747 sin->sin_addr.s_addr = 7748 ipif->ipif_lcl_addr; 7749 lifr->lifr_addrlen = 7750 ip_mask_to_plen( 7751 ipif->ipif_net_mask); 7752 } 7753 lifr++; 7754 } 7755 } 7756 lif_copydone: 7757 rw_exit(&ipst->ips_ill_g_lock); 7758 7759 mp1->b_wptr = (uchar_t *)lifr; 7760 if (STRUCT_BUF(lifc) != NULL) { 7761 STRUCT_FSET(lifc, lifc_len, 7762 (int)((uchar_t *)lifr - mp1->b_rptr)); 7763 } 7764 return (0); 7765 } 7766 7767 static void 7768 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7769 { 7770 ip6_asp_t *table; 7771 size_t table_size; 7772 mblk_t *data_mp; 7773 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7774 ip_stack_t *ipst; 7775 7776 if (q->q_next == NULL) 7777 ipst = CONNQ_TO_IPST(q); 7778 else 7779 ipst = ILLQ_TO_IPST(q); 7780 7781 /* These two ioctls are I_STR only */ 7782 if (iocp->ioc_count == TRANSPARENT) { 7783 miocnak(q, mp, 0, EINVAL); 7784 return; 7785 } 7786 7787 data_mp = mp->b_cont; 7788 if (data_mp == NULL) { 7789 /* The user passed us a NULL argument */ 7790 table = NULL; 7791 table_size = iocp->ioc_count; 7792 } else { 7793 /* 7794 * The user provided a table. The stream head 7795 * may have copied in the user data in chunks, 7796 * so make sure everything is pulled up 7797 * properly. 7798 */ 7799 if (MBLKL(data_mp) < iocp->ioc_count) { 7800 mblk_t *new_data_mp; 7801 if ((new_data_mp = msgpullup(data_mp, -1)) == 7802 NULL) { 7803 miocnak(q, mp, 0, ENOMEM); 7804 return; 7805 } 7806 freemsg(data_mp); 7807 data_mp = new_data_mp; 7808 mp->b_cont = data_mp; 7809 } 7810 table = (ip6_asp_t *)data_mp->b_rptr; 7811 table_size = iocp->ioc_count; 7812 } 7813 7814 switch (iocp->ioc_cmd) { 7815 case SIOCGIP6ADDRPOLICY: 7816 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7817 if (iocp->ioc_rval == -1) 7818 iocp->ioc_error = EINVAL; 7819 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7820 else if (table != NULL && 7821 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7822 ip6_asp_t *src = table; 7823 ip6_asp32_t *dst = (void *)table; 7824 int count = table_size / sizeof (ip6_asp_t); 7825 int i; 7826 7827 /* 7828 * We need to do an in-place shrink of the array 7829 * to match the alignment attributes of the 7830 * 32-bit ABI looking at it. 7831 */ 7832 /* LINTED: logical expression always true: op "||" */ 7833 ASSERT(sizeof (*src) > sizeof (*dst)); 7834 for (i = 1; i < count; i++) 7835 bcopy(src + i, dst + i, sizeof (*dst)); 7836 } 7837 #endif 7838 break; 7839 7840 case SIOCSIP6ADDRPOLICY: 7841 ASSERT(mp->b_prev == NULL); 7842 mp->b_prev = (void *)q; 7843 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7844 /* 7845 * We pass in the datamodel here so that the ip6_asp_replace() 7846 * routine can handle converting from 32-bit to native formats 7847 * where necessary. 7848 * 7849 * A better way to handle this might be to convert the inbound 7850 * data structure here, and hang it off a new 'mp'; thus the 7851 * ip6_asp_replace() logic would always be dealing with native 7852 * format data structures.. 7853 * 7854 * (An even simpler way to handle these ioctls is to just 7855 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7856 * and just recompile everything that depends on it.) 7857 */ 7858 #endif 7859 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7860 iocp->ioc_flag & IOC_MODELS); 7861 return; 7862 } 7863 7864 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7865 qreply(q, mp); 7866 } 7867 7868 static void 7869 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7870 { 7871 mblk_t *data_mp; 7872 struct dstinforeq *dir; 7873 uint8_t *end, *cur; 7874 in6_addr_t *daddr, *saddr; 7875 ipaddr_t v4daddr; 7876 ire_t *ire; 7877 ipaddr_t v4setsrc; 7878 in6_addr_t v6setsrc; 7879 char *slabel, *dlabel; 7880 boolean_t isipv4; 7881 int match_ire; 7882 ill_t *dst_ill; 7883 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7884 conn_t *connp = Q_TO_CONN(q); 7885 zoneid_t zoneid = IPCL_ZONEID(connp); 7886 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7887 uint64_t ipif_flags; 7888 7889 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7890 7891 /* 7892 * This ioctl is I_STR only, and must have a 7893 * data mblk following the M_IOCTL mblk. 7894 */ 7895 data_mp = mp->b_cont; 7896 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7897 miocnak(q, mp, 0, EINVAL); 7898 return; 7899 } 7900 7901 if (MBLKL(data_mp) < iocp->ioc_count) { 7902 mblk_t *new_data_mp; 7903 7904 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7905 miocnak(q, mp, 0, ENOMEM); 7906 return; 7907 } 7908 freemsg(data_mp); 7909 data_mp = new_data_mp; 7910 mp->b_cont = data_mp; 7911 } 7912 match_ire = MATCH_IRE_DSTONLY; 7913 7914 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7915 end - cur >= sizeof (struct dstinforeq); 7916 cur += sizeof (struct dstinforeq)) { 7917 dir = (struct dstinforeq *)cur; 7918 daddr = &dir->dir_daddr; 7919 saddr = &dir->dir_saddr; 7920 7921 /* 7922 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7923 * v4 mapped addresses; ire_ftable_lookup_v6() 7924 * and ip_select_source_v6() do not. 7925 */ 7926 dir->dir_dscope = ip_addr_scope_v6(daddr); 7927 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7928 7929 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7930 if (isipv4) { 7931 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7932 v4setsrc = INADDR_ANY; 7933 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7934 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7935 NULL, NULL); 7936 } else { 7937 v6setsrc = ipv6_all_zeros; 7938 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7939 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7940 NULL, NULL); 7941 } 7942 ASSERT(ire != NULL); 7943 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7944 ire_refrele(ire); 7945 dir->dir_dreachable = 0; 7946 7947 /* move on to next dst addr */ 7948 continue; 7949 } 7950 dir->dir_dreachable = 1; 7951 7952 dst_ill = ire_nexthop_ill(ire); 7953 if (dst_ill == NULL) { 7954 ire_refrele(ire); 7955 continue; 7956 } 7957 7958 /* With ipmp we most likely look at the ipmp ill here */ 7959 dir->dir_dmactype = dst_ill->ill_mactype; 7960 7961 if (isipv4) { 7962 ipaddr_t v4saddr; 7963 7964 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7965 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7966 &v4saddr, NULL, &ipif_flags) != 0) { 7967 v4saddr = INADDR_ANY; 7968 ipif_flags = 0; 7969 } 7970 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7971 } else { 7972 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7973 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7974 saddr, NULL, &ipif_flags) != 0) { 7975 *saddr = ipv6_all_zeros; 7976 ipif_flags = 0; 7977 } 7978 } 7979 7980 dir->dir_sscope = ip_addr_scope_v6(saddr); 7981 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7982 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7983 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7984 ire_refrele(ire); 7985 ill_refrele(dst_ill); 7986 } 7987 miocack(q, mp, iocp->ioc_count, 0); 7988 } 7989 7990 /* 7991 * Check if this is an address assigned to this machine. 7992 * Skips interfaces that are down by using ire checks. 7993 * Translates mapped addresses to v4 addresses and then 7994 * treats them as such, returning true if the v4 address 7995 * associated with this mapped address is configured. 7996 * Note: Applications will have to be careful what they do 7997 * with the response; use of mapped addresses limits 7998 * what can be done with the socket, especially with 7999 * respect to socket options and ioctls - neither IPv4 8000 * options nor IPv6 sticky options/ancillary data options 8001 * may be used. 8002 */ 8003 /* ARGSUSED */ 8004 int 8005 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8006 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8007 { 8008 struct sioc_addrreq *sia; 8009 sin_t *sin; 8010 ire_t *ire; 8011 mblk_t *mp1; 8012 zoneid_t zoneid; 8013 ip_stack_t *ipst; 8014 8015 ip1dbg(("ip_sioctl_tmyaddr")); 8016 8017 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8018 zoneid = Q_TO_CONN(q)->conn_zoneid; 8019 ipst = CONNQ_TO_IPST(q); 8020 8021 /* Existence verified in ip_wput_nondata */ 8022 mp1 = mp->b_cont->b_cont; 8023 sia = (struct sioc_addrreq *)mp1->b_rptr; 8024 sin = (sin_t *)&sia->sa_addr; 8025 switch (sin->sin_family) { 8026 case AF_INET6: { 8027 sin6_t *sin6 = (sin6_t *)sin; 8028 8029 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8030 ipaddr_t v4_addr; 8031 8032 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8033 v4_addr); 8034 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8035 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8036 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8037 } else { 8038 in6_addr_t v6addr; 8039 8040 v6addr = sin6->sin6_addr; 8041 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8042 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8043 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8044 } 8045 break; 8046 } 8047 case AF_INET: { 8048 ipaddr_t v4addr; 8049 8050 v4addr = sin->sin_addr.s_addr; 8051 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8052 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8053 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8054 break; 8055 } 8056 default: 8057 return (EAFNOSUPPORT); 8058 } 8059 if (ire != NULL) { 8060 sia->sa_res = 1; 8061 ire_refrele(ire); 8062 } else { 8063 sia->sa_res = 0; 8064 } 8065 return (0); 8066 } 8067 8068 /* 8069 * Check if this is an address assigned on-link i.e. neighbor, 8070 * and makes sure it's reachable from the current zone. 8071 * Returns true for my addresses as well. 8072 * Translates mapped addresses to v4 addresses and then 8073 * treats them as such, returning true if the v4 address 8074 * associated with this mapped address is configured. 8075 * Note: Applications will have to be careful what they do 8076 * with the response; use of mapped addresses limits 8077 * what can be done with the socket, especially with 8078 * respect to socket options and ioctls - neither IPv4 8079 * options nor IPv6 sticky options/ancillary data options 8080 * may be used. 8081 */ 8082 /* ARGSUSED */ 8083 int 8084 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8085 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8086 { 8087 struct sioc_addrreq *sia; 8088 sin_t *sin; 8089 mblk_t *mp1; 8090 ire_t *ire = NULL; 8091 zoneid_t zoneid; 8092 ip_stack_t *ipst; 8093 8094 ip1dbg(("ip_sioctl_tonlink")); 8095 8096 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8097 zoneid = Q_TO_CONN(q)->conn_zoneid; 8098 ipst = CONNQ_TO_IPST(q); 8099 8100 /* Existence verified in ip_wput_nondata */ 8101 mp1 = mp->b_cont->b_cont; 8102 sia = (struct sioc_addrreq *)mp1->b_rptr; 8103 sin = (sin_t *)&sia->sa_addr; 8104 8105 /* 8106 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8107 * to make sure we only look at on-link unicast address. 8108 */ 8109 switch (sin->sin_family) { 8110 case AF_INET6: { 8111 sin6_t *sin6 = (sin6_t *)sin; 8112 8113 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8114 ipaddr_t v4_addr; 8115 8116 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8117 v4_addr); 8118 if (!CLASSD(v4_addr)) { 8119 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8120 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8121 0, ipst, NULL); 8122 } 8123 } else { 8124 in6_addr_t v6addr; 8125 8126 v6addr = sin6->sin6_addr; 8127 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8128 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8129 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8130 ipst, NULL); 8131 } 8132 } 8133 break; 8134 } 8135 case AF_INET: { 8136 ipaddr_t v4addr; 8137 8138 v4addr = sin->sin_addr.s_addr; 8139 if (!CLASSD(v4addr)) { 8140 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8141 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8142 } 8143 break; 8144 } 8145 default: 8146 return (EAFNOSUPPORT); 8147 } 8148 sia->sa_res = 0; 8149 if (ire != NULL) { 8150 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8151 8152 if ((ire->ire_type & IRE_ONLINK) && 8153 !(ire->ire_type & IRE_BROADCAST)) 8154 sia->sa_res = 1; 8155 ire_refrele(ire); 8156 } 8157 return (0); 8158 } 8159 8160 /* 8161 * TBD: implement when kernel maintaines a list of site prefixes. 8162 */ 8163 /* ARGSUSED */ 8164 int 8165 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8166 ip_ioctl_cmd_t *ipip, void *ifreq) 8167 { 8168 return (ENXIO); 8169 } 8170 8171 /* ARP IOCTLs. */ 8172 /* ARGSUSED */ 8173 int 8174 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8175 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8176 { 8177 int err; 8178 ipaddr_t ipaddr; 8179 struct iocblk *iocp; 8180 conn_t *connp; 8181 struct arpreq *ar; 8182 struct xarpreq *xar; 8183 int arp_flags, flags, alength; 8184 uchar_t *lladdr; 8185 ip_stack_t *ipst; 8186 ill_t *ill = ipif->ipif_ill; 8187 ill_t *proxy_ill = NULL; 8188 ipmp_arpent_t *entp = NULL; 8189 boolean_t proxyarp = B_FALSE; 8190 boolean_t if_arp_ioctl = B_FALSE; 8191 ncec_t *ncec = NULL; 8192 nce_t *nce; 8193 8194 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8195 connp = Q_TO_CONN(q); 8196 ipst = connp->conn_netstack->netstack_ip; 8197 iocp = (struct iocblk *)mp->b_rptr; 8198 8199 if (ipip->ipi_cmd_type == XARP_CMD) { 8200 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8201 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8202 ar = NULL; 8203 8204 arp_flags = xar->xarp_flags; 8205 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8206 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8207 /* 8208 * Validate against user's link layer address length 8209 * input and name and addr length limits. 8210 */ 8211 alength = ill->ill_phys_addr_length; 8212 if (ipip->ipi_cmd == SIOCSXARP) { 8213 if (alength != xar->xarp_ha.sdl_alen || 8214 (alength + xar->xarp_ha.sdl_nlen > 8215 sizeof (xar->xarp_ha.sdl_data))) 8216 return (EINVAL); 8217 } 8218 } else { 8219 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8220 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8221 xar = NULL; 8222 8223 arp_flags = ar->arp_flags; 8224 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8225 /* 8226 * Theoretically, the sa_family could tell us what link 8227 * layer type this operation is trying to deal with. By 8228 * common usage AF_UNSPEC means ethernet. We'll assume 8229 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8230 * for now. Our new SIOC*XARP ioctls can be used more 8231 * generally. 8232 * 8233 * If the underlying media happens to have a non 6 byte 8234 * address, arp module will fail set/get, but the del 8235 * operation will succeed. 8236 */ 8237 alength = 6; 8238 if ((ipip->ipi_cmd != SIOCDARP) && 8239 (alength != ill->ill_phys_addr_length)) { 8240 return (EINVAL); 8241 } 8242 } 8243 8244 /* Translate ATF* flags to NCE* flags */ 8245 flags = 0; 8246 if (arp_flags & ATF_AUTHORITY) 8247 flags |= NCE_F_AUTHORITY; 8248 if (arp_flags & ATF_PERM) 8249 flags |= NCE_F_NONUD; /* not subject to aging */ 8250 if (arp_flags & ATF_PUBL) 8251 flags |= NCE_F_PUBLISH; 8252 8253 /* 8254 * IPMP ARP special handling: 8255 * 8256 * 1. Since ARP mappings must appear consistent across the group, 8257 * prohibit changing ARP mappings on the underlying interfaces. 8258 * 8259 * 2. Since ARP mappings for IPMP data addresses are maintained by 8260 * IP itself, prohibit changing them. 8261 * 8262 * 3. For proxy ARP, use a functioning hardware address in the group, 8263 * provided one exists. If one doesn't, just add the entry as-is; 8264 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8265 */ 8266 if (IS_UNDER_IPMP(ill)) { 8267 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8268 return (EPERM); 8269 } 8270 if (IS_IPMP(ill)) { 8271 ipmp_illgrp_t *illg = ill->ill_grp; 8272 8273 switch (ipip->ipi_cmd) { 8274 case SIOCSARP: 8275 case SIOCSXARP: 8276 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8277 if (proxy_ill != NULL) { 8278 proxyarp = B_TRUE; 8279 if (!ipmp_ill_is_active(proxy_ill)) 8280 proxy_ill = ipmp_illgrp_next_ill(illg); 8281 if (proxy_ill != NULL) 8282 lladdr = proxy_ill->ill_phys_addr; 8283 } 8284 /* FALLTHRU */ 8285 } 8286 } 8287 8288 ipaddr = sin->sin_addr.s_addr; 8289 /* 8290 * don't match across illgrp per case (1) and (2). 8291 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8292 */ 8293 nce = nce_lookup_v4(ill, &ipaddr); 8294 if (nce != NULL) 8295 ncec = nce->nce_common; 8296 8297 switch (iocp->ioc_cmd) { 8298 case SIOCDARP: 8299 case SIOCDXARP: { 8300 /* 8301 * Delete the NCE if any. 8302 */ 8303 if (ncec == NULL) { 8304 iocp->ioc_error = ENXIO; 8305 break; 8306 } 8307 /* Don't allow changes to arp mappings of local addresses. */ 8308 if (NCE_MYADDR(ncec)) { 8309 nce_refrele(nce); 8310 return (ENOTSUP); 8311 } 8312 iocp->ioc_error = 0; 8313 8314 /* 8315 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8316 * This will delete all the nce entries on the under_ills. 8317 */ 8318 ncec_delete(ncec); 8319 /* 8320 * Once the NCE has been deleted, then the ire_dep* consistency 8321 * mechanism will find any IRE which depended on the now 8322 * condemned NCE (as part of sending packets). 8323 * That mechanism handles redirects by deleting redirects 8324 * that refer to UNREACHABLE nces. 8325 */ 8326 break; 8327 } 8328 case SIOCGARP: 8329 case SIOCGXARP: 8330 if (ncec != NULL) { 8331 lladdr = ncec->ncec_lladdr; 8332 flags = ncec->ncec_flags; 8333 iocp->ioc_error = 0; 8334 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8335 } else { 8336 iocp->ioc_error = ENXIO; 8337 } 8338 break; 8339 case SIOCSARP: 8340 case SIOCSXARP: 8341 /* Don't allow changes to arp mappings of local addresses. */ 8342 if (ncec != NULL && NCE_MYADDR(ncec)) { 8343 nce_refrele(nce); 8344 return (ENOTSUP); 8345 } 8346 8347 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8348 flags |= NCE_F_STATIC; 8349 if (!if_arp_ioctl) { 8350 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8351 lladdr, alength, flags); 8352 } else { 8353 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8354 if (ipif != NULL) { 8355 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8356 lladdr, alength, flags); 8357 ipif_refrele(ipif); 8358 } 8359 } 8360 if (nce != NULL) { 8361 nce_refrele(nce); 8362 nce = NULL; 8363 } 8364 /* 8365 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8366 * by nce_add_common() 8367 */ 8368 err = nce_lookup_then_add_v4(ill, lladdr, 8369 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8370 &nce); 8371 if (err == EEXIST) { 8372 ncec = nce->nce_common; 8373 mutex_enter(&ncec->ncec_lock); 8374 ncec->ncec_state = ND_REACHABLE; 8375 ncec->ncec_flags = flags; 8376 nce_update(ncec, ND_UNCHANGED, lladdr); 8377 mutex_exit(&ncec->ncec_lock); 8378 err = 0; 8379 } 8380 if (nce != NULL) { 8381 nce_refrele(nce); 8382 nce = NULL; 8383 } 8384 if (IS_IPMP(ill) && err == 0) { 8385 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8386 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8387 flags); 8388 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8389 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8390 break; 8391 } 8392 } 8393 iocp->ioc_error = err; 8394 } 8395 8396 if (nce != NULL) { 8397 nce_refrele(nce); 8398 } 8399 8400 /* 8401 * If we created an IPMP ARP entry, mark that we've notified ARP. 8402 */ 8403 if (entp != NULL) 8404 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8405 8406 return (iocp->ioc_error); 8407 } 8408 8409 /* 8410 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8411 * the associated sin and refhold and return the associated ipif via `ci'. 8412 */ 8413 int 8414 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8415 cmd_info_t *ci) 8416 { 8417 mblk_t *mp1; 8418 sin_t *sin; 8419 conn_t *connp; 8420 ipif_t *ipif; 8421 ire_t *ire = NULL; 8422 ill_t *ill = NULL; 8423 boolean_t exists; 8424 ip_stack_t *ipst; 8425 struct arpreq *ar; 8426 struct xarpreq *xar; 8427 struct sockaddr_dl *sdl; 8428 8429 /* ioctl comes down on a conn */ 8430 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8431 connp = Q_TO_CONN(q); 8432 if (connp->conn_family == AF_INET6) 8433 return (ENXIO); 8434 8435 ipst = connp->conn_netstack->netstack_ip; 8436 8437 /* Verified in ip_wput_nondata */ 8438 mp1 = mp->b_cont->b_cont; 8439 8440 if (ipip->ipi_cmd_type == XARP_CMD) { 8441 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8442 xar = (struct xarpreq *)mp1->b_rptr; 8443 sin = (sin_t *)&xar->xarp_pa; 8444 sdl = &xar->xarp_ha; 8445 8446 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8447 return (ENXIO); 8448 if (sdl->sdl_nlen >= LIFNAMSIZ) 8449 return (EINVAL); 8450 } else { 8451 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8452 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8453 ar = (struct arpreq *)mp1->b_rptr; 8454 sin = (sin_t *)&ar->arp_pa; 8455 } 8456 8457 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8458 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8459 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8460 if (ipif == NULL) 8461 return (ENXIO); 8462 if (ipif->ipif_id != 0) { 8463 ipif_refrele(ipif); 8464 return (ENXIO); 8465 } 8466 } else { 8467 /* 8468 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8469 * of 0: use the IP address to find the ipif. If the IP 8470 * address is an IPMP test address, ire_ftable_lookup() will 8471 * find the wrong ill, so we first do an ipif_lookup_addr(). 8472 */ 8473 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8474 ipst); 8475 if (ipif == NULL) { 8476 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8477 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8478 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8479 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8480 if (ire != NULL) 8481 ire_refrele(ire); 8482 return (ENXIO); 8483 } 8484 ASSERT(ire != NULL && ill != NULL); 8485 ipif = ill->ill_ipif; 8486 ipif_refhold(ipif); 8487 ire_refrele(ire); 8488 } 8489 } 8490 8491 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8492 ipif_refrele(ipif); 8493 return (ENXIO); 8494 } 8495 8496 ci->ci_sin = sin; 8497 ci->ci_ipif = ipif; 8498 return (0); 8499 } 8500 8501 /* 8502 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8503 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8504 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8505 * up and thus an ill can join that illgrp. 8506 * 8507 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8508 * open()/close() primarily because close() is not allowed to fail or block 8509 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8510 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8511 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8512 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8513 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8514 * state if I_UNLINK didn't occur. 8515 * 8516 * Note that for each plumb/unplumb operation, we may end up here more than 8517 * once because of the way ifconfig works. However, it's OK to link the same 8518 * illgrp more than once, or unlink an illgrp that's already unlinked. 8519 */ 8520 static int 8521 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8522 { 8523 int err; 8524 ip_stack_t *ipst = ill->ill_ipst; 8525 8526 ASSERT(IS_IPMP(ill)); 8527 ASSERT(IAM_WRITER_ILL(ill)); 8528 8529 switch (ioccmd) { 8530 case I_LINK: 8531 return (ENOTSUP); 8532 8533 case I_PLINK: 8534 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8535 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8536 rw_exit(&ipst->ips_ipmp_lock); 8537 break; 8538 8539 case I_PUNLINK: 8540 /* 8541 * Require all UP ipifs be brought down prior to unlinking the 8542 * illgrp so any associated IREs (and other state) is torched. 8543 */ 8544 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8545 return (EBUSY); 8546 8547 /* 8548 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8549 * with an SIOCSLIFGROUPNAME request from an ill trying to 8550 * join this group. Specifically: ills trying to join grab 8551 * ipmp_lock and bump a "pending join" counter checked by 8552 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8553 * joins can occur (since we have ipmp_lock). Once we drop 8554 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8555 * find the illgrp (since we unlinked it) and will return 8556 * EAFNOSUPPORT. This will then take them back through the 8557 * IPMP meta-interface plumbing logic in ifconfig, and thus 8558 * back through I_PLINK above. 8559 */ 8560 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8561 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8562 rw_exit(&ipst->ips_ipmp_lock); 8563 return (err); 8564 default: 8565 break; 8566 } 8567 return (0); 8568 } 8569 8570 /* 8571 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8572 * atomically set/clear the muxids. Also complete the ioctl by acking or 8573 * naking it. Note that the code is structured such that the link type, 8574 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8575 * its clones use the persistent link, while pppd(1M) and perhaps many 8576 * other daemons may use non-persistent link. When combined with some 8577 * ill_t states, linking and unlinking lower streams may be used as 8578 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8579 */ 8580 /* ARGSUSED */ 8581 void 8582 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8583 { 8584 mblk_t *mp1; 8585 struct linkblk *li; 8586 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8587 int err = 0; 8588 8589 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8590 ioccmd == I_LINK || ioccmd == I_UNLINK); 8591 8592 mp1 = mp->b_cont; /* This is the linkblk info */ 8593 li = (struct linkblk *)mp1->b_rptr; 8594 8595 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8596 if (err == EINPROGRESS) 8597 return; 8598 if (err == 0) 8599 miocack(q, mp, 0, 0); 8600 else 8601 miocnak(q, mp, 0, err); 8602 8603 /* Conn was refheld in ip_sioctl_copyin_setup */ 8604 if (CONN_Q(q)) { 8605 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8606 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8607 } 8608 } 8609 8610 /* 8611 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8612 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8613 * module stream). 8614 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8615 * an error code on failure. 8616 */ 8617 static int 8618 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8619 struct linkblk *li) 8620 { 8621 int err = 0; 8622 ill_t *ill; 8623 queue_t *ipwq, *dwq; 8624 const char *name; 8625 struct qinit *qinfo; 8626 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8627 boolean_t entered_ipsq = B_FALSE; 8628 boolean_t is_ip = B_FALSE; 8629 arl_t *arl; 8630 8631 /* 8632 * Walk the lower stream to verify it's the IP module stream. 8633 * The IP module is identified by its name, wput function, 8634 * and non-NULL q_next. STREAMS ensures that the lower stream 8635 * (li->l_qbot) will not vanish until this ioctl completes. 8636 */ 8637 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8638 qinfo = ipwq->q_qinfo; 8639 name = qinfo->qi_minfo->mi_idname; 8640 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8641 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8642 is_ip = B_TRUE; 8643 break; 8644 } 8645 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8646 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8647 break; 8648 } 8649 } 8650 8651 /* 8652 * If this isn't an IP module stream, bail. 8653 */ 8654 if (ipwq == NULL) 8655 return (0); 8656 8657 if (!is_ip) { 8658 arl = (arl_t *)ipwq->q_ptr; 8659 ill = arl_to_ill(arl); 8660 if (ill == NULL) 8661 return (0); 8662 } else { 8663 ill = ipwq->q_ptr; 8664 } 8665 ASSERT(ill != NULL); 8666 8667 if (ipsq == NULL) { 8668 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8669 NEW_OP, B_FALSE); 8670 if (ipsq == NULL) { 8671 if (!is_ip) 8672 ill_refrele(ill); 8673 return (EINPROGRESS); 8674 } 8675 entered_ipsq = B_TRUE; 8676 } 8677 ASSERT(IAM_WRITER_ILL(ill)); 8678 mutex_enter(&ill->ill_lock); 8679 if (!is_ip) { 8680 if (islink && ill->ill_muxid == 0) { 8681 /* 8682 * Plumbing has to be done with IP plumbed first, arp 8683 * second, but here we have arp being plumbed first. 8684 */ 8685 mutex_exit(&ill->ill_lock); 8686 if (entered_ipsq) 8687 ipsq_exit(ipsq); 8688 ill_refrele(ill); 8689 return (EINVAL); 8690 } 8691 } 8692 mutex_exit(&ill->ill_lock); 8693 if (!is_ip) { 8694 arl->arl_muxid = islink ? li->l_index : 0; 8695 ill_refrele(ill); 8696 goto done; 8697 } 8698 8699 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8700 goto done; 8701 8702 /* 8703 * As part of I_{P}LINKing, stash the number of downstream modules and 8704 * the read queue of the module immediately below IP in the ill. 8705 * These are used during the capability negotiation below. 8706 */ 8707 ill->ill_lmod_rq = NULL; 8708 ill->ill_lmod_cnt = 0; 8709 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8710 ill->ill_lmod_rq = RD(dwq); 8711 for (; dwq != NULL; dwq = dwq->q_next) 8712 ill->ill_lmod_cnt++; 8713 } 8714 8715 ill->ill_muxid = islink ? li->l_index : 0; 8716 8717 /* 8718 * Mark the ipsq busy until the capability operations initiated below 8719 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8720 * returns, but the capability operation may complete asynchronously 8721 * much later. 8722 */ 8723 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8724 /* 8725 * If there's at least one up ipif on this ill, then we're bound to 8726 * the underlying driver via DLPI. In that case, renegotiate 8727 * capabilities to account for any possible change in modules 8728 * interposed between IP and the driver. 8729 */ 8730 if (ill->ill_ipif_up_count > 0) { 8731 if (islink) 8732 ill_capability_probe(ill); 8733 else 8734 ill_capability_reset(ill, B_FALSE); 8735 } 8736 ipsq_current_finish(ipsq); 8737 done: 8738 if (entered_ipsq) 8739 ipsq_exit(ipsq); 8740 8741 return (err); 8742 } 8743 8744 /* 8745 * Search the ioctl command in the ioctl tables and return a pointer 8746 * to the ioctl command information. The ioctl command tables are 8747 * static and fully populated at compile time. 8748 */ 8749 ip_ioctl_cmd_t * 8750 ip_sioctl_lookup(int ioc_cmd) 8751 { 8752 int index; 8753 ip_ioctl_cmd_t *ipip; 8754 ip_ioctl_cmd_t *ipip_end; 8755 8756 if (ioc_cmd == IPI_DONTCARE) 8757 return (NULL); 8758 8759 /* 8760 * Do a 2 step search. First search the indexed table 8761 * based on the least significant byte of the ioctl cmd. 8762 * If we don't find a match, then search the misc table 8763 * serially. 8764 */ 8765 index = ioc_cmd & 0xFF; 8766 if (index < ip_ndx_ioctl_count) { 8767 ipip = &ip_ndx_ioctl_table[index]; 8768 if (ipip->ipi_cmd == ioc_cmd) { 8769 /* Found a match in the ndx table */ 8770 return (ipip); 8771 } 8772 } 8773 8774 /* Search the misc table */ 8775 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8776 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8777 if (ipip->ipi_cmd == ioc_cmd) 8778 /* Found a match in the misc table */ 8779 return (ipip); 8780 } 8781 8782 return (NULL); 8783 } 8784 8785 /* 8786 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8787 */ 8788 static boolean_t 8789 getset_ioctl_checks(mblk_t *mp) 8790 { 8791 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8792 mblk_t *mp1 = mp->b_cont; 8793 mod_ioc_prop_t *pioc; 8794 uint_t flags; 8795 uint_t pioc_size; 8796 8797 /* do sanity checks on various arguments */ 8798 if (mp1 == NULL || iocp->ioc_count == 0 || 8799 iocp->ioc_count == TRANSPARENT) { 8800 return (B_FALSE); 8801 } 8802 if (msgdsize(mp1) < iocp->ioc_count) { 8803 if (!pullupmsg(mp1, iocp->ioc_count)) 8804 return (B_FALSE); 8805 } 8806 8807 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8808 8809 /* sanity checks on mpr_valsize */ 8810 pioc_size = sizeof (mod_ioc_prop_t); 8811 if (pioc->mpr_valsize != 0) 8812 pioc_size += pioc->mpr_valsize - 1; 8813 8814 if (iocp->ioc_count != pioc_size) 8815 return (B_FALSE); 8816 8817 flags = pioc->mpr_flags; 8818 if (iocp->ioc_cmd == SIOCSETPROP) { 8819 /* 8820 * One can either reset the value to it's default value or 8821 * change the current value or append/remove the value from 8822 * a multi-valued properties. 8823 */ 8824 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8825 flags != MOD_PROP_ACTIVE && 8826 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8827 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8828 return (B_FALSE); 8829 } else { 8830 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8831 8832 /* 8833 * One can retrieve only one kind of property information 8834 * at a time. 8835 */ 8836 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8837 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8838 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8839 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8840 return (B_FALSE); 8841 } 8842 8843 return (B_TRUE); 8844 } 8845 8846 /* 8847 * process the SIOC{SET|GET}PROP ioctl's 8848 */ 8849 /* ARGSUSED */ 8850 static void 8851 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8852 { 8853 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8854 mblk_t *mp1 = mp->b_cont; 8855 mod_ioc_prop_t *pioc; 8856 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8857 ip_stack_t *ipst; 8858 icmp_stack_t *is; 8859 tcp_stack_t *tcps; 8860 sctp_stack_t *sctps; 8861 dccp_stack_t *dccps; 8862 udp_stack_t *us; 8863 netstack_t *stack; 8864 void *cbarg; 8865 cred_t *cr; 8866 boolean_t set; 8867 int err; 8868 8869 ASSERT(q->q_next == NULL); 8870 ASSERT(CONN_Q(q)); 8871 8872 if (!getset_ioctl_checks(mp)) { 8873 miocnak(q, mp, 0, EINVAL); 8874 return; 8875 } 8876 ipst = CONNQ_TO_IPST(q); 8877 stack = ipst->ips_netstack; 8878 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8879 8880 switch (pioc->mpr_proto) { 8881 case MOD_PROTO_IP: 8882 case MOD_PROTO_IPV4: 8883 case MOD_PROTO_IPV6: 8884 ptbl = ipst->ips_propinfo_tbl; 8885 cbarg = ipst; 8886 break; 8887 case MOD_PROTO_RAWIP: 8888 is = stack->netstack_icmp; 8889 ptbl = is->is_propinfo_tbl; 8890 cbarg = is; 8891 break; 8892 case MOD_PROTO_TCP: 8893 tcps = stack->netstack_tcp; 8894 ptbl = tcps->tcps_propinfo_tbl; 8895 cbarg = tcps; 8896 break; 8897 case MOD_PROTO_UDP: 8898 us = stack->netstack_udp; 8899 ptbl = us->us_propinfo_tbl; 8900 cbarg = us; 8901 break; 8902 case MOD_PROTO_SCTP: 8903 sctps = stack->netstack_sctp; 8904 ptbl = sctps->sctps_propinfo_tbl; 8905 cbarg = sctps; 8906 break; 8907 case MOD_PROTO_DCCP: 8908 dccps = stack->netstack_dccp; 8909 ptbl = dccps->dccps_propinfo_tbl; 8910 cbarg = dccps; 8911 default: 8912 miocnak(q, mp, 0, EINVAL); 8913 return; 8914 } 8915 8916 /* search for given property in respective protocol propinfo table */ 8917 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8918 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 && 8919 pinfo->mpi_proto == pioc->mpr_proto) 8920 break; 8921 } 8922 if (pinfo->mpi_name == NULL) { 8923 miocnak(q, mp, 0, ENOENT); 8924 return; 8925 } 8926 8927 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8928 if (set && pinfo->mpi_setf != NULL) { 8929 cr = msg_getcred(mp, NULL); 8930 if (cr == NULL) 8931 cr = iocp->ioc_cr; 8932 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname, 8933 pioc->mpr_val, pioc->mpr_flags); 8934 } else if (!set && pinfo->mpi_getf != NULL) { 8935 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname, 8936 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8937 } else { 8938 err = EPERM; 8939 } 8940 8941 if (err != 0) { 8942 miocnak(q, mp, 0, err); 8943 } else { 8944 if (set) 8945 miocack(q, mp, 0, 0); 8946 else /* For get, we need to return back the data */ 8947 miocack(q, mp, iocp->ioc_count, 0); 8948 } 8949 } 8950 8951 /* 8952 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8953 * as several routing daemons have unfortunately used this 'unpublished' 8954 * but well-known ioctls. 8955 */ 8956 /* ARGSUSED */ 8957 static void 8958 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8959 { 8960 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8961 mblk_t *mp1 = mp->b_cont; 8962 char *pname, *pval, *buf; 8963 uint_t bufsize, proto; 8964 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8965 ip_stack_t *ipst; 8966 int err = 0; 8967 8968 ASSERT(CONN_Q(q)); 8969 ipst = CONNQ_TO_IPST(q); 8970 8971 if (iocp->ioc_count == 0 || mp1 == NULL) { 8972 miocnak(q, mp, 0, EINVAL); 8973 return; 8974 } 8975 8976 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8977 pval = buf = pname = (char *)mp1->b_rptr; 8978 bufsize = MBLKL(mp1); 8979 8980 if (strcmp(pname, "ip_forwarding") == 0) { 8981 pname = "forwarding"; 8982 proto = MOD_PROTO_IPV4; 8983 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8984 pname = "forwarding"; 8985 proto = MOD_PROTO_IPV6; 8986 } else { 8987 miocnak(q, mp, 0, EINVAL); 8988 return; 8989 } 8990 8991 ptbl = ipst->ips_propinfo_tbl; 8992 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8993 if (strcmp(pinfo->mpi_name, pname) == 0 && 8994 pinfo->mpi_proto == proto) 8995 break; 8996 } 8997 8998 ASSERT(pinfo->mpi_name != NULL); 8999 9000 switch (iocp->ioc_cmd) { 9001 case ND_GET: 9002 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize, 9003 0)) == 0) { 9004 miocack(q, mp, iocp->ioc_count, 0); 9005 return; 9006 } 9007 break; 9008 case ND_SET: 9009 /* 9010 * buffer will have property name and value in the following 9011 * format, 9012 * <property name>'\0'<property value>'\0', extract them; 9013 */ 9014 while (*pval++) 9015 noop; 9016 9017 if (!*pval || pval >= (char *)mp1->b_wptr) { 9018 err = EINVAL; 9019 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL, 9020 pval, 0)) == 0) { 9021 miocack(q, mp, 0, 0); 9022 return; 9023 } 9024 break; 9025 default: 9026 err = EINVAL; 9027 break; 9028 } 9029 miocnak(q, mp, 0, err); 9030 } 9031 9032 /* 9033 * Wrapper function for resuming deferred ioctl processing 9034 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9035 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9036 */ 9037 /* ARGSUSED */ 9038 void 9039 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9040 void *dummy_arg) 9041 { 9042 ip_sioctl_copyin_setup(q, mp); 9043 } 9044 9045 /* 9046 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9047 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9048 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9049 * We establish here the size of the block to be copied in. mi_copyin 9050 * arranges for this to happen, an processing continues in ip_wput_nondata with 9051 * an M_IOCDATA message. 9052 */ 9053 void 9054 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9055 { 9056 int copyin_size; 9057 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9058 ip_ioctl_cmd_t *ipip; 9059 cred_t *cr; 9060 ip_stack_t *ipst; 9061 9062 if (CONN_Q(q)) 9063 ipst = CONNQ_TO_IPST(q); 9064 else 9065 ipst = ILLQ_TO_IPST(q); 9066 9067 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9068 if (ipip == NULL) { 9069 /* 9070 * The ioctl is not one we understand or own. 9071 * Pass it along to be processed down stream, 9072 * if this is a module instance of IP, else nak 9073 * the ioctl. 9074 */ 9075 if (q->q_next == NULL) { 9076 goto nak; 9077 } else { 9078 putnext(q, mp); 9079 return; 9080 } 9081 } 9082 9083 /* 9084 * If this is deferred, then we will do all the checks when we 9085 * come back. 9086 */ 9087 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9088 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9089 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9090 return; 9091 } 9092 9093 /* 9094 * Only allow a very small subset of IP ioctls on this stream if 9095 * IP is a module and not a driver. Allowing ioctls to be processed 9096 * in this case may cause assert failures or data corruption. 9097 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9098 * ioctls allowed on an IP module stream, after which this stream 9099 * normally becomes a multiplexor (at which time the stream head 9100 * will fail all ioctls). 9101 */ 9102 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9103 goto nak; 9104 } 9105 9106 /* Make sure we have ioctl data to process. */ 9107 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9108 goto nak; 9109 9110 /* 9111 * Prefer dblk credential over ioctl credential; some synthesized 9112 * ioctls have kcred set because there's no way to crhold() 9113 * a credential in some contexts. (ioc_cr is not crfree() by 9114 * the framework; the caller of ioctl needs to hold the reference 9115 * for the duration of the call). 9116 */ 9117 cr = msg_getcred(mp, NULL); 9118 if (cr == NULL) 9119 cr = iocp->ioc_cr; 9120 9121 /* Make sure normal users don't send down privileged ioctls */ 9122 if ((ipip->ipi_flags & IPI_PRIV) && 9123 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9124 /* We checked the privilege earlier but log it here */ 9125 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9126 return; 9127 } 9128 9129 /* 9130 * The ioctl command tables can only encode fixed length 9131 * ioctl data. If the length is variable, the table will 9132 * encode the length as zero. Such special cases are handled 9133 * below in the switch. 9134 */ 9135 if (ipip->ipi_copyin_size != 0) { 9136 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9137 return; 9138 } 9139 9140 switch (iocp->ioc_cmd) { 9141 case O_SIOCGIFCONF: 9142 case SIOCGIFCONF: 9143 /* 9144 * This IOCTL is hilarious. See comments in 9145 * ip_sioctl_get_ifconf for the story. 9146 */ 9147 if (iocp->ioc_count == TRANSPARENT) 9148 copyin_size = SIZEOF_STRUCT(ifconf, 9149 iocp->ioc_flag); 9150 else 9151 copyin_size = iocp->ioc_count; 9152 mi_copyin(q, mp, NULL, copyin_size); 9153 return; 9154 9155 case O_SIOCGLIFCONF: 9156 case SIOCGLIFCONF: 9157 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9158 mi_copyin(q, mp, NULL, copyin_size); 9159 return; 9160 9161 case SIOCGLIFSRCOF: 9162 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9163 mi_copyin(q, mp, NULL, copyin_size); 9164 return; 9165 9166 case SIOCGIP6ADDRPOLICY: 9167 ip_sioctl_ip6addrpolicy(q, mp); 9168 ip6_asp_table_refrele(ipst); 9169 return; 9170 9171 case SIOCSIP6ADDRPOLICY: 9172 ip_sioctl_ip6addrpolicy(q, mp); 9173 return; 9174 9175 case SIOCGDSTINFO: 9176 ip_sioctl_dstinfo(q, mp); 9177 ip6_asp_table_refrele(ipst); 9178 return; 9179 9180 case ND_SET: 9181 case ND_GET: 9182 ip_process_legacy_nddprop(q, mp); 9183 return; 9184 9185 case SIOCSETPROP: 9186 case SIOCGETPROP: 9187 ip_sioctl_getsetprop(q, mp); 9188 return; 9189 9190 case I_PLINK: 9191 case I_PUNLINK: 9192 case I_LINK: 9193 case I_UNLINK: 9194 /* 9195 * We treat non-persistent link similarly as the persistent 9196 * link case, in terms of plumbing/unplumbing, as well as 9197 * dynamic re-plumbing events indicator. See comments 9198 * in ip_sioctl_plink() for more. 9199 * 9200 * Request can be enqueued in the 'ipsq' while waiting 9201 * to become exclusive. So bump up the conn ref. 9202 */ 9203 if (CONN_Q(q)) { 9204 CONN_INC_REF(Q_TO_CONN(q)); 9205 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9206 } 9207 ip_sioctl_plink(NULL, q, mp, NULL); 9208 return; 9209 9210 case IP_IOCTL: 9211 ip_wput_ioctl(q, mp); 9212 return; 9213 9214 case SIOCILB: 9215 /* The ioctl length varies depending on the ILB command. */ 9216 copyin_size = iocp->ioc_count; 9217 if (copyin_size < sizeof (ilb_cmd_t)) 9218 goto nak; 9219 mi_copyin(q, mp, NULL, copyin_size); 9220 return; 9221 9222 default: 9223 cmn_err(CE_PANIC, "should not happen "); 9224 } 9225 nak: 9226 if (mp->b_cont != NULL) { 9227 freemsg(mp->b_cont); 9228 mp->b_cont = NULL; 9229 } 9230 iocp->ioc_error = EINVAL; 9231 mp->b_datap->db_type = M_IOCNAK; 9232 iocp->ioc_count = 0; 9233 qreply(q, mp); 9234 } 9235 9236 static void 9237 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9238 { 9239 struct arpreq *ar; 9240 struct xarpreq *xar; 9241 mblk_t *tmp; 9242 struct iocblk *iocp; 9243 int x_arp_ioctl = B_FALSE; 9244 int *flagsp; 9245 char *storage = NULL; 9246 9247 ASSERT(ill != NULL); 9248 9249 iocp = (struct iocblk *)mp->b_rptr; 9250 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9251 9252 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9253 if ((iocp->ioc_cmd == SIOCGXARP) || 9254 (iocp->ioc_cmd == SIOCSXARP)) { 9255 x_arp_ioctl = B_TRUE; 9256 xar = (struct xarpreq *)tmp->b_rptr; 9257 flagsp = &xar->xarp_flags; 9258 storage = xar->xarp_ha.sdl_data; 9259 } else { 9260 ar = (struct arpreq *)tmp->b_rptr; 9261 flagsp = &ar->arp_flags; 9262 storage = ar->arp_ha.sa_data; 9263 } 9264 9265 /* 9266 * We're done if this is not an SIOCG{X}ARP 9267 */ 9268 if (x_arp_ioctl) { 9269 storage += ill_xarp_info(&xar->xarp_ha, ill); 9270 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9271 sizeof (xar->xarp_ha.sdl_data)) { 9272 iocp->ioc_error = EINVAL; 9273 return; 9274 } 9275 } 9276 *flagsp = ATF_INUSE; 9277 /* 9278 * If /sbin/arp told us we are the authority using the "permanent" 9279 * flag, or if this is one of my addresses print "permanent" 9280 * in the /sbin/arp output. 