1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 1990 Mentat Inc.
25 * Copyright (c) 2011 Joyent, Inc. All rights reserved.
26 */
27
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/dlpi.h>
31 #include <sys/stropts.h>
32 #include <sys/sysmacros.h>
33 #include <sys/strsubr.h>
34 #include <sys/strlog.h>
35 #include <sys/strsun.h>
36 #include <sys/zone.h>
37 #define _SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/xti_inet.h>
40 #include <sys/ddi.h>
41 #include <sys/suntpi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/kobj.h>
45 #include <sys/modctl.h>
46 #include <sys/atomic.h>
47 #include <sys/policy.h>
48 #include <sys/priv.h>
49 #include <sys/taskq.h>
50
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/kmem.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/vtrace.h>
57 #include <sys/isa_defs.h>
58 #include <sys/mac.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/route.h>
62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <net/if_dl.h>
65
66 #include <inet/common.h>
67 #include <inet/mi.h>
68 #include <inet/mib2.h>
69 #include <inet/nd.h>
70 #include <inet/arp.h>
71 #include <inet/snmpcom.h>
72 #include <inet/optcom.h>
73 #include <inet/kstatcom.h>
74
75 #include <netinet/igmp_var.h>
76 #include <netinet/ip6.h>
77 #include <netinet/icmp6.h>
78 #include <netinet/sctp.h>
79
80 #include <inet/ip.h>
81 #include <inet/ip_impl.h>
82 #include <inet/ip6.h>
83 #include <inet/ip6_asp.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/ip_multi.h>
87 #include <inet/ip_if.h>
88 #include <inet/ip_ire.h>
89 #include <inet/ip_ftable.h>
90 #include <inet/ip_rts.h>
91 #include <inet/ip_ndp.h>
92 #include <inet/ip_listutils.h>
93 #include <netinet/igmp.h>
94 #include <netinet/ip_mroute.h>
95 #include <inet/ipp_common.h>
96
97 #include <net/pfkeyv2.h>
98 #include <inet/sadb.h>
99 #include <inet/ipsec_impl.h>
100 #include <inet/iptun/iptun_impl.h>
101 #include <inet/ipdrop.h>
102 #include <inet/ip_netinfo.h>
103 #include <inet/ilb_ip.h>
104
105 #include <sys/ethernet.h>
106 #include <net/if_types.h>
107 #include <sys/cpuvar.h>
108
109 #include <ipp/ipp.h>
110 #include <ipp/ipp_impl.h>
111 #include <ipp/ipgpc/ipgpc.h>
112
113 #include <sys/pattr.h>
114 #include <inet/ipclassifier.h>
115 #include <inet/sctp_ip.h>
116 #include <inet/sctp/sctp_impl.h>
117 #include <inet/udp_impl.h>
118 #include <inet/rawip_impl.h>
119 #include <inet/rts_impl.h>
120
121 #include <sys/tsol/label.h>
122 #include <sys/tsol/tnet.h>
123
124 #include <sys/squeue_impl.h>
125 #include <inet/ip_arp.h>
126
127 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */
128
129 /*
130 * Values for squeue switch:
131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
132 * IP_SQUEUE_ENTER: SQ_PROCESS
133 * IP_SQUEUE_FILL: SQ_FILL
134 */
135 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */
136
137 int ip_squeue_flag;
138
139 /*
140 * Setable in /etc/system
141 */
142 int ip_poll_normal_ms = 100;
143 int ip_poll_normal_ticks = 0;
144 int ip_modclose_ackwait_ms = 3000;
145
146 /*
147 * It would be nice to have these present only in DEBUG systems, but the
148 * current design of the global symbol checking logic requires them to be
149 * unconditionally present.
150 */
151 uint_t ip_thread_data; /* TSD key for debug support */
152 krwlock_t ip_thread_rwlock;
153 list_t ip_thread_list;
154
155 /*
156 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
157 */
158
159 struct listptr_s {
160 mblk_t *lp_head; /* pointer to the head of the list */
161 mblk_t *lp_tail; /* pointer to the tail of the list */
162 };
163
164 typedef struct listptr_s listptr_t;
165
166 /*
167 * This is used by ip_snmp_get_mib2_ip_route_media and
168 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
169 */
170 typedef struct iproutedata_s {
171 uint_t ird_idx;
172 uint_t ird_flags; /* see below */
173 listptr_t ird_route; /* ipRouteEntryTable */
174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */
175 listptr_t ird_attrs; /* ipRouteAttributeTable */
176 } iproutedata_t;
177
178 /* Include ire_testhidden and IRE_IF_CLONE routes */
179 #define IRD_REPORT_ALL 0x01
180
181 /*
182 * Cluster specific hooks. These should be NULL when booted as a non-cluster
183 */
184
185 /*
186 * Hook functions to enable cluster networking
187 * On non-clustered systems these vectors must always be NULL.
188 *
189 * Hook function to Check ip specified ip address is a shared ip address
190 * in the cluster
191 *
192 */
193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
195
196 /*
197 * Hook function to generate cluster wide ip fragment identifier
198 */
199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
201 void *args) = NULL;
202
203 /*
204 * Hook function to generate cluster wide SPI.
205 */
206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
207 void *) = NULL;
208
209 /*
210 * Hook function to verify if the SPI is already utlized.
211 */
212
213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
214
215 /*
216 * Hook function to delete the SPI from the cluster wide repository.
217 */
218
219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
220
221 /*
222 * Hook function to inform the cluster when packet received on an IDLE SA
223 */
224
225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
226 in6_addr_t, in6_addr_t, void *) = NULL;
227
228 /*
229 * Synchronization notes:
230 *
231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
232 * MT level protection given by STREAMS. IP uses a combination of its own
233 * internal serialization mechanism and standard Solaris locking techniques.
234 * The internal serialization is per phyint. This is used to serialize
235 * plumbing operations, IPMP operations, most set ioctls, etc.
236 *
237 * Plumbing is a long sequence of operations involving message
238 * exchanges between IP, ARP and device drivers. Many set ioctls are typically
239 * involved in plumbing operations. A natural model is to serialize these
240 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
241 * parallel without any interference. But various set ioctls on hme0 are best
242 * serialized, along with IPMP operations and processing of DLPI control
243 * messages received from drivers on a per phyint basis. This serialization is
244 * provided by the ipsq_t and primitives operating on this. Details can
245 * be found in ip_if.c above the core primitives operating on ipsq_t.
246 *
247 * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
248 * Simiarly lookup of an ire by a thread also returns a refheld ire.
249 * In addition ipif's and ill's referenced by the ire are also indirectly
250 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
251 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
252 * address of an ipif has to go through the ipsq_t. This ensures that only
253 * one such exclusive operation proceeds at any time on the ipif. It then
254 * waits for all refcnts
255 * associated with this ipif to come down to zero. The address is changed
256 * only after the ipif has been quiesced. Then the ipif is brought up again.
257 * More details are described above the comment in ip_sioctl_flags.
258 *
259 * Packet processing is based mostly on IREs and are fully multi-threaded
260 * using standard Solaris MT techniques.
261 *
262 * There are explicit locks in IP to handle:
263 * - The ip_g_head list maintained by mi_open_link() and friends.
264 *
265 * - The reassembly data structures (one lock per hash bucket)
266 *
267 * - conn_lock is meant to protect conn_t fields. The fields actually
268 * protected by conn_lock are documented in the conn_t definition.
269 *
270 * - ire_lock to protect some of the fields of the ire, IRE tables
271 * (one lock per hash bucket). Refer to ip_ire.c for details.
272 *
273 * - ndp_g_lock and ncec_lock for protecting NCEs.
274 *
275 * - ill_lock protects fields of the ill and ipif. Details in ip.h
276 *
277 * - ill_g_lock: This is a global reader/writer lock. Protects the following
278 * * The AVL tree based global multi list of all ills.
279 * * The linked list of all ipifs of an ill
280 * * The <ipsq-xop> mapping
281 * * <ill-phyint> association
282 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif
283 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the
284 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
285 * writer for the actual duration of the insertion/deletion/change.
286 *
287 * - ill_lock: This is a per ill mutex.
288 * It protects some members of the ill_t struct; see ip.h for details.
289 * It also protects the <ill-phyint> assoc.
290 * It also protects the list of ipifs hanging off the ill.
291 *
292 * - ipsq_lock: This is a per ipsq_t mutex lock.
293 * This protects some members of the ipsq_t struct; see ip.h for details.
294 * It also protects the <ipsq-ipxop> mapping
295 *
296 * - ipx_lock: This is a per ipxop_t mutex lock.
297 * This protects some members of the ipxop_t struct; see ip.h for details.
298 *
299 * - phyint_lock: This is a per phyint mutex lock. Protects just the
300 * phyint_flags
301 *
302 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
303 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
304 * uniqueness check also done atomically.
305 *
306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
307 * group list linked by ill_usesrc_grp_next. It also protects the
308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the
309 * group is being added or deleted. This lock is taken as a reader when
310 * walking the list/group(eg: to get the number of members in a usesrc group).
311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next
312 * field is changing state i.e from NULL to non-NULL or vice-versa. For
313 * example, it is not necessary to take this lock in the initial portion
314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
315 * operations are executed exclusively and that ensures that the "usesrc
316 * group state" cannot change. The "usesrc group state" change can happen
317 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
318 *
319 * Changing <ill-phyint>, <ipsq-xop> assocications:
320 *
321 * To change the <ill-phyint> association, the ill_g_lock must be held
322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill
323 * must be held.
324 *
325 * To change the <ipsq-xop> association, the ill_g_lock must be held as
326 * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
327 * This is only done when ills are added or removed from IPMP groups.
328 *
329 * To add or delete an ipif from the list of ipifs hanging off the ill,
330 * ill_g_lock (writer) and ill_lock must be held and the thread must be
331 * a writer on the associated ipsq.
332 *
333 * To add or delete an ill to the system, the ill_g_lock must be held as
334 * writer and the thread must be a writer on the associated ipsq.
335 *
336 * To add or delete an ilm to an ill, the ill_lock must be held and the thread
337 * must be a writer on the associated ipsq.
338 *
339 * Lock hierarchy
340 *
341 * Some lock hierarchy scenarios are listed below.
342 *
343 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
344 * ill_g_lock -> ill_lock(s) -> phyint_lock
345 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
346 * ill_g_lock -> ip_addr_avail_lock
347 * conn_lock -> irb_lock -> ill_lock -> ire_lock
348 * ill_g_lock -> ip_g_nd_lock
349 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
350 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
351 * arl_lock -> ill_lock
352 * ips_ire_dep_lock -> irb_lock
353 *
354 * When more than 1 ill lock is needed to be held, all ill lock addresses
355 * are sorted on address and locked starting from highest addressed lock
356 * downward.
357 *
358 * Multicast scenarios
359 * ips_ill_g_lock -> ill_mcast_lock
360 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
361 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
362 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
363 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
364 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
365 *
366 * IPsec scenarios
367 *
368 * ipsa_lock -> ill_g_lock -> ill_lock
369 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
370 *
371 * Trusted Solaris scenarios
372 *
373 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
374 * igsa_lock -> gcdb_lock
375 * gcgrp_rwlock -> ire_lock
376 * gcgrp_rwlock -> gcdb_lock
377 *
378 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
379 *
380 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
381 * sq_lock -> conn_lock -> QLOCK(q)
382 * ill_lock -> ft_lock -> fe_lock
383 *
384 * Routing/forwarding table locking notes:
385 *
386 * Lock acquisition order: Radix tree lock, irb_lock.
387 * Requirements:
388 * i. Walker must not hold any locks during the walker callback.
389 * ii Walker must not see a truncated tree during the walk because of any node
390 * deletion.
391 * iii Existing code assumes ire_bucket is valid if it is non-null and is used
392 * in many places in the code to walk the irb list. Thus even if all the
393 * ires in a bucket have been deleted, we still can't free the radix node
394 * until the ires have actually been inactive'd (freed).
395 *
396 * Tree traversal - Need to hold the global tree lock in read mode.
397 * Before dropping the global tree lock, need to either increment the ire_refcnt
398 * to ensure that the radix node can't be deleted.
399 *
400 * Tree add - Need to hold the global tree lock in write mode to add a
401 * radix node. To prevent the node from being deleted, increment the
402 * irb_refcnt, after the node is added to the tree. The ire itself is
403 * added later while holding the irb_lock, but not the tree lock.
404 *
405 * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
406 * All associated ires must be inactive (i.e. freed), and irb_refcnt
407 * must be zero.
408 *
409 * Walker - Increment irb_refcnt before calling the walker callback. Hold the
410 * global tree lock (read mode) for traversal.
411 *
412 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
413 * hence we will acquire irb_lock while holding ips_ire_dep_lock.
414 *
415 * IPsec notes :
416 *
417 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
418 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
419 * ip_xmit_attr_t has the
420 * information used by the IPsec code for applying the right level of
421 * protection. The information initialized by IP in the ip_xmit_attr_t
422 * is determined by the per-socket policy or global policy in the system.
423 * For inbound datagrams, the ip_recv_attr_t
424 * starts out with nothing in it. It gets filled
425 * with the right information if it goes through the AH/ESP code, which
426 * happens if the incoming packet is secure. The information initialized
427 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
428 * the policy requirements needed by per-socket policy or global policy
429 * is met or not.
430 *
431 * For fully connected sockets i.e dst, src [addr, port] is known,
432 * conn_policy_cached is set indicating that policy has been cached.
433 * conn_in_enforce_policy may or may not be set depending on whether
434 * there is a global policy match or per-socket policy match.
435 * Policy inheriting happpens in ip_policy_set once the destination is known.
436 * Once the right policy is set on the conn_t, policy cannot change for
437 * this socket. This makes life simpler for TCP (UDP ?) where
438 * re-transmissions go out with the same policy. For symmetry, policy
439 * is cached for fully connected UDP sockets also. Thus if policy is cached,
440 * it also implies that policy is latched i.e policy cannot change
441 * on these sockets. As we have the right policy on the conn, we don't
442 * have to lookup global policy for every outbound and inbound datagram
443 * and thus serving as an optimization. Note that a global policy change
444 * does not affect fully connected sockets if they have policy. If fully
445 * connected sockets did not have any policy associated with it, global
446 * policy change may affect them.
447 *
448 * IP Flow control notes:
449 * ---------------------
450 * Non-TCP streams are flow controlled by IP. The way this is accomplished
451 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
452 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
453 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
454 * functions.
455 *
456 * Per Tx ring udp flow control:
457 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
458 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
459 *
460 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
461 * To achieve best performance, outgoing traffic need to be fanned out among
462 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
463 * traffic out of the NIC and it takes a fanout hint. UDP connections pass
464 * the address of connp as fanout hint to mac_tx(). Under flow controlled
465 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
466 * cookie points to a specific Tx ring that is blocked. The cookie is used to
467 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
468 * point to drain_lists (idl_t's). These drain list will store the blocked UDP
469 * connp's. The drain list is not a single list but a configurable number of
470 * lists.
471 *
472 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
473 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
474 * which is equal to 128. This array in turn contains a pointer to idl_t[],
475 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
476 * list will point to the list of connp's that are flow controlled.
477 *
478 * --------------- ------- ------- -------
479 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
480 * | --------------- ------- ------- -------
481 * | --------------- ------- ------- -------
482 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
483 * ---------------- | --------------- ------- ------- -------
484 * |idl_tx_list[0]|->| --------------- ------- ------- -------
485 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
486 * | --------------- ------- ------- -------
487 * . . . . .
488 * | --------------- ------- ------- -------
489 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
490 * --------------- ------- ------- -------
491 * --------------- ------- ------- -------
492 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
493 * | --------------- ------- ------- -------
494 * | --------------- ------- ------- -------
495 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
496 * |idl_tx_list[1]|->| --------------- ------- ------- -------
497 * ---------------- | . . . .
498 * | --------------- ------- ------- -------
499 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
500 * --------------- ------- ------- -------
501 * .....
502 * ----------------
503 * |idl_tx_list[n]|-> ...
504 * ----------------
505 *
506 * When mac_tx() returns a cookie, the cookie is hashed into an index into
507 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
508 * to insert the conn onto. conn_drain_insert() asserts flow control for the
509 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
510 * Further, conn_blocked is set to indicate that the conn is blocked.
511 *
512 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie
513 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
514 * is again hashed to locate the appropriate idl_tx_list, which is then
515 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in
516 * the drain list and calls conn_drain_remove() to clear flow control (via
517 * calling su_txq_full() or clearing QFULL), and remove the conn from the
518 * drain list.
519 *
520 * Note that the drain list is not a single list but a (configurable) array of
521 * lists (8 elements by default). Synchronization between drain insertion and
522 * flow control wakeup is handled by using idl_txl->txl_lock, and only
523 * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
524 *
525 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
526 * On the send side, if the packet cannot be sent down to the driver by IP
527 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
528 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
529 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow
530 * control has been relieved, the blocked conns in the 0'th drain list are
531 * drained as in the non-STREAMS case.
532 *
533 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
534 * is done when the conn is inserted into the drain list (conn_drain_insert())
535 * and cleared when the conn is removed from the it (conn_drain_remove()).
536 *
537 * IPQOS notes:
538 *
539 * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
540 * and IPQoS modules. IPPF includes hooks in IP at different control points
541 * (callout positions) which direct packets to IPQoS modules for policy
542 * processing. Policies, if present, are global.
543 *
544 * The callout positions are located in the following paths:
545 * o local_in (packets destined for this host)
546 * o local_out (packets orginating from this host )
547 * o fwd_in (packets forwarded by this m/c - inbound)
548 * o fwd_out (packets forwarded by this m/c - outbound)
549 * Hooks at these callout points can be enabled/disabled using the ndd variable
550 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
551 * By default all the callout positions are enabled.
552 *
553 * Outbound (local_out)
554 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
555 *
556 * Inbound (local_in)
557 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
558 *
559 * Forwarding (in and out)
560 * Hooks are placed in ire_recv_forward_v4/v6.
561 *
562 * IP Policy Framework processing (IPPF processing)
563 * Policy processing for a packet is initiated by ip_process, which ascertains
564 * that the classifier (ipgpc) is loaded and configured, failing which the
565 * packet resumes normal processing in IP. If the clasifier is present, the
566 * packet is acted upon by one or more IPQoS modules (action instances), per
567 * filters configured in ipgpc and resumes normal IP processing thereafter.
568 * An action instance can drop a packet in course of its processing.
569 *
570 * Zones notes:
571 *
572 * The partitioning rules for networking are as follows:
573 * 1) Packets coming from a zone must have a source address belonging to that
574 * zone.
575 * 2) Packets coming from a zone can only be sent on a physical interface on
576 * which the zone has an IP address.
577 * 3) Between two zones on the same machine, packet delivery is only allowed if
578 * there's a matching route for the destination and zone in the forwarding
579 * table.
580 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
581 * different zones can bind to the same port with the wildcard address
582 * (INADDR_ANY).
583 *
584 * The granularity of interface partitioning is at the logical interface level.
585 * Therefore, every zone has its own IP addresses, and incoming packets can be
586 * attributed to a zone unambiguously. A logical interface is placed into a zone
587 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
588 * structure. Rule (1) is implemented by modifying the source address selection
589 * algorithm so that the list of eligible addresses is filtered based on the
590 * sending process zone.
591 *
592 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
593 * across all zones, depending on their type. Here is the break-up:
594 *
595 * IRE type Shared/exclusive
596 * -------- ----------------
597 * IRE_BROADCAST Exclusive
598 * IRE_DEFAULT (default routes) Shared (*)
599 * IRE_LOCAL Exclusive (x)
600 * IRE_LOOPBACK Exclusive
601 * IRE_PREFIX (net routes) Shared (*)
602 * IRE_IF_NORESOLVER (interface routes) Exclusive
603 * IRE_IF_RESOLVER (interface routes) Exclusive
604 * IRE_IF_CLONE (interface routes) Exclusive
605 * IRE_HOST (host routes) Shared (*)
606 *
607 * (*) A zone can only use a default or off-subnet route if the gateway is
608 * directly reachable from the zone, that is, if the gateway's address matches
609 * one of the zone's logical interfaces.
610 *
611 * (x) IRE_LOCAL are handled a bit differently.
612 * When ip_restrict_interzone_loopback is set (the default),
613 * ire_route_recursive restricts loopback using an IRE_LOCAL
614 * between zone to the case when L2 would have conceptually looped the packet
615 * back, i.e. the loopback which is required since neither Ethernet drivers
616 * nor Ethernet hardware loops them back. This is the case when the normal
617 * routes (ignoring IREs with different zoneids) would send out the packet on
618 * the same ill as the ill with which is IRE_LOCAL is associated.
619 *
620 * Multiple zones can share a common broadcast address; typically all zones
621 * share the 255.255.255.255 address. Incoming as well as locally originated
622 * broadcast packets must be dispatched to all the zones on the broadcast
623 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
624 * since some zones may not be on the 10.16.72/24 network. To handle this, each
625 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
626 * sent to every zone that has an IRE_BROADCAST entry for the destination
627 * address on the input ill, see ip_input_broadcast().
628 *
629 * Applications in different zones can join the same multicast group address.
630 * The same logic applies for multicast as for broadcast. ip_input_multicast
631 * dispatches packets to all zones that have members on the physical interface.
632 */
633
634 /*
635 * Squeue Fanout flags:
636 * 0: No fanout.
637 * 1: Fanout across all squeues
638 */
639 boolean_t ip_squeue_fanout = 0;
640
641 /*
642 * Maximum dups allowed per packet.
643 */
644 uint_t ip_max_frag_dups = 10;
645
646 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
647 cred_t *credp, boolean_t isv6);
648 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
649
650 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
651 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
652 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
653 ip_recv_attr_t *);
654 static void icmp_options_update(ipha_t *);
655 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *);
656 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
657 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
658 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
659 ip_recv_attr_t *);
660 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
661 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
662 ip_recv_attr_t *);
663
664 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
665 char *ip_dot_addr(ipaddr_t, char *);
666 mblk_t *ip_carve_mp(mblk_t **, ssize_t);
667 int ip_close(queue_t *, int);
668 static char *ip_dot_saddr(uchar_t *, char *);
669 static void ip_lrput(queue_t *, mblk_t *);
670 ipaddr_t ip_net_mask(ipaddr_t);
671 char *ip_nv_lookup(nv_t *, int);
672 void ip_rput(queue_t *, mblk_t *);
673 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
674 void *dummy_arg);
675 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
676 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
677 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
678 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
679 ip_stack_t *, boolean_t);
680 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
681 boolean_t);
682 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
683 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
684 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
685 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
687 ip_stack_t *ipst, boolean_t);
688 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
689 ip_stack_t *ipst, boolean_t);
690 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
691 ip_stack_t *ipst);
692 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
693 ip_stack_t *ipst);
694 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
695 ip_stack_t *ipst);
696 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
697 ip_stack_t *ipst);
698 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
699 ip_stack_t *ipst);
700 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
701 ip_stack_t *ipst);
702 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
703 ip_stack_t *ipst);
704 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
705 ip_stack_t *ipst);
706 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *);
707 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
708 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
709 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
710 int ip_snmp_set(queue_t *, int, int, uchar_t *, int);
711
712 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
713 mblk_t *);
714
715 static void conn_drain_init(ip_stack_t *);
716 static void conn_drain_fini(ip_stack_t *);
717 static void conn_drain(conn_t *connp, boolean_t closing);
718
719 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
720 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
721
722 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns);
723 static void ip_stack_shutdown(netstackid_t stackid, void *arg);
724 static void ip_stack_fini(netstackid_t stackid, void *arg);
725
726 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
727 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
728 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t,
729 const in6_addr_t *);
730
731 static int ip_squeue_switch(int);
732
733 static void *ip_kstat_init(netstackid_t, ip_stack_t *);
734 static void ip_kstat_fini(netstackid_t, kstat_t *);
735 static int ip_kstat_update(kstat_t *kp, int rw);
736 static void *icmp_kstat_init(netstackid_t);
737 static void icmp_kstat_fini(netstackid_t, kstat_t *);
738 static int icmp_kstat_update(kstat_t *kp, int rw);
739 static void *ip_kstat2_init(netstackid_t, ip_stat_t *);
740 static void ip_kstat2_fini(netstackid_t, kstat_t *);
741
742 static void ipobs_init(ip_stack_t *);
743 static void ipobs_fini(ip_stack_t *);
744
745 static int ip_tp_cpu_update(cpu_setup_t, int, void *);
746
747 ipaddr_t ip_g_all_ones = IP_HOST_MASK;
748
749 static long ip_rput_pullups;
750 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */
751
752 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
753 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
754
755 int ip_debug;
756
757 /*
758 * Multirouting/CGTP stuff
759 */
760 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */
761
762 /*
763 * IP tunables related declarations. Definitions are in ip_tunables.c
764 */
765 extern mod_prop_info_t ip_propinfo_tbl[];
766 extern int ip_propinfo_count;
767
768 /*
769 * Table of IP ioctls encoding the various properties of the ioctl and
770 * indexed based on the last byte of the ioctl command. Occasionally there
771 * is a clash, and there is more than 1 ioctl with the same last byte.
772 * In such a case 1 ioctl is encoded in the ndx table and the remaining
773 * ioctls are encoded in the misc table. An entry in the ndx table is
774 * retrieved by indexing on the last byte of the ioctl command and comparing
775 * the ioctl command with the value in the ndx table. In the event of a
776 * mismatch the misc table is then searched sequentially for the desired
777 * ioctl command.
778 *
779 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
780 */
781 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
782 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
783 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
784 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
785 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792
793 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV,
794 MISC_CMD, ip_siocaddrt, NULL },
795 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV,
796 MISC_CMD, ip_siocdelrt, NULL },
797
798 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
799 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
800 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
801 IF_CMD, ip_sioctl_get_addr, NULL },
802
803 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
804 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
805 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
806 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
807
808 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
809 IPI_PRIV | IPI_WR,
810 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
811 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
812 IPI_MODOK | IPI_GET_CMD,
813 IF_CMD, ip_sioctl_get_flags, NULL },
814
815 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
816 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
817
818 /* copyin size cannot be coded for SIOCGIFCONF */
819 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
820 MISC_CMD, ip_sioctl_get_ifconf, NULL },
821
822 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
823 IF_CMD, ip_sioctl_mtu, NULL },
824 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
825 IF_CMD, ip_sioctl_get_mtu, NULL },
826 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
827 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
828 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
829 IF_CMD, ip_sioctl_brdaddr, NULL },
830 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
831 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
832 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
833 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
834 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
835 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
836 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
837 IF_CMD, ip_sioctl_metric, NULL },
838 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
839
840 /* See 166-168 below for extended SIOC*XARP ioctls */
841 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
842 ARP_CMD, ip_sioctl_arp, NULL },
843 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
844 ARP_CMD, ip_sioctl_arp, NULL },
845 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
846 ARP_CMD, ip_sioctl_arp, NULL },
847
848 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
849 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
850 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
851 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869
870 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
871 MISC_CMD, if_unitsel, if_unitsel_restart },
872
873 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
874 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
875 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891
892 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
893 IPI_PRIV | IPI_WR | IPI_MODOK,
894 IF_CMD, ip_sioctl_sifname, NULL },
895
896 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
897 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
898 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909
910 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
911 MISC_CMD, ip_sioctl_get_ifnum, NULL },
912 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
913 IF_CMD, ip_sioctl_get_muxid, NULL },
914 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
915 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
916
917 /* Both if and lif variants share same func */
918 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
919 IF_CMD, ip_sioctl_get_lifindex, NULL },
920 /* Both if and lif variants share same func */
921 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
922 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
923
924 /* copyin size cannot be coded for SIOCGIFCONF */
925 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
926 MISC_CMD, ip_sioctl_get_ifconf, NULL },
927 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
928 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
929 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
930 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944
945 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
946 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
947 ip_sioctl_removeif_restart },
948 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
949 IPI_GET_CMD | IPI_PRIV | IPI_WR,
950 LIF_CMD, ip_sioctl_addif, NULL },
951 #define SIOCLIFADDR_NDX 112
952 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
953 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
954 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
955 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
956 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
957 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
958 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
959 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
960 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
961 IPI_PRIV | IPI_WR,
962 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
963 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
964 IPI_GET_CMD | IPI_MODOK,
965 LIF_CMD, ip_sioctl_get_flags, NULL },
966
967 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
968 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
969
970 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
971 ip_sioctl_get_lifconf, NULL },
972 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
973 LIF_CMD, ip_sioctl_mtu, NULL },
974 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
975 LIF_CMD, ip_sioctl_get_mtu, NULL },
976 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
977 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
978 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
979 LIF_CMD, ip_sioctl_brdaddr, NULL },
980 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
981 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
982 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
983 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
984 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
985 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
986 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
987 LIF_CMD, ip_sioctl_metric, NULL },
988 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
989 IPI_PRIV | IPI_WR | IPI_MODOK,
990 LIF_CMD, ip_sioctl_slifname,
991 ip_sioctl_slifname_restart },
992
993 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
994 MISC_CMD, ip_sioctl_get_lifnum, NULL },
995 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
996 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
997 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
998 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
999 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1000 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1001 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1002 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1003 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1004 LIF_CMD, ip_sioctl_token, NULL },
1005 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1006 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1007 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1008 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1009 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1010 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1011 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1012 LIF_CMD, ip_sioctl_lnkinfo, NULL },
1013
1014 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1015 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1016 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1017 LIF_CMD, ip_siocdelndp_v6, NULL },
1018 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1019 LIF_CMD, ip_siocqueryndp_v6, NULL },
1020 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1021 LIF_CMD, ip_siocsetndp_v6, NULL },
1022 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1023 MISC_CMD, ip_sioctl_tmyaddr, NULL },
1024 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1025 MISC_CMD, ip_sioctl_tonlink, NULL },
1026 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1027 MISC_CMD, ip_sioctl_tmysite, NULL },
1028 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1029 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1031 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1032 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1033 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1034 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1035
1036 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037
1038 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1039 LIF_CMD, ip_sioctl_get_binding, NULL },
1040 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1041 IPI_PRIV | IPI_WR,
1042 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1043 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1044 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1045 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1046 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1047
1048 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1049 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1050 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1051 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052
1053 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054
1055 /* These are handled in ip_sioctl_copyin_setup itself */
1056 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1057 MISC_CMD, NULL, NULL },
1058 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1059 MISC_CMD, NULL, NULL },
1060 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1061
1062 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1063 ip_sioctl_get_lifconf, NULL },
1064
1065 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1066 XARP_CMD, ip_sioctl_arp, NULL },
1067 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1068 XARP_CMD, ip_sioctl_arp, NULL },
1069 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1070 XARP_CMD, ip_sioctl_arp, NULL },
1071
1072 /* SIOCPOPSOCKFS is not handled by IP */
1073 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1074
1075 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1076 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1077 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1078 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1079 ip_sioctl_slifzone_restart },
1080 /* 172-174 are SCTP ioctls and not handled by IP */
1081 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1082 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1083 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1084 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1085 IPI_GET_CMD, LIF_CMD,
1086 ip_sioctl_get_lifusesrc, 0 },
1087 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1088 IPI_PRIV | IPI_WR,
1089 LIF_CMD, ip_sioctl_slifusesrc,
1090 NULL },
1091 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1092 ip_sioctl_get_lifsrcof, NULL },
1093 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1094 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1095 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1096 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1097 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1098 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1100 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1102 /* SIOCSENABLESDP is handled by SDP */
1103 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1104 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1105 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1106 IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1107 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1108 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1109 ip_sioctl_ilb_cmd, NULL },
1110 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1111 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1112 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1113 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1114 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1115 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1116 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1117 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1118 };
1119
1120 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1121
1122 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1123 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1124 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1125 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 { ND_GET, 0, 0, 0, NULL, NULL },
1128 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 { IP_IOCTL, 0, 0, 0, NULL, NULL },
1130 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1131 MISC_CMD, mrt_ioctl},
1132 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1133 MISC_CMD, mrt_ioctl},
1134 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1135 MISC_CMD, mrt_ioctl}
1136 };
1137
1138 int ip_misc_ioctl_count =
1139 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1140
1141 int conn_drain_nthreads; /* Number of drainers reqd. */
1142 /* Settable in /etc/system */
1143 /* Defined in ip_ire.c */
1144 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1145 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1146 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1147
1148 static nv_t ire_nv_arr[] = {
1149 { IRE_BROADCAST, "BROADCAST" },
1150 { IRE_LOCAL, "LOCAL" },
1151 { IRE_LOOPBACK, "LOOPBACK" },
1152 { IRE_DEFAULT, "DEFAULT" },
1153 { IRE_PREFIX, "PREFIX" },
1154 { IRE_IF_NORESOLVER, "IF_NORESOL" },
1155 { IRE_IF_RESOLVER, "IF_RESOLV" },
1156 { IRE_IF_CLONE, "IF_CLONE" },
1157 { IRE_HOST, "HOST" },
1158 { IRE_MULTICAST, "MULTICAST" },
1159 { IRE_NOROUTE, "NOROUTE" },
1160 { 0 }
1161 };
1162
1163 nv_t *ire_nv_tbl = ire_nv_arr;
1164
1165 /* Simple ICMP IP Header Template */
1166 static ipha_t icmp_ipha = {
1167 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1168 };
1169
1170 struct module_info ip_mod_info = {
1171 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1172 IP_MOD_LOWAT
1173 };
1174
1175 /*
1176 * Duplicate static symbols within a module confuses mdb; so we avoid the
1177 * problem by making the symbols here distinct from those in udp.c.
1178 */
1179
1180 /*
1181 * Entry points for IP as a device and as a module.
1182 * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1183 */
1184 static struct qinit iprinitv4 = {
1185 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1186 &ip_mod_info
1187 };
1188
1189 struct qinit iprinitv6 = {
1190 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1191 &ip_mod_info
1192 };
1193
1194 static struct qinit ipwinit = {
1195 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1196 &ip_mod_info
1197 };
1198
1199 static struct qinit iplrinit = {
1200 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1201 &ip_mod_info
1202 };
1203
1204 static struct qinit iplwinit = {
1205 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1206 &ip_mod_info
1207 };
1208
1209 /* For AF_INET aka /dev/ip */
1210 struct streamtab ipinfov4 = {
1211 &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1212 };
1213
1214 /* For AF_INET6 aka /dev/ip6 */
1215 struct streamtab ipinfov6 = {
1216 &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1217 };
1218
1219 #ifdef DEBUG
1220 boolean_t skip_sctp_cksum = B_FALSE;
1221 #endif
1222
1223 /*
1224 * Generate an ICMP fragmentation needed message.
1225 * When called from ip_output side a minimal ip_recv_attr_t needs to be
1226 * constructed by the caller.
1227 */
1228 void
1229 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1230 {
1231 icmph_t icmph;
1232 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
1233
1234 mp = icmp_pkt_err_ok(mp, ira);
1235 if (mp == NULL)
1236 return;
1237
1238 bzero(&icmph, sizeof (icmph_t));
1239 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1240 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1241 icmph.icmph_du_mtu = htons((uint16_t)mtu);
1242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1243 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1244
1245 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1246 }
1247
1248 /*
1249 * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1250 * If the ICMP message is consumed by IP, i.e., it should not be delivered
1251 * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1252 * Likewise, if the ICMP error is misformed (too short, etc), then it
1253 * returns NULL. The caller uses this to determine whether or not to send
1254 * to raw sockets.
1255 *
1256 * All error messages are passed to the matching transport stream.
1257 *
1258 * The following cases are handled by icmp_inbound:
1259 * 1) It needs to send a reply back and possibly delivering it
1260 * to the "interested" upper clients.
1261 * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1262 * 3) It needs to change some values in IP only.
1263 * 4) It needs to change some values in IP and upper layers e.g TCP
1264 * by delivering an error to the upper layers.
1265 *
1266 * We handle the above three cases in the context of IPsec in the
1267 * following way :
1268 *
1269 * 1) Send the reply back in the same way as the request came in.
1270 * If it came in encrypted, it goes out encrypted. If it came in
1271 * clear, it goes out in clear. Thus, this will prevent chosen
1272 * plain text attack.
1273 * 2) The client may or may not expect things to come in secure.
1274 * If it comes in secure, the policy constraints are checked
1275 * before delivering it to the upper layers. If it comes in
1276 * clear, ipsec_inbound_accept_clear will decide whether to
1277 * accept this in clear or not. In both the cases, if the returned
1278 * message (IP header + 8 bytes) that caused the icmp message has
1279 * AH/ESP headers, it is sent up to AH/ESP for validation before
1280 * sending up. If there are only 8 bytes of returned message, then
1281 * upper client will not be notified.
1282 * 3) Check with global policy to see whether it matches the constaints.
1283 * But this will be done only if icmp_accept_messages_in_clear is
1284 * zero.
1285 * 4) If we need to change both in IP and ULP, then the decision taken
1286 * while affecting the values in IP and while delivering up to TCP
1287 * should be the same.
1288 *
1289 * There are two cases.
1290 *
1291 * a) If we reject data at the IP layer (ipsec_check_global_policy()
1292 * failed), we will not deliver it to the ULP, even though they
1293 * are *willing* to accept in *clear*. This is fine as our global
1294 * disposition to icmp messages asks us reject the datagram.
1295 *
1296 * b) If we accept data at the IP layer (ipsec_check_global_policy()
1297 * succeeded or icmp_accept_messages_in_clear is 1), and not able
1298 * to deliver it to ULP (policy failed), it can lead to
1299 * consistency problems. The cases known at this time are
1300 * ICMP_DESTINATION_UNREACHABLE messages with following code
1301 * values :
1302 *
1303 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1304 * and Upper layer rejects. Then the communication will
1305 * come to a stop. This is solved by making similar decisions
1306 * at both levels. Currently, when we are unable to deliver
1307 * to the Upper Layer (due to policy failures) while IP has
1308 * adjusted dce_pmtu, the next outbound datagram would
1309 * generate a local ICMP_FRAGMENTATION_NEEDED message - which
1310 * will be with the right level of protection. Thus the right
1311 * value will be communicated even if we are not able to
1312 * communicate when we get from the wire initially. But this
1313 * assumes there would be at least one outbound datagram after
1314 * IP has adjusted its dce_pmtu value. To make things
1315 * simpler, we accept in clear after the validation of
1316 * AH/ESP headers.
1317 *
1318 * - Other ICMP ERRORS : We may not be able to deliver it to the
1319 * upper layer depending on the level of protection the upper
1320 * layer expects and the disposition in ipsec_inbound_accept_clear().
1321 * ipsec_inbound_accept_clear() decides whether a given ICMP error
1322 * should be accepted in clear when the Upper layer expects secure.
1323 * Thus the communication may get aborted by some bad ICMP
1324 * packets.
1325 */
1326 mblk_t *
1327 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1328 {
1329 icmph_t *icmph;
1330 ipha_t *ipha; /* Outer header */
1331 int ip_hdr_length; /* Outer header length */
1332 boolean_t interested;
1333 ipif_t *ipif;
1334 uint32_t ts;
1335 uint32_t *tsp;
1336 timestruc_t now;
1337 ill_t *ill = ira->ira_ill;
1338 ip_stack_t *ipst = ill->ill_ipst;
1339 zoneid_t zoneid = ira->ira_zoneid;
1340 int len_needed;
1341 mblk_t *mp_ret = NULL;
1342
1343 ipha = (ipha_t *)mp->b_rptr;
1344
1345 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1346
1347 ip_hdr_length = ira->ira_ip_hdr_length;
1348 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1349 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1351 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1352 freemsg(mp);
1353 return (NULL);
1354 }
1355 /* Last chance to get real. */
1356 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1357 if (ipha == NULL) {
1358 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1359 freemsg(mp);
1360 return (NULL);
1361 }
1362 }
1363
1364 /* The IP header will always be a multiple of four bytes */
1365 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1366 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1367 icmph->icmph_code));
1368
1369 /*
1370 * We will set "interested" to "true" if we should pass a copy to
1371 * the transport or if we handle the packet locally.
1372 */
1373 interested = B_FALSE;
1374 switch (icmph->icmph_type) {
1375 case ICMP_ECHO_REPLY:
1376 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1377 break;
1378 case ICMP_DEST_UNREACHABLE:
1379 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1380 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1381 interested = B_TRUE; /* Pass up to transport */
1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1383 break;
1384 case ICMP_SOURCE_QUENCH:
1385 interested = B_TRUE; /* Pass up to transport */
1386 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1387 break;
1388 case ICMP_REDIRECT:
1389 if (!ipst->ips_ip_ignore_redirect)
1390 interested = B_TRUE;
1391 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1392 break;
1393 case ICMP_ECHO_REQUEST:
1394 /*
1395 * Whether to respond to echo requests that come in as IP
1396 * broadcasts or as IP multicast is subject to debate
1397 * (what isn't?). We aim to please, you pick it.
1398 * Default is do it.
1399 */
1400 if (ira->ira_flags & IRAF_MULTICAST) {
1401 /* multicast: respond based on tunable */
1402 interested = ipst->ips_ip_g_resp_to_echo_mcast;
1403 } else if (ira->ira_flags & IRAF_BROADCAST) {
1404 /* broadcast: respond based on tunable */
1405 interested = ipst->ips_ip_g_resp_to_echo_bcast;
1406 } else {
1407 /* unicast: always respond */
1408 interested = B_TRUE;
1409 }
1410 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1411 if (!interested) {
1412 /* We never pass these to RAW sockets */
1413 freemsg(mp);
1414 return (NULL);
1415 }
1416
1417 /* Check db_ref to make sure we can modify the packet. */
1418 if (mp->b_datap->db_ref > 1) {
1419 mblk_t *mp1;
1420
1421 mp1 = copymsg(mp);
1422 freemsg(mp);
1423 if (!mp1) {
1424 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1425 return (NULL);
1426 }
1427 mp = mp1;
1428 ipha = (ipha_t *)mp->b_rptr;
1429 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1430 }
1431 icmph->icmph_type = ICMP_ECHO_REPLY;
1432 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1433 icmp_send_reply_v4(mp, ipha, icmph, ira);
1434 return (NULL);
1435
1436 case ICMP_ROUTER_ADVERTISEMENT:
1437 case ICMP_ROUTER_SOLICITATION:
1438 break;
1439 case ICMP_TIME_EXCEEDED:
1440 interested = B_TRUE; /* Pass up to transport */
1441 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1442 break;
1443 case ICMP_PARAM_PROBLEM:
1444 interested = B_TRUE; /* Pass up to transport */
1445 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1446 break;
1447 case ICMP_TIME_STAMP_REQUEST:
1448 /* Response to Time Stamp Requests is local policy. */
1449 if (ipst->ips_ip_g_resp_to_timestamp) {
1450 if (ira->ira_flags & IRAF_MULTIBROADCAST)
1451 interested =
1452 ipst->ips_ip_g_resp_to_timestamp_bcast;
1453 else
1454 interested = B_TRUE;
1455 }
1456 if (!interested) {
1457 /* We never pass these to RAW sockets */
1458 freemsg(mp);
1459 return (NULL);
1460 }
1461
1462 /* Make sure we have enough of the packet */
1463 len_needed = ip_hdr_length + ICMPH_SIZE +
1464 3 * sizeof (uint32_t);
1465
1466 if (mp->b_wptr - mp->b_rptr < len_needed) {
1467 ipha = ip_pullup(mp, len_needed, ira);
1468 if (ipha == NULL) {
1469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1470 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1471 mp, ill);
1472 freemsg(mp);
1473 return (NULL);
1474 }
1475 /* Refresh following the pullup. */
1476 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1477 }
1478 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1479 /* Check db_ref to make sure we can modify the packet. */
1480 if (mp->b_datap->db_ref > 1) {
1481 mblk_t *mp1;
1482
1483 mp1 = copymsg(mp);
1484 freemsg(mp);
1485 if (!mp1) {
1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1487 return (NULL);
1488 }
1489 mp = mp1;
1490 ipha = (ipha_t *)mp->b_rptr;
1491 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1492 }
1493 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1494 tsp = (uint32_t *)&icmph[1];
1495 tsp++; /* Skip past 'originate time' */
1496 /* Compute # of milliseconds since midnight */
1497 gethrestime(&now);
1498 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1499 now.tv_nsec / (NANOSEC / MILLISEC);
1500 *tsp++ = htonl(ts); /* Lay in 'receive time' */
1501 *tsp++ = htonl(ts); /* Lay in 'send time' */
1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1503 icmp_send_reply_v4(mp, ipha, icmph, ira);
1504 return (NULL);
1505
1506 case ICMP_TIME_STAMP_REPLY:
1507 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1508 break;
1509 case ICMP_INFO_REQUEST:
1510 /* Per RFC 1122 3.2.2.7, ignore this. */
1511 case ICMP_INFO_REPLY:
1512 break;
1513 case ICMP_ADDRESS_MASK_REQUEST:
1514 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1515 interested =
1516 ipst->ips_ip_respond_to_address_mask_broadcast;
1517 } else {
1518 interested = B_TRUE;
1519 }
1520 if (!interested) {
1521 /* We never pass these to RAW sockets */
1522 freemsg(mp);
1523 return (NULL);
1524 }
1525 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1526 if (mp->b_wptr - mp->b_rptr < len_needed) {
1527 ipha = ip_pullup(mp, len_needed, ira);
1528 if (ipha == NULL) {
1529 BUMP_MIB(ill->ill_ip_mib,
1530 ipIfStatsInTruncatedPkts);
1531 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1532 ill);
1533 freemsg(mp);
1534 return (NULL);
1535 }
1536 /* Refresh following the pullup. */
1537 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1538 }
1539 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1540 /* Check db_ref to make sure we can modify the packet. */
1541 if (mp->b_datap->db_ref > 1) {
1542 mblk_t *mp1;
1543
1544 mp1 = copymsg(mp);
1545 freemsg(mp);
1546 if (!mp1) {
1547 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1548 return (NULL);
1549 }
1550 mp = mp1;
1551 ipha = (ipha_t *)mp->b_rptr;
1552 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1553 }
1554 /*
1555 * Need the ipif with the mask be the same as the source
1556 * address of the mask reply. For unicast we have a specific
1557 * ipif. For multicast/broadcast we only handle onlink
1558 * senders, and use the source address to pick an ipif.
1559 */
1560 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1561 if (ipif == NULL) {
1562 /* Broadcast or multicast */
1563 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1564 if (ipif == NULL) {
1565 freemsg(mp);
1566 return (NULL);
1567 }
1568 }
1569 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1570 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1571 ipif_refrele(ipif);
1572 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1573 icmp_send_reply_v4(mp, ipha, icmph, ira);
1574 return (NULL);
1575
1576 case ICMP_ADDRESS_MASK_REPLY:
1577 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1578 break;
1579 default:
1580 interested = B_TRUE; /* Pass up to transport */
1581 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1582 break;
1583 }
1584 /*
1585 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1586 * if there isn't one.
1587 */
1588 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1589 /* If there is an ICMP client and we want one too, copy it. */
1590
1591 if (!interested) {
1592 /* Caller will deliver to RAW sockets */
1593 return (mp);
1594 }
1595 mp_ret = copymsg(mp);
1596 if (mp_ret == NULL) {
1597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1598 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1599 }
1600 } else if (!interested) {
1601 /* Neither we nor raw sockets are interested. Drop packet now */
1602 freemsg(mp);
1603 return (NULL);
1604 }
1605
1606 /*
1607 * ICMP error or redirect packet. Make sure we have enough of
1608 * the header and that db_ref == 1 since we might end up modifying
1609 * the packet.
1610 */
1611 if (mp->b_cont != NULL) {
1612 if (ip_pullup(mp, -1, ira) == NULL) {
1613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1614 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1615 mp, ill);
1616 freemsg(mp);
1617 return (mp_ret);
1618 }
1619 }
1620
1621 if (mp->b_datap->db_ref > 1) {
1622 mblk_t *mp1;
1623
1624 mp1 = copymsg(mp);
1625 if (mp1 == NULL) {
1626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1627 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1628 freemsg(mp);
1629 return (mp_ret);
1630 }
1631 freemsg(mp);
1632 mp = mp1;
1633 }
1634
1635 /*
1636 * In case mp has changed, verify the message before any further
1637 * processes.
1638 */
1639 ipha = (ipha_t *)mp->b_rptr;
1640 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1641 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1642 freemsg(mp);
1643 return (mp_ret);
1644 }
1645
1646 switch (icmph->icmph_type) {
1647 case ICMP_REDIRECT:
1648 icmp_redirect_v4(mp, ipha, icmph, ira);
1649 break;
1650 case ICMP_DEST_UNREACHABLE:
1651 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1652 /* Update DCE and adjust MTU is icmp header if needed */
1653 icmp_inbound_too_big_v4(icmph, ira);
1654 }
1655 /* FALLTHRU */
1656 default:
1657 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1658 break;
1659 }
1660 return (mp_ret);
1661 }
1662
1663 /*
1664 * Send an ICMP echo, timestamp or address mask reply.
1665 * The caller has already updated the payload part of the packet.
1666 * We handle the ICMP checksum, IP source address selection and feed
1667 * the packet into ip_output_simple.
1668 */
1669 static void
1670 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1671 ip_recv_attr_t *ira)
1672 {
1673 uint_t ip_hdr_length = ira->ira_ip_hdr_length;
1674 ill_t *ill = ira->ira_ill;
1675 ip_stack_t *ipst = ill->ill_ipst;
1676 ip_xmit_attr_t ixas;
1677
1678 /* Send out an ICMP packet */
1679 icmph->icmph_checksum = 0;
1680 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1681 /* Reset time to live. */
1682 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1683 {
1684 /* Swap source and destination addresses */
1685 ipaddr_t tmp;
1686
1687 tmp = ipha->ipha_src;
1688 ipha->ipha_src = ipha->ipha_dst;
1689 ipha->ipha_dst = tmp;
1690 }
1691 ipha->ipha_ident = 0;
1692 if (!IS_SIMPLE_IPH(ipha))
1693 icmp_options_update(ipha);
1694
1695 bzero(&ixas, sizeof (ixas));
1696 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1697 ixas.ixa_zoneid = ira->ira_zoneid;
1698 ixas.ixa_cred = kcred;
1699 ixas.ixa_cpid = NOPID;
1700 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1701 ixas.ixa_ifindex = 0;
1702 ixas.ixa_ipst = ipst;
1703 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1704
1705 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1706 /*
1707 * This packet should go out the same way as it
1708 * came in i.e in clear, independent of the IPsec policy
1709 * for transmitting packets.
1710 */
1711 ixas.ixa_flags |= IXAF_NO_IPSEC;
1712 } else {
1713 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1715 /* Note: mp already consumed and ip_drop_packet done */
1716 return;
1717 }
1718 }
1719 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1720 /*
1721 * Not one or our addresses (IRE_LOCALs), thus we let
1722 * ip_output_simple pick the source.
1723 */
1724 ipha->ipha_src = INADDR_ANY;
1725 ixas.ixa_flags |= IXAF_SET_SOURCE;
1726 }
1727 /* Should we send with DF and use dce_pmtu? */
1728 if (ipst->ips_ipv4_icmp_return_pmtu) {
1729 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1730 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1731 }
1732
1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1734
1735 (void) ip_output_simple(mp, &ixas);
1736 ixa_cleanup(&ixas);
1737 }
1738
1739 /*
1740 * Verify the ICMP messages for either for ICMP error or redirect packet.
1741 * The caller should have fully pulled up the message. If it's a redirect
1742 * packet, only basic checks on IP header will be done; otherwise, verify
1743 * the packet by looking at the included ULP header.
1744 *
1745 * Called before icmp_inbound_error_fanout_v4 is called.
1746 */
1747 static boolean_t
1748 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1749 {
1750 ill_t *ill = ira->ira_ill;
1751 int hdr_length;
1752 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
1753 conn_t *connp;
1754 ipha_t *ipha; /* Inner IP header */
1755
1756 ipha = (ipha_t *)&icmph[1];
1757 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1758 goto truncated;
1759
1760 hdr_length = IPH_HDR_LENGTH(ipha);
1761
1762 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1763 goto discard_pkt;
1764
1765 if (hdr_length < sizeof (ipha_t))
1766 goto truncated;
1767
1768 if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1769 goto truncated;
1770
1771 /*
1772 * Stop here for ICMP_REDIRECT.
1773 */
1774 if (icmph->icmph_type == ICMP_REDIRECT)
1775 return (B_TRUE);
1776
1777 /*
1778 * ICMP errors only.
1779 */
1780 switch (ipha->ipha_protocol) {
1781 case IPPROTO_UDP:
1782 /*
1783 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1784 * transport header.
1785 */
1786 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1787 mp->b_wptr)
1788 goto truncated;
1789 break;
1790 case IPPROTO_TCP: {
1791 tcpha_t *tcpha;
1792
1793 /*
1794 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1795 * transport header.
1796 */
1797 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1798 mp->b_wptr)
1799 goto truncated;
1800
1801 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1802 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1803 ipst);
1804 if (connp == NULL)
1805 goto discard_pkt;
1806
1807 if ((connp->conn_verifyicmp != NULL) &&
1808 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1809 CONN_DEC_REF(connp);
1810 goto discard_pkt;
1811 }
1812 CONN_DEC_REF(connp);
1813 break;
1814 }
1815 case IPPROTO_SCTP:
1816 /*
1817 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1818 * transport header.
1819 */
1820 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1821 mp->b_wptr)
1822 goto truncated;
1823 break;
1824 case IPPROTO_ESP:
1825 case IPPROTO_AH:
1826 break;
1827 case IPPROTO_ENCAP:
1828 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1829 mp->b_wptr)
1830 goto truncated;
1831 break;
1832 default:
1833 break;
1834 }
1835
1836 return (B_TRUE);
1837
1838 discard_pkt:
1839 /* Bogus ICMP error. */
1840 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1841 return (B_FALSE);
1842
1843 truncated:
1844 /* We pulled up everthing already. Must be truncated */
1845 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1846 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1847 return (B_FALSE);
1848 }
1849
1850 /* Table from RFC 1191 */
1851 static int icmp_frag_size_table[] =
1852 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1853
1854 /*
1855 * Process received ICMP Packet too big.
1856 * Just handles the DCE create/update, including using the above table of
1857 * PMTU guesses. The caller is responsible for validating the packet before
1858 * passing it in and also to fanout the ICMP error to any matching transport
1859 * conns. Assumes the message has been fully pulled up and verified.