9281 */ 9282 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9283 *flagsp |= ATF_AUTHORITY; 9284 if (flags & NCE_F_NONUD) 9285 *flagsp |= ATF_PERM; /* not subject to aging */ 9286 if (flags & NCE_F_PUBLISH) 9287 *flagsp |= ATF_PUBL; 9288 if (hwaddr != NULL) { 9289 *flagsp |= ATF_COM; 9290 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9291 } 9292 } 9293 9294 /* 9295 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9296 * interface) create the next available logical interface for this 9297 * physical interface. 9298 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9299 * ipif with the specified name. 9300 * 9301 * If the address family is not AF_UNSPEC then set the address as well. 9302 * 9303 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9304 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9305 * 9306 * Executed as a writer on the ill. 9307 * So no lock is needed to traverse the ipif chain, or examine the 9308 * phyint flags. 9309 */ 9310 /* ARGSUSED */ 9311 int 9312 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9313 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9314 { 9315 mblk_t *mp1; 9316 struct lifreq *lifr; 9317 boolean_t isv6; 9318 boolean_t exists; 9319 char *name; 9320 char *endp; 9321 char *cp; 9322 int namelen; 9323 ipif_t *ipif; 9324 long id; 9325 ipsq_t *ipsq; 9326 ill_t *ill; 9327 sin_t *sin; 9328 int err = 0; 9329 boolean_t found_sep = B_FALSE; 9330 conn_t *connp; 9331 zoneid_t zoneid; 9332 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9333 9334 ASSERT(q->q_next == NULL); 9335 ip1dbg(("ip_sioctl_addif\n")); 9336 /* Existence of mp1 has been checked in ip_wput_nondata */ 9337 mp1 = mp->b_cont->b_cont; 9338 /* 9339 * Null terminate the string to protect against buffer 9340 * overrun. String was generated by user code and may not 9341 * be trusted. 9342 */ 9343 lifr = (struct lifreq *)mp1->b_rptr; 9344 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9345 name = lifr->lifr_name; 9346 ASSERT(CONN_Q(q)); 9347 connp = Q_TO_CONN(q); 9348 isv6 = (connp->conn_family == AF_INET6); 9349 zoneid = connp->conn_zoneid; 9350 namelen = mi_strlen(name); 9351 if (namelen == 0) 9352 return (EINVAL); 9353 9354 exists = B_FALSE; 9355 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9356 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9357 /* 9358 * Allow creating lo0 using SIOCLIFADDIF. 9359 * can't be any other writer thread. So can pass null below 9360 * for the last 4 args to ipif_lookup_name. 9361 */ 9362 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9363 &exists, isv6, zoneid, ipst); 9364 /* Prevent any further action */ 9365 if (ipif == NULL) { 9366 return (ENOBUFS); 9367 } else if (!exists) { 9368 /* We created the ipif now and as writer */ 9369 ipif_refrele(ipif); 9370 return (0); 9371 } else { 9372 ill = ipif->ipif_ill; 9373 ill_refhold(ill); 9374 ipif_refrele(ipif); 9375 } 9376 } else { 9377 /* Look for a colon in the name. */ 9378 endp = &name[namelen]; 9379 for (cp = endp; --cp > name; ) { 9380 if (*cp == IPIF_SEPARATOR_CHAR) { 9381 found_sep = B_TRUE; 9382 /* 9383 * Reject any non-decimal aliases for plumbing 9384 * of logical interfaces. Aliases with leading 9385 * zeroes are also rejected as they introduce 9386 * ambiguity in the naming of the interfaces. 9387 * Comparing with "0" takes care of all such 9388 * cases. 9389 */ 9390 if ((strncmp("0", cp+1, 1)) == 0) 9391 return (EINVAL); 9392 9393 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9394 id <= 0 || *endp != '\0') { 9395 return (EINVAL); 9396 } 9397 *cp = '\0'; 9398 break; 9399 } 9400 } 9401 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9402 if (found_sep) 9403 *cp = IPIF_SEPARATOR_CHAR; 9404 if (ill == NULL) 9405 return (ENXIO); 9406 } 9407 9408 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9409 B_TRUE); 9410 9411 /* 9412 * Release the refhold due to the lookup, now that we are excl 9413 * or we are just returning 9414 */ 9415 ill_refrele(ill); 9416 9417 if (ipsq == NULL) 9418 return (EINPROGRESS); 9419 9420 /* We are now exclusive on the IPSQ */ 9421 ASSERT(IAM_WRITER_ILL(ill)); 9422 9423 if (found_sep) { 9424 /* Now see if there is an IPIF with this unit number. */ 9425 for (ipif = ill->ill_ipif; ipif != NULL; 9426 ipif = ipif->ipif_next) { 9427 if (ipif->ipif_id == id) { 9428 err = EEXIST; 9429 goto done; 9430 } 9431 } 9432 } 9433 9434 /* 9435 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9436 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9437 * instead. 9438 */ 9439 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9440 B_TRUE, B_TRUE, &err)) == NULL) { 9441 goto done; 9442 } 9443 9444 /* Return created name with ioctl */ 9445 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9446 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9447 ip1dbg(("created %s\n", lifr->lifr_name)); 9448 9449 /* Set address */ 9450 sin = (sin_t *)&lifr->lifr_addr; 9451 if (sin->sin_family != AF_UNSPEC) { 9452 err = ip_sioctl_addr(ipif, sin, q, mp, 9453 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9454 } 9455 9456 done: 9457 ipsq_exit(ipsq); 9458 return (err); 9459 } 9460 9461 /* 9462 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9463 * interface) delete it based on the IP address (on this physical interface). 9464 * Otherwise delete it based on the ipif_id. 9465 * Also, special handling to allow a removeif of lo0. 9466 */ 9467 /* ARGSUSED */ 9468 int 9469 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9470 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9471 { 9472 conn_t *connp; 9473 ill_t *ill = ipif->ipif_ill; 9474 boolean_t success; 9475 ip_stack_t *ipst; 9476 9477 ipst = CONNQ_TO_IPST(q); 9478 9479 ASSERT(q->q_next == NULL); 9480 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9481 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9482 ASSERT(IAM_WRITER_IPIF(ipif)); 9483 9484 connp = Q_TO_CONN(q); 9485 /* 9486 * Special case for unplumbing lo0 (the loopback physical interface). 9487 * If unplumbing lo0, the incoming address structure has been 9488 * initialized to all zeros. When unplumbing lo0, all its logical 9489 * interfaces must be removed too. 9490 * 9491 * Note that this interface may be called to remove a specific 9492 * loopback logical interface (eg, lo0:1). But in that case 9493 * ipif->ipif_id != 0 so that the code path for that case is the 9494 * same as any other interface (meaning it skips the code directly 9495 * below). 9496 */ 9497 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9498 if (sin->sin_family == AF_UNSPEC && 9499 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9500 /* 9501 * Mark it condemned. No new ref. will be made to ill. 9502 */ 9503 mutex_enter(&ill->ill_lock); 9504 ill->ill_state_flags |= ILL_CONDEMNED; 9505 for (ipif = ill->ill_ipif; ipif != NULL; 9506 ipif = ipif->ipif_next) { 9507 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9508 } 9509 mutex_exit(&ill->ill_lock); 9510 9511 ipif = ill->ill_ipif; 9512 /* unplumb the loopback interface */ 9513 ill_delete(ill); 9514 mutex_enter(&connp->conn_lock); 9515 mutex_enter(&ill->ill_lock); 9516 9517 /* Are any references to this ill active */ 9518 if (ill_is_freeable(ill)) { 9519 mutex_exit(&ill->ill_lock); 9520 mutex_exit(&connp->conn_lock); 9521 ill_delete_tail(ill); 9522 mi_free(ill); 9523 return (0); 9524 } 9525 success = ipsq_pending_mp_add(connp, ipif, 9526 CONNP_TO_WQ(connp), mp, ILL_FREE); 9527 mutex_exit(&connp->conn_lock); 9528 mutex_exit(&ill->ill_lock); 9529 if (success) 9530 return (EINPROGRESS); 9531 else 9532 return (EINTR); 9533 } 9534 } 9535 9536 if (ipif->ipif_id == 0) { 9537 ipsq_t *ipsq; 9538 9539 /* Find based on address */ 9540 if (ipif->ipif_isv6) { 9541 sin6_t *sin6; 9542 9543 if (sin->sin_family != AF_INET6) 9544 return (EAFNOSUPPORT); 9545 9546 sin6 = (sin6_t *)sin; 9547 /* We are a writer, so we should be able to lookup */ 9548 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9549 ipst); 9550 } else { 9551 if (sin->sin_family != AF_INET) 9552 return (EAFNOSUPPORT); 9553 9554 /* We are a writer, so we should be able to lookup */ 9555 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9556 ipst); 9557 } 9558 if (ipif == NULL) { 9559 return (EADDRNOTAVAIL); 9560 } 9561 9562 /* 9563 * It is possible for a user to send an SIOCLIFREMOVEIF with 9564 * lifr_name of the physical interface but with an ip address 9565 * lifr_addr of a logical interface plumbed over it. 9566 * So update ipx_current_ipif now that ipif points to the 9567 * correct one. 9568 */ 9569 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9570 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9571 9572 /* This is a writer */ 9573 ipif_refrele(ipif); 9574 } 9575 9576 /* 9577 * Can not delete instance zero since it is tied to the ill. 9578 */ 9579 if (ipif->ipif_id == 0) 9580 return (EBUSY); 9581 9582 mutex_enter(&ill->ill_lock); 9583 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9584 mutex_exit(&ill->ill_lock); 9585 9586 ipif_free(ipif); 9587 9588 mutex_enter(&connp->conn_lock); 9589 mutex_enter(&ill->ill_lock); 9590 9591 /* Are any references to this ipif active */ 9592 if (ipif_is_freeable(ipif)) { 9593 mutex_exit(&ill->ill_lock); 9594 mutex_exit(&connp->conn_lock); 9595 ipif_non_duplicate(ipif); 9596 (void) ipif_down_tail(ipif); 9597 ipif_free_tail(ipif); /* frees ipif */ 9598 return (0); 9599 } 9600 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9601 IPIF_FREE); 9602 mutex_exit(&ill->ill_lock); 9603 mutex_exit(&connp->conn_lock); 9604 if (success) 9605 return (EINPROGRESS); 9606 else 9607 return (EINTR); 9608 } 9609 9610 /* 9611 * Restart the removeif ioctl. The refcnt has gone down to 0. 9612 * The ipif is already condemned. So can't find it thru lookups. 9613 */ 9614 /* ARGSUSED */ 9615 int 9616 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9617 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9618 { 9619 ill_t *ill = ipif->ipif_ill; 9620 9621 ASSERT(IAM_WRITER_IPIF(ipif)); 9622 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9623 9624 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9625 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9626 9627 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9628 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9629 ill_delete_tail(ill); 9630 mi_free(ill); 9631 return (0); 9632 } 9633 9634 ipif_non_duplicate(ipif); 9635 (void) ipif_down_tail(ipif); 9636 ipif_free_tail(ipif); 9637 9638 return (0); 9639 } 9640 9641 /* 9642 * Set the local interface address using the given prefix and ill_token. 9643 */ 9644 /* ARGSUSED */ 9645 int 9646 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9647 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9648 { 9649 int err; 9650 in6_addr_t v6addr; 9651 sin6_t *sin6; 9652 ill_t *ill; 9653 int i; 9654 9655 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9656 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9657 9658 ASSERT(IAM_WRITER_IPIF(ipif)); 9659 9660 if (!ipif->ipif_isv6) 9661 return (EINVAL); 9662 9663 if (sin->sin_family != AF_INET6) 9664 return (EAFNOSUPPORT); 9665 9666 sin6 = (sin6_t *)sin; 9667 v6addr = sin6->sin6_addr; 9668 ill = ipif->ipif_ill; 9669 9670 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9671 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9672 return (EADDRNOTAVAIL); 9673 9674 for (i = 0; i < 4; i++) 9675 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9676 9677 err = ip_sioctl_addr(ipif, sin, q, mp, 9678 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9679 return (err); 9680 } 9681 9682 /* 9683 * Restart entry point to restart the address set operation after the 9684 * refcounts have dropped to zero. 9685 */ 9686 /* ARGSUSED */ 9687 int 9688 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9689 ip_ioctl_cmd_t *ipip, void *ifreq) 9690 { 9691 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9692 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9693 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9694 } 9695 9696 /* 9697 * Set the local interface address. 9698 * Allow an address of all zero when the interface is down. 9699 */ 9700 /* ARGSUSED */ 9701 int 9702 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9703 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9704 { 9705 int err = 0; 9706 in6_addr_t v6addr; 9707 boolean_t need_up = B_FALSE; 9708 ill_t *ill; 9709 int i; 9710 9711 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9712 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9713 9714 ASSERT(IAM_WRITER_IPIF(ipif)); 9715 9716 ill = ipif->ipif_ill; 9717 if (ipif->ipif_isv6) { 9718 sin6_t *sin6; 9719 phyint_t *phyi; 9720 9721 if (sin->sin_family != AF_INET6) 9722 return (EAFNOSUPPORT); 9723 9724 sin6 = (sin6_t *)sin; 9725 v6addr = sin6->sin6_addr; 9726 phyi = ill->ill_phyint; 9727 9728 /* 9729 * Enforce that true multicast interfaces have a link-local 9730 * address for logical unit 0. 9731 * 9732 * However for those ipif's for which link-local address was 9733 * not created by default, also allow setting :: as the address. 9734 * This scenario would arise, when we delete an address on ipif 9735 * with logical unit 0, we would want to set :: as the address. 9736 */ 9737 if (ipif->ipif_id == 0 && 9738 (ill->ill_flags & ILLF_MULTICAST) && 9739 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9740 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9741 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9742 9743 /* 9744 * if default link-local was not created by kernel for 9745 * this ill, allow setting :: as the address on ipif:0. 9746 */ 9747 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9748 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9749 return (EADDRNOTAVAIL); 9750 } else { 9751 return (EADDRNOTAVAIL); 9752 } 9753 } 9754 9755 /* 9756 * up interfaces shouldn't have the unspecified address 9757 * unless they also have the IPIF_NOLOCAL flags set and 9758 * have a subnet assigned. 9759 */ 9760 if ((ipif->ipif_flags & IPIF_UP) && 9761 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9762 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9763 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9764 return (EADDRNOTAVAIL); 9765 } 9766 9767 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9768 return (EADDRNOTAVAIL); 9769 } else { 9770 ipaddr_t addr; 9771 9772 if (sin->sin_family != AF_INET) 9773 return (EAFNOSUPPORT); 9774 9775 addr = sin->sin_addr.s_addr; 9776 9777 /* Allow INADDR_ANY as the local address. */ 9778 if (addr != INADDR_ANY && 9779 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9780 return (EADDRNOTAVAIL); 9781 9782 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9783 } 9784 /* 9785 * verify that the address being configured is permitted by the 9786 * ill_allowed_ips[] for the interface. 9787 */ 9788 if (ill->ill_allowed_ips_cnt > 0) { 9789 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9790 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9791 &v6addr)) 9792 break; 9793 } 9794 if (i == ill->ill_allowed_ips_cnt) { 9795 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9796 return (EPERM); 9797 } 9798 } 9799 /* 9800 * Even if there is no change we redo things just to rerun 9801 * ipif_set_default. 9802 */ 9803 if (ipif->ipif_flags & IPIF_UP) { 9804 /* 9805 * Setting a new local address, make sure 9806 * we have net and subnet bcast ire's for 9807 * the old address if we need them. 9808 */ 9809 /* 9810 * If the interface is already marked up, 9811 * we call ipif_down which will take care 9812 * of ditching any IREs that have been set 9813 * up based on the old interface address. 9814 */ 9815 err = ipif_logical_down(ipif, q, mp); 9816 if (err == EINPROGRESS) 9817 return (err); 9818 (void) ipif_down_tail(ipif); 9819 need_up = 1; 9820 } 9821 9822 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9823 return (err); 9824 } 9825 9826 int 9827 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9828 boolean_t need_up) 9829 { 9830 in6_addr_t v6addr; 9831 in6_addr_t ov6addr; 9832 ipaddr_t addr; 9833 sin6_t *sin6; 9834 int sinlen; 9835 int err = 0; 9836 ill_t *ill = ipif->ipif_ill; 9837 boolean_t need_dl_down; 9838 boolean_t need_arp_down; 9839 struct iocblk *iocp; 9840 9841 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9842 9843 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9844 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9845 ASSERT(IAM_WRITER_IPIF(ipif)); 9846 9847 /* Must cancel any pending timer before taking the ill_lock */ 9848 if (ipif->ipif_recovery_id != 0) 9849 (void) untimeout(ipif->ipif_recovery_id); 9850 ipif->ipif_recovery_id = 0; 9851 9852 if (ipif->ipif_isv6) { 9853 sin6 = (sin6_t *)sin; 9854 v6addr = sin6->sin6_addr; 9855 sinlen = sizeof (struct sockaddr_in6); 9856 } else { 9857 addr = sin->sin_addr.s_addr; 9858 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9859 sinlen = sizeof (struct sockaddr_in); 9860 } 9861 mutex_enter(&ill->ill_lock); 9862 ov6addr = ipif->ipif_v6lcl_addr; 9863 ipif->ipif_v6lcl_addr = v6addr; 9864 sctp_update_ipif_addr(ipif, ov6addr); 9865 ipif->ipif_addr_ready = 0; 9866 9867 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9868 9869 /* 9870 * If the interface was previously marked as a duplicate, then since 9871 * we've now got a "new" address, it should no longer be considered a 9872 * duplicate -- even if the "new" address is the same as the old one. 9873 * Note that if all ipifs are down, we may have a pending ARP down 9874 * event to handle. This is because we want to recover from duplicates 9875 * and thus delay tearing down ARP until the duplicates have been 9876 * removed or disabled. 9877 */ 9878 need_dl_down = need_arp_down = B_FALSE; 9879 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9880 need_arp_down = !need_up; 9881 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9882 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9883 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9884 need_dl_down = B_TRUE; 9885 } 9886 } 9887 9888 ipif_set_default(ipif); 9889 9890 /* 9891 * If we've just manually set the IPv6 link-local address (0th ipif), 9892 * tag the ill so that future updates to the interface ID don't result 9893 * in this address getting automatically reconfigured from under the 9894 * administrator. 9895 */ 9896 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9897 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9898 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9899 ill->ill_manual_linklocal = 1; 9900 } 9901 9902 /* 9903 * When publishing an interface address change event, we only notify 9904 * the event listeners of the new address. It is assumed that if they 9905 * actively care about the addresses assigned that they will have 9906 * already discovered the previous address assigned (if there was one.) 9907 * 9908 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9909 */ 9910 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9911 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9912 NE_ADDRESS_CHANGE, sin, sinlen); 9913 } 9914 9915 mutex_exit(&ill->ill_lock); 9916 9917 if (need_up) { 9918 /* 9919 * Now bring the interface back up. If this 9920 * is the only IPIF for the ILL, ipif_up 9921 * will have to re-bind to the device, so 9922 * we may get back EINPROGRESS, in which 9923 * case, this IOCTL will get completed in 9924 * ip_rput_dlpi when we see the DL_BIND_ACK. 9925 */ 9926 err = ipif_up(ipif, q, mp); 9927 } else { 9928 /* Perhaps ilgs should use this ill */ 9929 update_conn_ill(NULL, ill->ill_ipst); 9930 } 9931 9932 if (need_dl_down) 9933 ill_dl_down(ill); 9934 9935 if (need_arp_down && !ill->ill_isv6) 9936 (void) ipif_arp_down(ipif); 9937 9938 /* 9939 * The default multicast interface might have changed (for 9940 * instance if the IPv6 scope of the address changed) 9941 */ 9942 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9943 9944 return (err); 9945 } 9946 9947 /* 9948 * Restart entry point to restart the address set operation after the 9949 * refcounts have dropped to zero. 9950 */ 9951 /* ARGSUSED */ 9952 int 9953 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9954 ip_ioctl_cmd_t *ipip, void *ifreq) 9955 { 9956 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9957 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9958 ASSERT(IAM_WRITER_IPIF(ipif)); 9959 (void) ipif_down_tail(ipif); 9960 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9961 } 9962 9963 /* ARGSUSED */ 9964 int 9965 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9966 ip_ioctl_cmd_t *ipip, void *if_req) 9967 { 9968 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9969 struct lifreq *lifr = (struct lifreq *)if_req; 9970 9971 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9972 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9973 /* 9974 * The net mask and address can't change since we have a 9975 * reference to the ipif. So no lock is necessary. 9976 */ 9977 if (ipif->ipif_isv6) { 9978 *sin6 = sin6_null; 9979 sin6->sin6_family = AF_INET6; 9980 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9981 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9982 lifr->lifr_addrlen = 9983 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9984 } else { 9985 *sin = sin_null; 9986 sin->sin_family = AF_INET; 9987 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9988 if (ipip->ipi_cmd_type == LIF_CMD) { 9989 lifr->lifr_addrlen = 9990 ip_mask_to_plen(ipif->ipif_net_mask); 9991 } 9992 } 9993 return (0); 9994 } 9995 9996 /* 9997 * Set the destination address for a pt-pt interface. 9998 */ 9999 /* ARGSUSED */ 10000 int 10001 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10002 ip_ioctl_cmd_t *ipip, void *if_req) 10003 { 10004 int err = 0; 10005 in6_addr_t v6addr; 10006 boolean_t need_up = B_FALSE; 10007 10008 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10009 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10010 ASSERT(IAM_WRITER_IPIF(ipif)); 10011 10012 if (ipif->ipif_isv6) { 10013 sin6_t *sin6; 10014 10015 if (sin->sin_family != AF_INET6) 10016 return (EAFNOSUPPORT); 10017 10018 sin6 = (sin6_t *)sin; 10019 v6addr = sin6->sin6_addr; 10020 10021 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10022 return (EADDRNOTAVAIL); 10023 } else { 10024 ipaddr_t addr; 10025 10026 if (sin->sin_family != AF_INET) 10027 return (EAFNOSUPPORT); 10028 10029 addr = sin->sin_addr.s_addr; 10030 if (addr != INADDR_ANY && 10031 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10032 return (EADDRNOTAVAIL); 10033 } 10034 10035 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10036 } 10037 10038 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10039 return (0); /* No change */ 10040 10041 if (ipif->ipif_flags & IPIF_UP) { 10042 /* 10043 * If the interface is already marked up, 10044 * we call ipif_down which will take care 10045 * of ditching any IREs that have been set 10046 * up based on the old pp dst address. 10047 */ 10048 err = ipif_logical_down(ipif, q, mp); 10049 if (err == EINPROGRESS) 10050 return (err); 10051 (void) ipif_down_tail(ipif); 10052 need_up = B_TRUE; 10053 } 10054 /* 10055 * could return EINPROGRESS. If so ioctl will complete in 10056 * ip_rput_dlpi_writer 10057 */ 10058 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10059 return (err); 10060 } 10061 10062 static int 10063 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10064 boolean_t need_up) 10065 { 10066 in6_addr_t v6addr; 10067 ill_t *ill = ipif->ipif_ill; 10068 int err = 0; 10069 boolean_t need_dl_down; 10070 boolean_t need_arp_down; 10071 10072 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10073 ipif->ipif_id, (void *)ipif)); 10074 10075 /* Must cancel any pending timer before taking the ill_lock */ 10076 if (ipif->ipif_recovery_id != 0) 10077 (void) untimeout(ipif->ipif_recovery_id); 10078 ipif->ipif_recovery_id = 0; 10079 10080 if (ipif->ipif_isv6) { 10081 sin6_t *sin6; 10082 10083 sin6 = (sin6_t *)sin; 10084 v6addr = sin6->sin6_addr; 10085 } else { 10086 ipaddr_t addr; 10087 10088 addr = sin->sin_addr.s_addr; 10089 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10090 } 10091 mutex_enter(&ill->ill_lock); 10092 /* Set point to point destination address. */ 10093 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10094 /* 10095 * Allow this as a means of creating logical 10096 * pt-pt interfaces on top of e.g. an Ethernet. 10097 * XXX Undocumented HACK for testing. 10098 * pt-pt interfaces are created with NUD disabled. 10099 */ 10100 ipif->ipif_flags |= IPIF_POINTOPOINT; 10101 ipif->ipif_flags &= ~IPIF_BROADCAST; 10102 if (ipif->ipif_isv6) 10103 ill->ill_flags |= ILLF_NONUD; 10104 } 10105 10106 /* 10107 * If the interface was previously marked as a duplicate, then since 10108 * we've now got a "new" address, it should no longer be considered a 10109 * duplicate -- even if the "new" address is the same as the old one. 10110 * Note that if all ipifs are down, we may have a pending ARP down 10111 * event to handle. 10112 */ 10113 need_dl_down = need_arp_down = B_FALSE; 10114 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10115 need_arp_down = !need_up; 10116 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10117 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10118 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10119 need_dl_down = B_TRUE; 10120 } 10121 } 10122 10123 /* 10124 * If we've just manually set the IPv6 destination link-local address 10125 * (0th ipif), tag the ill so that future updates to the destination 10126 * interface ID (as can happen with interfaces over IP tunnels) don't 10127 * result in this address getting automatically reconfigured from 10128 * under the administrator. 10129 */ 10130 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10131 ill->ill_manual_dst_linklocal = 1; 10132 10133 /* Set the new address. */ 10134 ipif->ipif_v6pp_dst_addr = v6addr; 10135 /* Make sure subnet tracks pp_dst */ 10136 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10137 mutex_exit(&ill->ill_lock); 10138 10139 if (need_up) { 10140 /* 10141 * Now bring the interface back up. If this 10142 * is the only IPIF for the ILL, ipif_up 10143 * will have to re-bind to the device, so 10144 * we may get back EINPROGRESS, in which 10145 * case, this IOCTL will get completed in 10146 * ip_rput_dlpi when we see the DL_BIND_ACK. 10147 */ 10148 err = ipif_up(ipif, q, mp); 10149 } 10150 10151 if (need_dl_down) 10152 ill_dl_down(ill); 10153 if (need_arp_down && !ipif->ipif_isv6) 10154 (void) ipif_arp_down(ipif); 10155 10156 return (err); 10157 } 10158 10159 /* 10160 * Restart entry point to restart the dstaddress set operation after the 10161 * refcounts have dropped to zero. 10162 */ 10163 /* ARGSUSED */ 10164 int 10165 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10166 ip_ioctl_cmd_t *ipip, void *ifreq) 10167 { 10168 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10169 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10170 (void) ipif_down_tail(ipif); 10171 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10172 } 10173 10174 /* ARGSUSED */ 10175 int 10176 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10177 ip_ioctl_cmd_t *ipip, void *if_req) 10178 { 10179 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10180 10181 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10182 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10183 /* 10184 * Get point to point destination address. The addresses can't 10185 * change since we hold a reference to the ipif. 10186 */ 10187 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10188 return (EADDRNOTAVAIL); 10189 10190 if (ipif->ipif_isv6) { 10191 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10192 *sin6 = sin6_null; 10193 sin6->sin6_family = AF_INET6; 10194 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10195 } else { 10196 *sin = sin_null; 10197 sin->sin_family = AF_INET; 10198 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10199 } 10200 return (0); 10201 } 10202 10203 /* 10204 * Check which flags will change by the given flags being set 10205 * silently ignore flags which userland is not allowed to control. 10206 * (Because these flags may change between SIOCGLIFFLAGS and 10207 * SIOCSLIFFLAGS, and that's outside of userland's control, 10208 * we need to silently ignore them rather than fail.) 10209 */ 10210 static void 10211 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10212 uint64_t *offp) 10213 { 10214 ill_t *ill = ipif->ipif_ill; 10215 phyint_t *phyi = ill->ill_phyint; 10216 uint64_t cantchange_flags, intf_flags; 10217 uint64_t turn_on, turn_off; 10218 10219 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10220 cantchange_flags = IFF_CANTCHANGE; 10221 if (IS_IPMP(ill)) 10222 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10223 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10224 turn_off = intf_flags & turn_on; 10225 turn_on ^= turn_off; 10226 *onp = turn_on; 10227 *offp = turn_off; 10228 } 10229 10230 /* 10231 * Set interface flags. Many flags require special handling (e.g., 10232 * bringing the interface down); see below for details. 10233 * 10234 * NOTE : We really don't enforce that ipif_id zero should be used 10235 * for setting any flags other than IFF_LOGINT_FLAGS. This 10236 * is because applications generally does SICGLIFFLAGS and 10237 * ORs in the new flags (that affects the logical) and does a 10238 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10239 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10240 * flags that will be turned on is correct with respect to 10241 * ipif_id 0. For backward compatibility reasons, it is not done. 10242 */ 10243 /* ARGSUSED */ 10244 int 10245 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10246 ip_ioctl_cmd_t *ipip, void *if_req) 10247 { 10248 uint64_t turn_on; 10249 uint64_t turn_off; 10250 int err = 0; 10251 phyint_t *phyi; 10252 ill_t *ill; 10253 conn_t *connp; 10254 uint64_t intf_flags; 10255 boolean_t phyint_flags_modified = B_FALSE; 10256 uint64_t flags; 10257 struct ifreq *ifr; 10258 struct lifreq *lifr; 10259 boolean_t set_linklocal = B_FALSE; 10260 10261 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10262 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10263 10264 ASSERT(IAM_WRITER_IPIF(ipif)); 10265 10266 ill = ipif->ipif_ill; 10267 phyi = ill->ill_phyint; 10268 10269 if (ipip->ipi_cmd_type == IF_CMD) { 10270 ifr = (struct ifreq *)if_req; 10271 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10272 } else { 10273 lifr = (struct lifreq *)if_req; 10274 flags = lifr->lifr_flags; 10275 } 10276 10277 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10278 10279 /* 10280 * Have the flags been set correctly until now? 10281 */ 10282 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10283 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10284 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10285 /* 10286 * Compare the new flags to the old, and partition 10287 * into those coming on and those going off. 10288 * For the 16 bit command keep the bits above bit 16 unchanged. 10289 */ 10290 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10291 flags |= intf_flags & ~0xFFFF; 10292 10293 /* 10294 * Explicitly fail attempts to change flags that are always invalid on 10295 * an IPMP meta-interface. 10296 */ 10297 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10298 return (EINVAL); 10299 10300 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10301 if ((turn_on|turn_off) == 0) 10302 return (0); /* No change */ 10303 10304 /* 10305 * All test addresses must be IFF_DEPRECATED (to ensure source address 10306 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10307 * allow it to be turned off. 10308 */ 10309 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10310 (turn_on|intf_flags) & IFF_NOFAILOVER) 10311 return (EINVAL); 10312 10313 if ((connp = Q_TO_CONN(q)) == NULL) 10314 return (EINVAL); 10315 10316 /* 10317 * Only vrrp control socket is allowed to change IFF_UP and 10318 * IFF_NOACCEPT flags when IFF_VRRP is set. 10319 */ 10320 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10321 if (!connp->conn_isvrrp) 10322 return (EINVAL); 10323 } 10324 10325 /* 10326 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10327 * VRRP control socket. 10328 */ 10329 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10330 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10331 return (EINVAL); 10332 } 10333 10334 if (turn_on & IFF_NOFAILOVER) { 10335 turn_on |= IFF_DEPRECATED; 10336 flags |= IFF_DEPRECATED; 10337 } 10338 10339 /* 10340 * On underlying interfaces, only allow applications to manage test 10341 * addresses -- otherwise, they may get confused when the address 10342 * moves as part of being brought up. Likewise, prevent an 10343 * application-managed test address from being converted to a data 10344 * address. To prevent migration of administratively up addresses in 10345 * the kernel, we don't allow them to be converted either. 10346 */ 10347 if (IS_UNDER_IPMP(ill)) { 10348 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10349 10350 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10351 return (EINVAL); 10352 10353 if ((turn_off & IFF_NOFAILOVER) && 10354 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10355 return (EINVAL); 10356 } 10357 10358 /* 10359 * Only allow IFF_TEMPORARY flag to be set on 10360 * IPv6 interfaces. 10361 */ 10362 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10363 return (EINVAL); 10364 10365 /* 10366 * cannot turn off IFF_NOXMIT on VNI interfaces. 10367 */ 10368 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10369 return (EINVAL); 10370 10371 /* 10372 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10373 * interfaces. It makes no sense in that context. 10374 */ 10375 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10376 return (EINVAL); 10377 10378 /* 10379 * For IPv6 ipif_id 0, don't allow the interface to be up without 10380 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10381 * If the link local address isn't set, and can be set, it will get 10382 * set later on in this function. 10383 */ 10384 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10385 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10386 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10387 if (ipif_cant_setlinklocal(ipif)) 10388 return (EINVAL); 10389 set_linklocal = B_TRUE; 10390 } 10391 10392 /* 10393 * If we modify physical interface flags, we'll potentially need to 10394 * send up two routing socket messages for the changes (one for the 10395 * IPv4 ill, and another for the IPv6 ill). Note that here. 10396 */ 10397 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10398 phyint_flags_modified = B_TRUE; 10399 10400 /* 10401 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10402 * (otherwise, we'd immediately use them, defeating standby). Also, 10403 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10404 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10405 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10406 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10407 * will not be honored. 10408 */ 10409 if (turn_on & PHYI_STANDBY) { 10410 /* 10411 * No need to grab ill_g_usesrc_lock here; see the 10412 * synchronization notes in ip.c. 10413 */ 10414 if (ill->ill_usesrc_grp_next != NULL || 10415 intf_flags & PHYI_INACTIVE) 10416 return (EINVAL); 10417 if (!(flags & PHYI_FAILED)) { 10418 flags |= PHYI_INACTIVE; 10419 turn_on |= PHYI_INACTIVE; 10420 } 10421 } 10422 10423 if (turn_off & PHYI_STANDBY) { 10424 flags &= ~PHYI_INACTIVE; 10425 turn_off |= PHYI_INACTIVE; 10426 } 10427 10428 /* 10429 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10430 * would end up on. 10431 */ 10432 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10433 (PHYI_FAILED | PHYI_INACTIVE)) 10434 return (EINVAL); 10435 10436 /* 10437 * If ILLF_ROUTER changes, we need to change the ip forwarding 10438 * status of the interface. 10439 */ 10440 if ((turn_on | turn_off) & ILLF_ROUTER) { 10441 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10442 if (err != 0) 10443 return (err); 10444 } 10445 10446 /* 10447 * If the interface is not UP and we are not going to 10448 * bring it UP, record the flags and return. When the 10449 * interface comes UP later, the right actions will be 10450 * taken. 10451 */ 10452 if (!(ipif->ipif_flags & IPIF_UP) && 10453 !(turn_on & IPIF_UP)) { 10454 /* Record new flags in their respective places. */ 10455 mutex_enter(&ill->ill_lock); 10456 mutex_enter(&ill->ill_phyint->phyint_lock); 10457 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10458 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10459 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10460 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10461 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10462 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10463 mutex_exit(&ill->ill_lock); 10464 mutex_exit(&ill->ill_phyint->phyint_lock); 10465 10466 /* 10467 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10468 * same to the kernel: if any of them has been set by 10469 * userland, the interface cannot be used for data traffic. 10470 */ 10471 if ((turn_on|turn_off) & 10472 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10473 ASSERT(!IS_IPMP(ill)); 10474 /* 10475 * It's possible the ill is part of an "anonymous" 10476 * IPMP group rather than a real group. In that case, 10477 * there are no other interfaces in the group and thus 10478 * no need to call ipmp_phyint_refresh_active(). 10479 */ 10480 if (IS_UNDER_IPMP(ill)) 10481 ipmp_phyint_refresh_active(phyi); 10482 } 10483 10484 if (phyint_flags_modified) { 10485 if (phyi->phyint_illv4 != NULL) { 10486 ip_rts_ifmsg(phyi->phyint_illv4-> 10487 ill_ipif, RTSQ_DEFAULT); 10488 } 10489 if (phyi->phyint_illv6 != NULL) { 10490 ip_rts_ifmsg(phyi->phyint_illv6-> 10491 ill_ipif, RTSQ_DEFAULT); 10492 } 10493 } 10494 /* The default multicast interface might have changed */ 10495 ire_increment_multicast_generation(ill->ill_ipst, 10496 ill->ill_isv6); 10497 10498 return (0); 10499 } else if (set_linklocal) { 10500 mutex_enter(&ill->ill_lock); 10501 if (set_linklocal) 10502 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10503 mutex_exit(&ill->ill_lock); 10504 } 10505 10506 /* 10507 * Disallow IPv6 interfaces coming up that have the unspecified address, 10508 * or point-to-point interfaces with an unspecified destination. We do 10509 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10510 * have a subnet assigned, which is how in.ndpd currently manages its 10511 * onlink prefix list when no addresses are configured with those 10512 * prefixes. 10513 */ 10514 if (ipif->ipif_isv6 && 10515 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10516 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10517 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10518 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10519 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10520 return (EINVAL); 10521 } 10522 10523 /* 10524 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10525 * from being brought up. 10526 */ 10527 if (!ipif->ipif_isv6 && 10528 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10529 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10530 return (EINVAL); 10531 } 10532 10533 /* 10534 * If we are going to change one or more of the flags that are 10535 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10536 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10537 * IPIF_NOFAILOVER, we will take special action. This is 10538 * done by bring the ipif down, changing the flags and bringing 10539 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10540 * back up will trigger the address to be moved. 10541 * 10542 * If we are going to change IFF_NOACCEPT, we need to bring 10543 * all the ipifs down then bring them up again. The act of 10544 * bringing all the ipifs back up will trigger the local 10545 * ires being recreated with "no_accept" set/cleared. 10546 * 10547 * Note that ILLF_NOACCEPT is always set separately from the 10548 * other flags. 10549 */ 10550 if ((turn_on|turn_off) & 10551 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10552 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10553 IPIF_NOFAILOVER)) { 10554 /* 10555 * ipif_down() will ire_delete bcast ire's for the subnet, 10556 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10557 * entries shared between multiple ipifs on the same subnet. 10558 */ 10559 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10560 !(turn_off & IPIF_UP)) { 10561 if (ipif->ipif_flags & IPIF_UP) 10562 ill->ill_logical_down = 1; 10563 turn_on &= ~IPIF_UP; 10564 } 10565 err = ipif_down(ipif, q, mp); 10566 ip1dbg(("ipif_down returns %d err ", err)); 10567 if (err == EINPROGRESS) 10568 return (err); 10569 (void) ipif_down_tail(ipif); 10570 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10571 /* 10572 * If we can quiesce the ill, then continue. If not, then 10573 * ip_sioctl_flags_tail() will be called from 10574 * ipif_ill_refrele_tail(). 10575 */ 10576 ill_down_ipifs(ill, B_TRUE); 10577 10578 mutex_enter(&connp->conn_lock); 10579 mutex_enter(&ill->ill_lock); 10580 if (!ill_is_quiescent(ill)) { 10581 boolean_t success; 10582 10583 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10584 q, mp, ILL_DOWN); 10585 mutex_exit(&ill->ill_lock); 10586 mutex_exit(&connp->conn_lock); 10587 return (success ? EINPROGRESS : EINTR); 10588 } 10589 mutex_exit(&ill->ill_lock); 10590 mutex_exit(&connp->conn_lock); 10591 } 10592 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10593 } 10594 10595 static int 10596 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10597 { 10598 ill_t *ill; 10599 phyint_t *phyi; 10600 uint64_t turn_on, turn_off; 10601 boolean_t phyint_flags_modified = B_FALSE; 10602 int err = 0; 10603 boolean_t set_linklocal = B_FALSE; 10604 10605 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10606 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10607 10608 ASSERT(IAM_WRITER_IPIF(ipif)); 10609 10610 ill = ipif->ipif_ill; 10611 phyi = ill->ill_phyint; 10612 10613 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10614 10615 /* 10616 * IFF_UP is handled separately. 10617 */ 10618 turn_on &= ~IFF_UP; 10619 turn_off &= ~IFF_UP; 10620 10621 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10622 phyint_flags_modified = B_TRUE; 10623 10624 /* 10625 * Now we change the flags. Track current value of 10626 * other flags in their respective places. 10627 */ 10628 mutex_enter(&ill->ill_lock); 10629 mutex_enter(&phyi->phyint_lock); 10630 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10631 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10632 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10633 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10634 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10635 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10636 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10637 set_linklocal = B_TRUE; 10638 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10639 } 10640 10641 mutex_exit(&ill->ill_lock); 10642 mutex_exit(&phyi->phyint_lock); 10643 10644 if (set_linklocal) 10645 (void) ipif_setlinklocal(ipif); 10646 10647 /* 10648 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10649 * the kernel: if any of them has been set by userland, the interface 10650 * cannot be used for data traffic. 10651 */ 10652 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10653 ASSERT(!IS_IPMP(ill)); 10654 /* 10655 * It's possible the ill is part of an "anonymous" IPMP group 10656 * rather than a real group. In that case, there are no other 10657 * interfaces in the group and thus no need for us to call 10658 * ipmp_phyint_refresh_active(). 10659 */ 10660 if (IS_UNDER_IPMP(ill)) 10661 ipmp_phyint_refresh_active(phyi); 10662 } 10663 10664 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10665 /* 10666 * If the ILLF_NOACCEPT flag is changed, bring up all the 10667 * ipifs that were brought down. 10668 * 10669 * The routing sockets messages are sent as the result 10670 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10671 * as well. 10672 */ 10673 err = ill_up_ipifs(ill, q, mp); 10674 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10675 /* 10676 * XXX ipif_up really does not know whether a phyint flags 10677 * was modified or not. So, it sends up information on 10678 * only one routing sockets message. As we don't bring up 10679 * the interface and also set PHYI_ flags simultaneously 10680 * it should be okay. 10681 */ 10682 err = ipif_up(ipif, q, mp); 10683 } else { 10684 /* 10685 * Make sure routing socket sees all changes to the flags. 10686 * ipif_up_done* handles this when we use ipif_up. 10687 */ 10688 if (phyint_flags_modified) { 10689 if (phyi->phyint_illv4 != NULL) { 10690 ip_rts_ifmsg(phyi->phyint_illv4-> 10691 ill_ipif, RTSQ_DEFAULT); 10692 } 10693 if (phyi->phyint_illv6 != NULL) { 10694 ip_rts_ifmsg(phyi->phyint_illv6-> 10695 ill_ipif, RTSQ_DEFAULT); 10696 } 10697 } else { 10698 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10699 } 10700 /* 10701 * Update the flags in SCTP's IPIF list, ipif_up() will do 10702 * this in need_up case. 10703 */ 10704 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10705 } 10706 10707 /* The default multicast interface might have changed */ 10708 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10709 return (err); 10710 } 10711 10712 /* 10713 * Restart the flags operation now that the refcounts have dropped to zero. 10714 */ 10715 /* ARGSUSED */ 10716 int 10717 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10718 ip_ioctl_cmd_t *ipip, void *if_req) 10719 { 10720 uint64_t flags; 10721 struct ifreq *ifr = if_req; 10722 struct lifreq *lifr = if_req; 10723 uint64_t turn_on, turn_off; 10724 10725 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10726 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10727 10728 if (ipip->ipi_cmd_type == IF_CMD) { 10729 /* cast to uint16_t prevents unwanted sign extension */ 10730 flags = (uint16_t)ifr->ifr_flags; 10731 } else { 10732 flags = lifr->lifr_flags; 10733 } 10734 10735 /* 10736 * If this function call is a result of the ILLF_NOACCEPT flag 10737 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10738 */ 10739 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10740 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10741 (void) ipif_down_tail(ipif); 10742 10743 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10744 } 10745 10746 /* 10747 * Can operate on either a module or a driver queue. 10748 */ 10749 /* ARGSUSED */ 10750 int 10751 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10752 ip_ioctl_cmd_t *ipip, void *if_req) 10753 { 10754 /* 10755 * Has the flags been set correctly till now ? 10756 */ 10757 ill_t *ill = ipif->ipif_ill; 10758 phyint_t *phyi = ill->ill_phyint; 10759 10760 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10761 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10762 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10763 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10764 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10765 10766 /* 10767 * Need a lock since some flags can be set even when there are 10768 * references to the ipif. 10769 */ 10770 mutex_enter(&ill->ill_lock); 10771 if (ipip->ipi_cmd_type == IF_CMD) { 10772 struct ifreq *ifr = (struct ifreq *)if_req; 10773 10774 /* Get interface flags (low 16 only). */ 10775 ifr->ifr_flags = ((ipif->ipif_flags | 10776 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10777 } else { 10778 struct lifreq *lifr = (struct lifreq *)if_req; 10779 10780 /* Get interface flags. */ 10781 lifr->lifr_flags = ipif->ipif_flags | 10782 ill->ill_flags | phyi->phyint_flags; 10783 } 10784 mutex_exit(&ill->ill_lock); 10785 return (0); 10786 } 10787 10788 /* 10789 * We allow the MTU to be set on an ILL, but not have it be different 10790 * for different IPIFs since we don't actually send packets on IPIFs. 10791 */ 10792 /* ARGSUSED */ 10793 int 10794 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10795 ip_ioctl_cmd_t *ipip, void *if_req) 10796 { 10797 int mtu; 10798 int ip_min_mtu; 10799 struct ifreq *ifr; 10800 struct lifreq *lifr; 10801 ill_t *ill; 10802 10803 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10804 ipif->ipif_id, (void *)ipif)); 10805 if (ipip->ipi_cmd_type == IF_CMD) { 10806 ifr = (struct ifreq *)if_req; 10807 mtu = ifr->ifr_metric; 10808 } else { 10809 lifr = (struct lifreq *)if_req; 10810 mtu = lifr->lifr_mtu; 10811 } 10812 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10813 if (ipif->ipif_id != 0) 10814 return (EINVAL); 10815 10816 ill = ipif->ipif_ill; 10817 if (ipif->ipif_isv6) 10818 ip_min_mtu = IPV6_MIN_MTU; 10819 else 10820 ip_min_mtu = IP_MIN_MTU; 10821 10822 mutex_enter(&ill->ill_lock); 10823 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10824 mutex_exit(&ill->ill_lock); 10825 return (EINVAL); 10826 } 10827 /* Avoid increasing ill_mc_mtu */ 10828 if (ill->ill_mc_mtu > mtu) 10829 ill->ill_mc_mtu = mtu; 10830 10831 /* 10832 * The dce and fragmentation code can handle changes to ill_mtu 10833 * concurrent with sending/fragmenting packets. 10834 */ 10835 ill->ill_mtu = mtu; 10836 ill->ill_flags |= ILLF_FIXEDMTU; 10837 mutex_exit(&ill->ill_lock); 10838 10839 /* 10840 * Make sure all dce_generation checks find out 10841 * that ill_mtu/ill_mc_mtu has changed. 10842 */ 10843 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10844 10845 /* 10846 * Refresh IPMP meta-interface MTU if necessary. 10847 */ 10848 if (IS_UNDER_IPMP(ill)) 10849 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10850 10851 /* Update the MTU in SCTP's list */ 10852 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10853 return (0); 10854 } 10855 10856 /* Get interface MTU. */ 10857 /* ARGSUSED */ 10858 int 10859 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10860 ip_ioctl_cmd_t *ipip, void *if_req) 10861 { 10862 struct ifreq *ifr; 10863 struct lifreq *lifr; 10864 10865 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10866 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10867 10868 /* 10869 * We allow a get on any logical interface even though the set 10870 * can only be done on logical unit 0. 10871 */ 10872 if (ipip->ipi_cmd_type == IF_CMD) { 10873 ifr = (struct ifreq *)if_req; 10874 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10875 } else { 10876 lifr = (struct lifreq *)if_req; 10877 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10878 } 10879 return (0); 10880 } 10881 10882 /* Set interface broadcast address. */ 10883 /* ARGSUSED2 */ 10884 int 10885 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10886 ip_ioctl_cmd_t *ipip, void *if_req) 10887 { 10888 ipaddr_t addr; 10889 ire_t *ire; 10890 ill_t *ill = ipif->ipif_ill; 10891 ip_stack_t *ipst = ill->ill_ipst; 10892 10893 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10894 ipif->ipif_id)); 10895 10896 ASSERT(IAM_WRITER_IPIF(ipif)); 10897 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10898 return (EADDRNOTAVAIL); 10899 10900 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10901 10902 if (sin->sin_family != AF_INET) 10903 return (EAFNOSUPPORT); 10904 10905 addr = sin->sin_addr.s_addr; 10906 10907 if (ipif->ipif_flags & IPIF_UP) { 10908 /* 10909 * If we are already up, make sure the new 10910 * broadcast address makes sense. If it does, 10911 * there should be an IRE for it already. 10912 */ 10913 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10914 ill, ipif->ipif_zoneid, NULL, 10915 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10916 if (ire == NULL) { 10917 return (EINVAL); 10918 } else { 10919 ire_refrele(ire); 10920 } 10921 } 10922 /* 10923 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10924 * needs to already exist we never need to change the set of 10925 * IRE_BROADCASTs when we are UP. 10926 */ 10927 if (addr != ipif->ipif_brd_addr) 10928 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10929 10930 return (0); 10931 } 10932 10933 /* Get interface broadcast address. */ 10934 /* ARGSUSED */ 10935 int 10936 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10937 ip_ioctl_cmd_t *ipip, void *if_req) 10938 { 10939 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10940 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10941 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10942 return (EADDRNOTAVAIL); 10943 10944 /* IPIF_BROADCAST not possible with IPv6 */ 10945 ASSERT(!ipif->ipif_isv6); 10946 *sin = sin_null; 10947 sin->sin_family = AF_INET; 10948 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10949 return (0); 10950 } 10951 10952 /* 10953 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10954 */ 10955 /* ARGSUSED */ 10956 int 10957 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10958 ip_ioctl_cmd_t *ipip, void *if_req) 10959 { 10960 int err = 0; 10961 in6_addr_t v6mask; 10962 10963 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10964 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10965 10966 ASSERT(IAM_WRITER_IPIF(ipif)); 10967 10968 if (ipif->ipif_isv6) { 10969 sin6_t *sin6; 10970 10971 if (sin->sin_family != AF_INET6) 10972 return (EAFNOSUPPORT); 10973 10974 sin6 = (sin6_t *)sin; 10975 v6mask = sin6->sin6_addr; 10976 } else { 10977 ipaddr_t mask; 10978 10979 if (sin->sin_family != AF_INET) 10980 return (EAFNOSUPPORT); 10981 10982 mask = sin->sin_addr.s_addr; 10983 if (!ip_contiguous_mask(ntohl(mask))) 10984 return (ENOTSUP); 10985 V4MASK_TO_V6(mask, v6mask); 10986 } 10987 10988 /* 10989 * No big deal if the interface isn't already up, or the mask 10990 * isn't really changing, or this is pt-pt. 10991 */ 10992 if (!(ipif->ipif_flags & IPIF_UP) || 10993 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10994 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10995 ipif->ipif_v6net_mask = v6mask; 10996 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10997 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10998 ipif->ipif_v6net_mask, 10999 ipif->ipif_v6subnet); 11000 } 11001 return (0); 11002 } 11003 /* 11004 * Make sure we have valid net and subnet broadcast ire's 11005 * for the old netmask, if needed by other logical interfaces. 11006 */ 11007 err = ipif_logical_down(ipif, q, mp); 11008 if (err == EINPROGRESS) 11009 return (err); 11010 (void) ipif_down_tail(ipif); 11011 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11012 return (err); 11013 } 11014 11015 static int 11016 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11017 { 11018 in6_addr_t v6mask; 11019 int err = 0; 11020 11021 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11022 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11023 11024 if (ipif->ipif_isv6) { 11025 sin6_t *sin6; 11026 11027 sin6 = (sin6_t *)sin; 11028 v6mask = sin6->sin6_addr; 11029 } else { 11030 ipaddr_t mask; 11031 11032 mask = sin->sin_addr.s_addr; 11033 V4MASK_TO_V6(mask, v6mask); 11034 } 11035 11036 ipif->ipif_v6net_mask = v6mask; 11037 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11038 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11039 ipif->ipif_v6subnet); 11040 } 11041 err = ipif_up(ipif, q, mp); 11042 11043 if (err == 0 || err == EINPROGRESS) { 11044 /* 11045 * The interface must be DL_BOUND if this packet has to 11046 * go out on the wire. Since we only go through a logical 11047 * down and are bound with the driver during an internal 11048 * down/up that is satisfied. 11049 */ 11050 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11051 /* Potentially broadcast an address mask reply. */ 11052 ipif_mask_reply(ipif); 11053 } 11054 } 11055 return (err); 11056 } 11057 11058 /* ARGSUSED */ 11059 int 11060 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11061 ip_ioctl_cmd_t *ipip, void *if_req) 11062 { 11063 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11064 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11065 (void) ipif_down_tail(ipif); 11066 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11067 } 11068 11069 /* Get interface net mask. */ 11070 /* ARGSUSED */ 11071 int 11072 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11073 ip_ioctl_cmd_t *ipip, void *if_req) 11074 { 11075 struct lifreq *lifr = (struct lifreq *)if_req; 11076 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11077 11078 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11079 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11080 11081 /* 11082 * net mask can't change since we have a reference to the ipif. 11083 */ 11084 if (ipif->ipif_isv6) { 11085 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11086 *sin6 = sin6_null; 11087 sin6->sin6_family = AF_INET6; 11088 sin6->sin6_addr = ipif->ipif_v6net_mask; 11089 lifr->lifr_addrlen = 11090 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11091 } else { 11092 *sin = sin_null; 11093 sin->sin_family = AF_INET; 11094 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11095 if (ipip->ipi_cmd_type == LIF_CMD) { 11096 lifr->lifr_addrlen = 11097 ip_mask_to_plen(ipif->ipif_net_mask); 11098 } 11099 } 11100 return (0); 11101 } 11102 11103 /* ARGSUSED */ 11104 int 11105 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11106 ip_ioctl_cmd_t *ipip, void *if_req) 11107 { 11108 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11109 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11110 11111 /* 11112 * Since no applications should ever be setting metrics on underlying 11113 * interfaces, we explicitly fail to smoke 'em out. 11114 */ 11115 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11116 return (EINVAL); 11117 11118 /* 11119 * Set interface metric. We don't use this for 11120 * anything but we keep track of it in case it is 11121 * important to routing applications or such. 11122 */ 11123 if (ipip->ipi_cmd_type == IF_CMD) { 11124 struct ifreq *ifr; 11125 11126 ifr = (struct ifreq *)if_req; 11127 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11128 } else { 11129 struct lifreq *lifr; 11130 11131 lifr = (struct lifreq *)if_req; 11132 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11133 } 11134 return (0); 11135 } 11136 11137 /* ARGSUSED */ 11138 int 11139 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11140 ip_ioctl_cmd_t *ipip, void *if_req) 11141 { 11142 /* Get interface metric. */ 11143 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11144 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11145 11146 if (ipip->ipi_cmd_type == IF_CMD) { 11147 struct ifreq *ifr; 11148 11149 ifr = (struct ifreq *)if_req; 11150 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11151 } else { 11152 struct lifreq *lifr; 11153 11154 lifr = (struct lifreq *)if_req; 11155 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11156 } 11157 11158 return (0); 11159 } 11160 11161 /* ARGSUSED */ 11162 int 11163 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11164 ip_ioctl_cmd_t *ipip, void *if_req) 11165 { 11166 int arp_muxid; 11167 11168 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11169 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11170 /* 11171 * Set the muxid returned from I_PLINK. 11172 */ 11173 if (ipip->ipi_cmd_type == IF_CMD) { 11174 struct ifreq *ifr = (struct ifreq *)if_req; 11175 11176 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11177 arp_muxid = ifr->ifr_arp_muxid; 11178 } else { 11179 struct lifreq *lifr = (struct lifreq *)if_req; 11180 11181 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11182 arp_muxid = lifr->lifr_arp_muxid; 11183 } 11184 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11185 return (0); 11186 } 11187 11188 /* ARGSUSED */ 11189 int 11190 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11191 ip_ioctl_cmd_t *ipip, void *if_req) 11192 { 11193 int arp_muxid = 0; 11194 11195 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11196 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11197 /* 11198 * Get the muxid saved in ill for I_PUNLINK. 11199 */ 11200 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11201 if (ipip->ipi_cmd_type == IF_CMD) { 11202 struct ifreq *ifr = (struct ifreq *)if_req; 11203 11204 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11205 ifr->ifr_arp_muxid = arp_muxid; 11206 } else { 11207 struct lifreq *lifr = (struct lifreq *)if_req; 11208 11209 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11210 lifr->lifr_arp_muxid = arp_muxid; 11211 } 11212 return (0); 11213 } 11214 11215 /* 11216 * Set the subnet prefix. Does not modify the broadcast address. 11217 */ 11218 /* ARGSUSED */ 11219 int 11220 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11221 ip_ioctl_cmd_t *ipip, void *if_req) 11222 { 11223 int err = 0; 11224 in6_addr_t v6addr; 11225 in6_addr_t v6mask; 11226 boolean_t need_up = B_FALSE; 11227 int addrlen; 11228 11229 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11230 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11231 11232 ASSERT(IAM_WRITER_IPIF(ipif)); 11233 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11234 11235 if (ipif->ipif_isv6) { 11236 sin6_t *sin6; 11237 11238 if (sin->sin_family != AF_INET6) 11239 return (EAFNOSUPPORT); 11240 11241 sin6 = (sin6_t *)sin; 11242 v6addr = sin6->sin6_addr; 11243 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11244 return (EADDRNOTAVAIL); 11245 } else { 11246 ipaddr_t addr; 11247 11248 if (sin->sin_family != AF_INET) 11249 return (EAFNOSUPPORT); 11250 11251 addr = sin->sin_addr.s_addr; 11252 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11253 return (EADDRNOTAVAIL); 11254 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11255 /* Add 96 bits */ 11256 addrlen += IPV6_ABITS - IP_ABITS; 11257 } 11258 11259 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11260 return (EINVAL); 11261 11262 /* Check if bits in the address is set past the mask */ 11263 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11264 return (EINVAL); 11265 11266 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11267 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11268 return (0); /* No change */ 11269 11270 if (ipif->ipif_flags & IPIF_UP) { 11271 /* 11272 * If the interface is already marked up, 11273 * we call ipif_down which will take care 11274 * of ditching any IREs that have been set 11275 * up based on the old interface address. 11276 */ 11277 err = ipif_logical_down(ipif, q, mp); 11278 if (err == EINPROGRESS) 11279 return (err); 11280 (void) ipif_down_tail(ipif); 11281 need_up = B_TRUE; 11282 } 11283 11284 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11285 return (err); 11286 } 11287 11288 static int 11289 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11290 queue_t *q, mblk_t *mp, boolean_t need_up) 11291 { 11292 ill_t *ill = ipif->ipif_ill; 11293 int err = 0; 11294 11295 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11296 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11297 11298 /* Set the new address. */ 11299 mutex_enter(&ill->ill_lock); 11300 ipif->ipif_v6net_mask = v6mask; 11301 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11302 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11303 ipif->ipif_v6subnet); 11304 } 11305 mutex_exit(&ill->ill_lock); 11306 11307 if (need_up) { 11308 /* 11309 * Now bring the interface back up. If this 11310 * is the only IPIF for the ILL, ipif_up 11311 * will have to re-bind to the device, so 11312 * we may get back EINPROGRESS, in which 11313 * case, this IOCTL will get completed in 11314 * ip_rput_dlpi when we see the DL_BIND_ACK. 11315 */ 11316 err = ipif_up(ipif, q, mp); 11317 if (err == EINPROGRESS) 11318 return (err); 11319 } 11320 return (err); 11321 } 11322 11323 /* ARGSUSED */ 11324 int 11325 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11326 ip_ioctl_cmd_t *ipip, void *if_req) 11327 { 11328 int addrlen; 11329 in6_addr_t v6addr; 11330 in6_addr_t v6mask; 11331 struct lifreq *lifr = (struct lifreq *)if_req; 11332 11333 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11334 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11335 (void) ipif_down_tail(ipif); 11336 11337 addrlen = lifr->lifr_addrlen; 11338 if (ipif->ipif_isv6) { 11339 sin6_t *sin6; 11340 11341 sin6 = (sin6_t *)sin; 11342 v6addr = sin6->sin6_addr; 11343 } else { 11344 ipaddr_t addr; 11345 11346 addr = sin->sin_addr.s_addr; 11347 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11348 addrlen += IPV6_ABITS - IP_ABITS; 11349 } 11350 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11351 11352 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11353 } 11354 11355 /* ARGSUSED */ 11356 int 11357 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11358 ip_ioctl_cmd_t *ipip, void *if_req) 11359 { 11360 struct lifreq *lifr = (struct lifreq *)if_req; 11361 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11362 11363 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11364 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11365 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11366 11367 if (ipif->ipif_isv6) { 11368 *sin6 = sin6_null; 11369 sin6->sin6_family = AF_INET6; 11370 sin6->sin6_addr = ipif->ipif_v6subnet; 11371 lifr->lifr_addrlen = 11372 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11373 } else { 11374 *sin = sin_null; 11375 sin->sin_family = AF_INET; 11376 sin->sin_addr.s_addr = ipif->ipif_subnet; 11377 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11378 } 11379 return (0); 11380 } 11381 11382 /* 11383 * Set the IPv6 address token. 11384 */ 11385 /* ARGSUSED */ 11386 int 11387 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11388 ip_ioctl_cmd_t *ipi, void *if_req) 11389 { 11390 ill_t *ill = ipif->ipif_ill; 11391 int err; 11392 in6_addr_t v6addr; 11393 in6_addr_t v6mask; 11394 boolean_t need_up = B_FALSE; 11395 int i; 11396 sin6_t *sin6 = (sin6_t *)sin; 11397 struct lifreq *lifr = (struct lifreq *)if_req; 11398 int addrlen; 11399 11400 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11401 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11402 ASSERT(IAM_WRITER_IPIF(ipif)); 11403 11404 addrlen = lifr->lifr_addrlen; 11405 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11406 if (ipif->ipif_id != 0) 11407 return (EINVAL); 11408 11409 if (!ipif->ipif_isv6) 11410 return (EINVAL); 11411 11412 if (addrlen > IPV6_ABITS) 11413 return (EINVAL); 11414 11415 v6addr = sin6->sin6_addr; 11416 11417 /* 11418 * The length of the token is the length from the end. To get 11419 * the proper mask for this, compute the mask of the bits not 11420 * in the token; ie. the prefix, and then xor to get the mask. 11421 */ 11422 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11423 return (EINVAL); 11424 for (i = 0; i < 4; i++) { 11425 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11426 } 11427 11428 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11429 ill->ill_token_length == addrlen) 11430 return (0); /* No change */ 11431 11432 if (ipif->ipif_flags & IPIF_UP) { 11433 err = ipif_logical_down(ipif, q, mp); 11434 if (err == EINPROGRESS) 11435 return (err); 11436 (void) ipif_down_tail(ipif); 11437 need_up = B_TRUE; 11438 } 11439 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11440 return (err); 11441 } 11442 11443 static int 11444 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11445 mblk_t *mp, boolean_t need_up) 11446 { 11447 in6_addr_t v6addr; 11448 in6_addr_t v6mask; 11449 ill_t *ill = ipif->ipif_ill; 11450 int i; 11451 int err = 0; 11452 11453 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11454 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11455 v6addr = sin6->sin6_addr; 11456 /* 11457 * The length of the token is the length from the end. To get 11458 * the proper mask for this, compute the mask of the bits not 11459 * in the token; ie. the prefix, and then xor to get the mask. 11460 */ 11461 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11462 for (i = 0; i < 4; i++) 11463 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11464 11465 mutex_enter(&ill->ill_lock); 11466 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11467 ill->ill_token_length = addrlen; 11468 ill->ill_manual_token = 1; 11469 11470 /* Reconfigure the link-local address based on this new token */ 11471 ipif_setlinklocal(ill->ill_ipif); 11472 11473 mutex_exit(&ill->ill_lock); 11474 11475 if (need_up) { 11476 /* 11477 * Now bring the interface back up. If this 11478 * is the only IPIF for the ILL, ipif_up 11479 * will have to re-bind to the device, so 11480 * we may get back EINPROGRESS, in which 11481 * case, this IOCTL will get completed in 11482 * ip_rput_dlpi when we see the DL_BIND_ACK. 11483 */ 11484 err = ipif_up(ipif, q, mp); 11485 if (err == EINPROGRESS) 11486 return (err); 11487 } 11488 return (err); 11489 } 11490 11491 /* ARGSUSED */ 11492 int 11493 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11494 ip_ioctl_cmd_t *ipi, void *if_req) 11495 { 11496 ill_t *ill; 11497 sin6_t *sin6 = (sin6_t *)sin; 11498 struct lifreq *lifr = (struct lifreq *)if_req; 11499 11500 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11501 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11502 if (ipif->ipif_id != 0) 11503 return (EINVAL); 11504 11505 ill = ipif->ipif_ill; 11506 if (!ill->ill_isv6) 11507 return (ENXIO); 11508 11509 *sin6 = sin6_null; 11510 sin6->sin6_family = AF_INET6; 11511 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11512 sin6->sin6_addr = ill->ill_token; 11513 lifr->lifr_addrlen = ill->ill_token_length; 11514 return (0); 11515 } 11516 11517 /* 11518 * Set (hardware) link specific information that might override 11519 * what was acquired through the DL_INFO_ACK. 11520 */ 11521 /* ARGSUSED */ 11522 int 11523 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11524 ip_ioctl_cmd_t *ipi, void *if_req) 11525 { 11526 ill_t *ill = ipif->ipif_ill; 11527 int ip_min_mtu; 11528 struct lifreq *lifr = (struct lifreq *)if_req; 11529 lif_ifinfo_req_t *lir; 11530 11531 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11532 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11533 lir = &lifr->lifr_ifinfo; 11534 ASSERT(IAM_WRITER_IPIF(ipif)); 11535 11536 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11537 if (ipif->ipif_id != 0) 11538 return (EINVAL); 11539 11540 /* Set interface MTU. */ 11541 if (ipif->ipif_isv6) 11542 ip_min_mtu = IPV6_MIN_MTU; 11543 else 11544 ip_min_mtu = IP_MIN_MTU; 11545 11546 /* 11547 * Verify values before we set anything. Allow zero to 11548 * mean unspecified. 11549 * 11550 * XXX We should be able to set the user-defined lir_mtu to some value 11551 * that is greater than ill_current_frag but less than ill_max_frag- the 11552 * ill_max_frag value tells us the max MTU that can be handled by the 11553 * datalink, whereas the ill_current_frag is dynamically computed for 11554 * some link-types like tunnels, based on the tunnel PMTU. However, 11555 * since there is currently no way of distinguishing between 11556 * administratively fixed link mtu values (e.g., those set via 11557 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11558 * for tunnels) we conservatively choose the ill_current_frag as the 11559 * upper-bound. 11560 */ 11561 if (lir->lir_maxmtu != 0 && 11562 (lir->lir_maxmtu > ill->ill_current_frag || 11563 lir->lir_maxmtu < ip_min_mtu)) 11564 return (EINVAL); 11565 if (lir->lir_reachtime != 0 && 11566 lir->lir_reachtime > ND_MAX_REACHTIME) 11567 return (EINVAL); 11568 if (lir->lir_reachretrans != 0 && 11569 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11570 return (EINVAL); 11571 11572 mutex_enter(&ill->ill_lock); 11573 /* 11574 * The dce and fragmentation code can handle changes to ill_mtu 11575 * concurrent with sending/fragmenting packets. 11576 */ 11577 if (lir->lir_maxmtu != 0) 11578 ill->ill_user_mtu = lir->lir_maxmtu; 11579 11580 if (lir->lir_reachtime != 0) 11581 ill->ill_reachable_time = lir->lir_reachtime; 11582 11583 if (lir->lir_reachretrans != 0) 11584 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11585 11586 ill->ill_max_hops = lir->lir_maxhops; 11587 ill->ill_max_buf = ND_MAX_Q; 11588 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11589 /* 11590 * ill_mtu is the actual interface MTU, obtained as the min 11591 * of user-configured mtu and the value announced by the 11592 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11593 * we have already made the choice of requiring 11594 * ill_user_mtu < ill_current_frag by the time we get here, 11595 * the ill_mtu effectively gets assigned to the ill_user_mtu 11596 * here. 11597 */ 11598 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11599 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11600 } 11601 mutex_exit(&ill->ill_lock); 11602 11603 /* 11604 * Make sure all dce_generation checks find out 11605 * that ill_mtu/ill_mc_mtu has changed. 11606 */ 11607 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11608 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11609 11610 /* 11611 * Refresh IPMP meta-interface MTU if necessary. 11612 */ 11613 if (IS_UNDER_IPMP(ill)) 11614 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11615 11616 return (0); 11617 } 11618 11619 /* ARGSUSED */ 11620 int 11621 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11622 ip_ioctl_cmd_t *ipi, void *if_req) 11623 { 11624 struct lif_ifinfo_req *lir; 11625 ill_t *ill = ipif->ipif_ill; 11626 11627 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11628 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11629 if (ipif->ipif_id != 0) 11630 return (EINVAL); 11631 11632 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11633 lir->lir_maxhops = ill->ill_max_hops; 11634 lir->lir_reachtime = ill->ill_reachable_time; 11635 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11636 lir->lir_maxmtu = ill->ill_mtu; 11637 11638 return (0); 11639 } 11640 11641 /* 11642 * Return best guess as to the subnet mask for the specified address. 11643 * Based on the subnet masks for all the configured interfaces. 11644 * 11645 * We end up returning a zero mask in the case of default, multicast or 11646 * experimental. 11647 */ 11648 static ipaddr_t 11649 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11650 { 11651 ipaddr_t net_mask; 11652 ill_t *ill; 11653 ipif_t *ipif; 11654 ill_walk_context_t ctx; 11655 ipif_t *fallback_ipif = NULL; 11656 11657 net_mask = ip_net_mask(addr); 11658 if (net_mask == 0) { 11659 *ipifp = NULL; 11660 return (0); 11661 } 11662 11663 /* Let's check to see if this is maybe a local subnet route. */ 11664 /* this function only applies to IPv4 interfaces */ 11665 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11666 ill = ILL_START_WALK_V4(&ctx, ipst); 11667 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11668 mutex_enter(&ill->ill_lock); 11669 for (ipif = ill->ill_ipif; ipif != NULL; 11670 ipif = ipif->ipif_next) { 11671 if (IPIF_IS_CONDEMNED(ipif)) 11672 continue; 11673 if (!(ipif->ipif_flags & IPIF_UP)) 11674 continue; 11675 if ((ipif->ipif_subnet & net_mask) == 11676 (addr & net_mask)) { 11677 /* 11678 * Don't trust pt-pt interfaces if there are 11679 * other interfaces. 11680 */ 11681 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11682 if (fallback_ipif == NULL) { 11683 ipif_refhold_locked(ipif); 11684 fallback_ipif = ipif; 11685 } 11686 continue; 11687 } 11688 11689 /* 11690 * Fine. Just assume the same net mask as the 11691 * directly attached subnet interface is using. 11692 */ 11693 ipif_refhold_locked(ipif); 11694 mutex_exit(&ill->ill_lock); 11695 rw_exit(&ipst->ips_ill_g_lock); 11696 if (fallback_ipif != NULL) 11697 ipif_refrele(fallback_ipif); 11698 *ipifp = ipif; 11699 return (ipif->ipif_net_mask); 11700 } 11701 } 11702 mutex_exit(&ill->ill_lock); 11703 } 11704 rw_exit(&ipst->ips_ill_g_lock); 11705 11706 *ipifp = fallback_ipif; 11707 return ((fallback_ipif != NULL) ? 11708 fallback_ipif->ipif_net_mask : net_mask); 11709 } 11710 11711 /* 11712 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11713 */ 11714 static void 11715 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11716 { 11717 IOCP iocp; 11718 ipft_t *ipft; 11719 ipllc_t *ipllc; 11720 mblk_t *mp1; 11721 cred_t *cr; 11722 int error = 0; 11723 conn_t *connp; 11724 11725 ip1dbg(("ip_wput_ioctl")); 11726 iocp = (IOCP)mp->b_rptr; 11727 mp1 = mp->b_cont; 11728 if (mp1 == NULL) { 11729 iocp->ioc_error = EINVAL; 11730 mp->b_datap->db_type = M_IOCNAK; 11731 iocp->ioc_count = 0; 11732 qreply(q, mp); 11733 return; 11734 } 11735 11736 /* 11737 * These IOCTLs provide various control capabilities to 11738 * upstream agents such as ULPs and processes. There 11739 * are currently two such IOCTLs implemented. They 11740 * are used by TCP to provide update information for 11741 * existing IREs and to forcibly delete an IRE for a 11742 * host that is not responding, thereby forcing an 11743 * attempt at a new route. 11744 */ 11745 iocp->ioc_error = EINVAL; 11746 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11747 goto done; 11748 11749 ipllc = (ipllc_t *)mp1->b_rptr; 11750 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11751 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11752 break; 11753 } 11754 /* 11755 * prefer credential from mblk over ioctl; 11756 * see ip_sioctl_copyin_setup 11757 */ 11758 cr = msg_getcred(mp, NULL); 11759 if (cr == NULL) 11760 cr = iocp->ioc_cr; 11761 11762 /* 11763 * Refhold the conn in case the request gets queued up in some lookup 11764 */ 11765 ASSERT(CONN_Q(q)); 11766 connp = Q_TO_CONN(q); 11767 CONN_INC_REF(connp); 11768 CONN_INC_IOCTLREF(connp); 11769 if (ipft->ipft_pfi && 11770 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11771 pullupmsg(mp1, ipft->ipft_min_size))) { 11772 error = (*ipft->ipft_pfi)(q, 11773 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11774 } 11775 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11776 /* 11777 * CONN_OPER_PENDING_DONE happens in the function called 11778 * through ipft_pfi above. 11779 */ 11780 return; 11781 } 11782 11783 CONN_DEC_IOCTLREF(connp); 11784 CONN_OPER_PENDING_DONE(connp); 11785 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11786 freemsg(mp); 11787 return; 11788 } 11789 iocp->ioc_error = error; 11790 11791 done: 11792 mp->b_datap->db_type = M_IOCACK; 11793 if (iocp->ioc_error) 11794 iocp->ioc_count = 0; 11795 qreply(q, mp); 11796 } 11797 11798 /* 11799 * Assign a unique id for the ipif. This is used by sctp_addr.c 11800 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11801 */ 11802 static void 11803 ipif_assign_seqid(ipif_t *ipif) 11804 { 11805 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11806 11807 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11808 } 11809 11810 /* 11811 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11812 * administratively down (i.e., no DAD), of the same type, and locked. Note 11813 * that the clone is complete -- including the seqid -- and the expectation is 11814 * that the caller will either free or overwrite `sipif' before it's unlocked. 11815 */ 11816 static void 11817 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11818 { 11819 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11820 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11821 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11822 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11823 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11824 11825 dipif->ipif_flags = sipif->ipif_flags; 11826 dipif->ipif_zoneid = sipif->ipif_zoneid; 11827 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11828 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11829 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11830 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11831 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11832 11833 /* 11834 * As per the comment atop the function, we assume that these sipif 11835 * fields will be changed before sipif is unlocked. 11836 */ 11837 dipif->ipif_seqid = sipif->ipif_seqid; 11838 dipif->ipif_state_flags = sipif->ipif_state_flags; 11839 } 11840 11841 /* 11842 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11843 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11844 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11845 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11846 * down (i.e., no DAD), of the same type, and unlocked. 11847 */ 11848 static void 11849 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11850 { 11851 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11852 ipxop_t *ipx = ipsq->ipsq_xop; 11853 11854 ASSERT(sipif != dipif); 11855 ASSERT(sipif != virgipif); 11856 11857 /* 11858 * Grab all of the locks that protect the ipif in a defined order. 11859 */ 11860 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11861 11862 ipif_clone(sipif, dipif); 11863 if (virgipif != NULL) { 11864 ipif_clone(virgipif, sipif); 11865 mi_free(virgipif); 11866 } 11867 11868 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11869 11870 /* 11871 * Transfer ownership of the current xop, if necessary. 11872 */ 11873 if (ipx->ipx_current_ipif == sipif) { 11874 ASSERT(ipx->ipx_pending_ipif == NULL); 11875 mutex_enter(&ipx->ipx_lock); 11876 ipx->ipx_current_ipif = dipif; 11877 mutex_exit(&ipx->ipx_lock); 11878 } 11879 11880 if (virgipif == NULL) 11881 mi_free(sipif); 11882 } 11883 11884 /* 11885 * checks if: 11886 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11887 * - logical interface is within the allowed range 11888 */ 11889 static int 11890 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11891 { 11892 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11893 return (ENAMETOOLONG); 11894 11895 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11896 return (ERANGE); 11897 return (0); 11898 } 11899 11900 /* 11901 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11902 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11903 * be inserted into the first space available in the list. The value of 11904 * ipif_id will then be set to the appropriate value for its position. 11905 */ 11906 static int 11907 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11908 { 11909 ill_t *ill; 11910 ipif_t *tipif; 11911 ipif_t **tipifp; 11912 int id, err; 11913 ip_stack_t *ipst; 11914 11915 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11916 IAM_WRITER_IPIF(ipif)); 11917 11918 ill = ipif->ipif_ill; 11919 ASSERT(ill != NULL); 11920 ipst = ill->ill_ipst; 11921 11922 /* 11923 * In the case of lo0:0 we already hold the ill_g_lock. 11924 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11925 * ipif_insert. 11926 */ 11927 if (acquire_g_lock) 11928 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11929 mutex_enter(&ill->ill_lock); 11930 id = ipif->ipif_id; 11931 tipifp = &(ill->ill_ipif); 11932 if (id == -1) { /* need to find a real id */ 11933 id = 0; 11934 while ((tipif = *tipifp) != NULL) { 11935 ASSERT(tipif->ipif_id >= id); 11936 if (tipif->ipif_id != id) 11937 break; /* non-consecutive id */ 11938 id++; 11939 tipifp = &(tipif->ipif_next); 11940 } 11941 if ((err = is_lifname_valid(ill, id)) != 0) { 11942 mutex_exit(&ill->ill_lock); 11943 if (acquire_g_lock) 11944 rw_exit(&ipst->ips_ill_g_lock); 11945 return (err); 11946 } 11947 ipif->ipif_id = id; /* assign new id */ 11948 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11949 /* we have a real id; insert ipif in the right place */ 11950 while ((tipif = *tipifp) != NULL) { 11951 ASSERT(tipif->ipif_id != id); 11952 if (tipif->ipif_id > id) 11953 break; /* found correct location */ 11954 tipifp = &(tipif->ipif_next); 11955 } 11956 } else { 11957 mutex_exit(&ill->ill_lock); 11958 if (acquire_g_lock) 11959 rw_exit(&ipst->ips_ill_g_lock); 11960 return (err); 11961 } 11962 11963 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11964 11965 ipif->ipif_next = tipif; 11966 *tipifp = ipif; 11967 mutex_exit(&ill->ill_lock); 11968 if (acquire_g_lock) 11969 rw_exit(&ipst->ips_ill_g_lock); 11970 11971 return (0); 11972 } 11973 11974 static void 11975 ipif_remove(ipif_t *ipif) 11976 { 11977 ipif_t **ipifp; 11978 ill_t *ill = ipif->ipif_ill; 11979 11980 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11981 11982 mutex_enter(&ill->ill_lock); 11983 ipifp = &ill->ill_ipif; 11984 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11985 if (*ipifp == ipif) { 11986 *ipifp = ipif->ipif_next; 11987 break; 11988 } 11989 } 11990 mutex_exit(&ill->ill_lock); 11991 } 11992 11993 /* 11994 * Allocate and initialize a new interface control structure. (Always 11995 * called as writer.) 11996 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11997 * is not part of the global linked list of ills. ipif_seqid is unique 11998 * in the system and to preserve the uniqueness, it is assigned only 11999 * when ill becomes part of the global list. At that point ill will 12000 * have a name. If it doesn't get assigned here, it will get assigned 12001 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12002 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12003 * the interface flags or any other information from the DL_INFO_ACK for 12004 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12005 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12006 * second DL_INFO_ACK comes in from the driver. 12007 */ 12008 static ipif_t * 12009 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 12010 boolean_t insert, int *errorp) 12011 { 12012 int err; 12013 ipif_t *ipif; 12014 ip_stack_t *ipst = ill->ill_ipst; 12015 12016 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12017 ill->ill_name, id, (void *)ill)); 12018 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12019 12020 if (errorp != NULL) 12021 *errorp = 0; 12022 12023 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 12024 if (errorp != NULL) 12025 *errorp = ENOMEM; 12026 return (NULL); 12027 } 12028 *ipif = ipif_zero; /* start clean */ 12029 12030 ipif->ipif_ill = ill; 12031 ipif->ipif_id = id; /* could be -1 */ 12032 /* 12033 * Inherit the zoneid from the ill; for the shared stack instance 12034 * this is always the global zone 12035 */ 12036 ipif->ipif_zoneid = ill->ill_zoneid; 12037 12038 ipif->ipif_refcnt = 0; 12039 12040 if (insert) { 12041 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12042 mi_free(ipif); 12043 if (errorp != NULL) 12044 *errorp = err; 12045 return (NULL); 12046 } 12047 /* -1 id should have been replaced by real id */ 12048 id = ipif->ipif_id; 12049 ASSERT(id >= 0); 12050 } 12051 12052 if (ill->ill_name[0] != '\0') 12053 ipif_assign_seqid(ipif); 12054 12055 /* 12056 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12057 * (which must not exist yet because the zeroth ipif is created once 12058 * per ill). However, do not not link it to the ipmp_grp_t until 12059 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12060 */ 12061 if (id == 0 && IS_IPMP(ill)) { 12062 if (ipmp_illgrp_create(ill) == NULL) { 12063 if (insert) { 12064 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12065 ipif_remove(ipif); 12066 rw_exit(&ipst->ips_ill_g_lock); 12067 } 12068 mi_free(ipif); 12069 if (errorp != NULL) 12070 *errorp = ENOMEM; 12071 return (NULL); 12072 } 12073 } 12074 12075 /* 12076 * We grab ill_lock to protect the flag changes. The ipif is still 12077 * not up and can't be looked up until the ioctl completes and the 12078 * IPIF_CHANGING flag is cleared. 12079 */ 12080 mutex_enter(&ill->ill_lock); 12081 12082 ipif->ipif_ire_type = ire_type; 12083 12084 if (ipif->ipif_isv6) { 12085 ill->ill_flags |= ILLF_IPV6; 12086 } else { 12087 ipaddr_t inaddr_any = INADDR_ANY; 12088 12089 ill->ill_flags |= ILLF_IPV4; 12090 12091 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12092 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12093 &ipif->ipif_v6lcl_addr); 12094 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12095 &ipif->ipif_v6subnet); 12096 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12097 &ipif->ipif_v6net_mask); 12098 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12099 &ipif->ipif_v6brd_addr); 12100 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12101 &ipif->ipif_v6pp_dst_addr); 12102 } 12103 12104 /* 12105 * Don't set the interface flags etc. now, will do it in 12106 * ip_ll_subnet_defaults. 12107 */ 12108 if (!initialize) 12109 goto out; 12110 12111 /* 12112 * NOTE: The IPMP meta-interface is special-cased because it starts 12113 * with no underlying interfaces (and thus an unknown broadcast 12114 * address length), but all interfaces that can be placed into an IPMP 12115 * group are required to be broadcast-capable. 12116 */ 12117 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12118 /* 12119 * Later detect lack of DLPI driver multicast capability by 12120 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12121 */ 12122 ill->ill_flags |= ILLF_MULTICAST; 12123 if (!ipif->ipif_isv6) 12124 ipif->ipif_flags |= IPIF_BROADCAST; 12125 } else { 12126 if (ill->ill_net_type != IRE_LOOPBACK) { 12127 if (ipif->ipif_isv6) 12128 /* 12129 * Note: xresolv interfaces will eventually need 12130 * NOARP set here as well, but that will require 12131 * those external resolvers to have some 12132 * knowledge of that flag and act appropriately. 