1860 *
1861 * Before getting here, the caller has called icmp_inbound_verify_v4()
1862 * that should have verified with ULP to prevent undoing the changes we're
1863 * going to make to DCE. For example, TCP might have verified that the packet
1864 * which generated error is in the send window.
1865 *
1866 * In some cases modified this MTU in the ICMP header packet; the caller
1867 * should pass to the matching ULP after this returns.
1868 */
1869 static void
1870 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1871 {
1872 dce_t *dce;
1873 int old_mtu;
1874 int mtu, orig_mtu;
1875 ipaddr_t dst;
1876 boolean_t disable_pmtud;
1877 ill_t *ill = ira->ira_ill;
1878 ip_stack_t *ipst = ill->ill_ipst;
1879 uint_t hdr_length;
1880 ipha_t *ipha;
1881
1882 /* Caller already pulled up everything. */
1883 ipha = (ipha_t *)&icmph[1];
1884 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1885 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1886 ASSERT(ill != NULL);
1887
1888 hdr_length = IPH_HDR_LENGTH(ipha);
1889
1890 /*
1891 * We handle path MTU for source routed packets since the DCE
1892 * is looked up using the final destination.
1893 */
1894 dst = ip_get_dst(ipha);
1895
1896 dce = dce_lookup_and_add_v4(dst, ipst);
1897 if (dce == NULL) {
1898 /* Couldn't add a unique one - ENOMEM */
1899 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1900 ntohl(dst)));
1901 return;
1902 }
1903
1904 /* Check for MTU discovery advice as described in RFC 1191 */
1905 mtu = ntohs(icmph->icmph_du_mtu);
1906 orig_mtu = mtu;
1907 disable_pmtud = B_FALSE;
1908
1909 mutex_enter(&dce->dce_lock);
1910 if (dce->dce_flags & DCEF_PMTU)
1911 old_mtu = dce->dce_pmtu;
1912 else
1913 old_mtu = ill->ill_mtu;
1914
1915 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1916 uint32_t length;
1917 int i;
1918
1919 /*
1920 * Use the table from RFC 1191 to figure out
1921 * the next "plateau" based on the length in
1922 * the original IP packet.
1923 */
1924 length = ntohs(ipha->ipha_length);
1925 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1926 uint32_t, length);
1927 if (old_mtu <= length &&
1928 old_mtu >= length - hdr_length) {
1929 /*
1930 * Handle broken BSD 4.2 systems that
1931 * return the wrong ipha_length in ICMP
1932 * errors.
1933 */
1934 ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1935 length, old_mtu));
1936 length -= hdr_length;
1937 }
1938 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1939 if (length > icmp_frag_size_table[i])
1940 break;
1941 }
1942 if (i == A_CNT(icmp_frag_size_table)) {
1943 /* Smaller than IP_MIN_MTU! */
1944 ip1dbg(("Too big for packet size %d\n",
1945 length));
1946 disable_pmtud = B_TRUE;
1947 mtu = ipst->ips_ip_pmtu_min;
1948 } else {
1949 mtu = icmp_frag_size_table[i];
1950 ip1dbg(("Calculated mtu %d, packet size %d, "
1951 "before %d\n", mtu, length, old_mtu));
1952 if (mtu < ipst->ips_ip_pmtu_min) {
1953 mtu = ipst->ips_ip_pmtu_min;
1954 disable_pmtud = B_TRUE;
1955 }
1956 }
1957 }
1958 if (disable_pmtud)
1959 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1960 else
1961 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1962
1963 dce->dce_pmtu = MIN(old_mtu, mtu);
1964 /* Prepare to send the new max frag size for the ULP. */
1965 icmph->icmph_du_zero = 0;
1966 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu);
1967 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1968 dce, int, orig_mtu, int, mtu);
1969
1970 /* We now have a PMTU for sure */
1971 dce->dce_flags |= DCEF_PMTU;
1972 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1973 mutex_exit(&dce->dce_lock);
1974 /*
1975 * After dropping the lock the new value is visible to everyone.
1976 * Then we bump the generation number so any cached values reinspect
1977 * the dce_t.
1978 */
1979 dce_increment_generation(dce);
1980 dce_refrele(dce);
1981 }
1982
1983 /*
1984 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1985 * calls this function.
1986 */
1987 static mblk_t *
1988 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1989 {
1990 int length;
1991
1992 ASSERT(mp->b_datap->db_type == M_DATA);
1993
1994 /* icmp_inbound_v4 has already pulled up the whole error packet */
1995 ASSERT(mp->b_cont == NULL);
1996
1997 /*
1998 * The length that we want to overlay is the inner header
1999 * and what follows it.
2000 */
2001 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2002
2003 /*
2004 * Overlay the inner header and whatever follows it over the
2005 * outer header.
2006 */
2007 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2008
2009 /* Adjust for what we removed */
2010 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2011 return (mp);
2012 }
2013
2014 /*
2015 * Try to pass the ICMP message upstream in case the ULP cares.
2016 *
2017 * If the packet that caused the ICMP error is secure, we send
2018 * it to AH/ESP to make sure that the attached packet has a
2019 * valid association. ipha in the code below points to the
2020 * IP header of the packet that caused the error.
2021 *
2022 * For IPsec cases, we let the next-layer-up (which has access to
2023 * cached policy on the conn_t, or can query the SPD directly)
2024 * subtract out any IPsec overhead if they must. We therefore make no
2025 * adjustments here for IPsec overhead.
2026 *
2027 * IFN could have been generated locally or by some router.
2028 *
2029 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2030 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2031 * This happens because IP adjusted its value of MTU on an
2032 * earlier IFN message and could not tell the upper layer,
2033 * the new adjusted value of MTU e.g. Packet was encrypted
2034 * or there was not enough information to fanout to upper
2035 * layers. Thus on the next outbound datagram, ire_send_wire
2036 * generates the IFN, where IPsec processing has *not* been
2037 * done.
2038 *
2039 * Note that we retain ixa_fragsize across IPsec thus once
2040 * we have picking ixa_fragsize and entered ipsec_out_process we do
2041 * no change the fragsize even if the path MTU changes before
2042 * we reach ip_output_post_ipsec.
2043 *
2044 * In the local case, IRAF_LOOPBACK will be set indicating
2045 * that IFN was generated locally.
2046 *
2047 * ROUTER : IFN could be secure or non-secure.
2048 *
2049 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2050 * packet in error has AH/ESP headers to validate the AH/ESP
2051 * headers. AH/ESP will verify whether there is a valid SA or
2052 * not and send it back. We will fanout again if we have more
2053 * data in the packet.
2054 *
2055 * If the packet in error does not have AH/ESP, we handle it
2056 * like any other case.
2057 *
2058 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2059 * up to AH/ESP for validation. AH/ESP will verify whether there is a
2060 * valid SA or not and send it back. We will fanout again if
2061 * we have more data in the packet.
2062 *
2063 * If the packet in error does not have AH/ESP, we handle it
2064 * like any other case.
2065 *
2066 * The caller must have called icmp_inbound_verify_v4.
2067 */
2068 static void
2069 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2070 {
2071 uint16_t *up; /* Pointer to ports in ULP header */
2072 uint32_t ports; /* reversed ports for fanout */
2073 ipha_t ripha; /* With reversed addresses */
2074 ipha_t *ipha; /* Inner IP header */
2075 uint_t hdr_length; /* Inner IP header length */
2076 tcpha_t *tcpha;
2077 conn_t *connp;
2078 ill_t *ill = ira->ira_ill;
2079 ip_stack_t *ipst = ill->ill_ipst;
2080 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
2081 ill_t *rill = ira->ira_rill;
2082
2083 /* Caller already pulled up everything. */
2084 ipha = (ipha_t *)&icmph[1];
2085 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2086 ASSERT(mp->b_cont == NULL);
2087
2088 hdr_length = IPH_HDR_LENGTH(ipha);
2089 ira->ira_protocol = ipha->ipha_protocol;
2090
2091 /*
2092 * We need a separate IP header with the source and destination
2093 * addresses reversed to do fanout/classification because the ipha in
2094 * the ICMP error is in the form we sent it out.
2095 */
2096 ripha.ipha_src = ipha->ipha_dst;
2097 ripha.ipha_dst = ipha->ipha_src;
2098 ripha.ipha_protocol = ipha->ipha_protocol;
2099 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2100
2101 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2102 ripha.ipha_protocol, ntohl(ipha->ipha_src),
2103 ntohl(ipha->ipha_dst),
2104 icmph->icmph_type, icmph->icmph_code));
2105
2106 switch (ipha->ipha_protocol) {
2107 case IPPROTO_UDP:
2108 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2109
2110 /* Attempt to find a client stream based on port. */
2111 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2112 ntohs(up[0]), ntohs(up[1])));
2113
2114 /* Note that we send error to all matches. */
2115 ira->ira_flags |= IRAF_ICMP_ERROR;
2116 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2117 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2118 return;
2119
2120 case IPPROTO_TCP:
2121 /*
2122 * Find a TCP client stream for this packet.
2123 * Note that we do a reverse lookup since the header is
2124 * in the form we sent it out.
2125 */
2126 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2127 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2128 ipst);
2129 if (connp == NULL)
2130 goto discard_pkt;
2131
2132 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2133 (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2134 mp = ipsec_check_inbound_policy(mp, connp,
2135 ipha, NULL, ira);
2136 if (mp == NULL) {
2137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2138 /* Note that mp is NULL */
2139 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2140 CONN_DEC_REF(connp);
2141 return;
2142 }
2143 }
2144
2145 ira->ira_flags |= IRAF_ICMP_ERROR;
2146 ira->ira_ill = ira->ira_rill = NULL;
2147 if (IPCL_IS_TCP(connp)) {
2148 SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2149 connp->conn_recvicmp, connp, ira, SQ_FILL,
2150 SQTAG_TCP_INPUT_ICMP_ERR);
2151 } else {
2152 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2153 (connp->conn_recv)(connp, mp, NULL, ira);
2154 CONN_DEC_REF(connp);
2155 }
2156 ira->ira_ill = ill;
2157 ira->ira_rill = rill;
2158 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2159 return;
2160
2161 case IPPROTO_SCTP:
2162 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2163 /* Find a SCTP client stream for this packet. */
2164 ((uint16_t *)&ports)[0] = up[1];
2165 ((uint16_t *)&ports)[1] = up[0];
2166
2167 ira->ira_flags |= IRAF_ICMP_ERROR;
2168 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2169 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2170 return;
2171
2172 case IPPROTO_ESP:
2173 case IPPROTO_AH:
2174 if (!ipsec_loaded(ipss)) {
2175 ip_proto_not_sup(mp, ira);
2176 return;
2177 }
2178
2179 if (ipha->ipha_protocol == IPPROTO_ESP)
2180 mp = ipsecesp_icmp_error(mp, ira);
2181 else
2182 mp = ipsecah_icmp_error(mp, ira);
2183 if (mp == NULL)
2184 return;
2185
2186 /* Just in case ipsec didn't preserve the NULL b_cont */
2187 if (mp->b_cont != NULL) {
2188 if (!pullupmsg(mp, -1))
2189 goto discard_pkt;
2190 }
2191
2192 /*
2193 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2194 * correct, but we don't use them any more here.
2195 *
2196 * If succesful, the mp has been modified to not include
2197 * the ESP/AH header so we can fanout to the ULP's icmp
2198 * error handler.
2199 */
2200 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2201 goto truncated;
2202
2203 /* Verify the modified message before any further processes. */
2204 ipha = (ipha_t *)mp->b_rptr;
2205 hdr_length = IPH_HDR_LENGTH(ipha);
2206 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2207 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2208 freemsg(mp);
2209 return;
2210 }
2211
2212 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2213 return;
2214
2215 case IPPROTO_ENCAP: {
2216 /* Look for self-encapsulated packets that caused an error */
2217 ipha_t *in_ipha;
2218
2219 /*
2220 * Caller has verified that length has to be
2221 * at least the size of IP header.
2222 */
2223 ASSERT(hdr_length >= sizeof (ipha_t));
2224 /*
2225 * Check the sanity of the inner IP header like
2226 * we did for the outer header.
2227 */
2228 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2229 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2230 goto discard_pkt;
2231 }
2232 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2233 goto discard_pkt;
2234 }
2235 /* Check for Self-encapsulated tunnels */
2236 if (in_ipha->ipha_src == ipha->ipha_src &&
2237 in_ipha->ipha_dst == ipha->ipha_dst) {
2238
2239 mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2240 in_ipha);
2241 if (mp == NULL)
2242 goto discard_pkt;
2243
2244 /*
2245 * Just in case self_encap didn't preserve the NULL
2246 * b_cont
2247 */
2248 if (mp->b_cont != NULL) {
2249 if (!pullupmsg(mp, -1))
2250 goto discard_pkt;
2251 }
2252 /*
2253 * Note that ira_pktlen and ira_ip_hdr_length are no
2254 * longer correct, but we don't use them any more here.
2255 */
2256 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2257 goto truncated;
2258
2259 /*
2260 * Verify the modified message before any further
2261 * processes.
2262 */
2263 ipha = (ipha_t *)mp->b_rptr;
2264 hdr_length = IPH_HDR_LENGTH(ipha);
2265 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2266 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2267 freemsg(mp);
2268 return;
2269 }
2270
2271 /*
2272 * The packet in error is self-encapsualted.
2273 * And we are finding it further encapsulated
2274 * which we could not have possibly generated.
2275 */
2276 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2277 goto discard_pkt;
2278 }
2279 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2280 return;
2281 }
2282 /* No self-encapsulated */
2283 /* FALLTHRU */
2284 }
2285 case IPPROTO_IPV6:
2286 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2287 &ripha.ipha_dst, ipst)) != NULL) {
2288 ira->ira_flags |= IRAF_ICMP_ERROR;
2289 connp->conn_recvicmp(connp, mp, NULL, ira);
2290 CONN_DEC_REF(connp);
2291 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2292 return;
2293 }
2294 /*
2295 * No IP tunnel is interested, fallthrough and see
2296 * if a raw socket will want it.
2297 */
2298 /* FALLTHRU */
2299 default:
2300 ira->ira_flags |= IRAF_ICMP_ERROR;
2301 ip_fanout_proto_v4(mp, &ripha, ira);
2302 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2303 return;
2304 }
2305 /* NOTREACHED */
2306 discard_pkt:
2307 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2308 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2309 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2310 freemsg(mp);
2311 return;
2312
2313 truncated:
2314 /* We pulled up everthing already. Must be truncated */
2315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2316 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2317 freemsg(mp);
2318 }
2319
2320 /*
2321 * Common IP options parser.
2322 *
2323 * Setup routine: fill in *optp with options-parsing state, then
2324 * tail-call ipoptp_next to return the first option.
2325 */
2326 uint8_t
2327 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2328 {
2329 uint32_t totallen; /* total length of all options */
2330
2331 totallen = ipha->ipha_version_and_hdr_length -
2332 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2333 totallen <<= 2;
2334 optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2335 optp->ipoptp_end = optp->ipoptp_next + totallen;
2336 optp->ipoptp_flags = 0;
2337 return (ipoptp_next(optp));
2338 }
2339
2340 /* Like above but without an ipha_t */
2341 uint8_t
2342 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2343 {
2344 optp->ipoptp_next = opt;
2345 optp->ipoptp_end = optp->ipoptp_next + totallen;
2346 optp->ipoptp_flags = 0;
2347 return (ipoptp_next(optp));
2348 }
2349
2350 /*
2351 * Common IP options parser: extract next option.
2352 */
2353 uint8_t
2354 ipoptp_next(ipoptp_t *optp)
2355 {
2356 uint8_t *end = optp->ipoptp_end;
2357 uint8_t *cur = optp->ipoptp_next;
2358 uint8_t opt, len, pointer;
2359
2360 /*
2361 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2362 * has been corrupted.
2363 */
2364 ASSERT(cur <= end);
2365
2366 if (cur == end)
2367 return (IPOPT_EOL);
2368
2369 opt = cur[IPOPT_OPTVAL];
2370
2371 /*
2372 * Skip any NOP options.
2373 */
2374 while (opt == IPOPT_NOP) {
2375 cur++;
2376 if (cur == end)
2377 return (IPOPT_EOL);
2378 opt = cur[IPOPT_OPTVAL];
2379 }
2380
2381 if (opt == IPOPT_EOL)
2382 return (IPOPT_EOL);
2383
2384 /*
2385 * Option requiring a length.
2386 */
2387 if ((cur + 1) >= end) {
2388 optp->ipoptp_flags |= IPOPTP_ERROR;
2389 return (IPOPT_EOL);
2390 }
2391 len = cur[IPOPT_OLEN];
2392 if (len < 2) {
2393 optp->ipoptp_flags |= IPOPTP_ERROR;
2394 return (IPOPT_EOL);
2395 }
2396 optp->ipoptp_cur = cur;
2397 optp->ipoptp_len = len;
2398 optp->ipoptp_next = cur + len;
2399 if (cur + len > end) {
2400 optp->ipoptp_flags |= IPOPTP_ERROR;
2401 return (IPOPT_EOL);
2402 }
2403
2404 /*
2405 * For the options which require a pointer field, make sure
2406 * its there, and make sure it points to either something
2407 * inside this option, or the end of the option.
2408 */
2409 switch (opt) {
2410 case IPOPT_RR:
2411 case IPOPT_TS:
2412 case IPOPT_LSRR:
2413 case IPOPT_SSRR:
2414 if (len <= IPOPT_OFFSET) {
2415 optp->ipoptp_flags |= IPOPTP_ERROR;
2416 return (opt);
2417 }
2418 pointer = cur[IPOPT_OFFSET];
2419 if (pointer - 1 > len) {
2420 optp->ipoptp_flags |= IPOPTP_ERROR;
2421 return (opt);
2422 }
2423 break;
2424 }
2425
2426 /*
2427 * Sanity check the pointer field based on the type of the
2428 * option.
2429 */
2430 switch (opt) {
2431 case IPOPT_RR:
2432 case IPOPT_SSRR:
2433 case IPOPT_LSRR:
2434 if (pointer < IPOPT_MINOFF_SR)
2435 optp->ipoptp_flags |= IPOPTP_ERROR;
2436 break;
2437 case IPOPT_TS:
2438 if (pointer < IPOPT_MINOFF_IT)
2439 optp->ipoptp_flags |= IPOPTP_ERROR;
2440 /*
2441 * Note that the Internet Timestamp option also
2442 * contains two four bit fields (the Overflow field,
2443 * and the Flag field), which follow the pointer
2444 * field. We don't need to check that these fields
2445 * fall within the length of the option because this
2446 * was implicitely done above. We've checked that the
2447 * pointer value is at least IPOPT_MINOFF_IT, and that
2448 * it falls within the option. Since IPOPT_MINOFF_IT >
2449 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2450 */
2451 ASSERT(len > IPOPT_POS_OV_FLG);
2452 break;
2453 }
2454
2455 return (opt);
2456 }
2457
2458 /*
2459 * Use the outgoing IP header to create an IP_OPTIONS option the way
2460 * it was passed down from the application.
2461 *
2462 * This is compatible with BSD in that it returns
2463 * the reverse source route with the final destination
2464 * as the last entry. The first 4 bytes of the option
2465 * will contain the final destination.
2466 */
2467 int
2468 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2469 {
2470 ipoptp_t opts;
2471 uchar_t *opt;
2472 uint8_t optval;
2473 uint8_t optlen;
2474 uint32_t len = 0;
2475 uchar_t *buf1 = buf;
2476 uint32_t totallen;
2477 ipaddr_t dst;
2478 ip_pkt_t *ipp = &connp->conn_xmit_ipp;
2479
2480 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2481 return (0);
2482
2483 totallen = ipp->ipp_ipv4_options_len;
2484 if (totallen & 0x3)
2485 return (0);
2486
2487 buf += IP_ADDR_LEN; /* Leave room for final destination */
2488 len += IP_ADDR_LEN;
2489 bzero(buf1, IP_ADDR_LEN);
2490
2491 dst = connp->conn_faddr_v4;
2492
2493 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2494 optval != IPOPT_EOL;
2495 optval = ipoptp_next(&opts)) {
2496 int off;
2497
2498 opt = opts.ipoptp_cur;
2499 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2500 break;
2501 }
2502 optlen = opts.ipoptp_len;
2503
2504 switch (optval) {
2505 case IPOPT_SSRR:
2506 case IPOPT_LSRR:
2507
2508 /*
2509 * Insert destination as the first entry in the source
2510 * route and move down the entries on step.
2511 * The last entry gets placed at buf1.
2512 */
2513 buf[IPOPT_OPTVAL] = optval;
2514 buf[IPOPT_OLEN] = optlen;
2515 buf[IPOPT_OFFSET] = optlen;
2516
2517 off = optlen - IP_ADDR_LEN;
2518 if (off < 0) {
2519 /* No entries in source route */
2520 break;
2521 }
2522 /* Last entry in source route if not already set */
2523 if (dst == INADDR_ANY)
2524 bcopy(opt + off, buf1, IP_ADDR_LEN);
2525 off -= IP_ADDR_LEN;
2526
2527 while (off > 0) {
2528 bcopy(opt + off,
2529 buf + off + IP_ADDR_LEN,
2530 IP_ADDR_LEN);
2531 off -= IP_ADDR_LEN;
2532 }
2533 /* ipha_dst into first slot */
2534 bcopy(&dst, buf + off + IP_ADDR_LEN,
2535 IP_ADDR_LEN);
2536 buf += optlen;
2537 len += optlen;
2538 break;
2539
2540 default:
2541 bcopy(opt, buf, optlen);
2542 buf += optlen;
2543 len += optlen;
2544 break;
2545 }
2546 }
2547 done:
2548 /* Pad the resulting options */
2549 while (len & 0x3) {
2550 *buf++ = IPOPT_EOL;
2551 len++;
2552 }
2553 return (len);
2554 }
2555
2556 /*
2557 * Update any record route or timestamp options to include this host.
2558 * Reverse any source route option.
2559 * This routine assumes that the options are well formed i.e. that they
2560 * have already been checked.
2561 */
2562 static void
2563 icmp_options_update(ipha_t *ipha)
2564 {
2565 ipoptp_t opts;
2566 uchar_t *opt;
2567 uint8_t optval;
2568 ipaddr_t src; /* Our local address */
2569 ipaddr_t dst;
2570
2571 ip2dbg(("icmp_options_update\n"));
2572 src = ipha->ipha_src;
2573 dst = ipha->ipha_dst;
2574
2575 for (optval = ipoptp_first(&opts, ipha);
2576 optval != IPOPT_EOL;
2577 optval = ipoptp_next(&opts)) {
2578 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2579 opt = opts.ipoptp_cur;
2580 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2581 optval, opts.ipoptp_len));
2582 switch (optval) {
2583 int off1, off2;
2584 case IPOPT_SSRR:
2585 case IPOPT_LSRR:
2586 /*
2587 * Reverse the source route. The first entry
2588 * should be the next to last one in the current
2589 * source route (the last entry is our address).
2590 * The last entry should be the final destination.
2591 */
2592 off1 = IPOPT_MINOFF_SR - 1;
2593 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2594 if (off2 < 0) {
2595 /* No entries in source route */
2596 ip1dbg((
2597 "icmp_options_update: bad src route\n"));
2598 break;
2599 }
2600 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2601 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2602 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2603 off2 -= IP_ADDR_LEN;
2604
2605 while (off1 < off2) {
2606 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2607 bcopy((char *)opt + off2, (char *)opt + off1,
2608 IP_ADDR_LEN);
2609 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2610 off1 += IP_ADDR_LEN;
2611 off2 -= IP_ADDR_LEN;
2612 }
2613 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2614 break;
2615 }
2616 }
2617 }
2618
2619 /*
2620 * Process received ICMP Redirect messages.
2621 * Assumes the caller has verified that the headers are in the pulled up mblk.
2622 * Consumes mp.
2623 */
2624 static void
2625 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2626 {
2627 ire_t *ire, *nire;
2628 ire_t *prev_ire;
2629 ipaddr_t src, dst, gateway;
2630 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2631 ipha_t *inner_ipha; /* Inner IP header */
2632
2633 /* Caller already pulled up everything. */
2634 inner_ipha = (ipha_t *)&icmph[1];
2635 src = ipha->ipha_src;
2636 dst = inner_ipha->ipha_dst;
2637 gateway = icmph->icmph_rd_gateway;
2638 /* Make sure the new gateway is reachable somehow. */
2639 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2640 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2641 /*
2642 * Make sure we had a route for the dest in question and that
2643 * that route was pointing to the old gateway (the source of the
2644 * redirect packet.)
2645 * We do longest match and then compare ire_gateway_addr below.
2646 */
2647 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2648 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2649 /*
2650 * Check that
2651 * the redirect was not from ourselves
2652 * the new gateway and the old gateway are directly reachable
2653 */
2654 if (prev_ire == NULL || ire == NULL ||
2655 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2656 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2657 !(ire->ire_type & IRE_IF_ALL) ||
2658 prev_ire->ire_gateway_addr != src) {
2659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2660 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2661 freemsg(mp);
2662 if (ire != NULL)
2663 ire_refrele(ire);
2664 if (prev_ire != NULL)
2665 ire_refrele(prev_ire);
2666 return;
2667 }
2668
2669 ire_refrele(prev_ire);
2670 ire_refrele(ire);
2671
2672 /*
2673 * TODO: more precise handling for cases 0, 2, 3, the latter two
2674 * require TOS routing
2675 */
2676 switch (icmph->icmph_code) {
2677 case 0:
2678 case 1:
2679 /* TODO: TOS specificity for cases 2 and 3 */
2680 case 2:
2681 case 3:
2682 break;
2683 default:
2684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2685 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2686 freemsg(mp);
2687 return;
2688 }
2689 /*
2690 * Create a Route Association. This will allow us to remember that
2691 * someone we believe told us to use the particular gateway.
2692 */
2693 ire = ire_create(
2694 (uchar_t *)&dst, /* dest addr */
2695 (uchar_t *)&ip_g_all_ones, /* mask */
2696 (uchar_t *)&gateway, /* gateway addr */
2697 IRE_HOST,
2698 NULL, /* ill */
2699 ALL_ZONES,
2700 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2701 NULL, /* tsol_gc_t */
2702 ipst);
2703
2704 if (ire == NULL) {
2705 freemsg(mp);
2706 return;
2707 }
2708 nire = ire_add(ire);
2709 /* Check if it was a duplicate entry */
2710 if (nire != NULL && nire != ire) {
2711 ASSERT(nire->ire_identical_ref > 1);
2712 ire_delete(nire);
2713 ire_refrele(nire);
2714 nire = NULL;
2715 }
2716 ire = nire;
2717 if (ire != NULL) {
2718 ire_refrele(ire); /* Held in ire_add */
2719
2720 /* tell routing sockets that we received a redirect */
2721 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2722 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2723 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2724 }
2725
2726 /*
2727 * Delete any existing IRE_HOST type redirect ires for this destination.
2728 * This together with the added IRE has the effect of
2729 * modifying an existing redirect.
2730 */
2731 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2732 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2733 if (prev_ire != NULL) {
2734 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2735 ire_delete(prev_ire);
2736 ire_refrele(prev_ire);
2737 }
2738
2739 freemsg(mp);
2740 }
2741
2742 /*
2743 * Generate an ICMP parameter problem message.
2744 * When called from ip_output side a minimal ip_recv_attr_t needs to be
2745 * constructed by the caller.
2746 */
2747 static void
2748 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2749 {
2750 icmph_t icmph;
2751 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2752
2753 mp = icmp_pkt_err_ok(mp, ira);
2754 if (mp == NULL)
2755 return;
2756
2757 bzero(&icmph, sizeof (icmph_t));
2758 icmph.icmph_type = ICMP_PARAM_PROBLEM;
2759 icmph.icmph_pp_ptr = ptr;
2760 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2761 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2762 }
2763
2764 /*
2765 * Build and ship an IPv4 ICMP message using the packet data in mp, and
2766 * the ICMP header pointed to by "stuff". (May be called as writer.)
2767 * Note: assumes that icmp_pkt_err_ok has been called to verify that
2768 * an icmp error packet can be sent.
2769 * Assigns an appropriate source address to the packet. If ipha_dst is
2770 * one of our addresses use it for source. Otherwise let ip_output_simple
2771 * pick the source address.
2772 */
2773 static void
2774 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2775 {
2776 ipaddr_t dst;
2777 icmph_t *icmph;
2778 ipha_t *ipha;
2779 uint_t len_needed;
2780 size_t msg_len;
2781 mblk_t *mp1;
2782 ipaddr_t src;
2783 ire_t *ire;
2784 ip_xmit_attr_t ixas;
2785 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2786
2787 ipha = (ipha_t *)mp->b_rptr;
2788
2789 bzero(&ixas, sizeof (ixas));
2790 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2791 ixas.ixa_zoneid = ira->ira_zoneid;
2792 ixas.ixa_ifindex = 0;
2793 ixas.ixa_ipst = ipst;
2794 ixas.ixa_cred = kcred;
2795 ixas.ixa_cpid = NOPID;
2796 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2797 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2798
2799 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2800 /*
2801 * Apply IPsec based on how IPsec was applied to
2802 * the packet that had the error.
2803 *
2804 * If it was an outbound packet that caused the ICMP
2805 * error, then the caller will have setup the IRA
2806 * appropriately.
2807 */
2808 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2809 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2810 /* Note: mp already consumed and ip_drop_packet done */
2811 return;
2812 }
2813 } else {
2814 /*
2815 * This is in clear. The icmp message we are building
2816 * here should go out in clear, independent of our policy.
2817 */
2818 ixas.ixa_flags |= IXAF_NO_IPSEC;
2819 }
2820
2821 /* Remember our eventual destination */
2822 dst = ipha->ipha_src;
2823
2824 /*
2825 * If the packet was for one of our unicast addresses, make
2826 * sure we respond with that as the source. Otherwise
2827 * have ip_output_simple pick the source address.
2828 */
2829 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2830 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2831 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2832 if (ire != NULL) {
2833 ire_refrele(ire);
2834 src = ipha->ipha_dst;
2835 } else {
2836 src = INADDR_ANY;
2837 ixas.ixa_flags |= IXAF_SET_SOURCE;
2838 }
2839
2840 /*
2841 * Check if we can send back more then 8 bytes in addition to
2842 * the IP header. We try to send 64 bytes of data and the internal
2843 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2844 */
2845 len_needed = IPH_HDR_LENGTH(ipha);
2846 if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2847 ipha->ipha_protocol == IPPROTO_IPV6) {
2848 if (!pullupmsg(mp, -1)) {
2849 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2850 ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2851 freemsg(mp);
2852 return;
2853 }
2854 ipha = (ipha_t *)mp->b_rptr;
2855
2856 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2857 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2858 len_needed));
2859 } else {
2860 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2861
2862 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2863 len_needed += ip_hdr_length_v6(mp, ip6h);
2864 }
2865 }
2866 len_needed += ipst->ips_ip_icmp_return;
2867 msg_len = msgdsize(mp);
2868 if (msg_len > len_needed) {
2869 (void) adjmsg(mp, len_needed - msg_len);
2870 msg_len = len_needed;
2871 }
2872 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2873 if (mp1 == NULL) {
2874 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2875 freemsg(mp);
2876 return;
2877 }
2878 mp1->b_cont = mp;
2879 mp = mp1;
2880
2881 /*
2882 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2883 * node generates be accepted in peace by all on-host destinations.
2884 * If we do NOT assume that all on-host destinations trust
2885 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2886 * (Look for IXAF_TRUSTED_ICMP).
2887 */
2888 ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2889
2890 ipha = (ipha_t *)mp->b_rptr;
2891 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2892 *ipha = icmp_ipha;
2893 ipha->ipha_src = src;
2894 ipha->ipha_dst = dst;
2895 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2896 msg_len += sizeof (icmp_ipha) + len;
2897 if (msg_len > IP_MAXPACKET) {
2898 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2899 msg_len = IP_MAXPACKET;
2900 }
2901 ipha->ipha_length = htons((uint16_t)msg_len);
2902 icmph = (icmph_t *)&ipha[1];
2903 bcopy(stuff, icmph, len);
2904 icmph->icmph_checksum = 0;
2905 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2906 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2907
2908 (void) ip_output_simple(mp, &ixas);
2909 ixa_cleanup(&ixas);
2910 }
2911
2912 /*
2913 * Determine if an ICMP error packet can be sent given the rate limit.
2914 * The limit consists of an average frequency (icmp_pkt_err_interval measured
2915 * in milliseconds) and a burst size. Burst size number of packets can
2916 * be sent arbitrarely closely spaced.
2917 * The state is tracked using two variables to implement an approximate
2918 * token bucket filter:
2919 * icmp_pkt_err_last - lbolt value when the last burst started
2920 * icmp_pkt_err_sent - number of packets sent in current burst
2921 */
2922 boolean_t
2923 icmp_err_rate_limit(ip_stack_t *ipst)
2924 {
2925 clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2926 uint_t refilled; /* Number of packets refilled in tbf since last */
2927 /* Guard against changes by loading into local variable */
2928 uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2929
2930 if (err_interval == 0)
2931 return (B_FALSE);
2932
2933 if (ipst->ips_icmp_pkt_err_last > now) {
2934 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2935 ipst->ips_icmp_pkt_err_last = 0;
2936 ipst->ips_icmp_pkt_err_sent = 0;
2937 }
2938 /*
2939 * If we are in a burst update the token bucket filter.
2940 * Update the "last" time to be close to "now" but make sure
2941 * we don't loose precision.
2942 */
2943 if (ipst->ips_icmp_pkt_err_sent != 0) {
2944 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2945 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2946 ipst->ips_icmp_pkt_err_sent = 0;
2947 } else {
2948 ipst->ips_icmp_pkt_err_sent -= refilled;
2949 ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2950 }
2951 }
2952 if (ipst->ips_icmp_pkt_err_sent == 0) {
2953 /* Start of new burst */
2954 ipst->ips_icmp_pkt_err_last = now;
2955 }
2956 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2957 ipst->ips_icmp_pkt_err_sent++;
2958 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2959 ipst->ips_icmp_pkt_err_sent));
2960 return (B_FALSE);
2961 }
2962 ip1dbg(("icmp_err_rate_limit: dropped\n"));
2963 return (B_TRUE);
2964 }
2965
2966 /*
2967 * Check if it is ok to send an IPv4 ICMP error packet in
2968 * response to the IPv4 packet in mp.
2969 * Free the message and return null if no
2970 * ICMP error packet should be sent.
2971 */
2972 static mblk_t *
2973 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2974 {
2975 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2976 icmph_t *icmph;
2977 ipha_t *ipha;
2978 uint_t len_needed;
2979
2980 if (!mp)
2981 return (NULL);
2982 ipha = (ipha_t *)mp->b_rptr;
2983 if (ip_csum_hdr(ipha)) {
2984 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2985 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2986 freemsg(mp);
2987 return (NULL);
2988 }
2989 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2990 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2991 CLASSD(ipha->ipha_dst) ||
2992 CLASSD(ipha->ipha_src) ||
2993 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2994 /* Note: only errors to the fragment with offset 0 */
2995 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2996 freemsg(mp);
2997 return (NULL);
2998 }
2999 if (ipha->ipha_protocol == IPPROTO_ICMP) {
3000 /*
3001 * Check the ICMP type. RFC 1122 sez: don't send ICMP
3002 * errors in response to any ICMP errors.
3003 */
3004 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3005 if (mp->b_wptr - mp->b_rptr < len_needed) {
3006 if (!pullupmsg(mp, len_needed)) {
3007 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3008 freemsg(mp);
3009 return (NULL);
3010 }
3011 ipha = (ipha_t *)mp->b_rptr;
3012 }
3013 icmph = (icmph_t *)
3014 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3015 switch (icmph->icmph_type) {
3016 case ICMP_DEST_UNREACHABLE:
3017 case ICMP_SOURCE_QUENCH:
3018 case ICMP_TIME_EXCEEDED:
3019 case ICMP_PARAM_PROBLEM:
3020 case ICMP_REDIRECT:
3021 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3022 freemsg(mp);
3023 return (NULL);
3024 default:
3025 break;
3026 }
3027 }
3028 /*
3029 * If this is a labeled system, then check to see if we're allowed to
3030 * send a response to this particular sender. If not, then just drop.
3031 */
3032 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3033 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3034 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3035 freemsg(mp);
3036 return (NULL);
3037 }
3038 if (icmp_err_rate_limit(ipst)) {
3039 /*
3040 * Only send ICMP error packets every so often.
3041 * This should be done on a per port/source basis,
3042 * but for now this will suffice.
3043 */
3044 freemsg(mp);
3045 return (NULL);
3046 }
3047 return (mp);
3048 }
3049
3050 /*
3051 * Called when a packet was sent out the same link that it arrived on.
3052 * Check if it is ok to send a redirect and then send it.
3053 */
3054 void
3055 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3056 ip_recv_attr_t *ira)
3057 {
3058 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3059 ipaddr_t src, nhop;
3060 mblk_t *mp1;
3061 ire_t *nhop_ire;
3062
3063 /*
3064 * Check the source address to see if it originated
3065 * on the same logical subnet it is going back out on.
3066 * If so, we should be able to send it a redirect.
3067 * Avoid sending a redirect if the destination
3068 * is directly connected (i.e., we matched an IRE_ONLINK),
3069 * or if the packet was source routed out this interface.
3070 *
3071 * We avoid sending a redirect if the
3072 * destination is directly connected
3073 * because it is possible that multiple
3074 * IP subnets may have been configured on
3075 * the link, and the source may not
3076 * be on the same subnet as ip destination,
3077 * even though they are on the same
3078 * physical link.
3079 */
3080 if ((ire->ire_type & IRE_ONLINK) ||
3081 ip_source_routed(ipha, ipst))
3082 return;
3083
3084 nhop_ire = ire_nexthop(ire);
3085 if (nhop_ire == NULL)
3086 return;
3087
3088 nhop = nhop_ire->ire_addr;
3089
3090 if (nhop_ire->ire_type & IRE_IF_CLONE) {
3091 ire_t *ire2;
3092
3093 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3094 mutex_enter(&nhop_ire->ire_lock);
3095 ire2 = nhop_ire->ire_dep_parent;
3096 if (ire2 != NULL)
3097 ire_refhold(ire2);
3098 mutex_exit(&nhop_ire->ire_lock);
3099 ire_refrele(nhop_ire);
3100 nhop_ire = ire2;
3101 }
3102 if (nhop_ire == NULL)
3103 return;
3104
3105 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3106
3107 src = ipha->ipha_src;
3108
3109 /*
3110 * We look at the interface ire for the nexthop,
3111 * to see if ipha_src is in the same subnet
3112 * as the nexthop.
3113 */
3114 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3115 /*
3116 * The source is directly connected.
3117 */
3118 mp1 = copymsg(mp);
3119 if (mp1 != NULL) {
3120 icmp_send_redirect(mp1, nhop, ira);
3121 }
3122 }
3123 ire_refrele(nhop_ire);
3124 }
3125
3126 /*
3127 * Generate an ICMP redirect message.
3128 */
3129 static void
3130 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3131 {
3132 icmph_t icmph;
3133 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3134
3135 mp = icmp_pkt_err_ok(mp, ira);
3136 if (mp == NULL)
3137 return;
3138
3139 bzero(&icmph, sizeof (icmph_t));
3140 icmph.icmph_type = ICMP_REDIRECT;
3141 icmph.icmph_code = 1;
3142 icmph.icmph_rd_gateway = gateway;
3143 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3144 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3145 }
3146
3147 /*
3148 * Generate an ICMP time exceeded message.
3149 */
3150 void
3151 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3152 {
3153 icmph_t icmph;
3154 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3155
3156 mp = icmp_pkt_err_ok(mp, ira);
3157 if (mp == NULL)
3158 return;
3159
3160 bzero(&icmph, sizeof (icmph_t));
3161 icmph.icmph_type = ICMP_TIME_EXCEEDED;
3162 icmph.icmph_code = code;
3163 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3164 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3165 }
3166
3167 /*
3168 * Generate an ICMP unreachable message.
3169 * When called from ip_output side a minimal ip_recv_attr_t needs to be
3170 * constructed by the caller.
3171 */
3172 void
3173 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3174 {
3175 icmph_t icmph;
3176 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3177
3178 mp = icmp_pkt_err_ok(mp, ira);
3179 if (mp == NULL)
3180 return;
3181
3182 bzero(&icmph, sizeof (icmph_t));
3183 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3184 icmph.icmph_code = code;
3185 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3186 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3187 }
3188
3189 /*
3190 * Latch in the IPsec state for a stream based the policy in the listener
3191 * and the actions in the ip_recv_attr_t.
3192 * Called directly from TCP and SCTP.
3193 */
3194 boolean_t
3195 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3196 {
3197 ASSERT(lconnp->conn_policy != NULL);
3198 ASSERT(connp->conn_policy == NULL);
3199
3200 IPPH_REFHOLD(lconnp->conn_policy);
3201 connp->conn_policy = lconnp->conn_policy;
3202
3203 if (ira->ira_ipsec_action != NULL) {
3204 if (connp->conn_latch == NULL) {
3205 connp->conn_latch = iplatch_create();
3206 if (connp->conn_latch == NULL)
3207 return (B_FALSE);
3208 }
3209 ipsec_latch_inbound(connp, ira);
3210 }
3211 return (B_TRUE);
3212 }
3213
3214 /*
3215 * Verify whether or not the IP address is a valid local address.
3216 * Could be a unicast, including one for a down interface.
3217 * If allow_mcbc then a multicast or broadcast address is also
3218 * acceptable.
3219 *
3220 * In the case of a broadcast/multicast address, however, the
3221 * upper protocol is expected to reset the src address
3222 * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3223 * no packets are emitted with broadcast/multicast address as
3224 * source address (that violates hosts requirements RFC 1122)
3225 * The addresses valid for bind are:
3226 * (1) - INADDR_ANY (0)
3227 * (2) - IP address of an UP interface
3228 * (3) - IP address of a DOWN interface
3229 * (4) - valid local IP broadcast addresses. In this case
3230 * the conn will only receive packets destined to
3231 * the specified broadcast address.
3232 * (5) - a multicast address. In this case
3233 * the conn will only receive packets destined to
3234 * the specified multicast address. Note: the
3235 * application still has to issue an
3236 * IP_ADD_MEMBERSHIP socket option.
3237 *
3238 * In all the above cases, the bound address must be valid in the current zone.
3239 * When the address is loopback, multicast or broadcast, there might be many
3240 * matching IREs so bind has to look up based on the zone.
3241 */
3242 ip_laddr_t
3243 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3244 ip_stack_t *ipst, boolean_t allow_mcbc)
3245 {
3246 ire_t *src_ire;
3247
3248 ASSERT(src_addr != INADDR_ANY);
3249
3250 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3251 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3252
3253 /*
3254 * If an address other than in6addr_any is requested,
3255 * we verify that it is a valid address for bind
3256 * Note: Following code is in if-else-if form for
3257 * readability compared to a condition check.
3258 */
3259 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3260 /*
3261 * (2) Bind to address of local UP interface
3262 */
3263 ire_refrele(src_ire);
3264 return (IPVL_UNICAST_UP);
3265 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3266 /*
3267 * (4) Bind to broadcast address
3268 */
3269 ire_refrele(src_ire);
3270 if (allow_mcbc)
3271 return (IPVL_BCAST);
3272 else
3273 return (IPVL_BAD);
3274 } else if (CLASSD(src_addr)) {
3275 /* (5) bind to multicast address. */
3276 if (src_ire != NULL)
3277 ire_refrele(src_ire);
3278
3279 if (allow_mcbc)
3280 return (IPVL_MCAST);
3281 else
3282 return (IPVL_BAD);
3283 } else {
3284 ipif_t *ipif;
3285
3286 /*
3287 * (3) Bind to address of local DOWN interface?
3288 * (ipif_lookup_addr() looks up all interfaces
3289 * but we do not get here for UP interfaces
3290 * - case (2) above)
3291 */
3292 if (src_ire != NULL)
3293 ire_refrele(src_ire);
3294
3295 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3296 if (ipif == NULL)
3297 return (IPVL_BAD);
3298
3299 /* Not a useful source? */
3300 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3301 ipif_refrele(ipif);
3302 return (IPVL_BAD);
3303 }
3304 ipif_refrele(ipif);
3305 return (IPVL_UNICAST_DOWN);
3306 }
3307 }
3308
3309 /*
3310 * Insert in the bind fanout for IPv4 and IPv6.
3311 * The caller should already have used ip_laddr_verify_v*() before calling
3312 * this.
3313 */
3314 int
3315 ip_laddr_fanout_insert(conn_t *connp)
3316 {
3317 int error;
3318
3319 /*
3320 * Allow setting new policies. For example, disconnects result
3321 * in us being called. As we would have set conn_policy_cached
3322 * to B_TRUE before, we should set it to B_FALSE, so that policy
3323 * can change after the disconnect.
3324 */
3325 connp->conn_policy_cached = B_FALSE;
3326
3327 error = ipcl_bind_insert(connp);
3328 if (error != 0) {
3329 if (connp->conn_anon_port) {
3330 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3331 connp->conn_mlp_type, connp->conn_proto,
3332 ntohs(connp->conn_lport), B_FALSE);
3333 }
3334 connp->conn_mlp_type = mlptSingle;
3335 }
3336 return (error);
3337 }
3338
3339 /*
3340 * Verify that both the source and destination addresses are valid. If
3341 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3342 * i.e. have no route to it. Protocols like TCP want to verify destination
3343 * reachability, while tunnels do not.
3344 *
3345 * Determine the route, the interface, and (optionally) the source address
3346 * to use to reach a given destination.
3347 * Note that we allow connect to broadcast and multicast addresses when
3348 * IPDF_ALLOW_MCBC is set.
3349 * first_hop and dst_addr are normally the same, but if source routing
3350 * they will differ; in that case the first_hop is what we'll use for the
3351 * routing lookup but the dce and label checks will be done on dst_addr,
3352 *
3353 * If uinfo is set, then we fill in the best available information
3354 * we have for the destination. This is based on (in priority order) any
3355 * metrics and path MTU stored in a dce_t, route metrics, and finally the
3356 * ill_mtu/ill_mc_mtu.
3357 *
3358 * Tsol note: If we have a source route then dst_addr != firsthop. But we
3359 * always do the label check on dst_addr.
3360 */
3361 int
3362 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3363 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3364 {
3365 ire_t *ire = NULL;
3366 int error = 0;
3367 ipaddr_t setsrc; /* RTF_SETSRC */
3368 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */
3369 ip_stack_t *ipst = ixa->ixa_ipst;
3370 dce_t *dce;
3371 uint_t pmtu;
3372 uint_t generation;
3373 nce_t *nce;
3374 ill_t *ill = NULL;
3375 boolean_t multirt = B_FALSE;
3376
3377 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3378
3379 /*
3380 * We never send to zero; the ULPs map it to the loopback address.
3381 * We can't allow it since we use zero to mean unitialized in some
3382 * places.
3383 */
3384 ASSERT(dst_addr != INADDR_ANY);
3385
3386 if (is_system_labeled()) {
3387 ts_label_t *tsl = NULL;
3388
3389 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3390 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3391 if (error != 0)
3392 return (error);
3393 if (tsl != NULL) {
3394 /* Update the label */
3395 ip_xmit_attr_replace_tsl(ixa, tsl);
3396 }
3397 }
3398
3399 setsrc = INADDR_ANY;
3400 /*
3401 * Select a route; For IPMP interfaces, we would only select
3402 * a "hidden" route (i.e., going through a specific under_ill)
3403 * if ixa_ifindex has been specified.
3404 */
3405 ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3406 &generation, &setsrc, &error, &multirt);
3407 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */
3408 if (error != 0)
3409 goto bad_addr;
3410
3411 /*
3412 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3413 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3414 * Otherwise the destination needn't be reachable.
3415 *
3416 * If we match on a reject or black hole, then we've got a
3417 * local failure. May as well fail out the connect() attempt,
3418 * since it's never going to succeed.
3419 */
3420 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3421 /*
3422 * If we're verifying destination reachability, we always want
3423 * to complain here.
3424 *
3425 * If we're not verifying destination reachability but the
3426 * destination has a route, we still want to fail on the
3427 * temporary address and broadcast address tests.
3428 *
3429 * In both cases do we let the code continue so some reasonable
3430 * information is returned to the caller. That enables the
3431 * caller to use (and even cache) the IRE. conn_ip_ouput will
3432 * use the generation mismatch path to check for the unreachable
3433 * case thereby avoiding any specific check in the main path.
3434 */
3435 ASSERT(generation == IRE_GENERATION_VERIFY);
3436 if (flags & IPDF_VERIFY_DST) {
3437 /*
3438 * Set errno but continue to set up ixa_ire to be
3439 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3440 * That allows callers to use ip_output to get an
3441 * ICMP error back.
3442 */
3443 if (!(ire->ire_type & IRE_HOST))
3444 error = ENETUNREACH;
3445 else
3446 error = EHOSTUNREACH;
3447 }
3448 }
3449
3450 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3451 !(flags & IPDF_ALLOW_MCBC)) {
3452 ire_refrele(ire);
3453 ire = ire_reject(ipst, B_FALSE);
3454 generation = IRE_GENERATION_VERIFY;
3455 error = ENETUNREACH;
3456 }
3457
3458 /* Cache things */
3459 if (ixa->ixa_ire != NULL)
3460 ire_refrele_notr(ixa->ixa_ire);
3461 #ifdef DEBUG
3462 ire_refhold_notr(ire);
3463 ire_refrele(ire);
3464 #endif
3465 ixa->ixa_ire = ire;
3466 ixa->ixa_ire_generation = generation;
3467
3468 /*
3469 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3470 * since some callers will send a packet to conn_ip_output() even if
3471 * there's an error.
3472 */
3473 if (flags & IPDF_UNIQUE_DCE) {
3474 /* Fallback to the default dce if allocation fails */
3475 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3476 if (dce != NULL)
3477 generation = dce->dce_generation;
3478 else
3479 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3480 } else {
3481 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3482 }
3483 ASSERT(dce != NULL);
3484 if (ixa->ixa_dce != NULL)
3485 dce_refrele_notr(ixa->ixa_dce);
3486 #ifdef DEBUG
3487 dce_refhold_notr(dce);
3488 dce_refrele(dce);
3489 #endif
3490 ixa->ixa_dce = dce;
3491 ixa->ixa_dce_generation = generation;
3492
3493 /*
3494 * For multicast with multirt we have a flag passed back from
3495 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3496 * possible multicast address.
3497 * We also need a flag for multicast since we can't check
3498 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3499 */
3500 if (multirt) {
3501 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3502 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3503 } else {
3504 ixa->ixa_postfragfn = ire->ire_postfragfn;
3505 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3506 }
3507 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3508 /* Get an nce to cache. */
3509 nce = ire_to_nce(ire, firsthop, NULL);
3510 if (nce == NULL) {
3511 /* Allocation failure? */
3512 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3513 } else {
3514 if (ixa->ixa_nce != NULL)
3515 nce_refrele(ixa->ixa_nce);
3516 ixa->ixa_nce = nce;
3517 }
3518 }
3519
3520 /*
3521 * If the source address is a loopback address, the
3522 * destination had best be local or multicast.
3523 * If we are sending to an IRE_LOCAL using a loopback source then
3524 * it had better be the same zoneid.
3525 */
3526 if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3527 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3528 ire = NULL; /* Stored in ixa_ire */
3529 error = EADDRNOTAVAIL;
3530 goto bad_addr;
3531 }
3532 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3533 ire = NULL; /* Stored in ixa_ire */
3534 error = EADDRNOTAVAIL;
3535 goto bad_addr;
3536 }
3537 }
3538 if (ire->ire_type & IRE_BROADCAST) {
3539 /*
3540 * If the ULP didn't have a specified source, then we
3541 * make sure we reselect the source when sending
3542 * broadcasts out different interfaces.
3543 */
3544 if (flags & IPDF_SELECT_SRC)
3545 ixa->ixa_flags |= IXAF_SET_SOURCE;
3546 else
3547 ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3548 }
3549
3550 /*
3551 * Does the caller want us to pick a source address?
3552 */
3553 if (flags & IPDF_SELECT_SRC) {
3554 ipaddr_t src_addr;
3555
3556 /*
3557 * We use use ire_nexthop_ill to avoid the under ipmp
3558 * interface for source address selection. Note that for ipmp
3559 * probe packets, ixa_ifindex would have been specified, and
3560 * the ip_select_route() invocation would have picked an ire
3561 * will ire_ill pointing at an under interface.
3562 */
3563 ill = ire_nexthop_ill(ire);
3564
3565 /* If unreachable we have no ill but need some source */
3566 if (ill == NULL) {
3567 src_addr = htonl(INADDR_LOOPBACK);
3568 /* Make sure we look for a better source address */
3569 generation = SRC_GENERATION_VERIFY;
3570 } else {
3571 error = ip_select_source_v4(ill, setsrc, dst_addr,
3572 ixa->ixa_multicast_ifaddr, zoneid,
3573 ipst, &src_addr, &generation, NULL);
3574 if (error != 0) {
3575 ire = NULL; /* Stored in ixa_ire */
3576 goto bad_addr;
3577 }
3578 }
3579
3580 /*
3581 * We allow the source address to to down.
3582 * However, we check that we don't use the loopback address
3583 * as a source when sending out on the wire.
3584 */
3585 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3586 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3587 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3588 ire = NULL; /* Stored in ixa_ire */
3589 error = EADDRNOTAVAIL;
3590 goto bad_addr;
3591 }
3592
3593 *src_addrp = src_addr;
3594 ixa->ixa_src_generation = generation;
3595 }
3596
3597 /*
3598 * Make sure we don't leave an unreachable ixa_nce in place
3599 * since ip_select_route is used when we unplumb i.e., remove
3600 * references on ixa_ire, ixa_nce, and ixa_dce.
3601 */
3602 nce = ixa->ixa_nce;
3603 if (nce != NULL && nce->nce_is_condemned) {
3604 nce_refrele(nce);
3605 ixa->ixa_nce = NULL;
3606 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3607 }
3608
3609 /*
3610 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3611 * However, we can't do it for IPv4 multicast or broadcast.