12133 * Not to be changed at present. 12134 */ 12135 ill->ill_flags |= ILLF_NONUD; 12136 else 12137 ill->ill_flags |= ILLF_NOARP; 12138 } 12139 if (ill->ill_phys_addr_length == 0) { 12140 if (IS_VNI(ill)) { 12141 ipif->ipif_flags |= IPIF_NOXMIT; 12142 } else { 12143 /* pt-pt supports multicast. */ 12144 ill->ill_flags |= ILLF_MULTICAST; 12145 if (ill->ill_net_type != IRE_LOOPBACK) 12146 ipif->ipif_flags |= IPIF_POINTOPOINT; 12147 } 12148 } 12149 } 12150 out: 12151 mutex_exit(&ill->ill_lock); 12152 return (ipif); 12153 } 12154 12155 /* 12156 * Remove the neighbor cache entries associated with this logical 12157 * interface. 12158 */ 12159 int 12160 ipif_arp_down(ipif_t *ipif) 12161 { 12162 ill_t *ill = ipif->ipif_ill; 12163 int err = 0; 12164 12165 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12166 ASSERT(IAM_WRITER_IPIF(ipif)); 12167 12168 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12169 ill_t *, ill, ipif_t *, ipif); 12170 ipif_nce_down(ipif); 12171 12172 /* 12173 * If this is the last ipif that is going down and there are no 12174 * duplicate addresses we may yet attempt to re-probe, then we need to 12175 * clean up ARP completely. 12176 */ 12177 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12178 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12179 /* 12180 * If this was the last ipif on an IPMP interface, purge any 12181 * static ARP entries associated with it. 12182 */ 12183 if (IS_IPMP(ill)) 12184 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12185 12186 /* UNBIND, DETACH */ 12187 err = arp_ll_down(ill); 12188 } 12189 12190 return (err); 12191 } 12192 12193 /* 12194 * Get the resolver set up for a new IP address. (Always called as writer.) 12195 * Called both for IPv4 and IPv6 interfaces, though it only does some 12196 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12197 * 12198 * The enumerated value res_act tunes the behavior: 12199 * * Res_act_initial: set up all the resolver structures for a new 12200 * IP address. 12201 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12202 * ARP message in defense of the address. 12203 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12204 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12205 * 12206 * Returns zero on success, or an errno upon failure. 12207 */ 12208 int 12209 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12210 { 12211 ill_t *ill = ipif->ipif_ill; 12212 int err; 12213 boolean_t was_dup; 12214 12215 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12216 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12217 ASSERT(IAM_WRITER_IPIF(ipif)); 12218 12219 was_dup = B_FALSE; 12220 if (res_act == Res_act_initial) { 12221 ipif->ipif_addr_ready = 0; 12222 /* 12223 * We're bringing an interface up here. There's no way that we 12224 * should need to shut down ARP now. 12225 */ 12226 mutex_enter(&ill->ill_lock); 12227 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12228 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12229 ill->ill_ipif_dup_count--; 12230 was_dup = B_TRUE; 12231 } 12232 mutex_exit(&ill->ill_lock); 12233 } 12234 if (ipif->ipif_recovery_id != 0) 12235 (void) untimeout(ipif->ipif_recovery_id); 12236 ipif->ipif_recovery_id = 0; 12237 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12238 ipif->ipif_addr_ready = 1; 12239 return (0); 12240 } 12241 /* NDP will set the ipif_addr_ready flag when it's ready */ 12242 if (ill->ill_isv6) 12243 return (0); 12244 12245 err = ipif_arp_up(ipif, res_act, was_dup); 12246 return (err); 12247 } 12248 12249 /* 12250 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12251 * when a link has just gone back up. 12252 */ 12253 static void 12254 ipif_nce_start_dad(ipif_t *ipif) 12255 { 12256 ncec_t *ncec; 12257 ill_t *ill = ipif->ipif_ill; 12258 boolean_t isv6 = ill->ill_isv6; 12259 12260 if (isv6) { 12261 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12262 &ipif->ipif_v6lcl_addr); 12263 } else { 12264 ipaddr_t v4addr; 12265 12266 if (ill->ill_net_type != IRE_IF_RESOLVER || 12267 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12268 ipif->ipif_lcl_addr == INADDR_ANY) { 12269 /* 12270 * If we can't contact ARP for some reason, 12271 * that's not really a problem. Just send 12272 * out the routing socket notification that 12273 * DAD completion would have done, and continue. 12274 */ 12275 ipif_mask_reply(ipif); 12276 ipif_up_notify(ipif); 12277 ipif->ipif_addr_ready = 1; 12278 return; 12279 } 12280 12281 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12282 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12283 } 12284 12285 if (ncec == NULL) { 12286 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12287 (void *)ipif)); 12288 return; 12289 } 12290 if (!nce_restart_dad(ncec)) { 12291 /* 12292 * If we can't restart DAD for some reason, that's not really a 12293 * problem. Just send out the routing socket notification that 12294 * DAD completion would have done, and continue. 12295 */ 12296 ipif_up_notify(ipif); 12297 ipif->ipif_addr_ready = 1; 12298 } 12299 ncec_refrele(ncec); 12300 } 12301 12302 /* 12303 * Restart duplicate address detection on all interfaces on the given ill. 12304 * 12305 * This is called when an interface transitions from down to up 12306 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12307 * 12308 * Note that since the underlying physical link has transitioned, we must cause 12309 * at least one routing socket message to be sent here, either via DAD 12310 * completion or just by default on the first ipif. (If we don't do this, then 12311 * in.mpathd will see long delays when doing link-based failure recovery.) 12312 */ 12313 void 12314 ill_restart_dad(ill_t *ill, boolean_t went_up) 12315 { 12316 ipif_t *ipif; 12317 12318 if (ill == NULL) 12319 return; 12320 12321 /* 12322 * If layer two doesn't support duplicate address detection, then just 12323 * send the routing socket message now and be done with it. 12324 */ 12325 if (!ill->ill_isv6 && arp_no_defense) { 12326 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12327 return; 12328 } 12329 12330 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12331 if (went_up) { 12332 12333 if (ipif->ipif_flags & IPIF_UP) { 12334 ipif_nce_start_dad(ipif); 12335 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12336 /* 12337 * kick off the bring-up process now. 12338 */ 12339 ipif_do_recovery(ipif); 12340 } else { 12341 /* 12342 * Unfortunately, the first ipif is "special" 12343 * and represents the underlying ill in the 12344 * routing socket messages. Thus, when this 12345 * one ipif is down, we must still notify so 12346 * that the user knows the IFF_RUNNING status 12347 * change. (If the first ipif is up, then 12348 * we'll handle eventual routing socket 12349 * notification via DAD completion.) 12350 */ 12351 if (ipif == ill->ill_ipif) { 12352 ip_rts_ifmsg(ill->ill_ipif, 12353 RTSQ_DEFAULT); 12354 } 12355 } 12356 } else { 12357 /* 12358 * After link down, we'll need to send a new routing 12359 * message when the link comes back, so clear 12360 * ipif_addr_ready. 12361 */ 12362 ipif->ipif_addr_ready = 0; 12363 } 12364 } 12365 12366 /* 12367 * If we've torn down links, then notify the user right away. 12368 */ 12369 if (!went_up) 12370 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12371 } 12372 12373 static void 12374 ipsq_delete(ipsq_t *ipsq) 12375 { 12376 ipxop_t *ipx = ipsq->ipsq_xop; 12377 12378 ipsq->ipsq_ipst = NULL; 12379 ASSERT(ipsq->ipsq_phyint == NULL); 12380 ASSERT(ipsq->ipsq_xop != NULL); 12381 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12382 ASSERT(ipx->ipx_pending_mp == NULL); 12383 kmem_free(ipsq, sizeof (ipsq_t)); 12384 } 12385 12386 static int 12387 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12388 { 12389 int err = 0; 12390 ipif_t *ipif; 12391 12392 if (ill == NULL) 12393 return (0); 12394 12395 ASSERT(IAM_WRITER_ILL(ill)); 12396 ill->ill_up_ipifs = B_TRUE; 12397 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12398 if (ipif->ipif_was_up) { 12399 if (!(ipif->ipif_flags & IPIF_UP)) 12400 err = ipif_up(ipif, q, mp); 12401 ipif->ipif_was_up = B_FALSE; 12402 if (err != 0) { 12403 ASSERT(err == EINPROGRESS); 12404 return (err); 12405 } 12406 } 12407 } 12408 ill->ill_up_ipifs = B_FALSE; 12409 return (0); 12410 } 12411 12412 /* 12413 * This function is called to bring up all the ipifs that were up before 12414 * bringing the ill down via ill_down_ipifs(). 12415 */ 12416 int 12417 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12418 { 12419 int err; 12420 12421 ASSERT(IAM_WRITER_ILL(ill)); 12422 12423 if (ill->ill_replumbing) { 12424 ill->ill_replumbing = 0; 12425 /* 12426 * Send down REPLUMB_DONE notification followed by the 12427 * BIND_REQ on the arp stream. 12428 */ 12429 if (!ill->ill_isv6) 12430 arp_send_replumb_conf(ill); 12431 } 12432 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12433 if (err != 0) 12434 return (err); 12435 12436 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12437 } 12438 12439 /* 12440 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12441 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12442 */ 12443 static void 12444 ill_down_ipifs(ill_t *ill, boolean_t logical) 12445 { 12446 ipif_t *ipif; 12447 12448 ASSERT(IAM_WRITER_ILL(ill)); 12449 12450 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12451 /* 12452 * We go through the ipif_down logic even if the ipif 12453 * is already down, since routes can be added based 12454 * on down ipifs. Going through ipif_down once again 12455 * will delete any IREs created based on these routes. 12456 */ 12457 if (ipif->ipif_flags & IPIF_UP) 12458 ipif->ipif_was_up = B_TRUE; 12459 12460 if (logical) { 12461 (void) ipif_logical_down(ipif, NULL, NULL); 12462 ipif_non_duplicate(ipif); 12463 (void) ipif_down_tail(ipif); 12464 } else { 12465 (void) ipif_down(ipif, NULL, NULL); 12466 } 12467 } 12468 } 12469 12470 /* 12471 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12472 * a look again at valid source addresses. 12473 * This should be called each time after the set of source addresses has been 12474 * changed. 12475 */ 12476 void 12477 ip_update_source_selection(ip_stack_t *ipst) 12478 { 12479 /* We skip past SRC_GENERATION_VERIFY */ 12480 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12481 SRC_GENERATION_VERIFY) 12482 atomic_add_32(&ipst->ips_src_generation, 1); 12483 } 12484 12485 /* 12486 * Finish the group join started in ip_sioctl_groupname(). 12487 */ 12488 /* ARGSUSED */ 12489 static void 12490 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12491 { 12492 ill_t *ill = q->q_ptr; 12493 phyint_t *phyi = ill->ill_phyint; 12494 ipmp_grp_t *grp = phyi->phyint_grp; 12495 ip_stack_t *ipst = ill->ill_ipst; 12496 12497 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12498 ASSERT(!IS_IPMP(ill) && grp != NULL); 12499 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12500 12501 if (phyi->phyint_illv4 != NULL) { 12502 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12503 VERIFY(grp->gr_pendv4-- > 0); 12504 rw_exit(&ipst->ips_ipmp_lock); 12505 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12506 } 12507 if (phyi->phyint_illv6 != NULL) { 12508 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12509 VERIFY(grp->gr_pendv6-- > 0); 12510 rw_exit(&ipst->ips_ipmp_lock); 12511 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12512 } 12513 freemsg(mp); 12514 } 12515 12516 /* 12517 * Process an SIOCSLIFGROUPNAME request. 12518 */ 12519 /* ARGSUSED */ 12520 int 12521 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12522 ip_ioctl_cmd_t *ipip, void *ifreq) 12523 { 12524 struct lifreq *lifr = ifreq; 12525 ill_t *ill = ipif->ipif_ill; 12526 ip_stack_t *ipst = ill->ill_ipst; 12527 phyint_t *phyi = ill->ill_phyint; 12528 ipmp_grp_t *grp = phyi->phyint_grp; 12529 mblk_t *ipsq_mp; 12530 int err = 0; 12531 12532 /* 12533 * Note that phyint_grp can only change here, where we're exclusive. 12534 */ 12535 ASSERT(IAM_WRITER_ILL(ill)); 12536 12537 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12538 (phyi->phyint_flags & PHYI_VIRTUAL)) 12539 return (EINVAL); 12540 12541 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12542 12543 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12544 12545 /* 12546 * If the name hasn't changed, there's nothing to do. 12547 */ 12548 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12549 goto unlock; 12550 12551 /* 12552 * Handle requests to rename an IPMP meta-interface. 12553 * 12554 * Note that creation of the IPMP meta-interface is handled in 12555 * userland through the standard plumbing sequence. As part of the 12556 * plumbing the IPMP meta-interface, its initial groupname is set to 12557 * the name of the interface (see ipif_set_values_tail()). 12558 */ 12559 if (IS_IPMP(ill)) { 12560 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12561 goto unlock; 12562 } 12563 12564 /* 12565 * Handle requests to add or remove an IP interface from a group. 12566 */ 12567 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12568 /* 12569 * Moves are handled by first removing the interface from 12570 * its existing group, and then adding it to another group. 12571 * So, fail if it's already in a group. 12572 */ 12573 if (IS_UNDER_IPMP(ill)) { 12574 err = EALREADY; 12575 goto unlock; 12576 } 12577 12578 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12579 if (grp == NULL) { 12580 err = ENOENT; 12581 goto unlock; 12582 } 12583 12584 /* 12585 * Check if the phyint and its ills are suitable for 12586 * inclusion into the group. 12587 */ 12588 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12589 goto unlock; 12590 12591 /* 12592 * Checks pass; join the group, and enqueue the remaining 12593 * illgrp joins for when we've become part of the group xop 12594 * and are exclusive across its IPSQs. Since qwriter_ip() 12595 * requires an mblk_t to scribble on, and since `mp' will be 12596 * freed as part of completing the ioctl, allocate another. 12597 */ 12598 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12599 err = ENOMEM; 12600 goto unlock; 12601 } 12602 12603 /* 12604 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12605 * IPMP meta-interface ills needed by `phyi' cannot go away 12606 * before ip_join_illgrps() is called back. See the comments 12607 * in ip_sioctl_plink_ipmp() for more. 12608 */ 12609 if (phyi->phyint_illv4 != NULL) 12610 grp->gr_pendv4++; 12611 if (phyi->phyint_illv6 != NULL) 12612 grp->gr_pendv6++; 12613 12614 rw_exit(&ipst->ips_ipmp_lock); 12615 12616 ipmp_phyint_join_grp(phyi, grp); 12617 ill_refhold(ill); 12618 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12619 SWITCH_OP, B_FALSE); 12620 return (0); 12621 } else { 12622 /* 12623 * Request to remove the interface from a group. If the 12624 * interface is not in a group, this trivially succeeds. 12625 */ 12626 rw_exit(&ipst->ips_ipmp_lock); 12627 if (IS_UNDER_IPMP(ill)) 12628 ipmp_phyint_leave_grp(phyi); 12629 return (0); 12630 } 12631 unlock: 12632 rw_exit(&ipst->ips_ipmp_lock); 12633 return (err); 12634 } 12635 12636 /* 12637 * Process an SIOCGLIFBINDING request. 12638 */ 12639 /* ARGSUSED */ 12640 int 12641 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12642 ip_ioctl_cmd_t *ipip, void *ifreq) 12643 { 12644 ill_t *ill; 12645 struct lifreq *lifr = ifreq; 12646 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12647 12648 if (!IS_IPMP(ipif->ipif_ill)) 12649 return (EINVAL); 12650 12651 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12652 if ((ill = ipif->ipif_bound_ill) == NULL) 12653 lifr->lifr_binding[0] = '\0'; 12654 else 12655 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12656 rw_exit(&ipst->ips_ipmp_lock); 12657 return (0); 12658 } 12659 12660 /* 12661 * Process an SIOCGLIFGROUPNAME request. 12662 */ 12663 /* ARGSUSED */ 12664 int 12665 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12666 ip_ioctl_cmd_t *ipip, void *ifreq) 12667 { 12668 ipmp_grp_t *grp; 12669 struct lifreq *lifr = ifreq; 12670 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12671 12672 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12673 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12674 lifr->lifr_groupname[0] = '\0'; 12675 else 12676 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12677 rw_exit(&ipst->ips_ipmp_lock); 12678 return (0); 12679 } 12680 12681 /* 12682 * Process an SIOCGLIFGROUPINFO request. 12683 */ 12684 /* ARGSUSED */ 12685 int 12686 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12687 ip_ioctl_cmd_t *ipip, void *dummy) 12688 { 12689 ipmp_grp_t *grp; 12690 lifgroupinfo_t *lifgr; 12691 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12692 12693 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12694 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12695 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12696 12697 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12698 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12699 rw_exit(&ipst->ips_ipmp_lock); 12700 return (ENOENT); 12701 } 12702 ipmp_grp_info(grp, lifgr); 12703 rw_exit(&ipst->ips_ipmp_lock); 12704 return (0); 12705 } 12706 12707 static void 12708 ill_dl_down(ill_t *ill) 12709 { 12710 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12711 12712 /* 12713 * The ill is down; unbind but stay attached since we're still 12714 * associated with a PPA. If we have negotiated DLPI capabilites 12715 * with the data link service provider (IDS_OK) then reset them. 12716 * The interval between unbinding and rebinding is potentially 12717 * unbounded hence we cannot assume things will be the same. 12718 * The DLPI capabilities will be probed again when the data link 12719 * is brought up. 12720 */ 12721 mblk_t *mp = ill->ill_unbind_mp; 12722 12723 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12724 12725 if (!ill->ill_replumbing) { 12726 /* Free all ilms for this ill */ 12727 update_conn_ill(ill, ill->ill_ipst); 12728 } else { 12729 ill_leave_multicast(ill); 12730 } 12731 12732 ill->ill_unbind_mp = NULL; 12733 if (mp != NULL) { 12734 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12735 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12736 ill->ill_name)); 12737 mutex_enter(&ill->ill_lock); 12738 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12739 mutex_exit(&ill->ill_lock); 12740 /* 12741 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12742 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12743 * ill_capability_dld_disable disable rightaway. If this is not 12744 * an unplumb operation then the disable happens on receipt of 12745 * the capab ack via ip_rput_dlpi_writer -> 12746 * ill_capability_ack_thr. In both cases the order of 12747 * the operations seen by DLD is capability disable followed 12748 * by DL_UNBIND. Also the DLD capability disable needs a 12749 * cv_wait'able context. 12750 */ 12751 if (ill->ill_state_flags & ILL_CONDEMNED) 12752 ill_capability_dld_disable(ill); 12753 ill_capability_reset(ill, B_FALSE); 12754 ill_dlpi_send(ill, mp); 12755 } 12756 mutex_enter(&ill->ill_lock); 12757 ill->ill_dl_up = 0; 12758 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12759 mutex_exit(&ill->ill_lock); 12760 } 12761 12762 void 12763 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12764 { 12765 union DL_primitives *dlp; 12766 t_uscalar_t prim; 12767 boolean_t waitack = B_FALSE; 12768 12769 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12770 12771 dlp = (union DL_primitives *)mp->b_rptr; 12772 prim = dlp->dl_primitive; 12773 12774 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12775 dl_primstr(prim), prim, ill->ill_name)); 12776 12777 switch (prim) { 12778 case DL_PHYS_ADDR_REQ: 12779 { 12780 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12781 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12782 break; 12783 } 12784 case DL_BIND_REQ: 12785 mutex_enter(&ill->ill_lock); 12786 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12787 mutex_exit(&ill->ill_lock); 12788 break; 12789 } 12790 12791 /* 12792 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12793 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12794 * we only wait for the ACK of the DL_UNBIND_REQ. 12795 */ 12796 mutex_enter(&ill->ill_lock); 12797 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12798 (prim == DL_UNBIND_REQ)) { 12799 ill->ill_dlpi_pending = prim; 12800 waitack = B_TRUE; 12801 } 12802 12803 mutex_exit(&ill->ill_lock); 12804 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12805 char *, dl_primstr(prim), ill_t *, ill); 12806 putnext(ill->ill_wq, mp); 12807 12808 /* 12809 * There is no ack for DL_NOTIFY_CONF messages 12810 */ 12811 if (waitack && prim == DL_NOTIFY_CONF) 12812 ill_dlpi_done(ill, prim); 12813 } 12814 12815 /* 12816 * Helper function for ill_dlpi_send(). 12817 */ 12818 /* ARGSUSED */ 12819 static void 12820 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12821 { 12822 ill_dlpi_send(q->q_ptr, mp); 12823 } 12824 12825 /* 12826 * Send a DLPI control message to the driver but make sure there 12827 * is only one outstanding message. Uses ill_dlpi_pending to tell 12828 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12829 * when an ACK or a NAK is received to process the next queued message. 12830 */ 12831 void 12832 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12833 { 12834 mblk_t **mpp; 12835 12836 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12837 12838 /* 12839 * To ensure that any DLPI requests for current exclusive operation 12840 * are always completely sent before any DLPI messages for other 12841 * operations, require writer access before enqueuing. 12842 */ 12843 if (!IAM_WRITER_ILL(ill)) { 12844 ill_refhold(ill); 12845 /* qwriter_ip() does the ill_refrele() */ 12846 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12847 NEW_OP, B_TRUE); 12848 return; 12849 } 12850 12851 mutex_enter(&ill->ill_lock); 12852 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12853 /* Must queue message. Tail insertion */ 12854 mpp = &ill->ill_dlpi_deferred; 12855 while (*mpp != NULL) 12856 mpp = &((*mpp)->b_next); 12857 12858 ip1dbg(("ill_dlpi_send: deferring request for %s " 12859 "while %s pending\n", ill->ill_name, 12860 dl_primstr(ill->ill_dlpi_pending))); 12861 12862 *mpp = mp; 12863 mutex_exit(&ill->ill_lock); 12864 return; 12865 } 12866 mutex_exit(&ill->ill_lock); 12867 ill_dlpi_dispatch(ill, mp); 12868 } 12869 12870 void 12871 ill_capability_send(ill_t *ill, mblk_t *mp) 12872 { 12873 ill->ill_capab_pending_cnt++; 12874 ill_dlpi_send(ill, mp); 12875 } 12876 12877 void 12878 ill_capability_done(ill_t *ill) 12879 { 12880 ASSERT(ill->ill_capab_pending_cnt != 0); 12881 12882 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12883 12884 ill->ill_capab_pending_cnt--; 12885 if (ill->ill_capab_pending_cnt == 0 && 12886 ill->ill_dlpi_capab_state == IDCS_OK) 12887 ill_capability_reset_alloc(ill); 12888 } 12889 12890 /* 12891 * Send all deferred DLPI messages without waiting for their ACKs. 12892 */ 12893 void 12894 ill_dlpi_send_deferred(ill_t *ill) 12895 { 12896 mblk_t *mp, *nextmp; 12897 12898 /* 12899 * Clear ill_dlpi_pending so that the message is not queued in 12900 * ill_dlpi_send(). 12901 */ 12902 mutex_enter(&ill->ill_lock); 12903 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12904 mp = ill->ill_dlpi_deferred; 12905 ill->ill_dlpi_deferred = NULL; 12906 mutex_exit(&ill->ill_lock); 12907 12908 for (; mp != NULL; mp = nextmp) { 12909 nextmp = mp->b_next; 12910 mp->b_next = NULL; 12911 ill_dlpi_send(ill, mp); 12912 } 12913 } 12914 12915 /* 12916 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12917 * or M_HANGUP 12918 */ 12919 static void 12920 ill_dlpi_clear_deferred(ill_t *ill) 12921 { 12922 mblk_t *mp, *nextmp; 12923 12924 mutex_enter(&ill->ill_lock); 12925 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12926 mp = ill->ill_dlpi_deferred; 12927 ill->ill_dlpi_deferred = NULL; 12928 mutex_exit(&ill->ill_lock); 12929 12930 for (; mp != NULL; mp = nextmp) { 12931 nextmp = mp->b_next; 12932 inet_freemsg(mp); 12933 } 12934 } 12935 12936 /* 12937 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12938 */ 12939 boolean_t 12940 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12941 { 12942 t_uscalar_t pending; 12943 12944 mutex_enter(&ill->ill_lock); 12945 if (ill->ill_dlpi_pending == prim) { 12946 mutex_exit(&ill->ill_lock); 12947 return (B_TRUE); 12948 } 12949 12950 /* 12951 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12952 * without waiting, so don't print any warnings in that case. 12953 */ 12954 if (ill->ill_state_flags & ILL_CONDEMNED) { 12955 mutex_exit(&ill->ill_lock); 12956 return (B_FALSE); 12957 } 12958 pending = ill->ill_dlpi_pending; 12959 mutex_exit(&ill->ill_lock); 12960 12961 if (pending == DL_PRIM_INVAL) { 12962 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12963 "received unsolicited ack for %s on %s\n", 12964 dl_primstr(prim), ill->ill_name); 12965 } else { 12966 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12967 "received unexpected ack for %s on %s (expecting %s)\n", 12968 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12969 } 12970 return (B_FALSE); 12971 } 12972 12973 /* 12974 * Complete the current DLPI operation associated with `prim' on `ill' and 12975 * start the next queued DLPI operation (if any). If there are no queued DLPI 12976 * operations and the ill's current exclusive IPSQ operation has finished 12977 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12978 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12979 * the comments above ipsq_current_finish() for details. 12980 */ 12981 void 12982 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12983 { 12984 mblk_t *mp; 12985 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12986 ipxop_t *ipx = ipsq->ipsq_xop; 12987 12988 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12989 mutex_enter(&ill->ill_lock); 12990 12991 ASSERT(prim != DL_PRIM_INVAL); 12992 ASSERT(ill->ill_dlpi_pending == prim); 12993 12994 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12995 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12996 12997 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12998 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12999 if (ipx->ipx_current_done) { 13000 mutex_enter(&ipx->ipx_lock); 13001 ipx->ipx_current_ipif = NULL; 13002 mutex_exit(&ipx->ipx_lock); 13003 } 13004 cv_signal(&ill->ill_cv); 13005 mutex_exit(&ill->ill_lock); 13006 return; 13007 } 13008 13009 ill->ill_dlpi_deferred = mp->b_next; 13010 mp->b_next = NULL; 13011 mutex_exit(&ill->ill_lock); 13012 13013 ill_dlpi_dispatch(ill, mp); 13014 } 13015 13016 /* 13017 * Queue a (multicast) DLPI control message to be sent to the driver by 13018 * later calling ill_dlpi_send_queued. 13019 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13020 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 13021 * for the same group to race. 13022 * We send DLPI control messages in order using ill_lock. 13023 * For IPMP we should be called on the cast_ill. 13024 */ 13025 void 13026 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 13027 { 13028 mblk_t **mpp; 13029 13030 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13031 13032 mutex_enter(&ill->ill_lock); 13033 /* Must queue message. Tail insertion */ 13034 mpp = &ill->ill_dlpi_deferred; 13035 while (*mpp != NULL) 13036 mpp = &((*mpp)->b_next); 13037 13038 *mpp = mp; 13039 mutex_exit(&ill->ill_lock); 13040 } 13041 13042 /* 13043 * Send the messages that were queued. Make sure there is only 13044 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13045 * when an ACK or a NAK is received to process the next queued message. 13046 * For IPMP we are called on the upper ill, but when send what is queued 13047 * on the cast_ill. 13048 */ 13049 void 13050 ill_dlpi_send_queued(ill_t *ill) 13051 { 13052 mblk_t *mp; 13053 union DL_primitives *dlp; 13054 t_uscalar_t prim; 13055 ill_t *release_ill = NULL; 13056 13057 if (IS_IPMP(ill)) { 13058 /* On the upper IPMP ill. */ 13059 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13060 if (release_ill == NULL) { 13061 /* Avoid ever sending anything down to the ipmpstub */ 13062 return; 13063 } 13064 ill = release_ill; 13065 } 13066 mutex_enter(&ill->ill_lock); 13067 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13068 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13069 /* Can't send. Somebody else will send it */ 13070 mutex_exit(&ill->ill_lock); 13071 goto done; 13072 } 13073 ill->ill_dlpi_deferred = mp->b_next; 13074 mp->b_next = NULL; 13075 if (!ill->ill_dl_up) { 13076 /* 13077 * Nobody there. All multicast addresses will be 13078 * re-joined when we get the DL_BIND_ACK bringing the 13079 * interface up. 13080 */ 13081 freemsg(mp); 13082 continue; 13083 } 13084 dlp = (union DL_primitives *)mp->b_rptr; 13085 prim = dlp->dl_primitive; 13086 13087 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13088 (prim == DL_UNBIND_REQ)) { 13089 ill->ill_dlpi_pending = prim; 13090 } 13091 mutex_exit(&ill->ill_lock); 13092 13093 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13094 char *, dl_primstr(prim), ill_t *, ill); 13095 putnext(ill->ill_wq, mp); 13096 mutex_enter(&ill->ill_lock); 13097 } 13098 mutex_exit(&ill->ill_lock); 13099 done: 13100 if (release_ill != NULL) 13101 ill_refrele(release_ill); 13102 } 13103 13104 /* 13105 * Queue an IP (IGMP/MLD) message to be sent by IP from 13106 * ill_mcast_send_queued 13107 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13108 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13109 * group to race. 13110 * We send them in order using ill_lock. 13111 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13112 */ 13113 void 13114 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13115 { 13116 mblk_t **mpp; 13117 ill_t *release_ill = NULL; 13118 13119 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13120 13121 if (IS_IPMP(ill)) { 13122 /* On the upper IPMP ill. */ 13123 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13124 if (release_ill == NULL) { 13125 /* Discard instead of queuing for the ipmp interface */ 13126 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13127 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13128 mp, ill); 13129 freemsg(mp); 13130 return; 13131 } 13132 ill = release_ill; 13133 } 13134 13135 mutex_enter(&ill->ill_lock); 13136 /* Must queue message. Tail insertion */ 13137 mpp = &ill->ill_mcast_deferred; 13138 while (*mpp != NULL) 13139 mpp = &((*mpp)->b_next); 13140 13141 *mpp = mp; 13142 mutex_exit(&ill->ill_lock); 13143 if (release_ill != NULL) 13144 ill_refrele(release_ill); 13145 } 13146 13147 /* 13148 * Send the IP packets that were queued by ill_mcast_queue. 13149 * These are IGMP/MLD packets. 13150 * 13151 * For IPMP we are called on the upper ill, but when send what is queued 13152 * on the cast_ill. 13153 * 13154 * Request loopback of the report if we are acting as a multicast 13155 * router, so that the process-level routing demon can hear it. 13156 * This will run multiple times for the same group if there are members 13157 * on the same group for multiple ipif's on the same ill. The 13158 * igmp_input/mld_input code will suppress this due to the loopback thus we 13159 * always loopback membership report. 13160 * 13161 * We also need to make sure that this does not get load balanced 13162 * by IPMP. We do this by passing an ill to ip_output_simple. 13163 */ 13164 void 13165 ill_mcast_send_queued(ill_t *ill) 13166 { 13167 mblk_t *mp; 13168 ip_xmit_attr_t ixas; 13169 ill_t *release_ill = NULL; 13170 13171 if (IS_IPMP(ill)) { 13172 /* On the upper IPMP ill. */ 13173 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13174 if (release_ill == NULL) { 13175 /* 13176 * We should have no messages on the ipmp interface 13177 * but no point in trying to send them. 13178 */ 13179 return; 13180 } 13181 ill = release_ill; 13182 } 13183 bzero(&ixas, sizeof (ixas)); 13184 ixas.ixa_zoneid = ALL_ZONES; 13185 ixas.ixa_cred = kcred; 13186 ixas.ixa_cpid = NOPID; 13187 ixas.ixa_tsl = NULL; 13188 /* 13189 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13190 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13191 * That is necessary to handle IGMP/MLD snooping switches. 13192 */ 13193 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13194 ixas.ixa_ipst = ill->ill_ipst; 13195 13196 mutex_enter(&ill->ill_lock); 13197 while ((mp = ill->ill_mcast_deferred) != NULL) { 13198 ill->ill_mcast_deferred = mp->b_next; 13199 mp->b_next = NULL; 13200 if (!ill->ill_dl_up) { 13201 /* 13202 * Nobody there. Just drop the ip packets. 13203 * IGMP/MLD will resend later, if this is a replumb. 13204 */ 13205 freemsg(mp); 13206 continue; 13207 } 13208 mutex_enter(&ill->ill_phyint->phyint_lock); 13209 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13210 /* 13211 * When the ill is getting deactivated, we only want to 13212 * send the DLPI messages, so drop IGMP/MLD packets. 13213 * DLPI messages are handled by ill_dlpi_send_queued() 13214 */ 13215 mutex_exit(&ill->ill_phyint->phyint_lock); 13216 freemsg(mp); 13217 continue; 13218 } 13219 mutex_exit(&ill->ill_phyint->phyint_lock); 13220 mutex_exit(&ill->ill_lock); 13221 13222 /* Check whether we are sending IPv4 or IPv6. */ 13223 if (ill->ill_isv6) { 13224 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13225 13226 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13227 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13228 } else { 13229 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13230 13231 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13232 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13233 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13234 } 13235 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13236 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13237 (void) ip_output_simple(mp, &ixas); 13238 ixa_cleanup(&ixas); 13239 13240 mutex_enter(&ill->ill_lock); 13241 } 13242 mutex_exit(&ill->ill_lock); 13243 13244 done: 13245 if (release_ill != NULL) 13246 ill_refrele(release_ill); 13247 } 13248 13249 /* 13250 * Take down a specific interface, but don't lose any information about it. 13251 * (Always called as writer.) 13252 * This function goes through the down sequence even if the interface is 13253 * already down. There are 2 reasons. 13254 * a. Currently we permit interface routes that depend on down interfaces 13255 * to be added. This behaviour itself is questionable. However it appears 13256 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13257 * time. We go thru the cleanup in order to remove these routes. 13258 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13259 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13260 * down, but we need to cleanup i.e. do ill_dl_down and 13261 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13262 * 13263 * IP-MT notes: 13264 * 13265 * Model of reference to interfaces. 13266 * 13267 * The following members in ipif_t track references to the ipif. 13268 * int ipif_refcnt; Active reference count 13269 * 13270 * The following members in ill_t track references to the ill. 13271 * int ill_refcnt; active refcnt 13272 * uint_t ill_ire_cnt; Number of ires referencing ill 13273 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13274 * uint_t ill_nce_cnt; Number of nces referencing ill 13275 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13276 * 13277 * Reference to an ipif or ill can be obtained in any of the following ways. 13278 * 13279 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13280 * Pointers to ipif / ill from other data structures viz ire and conn. 13281 * Implicit reference to the ipif / ill by holding a reference to the ire. 13282 * 13283 * The ipif/ill lookup functions return a reference held ipif / ill. 13284 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13285 * This is a purely dynamic reference count associated with threads holding 13286 * references to the ipif / ill. Pointers from other structures do not 13287 * count towards this reference count. 13288 * 13289 * ill_ire_cnt is the number of ire's associated with the 13290 * ill. This is incremented whenever a new ire is created referencing the 13291 * ill. This is done atomically inside ire_add_v[46] where the ire is 13292 * actually added to the ire hash table. The count is decremented in 13293 * ire_inactive where the ire is destroyed. 13294 * 13295 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13296 * This is incremented atomically in 13297 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13298 * table. Similarly it is decremented in ncec_inactive() where the ncec 13299 * is destroyed. 13300 * 13301 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13302 * incremented atomically in nce_add() where the nce is actually added to the 13303 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13304 * is destroyed. 13305 * 13306 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13307 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13308 * 13309 * Flow of ioctls involving interface down/up 13310 * 13311 * The following is the sequence of an attempt to set some critical flags on an 13312 * up interface. 13313 * ip_sioctl_flags 13314 * ipif_down 13315 * wait for ipif to be quiescent 13316 * ipif_down_tail 13317 * ip_sioctl_flags_tail 13318 * 13319 * All set ioctls that involve down/up sequence would have a skeleton similar 13320 * to the above. All the *tail functions are called after the refcounts have 13321 * dropped to the appropriate values. 13322 * 13323 * SIOC ioctls during the IPIF_CHANGING interval. 13324 * 13325 * Threads handling SIOC set ioctls serialize on the squeue, but this 13326 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13327 * steps of internal changes to the state, some of which are visible in 13328 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13329 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13330 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13331 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13332 * the current exclusive operation completes. The IPIF_CHANGING check 13333 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13334 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13335 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13336 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13337 * until we release the ipsq_lock, even though the ill/ipif state flags 13338 * can change after we drop the ill_lock. 13339 */ 13340 int 13341 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13342 { 13343 ill_t *ill = ipif->ipif_ill; 13344 conn_t *connp; 13345 boolean_t success; 13346 boolean_t ipif_was_up = B_FALSE; 13347 ip_stack_t *ipst = ill->ill_ipst; 13348 13349 ASSERT(IAM_WRITER_IPIF(ipif)); 13350 13351 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13352 13353 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13354 ill_t *, ill, ipif_t *, ipif); 13355 13356 if (ipif->ipif_flags & IPIF_UP) { 13357 mutex_enter(&ill->ill_lock); 13358 ipif->ipif_flags &= ~IPIF_UP; 13359 ASSERT(ill->ill_ipif_up_count > 0); 13360 --ill->ill_ipif_up_count; 13361 mutex_exit(&ill->ill_lock); 13362 ipif_was_up = B_TRUE; 13363 /* Update status in SCTP's list */ 13364 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13365 ill_nic_event_dispatch(ipif->ipif_ill, 13366 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13367 } 13368 13369 /* 13370 * Removal of the last ipif from an ill may result in a DL_UNBIND 13371 * being sent to the driver, and we must not send any data packets to 13372 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13373 * ire and nce entries used in the data path will be cleaned 13374 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13375 * sure on new entries will be added until the ill is bound 13376 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13377 * receipt of a DL_BIND_ACK. 13378 */ 13379 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13380 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13381 ill->ill_dl_up) { 13382 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13383 } 13384 13385 /* 13386 * Blow away memberships we established in ipif_multicast_up(). 13387 */ 13388 ipif_multicast_down(ipif); 13389 13390 /* 13391 * Remove from the mapping for __sin6_src_id. We insert only 13392 * when the address is not INADDR_ANY. As IPv4 addresses are 13393 * stored as mapped addresses, we need to check for mapped 13394 * INADDR_ANY also. 13395 */ 13396 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13397 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13398 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13399 int err; 13400 13401 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13402 ipif->ipif_zoneid, ipst); 13403 if (err != 0) { 13404 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13405 } 13406 } 13407 13408 if (ipif_was_up) { 13409 /* only delete if we'd added ire's before */ 13410 if (ipif->ipif_isv6) 13411 ipif_delete_ires_v6(ipif); 13412 else 13413 ipif_delete_ires_v4(ipif); 13414 } 13415 13416 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13417 /* 13418 * Since the interface is now down, it may have just become 13419 * inactive. Note that this needs to be done even for a 13420 * lll_logical_down(), or ARP entries will not get correctly 13421 * restored when the interface comes back up. 13422 */ 13423 if (IS_UNDER_IPMP(ill)) 13424 ipmp_ill_refresh_active(ill); 13425 } 13426 13427 /* 13428 * neighbor-discovery or arp entries for this interface. The ipif 13429 * has to be quiesced, so we walk all the nce's and delete those 13430 * that point at the ipif->ipif_ill. At the same time, we also 13431 * update IPMP so that ipifs for data addresses are unbound. We dont 13432 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13433 * that for ipif_down_tail() 13434 */ 13435 ipif_nce_down(ipif); 13436 13437 /* 13438 * If this is the last ipif on the ill, we also need to remove 13439 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13440 * never succeed. 13441 */ 13442 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13443 ire_walk_ill(0, 0, ill_downi, ill, ill); 13444 13445 /* 13446 * Walk all CONNs that can have a reference on an ire for this 13447 * ipif (we actually walk all that now have stale references). 13448 */ 13449 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13450 13451 /* 13452 * If mp is NULL the caller will wait for the appropriate refcnt. 13453 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13454 * and ill_delete -> ipif_free -> ipif_down 13455 */ 13456 if (mp == NULL) { 13457 ASSERT(q == NULL); 13458 return (0); 13459 } 13460 13461 if (CONN_Q(q)) { 13462 connp = Q_TO_CONN(q); 13463 mutex_enter(&connp->conn_lock); 13464 } else { 13465 connp = NULL; 13466 } 13467 mutex_enter(&ill->ill_lock); 13468 /* 13469 * Are there any ire's pointing to this ipif that are still active ? 13470 * If this is the last ipif going down, are there any ire's pointing 13471 * to this ill that are still active ? 13472 */ 13473 if (ipif_is_quiescent(ipif)) { 13474 mutex_exit(&ill->ill_lock); 13475 if (connp != NULL) 13476 mutex_exit(&connp->conn_lock); 13477 return (0); 13478 } 13479 13480 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13481 ill->ill_name, (void *)ill)); 13482 /* 13483 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13484 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13485 * which in turn is called by the last refrele on the ipif/ill/ire. 13486 */ 13487 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13488 if (!success) { 13489 /* The conn is closing. So just return */ 13490 ASSERT(connp != NULL); 13491 mutex_exit(&ill->ill_lock); 13492 mutex_exit(&connp->conn_lock); 13493 return (EINTR); 13494 } 13495 13496 mutex_exit(&ill->ill_lock); 13497 if (connp != NULL) 13498 mutex_exit(&connp->conn_lock); 13499 return (EINPROGRESS); 13500 } 13501 13502 int 13503 ipif_down_tail(ipif_t *ipif) 13504 { 13505 ill_t *ill = ipif->ipif_ill; 13506 int err = 0; 13507 13508 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13509 ill_t *, ill, ipif_t *, ipif); 13510 13511 /* 13512 * Skip any loopback interface (null wq). 