3612 */
3613 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3614 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3615
3616 /*
3617 * Set initial value for fragmentation limit. Either conn_ip_output
3618 * or ULP might updates it when there are routing changes.
3619 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3620 */
3621 pmtu = ip_get_pmtu(ixa);
3622 ixa->ixa_fragsize = pmtu;
3623 /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3624 if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3625 ixa->ixa_pmtu = pmtu;
3626
3627 /*
3628 * Extract information useful for some transports.
3629 * First we look for DCE metrics. Then we take what we have in
3630 * the metrics in the route, where the offlink is used if we have
3631 * one.
3632 */
3633 if (uinfo != NULL) {
3634 bzero(uinfo, sizeof (*uinfo));
3635
3636 if (dce->dce_flags & DCEF_UINFO)
3637 *uinfo = dce->dce_uinfo;
3638
3639 rts_merge_metrics(uinfo, &ire->ire_metrics);
3640
3641 /* Allow ire_metrics to decrease the path MTU from above */
3642 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3643 uinfo->iulp_mtu = pmtu;
3644
3645 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3646 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3647 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3648 }
3649
3650 if (ill != NULL)
3651 ill_refrele(ill);
3652
3653 return (error);
3654
3655 bad_addr:
3656 if (ire != NULL)
3657 ire_refrele(ire);
3658
3659 if (ill != NULL)
3660 ill_refrele(ill);
3661
3662 /*
3663 * Make sure we don't leave an unreachable ixa_nce in place
3664 * since ip_select_route is used when we unplumb i.e., remove
3665 * references on ixa_ire, ixa_nce, and ixa_dce.
3666 */
3667 nce = ixa->ixa_nce;
3668 if (nce != NULL && nce->nce_is_condemned) {
3669 nce_refrele(nce);
3670 ixa->ixa_nce = NULL;
3671 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3672 }
3673
3674 return (error);
3675 }
3676
3677
3678 /*
3679 * Get the base MTU for the case when path MTU discovery is not used.
3680 * Takes the MTU of the IRE into account.
3681 */
3682 uint_t
3683 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3684 {
3685 uint_t mtu;
3686 uint_t iremtu = ire->ire_metrics.iulp_mtu;
3687
3688 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3689 mtu = ill->ill_mc_mtu;
3690 else
3691 mtu = ill->ill_mtu;
3692
3693 if (iremtu != 0 && iremtu < mtu)
3694 mtu = iremtu;
3695
3696 return (mtu);
3697 }
3698
3699 /*
3700 * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3701 * Assumes that ixa_ire, dce, and nce have already been set up.
3702 *
3703 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3704 * We avoid path MTU discovery if it is disabled with ndd.
3705 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3706 *
3707 * NOTE: We also used to turn it off for source routed packets. That
3708 * is no longer required since the dce is per final destination.
3709 */
3710 uint_t
3711 ip_get_pmtu(ip_xmit_attr_t *ixa)
3712 {
3713 ip_stack_t *ipst = ixa->ixa_ipst;
3714 dce_t *dce;
3715 nce_t *nce;
3716 ire_t *ire;
3717 uint_t pmtu;
3718
3719 ire = ixa->ixa_ire;
3720 dce = ixa->ixa_dce;
3721 nce = ixa->ixa_nce;
3722
3723 /*
3724 * If path MTU discovery has been turned off by ndd, then we ignore
3725 * any dce_pmtu and for IPv4 we will not set DF.
3726 */
3727 if (!ipst->ips_ip_path_mtu_discovery)
3728 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3729
3730 pmtu = IP_MAXPACKET;
3731 /*
3732 * Decide whether whether IPv4 sets DF
3733 * For IPv6 "no DF" means to use the 1280 mtu
3734 */
3735 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3736 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3737 } else {
3738 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3739 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3740 pmtu = IPV6_MIN_MTU;
3741 }
3742
3743 /* Check if the PMTU is to old before we use it */
3744 if ((dce->dce_flags & DCEF_PMTU) &&
3745 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3746 ipst->ips_ip_pathmtu_interval) {
3747 /*
3748 * Older than 20 minutes. Drop the path MTU information.
3749 */
3750 mutex_enter(&dce->dce_lock);
3751 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3752 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3753 mutex_exit(&dce->dce_lock);
3754 dce_increment_generation(dce);
3755 }
3756
3757 /* The metrics on the route can lower the path MTU */
3758 if (ire->ire_metrics.iulp_mtu != 0 &&
3759 ire->ire_metrics.iulp_mtu < pmtu)
3760 pmtu = ire->ire_metrics.iulp_mtu;
3761
3762 /*
3763 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3764 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3765 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3766 */
3767 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3768 if (dce->dce_flags & DCEF_PMTU) {
3769 if (dce->dce_pmtu < pmtu)
3770 pmtu = dce->dce_pmtu;
3771
3772 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3773 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3774 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3775 } else {
3776 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3777 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3778 }
3779 } else {
3780 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3781 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3782 }
3783 }
3784
3785 /*
3786 * If we have an IRE_LOCAL we use the loopback mtu instead of
3787 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3788 * mtu as IRE_LOOPBACK.
3789 */
3790 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3791 uint_t loopback_mtu;
3792
3793 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3794 ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3795
3796 if (loopback_mtu < pmtu)
3797 pmtu = loopback_mtu;
3798 } else if (nce != NULL) {
3799 /*
3800 * Make sure we don't exceed the interface MTU.
3801 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3802 * an ill. We'd use the above IP_MAXPACKET in that case just
3803 * to tell the transport something larger than zero.
3804 */
3805 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3806 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3807 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3808 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3809 nce->nce_ill->ill_mc_mtu < pmtu) {
3810 /*
3811 * for interfaces in an IPMP group, the mtu of
3812 * the nce_ill (under_ill) could be different
3813 * from the mtu of the ncec_ill, so we take the
3814 * min of the two.
3815 */
3816 pmtu = nce->nce_ill->ill_mc_mtu;
3817 }
3818 } else {
3819 if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3820 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3821 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3822 nce->nce_ill->ill_mtu < pmtu) {
3823 /*
3824 * for interfaces in an IPMP group, the mtu of
3825 * the nce_ill (under_ill) could be different
3826 * from the mtu of the ncec_ill, so we take the
3827 * min of the two.
3828 */
3829 pmtu = nce->nce_ill->ill_mtu;
3830 }
3831 }
3832 }
3833
3834 /*
3835 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3836 * Only applies to IPv6.
3837 */
3838 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3839 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3840 switch (ixa->ixa_use_min_mtu) {
3841 case IPV6_USE_MIN_MTU_MULTICAST:
3842 if (ire->ire_type & IRE_MULTICAST)
3843 pmtu = IPV6_MIN_MTU;
3844 break;
3845 case IPV6_USE_MIN_MTU_ALWAYS:
3846 pmtu = IPV6_MIN_MTU;
3847 break;
3848 case IPV6_USE_MIN_MTU_NEVER:
3849 break;
3850 }
3851 } else {
3852 /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3853 if (ire->ire_type & IRE_MULTICAST)
3854 pmtu = IPV6_MIN_MTU;
3855 }
3856 }
3857
3858 /*
3859 * After receiving an ICMPv6 "packet too big" message with a
3860 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3861 * will insert a 8-byte fragment header in every packet. We compensate
3862 * for those cases by returning a smaller path MTU to the ULP.
3863 *
3864 * In the case of CGTP then ip_output will add a fragment header.
3865 * Make sure there is room for it by telling a smaller number
3866 * to the transport.
3867 *
3868 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3869 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3870 * which is the size of the packets it can send.
3871 */
3872 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3873 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3874 (ire->ire_flags & RTF_MULTIRT) ||
3875 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3876 pmtu -= sizeof (ip6_frag_t);
3877 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3878 }
3879 }
3880
3881 return (pmtu);
3882 }
3883
3884 /*
3885 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3886 * the final piece where we don't. Return a pointer to the first mblk in the
3887 * result, and update the pointer to the next mblk to chew on. If anything
3888 * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3889 * NULL pointer.
3890 */
3891 mblk_t *
3892 ip_carve_mp(mblk_t **mpp, ssize_t len)
3893 {
3894 mblk_t *mp0;
3895 mblk_t *mp1;
3896 mblk_t *mp2;
3897
3898 if (!len || !mpp || !(mp0 = *mpp))
3899 return (NULL);
3900 /* If we aren't going to consume the first mblk, we need a dup. */
3901 if (mp0->b_wptr - mp0->b_rptr > len) {
3902 mp1 = dupb(mp0);
3903 if (mp1) {
3904 /* Partition the data between the two mblks. */
3905 mp1->b_wptr = mp1->b_rptr + len;
3906 mp0->b_rptr = mp1->b_wptr;
3907 /*
3908 * after adjustments if mblk not consumed is now
3909 * unaligned, try to align it. If this fails free
3910 * all messages and let upper layer recover.
3911 */
3912 if (!OK_32PTR(mp0->b_rptr)) {
3913 if (!pullupmsg(mp0, -1)) {
3914 freemsg(mp0);
3915 freemsg(mp1);
3916 *mpp = NULL;
3917 return (NULL);
3918 }
3919 }
3920 }
3921 return (mp1);
3922 }
3923 /* Eat through as many mblks as we need to get len bytes. */
3924 len -= mp0->b_wptr - mp0->b_rptr;
3925 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3926 if (mp2->b_wptr - mp2->b_rptr > len) {
3927 /*
3928 * We won't consume the entire last mblk. Like
3929 * above, dup and partition it.
3930 */
3931 mp1->b_cont = dupb(mp2);
3932 mp1 = mp1->b_cont;
3933 if (!mp1) {
3934 /*
3935 * Trouble. Rather than go to a lot of
3936 * trouble to clean up, we free the messages.
3937 * This won't be any worse than losing it on
3938 * the wire.
3939 */
3940 freemsg(mp0);
3941 freemsg(mp2);
3942 *mpp = NULL;
3943 return (NULL);
3944 }
3945 mp1->b_wptr = mp1->b_rptr + len;
3946 mp2->b_rptr = mp1->b_wptr;
3947 /*
3948 * after adjustments if mblk not consumed is now
3949 * unaligned, try to align it. If this fails free
3950 * all messages and let upper layer recover.
3951 */
3952 if (!OK_32PTR(mp2->b_rptr)) {
3953 if (!pullupmsg(mp2, -1)) {
3954 freemsg(mp0);
3955 freemsg(mp2);
3956 *mpp = NULL;
3957 return (NULL);
3958 }
3959 }
3960 *mpp = mp2;
3961 return (mp0);
3962 }
3963 /* Decrement len by the amount we just got. */
3964 len -= mp2->b_wptr - mp2->b_rptr;
3965 }
3966 /*
3967 * len should be reduced to zero now. If not our caller has
3968 * screwed up.
3969 */
3970 if (len) {
3971 /* Shouldn't happen! */
3972 freemsg(mp0);
3973 *mpp = NULL;
3974 return (NULL);
3975 }
3976 /*
3977 * We consumed up to exactly the end of an mblk. Detach the part
3978 * we are returning from the rest of the chain.
3979 */
3980 mp1->b_cont = NULL;
3981 *mpp = mp2;
3982 return (mp0);
3983 }
3984
3985 /* The ill stream is being unplumbed. Called from ip_close */
3986 int
3987 ip_modclose(ill_t *ill)
3988 {
3989 boolean_t success;
3990 ipsq_t *ipsq;
3991 ipif_t *ipif;
3992 queue_t *q = ill->ill_rq;
3993 ip_stack_t *ipst = ill->ill_ipst;
3994 int i;
3995 arl_ill_common_t *ai = ill->ill_common;
3996
3997 /*
3998 * The punlink prior to this may have initiated a capability
3999 * negotiation. But ipsq_enter will block until that finishes or
4000 * times out.
4001 */
4002 success = ipsq_enter(ill, B_FALSE, NEW_OP);
4003
4004 /*
4005 * Open/close/push/pop is guaranteed to be single threaded
4006 * per stream by STREAMS. FS guarantees that all references
4007 * from top are gone before close is called. So there can't
4008 * be another close thread that has set CONDEMNED on this ill.
4009 * and cause ipsq_enter to return failure.
4010 */
4011 ASSERT(success);
4012 ipsq = ill->ill_phyint->phyint_ipsq;
4013
4014 /*
4015 * Mark it condemned. No new reference will be made to this ill.
4016 * Lookup functions will return an error. Threads that try to
4017 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4018 * that the refcnt will drop down to zero.
4019 */
4020 mutex_enter(&ill->ill_lock);
4021 ill->ill_state_flags |= ILL_CONDEMNED;
4022 for (ipif = ill->ill_ipif; ipif != NULL;
4023 ipif = ipif->ipif_next) {
4024 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4025 }
4026 /*
4027 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4028 * returns error if ILL_CONDEMNED is set
4029 */
4030 cv_broadcast(&ill->ill_cv);
4031 mutex_exit(&ill->ill_lock);
4032
4033 /*
4034 * Send all the deferred DLPI messages downstream which came in
4035 * during the small window right before ipsq_enter(). We do this
4036 * without waiting for the ACKs because all the ACKs for M_PROTO
4037 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4038 */
4039 ill_dlpi_send_deferred(ill);
4040
4041 /*
4042 * Shut down fragmentation reassembly.
4043 * ill_frag_timer won't start a timer again.
4044 * Now cancel any existing timer
4045 */
4046 (void) untimeout(ill->ill_frag_timer_id);
4047 (void) ill_frag_timeout(ill, 0);
4048
4049 /*
4050 * Call ill_delete to bring down the ipifs, ilms and ill on
4051 * this ill. Then wait for the refcnts to drop to zero.
4052 * ill_is_freeable checks whether the ill is really quiescent.
4053 * Then make sure that threads that are waiting to enter the
4054 * ipsq have seen the error returned by ipsq_enter and have
4055 * gone away. Then we call ill_delete_tail which does the
4056 * DL_UNBIND_REQ with the driver and then qprocsoff.
4057 */
4058 ill_delete(ill);
4059 mutex_enter(&ill->ill_lock);
4060 while (!ill_is_freeable(ill))
4061 cv_wait(&ill->ill_cv, &ill->ill_lock);
4062
4063 while (ill->ill_waiters)
4064 cv_wait(&ill->ill_cv, &ill->ill_lock);
4065
4066 mutex_exit(&ill->ill_lock);
4067
4068 /*
4069 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4070 * it held until the end of the function since the cleanup
4071 * below needs to be able to use the ip_stack_t.
4072 */
4073 netstack_hold(ipst->ips_netstack);
4074
4075 /* qprocsoff is done via ill_delete_tail */
4076 ill_delete_tail(ill);
4077 /*
4078 * synchronously wait for arp stream to unbind. After this, we
4079 * cannot get any data packets up from the driver.
4080 */
4081 arp_unbind_complete(ill);
4082 ASSERT(ill->ill_ipst == NULL);
4083
4084 /*
4085 * Walk through all conns and qenable those that have queued data.
4086 * Close synchronization needs this to
4087 * be done to ensure that all upper layers blocked
4088 * due to flow control to the closing device
4089 * get unblocked.
4090 */
4091 ip1dbg(("ip_wsrv: walking\n"));
4092 for (i = 0; i < TX_FANOUT_SIZE; i++) {
4093 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4094 }
4095
4096 /*
4097 * ai can be null if this is an IPv6 ill, or if the IPv4
4098 * stream is being torn down before ARP was plumbed (e.g.,
4099 * /sbin/ifconfig plumbing a stream twice, and encountering
4100 * an error
4101 */
4102 if (ai != NULL) {
4103 ASSERT(!ill->ill_isv6);
4104 mutex_enter(&ai->ai_lock);
4105 ai->ai_ill = NULL;
4106 if (ai->ai_arl == NULL) {
4107 mutex_destroy(&ai->ai_lock);
4108 kmem_free(ai, sizeof (*ai));
4109 } else {
4110 cv_signal(&ai->ai_ill_unplumb_done);
4111 mutex_exit(&ai->ai_lock);
4112 }
4113 }
4114
4115 mutex_enter(&ipst->ips_ip_mi_lock);
4116 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4117 mutex_exit(&ipst->ips_ip_mi_lock);
4118
4119 /*
4120 * credp could be null if the open didn't succeed and ip_modopen
4121 * itself calls ip_close.
4122 */
4123 if (ill->ill_credp != NULL)
4124 crfree(ill->ill_credp);
4125
4126 mutex_destroy(&ill->ill_saved_ire_lock);
4127 mutex_destroy(&ill->ill_lock);
4128 rw_destroy(&ill->ill_mcast_lock);
4129 mutex_destroy(&ill->ill_mcast_serializer);
4130 list_destroy(&ill->ill_nce);
4131
4132 /*
4133 * Now we are done with the module close pieces that
4134 * need the netstack_t.
4135 */
4136 netstack_rele(ipst->ips_netstack);
4137
4138 mi_close_free((IDP)ill);
4139 q->q_ptr = WR(q)->q_ptr = NULL;
4140
4141 ipsq_exit(ipsq);
4142
4143 return (0);
4144 }
4145
4146 /*
4147 * This is called as part of close() for IP, UDP, ICMP, and RTS
4148 * in order to quiesce the conn.
4149 */
4150 void
4151 ip_quiesce_conn(conn_t *connp)
4152 {
4153 boolean_t drain_cleanup_reqd = B_FALSE;
4154 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
4155 boolean_t ilg_cleanup_reqd = B_FALSE;
4156 ip_stack_t *ipst;
4157
4158 ASSERT(!IPCL_IS_TCP(connp));
4159 ipst = connp->conn_netstack->netstack_ip;
4160
4161 /*
4162 * Mark the conn as closing, and this conn must not be
4163 * inserted in future into any list. Eg. conn_drain_insert(),
4164 * won't insert this conn into the conn_drain_list.
4165 *
4166 * conn_idl, and conn_ilg cannot get set henceforth.
4167 */
4168 mutex_enter(&connp->conn_lock);
4169 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4170 connp->conn_state_flags |= CONN_CLOSING;
4171 if (connp->conn_idl != NULL)
4172 drain_cleanup_reqd = B_TRUE;
4173 if (connp->conn_oper_pending_ill != NULL)
4174 conn_ioctl_cleanup_reqd = B_TRUE;
4175 if (connp->conn_dhcpinit_ill != NULL) {
4176 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4177 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4178 ill_set_inputfn(connp->conn_dhcpinit_ill);
4179 connp->conn_dhcpinit_ill = NULL;
4180 }
4181 if (connp->conn_ilg != NULL)
4182 ilg_cleanup_reqd = B_TRUE;
4183 mutex_exit(&connp->conn_lock);
4184
4185 if (conn_ioctl_cleanup_reqd)
4186 conn_ioctl_cleanup(connp);
4187
4188 if (is_system_labeled() && connp->conn_anon_port) {
4189 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4190 connp->conn_mlp_type, connp->conn_proto,
4191 ntohs(connp->conn_lport), B_FALSE);
4192 connp->conn_anon_port = 0;
4193 }
4194 connp->conn_mlp_type = mlptSingle;
4195
4196 /*
4197 * Remove this conn from any fanout list it is on.
4198 * and then wait for any threads currently operating
4199 * on this endpoint to finish
4200 */
4201 ipcl_hash_remove(connp);
4202
4203 /*
4204 * Remove this conn from the drain list, and do any other cleanup that
4205 * may be required. (TCP conns are never flow controlled, and
4206 * conn_idl will be NULL.)
4207 */
4208 if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4209 idl_t *idl = connp->conn_idl;
4210
4211 mutex_enter(&idl->idl_lock);
4212 conn_drain(connp, B_TRUE);
4213 mutex_exit(&idl->idl_lock);
4214 }
4215
4216 if (connp == ipst->ips_ip_g_mrouter)
4217 (void) ip_mrouter_done(ipst);
4218
4219 if (ilg_cleanup_reqd)
4220 ilg_delete_all(connp);
4221
4222 /*
4223 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4224 * callers from write side can't be there now because close
4225 * is in progress. The only other caller is ipcl_walk
4226 * which checks for the condemned flag.
4227 */
4228 mutex_enter(&connp->conn_lock);
4229 connp->conn_state_flags |= CONN_CONDEMNED;
4230 while (connp->conn_ref != 1)
4231 cv_wait(&connp->conn_cv, &connp->conn_lock);
4232 connp->conn_state_flags |= CONN_QUIESCED;
4233 mutex_exit(&connp->conn_lock);
4234 }
4235
4236 /* ARGSUSED */
4237 int
4238 ip_close(queue_t *q, int flags)
4239 {
4240 conn_t *connp;
4241
4242 /*
4243 * Call the appropriate delete routine depending on whether this is
4244 * a module or device.
4245 */
4246 if (WR(q)->q_next != NULL) {
4247 /* This is a module close */
4248 return (ip_modclose((ill_t *)q->q_ptr));
4249 }
4250
4251 connp = q->q_ptr;
4252 ip_quiesce_conn(connp);
4253
4254 qprocsoff(q);
4255
4256 /*
4257 * Now we are truly single threaded on this stream, and can
4258 * delete the things hanging off the connp, and finally the connp.
4259 * We removed this connp from the fanout list, it cannot be
4260 * accessed thru the fanouts, and we already waited for the
4261 * conn_ref to drop to 0. We are already in close, so
4262 * there cannot be any other thread from the top. qprocsoff
4263 * has completed, and service has completed or won't run in
4264 * future.
4265 */
4266 ASSERT(connp->conn_ref == 1);
4267
4268 inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4269
4270 connp->conn_ref--;
4271 ipcl_conn_destroy(connp);
4272
4273 q->q_ptr = WR(q)->q_ptr = NULL;
4274 return (0);
4275 }
4276
4277 /*
4278 * Wapper around putnext() so that ip_rts_request can merely use
4279 * conn_recv.
4280 */
4281 /*ARGSUSED2*/
4282 static void
4283 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4284 {
4285 conn_t *connp = (conn_t *)arg1;
4286
4287 putnext(connp->conn_rq, mp);
4288 }
4289
4290 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4291 /* ARGSUSED */
4292 static void
4293 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4294 {
4295 freemsg(mp);
4296 }
4297
4298 /*
4299 * Called when the module is about to be unloaded
4300 */
4301 void
4302 ip_ddi_destroy(void)
4303 {
4304 /* This needs to be called before destroying any transports. */
4305 mutex_enter(&cpu_lock);
4306 unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4307 mutex_exit(&cpu_lock);
4308
4309 tnet_fini();
4310
4311 icmp_ddi_g_destroy();
4312 rts_ddi_g_destroy();
4313 udp_ddi_g_destroy();
4314 sctp_ddi_g_destroy();
4315 tcp_ddi_g_destroy();
4316 ilb_ddi_g_destroy();
4317 dce_g_destroy();
4318 ipsec_policy_g_destroy();
4319 ipcl_g_destroy();
4320 ip_net_g_destroy();
4321 ip_ire_g_fini();
4322 inet_minor_destroy(ip_minor_arena_sa);
4323 #if defined(_LP64)
4324 inet_minor_destroy(ip_minor_arena_la);
4325 #endif
4326
4327 #ifdef DEBUG
4328 list_destroy(&ip_thread_list);
4329 rw_destroy(&ip_thread_rwlock);
4330 tsd_destroy(&ip_thread_data);
4331 #endif
4332
4333 netstack_unregister(NS_IP);
4334 }
4335
4336 /*
4337 * First step in cleanup.
4338 */
4339 /* ARGSUSED */
4340 static void
4341 ip_stack_shutdown(netstackid_t stackid, void *arg)
4342 {
4343 ip_stack_t *ipst = (ip_stack_t *)arg;
4344
4345 #ifdef NS_DEBUG
4346 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4347 #endif
4348
4349 /*
4350 * Perform cleanup for special interfaces (loopback and IPMP).
4351 */
4352 ip_interface_cleanup(ipst);
4353
4354 /*
4355 * The *_hook_shutdown()s start the process of notifying any
4356 * consumers that things are going away.... nothing is destroyed.
4357 */
4358 ipv4_hook_shutdown(ipst);
4359 ipv6_hook_shutdown(ipst);
4360 arp_hook_shutdown(ipst);
4361
4362 mutex_enter(&ipst->ips_capab_taskq_lock);
4363 ipst->ips_capab_taskq_quit = B_TRUE;
4364 cv_signal(&ipst->ips_capab_taskq_cv);
4365 mutex_exit(&ipst->ips_capab_taskq_lock);
4366 }
4367
4368 /*
4369 * Free the IP stack instance.
4370 */
4371 static void
4372 ip_stack_fini(netstackid_t stackid, void *arg)
4373 {
4374 ip_stack_t *ipst = (ip_stack_t *)arg;
4375 int ret;
4376
4377 #ifdef NS_DEBUG
4378 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4379 #endif
4380 /*
4381 * At this point, all of the notifications that the events and
4382 * protocols are going away have been run, meaning that we can
4383 * now set about starting to clean things up.
4384 */
4385 ipobs_fini(ipst);
4386 ipv4_hook_destroy(ipst);
4387 ipv6_hook_destroy(ipst);
4388 arp_hook_destroy(ipst);
4389 ip_net_destroy(ipst);
4390
4391 ipmp_destroy(ipst);
4392
4393 ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4394 ipst->ips_ip_mibkp = NULL;
4395 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4396 ipst->ips_icmp_mibkp = NULL;
4397 ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4398 ipst->ips_ip_kstat = NULL;
4399 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4400 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4401 ipst->ips_ip6_kstat = NULL;
4402 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4403
4404 kmem_free(ipst->ips_propinfo_tbl,
4405 ip_propinfo_count * sizeof (mod_prop_info_t));
4406 ipst->ips_propinfo_tbl = NULL;
4407
4408 dce_stack_destroy(ipst);
4409 ip_mrouter_stack_destroy(ipst);
4410
4411 ret = untimeout(ipst->ips_igmp_timeout_id);
4412 if (ret == -1) {
4413 ASSERT(ipst->ips_igmp_timeout_id == 0);
4414 } else {
4415 ASSERT(ipst->ips_igmp_timeout_id != 0);
4416 ipst->ips_igmp_timeout_id = 0;
4417 }
4418 ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4419 if (ret == -1) {
4420 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4421 } else {
4422 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4423 ipst->ips_igmp_slowtimeout_id = 0;
4424 }
4425 ret = untimeout(ipst->ips_mld_timeout_id);
4426 if (ret == -1) {
4427 ASSERT(ipst->ips_mld_timeout_id == 0);
4428 } else {
4429 ASSERT(ipst->ips_mld_timeout_id != 0);
4430 ipst->ips_mld_timeout_id = 0;
4431 }
4432 ret = untimeout(ipst->ips_mld_slowtimeout_id);
4433 if (ret == -1) {
4434 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4435 } else {
4436 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4437 ipst->ips_mld_slowtimeout_id = 0;
4438 }
4439
4440 ip_ire_fini(ipst);
4441 ip6_asp_free(ipst);
4442 conn_drain_fini(ipst);
4443 ipcl_destroy(ipst);
4444
4445 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4446 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4447 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4448 ipst->ips_ndp4 = NULL;
4449 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4450 ipst->ips_ndp6 = NULL;
4451
4452 if (ipst->ips_loopback_ksp != NULL) {
4453 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4454 ipst->ips_loopback_ksp = NULL;
4455 }
4456
4457 mutex_destroy(&ipst->ips_capab_taskq_lock);
4458 cv_destroy(&ipst->ips_capab_taskq_cv);
4459
4460 rw_destroy(&ipst->ips_srcid_lock);
4461
4462 mutex_destroy(&ipst->ips_ip_mi_lock);
4463 rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4464
4465 mutex_destroy(&ipst->ips_igmp_timer_lock);
4466 mutex_destroy(&ipst->ips_mld_timer_lock);
4467 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4468 mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4469 mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4470 rw_destroy(&ipst->ips_ill_g_lock);
4471
4472 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4473 ipst->ips_phyint_g_list = NULL;
4474 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4475 ipst->ips_ill_g_heads = NULL;
4476
4477 ldi_ident_release(ipst->ips_ldi_ident);
4478 kmem_free(ipst, sizeof (*ipst));
4479 }
4480
4481 /*
4482 * This function is called from the TSD destructor, and is used to debug
4483 * reference count issues in IP. See block comment in <inet/ip_if.h> for
4484 * details.
4485 */
4486 static void
4487 ip_thread_exit(void *phash)
4488 {
4489 th_hash_t *thh = phash;
4490
4491 rw_enter(&ip_thread_rwlock, RW_WRITER);
4492 list_remove(&ip_thread_list, thh);
4493 rw_exit(&ip_thread_rwlock);
4494 mod_hash_destroy_hash(thh->thh_hash);
4495 kmem_free(thh, sizeof (*thh));
4496 }
4497
4498 /*
4499 * Called when the IP kernel module is loaded into the kernel
4500 */
4501 void
4502 ip_ddi_init(void)
4503 {
4504 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4505
4506 /*
4507 * For IP and TCP the minor numbers should start from 2 since we have 4
4508 * initial devices: ip, ip6, tcp, tcp6.
4509 */
4510 /*
4511 * If this is a 64-bit kernel, then create two separate arenas -
4512 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4513 * other for socket apps in the range 2^^18 through 2^^32-1.
4514 */
4515 ip_minor_arena_la = NULL;
4516 ip_minor_arena_sa = NULL;
4517 #if defined(_LP64)
4518 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4519 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4520 cmn_err(CE_PANIC,
4521 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4522 }
4523 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4524 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4525 cmn_err(CE_PANIC,
4526 "ip_ddi_init: ip_minor_arena_la creation failed\n");
4527 }
4528 #else
4529 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4530 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4531 cmn_err(CE_PANIC,
4532 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4533 }
4534 #endif
4535 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4536
4537 ipcl_g_init();
4538 ip_ire_g_init();
4539 ip_net_g_init();
4540
4541 #ifdef DEBUG
4542 tsd_create(&ip_thread_data, ip_thread_exit);
4543 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4544 list_create(&ip_thread_list, sizeof (th_hash_t),
4545 offsetof(th_hash_t, thh_link));
4546 #endif
4547 ipsec_policy_g_init();
4548 tcp_ddi_g_init();
4549 sctp_ddi_g_init();
4550 dce_g_init();
4551
4552 /*
4553 * We want to be informed each time a stack is created or
4554 * destroyed in the kernel, so we can maintain the
4555 * set of udp_stack_t's.
4556 */
4557 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4558 ip_stack_fini);
4559
4560 tnet_init();
4561
4562 udp_ddi_g_init();
4563 rts_ddi_g_init();
4564 icmp_ddi_g_init();
4565 ilb_ddi_g_init();
4566
4567 /* This needs to be called after all transports are initialized. */
4568 mutex_enter(&cpu_lock);
4569 register_cpu_setup_func(ip_tp_cpu_update, NULL);
4570 mutex_exit(&cpu_lock);
4571 }
4572
4573 /*
4574 * Initialize the IP stack instance.
4575 */
4576 static void *
4577 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4578 {
4579 ip_stack_t *ipst;
4580 size_t arrsz;
4581 major_t major;
4582
4583 #ifdef NS_DEBUG
4584 printf("ip_stack_init(stack %d)\n", stackid);
4585 #endif
4586
4587 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4588 ipst->ips_netstack = ns;
4589
4590 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4591 KM_SLEEP);
4592 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4593 KM_SLEEP);
4594 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4595 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4596 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4597 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4598
4599 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4600 ipst->ips_igmp_deferred_next = INFINITY;
4601 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4602 ipst->ips_mld_deferred_next = INFINITY;
4603 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4604 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4605 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4606 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4607 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4608 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4609
4610 ipcl_init(ipst);
4611 ip_ire_init(ipst);
4612 ip6_asp_init(ipst);
4613 ipif_init(ipst);
4614 conn_drain_init(ipst);
4615 ip_mrouter_stack_init(ipst);
4616 dce_stack_init(ipst);
4617
4618 ipst->ips_ip_multirt_log_interval = 1000;
4619
4620 ipst->ips_ill_index = 1;
4621
4622 ipst->ips_saved_ip_forwarding = -1;
4623 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */
4624
4625 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4626 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4627 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4628
4629 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4630 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4631 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4632 ipst->ips_ip6_kstat =
4633 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4634
4635 ipst->ips_ip_src_id = 1;
4636 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4637
4638 ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4639
4640 ip_net_init(ipst, ns);
4641 ipv4_hook_init(ipst);
4642 ipv6_hook_init(ipst);
4643 arp_hook_init(ipst);
4644 ipmp_init(ipst);
4645 ipobs_init(ipst);
4646
4647 /*
4648 * Create the taskq dispatcher thread and initialize related stuff.
4649 */
4650 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4651 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4652 ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4653 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4654
4655 major = mod_name_to_major(INET_NAME);
4656 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4657 return (ipst);
4658 }
4659
4660 /*
4661 * Allocate and initialize a DLPI template of the specified length. (May be
4662 * called as writer.)
4663 */
4664 mblk_t *
4665 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4666 {
4667 mblk_t *mp;
4668
4669 mp = allocb(len, BPRI_MED);
4670 if (!mp)
4671 return (NULL);
4672
4673 /*
4674 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4675 * of which we don't seem to use) are sent with M_PCPROTO, and
4676 * that other DLPI are M_PROTO.
4677 */
4678 if (prim == DL_INFO_REQ) {
4679 mp->b_datap->db_type = M_PCPROTO;
4680 } else {
4681 mp->b_datap->db_type = M_PROTO;
4682 }
4683
4684 mp->b_wptr = mp->b_rptr + len;
4685 bzero(mp->b_rptr, len);
4686 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4687 return (mp);
4688 }
4689
4690 /*
4691 * Allocate and initialize a DLPI notification. (May be called as writer.)
4692 */
4693 mblk_t *
4694 ip_dlnotify_alloc(uint_t notification, uint_t data)
4695 {
4696 dl_notify_ind_t *notifyp;
4697 mblk_t *mp;
4698
4699 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4700 return (NULL);
4701
4702 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4703 notifyp->dl_notification = notification;
4704 notifyp->dl_data = data;
4705 return (mp);
4706 }
4707
4708 mblk_t *
4709 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4710 {
4711 dl_notify_ind_t *notifyp;
4712 mblk_t *mp;
4713
4714 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4715 return (NULL);
4716
4717 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4718 notifyp->dl_notification = notification;
4719 notifyp->dl_data1 = data1;
4720 notifyp->dl_data2 = data2;
4721 return (mp);
4722 }
4723
4724 /*
4725 * Debug formatting routine. Returns a character string representation of the
4726 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address
4727 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4728 *
4729 * Once the ndd table-printing interfaces are removed, this can be changed to
4730 * standard dotted-decimal form.
4731 */
4732 char *
4733 ip_dot_addr(ipaddr_t addr, char *buf)
4734 {
4735 uint8_t *ap = (uint8_t *)&addr;
4736
4737 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4738 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4739 return (buf);
4740 }
4741
4742 /*
4743 * Write the given MAC address as a printable string in the usual colon-
4744 * separated format.
4745 */
4746 const char *
4747 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4748 {
4749 char *bp;
4750
4751 if (alen == 0 || buflen < 4)
4752 return ("?");
4753 bp = buf;
4754 for (;;) {
4755 /*
4756 * If there are more MAC address bytes available, but we won't
4757 * have any room to print them, then add "..." to the string
4758 * instead. See below for the 'magic number' explanation.
4759 */
4760 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4761 (void) strcpy(bp, "...");
4762 break;
4763 }
4764 (void) sprintf(bp, "%02x", *addr++);
4765 bp += 2;
4766 if (--alen == 0)
4767 break;
4768 *bp++ = ':';
4769 buflen -= 3;
4770 /*
4771 * At this point, based on the first 'if' statement above,
4772 * either alen == 1 and buflen >= 3, or alen > 1 and
4773 * buflen >= 4. The first case leaves room for the final "xx"
4774 * number and trailing NUL byte. The second leaves room for at
4775 * least "...". Thus the apparently 'magic' numbers chosen for
4776 * that statement.
4777 */
4778 }
4779 return (buf);
4780 }
4781
4782 /*
4783 * Called when it is conceptually a ULP that would sent the packet
4784 * e.g., port unreachable and protocol unreachable. Check that the packet
4785 * would have passed the IPsec global policy before sending the error.
4786 *
4787 * Send an ICMP error after patching up the packet appropriately.
4788 * Uses ip_drop_input and bumps the appropriate MIB.
4789 */
4790 void
4791 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4792 ip_recv_attr_t *ira)
4793 {
4794 ipha_t *ipha;
4795 boolean_t secure;
4796 ill_t *ill = ira->ira_ill;
4797 ip_stack_t *ipst = ill->ill_ipst;
4798 netstack_t *ns = ipst->ips_netstack;
4799 ipsec_stack_t *ipss = ns->netstack_ipsec;
4800
4801 secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4802
4803 /*
4804 * We are generating an icmp error for some inbound packet.
4805 * Called from all ip_fanout_(udp, tcp, proto) functions.
4806 * Before we generate an error, check with global policy
4807 * to see whether this is allowed to enter the system. As
4808 * there is no "conn", we are checking with global policy.
4809 */
4810 ipha = (ipha_t *)mp->b_rptr;
4811 if (secure || ipss->ipsec_inbound_v4_policy_present) {
4812 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4813 if (mp == NULL)
4814 return;
4815 }
4816
4817 /* We never send errors for protocols that we do implement */
4818 if (ira->ira_protocol == IPPROTO_ICMP ||
4819 ira->ira_protocol == IPPROTO_IGMP) {
4820 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4821 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4822 freemsg(mp);
4823 return;
4824 }
4825 /*
4826 * Have to correct checksum since
4827 * the packet might have been
4828 * fragmented and the reassembly code in ip_rput
4829 * does not restore the IP checksum.
4830 */
4831 ipha->ipha_hdr_checksum = 0;
4832 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4833
4834 switch (icmp_type) {
4835 case ICMP_DEST_UNREACHABLE:
4836 switch (icmp_code) {
4837 case ICMP_PROTOCOL_UNREACHABLE:
4838 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4839 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4840 break;
4841 case ICMP_PORT_UNREACHABLE:
4842 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4843 ip_drop_input("ipIfStatsNoPorts", mp, ill);
4844 break;
4845 }
4846
4847 icmp_unreachable(mp, icmp_code, ira);
4848 break;
4849 default:
4850 #ifdef DEBUG
4851 panic("ip_fanout_send_icmp_v4: wrong type");
4852 /*NOTREACHED*/
4853 #else
4854 freemsg(mp);
4855 break;
4856 #endif
4857 }
4858 }
4859
4860 /*
4861 * Used to send an ICMP error message when a packet is received for
4862 * a protocol that is not supported. The mblk passed as argument
4863 * is consumed by this function.
4864 */
4865 void
4866 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4867 {
4868 ipha_t *ipha;
4869
4870 ipha = (ipha_t *)mp->b_rptr;
4871 if (ira->ira_flags & IRAF_IS_IPV4) {
4872 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4873 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4874 ICMP_PROTOCOL_UNREACHABLE, ira);
4875 } else {
4876 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4877 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4878 ICMP6_PARAMPROB_NEXTHEADER, ira);
4879 }
4880 }
4881
4882 /*
4883 * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4884 * Handles IPv4 and IPv6.
4885 * We are responsible for disposing of mp, such as by freemsg() or putnext()
4886 * Caller is responsible for dropping references to the conn.
4887 */
4888 void
4889 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4890 ip_recv_attr_t *ira)
4891 {
4892 ill_t *ill = ira->ira_ill;
4893 ip_stack_t *ipst = ill->ill_ipst;
4894 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
4895 boolean_t secure;
4896 uint_t protocol = ira->ira_protocol;
4897 iaflags_t iraflags = ira->ira_flags;
4898 queue_t *rq;
4899
4900 secure = iraflags & IRAF_IPSEC_SECURE;
4901
4902 rq = connp->conn_rq;
4903 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4904 switch (protocol) {
4905 case IPPROTO_ICMPV6:
4906 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4907 break;
4908 case IPPROTO_ICMP:
4909 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4910 break;
4911 default:
4912 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4913 break;
4914 }
4915 freemsg(mp);
4916 return;
4917 }
4918
4919 ASSERT(!(IPCL_IS_IPTUN(connp)));
4920
4921 if (((iraflags & IRAF_IS_IPV4) ?
4922 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4923 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4924 secure) {
4925 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4926 ip6h, ira);
4927 if (mp == NULL) {
4928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4929 /* Note that mp is NULL */
4930 ip_drop_input("ipIfStatsInDiscards", mp, ill);
4931 return;
4932 }
4933 }
4934
4935 if (iraflags & IRAF_ICMP_ERROR) {
4936 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4937 } else {
4938 ill_t *rill = ira->ira_rill;
4939
4940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4941 ira->ira_ill = ira->ira_rill = NULL;
4942 /* Send it upstream */
4943 (connp->conn_recv)(connp, mp, NULL, ira);
4944 ira->ira_ill = ill;
4945 ira->ira_rill = rill;
4946 }
4947 }
4948
4949 /*
4950 * Handle protocols with which IP is less intimate. There
4951 * can be more than one stream bound to a particular
4952 * protocol. When this is the case, normally each one gets a copy
4953 * of any incoming packets.
4954 *
4955 * IPsec NOTE :
4956 *
4957 * Don't allow a secure packet going up a non-secure connection.
4958 * We don't allow this because
4959 *
4960 * 1) Reply might go out in clear which will be dropped at
4961 * the sending side.
4962 * 2) If the reply goes out in clear it will give the
4963 * adversary enough information for getting the key in
4964 * most of the cases.
4965 *
4966 * Moreover getting a secure packet when we expect clear
4967 * implies that SA's were added without checking for
4968 * policy on both ends. This should not happen once ISAKMP
4969 * is used to negotiate SAs as SAs will be added only after
4970 * verifying the policy.
4971 *
4972 * Zones notes:
4973 * Earlier in ip_input on a system with multiple shared-IP zones we
4974 * duplicate the multicast and broadcast packets and send them up
4975 * with each explicit zoneid that exists on that ill.
4976 * This means that here we can match the zoneid with SO_ALLZONES being special.
4977 */
4978 void
4979 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
4980 {
4981 mblk_t *mp1;
4982 ipaddr_t laddr;
4983 conn_t *connp, *first_connp, *next_connp;
4984 connf_t *connfp;
4985 ill_t *ill = ira->ira_ill;
4986 ip_stack_t *ipst = ill->ill_ipst;
4987
4988 laddr = ipha->ipha_dst;
4989
4990 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
4991 mutex_enter(&connfp->connf_lock);
4992 connp = connfp->connf_head;
4993 for (connp = connfp->connf_head; connp != NULL;
4994 connp = connp->conn_next) {
4995 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
4996 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
4997 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
4998 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
4999 break;
5000 }
5001 }
5002
5003 if (connp == NULL) {
5004 /*
5005 * No one bound to these addresses. Is
5006 * there a client that wants all
5007 * unclaimed datagrams?
5008 */
5009 mutex_exit(&connfp->connf_lock);
5010 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5011 ICMP_PROTOCOL_UNREACHABLE, ira);
5012 return;
5013 }
5014
5015 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5016
5017 CONN_INC_REF(connp);
5018 first_connp = connp;
5019 connp = connp->conn_next;
5020
5021 for (;;) {
5022 while (connp != NULL) {
5023 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5024 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5025 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5026 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5027 ira, connp)))
5028 break;
5029 connp = connp->conn_next;
5030 }
5031
5032 if (connp == NULL) {
5033 /* No more interested clients */
5034 connp = first_connp;
5035 break;
5036 }
5037 if (((mp1 = dupmsg(mp)) == NULL) &&
5038 ((mp1 = copymsg(mp)) == NULL)) {
5039 /* Memory allocation failed */
5040 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5041 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5042 connp = first_connp;
5043 break;
5044 }
5045
5046 CONN_INC_REF(connp);
5047 mutex_exit(&connfp->connf_lock);
5048
5049 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5050 ira);
5051
5052 mutex_enter(&connfp->connf_lock);
5053 /* Follow the next pointer before releasing the conn. */
5054 next_connp = connp->conn_next;
5055 CONN_DEC_REF(connp);
5056 connp = next_connp;
5057 }
5058
5059 /* Last one. Send it upstream. */
5060 mutex_exit(&connfp->connf_lock);
5061
5062 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5063
5064 CONN_DEC_REF(connp);
5065 }
5066
5067 /*
5068 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5069 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk
5070 * is not consumed.
5071 *
5072 * One of three things can happen, all of which affect the passed-in mblk:
5073 *
5074 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk..
5075 *
5076 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5077 * ESP packet, and is passed along to ESP for consumption. Return NULL.
5078 *
5079 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL.
5080 */
5081 mblk_t *
5082 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5083 {
5084 int shift, plen, iph_len;
5085 ipha_t *ipha;
5086 udpha_t *udpha;
5087 uint32_t *spi;
5088 uint32_t esp_ports;
5089 uint8_t *orptr;
5090 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
5091 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
5092
5093 ipha = (ipha_t *)mp->b_rptr;
5094 iph_len = ira->ira_ip_hdr_length;
5095 plen = ira->ira_pktlen;
5096
5097 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5098 /*
5099 * Most likely a keepalive for the benefit of an intervening
5100 * NAT. These aren't for us, per se, so drop it.
5101 *
5102 * RFC 3947/8 doesn't say for sure what to do for 2-3
5103 * byte packets (keepalives are 1-byte), but we'll drop them
5104 * also.
5105 */
5106 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5107 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5108 return (NULL);
5109 }
5110
5111 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5112 /* might as well pull it all up - it might be ESP. */
5113 if (!pullupmsg(mp, -1)) {
5114 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5115 DROPPER(ipss, ipds_esp_nomem),
5116 &ipss->ipsec_dropper);
5117 return (NULL);
5118 }
5119
5120 ipha = (ipha_t *)mp->b_rptr;
5121 }
5122 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5123 if (*spi == 0) {
5124 /* UDP packet - remove 0-spi. */
5125 shift = sizeof (uint32_t);
5126 } else {
5127 /* ESP-in-UDP packet - reduce to ESP. */
5128 ipha->ipha_protocol = IPPROTO_ESP;
5129 shift = sizeof (udpha_t);
5130 }
5131
5132 /* Fix IP header */
5133 ira->ira_pktlen = (plen - shift);
5134 ipha->ipha_length = htons(ira->ira_pktlen);
5135 ipha->ipha_hdr_checksum = 0;
5136
5137 orptr = mp->b_rptr;
5138 mp->b_rptr += shift;
5139
5140 udpha = (udpha_t *)(orptr + iph_len);
5141 if (*spi == 0) {
5142 ASSERT((uint8_t *)ipha == orptr);
5143 udpha->uha_length = htons(plen - shift - iph_len);
5144 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */
5145 esp_ports = 0;
5146 } else {
5147 esp_ports = *((uint32_t *)udpha);
5148 ASSERT(esp_ports != 0);
5149 }
5150 ovbcopy(orptr, orptr + shift, iph_len);
5151 if (esp_ports != 0) /* Punt up for ESP processing. */ {
5152 ipha = (ipha_t *)(orptr + shift);
5153
5154 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5155 ira->ira_esp_udp_ports = esp_ports;
5156 ip_fanout_v4(mp, ipha, ira);
5157 return (NULL);
5158 }
5159 return (mp);
5160 }
5161
5162 /*
5163 * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5164 * Handles IPv4 and IPv6.
5165 * We are responsible for disposing of mp, such as by freemsg() or putnext()
5166 * Caller is responsible for dropping references to the conn.
5167 */
5168 void
5169 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5170 ip_recv_attr_t *ira)
5171 {
5172 ill_t *ill = ira->ira_ill;
5173 ip_stack_t *ipst = ill->ill_ipst;
5174 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
5175 boolean_t secure;
5176 iaflags_t iraflags = ira->ira_flags;
5177
5178 secure = iraflags & IRAF_IPSEC_SECURE;
5179
5180 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5181 !canputnext(connp->conn_rq)) {
5182 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5183 freemsg(mp);
5184 return;
5185 }
5186
5187 if (((iraflags & IRAF_IS_IPV4) ?
5188 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5189 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5190 secure) {
5191 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5192 ip6h, ira);
5193 if (mp == NULL) {
5194 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5195 /* Note that mp is NULL */
5196 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5197 return;
5198 }
5199 }
5200
5201 /*
5202 * Since this code is not used for UDP unicast we don't need a NAT_T
5203 * check. Only ip_fanout_v4 has that check.
5204 */
5205 if (ira->ira_flags & IRAF_ICMP_ERROR) {
5206 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5207 } else {
5208 ill_t *rill = ira->ira_rill;
5209
5210 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5211 ira->ira_ill = ira->ira_rill = NULL;
5212 /* Send it upstream */
5213 (connp->conn_recv)(connp, mp, NULL, ira);
5214 ira->ira_ill = ill;
5215 ira->ira_rill = rill;
5216 }
5217 }
5218
5219 /*
5220 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5221 * (Unicast fanout is handled in ip_input_v4.)
5222 *
5223 * If SO_REUSEADDR is set all multicast and broadcast packets
5224 * will be delivered to all conns bound to the same port.
5225 *
5226 * If there is at least one matching AF_INET receiver, then we will
5227 * ignore any AF_INET6 receivers.
5228 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5229 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5230 * packets.
5231 *
5232 * Zones notes:
5233 * Earlier in ip_input on a system with multiple shared-IP zones we
5234 * duplicate the multicast and broadcast packets and send them up
5235 * with each explicit zoneid that exists on that ill.
5236 * This means that here we can match the zoneid with SO_ALLZONES being special.
5237 */
5238 void
5239 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5240 ip_recv_attr_t *ira)
5241 {
5242 ipaddr_t laddr;
5243 in6_addr_t v6faddr;
5244 conn_t *connp;
5245 connf_t *connfp;
5246 ipaddr_t faddr;
5247 ill_t *ill = ira->ira_ill;
5248 ip_stack_t *ipst = ill->ill_ipst;
5249
5250 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5251
5252 laddr = ipha->ipha_dst;
5253 faddr = ipha->ipha_src;
5254
5255 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5256 mutex_enter(&connfp->connf_lock);
5257 connp = connfp->connf_head;
5258
5259 /*
5260 * If SO_REUSEADDR has been set on the first we send the
5261 * packet to all clients that have joined the group and
5262 * match the port.
5263 */
5264 while (connp != NULL) {
5265 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5266 conn_wantpacket(connp, ira, ipha) &&
5267 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5268 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5269 break;
5270 connp = connp->conn_next;
5271 }
5272
5273 if (connp == NULL)
5274 goto notfound;
5275
5276 CONN_INC_REF(connp);
5277
5278 if (connp->conn_reuseaddr) {
5279 conn_t *first_connp = connp;
5280 conn_t *next_connp;
5281 mblk_t *mp1;
5282
5283 connp = connp->conn_next;
5284 for (;;) {
5285 while (connp != NULL) {
5286 if (IPCL_UDP_MATCH(connp, lport, laddr,
5287 fport, faddr) &&
5288 conn_wantpacket(connp, ira, ipha) &&
5289 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5290 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5291 ira, connp)))
5292 break;
5293 connp = connp->conn_next;
5294 }
5295 if (connp == NULL) {
5296 /* No more interested clients */
5297 connp = first_connp;
5298 break;
5299 }
5300 if (((mp1 = dupmsg(mp)) == NULL) &&
5301 ((mp1 = copymsg(mp)) == NULL)) {
5302 /* Memory allocation failed */
5303 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5304 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5305 connp = first_connp;
5306 break;
5307 }
5308 CONN_INC_REF(connp);
5309 mutex_exit(&connfp->connf_lock);
5310
5311 IP_STAT(ipst, ip_udp_fanmb);
5312 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5313 NULL, ira);
5314 mutex_enter(&connfp->connf_lock);
5315 /* Follow the next pointer before releasing the conn */
5316 next_connp = connp->conn_next;
5317 CONN_DEC_REF(connp);
5318 connp = next_connp;
5319 }
5320 }
5321
5322 /* Last one. Send it upstream. */
5323 mutex_exit(&connfp->connf_lock);
5324 IP_STAT(ipst, ip_udp_fanmb);
5325 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5326 CONN_DEC_REF(connp);
5327 return;
5328
5329 notfound:
5330 mutex_exit(&connfp->connf_lock);
5331 /*
5332 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5333 * have already been matched above, since they live in the IPv4
5334 * fanout tables. This implies we only need to
5335 * check for IPv6 in6addr_any endpoints here.
5336 * Thus we compare using ipv6_all_zeros instead of the destination
5337 * address, except for the multicast group membership lookup which
5338 * uses the IPv4 destination.
5339 */
5340 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5341 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5342 mutex_enter(&connfp->connf_lock);
5343 connp = connfp->connf_head;
5344 /*
5345 * IPv4 multicast packet being delivered to an AF_INET6
5346 * in6addr_any endpoint.
5347 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5348 * and not conn_wantpacket_v6() since any multicast membership is
5349 * for an IPv4-mapped multicast address.
5350 */
5351 while (connp != NULL) {
5352 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5353 fport, v6faddr) &&
5354 conn_wantpacket(connp, ira, ipha) &&
5355 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5356 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5357 break;
5358 connp = connp->conn_next;
5359 }
5360
5361 if (connp == NULL) {
5362 /*
5363 * No one bound to this port. Is
5364 * there a client that wants all
5365 * unclaimed datagrams?
5366 */
5367 mutex_exit(&connfp->connf_lock);
5368
5369 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5370 NULL) {
5371 ASSERT(ira->ira_protocol == IPPROTO_UDP);
5372 ip_fanout_proto_v4(mp, ipha, ira);
5373 } else {
5374 /*
5375 * We used to attempt to send an icmp error here, but
5376 * since this is known to be a multicast packet
5377 * and we don't send icmp errors in response to
5378 * multicast, just drop the packet and give up sooner.
5379 */
5380 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5381 freemsg(mp);
5382 }
5383 return;
5384 }
5385 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5386
5387 /*
5388 * If SO_REUSEADDR has been set on the first we send the
5389 * packet to all clients that have joined the group and
5390 * match the port.
5391 */
5392 if (connp->conn_reuseaddr) {
5393 conn_t *first_connp = connp;
5394 conn_t *next_connp;
5395 mblk_t *mp1;
5396
5397 CONN_INC_REF(connp);
5398 connp = connp->conn_next;
5399 for (;;) {
5400 while (connp != NULL) {
5401 if (IPCL_UDP_MATCH_V6(connp, lport,
5402 ipv6_all_zeros, fport, v6faddr) &&
5403 conn_wantpacket(connp, ira, ipha) &&
5404 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5405 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5406 ira, connp)))
5407 break;
5408 connp = connp->conn_next;
5409 }
5410 if (connp == NULL) {
5411 /* No more interested clients */
5412 connp = first_connp;
5413 break;
5414 }
5415 if (((mp1 = dupmsg(mp)) == NULL) &&
5416 ((mp1 = copymsg(mp)) == NULL)) {
5417 /* Memory allocation failed */
5418 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5419 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5420 connp = first_connp;
5421 break;
5422 }
5423 CONN_INC_REF(connp);
5424 mutex_exit(&connfp->connf_lock);
5425
5426 IP_STAT(ipst, ip_udp_fanmb);
5427 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5428 NULL, ira);
5429 mutex_enter(&connfp->connf_lock);
5430 /* Follow the next pointer before releasing the conn */
5431 next_connp = connp->conn_next;
5432 CONN_DEC_REF(connp);
5433 connp = next_connp;
5434 }
5435 }
5436
5437 /* Last one. Send it upstream. */
5438 mutex_exit(&connfp->connf_lock);
5439 IP_STAT(ipst, ip_udp_fanmb);
5440 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5441 CONN_DEC_REF(connp);
5442 }
5443
5444 /*
5445 * Split an incoming packet's IPv4 options into the label and the other options.
5446 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5447 * clearing out any leftover label or options.
5448 * Otherwise it just makes ipp point into the packet.
5449 *
5450 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5451 */
5452 int
5453 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5454 {
5455 uchar_t *opt;
5456 uint32_t totallen;
5457 uint32_t optval;
5458 uint32_t optlen;
5459
5460 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5461 ipp->ipp_hoplimit = ipha->ipha_ttl;
5462 ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5463 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5464
5465 /*
5466 * Get length (in 4 byte octets) of IP header options.
5467 */
5468 totallen = ipha->ipha_version_and_hdr_length -
5469 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5470
5471 if (totallen == 0) {
5472 if (!allocate)
5473 return (0);
5474
5475 /* Clear out anything from a previous packet */
5476 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5477 kmem_free(ipp->ipp_ipv4_options,
5478 ipp->ipp_ipv4_options_len);
5479 ipp->ipp_ipv4_options = NULL;
5480 ipp->ipp_ipv4_options_len = 0;
5481 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5482 }
5483 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5484 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5485 ipp->ipp_label_v4 = NULL;
5486 ipp->ipp_label_len_v4 = 0;
5487 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5488 }
5489 return (0);
5490 }
5491
5492 totallen <<= 2;
5493 opt = (uchar_t *)&ipha[1];
5494 if (!is_system_labeled()) {
5495
5496 copyall:
5497 if (!allocate) {
5498 if (totallen != 0) {
5499 ipp->ipp_ipv4_options = opt;
5500 ipp->ipp_ipv4_options_len = totallen;
5501 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5502 }
5503 return (0);
5504 }
5505 /* Just copy all of options */
5506 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5507 if (totallen == ipp->ipp_ipv4_options_len) {
5508 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5509 return (0);
5510 }
5511 kmem_free(ipp->ipp_ipv4_options,
5512 ipp->ipp_ipv4_options_len);
5513 ipp->ipp_ipv4_options = NULL;
5514 ipp->ipp_ipv4_options_len = 0;
5515 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5516 }
5517 if (totallen == 0)
5518 return (0);
5519
5520 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5521 if (ipp->ipp_ipv4_options == NULL)
5522 return (ENOMEM);
5523 ipp->ipp_ipv4_options_len = totallen;
5524 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5525 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5526 return (0);
5527 }
5528
5529 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5530 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5531 ipp->ipp_label_v4 = NULL;
5532 ipp->ipp_label_len_v4 = 0;
5533 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5534 }
5535
5536 /*
5537 * Search for CIPSO option.
5538 * We assume CIPSO is first in options if it is present.
5539 * If it isn't, then ipp_opt_ipv4_options will not include the options
5540 * prior to the CIPSO option.
5541 */
5542 while (totallen != 0) {
5543 switch (optval = opt[IPOPT_OPTVAL]) {
5544 case IPOPT_EOL:
5545 return (0);
5546 case IPOPT_NOP:
5547 optlen = 1;
5548 break;
5549 default:
5550 if (totallen <= IPOPT_OLEN)
5551 return (EINVAL);
5552 optlen = opt[IPOPT_OLEN];
5553 if (optlen < 2)
5554 return (EINVAL);
5555 }
5556 if (optlen > totallen)
5557 return (EINVAL);
5558
5559 switch (optval) {
5560 case IPOPT_COMSEC:
5561 if (!allocate) {
5562 ipp->ipp_label_v4 = opt;
5563 ipp->ipp_label_len_v4 = optlen;
5564 ipp->ipp_fields |= IPPF_LABEL_V4;
5565 } else {
5566 ipp->ipp_label_v4 = kmem_alloc(optlen,
5567 KM_NOSLEEP);
5568 if (ipp->ipp_label_v4 == NULL)
5569 return (ENOMEM);
5570 ipp->ipp_label_len_v4 = optlen;
5571 ipp->ipp_fields |= IPPF_LABEL_V4;
5572 bcopy(opt, ipp->ipp_label_v4, optlen);
5573 }
5574 totallen -= optlen;
5575 opt += optlen;
5576
5577 /* Skip padding bytes until we get to a multiple of 4 */
5578 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5579 totallen--;
5580 opt++;
5581 }
5582 /* Remaining as ipp_ipv4_options */
5583 goto copyall;
5584 }
5585 totallen -= optlen;
5586 opt += optlen;
5587 }
5588 /* No CIPSO found; return everything as ipp_ipv4_options */
5589 totallen = ipha->ipha_version_and_hdr_length -
5590 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5591 totallen <<= 2;
5592 opt = (uchar_t *)&ipha[1];
5593 goto copyall;
5594 }
5595
5596 /*
5597 * Efficient versions of lookup for an IRE when we only
5598 * match the address.
5599 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5600 * Does not handle multicast addresses.
5601 */
5602 uint_t
5603 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5604 {
5605 ire_t *ire;
5606 uint_t result;
5607
5608 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5609 ASSERT(ire != NULL);
5610 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5611 result = IRE_NOROUTE;
5612 else
5613 result = ire->ire_type;
5614 ire_refrele(ire);
5615 return (result);
5616 }
5617
5618 /*
5619 * Efficient versions of lookup for an IRE when we only
5620 * match the address.
5621 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5622 * Does not handle multicast addresses.
5623 */
5624 uint_t
5625 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5626 {
5627 ire_t *ire;
5628 uint_t result;
5629
5630 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5631 ASSERT(ire != NULL);
5632 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5633 result = IRE_NOROUTE;
5634 else
5635 result = ire->ire_type;
5636 ire_refrele(ire);
5637 return (result);
5638 }
5639
5640 /*
5641 * Nobody should be sending
5642 * packets up this stream
5643 */
5644 static void
5645 ip_lrput(queue_t *q, mblk_t *mp)
5646 {
5647 switch (mp->b_datap->db_type) {
5648 case M_FLUSH:
5649 /* Turn around */
5650 if (*mp->b_rptr & FLUSHW) {
5651 *mp->b_rptr &= ~FLUSHR;
5652 qreply(q, mp);
5653 return;
5654 }
5655 break;
5656 }
5657 freemsg(mp);
5658 }
5659
5660 /* Nobody should be sending packets down this stream */
5661 /* ARGSUSED */
5662 void
5663 ip_lwput(queue_t *q, mblk_t *mp)
5664 {
5665 freemsg(mp);
5666 }
5667
5668 /*
5669 * Move the first hop in any source route to ipha_dst and remove that part of
5670 * the source route. Called by other protocols. Errors in option formatting
5671 * are ignored - will be handled by ip_output_options. Return the final
5672 * destination (either ipha_dst or the last entry in a source route.)
5673 */
5674 ipaddr_t
5675 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5676 {
5677 ipoptp_t opts;
5678 uchar_t *opt;
5679 uint8_t optval;
5680 uint8_t optlen;
5681 ipaddr_t dst;
5682 int i;
5683 ip_stack_t *ipst = ns->netstack_ip;
5684
5685 ip2dbg(("ip_massage_options\n"));
5686 dst = ipha->ipha_dst;
5687 for (optval = ipoptp_first(&opts, ipha);
5688 optval != IPOPT_EOL;
5689 optval = ipoptp_next(&opts)) {
5690 opt = opts.ipoptp_cur;
5691 switch (optval) {
5692 uint8_t off;
5693 case IPOPT_SSRR:
5694 case IPOPT_LSRR:
5695 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5696 ip1dbg(("ip_massage_options: bad src route\n"));
5697 break;
5698 }
5699 optlen = opts.ipoptp_len;
5700 off = opt[IPOPT_OFFSET];
5701 off--;
5702 redo_srr:
5703 if (optlen < IP_ADDR_LEN ||
5704 off > optlen - IP_ADDR_LEN) {
5705 /* End of source route */
5706 ip1dbg(("ip_massage_options: end of SR\n"));
5707 break;
5708 }
5709 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5710 ip1dbg(("ip_massage_options: next hop 0x%x\n",
5711 ntohl(dst)));
5712 /*
5713 * Check if our address is present more than
5714 * once as consecutive hops in source route.
5715 * XXX verify per-interface ip_forwarding
5716 * for source route?
5717 */
5718 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5719 off += IP_ADDR_LEN;
5720 goto redo_srr;
5721 }
5722 if (dst == htonl(INADDR_LOOPBACK)) {
5723 ip1dbg(("ip_massage_options: loopback addr in "
5724 "source route!\n"));
5725 break;
5726 }
5727 /*
5728 * Update ipha_dst to be the first hop and remove the
5729 * first hop from the source route (by overwriting
5730 * part of the option with NOP options).
5731 */
5732 ipha->ipha_dst = dst;
5733 /* Put the last entry in dst */
5734 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5735 3;
5736 bcopy(&opt[off], &dst, IP_ADDR_LEN);
5737
5738 ip1dbg(("ip_massage_options: last hop 0x%x\n",
5739 ntohl(dst)));
5740 /* Move down and overwrite */
5741 opt[IP_ADDR_LEN] = opt[0];
5742 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5743 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5744 for (i = 0; i < IP_ADDR_LEN; i++)
5745 opt[i] = IPOPT_NOP;
5746 break;
5747 }
5748 }
5749 return (dst);
5750 }
5751
5752 /*
5753 * Return the network mask
5754 * associated with the specified address.
5755 */
5756 ipaddr_t
5757 ip_net_mask(ipaddr_t addr)
5758 {
5759 uchar_t *up = (uchar_t *)&addr;
5760 ipaddr_t mask = 0;
5761 uchar_t *maskp = (uchar_t *)&mask;
5762
5763 #if defined(__i386) || defined(__amd64)
5764 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5765 #endif
5766 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER
5767 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5768 #endif
5769 if (CLASSD(addr)) {
5770 maskp[0] = 0xF0;
5771 return (mask);
5772 }
5773
5774 /* We assume Class E default netmask to be 32 */
5775 if (CLASSE(addr))
5776 return (0xffffffffU);
5777
5778 if (addr == 0)
5779 return (0);
5780 maskp[0] = 0xFF;
5781 if ((up[0] & 0x80) == 0)
5782 return (mask);
5783
5784 maskp[1] = 0xFF;
5785 if ((up[0] & 0xC0) == 0x80)
5786 return (mask);
5787
5788 maskp[2] = 0xFF;
5789 if ((up[0] & 0xE0) == 0xC0)
5790 return (mask);
5791
5792 /* Otherwise return no mask */
5793 return ((ipaddr_t)0);
5794 }
5795
5796 /* Name/Value Table Lookup Routine */
5797 char *
5798 ip_nv_lookup(nv_t *nv, int value)
5799 {
5800 if (!nv)
5801 return (NULL);
5802 for (; nv->nv_name; nv++) {
5803 if (nv->nv_value == value)
5804 return (nv->nv_name);
5805 }
5806 return ("unknown");
5807 }
5808
5809 static int
5810 ip_wait_for_info_ack(ill_t *ill)
5811 {
5812 int err;
5813
5814 mutex_enter(&ill->ill_lock);
5815 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5816 /*
5817 * Return value of 0 indicates a pending signal.
5818 */
5819 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5820 if (err == 0) {
5821 mutex_exit(&ill->ill_lock);
5822 return (EINTR);
5823 }
5824 }
5825 mutex_exit(&ill->ill_lock);
5826 /*
5827 * ip_rput_other could have set an error in ill_error on
5828 * receipt of M_ERROR.
5829 */
5830 return (ill->ill_error);
5831 }
5832
5833 /*
5834 * This is a module open, i.e. this is a control stream for access
5835 * to a DLPI device. We allocate an ill_t as the instance data in
5836 * this case.
5837 */
5838 static int
5839 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5840 {
5841 ill_t *ill;
5842 int err;
5843 zoneid_t zoneid;
5844 netstack_t *ns;
5845 ip_stack_t *ipst;
5846
5847 /*
5848 * Prevent unprivileged processes from pushing IP so that
5849 * they can't send raw IP.
5850 */
5851 if (secpolicy_net_rawaccess(credp) != 0)
5852 return (EPERM);
5853
5854 ns = netstack_find_by_cred(credp);
5855 ASSERT(ns != NULL);
5856 ipst = ns->netstack_ip;
5857 ASSERT(ipst != NULL);
5858
5859 /*
5860 * For exclusive stacks we set the zoneid to zero
5861 * to make IP operate as if in the global zone.
5862 */
5863 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5864 zoneid = GLOBAL_ZONEID;
5865 else
5866 zoneid = crgetzoneid(credp);
5867
5868 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5869 q->q_ptr = WR(q)->q_ptr = ill;
5870 ill->ill_ipst = ipst;
5871 ill->ill_zoneid = zoneid;
5872
5873 /*
5874 * ill_init initializes the ill fields and then sends down
5875 * down a DL_INFO_REQ after calling qprocson.
5876 */
5877 err = ill_init(q, ill);
5878
5879 if (err != 0) {
5880 mi_free(ill);
5881 netstack_rele(ipst->ips_netstack);
5882 q->q_ptr = NULL;
5883 WR(q)->q_ptr = NULL;
5884 return (err);
5885 }
5886
5887 /*
5888 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5889 *
5890 * ill_init initializes the ipsq marking this thread as
5891 * writer
5892 */
5893 ipsq_exit(ill->ill_phyint->phyint_ipsq);
5894 err = ip_wait_for_info_ack(ill);
5895 if (err == 0)
5896 ill->ill_credp = credp;
5897 else
5898 goto fail;
5899
5900 crhold(credp);
5901
5902 mutex_enter(&ipst->ips_ip_mi_lock);
5903 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5904 sflag, credp);
5905 mutex_exit(&ipst->ips_ip_mi_lock);
5906 fail:
5907 if (err) {
5908 (void) ip_close(q, 0);
5909 return (err);
5910 }
5911 return (0);
5912 }
5913
5914 /* For /dev/ip aka AF_INET open */
5915 int
5916 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5917 {
5918 return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5919 }
5920
5921 /* For /dev/ip6 aka AF_INET6 open */
5922 int
5923 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5924 {
5925 return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5926 }
5927
5928 /* IP open routine. */
5929 int
5930 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5931 boolean_t isv6)
5932 {
5933 conn_t *connp;
5934 major_t maj;
5935 zoneid_t zoneid;
5936 netstack_t *ns;
5937 ip_stack_t *ipst;
5938
5939 /* Allow reopen. */
5940 if (q->q_ptr != NULL)
5941 return (0);
5942
5943 if (sflag & MODOPEN) {
5944 /* This is a module open */
5945 return (ip_modopen(q, devp, flag, sflag, credp));
5946 }
5947
5948 if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5949 /*
5950 * Non streams based socket looking for a stream
5951 * to access IP
5952 */
5953 return (ip_helper_stream_setup(q, devp, flag, sflag,
5954 credp, isv6));
5955 }
5956
5957 ns = netstack_find_by_cred(credp);
5958 ASSERT(ns != NULL);
5959 ipst = ns->netstack_ip;
5960 ASSERT(ipst != NULL);
5961
5962 /*
5963 * For exclusive stacks we set the zoneid to zero
5964 * to make IP operate as if in the global zone.
5965 */
5966 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5967 zoneid = GLOBAL_ZONEID;
5968 else
5969 zoneid = crgetzoneid(credp);
5970
5971 /*
5972 * We are opening as a device. This is an IP client stream, and we
5973 * allocate an conn_t as the instance data.
5974 */
5975 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
5976
5977 /*
5978 * ipcl_conn_create did a netstack_hold. Undo the hold that was
5979 * done by netstack_find_by_cred()
5980 */
5981 netstack_rele(ipst->ips_netstack);
5982
5983 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
5984 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
5985 connp->conn_ixa->ixa_zoneid = zoneid;
5986 connp->conn_zoneid = zoneid;
5987
5988 connp->conn_rq = q;
5989 q->q_ptr = WR(q)->q_ptr = connp;
5990
5991 /* Minor tells us which /dev entry was opened */
5992 if (isv6) {
5993 connp->conn_family = AF_INET6;
5994 connp->conn_ipversion = IPV6_VERSION;
5995 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
5996 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
5997 } else {
5998 connp->conn_family = AF_INET;
5999 connp->conn_ipversion = IPV4_VERSION;
6000 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6001 }
6002
6003 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6004 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6005 connp->conn_minor_arena = ip_minor_arena_la;
6006 } else {
6007 /*
6008 * Either minor numbers in the large arena were exhausted
6009 * or a non socket application is doing the open.
6010 * Try to allocate from the small arena.
6011 */
6012 if ((connp->conn_dev =
6013 inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6014 /* CONN_DEC_REF takes care of netstack_rele() */
6015 q->q_ptr = WR(q)->q_ptr = NULL;
6016 CONN_DEC_REF(connp);
6017 return (EBUSY);
6018 }
6019 connp->conn_minor_arena = ip_minor_arena_sa;
6020 }
6021
6022 maj = getemajor(*devp);
6023 *devp = makedevice(maj, (minor_t)connp->conn_dev);
6024
6025 /*
6026 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6027 */
6028 connp->conn_cred = credp;
6029 connp->conn_cpid = curproc->p_pid;
6030 /* Cache things in ixa without an extra refhold */
6031 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6032 connp->conn_ixa->ixa_cred = connp->conn_cred;
6033 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6034 if (is_system_labeled())
6035 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6036
6037 /*
6038 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6039 */
6040 connp->conn_recv = ip_conn_input;
6041 connp->conn_recvicmp = ip_conn_input_icmp;
6042
6043 crhold(connp->conn_cred);
6044
6045 /*
6046 * If the caller has the process-wide flag set, then default to MAC
6047 * exempt mode. This allows read-down to unlabeled hosts.
6048 */
6049 if (getpflags(NET_MAC_AWARE, credp) != 0)
6050 connp->conn_mac_mode = CONN_MAC_AWARE;
6051
6052 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6053
6054 connp->conn_rq = q;
6055 connp->conn_wq = WR(q);
6056
6057 /* Non-zero default values */
6058 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6059
6060 /*
6061 * Make the conn globally visible to walkers
6062 */
6063 ASSERT(connp->conn_ref == 1);
6064 mutex_enter(&connp->conn_lock);
6065 connp->conn_state_flags &= ~CONN_INCIPIENT;
6066 mutex_exit(&connp->conn_lock);
6067
6068 qprocson(q);
6069
6070 return (0);
6071 }
6072
6073 /*
6074 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6075 * all of them are copied to the conn_t. If the req is "zero", the policy is
6076 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6077 * fields.
6078 * We keep only the latest setting of the policy and thus policy setting
6079 * is not incremental/cumulative.
6080 *
6081 * Requests to set policies with multiple alternative actions will
6082 * go through a different API.
6083 */
6084 int
6085 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6086 {
6087 uint_t ah_req = 0;
6088 uint_t esp_req = 0;
6089 uint_t se_req = 0;
6090 ipsec_act_t *actp = NULL;
6091 uint_t nact;
6092 ipsec_policy_head_t *ph;
6093 boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6094 int error = 0;
6095 netstack_t *ns = connp->conn_netstack;
6096 ip_stack_t *ipst = ns->netstack_ip;
6097 ipsec_stack_t *ipss = ns->netstack_ipsec;
6098
6099 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6100
6101 /*
6102 * The IP_SEC_OPT option does not allow variable length parameters,
6103 * hence a request cannot be NULL.
6104 */
6105 if (req == NULL)
6106 return (EINVAL);
6107
6108 ah_req = req->ipsr_ah_req;
6109 esp_req = req->ipsr_esp_req;
6110 se_req = req->ipsr_self_encap_req;
6111
6112 /* Don't allow setting self-encap without one or more of AH/ESP. */
6113 if (se_req != 0 && esp_req == 0 && ah_req == 0)
6114 return (EINVAL);
6115
6116 /*
6117 * Are we dealing with a request to reset the policy (i.e.
6118 * zero requests).
6119 */
6120 is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6121 (esp_req & REQ_MASK) == 0 &&
6122 (se_req & REQ_MASK) == 0);
6123
6124 if (!is_pol_reset) {
6125 /*
6126 * If we couldn't load IPsec, fail with "protocol
6127 * not supported".
6128 * IPsec may not have been loaded for a request with zero
6129 * policies, so we don't fail in this case.
6130 */
6131 mutex_enter(&ipss->ipsec_loader_lock);
6132 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6133 mutex_exit(&ipss->ipsec_loader_lock);
6134 return (EPROTONOSUPPORT);
6135 }
6136 mutex_exit(&ipss->ipsec_loader_lock);
6137
6138 /*
6139 * Test for valid requests. Invalid algorithms
6140 * need to be tested by IPsec code because new
6141 * algorithms can be added dynamically.
6142 */
6143 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6144 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6145 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6146 return (EINVAL);
6147 }
6148
6149 /*
6150 * Only privileged users can issue these
6151 * requests.
6152 */
6153 if (((ah_req & IPSEC_PREF_NEVER) ||
6154 (esp_req & IPSEC_PREF_NEVER) ||
6155 (se_req & IPSEC_PREF_NEVER)) &&
6156 secpolicy_ip_config(cr, B_FALSE) != 0) {
6157 return (EPERM);
6158 }
6159
6160 /*
6161 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6162 * are mutually exclusive.
6163 */
6164 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6165 ((esp_req & REQ_MASK) == REQ_MASK) ||
6166 ((se_req & REQ_MASK) == REQ_MASK)) {
6167 /* Both of them are set */
6168 return (EINVAL);
6169 }
6170 }
6171
6172 ASSERT(MUTEX_HELD(&connp->conn_lock));
6173
6174 /*
6175 * If we have already cached policies in conn_connect(), don't
6176 * let them change now. We cache policies for connections
6177 * whose src,dst [addr, port] is known.
6178 */
6179 if (connp->conn_policy_cached) {
6180 return (EINVAL);
6181 }
6182
6183 /*
6184 * We have a zero policies, reset the connection policy if already
6185 * set. This will cause the connection to inherit the
6186 * global policy, if any.
6187 */
6188 if (is_pol_reset) {
6189 if (connp->conn_policy != NULL) {
6190 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6191 connp->conn_policy = NULL;
6192 }
6193 connp->conn_in_enforce_policy = B_FALSE;
6194 connp->conn_out_enforce_policy = B_FALSE;
6195 return (0);
6196 }
6197
6198 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6199 ipst->ips_netstack);
6200 if (ph == NULL)
6201 goto enomem;
6202
6203 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6204 if (actp == NULL)
6205 goto enomem;
6206
6207 /*
6208 * Always insert IPv4 policy entries, since they can also apply to
6209 * ipv6 sockets being used in ipv4-compat mode.
6210 */
6211 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6212 IPSEC_TYPE_INBOUND, ns))
6213 goto enomem;
6214 is_pol_inserted = B_TRUE;
6215 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6216 IPSEC_TYPE_OUTBOUND, ns))
6217 goto enomem;
6218
6219 /*
6220 * We're looking at a v6 socket, also insert the v6-specific
6221 * entries.
6222 */
6223 if (connp->conn_family == AF_INET6) {
6224 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6225 IPSEC_TYPE_INBOUND, ns))
6226 goto enomem;
6227 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6228 IPSEC_TYPE_OUTBOUND, ns))
6229 goto enomem;
6230 }
6231
6232 ipsec_actvec_free(actp, nact);
6233
6234 /*
6235 * If the requests need security, set enforce_policy.
6236 * If the requests are IPSEC_PREF_NEVER, one should
6237 * still set conn_out_enforce_policy so that ip_set_destination
6238 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6239 * for connections that we don't cache policy in at connect time,
6240 * if global policy matches in ip_output_attach_policy, we
6241 * don't wrongly inherit global policy. Similarly, we need
6242 * to set conn_in_enforce_policy also so that we don't verify
6243 * policy wrongly.
6244 */
6245 if ((ah_req & REQ_MASK) != 0 ||
6246 (esp_req & REQ_MASK) != 0 ||
6247 (se_req & REQ_MASK) != 0) {
6248 connp->conn_in_enforce_policy = B_TRUE;
6249 connp->conn_out_enforce_policy = B_TRUE;
6250 }
6251
6252 return (error);
6253 #undef REQ_MASK
6254
6255 /*
6256 * Common memory-allocation-failure exit path.
6257 */
6258 enomem:
6259 if (actp != NULL)
6260 ipsec_actvec_free(actp, nact);
6261 if (is_pol_inserted)
6262 ipsec_polhead_flush(ph, ns);
6263 return (ENOMEM);
6264 }
6265
6266 /*
6267 * Set socket options for joining and leaving multicast groups.
6268 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6269 * The caller has already check that the option name is consistent with
6270 * the address family of the socket.
6271 */
6272 int
6273 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6274 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6275 {
6276 int *i1 = (int *)invalp;
6277 int error = 0;
6278 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6279 struct ip_mreq *v4_mreqp;
6280 struct ipv6_mreq *v6_mreqp;
6281 struct group_req *greqp;
6282 ire_t *ire;
6283 boolean_t done = B_FALSE;
6284 ipaddr_t ifaddr;
6285 in6_addr_t v6group;
6286 uint_t ifindex;
6287 boolean_t mcast_opt = B_TRUE;
6288 mcast_record_t fmode;
6289 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6290 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6291
6292 switch (name) {
6293 case IP_ADD_MEMBERSHIP:
6294 case IPV6_JOIN_GROUP:
6295 mcast_opt = B_FALSE;
6296 /* FALLTHRU */
6297 case MCAST_JOIN_GROUP:
6298 fmode = MODE_IS_EXCLUDE;
6299 optfn = ip_opt_add_group;
6300 break;
6301
6302 case IP_DROP_MEMBERSHIP:
6303 case IPV6_LEAVE_GROUP:
6304 mcast_opt = B_FALSE;
6305 /* FALLTHRU */
6306 case MCAST_LEAVE_GROUP:
6307 fmode = MODE_IS_INCLUDE;
6308 optfn = ip_opt_delete_group;
6309 break;
6310 default:
6311 ASSERT(0);
6312 }
6313
6314 if (mcast_opt) {
6315 struct sockaddr_in *sin;
6316 struct sockaddr_in6 *sin6;
6317
6318 greqp = (struct group_req *)i1;
6319 if (greqp->gr_group.ss_family == AF_INET) {
6320 sin = (struct sockaddr_in *)&(greqp->gr_group);
6321 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6322 } else {
6323 if (!inet6)
6324 return (EINVAL); /* Not on INET socket */
6325
6326 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6327 v6group = sin6->sin6_addr;
6328 }
6329 ifaddr = INADDR_ANY;
6330 ifindex = greqp->gr_interface;
6331 } else if (inet6) {
6332 v6_mreqp = (struct ipv6_mreq *)i1;
6333 v6group = v6_mreqp->ipv6mr_multiaddr;
6334 ifaddr = INADDR_ANY;
6335 ifindex = v6_mreqp->ipv6mr_interface;
6336 } else {
6337 v4_mreqp = (struct ip_mreq *)i1;
6338 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6339 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6340 ifindex = 0;
6341 }
6342
6343 /*
6344 * In the multirouting case, we need to replicate
6345 * the request on all interfaces that will take part
6346 * in replication. We do so because multirouting is
6347 * reflective, thus we will probably receive multi-
6348 * casts on those interfaces.
6349 * The ip_multirt_apply_membership() succeeds if
6350 * the operation succeeds on at least one interface.
6351 */
6352 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6353 ipaddr_t group;
6354
6355 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6356
6357 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6358 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6359 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6360 } else {
6361 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6362 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6363 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6364 }
6365 if (ire != NULL) {
6366 if (ire->ire_flags & RTF_MULTIRT) {
6367 error = ip_multirt_apply_membership(optfn, ire, connp,
6368 checkonly, &v6group, fmode, &ipv6_all_zeros);
6369 done = B_TRUE;
6370 }
6371 ire_refrele(ire);
6372 }
6373
6374 if (!done) {
6375 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6376 fmode, &ipv6_all_zeros);
6377 }
6378 return (error);
6379 }
6380
6381 /*
6382 * Set socket options for joining and leaving multicast groups
6383 * for specific sources.
6384 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6385 * The caller has already check that the option name is consistent with
6386 * the address family of the socket.
6387 */
6388 int
6389 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6390 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6391 {
6392 int *i1 = (int *)invalp;
6393 int error = 0;
6394 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6395 struct ip_mreq_source *imreqp;
6396 struct group_source_req *gsreqp;
6397 in6_addr_t v6group, v6src;
6398 uint32_t ifindex;
6399 ipaddr_t ifaddr;
6400 boolean_t mcast_opt = B_TRUE;
6401 mcast_record_t fmode;
6402 ire_t *ire;
6403 boolean_t done = B_FALSE;
6404 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6405 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6406
6407 switch (name) {
6408 case IP_BLOCK_SOURCE:
6409 mcast_opt = B_FALSE;
6410 /* FALLTHRU */
6411 case MCAST_BLOCK_SOURCE:
6412 fmode = MODE_IS_EXCLUDE;
6413 optfn = ip_opt_add_group;
6414 break;
6415
6416 case IP_UNBLOCK_SOURCE:
6417 mcast_opt = B_FALSE;
6418 /* FALLTHRU */
6419 case MCAST_UNBLOCK_SOURCE:
6420 fmode = MODE_IS_EXCLUDE;
6421 optfn = ip_opt_delete_group;
6422 break;
6423
6424 case IP_ADD_SOURCE_MEMBERSHIP:
6425 mcast_opt = B_FALSE;
6426 /* FALLTHRU */
6427 case MCAST_JOIN_SOURCE_GROUP:
6428 fmode = MODE_IS_INCLUDE;
6429 optfn = ip_opt_add_group;
6430 break;
6431
6432 case IP_DROP_SOURCE_MEMBERSHIP:
6433 mcast_opt = B_FALSE;
6434 /* FALLTHRU */
6435 case MCAST_LEAVE_SOURCE_GROUP:
6436 fmode = MODE_IS_INCLUDE;
6437 optfn = ip_opt_delete_group;
6438 break;
6439 default:
6440 ASSERT(0);
6441 }
6442
6443 if (mcast_opt) {
6444 gsreqp = (struct group_source_req *)i1;
6445 ifindex = gsreqp->gsr_interface;
6446 if (gsreqp->gsr_group.ss_family == AF_INET) {
6447 struct sockaddr_in *s;
6448 s = (struct sockaddr_in *)&gsreqp->gsr_group;
6449 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6450 s = (struct sockaddr_in *)&gsreqp->gsr_source;
6451 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6452 } else {
6453 struct sockaddr_in6 *s6;
6454
6455 if (!inet6)
6456 return (EINVAL); /* Not on INET socket */
6457
6458 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6459 v6group = s6->sin6_addr;
6460 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6461 v6src = s6->sin6_addr;
6462 }
6463 ifaddr = INADDR_ANY;
6464 } else {
6465 imreqp = (struct ip_mreq_source *)i1;
6466 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6467 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6468 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6469 ifindex = 0;
6470 }
6471
6472 /*
6473 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6474 */
6475 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6476 v6src = ipv6_all_zeros;
6477
6478 /*
6479 * In the multirouting case, we need to replicate
6480 * the request as noted in the mcast cases above.
6481 */
6482 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6483 ipaddr_t group;
6484
6485 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6486
6487 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6488 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6489 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6490 } else {
6491 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6492 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6493 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6494 }
6495 if (ire != NULL) {
6496 if (ire->ire_flags & RTF_MULTIRT) {
6497 error = ip_multirt_apply_membership(optfn, ire, connp,
6498 checkonly, &v6group, fmode, &v6src);
6499 done = B_TRUE;
6500 }
6501 ire_refrele(ire);
6502 }
6503 if (!done) {
6504 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6505 fmode, &v6src);
6506 }
6507 return (error);
6508 }
6509
6510 /*
6511 * Given a destination address and a pointer to where to put the information
6512 * this routine fills in the mtuinfo.
6513 * The socket must be connected.
6514 * For sctp conn_faddr is the primary address.
6515 */
6516 int
6517 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6518 {
6519 uint32_t pmtu = IP_MAXPACKET;
6520 uint_t scopeid;
6521
6522 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6523 return (-1);
6524
6525 /* In case we never sent or called ip_set_destination_v4/v6 */
6526 if (ixa->ixa_ire != NULL)
6527 pmtu = ip_get_pmtu(ixa);
6528
6529 if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6530 scopeid = ixa->ixa_scopeid;
6531 else
6532 scopeid = 0;
6533
6534 bzero(mtuinfo, sizeof (*mtuinfo));
6535 mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6536 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6537 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6538 mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6539 mtuinfo->ip6m_mtu = pmtu;
6540
6541 return (sizeof (struct ip6_mtuinfo));
6542 }
6543
6544 /*
6545 * When the src multihoming is changed from weak to [strong, preferred]
6546 * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6547 * and identify routes that were created by user-applications in the
6548 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6549 * currently defined. These routes are then 'rebound', i.e., their ire_ill
6550 * is selected by finding an interface route for the gateway.
6551 */
6552 /* ARGSUSED */
6553 void
6554 ip_ire_rebind_walker(ire_t *ire, void *notused)
6555 {
6556 if (!ire->ire_unbound || ire->ire_ill != NULL)
6557 return;
6558 ire_rebind(ire);
6559 ire_delete(ire);
6560 }
6561
6562 /*
6563 * When the src multihoming is changed from [strong, preferred] to weak,
6564 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6565 * set any entries that were created by user-applications in the unbound state
6566 * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6567 */
6568 /* ARGSUSED */
6569 void
6570 ip_ire_unbind_walker(ire_t *ire, void *notused)
6571 {
6572 ire_t *new_ire;
6573
6574 if (!ire->ire_unbound || ire->ire_ill == NULL)
6575 return;
6576 if (ire->ire_ipversion == IPV6_VERSION) {
6577 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6578 &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6579 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6580 } else {
6581 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6582 (uchar_t *)&ire->ire_mask,
6583 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6584 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6585 }
6586 if (new_ire == NULL)
6587 return;
6588 new_ire->ire_unbound = B_TRUE;
6589 /*
6590 * The bound ire must first be deleted so that we don't return
6591 * the existing one on the attempt to add the unbound new_ire.
6592 */
6593 ire_delete(ire);
6594 new_ire = ire_add(new_ire);
6595 if (new_ire != NULL)
6596 ire_refrele(new_ire);
6597 }
6598
6599 /*
6600 * When the settings of ip*_strict_src_multihoming tunables are changed,
6601 * all cached routes need to be recomputed. This recomputation needs to be
6602 * done when going from weaker to stronger modes so that the cached ire
6603 * for the connection does not violate the current ip*_strict_src_multihoming
6604 * setting. It also needs to be done when going from stronger to weaker modes,
6605 * so that we fall back to matching on the longest-matching-route (as opposed
6606 * to a shorter match that may have been selected in the strong mode
6607 * to satisfy src_multihoming settings).
6608 *
6609 * The cached ixa_ire entires for all conn_t entries are marked as
6610 * "verify" so that they will be recomputed for the next packet.
6611 */
6612 void
6613 conn_ire_revalidate(conn_t *connp, void *arg)
6614 {
6615 boolean_t isv6 = (boolean_t)arg;
6616
6617 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6618 (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6619 return;
6620 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6621 }
6622
6623 /*
6624 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6625 * When an ipf is passed here for the first time, if
6626 * we already have in-order fragments on the queue, we convert from the fast-
6627 * path reassembly scheme to the hard-case scheme. From then on, additional
6628 * fragments are reassembled here. We keep track of the start and end offsets
6629 * of each piece, and the number of holes in the chain. When the hole count
6630 * goes to zero, we are done!
6631 *
6632 * The ipf_count will be updated to account for any mblk(s) added (pointed to
6633 * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6634 * ipfb_count and ill_frag_count by the difference of ipf_count before and
6635 * after the call to ip_reassemble().
6636 */
6637 int
6638 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6639 size_t msg_len)
6640 {
6641 uint_t end;
6642 mblk_t *next_mp;
6643 mblk_t *mp1;
6644 uint_t offset;
6645 boolean_t incr_dups = B_TRUE;
6646 boolean_t offset_zero_seen = B_FALSE;
6647 boolean_t pkt_boundary_checked = B_FALSE;
6648
6649 /* If start == 0 then ipf_nf_hdr_len has to be set. */
6650 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6651
6652 /* Add in byte count */
6653 ipf->ipf_count += msg_len;
6654 if (ipf->ipf_end) {
6655 /*
6656 * We were part way through in-order reassembly, but now there
6657 * is a hole. We walk through messages already queued, and
6658 * mark them for hard case reassembly. We know that up till
6659 * now they were in order starting from offset zero.
6660 */
6661 offset = 0;
6662 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6663 IP_REASS_SET_START(mp1, offset);
6664 if (offset == 0) {
6665 ASSERT(ipf->ipf_nf_hdr_len != 0);
6666 offset = -ipf->ipf_nf_hdr_len;
6667 }
6668 offset += mp1->b_wptr - mp1->b_rptr;
6669 IP_REASS_SET_END(mp1, offset);
6670 }
6671 /* One hole at the end. */
6672 ipf->ipf_hole_cnt = 1;
6673 /* Brand it as a hard case, forever. */
6674 ipf->ipf_end = 0;
6675 }
6676 /* Walk through all the new pieces. */
6677 do {
6678 end = start + (mp->b_wptr - mp->b_rptr);
6679 /*
6680 * If start is 0, decrease 'end' only for the first mblk of
6681 * the fragment. Otherwise 'end' can get wrong value in the
6682 * second pass of the loop if first mblk is exactly the
6683 * size of ipf_nf_hdr_len.
6684 */
6685 if (start == 0 && !offset_zero_seen) {
6686 /* First segment */
6687 ASSERT(ipf->ipf_nf_hdr_len != 0);
6688 end -= ipf->ipf_nf_hdr_len;
6689 offset_zero_seen = B_TRUE;
6690 }
6691 next_mp = mp->b_cont;
6692 /*
6693 * We are checking to see if there is any interesing data
6694 * to process. If there isn't and the mblk isn't the
6695 * one which carries the unfragmentable header then we
6696 * drop it. It's possible to have just the unfragmentable
6697 * header come through without any data. That needs to be
6698 * saved.
6699 *
6700 * If the assert at the top of this function holds then the
6701 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code
6702 * is infrequently traveled enough that the test is left in
6703 * to protect against future code changes which break that
6704 * invariant.
6705 */
6706 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6707 /* Empty. Blast it. */
6708 IP_REASS_SET_START(mp, 0);
6709 IP_REASS_SET_END(mp, 0);
6710 /*
6711 * If the ipf points to the mblk we are about to free,
6712 * update ipf to point to the next mblk (or NULL
6713 * if none).
6714 */
6715 if (ipf->ipf_mp->b_cont == mp)
6716 ipf->ipf_mp->b_cont = next_mp;
6717 freeb(mp);
6718 continue;
6719 }
6720 mp->b_cont = NULL;
6721 IP_REASS_SET_START(mp, start);
6722 IP_REASS_SET_END(mp, end);
6723 if (!ipf->ipf_tail_mp) {
6724 ipf->ipf_tail_mp = mp;
6725 ipf->ipf_mp->b_cont = mp;
6726 if (start == 0 || !more) {
6727 ipf->ipf_hole_cnt = 1;
6728 /*
6729 * if the first fragment comes in more than one
6730 * mblk, this loop will be executed for each
6731 * mblk. Need to adjust hole count so exiting
6732 * this routine will leave hole count at 1.
6733 */
6734 if (next_mp)
6735 ipf->ipf_hole_cnt++;
6736 } else
6737 ipf->ipf_hole_cnt = 2;
6738 continue;
6739 } else if (ipf->ipf_last_frag_seen && !more &&
6740 !pkt_boundary_checked) {
6741 /*
6742 * We check datagram boundary only if this fragment
6743 * claims to be the last fragment and we have seen a
6744 * last fragment in the past too. We do this only
6745 * once for a given fragment.
6746 *
6747 * start cannot be 0 here as fragments with start=0
6748 * and MF=0 gets handled as a complete packet. These
6749 * fragments should not reach here.
6750 */
6751
6752 if (start + msgdsize(mp) !=
6753 IP_REASS_END(ipf->ipf_tail_mp)) {
6754 /*
6755 * We have two fragments both of which claim
6756 * to be the last fragment but gives conflicting
6757 * information about the whole datagram size.
6758 * Something fishy is going on. Drop the
6759 * fragment and free up the reassembly list.
6760 */
6761 return (IP_REASS_FAILED);
6762 }
6763
6764 /*
6765 * We shouldn't come to this code block again for this
6766 * particular fragment.
6767 */
6768 pkt_boundary_checked = B_TRUE;
6769 }
6770
6771 /* New stuff at or beyond tail? */
6772 offset = IP_REASS_END(ipf->ipf_tail_mp);
6773 if (start >= offset) {
6774 if (ipf->ipf_last_frag_seen) {
6775 /* current fragment is beyond last fragment */
6776 return (IP_REASS_FAILED);
6777 }
6778 /* Link it on end. */
6779 ipf->ipf_tail_mp->b_cont = mp;
6780 ipf->ipf_tail_mp = mp;
6781 if (more) {
6782 if (start != offset)
6783 ipf->ipf_hole_cnt++;
6784 } else if (start == offset && next_mp == NULL)
6785 ipf->ipf_hole_cnt--;
6786 continue;
6787 }
6788 mp1 = ipf->ipf_mp->b_cont;
6789 offset = IP_REASS_START(mp1);
6790 /* New stuff at the front? */
6791 if (start < offset) {
6792 if (start == 0) {
6793 if (end >= offset) {
6794 /* Nailed the hole at the begining. */
6795 ipf->ipf_hole_cnt--;
6796 }
6797 } else if (end < offset) {
6798 /*
6799 * A hole, stuff, and a hole where there used
6800 * to be just a hole.
6801 */
6802 ipf->ipf_hole_cnt++;
6803 }
6804 mp->b_cont = mp1;
6805 /* Check for overlap. */
6806 while (end > offset) {
6807 if (end < IP_REASS_END(mp1)) {
6808 mp->b_wptr -= end - offset;
6809 IP_REASS_SET_END(mp, offset);
6810 BUMP_MIB(ill->ill_ip_mib,
6811 ipIfStatsReasmPartDups);
6812 break;
6813 }
6814 /* Did we cover another hole? */
6815 if ((mp1->b_cont &&
6816 IP_REASS_END(mp1) !=
6817 IP_REASS_START(mp1->b_cont) &&
6818 end >= IP_REASS_START(mp1->b_cont)) ||
6819 (!ipf->ipf_last_frag_seen && !more)) {
6820 ipf->ipf_hole_cnt--;
6821 }
6822 /* Clip out mp1. */
6823 if ((mp->b_cont = mp1->b_cont) == NULL) {
6824 /*
6825 * After clipping out mp1, this guy
6826 * is now hanging off the end.
6827 */
6828 ipf->ipf_tail_mp = mp;
6829 }
6830 IP_REASS_SET_START(mp1, 0);
6831 IP_REASS_SET_END(mp1, 0);
6832 /* Subtract byte count */
6833 ipf->ipf_count -= mp1->b_datap->db_lim -
6834 mp1->b_datap->db_base;
6835 freeb(mp1);
6836 BUMP_MIB(ill->ill_ip_mib,
6837 ipIfStatsReasmPartDups);
6838 mp1 = mp->b_cont;
6839 if (!mp1)
6840 break;
6841 offset = IP_REASS_START(mp1);
6842 }
6843 ipf->ipf_mp->b_cont = mp;
6844 continue;
6845 }
6846 /*
6847 * The new piece starts somewhere between the start of the head
6848 * and before the end of the tail.
6849 */
6850 for (; mp1; mp1 = mp1->b_cont) {
6851 offset = IP_REASS_END(mp1);
6852 if (start < offset) {
6853 if (end <= offset) {
6854 /* Nothing new. */
6855 IP_REASS_SET_START(mp, 0);
6856 IP_REASS_SET_END(mp, 0);
6857 /* Subtract byte count */
6858 ipf->ipf_count -= mp->b_datap->db_lim -
6859 mp->b_datap->db_base;
6860 if (incr_dups) {
6861 ipf->ipf_num_dups++;
6862 incr_dups = B_FALSE;
6863 }
6864 freeb(mp);
6865 BUMP_MIB(ill->ill_ip_mib,
6866 ipIfStatsReasmDuplicates);
6867 break;
6868 }
6869 /*
6870 * Trim redundant stuff off beginning of new
6871 * piece.
6872 */
6873 IP_REASS_SET_START(mp, offset);
6874 mp->b_rptr += offset - start;
6875 BUMP_MIB(ill->ill_ip_mib,
6876 ipIfStatsReasmPartDups);
6877 start = offset;
6878 if (!mp1->b_cont) {
6879 /*
6880 * After trimming, this guy is now
6881 * hanging off the end.
6882 */
6883 mp1->b_cont = mp;
6884 ipf->ipf_tail_mp = mp;
6885 if (!more) {
6886 ipf->ipf_hole_cnt--;
6887 }
6888 break;
6889 }
6890 }
6891 if (start >= IP_REASS_START(mp1->b_cont))
6892 continue;
6893 /* Fill a hole */
6894 if (start > offset)
6895 ipf->ipf_hole_cnt++;
6896 mp->b_cont = mp1->b_cont;
6897 mp1->b_cont = mp;
6898 mp1 = mp->b_cont;
6899 offset = IP_REASS_START(mp1);
6900 if (end >= offset) {
6901 ipf->ipf_hole_cnt--;
6902 /* Check for overlap. */
6903 while (end > offset) {
6904 if (end < IP_REASS_END(mp1)) {
6905 mp->b_wptr -= end - offset;
6906 IP_REASS_SET_END(mp, offset);
6907 /*
6908 * TODO we might bump
6909 * this up twice if there is
6910 * overlap at both ends.
6911 */
6912 BUMP_MIB(ill->ill_ip_mib,
6913 ipIfStatsReasmPartDups);
6914 break;
6915 }
6916 /* Did we cover another hole? */
6917 if ((mp1->b_cont &&
6918 IP_REASS_END(mp1)
6919 != IP_REASS_START(mp1->b_cont) &&
6920 end >=
6921 IP_REASS_START(mp1->b_cont)) ||
6922 (!ipf->ipf_last_frag_seen &&
6923 !more)) {
6924 ipf->ipf_hole_cnt--;
6925 }
6926 /* Clip out mp1. */
6927 if ((mp->b_cont = mp1->b_cont) ==
6928 NULL) {
6929 /*
6930 * After clipping out mp1,
6931 * this guy is now hanging
6932 * off the end.
6933 */
6934 ipf->ipf_tail_mp = mp;
6935 }
6936 IP_REASS_SET_START(mp1, 0);
6937 IP_REASS_SET_END(mp1, 0);
6938 /* Subtract byte count */
6939 ipf->ipf_count -=
6940 mp1->b_datap->db_lim -
6941 mp1->b_datap->db_base;
6942 freeb(mp1);
6943 BUMP_MIB(ill->ill_ip_mib,
6944 ipIfStatsReasmPartDups);
6945 mp1 = mp->b_cont;
6946 if (!mp1)
6947 break;
6948 offset = IP_REASS_START(mp1);
6949 }
6950 }
6951 break;
6952 }
6953 } while (start = end, mp = next_mp);
6954
6955 /* Fragment just processed could be the last one. Remember this fact */
6956 if (!more)
6957 ipf->ipf_last_frag_seen = B_TRUE;
6958
6959 /* Still got holes? */
6960 if (ipf->ipf_hole_cnt)
6961 return (IP_REASS_PARTIAL);
6962 /* Clean up overloaded fields to avoid upstream disasters. */
6963 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6964 IP_REASS_SET_START(mp1, 0);
6965 IP_REASS_SET_END(mp1, 0);
6966 }
6967 return (IP_REASS_COMPLETE);
6968 }
6969
6970 /*
6971 * Fragmentation reassembly. Each ILL has a hash table for
6972 * queuing packets undergoing reassembly for all IPIFs
6973 * associated with the ILL. The hash is based on the packet
6974 * IP ident field. The ILL frag hash table was allocated
6975 * as a timer block at the time the ILL was created. Whenever
6976 * there is anything on the reassembly queue, the timer will
6977 * be running. Returns the reassembled packet if reassembly completes.
6978 */
6979 mblk_t *
6980 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
6981 {
6982 uint32_t frag_offset_flags;
6983 mblk_t *t_mp;
6984 ipaddr_t dst;
6985 uint8_t proto = ipha->ipha_protocol;
6986 uint32_t sum_val;
6987 uint16_t sum_flags;
6988 ipf_t *ipf;
6989 ipf_t **ipfp;
6990 ipfb_t *ipfb;
6991 uint16_t ident;
6992 uint32_t offset;
6993 ipaddr_t src;
6994 uint_t hdr_length;
6995 uint32_t end;
6996 mblk_t *mp1;
6997 mblk_t *tail_mp;
6998 size_t count;
6999 size_t msg_len;
7000 uint8_t ecn_info = 0;
7001 uint32_t packet_size;
7002 boolean_t pruned = B_FALSE;
7003 ill_t *ill = ira->ira_ill;
7004 ip_stack_t *ipst = ill->ill_ipst;
7005
7006 /*
7007 * Drop the fragmented as early as possible, if
7008 * we don't have resource(s) to re-assemble.
7009 */
7010 if (ipst->ips_ip_reass_queue_bytes == 0) {
7011 freemsg(mp);
7012 return (NULL);
7013 }
7014
7015 /* Check for fragmentation offset; return if there's none */
7016 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7017 (IPH_MF | IPH_OFFSET)) == 0)
7018 return (mp);
7019
7020 /*
7021 * We utilize hardware computed checksum info only for UDP since
7022 * IP fragmentation is a normal occurrence for the protocol. In
7023 * addition, checksum offload support for IP fragments carrying
7024 * UDP payload is commonly implemented across network adapters.
7025 */
7026 ASSERT(ira->ira_rill != NULL);
7027 if (proto == IPPROTO_UDP && dohwcksum &&
7028 ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7029 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7030 mblk_t *mp1 = mp->b_cont;
7031 int32_t len;
7032
7033 /* Record checksum information from the packet */
7034 sum_val = (uint32_t)DB_CKSUM16(mp);
7035 sum_flags = DB_CKSUMFLAGS(mp);
7036
7037 /* IP payload offset from beginning of mblk */
7038 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7039
7040 if ((sum_flags & HCK_PARTIALCKSUM) &&
7041 (mp1 == NULL || mp1->b_cont == NULL) &&
7042 offset >= DB_CKSUMSTART(mp) &&
7043 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7044 uint32_t adj;
7045 /*
7046 * Partial checksum has been calculated by hardware
7047 * and attached to the packet; in addition, any
7048 * prepended extraneous data is even byte aligned.
7049 * If any such data exists, we adjust the checksum;
7050 * this would also handle any postpended data.
7051 */
7052 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7053 mp, mp1, len, adj);
7054
7055 /* One's complement subtract extraneous checksum */
7056 if (adj >= sum_val)
7057 sum_val = ~(adj - sum_val) & 0xFFFF;
7058 else
7059 sum_val -= adj;
7060 }
7061 } else {
7062 sum_val = 0;
7063 sum_flags = 0;
7064 }
7065
7066 /* Clear hardware checksumming flag */
7067 DB_CKSUMFLAGS(mp) = 0;
7068
7069 ident = ipha->ipha_ident;
7070 offset = (frag_offset_flags << 3) & 0xFFFF;
7071 src = ipha->ipha_src;
7072 dst = ipha->ipha_dst;
7073 hdr_length = IPH_HDR_LENGTH(ipha);
7074 end = ntohs(ipha->ipha_length) - hdr_length;
7075
7076 /* If end == 0 then we have a packet with no data, so just free it */
7077 if (end == 0) {
7078 freemsg(mp);
7079 return (NULL);
7080 }
7081
7082 /* Record the ECN field info. */
7083 ecn_info = (ipha->ipha_type_of_service & 0x3);
7084 if (offset != 0) {
7085 /*
7086 * If this isn't the first piece, strip the header, and
7087 * add the offset to the end value.
7088 */
7089 mp->b_rptr += hdr_length;
7090 end += offset;
7091 }
7092
7093 /* Handle vnic loopback of fragments */
7094 if (mp->b_datap->db_ref > 2)
7095 msg_len = 0;
7096 else
7097 msg_len = MBLKSIZE(mp);
7098
7099 tail_mp = mp;
7100 while (tail_mp->b_cont != NULL) {
7101 tail_mp = tail_mp->b_cont;
7102 if (tail_mp->b_datap->db_ref <= 2)
7103 msg_len += MBLKSIZE(tail_mp);
7104 }
7105
7106 /* If the reassembly list for this ILL will get too big, prune it */
7107 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7108 ipst->ips_ip_reass_queue_bytes) {
7109 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7110 uint_t, ill->ill_frag_count,
7111 uint_t, ipst->ips_ip_reass_queue_bytes);
7112 ill_frag_prune(ill,
7113 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7114 (ipst->ips_ip_reass_queue_bytes - msg_len));
7115 pruned = B_TRUE;
7116 }
7117
7118 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7119 mutex_enter(&ipfb->ipfb_lock);
7120
7121 ipfp = &ipfb->ipfb_ipf;
7122 /* Try to find an existing fragment queue for this packet. */
7123 for (;;) {
7124 ipf = ipfp[0];
7125 if (ipf != NULL) {
7126 /*
7127 * It has to match on ident and src/dst address.