13513 * If this is the last logical interface on the ill 13514 * have ill_dl_down tell the driver we are gone (unbind) 13515 * Note that lun 0 can ipif_down even though 13516 * there are other logical units that are up. 13517 * This occurs e.g. when we change a "significant" IFF_ flag. 13518 */ 13519 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13520 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13521 ill->ill_dl_up) { 13522 ill_dl_down(ill); 13523 } 13524 if (!ipif->ipif_isv6) 13525 err = ipif_arp_down(ipif); 13526 13527 ill->ill_logical_down = 0; 13528 13529 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13530 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13531 return (err); 13532 } 13533 13534 /* 13535 * Bring interface logically down without bringing the physical interface 13536 * down e.g. when the netmask is changed. This avoids long lasting link 13537 * negotiations between an ethernet interface and a certain switches. 13538 */ 13539 static int 13540 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13541 { 13542 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13543 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13544 13545 /* 13546 * The ill_logical_down flag is a transient flag. It is set here 13547 * and is cleared once the down has completed in ipif_down_tail. 13548 * This flag does not indicate whether the ill stream is in the 13549 * DL_BOUND state with the driver. Instead this flag is used by 13550 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13551 * the driver. The state of the ill stream i.e. whether it is 13552 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13553 */ 13554 ipif->ipif_ill->ill_logical_down = 1; 13555 return (ipif_down(ipif, q, mp)); 13556 } 13557 13558 /* 13559 * Initiate deallocate of an IPIF. Always called as writer. Called by 13560 * ill_delete or ip_sioctl_removeif. 13561 */ 13562 static void 13563 ipif_free(ipif_t *ipif) 13564 { 13565 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13566 13567 ASSERT(IAM_WRITER_IPIF(ipif)); 13568 13569 if (ipif->ipif_recovery_id != 0) 13570 (void) untimeout(ipif->ipif_recovery_id); 13571 ipif->ipif_recovery_id = 0; 13572 13573 /* 13574 * Take down the interface. We can be called either from ill_delete 13575 * or from ip_sioctl_removeif. 13576 */ 13577 (void) ipif_down(ipif, NULL, NULL); 13578 13579 /* 13580 * Now that the interface is down, there's no chance it can still 13581 * become a duplicate. Cancel any timer that may have been set while 13582 * tearing down. 13583 */ 13584 if (ipif->ipif_recovery_id != 0) 13585 (void) untimeout(ipif->ipif_recovery_id); 13586 ipif->ipif_recovery_id = 0; 13587 13588 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13589 /* Remove pointers to this ill in the multicast routing tables */ 13590 reset_mrt_vif_ipif(ipif); 13591 /* If necessary, clear the cached source ipif rotor. */ 13592 if (ipif->ipif_ill->ill_src_ipif == ipif) 13593 ipif->ipif_ill->ill_src_ipif = NULL; 13594 rw_exit(&ipst->ips_ill_g_lock); 13595 } 13596 13597 static void 13598 ipif_free_tail(ipif_t *ipif) 13599 { 13600 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13601 13602 /* 13603 * Need to hold both ill_g_lock and ill_lock while 13604 * inserting or removing an ipif from the linked list 13605 * of ipifs hanging off the ill. 13606 */ 13607 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13608 13609 #ifdef DEBUG 13610 ipif_trace_cleanup(ipif); 13611 #endif 13612 13613 /* Ask SCTP to take it out of it list */ 13614 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13615 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13616 13617 /* Get it out of the ILL interface list. */ 13618 ipif_remove(ipif); 13619 rw_exit(&ipst->ips_ill_g_lock); 13620 13621 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13622 ASSERT(ipif->ipif_recovery_id == 0); 13623 ASSERT(ipif->ipif_ire_local == NULL); 13624 ASSERT(ipif->ipif_ire_if == NULL); 13625 13626 /* Free the memory. */ 13627 mi_free(ipif); 13628 } 13629 13630 /* 13631 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13632 * is zero. 13633 */ 13634 void 13635 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13636 { 13637 char lbuf[LIFNAMSIZ]; 13638 char *name; 13639 size_t name_len; 13640 13641 buf[0] = '\0'; 13642 name = ipif->ipif_ill->ill_name; 13643 name_len = ipif->ipif_ill->ill_name_length; 13644 if (ipif->ipif_id != 0) { 13645 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13646 ipif->ipif_id); 13647 name = lbuf; 13648 name_len = mi_strlen(name) + 1; 13649 } 13650 len -= 1; 13651 buf[len] = '\0'; 13652 len = MIN(len, name_len); 13653 bcopy(name, buf, len); 13654 } 13655 13656 /* 13657 * Sets `buf' to an ill name. 13658 */ 13659 void 13660 ill_get_name(const ill_t *ill, char *buf, int len) 13661 { 13662 char *name; 13663 size_t name_len; 13664 13665 name = ill->ill_name; 13666 name_len = ill->ill_name_length; 13667 len -= 1; 13668 buf[len] = '\0'; 13669 len = MIN(len, name_len); 13670 bcopy(name, buf, len); 13671 } 13672 13673 /* 13674 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13675 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13676 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13677 * (May be called as writer.) 13678 */ 13679 static ipif_t * 13680 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13681 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13682 { 13683 char *cp; 13684 char *endp; 13685 long id; 13686 ill_t *ill; 13687 ipif_t *ipif; 13688 uint_t ire_type; 13689 boolean_t did_alloc = B_FALSE; 13690 char last; 13691 13692 /* 13693 * If the caller wants to us to create the ipif, make sure we have a 13694 * valid zoneid 13695 */ 13696 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13697 13698 if (namelen == 0) { 13699 return (NULL); 13700 } 13701 13702 *exists = B_FALSE; 13703 /* Look for a colon in the name. */ 13704 endp = &name[namelen]; 13705 for (cp = endp; --cp > name; ) { 13706 if (*cp == IPIF_SEPARATOR_CHAR) 13707 break; 13708 } 13709 13710 if (*cp == IPIF_SEPARATOR_CHAR) { 13711 /* 13712 * Reject any non-decimal aliases for logical 13713 * interfaces. Aliases with leading zeroes 13714 * are also rejected as they introduce ambiguity 13715 * in the naming of the interfaces. 13716 * In order to confirm with existing semantics, 13717 * and to not break any programs/script relying 13718 * on that behaviour, if<0>:0 is considered to be 13719 * a valid interface. 13720 * 13721 * If alias has two or more digits and the first 13722 * is zero, fail. 13723 */ 13724 if (&cp[2] < endp && cp[1] == '0') { 13725 return (NULL); 13726 } 13727 } 13728 13729 if (cp <= name) { 13730 cp = endp; 13731 } 13732 last = *cp; 13733 *cp = '\0'; 13734 13735 /* 13736 * Look up the ILL, based on the portion of the name 13737 * before the slash. ill_lookup_on_name returns a held ill. 13738 * Temporary to check whether ill exists already. If so 13739 * ill_lookup_on_name will clear it. 13740 */ 13741 ill = ill_lookup_on_name(name, do_alloc, isv6, 13742 &did_alloc, ipst); 13743 *cp = last; 13744 if (ill == NULL) 13745 return (NULL); 13746 13747 /* Establish the unit number in the name. */ 13748 id = 0; 13749 if (cp < endp && *endp == '\0') { 13750 /* If there was a colon, the unit number follows. */ 13751 cp++; 13752 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13753 ill_refrele(ill); 13754 return (NULL); 13755 } 13756 } 13757 13758 mutex_enter(&ill->ill_lock); 13759 /* Now see if there is an IPIF with this unit number. */ 13760 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13761 if (ipif->ipif_id == id) { 13762 if (zoneid != ALL_ZONES && 13763 zoneid != ipif->ipif_zoneid && 13764 ipif->ipif_zoneid != ALL_ZONES) { 13765 mutex_exit(&ill->ill_lock); 13766 ill_refrele(ill); 13767 return (NULL); 13768 } 13769 if (IPIF_CAN_LOOKUP(ipif)) { 13770 ipif_refhold_locked(ipif); 13771 mutex_exit(&ill->ill_lock); 13772 if (!did_alloc) 13773 *exists = B_TRUE; 13774 /* 13775 * Drop locks before calling ill_refrele 13776 * since it can potentially call into 13777 * ipif_ill_refrele_tail which can end up 13778 * in trying to acquire any lock. 13779 */ 13780 ill_refrele(ill); 13781 return (ipif); 13782 } 13783 } 13784 } 13785 13786 if (!do_alloc) { 13787 mutex_exit(&ill->ill_lock); 13788 ill_refrele(ill); 13789 return (NULL); 13790 } 13791 13792 /* 13793 * If none found, atomically allocate and return a new one. 13794 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13795 * to support "receive only" use of lo0:1 etc. as is still done 13796 * below as an initial guess. 13797 * However, this is now likely to be overriden later in ipif_up_done() 13798 * when we know for sure what address has been configured on the 13799 * interface, since we might have more than one loopback interface 13800 * with a loopback address, e.g. in the case of zones, and all the 13801 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13802 */ 13803 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13804 ire_type = IRE_LOOPBACK; 13805 else 13806 ire_type = IRE_LOCAL; 13807 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13808 if (ipif != NULL) 13809 ipif_refhold_locked(ipif); 13810 mutex_exit(&ill->ill_lock); 13811 ill_refrele(ill); 13812 return (ipif); 13813 } 13814 13815 /* 13816 * Variant of the above that queues the request on the ipsq when 13817 * IPIF_CHANGING is set. 13818 */ 13819 static ipif_t * 13820 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13821 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13822 ip_stack_t *ipst) 13823 { 13824 char *cp; 13825 char *endp; 13826 long id; 13827 ill_t *ill; 13828 ipif_t *ipif; 13829 boolean_t did_alloc = B_FALSE; 13830 ipsq_t *ipsq; 13831 13832 if (error != NULL) 13833 *error = 0; 13834 13835 if (namelen == 0) { 13836 if (error != NULL) 13837 *error = ENXIO; 13838 return (NULL); 13839 } 13840 13841 /* Look for a colon in the name. */ 13842 endp = &name[namelen]; 13843 for (cp = endp; --cp > name; ) { 13844 if (*cp == IPIF_SEPARATOR_CHAR) 13845 break; 13846 } 13847 13848 if (*cp == IPIF_SEPARATOR_CHAR) { 13849 /* 13850 * Reject any non-decimal aliases for logical 13851 * interfaces. Aliases with leading zeroes 13852 * are also rejected as they introduce ambiguity 13853 * in the naming of the interfaces. 13854 * In order to confirm with existing semantics, 13855 * and to not break any programs/script relying 13856 * on that behaviour, if<0>:0 is considered to be 13857 * a valid interface. 13858 * 13859 * If alias has two or more digits and the first 13860 * is zero, fail. 13861 */ 13862 if (&cp[2] < endp && cp[1] == '0') { 13863 if (error != NULL) 13864 *error = EINVAL; 13865 return (NULL); 13866 } 13867 } 13868 13869 if (cp <= name) { 13870 cp = endp; 13871 } else { 13872 *cp = '\0'; 13873 } 13874 13875 /* 13876 * Look up the ILL, based on the portion of the name 13877 * before the slash. ill_lookup_on_name returns a held ill. 13878 * Temporary to check whether ill exists already. If so 13879 * ill_lookup_on_name will clear it. 13880 */ 13881 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13882 if (cp != endp) 13883 *cp = IPIF_SEPARATOR_CHAR; 13884 if (ill == NULL) 13885 return (NULL); 13886 13887 /* Establish the unit number in the name. */ 13888 id = 0; 13889 if (cp < endp && *endp == '\0') { 13890 /* If there was a colon, the unit number follows. */ 13891 cp++; 13892 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13893 ill_refrele(ill); 13894 if (error != NULL) 13895 *error = ENXIO; 13896 return (NULL); 13897 } 13898 } 13899 13900 GRAB_CONN_LOCK(q); 13901 mutex_enter(&ill->ill_lock); 13902 /* Now see if there is an IPIF with this unit number. */ 13903 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13904 if (ipif->ipif_id == id) { 13905 if (zoneid != ALL_ZONES && 13906 zoneid != ipif->ipif_zoneid && 13907 ipif->ipif_zoneid != ALL_ZONES) { 13908 mutex_exit(&ill->ill_lock); 13909 RELEASE_CONN_LOCK(q); 13910 ill_refrele(ill); 13911 if (error != NULL) 13912 *error = ENXIO; 13913 return (NULL); 13914 } 13915 13916 if (!(IPIF_IS_CHANGING(ipif) || 13917 IPIF_IS_CONDEMNED(ipif)) || 13918 IAM_WRITER_IPIF(ipif)) { 13919 ipif_refhold_locked(ipif); 13920 mutex_exit(&ill->ill_lock); 13921 /* 13922 * Drop locks before calling ill_refrele 13923 * since it can potentially call into 13924 * ipif_ill_refrele_tail which can end up 13925 * in trying to acquire any lock. 13926 */ 13927 RELEASE_CONN_LOCK(q); 13928 ill_refrele(ill); 13929 return (ipif); 13930 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13931 ipsq = ill->ill_phyint->phyint_ipsq; 13932 mutex_enter(&ipsq->ipsq_lock); 13933 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13934 mutex_exit(&ill->ill_lock); 13935 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13936 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13937 mutex_exit(&ipsq->ipsq_lock); 13938 RELEASE_CONN_LOCK(q); 13939 ill_refrele(ill); 13940 if (error != NULL) 13941 *error = EINPROGRESS; 13942 return (NULL); 13943 } 13944 } 13945 } 13946 RELEASE_CONN_LOCK(q); 13947 mutex_exit(&ill->ill_lock); 13948 ill_refrele(ill); 13949 if (error != NULL) 13950 *error = ENXIO; 13951 return (NULL); 13952 } 13953 13954 /* 13955 * This routine is called whenever a new address comes up on an ipif. If 13956 * we are configured to respond to address mask requests, then we are supposed 13957 * to broadcast an address mask reply at this time. This routine is also 13958 * called if we are already up, but a netmask change is made. This is legal 13959 * but might not make the system manager very popular. (May be called 13960 * as writer.) 13961 */ 13962 void 13963 ipif_mask_reply(ipif_t *ipif) 13964 { 13965 icmph_t *icmph; 13966 ipha_t *ipha; 13967 mblk_t *mp; 13968 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13969 ip_xmit_attr_t ixas; 13970 13971 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13972 13973 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13974 return; 13975 13976 /* ICMP mask reply is IPv4 only */ 13977 ASSERT(!ipif->ipif_isv6); 13978 /* ICMP mask reply is not for a loopback interface */ 13979 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13980 13981 if (ipif->ipif_lcl_addr == INADDR_ANY) 13982 return; 13983 13984 mp = allocb(REPLY_LEN, BPRI_HI); 13985 if (mp == NULL) 13986 return; 13987 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13988 13989 ipha = (ipha_t *)mp->b_rptr; 13990 bzero(ipha, REPLY_LEN); 13991 *ipha = icmp_ipha; 13992 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13993 ipha->ipha_src = ipif->ipif_lcl_addr; 13994 ipha->ipha_dst = ipif->ipif_brd_addr; 13995 ipha->ipha_length = htons(REPLY_LEN); 13996 ipha->ipha_ident = 0; 13997 13998 icmph = (icmph_t *)&ipha[1]; 13999 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 14000 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 14001 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 14002 14003 bzero(&ixas, sizeof (ixas)); 14004 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 14005 ixas.ixa_zoneid = ALL_ZONES; 14006 ixas.ixa_ifindex = 0; 14007 ixas.ixa_ipst = ipst; 14008 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 14009 (void) ip_output_simple(mp, &ixas); 14010 ixa_cleanup(&ixas); 14011 #undef REPLY_LEN 14012 } 14013 14014 /* 14015 * Join the ipif specific multicast groups. 14016 * Must be called after a mapping has been set up in the resolver. (Always 14017 * called as writer.) 14018 */ 14019 void 14020 ipif_multicast_up(ipif_t *ipif) 14021 { 14022 int err; 14023 ill_t *ill; 14024 ilm_t *ilm; 14025 14026 ASSERT(IAM_WRITER_IPIF(ipif)); 14027 14028 ill = ipif->ipif_ill; 14029 14030 ip1dbg(("ipif_multicast_up\n")); 14031 if (!(ill->ill_flags & ILLF_MULTICAST) || 14032 ipif->ipif_allhosts_ilm != NULL) 14033 return; 14034 14035 if (ipif->ipif_isv6) { 14036 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14037 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14038 14039 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14040 14041 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14042 return; 14043 14044 ip1dbg(("ipif_multicast_up - addmulti\n")); 14045 14046 /* 14047 * Join the all hosts multicast address. We skip this for 14048 * underlying IPMP interfaces since they should be invisible. 14049 */ 14050 if (!IS_UNDER_IPMP(ill)) { 14051 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14052 &err); 14053 if (ilm == NULL) { 14054 ASSERT(err != 0); 14055 ip0dbg(("ipif_multicast_up: " 14056 "all_hosts_mcast failed %d\n", err)); 14057 return; 14058 } 14059 ipif->ipif_allhosts_ilm = ilm; 14060 } 14061 14062 /* 14063 * Enable multicast for the solicited node multicast address. 14064 * If IPMP we need to put the membership on the upper ill. 14065 */ 14066 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14067 ill_t *mcast_ill = NULL; 14068 boolean_t need_refrele; 14069 14070 if (IS_UNDER_IPMP(ill) && 14071 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14072 need_refrele = B_TRUE; 14073 } else { 14074 mcast_ill = ill; 14075 need_refrele = B_FALSE; 14076 } 14077 14078 ilm = ip_addmulti(&v6solmc, mcast_ill, 14079 ipif->ipif_zoneid, &err); 14080 if (need_refrele) 14081 ill_refrele(mcast_ill); 14082 14083 if (ilm == NULL) { 14084 ASSERT(err != 0); 14085 ip0dbg(("ipif_multicast_up: solicited MC" 14086 " failed %d\n", err)); 14087 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14088 ipif->ipif_allhosts_ilm = NULL; 14089 (void) ip_delmulti(ilm); 14090 } 14091 return; 14092 } 14093 ipif->ipif_solmulti_ilm = ilm; 14094 } 14095 } else { 14096 in6_addr_t v6group; 14097 14098 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14099 return; 14100 14101 /* Join the all hosts multicast address */ 14102 ip1dbg(("ipif_multicast_up - addmulti\n")); 14103 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14104 14105 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14106 if (ilm == NULL) { 14107 ASSERT(err != 0); 14108 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14109 return; 14110 } 14111 ipif->ipif_allhosts_ilm = ilm; 14112 } 14113 } 14114 14115 /* 14116 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14117 * (ilms from explicit memberships are handled in conn_update_ill.) 14118 */ 14119 void 14120 ipif_multicast_down(ipif_t *ipif) 14121 { 14122 ASSERT(IAM_WRITER_IPIF(ipif)); 14123 14124 ip1dbg(("ipif_multicast_down\n")); 14125 14126 if (ipif->ipif_allhosts_ilm != NULL) { 14127 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14128 ipif->ipif_allhosts_ilm = NULL; 14129 } 14130 if (ipif->ipif_solmulti_ilm != NULL) { 14131 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14132 ipif->ipif_solmulti_ilm = NULL; 14133 } 14134 } 14135 14136 /* 14137 * Used when an interface comes up to recreate any extra routes on this 14138 * interface. 14139 */ 14140 int 14141 ill_recover_saved_ire(ill_t *ill) 14142 { 14143 mblk_t *mp; 14144 ip_stack_t *ipst = ill->ill_ipst; 14145 14146 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14147 14148 mutex_enter(&ill->ill_saved_ire_lock); 14149 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14150 ire_t *ire, *nire; 14151 ifrt_t *ifrt; 14152 14153 ifrt = (ifrt_t *)mp->b_rptr; 14154 /* 14155 * Create a copy of the IRE with the saved address and netmask. 14156 */ 14157 if (ill->ill_isv6) { 14158 ire = ire_create_v6( 14159 &ifrt->ifrt_v6addr, 14160 &ifrt->ifrt_v6mask, 14161 &ifrt->ifrt_v6gateway_addr, 14162 ifrt->ifrt_type, 14163 ill, 14164 ifrt->ifrt_zoneid, 14165 ifrt->ifrt_flags, 14166 NULL, 14167 ipst); 14168 } else { 14169 ire = ire_create( 14170 (uint8_t *)&ifrt->ifrt_addr, 14171 (uint8_t *)&ifrt->ifrt_mask, 14172 (uint8_t *)&ifrt->ifrt_gateway_addr, 14173 ifrt->ifrt_type, 14174 ill, 14175 ifrt->ifrt_zoneid, 14176 ifrt->ifrt_flags, 14177 NULL, 14178 ipst); 14179 } 14180 if (ire == NULL) { 14181 mutex_exit(&ill->ill_saved_ire_lock); 14182 return (ENOMEM); 14183 } 14184 14185 if (ifrt->ifrt_flags & RTF_SETSRC) { 14186 if (ill->ill_isv6) { 14187 ire->ire_setsrc_addr_v6 = 14188 ifrt->ifrt_v6setsrc_addr; 14189 } else { 14190 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14191 } 14192 } 14193 14194 /* 14195 * Some software (for example, GateD and Sun Cluster) attempts 14196 * to create (what amount to) IRE_PREFIX routes with the 14197 * loopback address as the gateway. This is primarily done to 14198 * set up prefixes with the RTF_REJECT flag set (for example, 14199 * when generating aggregate routes.) 14200 * 14201 * If the IRE type (as defined by ill->ill_net_type) is 14202 * IRE_LOOPBACK, then we map the request into a 14203 * IRE_IF_NORESOLVER. 14204 */ 14205 if (ill->ill_net_type == IRE_LOOPBACK) 14206 ire->ire_type = IRE_IF_NORESOLVER; 14207 14208 /* 14209 * ire held by ire_add, will be refreled' towards the 14210 * the end of ipif_up_done 14211 */ 14212 nire = ire_add(ire); 14213 /* 14214 * Check if it was a duplicate entry. This handles 14215 * the case of two racing route adds for the same route 14216 */ 14217 if (nire == NULL) { 14218 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14219 } else if (nire != ire) { 14220 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14221 (void *)nire)); 14222 ire_delete(nire); 14223 } else { 14224 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14225 (void *)nire)); 14226 } 14227 if (nire != NULL) 14228 ire_refrele(nire); 14229 } 14230 mutex_exit(&ill->ill_saved_ire_lock); 14231 return (0); 14232 } 14233 14234 /* 14235 * Used to set the netmask and broadcast address to default values when the 14236 * interface is brought up. (Always called as writer.) 14237 */ 14238 static void 14239 ipif_set_default(ipif_t *ipif) 14240 { 14241 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14242 14243 if (!ipif->ipif_isv6) { 14244 /* 14245 * Interface holds an IPv4 address. Default 14246 * mask is the natural netmask. 14247 */ 14248 if (!ipif->ipif_net_mask) { 14249 ipaddr_t v4mask; 14250 14251 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14252 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14253 } 14254 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14255 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14256 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14257 } else { 14258 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14259 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14260 } 14261 /* 14262 * NOTE: SunOS 4.X does this even if the broadcast address 14263 * has been already set thus we do the same here. 14264 */ 14265 if (ipif->ipif_flags & IPIF_BROADCAST) { 14266 ipaddr_t v4addr; 14267 14268 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14269 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14270 } 14271 } else { 14272 /* 14273 * Interface holds an IPv6-only address. Default 14274 * mask is all-ones. 14275 */ 14276 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14277 ipif->ipif_v6net_mask = ipv6_all_ones; 14278 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14279 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14280 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14281 } else { 14282 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14283 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14284 } 14285 } 14286 } 14287 14288 /* 14289 * Return 0 if this address can be used as local address without causing 14290 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14291 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14292 * Note that the same IPv6 link-local address is allowed as long as the ills 14293 * are not on the same link. 14294 */ 14295 int 14296 ip_addr_availability_check(ipif_t *new_ipif) 14297 { 14298 in6_addr_t our_v6addr; 14299 ill_t *ill; 14300 ipif_t *ipif; 14301 ill_walk_context_t ctx; 14302 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14303 14304 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14305 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14306 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14307 14308 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14309 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14310 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14311 return (0); 14312 14313 our_v6addr = new_ipif->ipif_v6lcl_addr; 14314 14315 if (new_ipif->ipif_isv6) 14316 ill = ILL_START_WALK_V6(&ctx, ipst); 14317 else 14318 ill = ILL_START_WALK_V4(&ctx, ipst); 14319 14320 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14321 for (ipif = ill->ill_ipif; ipif != NULL; 14322 ipif = ipif->ipif_next) { 14323 if ((ipif == new_ipif) || 14324 !(ipif->ipif_flags & IPIF_UP) || 14325 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14326 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14327 &our_v6addr)) 14328 continue; 14329 14330 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14331 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14332 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14333 ipif->ipif_flags |= IPIF_UNNUMBERED; 14334 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14335 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14336 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14337 continue; 14338 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14339 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14340 continue; 14341 else if (new_ipif->ipif_ill == ill) 14342 return (EADDRINUSE); 14343 else 14344 return (EADDRNOTAVAIL); 14345 } 14346 } 14347 14348 return (0); 14349 } 14350 14351 /* 14352 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14353 * IREs for the ipif. 14354 * When the routine returns EINPROGRESS then mp has been consumed and 14355 * the ioctl will be acked from ip_rput_dlpi. 14356 */ 14357 int 14358 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14359 { 14360 ill_t *ill = ipif->ipif_ill; 14361 boolean_t isv6 = ipif->ipif_isv6; 14362 int err = 0; 14363 boolean_t success; 14364 uint_t ipif_orig_id; 14365 ip_stack_t *ipst = ill->ill_ipst; 14366 14367 ASSERT(IAM_WRITER_IPIF(ipif)); 14368 14369 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14370 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14371 ill_t *, ill, ipif_t *, ipif); 14372 14373 /* Shouldn't get here if it is already up. */ 14374 if (ipif->ipif_flags & IPIF_UP) 14375 return (EALREADY); 14376 14377 /* 14378 * If this is a request to bring up a data address on an interface 14379 * under IPMP, then move the address to its IPMP meta-interface and 14380 * try to bring it up. One complication is that the zeroth ipif for 14381 * an ill is special, in that every ill always has one, and that code 14382 * throughout IP deferences ill->ill_ipif without holding any locks. 14383 */ 14384 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14385 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14386 ipif_t *stubipif = NULL, *moveipif = NULL; 14387 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14388 14389 /* 14390 * The ipif being brought up should be quiesced. If it's not, 14391 * something has gone amiss and we need to bail out. (If it's 14392 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14393 */ 14394 mutex_enter(&ill->ill_lock); 14395 if (!ipif_is_quiescent(ipif)) { 14396 mutex_exit(&ill->ill_lock); 14397 return (EINVAL); 14398 } 14399 mutex_exit(&ill->ill_lock); 14400 14401 /* 14402 * If we're going to need to allocate ipifs, do it prior 14403 * to starting the move (and grabbing locks). 14404 */ 14405 if (ipif->ipif_id == 0) { 14406 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14407 B_FALSE, &err)) == NULL) { 14408 return (err); 14409 } 14410 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14411 B_FALSE, &err)) == NULL) { 14412 mi_free(moveipif); 14413 return (err); 14414 } 14415 } 14416 14417 /* 14418 * Grab or transfer the ipif to move. During the move, keep 14419 * ill_g_lock held to prevent any ill walker threads from 14420 * seeing things in an inconsistent state. 14421 */ 14422 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14423 if (ipif->ipif_id != 0) { 14424 ipif_remove(ipif); 14425 } else { 14426 ipif_transfer(ipif, moveipif, stubipif); 14427 ipif = moveipif; 14428 } 14429 14430 /* 14431 * Place the ipif on the IPMP ill. If the zeroth ipif on 14432 * the IPMP ill is a stub (0.0.0.0 down address) then we 14433 * replace that one. Otherwise, pick the next available slot. 14434 */ 14435 ipif->ipif_ill = ipmp_ill; 14436 ipif_orig_id = ipif->ipif_id; 14437 14438 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14439 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14440 ipif = ipmp_ill->ill_ipif; 14441 } else { 14442 ipif->ipif_id = -1; 14443 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14444 /* 14445 * No more available ipif_id's -- put it back 14446 * on the original ill and fail the operation. 14447 * Since we're writer on the ill, we can be 14448 * sure our old slot is still available. 14449 */ 14450 ipif->ipif_id = ipif_orig_id; 14451 ipif->ipif_ill = ill; 14452 if (ipif_orig_id == 0) { 14453 ipif_transfer(ipif, ill->ill_ipif, 14454 NULL); 14455 } else { 14456 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14457 } 14458 rw_exit(&ipst->ips_ill_g_lock); 14459 return (err); 14460 } 14461 } 14462 rw_exit(&ipst->ips_ill_g_lock); 14463 14464 /* 14465 * Tell SCTP that the ipif has moved. Note that even if we 14466 * had to allocate a new ipif, the original sequence id was 14467 * preserved and therefore SCTP won't know. 14468 */ 14469 sctp_move_ipif(ipif, ill, ipmp_ill); 14470 14471 /* 14472 * If the ipif being brought up was on slot zero, then we 14473 * first need to bring up the placeholder we stuck there. In 14474 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14475 * call to ipif_up() itself, if we successfully bring up the 14476 * placeholder, we'll check ill_move_ipif and bring it up too. 14477 */ 14478 if (ipif_orig_id == 0) { 14479 ASSERT(ill->ill_move_ipif == NULL); 14480 ill->ill_move_ipif = ipif; 14481 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14482 ASSERT(ill->ill_move_ipif == NULL); 14483 if (err != EINPROGRESS) 14484 ill->ill_move_ipif = NULL; 14485 return (err); 14486 } 14487 14488 /* 14489 * Bring it up on the IPMP ill. 14490 */ 14491 return (ipif_up(ipif, q, mp)); 14492 } 14493 14494 /* Skip arp/ndp for any loopback interface. */ 14495 if (ill->ill_wq != NULL) { 14496 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14497 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14498 14499 if (!ill->ill_dl_up) { 14500 /* 14501 * ill_dl_up is not yet set. i.e. we are yet to 14502 * DL_BIND with the driver and this is the first 14503 * logical interface on the ill to become "up". 14504 * Tell the driver to get going (via DL_BIND_REQ). 14505 * Note that changing "significant" IFF_ flags 14506 * address/netmask etc cause a down/up dance, but 14507 * does not cause an unbind (DL_UNBIND) with the driver 14508 */ 14509 return (ill_dl_up(ill, ipif, mp, q)); 14510 } 14511 14512 /* 14513 * ipif_resolver_up may end up needeing to bind/attach 14514 * the ARP stream, which in turn necessitates a 14515 * DLPI message exchange with the driver. ioctls are 14516 * serialized and so we cannot send more than one 14517 * interface up message at a time. If ipif_resolver_up 14518 * does need to wait for the DLPI handshake for the ARP stream, 14519 * we get EINPROGRESS and we will complete in arp_bringup_done. 14520 */ 14521 14522 ASSERT(connp != NULL || !CONN_Q(q)); 14523 if (connp != NULL) 14524 mutex_enter(&connp->conn_lock); 14525 mutex_enter(&ill->ill_lock); 14526 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14527 mutex_exit(&ill->ill_lock); 14528 if (connp != NULL) 14529 mutex_exit(&connp->conn_lock); 14530 if (!success) 14531 return (EINTR); 14532 14533 /* 14534 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14535 * complete when ipif_ndp_up returns. 14536 */ 14537 err = ipif_resolver_up(ipif, Res_act_initial); 14538 if (err == EINPROGRESS) { 14539 /* We will complete it in arp_bringup_done() */ 14540 return (err); 14541 } 14542 14543 if (isv6 && err == 0) 14544 err = ipif_ndp_up(ipif, B_TRUE); 14545 14546 ASSERT(err != EINPROGRESS); 14547 mp = ipsq_pending_mp_get(ipsq, &connp); 14548 ASSERT(mp != NULL); 14549 if (err != 0) 14550 return (err); 14551 } else { 14552 /* 14553 * Interfaces without underlying hardware don't do duplicate 14554 * address detection. 14555 */ 14556 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14557 ipif->ipif_addr_ready = 1; 14558 err = ill_add_ires(ill); 14559 /* allocation failure? */ 14560 if (err != 0) 14561 return (err); 14562 } 14563 14564 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14565 if (err == 0 && ill->ill_move_ipif != NULL) { 14566 ipif = ill->ill_move_ipif; 14567 ill->ill_move_ipif = NULL; 14568 return (ipif_up(ipif, q, mp)); 14569 } 14570 return (err); 14571 } 14572 14573 /* 14574 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14575 * The identical set of IREs need to be removed in ill_delete_ires(). 14576 */ 14577 int 14578 ill_add_ires(ill_t *ill) 14579 { 14580 ire_t *ire; 14581 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14582 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14583 14584 if (ill->ill_ire_multicast != NULL) 14585 return (0); 14586 14587 /* 14588 * provide some dummy ire_addr for creating the ire. 14589 */ 14590 if (ill->ill_isv6) { 14591 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14592 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14593 } else { 14594 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14595 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14596 } 14597 if (ire == NULL) 14598 return (ENOMEM); 14599 14600 ill->ill_ire_multicast = ire; 14601 return (0); 14602 } 14603 14604 void 14605 ill_delete_ires(ill_t *ill) 14606 { 14607 if (ill->ill_ire_multicast != NULL) { 14608 /* 14609 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14610 * which was taken without any th_tracing enabled. 14611 * We also mark it as condemned (note that it was never added) 14612 * so that caching conn's can move off of it. 14613 */ 14614 ire_make_condemned(ill->ill_ire_multicast); 14615 ire_refrele_notr(ill->ill_ire_multicast); 14616 ill->ill_ire_multicast = NULL; 14617 } 14618 } 14619 14620 /* 14621 * Perform a bind for the physical device. 14622 * When the routine returns EINPROGRESS then mp has been consumed and 14623 * the ioctl will be acked from ip_rput_dlpi. 14624 * Allocate an unbind message and save it until ipif_down. 14625 */ 14626 static int 14627 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14628 { 14629 mblk_t *bind_mp = NULL; 14630 mblk_t *unbind_mp = NULL; 14631 conn_t *connp; 14632 boolean_t success; 14633 int err; 14634 14635 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14636 14637 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14638 ASSERT(IAM_WRITER_ILL(ill)); 14639 ASSERT(mp != NULL); 14640 14641 /* 14642 * Make sure we have an IRE_MULTICAST in case we immediately 14643 * start receiving packets. 14644 */ 14645 err = ill_add_ires(ill); 14646 if (err != 0) 14647 goto bad; 14648 14649 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14650 DL_BIND_REQ); 14651 if (bind_mp == NULL) 14652 goto bad; 14653 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14654 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14655 14656 /* 14657 * ill_unbind_mp would be non-null if the following sequence had 14658 * happened: 14659 * - send DL_BIND_REQ to driver, wait for response 14660 * - multiple ioctls that need to bring the ipif up are encountered, 14661 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14662 * These ioctls will then be enqueued on the ipsq 14663 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14664 * At this point, the pending ioctls in the ipsq will be drained, and 14665 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14666 * a non-null ill->ill_unbind_mp 14667 */ 14668 if (ill->ill_unbind_mp == NULL) { 14669 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14670 DL_UNBIND_REQ); 14671 if (unbind_mp == NULL) 14672 goto bad; 14673 } 14674 /* 14675 * Record state needed to complete this operation when the 14676 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14677 */ 14678 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14679 ASSERT(connp != NULL || !CONN_Q(q)); 14680 GRAB_CONN_LOCK(q); 14681 mutex_enter(&ipif->ipif_ill->ill_lock); 14682 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14683 mutex_exit(&ipif->ipif_ill->ill_lock); 14684 RELEASE_CONN_LOCK(q); 14685 if (!success) 14686 goto bad; 14687 14688 /* 14689 * Save the unbind message for ill_dl_down(); it will be consumed when 14690 * the interface goes down. 14691 */ 14692 if (ill->ill_unbind_mp == NULL) 14693 ill->ill_unbind_mp = unbind_mp; 14694 14695 ill_dlpi_send(ill, bind_mp); 14696 /* Send down link-layer capabilities probe if not already done. */ 14697 ill_capability_probe(ill); 14698 14699 /* 14700 * Sysid used to rely on the fact that netboots set domainname 14701 * and the like. Now that miniroot boots aren't strictly netboots 14702 * and miniroot network configuration is driven from userland 14703 * these things still need to be set. This situation can be detected 14704 * by comparing the interface being configured here to the one 14705 * dhcifname was set to reference by the boot loader. Once sysid is 14706 * converted to use dhcp_ipc_getinfo() this call can go away. 14707 */ 14708 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14709 (strcmp(ill->ill_name, dhcifname) == 0) && 14710 (strlen(srpc_domain) == 0)) { 14711 if (dhcpinit() != 0) 14712 cmn_err(CE_WARN, "no cached dhcp response"); 14713 } 14714 14715 /* 14716 * This operation will complete in ip_rput_dlpi with either 14717 * a DL_BIND_ACK or DL_ERROR_ACK. 14718 */ 14719 return (EINPROGRESS); 14720 bad: 14721 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14722 14723 freemsg(bind_mp); 14724 freemsg(unbind_mp); 14725 return (ENOMEM); 14726 } 14727 14728 /* Add room for tcp+ip headers */ 14729 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14730 14731 /* 14732 * DLPI and ARP is up. 14733 * Create all the IREs associated with an interface. Bring up multicast. 14734 * Set the interface flag and finish other initialization 14735 * that potentially had to be deferred to after DL_BIND_ACK. 14736 */ 14737 int 14738 ipif_up_done(ipif_t *ipif) 14739 { 14740 ill_t *ill = ipif->ipif_ill; 14741 int err = 0; 14742 boolean_t loopback = B_FALSE; 14743 boolean_t update_src_selection = B_TRUE; 14744 ipif_t *tmp_ipif; 14745 14746 ip1dbg(("ipif_up_done(%s:%u)\n", 14747 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14748 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14749 ill_t *, ill, ipif_t *, ipif); 14750 14751 /* Check if this is a loopback interface */ 14752 if (ipif->ipif_ill->ill_wq == NULL) 14753 loopback = B_TRUE; 14754 14755 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14756 14757 /* 14758 * If all other interfaces for this ill are down or DEPRECATED, 14759 * or otherwise unsuitable for source address selection, 14760 * reset the src generation numbers to make sure source 14761 * address selection gets to take this new ipif into account. 14762 * No need to hold ill_lock while traversing the ipif list since 14763 * we are writer 14764 */ 14765 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14766 tmp_ipif = tmp_ipif->ipif_next) { 14767 if (((tmp_ipif->ipif_flags & 14768 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14769 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14770 (tmp_ipif == ipif)) 14771 continue; 14772 /* first useable pre-existing interface */ 14773 update_src_selection = B_FALSE; 14774 break; 14775 } 14776 if (update_src_selection) 14777 ip_update_source_selection(ill->ill_ipst); 14778 14779 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14780 nce_t *loop_nce = NULL; 14781 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14782 14783 /* 14784 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14785 * ipif_lookup_on_name(), but in the case of zones we can have 14786 * several loopback addresses on lo0. So all the interfaces with 14787 * loopback addresses need to be marked IRE_LOOPBACK. 14788 */ 14789 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14790 htonl(INADDR_LOOPBACK)) 14791 ipif->ipif_ire_type = IRE_LOOPBACK; 14792 else 14793 ipif->ipif_ire_type = IRE_LOCAL; 14794 if (ill->ill_net_type != IRE_LOOPBACK) 14795 flags |= NCE_F_PUBLISH; 14796 14797 /* add unicast nce for the local addr */ 14798 err = nce_lookup_then_add_v4(ill, NULL, 14799 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14800 ND_REACHABLE, &loop_nce); 14801 /* A shared-IP zone sees EEXIST for lo0:N */ 14802 if (err == 0 || err == EEXIST) { 14803 ipif->ipif_added_nce = 1; 14804 loop_nce->nce_ipif_cnt++; 14805 nce_refrele(loop_nce); 14806 err = 0; 14807 } else { 14808 ASSERT(loop_nce == NULL); 14809 return (err); 14810 } 14811 } 14812 14813 /* Create all the IREs associated with this interface */ 14814 err = ipif_add_ires_v4(ipif, loopback); 14815 if (err != 0) { 14816 /* 14817 * see comments about return value from 14818 * ip_addr_availability_check() in ipif_add_ires_v4(). 14819 */ 14820 if (err != EADDRINUSE) { 14821 (void) ipif_arp_down(ipif); 14822 } else { 14823 /* 14824 * Make IPMP aware of the deleted ipif so that 14825 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14826 * can be completed. Note that we do not want to 14827 * destroy the nce that was created on the ipmp_ill 14828 * for the active copy of the duplicate address in 14829 * use. 14830 */ 14831 if (IS_IPMP(ill)) 14832 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14833 err = EADDRNOTAVAIL; 14834 } 14835 return (err); 14836 } 14837 14838 if (ill->ill_ipif_up_count == 1 && !loopback) { 14839 /* Recover any additional IREs entries for this ill */ 14840 (void) ill_recover_saved_ire(ill); 14841 } 14842 14843 if (ill->ill_need_recover_multicast) { 14844 /* 14845 * Need to recover all multicast memberships in the driver. 14846 * This had to be deferred until we had attached. The same 14847 * code exists in ipif_up_done_v6() to recover IPv6 14848 * memberships. 14849 * 14850 * Note that it would be preferable to unconditionally do the 14851 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14852 * that since ill_join_allmulti() depends on ill_dl_up being 14853 * set, and it is not set until we receive a DL_BIND_ACK after 14854 * having called ill_dl_up(). 14855 */ 14856 ill_recover_multicast(ill); 14857 } 14858 14859 if (ill->ill_ipif_up_count == 1) { 14860 /* 14861 * Since the interface is now up, it may now be active. 14862 */ 14863 if (IS_UNDER_IPMP(ill)) 14864 ipmp_ill_refresh_active(ill); 14865 14866 /* 14867 * If this is an IPMP interface, we may now be able to 14868 * establish ARP entries. 14869 */ 14870 if (IS_IPMP(ill)) 14871 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14872 } 14873 14874 /* Join the allhosts multicast address */ 14875 ipif_multicast_up(ipif); 14876 14877 if (!loopback && !update_src_selection && 14878 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14879 ip_update_source_selection(ill->ill_ipst); 14880 14881 if (!loopback && ipif->ipif_addr_ready) { 14882 /* Broadcast an address mask reply. */ 14883 ipif_mask_reply(ipif); 14884 } 14885 /* Perhaps ilgs should use this ill */ 14886 update_conn_ill(NULL, ill->ill_ipst); 14887 14888 /* 14889 * This had to be deferred until we had bound. Tell routing sockets and 14890 * others that this interface is up if it looks like the address has 14891 * been validated. Otherwise, if it isn't ready yet, wait for 14892 * duplicate address detection to do its thing. 14893 */ 14894 if (ipif->ipif_addr_ready) 14895 ipif_up_notify(ipif); 14896 return (0); 14897 } 14898 14899 /* 14900 * Add the IREs associated with the ipif. 14901 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14902 */ 14903 static int 14904 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14905 { 14906 ill_t *ill = ipif->ipif_ill; 14907 ip_stack_t *ipst = ill->ill_ipst; 14908 ire_t *ire_array[20]; 14909 ire_t **irep = ire_array; 14910 ire_t **irep1; 14911 ipaddr_t net_mask = 0; 14912 ipaddr_t subnet_mask, route_mask; 14913 int err; 14914 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14915 ire_t *ire_if = NULL; 14916 uchar_t *gw; 14917 14918 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14919 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14920 /* 14921 * If we're on a labeled system then make sure that zone- 14922 * private addresses have proper remote host database entries. 