7128 */
7129 if (ipf->ipf_ident == ident &&
7130 ipf->ipf_src == src &&
7131 ipf->ipf_dst == dst &&
7132 ipf->ipf_protocol == proto) {
7133 /*
7134 * If we have received too many
7135 * duplicate fragments for this packet
7136 * free it.
7137 */
7138 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7139 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7140 freemsg(mp);
7141 mutex_exit(&ipfb->ipfb_lock);
7142 return (NULL);
7143 }
7144 /* Found it. */
7145 break;
7146 }
7147 ipfp = &ipf->ipf_hash_next;
7148 continue;
7149 }
7150
7151 /*
7152 * If we pruned the list, do we want to store this new
7153 * fragment?. We apply an optimization here based on the
7154 * fact that most fragments will be received in order.
7155 * So if the offset of this incoming fragment is zero,
7156 * it is the first fragment of a new packet. We will
7157 * keep it. Otherwise drop the fragment, as we have
7158 * probably pruned the packet already (since the
7159 * packet cannot be found).
7160 */
7161 if (pruned && offset != 0) {
7162 mutex_exit(&ipfb->ipfb_lock);
7163 freemsg(mp);
7164 return (NULL);
7165 }
7166
7167 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) {
7168 /*
7169 * Too many fragmented packets in this hash
7170 * bucket. Free the oldest.
7171 */
7172 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7173 }
7174
7175 /* New guy. Allocate a frag message. */
7176 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7177 if (mp1 == NULL) {
7178 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7179 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7180 freemsg(mp);
7181 reass_done:
7182 mutex_exit(&ipfb->ipfb_lock);
7183 return (NULL);
7184 }
7185
7186 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7187 mp1->b_cont = mp;
7188
7189 /* Initialize the fragment header. */
7190 ipf = (ipf_t *)mp1->b_rptr;
7191 ipf->ipf_mp = mp1;
7192 ipf->ipf_ptphn = ipfp;
7193 ipfp[0] = ipf;
7194 ipf->ipf_hash_next = NULL;
7195 ipf->ipf_ident = ident;
7196 ipf->ipf_protocol = proto;
7197 ipf->ipf_src = src;
7198 ipf->ipf_dst = dst;
7199 ipf->ipf_nf_hdr_len = 0;
7200 /* Record reassembly start time. */
7201 ipf->ipf_timestamp = gethrestime_sec();
7202 /* Record ipf generation and account for frag header */
7203 ipf->ipf_gen = ill->ill_ipf_gen++;
7204 ipf->ipf_count = MBLKSIZE(mp1);
7205 ipf->ipf_last_frag_seen = B_FALSE;
7206 ipf->ipf_ecn = ecn_info;
7207 ipf->ipf_num_dups = 0;
7208 ipfb->ipfb_frag_pkts++;
7209 ipf->ipf_checksum = 0;
7210 ipf->ipf_checksum_flags = 0;
7211
7212 /* Store checksum value in fragment header */
7213 if (sum_flags != 0) {
7214 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7215 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7216 ipf->ipf_checksum = sum_val;
7217 ipf->ipf_checksum_flags = sum_flags;
7218 }
7219
7220 /*
7221 * We handle reassembly two ways. In the easy case,
7222 * where all the fragments show up in order, we do
7223 * minimal bookkeeping, and just clip new pieces on
7224 * the end. If we ever see a hole, then we go off
7225 * to ip_reassemble which has to mark the pieces and
7226 * keep track of the number of holes, etc. Obviously,
7227 * the point of having both mechanisms is so we can
7228 * handle the easy case as efficiently as possible.
7229 */
7230 if (offset == 0) {
7231 /* Easy case, in-order reassembly so far. */
7232 ipf->ipf_count += msg_len;
7233 ipf->ipf_tail_mp = tail_mp;
7234 /*
7235 * Keep track of next expected offset in
7236 * ipf_end.
7237 */
7238 ipf->ipf_end = end;
7239 ipf->ipf_nf_hdr_len = hdr_length;
7240 } else {
7241 /* Hard case, hole at the beginning. */
7242 ipf->ipf_tail_mp = NULL;
7243 /*
7244 * ipf_end == 0 means that we have given up
7245 * on easy reassembly.
7246 */
7247 ipf->ipf_end = 0;
7248
7249 /* Forget checksum offload from now on */
7250 ipf->ipf_checksum_flags = 0;
7251
7252 /*
7253 * ipf_hole_cnt is set by ip_reassemble.
7254 * ipf_count is updated by ip_reassemble.
7255 * No need to check for return value here
7256 * as we don't expect reassembly to complete
7257 * or fail for the first fragment itself.
7258 */
7259 (void) ip_reassemble(mp, ipf,
7260 (frag_offset_flags & IPH_OFFSET) << 3,
7261 (frag_offset_flags & IPH_MF), ill, msg_len);
7262 }
7263 /* Update per ipfb and ill byte counts */
7264 ipfb->ipfb_count += ipf->ipf_count;
7265 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7266 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7267 /* If the frag timer wasn't already going, start it. */
7268 mutex_enter(&ill->ill_lock);
7269 ill_frag_timer_start(ill);
7270 mutex_exit(&ill->ill_lock);
7271 goto reass_done;
7272 }
7273
7274 /*
7275 * If the packet's flag has changed (it could be coming up
7276 * from an interface different than the previous, therefore
7277 * possibly different checksum capability), then forget about
7278 * any stored checksum states. Otherwise add the value to
7279 * the existing one stored in the fragment header.
7280 */
7281 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7282 sum_val += ipf->ipf_checksum;
7283 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7284 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7285 ipf->ipf_checksum = sum_val;
7286 } else if (ipf->ipf_checksum_flags != 0) {
7287 /* Forget checksum offload from now on */
7288 ipf->ipf_checksum_flags = 0;
7289 }
7290
7291 /*
7292 * We have a new piece of a datagram which is already being
7293 * reassembled. Update the ECN info if all IP fragments
7294 * are ECN capable. If there is one which is not, clear
7295 * all the info. If there is at least one which has CE
7296 * code point, IP needs to report that up to transport.
7297 */
7298 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7299 if (ecn_info == IPH_ECN_CE)
7300 ipf->ipf_ecn = IPH_ECN_CE;
7301 } else {
7302 ipf->ipf_ecn = IPH_ECN_NECT;
7303 }
7304 if (offset && ipf->ipf_end == offset) {
7305 /* The new fragment fits at the end */
7306 ipf->ipf_tail_mp->b_cont = mp;
7307 /* Update the byte count */
7308 ipf->ipf_count += msg_len;
7309 /* Update per ipfb and ill byte counts */
7310 ipfb->ipfb_count += msg_len;
7311 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7312 atomic_add_32(&ill->ill_frag_count, msg_len);
7313 if (frag_offset_flags & IPH_MF) {
7314 /* More to come. */
7315 ipf->ipf_end = end;
7316 ipf->ipf_tail_mp = tail_mp;
7317 goto reass_done;
7318 }
7319 } else {
7320 /* Go do the hard cases. */
7321 int ret;
7322
7323 if (offset == 0)
7324 ipf->ipf_nf_hdr_len = hdr_length;
7325
7326 /* Save current byte count */
7327 count = ipf->ipf_count;
7328 ret = ip_reassemble(mp, ipf,
7329 (frag_offset_flags & IPH_OFFSET) << 3,
7330 (frag_offset_flags & IPH_MF), ill, msg_len);
7331 /* Count of bytes added and subtracted (freeb()ed) */
7332 count = ipf->ipf_count - count;
7333 if (count) {
7334 /* Update per ipfb and ill byte counts */
7335 ipfb->ipfb_count += count;
7336 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7337 atomic_add_32(&ill->ill_frag_count, count);
7338 }
7339 if (ret == IP_REASS_PARTIAL) {
7340 goto reass_done;
7341 } else if (ret == IP_REASS_FAILED) {
7342 /* Reassembly failed. Free up all resources */
7343 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7344 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7345 IP_REASS_SET_START(t_mp, 0);
7346 IP_REASS_SET_END(t_mp, 0);
7347 }
7348 freemsg(mp);
7349 goto reass_done;
7350 }
7351 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7352 }
7353 /*
7354 * We have completed reassembly. Unhook the frag header from
7355 * the reassembly list.
7356 *
7357 * Before we free the frag header, record the ECN info
7358 * to report back to the transport.
7359 */
7360 ecn_info = ipf->ipf_ecn;
7361 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7362 ipfp = ipf->ipf_ptphn;
7363
7364 /* We need to supply these to caller */
7365 if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7366 sum_val = ipf->ipf_checksum;
7367 else
7368 sum_val = 0;
7369
7370 mp1 = ipf->ipf_mp;
7371 count = ipf->ipf_count;
7372 ipf = ipf->ipf_hash_next;
7373 if (ipf != NULL)
7374 ipf->ipf_ptphn = ipfp;
7375 ipfp[0] = ipf;
7376 atomic_add_32(&ill->ill_frag_count, -count);
7377 ASSERT(ipfb->ipfb_count >= count);
7378 ipfb->ipfb_count -= count;
7379 ipfb->ipfb_frag_pkts--;
7380 mutex_exit(&ipfb->ipfb_lock);
7381 /* Ditch the frag header. */
7382 mp = mp1->b_cont;
7383
7384 freeb(mp1);
7385
7386 /* Restore original IP length in header. */
7387 packet_size = (uint32_t)msgdsize(mp);
7388 if (packet_size > IP_MAXPACKET) {
7389 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7390 ip_drop_input("Reassembled packet too large", mp, ill);
7391 freemsg(mp);
7392 return (NULL);
7393 }
7394
7395 if (DB_REF(mp) > 1) {
7396 mblk_t *mp2 = copymsg(mp);
7397
7398 if (mp2 == NULL) {
7399 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7400 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7401 freemsg(mp);
7402 return (NULL);
7403 }
7404 freemsg(mp);
7405 mp = mp2;
7406 }
7407 ipha = (ipha_t *)mp->b_rptr;
7408
7409 ipha->ipha_length = htons((uint16_t)packet_size);
7410 /* We're now complete, zip the frag state */
7411 ipha->ipha_fragment_offset_and_flags = 0;
7412 /* Record the ECN info. */
7413 ipha->ipha_type_of_service &= 0xFC;
7414 ipha->ipha_type_of_service |= ecn_info;
7415
7416 /* Update the receive attributes */
7417 ira->ira_pktlen = packet_size;
7418 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7419
7420 /* Reassembly is successful; set checksum information in packet */
7421 DB_CKSUM16(mp) = (uint16_t)sum_val;
7422 DB_CKSUMFLAGS(mp) = sum_flags;
7423 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7424
7425 return (mp);
7426 }
7427
7428 /*
7429 * Pullup function that should be used for IP input in order to
7430 * ensure we do not loose the L2 source address; we need the l2 source
7431 * address for IP_RECVSLLA and for ndp_input.
7432 *
7433 * We return either NULL or b_rptr.
7434 */
7435 void *
7436 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7437 {
7438 ill_t *ill = ira->ira_ill;
7439
7440 if (ip_rput_pullups++ == 0) {
7441 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7442 "ip_pullup: %s forced us to "
7443 " pullup pkt, hdr len %ld, hdr addr %p",
7444 ill->ill_name, len, (void *)mp->b_rptr);
7445 }
7446 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7447 ip_setl2src(mp, ira, ira->ira_rill);
7448 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7449 if (!pullupmsg(mp, len))
7450 return (NULL);
7451 else
7452 return (mp->b_rptr);
7453 }
7454
7455 /*
7456 * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7457 * When called from the ULP ira_rill will be NULL hence the caller has to
7458 * pass in the ill.
7459 */
7460 /* ARGSUSED */
7461 void
7462 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7463 {
7464 const uchar_t *addr;
7465 int alen;
7466
7467 if (ira->ira_flags & IRAF_L2SRC_SET)
7468 return;
7469
7470 ASSERT(ill != NULL);
7471 alen = ill->ill_phys_addr_length;
7472 ASSERT(alen <= sizeof (ira->ira_l2src));
7473 if (ira->ira_mhip != NULL &&
7474 (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7475 bcopy(addr, ira->ira_l2src, alen);
7476 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7477 (addr = ill->ill_phys_addr) != NULL) {
7478 bcopy(addr, ira->ira_l2src, alen);
7479 } else {
7480 bzero(ira->ira_l2src, alen);
7481 }
7482 ira->ira_flags |= IRAF_L2SRC_SET;
7483 }
7484
7485 /*
7486 * check ip header length and align it.
7487 */
7488 mblk_t *
7489 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7490 {
7491 ill_t *ill = ira->ira_ill;
7492 ssize_t len;
7493
7494 len = MBLKL(mp);
7495
7496 if (!OK_32PTR(mp->b_rptr))
7497 IP_STAT(ill->ill_ipst, ip_notaligned);
7498 else
7499 IP_STAT(ill->ill_ipst, ip_recv_pullup);
7500
7501 /* Guard against bogus device drivers */
7502 if (len < 0) {
7503 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7504 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7505 freemsg(mp);
7506 return (NULL);
7507 }
7508
7509 if (len == 0) {
7510 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7511 mblk_t *mp1 = mp->b_cont;
7512
7513 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7514 ip_setl2src(mp, ira, ira->ira_rill);
7515 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7516
7517 freeb(mp);
7518 mp = mp1;
7519 if (mp == NULL)
7520 return (NULL);
7521
7522 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7523 return (mp);
7524 }
7525 if (ip_pullup(mp, min_size, ira) == NULL) {
7526 if (msgdsize(mp) < min_size) {
7527 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7528 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7529 } else {
7530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7531 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7532 }
7533 freemsg(mp);
7534 return (NULL);
7535 }
7536 return (mp);
7537 }
7538
7539 /*
7540 * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7541 */
7542 mblk_t *
7543 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7544 uint_t min_size, ip_recv_attr_t *ira)
7545 {
7546 ill_t *ill = ira->ira_ill;
7547
7548 /*
7549 * Make sure we have data length consistent
7550 * with the IP header.
7551 */
7552 if (mp->b_cont == NULL) {
7553 /* pkt_len is based on ipha_len, not the mblk length */
7554 if (pkt_len < min_size) {
7555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7556 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7557 freemsg(mp);
7558 return (NULL);
7559 }
7560 if (len < 0) {
7561 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7562 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7563 freemsg(mp);
7564 return (NULL);
7565 }
7566 /* Drop any pad */
7567 mp->b_wptr = rptr + pkt_len;
7568 } else if ((len += msgdsize(mp->b_cont)) != 0) {
7569 ASSERT(pkt_len >= min_size);
7570 if (pkt_len < min_size) {
7571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7572 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7573 freemsg(mp);
7574 return (NULL);
7575 }
7576 if (len < 0) {
7577 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7578 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7579 freemsg(mp);
7580 return (NULL);
7581 }
7582 /* Drop any pad */
7583 (void) adjmsg(mp, -len);
7584 /*
7585 * adjmsg may have freed an mblk from the chain, hence
7586 * invalidate any hw checksum here. This will force IP to
7587 * calculate the checksum in sw, but only for this packet.
7588 */
7589 DB_CKSUMFLAGS(mp) = 0;
7590 IP_STAT(ill->ill_ipst, ip_multimblk);
7591 }
7592 return (mp);
7593 }
7594
7595 /*
7596 * Check that the IPv4 opt_len is consistent with the packet and pullup
7597 * the options.
7598 */
7599 mblk_t *
7600 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7601 ip_recv_attr_t *ira)
7602 {
7603 ill_t *ill = ira->ira_ill;
7604 ssize_t len;
7605
7606 /* Assume no IPv6 packets arrive over the IPv4 queue */
7607 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7610 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7611 freemsg(mp);
7612 return (NULL);
7613 }
7614
7615 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7617 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7618 freemsg(mp);
7619 return (NULL);
7620 }
7621 /*
7622 * Recompute complete header length and make sure we
7623 * have access to all of it.
7624 */
7625 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7626 if (len > (mp->b_wptr - mp->b_rptr)) {
7627 if (len > pkt_len) {
7628 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7629 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7630 freemsg(mp);
7631 return (NULL);
7632 }
7633 if (ip_pullup(mp, len, ira) == NULL) {
7634 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7635 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7636 freemsg(mp);
7637 return (NULL);
7638 }
7639 }
7640 return (mp);
7641 }
7642
7643 /*
7644 * Returns a new ire, or the same ire, or NULL.
7645 * If a different IRE is returned, then it is held; the caller
7646 * needs to release it.
7647 * In no case is there any hold/release on the ire argument.
7648 */
7649 ire_t *
7650 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7651 {
7652 ire_t *new_ire;
7653 ill_t *ire_ill;
7654 uint_t ifindex;
7655 ip_stack_t *ipst = ill->ill_ipst;
7656 boolean_t strict_check = B_FALSE;
7657
7658 /*
7659 * IPMP common case: if IRE and ILL are in the same group, there's no
7660 * issue (e.g. packet received on an underlying interface matched an
7661 * IRE_LOCAL on its associated group interface).
7662 */
7663 ASSERT(ire->ire_ill != NULL);
7664 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7665 return (ire);
7666
7667 /*
7668 * Do another ire lookup here, using the ingress ill, to see if the
7669 * interface is in a usesrc group.
7670 * As long as the ills belong to the same group, we don't consider
7671 * them to be arriving on the wrong interface. Thus, if the switch
7672 * is doing inbound load spreading, we won't drop packets when the
7673 * ip*_strict_dst_multihoming switch is on.
7674 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7675 * where the local address may not be unique. In this case we were
7676 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7677 * actually returned. The new lookup, which is more specific, should
7678 * only find the IRE_LOCAL associated with the ingress ill if one
7679 * exists.
7680 */
7681 if (ire->ire_ipversion == IPV4_VERSION) {
7682 if (ipst->ips_ip_strict_dst_multihoming)
7683 strict_check = B_TRUE;
7684 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7685 IRE_LOCAL, ill, ALL_ZONES, NULL,
7686 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7687 } else {
7688 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7689 if (ipst->ips_ipv6_strict_dst_multihoming)
7690 strict_check = B_TRUE;
7691 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7692 IRE_LOCAL, ill, ALL_ZONES, NULL,
7693 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7694 }
7695 /*
7696 * If the same ire that was returned in ip_input() is found then this
7697 * is an indication that usesrc groups are in use. The packet
7698 * arrived on a different ill in the group than the one associated with
7699 * the destination address. If a different ire was found then the same
7700 * IP address must be hosted on multiple ills. This is possible with
7701 * unnumbered point2point interfaces. We switch to use this new ire in
7702 * order to have accurate interface statistics.
7703 */
7704 if (new_ire != NULL) {
7705 /* Note: held in one case but not the other? Caller handles */
7706 if (new_ire != ire)
7707 return (new_ire);
7708 /* Unchanged */
7709 ire_refrele(new_ire);
7710 return (ire);
7711 }
7712
7713 /*
7714 * Chase pointers once and store locally.
7715 */
7716 ASSERT(ire->ire_ill != NULL);
7717 ire_ill = ire->ire_ill;
7718 ifindex = ill->ill_usesrc_ifindex;
7719
7720 /*
7721 * Check if it's a legal address on the 'usesrc' interface.
7722 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7723 * can just check phyint_ifindex.
7724 */
7725 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7726 return (ire);
7727 }
7728
7729 /*
7730 * If the ip*_strict_dst_multihoming switch is on then we can
7731 * only accept this packet if the interface is marked as routing.
7732 */
7733 if (!(strict_check))
7734 return (ire);
7735
7736 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7737 return (ire);
7738 }
7739 return (NULL);
7740 }
7741
7742 /*
7743 * This function is used to construct a mac_header_info_s from a
7744 * DL_UNITDATA_IND message.
7745 * The address fields in the mhi structure points into the message,
7746 * thus the caller can't use those fields after freeing the message.
7747 *
7748 * We determine whether the packet received is a non-unicast packet
7749 * and in doing so, determine whether or not it is broadcast vs multicast.
7750 * For it to be a broadcast packet, we must have the appropriate mblk_t
7751 * hanging off the ill_t. If this is either not present or doesn't match
7752 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7753 * to be multicast. Thus NICs that have no broadcast address (or no
7754 * capability for one, such as point to point links) cannot return as
7755 * the packet being broadcast.
7756 */
7757 void
7758 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7759 {
7760 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7761 mblk_t *bmp;
7762 uint_t extra_offset;
7763
7764 bzero(mhip, sizeof (struct mac_header_info_s));
7765
7766 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7767
7768 if (ill->ill_sap_length < 0)
7769 extra_offset = 0;
7770 else
7771 extra_offset = ill->ill_sap_length;
7772
7773 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7774 extra_offset;
7775 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7776 extra_offset;
7777
7778 if (!ind->dl_group_address)
7779 return;
7780
7781 /* Multicast or broadcast */
7782 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7783
7784 if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7785 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7786 (bmp = ill->ill_bcast_mp) != NULL) {
7787 dl_unitdata_req_t *dlur;
7788 uint8_t *bphys_addr;
7789
7790 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7791 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7792 extra_offset;
7793
7794 if (bcmp(mhip->mhi_daddr, bphys_addr,
7795 ind->dl_dest_addr_length) == 0)
7796 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7797 }
7798 }
7799
7800 /*
7801 * This function is used to construct a mac_header_info_s from a
7802 * M_DATA fastpath message from a DLPI driver.
7803 * The address fields in the mhi structure points into the message,
7804 * thus the caller can't use those fields after freeing the message.
7805 *
7806 * We determine whether the packet received is a non-unicast packet
7807 * and in doing so, determine whether or not it is broadcast vs multicast.
7808 * For it to be a broadcast packet, we must have the appropriate mblk_t
7809 * hanging off the ill_t. If this is either not present or doesn't match
7810 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7811 * to be multicast. Thus NICs that have no broadcast address (or no
7812 * capability for one, such as point to point links) cannot return as
7813 * the packet being broadcast.
7814 */
7815 void
7816 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7817 {
7818 mblk_t *bmp;
7819 struct ether_header *pether;
7820
7821 bzero(mhip, sizeof (struct mac_header_info_s));
7822
7823 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7824
7825 pether = (struct ether_header *)((char *)mp->b_rptr
7826 - sizeof (struct ether_header));
7827
7828 /*
7829 * Make sure the interface is an ethernet type, since we don't
7830 * know the header format for anything but Ethernet. Also make
7831 * sure we are pointing correctly above db_base.
7832 */
7833 if (ill->ill_type != IFT_ETHER)
7834 return;
7835
7836 retry:
7837 if ((uchar_t *)pether < mp->b_datap->db_base)
7838 return;
7839
7840 /* Is there a VLAN tag? */
7841 if (ill->ill_isv6) {
7842 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7843 pether = (struct ether_header *)((char *)pether - 4);
7844 goto retry;
7845 }
7846 } else {
7847 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7848 pether = (struct ether_header *)((char *)pether - 4);
7849 goto retry;
7850 }
7851 }
7852 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7853 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7854
7855 if (!(mhip->mhi_daddr[0] & 0x01))
7856 return;
7857
7858 /* Multicast or broadcast */
7859 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7860
7861 if ((bmp = ill->ill_bcast_mp) != NULL) {
7862 dl_unitdata_req_t *dlur;
7863 uint8_t *bphys_addr;
7864 uint_t addrlen;
7865
7866 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7867 addrlen = dlur->dl_dest_addr_length;
7868 if (ill->ill_sap_length < 0) {
7869 bphys_addr = (uchar_t *)dlur +
7870 dlur->dl_dest_addr_offset;
7871 addrlen += ill->ill_sap_length;
7872 } else {
7873 bphys_addr = (uchar_t *)dlur +
7874 dlur->dl_dest_addr_offset +
7875 ill->ill_sap_length;
7876 addrlen -= ill->ill_sap_length;
7877 }
7878 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7879 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7880 }
7881 }
7882
7883 /*
7884 * Handle anything but M_DATA messages
7885 * We see the DL_UNITDATA_IND which are part
7886 * of the data path, and also the other messages from the driver.
7887 */
7888 void
7889 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7890 {
7891 mblk_t *first_mp;
7892 struct iocblk *iocp;
7893 struct mac_header_info_s mhi;
7894
7895 switch (DB_TYPE(mp)) {
7896 case M_PROTO:
7897 case M_PCPROTO: {
7898 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7899 DL_UNITDATA_IND) {
7900 /* Go handle anything other than data elsewhere. */
7901 ip_rput_dlpi(ill, mp);
7902 return;
7903 }
7904
7905 first_mp = mp;
7906 mp = first_mp->b_cont;
7907 first_mp->b_cont = NULL;
7908
7909 if (mp == NULL) {
7910 freeb(first_mp);
7911 return;
7912 }
7913 ip_dlur_to_mhi(ill, first_mp, &mhi);
7914 if (ill->ill_isv6)
7915 ip_input_v6(ill, NULL, mp, &mhi);
7916 else
7917 ip_input(ill, NULL, mp, &mhi);
7918
7919 /* Ditch the DLPI header. */
7920 freeb(first_mp);
7921 return;
7922 }
7923 case M_IOCACK:
7924 iocp = (struct iocblk *)mp->b_rptr;
7925 switch (iocp->ioc_cmd) {
7926 case DL_IOC_HDR_INFO:
7927 ill_fastpath_ack(ill, mp);
7928 return;
7929 default:
7930 putnext(ill->ill_rq, mp);
7931 return;
7932 }
7933 /* FALLTHRU */
7934 case M_ERROR:
7935 case M_HANGUP:
7936 mutex_enter(&ill->ill_lock);
7937 if (ill->ill_state_flags & ILL_CONDEMNED) {
7938 mutex_exit(&ill->ill_lock);
7939 freemsg(mp);
7940 return;
7941 }
7942 ill_refhold_locked(ill);
7943 mutex_exit(&ill->ill_lock);
7944 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7945 B_FALSE);
7946 return;
7947 case M_CTL:
7948 putnext(ill->ill_rq, mp);
7949 return;
7950 case M_IOCNAK:
7951 ip1dbg(("got iocnak "));
7952 iocp = (struct iocblk *)mp->b_rptr;
7953 switch (iocp->ioc_cmd) {
7954 case DL_IOC_HDR_INFO:
7955 ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7956 return;
7957 default:
7958 break;
7959 }
7960 /* FALLTHRU */
7961 default:
7962 putnext(ill->ill_rq, mp);
7963 return;
7964 }
7965 }
7966
7967 /* Read side put procedure. Packets coming from the wire arrive here. */
7968 void
7969 ip_rput(queue_t *q, mblk_t *mp)
7970 {
7971 ill_t *ill;
7972 union DL_primitives *dl;
7973
7974 ill = (ill_t *)q->q_ptr;
7975
7976 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
7977 /*
7978 * If things are opening or closing, only accept high-priority
7979 * DLPI messages. (On open ill->ill_ipif has not yet been
7980 * created; on close, things hanging off the ill may have been
7981 * freed already.)
7982 */
7983 dl = (union DL_primitives *)mp->b_rptr;
7984 if (DB_TYPE(mp) != M_PCPROTO ||
7985 dl->dl_primitive == DL_UNITDATA_IND) {
7986 inet_freemsg(mp);
7987 return;
7988 }
7989 }
7990 if (DB_TYPE(mp) == M_DATA) {
7991 struct mac_header_info_s mhi;
7992
7993 ip_mdata_to_mhi(ill, mp, &mhi);
7994 ip_input(ill, NULL, mp, &mhi);
7995 } else {
7996 ip_rput_notdata(ill, mp);
7997 }
7998 }
7999
8000 /*
8001 * Move the information to a copy.
8002 */
8003 mblk_t *
8004 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8005 {
8006 mblk_t *mp1;
8007 ill_t *ill = ira->ira_ill;
8008 ip_stack_t *ipst = ill->ill_ipst;
8009
8010 IP_STAT(ipst, ip_db_ref);
8011
8012 /* Make sure we have ira_l2src before we loose the original mblk */
8013 if (!(ira->ira_flags & IRAF_L2SRC_SET))
8014 ip_setl2src(mp, ira, ira->ira_rill);
8015
8016 mp1 = copymsg(mp);
8017 if (mp1 == NULL) {
8018 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8019 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8020 freemsg(mp);
8021 return (NULL);
8022 }
8023 /* preserve the hardware checksum flags and data, if present */
8024 if (DB_CKSUMFLAGS(mp) != 0) {
8025 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8026 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8027 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8028 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8029 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8030 }
8031 freemsg(mp);
8032 return (mp1);
8033 }
8034
8035 static void
8036 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8037 t_uscalar_t err)
8038 {
8039 if (dl_err == DL_SYSERR) {
8040 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8041 "%s: %s failed: DL_SYSERR (errno %u)\n",
8042 ill->ill_name, dl_primstr(prim), err);
8043 return;
8044 }
8045
8046 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8047 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8048 dl_errstr(dl_err));
8049 }
8050
8051 /*
8052 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8053 * than DL_UNITDATA_IND messages. If we need to process this message
8054 * exclusively, we call qwriter_ip, in which case we also need to call
8055 * ill_refhold before that, since qwriter_ip does an ill_refrele.
8056 */
8057 void
8058 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8059 {
8060 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8061 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8062 queue_t *q = ill->ill_rq;
8063 t_uscalar_t prim = dloa->dl_primitive;
8064 t_uscalar_t reqprim = DL_PRIM_INVAL;
8065
8066 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8067 char *, dl_primstr(prim), ill_t *, ill);
8068 ip1dbg(("ip_rput_dlpi"));
8069
8070 /*
8071 * If we received an ACK but didn't send a request for it, then it
8072 * can't be part of any pending operation; discard up-front.
8073 */
8074 switch (prim) {
8075 case DL_ERROR_ACK:
8076 reqprim = dlea->dl_error_primitive;
8077 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8078 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8079 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8080 dlea->dl_unix_errno));
8081 break;
8082 case DL_OK_ACK:
8083 reqprim = dloa->dl_correct_primitive;
8084 break;
8085 case DL_INFO_ACK:
8086 reqprim = DL_INFO_REQ;
8087 break;
8088 case DL_BIND_ACK:
8089 reqprim = DL_BIND_REQ;
8090 break;
8091 case DL_PHYS_ADDR_ACK:
8092 reqprim = DL_PHYS_ADDR_REQ;
8093 break;
8094 case DL_NOTIFY_ACK:
8095 reqprim = DL_NOTIFY_REQ;
8096 break;
8097 case DL_CAPABILITY_ACK:
8098 reqprim = DL_CAPABILITY_REQ;
8099 break;
8100 }
8101
8102 if (prim != DL_NOTIFY_IND) {
8103 if (reqprim == DL_PRIM_INVAL ||
8104 !ill_dlpi_pending(ill, reqprim)) {
8105 /* Not a DLPI message we support or expected */
8106 freemsg(mp);
8107 return;
8108 }
8109 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8110 dl_primstr(reqprim)));
8111 }
8112
8113 switch (reqprim) {
8114 case DL_UNBIND_REQ:
8115 /*
8116 * NOTE: we mark the unbind as complete even if we got a
8117 * DL_ERROR_ACK, since there's not much else we can do.
8118 */
8119 mutex_enter(&ill->ill_lock);
8120 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8121 cv_signal(&ill->ill_cv);
8122 mutex_exit(&ill->ill_lock);
8123 break;
8124
8125 case DL_ENABMULTI_REQ:
8126 if (prim == DL_OK_ACK) {
8127 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8128 ill->ill_dlpi_multicast_state = IDS_OK;
8129 }
8130 break;
8131 }
8132
8133 /*
8134 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8135 * need to become writer to continue to process it. Because an
8136 * exclusive operation doesn't complete until replies to all queued
8137 * DLPI messages have been received, we know we're in the middle of an
8138 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8139 *
8140 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8141 * Since this is on the ill stream we unconditionally bump up the
8142 * refcount without doing ILL_CAN_LOOKUP().
8143 */
8144 ill_refhold(ill);
8145 if (prim == DL_NOTIFY_IND)
8146 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8147 else
8148 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8149 }
8150
8151 /*
8152 * Handling of DLPI messages that require exclusive access to the ipsq.
8153 *
8154 * Need to do ipsq_pending_mp_get on ioctl completion, which could
8155 * happen here. (along with mi_copy_done)
8156 */
8157 /* ARGSUSED */
8158 static void
8159 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8160 {
8161 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8162 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8163 int err = 0;
8164 ill_t *ill = (ill_t *)q->q_ptr;
8165 ipif_t *ipif = NULL;
8166 mblk_t *mp1 = NULL;
8167 conn_t *connp = NULL;
8168 t_uscalar_t paddrreq;
8169 mblk_t *mp_hw;
8170 boolean_t success;
8171 boolean_t ioctl_aborted = B_FALSE;
8172 boolean_t log = B_TRUE;
8173
8174 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8175 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8176
8177 ip1dbg(("ip_rput_dlpi_writer .."));
8178 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8179 ASSERT(IAM_WRITER_ILL(ill));
8180
8181 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8182 /*
8183 * The current ioctl could have been aborted by the user and a new
8184 * ioctl to bring up another ill could have started. We could still
8185 * get a response from the driver later.
8186 */
8187 if (ipif != NULL && ipif->ipif_ill != ill)
8188 ioctl_aborted = B_TRUE;
8189
8190 switch (dloa->dl_primitive) {
8191 case DL_ERROR_ACK:
8192 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8193 dl_primstr(dlea->dl_error_primitive)));
8194
8195 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8196 char *, dl_primstr(dlea->dl_error_primitive),
8197 ill_t *, ill);
8198
8199 switch (dlea->dl_error_primitive) {
8200 case DL_DISABMULTI_REQ:
8201 ill_dlpi_done(ill, dlea->dl_error_primitive);
8202 break;
8203 case DL_PROMISCON_REQ:
8204 case DL_PROMISCOFF_REQ:
8205 case DL_UNBIND_REQ:
8206 case DL_ATTACH_REQ:
8207 case DL_INFO_REQ:
8208 ill_dlpi_done(ill, dlea->dl_error_primitive);
8209 break;
8210 case DL_NOTIFY_REQ:
8211 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8212 log = B_FALSE;
8213 break;
8214 case DL_PHYS_ADDR_REQ:
8215 /*
8216 * For IPv6 only, there are two additional
8217 * phys_addr_req's sent to the driver to get the
8218 * IPv6 token and lla. This allows IP to acquire
8219 * the hardware address format for a given interface
8220 * without having built in knowledge of the hardware
8221 * address. ill_phys_addr_pend keeps track of the last
8222 * DL_PAR sent so we know which response we are
8223 * dealing with. ill_dlpi_done will update
8224 * ill_phys_addr_pend when it sends the next req.
8225 * We don't complete the IOCTL until all three DL_PARs
8226 * have been attempted, so set *_len to 0 and break.
8227 */
8228 paddrreq = ill->ill_phys_addr_pend;
8229 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8230 if (paddrreq == DL_IPV6_TOKEN) {
8231 ill->ill_token_length = 0;
8232 log = B_FALSE;
8233 break;
8234 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8235 ill->ill_nd_lla_len = 0;
8236 log = B_FALSE;
8237 break;
8238 }
8239 /*
8240 * Something went wrong with the DL_PHYS_ADDR_REQ.
8241 * We presumably have an IOCTL hanging out waiting
8242 * for completion. Find it and complete the IOCTL
8243 * with the error noted.
8244 * However, ill_dl_phys was called on an ill queue
8245 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8246 * set. But the ioctl is known to be pending on ill_wq.
8247 */
8248 if (!ill->ill_ifname_pending)
8249 break;
8250 ill->ill_ifname_pending = 0;
8251 if (!ioctl_aborted)
8252 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8253 if (mp1 != NULL) {
8254 /*
8255 * This operation (SIOCSLIFNAME) must have
8256 * happened on the ill. Assert there is no conn
8257 */
8258 ASSERT(connp == NULL);
8259 q = ill->ill_wq;
8260 }
8261 break;
8262 case DL_BIND_REQ:
8263 ill_dlpi_done(ill, DL_BIND_REQ);
8264 if (ill->ill_ifname_pending)
8265 break;
8266 mutex_enter(&ill->ill_lock);
8267 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8268 mutex_exit(&ill->ill_lock);
8269 /*
8270 * Something went wrong with the bind. We presumably
8271 * have an IOCTL hanging out waiting for completion.
8272 * Find it, take down the interface that was coming
8273 * up, and complete the IOCTL with the error noted.
8274 */
8275 if (!ioctl_aborted)
8276 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8277 if (mp1 != NULL) {
8278 /*
8279 * This might be a result of a DL_NOTE_REPLUMB
8280 * notification. In that case, connp is NULL.
8281 */
8282 if (connp != NULL)
8283 q = CONNP_TO_WQ(connp);
8284
8285 (void) ipif_down(ipif, NULL, NULL);
8286 /* error is set below the switch */
8287 }
8288 break;
8289 case DL_ENABMULTI_REQ:
8290 ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8291
8292 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8293 ill->ill_dlpi_multicast_state = IDS_FAILED;
8294 if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8295
8296 printf("ip: joining multicasts failed (%d)"
8297 " on %s - will use link layer "
8298 "broadcasts for multicast\n",
8299 dlea->dl_errno, ill->ill_name);
8300
8301 /*
8302 * Set up for multi_bcast; We are the
8303 * writer, so ok to access ill->ill_ipif
8304 * without any lock.
8305 */
8306 mutex_enter(&ill->ill_phyint->phyint_lock);
8307 ill->ill_phyint->phyint_flags |=
8308 PHYI_MULTI_BCAST;
8309 mutex_exit(&ill->ill_phyint->phyint_lock);
8310
8311 }
8312 freemsg(mp); /* Don't want to pass this up */
8313 return;
8314 case DL_CAPABILITY_REQ:
8315 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8316 "DL_CAPABILITY REQ\n"));
8317 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8318 ill->ill_dlpi_capab_state = IDCS_FAILED;
8319 ill_capability_done(ill);
8320 freemsg(mp);
8321 return;
8322 }
8323 /*
8324 * Note the error for IOCTL completion (mp1 is set when
8325 * ready to complete ioctl). If ill_ifname_pending_err is
8326 * set, an error occured during plumbing (ill_ifname_pending),
8327 * so we want to report that error.
8328 *
8329 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8330 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8331 * expected to get errack'd if the driver doesn't support
8332 * these flags (e.g. ethernet). log will be set to B_FALSE
8333 * if these error conditions are encountered.
8334 */
8335 if (mp1 != NULL) {
8336 if (ill->ill_ifname_pending_err != 0) {
8337 err = ill->ill_ifname_pending_err;
8338 ill->ill_ifname_pending_err = 0;
8339 } else {
8340 err = dlea->dl_unix_errno ?
8341 dlea->dl_unix_errno : ENXIO;
8342 }
8343 /*
8344 * If we're plumbing an interface and an error hasn't already
8345 * been saved, set ill_ifname_pending_err to the error passed
8346 * up. Ignore the error if log is B_FALSE (see comment above).
8347 */
8348 } else if (log && ill->ill_ifname_pending &&
8349 ill->ill_ifname_pending_err == 0) {
8350 ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8351 dlea->dl_unix_errno : ENXIO;
8352 }
8353
8354 if (log)
8355 ip_dlpi_error(ill, dlea->dl_error_primitive,
8356 dlea->dl_errno, dlea->dl_unix_errno);
8357 break;
8358 case DL_CAPABILITY_ACK:
8359 ill_capability_ack(ill, mp);
8360 /*
8361 * The message has been handed off to ill_capability_ack
8362 * and must not be freed below
8363 */
8364 mp = NULL;
8365 break;
8366
8367 case DL_INFO_ACK:
8368 /* Call a routine to handle this one. */
8369 ill_dlpi_done(ill, DL_INFO_REQ);
8370 ip_ll_subnet_defaults(ill, mp);
8371 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8372 return;
8373 case DL_BIND_ACK:
8374 /*
8375 * We should have an IOCTL waiting on this unless
8376 * sent by ill_dl_phys, in which case just return
8377 */
8378 ill_dlpi_done(ill, DL_BIND_REQ);
8379
8380 if (ill->ill_ifname_pending) {
8381 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8382 ill_t *, ill, mblk_t *, mp);
8383 break;
8384 }
8385 mutex_enter(&ill->ill_lock);
8386 ill->ill_dl_up = 1;
8387 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8388 mutex_exit(&ill->ill_lock);
8389
8390 if (!ioctl_aborted)
8391 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8392 if (mp1 == NULL) {
8393 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8394 break;
8395 }
8396 /*
8397 * mp1 was added by ill_dl_up(). if that is a result of
8398 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8399 */
8400 if (connp != NULL)
8401 q = CONNP_TO_WQ(connp);
8402 /*
8403 * We are exclusive. So nothing can change even after
8404 * we get the pending mp.
8405 */
8406 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8407 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8408 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8409
8410 /*
8411 * Now bring up the resolver; when that is complete, we'll
8412 * create IREs. Note that we intentionally mirror what
8413 * ipif_up() would have done, because we got here by way of
8414 * ill_dl_up(), which stopped ipif_up()'s processing.
8415 */
8416 if (ill->ill_isv6) {
8417 /*
8418 * v6 interfaces.
8419 * Unlike ARP which has to do another bind
8420 * and attach, once we get here we are
8421 * done with NDP
8422 */
8423 (void) ipif_resolver_up(ipif, Res_act_initial);
8424 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8425 err = ipif_up_done_v6(ipif);
8426 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8427 /*
8428 * ARP and other v4 external resolvers.
8429 * Leave the pending mblk intact so that
8430 * the ioctl completes in ip_rput().
8431 */
8432 if (connp != NULL)
8433 mutex_enter(&connp->conn_lock);
8434 mutex_enter(&ill->ill_lock);
8435 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8436 mutex_exit(&ill->ill_lock);
8437 if (connp != NULL)
8438 mutex_exit(&connp->conn_lock);
8439 if (success) {
8440 err = ipif_resolver_up(ipif, Res_act_initial);
8441 if (err == EINPROGRESS) {
8442 freemsg(mp);
8443 return;
8444 }
8445 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8446 } else {
8447 /* The conn has started closing */
8448 err = EINTR;
8449 }
8450 } else {
8451 /*
8452 * This one is complete. Reply to pending ioctl.
8453 */
8454 (void) ipif_resolver_up(ipif, Res_act_initial);
8455 err = ipif_up_done(ipif);
8456 }
8457
8458 if ((err == 0) && (ill->ill_up_ipifs)) {
8459 err = ill_up_ipifs(ill, q, mp1);
8460 if (err == EINPROGRESS) {
8461 freemsg(mp);
8462 return;
8463 }
8464 }
8465
8466 /*
8467 * If we have a moved ipif to bring up, and everything has
8468 * succeeded to this point, bring it up on the IPMP ill.
8469 * Otherwise, leave it down -- the admin can try to bring it
8470 * up by hand if need be.
8471 */
8472 if (ill->ill_move_ipif != NULL) {
8473 if (err != 0) {
8474 ill->ill_move_ipif = NULL;
8475 } else {
8476 ipif = ill->ill_move_ipif;
8477 ill->ill_move_ipif = NULL;
8478 err = ipif_up(ipif, q, mp1);
8479 if (err == EINPROGRESS) {
8480 freemsg(mp);
8481 return;
8482 }
8483 }
8484 }
8485 break;
8486
8487 case DL_NOTIFY_IND: {
8488 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8489 uint_t orig_mtu, orig_mc_mtu;
8490
8491 switch (notify->dl_notification) {
8492 case DL_NOTE_PHYS_ADDR:
8493 err = ill_set_phys_addr(ill, mp);
8494 break;
8495
8496 case DL_NOTE_REPLUMB:
8497 /*
8498 * Directly return after calling ill_replumb().
8499 * Note that we should not free mp as it is reused
8500 * in the ill_replumb() function.
8501 */
8502 err = ill_replumb(ill, mp);
8503 return;
8504
8505 case DL_NOTE_FASTPATH_FLUSH:
8506 nce_flush(ill, B_FALSE);
8507 break;
8508
8509 case DL_NOTE_SDU_SIZE:
8510 case DL_NOTE_SDU_SIZE2:
8511 /*
8512 * The dce and fragmentation code can cope with
8513 * this changing while packets are being sent.
8514 * When packets are sent ip_output will discover
8515 * a change.
8516 *
8517 * Change the MTU size of the interface.
8518 */
8519 mutex_enter(&ill->ill_lock);
8520 orig_mtu = ill->ill_mtu;
8521 orig_mc_mtu = ill->ill_mc_mtu;
8522 switch (notify->dl_notification) {
8523 case DL_NOTE_SDU_SIZE:
8524 ill->ill_current_frag =
8525 (uint_t)notify->dl_data;
8526 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8527 break;
8528 case DL_NOTE_SDU_SIZE2:
8529 ill->ill_current_frag =
8530 (uint_t)notify->dl_data1;
8531 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8532 break;
8533 }
8534 if (ill->ill_current_frag > ill->ill_max_frag)
8535 ill->ill_max_frag = ill->ill_current_frag;
8536
8537 if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8538 ill->ill_mtu = ill->ill_current_frag;
8539
8540 /*
8541 * If ill_user_mtu was set (via
8542 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8543 */
8544 if (ill->ill_user_mtu != 0 &&
8545 ill->ill_user_mtu < ill->ill_mtu)
8546 ill->ill_mtu = ill->ill_user_mtu;
8547
8548 if (ill->ill_user_mtu != 0 &&
8549 ill->ill_user_mtu < ill->ill_mc_mtu)
8550 ill->ill_mc_mtu = ill->ill_user_mtu;
8551
8552 if (ill->ill_isv6) {
8553 if (ill->ill_mtu < IPV6_MIN_MTU)
8554 ill->ill_mtu = IPV6_MIN_MTU;
8555 if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8556 ill->ill_mc_mtu = IPV6_MIN_MTU;
8557 } else {
8558 if (ill->ill_mtu < IP_MIN_MTU)
8559 ill->ill_mtu = IP_MIN_MTU;
8560 if (ill->ill_mc_mtu < IP_MIN_MTU)
8561 ill->ill_mc_mtu = IP_MIN_MTU;
8562 }
8563 } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8564 ill->ill_mc_mtu = ill->ill_mtu;
8565 }
8566
8567 mutex_exit(&ill->ill_lock);
8568 /*
8569 * Make sure all dce_generation checks find out
8570 * that ill_mtu/ill_mc_mtu has changed.
8571 */
8572 if (orig_mtu != ill->ill_mtu ||
8573 orig_mc_mtu != ill->ill_mc_mtu) {
8574 dce_increment_all_generations(ill->ill_isv6,
8575 ill->ill_ipst);
8576 }
8577
8578 /*
8579 * Refresh IPMP meta-interface MTU if necessary.
8580 */
8581 if (IS_UNDER_IPMP(ill))
8582 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8583 break;
8584
8585 case DL_NOTE_LINK_UP:
8586 case DL_NOTE_LINK_DOWN: {
8587 /*
8588 * We are writer. ill / phyint / ipsq assocs stable.
8589 * The RUNNING flag reflects the state of the link.
8590 */
8591 phyint_t *phyint = ill->ill_phyint;
8592 uint64_t new_phyint_flags;
8593 boolean_t changed = B_FALSE;
8594 boolean_t went_up;
8595
8596 went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8597 mutex_enter(&phyint->phyint_lock);
8598
8599 new_phyint_flags = went_up ?
8600 phyint->phyint_flags | PHYI_RUNNING :
8601 phyint->phyint_flags & ~PHYI_RUNNING;
8602
8603 if (IS_IPMP(ill)) {
8604 new_phyint_flags = went_up ?
8605 new_phyint_flags & ~PHYI_FAILED :
8606 new_phyint_flags | PHYI_FAILED;
8607 }
8608
8609 if (new_phyint_flags != phyint->phyint_flags) {
8610 phyint->phyint_flags = new_phyint_flags;
8611 changed = B_TRUE;
8612 }
8613 mutex_exit(&phyint->phyint_lock);
8614 /*
8615 * ill_restart_dad handles the DAD restart and routing
8616 * socket notification logic.
8617 */
8618 if (changed) {
8619 ill_restart_dad(phyint->phyint_illv4, went_up);
8620 ill_restart_dad(phyint->phyint_illv6, went_up);
8621 }
8622 break;
8623 }
8624 case DL_NOTE_PROMISC_ON_PHYS: {
8625 phyint_t *phyint = ill->ill_phyint;
8626
8627 mutex_enter(&phyint->phyint_lock);
8628 phyint->phyint_flags |= PHYI_PROMISC;
8629 mutex_exit(&phyint->phyint_lock);
8630 break;
8631 }
8632 case DL_NOTE_PROMISC_OFF_PHYS: {
8633 phyint_t *phyint = ill->ill_phyint;
8634
8635 mutex_enter(&phyint->phyint_lock);
8636 phyint->phyint_flags &= ~PHYI_PROMISC;
8637 mutex_exit(&phyint->phyint_lock);
8638 break;
8639 }
8640 case DL_NOTE_CAPAB_RENEG:
8641 /*
8642 * Something changed on the driver side.
8643 * It wants us to renegotiate the capabilities
8644 * on this ill. One possible cause is the aggregation
8645 * interface under us where a port got added or
8646 * went away.
8647 *
8648 * If the capability negotiation is already done
8649 * or is in progress, reset the capabilities and
8650 * mark the ill's ill_capab_reneg to be B_TRUE,
8651 * so that when the ack comes back, we can start
8652 * the renegotiation process.
8653 *
8654 * Note that if ill_capab_reneg is already B_TRUE
8655 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8656 * the capability resetting request has been sent
8657 * and the renegotiation has not been started yet;
8658 * nothing needs to be done in this case.
8659 */
8660 ipsq_current_start(ipsq, ill->ill_ipif, 0);
8661 ill_capability_reset(ill, B_TRUE);
8662 ipsq_current_finish(ipsq);
8663 break;
8664
8665 case DL_NOTE_ALLOWED_IPS:
8666 ill_set_allowed_ips(ill, mp);
8667 break;
8668 default:
8669 ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8670 "type 0x%x for DL_NOTIFY_IND\n",
8671 notify->dl_notification));
8672 break;
8673 }
8674
8675 /*
8676 * As this is an asynchronous operation, we
8677 * should not call ill_dlpi_done
8678 */
8679 break;
8680 }
8681 case DL_NOTIFY_ACK: {
8682 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8683
8684 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8685 ill->ill_note_link = 1;
8686 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8687 break;
8688 }
8689 case DL_PHYS_ADDR_ACK: {
8690 /*
8691 * As part of plumbing the interface via SIOCSLIFNAME,
8692 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8693 * whose answers we receive here. As each answer is received,
8694 * we call ill_dlpi_done() to dispatch the next request as
8695 * we're processing the current one. Once all answers have
8696 * been received, we use ipsq_pending_mp_get() to dequeue the
8697 * outstanding IOCTL and reply to it. (Because ill_dl_phys()
8698 * is invoked from an ill queue, conn_oper_pending_ill is not
8699 * available, but we know the ioctl is pending on ill_wq.)
8700 */
8701 uint_t paddrlen, paddroff;
8702 uint8_t *addr;
8703
8704 paddrreq = ill->ill_phys_addr_pend;
8705 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8706 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8707 addr = mp->b_rptr + paddroff;
8708
8709 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8710 if (paddrreq == DL_IPV6_TOKEN) {
8711 /*
8712 * bcopy to low-order bits of ill_token
8713 *
8714 * XXX Temporary hack - currently, all known tokens
8715 * are 64 bits, so I'll cheat for the moment.
8716 */
8717 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8718 ill->ill_token_length = paddrlen;
8719 break;
8720 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8721 ASSERT(ill->ill_nd_lla_mp == NULL);
8722 ill_set_ndmp(ill, mp, paddroff, paddrlen);
8723 mp = NULL;
8724 break;
8725 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8726 ASSERT(ill->ill_dest_addr_mp == NULL);
8727 ill->ill_dest_addr_mp = mp;
8728 ill->ill_dest_addr = addr;
8729 mp = NULL;
8730 if (ill->ill_isv6) {
8731 ill_setdesttoken(ill);
8732 ipif_setdestlinklocal(ill->ill_ipif);
8733 }
8734 break;
8735 }
8736
8737 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8738 ASSERT(ill->ill_phys_addr_mp == NULL);
8739 if (!ill->ill_ifname_pending)
8740 break;
8741 ill->ill_ifname_pending = 0;
8742 if (!ioctl_aborted)
8743 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8744 if (mp1 != NULL) {
8745 ASSERT(connp == NULL);
8746 q = ill->ill_wq;
8747 }
8748 /*
8749 * If any error acks received during the plumbing sequence,
8750 * ill_ifname_pending_err will be set. Break out and send up
8751 * the error to the pending ioctl.
8752 */
8753 if (ill->ill_ifname_pending_err != 0) {
8754 err = ill->ill_ifname_pending_err;
8755 ill->ill_ifname_pending_err = 0;
8756 break;
8757 }
8758
8759 ill->ill_phys_addr_mp = mp;
8760 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8761 mp = NULL;
8762
8763 /*
8764 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8765 * provider doesn't support physical addresses. We check both
8766 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8767 * not have physical addresses, but historically adversises a
8768 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8769 * its DL_PHYS_ADDR_ACK.
8770 */
8771 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8772 ill->ill_phys_addr = NULL;
8773 } else if (paddrlen != ill->ill_phys_addr_length) {
8774 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8775 paddrlen, ill->ill_phys_addr_length));
8776 err = EINVAL;
8777 break;
8778 }
8779
8780 if (ill->ill_nd_lla_mp == NULL) {
8781 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8782 err = ENOMEM;
8783 break;
8784 }
8785 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8786 }
8787
8788 if (ill->ill_isv6) {
8789 ill_setdefaulttoken(ill);
8790 ipif_setlinklocal(ill->ill_ipif);
8791 }
8792 break;
8793 }
8794 case DL_OK_ACK:
8795 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8796 dl_primstr((int)dloa->dl_correct_primitive),
8797 dloa->dl_correct_primitive));
8798 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8799 char *, dl_primstr(dloa->dl_correct_primitive),
8800 ill_t *, ill);
8801
8802 switch (dloa->dl_correct_primitive) {
8803 case DL_ENABMULTI_REQ:
8804 case DL_DISABMULTI_REQ:
8805 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8806 break;
8807 case DL_PROMISCON_REQ:
8808 case DL_PROMISCOFF_REQ:
8809 case DL_UNBIND_REQ:
8810 case DL_ATTACH_REQ:
8811 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8812 break;
8813 }
8814 break;
8815 default:
8816 break;
8817 }
8818
8819 freemsg(mp);
8820 if (mp1 == NULL)
8821 return;
8822
8823 /*
8824 * The operation must complete without EINPROGRESS since
8825 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise,
8826 * the operation will be stuck forever inside the IPSQ.
8827 */
8828 ASSERT(err != EINPROGRESS);
8829
8830 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8831 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8832 ipif_t *, NULL);
8833
8834 switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8835 case 0:
8836 ipsq_current_finish(ipsq);
8837 break;
8838
8839 case SIOCSLIFNAME:
8840 case IF_UNITSEL: {
8841 ill_t *ill_other = ILL_OTHER(ill);
8842
8843 /*
8844 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8845 * ill has a peer which is in an IPMP group, then place ill
8846 * into the same group. One catch: although ifconfig plumbs
8847 * the appropriate IPMP meta-interface prior to plumbing this
8848 * ill, it is possible for multiple ifconfig applications to
8849 * race (or for another application to adjust plumbing), in
8850 * which case the IPMP meta-interface we need will be missing.
8851 * If so, kick the phyint out of the group.
8852 */
8853 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8854 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp;
8855 ipmp_illgrp_t *illg;
8856
8857 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8858 if (illg == NULL)
8859 ipmp_phyint_leave_grp(ill->ill_phyint);
8860 else
8861 ipmp_ill_join_illgrp(ill, illg);
8862 }
8863
8864 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8865 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8866 else
8867 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8868 break;
8869 }
8870 case SIOCLIFADDIF:
8871 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8872 break;
8873
8874 default:
8875 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8876 break;
8877 }
8878 }
8879
8880 /*
8881 * ip_rput_other is called by ip_rput to handle messages modifying the global
8882 * state in IP. If 'ipsq' is non-NULL, caller is writer on it.
8883 */
8884 /* ARGSUSED */
8885 void
8886 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8887 {
8888 ill_t *ill = q->q_ptr;
8889 struct iocblk *iocp;
8890
8891 ip1dbg(("ip_rput_other "));
8892 if (ipsq != NULL) {
8893 ASSERT(IAM_WRITER_IPSQ(ipsq));
8894 ASSERT(ipsq->ipsq_xop ==
8895 ill->ill_phyint->phyint_ipsq->ipsq_xop);
8896 }
8897
8898 switch (mp->b_datap->db_type) {
8899 case M_ERROR:
8900 case M_HANGUP:
8901 /*
8902 * The device has a problem. We force the ILL down. It can
8903 * be brought up again manually using SIOCSIFFLAGS (via
8904 * ifconfig or equivalent).
8905 */
8906 ASSERT(ipsq != NULL);
8907 if (mp->b_rptr < mp->b_wptr)
8908 ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8909 if (ill->ill_error == 0)
8910 ill->ill_error = ENXIO;
8911 if (!ill_down_start(q, mp))
8912 return;
8913 ipif_all_down_tail(ipsq, q, mp, NULL);
8914 break;
8915 case M_IOCNAK: {
8916 iocp = (struct iocblk *)mp->b_rptr;
8917
8918 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8919 /*
8920 * If this was the first attempt, turn off the fastpath
8921 * probing.
8922 */
8923 mutex_enter(&ill->ill_lock);
8924 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8925 ill->ill_dlpi_fastpath_state = IDS_FAILED;
8926 mutex_exit(&ill->ill_lock);
8927 /*
8928 * don't flush the nce_t entries: we use them
8929 * as an index to the ncec itself.
8930 */
8931 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8932 ill->ill_name));
8933 } else {
8934 mutex_exit(&ill->ill_lock);
8935 }
8936 freemsg(mp);
8937 break;
8938 }
8939 default:
8940 ASSERT(0);
8941 break;
8942 }
8943 }
8944
8945 /*
8946 * Update any source route, record route or timestamp options
8947 * When it fails it has consumed the message and BUMPed the MIB.
8948 */
8949 boolean_t
8950 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8951 ip_recv_attr_t *ira)
8952 {
8953 ipoptp_t opts;
8954 uchar_t *opt;
8955 uint8_t optval;
8956 uint8_t optlen;
8957 ipaddr_t dst;
8958 ipaddr_t ifaddr;
8959 uint32_t ts;
8960 timestruc_t now;
8961 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
8962
8963 ip2dbg(("ip_forward_options\n"));
8964 dst = ipha->ipha_dst;
8965 for (optval = ipoptp_first(&opts, ipha);
8966 optval != IPOPT_EOL;
8967 optval = ipoptp_next(&opts)) {
8968 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8969 opt = opts.ipoptp_cur;
8970 optlen = opts.ipoptp_len;
8971 ip2dbg(("ip_forward_options: opt %d, len %d\n",
8972 optval, opts.ipoptp_len));
8973 switch (optval) {
8974 uint32_t off;
8975 case IPOPT_SSRR:
8976 case IPOPT_LSRR:
8977 /* Check if adminstratively disabled */
8978 if (!ipst->ips_ip_forward_src_routed) {
8979 BUMP_MIB(dst_ill->ill_ip_mib,
8980 ipIfStatsForwProhibits);
8981 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8982 mp, dst_ill);
8983 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8984 ira);
8985 return (B_FALSE);
8986 }
8987 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
8988 /*
8989 * Must be partial since ip_input_options
8990 * checked for strict.
8991 */
8992 break;
8993 }
8994 off = opt[IPOPT_OFFSET];
8995 off--;
8996 redo_srr:
8997 if (optlen < IP_ADDR_LEN ||
8998 off > optlen - IP_ADDR_LEN) {
8999 /* End of source route */
9000 ip1dbg((
9001 "ip_forward_options: end of SR\n"));
9002 break;
9003 }
9004 /* Pick a reasonable address on the outbound if */
9005 ASSERT(dst_ill != NULL);
9006 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9007 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9008 NULL) != 0) {
9009 /* No source! Shouldn't happen */
9010 ifaddr = INADDR_ANY;
9011 }
9012 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9013 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9014 ip1dbg(("ip_forward_options: next hop 0x%x\n",
9015 ntohl(dst)));
9016
9017 /*
9018 * Check if our address is present more than
9019 * once as consecutive hops in source route.
9020 */
9021 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9022 off += IP_ADDR_LEN;
9023 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9024 goto redo_srr;
9025 }
9026 ipha->ipha_dst = dst;
9027 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9028 break;
9029 case IPOPT_RR:
9030 off = opt[IPOPT_OFFSET];
9031 off--;
9032 if (optlen < IP_ADDR_LEN ||
9033 off > optlen - IP_ADDR_LEN) {
9034 /* No more room - ignore */
9035 ip1dbg((
9036 "ip_forward_options: end of RR\n"));
9037 break;
9038 }
9039 /* Pick a reasonable address on the outbound if */
9040 ASSERT(dst_ill != NULL);
9041 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9042 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9043 NULL) != 0) {
9044 /* No source! Shouldn't happen */
9045 ifaddr = INADDR_ANY;
9046 }
9047 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9048 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9049 break;
9050 case IPOPT_TS:
9051 /* Insert timestamp if there is room */
9052 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9053 case IPOPT_TS_TSONLY:
9054 off = IPOPT_TS_TIMELEN;
9055 break;
9056 case IPOPT_TS_PRESPEC:
9057 case IPOPT_TS_PRESPEC_RFC791:
9058 /* Verify that the address matched */
9059 off = opt[IPOPT_OFFSET] - 1;
9060 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9061 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9062 /* Not for us */
9063 break;
9064 }
9065 /* FALLTHRU */
9066 case IPOPT_TS_TSANDADDR:
9067 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9068 break;
9069 default:
9070 /*
9071 * ip_*put_options should have already
9072 * dropped this packet.
9073 */
9074 cmn_err(CE_PANIC, "ip_forward_options: "
9075 "unknown IT - bug in ip_input_options?\n");
9076 return (B_TRUE); /* Keep "lint" happy */
9077 }
9078 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9079 /* Increase overflow counter */
9080 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9081 opt[IPOPT_POS_OV_FLG] =
9082 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9083 (off << 4));
9084 break;
9085 }
9086 off = opt[IPOPT_OFFSET] - 1;
9087 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9088 case IPOPT_TS_PRESPEC:
9089 case IPOPT_TS_PRESPEC_RFC791:
9090 case IPOPT_TS_TSANDADDR:
9091 /* Pick a reasonable addr on the outbound if */
9092 ASSERT(dst_ill != NULL);
9093 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9094 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9095 NULL, NULL) != 0) {
9096 /* No source! Shouldn't happen */
9097 ifaddr = INADDR_ANY;
9098 }
9099 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9100 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9101 /* FALLTHRU */
9102 case IPOPT_TS_TSONLY:
9103 off = opt[IPOPT_OFFSET] - 1;
9104 /* Compute # of milliseconds since midnight */
9105 gethrestime(&now);
9106 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9107 now.tv_nsec / (NANOSEC / MILLISEC);
9108 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9109 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9110 break;
9111 }
9112 break;
9113 }
9114 }
9115 return (B_TRUE);
9116 }
9117
9118 /*
9119 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9120 * returns 'true' if there are still fragments left on the queue, in
9121 * which case we restart the timer.
9122 */
9123 void
9124 ill_frag_timer(void *arg)
9125 {
9126 ill_t *ill = (ill_t *)arg;
9127 boolean_t frag_pending;
9128 ip_stack_t *ipst = ill->ill_ipst;
9129 time_t timeout;
9130
9131 mutex_enter(&ill->ill_lock);
9132 ASSERT(!ill->ill_fragtimer_executing);
9133 if (ill->ill_state_flags & ILL_CONDEMNED) {
9134 ill->ill_frag_timer_id = 0;
9135 mutex_exit(&ill->ill_lock);
9136 return;
9137 }
9138 ill->ill_fragtimer_executing = 1;
9139 mutex_exit(&ill->ill_lock);
9140
9141 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9142 ipst->ips_ip_reassembly_timeout);
9143
9144 frag_pending = ill_frag_timeout(ill, timeout);
9145
9146 /*
9147 * Restart the timer, if we have fragments pending or if someone
9148 * wanted us to be scheduled again.
9149 */
9150 mutex_enter(&ill->ill_lock);
9151 ill->ill_fragtimer_executing = 0;
9152 ill->ill_frag_timer_id = 0;
9153 if (frag_pending || ill->ill_fragtimer_needrestart)
9154 ill_frag_timer_start(ill);
9155 mutex_exit(&ill->ill_lock);
9156 }
9157
9158 void
9159 ill_frag_timer_start(ill_t *ill)
9160 {
9161 ip_stack_t *ipst = ill->ill_ipst;
9162 clock_t timeo_ms;
9163
9164 ASSERT(MUTEX_HELD(&ill->ill_lock));
9165
9166 /* If the ill is closing or opening don't proceed */
9167 if (ill->ill_state_flags & ILL_CONDEMNED)
9168 return;
9169
9170 if (ill->ill_fragtimer_executing) {
9171 /*
9172 * ill_frag_timer is currently executing. Just record the
9173 * the fact that we want the timer to be restarted.
9174 * ill_frag_timer will post a timeout before it returns,
9175 * ensuring it will be called again.
9176 */
9177 ill->ill_fragtimer_needrestart = 1;
9178 return;
9179 }
9180
9181 if (ill->ill_frag_timer_id == 0) {
9182 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9183 ipst->ips_ip_reassembly_timeout) * SECONDS;
9184
9185 /*
9186 * The timer is neither running nor is the timeout handler
9187 * executing. Post a timeout so that ill_frag_timer will be
9188 * called
9189 */
9190 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9191 MSEC_TO_TICK(timeo_ms >> 1));
9192 ill->ill_fragtimer_needrestart = 0;
9193 }
9194 }
9195
9196 /*
9197 * Update any source route, record route or timestamp options.
9198 * Check that we are at end of strict source route.
9199 * The options have already been checked for sanity in ip_input_options().
9200 */
9201 boolean_t
9202 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9203 {
9204 ipoptp_t opts;
9205 uchar_t *opt;
9206 uint8_t optval;
9207 uint8_t optlen;
9208 ipaddr_t dst;
9209 ipaddr_t ifaddr;
9210 uint32_t ts;
9211 timestruc_t now;
9212 ill_t *ill = ira->ira_ill;
9213 ip_stack_t *ipst = ill->ill_ipst;
9214
9215 ip2dbg(("ip_input_local_options\n"));
9216
9217 for (optval = ipoptp_first(&opts, ipha);
9218 optval != IPOPT_EOL;
9219 optval = ipoptp_next(&opts)) {
9220 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9221 opt = opts.ipoptp_cur;
9222 optlen = opts.ipoptp_len;
9223 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9224 optval, optlen));
9225 switch (optval) {
9226 uint32_t off;
9227 case IPOPT_SSRR:
9228 case IPOPT_LSRR:
9229 off = opt[IPOPT_OFFSET];
9230 off--;
9231 if (optlen < IP_ADDR_LEN ||
9232 off > optlen - IP_ADDR_LEN) {
9233 /* End of source route */
9234 ip1dbg(("ip_input_local_options: end of SR\n"));
9235 break;
9236 }
9237 /*
9238 * This will only happen if two consecutive entries
9239 * in the source route contains our address or if
9240 * it is a packet with a loose source route which
9241 * reaches us before consuming the whole source route
9242 */
9243 ip1dbg(("ip_input_local_options: not end of SR\n"));
9244 if (optval == IPOPT_SSRR) {
9245 goto bad_src_route;
9246 }
9247 /*
9248 * Hack: instead of dropping the packet truncate the
9249 * source route to what has been used by filling the
9250 * rest with IPOPT_NOP.
9251 */
9252 opt[IPOPT_OLEN] = (uint8_t)off;
9253 while (off < optlen) {
9254 opt[off++] = IPOPT_NOP;
9255 }
9256 break;
9257 case IPOPT_RR:
9258 off = opt[IPOPT_OFFSET];
9259 off--;
9260 if (optlen < IP_ADDR_LEN ||
9261 off > optlen - IP_ADDR_LEN) {
9262 /* No more room - ignore */
9263 ip1dbg((
9264 "ip_input_local_options: end of RR\n"));
9265 break;
9266 }
9267 /* Pick a reasonable address on the outbound if */
9268 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9269 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9270 NULL) != 0) {
9271 /* No source! Shouldn't happen */
9272 ifaddr = INADDR_ANY;
9273 }
9274 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9275 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9276 break;
9277 case IPOPT_TS:
9278 /* Insert timestamp if there is romm */
9279 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9280 case IPOPT_TS_TSONLY:
9281 off = IPOPT_TS_TIMELEN;
9282 break;
9283 case IPOPT_TS_PRESPEC:
9284 case IPOPT_TS_PRESPEC_RFC791:
9285 /* Verify that the address matched */
9286 off = opt[IPOPT_OFFSET] - 1;
9287 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9288 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9289 /* Not for us */
9290 break;
9291 }
9292 /* FALLTHRU */
9293 case IPOPT_TS_TSANDADDR:
9294 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9295 break;
9296 default:
9297 /*
9298 * ip_*put_options should have already
9299 * dropped this packet.
9300 */
9301 cmn_err(CE_PANIC, "ip_input_local_options: "
9302 "unknown IT - bug in ip_input_options?\n");
9303 return (B_TRUE); /* Keep "lint" happy */
9304 }
9305 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9306 /* Increase overflow counter */
9307 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9308 opt[IPOPT_POS_OV_FLG] =
9309 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9310 (off << 4));
9311 break;
9312 }
9313 off = opt[IPOPT_OFFSET] - 1;
9314 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9315 case IPOPT_TS_PRESPEC:
9316 case IPOPT_TS_PRESPEC_RFC791:
9317 case IPOPT_TS_TSANDADDR:
9318 /* Pick a reasonable addr on the outbound if */
9319 if (ip_select_source_v4(ill, INADDR_ANY,
9320 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9321 &ifaddr, NULL, NULL) != 0) {
9322 /* No source! Shouldn't happen */
9323 ifaddr = INADDR_ANY;
9324 }
9325 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9326 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9327 /* FALLTHRU */
9328 case IPOPT_TS_TSONLY:
9329 off = opt[IPOPT_OFFSET] - 1;
9330 /* Compute # of milliseconds since midnight */
9331 gethrestime(&now);
9332 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9333 now.tv_nsec / (NANOSEC / MILLISEC);
9334 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9335 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9336 break;
9337 }
9338 break;
9339 }
9340 }
9341 return (B_TRUE);
9342
9343 bad_src_route:
9344 /* make sure we clear any indication of a hardware checksum */
9345 DB_CKSUMFLAGS(mp) = 0;
9346 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9347 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9348 return (B_FALSE);
9349
9350 }
9351
9352 /*
9353 * Process IP options in an inbound packet. Always returns the nexthop.
9354 * Normally this is the passed in nexthop, but if there is an option
9355 * that effects the nexthop (such as a source route) that will be returned.
9356 * Sets *errorp if there is an error, in which case an ICMP error has been sent
9357 * and mp freed.
9358 */
9359 ipaddr_t
9360 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9361 ip_recv_attr_t *ira, int *errorp)
9362 {
9363 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
9364 ipoptp_t opts;
9365 uchar_t *opt;
9366 uint8_t optval;
9367 uint8_t optlen;
9368 intptr_t code = 0;
9369 ire_t *ire;
9370
9371 ip2dbg(("ip_input_options\n"));
9372 *errorp = 0;
9373 for (optval = ipoptp_first(&opts, ipha);
9374 optval != IPOPT_EOL;
9375 optval = ipoptp_next(&opts)) {
9376 opt = opts.ipoptp_cur;
9377 optlen = opts.ipoptp_len;
9378 ip2dbg(("ip_input_options: opt %d, len %d\n",
9379 optval, optlen));
9380 /*
9381 * Note: we need to verify the checksum before we
9382 * modify anything thus this routine only extracts the next
9383 * hop dst from any source route.
9384 */
9385 switch (optval) {
9386 uint32_t off;
9387 case IPOPT_SSRR:
9388 case IPOPT_LSRR:
9389 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9390 if (optval == IPOPT_SSRR) {
9391 ip1dbg(("ip_input_options: not next"
9392 " strict source route 0x%x\n",
9393 ntohl(dst)));
9394 code = (char *)&ipha->ipha_dst -
9395 (char *)ipha;
9396 goto param_prob; /* RouterReq's */
9397 }
9398 ip2dbg(("ip_input_options: "
9399 "not next source route 0x%x\n",
9400 ntohl(dst)));
9401 break;
9402 }
9403
9404 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9405 ip1dbg((
9406 "ip_input_options: bad option offset\n"));
9407 code = (char *)&opt[IPOPT_OLEN] -
9408 (char *)ipha;
9409 goto param_prob;
9410 }
9411 off = opt[IPOPT_OFFSET];
9412 off--;
9413 redo_srr:
9414 if (optlen < IP_ADDR_LEN ||
9415 off > optlen - IP_ADDR_LEN) {
9416 /* End of source route */
9417 ip1dbg(("ip_input_options: end of SR\n"));
9418 break;
9419 }
9420 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9421 ip1dbg(("ip_input_options: next hop 0x%x\n",
9422 ntohl(dst)));
9423
9424 /*
9425 * Check if our address is present more than
9426 * once as consecutive hops in source route.
9427 * XXX verify per-interface ip_forwarding
9428 * for source route?
9429 */
9430 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9431 off += IP_ADDR_LEN;
9432 goto redo_srr;
9433 }
9434
9435 if (dst == htonl(INADDR_LOOPBACK)) {
9436 ip1dbg(("ip_input_options: loopback addr in "
9437 "source route!\n"));
9438 goto bad_src_route;
9439 }
9440 /*
9441 * For strict: verify that dst is directly
9442 * reachable.
9443 */
9444 if (optval == IPOPT_SSRR) {
9445 ire = ire_ftable_lookup_v4(dst, 0, 0,
9446 IRE_INTERFACE, NULL, ALL_ZONES,
9447 ira->ira_tsl,
9448 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9449 NULL);
9450 if (ire == NULL) {
9451 ip1dbg(("ip_input_options: SSRR not "
9452 "directly reachable: 0x%x\n",
9453 ntohl(dst)));
9454 goto bad_src_route;
9455 }
9456 ire_refrele(ire);
9457 }
9458 /*
9459 * Defer update of the offset and the record route
9460 * until the packet is forwarded.
9461 */
9462 break;
9463 case IPOPT_RR:
9464 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9465 ip1dbg((
9466 "ip_input_options: bad option offset\n"));
9467 code = (char *)&opt[IPOPT_OLEN] -
9468 (char *)ipha;
9469 goto param_prob;
9470 }
9471 break;
9472 case IPOPT_TS:
9473 /*
9474 * Verify that length >= 5 and that there is either
9475 * room for another timestamp or that the overflow
9476 * counter is not maxed out.
9477 */
9478 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9479 if (optlen < IPOPT_MINLEN_IT) {
9480 goto param_prob;
9481 }
9482 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9483 ip1dbg((
9484 "ip_input_options: bad option offset\n"));
9485 code = (char *)&opt[IPOPT_OFFSET] -
9486 (char *)ipha;
9487 goto param_prob;
9488 }
9489 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9490 case IPOPT_TS_TSONLY:
9491 off = IPOPT_TS_TIMELEN;
9492 break;
9493 case IPOPT_TS_TSANDADDR:
9494 case IPOPT_TS_PRESPEC:
9495 case IPOPT_TS_PRESPEC_RFC791:
9496 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9497 break;
9498 default:
9499 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9500 (char *)ipha;
9501 goto param_prob;
9502 }
9503 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9504 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9505 /*
9506 * No room and the overflow counter is 15
9507 * already.
9508 */
9509 goto param_prob;
9510 }
9511 break;
9512 }
9513 }
9514
9515 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9516 return (dst);
9517 }
9518
9519 ip1dbg(("ip_input_options: error processing IP options."));
9520 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9521
9522 param_prob:
9523 /* make sure we clear any indication of a hardware checksum */
9524 DB_CKSUMFLAGS(mp) = 0;
9525 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9526 icmp_param_problem(mp, (uint8_t)code, ira);
9527 *errorp = -1;
9528 return (dst);
9529
9530 bad_src_route:
9531 /* make sure we clear any indication of a hardware checksum */
9532 DB_CKSUMFLAGS(mp) = 0;
9533 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9534 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9535 *errorp = -1;
9536 return (dst);
9537 }
9538
9539 /*
9540 * IP & ICMP info in >=14 msg's ...
9541 * - ip fixed part (mib2_ip_t)
9542 * - icmp fixed part (mib2_icmp_t)
9543 * - ipAddrEntryTable (ip 20) all IPv4 ipifs
9544 * - ipRouteEntryTable (ip 21) all IPv4 IREs
9545 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries
9546 * - ipRouteAttributeTable (ip 102) labeled routes
9547 * - ip multicast membership (ip_member_t)
9548 * - ip multicast source filtering (ip_grpsrc_t)
9549 * - igmp fixed part (struct igmpstat)
9550 * - multicast routing stats (struct mrtstat)
9551 * - multicast routing vifs (array of struct vifctl)
9552 * - multicast routing routes (array of struct mfcctl)
9553 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9554 * One per ill plus one generic
9555 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9556 * One per ill plus one generic
9557 * - ipv6RouteEntry all IPv6 IREs
9558 * - ipv6RouteAttributeTable (ip6 102) labeled routes
9559 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries
9560 * - ipv6AddrEntry all IPv6 ipifs
9561 * - ipv6 multicast membership (ipv6_member_t)
9562 * - ipv6 multicast source filtering (ipv6_grpsrc_t)
9563 *
9564 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9565 * already filled in by the caller.
9566 * If legacy_req is true then MIB structures needs to be truncated to their
9567 * legacy sizes before being returned.
9568 * Return value of 0 indicates that no messages were sent and caller
9569 * should free mpctl.
9570 */
9571 int
9572 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9573 {
9574 ip_stack_t *ipst;
9575 sctp_stack_t *sctps;
9576
9577 if (q->q_next != NULL) {
9578 ipst = ILLQ_TO_IPST(q);
9579 } else {
9580 ipst = CONNQ_TO_IPST(q);
9581 }
9582 ASSERT(ipst != NULL);
9583 sctps = ipst->ips_netstack->netstack_sctp;
9584
9585 if (mpctl == NULL || mpctl->b_cont == NULL) {
9586 return (0);
9587 }
9588
9589 /*
9590 * For the purposes of the (broken) packet shell use
9591 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9592 * to make TCP and UDP appear first in the list of mib items.
9593 * TBD: We could expand this and use it in netstat so that
9594 * the kernel doesn't have to produce large tables (connections,
9595 * routes, etc) when netstat only wants the statistics or a particular
9596 * table.
9597 */
9598 if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9599 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9600 return (1);
9601 }
9602 }
9603
9604 if (level != MIB2_TCP) {
9605 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9606 return (1);
9607 }
9608 }
9609
9610 if (level != MIB2_UDP) {
9611 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9612 return (1);
9613 }
9614 }
9615
9616 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9617 ipst, legacy_req)) == NULL) {
9618 return (1);
9619 }
9620
9621 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9622 legacy_req)) == NULL) {
9623 return (1);
9624 }
9625
9626 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9627 return (1);
9628 }
9629
9630 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9631 return (1);
9632 }
9633
9634 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9635 return (1);
9636 }
9637
9638 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9639 return (1);
9640 }
9641
9642 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9643 legacy_req)) == NULL) {
9644 return (1);
9645 }
9646
9647 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9648 legacy_req)) == NULL) {
9649 return (1);
9650 }
9651
9652 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9653 return (1);
9654 }
9655
9656 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9657 return (1);
9658 }
9659
9660 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9661 return (1);
9662 }
9663
9664 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9665 return (1);
9666 }
9667
9668 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9669 return (1);
9670 }
9671
9672 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9673 return (1);
9674 }
9675
9676 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9677 if (mpctl == NULL)
9678 return (1);
9679
9680 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9681 if (mpctl == NULL)
9682 return (1);
9683
9684 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9685 return (1);
9686 }
9687 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9688 return (1);
9689 }
9690 freemsg(mpctl);
9691 return (1);
9692 }
9693
9694 /* Get global (legacy) IPv4 statistics */
9695 static mblk_t *
9696 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9697 ip_stack_t *ipst, boolean_t legacy_req)
9698 {
9699 mib2_ip_t old_ip_mib;
9700 struct opthdr *optp;
9701 mblk_t *mp2ctl;
9702 mib2_ipAddrEntry_t mae;
9703
9704 /*
9705 * make a copy of the original message
9706 */
9707 mp2ctl = copymsg(mpctl);
9708
9709 /* fixed length IP structure... */
9710 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9711 optp->level = MIB2_IP;
9712 optp->name = 0;
9713 SET_MIB(old_ip_mib.ipForwarding,
9714 (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9715 SET_MIB(old_ip_mib.ipDefaultTTL,
9716 (uint32_t)ipst->ips_ip_def_ttl);
9717 SET_MIB(old_ip_mib.ipReasmTimeout,
9718 ipst->ips_ip_reassembly_timeout);
9719 SET_MIB(old_ip_mib.ipAddrEntrySize,
9720 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9721 sizeof (mib2_ipAddrEntry_t));
9722 SET_MIB(old_ip_mib.ipRouteEntrySize,
9723 sizeof (mib2_ipRouteEntry_t));
9724 SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9725 sizeof (mib2_ipNetToMediaEntry_t));
9726 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9727 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9728 SET_MIB(old_ip_mib.ipRouteAttributeSize,
9729 sizeof (mib2_ipAttributeEntry_t));
9730 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9731 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9732
9733 /*
9734 * Grab the statistics from the new IP MIB
9735 */
9736 SET_MIB(old_ip_mib.ipInReceives,
9737 (uint32_t)ipmib->ipIfStatsHCInReceives);
9738 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9739 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9740 SET_MIB(old_ip_mib.ipForwDatagrams,
9741 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9742 SET_MIB(old_ip_mib.ipInUnknownProtos,
9743 ipmib->ipIfStatsInUnknownProtos);
9744 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9745 SET_MIB(old_ip_mib.ipInDelivers,
9746 (uint32_t)ipmib->ipIfStatsHCInDelivers);
9747 SET_MIB(old_ip_mib.ipOutRequests,
9748 (uint32_t)ipmib->ipIfStatsHCOutRequests);
9749 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9750 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9751 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9752 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9753 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9754 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9755 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9756 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9757
9758 /* ipRoutingDiscards is not being used */
9759 SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9760 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9761 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9762 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9763 SET_MIB(old_ip_mib.ipReasmDuplicates,
9764 ipmib->ipIfStatsReasmDuplicates);
9765 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9766 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9767 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9768 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9769 SET_MIB(old_ip_mib.rawipInOverflows,
9770 ipmib->rawipIfStatsInOverflows);
9771
9772 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9773 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9774 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9775 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9776 SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9777 ipmib->ipIfStatsOutSwitchIPVersion);
9778
9779 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9780 (int)sizeof (old_ip_mib))) {
9781 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9782 (uint_t)sizeof (old_ip_mib)));
9783 }
9784
9785 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9786 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9787 (int)optp->level, (int)optp->name, (int)optp->len));
9788 qreply(q, mpctl);
9789 return (mp2ctl);
9790 }
9791
9792 /* Per interface IPv4 statistics */
9793 static mblk_t *
9794 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9795 boolean_t legacy_req)
9796 {
9797 struct opthdr *optp;
9798 mblk_t *mp2ctl;
9799 ill_t *ill;
9800 ill_walk_context_t ctx;
9801 mblk_t *mp_tail = NULL;
9802 mib2_ipIfStatsEntry_t global_ip_mib;
9803 mib2_ipAddrEntry_t mae;
9804
9805 /*
9806 * Make a copy of the original message
9807 */
9808 mp2ctl = copymsg(mpctl);
9809
9810 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9811 optp->level = MIB2_IP;
9812 optp->name = MIB2_IP_TRAFFIC_STATS;
9813 /* Include "unknown interface" ip_mib */
9814 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9815 ipst->ips_ip_mib.ipIfStatsIfIndex =
9816 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9817 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9818 (ipst->ips_ip_forwarding ? 1 : 2));
9819 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9820 (uint32_t)ipst->ips_ip_def_ttl);
9821 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9822 sizeof (mib2_ipIfStatsEntry_t));
9823 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9824 sizeof (mib2_ipAddrEntry_t));
9825 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9826 sizeof (mib2_ipRouteEntry_t));
9827 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9828 sizeof (mib2_ipNetToMediaEntry_t));
9829 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9830 sizeof (ip_member_t));
9831 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9832 sizeof (ip_grpsrc_t));
9833
9834 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9835
9836 if (legacy_req) {
9837 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9838 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9839 }
9840
9841 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9842 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9843 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9844 "failed to allocate %u bytes\n",
9845 (uint_t)sizeof (global_ip_mib)));
9846 }
9847
9848 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9849 ill = ILL_START_WALK_V4(&ctx, ipst);
9850 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9851 ill->ill_ip_mib->ipIfStatsIfIndex =
9852 ill->ill_phyint->phyint_ifindex;
9853 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9854 (ipst->ips_ip_forwarding ? 1 : 2));
9855 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9856 (uint32_t)ipst->ips_ip_def_ttl);
9857
9858 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9859 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9860 (char *)ill->ill_ip_mib,
9861 (int)sizeof (*ill->ill_ip_mib))) {
9862 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9863 "failed to allocate %u bytes\n",
9864 (uint_t)sizeof (*ill->ill_ip_mib)));
9865 }
9866 }
9867 rw_exit(&ipst->ips_ill_g_lock);
9868
9869 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9870 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9871 "level %d, name %d, len %d\n",
9872 (int)optp->level, (int)optp->name, (int)optp->len));
9873 qreply(q, mpctl);
9874
9875 if (mp2ctl == NULL)
9876 return (NULL);
9877
9878 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9879 legacy_req));
9880 }
9881
9882 /* Global IPv4 ICMP statistics */
9883 static mblk_t *
9884 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9885 {
9886 struct opthdr *optp;
9887 mblk_t *mp2ctl;
9888
9889 /*
9890 * Make a copy of the original message
9891 */
9892 mp2ctl = copymsg(mpctl);
9893
9894 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9895 optp->level = MIB2_ICMP;
9896 optp->name = 0;
9897 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9898 (int)sizeof (ipst->ips_icmp_mib))) {
9899 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9900 (uint_t)sizeof (ipst->ips_icmp_mib)));
9901 }
9902 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9903 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9904 (int)optp->level, (int)optp->name, (int)optp->len));
9905 qreply(q, mpctl);
9906 return (mp2ctl);
9907 }
9908
9909 /* Global IPv4 IGMP statistics */
9910 static mblk_t *
9911 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9912 {
9913 struct opthdr *optp;
9914 mblk_t *mp2ctl;
9915
9916 /*
9917 * make a copy of the original message
9918 */
9919 mp2ctl = copymsg(mpctl);
9920
9921 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9922 optp->level = EXPER_IGMP;
9923 optp->name = 0;
9924 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9925 (int)sizeof (ipst->ips_igmpstat))) {
9926 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9927 (uint_t)sizeof (ipst->ips_igmpstat)));
9928 }
9929 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9930 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9931 (int)optp->level, (int)optp->name, (int)optp->len));
9932 qreply(q, mpctl);
9933 return (mp2ctl);
9934 }
9935
9936 /* Global IPv4 Multicast Routing statistics */
9937 static mblk_t *
9938 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9939 {
9940 struct opthdr *optp;
9941 mblk_t *mp2ctl;
9942
9943 /*
9944 * make a copy of the original message
9945 */
9946 mp2ctl = copymsg(mpctl);
9947
9948 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9949 optp->level = EXPER_DVMRP;
9950 optp->name = 0;
9951 if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9952 ip0dbg(("ip_mroute_stats: failed\n"));
9953 }
9954 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9955 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9956 (int)optp->level, (int)optp->name, (int)optp->len));
9957 qreply(q, mpctl);
9958 return (mp2ctl);
9959 }
9960
9961 /* IPv4 address information */
9962 static mblk_t *
9963 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9964 boolean_t legacy_req)
9965 {
9966 struct opthdr *optp;
9967 mblk_t *mp2ctl;
9968 mblk_t *mp_tail = NULL;
9969 ill_t *ill;
9970 ipif_t *ipif;
9971 uint_t bitval;
9972 mib2_ipAddrEntry_t mae;
9973 size_t mae_size;
9974 zoneid_t zoneid;
9975 ill_walk_context_t ctx;
9976
9977 /*
9978 * make a copy of the original message
9979 */
9980 mp2ctl = copymsg(mpctl);
9981
9982 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9983 sizeof (mib2_ipAddrEntry_t);
9984
9985 /* ipAddrEntryTable */
9986
9987 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9988 optp->level = MIB2_IP;
9989 optp->name = MIB2_IP_ADDR;
9990 zoneid = Q_TO_CONN(q)->conn_zoneid;
9991
9992 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9993 ill = ILL_START_WALK_V4(&ctx, ipst);
9994 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9995 for (ipif = ill->ill_ipif; ipif != NULL;
9996 ipif = ipif->ipif_next) {
9997 if (ipif->ipif_zoneid != zoneid &&
9998 ipif->ipif_zoneid != ALL_ZONES)
9999 continue;
10000 /* Sum of count from dead IRE_LO* and our current */
10001 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10002 if (ipif->ipif_ire_local != NULL) {
10003 mae.ipAdEntInfo.ae_ibcnt +=
10004 ipif->ipif_ire_local->ire_ib_pkt_count;
10005 }
10006 mae.ipAdEntInfo.ae_obcnt = 0;
10007 mae.ipAdEntInfo.ae_focnt = 0;
10008
10009 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10010 OCTET_LENGTH);
10011 mae.ipAdEntIfIndex.o_length =
10012 mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10013 mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10014 mae.ipAdEntNetMask = ipif->ipif_net_mask;
10015 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10016 mae.ipAdEntInfo.ae_subnet_len =
10017 ip_mask_to_plen(ipif->ipif_net_mask);
10018 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10019 for (bitval = 1;
10020 bitval &&
10021 !(bitval & ipif->ipif_brd_addr);
10022 bitval <<= 1)
10023 noop;
10024 mae.ipAdEntBcastAddr = bitval;
10025 mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10026 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10027 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric;
10028 mae.ipAdEntInfo.ae_broadcast_addr =
10029 ipif->ipif_brd_addr;
10030 mae.ipAdEntInfo.ae_pp_dst_addr =
10031 ipif->ipif_pp_dst_addr;
10032 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10033 ill->ill_flags | ill->ill_phyint->phyint_flags;
10034 mae.ipAdEntRetransmitTime =
10035 ill->ill_reachable_retrans_time;
10036
10037 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10038 (char *)&mae, (int)mae_size)) {
10039 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10040 "allocate %u bytes\n", (uint_t)mae_size));
10041 }
10042 }
10043 }
10044 rw_exit(&ipst->ips_ill_g_lock);
10045
10046 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10047 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10048 (int)optp->level, (int)optp->name, (int)optp->len));
10049 qreply(q, mpctl);
10050 return (mp2ctl);
10051 }
10052
10053 /* IPv6 address information */
10054 static mblk_t *
10055 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10056 boolean_t legacy_req)
10057 {
10058 struct opthdr *optp;
10059 mblk_t *mp2ctl;
10060 mblk_t *mp_tail = NULL;
10061 ill_t *ill;
10062 ipif_t *ipif;
10063 mib2_ipv6AddrEntry_t mae6;
10064 size_t mae6_size;
10065 zoneid_t zoneid;
10066 ill_walk_context_t ctx;
10067
10068 /*
10069 * make a copy of the original message
10070 */
10071 mp2ctl = copymsg(mpctl);
10072
10073 mae6_size = (legacy_req) ?
10074 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10075 sizeof (mib2_ipv6AddrEntry_t);
10076
10077 /* ipv6AddrEntryTable */
10078
10079 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10080 optp->level = MIB2_IP6;
10081 optp->name = MIB2_IP6_ADDR;
10082 zoneid = Q_TO_CONN(q)->conn_zoneid;
10083
10084 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10085 ill = ILL_START_WALK_V6(&ctx, ipst);
10086 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10087 for (ipif = ill->ill_ipif; ipif != NULL;
10088 ipif = ipif->ipif_next) {
10089 if (ipif->ipif_zoneid != zoneid &&
10090 ipif->ipif_zoneid != ALL_ZONES)
10091 continue;
10092 /* Sum of count from dead IRE_LO* and our current */
10093 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10094 if (ipif->ipif_ire_local != NULL) {
10095 mae6.ipv6AddrInfo.ae_ibcnt +=
10096 ipif->ipif_ire_local->ire_ib_pkt_count;
10097 }
10098 mae6.ipv6AddrInfo.ae_obcnt = 0;
10099 mae6.ipv6AddrInfo.ae_focnt = 0;
10100
10101 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10102 OCTET_LENGTH);
10103 mae6.ipv6AddrIfIndex.o_length =
10104 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10105 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10106 mae6.ipv6AddrPfxLength =
10107 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10108 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10109 mae6.ipv6AddrInfo.ae_subnet_len =
10110 mae6.ipv6AddrPfxLength;
10111 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10112
10113 /* Type: stateless(1), stateful(2), unknown(3) */
10114 if (ipif->ipif_flags & IPIF_ADDRCONF)
10115 mae6.ipv6AddrType = 1;
10116 else
10117 mae6.ipv6AddrType = 2;
10118 /* Anycast: true(1), false(2) */
10119 if (ipif->ipif_flags & IPIF_ANYCAST)
10120 mae6.ipv6AddrAnycastFlag = 1;
10121 else
10122 mae6.ipv6AddrAnycastFlag = 2;
10123
10124 /*
10125 * Address status: preferred(1), deprecated(2),
10126 * invalid(3), inaccessible(4), unknown(5)
10127 */
10128 if (ipif->ipif_flags & IPIF_NOLOCAL)
10129 mae6.ipv6AddrStatus = 3;
10130 else if (ipif->ipif_flags & IPIF_DEPRECATED)
10131 mae6.ipv6AddrStatus = 2;
10132 else
10133 mae6.ipv6AddrStatus = 1;
10134 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10135 mae6.ipv6AddrInfo.ae_metric =
10136 ipif->ipif_ill->ill_metric;
10137 mae6.ipv6AddrInfo.ae_pp_dst_addr =
10138 ipif->ipif_v6pp_dst_addr;
10139 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10140 ill->ill_flags | ill->ill_phyint->phyint_flags;
10141 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10142 mae6.ipv6AddrIdentifier = ill->ill_token;
10143 mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10144 mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10145 mae6.ipv6AddrRetransmitTime =
10146 ill->ill_reachable_retrans_time;
10147 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10148 (char *)&mae6, (int)mae6_size)) {
10149 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10150 "allocate %u bytes\n",
10151 (uint_t)mae6_size));
10152 }
10153 }
10154 }
10155 rw_exit(&ipst->ips_ill_g_lock);
10156
10157 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10158 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10159 (int)optp->level, (int)optp->name, (int)optp->len));
10160 qreply(q, mpctl);
10161 return (mp2ctl);
10162 }
10163
10164 /* IPv4 multicast group membership. */
10165 static mblk_t *
10166 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10167 {
10168 struct opthdr *optp;
10169 mblk_t *mp2ctl;
10170 ill_t *ill;
10171 ipif_t *ipif;
10172 ilm_t *ilm;
10173 ip_member_t ipm;
10174 mblk_t *mp_tail = NULL;
10175 ill_walk_context_t ctx;
10176 zoneid_t zoneid;
10177
10178 /*
10179 * make a copy of the original message
10180 */
10181 mp2ctl = copymsg(mpctl);
10182 zoneid = Q_TO_CONN(q)->conn_zoneid;
10183
10184 /* ipGroupMember table */
10185 optp = (struct opthdr *)&mpctl->b_rptr[
10186 sizeof (struct T_optmgmt_ack)];
10187 optp->level = MIB2_IP;
10188 optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10189
10190 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10191 ill = ILL_START_WALK_V4(&ctx, ipst);
10192 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10193 /* Make sure the ill isn't going away. */
10194 if (!ill_check_and_refhold(ill))
10195 continue;
10196 rw_exit(&ipst->ips_ill_g_lock);
10197 rw_enter(&ill->ill_mcast_lock, RW_READER);
10198 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10199 if (ilm->ilm_zoneid != zoneid &&
10200 ilm->ilm_zoneid != ALL_ZONES)
10201 continue;
10202
10203 /* Is there an ipif for ilm_ifaddr? */
10204 for (ipif = ill->ill_ipif; ipif != NULL;
10205 ipif = ipif->ipif_next) {
10206 if (!IPIF_IS_CONDEMNED(ipif) &&
10207 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10208 ilm->ilm_ifaddr != INADDR_ANY)
10209 break;
10210 }
10211 if (ipif != NULL) {
10212 ipif_get_name(ipif,
10213 ipm.ipGroupMemberIfIndex.o_bytes,
10214 OCTET_LENGTH);
10215 } else {
10216 ill_get_name(ill,
10217 ipm.ipGroupMemberIfIndex.o_bytes,
10218 OCTET_LENGTH);
10219 }
10220 ipm.ipGroupMemberIfIndex.o_length =
10221 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10222
10223 ipm.ipGroupMemberAddress = ilm->ilm_addr;
10224 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10225 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10226 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10227 (char *)&ipm, (int)sizeof (ipm))) {
10228 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10229 "failed to allocate %u bytes\n",
10230 (uint_t)sizeof (ipm)));
10231 }
10232 }
10233 rw_exit(&ill->ill_mcast_lock);
10234 ill_refrele(ill);
10235 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10236 }
10237 rw_exit(&ipst->ips_ill_g_lock);
10238 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10239 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10240 (int)optp->level, (int)optp->name, (int)optp->len));
10241 qreply(q, mpctl);
10242 return (mp2ctl);
10243 }
10244
10245 /* IPv6 multicast group membership. */
10246 static mblk_t *
10247 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10248 {
10249 struct opthdr *optp;
10250 mblk_t *mp2ctl;
10251 ill_t *ill;
10252 ilm_t *ilm;
10253 ipv6_member_t ipm6;
10254 mblk_t *mp_tail = NULL;
10255 ill_walk_context_t ctx;
10256 zoneid_t zoneid;
10257
10258 /*
10259 * make a copy of the original message
10260 */
10261 mp2ctl = copymsg(mpctl);
10262 zoneid = Q_TO_CONN(q)->conn_zoneid;
10263
10264 /* ip6GroupMember table */
10265 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10266 optp->level = MIB2_IP6;
10267 optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10268
10269 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10270 ill = ILL_START_WALK_V6(&ctx, ipst);
10271 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10272 /* Make sure the ill isn't going away. */
10273 if (!ill_check_and_refhold(ill))
10274 continue;
10275 rw_exit(&ipst->ips_ill_g_lock);
10276 /*
10277 * Normally we don't have any members on under IPMP interfaces.
10278 * We report them as a debugging aid.
10279 */
10280 rw_enter(&ill->ill_mcast_lock, RW_READER);
10281 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10282 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10283 if (ilm->ilm_zoneid != zoneid &&
10284 ilm->ilm_zoneid != ALL_ZONES)
10285 continue; /* not this zone */
10286 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10287 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10288 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10289 if (!snmp_append_data2(mpctl->b_cont,
10290 &mp_tail,
10291 (char *)&ipm6, (int)sizeof (ipm6))) {
10292 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10293 "failed to allocate %u bytes\n",
10294 (uint_t)sizeof (ipm6)));
10295 }
10296 }
10297 rw_exit(&ill->ill_mcast_lock);
10298 ill_refrele(ill);
10299 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10300 }
10301 rw_exit(&ipst->ips_ill_g_lock);
10302
10303 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10304 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10305 (int)optp->level, (int)optp->name, (int)optp->len));
10306 qreply(q, mpctl);
10307 return (mp2ctl);
10308 }
10309
10310 /* IP multicast filtered sources */
10311 static mblk_t *
10312 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10313 {
10314 struct opthdr *optp;
10315 mblk_t *mp2ctl;
10316 ill_t *ill;
10317 ipif_t *ipif;
10318 ilm_t *ilm;
10319 ip_grpsrc_t ips;
10320 mblk_t *mp_tail = NULL;
10321 ill_walk_context_t ctx;
10322 zoneid_t zoneid;
10323 int i;
10324 slist_t *sl;
10325
10326 /*
10327 * make a copy of the original message
10328 */
10329 mp2ctl = copymsg(mpctl);
10330 zoneid = Q_TO_CONN(q)->conn_zoneid;
10331
10332 /* ipGroupSource table */
10333 optp = (struct opthdr *)&mpctl->b_rptr[
10334 sizeof (struct T_optmgmt_ack)];
10335 optp->level = MIB2_IP;
10336 optp->name = EXPER_IP_GROUP_SOURCES;
10337
10338 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10339 ill = ILL_START_WALK_V4(&ctx, ipst);
10340 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10341 /* Make sure the ill isn't going away. */
10342 if (!ill_check_and_refhold(ill))
10343 continue;
10344 rw_exit(&ipst->ips_ill_g_lock);
10345 rw_enter(&ill->ill_mcast_lock, RW_READER);
10346 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10347 sl = ilm->ilm_filter;
10348 if (ilm->ilm_zoneid != zoneid &&
10349 ilm->ilm_zoneid != ALL_ZONES)
10350 continue;
10351 if (SLIST_IS_EMPTY(sl))
10352 continue;
10353
10354 /* Is there an ipif for ilm_ifaddr? */
10355 for (ipif = ill->ill_ipif; ipif != NULL;
10356 ipif = ipif->ipif_next) {
10357 if (!IPIF_IS_CONDEMNED(ipif) &&
10358 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10359 ilm->ilm_ifaddr != INADDR_ANY)
10360 break;
10361 }
10362 if (ipif != NULL) {
10363 ipif_get_name(ipif,
10364 ips.ipGroupSourceIfIndex.o_bytes,
10365 OCTET_LENGTH);
10366 } else {
10367 ill_get_name(ill,
10368 ips.ipGroupSourceIfIndex.o_bytes,
10369 OCTET_LENGTH);
10370 }
10371 ips.ipGroupSourceIfIndex.o_length =
10372 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10373
10374 ips.ipGroupSourceGroup = ilm->ilm_addr;
10375 for (i = 0; i < sl->sl_numsrc; i++) {
10376 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10377 continue;
10378 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10379 ips.ipGroupSourceAddress);
10380 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10381 (char *)&ips, (int)sizeof (ips)) == 0) {
10382 ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10383 " failed to allocate %u bytes\n",
10384 (uint_t)sizeof (ips)));
10385 }
10386 }
10387 }
10388 rw_exit(&ill->ill_mcast_lock);
10389 ill_refrele(ill);
10390 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10391 }
10392 rw_exit(&ipst->ips_ill_g_lock);
10393 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10394 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10395 (int)optp->level, (int)optp->name, (int)optp->len));
10396 qreply(q, mpctl);
10397 return (mp2ctl);
10398 }
10399
10400 /* IPv6 multicast filtered sources. */
10401 static mblk_t *
10402 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10403 {
10404 struct opthdr *optp;
10405 mblk_t *mp2ctl;
10406 ill_t *ill;
10407 ilm_t *ilm;
10408 ipv6_grpsrc_t ips6;
10409 mblk_t *mp_tail = NULL;
10410 ill_walk_context_t ctx;
10411 zoneid_t zoneid;
10412 int i;
10413 slist_t *sl;
10414
10415 /*
10416 * make a copy of the original message
10417 */
10418 mp2ctl = copymsg(mpctl);
10419 zoneid = Q_TO_CONN(q)->conn_zoneid;
10420
10421 /* ip6GroupMember table */
10422 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10423 optp->level = MIB2_IP6;
10424 optp->name = EXPER_IP6_GROUP_SOURCES;
10425
10426 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10427 ill = ILL_START_WALK_V6(&ctx, ipst);
10428 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10429 /* Make sure the ill isn't going away. */
10430 if (!ill_check_and_refhold(ill))
10431 continue;
10432 rw_exit(&ipst->ips_ill_g_lock);
10433 /*
10434 * Normally we don't have any members on under IPMP interfaces.
10435 * We report them as a debugging aid.
10436 */
10437 rw_enter(&ill->ill_mcast_lock, RW_READER);
10438 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10439 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10440 sl = ilm->ilm_filter;
10441 if (ilm->ilm_zoneid != zoneid &&
10442 ilm->ilm_zoneid != ALL_ZONES)
10443 continue;
10444 if (SLIST_IS_EMPTY(sl))
10445 continue;
10446 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10447 for (i = 0; i < sl->sl_numsrc; i++) {
10448 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10449 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10450 (char *)&ips6, (int)sizeof (ips6))) {
10451 ip1dbg(("ip_snmp_get_mib2_ip6_"
10452 "group_src: failed to allocate "
10453 "%u bytes\n",
10454 (uint_t)sizeof (ips6)));
10455 }
10456 }
10457 }
10458 rw_exit(&ill->ill_mcast_lock);
10459 ill_refrele(ill);
10460 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10461 }
10462 rw_exit(&ipst->ips_ill_g_lock);
10463
10464 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10465 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10466 (int)optp->level, (int)optp->name, (int)optp->len));
10467 qreply(q, mpctl);
10468 return (mp2ctl);
10469 }
10470
10471 /* Multicast routing virtual interface table. */
10472 static mblk_t *
10473 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10474 {
10475 struct opthdr *optp;
10476 mblk_t *mp2ctl;
10477
10478 /*
10479 * make a copy of the original message
10480 */
10481 mp2ctl = copymsg(mpctl);
10482
10483 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10484 optp->level = EXPER_DVMRP;
10485 optp->name = EXPER_DVMRP_VIF;
10486 if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10487 ip0dbg(("ip_mroute_vif: failed\n"));
10488 }
10489 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10490 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10491 (int)optp->level, (int)optp->name, (int)optp->len));
10492 qreply(q, mpctl);
10493 return (mp2ctl);
10494 }
10495
10496 /* Multicast routing table. */
10497 static mblk_t *
10498 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10499 {
10500 struct opthdr *optp;
10501 mblk_t *mp2ctl;
10502
10503 /*
10504 * make a copy of the original message
10505 */
10506 mp2ctl = copymsg(mpctl);
10507
10508 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10509 optp->level = EXPER_DVMRP;
10510 optp->name = EXPER_DVMRP_MRT;
10511 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10512 ip0dbg(("ip_mroute_mrt: failed\n"));
10513 }
10514 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10515 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10516 (int)optp->level, (int)optp->name, (int)optp->len));
10517 qreply(q, mpctl);
10518 return (mp2ctl);
10519 }
10520
10521 /*
10522 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10523 * in one IRE walk.
10524 */
10525 static mblk_t *
10526 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10527 ip_stack_t *ipst)
10528 {
10529 struct opthdr *optp;
10530 mblk_t *mp2ctl; /* Returned */
10531 mblk_t *mp3ctl; /* nettomedia */
10532 mblk_t *mp4ctl; /* routeattrs */
10533 iproutedata_t ird;
10534 zoneid_t zoneid;
10535
10536 /*
10537 * make copies of the original message
10538 * - mp2ctl is returned unchanged to the caller for his use
10539 * - mpctl is sent upstream as ipRouteEntryTable
10540 * - mp3ctl is sent upstream as ipNetToMediaEntryTable
10541 * - mp4ctl is sent upstream as ipRouteAttributeTable
10542 */
10543 mp2ctl = copymsg(mpctl);
10544 mp3ctl = copymsg(mpctl);
10545 mp4ctl = copymsg(mpctl);
10546 if (mp3ctl == NULL || mp4ctl == NULL) {
10547 freemsg(mp4ctl);
10548 freemsg(mp3ctl);
10549 freemsg(mp2ctl);
10550 freemsg(mpctl);
10551 return (NULL);
10552 }
10553
10554 bzero(&ird, sizeof (ird));
10555
10556 ird.ird_route.lp_head = mpctl->b_cont;
10557 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10558 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10559 /*
10560 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10561 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10562 * intended a temporary solution until a proper MIB API is provided
10563 * that provides complete filtering/caller-opt-in.