14923 */ 14924 if (is_system_labeled() && 14925 ipif->ipif_ire_type != IRE_LOOPBACK && 14926 !tsol_check_interface_address(ipif)) 14927 return (EINVAL); 14928 14929 /* Register the source address for __sin6_src_id */ 14930 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14931 ipif->ipif_zoneid, ipst); 14932 if (err != 0) { 14933 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14934 return (err); 14935 } 14936 14937 if (loopback) 14938 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14939 else 14940 gw = NULL; 14941 14942 /* If the interface address is set, create the local IRE. */ 14943 ire_local = ire_create( 14944 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14945 (uchar_t *)&ip_g_all_ones, /* mask */ 14946 gw, /* gateway */ 14947 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14948 ipif->ipif_ill, 14949 ipif->ipif_zoneid, 14950 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14951 RTF_PRIVATE : 0) | RTF_KERNEL, 14952 NULL, 14953 ipst); 14954 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14955 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14956 ipif->ipif_ire_type, 14957 ntohl(ipif->ipif_lcl_addr))); 14958 if (ire_local == NULL) { 14959 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14960 err = ENOMEM; 14961 goto bad; 14962 } 14963 } else { 14964 ip1dbg(( 14965 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14966 ipif->ipif_ire_type, 14967 ntohl(ipif->ipif_lcl_addr), 14968 (uint_t)ipif->ipif_flags)); 14969 } 14970 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14971 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14972 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14973 } else { 14974 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14975 } 14976 14977 subnet_mask = ipif->ipif_net_mask; 14978 14979 /* 14980 * If mask was not specified, use natural netmask of 14981 * interface address. Also, store this mask back into the 14982 * ipif struct. 14983 */ 14984 if (subnet_mask == 0) { 14985 subnet_mask = net_mask; 14986 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14987 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14988 ipif->ipif_v6subnet); 14989 } 14990 14991 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14992 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14993 ipif->ipif_subnet != INADDR_ANY) { 14994 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14995 14996 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14997 route_mask = IP_HOST_MASK; 14998 } else { 14999 route_mask = subnet_mask; 15000 } 15001 15002 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 15003 "creating if IRE ill_net_type 0x%x for 0x%x\n", 15004 (void *)ipif, (void *)ill, ill->ill_net_type, 15005 ntohl(ipif->ipif_subnet))); 15006 ire_if = ire_create( 15007 (uchar_t *)&ipif->ipif_subnet, 15008 (uchar_t *)&route_mask, 15009 (uchar_t *)&ipif->ipif_lcl_addr, 15010 ill->ill_net_type, 15011 ill, 15012 ipif->ipif_zoneid, 15013 ((ipif->ipif_flags & IPIF_PRIVATE) ? 15014 RTF_PRIVATE: 0) | RTF_KERNEL, 15015 NULL, 15016 ipst); 15017 if (ire_if == NULL) { 15018 ip1dbg(("ipif_up_done: NULL ire_if\n")); 15019 err = ENOMEM; 15020 goto bad; 15021 } 15022 } 15023 15024 /* 15025 * Create any necessary broadcast IREs. 15026 */ 15027 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15028 !(ipif->ipif_flags & IPIF_NOXMIT)) 15029 irep = ipif_create_bcast_ires(ipif, irep); 15030 15031 /* If an earlier ire_create failed, get out now */ 15032 for (irep1 = irep; irep1 > ire_array; ) { 15033 irep1--; 15034 if (*irep1 == NULL) { 15035 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15036 err = ENOMEM; 15037 goto bad; 15038 } 15039 } 15040 15041 /* 15042 * Need to atomically check for IP address availability under 15043 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15044 * ills or new ipifs can be added while we are checking availability. 15045 */ 15046 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15047 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15048 /* Mark it up, and increment counters. */ 15049 ipif->ipif_flags |= IPIF_UP; 15050 ill->ill_ipif_up_count++; 15051 err = ip_addr_availability_check(ipif); 15052 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15053 rw_exit(&ipst->ips_ill_g_lock); 15054 15055 if (err != 0) { 15056 /* 15057 * Our address may already be up on the same ill. In this case, 15058 * the ARP entry for our ipif replaced the one for the other 15059 * ipif. So we don't want to delete it (otherwise the other ipif 15060 * would be unable to send packets). 15061 * ip_addr_availability_check() identifies this case for us and 15062 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15063 * which is the expected error code. 15064 */ 15065 ill->ill_ipif_up_count--; 15066 ipif->ipif_flags &= ~IPIF_UP; 15067 goto bad; 15068 } 15069 15070 /* 15071 * Add in all newly created IREs. ire_create_bcast() has 15072 * already checked for duplicates of the IRE_BROADCAST type. 15073 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15074 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15075 * a /32 route. 15076 */ 15077 if (ire_if != NULL) { 15078 ire_if = ire_add(ire_if); 15079 if (ire_if == NULL) { 15080 err = ENOMEM; 15081 goto bad2; 15082 } 15083 #ifdef DEBUG 15084 ire_refhold_notr(ire_if); 15085 ire_refrele(ire_if); 15086 #endif 15087 } 15088 if (ire_local != NULL) { 15089 ire_local = ire_add(ire_local); 15090 if (ire_local == NULL) { 15091 err = ENOMEM; 15092 goto bad2; 15093 } 15094 #ifdef DEBUG 15095 ire_refhold_notr(ire_local); 15096 ire_refrele(ire_local); 15097 #endif 15098 } 15099 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15100 if (ire_local != NULL) 15101 ipif->ipif_ire_local = ire_local; 15102 if (ire_if != NULL) 15103 ipif->ipif_ire_if = ire_if; 15104 rw_exit(&ipst->ips_ill_g_lock); 15105 ire_local = NULL; 15106 ire_if = NULL; 15107 15108 /* 15109 * We first add all of them, and if that succeeds we refrele the 15110 * bunch. That enables us to delete all of them should any of the 15111 * ire_adds fail. 15112 */ 15113 for (irep1 = irep; irep1 > ire_array; ) { 15114 irep1--; 15115 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15116 *irep1 = ire_add(*irep1); 15117 if (*irep1 == NULL) { 15118 err = ENOMEM; 15119 goto bad2; 15120 } 15121 } 15122 15123 for (irep1 = irep; irep1 > ire_array; ) { 15124 irep1--; 15125 /* refheld by ire_add. */ 15126 if (*irep1 != NULL) { 15127 ire_refrele(*irep1); 15128 *irep1 = NULL; 15129 } 15130 } 15131 15132 if (!loopback) { 15133 /* 15134 * If the broadcast address has been set, make sure it makes 15135 * sense based on the interface address. 15136 * Only match on ill since we are sharing broadcast addresses. 15137 */ 15138 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15139 (ipif->ipif_flags & IPIF_BROADCAST)) { 15140 ire_t *ire; 15141 15142 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15143 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15144 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15145 15146 if (ire == NULL) { 15147 /* 15148 * If there isn't a matching broadcast IRE, 15149 * revert to the default for this netmask. 15150 */ 15151 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15152 mutex_enter(&ipif->ipif_ill->ill_lock); 15153 ipif_set_default(ipif); 15154 mutex_exit(&ipif->ipif_ill->ill_lock); 15155 } else { 15156 ire_refrele(ire); 15157 } 15158 } 15159 15160 } 15161 return (0); 15162 15163 bad2: 15164 ill->ill_ipif_up_count--; 15165 ipif->ipif_flags &= ~IPIF_UP; 15166 15167 bad: 15168 ip1dbg(("ipif_add_ires: FAILED \n")); 15169 if (ire_local != NULL) 15170 ire_delete(ire_local); 15171 if (ire_if != NULL) 15172 ire_delete(ire_if); 15173 15174 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15175 ire_local = ipif->ipif_ire_local; 15176 ipif->ipif_ire_local = NULL; 15177 ire_if = ipif->ipif_ire_if; 15178 ipif->ipif_ire_if = NULL; 15179 rw_exit(&ipst->ips_ill_g_lock); 15180 if (ire_local != NULL) { 15181 ire_delete(ire_local); 15182 ire_refrele_notr(ire_local); 15183 } 15184 if (ire_if != NULL) { 15185 ire_delete(ire_if); 15186 ire_refrele_notr(ire_if); 15187 } 15188 15189 while (irep > ire_array) { 15190 irep--; 15191 if (*irep != NULL) { 15192 ire_delete(*irep); 15193 } 15194 } 15195 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15196 15197 return (err); 15198 } 15199 15200 /* Remove all the IREs created by ipif_add_ires_v4 */ 15201 void 15202 ipif_delete_ires_v4(ipif_t *ipif) 15203 { 15204 ill_t *ill = ipif->ipif_ill; 15205 ip_stack_t *ipst = ill->ill_ipst; 15206 ire_t *ire; 15207 15208 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15209 ire = ipif->ipif_ire_local; 15210 ipif->ipif_ire_local = NULL; 15211 rw_exit(&ipst->ips_ill_g_lock); 15212 if (ire != NULL) { 15213 /* 15214 * Move count to ipif so we don't loose the count due to 15215 * a down/up dance. 15216 */ 15217 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15218 15219 ire_delete(ire); 15220 ire_refrele_notr(ire); 15221 } 15222 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15223 ire = ipif->ipif_ire_if; 15224 ipif->ipif_ire_if = NULL; 15225 rw_exit(&ipst->ips_ill_g_lock); 15226 if (ire != NULL) { 15227 ire_delete(ire); 15228 ire_refrele_notr(ire); 15229 } 15230 15231 /* 15232 * Delete the broadcast IREs. 15233 */ 15234 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15235 !(ipif->ipif_flags & IPIF_NOXMIT)) 15236 ipif_delete_bcast_ires(ipif); 15237 } 15238 15239 /* 15240 * Checks for availbility of a usable source address (if there is one) when the 15241 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15242 * this selection is done regardless of the destination. 15243 */ 15244 boolean_t 15245 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15246 ip_stack_t *ipst) 15247 { 15248 ipif_t *ipif = NULL; 15249 ill_t *uill; 15250 15251 ASSERT(ifindex != 0); 15252 15253 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15254 if (uill == NULL) 15255 return (B_FALSE); 15256 15257 mutex_enter(&uill->ill_lock); 15258 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15259 if (IPIF_IS_CONDEMNED(ipif)) 15260 continue; 15261 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15262 continue; 15263 if (!(ipif->ipif_flags & IPIF_UP)) 15264 continue; 15265 if (ipif->ipif_zoneid != zoneid) 15266 continue; 15267 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15268 ipif->ipif_lcl_addr == INADDR_ANY) 15269 continue; 15270 mutex_exit(&uill->ill_lock); 15271 ill_refrele(uill); 15272 return (B_TRUE); 15273 } 15274 mutex_exit(&uill->ill_lock); 15275 ill_refrele(uill); 15276 return (B_FALSE); 15277 } 15278 15279 /* 15280 * Find an ipif with a good local address on the ill+zoneid. 15281 */ 15282 ipif_t * 15283 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15284 { 15285 ipif_t *ipif; 15286 15287 mutex_enter(&ill->ill_lock); 15288 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15289 if (IPIF_IS_CONDEMNED(ipif)) 15290 continue; 15291 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15292 continue; 15293 if (!(ipif->ipif_flags & IPIF_UP)) 15294 continue; 15295 if (ipif->ipif_zoneid != zoneid && 15296 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15297 continue; 15298 if (ill->ill_isv6 ? 15299 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15300 ipif->ipif_lcl_addr == INADDR_ANY) 15301 continue; 15302 ipif_refhold_locked(ipif); 15303 mutex_exit(&ill->ill_lock); 15304 return (ipif); 15305 } 15306 mutex_exit(&ill->ill_lock); 15307 return (NULL); 15308 } 15309 15310 /* 15311 * IP source address type, sorted from worst to best. For a given type, 15312 * always prefer IP addresses on the same subnet. All-zones addresses are 15313 * suboptimal because they pose problems with unlabeled destinations. 15314 */ 15315 typedef enum { 15316 IPIF_NONE, 15317 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15318 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15319 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15320 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15321 IPIF_DIFFNET, /* normal and different subnet */ 15322 IPIF_SAMENET, /* normal and same subnet */ 15323 IPIF_LOCALADDR /* local loopback */ 15324 } ipif_type_t; 15325 15326 /* 15327 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15328 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15329 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15330 * the first one, unless IPMP is used in which case we round-robin among them; 15331 * see below for more. 15332 * 15333 * Returns NULL if there is no suitable source address for the ill. 15334 * This only occurs when there is no valid source address for the ill. 15335 */ 15336 ipif_t * 15337 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15338 boolean_t allow_usesrc, boolean_t *notreadyp) 15339 { 15340 ill_t *usill = NULL; 15341 ill_t *ipmp_ill = NULL; 15342 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15343 ipif_type_t type, best_type; 15344 tsol_tpc_t *src_rhtp, *dst_rhtp; 15345 ip_stack_t *ipst = ill->ill_ipst; 15346 boolean_t samenet; 15347 15348 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15349 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15350 B_FALSE, ipst); 15351 if (usill != NULL) 15352 ill = usill; /* Select source from usesrc ILL */ 15353 else 15354 return (NULL); 15355 } 15356 15357 /* 15358 * Test addresses should never be used for source address selection, 15359 * so if we were passed one, switch to the IPMP meta-interface. 15360 */ 15361 if (IS_UNDER_IPMP(ill)) { 15362 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15363 ill = ipmp_ill; /* Select source from IPMP ill */ 15364 else 15365 return (NULL); 15366 } 15367 15368 /* 15369 * If we're dealing with an unlabeled destination on a labeled system, 15370 * make sure that we ignore source addresses that are incompatible with 15371 * the destination's default label. That destination's default label 15372 * must dominate the minimum label on the source address. 15373 */ 15374 dst_rhtp = NULL; 15375 if (is_system_labeled()) { 15376 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15377 if (dst_rhtp == NULL) 15378 return (NULL); 15379 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15380 TPC_RELE(dst_rhtp); 15381 dst_rhtp = NULL; 15382 } 15383 } 15384 15385 /* 15386 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15387 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15388 * After selecting the right ipif, under ill_lock make sure ipif is 15389 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15390 * we retry. Inside the loop we still need to check for CONDEMNED, 15391 * but not under a lock. 15392 */ 15393 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15394 retry: 15395 /* 15396 * For source address selection, we treat the ipif list as circular 15397 * and continue until we get back to where we started. This allows 15398 * IPMP to vary source address selection (which improves inbound load 15399 * spreading) by caching its last ending point and starting from 15400 * there. NOTE: we don't have to worry about ill_src_ipif changing 15401 * ills since that can't happen on the IPMP ill. 15402 */ 15403 start_ipif = ill->ill_ipif; 15404 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15405 start_ipif = ill->ill_src_ipif; 15406 15407 ipif = start_ipif; 15408 best_ipif = NULL; 15409 best_type = IPIF_NONE; 15410 do { 15411 if ((next_ipif = ipif->ipif_next) == NULL) 15412 next_ipif = ill->ill_ipif; 15413 15414 if (IPIF_IS_CONDEMNED(ipif)) 15415 continue; 15416 /* Always skip NOLOCAL and ANYCAST interfaces */ 15417 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15418 continue; 15419 /* Always skip NOACCEPT interfaces */ 15420 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15421 continue; 15422 if (!(ipif->ipif_flags & IPIF_UP)) 15423 continue; 15424 15425 if (!ipif->ipif_addr_ready) { 15426 if (notreadyp != NULL) 15427 *notreadyp = B_TRUE; 15428 continue; 15429 } 15430 15431 if (zoneid != ALL_ZONES && 15432 ipif->ipif_zoneid != zoneid && 15433 ipif->ipif_zoneid != ALL_ZONES) 15434 continue; 15435 15436 /* 15437 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15438 * are not valid as source addresses. 15439 */ 15440 if (ipif->ipif_lcl_addr == INADDR_ANY) 15441 continue; 15442 15443 /* 15444 * Check compatibility of local address for destination's 15445 * default label if we're on a labeled system. Incompatible 15446 * addresses can't be used at all. 15447 */ 15448 if (dst_rhtp != NULL) { 15449 boolean_t incompat; 15450 15451 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15452 IPV4_VERSION, B_FALSE); 15453 if (src_rhtp == NULL) 15454 continue; 15455 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15456 src_rhtp->tpc_tp.tp_doi != 15457 dst_rhtp->tpc_tp.tp_doi || 15458 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15459 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15460 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15461 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15462 TPC_RELE(src_rhtp); 15463 if (incompat) 15464 continue; 15465 } 15466 15467 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15468 15469 if (ipif->ipif_lcl_addr == dst) { 15470 type = IPIF_LOCALADDR; 15471 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15472 type = samenet ? IPIF_SAMENET_DEPRECATED : 15473 IPIF_DIFFNET_DEPRECATED; 15474 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15475 type = samenet ? IPIF_SAMENET_ALLZONES : 15476 IPIF_DIFFNET_ALLZONES; 15477 } else { 15478 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15479 } 15480 15481 if (type > best_type) { 15482 best_type = type; 15483 best_ipif = ipif; 15484 if (best_type == IPIF_LOCALADDR) 15485 break; /* can't get better */ 15486 } 15487 } while ((ipif = next_ipif) != start_ipif); 15488 15489 if ((ipif = best_ipif) != NULL) { 15490 mutex_enter(&ipif->ipif_ill->ill_lock); 15491 if (IPIF_IS_CONDEMNED(ipif)) { 15492 mutex_exit(&ipif->ipif_ill->ill_lock); 15493 goto retry; 15494 } 15495 ipif_refhold_locked(ipif); 15496 15497 /* 15498 * For IPMP, update the source ipif rotor to the next ipif, 15499 * provided we can look it up. (We must not use it if it's 15500 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15501 * ipif_free() checked ill_src_ipif.) 15502 */ 15503 if (IS_IPMP(ill) && ipif != NULL) { 15504 next_ipif = ipif->ipif_next; 15505 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15506 ill->ill_src_ipif = next_ipif; 15507 else 15508 ill->ill_src_ipif = NULL; 15509 } 15510 mutex_exit(&ipif->ipif_ill->ill_lock); 15511 } 15512 15513 rw_exit(&ipst->ips_ill_g_lock); 15514 if (usill != NULL) 15515 ill_refrele(usill); 15516 if (ipmp_ill != NULL) 15517 ill_refrele(ipmp_ill); 15518 if (dst_rhtp != NULL) 15519 TPC_RELE(dst_rhtp); 15520 15521 #ifdef DEBUG 15522 if (ipif == NULL) { 15523 char buf1[INET6_ADDRSTRLEN]; 15524 15525 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15526 ill->ill_name, 15527 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15528 } else { 15529 char buf1[INET6_ADDRSTRLEN]; 15530 char buf2[INET6_ADDRSTRLEN]; 15531 15532 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15533 ipif->ipif_ill->ill_name, 15534 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15535 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15536 buf2, sizeof (buf2)))); 15537 } 15538 #endif /* DEBUG */ 15539 return (ipif); 15540 } 15541 15542 /* 15543 * Pick a source address based on the destination ill and an optional setsrc 15544 * address. 15545 * The result is stored in srcp. If generation is set, then put the source 15546 * generation number there before we look for the source address (to avoid 15547 * missing changes in the set of source addresses. 15548 * If flagsp is set, then us it to pass back ipif_flags. 15549 * 15550 * If the caller wants to cache the returned source address and detect when 15551 * that might be stale, the caller should pass in a generation argument, 15552 * which the caller can later compare against ips_src_generation 15553 * 15554 * The precedence order for selecting an IPv4 source address is: 15555 * - RTF_SETSRC on the offlink ire always wins. 15556 * - If usrsrc is set, swap the ill to be the usesrc one. 15557 * - If IPMP is used on the ill, select a random address from the most 15558 * preferred ones below: 15559 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15560 * 2. Not deprecated, not ALL_ZONES 15561 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15562 * 4. Not deprecated, ALL_ZONES 15563 * 5. If onlink destination, same subnet and deprecated 15564 * 6. Deprecated. 15565 * 15566 * We have lower preference for ALL_ZONES IP addresses, 15567 * as they pose problems with unlabeled destinations. 15568 * 15569 * Note that when multiple IP addresses match e.g., #1 we pick 15570 * the first one if IPMP is not in use. With IPMP we randomize. 15571 */ 15572 int 15573 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15574 ipaddr_t multicast_ifaddr, 15575 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15576 uint32_t *generation, uint64_t *flagsp) 15577 { 15578 ipif_t *ipif; 15579 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15580 15581 if (flagsp != NULL) 15582 *flagsp = 0; 15583 15584 /* 15585 * Need to grab the generation number before we check to 15586 * avoid a race with a change to the set of local addresses. 15587 * No lock needed since the thread which updates the set of local 15588 * addresses use ipif/ill locks and exit those (hence a store memory 15589 * barrier) before doing the atomic increase of ips_src_generation. 15590 */ 15591 if (generation != NULL) { 15592 *generation = ipst->ips_src_generation; 15593 } 15594 15595 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15596 *srcp = multicast_ifaddr; 15597 return (0); 15598 } 15599 15600 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15601 if (setsrc != INADDR_ANY) { 15602 *srcp = setsrc; 15603 return (0); 15604 } 15605 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15606 if (ipif == NULL) { 15607 if (notready) 15608 return (ENETDOWN); 15609 else 15610 return (EADDRNOTAVAIL); 15611 } 15612 *srcp = ipif->ipif_lcl_addr; 15613 if (flagsp != NULL) 15614 *flagsp = ipif->ipif_flags; 15615 ipif_refrele(ipif); 15616 return (0); 15617 } 15618 15619 /* ARGSUSED */ 15620 int 15621 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15622 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15623 { 15624 /* 15625 * ill_phyint_reinit merged the v4 and v6 into a single 15626 * ipsq. We might not have been able to complete the 15627 * operation in ipif_set_values, if we could not become 15628 * exclusive. If so restart it here. 15629 */ 15630 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15631 } 15632 15633 /* 15634 * Can operate on either a module or a driver queue. 15635 * Returns an error if not a module queue. 15636 */ 15637 /* ARGSUSED */ 15638 int 15639 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15640 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15641 { 15642 queue_t *q1 = q; 15643 char *cp; 15644 char interf_name[LIFNAMSIZ]; 15645 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15646 15647 if (q->q_next == NULL) { 15648 ip1dbg(( 15649 "if_unitsel: IF_UNITSEL: no q_next\n")); 15650 return (EINVAL); 15651 } 15652 15653 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15654 return (EALREADY); 15655 15656 do { 15657 q1 = q1->q_next; 15658 } while (q1->q_next); 15659 cp = q1->q_qinfo->qi_minfo->mi_idname; 15660 (void) sprintf(interf_name, "%s%d", cp, ppa); 15661 15662 /* 15663 * Here we are not going to delay the ioack until after 15664 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15665 * original ioctl message before sending the requests. 15666 */ 15667 return (ipif_set_values(q, mp, interf_name, &ppa)); 15668 } 15669 15670 /* ARGSUSED */ 15671 int 15672 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15673 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15674 { 15675 return (ENXIO); 15676 } 15677 15678 /* 15679 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15680 * `irep'. Returns a pointer to the next free `irep' entry 15681 * A mirror exists in ipif_delete_bcast_ires(). 15682 * 15683 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15684 * done in ire_add. 15685 */ 15686 static ire_t ** 15687 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15688 { 15689 ipaddr_t addr; 15690 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15691 ipaddr_t subnetmask = ipif->ipif_net_mask; 15692 ill_t *ill = ipif->ipif_ill; 15693 zoneid_t zoneid = ipif->ipif_zoneid; 15694 15695 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15696 15697 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15698 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15699 15700 if (ipif->ipif_lcl_addr == INADDR_ANY || 15701 (ipif->ipif_flags & IPIF_NOLOCAL)) 15702 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15703 15704 irep = ire_create_bcast(ill, 0, zoneid, irep); 15705 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15706 15707 /* 15708 * For backward compatibility, we create net broadcast IREs based on 15709 * the old "IP address class system", since some old machines only 15710 * respond to these class derived net broadcast. However, we must not 15711 * create these net broadcast IREs if the subnetmask is shorter than 15712 * the IP address class based derived netmask. Otherwise, we may 15713 * create a net broadcast address which is the same as an IP address 15714 * on the subnet -- and then TCP will refuse to talk to that address. 15715 */ 15716 if (netmask < subnetmask) { 15717 addr = netmask & ipif->ipif_subnet; 15718 irep = ire_create_bcast(ill, addr, zoneid, irep); 15719 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15720 } 15721 15722 /* 15723 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15724 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15725 * created. Creating these broadcast IREs will only create confusion 15726 * as `addr' will be the same as the IP address. 15727 */ 15728 if (subnetmask != 0xFFFFFFFF) { 15729 addr = ipif->ipif_subnet; 15730 irep = ire_create_bcast(ill, addr, zoneid, irep); 15731 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15732 } 15733 15734 return (irep); 15735 } 15736 15737 /* 15738 * Mirror of ipif_create_bcast_ires() 15739 */ 15740 static void 15741 ipif_delete_bcast_ires(ipif_t *ipif) 15742 { 15743 ipaddr_t addr; 15744 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15745 ipaddr_t subnetmask = ipif->ipif_net_mask; 15746 ill_t *ill = ipif->ipif_ill; 15747 zoneid_t zoneid = ipif->ipif_zoneid; 15748 ire_t *ire; 15749 15750 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15751 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15752 15753 if (ipif->ipif_lcl_addr == INADDR_ANY || 15754 (ipif->ipif_flags & IPIF_NOLOCAL)) 15755 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15756 15757 ire = ire_lookup_bcast(ill, 0, zoneid); 15758 ASSERT(ire != NULL); 15759 ire_delete(ire); ire_refrele(ire); 15760 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15761 ASSERT(ire != NULL); 15762 ire_delete(ire); ire_refrele(ire); 15763 15764 /* 15765 * For backward compatibility, we create net broadcast IREs based on 15766 * the old "IP address class system", since some old machines only 15767 * respond to these class derived net broadcast. However, we must not 15768 * create these net broadcast IREs if the subnetmask is shorter than 15769 * the IP address class based derived netmask. Otherwise, we may 15770 * create a net broadcast address which is the same as an IP address 15771 * on the subnet -- and then TCP will refuse to talk to that address. 15772 */ 15773 if (netmask < subnetmask) { 15774 addr = netmask & ipif->ipif_subnet; 15775 ire = ire_lookup_bcast(ill, addr, zoneid); 15776 ASSERT(ire != NULL); 15777 ire_delete(ire); ire_refrele(ire); 15778 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15779 ASSERT(ire != NULL); 15780 ire_delete(ire); ire_refrele(ire); 15781 } 15782 15783 /* 15784 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15785 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15786 * created. Creating these broadcast IREs will only create confusion 15787 * as `addr' will be the same as the IP address. 15788 */ 15789 if (subnetmask != 0xFFFFFFFF) { 15790 addr = ipif->ipif_subnet; 15791 ire = ire_lookup_bcast(ill, addr, zoneid); 15792 ASSERT(ire != NULL); 15793 ire_delete(ire); ire_refrele(ire); 15794 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15795 ASSERT(ire != NULL); 15796 ire_delete(ire); ire_refrele(ire); 15797 } 15798 } 15799 15800 /* 15801 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15802 * from lifr_flags and the name from lifr_name. 15803 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15804 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15805 * Returns EINPROGRESS when mp has been consumed by queueing it on 15806 * ipx_pending_mp and the ioctl will complete in ip_rput. 15807 * 15808 * Can operate on either a module or a driver queue. 15809 * Returns an error if not a module queue. 15810 */ 15811 /* ARGSUSED */ 15812 int 15813 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15814 ip_ioctl_cmd_t *ipip, void *if_req) 15815 { 15816 ill_t *ill = q->q_ptr; 15817 phyint_t *phyi; 15818 ip_stack_t *ipst; 15819 struct lifreq *lifr = if_req; 15820 uint64_t new_flags; 15821 15822 ASSERT(ipif != NULL); 15823 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15824 15825 if (q->q_next == NULL) { 15826 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15827 return (EINVAL); 15828 } 15829 15830 /* 15831 * If we are not writer on 'q' then this interface exists already 15832 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15833 * so return EALREADY. 15834 */ 15835 if (ill != ipif->ipif_ill) 15836 return (EALREADY); 15837 15838 if (ill->ill_name[0] != '\0') 15839 return (EALREADY); 15840 15841 /* 15842 * If there's another ill already with the requested name, ensure 15843 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15844 * fuse together two unrelated ills, which will cause chaos. 15845 */ 15846 ipst = ill->ill_ipst; 15847 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15848 lifr->lifr_name, NULL); 15849 if (phyi != NULL) { 15850 ill_t *ill_mate = phyi->phyint_illv4; 15851 15852 if (ill_mate == NULL) 15853 ill_mate = phyi->phyint_illv6; 15854 ASSERT(ill_mate != NULL); 15855 15856 if (ill_mate->ill_media->ip_m_mac_type != 15857 ill->ill_media->ip_m_mac_type) { 15858 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15859 "use the same ill name on differing media\n")); 15860 return (EINVAL); 15861 } 15862 } 15863 15864 /* 15865 * We start off as IFF_IPV4 in ipif_allocate and become 15866 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15867 * The only flags that we read from user space are IFF_IPV4, 15868 * IFF_IPV6, and IFF_BROADCAST. 15869 * 15870 * This ill has not been inserted into the global list. 15871 * So we are still single threaded and don't need any lock 15872 * 15873 * Saniy check the flags. 15874 */ 15875 15876 if ((lifr->lifr_flags & IFF_BROADCAST) && 15877 ((lifr->lifr_flags & IFF_IPV6) || 15878 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15879 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15880 "or IPv6 i.e., no broadcast \n")); 15881 return (EINVAL); 15882 } 15883 15884 new_flags = 15885 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15886 15887 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15888 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15889 "IFF_IPV4 or IFF_IPV6\n")); 15890 return (EINVAL); 15891 } 15892 15893 /* 15894 * We always start off as IPv4, so only need to check for IPv6. 15895 */ 15896 if ((new_flags & IFF_IPV6) != 0) { 15897 ill->ill_flags |= ILLF_IPV6; 15898 ill->ill_flags &= ~ILLF_IPV4; 15899 15900 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15901 ill->ill_flags |= ILLF_NOLINKLOCAL; 15902 } 15903 15904 if ((new_flags & IFF_BROADCAST) != 0) 15905 ipif->ipif_flags |= IPIF_BROADCAST; 15906 else 15907 ipif->ipif_flags &= ~IPIF_BROADCAST; 15908 15909 /* We started off as V4. */ 15910 if (ill->ill_flags & ILLF_IPV6) { 15911 ill->ill_phyint->phyint_illv6 = ill; 15912 ill->ill_phyint->phyint_illv4 = NULL; 15913 } 15914 15915 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15916 } 15917 15918 /* ARGSUSED */ 15919 int 15920 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15921 ip_ioctl_cmd_t *ipip, void *if_req) 15922 { 15923 /* 15924 * ill_phyint_reinit merged the v4 and v6 into a single 15925 * ipsq. We might not have been able to complete the 15926 * slifname in ipif_set_values, if we could not become 15927 * exclusive. If so restart it here 15928 */ 15929 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15930 } 15931 15932 /* 15933 * Return a pointer to the ipif which matches the index, IP version type and 15934 * zoneid. 15935 */ 15936 ipif_t * 15937 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15938 ip_stack_t *ipst) 15939 { 15940 ill_t *ill; 15941 ipif_t *ipif = NULL; 15942 15943 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15944 if (ill != NULL) { 15945 mutex_enter(&ill->ill_lock); 15946 for (ipif = ill->ill_ipif; ipif != NULL; 15947 ipif = ipif->ipif_next) { 15948 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15949 zoneid == ipif->ipif_zoneid || 15950 ipif->ipif_zoneid == ALL_ZONES)) { 15951 ipif_refhold_locked(ipif); 15952 break; 15953 } 15954 } 15955 mutex_exit(&ill->ill_lock); 15956 ill_refrele(ill); 15957 } 15958 return (ipif); 15959 } 15960 15961 /* 15962 * Change an existing physical interface's index. If the new index 15963 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15964 * Finally, we update other systems which may have a dependence on the 15965 * index value. 15966 */ 15967 /* ARGSUSED */ 15968 int 15969 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15970 ip_ioctl_cmd_t *ipip, void *ifreq) 15971 { 15972 ill_t *ill; 15973 phyint_t *phyi; 15974 struct ifreq *ifr = (struct ifreq *)ifreq; 15975 struct lifreq *lifr = (struct lifreq *)ifreq; 15976 uint_t old_index, index; 15977 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15978 avl_index_t where; 15979 15980 if (ipip->ipi_cmd_type == IF_CMD) 15981 index = ifr->ifr_index; 15982 else 15983 index = lifr->lifr_index; 15984 15985 /* 15986 * Only allow on physical interface. Also, index zero is illegal. 15987 */ 15988 ill = ipif->ipif_ill; 15989 phyi = ill->ill_phyint; 15990 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15991 return (EINVAL); 15992 } 15993 15994 /* If the index is not changing, no work to do */ 15995 if (phyi->phyint_ifindex == index) 15996 return (0); 15997 15998 /* 15999 * Use phyint_exists() to determine if the new interface index 16000 * is already in use. If the index is unused then we need to 16001 * change the phyint's position in the phyint_list_avl_by_index 16002 * tree. If we do not do this, subsequent lookups (using the new 16003 * index value) will not find the phyint. 16004 */ 16005 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16006 if (phyint_exists(index, ipst)) { 16007 rw_exit(&ipst->ips_ill_g_lock); 16008 return (EEXIST); 16009 } 16010 16011 /* 16012 * The new index is unused. Set it in the phyint. However we must not 16013 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 16014 * changes. The event must be bound to old ifindex value. 16015 */ 16016 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 16017 &index, sizeof (index)); 16018 16019 old_index = phyi->phyint_ifindex; 16020 phyi->phyint_ifindex = index; 16021 16022 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 16023 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16024 &index, &where); 16025 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16026 phyi, where); 16027 rw_exit(&ipst->ips_ill_g_lock); 16028 16029 /* Update SCTP's ILL list */ 16030 sctp_ill_reindex(ill, old_index); 16031 16032 /* Send the routing sockets message */ 16033 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16034 if (ILL_OTHER(ill)) 16035 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16036 16037 /* Perhaps ilgs should use this ill */ 16038 update_conn_ill(NULL, ill->ill_ipst); 16039 return (0); 16040 } 16041 16042 /* ARGSUSED */ 16043 int 16044 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16045 ip_ioctl_cmd_t *ipip, void *ifreq) 16046 { 16047 struct ifreq *ifr = (struct ifreq *)ifreq; 16048 struct lifreq *lifr = (struct lifreq *)ifreq; 16049 16050 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16051 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16052 /* Get the interface index */ 16053 if (ipip->ipi_cmd_type == IF_CMD) { 16054 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16055 } else { 16056 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16057 } 16058 return (0); 16059 } 16060 16061 /* ARGSUSED */ 16062 int 16063 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16064 ip_ioctl_cmd_t *ipip, void *ifreq) 16065 { 16066 struct lifreq *lifr = (struct lifreq *)ifreq; 16067 16068 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16069 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16070 /* Get the interface zone */ 16071 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16072 lifr->lifr_zoneid = ipif->ipif_zoneid; 16073 return (0); 16074 } 16075 16076 /* 16077 * Set the zoneid of an interface. 16078 */ 16079 /* ARGSUSED */ 16080 int 16081 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16082 ip_ioctl_cmd_t *ipip, void *ifreq) 16083 { 16084 struct lifreq *lifr = (struct lifreq *)ifreq; 16085 int err = 0; 16086 boolean_t need_up = B_FALSE; 16087 zone_t *zptr; 16088 zone_status_t status; 16089 zoneid_t zoneid; 16090 16091 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16092 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16093 if (!is_system_labeled()) 16094 return (ENOTSUP); 16095 zoneid = GLOBAL_ZONEID; 16096 } 16097 16098 /* cannot assign instance zero to a non-global zone */ 16099 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16100 return (ENOTSUP); 16101 16102 /* 16103 * Cannot assign to a zone that doesn't exist or is shutting down. In 16104 * the event of a race with the zone shutdown processing, since IP 16105 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16106 * interface will be cleaned up even if the zone is shut down 16107 * immediately after the status check. If the interface can't be brought 16108 * down right away, and the zone is shut down before the restart 16109 * function is called, we resolve the possible races by rechecking the 16110 * zone status in the restart function. 16111 */ 16112 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16113 return (EINVAL); 16114 status = zone_status_get(zptr); 16115 zone_rele(zptr); 16116 16117 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16118 return (EINVAL); 16119 16120 if (ipif->ipif_flags & IPIF_UP) { 16121 /* 16122 * If the interface is already marked up, 16123 * we call ipif_down which will take care 16124 * of ditching any IREs that have been set 16125 * up based on the old interface address. 16126 */ 16127 err = ipif_logical_down(ipif, q, mp); 16128 if (err == EINPROGRESS) 16129 return (err); 16130 (void) ipif_down_tail(ipif); 16131 need_up = B_TRUE; 16132 } 16133 16134 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16135 return (err); 16136 } 16137 16138 static int 16139 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16140 queue_t *q, mblk_t *mp, boolean_t need_up) 16141 { 16142 int err = 0; 16143 ip_stack_t *ipst; 16144 16145 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16146 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16147 16148 if (CONN_Q(q)) 16149 ipst = CONNQ_TO_IPST(q); 16150 else 16151 ipst = ILLQ_TO_IPST(q); 16152 16153 /* 16154 * For exclusive stacks we don't allow a different zoneid than 16155 * global. 16156 */ 16157 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16158 zoneid != GLOBAL_ZONEID) 16159 return (EINVAL); 16160 16161 /* Set the new zone id. */ 16162 ipif->ipif_zoneid = zoneid; 16163 16164 /* Update sctp list */ 16165 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16166 16167 /* The default multicast interface might have changed */ 16168 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16169 16170 if (need_up) { 16171 /* 16172 * Now bring the interface back up. If this 16173 * is the only IPIF for the ILL, ipif_up 16174 * will have to re-bind to the device, so 16175 * we may get back EINPROGRESS, in which 16176 * case, this IOCTL will get completed in 16177 * ip_rput_dlpi when we see the DL_BIND_ACK. 16178 */ 16179 err = ipif_up(ipif, q, mp); 16180 } 16181 return (err); 16182 } 16183 16184 /* ARGSUSED */ 16185 int 16186 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16187 ip_ioctl_cmd_t *ipip, void *if_req) 16188 { 16189 struct lifreq *lifr = (struct lifreq *)if_req; 16190 zoneid_t zoneid; 16191 zone_t *zptr; 16192 zone_status_t status; 16193 16194 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16195 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16196 zoneid = GLOBAL_ZONEID; 16197 16198 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16199 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16200 16201 /* 16202 * We recheck the zone status to resolve the following race condition: 16203 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16204 * 2) hme0:1 is up and can't be brought down right away; 16205 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16206 * 3) zone "myzone" is halted; the zone status switches to 16207 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16208 * the interfaces to remove - hme0:1 is not returned because it's not 16209 * yet in "myzone", so it won't be removed; 16210 * 4) the restart function for SIOCSLIFZONE is called; without the 16211 * status check here, we would have hme0:1 in "myzone" after it's been 16212 * destroyed. 16213 * Note that if the status check fails, we need to bring the interface 16214 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16215 * ipif_up_done[_v6](). 16216 */ 16217 status = ZONE_IS_UNINITIALIZED; 16218 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16219 status = zone_status_get(zptr); 16220 zone_rele(zptr); 16221 } 16222 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16223 if (ipif->ipif_isv6) { 16224 (void) ipif_up_done_v6(ipif); 16225 } else { 16226 (void) ipif_up_done(ipif); 16227 } 16228 return (EINVAL); 16229 } 16230 16231 (void) ipif_down_tail(ipif); 16232 16233 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16234 B_TRUE)); 16235 } 16236 16237 /* 16238 * Return the number of addresses on `ill' with one or more of the values 16239 * in `set' set and all of the values in `clear' clear. 16240 */ 16241 static uint_t 16242 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16243 { 16244 ipif_t *ipif; 16245 uint_t cnt = 0; 16246 16247 ASSERT(IAM_WRITER_ILL(ill)); 16248 16249 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16250 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16251 cnt++; 16252 16253 return (cnt); 16254 } 16255 16256 /* 16257 * Return the number of migratable addresses on `ill' that are under 16258 * application control. 16259 */ 16260 uint_t 16261 ill_appaddr_cnt(const ill_t *ill) 16262 { 16263 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16264 IPIF_NOFAILOVER)); 16265 } 16266 16267 /* 16268 * Return the number of point-to-point addresses on `ill'. 16269 */ 16270 uint_t 16271 ill_ptpaddr_cnt(const ill_t *ill) 16272 { 16273 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16274 } 16275 16276 /* ARGSUSED */ 16277 int 16278 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16279 ip_ioctl_cmd_t *ipip, void *ifreq) 16280 { 16281 struct lifreq *lifr = ifreq; 16282 16283 ASSERT(q->q_next == NULL); 16284 ASSERT(CONN_Q(q)); 16285 16286 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16287 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16288 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16289 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16290 16291 return (0); 16292 } 16293 16294 /* Find the previous ILL in this usesrc group */ 16295 static ill_t * 16296 ill_prev_usesrc(ill_t *uill) 16297 { 16298 ill_t *ill; 16299 16300 for (ill = uill->ill_usesrc_grp_next; 16301 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16302 ill = ill->ill_usesrc_grp_next) 16303 /* do nothing */; 16304 return (ill); 16305 } 16306 16307 /* 16308 * Release all members of the usesrc group. This routine is called 16309 * from ill_delete when the interface being unplumbed is the 16310 * group head. 16311 * 16312 * This silently clears the usesrc that ifconfig setup. 16313 * An alternative would be to keep that ifindex, and drop packets on the floor 16314 * since no source address can be selected. 