10564 */
10565 if (level == EXPER_IP_AND_ALL_IRES)
10566 ird.ird_flags |= IRD_REPORT_ALL;
10567
10568 zoneid = Q_TO_CONN(q)->conn_zoneid;
10569 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10570
10571 /* ipRouteEntryTable in mpctl */
10572 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10573 optp->level = MIB2_IP;
10574 optp->name = MIB2_IP_ROUTE;
10575 optp->len = msgdsize(ird.ird_route.lp_head);
10576 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10577 (int)optp->level, (int)optp->name, (int)optp->len));
10578 qreply(q, mpctl);
10579
10580 /* ipNetToMediaEntryTable in mp3ctl */
10581 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10582
10583 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10584 optp->level = MIB2_IP;
10585 optp->name = MIB2_IP_MEDIA;
10586 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10587 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10588 (int)optp->level, (int)optp->name, (int)optp->len));
10589 qreply(q, mp3ctl);
10590
10591 /* ipRouteAttributeTable in mp4ctl */
10592 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10593 optp->level = MIB2_IP;
10594 optp->name = EXPER_IP_RTATTR;
10595 optp->len = msgdsize(ird.ird_attrs.lp_head);
10596 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10597 (int)optp->level, (int)optp->name, (int)optp->len));
10598 if (optp->len == 0)
10599 freemsg(mp4ctl);
10600 else
10601 qreply(q, mp4ctl);
10602
10603 return (mp2ctl);
10604 }
10605
10606 /*
10607 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10608 * ipv6NetToMediaEntryTable in an NDP walk.
10609 */
10610 static mblk_t *
10611 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10612 ip_stack_t *ipst)
10613 {
10614 struct opthdr *optp;
10615 mblk_t *mp2ctl; /* Returned */
10616 mblk_t *mp3ctl; /* nettomedia */
10617 mblk_t *mp4ctl; /* routeattrs */
10618 iproutedata_t ird;
10619 zoneid_t zoneid;
10620
10621 /*
10622 * make copies of the original message
10623 * - mp2ctl is returned unchanged to the caller for his use
10624 * - mpctl is sent upstream as ipv6RouteEntryTable
10625 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10626 * - mp4ctl is sent upstream as ipv6RouteAttributeTable
10627 */
10628 mp2ctl = copymsg(mpctl);
10629 mp3ctl = copymsg(mpctl);
10630 mp4ctl = copymsg(mpctl);
10631 if (mp3ctl == NULL || mp4ctl == NULL) {
10632 freemsg(mp4ctl);
10633 freemsg(mp3ctl);
10634 freemsg(mp2ctl);
10635 freemsg(mpctl);
10636 return (NULL);
10637 }
10638
10639 bzero(&ird, sizeof (ird));
10640
10641 ird.ird_route.lp_head = mpctl->b_cont;
10642 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10643 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10644 /*
10645 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10646 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10647 * intended a temporary solution until a proper MIB API is provided
10648 * that provides complete filtering/caller-opt-in.
10649 */
10650 if (level == EXPER_IP_AND_ALL_IRES)
10651 ird.ird_flags |= IRD_REPORT_ALL;
10652
10653 zoneid = Q_TO_CONN(q)->conn_zoneid;
10654 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10655
10656 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10657 optp->level = MIB2_IP6;
10658 optp->name = MIB2_IP6_ROUTE;
10659 optp->len = msgdsize(ird.ird_route.lp_head);
10660 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10661 (int)optp->level, (int)optp->name, (int)optp->len));
10662 qreply(q, mpctl);
10663
10664 /* ipv6NetToMediaEntryTable in mp3ctl */
10665 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10666
10667 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10668 optp->level = MIB2_IP6;
10669 optp->name = MIB2_IP6_MEDIA;
10670 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10671 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10672 (int)optp->level, (int)optp->name, (int)optp->len));
10673 qreply(q, mp3ctl);
10674
10675 /* ipv6RouteAttributeTable in mp4ctl */
10676 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10677 optp->level = MIB2_IP6;
10678 optp->name = EXPER_IP_RTATTR;
10679 optp->len = msgdsize(ird.ird_attrs.lp_head);
10680 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10681 (int)optp->level, (int)optp->name, (int)optp->len));
10682 if (optp->len == 0)
10683 freemsg(mp4ctl);
10684 else
10685 qreply(q, mp4ctl);
10686
10687 return (mp2ctl);
10688 }
10689
10690 /*
10691 * IPv6 mib: One per ill
10692 */
10693 static mblk_t *
10694 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10695 boolean_t legacy_req)
10696 {
10697 struct opthdr *optp;
10698 mblk_t *mp2ctl;
10699 ill_t *ill;
10700 ill_walk_context_t ctx;
10701 mblk_t *mp_tail = NULL;
10702 mib2_ipv6AddrEntry_t mae6;
10703 mib2_ipIfStatsEntry_t *ise;
10704 size_t ise_size, iae_size;
10705
10706 /*
10707 * Make a copy of the original message
10708 */
10709 mp2ctl = copymsg(mpctl);
10710
10711 /* fixed length IPv6 structure ... */
10712
10713 if (legacy_req) {
10714 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10715 mib2_ipIfStatsEntry_t);
10716 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10717 } else {
10718 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10719 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10720 }
10721
10722 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10723 optp->level = MIB2_IP6;
10724 optp->name = 0;
10725 /* Include "unknown interface" ip6_mib */
10726 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10727 ipst->ips_ip6_mib.ipIfStatsIfIndex =
10728 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10729 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10730 ipst->ips_ipv6_forwarding ? 1 : 2);
10731 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10732 ipst->ips_ipv6_def_hops);
10733 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10734 sizeof (mib2_ipIfStatsEntry_t));
10735 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10736 sizeof (mib2_ipv6AddrEntry_t));
10737 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10738 sizeof (mib2_ipv6RouteEntry_t));
10739 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10740 sizeof (mib2_ipv6NetToMediaEntry_t));
10741 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10742 sizeof (ipv6_member_t));
10743 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10744 sizeof (ipv6_grpsrc_t));
10745
10746 /*
10747 * Synchronize 64- and 32-bit counters
10748 */
10749 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10750 ipIfStatsHCInReceives);
10751 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10752 ipIfStatsHCInDelivers);
10753 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10754 ipIfStatsHCOutRequests);
10755 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10756 ipIfStatsHCOutForwDatagrams);
10757 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10758 ipIfStatsHCOutMcastPkts);
10759 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10760 ipIfStatsHCInMcastPkts);
10761
10762 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10763 (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10764 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10765 (uint_t)ise_size));
10766 } else if (legacy_req) {
10767 /* Adjust the EntrySize fields for legacy requests. */
10768 ise =
10769 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10770 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10771 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10772 }
10773
10774 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10775 ill = ILL_START_WALK_V6(&ctx, ipst);
10776 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10777 ill->ill_ip_mib->ipIfStatsIfIndex =
10778 ill->ill_phyint->phyint_ifindex;
10779 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10780 ipst->ips_ipv6_forwarding ? 1 : 2);
10781 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10782 ill->ill_max_hops);
10783
10784 /*
10785 * Synchronize 64- and 32-bit counters
10786 */
10787 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10788 ipIfStatsHCInReceives);
10789 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10790 ipIfStatsHCInDelivers);
10791 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10792 ipIfStatsHCOutRequests);
10793 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10794 ipIfStatsHCOutForwDatagrams);
10795 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10796 ipIfStatsHCOutMcastPkts);
10797 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10798 ipIfStatsHCInMcastPkts);
10799
10800 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10801 (char *)ill->ill_ip_mib, (int)ise_size)) {
10802 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10803 "%u bytes\n", (uint_t)ise_size));
10804 } else if (legacy_req) {
10805 /* Adjust the EntrySize fields for legacy requests. */
10806 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10807 (int)ise_size);
10808 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10809 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10810 }
10811 }
10812 rw_exit(&ipst->ips_ill_g_lock);
10813
10814 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10815 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10816 (int)optp->level, (int)optp->name, (int)optp->len));
10817 qreply(q, mpctl);
10818 return (mp2ctl);
10819 }
10820
10821 /*
10822 * ICMPv6 mib: One per ill
10823 */
10824 static mblk_t *
10825 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10826 {
10827 struct opthdr *optp;
10828 mblk_t *mp2ctl;
10829 ill_t *ill;
10830 ill_walk_context_t ctx;
10831 mblk_t *mp_tail = NULL;
10832 /*
10833 * Make a copy of the original message
10834 */
10835 mp2ctl = copymsg(mpctl);
10836
10837 /* fixed length ICMPv6 structure ... */
10838
10839 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10840 optp->level = MIB2_ICMP6;
10841 optp->name = 0;
10842 /* Include "unknown interface" icmp6_mib */
10843 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10844 MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10845 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10846 sizeof (mib2_ipv6IfIcmpEntry_t);
10847 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10848 (char *)&ipst->ips_icmp6_mib,
10849 (int)sizeof (ipst->ips_icmp6_mib))) {
10850 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10851 (uint_t)sizeof (ipst->ips_icmp6_mib)));
10852 }
10853
10854 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10855 ill = ILL_START_WALK_V6(&ctx, ipst);
10856 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10857 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10858 ill->ill_phyint->phyint_ifindex;
10859 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10860 (char *)ill->ill_icmp6_mib,
10861 (int)sizeof (*ill->ill_icmp6_mib))) {
10862 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10863 "%u bytes\n",
10864 (uint_t)sizeof (*ill->ill_icmp6_mib)));
10865 }
10866 }
10867 rw_exit(&ipst->ips_ill_g_lock);
10868
10869 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10870 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10871 (int)optp->level, (int)optp->name, (int)optp->len));
10872 qreply(q, mpctl);
10873 return (mp2ctl);
10874 }
10875
10876 /*
10877 * ire_walk routine to create both ipRouteEntryTable and
10878 * ipRouteAttributeTable in one IRE walk
10879 */
10880 static void
10881 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10882 {
10883 ill_t *ill;
10884 mib2_ipRouteEntry_t *re;
10885 mib2_ipAttributeEntry_t iaes;
10886 tsol_ire_gw_secattr_t *attrp;
10887 tsol_gc_t *gc = NULL;
10888 tsol_gcgrp_t *gcgrp = NULL;
10889 ip_stack_t *ipst = ire->ire_ipst;
10890
10891 ASSERT(ire->ire_ipversion == IPV4_VERSION);
10892
10893 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10894 if (ire->ire_testhidden)
10895 return;
10896 if (ire->ire_type & IRE_IF_CLONE)
10897 return;
10898 }
10899
10900 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10901 return;
10902
10903 if ((attrp = ire->ire_gw_secattr) != NULL) {
10904 mutex_enter(&attrp->igsa_lock);
10905 if ((gc = attrp->igsa_gc) != NULL) {
10906 gcgrp = gc->gc_grp;
10907 ASSERT(gcgrp != NULL);
10908 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10909 }
10910 mutex_exit(&attrp->igsa_lock);
10911 }
10912 /*
10913 * Return all IRE types for route table... let caller pick and choose
10914 */
10915 re->ipRouteDest = ire->ire_addr;
10916 ill = ire->ire_ill;
10917 re->ipRouteIfIndex.o_length = 0;
10918 if (ill != NULL) {
10919 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10920 re->ipRouteIfIndex.o_length =
10921 mi_strlen(re->ipRouteIfIndex.o_bytes);
10922 }
10923 re->ipRouteMetric1 = -1;
10924 re->ipRouteMetric2 = -1;
10925 re->ipRouteMetric3 = -1;
10926 re->ipRouteMetric4 = -1;
10927
10928 re->ipRouteNextHop = ire->ire_gateway_addr;
10929 /* indirect(4), direct(3), or invalid(2) */
10930 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10931 re->ipRouteType = 2;
10932 else if (ire->ire_type & IRE_ONLINK)
10933 re->ipRouteType = 3;
10934 else
10935 re->ipRouteType = 4;
10936
10937 re->ipRouteProto = -1;
10938 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10939 re->ipRouteMask = ire->ire_mask;
10940 re->ipRouteMetric5 = -1;
10941 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10942 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10943 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10944
10945 re->ipRouteInfo.re_frag_flag = 0;
10946 re->ipRouteInfo.re_rtt = 0;
10947 re->ipRouteInfo.re_src_addr = 0;
10948 re->ipRouteInfo.re_ref = ire->ire_refcnt;
10949 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count;
10950 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
10951 re->ipRouteInfo.re_flags = ire->ire_flags;
10952
10953 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10954 if (ire->ire_type & IRE_INTERFACE) {
10955 ire_t *child;
10956
10957 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10958 child = ire->ire_dep_children;
10959 while (child != NULL) {
10960 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10961 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10962 child = child->ire_dep_sib_next;
10963 }
10964 rw_exit(&ipst->ips_ire_dep_lock);
10965 }
10966
10967 if (ire->ire_flags & RTF_DYNAMIC) {
10968 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT;
10969 } else {
10970 re->ipRouteInfo.re_ire_type = ire->ire_type;
10971 }
10972
10973 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10974 (char *)re, (int)sizeof (*re))) {
10975 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10976 (uint_t)sizeof (*re)));
10977 }
10978
10979 if (gc != NULL) {
10980 iaes.iae_routeidx = ird->ird_idx;
10981 iaes.iae_doi = gc->gc_db->gcdb_doi;
10982 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10983
10984 if (!snmp_append_data2(ird->ird_attrs.lp_head,
10985 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10986 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
10987 "bytes\n", (uint_t)sizeof (iaes)));
10988 }
10989 }
10990
10991 /* bump route index for next pass */
10992 ird->ird_idx++;
10993
10994 kmem_free(re, sizeof (*re));
10995 if (gcgrp != NULL)
10996 rw_exit(&gcgrp->gcgrp_rwlock);
10997 }
10998
10999 /*
11000 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11001 */
11002 static void
11003 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11004 {
11005 ill_t *ill;
11006 mib2_ipv6RouteEntry_t *re;
11007 mib2_ipAttributeEntry_t iaes;
11008 tsol_ire_gw_secattr_t *attrp;
11009 tsol_gc_t *gc = NULL;
11010 tsol_gcgrp_t *gcgrp = NULL;
11011 ip_stack_t *ipst = ire->ire_ipst;
11012
11013 ASSERT(ire->ire_ipversion == IPV6_VERSION);
11014
11015 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11016 if (ire->ire_testhidden)
11017 return;
11018 if (ire->ire_type & IRE_IF_CLONE)
11019 return;
11020 }
11021
11022 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11023 return;
11024
11025 if ((attrp = ire->ire_gw_secattr) != NULL) {
11026 mutex_enter(&attrp->igsa_lock);
11027 if ((gc = attrp->igsa_gc) != NULL) {
11028 gcgrp = gc->gc_grp;
11029 ASSERT(gcgrp != NULL);
11030 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11031 }
11032 mutex_exit(&attrp->igsa_lock);
11033 }
11034 /*
11035 * Return all IRE types for route table... let caller pick and choose
11036 */
11037 re->ipv6RouteDest = ire->ire_addr_v6;
11038 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11039 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */
11040 re->ipv6RouteIfIndex.o_length = 0;
11041 ill = ire->ire_ill;
11042 if (ill != NULL) {
11043 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11044 re->ipv6RouteIfIndex.o_length =
11045 mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11046 }
11047
11048 ASSERT(!(ire->ire_type & IRE_BROADCAST));
11049
11050 mutex_enter(&ire->ire_lock);
11051 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11052 mutex_exit(&ire->ire_lock);
11053
11054 /* remote(4), local(3), or discard(2) */
11055 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11056 re->ipv6RouteType = 2;
11057 else if (ire->ire_type & IRE_ONLINK)
11058 re->ipv6RouteType = 3;
11059 else
11060 re->ipv6RouteType = 4;
11061
11062 re->ipv6RouteProtocol = -1;
11063 re->ipv6RoutePolicy = 0;
11064 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time;
11065 re->ipv6RouteNextHopRDI = 0;
11066 re->ipv6RouteWeight = 0;
11067 re->ipv6RouteMetric = 0;
11068 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11069 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11070 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11071
11072 re->ipv6RouteInfo.re_frag_flag = 0;
11073 re->ipv6RouteInfo.re_rtt = 0;
11074 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros;
11075 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count;
11076 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
11077 re->ipv6RouteInfo.re_ref = ire->ire_refcnt;
11078 re->ipv6RouteInfo.re_flags = ire->ire_flags;
11079
11080 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11081 if (ire->ire_type & IRE_INTERFACE) {
11082 ire_t *child;
11083
11084 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11085 child = ire->ire_dep_children;
11086 while (child != NULL) {
11087 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11088 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11089 child = child->ire_dep_sib_next;
11090 }
11091 rw_exit(&ipst->ips_ire_dep_lock);
11092 }
11093 if (ire->ire_flags & RTF_DYNAMIC) {
11094 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT;
11095 } else {
11096 re->ipv6RouteInfo.re_ire_type = ire->ire_type;
11097 }
11098
11099 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11100 (char *)re, (int)sizeof (*re))) {
11101 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11102 (uint_t)sizeof (*re)));
11103 }
11104
11105 if (gc != NULL) {
11106 iaes.iae_routeidx = ird->ird_idx;
11107 iaes.iae_doi = gc->gc_db->gcdb_doi;
11108 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11109
11110 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11111 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11112 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11113 "bytes\n", (uint_t)sizeof (iaes)));
11114 }
11115 }
11116
11117 /* bump route index for next pass */
11118 ird->ird_idx++;
11119
11120 kmem_free(re, sizeof (*re));
11121 if (gcgrp != NULL)
11122 rw_exit(&gcgrp->gcgrp_rwlock);
11123 }
11124
11125 /*
11126 * ncec_walk routine to create ipv6NetToMediaEntryTable
11127 */
11128 static int
11129 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11130 {
11131 ill_t *ill;
11132 mib2_ipv6NetToMediaEntry_t ntme;
11133
11134 ill = ncec->ncec_ill;
11135 /* skip arpce entries, and loopback ncec entries */
11136 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11137 return (0);
11138 /*
11139 * Neighbor cache entry attached to IRE with on-link
11140 * destination.
11141 * We report all IPMP groups on ncec_ill which is normally the upper.
11142 */
11143 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11144 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11145 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11146 if (ncec->ncec_lladdr != NULL) {
11147 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11148 ntme.ipv6NetToMediaPhysAddress.o_length);
11149 }
11150 /*
11151 * Note: Returns ND_* states. Should be:
11152 * reachable(1), stale(2), delay(3), probe(4),
11153 * invalid(5), unknown(6)
11154 */
11155 ntme.ipv6NetToMediaState = ncec->ncec_state;
11156 ntme.ipv6NetToMediaLastUpdated = 0;
11157
11158 /* other(1), dynamic(2), static(3), local(4) */
11159 if (NCE_MYADDR(ncec)) {
11160 ntme.ipv6NetToMediaType = 4;
11161 } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11162 ntme.ipv6NetToMediaType = 1; /* proxy */
11163 } else if (ncec->ncec_flags & NCE_F_STATIC) {
11164 ntme.ipv6NetToMediaType = 3;
11165 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11166 ntme.ipv6NetToMediaType = 1;
11167 } else {
11168 ntme.ipv6NetToMediaType = 2;
11169 }
11170
11171 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11172 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11173 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11174 (uint_t)sizeof (ntme)));
11175 }
11176 return (0);
11177 }
11178
11179 int
11180 nce2ace(ncec_t *ncec)
11181 {
11182 int flags = 0;
11183
11184 if (NCE_ISREACHABLE(ncec))
11185 flags |= ACE_F_RESOLVED;
11186 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11187 flags |= ACE_F_AUTHORITY;
11188 if (ncec->ncec_flags & NCE_F_PUBLISH)
11189 flags |= ACE_F_PUBLISH;
11190 if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11191 flags |= ACE_F_PERMANENT;
11192 if (NCE_MYADDR(ncec))
11193 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11194 if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11195 flags |= ACE_F_UNVERIFIED;
11196 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11197 flags |= ACE_F_AUTHORITY;
11198 if (ncec->ncec_flags & NCE_F_DELAYED)
11199 flags |= ACE_F_DELAYED;
11200 return (flags);
11201 }
11202
11203 /*
11204 * ncec_walk routine to create ipNetToMediaEntryTable
11205 */
11206 static int
11207 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11208 {
11209 ill_t *ill;
11210 mib2_ipNetToMediaEntry_t ntme;
11211 const char *name = "unknown";
11212 ipaddr_t ncec_addr;
11213
11214 ill = ncec->ncec_ill;
11215 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11216 ill->ill_net_type == IRE_LOOPBACK)
11217 return (0);
11218
11219 /* We report all IPMP groups on ncec_ill which is normally the upper. */
11220 name = ill->ill_name;
11221 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11222 if (NCE_MYADDR(ncec)) {
11223 ntme.ipNetToMediaType = 4;
11224 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11225 ntme.ipNetToMediaType = 1;
11226 } else {
11227 ntme.ipNetToMediaType = 3;
11228 }
11229 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11230 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11231 ntme.ipNetToMediaIfIndex.o_length);
11232
11233 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11234 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11235
11236 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11237 ncec_addr = INADDR_BROADCAST;
11238 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11239 sizeof (ncec_addr));
11240 /*
11241 * map all the flags to the ACE counterpart.
11242 */
11243 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11244
11245 ntme.ipNetToMediaPhysAddress.o_length =
11246 MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11247
11248 if (!NCE_ISREACHABLE(ncec))
11249 ntme.ipNetToMediaPhysAddress.o_length = 0;
11250 else {
11251 if (ncec->ncec_lladdr != NULL) {
11252 bcopy(ncec->ncec_lladdr,
11253 ntme.ipNetToMediaPhysAddress.o_bytes,
11254 ntme.ipNetToMediaPhysAddress.o_length);
11255 }
11256 }
11257
11258 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11259 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11260 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11261 (uint_t)sizeof (ntme)));
11262 }
11263 return (0);
11264 }
11265
11266 /*
11267 * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11268 */
11269 /* ARGSUSED */
11270 int
11271 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11272 {
11273 switch (level) {
11274 case MIB2_IP:
11275 case MIB2_ICMP:
11276 switch (name) {
11277 default:
11278 break;
11279 }
11280 return (1);
11281 default:
11282 return (1);
11283 }
11284 }
11285
11286 /*
11287 * When there exists both a 64- and 32-bit counter of a particular type
11288 * (i.e., InReceives), only the 64-bit counters are added.
11289 */
11290 void
11291 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11292 {
11293 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11294 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11295 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11296 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11297 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11298 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11299 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11300 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11301 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11302 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11303 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11304 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11305 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11306 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11307 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11308 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11309 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11310 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11311 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11312 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11313 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11314 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11315 o2->ipIfStatsInWrongIPVersion);
11316 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11317 o2->ipIfStatsInWrongIPVersion);
11318 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11319 o2->ipIfStatsOutSwitchIPVersion);
11320 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11321 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11322 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11323 o2->ipIfStatsHCInForwDatagrams);
11324 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11325 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11326 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11327 o2->ipIfStatsHCOutForwDatagrams);
11328 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11329 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11330 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11331 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11332 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11333 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11334 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11335 o2->ipIfStatsHCOutMcastOctets);
11336 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11337 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11338 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11339 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11340 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11341 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11342 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11343 }
11344
11345 void
11346 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11347 {
11348 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11349 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11350 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11351 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11352 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11353 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11354 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11355 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11356 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11357 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11358 o2->ipv6IfIcmpInRouterSolicits);
11359 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11360 o2->ipv6IfIcmpInRouterAdvertisements);
11361 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11362 o2->ipv6IfIcmpInNeighborSolicits);
11363 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11364 o2->ipv6IfIcmpInNeighborAdvertisements);
11365 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11366 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11367 o2->ipv6IfIcmpInGroupMembQueries);
11368 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11369 o2->ipv6IfIcmpInGroupMembResponses);
11370 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11371 o2->ipv6IfIcmpInGroupMembReductions);
11372 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11373 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11374 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11375 o2->ipv6IfIcmpOutDestUnreachs);
11376 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11377 o2->ipv6IfIcmpOutAdminProhibs);
11378 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11379 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11380 o2->ipv6IfIcmpOutParmProblems);
11381 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11382 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11383 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11384 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11385 o2->ipv6IfIcmpOutRouterSolicits);
11386 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11387 o2->ipv6IfIcmpOutRouterAdvertisements);
11388 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11389 o2->ipv6IfIcmpOutNeighborSolicits);
11390 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11391 o2->ipv6IfIcmpOutNeighborAdvertisements);
11392 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11393 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11394 o2->ipv6IfIcmpOutGroupMembQueries);
11395 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11396 o2->ipv6IfIcmpOutGroupMembResponses);
11397 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11398 o2->ipv6IfIcmpOutGroupMembReductions);
11399 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11400 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11401 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11402 o2->ipv6IfIcmpInBadNeighborAdvertisements);
11403 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11404 o2->ipv6IfIcmpInBadNeighborSolicitations);
11405 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11406 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11407 o2->ipv6IfIcmpInGroupMembTotal);
11408 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11409 o2->ipv6IfIcmpInGroupMembBadQueries);
11410 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11411 o2->ipv6IfIcmpInGroupMembBadReports);
11412 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11413 o2->ipv6IfIcmpInGroupMembOurReports);
11414 }
11415
11416 /*
11417 * Called before the options are updated to check if this packet will
11418 * be source routed from here.
11419 * This routine assumes that the options are well formed i.e. that they
11420 * have already been checked.
11421 */
11422 boolean_t
11423 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11424 {
11425 ipoptp_t opts;
11426 uchar_t *opt;
11427 uint8_t optval;
11428 uint8_t optlen;
11429 ipaddr_t dst;
11430
11431 if (IS_SIMPLE_IPH(ipha)) {
11432 ip2dbg(("not source routed\n"));
11433 return (B_FALSE);
11434 }
11435 dst = ipha->ipha_dst;
11436 for (optval = ipoptp_first(&opts, ipha);
11437 optval != IPOPT_EOL;
11438 optval = ipoptp_next(&opts)) {
11439 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11440 opt = opts.ipoptp_cur;
11441 optlen = opts.ipoptp_len;
11442 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11443 optval, optlen));
11444 switch (optval) {
11445 uint32_t off;
11446 case IPOPT_SSRR:
11447 case IPOPT_LSRR:
11448 /*
11449 * If dst is one of our addresses and there are some
11450 * entries left in the source route return (true).
11451 */
11452 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11453 ip2dbg(("ip_source_routed: not next"
11454 " source route 0x%x\n",
11455 ntohl(dst)));
11456 return (B_FALSE);
11457 }
11458 off = opt[IPOPT_OFFSET];
11459 off--;
11460 if (optlen < IP_ADDR_LEN ||
11461 off > optlen - IP_ADDR_LEN) {
11462 /* End of source route */
11463 ip1dbg(("ip_source_routed: end of SR\n"));
11464 return (B_FALSE);
11465 }
11466 return (B_TRUE);
11467 }
11468 }
11469 ip2dbg(("not source routed\n"));
11470 return (B_FALSE);
11471 }
11472
11473 /*
11474 * ip_unbind is called by the transports to remove a conn from
11475 * the fanout table.
11476 */
11477 void
11478 ip_unbind(conn_t *connp)
11479 {
11480
11481 ASSERT(!MUTEX_HELD(&connp->conn_lock));
11482
11483 if (is_system_labeled() && connp->conn_anon_port) {
11484 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11485 connp->conn_mlp_type, connp->conn_proto,
11486 ntohs(connp->conn_lport), B_FALSE);
11487 connp->conn_anon_port = 0;
11488 }
11489 connp->conn_mlp_type = mlptSingle;
11490
11491 ipcl_hash_remove(connp);
11492 }
11493
11494 /*
11495 * Used for deciding the MSS size for the upper layer. Thus
11496 * we need to check the outbound policy values in the conn.
11497 */
11498 int
11499 conn_ipsec_length(conn_t *connp)
11500 {
11501 ipsec_latch_t *ipl;
11502
11503 ipl = connp->conn_latch;
11504 if (ipl == NULL)
11505 return (0);
11506
11507 if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11508 return (0);
11509
11510 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11511 }
11512
11513 /*
11514 * Returns an estimate of the IPsec headers size. This is used if
11515 * we don't want to call into IPsec to get the exact size.
11516 */
11517 int
11518 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11519 {
11520 ipsec_action_t *a;
11521
11522 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11523 return (0);
11524
11525 a = ixa->ixa_ipsec_action;
11526 if (a == NULL) {
11527 ASSERT(ixa->ixa_ipsec_policy != NULL);
11528 a = ixa->ixa_ipsec_policy->ipsp_act;
11529 }
11530 ASSERT(a != NULL);
11531
11532 return (a->ipa_ovhd);
11533 }
11534
11535 /*
11536 * If there are any source route options, return the true final
11537 * destination. Otherwise, return the destination.
11538 */
11539 ipaddr_t
11540 ip_get_dst(ipha_t *ipha)
11541 {
11542 ipoptp_t opts;
11543 uchar_t *opt;
11544 uint8_t optval;
11545 uint8_t optlen;
11546 ipaddr_t dst;
11547 uint32_t off;
11548
11549 dst = ipha->ipha_dst;
11550
11551 if (IS_SIMPLE_IPH(ipha))
11552 return (dst);
11553
11554 for (optval = ipoptp_first(&opts, ipha);
11555 optval != IPOPT_EOL;
11556 optval = ipoptp_next(&opts)) {
11557 opt = opts.ipoptp_cur;
11558 optlen = opts.ipoptp_len;
11559 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11560 switch (optval) {
11561 case IPOPT_SSRR:
11562 case IPOPT_LSRR:
11563 off = opt[IPOPT_OFFSET];
11564 /*
11565 * If one of the conditions is true, it means
11566 * end of options and dst already has the right
11567 * value.
11568 */
11569 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11570 off = optlen - IP_ADDR_LEN;
11571 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11572 }
11573 return (dst);
11574 default:
11575 break;
11576 }
11577 }
11578
11579 return (dst);
11580 }
11581
11582 /*
11583 * Outbound IP fragmentation routine.
11584 * Assumes the caller has checked whether or not fragmentation should
11585 * be allowed. Here we copy the DF bit from the header to all the generated
11586 * fragments.
11587 */
11588 int
11589 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11590 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11591 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11592 {
11593 int i1;
11594 int hdr_len;
11595 mblk_t *hdr_mp;
11596 ipha_t *ipha;
11597 int ip_data_end;
11598 int len;
11599 mblk_t *mp = mp_orig;
11600 int offset;
11601 ill_t *ill = nce->nce_ill;
11602 ip_stack_t *ipst = ill->ill_ipst;
11603 mblk_t *carve_mp;
11604 uint32_t frag_flag;
11605 uint_t priority = mp->b_band;
11606 int error = 0;
11607
11608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11609
11610 if (pkt_len != msgdsize(mp)) {
11611 ip0dbg(("Packet length mismatch: %d, %ld\n",
11612 pkt_len, msgdsize(mp)));
11613 freemsg(mp);
11614 return (EINVAL);
11615 }
11616
11617 if (max_frag == 0) {
11618 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11620 ip_drop_output("FragFails: zero max_frag", mp, ill);
11621 freemsg(mp);
11622 return (EINVAL);
11623 }
11624
11625 ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11626 ipha = (ipha_t *)mp->b_rptr;
11627 ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11628 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11629
11630 /*
11631 * Establish the starting offset. May not be zero if we are fragging
11632 * a fragment that is being forwarded.
11633 */
11634 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11635
11636 /* TODO why is this test needed? */
11637 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11638 /* TODO: notify ulp somehow */
11639 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11640 ip_drop_output("FragFails: bad starting offset", mp, ill);
11641 freemsg(mp);
11642 return (EINVAL);
11643 }
11644
11645 hdr_len = IPH_HDR_LENGTH(ipha);
11646 ipha->ipha_hdr_checksum = 0;
11647
11648 /*
11649 * Establish the number of bytes maximum per frag, after putting
11650 * in the header.
11651 */
11652 len = (max_frag - hdr_len) & ~7;
11653
11654 /* Get a copy of the header for the trailing frags */
11655 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11656 mp);
11657 if (hdr_mp == NULL) {
11658 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11659 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11660 freemsg(mp);
11661 return (ENOBUFS);
11662 }
11663
11664 /* Store the starting offset, with the MoreFrags flag. */
11665 i1 = offset | IPH_MF | frag_flag;
11666 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11667
11668 /* Establish the ending byte offset, based on the starting offset. */
11669 offset <<= 3;
11670 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11671
11672 /* Store the length of the first fragment in the IP header. */
11673 i1 = len + hdr_len;
11674 ASSERT(i1 <= IP_MAXPACKET);
11675 ipha->ipha_length = htons((uint16_t)i1);
11676
11677 /*
11678 * Compute the IP header checksum for the first frag. We have to
11679 * watch out that we stop at the end of the header.
11680 */
11681 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11682
11683 /*
11684 * Now carve off the first frag. Note that this will include the
11685 * original IP header.
11686 */
11687 if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11688 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11689 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11690 freeb(hdr_mp);
11691 freemsg(mp_orig);
11692 return (ENOBUFS);
11693 }
11694
11695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11696
11697 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11698 ixa_cookie);
11699 if (error != 0 && error != EWOULDBLOCK) {
11700 /* No point in sending the other fragments */
11701 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11702 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11703 freeb(hdr_mp);
11704 freemsg(mp_orig);
11705 return (error);
11706 }
11707
11708 /* No need to redo state machine in loop */
11709 ixaflags &= ~IXAF_REACH_CONF;
11710
11711 /* Advance the offset to the second frag starting point. */
11712 offset += len;
11713 /*
11714 * Update hdr_len from the copied header - there might be less options
11715 * in the later fragments.
11716 */
11717 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11718 /* Loop until done. */
11719 for (;;) {
11720 uint16_t offset_and_flags;
11721 uint16_t ip_len;
11722
11723 if (ip_data_end - offset > len) {
11724 /*
11725 * Carve off the appropriate amount from the original
11726 * datagram.
11727 */
11728 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11729 mp = NULL;
11730 break;
11731 }
11732 /*
11733 * More frags after this one. Get another copy
11734 * of the header.
11735 */
11736 if (carve_mp->b_datap->db_ref == 1 &&
11737 hdr_mp->b_wptr - hdr_mp->b_rptr <
11738 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11739 /* Inline IP header */
11740 carve_mp->b_rptr -= hdr_mp->b_wptr -
11741 hdr_mp->b_rptr;
11742 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11743 hdr_mp->b_wptr - hdr_mp->b_rptr);
11744 mp = carve_mp;
11745 } else {
11746 if (!(mp = copyb(hdr_mp))) {
11747 freemsg(carve_mp);
11748 break;
11749 }
11750 /* Get priority marking, if any. */
11751 mp->b_band = priority;
11752 mp->b_cont = carve_mp;
11753 }
11754 ipha = (ipha_t *)mp->b_rptr;
11755 offset_and_flags = IPH_MF;
11756 } else {
11757 /*
11758 * Last frag. Consume the header. Set len to
11759 * the length of this last piece.
11760 */
11761 len = ip_data_end - offset;
11762
11763 /*
11764 * Carve off the appropriate amount from the original
11765 * datagram.
11766 */
11767 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11768 mp = NULL;
11769 break;
11770 }
11771 if (carve_mp->b_datap->db_ref == 1 &&
11772 hdr_mp->b_wptr - hdr_mp->b_rptr <
11773 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11774 /* Inline IP header */
11775 carve_mp->b_rptr -= hdr_mp->b_wptr -
11776 hdr_mp->b_rptr;
11777 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11778 hdr_mp->b_wptr - hdr_mp->b_rptr);
11779 mp = carve_mp;
11780 freeb(hdr_mp);
11781 hdr_mp = mp;
11782 } else {
11783 mp = hdr_mp;
11784 /* Get priority marking, if any. */
11785 mp->b_band = priority;
11786 mp->b_cont = carve_mp;
11787 }
11788 ipha = (ipha_t *)mp->b_rptr;
11789 /* A frag of a frag might have IPH_MF non-zero */
11790 offset_and_flags =
11791 ntohs(ipha->ipha_fragment_offset_and_flags) &
11792 IPH_MF;
11793 }
11794 offset_and_flags |= (uint16_t)(offset >> 3);
11795 offset_and_flags |= (uint16_t)frag_flag;
11796 /* Store the offset and flags in the IP header. */
11797 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11798
11799 /* Store the length in the IP header. */
11800 ip_len = (uint16_t)(len + hdr_len);
11801 ipha->ipha_length = htons(ip_len);
11802
11803 /*
11804 * Set the IP header checksum. Note that mp is just
11805 * the header, so this is easy to pass to ip_csum.
11806 */
11807 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11808
11809 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11810
11811 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11812 nolzid, ixa_cookie);
11813 /* All done if we just consumed the hdr_mp. */
11814 if (mp == hdr_mp) {
11815 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11816 return (error);
11817 }
11818 if (error != 0 && error != EWOULDBLOCK) {
11819 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11820 mblk_t *, hdr_mp);
11821 /* No point in sending the other fragments */
11822 break;
11823 }
11824
11825 /* Otherwise, advance and loop. */
11826 offset += len;
11827 }
11828 /* Clean up following allocation failure. */
11829 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11830 ip_drop_output("FragFails: loop ended", NULL, ill);
11831 if (mp != hdr_mp)
11832 freeb(hdr_mp);
11833 if (mp != mp_orig)
11834 freemsg(mp_orig);
11835 return (error);
11836 }
11837
11838 /*
11839 * Copy the header plus those options which have the copy bit set
11840 */
11841 static mblk_t *
11842 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11843 mblk_t *src)
11844 {
11845 mblk_t *mp;
11846 uchar_t *up;
11847
11848 /*
11849 * Quick check if we need to look for options without the copy bit
11850 * set
11851 */
11852 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11853 if (!mp)
11854 return (mp);
11855 mp->b_rptr += ipst->ips_ip_wroff_extra;
11856 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11857 bcopy(rptr, mp->b_rptr, hdr_len);
11858 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11859 return (mp);
11860 }
11861 up = mp->b_rptr;
11862 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11863 up += IP_SIMPLE_HDR_LENGTH;
11864 rptr += IP_SIMPLE_HDR_LENGTH;
11865 hdr_len -= IP_SIMPLE_HDR_LENGTH;
11866 while (hdr_len > 0) {
11867 uint32_t optval;
11868 uint32_t optlen;
11869
11870 optval = *rptr;
11871 if (optval == IPOPT_EOL)
11872 break;
11873 if (optval == IPOPT_NOP)
11874 optlen = 1;
11875 else
11876 optlen = rptr[1];
11877 if (optval & IPOPT_COPY) {
11878 bcopy(rptr, up, optlen);
11879 up += optlen;
11880 }
11881 rptr += optlen;
11882 hdr_len -= optlen;
11883 }
11884 /*
11885 * Make sure that we drop an even number of words by filling
11886 * with EOL to the next word boundary.
11887 */
11888 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11889 hdr_len & 0x3; hdr_len++)
11890 *up++ = IPOPT_EOL;
11891 mp->b_wptr = up;
11892 /* Update header length */
11893 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11894 return (mp);
11895 }
11896
11897 /*
11898 * Update any source route, record route, or timestamp options when
11899 * sending a packet back to ourselves.
11900 * Check that we are at end of strict source route.
11901 * The options have been sanity checked by ip_output_options().
11902 */
11903 void
11904 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11905 {
11906 ipoptp_t opts;
11907 uchar_t *opt;
11908 uint8_t optval;
11909 uint8_t optlen;
11910 ipaddr_t dst;
11911 uint32_t ts;
11912 timestruc_t now;
11913
11914 for (optval = ipoptp_first(&opts, ipha);
11915 optval != IPOPT_EOL;
11916 optval = ipoptp_next(&opts)) {
11917 opt = opts.ipoptp_cur;
11918 optlen = opts.ipoptp_len;
11919 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11920 switch (optval) {
11921 uint32_t off;
11922 case IPOPT_SSRR:
11923 case IPOPT_LSRR:
11924 off = opt[IPOPT_OFFSET];
11925 off--;
11926 if (optlen < IP_ADDR_LEN ||
11927 off > optlen - IP_ADDR_LEN) {
11928 /* End of source route */
11929 break;
11930 }
11931 /*
11932 * This will only happen if two consecutive entries
11933 * in the source route contains our address or if
11934 * it is a packet with a loose source route which
11935 * reaches us before consuming the whole source route
11936 */
11937
11938 if (optval == IPOPT_SSRR) {
11939 return;
11940 }
11941 /*
11942 * Hack: instead of dropping the packet truncate the
11943 * source route to what has been used by filling the
11944 * rest with IPOPT_NOP.
11945 */
11946 opt[IPOPT_OLEN] = (uint8_t)off;
11947 while (off < optlen) {
11948 opt[off++] = IPOPT_NOP;
11949 }
11950 break;
11951 case IPOPT_RR:
11952 off = opt[IPOPT_OFFSET];
11953 off--;
11954 if (optlen < IP_ADDR_LEN ||
11955 off > optlen - IP_ADDR_LEN) {
11956 /* No more room - ignore */
11957 ip1dbg((
11958 "ip_output_local_options: end of RR\n"));
11959 break;
11960 }
11961 dst = htonl(INADDR_LOOPBACK);
11962 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11963 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11964 break;
11965 case IPOPT_TS:
11966 /* Insert timestamp if there is romm */
11967 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11968 case IPOPT_TS_TSONLY:
11969 off = IPOPT_TS_TIMELEN;
11970 break;
11971 case IPOPT_TS_PRESPEC:
11972 case IPOPT_TS_PRESPEC_RFC791:
11973 /* Verify that the address matched */
11974 off = opt[IPOPT_OFFSET] - 1;
11975 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11976 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11977 /* Not for us */
11978 break;
11979 }
11980 /* FALLTHRU */
11981 case IPOPT_TS_TSANDADDR:
11982 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11983 break;
11984 default:
11985 /*
11986 * ip_*put_options should have already
11987 * dropped this packet.
11988 */
11989 cmn_err(CE_PANIC, "ip_output_local_options: "
11990 "unknown IT - bug in ip_output_options?\n");
11991 return; /* Keep "lint" happy */
11992 }
11993 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
11994 /* Increase overflow counter */
11995 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
11996 opt[IPOPT_POS_OV_FLG] = (uint8_t)
11997 (opt[IPOPT_POS_OV_FLG] & 0x0F) |
11998 (off << 4);
11999 break;
12000 }
12001 off = opt[IPOPT_OFFSET] - 1;
12002 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12003 case IPOPT_TS_PRESPEC:
12004 case IPOPT_TS_PRESPEC_RFC791:
12005 case IPOPT_TS_TSANDADDR:
12006 dst = htonl(INADDR_LOOPBACK);
12007 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12008 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12009 /* FALLTHRU */
12010 case IPOPT_TS_TSONLY:
12011 off = opt[IPOPT_OFFSET] - 1;
12012 /* Compute # of milliseconds since midnight */
12013 gethrestime(&now);
12014 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12015 now.tv_nsec / (NANOSEC / MILLISEC);
12016 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12017 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12018 break;
12019 }
12020 break;
12021 }
12022 }
12023 }
12024
12025 /*
12026 * Prepend an M_DATA fastpath header, and if none present prepend a
12027 * DL_UNITDATA_REQ. Frees the mblk on failure.
12028 *
12029 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12030 * If there is a change to them, the nce will be deleted (condemned) and
12031 * a new nce_t will be created when packets are sent. Thus we need no locks
12032 * to access those fields.
12033 *
12034 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12035 * we place b_band in dl_priority.dl_max.
12036 */
12037 static mblk_t *
12038 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12039 {
12040 uint_t hlen;
12041 mblk_t *mp1;
12042 uint_t priority;
12043 uchar_t *rptr;
12044
12045 rptr = mp->b_rptr;
12046
12047 ASSERT(DB_TYPE(mp) == M_DATA);
12048 priority = mp->b_band;
12049
12050 ASSERT(nce != NULL);
12051 if ((mp1 = nce->nce_fp_mp) != NULL) {
12052 hlen = MBLKL(mp1);
12053 /*
12054 * Check if we have enough room to prepend fastpath
12055 * header
12056 */
12057 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12058 rptr -= hlen;
12059 bcopy(mp1->b_rptr, rptr, hlen);
12060 /*
12061 * Set the b_rptr to the start of the link layer
12062 * header
12063 */
12064 mp->b_rptr = rptr;
12065 return (mp);
12066 }
12067 mp1 = copyb(mp1);
12068 if (mp1 == NULL) {
12069 ill_t *ill = nce->nce_ill;
12070
12071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12072 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12073 freemsg(mp);
12074 return (NULL);
12075 }
12076 mp1->b_band = priority;
12077 mp1->b_cont = mp;
12078 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12079 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12080 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12081 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12082 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12083 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12084 /*
12085 * XXX disable ICK_VALID and compute checksum
12086 * here; can happen if nce_fp_mp changes and
12087 * it can't be copied now due to insufficient
12088 * space. (unlikely, fp mp can change, but it
12089 * does not increase in length)
12090 */
12091 return (mp1);
12092 }
12093 mp1 = copyb(nce->nce_dlur_mp);
12094
12095 if (mp1 == NULL) {
12096 ill_t *ill = nce->nce_ill;
12097
12098 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12099 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12100 freemsg(mp);
12101 return (NULL);
12102 }
12103 mp1->b_cont = mp;
12104 if (priority != 0) {
12105 mp1->b_band = priority;
12106 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12107 priority;
12108 }
12109 return (mp1);
12110 #undef rptr
12111 }
12112
12113 /*
12114 * Finish the outbound IPsec processing. This function is called from
12115 * ipsec_out_process() if the IPsec packet was processed
12116 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12117 * asynchronously.
12118 *
12119 * This is common to IPv4 and IPv6.
12120 */
12121 int
12122 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12123 {
12124 iaflags_t ixaflags = ixa->ixa_flags;
12125 uint_t pktlen;
12126
12127
12128 /* AH/ESP don't update ixa_pktlen when they modify the packet */
12129 if (ixaflags & IXAF_IS_IPV4) {
12130 ipha_t *ipha = (ipha_t *)mp->b_rptr;
12131
12132 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12133 pktlen = ntohs(ipha->ipha_length);
12134 } else {
12135 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
12136
12137 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12138 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12139 }
12140
12141 /*
12142 * We release any hard reference on the SAs here to make
12143 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12144 * on the SAs.
12145 * If in the future we want the hard latching of the SAs in the
12146 * ip_xmit_attr_t then we should remove this.
12147 */
12148 if (ixa->ixa_ipsec_esp_sa != NULL) {
12149 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12150 ixa->ixa_ipsec_esp_sa = NULL;
12151 }
12152 if (ixa->ixa_ipsec_ah_sa != NULL) {
12153 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12154 ixa->ixa_ipsec_ah_sa = NULL;
12155 }
12156
12157 /* Do we need to fragment? */
12158 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12159 pktlen > ixa->ixa_fragsize) {
12160 if (ixaflags & IXAF_IS_IPV4) {
12161 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12162 /*
12163 * We check for the DF case in ipsec_out_process
12164 * hence this only handles the non-DF case.
12165 */
12166 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12167 pktlen, ixa->ixa_fragsize,
12168 ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12169 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12170 &ixa->ixa_cookie));
12171 } else {
12172 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12173 if (mp == NULL) {
12174 /* MIB and ip_drop_output already done */
12175 return (ENOMEM);
12176 }
12177 pktlen += sizeof (ip6_frag_t);
12178 if (pktlen > ixa->ixa_fragsize) {
12179 return (ip_fragment_v6(mp, ixa->ixa_nce,
12180 ixa->ixa_flags, pktlen,
12181 ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12182 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12183 ixa->ixa_postfragfn, &ixa->ixa_cookie));
12184 }
12185 }
12186 }
12187 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12188 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12189 ixa->ixa_no_loop_zoneid, NULL));
12190 }
12191
12192 /*
12193 * Finish the inbound IPsec processing. This function is called from
12194 * ipsec_out_process() if the IPsec packet was processed
12195 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12196 * asynchronously.
12197 *
12198 * This is common to IPv4 and IPv6.
12199 */
12200 void
12201 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12202 {
12203 iaflags_t iraflags = ira->ira_flags;
12204
12205 /* Length might have changed */
12206 if (iraflags & IRAF_IS_IPV4) {
12207 ipha_t *ipha = (ipha_t *)mp->b_rptr;
12208
12209 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12210 ira->ira_pktlen = ntohs(ipha->ipha_length);
12211 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12212 ira->ira_protocol = ipha->ipha_protocol;
12213
12214 ip_fanout_v4(mp, ipha, ira);
12215 } else {
12216 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
12217 uint8_t *nexthdrp;
12218
12219 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12220 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12221 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12222 &nexthdrp)) {
12223 /* Malformed packet */
12224 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12225 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12226 freemsg(mp);
12227 return;
12228 }
12229 ira->ira_protocol = *nexthdrp;
12230 ip_fanout_v6(mp, ip6h, ira);
12231 }
12232 }
12233
12234 /*
12235 * Select which AH & ESP SA's to use (if any) for the outbound packet.
12236 *
12237 * If this function returns B_TRUE, the requested SA's have been filled
12238 * into the ixa_ipsec_*_sa pointers.
12239 *
12240 * If the function returns B_FALSE, the packet has been "consumed", most
12241 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12242 *
12243 * The SA references created by the protocol-specific "select"
12244 * function will be released in ip_output_post_ipsec.
12245 */
12246 static boolean_t
12247 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12248 {
12249 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12250 ipsec_policy_t *pp;
12251 ipsec_action_t *ap;
12252
12253 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12254 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12255 (ixa->ixa_ipsec_action != NULL));
12256
12257 ap = ixa->ixa_ipsec_action;
12258 if (ap == NULL) {
12259 pp = ixa->ixa_ipsec_policy;
12260 ASSERT(pp != NULL);
12261 ap = pp->ipsp_act;
12262 ASSERT(ap != NULL);
12263 }
12264
12265 /*
12266 * We have an action. now, let's select SA's.
12267 * A side effect of setting ixa_ipsec_*_sa is that it will
12268 * be cached in the conn_t.
12269 */
12270 if (ap->ipa_want_esp) {
12271 if (ixa->ixa_ipsec_esp_sa == NULL) {
12272 need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12273 IPPROTO_ESP);
12274 }
12275 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12276 }
12277
12278 if (ap->ipa_want_ah) {
12279 if (ixa->ixa_ipsec_ah_sa == NULL) {
12280 need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12281 IPPROTO_AH);
12282 }
12283 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12284 /*
12285 * The ESP and AH processing order needs to be preserved
12286 * when both protocols are required (ESP should be applied
12287 * before AH for an outbound packet). Force an ESP ACQUIRE
12288 * when both ESP and AH are required, and an AH ACQUIRE
12289 * is needed.
12290 */
12291 if (ap->ipa_want_esp && need_ah_acquire)
12292 need_esp_acquire = B_TRUE;
12293 }
12294
12295 /*
12296 * Send an ACQUIRE (extended, regular, or both) if we need one.
12297 * Release SAs that got referenced, but will not be used until we
12298 * acquire _all_ of the SAs we need.
12299 */
12300 if (need_ah_acquire || need_esp_acquire) {
12301 if (ixa->ixa_ipsec_ah_sa != NULL) {
12302 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12303 ixa->ixa_ipsec_ah_sa = NULL;
12304 }
12305 if (ixa->ixa_ipsec_esp_sa != NULL) {
12306 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12307 ixa->ixa_ipsec_esp_sa = NULL;
12308 }
12309
12310 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12311 return (B_FALSE);
12312 }
12313
12314 return (B_TRUE);
12315 }
12316
12317 /*
12318 * Handle IPsec output processing.
12319 * This function is only entered once for a given packet.
12320 * We try to do things synchronously, but if we need to have user-level
12321 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12322 * will be completed
12323 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12324 * - when asynchronous ESP is done it will do AH
12325 *
12326 * In all cases we come back in ip_output_post_ipsec() to fragment and
12327 * send out the packet.
12328 */
12329 int
12330 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12331 {
12332 ill_t *ill = ixa->ixa_nce->nce_ill;
12333 ip_stack_t *ipst = ixa->ixa_ipst;
12334 ipsec_stack_t *ipss;
12335 ipsec_policy_t *pp;
12336 ipsec_action_t *ap;
12337
12338 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12339
12340 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12341 (ixa->ixa_ipsec_action != NULL));
12342
12343 ipss = ipst->ips_netstack->netstack_ipsec;
12344 if (!ipsec_loaded(ipss)) {
12345 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12346 ip_drop_packet(mp, B_TRUE, ill,
12347 DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12348 &ipss->ipsec_dropper);
12349 return (ENOTSUP);
12350 }
12351
12352 ap = ixa->ixa_ipsec_action;
12353 if (ap == NULL) {
12354 pp = ixa->ixa_ipsec_policy;
12355 ASSERT(pp != NULL);
12356 ap = pp->ipsp_act;
12357 ASSERT(ap != NULL);
12358 }
12359
12360 /* Handle explicit drop action and bypass. */
12361 switch (ap->ipa_act.ipa_type) {
12362 case IPSEC_ACT_DISCARD:
12363 case IPSEC_ACT_REJECT:
12364 ip_drop_packet(mp, B_FALSE, ill,
12365 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12366 return (EHOSTUNREACH); /* IPsec policy failure */
12367 case IPSEC_ACT_BYPASS:
12368 return (ip_output_post_ipsec(mp, ixa));
12369 }
12370
12371 /*
12372 * The order of processing is first insert a IP header if needed.