16315 * Even if we keep the current semantics, don't need a lock and a linked list. 16316 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16317 * the one that is being removed. Issue is how we return the usesrc users 16318 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16319 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16320 * ill walk, but the walker would need to insert in the ioctl response. 16321 */ 16322 static void 16323 ill_disband_usesrc_group(ill_t *uill) 16324 { 16325 ill_t *next_ill, *tmp_ill; 16326 ip_stack_t *ipst = uill->ill_ipst; 16327 16328 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16329 next_ill = uill->ill_usesrc_grp_next; 16330 16331 do { 16332 ASSERT(next_ill != NULL); 16333 tmp_ill = next_ill->ill_usesrc_grp_next; 16334 ASSERT(tmp_ill != NULL); 16335 next_ill->ill_usesrc_grp_next = NULL; 16336 next_ill->ill_usesrc_ifindex = 0; 16337 next_ill = tmp_ill; 16338 } while (next_ill->ill_usesrc_ifindex != 0); 16339 uill->ill_usesrc_grp_next = NULL; 16340 } 16341 16342 /* 16343 * Remove the client usesrc ILL from the list and relink to a new list 16344 */ 16345 int 16346 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16347 { 16348 ill_t *ill, *tmp_ill; 16349 ip_stack_t *ipst = ucill->ill_ipst; 16350 16351 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16352 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16353 16354 /* 16355 * Check if the usesrc client ILL passed in is not already 16356 * in use as a usesrc ILL i.e one whose source address is 16357 * in use OR a usesrc ILL is not already in use as a usesrc 16358 * client ILL 16359 */ 16360 if ((ucill->ill_usesrc_ifindex == 0) || 16361 (uill->ill_usesrc_ifindex != 0)) { 16362 return (-1); 16363 } 16364 16365 ill = ill_prev_usesrc(ucill); 16366 ASSERT(ill->ill_usesrc_grp_next != NULL); 16367 16368 /* Remove from the current list */ 16369 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16370 /* Only two elements in the list */ 16371 ASSERT(ill->ill_usesrc_ifindex == 0); 16372 ill->ill_usesrc_grp_next = NULL; 16373 } else { 16374 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16375 } 16376 16377 if (ifindex == 0) { 16378 ucill->ill_usesrc_ifindex = 0; 16379 ucill->ill_usesrc_grp_next = NULL; 16380 return (0); 16381 } 16382 16383 ucill->ill_usesrc_ifindex = ifindex; 16384 tmp_ill = uill->ill_usesrc_grp_next; 16385 uill->ill_usesrc_grp_next = ucill; 16386 ucill->ill_usesrc_grp_next = 16387 (tmp_ill != NULL) ? tmp_ill : uill; 16388 return (0); 16389 } 16390 16391 /* 16392 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16393 * ip.c for locking details. 16394 */ 16395 /* ARGSUSED */ 16396 int 16397 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16398 ip_ioctl_cmd_t *ipip, void *ifreq) 16399 { 16400 struct lifreq *lifr = (struct lifreq *)ifreq; 16401 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16402 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16403 int err = 0, ret; 16404 uint_t ifindex; 16405 ipsq_t *ipsq = NULL; 16406 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16407 16408 ASSERT(IAM_WRITER_IPIF(ipif)); 16409 ASSERT(q->q_next == NULL); 16410 ASSERT(CONN_Q(q)); 16411 16412 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16413 16414 ifindex = lifr->lifr_index; 16415 if (ifindex == 0) { 16416 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16417 /* non usesrc group interface, nothing to reset */ 16418 return (0); 16419 } 16420 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16421 /* valid reset request */ 16422 reset_flg = B_TRUE; 16423 } 16424 16425 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16426 if (usesrc_ill == NULL) 16427 return (ENXIO); 16428 if (usesrc_ill == ipif->ipif_ill) { 16429 ill_refrele(usesrc_ill); 16430 return (EINVAL); 16431 } 16432 16433 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16434 NEW_OP, B_TRUE); 16435 if (ipsq == NULL) { 16436 err = EINPROGRESS; 16437 /* Operation enqueued on the ipsq of the usesrc ILL */ 16438 goto done; 16439 } 16440 16441 /* USESRC isn't currently supported with IPMP */ 16442 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16443 err = ENOTSUP; 16444 goto done; 16445 } 16446 16447 /* 16448 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16449 * used by IPMP underlying interfaces, but someone might think it's 16450 * more general and try to use it independently with VNI.) 16451 */ 16452 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16453 err = ENOTSUP; 16454 goto done; 16455 } 16456 16457 /* 16458 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16459 * already a client then return EINVAL 16460 */ 16461 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16462 err = EINVAL; 16463 goto done; 16464 } 16465 16466 /* 16467 * If the ill_usesrc_ifindex field is already set to what it needs to 16468 * be then this is a duplicate operation. 16469 */ 16470 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16471 err = 0; 16472 goto done; 16473 } 16474 16475 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16476 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16477 usesrc_ill->ill_isv6)); 16478 16479 /* 16480 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16481 * and the ill_usesrc_ifindex fields 16482 */ 16483 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16484 16485 if (reset_flg) { 16486 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16487 if (ret != 0) { 16488 err = EINVAL; 16489 } 16490 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16491 goto done; 16492 } 16493 16494 /* 16495 * Four possibilities to consider: 16496 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16497 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16498 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16499 * 4. Both are part of their respective usesrc groups 16500 */ 16501 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16502 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16503 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16504 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16505 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16506 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16507 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16508 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16509 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16510 /* Insert at head of list */ 16511 usesrc_cli_ill->ill_usesrc_grp_next = 16512 usesrc_ill->ill_usesrc_grp_next; 16513 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16514 } else { 16515 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16516 ifindex); 16517 if (ret != 0) 16518 err = EINVAL; 16519 } 16520 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16521 16522 done: 16523 if (ipsq != NULL) 16524 ipsq_exit(ipsq); 16525 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16526 ill_refrele(usesrc_ill); 16527 16528 /* Let conn_ixa caching know that source address selection changed */ 16529 ip_update_source_selection(ipst); 16530 16531 return (err); 16532 } 16533 16534 /* ARGSUSED */ 16535 int 16536 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16537 ip_ioctl_cmd_t *ipip, void *if_req) 16538 { 16539 struct lifreq *lifr = (struct lifreq *)if_req; 16540 ill_t *ill = ipif->ipif_ill; 16541 16542 /* 16543 * Need a lock since IFF_UP can be set even when there are 16544 * references to the ipif. 16545 */ 16546 mutex_enter(&ill->ill_lock); 16547 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16548 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16549 else 16550 lifr->lifr_dadstate = DAD_DONE; 16551 mutex_exit(&ill->ill_lock); 16552 return (0); 16553 } 16554 16555 /* 16556 * comparison function used by avl. 16557 */ 16558 static int 16559 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16560 { 16561 16562 uint_t index; 16563 16564 ASSERT(phyip != NULL && index_ptr != NULL); 16565 16566 index = *((uint_t *)index_ptr); 16567 /* 16568 * let the phyint with the lowest index be on top. 16569 */ 16570 if (((phyint_t *)phyip)->phyint_ifindex < index) 16571 return (1); 16572 if (((phyint_t *)phyip)->phyint_ifindex > index) 16573 return (-1); 16574 return (0); 16575 } 16576 16577 /* 16578 * comparison function used by avl. 16579 */ 16580 static int 16581 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16582 { 16583 ill_t *ill; 16584 int res = 0; 16585 16586 ASSERT(phyip != NULL && name_ptr != NULL); 16587 16588 if (((phyint_t *)phyip)->phyint_illv4) 16589 ill = ((phyint_t *)phyip)->phyint_illv4; 16590 else 16591 ill = ((phyint_t *)phyip)->phyint_illv6; 16592 ASSERT(ill != NULL); 16593 16594 res = strcmp(ill->ill_name, (char *)name_ptr); 16595 if (res > 0) 16596 return (1); 16597 else if (res < 0) 16598 return (-1); 16599 return (0); 16600 } 16601 16602 /* 16603 * This function is called on the unplumb path via ill_glist_delete() when 16604 * there are no ills left on the phyint and thus the phyint can be freed. 16605 */ 16606 static void 16607 phyint_free(phyint_t *phyi) 16608 { 16609 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16610 16611 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16612 16613 /* 16614 * If this phyint was an IPMP meta-interface, blow away the group. 16615 * This is safe to do because all of the illgrps have already been 16616 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16617 * If we're cleaning up as a result of failed initialization, 16618 * phyint_grp may be NULL. 16619 */ 16620 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16621 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16622 ipmp_grp_destroy(phyi->phyint_grp); 16623 phyi->phyint_grp = NULL; 16624 rw_exit(&ipst->ips_ipmp_lock); 16625 } 16626 16627 /* 16628 * If this interface was under IPMP, take it out of the group. 16629 */ 16630 if (phyi->phyint_grp != NULL) 16631 ipmp_phyint_leave_grp(phyi); 16632 16633 /* 16634 * Delete the phyint and disassociate its ipsq. The ipsq itself 16635 * will be freed in ipsq_exit(). 16636 */ 16637 phyi->phyint_ipsq->ipsq_phyint = NULL; 16638 phyi->phyint_name[0] = '\0'; 16639 16640 mi_free(phyi); 16641 } 16642 16643 /* 16644 * Attach the ill to the phyint structure which can be shared by both 16645 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16646 * function is called from ipif_set_values and ill_lookup_on_name (for 16647 * loopback) where we know the name of the ill. We lookup the ill and if 16648 * there is one present already with the name use that phyint. Otherwise 16649 * reuse the one allocated by ill_init. 16650 */ 16651 static void 16652 ill_phyint_reinit(ill_t *ill) 16653 { 16654 boolean_t isv6 = ill->ill_isv6; 16655 phyint_t *phyi_old; 16656 phyint_t *phyi; 16657 avl_index_t where = 0; 16658 ill_t *ill_other = NULL; 16659 ip_stack_t *ipst = ill->ill_ipst; 16660 16661 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16662 16663 phyi_old = ill->ill_phyint; 16664 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16665 phyi_old->phyint_illv6 == NULL)); 16666 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16667 phyi_old->phyint_illv4 == NULL)); 16668 ASSERT(phyi_old->phyint_ifindex == 0); 16669 16670 /* 16671 * Now that our ill has a name, set it in the phyint. 16672 */ 16673 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16674 16675 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16676 ill->ill_name, &where); 16677 16678 /* 16679 * 1. We grabbed the ill_g_lock before inserting this ill into 16680 * the global list of ills. So no other thread could have located 16681 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16682 * 2. Now locate the other protocol instance of this ill. 16683 * 3. Now grab both ill locks in the right order, and the phyint lock of 16684 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16685 * of neither ill can change. 16686 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16687 * other ill. 16688 * 5. Release all locks. 16689 */ 16690 16691 /* 16692 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16693 * we are initializing IPv4. 16694 */ 16695 if (phyi != NULL) { 16696 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16697 ASSERT(ill_other->ill_phyint != NULL); 16698 ASSERT((isv6 && !ill_other->ill_isv6) || 16699 (!isv6 && ill_other->ill_isv6)); 16700 GRAB_ILL_LOCKS(ill, ill_other); 16701 /* 16702 * We are potentially throwing away phyint_flags which 16703 * could be different from the one that we obtain from 16704 * ill_other->ill_phyint. But it is okay as we are assuming 16705 * that the state maintained within IP is correct. 16706 */ 16707 mutex_enter(&phyi->phyint_lock); 16708 if (isv6) { 16709 ASSERT(phyi->phyint_illv6 == NULL); 16710 phyi->phyint_illv6 = ill; 16711 } else { 16712 ASSERT(phyi->phyint_illv4 == NULL); 16713 phyi->phyint_illv4 = ill; 16714 } 16715 16716 /* 16717 * Delete the old phyint and make its ipsq eligible 16718 * to be freed in ipsq_exit(). 16719 */ 16720 phyi_old->phyint_illv4 = NULL; 16721 phyi_old->phyint_illv6 = NULL; 16722 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16723 phyi_old->phyint_name[0] = '\0'; 16724 mi_free(phyi_old); 16725 } else { 16726 mutex_enter(&ill->ill_lock); 16727 /* 16728 * We don't need to acquire any lock, since 16729 * the ill is not yet visible globally and we 16730 * have not yet released the ill_g_lock. 16731 */ 16732 phyi = phyi_old; 16733 mutex_enter(&phyi->phyint_lock); 16734 /* XXX We need a recovery strategy here. */ 16735 if (!phyint_assign_ifindex(phyi, ipst)) 16736 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16737 16738 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16739 (void *)phyi, where); 16740 16741 (void) avl_find(&ipst->ips_phyint_g_list-> 16742 phyint_list_avl_by_index, 16743 &phyi->phyint_ifindex, &where); 16744 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16745 (void *)phyi, where); 16746 } 16747 16748 /* 16749 * Reassigning ill_phyint automatically reassigns the ipsq also. 16750 * pending mp is not affected because that is per ill basis. 16751 */ 16752 ill->ill_phyint = phyi; 16753 16754 /* 16755 * Now that the phyint's ifindex has been assigned, complete the 16756 * remaining 16757 */ 16758 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16759 if (ill->ill_isv6) { 16760 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16761 ill->ill_phyint->phyint_ifindex; 16762 ill->ill_mcast_type = ipst->ips_mld_max_version; 16763 } else { 16764 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16765 } 16766 16767 /* 16768 * Generate an event within the hooks framework to indicate that 16769 * a new interface has just been added to IP. For this event to 16770 * be generated, the network interface must, at least, have an 16771 * ifindex assigned to it. (We don't generate the event for 16772 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16773 * 16774 * This needs to be run inside the ill_g_lock perimeter to ensure 16775 * that the ordering of delivered events to listeners matches the 16776 * order of them in the kernel. 16777 */ 16778 if (!IS_LOOPBACK(ill)) { 16779 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16780 ill->ill_name_length); 16781 } 16782 RELEASE_ILL_LOCKS(ill, ill_other); 16783 mutex_exit(&phyi->phyint_lock); 16784 } 16785 16786 /* 16787 * Notify any downstream modules of the name of this interface. 16788 * An M_IOCTL is used even though we don't expect a successful reply. 16789 * Any reply message from the driver (presumably an M_IOCNAK) will 16790 * eventually get discarded somewhere upstream. The message format is 16791 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16792 * to IP. 16793 */ 16794 static void 16795 ip_ifname_notify(ill_t *ill, queue_t *q) 16796 { 16797 mblk_t *mp1, *mp2; 16798 struct iocblk *iocp; 16799 struct lifreq *lifr; 16800 16801 mp1 = mkiocb(SIOCSLIFNAME); 16802 if (mp1 == NULL) 16803 return; 16804 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16805 if (mp2 == NULL) { 16806 freeb(mp1); 16807 return; 16808 } 16809 16810 mp1->b_cont = mp2; 16811 iocp = (struct iocblk *)mp1->b_rptr; 16812 iocp->ioc_count = sizeof (struct lifreq); 16813 16814 lifr = (struct lifreq *)mp2->b_rptr; 16815 mp2->b_wptr += sizeof (struct lifreq); 16816 bzero(lifr, sizeof (struct lifreq)); 16817 16818 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16819 lifr->lifr_ppa = ill->ill_ppa; 16820 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16821 16822 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16823 char *, "SIOCSLIFNAME", ill_t *, ill); 16824 putnext(q, mp1); 16825 } 16826 16827 static int 16828 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16829 { 16830 int err; 16831 ip_stack_t *ipst = ill->ill_ipst; 16832 phyint_t *phyi = ill->ill_phyint; 16833 16834 /* 16835 * Now that ill_name is set, the configuration for the IPMP 16836 * meta-interface can be performed. 16837 */ 16838 if (IS_IPMP(ill)) { 16839 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16840 /* 16841 * If phyi->phyint_grp is NULL, then this is the first IPMP 16842 * meta-interface and we need to create the IPMP group. 16843 */ 16844 if (phyi->phyint_grp == NULL) { 16845 /* 16846 * If someone has renamed another IPMP group to have 16847 * the same name as our interface, bail. 16848 */ 16849 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16850 rw_exit(&ipst->ips_ipmp_lock); 16851 return (EEXIST); 16852 } 16853 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16854 if (phyi->phyint_grp == NULL) { 16855 rw_exit(&ipst->ips_ipmp_lock); 16856 return (ENOMEM); 16857 } 16858 } 16859 rw_exit(&ipst->ips_ipmp_lock); 16860 } 16861 16862 /* Tell downstream modules where they are. */ 16863 ip_ifname_notify(ill, q); 16864 16865 /* 16866 * ill_dl_phys returns EINPROGRESS in the usual case. 16867 * Error cases are ENOMEM ... 16868 */ 16869 err = ill_dl_phys(ill, ipif, mp, q); 16870 16871 if (ill->ill_isv6) { 16872 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16873 if (ipst->ips_mld_slowtimeout_id == 0) { 16874 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16875 (void *)ipst, 16876 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16877 } 16878 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16879 } else { 16880 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16881 if (ipst->ips_igmp_slowtimeout_id == 0) { 16882 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16883 (void *)ipst, 16884 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16885 } 16886 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16887 } 16888 16889 return (err); 16890 } 16891 16892 /* 16893 * Common routine for ppa and ifname setting. Should be called exclusive. 16894 * 16895 * Returns EINPROGRESS when mp has been consumed by queueing it on 16896 * ipx_pending_mp and the ioctl will complete in ip_rput. 16897 * 16898 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16899 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16900 * For SLIFNAME, we pass these values back to the userland. 16901 */ 16902 static int 16903 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16904 { 16905 ill_t *ill; 16906 ipif_t *ipif; 16907 ipsq_t *ipsq; 16908 char *ppa_ptr; 16909 char *old_ptr; 16910 char old_char; 16911 int error; 16912 ip_stack_t *ipst; 16913 16914 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16915 ASSERT(q->q_next != NULL); 16916 ASSERT(interf_name != NULL); 16917 16918 ill = (ill_t *)q->q_ptr; 16919 ipst = ill->ill_ipst; 16920 16921 ASSERT(ill->ill_ipst != NULL); 16922 ASSERT(ill->ill_name[0] == '\0'); 16923 ASSERT(IAM_WRITER_ILL(ill)); 16924 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16925 ASSERT(ill->ill_ppa == UINT_MAX); 16926 16927 ill->ill_defend_start = ill->ill_defend_count = 0; 16928 /* The ppa is sent down by ifconfig or is chosen */ 16929 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16930 return (EINVAL); 16931 } 16932 16933 /* 16934 * make sure ppa passed in is same as ppa in the name. 16935 * This check is not made when ppa == UINT_MAX in that case ppa 16936 * in the name could be anything. System will choose a ppa and 16937 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16938 */ 16939 if (*new_ppa_ptr != UINT_MAX) { 16940 /* stoi changes the pointer */ 16941 old_ptr = ppa_ptr; 16942 /* 16943 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16944 * (they don't have an externally visible ppa). We assign one 16945 * here so that we can manage the interface. Note that in 16946 * the past this value was always 0 for DLPI 1 drivers. 16947 */ 16948 if (*new_ppa_ptr == 0) 16949 *new_ppa_ptr = stoi(&old_ptr); 16950 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16951 return (EINVAL); 16952 } 16953 /* 16954 * terminate string before ppa 16955 * save char at that location. 16956 */ 16957 old_char = ppa_ptr[0]; 16958 ppa_ptr[0] = '\0'; 16959 16960 ill->ill_ppa = *new_ppa_ptr; 16961 /* 16962 * Finish as much work now as possible before calling ill_glist_insert 16963 * which makes the ill globally visible and also merges it with the 16964 * other protocol instance of this phyint. The remaining work is 16965 * done after entering the ipsq which may happen sometime later. 16966 */ 16967 ipif = ill->ill_ipif; 16968 16969 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16970 ipif_assign_seqid(ipif); 16971 16972 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16973 ill->ill_flags |= ILLF_IPV4; 16974 16975 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16976 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16977 16978 if (ill->ill_flags & ILLF_IPV6) { 16979 16980 ill->ill_isv6 = B_TRUE; 16981 ill_set_inputfn(ill); 16982 if (ill->ill_rq != NULL) { 16983 ill->ill_rq->q_qinfo = &iprinitv6; 16984 } 16985 16986 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16987 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16988 ipif->ipif_v6subnet = ipv6_all_zeros; 16989 ipif->ipif_v6net_mask = ipv6_all_zeros; 16990 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16991 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16992 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16993 /* 16994 * point-to-point or Non-mulicast capable 16995 * interfaces won't do NUD unless explicitly 16996 * configured to do so. 16997 */ 16998 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16999 !(ill->ill_flags & ILLF_MULTICAST)) { 17000 ill->ill_flags |= ILLF_NONUD; 17001 } 17002 /* Make sure IPv4 specific flag is not set on IPv6 if */ 17003 if (ill->ill_flags & ILLF_NOARP) { 17004 /* 17005 * Note: xresolv interfaces will eventually need 17006 * NOARP set here as well, but that will require 17007 * those external resolvers to have some 17008 * knowledge of that flag and act appropriately. 17009 * Not to be changed at present. 17010 */ 17011 ill->ill_flags &= ~ILLF_NOARP; 17012 } 17013 /* 17014 * Set the ILLF_ROUTER flag according to the global 17015 * IPv6 forwarding policy. 17016 */ 17017 if (ipst->ips_ipv6_forwarding != 0) 17018 ill->ill_flags |= ILLF_ROUTER; 17019 } else if (ill->ill_flags & ILLF_IPV4) { 17020 ill->ill_isv6 = B_FALSE; 17021 ill_set_inputfn(ill); 17022 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 17023 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 17024 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 17025 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 17026 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 17027 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 17028 /* 17029 * Set the ILLF_ROUTER flag according to the global 17030 * IPv4 forwarding policy. 17031 */ 17032 if (ipst->ips_ip_forwarding != 0) 17033 ill->ill_flags |= ILLF_ROUTER; 17034 } 17035 17036 ASSERT(ill->ill_phyint != NULL); 17037 17038 /* 17039 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17040 * be completed in ill_glist_insert -> ill_phyint_reinit 17041 */ 17042 if (!ill_allocate_mibs(ill)) 17043 return (ENOMEM); 17044 17045 /* 17046 * Pick a default sap until we get the DL_INFO_ACK back from 17047 * the driver. 17048 */ 17049 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17050 ill->ill_media->ip_m_ipv4sap; 17051 17052 ill->ill_ifname_pending = 1; 17053 ill->ill_ifname_pending_err = 0; 17054 17055 /* 17056 * When the first ipif comes up in ipif_up_done(), multicast groups 17057 * that were joined while this ill was not bound to the DLPI link need 17058 * to be recovered by ill_recover_multicast(). 17059 */ 17060 ill->ill_need_recover_multicast = 1; 17061 17062 ill_refhold(ill); 17063 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17064 if ((error = ill_glist_insert(ill, interf_name, 17065 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17066 ill->ill_ppa = UINT_MAX; 17067 ill->ill_name[0] = '\0'; 17068 /* 17069 * undo null termination done above. 17070 */ 17071 ppa_ptr[0] = old_char; 17072 rw_exit(&ipst->ips_ill_g_lock); 17073 ill_refrele(ill); 17074 return (error); 17075 } 17076 17077 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17078 17079 /* 17080 * When we return the buffer pointed to by interf_name should contain 17081 * the same name as in ill_name. 17082 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17083 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17084 * so copy full name and update the ppa ptr. 17085 * When ppa passed in != UINT_MAX all values are correct just undo 17086 * null termination, this saves a bcopy. 17087 */ 17088 if (*new_ppa_ptr == UINT_MAX) { 17089 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17090 *new_ppa_ptr = ill->ill_ppa; 17091 } else { 17092 /* 17093 * undo null termination done above. 17094 */ 17095 ppa_ptr[0] = old_char; 17096 } 17097 17098 /* Let SCTP know about this ILL */ 17099 sctp_update_ill(ill, SCTP_ILL_INSERT); 17100 17101 /* 17102 * ill_glist_insert has made the ill visible globally, and 17103 * ill_phyint_reinit could have changed the ipsq. At this point, 17104 * we need to hold the ips_ill_g_lock across the call to enter the 17105 * ipsq to enforce atomicity and prevent reordering. In the event 17106 * the ipsq has changed, and if the new ipsq is currently busy, 17107 * we need to make sure that this half-completed ioctl is ahead of 17108 * any subsequent ioctl. We achieve this by not dropping the 17109 * ips_ill_g_lock which prevents any ill lookup itself thereby 17110 * ensuring that new ioctls can't start. 17111 */ 17112 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17113 B_TRUE); 17114 17115 rw_exit(&ipst->ips_ill_g_lock); 17116 ill_refrele(ill); 17117 if (ipsq == NULL) 17118 return (EINPROGRESS); 17119 17120 /* 17121 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17122 */ 17123 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17124 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17125 else 17126 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17127 17128 error = ipif_set_values_tail(ill, ipif, mp, q); 17129 ipsq_exit(ipsq); 17130 if (error != 0 && error != EINPROGRESS) { 17131 /* 17132 * restore previous values 17133 */ 17134 ill->ill_isv6 = B_FALSE; 17135 ill_set_inputfn(ill); 17136 } 17137 return (error); 17138 } 17139 17140 void 17141 ipif_init(ip_stack_t *ipst) 17142 { 17143 int i; 17144 17145 for (i = 0; i < MAX_G_HEADS; i++) { 17146 ipst->ips_ill_g_heads[i].ill_g_list_head = 17147 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17148 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17149 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17150 } 17151 17152 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17153 ill_phyint_compare_index, 17154 sizeof (phyint_t), 17155 offsetof(struct phyint, phyint_avl_by_index)); 17156 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17157 ill_phyint_compare_name, 17158 sizeof (phyint_t), 17159 offsetof(struct phyint, phyint_avl_by_name)); 17160 } 17161 17162 /* 17163 * Save enough information so that we can recreate the IRE if 17164 * the interface goes down and then up. 17165 */ 17166 void 17167 ill_save_ire(ill_t *ill, ire_t *ire) 17168 { 17169 mblk_t *save_mp; 17170 17171 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17172 if (save_mp != NULL) { 17173 ifrt_t *ifrt; 17174 17175 save_mp->b_wptr += sizeof (ifrt_t); 17176 ifrt = (ifrt_t *)save_mp->b_rptr; 17177 bzero(ifrt, sizeof (ifrt_t)); 17178 ifrt->ifrt_type = ire->ire_type; 17179 if (ire->ire_ipversion == IPV4_VERSION) { 17180 ASSERT(!ill->ill_isv6); 17181 ifrt->ifrt_addr = ire->ire_addr; 17182 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17183 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17184 ifrt->ifrt_mask = ire->ire_mask; 17185 } else { 17186 ASSERT(ill->ill_isv6); 17187 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17188 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17189 mutex_enter(&ire->ire_lock); 17190 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17191 mutex_exit(&ire->ire_lock); 17192 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17193 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17194 } 17195 ifrt->ifrt_flags = ire->ire_flags; 17196 ifrt->ifrt_zoneid = ire->ire_zoneid; 17197 mutex_enter(&ill->ill_saved_ire_lock); 17198 save_mp->b_cont = ill->ill_saved_ire_mp; 17199 ill->ill_saved_ire_mp = save_mp; 17200 ill->ill_saved_ire_cnt++; 17201 mutex_exit(&ill->ill_saved_ire_lock); 17202 } 17203 } 17204 17205 /* 17206 * Remove one entry from ill_saved_ire_mp. 17207 */ 17208 void 17209 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17210 { 17211 mblk_t **mpp; 17212 mblk_t *mp; 17213 ifrt_t *ifrt; 17214 17215 /* Remove from ill_saved_ire_mp list if it is there */ 17216 mutex_enter(&ill->ill_saved_ire_lock); 17217 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17218 mpp = &(*mpp)->b_cont) { 17219 in6_addr_t gw_addr_v6; 17220 17221 /* 17222 * On a given ill, the tuple of address, gateway, mask, 17223 * ire_type, and zoneid is unique for each saved IRE. 17224 */ 17225 mp = *mpp; 17226 ifrt = (ifrt_t *)mp->b_rptr; 17227 /* ire_gateway_addr_v6 can change - need lock */ 17228 mutex_enter(&ire->ire_lock); 17229 gw_addr_v6 = ire->ire_gateway_addr_v6; 17230 mutex_exit(&ire->ire_lock); 17231 17232 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17233 ifrt->ifrt_type != ire->ire_type) 17234 continue; 17235 17236 if (ill->ill_isv6 ? 17237 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17238 &ire->ire_addr_v6) && 17239 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17240 &gw_addr_v6) && 17241 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17242 &ire->ire_mask_v6)) : 17243 (ifrt->ifrt_addr == ire->ire_addr && 17244 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17245 ifrt->ifrt_mask == ire->ire_mask)) { 17246 *mpp = mp->b_cont; 17247 ill->ill_saved_ire_cnt--; 17248 freeb(mp); 17249 break; 17250 } 17251 } 17252 mutex_exit(&ill->ill_saved_ire_lock); 17253 } 17254 17255 /* 17256 * IP multirouting broadcast routes handling 17257 * Append CGTP broadcast IREs to regular ones created 17258 * at ifconfig time. 17259 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17260 * the destination and the gateway are broadcast addresses. 17261 * The caller has verified that the destination is an IRE_BROADCAST and that 17262 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17263 * we create a MULTIRT IRE_BROADCAST. 17264 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17265 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17266 */ 17267 static void 17268 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17269 { 17270 ire_t *ire_prim; 17271 17272 ASSERT(ire != NULL); 17273 17274 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17275 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17276 NULL); 17277 if (ire_prim != NULL) { 17278 /* 17279 * We are in the special case of broadcasts for 17280 * CGTP. We add an IRE_BROADCAST that holds 17281 * the RTF_MULTIRT flag, the destination 17282 * address and the low level 17283 * info of ire_prim. In other words, CGTP 17284 * broadcast is added to the redundant ipif. 17285 */ 17286 ill_t *ill_prim; 17287 ire_t *bcast_ire; 17288 17289 ill_prim = ire_prim->ire_ill; 17290 17291 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17292 (void *)ire_prim, (void *)ill_prim)); 17293 17294 bcast_ire = ire_create( 17295 (uchar_t *)&ire->ire_addr, 17296 (uchar_t *)&ip_g_all_ones, 17297 (uchar_t *)&ire->ire_gateway_addr, 17298 IRE_BROADCAST, 17299 ill_prim, 17300 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17301 ire->ire_flags | RTF_KERNEL, 17302 NULL, 17303 ipst); 17304 17305 /* 17306 * Here we assume that ire_add does head insertion so that 17307 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17308 */ 17309 if (bcast_ire != NULL) { 17310 if (ire->ire_flags & RTF_SETSRC) { 17311 bcast_ire->ire_setsrc_addr = 17312 ire->ire_setsrc_addr; 17313 } 17314 bcast_ire = ire_add(bcast_ire); 17315 if (bcast_ire != NULL) { 17316 ip2dbg(("ip_cgtp_filter_bcast_add: " 17317 "added bcast_ire %p\n", 17318 (void *)bcast_ire)); 17319 17320 ill_save_ire(ill_prim, bcast_ire); 17321 ire_refrele(bcast_ire); 17322 } 17323 } 17324 ire_refrele(ire_prim); 17325 } 17326 } 17327 17328 /* 17329 * IP multirouting broadcast routes handling 17330 * Remove the broadcast ire. 17331 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17332 * the destination and the gateway are broadcast addresses. 17333 * The caller has only verified that RTF_MULTIRT was set. We check 17334 * that the destination is broadcast and that the gateway is a broadcast 17335 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17336 */ 17337 static void 17338 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17339 { 17340 ASSERT(ire != NULL); 17341 17342 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17343 ire_t *ire_prim; 17344 17345 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17346 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17347 ipst, NULL); 17348 if (ire_prim != NULL) { 17349 ill_t *ill_prim; 17350 ire_t *bcast_ire; 17351 17352 ill_prim = ire_prim->ire_ill; 17353 17354 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17355 "ire_prim %p, ill_prim %p\n", 17356 (void *)ire_prim, (void *)ill_prim)); 17357 17358 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17359 ire->ire_gateway_addr, IRE_BROADCAST, 17360 ill_prim, ALL_ZONES, NULL, 17361 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17362 MATCH_IRE_MASK, 0, ipst, NULL); 17363 17364 if (bcast_ire != NULL) { 17365 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17366 "looked up bcast_ire %p\n", 17367 (void *)bcast_ire)); 17368 ill_remove_saved_ire(bcast_ire->ire_ill, 17369 bcast_ire); 17370 ire_delete(bcast_ire); 17371 ire_refrele(bcast_ire); 17372 } 17373 ire_refrele(ire_prim); 17374 } 17375 } 17376 } 17377 17378 /* 17379 * Derive an interface id from the link layer address. 17380 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17381 */ 17382 static void 17383 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17384 { 17385 char *addr; 17386 17387 /* 17388 * Note that some IPv6 interfaces get plumbed over links that claim to 17389 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17390 * PPP links). The ETHERADDRL check here ensures that we only set the 17391 * interface ID on IPv6 interfaces above links that actually have real 17392 * Ethernet addresses. 17393 */ 17394 if (ill->ill_phys_addr_length == ETHERADDRL) { 17395 /* Form EUI-64 like address */ 17396 addr = (char *)&v6addr->s6_addr32[2]; 17397 bcopy(ill->ill_phys_addr, addr, 3); 17398 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17399 addr[3] = (char)0xff; 17400 addr[4] = (char)0xfe; 17401 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17402 } 17403 } 17404 17405 /* ARGSUSED */ 17406 static void 17407 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17408 { 17409 } 17410 17411 typedef struct ipmp_ifcookie { 17412 uint32_t ic_hostid; 17413 char ic_ifname[LIFNAMSIZ]; 17414 char ic_zonename[ZONENAME_MAX]; 17415 } ipmp_ifcookie_t; 17416 17417 /* 17418 * Construct a pseudo-random interface ID for the IPMP interface that's both 17419 * predictable and (almost) guaranteed to be unique. 17420 */ 17421 static void 17422 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17423 { 17424 zone_t *zp; 17425 uint8_t *addr; 17426 uchar_t hash[16]; 17427 ulong_t hostid; 17428 MD5_CTX ctx; 17429 ipmp_ifcookie_t ic = { 0 }; 17430 17431 ASSERT(IS_IPMP(ill)); 17432 17433 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17434 ic.ic_hostid = htonl((uint32_t)hostid); 17435 17436 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17437 17438 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17439 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17440 zone_rele(zp); 17441 } 17442 17443 MD5Init(&ctx); 17444 MD5Update(&ctx, &ic, sizeof (ic)); 17445 MD5Final(hash, &ctx); 17446 17447 /* 17448 * Map the hash to an interface ID per the basic approach in RFC3041. 17449 */ 17450 addr = &v6addr->s6_addr8[8]; 17451 bcopy(hash + 8, addr, sizeof (uint64_t)); 17452 addr[0] &= ~0x2; /* set local bit */ 17453 } 17454 17455 /* 17456 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17457 */ 17458 static void 17459 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17460 { 17461 phyint_t *phyi = ill->ill_phyint; 17462 17463 /* 17464 * Check PHYI_MULTI_BCAST and length of physical 17465 * address to determine if we use the mapping or the 17466 * broadcast address. 17467 */ 17468 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17469 ill->ill_phys_addr_length != ETHERADDRL) { 17470 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17471 return; 17472 } 17473 m_physaddr[0] = 0x33; 17474 m_physaddr[1] = 0x33; 17475 m_physaddr[2] = m_ip6addr[12]; 17476 m_physaddr[3] = m_ip6addr[13]; 17477 m_physaddr[4] = m_ip6addr[14]; 17478 m_physaddr[5] = m_ip6addr[15]; 17479 } 17480 17481 /* 17482 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17483 */ 17484 static void 17485 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17486 { 17487 phyint_t *phyi = ill->ill_phyint; 17488 17489 /* 17490 * Check PHYI_MULTI_BCAST and length of physical 17491 * address to determine if we use the mapping or the 17492 * broadcast address. 17493 */ 17494 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17495 ill->ill_phys_addr_length != ETHERADDRL) { 17496 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17497 return; 17498 } 17499 m_physaddr[0] = 0x01; 17500 m_physaddr[1] = 0x00; 17501 m_physaddr[2] = 0x5e; 17502 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17503 m_physaddr[4] = m_ipaddr[2]; 17504 m_physaddr[5] = m_ipaddr[3]; 17505 } 17506 17507 /* ARGSUSED */ 17508 static void 17509 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17510 { 17511 /* 17512 * for the MULTI_BCAST case and other cases when we want to 17513 * use the link-layer broadcast address for multicast. 17514 */ 17515 uint8_t *bphys_addr; 17516 dl_unitdata_req_t *dlur; 17517 17518 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17519 if (ill->ill_sap_length < 0) { 17520 bphys_addr = (uchar_t *)dlur + 17521 dlur->dl_dest_addr_offset; 17522 } else { 17523 bphys_addr = (uchar_t *)dlur + 17524 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17525 } 17526 17527 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17528 } 17529 17530 /* 17531 * Derive IPoIB interface id from the link layer address. 17532 */ 17533 static void 17534 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17535 { 17536 char *addr; 17537 17538 ASSERT(ill->ill_phys_addr_length == 20); 17539 addr = (char *)&v6addr->s6_addr32[2]; 17540 bcopy(ill->ill_phys_addr + 12, addr, 8); 17541 /* 17542 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17543 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17544 * rules. In these cases, the IBA considers these GUIDs to be in 17545 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17546 * required; vendors are required not to assign global EUI-64's 17547 * that differ only in u/l bit values, thus guaranteeing uniqueness 17548 * of the interface identifier. Whether the GUID is in modified 17549 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17550 * bit set to 1. 17551 */ 17552 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17553 } 17554 17555 /* 17556 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17557 * Note on mapping from multicast IP addresses to IPoIB multicast link 17558 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17559 * The format of an IPoIB multicast address is: 17560 * 17561 * 4 byte QPN Scope Sign. Pkey 17562 * +--------------------------------------------+ 17563 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17564 * +--------------------------------------------+ 17565 * 17566 * The Scope and Pkey components are properties of the IBA port and 17567 * network interface. They can be ascertained from the broadcast address. 17568 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17569 */ 17570 static void 17571 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17572 { 17573 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17574 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17575 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17576 uint8_t *bphys_addr; 17577 dl_unitdata_req_t *dlur; 17578 17579 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17580 17581 /* 17582 * RFC 4391: IPv4 MGID is 28-bit long. 17583 */ 17584 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17585 m_physaddr[17] = m_ipaddr[1]; 17586 m_physaddr[18] = m_ipaddr[2]; 17587 m_physaddr[19] = m_ipaddr[3]; 17588 17589 17590 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17591 if (ill->ill_sap_length < 0) { 17592 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17593 } else { 17594 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17595 ill->ill_sap_length; 17596 } 17597 /* 17598 * Now fill in the IBA scope/Pkey values from the broadcast address. 17599 */ 17600 m_physaddr[5] = bphys_addr[5]; 17601 m_physaddr[8] = bphys_addr[8]; 17602 m_physaddr[9] = bphys_addr[9]; 17603 } 17604 17605 static void 17606 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17607 { 17608 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17609 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17610 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17611 uint8_t *bphys_addr; 17612 dl_unitdata_req_t *dlur; 17613 17614 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17615 17616 /* 17617 * RFC 4391: IPv4 MGID is 80-bit long. 17618 */ 17619 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17620 17621 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17622 if (ill->ill_sap_length < 0) { 17623 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17624 } else { 17625 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17626 ill->ill_sap_length; 17627 } 17628 /* 17629 * Now fill in the IBA scope/Pkey values from the broadcast address. 17630 */ 17631 m_physaddr[5] = bphys_addr[5]; 17632 m_physaddr[8] = bphys_addr[8]; 17633 m_physaddr[9] = bphys_addr[9]; 17634 } 17635 17636 /* 17637 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17638 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17639 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17640 * of RFC4213. 17641 */ 17642 static void 17643 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17644 { 17645 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17646 v6addr->s6_addr32[2] = 0; 17647 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17648 } 17649 17650 /* 17651 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17652 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17653 * id. 17654 */ 17655 static void 17656 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17657 { 17658 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17659 17660 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17661 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17662 } 17663 17664 static void 17665 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17666 { 17667 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17668 } 17669 17670 static void 17671 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17672 { 17673 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17674 } 17675 17676 static void 17677 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17678 { 17679 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17680 } 17681 17682 static void 17683 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17684 { 17685 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17686 } 17687 17688 /* 17689 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17690 * Returns an held ill, or NULL. 17691 */ 17692 ill_t * 17693 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17694 ip_stack_t *ipst) 17695 { 17696 ill_t *ill; 17697 ipif_t *ipif; 17698 17699 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17700 if (ill == NULL) 17701 return (NULL); 17702 17703 mutex_enter(&ill->ill_lock); 17704 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17705 if (IPIF_IS_CONDEMNED(ipif)) 17706 continue; 17707 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17708 ipif->ipif_zoneid != ALL_ZONES) 17709 continue; 17710 17711 mutex_exit(&ill->ill_lock); 17712 return (ill); 17713 } 17714 mutex_exit(&ill->ill_lock); 17715 ill_refrele(ill); 17716 return (NULL); 17717 } 17718 17719 /* 17720 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17721 * If a pointer to an ipif_t is returned then the caller will need to do 17722 * an ill_refrele(). 17723 */ 17724 ipif_t * 17725 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17726 ip_stack_t *ipst) 17727 { 17728 ipif_t *ipif; 17729 ill_t *ill; 17730 17731 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17732 if (ill == NULL) 17733 return (NULL); 17734 17735 mutex_enter(&ill->ill_lock); 17736 if (ill->ill_state_flags & ILL_CONDEMNED) { 17737 mutex_exit(&ill->ill_lock); 17738 ill_refrele(ill); 17739 return (NULL); 17740 } 17741 17742 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17743 if (!IPIF_CAN_LOOKUP(ipif)) 17744 continue; 17745 if (lifidx == ipif->ipif_id) { 17746 ipif_refhold_locked(ipif); 17747 break; 17748 } 17749 } 17750 17751 mutex_exit(&ill->ill_lock); 17752 ill_refrele(ill); 17753 return (ipif); 17754 } 17755 17756 /* 17757 * Set ill_inputfn based on the current know state. 17758 * This needs to be called when any of the factors taken into 17759 * account changes. 17760 */ 17761 void 17762 ill_set_inputfn(ill_t *ill) 17763 { 17764 ip_stack_t *ipst = ill->ill_ipst; 17765 17766 if (ill->ill_isv6) { 17767 if (is_system_labeled()) 17768 ill->ill_inputfn = ill_input_full_v6; 17769 else 17770 ill->ill_inputfn = ill_input_short_v6; 17771 } else { 17772 if (is_system_labeled()) 17773 ill->ill_inputfn = ill_input_full_v4; 17774 else if (ill->ill_dhcpinit != 0) 17775 ill->ill_inputfn = ill_input_full_v4; 17776 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17777 != NULL) 17778 ill->ill_inputfn = ill_input_full_v4; 17779 else if (ipst->ips_ip_cgtp_filter && 17780 ipst->ips_ip_cgtp_filter_ops != NULL) 17781 ill->ill_inputfn = ill_input_full_v4; 17782 else 17783 ill->ill_inputfn = ill_input_short_v4; 17784 } 17785 } 17786 17787 /* 17788 * Re-evaluate ill_inputfn for all the IPv4 ills. 17789 * Used when RSVP and CGTP comes and goes. 17790 */ 17791 void 17792 ill_set_inputfn_all(ip_stack_t *ipst) 17793 { 17794 ill_walk_context_t ctx; 17795 ill_t *ill; 17796 17797 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17798 ill = ILL_START_WALK_V4(&ctx, ipst); 17799 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17800 ill_set_inputfn(ill); 17801 17802 rw_exit(&ipst->ips_ill_g_lock); 17803 } 17804 17805 /* 17806 * Set the physical address information for `ill' to the contents of the 17807 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17808 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17809 * EINPROGRESS will be returned. 17810 */ 17811 int 17812 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17813 { 17814 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17815 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17816 17817 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17818 17819 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17820 dlindp->dl_data != DL_CURR_DEST_ADDR && 17821 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17822 /* Changing DL_IPV6_TOKEN is not yet supported */ 17823 return (0); 17824 } 17825 17826 /* 17827 * We need to store up to two copies of `mp' in `ill'. Due to the 17828 * design of ipsq_pending_mp_add(), we can't pass them as separate 17829 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17830 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17831 */ 17832 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17833 freemsg(mp); 17834 return (ENOMEM); 17835 } 17836 17837 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17838 17839 /* 17840 * Since we'll only do a logical down, we can't rely on ipif_down 17841 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17842 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17843 * case, to quiesce ire's and nce's for ill_is_quiescent. 17844 */ 17845 mutex_enter(&ill->ill_lock); 17846 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17847 /* no more ire/nce addition allowed */ 17848 mutex_exit(&ill->ill_lock); 17849 17850 /* 17851 * If we can quiesce the ill, then set the address. If not, then 17852 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17853 */ 17854 ill_down_ipifs(ill, B_TRUE); 17855 mutex_enter(&ill->ill_lock); 17856 if (!ill_is_quiescent(ill)) { 17857 /* call cannot fail since `conn_t *' argument is NULL */ 17858 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17859 mp, ILL_DOWN); 17860 mutex_exit(&ill->ill_lock); 17861 return (EINPROGRESS); 17862 } 17863 mutex_exit(&ill->ill_lock); 17864 17865 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17866 return (0); 17867 } 17868 17869 /* 17870 * When the allowed-ips link property is set on the datalink, IP receives a 17871 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17872 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17873 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17874 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17875 * array. 17876 */ 17877 void 17878 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17879 { 17880 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17881 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17882 mac_protect_t *mrp; 17883 int i; 17884 17885 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17886 mrp = (mac_protect_t *)&dlip[1]; 17887 17888 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17889 kmem_free(ill->ill_allowed_ips, 17890 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17891 ill->ill_allowed_ips_cnt = 0; 17892 ill->ill_allowed_ips = NULL; 17893 mutex_enter(&ill->ill_phyint->phyint_lock); 17894 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17895 mutex_exit(&ill->ill_phyint->phyint_lock); 17896 return; 17897 } 17898 17899 if (ill->ill_allowed_ips != NULL) { 17900 kmem_free(ill->ill_allowed_ips, 17901 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17902 } 17903 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17904 ill->ill_allowed_ips = kmem_alloc( 17905 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17906 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17907 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17908 17909 mutex_enter(&ill->ill_phyint->phyint_lock); 17910 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17911 mutex_exit(&ill->ill_phyint->phyint_lock); 17912 } 17913 17914 /* 17915 * Once the ill associated with `q' has quiesced, set its physical address 17916 * information to the values in `addrmp'. Note that two copies of `addrmp' 17917 * are passed (linked by b_cont), since we sometimes need to save two distinct 17918 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17919 * failure (we'll free the other copy if it's not needed). Since the ill_t 17920 * is quiesced, we know any stale nce's with the old address information have 17921 * already been removed, so we don't need to call nce_flush(). 17922 */ 17923 /* ARGSUSED */ 17924 static void 17925 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17926 { 17927 ill_t *ill = q->q_ptr; 17928 mblk_t *addrmp2 = unlinkb(addrmp); 17929 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17930 uint_t addrlen, addroff; 17931 int status; 17932 17933 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17934 17935 addroff = dlindp->dl_addr_offset; 17936 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17937 17938 switch (dlindp->dl_data) { 17939 case DL_IPV6_LINK_LAYER_ADDR: 17940 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17941 freemsg(addrmp2); 17942 break; 17943 17944 case DL_CURR_DEST_ADDR: 17945 freemsg(ill->ill_dest_addr_mp); 17946 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17947 ill->ill_dest_addr_mp = addrmp; 17948 if (ill->ill_isv6) { 17949 ill_setdesttoken(ill); 17950 ipif_setdestlinklocal(ill->ill_ipif); 17951 } 17952 freemsg(addrmp2); 17953 break; 17954 17955 case DL_CURR_PHYS_ADDR: 17956 freemsg(ill->ill_phys_addr_mp); 17957 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17958 ill->ill_phys_addr_mp = addrmp; 17959 ill->ill_phys_addr_length = addrlen; 17960 if (ill->ill_isv6) 17961 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17962 else 17963 freemsg(addrmp2); 17964 if (ill->ill_isv6) { 17965 ill_setdefaulttoken(ill); 17966 ipif_setlinklocal(ill->ill_ipif); 17967 } 17968 break; 17969 default: 17970 ASSERT(0); 17971 } 17972 17973 /* 17974 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17975 * as we bring the ipifs up again. 17976 */ 17977 mutex_enter(&ill->ill_lock); 17978 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17979 mutex_exit(&ill->ill_lock); 17980 /* 17981 * If there are ipifs to bring up, ill_up_ipifs() will return 17982 * EINPROGRESS, and ipsq_current_finish() will be called by 17983 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17984 * brought up. 17985 */ 17986 status = ill_up_ipifs(ill, q, addrmp); 17987 if (status != EINPROGRESS) 17988 ipsq_current_finish(ipsq); 17989 } 17990 17991 /* 17992 * Helper routine for setting the ill_nd_lla fields. 17993 */ 17994 void 17995 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17996 { 17997 freemsg(ill->ill_nd_lla_mp); 17998 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17999 ill->ill_nd_lla_mp = ndmp; 18000 ill->ill_nd_lla_len = addrlen; 18001 } 18002 18003 /* 18004 * Replumb the ill. 18005 */ 18006 int 18007 ill_replumb(ill_t *ill, mblk_t *mp) 18008 { 18009 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18010 18011 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18012 18013 ipsq_current_start(ipsq, ill->ill_ipif, 0); 18014 18015 /* 18016 * If we can quiesce the ill, then continue. If not, then 18017 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 18018 */ 18019 ill_down_ipifs(ill, B_FALSE); 18020 18021 mutex_enter(&ill->ill_lock); 18022 if (!ill_is_quiescent(ill)) { 18023 /* call cannot fail since `conn_t *' argument is NULL */ 18024 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 18025 mp, ILL_DOWN); 18026 mutex_exit(&ill->ill_lock); 18027 return (EINPROGRESS); 18028 } 18029 mutex_exit(&ill->ill_lock); 18030 18031 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18032 return (0); 18033 } 18034 18035 /* ARGSUSED */ 18036 static void 18037 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18038 { 18039 ill_t *ill = q->q_ptr; 18040 int err; 18041 conn_t *connp = NULL; 18042 18043 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18044 freemsg(ill->ill_replumb_mp); 18045 ill->ill_replumb_mp = copyb(mp); 18046 18047 if (ill->ill_replumb_mp == NULL) { 18048 /* out of memory */ 18049 ipsq_current_finish(ipsq); 18050 return; 18051 } 18052 18053 mutex_enter(&ill->ill_lock); 18054 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18055 ill->ill_rq, ill->ill_replumb_mp, 0); 18056 mutex_exit(&ill->ill_lock); 18057 18058 if (!ill->ill_up_ipifs) { 18059 /* already closing */ 18060 ipsq_current_finish(ipsq); 18061 return; 18062 } 18063 ill->ill_replumbing = 1; 18064 err = ill_down_ipifs_tail(ill); 18065 18066 /* 18067 * Successfully quiesced and brought down the interface, now we send 18068 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18069 * DL_NOTE_REPLUMB message. 18070 */ 18071 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18072 DL_NOTIFY_CONF); 18073 ASSERT(mp != NULL); 18074 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18075 DL_NOTE_REPLUMB_DONE; 18076 ill_dlpi_send(ill, mp); 18077 18078 /* 18079 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18080 * streams have to be unbound. When all the DLPI exchanges are done, 18081 * ipsq_current_finish() will be called by arp_bringup_done(). The 18082 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18083 * arp_bringup_done(). 18084 */ 18085 ASSERT(ill->ill_replumb_mp != NULL); 18086 if (err == EINPROGRESS) 18087 return; 18088 else 18089 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18090 ASSERT(connp == NULL); 18091 if (err == 0 && ill->ill_replumb_mp != NULL && 18092 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18093 return; 18094 } 18095 ipsq_current_finish(ipsq); 18096 } 18097 18098 /* 18099 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18100 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18101 * as per the ioctl. On failure, an errno is returned. 18102 */ 18103 static int 18104 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18105 { 18106 int rval; 18107 struct strioctl iocb; 18108 18109 iocb.ic_cmd = cmd; 18110 iocb.ic_timout = 15; 18111 iocb.ic_len = bufsize; 18112 iocb.ic_dp = buf; 18113 18114 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18115 } 18116 18117 /* 18118 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18119 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18120 */ 18121 static int 18122 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18123 uint_t *bufsizep, cred_t *cr) 18124 { 18125 int err; 18126 struct lifnum lifn; 18127 18128 bzero(&lifn, sizeof (lifn)); 18129 lifn.lifn_family = af; 18130 lifn.lifn_flags = LIFC_UNDER_IPMP; 18131 18132 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18133 return (err); 18134 18135 /* 18136 * Pad the interface count to account for additional interfaces that 18137 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18138 */ 18139 lifn.lifn_count += 4; 18140 bzero(lifcp, sizeof (*lifcp)); 18141 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18142 lifcp->lifc_family = af; 18143 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18144 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18145 18146 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18147 if (err != 0) { 18148 kmem_free(lifcp->lifc_buf, *bufsizep); 18149 return (err); 18150 } 18151 18152 return (0); 18153 } 18154 18155 /* 18156 * Helper for ip_interface_cleanup() that removes the loopback interface. 18157 */ 18158 static void 18159 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18160 { 18161 int err; 18162 struct lifreq lifr; 18163 18164 bzero(&lifr, sizeof (lifr)); 18165 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18166 18167 /* 18168 * Attempt to remove the interface. It may legitimately not exist 18169 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18170 */ 18171 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18172 if (err != 0 && err != ENXIO) { 18173 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18174 "error %d\n", isv6 ? "v6" : "v4", err)); 18175 } 18176 } 18177 18178 /* 18179 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18180 * groups and that IPMP data addresses are down. These conditions must be met 18181 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18182 */ 18183 static void 18184 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18185 { 18186 int af = isv6 ? AF_INET6 : AF_INET; 18187 int i, nifs; 18188 int err; 18189 uint_t bufsize; 18190 uint_t lifrsize = sizeof (struct lifreq); 18191 struct lifconf lifc; 18192 struct lifreq *lifrp; 18193 18194 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18195 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18196 "(error %d); any IPMP interfaces cannot be shutdown", err); 18197 return; 18198 } 18199 18200 nifs = lifc.lifc_len / lifrsize; 18201 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18202 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18203 if (err != 0) { 18204 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18205 "flags: error %d", lifrp->lifr_name, err); 18206 continue; 18207 } 18208 18209 if (lifrp->lifr_flags & IFF_IPMP) { 18210 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18211 continue; 18212 18213 lifrp->lifr_flags &= ~IFF_UP; 18214 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18215 if (err != 0) { 18216 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18217 "bring down (error %d); IPMP interface may " 18218 "not be shutdown", lifrp->lifr_name, err); 18219 } 18220 18221 /* 18222 * Check if IFF_DUPLICATE is still set -- and if so, 18223 * reset the address to clear it. 18224 */ 18225 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18226 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18227 continue; 18228 18229 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18230 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18231 lifrp, lifrsize, cr)) != 0) { 18232 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18233 "reset DAD (error %d); IPMP interface may " 18234 "not be shutdown", lifrp->lifr_name, err); 18235 } 18236 continue; 18237 } 18238 18239 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18240 lifrp->lifr_groupname[0] = '\0'; 18241 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18242 lifrsize, cr)) != 0) { 18243 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18244 "leave IPMP group (error %d); associated " 18245 "IPMP interface may not be shutdown", 18246 lifrp->lifr_name, err); 18247 continue; 18248 } 18249 } 18250 } 18251 18252 kmem_free(lifc.lifc_buf, bufsize); 18253 } 18254 18255 #define UDPDEV "/devices/pseudo/udp@0:udp" 18256 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18257 18258 /* 18259 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18260 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18261 * when the user-level processes in the zone are killed and the latter are 18262 * cleaned up by str_stack_shutdown(). 18263 */ 18264 void 18265 ip_interface_cleanup(ip_stack_t *ipst) 18266 { 18267 ldi_handle_t lh; 18268 ldi_ident_t li; 18269 cred_t *cr; 18270 int err; 18271 int i; 18272 char *devs[] = { UDP6DEV, UDPDEV }; 18273 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18274 18275 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18276 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18277 " error %d", err); 18278 return; 18279 } 18280 18281 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18282 ASSERT(cr != NULL); 18283 18284 /* 18285 * NOTE: loop executes exactly twice and is hardcoded to know that the 18286 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18287 * the loop.) 18288 */ 18289 for (i = 0; i < 2; i++) { 18290 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18291 if (err != 0) { 18292 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18293 " error %d", devs[i], err); 18294 continue; 18295 } 18296 18297 ip_loopback_removeif(lh, i == 0, cr); 18298 ip_ipmp_cleanup(lh, i == 0, cr); 18299 18300 (void) ldi_close(lh, FREAD|FWRITE, cr); 18301 } 18302 18303 ldi_ident_release(li); 18304 crfree(cr); 18305 } 18306 18307 /* 18308 * This needs to be in-sync with nic_event_t definition 18309 */ 18310 static const char * 18311 ill_hook_event2str(nic_event_t event) 18312 { 18313 switch (event) { 18314 case NE_PLUMB: 18315 return ("PLUMB"); 18316 case NE_UNPLUMB: 18317 return ("UNPLUMB"); 18318 case NE_UP: 18319 return ("UP"); 18320 case NE_DOWN: 18321 return ("DOWN"); 18322 case NE_ADDRESS_CHANGE: 18323 return ("ADDRESS_CHANGE"); 18324 case NE_LIF_UP: 18325 return ("LIF_UP"); 18326 case NE_LIF_DOWN: 18327 return ("LIF_DOWN"); 18328 case NE_IFINDEX_CHANGE: 18329 return ("IFINDEX_CHANGE"); 18330 default: 18331 return ("UNKNOWN"); 18332 } 18333 } 18334 18335 void 18336 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18337 nic_event_data_t data, size_t datalen) 18338 { 18339 ip_stack_t *ipst = ill->ill_ipst; 18340 hook_nic_event_int_t *info; 18341 const char *str = NULL; 18342 18343 /* create a new nic event info */ 18344 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18345 goto fail; 18346 18347 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18348 info->hnei_event.hne_lif = lif; 18349 info->hnei_event.hne_event = event; 18350 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18351 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18352 info->hnei_event.hne_data = NULL; 18353 info->hnei_event.hne_datalen = 0; 18354 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18355 18356 if (data != NULL && datalen != 0) { 18357 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18358 if (info->hnei_event.hne_data == NULL) 18359 goto fail; 18360 bcopy(data, info->hnei_event.hne_data, datalen); 18361 info->hnei_event.hne_datalen = datalen; 18362 } 18363 18364 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18365 DDI_NOSLEEP) == DDI_SUCCESS) 18366 return; 18367 18368 fail: 18369 if (info != NULL) { 18370 if (info->hnei_event.hne_data != NULL) { 18371 kmem_free(info->hnei_event.hne_data, 18372 info->hnei_event.hne_datalen); 18373 } 18374 kmem_free(info, sizeof (hook_nic_event_t)); 18375 } 18376 str = ill_hook_event2str(event); 18377 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18378 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18379 } 18380 18381 static int 18382 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18383 { 18384 int err = 0; 18385 const in_addr_t *addr = NULL; 18386 nce_t *nce = NULL; 18387 ill_t *ill = ipif->ipif_ill; 18388 ill_t *bound_ill; 18389 boolean_t added_ipif = B_FALSE; 18390 uint16_t state; 18391 uint16_t flags; 18392 18393 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18394 ill_t *, ill, ipif_t *, ipif); 18395 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18396 addr = &ipif->ipif_lcl_addr; 18397 } 18398 18399 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18400 if (res_act != Res_act_initial) 18401 return (EINVAL); 18402 } 18403 18404 if (addr != NULL) { 18405 ipmp_illgrp_t *illg = ill->ill_grp; 18406 18407 /* add unicast nce for the local addr */ 18408 18409 if (IS_IPMP(ill)) { 18410 /* 18411 * If we're here via ipif_up(), then the ipif 18412 * won't be bound yet -- add it to the group, 18413 * which will bind it if possible. (We would 18414 * add it in ipif_up(), but deleting on failure 18415 * there is gruesome.) If we're here via 18416 * ipmp_ill_bind_ipif(), then the ipif has 18417 * already been added to the group and we 18418 * just need to use the binding. 18419 */ 18420 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18421 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18422 if (bound_ill == NULL) { 18423 /* 18424 * We couldn't bind the ipif to an ill 18425 * yet, so we have nothing to publish. 18426 * Mark the address as ready and return. 18427 */ 18428 ipif->ipif_addr_ready = 1; 18429 return (0); 18430 } 18431 added_ipif = B_TRUE; 18432 } 18433 } else { 18434 bound_ill = ill; 18435 } 18436 18437 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18438 NCE_F_NONUD); 18439 /* 18440 * If this is an initial bring-up (or the ipif was never 18441 * completely brought up), do DAD. Otherwise, we're here 18442 * because IPMP has rebound an address to this ill: send 18443 * unsolicited advertisements (ARP announcements) to 18444 * inform others. 18445 */ 18446 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18447 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18448 } else { 18449 state = ND_REACHABLE; 18450 flags |= NCE_F_UNSOL_ADV; 18451 } 18452 18453 retry: 18454 err = nce_lookup_then_add_v4(ill, 18455 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18456 addr, flags, state, &nce); 18457 18458 /* 18459 * note that we may encounter EEXIST if we are moving 18460 * the nce as a result of a rebind operation. 18461 */ 18462 switch (err) { 18463 case 0: 18464 ipif->ipif_added_nce = 1; 18465 nce->nce_ipif_cnt++; 18466 break; 18467 case EEXIST: 18468 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18469 ill->ill_name)); 18470 if (!NCE_MYADDR(nce->nce_common)) { 18471 /* 18472 * A leftover nce from before this address 18473 * existed 18474 */ 18475 ncec_delete(nce->nce_common); 18476 nce_refrele(nce); 18477 nce = NULL; 18478 goto retry; 18479 } 18480 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18481 nce_refrele(nce); 18482 nce = NULL; 18483 ip1dbg(("ipif_arp_up: NCE already exists " 18484 "for %s:%u\n", ill->ill_name, 18485 ipif->ipif_id)); 18486 goto arp_up_done; 18487 } 18488 /* 18489 * Duplicate local addresses are permissible for 18490 * IPIF_POINTOPOINT interfaces which will get marked 18491 * IPIF_UNNUMBERED later in 18492 * ip_addr_availability_check(). 18493 * 18494 * The nce_ipif_cnt field tracks the number of 18495 * ipifs that have nce_addr as their local address. 18496 */ 18497 ipif->ipif_addr_ready = 1; 18498 ipif->ipif_added_nce = 1; 18499 nce->nce_ipif_cnt++; 18500 err = 0; 18501 break; 18502 default: 18503 ASSERT(nce == NULL); 18504 goto arp_up_done; 18505 } 18506 if (arp_no_defense) { 18507 if ((ipif->ipif_flags & IPIF_UP) && 18508 !ipif->ipif_addr_ready) 18509 ipif_up_notify(ipif); 18510 ipif->ipif_addr_ready = 1; 18511 } 18512 } else { 18513 /* zero address. nothing to publish */ 18514 ipif->ipif_addr_ready = 1; 18515 } 18516 if (nce != NULL) 18517 nce_refrele(nce); 18518 arp_up_done: 18519 if (added_ipif && err != 0) 18520 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18521 return (err); 18522 } 18523 18524 int 18525 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18526 { 18527 int err = 0; 18528 ill_t *ill = ipif->ipif_ill; 18529 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18530 18531 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18532 ill_t *, ill, ipif_t *, ipif); 18533 18534 /* 18535 * need to bring up ARP or setup mcast mapping only 18536 * when the first interface is coming UP. 18537 */ 18538 first_interface = (ill->ill_ipif_up_count == 0 && 18539 ill->ill_ipif_dup_count == 0 && !was_dup); 18540 18541 if (res_act == Res_act_initial && first_interface) { 18542 /* 18543 * Send ATTACH + BIND 18544 */ 18545 err = arp_ll_up(ill); 18546 if (err != EINPROGRESS && err != 0) 18547 return (err); 18548 18549 /* 18550 * Add NCE for local address. Start DAD. 18551 * we'll wait to hear that DAD has finished 18552 * before using the interface. 18553 */ 18554 if (err == EINPROGRESS) 18555 wait_for_dlpi = B_TRUE; 18556 } 18557 18558 if (!wait_for_dlpi) 18559 (void) ipif_arp_up_done_tail(ipif, res_act); 18560 18561 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18562 } 18563 18564 /* 18565 * Finish processing of "arp_up" after all the DLPI message 18566 * exchanges have completed between arp and the driver. 18567 */ 18568 void 18569 arp_bringup_done(ill_t *ill, int err) 18570 { 18571 mblk_t *mp1; 18572 ipif_t *ipif; 18573 conn_t *connp = NULL; 18574 ipsq_t *ipsq; 18575 queue_t *q; 18576 18577 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18578 18579 ASSERT(IAM_WRITER_ILL(ill)); 18580 18581 ipsq = ill->ill_phyint->phyint_ipsq; 18582 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18583 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18584 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18585 if (mp1 == NULL) /* bringup was aborted by the user */ 18586 return; 18587 18588 /* 18589 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18590 * must have an associated conn_t. Otherwise, we're bringing this 18591 * interface back up as part of handling an asynchronous event (e.g., 18592 * physical address change). 18593 */ 18594 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18595 ASSERT(connp != NULL); 18596 q = CONNP_TO_WQ(connp); 18597 } else { 18598 ASSERT(connp == NULL); 18599 q = ill->ill_rq; 18600 } 18601 if (err == 0) { 18602 if (ipif->ipif_isv6) { 18603 if ((err = ipif_up_done_v6(ipif)) != 0) 18604 ip0dbg(("arp_bringup_done: init failed\n")); 18605 } else { 18606 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18607 if (err != 0 || 18608 (err = ipif_up_done(ipif)) != 0) { 18609 ip0dbg(("arp_bringup_done: " 18610 "init failed err %x\n", err)); 18611 (void) ipif_arp_down(ipif); 18612 } 18613 18614 } 18615 } else { 18616 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18617 } 18618 18619 if ((err == 0) && (ill->ill_up_ipifs)) { 18620 err = ill_up_ipifs(ill, q, mp1); 18621 if (err == EINPROGRESS) 18622 return; 18623 } 18624 18625 /* 18626 * If we have a moved ipif to bring up, and everything has succeeded 18627 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18628 * down -- the admin can try to bring it up by hand if need be. 18629 */ 18630 if (ill->ill_move_ipif != NULL) { 18631 ipif = ill->ill_move_ipif; 18632 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18633 ipif->ipif_ill->ill_name)); 18634 ill->ill_move_ipif = NULL; 18635 if (err == 0) { 18636 err = ipif_up(ipif, q, mp1); 18637 if (err == EINPROGRESS) 18638 return; 18639 } 18640 } 18641 18642 /* 18643 * The operation must complete without EINPROGRESS since 18644 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18645 * Otherwise, the operation will be stuck forever in the ipsq. 18646 */ 18647 ASSERT(err != EINPROGRESS); 18648 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18649 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18650 int, ipsq->ipsq_xop->ipx_current_ioctl, 18651 ill_t *, ill, ipif_t *, ipif); 18652 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18653 } else { 18654 ipsq_current_finish(ipsq); 18655 } 18656 } 18657 18658 /* 18659 * Finish processing of arp replumb after all the DLPI message 18660 * exchanges have completed between arp and the driver. 18661 */ 18662 void 18663 arp_replumb_done(ill_t *ill, int err) 18664 { 18665 mblk_t *mp1; 18666 ipif_t *ipif; 18667 conn_t *connp = NULL; 18668 ipsq_t *ipsq; 18669 queue_t *q; 18670 18671 ASSERT(IAM_WRITER_ILL(ill)); 18672 18673 ipsq = ill->ill_phyint->phyint_ipsq; 18674 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18675 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18676 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18677 if (mp1 == NULL) { 18678 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18679 ipsq->ipsq_xop->ipx_current_ioctl)); 18680 /* bringup was aborted by the user */ 18681 return; 18682 } 18683 /* 18684 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18685 * must have an associated conn_t. Otherwise, we're bringing this 18686 * interface back up as part of handling an asynchronous event (e.g., 18687 * physical address change). 18688 */ 18689 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18690 ASSERT(connp != NULL); 18691 q = CONNP_TO_WQ(connp); 18692 } else { 18693 ASSERT(connp == NULL); 18694 q = ill->ill_rq; 18695 } 18696 if ((err == 0) && (ill->ill_up_ipifs)) { 18697 err = ill_up_ipifs(ill, q, mp1); 18698 if (err == EINPROGRESS) 18699 return; 18700 } 18701 /* 18702 * The operation must complete without EINPROGRESS since 18703 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18704 * Otherwise, the operation will be stuck forever in the ipsq. 18705 */ 18706 ASSERT(err != EINPROGRESS); 18707 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18708 DTRACE_PROBE4(ipif__ioctl, char *, 18709 "arp_replumb_done finish", 18710 int, ipsq->ipsq_xop->ipx_current_ioctl, 18711 ill_t *, ill, ipif_t *, ipif); 18712 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18713 } else { 18714 ipsq_current_finish(ipsq); 18715 } 18716 } 18717 18718 void 18719 ipif_up_notify(ipif_t *ipif) 18720 { 18721 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18722 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18723 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18724 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18725 NE_LIF_UP, NULL, 0); 18726 } 18727 18728 /* 18729 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18730 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18731 * TPI end points with STREAMS modules pushed above. This is assured by not 18732 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18733 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18734 * while unwinding from the ispq and that could be a thread from the bottom. 18735 */ 18736 /* ARGSUSED */ 18737 int 18738 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18739 ip_ioctl_cmd_t *ipip, void *arg) 18740 { 18741 mblk_t *cmd_mp = mp->b_cont->b_cont; 18742 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18743 int ret = 0; 18744 int i; 18745 size_t size; 18746 ip_stack_t *ipst; 18747 zoneid_t zoneid; 18748 ilb_stack_t *ilbs; 18749 18750 ipst = CONNQ_TO_IPST(q); 18751 ilbs = ipst->ips_netstack->netstack_ilb; 18752 zoneid = Q_TO_CONN(q)->conn_zoneid; 18753 18754 switch (command) { 18755 case ILB_CREATE_RULE: { 18756 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18757 18758 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18759 ret = EINVAL; 18760 break; 18761 } 18762 18763 ret = ilb_rule_add(ilbs, zoneid, cmd); 18764 break; 18765 } 18766 case ILB_DESTROY_RULE: 18767 case ILB_ENABLE_RULE: 18768 case ILB_DISABLE_RULE: { 18769 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18770 18771 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18772 ret = EINVAL; 18773 break; 18774 } 18775 18776 if (cmd->flags & ILB_RULE_ALLRULES) { 18777 if (command == ILB_DESTROY_RULE) { 18778 ilb_rule_del_all(ilbs, zoneid); 18779 break; 18780 } else if (command == ILB_ENABLE_RULE) { 18781 ilb_rule_enable_all(ilbs, zoneid); 18782 break; 18783 } else if (command == ILB_DISABLE_RULE) { 18784 ilb_rule_disable_all(ilbs, zoneid); 18785 break; 18786 } 18787 } else { 18788 if (command == ILB_DESTROY_RULE) { 18789 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18790 } else if (command == ILB_ENABLE_RULE) { 18791 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18792 NULL); 18793 } else if (command == ILB_DISABLE_RULE) { 18794 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18795 NULL); 18796 } 18797 } 18798 break; 18799 } 18800 case ILB_NUM_RULES: { 18801 ilb_num_rules_cmd_t *cmd; 18802 18803 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18804 ret = EINVAL; 18805 break; 18806 } 18807 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18808 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18809 break; 18810 } 18811 case ILB_RULE_NAMES: { 18812 ilb_rule_names_cmd_t *cmd; 18813 18814 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18815 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18816 cmd->num_names == 0) { 18817 ret = EINVAL; 18818 break; 18819 } 18820 size = cmd->num_names * ILB_RULE_NAMESZ; 18821 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18822 size != cmd_mp->b_wptr) { 18823 ret = EINVAL; 18824 break; 18825 } 18826 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18827 break; 18828 } 18829 case ILB_NUM_SERVERS: { 18830 ilb_num_servers_cmd_t *cmd; 18831 18832 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18833 ret = EINVAL; 18834 break; 18835 } 18836 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18837 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18838 &(cmd->num)); 18839 break; 18840 } 18841 case ILB_LIST_RULE: { 18842 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18843 18844 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18845 ret = EINVAL; 18846 break; 18847 } 18848 ret = ilb_rule_list(ilbs, zoneid, cmd); 18849 break; 18850 } 18851 case ILB_LIST_SERVERS: { 18852 ilb_servers_info_cmd_t *cmd; 18853 18854 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18855 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18856 cmd->num_servers == 0) { 18857 ret = EINVAL; 18858 break; 18859 } 18860 size = cmd->num_servers * sizeof (ilb_server_info_t); 18861 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18862 size != cmd_mp->b_wptr) { 18863 ret = EINVAL; 18864 break; 18865 } 18866 18867 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18868 &cmd->num_servers); 18869 break; 18870 } 18871 case ILB_ADD_SERVERS: { 18872 ilb_servers_info_cmd_t *cmd; 18873 ilb_rule_t *rule; 18874 18875 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18876 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18877 ret = EINVAL; 18878 break; 18879 } 18880 size = cmd->num_servers * sizeof (ilb_server_info_t); 18881 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18882 size != cmd_mp->b_wptr) { 18883 ret = EINVAL; 18884 break; 18885 } 18886 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18887 if (rule == NULL) { 18888 ASSERT(ret != 0); 18889 break; 18890 } 18891 for (i = 0; i < cmd->num_servers; i++) { 18892 ilb_server_info_t *s; 18893 18894 s = &cmd->servers[i]; 18895 s->err = ilb_server_add(ilbs, rule, s); 18896 } 18897 ILB_RULE_REFRELE(rule); 18898 break; 18899 } 18900 case ILB_DEL_SERVERS: 18901 case ILB_ENABLE_SERVERS: 18902 case ILB_DISABLE_SERVERS: { 18903 ilb_servers_cmd_t *cmd; 18904 ilb_rule_t *rule; 18905 int (*f)(); 18906 18907 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18908 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18909 ret = EINVAL; 18910 break; 18911 } 18912 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18913 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18914 size != cmd_mp->b_wptr) { 18915 ret = EINVAL; 18916 break; 18917 } 18918 18919 if (command == ILB_DEL_SERVERS) 18920 f = ilb_server_del; 18921 else if (command == ILB_ENABLE_SERVERS) 18922 f = ilb_server_enable; 18923 else if (command == ILB_DISABLE_SERVERS) 18924 f = ilb_server_disable; 18925 18926 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18927 if (rule == NULL) { 18928 ASSERT(ret != 0); 18929 break; 18930 } 18931 18932 for (i = 0; i < cmd->num_servers; i++) { 18933 ilb_server_arg_t *s; 18934 18935 s = &cmd->servers[i]; 18936 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18937 } 18938 ILB_RULE_REFRELE(rule); 18939 break; 18940 } 18941 case ILB_LIST_NAT_TABLE: { 18942 ilb_list_nat_cmd_t *cmd; 18943 18944 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18945 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18946 ret = EINVAL; 18947 break; 18948 } 18949 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18950 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18951 size != cmd_mp->b_wptr) { 18952 ret = EINVAL; 18953 break; 18954 } 18955 18956 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18957 &cmd->flags); 18958 break; 18959 } 18960 case ILB_LIST_STICKY_TABLE: { 18961 ilb_list_sticky_cmd_t *cmd; 18962 18963 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18964 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18965 ret = EINVAL; 18966 break; 18967 } 18968 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18969 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18970 size != cmd_mp->b_wptr) { 18971 ret = EINVAL; 18972 break; 18973 } 18974 18975 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18976 &cmd->num_sticky, &cmd->flags); 18977 break; 18978 } 18979 default: 18980 ret = EINVAL; 18981 break; 18982 } 18983 done: 18984 return (ret); 18985 } 18986 18987 /* Remove all cache entries for this logical interface */ 18988 void 18989 ipif_nce_down(ipif_t *ipif) 18990 { 18991 ill_t *ill = ipif->ipif_ill; 18992 nce_t *nce; 18993 18994 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18995 ill_t *, ill, ipif_t *, ipif); 18996 if (ipif->ipif_added_nce) { 18997 if (ipif->ipif_isv6) 18998 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18999 else 19000 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 19001 if (nce != NULL) { 19002 if (--nce->nce_ipif_cnt == 0) 19003 ncec_delete(nce->nce_common); 19004 ipif->ipif_added_nce = 0; 19005 nce_refrele(nce); 19006 } else { 19007 /* 19008 * nce may already be NULL because it was already 19009 * flushed, e.g., due to a call to nce_flush 19010 */ 19011 ipif->ipif_added_nce = 0; 19012 } 19013 } 19014 /* 19015 * Make IPMP aware of the deleted data address. 19016 */ 19017 if (IS_IPMP(ill)) 19018 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 19019 19020 /* 19021 * Remove all other nces dependent on this ill when the last ipif 19022 * is going away. 19023 */ 19024 if (ill->ill_ipif_up_count == 0) { 19025 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 19026 (uchar_t *)ill, ill->ill_ipst); 19027 if (IS_UNDER_IPMP(ill)) 19028 nce_flush(ill, B_TRUE); 19029 } 19030 } 19031 19032 /* 19033 * find the first interface that uses usill for its source address. 19034 */ 19035 ill_t * 19036 ill_lookup_usesrc(ill_t *usill) 19037 { 19038 ip_stack_t *ipst = usill->ill_ipst; 19039 ill_t *ill; 19040 19041 ASSERT(usill != NULL); 19042 19043 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19044 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19045 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19046 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19047 ill = ill->ill_usesrc_grp_next) { 19048 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19049 !ILL_IS_CONDEMNED(ill)) { 19050 ill_refhold(ill); 19051 break; 19052 } 19053 } 19054 rw_exit(&ipst->ips_ill_g_lock); 19055 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19056 return (ill); 19057 } 19058 19059 /* 19060 * This comment applies to both ip_sioctl_get_ifhwaddr and 19061 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19062 * is the same. 19063 * 19064 * The goal here is to find an IP interface that corresponds to the name 19065 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19066 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19067 * mac address. 19068 * 19069 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19070 * of different reasons: 19071 * ENXIO - the device name is not known to IP. 19072 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19073 * by ill_phys_addr not pointing to an actual address. 19074 * EPFNOSUPPORT - this will indicate that a request is being made for a 19075 * mac address that will not fit in the data structure supplier (struct 19076 * sockaddr). 19077 * 19078 */ 19079 /* ARGSUSED */ 19080 int 19081 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19082 ip_ioctl_cmd_t *ipip, void *if_req) 19083 { 19084 struct sockaddr *sock; 19085 struct ifreq *ifr; 19086 mblk_t *mp1; 19087 ill_t *ill; 19088 19089 ASSERT(ipif != NULL); 19090 ill = ipif->ipif_ill; 19091 19092 if (ill->ill_phys_addr == NULL) { 19093 return (EADDRNOTAVAIL); 19094 } 19095 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19096 return (EPFNOSUPPORT); 19097 } 19098 19099 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19100 19101 /* Existence of mp1 has been checked in ip_wput_nondata */ 19102 mp1 = mp->b_cont->b_cont; 19103 ifr = (struct ifreq *)mp1->b_rptr; 19104 19105 sock = &ifr->ifr_addr; 19106 /* 19107 * The "family" field in the returned structure is set to a value 19108 * that represents the type of device to which the address belongs. 19109 * The value returned may differ to that on Linux but it will still 19110 * represent the correct symbol on Solaris. 19111 */ 19112 sock->sa_family = arp_hw_type(ill->ill_mactype); 19113 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19114 19115 return (0); 19116 } 19117 19118 /* 19119 * The expection of applications using SIOCGIFHWADDR is that data will 19120 * be returned in the sa_data field of the sockaddr structure. With 19121 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19122 * equivalent. In light of this, struct sockaddr_dl is used as it 19123 * offers more space for address storage in sll_data. 19124 */ 19125 /* ARGSUSED */ 19126 int 19127 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19128 ip_ioctl_cmd_t *ipip, void *if_req) 19129 { 19130 struct sockaddr_dl *sock; 19131 struct lifreq *lifr; 19132 mblk_t *mp1; 19133 ill_t *ill; 19134 19135 ASSERT(ipif != NULL); 19136 ill = ipif->ipif_ill; 19137 19138 if (ill->ill_phys_addr == NULL) { 19139 return (EADDRNOTAVAIL); 19140 } 19141 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19142 return (EPFNOSUPPORT); 19143 } 19144 19145 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19146 19147 /* Existence of mp1 has been checked in ip_wput_nondata */ 19148 mp1 = mp->b_cont->b_cont; 19149 lifr = (struct lifreq *)mp1->b_rptr; 19150 19151 /* 19152 * sockaddr_ll is used here because it is also the structure used in 19153 * responding to the same ioctl in sockpfp. The only other choice is 19154 * sockaddr_dl which contains fields that are not required here 19155 * because its purpose is different. 19156 */ 19157 lifr->lifr_type = ill->ill_type; 19158 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19159 sock->sdl_family = AF_LINK; 19160 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19161 sock->sdl_type = ill->ill_mactype; 19162 sock->sdl_nlen = 0; 19163 sock->sdl_slen = 0; 19164 sock->sdl_alen = ill->ill_phys_addr_length; 19165 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19166 19167 return (0); 19168 }