12373 * Then insert the ESP header and then the AH header.
12374 */
12375 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12376 /*
12377 * First get the outer IP header before sending
12378 * it to ESP.
12379 */
12380 ipha_t *oipha, *iipha;
12381 mblk_t *outer_mp, *inner_mp;
12382
12383 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12384 (void) mi_strlog(ill->ill_rq, 0,
12385 SL_ERROR|SL_TRACE|SL_CONSOLE,
12386 "ipsec_out_process: "
12387 "Self-Encapsulation failed: Out of memory\n");
12388 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12389 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12390 freemsg(mp);
12391 return (ENOBUFS);
12392 }
12393 inner_mp = mp;
12394 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12395 oipha = (ipha_t *)outer_mp->b_rptr;
12396 iipha = (ipha_t *)inner_mp->b_rptr;
12397 *oipha = *iipha;
12398 outer_mp->b_wptr += sizeof (ipha_t);
12399 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12400 sizeof (ipha_t));
12401 oipha->ipha_protocol = IPPROTO_ENCAP;
12402 oipha->ipha_version_and_hdr_length =
12403 IP_SIMPLE_HDR_VERSION;
12404 oipha->ipha_hdr_checksum = 0;
12405 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12406 outer_mp->b_cont = inner_mp;
12407 mp = outer_mp;
12408
12409 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12410 }
12411
12412 /* If we need to wait for a SA then we can't return any errno */
12413 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12414 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12415 !ipsec_out_select_sa(mp, ixa))
12416 return (0);
12417
12418 /*
12419 * By now, we know what SA's to use. Toss over to ESP & AH
12420 * to do the heavy lifting.
12421 */
12422 if (ap->ipa_want_esp) {
12423 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12424
12425 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12426 if (mp == NULL) {
12427 /*
12428 * Either it failed or is pending. In the former case
12429 * ipIfStatsInDiscards was increased.
12430 */
12431 return (0);
12432 }
12433 }
12434
12435 if (ap->ipa_want_ah) {
12436 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12437
12438 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12439 if (mp == NULL) {
12440 /*
12441 * Either it failed or is pending. In the former case
12442 * ipIfStatsInDiscards was increased.
12443 */
12444 return (0);
12445 }
12446 }
12447 /*
12448 * We are done with IPsec processing. Send it over
12449 * the wire.
12450 */
12451 return (ip_output_post_ipsec(mp, ixa));
12452 }
12453
12454 /*
12455 * ioctls that go through a down/up sequence may need to wait for the down
12456 * to complete. This involves waiting for the ire and ipif refcnts to go down
12457 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12458 */
12459 /* ARGSUSED */
12460 void
12461 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12462 {
12463 struct iocblk *iocp;
12464 mblk_t *mp1;
12465 ip_ioctl_cmd_t *ipip;
12466 int err;
12467 sin_t *sin;
12468 struct lifreq *lifr;
12469 struct ifreq *ifr;
12470
12471 iocp = (struct iocblk *)mp->b_rptr;
12472 ASSERT(ipsq != NULL);
12473 /* Existence of mp1 verified in ip_wput_nondata */
12474 mp1 = mp->b_cont->b_cont;
12475 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12476 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12477 /*
12478 * Special case where ipx_current_ipif is not set:
12479 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12480 * We are here as were not able to complete the operation in
12481 * ipif_set_values because we could not become exclusive on
12482 * the new ipsq.
12483 */
12484 ill_t *ill = q->q_ptr;
12485 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12486 }
12487 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12488
12489 if (ipip->ipi_cmd_type == IF_CMD) {
12490 /* This a old style SIOC[GS]IF* command */
12491 ifr = (struct ifreq *)mp1->b_rptr;
12492 sin = (sin_t *)&ifr->ifr_addr;
12493 } else if (ipip->ipi_cmd_type == LIF_CMD) {
12494 /* This a new style SIOC[GS]LIF* command */
12495 lifr = (struct lifreq *)mp1->b_rptr;
12496 sin = (sin_t *)&lifr->lifr_addr;
12497 } else {
12498 sin = NULL;
12499 }
12500
12501 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12502 q, mp, ipip, mp1->b_rptr);
12503
12504 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12505 int, ipip->ipi_cmd,
12506 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12507 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12508
12509 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12510 }
12511
12512 /*
12513 * ioctl processing
12514 *
12515 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12516 * the ioctl command in the ioctl tables, determines the copyin data size
12517 * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12518 *
12519 * ioctl processing then continues when the M_IOCDATA makes its way down to
12520 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its
12521 * associated 'conn' is refheld till the end of the ioctl and the general
12522 * ioctl processing function ip_process_ioctl() is called to extract the
12523 * arguments and process the ioctl. To simplify extraction, ioctl commands
12524 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12525 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12526 * is used to extract the ioctl's arguments.
12527 *
12528 * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12529 * so goes thru the serialization primitive ipsq_try_enter. Then the
12530 * appropriate function to handle the ioctl is called based on the entry in
12531 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12532 * which also refreleases the 'conn' that was refheld at the start of the
12533 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12534 *
12535 * Many exclusive ioctls go thru an internal down up sequence as part of
12536 * the operation. For example an attempt to change the IP address of an
12537 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12538 * does all the cleanup such as deleting all ires that use this address.
12539 * Then we need to wait till all references to the interface go away.
12540 */
12541 void
12542 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12543 {
12544 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12545 ip_ioctl_cmd_t *ipip = arg;
12546 ip_extract_func_t *extract_funcp;
12547 cmd_info_t ci;
12548 int err;
12549 boolean_t entered_ipsq = B_FALSE;
12550
12551 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12552
12553 if (ipip == NULL)
12554 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12555
12556 /*
12557 * SIOCLIFADDIF needs to go thru a special path since the
12558 * ill may not exist yet. This happens in the case of lo0
12559 * which is created using this ioctl.
12560 */
12561 if (ipip->ipi_cmd == SIOCLIFADDIF) {
12562 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12563 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12564 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12565 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12566 return;
12567 }
12568
12569 ci.ci_ipif = NULL;
12570 switch (ipip->ipi_cmd_type) {
12571 case MISC_CMD:
12572 case MSFILT_CMD:
12573 /*
12574 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12575 */
12576 if (ipip->ipi_cmd == IF_UNITSEL) {
12577 /* ioctl comes down the ill */
12578 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12579 ipif_refhold(ci.ci_ipif);
12580 }
12581 err = 0;
12582 ci.ci_sin = NULL;
12583 ci.ci_sin6 = NULL;
12584 ci.ci_lifr = NULL;
12585 extract_funcp = NULL;
12586 break;
12587
12588 case IF_CMD:
12589 case LIF_CMD:
12590 extract_funcp = ip_extract_lifreq;
12591 break;
12592
12593 case ARP_CMD:
12594 case XARP_CMD:
12595 extract_funcp = ip_extract_arpreq;
12596 break;
12597
12598 default:
12599 ASSERT(0);
12600 }
12601
12602 if (extract_funcp != NULL) {
12603 err = (*extract_funcp)(q, mp, ipip, &ci);
12604 if (err != 0) {
12605 DTRACE_PROBE4(ipif__ioctl,
12606 char *, "ip_process_ioctl finish err",
12607 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12608 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12609 return;
12610 }
12611
12612 /*
12613 * All of the extraction functions return a refheld ipif.
12614 */
12615 ASSERT(ci.ci_ipif != NULL);
12616 }
12617
12618 if (!(ipip->ipi_flags & IPI_WR)) {
12619 /*
12620 * A return value of EINPROGRESS means the ioctl is
12621 * either queued and waiting for some reason or has
12622 * already completed.
12623 */
12624 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12625 ci.ci_lifr);
12626 if (ci.ci_ipif != NULL) {
12627 DTRACE_PROBE4(ipif__ioctl,
12628 char *, "ip_process_ioctl finish RD",
12629 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12630 ipif_t *, ci.ci_ipif);
12631 ipif_refrele(ci.ci_ipif);
12632 } else {
12633 DTRACE_PROBE4(ipif__ioctl,
12634 char *, "ip_process_ioctl finish RD",
12635 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12636 }
12637 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12638 return;
12639 }
12640
12641 ASSERT(ci.ci_ipif != NULL);
12642
12643 /*
12644 * If ipsq is non-NULL, we are already being called exclusively
12645 */
12646 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12647 if (ipsq == NULL) {
12648 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12649 NEW_OP, B_TRUE);
12650 if (ipsq == NULL) {
12651 ipif_refrele(ci.ci_ipif);
12652 return;
12653 }
12654 entered_ipsq = B_TRUE;
12655 }
12656 /*
12657 * Release the ipif so that ipif_down and friends that wait for
12658 * references to go away are not misled about the current ipif_refcnt
12659 * values. We are writer so we can access the ipif even after releasing
12660 * the ipif.
12661 */
12662 ipif_refrele(ci.ci_ipif);
12663
12664 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12665
12666 /*
12667 * A return value of EINPROGRESS means the ioctl is
12668 * either queued and waiting for some reason or has
12669 * already completed.
12670 */
12671 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12672
12673 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12674 int, ipip->ipi_cmd,
12675 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12676 ipif_t *, ci.ci_ipif);
12677 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12678
12679 if (entered_ipsq)
12680 ipsq_exit(ipsq);
12681 }
12682
12683 /*
12684 * Complete the ioctl. Typically ioctls use the mi package and need to
12685 * do mi_copyout/mi_copy_done.
12686 */
12687 void
12688 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12689 {
12690 conn_t *connp = NULL;
12691
12692 if (err == EINPROGRESS)
12693 return;
12694
12695 if (CONN_Q(q)) {
12696 connp = Q_TO_CONN(q);
12697 ASSERT(connp->conn_ref >= 2);
12698 }
12699
12700 switch (mode) {
12701 case COPYOUT:
12702 if (err == 0)
12703 mi_copyout(q, mp);
12704 else
12705 mi_copy_done(q, mp, err);
12706 break;
12707
12708 case NO_COPYOUT:
12709 mi_copy_done(q, mp, err);
12710 break;
12711
12712 default:
12713 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */
12714 break;
12715 }
12716
12717 /*
12718 * The conn refhold and ioctlref placed on the conn at the start of the
12719 * ioctl are released here.
12720 */
12721 if (connp != NULL) {
12722 CONN_DEC_IOCTLREF(connp);
12723 CONN_OPER_PENDING_DONE(connp);
12724 }
12725
12726 if (ipsq != NULL)
12727 ipsq_current_finish(ipsq);
12728 }
12729
12730 /* Handles all non data messages */
12731 void
12732 ip_wput_nondata(queue_t *q, mblk_t *mp)
12733 {
12734 mblk_t *mp1;
12735 struct iocblk *iocp;
12736 ip_ioctl_cmd_t *ipip;
12737 conn_t *connp;
12738 cred_t *cr;
12739 char *proto_str;
12740
12741 if (CONN_Q(q))
12742 connp = Q_TO_CONN(q);
12743 else
12744 connp = NULL;
12745
12746 switch (DB_TYPE(mp)) {
12747 case M_IOCTL:
12748 /*
12749 * IOCTL processing begins in ip_sioctl_copyin_setup which
12750 * will arrange to copy in associated control structures.
12751 */
12752 ip_sioctl_copyin_setup(q, mp);
12753 return;
12754 case M_IOCDATA:
12755 /*
12756 * Ensure that this is associated with one of our trans-
12757 * parent ioctls. If it's not ours, discard it if we're
12758 * running as a driver, or pass it on if we're a module.
12759 */
12760 iocp = (struct iocblk *)mp->b_rptr;
12761 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12762 if (ipip == NULL) {
12763 if (q->q_next == NULL) {
12764 goto nak;
12765 } else {
12766 putnext(q, mp);
12767 }
12768 return;
12769 }
12770 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12771 /*
12772 * The ioctl is one we recognise, but is not consumed
12773 * by IP as a module and we are a module, so we drop
12774 */
12775 goto nak;
12776 }
12777
12778 /* IOCTL continuation following copyin or copyout. */
12779 if (mi_copy_state(q, mp, NULL) == -1) {
12780 /*
12781 * The copy operation failed. mi_copy_state already
12782 * cleaned up, so we're out of here.
12783 */
12784 return;
12785 }
12786 /*
12787 * If we just completed a copy in, we become writer and
12788 * continue processing in ip_sioctl_copyin_done. If it
12789 * was a copy out, we call mi_copyout again. If there is
12790 * nothing more to copy out, it will complete the IOCTL.
12791 */
12792 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12793 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12794 mi_copy_done(q, mp, EPROTO);
12795 return;
12796 }
12797 /*
12798 * Check for cases that need more copying. A return
12799 * value of 0 means a second copyin has been started,
12800 * so we return; a return value of 1 means no more
12801 * copying is needed, so we continue.
12802 */
12803 if (ipip->ipi_cmd_type == MSFILT_CMD &&
12804 MI_COPY_COUNT(mp) == 1) {
12805 if (ip_copyin_msfilter(q, mp) == 0)
12806 return;
12807 }
12808 /*
12809 * Refhold the conn, till the ioctl completes. This is
12810 * needed in case the ioctl ends up in the pending mp
12811 * list. Every mp in the ipx_pending_mp list must have
12812 * a refhold on the conn to resume processing. The
12813 * refhold is released when the ioctl completes
12814 * (whether normally or abnormally). An ioctlref is also
12815 * placed on the conn to prevent TCP from removing the
12816 * queue needed to send the ioctl reply back.
12817 * In all cases ip_ioctl_finish is called to finish
12818 * the ioctl and release the refholds.
12819 */
12820 if (connp != NULL) {
12821 /* This is not a reentry */
12822 CONN_INC_REF(connp);
12823 CONN_INC_IOCTLREF(connp);
12824 } else {
12825 if (!(ipip->ipi_flags & IPI_MODOK)) {
12826 mi_copy_done(q, mp, EINVAL);
12827 return;
12828 }
12829 }
12830
12831 ip_process_ioctl(NULL, q, mp, ipip);
12832
12833 } else {
12834 mi_copyout(q, mp);
12835 }
12836 return;
12837
12838 case M_IOCNAK:
12839 /*
12840 * The only way we could get here is if a resolver didn't like
12841 * an IOCTL we sent it. This shouldn't happen.
12842 */
12843 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12844 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12845 ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12846 freemsg(mp);
12847 return;
12848 case M_IOCACK:
12849 /* /dev/ip shouldn't see this */
12850 goto nak;
12851 case M_FLUSH:
12852 if (*mp->b_rptr & FLUSHW)
12853 flushq(q, FLUSHALL);
12854 if (q->q_next) {
12855 putnext(q, mp);
12856 return;
12857 }
12858 if (*mp->b_rptr & FLUSHR) {
12859 *mp->b_rptr &= ~FLUSHW;
12860 qreply(q, mp);
12861 return;
12862 }
12863 freemsg(mp);
12864 return;
12865 case M_CTL:
12866 break;
12867 case M_PROTO:
12868 case M_PCPROTO:
12869 /*
12870 * The only PROTO messages we expect are SNMP-related.
12871 */
12872 switch (((union T_primitives *)mp->b_rptr)->type) {
12873 case T_SVR4_OPTMGMT_REQ:
12874 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12875 "flags %x\n",
12876 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12877
12878 if (connp == NULL) {
12879 proto_str = "T_SVR4_OPTMGMT_REQ";
12880 goto protonak;
12881 }
12882
12883 /*
12884 * All Solaris components should pass a db_credp
12885 * for this TPI message, hence we ASSERT.
12886 * But in case there is some other M_PROTO that looks
12887 * like a TPI message sent by some other kernel
12888 * component, we check and return an error.
12889 */
12890 cr = msg_getcred(mp, NULL);
12891 ASSERT(cr != NULL);
12892 if (cr == NULL) {
12893 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12894 if (mp != NULL)
12895 qreply(q, mp);
12896 return;
12897 }
12898
12899 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12900 proto_str = "Bad SNMPCOM request?";
12901 goto protonak;
12902 }
12903 return;
12904 default:
12905 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12906 (int)*(uint_t *)mp->b_rptr));
12907 freemsg(mp);
12908 return;
12909 }
12910 default:
12911 break;
12912 }
12913 if (q->q_next) {
12914 putnext(q, mp);
12915 } else
12916 freemsg(mp);
12917 return;
12918
12919 nak:
12920 iocp->ioc_error = EINVAL;
12921 mp->b_datap->db_type = M_IOCNAK;
12922 iocp->ioc_count = 0;
12923 qreply(q, mp);
12924 return;
12925
12926 protonak:
12927 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12928 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12929 qreply(q, mp);
12930 }
12931
12932 /*
12933 * Process IP options in an outbound packet. Verify that the nexthop in a
12934 * strict source route is onlink.
12935 * Returns non-zero if something fails in which case an ICMP error has been
12936 * sent and mp freed.
12937 *
12938 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12939 */
12940 int
12941 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12942 {
12943 ipoptp_t opts;
12944 uchar_t *opt;
12945 uint8_t optval;
12946 uint8_t optlen;
12947 ipaddr_t dst;
12948 intptr_t code = 0;
12949 ire_t *ire;
12950 ip_stack_t *ipst = ixa->ixa_ipst;
12951 ip_recv_attr_t iras;
12952
12953 ip2dbg(("ip_output_options\n"));
12954
12955 dst = ipha->ipha_dst;
12956 for (optval = ipoptp_first(&opts, ipha);
12957 optval != IPOPT_EOL;
12958 optval = ipoptp_next(&opts)) {
12959 opt = opts.ipoptp_cur;
12960 optlen = opts.ipoptp_len;
12961 ip2dbg(("ip_output_options: opt %d, len %d\n",
12962 optval, optlen));
12963 switch (optval) {
12964 uint32_t off;
12965 case IPOPT_SSRR:
12966 case IPOPT_LSRR:
12967 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12968 ip1dbg((
12969 "ip_output_options: bad option offset\n"));
12970 code = (char *)&opt[IPOPT_OLEN] -
12971 (char *)ipha;
12972 goto param_prob;
12973 }
12974 off = opt[IPOPT_OFFSET];
12975 ip1dbg(("ip_output_options: next hop 0x%x\n",
12976 ntohl(dst)));
12977 /*
12978 * For strict: verify that dst is directly
12979 * reachable.
12980 */
12981 if (optval == IPOPT_SSRR) {
12982 ire = ire_ftable_lookup_v4(dst, 0, 0,
12983 IRE_INTERFACE, NULL, ALL_ZONES,
12984 ixa->ixa_tsl,
12985 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12986 NULL);
12987 if (ire == NULL) {
12988 ip1dbg(("ip_output_options: SSRR not"
12989 " directly reachable: 0x%x\n",
12990 ntohl(dst)));
12991 goto bad_src_route;
12992 }
12993 ire_refrele(ire);
12994 }
12995 break;
12996 case IPOPT_RR:
12997 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12998 ip1dbg((
12999 "ip_output_options: bad option offset\n"));
13000 code = (char *)&opt[IPOPT_OLEN] -
13001 (char *)ipha;
13002 goto param_prob;
13003 }
13004 break;
13005 case IPOPT_TS:
13006 /*
13007 * Verify that length >=5 and that there is either
13008 * room for another timestamp or that the overflow
13009 * counter is not maxed out.
13010 */
13011 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13012 if (optlen < IPOPT_MINLEN_IT) {
13013 goto param_prob;
13014 }
13015 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13016 ip1dbg((
13017 "ip_output_options: bad option offset\n"));
13018 code = (char *)&opt[IPOPT_OFFSET] -
13019 (char *)ipha;
13020 goto param_prob;
13021 }
13022 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13023 case IPOPT_TS_TSONLY:
13024 off = IPOPT_TS_TIMELEN;
13025 break;
13026 case IPOPT_TS_TSANDADDR:
13027 case IPOPT_TS_PRESPEC:
13028 case IPOPT_TS_PRESPEC_RFC791:
13029 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13030 break;
13031 default:
13032 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13033 (char *)ipha;
13034 goto param_prob;
13035 }
13036 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13037 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13038 /*
13039 * No room and the overflow counter is 15
13040 * already.
13041 */
13042 goto param_prob;
13043 }
13044 break;
13045 }
13046 }
13047
13048 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13049 return (0);
13050
13051 ip1dbg(("ip_output_options: error processing IP options."));
13052 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13053
13054 param_prob:
13055 bzero(&iras, sizeof (iras));
13056 iras.ira_ill = iras.ira_rill = ill;
13057 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13058 iras.ira_rifindex = iras.ira_ruifindex;
13059 iras.ira_flags = IRAF_IS_IPV4;
13060
13061 ip_drop_output("ip_output_options", mp, ill);
13062 icmp_param_problem(mp, (uint8_t)code, &iras);
13063 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13064 return (-1);
13065
13066 bad_src_route:
13067 bzero(&iras, sizeof (iras));
13068 iras.ira_ill = iras.ira_rill = ill;
13069 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13070 iras.ira_rifindex = iras.ira_ruifindex;
13071 iras.ira_flags = IRAF_IS_IPV4;
13072
13073 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13074 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13075 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13076 return (-1);
13077 }
13078
13079 /*
13080 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13081 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13082 * thru /etc/system.
13083 */
13084 #define CONN_MAXDRAINCNT 64
13085
13086 static void
13087 conn_drain_init(ip_stack_t *ipst)
13088 {
13089 int i, j;
13090 idl_tx_list_t *itl_tx;
13091
13092 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13093
13094 if ((ipst->ips_conn_drain_list_cnt == 0) ||
13095 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13096 /*
13097 * Default value of the number of drainers is the
13098 * number of cpus, subject to maximum of 8 drainers.
13099 */
13100 if (boot_max_ncpus != -1)
13101 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13102 else
13103 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13104 }
13105
13106 ipst->ips_idl_tx_list =
13107 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13108 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13109 itl_tx = &ipst->ips_idl_tx_list[i];
13110 itl_tx->txl_drain_list =
13111 kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13112 sizeof (idl_t), KM_SLEEP);
13113 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13114 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13115 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13116 MUTEX_DEFAULT, NULL);
13117 itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13118 }
13119 }
13120 }
13121
13122 static void
13123 conn_drain_fini(ip_stack_t *ipst)
13124 {
13125 int i;
13126 idl_tx_list_t *itl_tx;
13127
13128 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13129 itl_tx = &ipst->ips_idl_tx_list[i];
13130 kmem_free(itl_tx->txl_drain_list,
13131 ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13132 }
13133 kmem_free(ipst->ips_idl_tx_list,
13134 TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13135 ipst->ips_idl_tx_list = NULL;
13136 }
13137
13138 /*
13139 * Flow control has blocked us from proceeding. Insert the given conn in one
13140 * of the conn drain lists. When flow control is unblocked, either ip_wsrv()
13141 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13142 * will call conn_walk_drain(). See the flow control notes at the top of this
13143 * file for more details.
13144 */
13145 void
13146 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13147 {
13148 idl_t *idl = tx_list->txl_drain_list;
13149 uint_t index;
13150 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
13151
13152 mutex_enter(&connp->conn_lock);
13153 if (connp->conn_state_flags & CONN_CLOSING) {
13154 /*
13155 * The conn is closing as a result of which CONN_CLOSING
13156 * is set. Return.
13157 */
13158 mutex_exit(&connp->conn_lock);
13159 return;
13160 } else if (connp->conn_idl == NULL) {
13161 /*
13162 * Assign the next drain list round robin. We dont' use
13163 * a lock, and thus it may not be strictly round robin.
13164 * Atomicity of load/stores is enough to make sure that
13165 * conn_drain_list_index is always within bounds.
13166 */
13167 index = tx_list->txl_drain_index;
13168 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13169 connp->conn_idl = &tx_list->txl_drain_list[index];
13170 index++;
13171 if (index == ipst->ips_conn_drain_list_cnt)
13172 index = 0;
13173 tx_list->txl_drain_index = index;
13174 } else {
13175 ASSERT(connp->conn_idl->idl_itl == tx_list);
13176 }
13177 mutex_exit(&connp->conn_lock);
13178
13179 idl = connp->conn_idl;
13180 mutex_enter(&idl->idl_lock);
13181 if ((connp->conn_drain_prev != NULL) ||
13182 (connp->conn_state_flags & CONN_CLOSING)) {
13183 /*
13184 * The conn is either already in the drain list or closing.
13185 * (We needed to check for CONN_CLOSING again since close can
13186 * sneak in between dropping conn_lock and acquiring idl_lock.)
13187 */
13188 mutex_exit(&idl->idl_lock);
13189 return;
13190 }
13191
13192 /*
13193 * The conn is not in the drain list. Insert it at the
13194 * tail of the drain list. The drain list is circular
13195 * and doubly linked. idl_conn points to the 1st element
13196 * in the list.
13197 */
13198 if (idl->idl_conn == NULL) {
13199 idl->idl_conn = connp;
13200 connp->conn_drain_next = connp;
13201 connp->conn_drain_prev = connp;
13202 } else {
13203 conn_t *head = idl->idl_conn;
13204
13205 connp->conn_drain_next = head;
13206 connp->conn_drain_prev = head->conn_drain_prev;
13207 head->conn_drain_prev->conn_drain_next = connp;
13208 head->conn_drain_prev = connp;
13209 }
13210 /*
13211 * For non streams based sockets assert flow control.
13212 */
13213 conn_setqfull(connp, NULL);
13214 mutex_exit(&idl->idl_lock);
13215 }
13216
13217 static void
13218 conn_drain_remove(conn_t *connp)
13219 {
13220 idl_t *idl = connp->conn_idl;
13221
13222 if (idl != NULL) {
13223 /*
13224 * Remove ourself from the drain list.
13225 */
13226 if (connp->conn_drain_next == connp) {
13227 /* Singleton in the list */
13228 ASSERT(connp->conn_drain_prev == connp);
13229 idl->idl_conn = NULL;
13230 } else {
13231 connp->conn_drain_prev->conn_drain_next =
13232 connp->conn_drain_next;
13233 connp->conn_drain_next->conn_drain_prev =
13234 connp->conn_drain_prev;
13235 if (idl->idl_conn == connp)
13236 idl->idl_conn = connp->conn_drain_next;
13237 }
13238
13239 /*
13240 * NOTE: because conn_idl is associated with a specific drain
13241 * list which in turn is tied to the index the TX ring
13242 * (txl_cookie) hashes to, and because the TX ring can change
13243 * over the lifetime of the conn_t, we must clear conn_idl so
13244 * a subsequent conn_drain_insert() will set conn_idl again
13245 * based on the latest txl_cookie.
13246 */
13247 connp->conn_idl = NULL;
13248 }
13249 connp->conn_drain_next = NULL;
13250 connp->conn_drain_prev = NULL;
13251
13252 conn_clrqfull(connp, NULL);
13253 /*
13254 * For streams based sockets open up flow control.
13255 */
13256 if (!IPCL_IS_NONSTR(connp))
13257 enableok(connp->conn_wq);
13258 }
13259
13260 /*
13261 * This conn is closing, and we are called from ip_close. OR
13262 * this conn is draining because flow-control on the ill has been relieved.
13263 *
13264 * We must also need to remove conn's on this idl from the list, and also
13265 * inform the sockfs upcalls about the change in flow-control.
13266 */
13267 static void
13268 conn_drain(conn_t *connp, boolean_t closing)
13269 {
13270 idl_t *idl;
13271 conn_t *next_connp;
13272
13273 /*
13274 * connp->conn_idl is stable at this point, and no lock is needed
13275 * to check it. If we are called from ip_close, close has already
13276 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13277 * called us only because conn_idl is non-null. If we are called thru
13278 * service, conn_idl could be null, but it cannot change because
13279 * service is single-threaded per queue, and there cannot be another
13280 * instance of service trying to call conn_drain_insert on this conn
13281 * now.
13282 */
13283 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13284
13285 /*
13286 * If the conn doesn't exist or is not on a drain list, bail.
13287 */
13288 if (connp == NULL || connp->conn_idl == NULL ||
13289 connp->conn_drain_prev == NULL) {
13290 return;
13291 }
13292
13293 idl = connp->conn_idl;
13294 ASSERT(MUTEX_HELD(&idl->idl_lock));
13295
13296 if (!closing) {
13297 next_connp = connp->conn_drain_next;
13298 while (next_connp != connp) {
13299 conn_t *delconnp = next_connp;
13300
13301 next_connp = next_connp->conn_drain_next;
13302 conn_drain_remove(delconnp);
13303 }
13304 ASSERT(connp->conn_drain_next == idl->idl_conn);
13305 }
13306 conn_drain_remove(connp);
13307 }
13308
13309 /*
13310 * Write service routine. Shared perimeter entry point.
13311 * The device queue's messages has fallen below the low water mark and STREAMS
13312 * has backenabled the ill_wq. Send sockfs notification about flow-control on
13313 * each waiting conn.
13314 */
13315 void
13316 ip_wsrv(queue_t *q)
13317 {
13318 ill_t *ill;
13319
13320 ill = (ill_t *)q->q_ptr;
13321 if (ill->ill_state_flags == 0) {
13322 ip_stack_t *ipst = ill->ill_ipst;
13323
13324 /*
13325 * The device flow control has opened up.
13326 * Walk through conn drain lists and qenable the
13327 * first conn in each list. This makes sense only
13328 * if the stream is fully plumbed and setup.
13329 * Hence the ill_state_flags check above.
13330 */
13331 ip1dbg(("ip_wsrv: walking\n"));
13332 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13333 enableok(ill->ill_wq);
13334 }
13335 }
13336
13337 /*
13338 * Callback to disable flow control in IP.
13339 *
13340 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13341 * is enabled.
13342 *
13343 * When MAC_TX() is not able to send any more packets, dld sets its queue
13344 * to QFULL and enable the STREAMS flow control. Later, when the underlying
13345 * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13346 * function and wakes up corresponding mac worker threads, which in turn
13347 * calls this callback function, and disables flow control.
13348 */
13349 void
13350 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13351 {
13352 ill_t *ill = (ill_t *)arg;
13353 ip_stack_t *ipst = ill->ill_ipst;
13354 idl_tx_list_t *idl_txl;
13355
13356 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13357 mutex_enter(&idl_txl->txl_lock);
13358 /* add code to to set a flag to indicate idl_txl is enabled */
13359 conn_walk_drain(ipst, idl_txl);
13360 mutex_exit(&idl_txl->txl_lock);
13361 }
13362
13363 /*
13364 * Flow control has been relieved and STREAMS has backenabled us; drain
13365 * all the conn lists on `tx_list'.
13366 */
13367 static void
13368 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13369 {
13370 int i;
13371 idl_t *idl;
13372
13373 IP_STAT(ipst, ip_conn_walk_drain);
13374
13375 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13376 idl = &tx_list->txl_drain_list[i];
13377 mutex_enter(&idl->idl_lock);
13378 conn_drain(idl->idl_conn, B_FALSE);
13379 mutex_exit(&idl->idl_lock);
13380 }
13381 }
13382
13383 /*
13384 * Determine if the ill and multicast aspects of that packets
13385 * "matches" the conn.
13386 */
13387 boolean_t
13388 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13389 {
13390 ill_t *ill = ira->ira_rill;
13391 zoneid_t zoneid = ira->ira_zoneid;
13392 uint_t in_ifindex;
13393 ipaddr_t dst, src;
13394
13395 dst = ipha->ipha_dst;
13396 src = ipha->ipha_src;
13397
13398 /*
13399 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13400 * unicast, broadcast and multicast reception to
13401 * conn_incoming_ifindex.
13402 * conn_wantpacket is called for unicast, broadcast and
13403 * multicast packets.
13404 */
13405 in_ifindex = connp->conn_incoming_ifindex;
13406
13407 /* mpathd can bind to the under IPMP interface, which we allow */
13408 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13409 if (!IS_UNDER_IPMP(ill))
13410 return (B_FALSE);
13411
13412 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13413 return (B_FALSE);
13414 }
13415
13416 if (!IPCL_ZONE_MATCH(connp, zoneid))
13417 return (B_FALSE);
13418
13419 if (!(ira->ira_flags & IRAF_MULTICAST))
13420 return (B_TRUE);
13421
13422 if (connp->conn_multi_router) {
13423 /* multicast packet and multicast router socket: send up */
13424 return (B_TRUE);
13425 }
13426
13427 if (ipha->ipha_protocol == IPPROTO_PIM ||
13428 ipha->ipha_protocol == IPPROTO_RSVP)
13429 return (B_TRUE);
13430
13431 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13432 }
13433
13434 void
13435 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13436 {
13437 if (IPCL_IS_NONSTR(connp)) {
13438 (*connp->conn_upcalls->su_txq_full)
13439 (connp->conn_upper_handle, B_TRUE);
13440 if (flow_stopped != NULL)
13441 *flow_stopped = B_TRUE;
13442 } else {
13443 queue_t *q = connp->conn_wq;
13444
13445 ASSERT(q != NULL);
13446 if (!(q->q_flag & QFULL)) {
13447 mutex_enter(QLOCK(q));
13448 if (!(q->q_flag & QFULL)) {
13449 /* still need to set QFULL */
13450 q->q_flag |= QFULL;
13451 /* set flow_stopped to true under QLOCK */
13452 if (flow_stopped != NULL)
13453 *flow_stopped = B_TRUE;
13454 mutex_exit(QLOCK(q));
13455 } else {
13456 /* flow_stopped is left unchanged */
13457 mutex_exit(QLOCK(q));
13458 }
13459 }
13460 }
13461 }
13462
13463 void
13464 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13465 {
13466 if (IPCL_IS_NONSTR(connp)) {
13467 (*connp->conn_upcalls->su_txq_full)
13468 (connp->conn_upper_handle, B_FALSE);
13469 if (flow_stopped != NULL)
13470 *flow_stopped = B_FALSE;
13471 } else {
13472 queue_t *q = connp->conn_wq;
13473
13474 ASSERT(q != NULL);
13475 if (q->q_flag & QFULL) {
13476 mutex_enter(QLOCK(q));
13477 if (q->q_flag & QFULL) {
13478 q->q_flag &= ~QFULL;
13479 /* set flow_stopped to false under QLOCK */
13480 if (flow_stopped != NULL)
13481 *flow_stopped = B_FALSE;
13482 mutex_exit(QLOCK(q));
13483 if (q->q_flag & QWANTW)
13484 qbackenable(q, 0);
13485 } else {
13486 /* flow_stopped is left unchanged */
13487 mutex_exit(QLOCK(q));
13488 }
13489 }
13490 }
13491
13492 mutex_enter(&connp->conn_lock);
13493 connp->conn_blocked = B_FALSE;
13494 mutex_exit(&connp->conn_lock);
13495 }
13496
13497 /*
13498 * Return the length in bytes of the IPv4 headers (base header, label, and
13499 * other IP options) that will be needed based on the
13500 * ip_pkt_t structure passed by the caller.
13501 *
13502 * The returned length does not include the length of the upper level
13503 * protocol (ULP) header.
13504 * The caller needs to check that the length doesn't exceed the max for IPv4.
13505 */
13506 int
13507 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13508 {
13509 int len;
13510
13511 len = IP_SIMPLE_HDR_LENGTH;
13512 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13513 ASSERT(ipp->ipp_label_len_v4 != 0);
13514 /* We need to round up here */
13515 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13516 }
13517
13518 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13519 ASSERT(ipp->ipp_ipv4_options_len != 0);
13520 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13521 len += ipp->ipp_ipv4_options_len;
13522 }
13523 return (len);
13524 }
13525
13526 /*
13527 * All-purpose routine to build an IPv4 header with options based
13528 * on the abstract ip_pkt_t.
13529 *
13530 * The caller has to set the source and destination address as well as
13531 * ipha_length. The caller has to massage any source route and compensate
13532 * for the ULP pseudo-header checksum due to the source route.
13533 */
13534 void
13535 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13536 uint8_t protocol)
13537 {
13538 ipha_t *ipha = (ipha_t *)buf;
13539 uint8_t *cp;
13540
13541 /* Initialize IPv4 header */
13542 ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13543 ipha->ipha_length = 0; /* Caller will set later */
13544 ipha->ipha_ident = 0;
13545 ipha->ipha_fragment_offset_and_flags = 0;
13546 ipha->ipha_ttl = ipp->ipp_unicast_hops;
13547 ipha->ipha_protocol = protocol;
13548 ipha->ipha_hdr_checksum = 0;
13549
13550 if ((ipp->ipp_fields & IPPF_ADDR) &&
13551 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13552 ipha->ipha_src = ipp->ipp_addr_v4;
13553
13554 cp = (uint8_t *)&ipha[1];
13555 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13556 ASSERT(ipp->ipp_label_len_v4 != 0);
13557 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13558 cp += ipp->ipp_label_len_v4;
13559 /* We need to round up here */
13560 while ((uintptr_t)cp & 0x3) {
13561 *cp++ = IPOPT_NOP;
13562 }
13563 }
13564
13565 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13566 ASSERT(ipp->ipp_ipv4_options_len != 0);
13567 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13568 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13569 cp += ipp->ipp_ipv4_options_len;
13570 }
13571 ipha->ipha_version_and_hdr_length =
13572 (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13573
13574 ASSERT((int)(cp - buf) == buf_len);
13575 }
13576
13577 /* Allocate the private structure */
13578 static int
13579 ip_priv_alloc(void **bufp)
13580 {
13581 void *buf;
13582
13583 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13584 return (ENOMEM);
13585
13586 *bufp = buf;
13587 return (0);
13588 }
13589
13590 /* Function to delete the private structure */
13591 void
13592 ip_priv_free(void *buf)
13593 {
13594 ASSERT(buf != NULL);
13595 kmem_free(buf, sizeof (ip_priv_t));
13596 }
13597
13598 /*
13599 * The entry point for IPPF processing.
13600 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13601 * routine just returns.
13602 *
13603 * When called, ip_process generates an ipp_packet_t structure
13604 * which holds the state information for this packet and invokes the
13605 * the classifier (via ipp_packet_process). The classification, depending on
13606 * configured filters, results in a list of actions for this packet. Invoking
13607 * an action may cause the packet to be dropped, in which case we return NULL.
13608 * proc indicates the callout position for
13609 * this packet and ill is the interface this packet arrived on or will leave
13610 * on (inbound and outbound resp.).
13611 *
13612 * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13613 * on the ill corrsponding to the destination IP address.
13614 */
13615 mblk_t *
13616 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13617 {
13618 ip_priv_t *priv;
13619 ipp_action_id_t aid;
13620 int rc = 0;
13621 ipp_packet_t *pp;
13622
13623 /* If the classifier is not loaded, return */
13624 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13625 return (mp);
13626 }
13627
13628 ASSERT(mp != NULL);
13629
13630 /* Allocate the packet structure */
13631 rc = ipp_packet_alloc(&pp, "ip", aid);
13632 if (rc != 0)
13633 goto drop;
13634
13635 /* Allocate the private structure */
13636 rc = ip_priv_alloc((void **)&priv);
13637 if (rc != 0) {
13638 ipp_packet_free(pp);
13639 goto drop;
13640 }
13641 priv->proc = proc;
13642 priv->ill_index = ill_get_upper_ifindex(rill);
13643
13644 ipp_packet_set_private(pp, priv, ip_priv_free);
13645 ipp_packet_set_data(pp, mp);
13646
13647 /* Invoke the classifier */
13648 rc = ipp_packet_process(&pp);
13649 if (pp != NULL) {
13650 mp = ipp_packet_get_data(pp);
13651 ipp_packet_free(pp);
13652 if (rc != 0)
13653 goto drop;
13654 return (mp);
13655 } else {
13656 /* No mp to trace in ip_drop_input/ip_drop_output */
13657 mp = NULL;
13658 }
13659 drop:
13660 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13661 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13662 ip_drop_input("ip_process", mp, ill);
13663 } else {
13664 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13665 ip_drop_output("ip_process", mp, ill);
13666 }
13667 freemsg(mp);
13668 return (NULL);
13669 }
13670
13671 /*
13672 * Propagate a multicast group membership operation (add/drop) on
13673 * all the interfaces crossed by the related multirt routes.
13674 * The call is considered successful if the operation succeeds
13675 * on at least one interface.
13676 *
13677 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13678 * multicast addresses with the ire argument being the first one.
13679 * We walk the bucket to find all the of those.
13680 *
13681 * Common to IPv4 and IPv6.
13682 */
13683 static int
13684 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13685 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13686 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13687 mcast_record_t fmode, const in6_addr_t *v6src)
13688 {
13689 ire_t *ire_gw;
13690 irb_t *irb;
13691 int ifindex;
13692 int error = 0;
13693 int result;
13694 ip_stack_t *ipst = ire->ire_ipst;
13695 ipaddr_t group;
13696 boolean_t isv6;
13697 int match_flags;
13698
13699 if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13700 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13701 isv6 = B_FALSE;
13702 } else {
13703 isv6 = B_TRUE;
13704 }
13705
13706 irb = ire->ire_bucket;
13707 ASSERT(irb != NULL);
13708
13709 result = 0;
13710 irb_refhold(irb);
13711 for (; ire != NULL; ire = ire->ire_next) {
13712 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13713 continue;
13714
13715 /* We handle -ifp routes by matching on the ill if set */
13716 match_flags = MATCH_IRE_TYPE;
13717 if (ire->ire_ill != NULL)
13718 match_flags |= MATCH_IRE_ILL;
13719
13720 if (isv6) {
13721 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13722 continue;
13723
13724 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13725 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13726 match_flags, 0, ipst, NULL);
13727 } else {
13728 if (ire->ire_addr != group)
13729 continue;
13730
13731 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13732 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13733 match_flags, 0, ipst, NULL);
13734 }
13735 /* No interface route exists for the gateway; skip this ire. */
13736 if (ire_gw == NULL)
13737 continue;
13738 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13739 ire_refrele(ire_gw);
13740 continue;
13741 }
13742 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */
13743 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13744
13745 /*
13746 * The operation is considered a success if
13747 * it succeeds at least once on any one interface.
13748 */
13749 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13750 fmode, v6src);
13751 if (error == 0)
13752 result = CGTP_MCAST_SUCCESS;
13753
13754 ire_refrele(ire_gw);
13755 }
13756 irb_refrele(irb);
13757 /*
13758 * Consider the call as successful if we succeeded on at least
13759 * one interface. Otherwise, return the last encountered error.
13760 */
13761 return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13762 }
13763
13764 /*
13765 * Return the expected CGTP hooks version number.
13766 */
13767 int
13768 ip_cgtp_filter_supported(void)
13769 {
13770 return (ip_cgtp_filter_rev);
13771 }
13772
13773 /*
13774 * CGTP hooks can be registered by invoking this function.
13775 * Checks that the version number matches.
13776 */
13777 int
13778 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13779 {
13780 netstack_t *ns;
13781 ip_stack_t *ipst;
13782
13783 if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13784 return (ENOTSUP);
13785
13786 ns = netstack_find_by_stackid(stackid);
13787 if (ns == NULL)
13788 return (EINVAL);
13789 ipst = ns->netstack_ip;
13790 ASSERT(ipst != NULL);
13791
13792 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13793 netstack_rele(ns);
13794 return (EALREADY);
13795 }
13796
13797 ipst->ips_ip_cgtp_filter_ops = ops;
13798
13799 ill_set_inputfn_all(ipst);
13800
13801 netstack_rele(ns);
13802 return (0);
13803 }
13804
13805 /*
13806 * CGTP hooks can be unregistered by invoking this function.
13807 * Returns ENXIO if there was no registration.
13808 * Returns EBUSY if the ndd variable has not been turned off.
13809 */
13810 int
13811 ip_cgtp_filter_unregister(netstackid_t stackid)
13812 {
13813 netstack_t *ns;
13814 ip_stack_t *ipst;
13815
13816 ns = netstack_find_by_stackid(stackid);
13817 if (ns == NULL)
13818 return (EINVAL);
13819 ipst = ns->netstack_ip;
13820 ASSERT(ipst != NULL);
13821
13822 if (ipst->ips_ip_cgtp_filter) {
13823 netstack_rele(ns);
13824 return (EBUSY);
13825 }
13826
13827 if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13828 netstack_rele(ns);
13829 return (ENXIO);
13830 }
13831 ipst->ips_ip_cgtp_filter_ops = NULL;
13832
13833 ill_set_inputfn_all(ipst);
13834
13835 netstack_rele(ns);
13836 return (0);
13837 }
13838
13839 /*
13840 * Check whether there is a CGTP filter registration.
13841 * Returns non-zero if there is a registration, otherwise returns zero.
13842 * Note: returns zero if bad stackid.
13843 */
13844 int
13845 ip_cgtp_filter_is_registered(netstackid_t stackid)
13846 {
13847 netstack_t *ns;
13848 ip_stack_t *ipst;
13849 int ret;
13850
13851 ns = netstack_find_by_stackid(stackid);
13852 if (ns == NULL)
13853 return (0);
13854 ipst = ns->netstack_ip;
13855 ASSERT(ipst != NULL);
13856
13857 if (ipst->ips_ip_cgtp_filter_ops != NULL)
13858 ret = 1;
13859 else
13860 ret = 0;
13861
13862 netstack_rele(ns);
13863 return (ret);
13864 }
13865
13866 static int
13867 ip_squeue_switch(int val)
13868 {
13869 int rval;
13870
13871 switch (val) {
13872 case IP_SQUEUE_ENTER_NODRAIN:
13873 rval = SQ_NODRAIN;
13874 break;
13875 case IP_SQUEUE_ENTER:
13876 rval = SQ_PROCESS;
13877 break;
13878 case IP_SQUEUE_FILL:
13879 default:
13880 rval = SQ_FILL;
13881 break;
13882 }
13883 return (rval);
13884 }
13885
13886 static void *
13887 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13888 {
13889 kstat_t *ksp;
13890
13891 ip_stat_t template = {
13892 { "ip_udp_fannorm", KSTAT_DATA_UINT64 },
13893 { "ip_udp_fanmb", KSTAT_DATA_UINT64 },
13894 { "ip_recv_pullup", KSTAT_DATA_UINT64 },
13895 { "ip_db_ref", KSTAT_DATA_UINT64 },
13896 { "ip_notaligned", KSTAT_DATA_UINT64 },
13897 { "ip_multimblk", KSTAT_DATA_UINT64 },
13898 { "ip_opt", KSTAT_DATA_UINT64 },
13899 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 },
13900 { "ip_conn_flputbq", KSTAT_DATA_UINT64 },
13901 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 },
13902 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 },
13903 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 },
13904 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 },
13905 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 },
13906 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 },
13907 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 },
13908 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 },
13909 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 },
13910 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 },
13911 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
13912 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13913 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13914 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
13915 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13916 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13917 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 },
13918 { "conn_in_recvopts", KSTAT_DATA_UINT64 },
13919 { "conn_in_recvif", KSTAT_DATA_UINT64 },
13920 { "conn_in_recvslla", KSTAT_DATA_UINT64 },
13921 { "conn_in_recvucred", KSTAT_DATA_UINT64 },
13922 { "conn_in_recvttl", KSTAT_DATA_UINT64 },
13923 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 },
13924 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 },
13925 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 },
13926 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 },
13927 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 },
13928 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 },
13929 { "conn_in_recvtclass", KSTAT_DATA_UINT64 },
13930 { "conn_in_timestamp", KSTAT_DATA_UINT64 },
13931 };
13932
13933 ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13934 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13935 KSTAT_FLAG_VIRTUAL, stackid);
13936
13937 if (ksp == NULL)
13938 return (NULL);
13939
13940 bcopy(&template, ip_statisticsp, sizeof (template));
13941 ksp->ks_data = (void *)ip_statisticsp;
13942 ksp->ks_private = (void *)(uintptr_t)stackid;
13943
13944 kstat_install(ksp);
13945 return (ksp);
13946 }
13947
13948 static void
13949 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13950 {
13951 if (ksp != NULL) {
13952 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13953 kstat_delete_netstack(ksp, stackid);
13954 }
13955 }
13956
13957 static void *
13958 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13959 {
13960 kstat_t *ksp;
13961
13962 ip_named_kstat_t template = {
13963 { "forwarding", KSTAT_DATA_UINT32, 0 },
13964 { "defaultTTL", KSTAT_DATA_UINT32, 0 },
13965 { "inReceives", KSTAT_DATA_UINT64, 0 },
13966 { "inHdrErrors", KSTAT_DATA_UINT32, 0 },
13967 { "inAddrErrors", KSTAT_DATA_UINT32, 0 },
13968 { "forwDatagrams", KSTAT_DATA_UINT64, 0 },
13969 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 },
13970 { "inDiscards", KSTAT_DATA_UINT32, 0 },
13971 { "inDelivers", KSTAT_DATA_UINT64, 0 },
13972 { "outRequests", KSTAT_DATA_UINT64, 0 },
13973 { "outDiscards", KSTAT_DATA_UINT32, 0 },
13974 { "outNoRoutes", KSTAT_DATA_UINT32, 0 },
13975 { "reasmTimeout", KSTAT_DATA_UINT32, 0 },
13976 { "reasmReqds", KSTAT_DATA_UINT32, 0 },
13977 { "reasmOKs", KSTAT_DATA_UINT32, 0 },
13978 { "reasmFails", KSTAT_DATA_UINT32, 0 },
13979 { "fragOKs", KSTAT_DATA_UINT32, 0 },
13980 { "fragFails", KSTAT_DATA_UINT32, 0 },
13981 { "fragCreates", KSTAT_DATA_UINT32, 0 },
13982 { "addrEntrySize", KSTAT_DATA_INT32, 0 },
13983 { "routeEntrySize", KSTAT_DATA_INT32, 0 },
13984 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 },
13985 { "routingDiscards", KSTAT_DATA_UINT32, 0 },
13986 { "inErrs", KSTAT_DATA_UINT32, 0 },
13987 { "noPorts", KSTAT_DATA_UINT32, 0 },
13988 { "inCksumErrs", KSTAT_DATA_UINT32, 0 },
13989 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 },
13990 { "reasmPartDups", KSTAT_DATA_UINT32, 0 },
13991 { "forwProhibits", KSTAT_DATA_UINT32, 0 },
13992 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 },
13993 { "udpInOverflows", KSTAT_DATA_UINT32, 0 },
13994 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 },
13995 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 },
13996 { "ipsecInFailed", KSTAT_DATA_INT32, 0 },
13997 { "memberEntrySize", KSTAT_DATA_INT32, 0 },
13998 { "inIPv6", KSTAT_DATA_UINT32, 0 },
13999 { "outIPv6", KSTAT_DATA_UINT32, 0 },
14000 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 },
14001 };
14002
14003 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14004 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14005 if (ksp == NULL || ksp->ks_data == NULL)
14006 return (NULL);
14007
14008 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14009 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14010 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14011 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14012 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14013
14014 template.netToMediaEntrySize.value.i32 =
14015 sizeof (mib2_ipNetToMediaEntry_t);
14016
14017 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14018
14019 bcopy(&template, ksp->ks_data, sizeof (template));
14020 ksp->ks_update = ip_kstat_update;
14021 ksp->ks_private = (void *)(uintptr_t)stackid;
14022
14023 kstat_install(ksp);
14024 return (ksp);
14025 }
14026
14027 static void
14028 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14029 {
14030 if (ksp != NULL) {
14031 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14032 kstat_delete_netstack(ksp, stackid);
14033 }
14034 }
14035
14036 static int
14037 ip_kstat_update(kstat_t *kp, int rw)
14038 {
14039 ip_named_kstat_t *ipkp;
14040 mib2_ipIfStatsEntry_t ipmib;
14041 ill_walk_context_t ctx;
14042 ill_t *ill;
14043 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14044 netstack_t *ns;
14045 ip_stack_t *ipst;
14046
14047 if (kp == NULL || kp->ks_data == NULL)
14048 return (EIO);
14049
14050 if (rw == KSTAT_WRITE)
14051 return (EACCES);
14052
14053 ns = netstack_find_by_stackid(stackid);
14054 if (ns == NULL)
14055 return (-1);
14056 ipst = ns->netstack_ip;
14057 if (ipst == NULL) {
14058 netstack_rele(ns);
14059 return (-1);
14060 }
14061 ipkp = (ip_named_kstat_t *)kp->ks_data;
14062
14063 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14064 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14065 ill = ILL_START_WALK_V4(&ctx, ipst);
14066 for (; ill != NULL; ill = ill_next(&ctx, ill))
14067 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14068 rw_exit(&ipst->ips_ill_g_lock);
14069
14070 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding;
14071 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL;
14072 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives;
14073 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors;
14074 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors;
14075 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14076 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos;
14077 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards;
14078 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers;
14079 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests;
14080 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards;
14081 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes;
14082 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14083 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds;
14084 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs;
14085 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails;
14086 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs;
14087 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails;
14088 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates;
14089
14090 ipkp->routingDiscards.value.ui32 = 0;
14091 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs;
14092 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts;
14093 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs;
14094 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates;
14095 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups;
14096 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits;
14097 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs;
14098 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows;
14099 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows;
14100 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded;
14101 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed;
14102
14103 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion;
14104 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion;
14105 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14106
14107 netstack_rele(ns);
14108
14109 return (0);
14110 }
14111
14112 static void *
14113 icmp_kstat_init(netstackid_t stackid)
14114 {
14115 kstat_t *ksp;
14116
14117 icmp_named_kstat_t template = {
14118 { "inMsgs", KSTAT_DATA_UINT32 },
14119 { "inErrors", KSTAT_DATA_UINT32 },
14120 { "inDestUnreachs", KSTAT_DATA_UINT32 },
14121 { "inTimeExcds", KSTAT_DATA_UINT32 },
14122 { "inParmProbs", KSTAT_DATA_UINT32 },
14123 { "inSrcQuenchs", KSTAT_DATA_UINT32 },
14124 { "inRedirects", KSTAT_DATA_UINT32 },
14125 { "inEchos", KSTAT_DATA_UINT32 },
14126 { "inEchoReps", KSTAT_DATA_UINT32 },
14127 { "inTimestamps", KSTAT_DATA_UINT32 },
14128 { "inTimestampReps", KSTAT_DATA_UINT32 },
14129 { "inAddrMasks", KSTAT_DATA_UINT32 },
14130 { "inAddrMaskReps", KSTAT_DATA_UINT32 },
14131 { "outMsgs", KSTAT_DATA_UINT32 },
14132 { "outErrors", KSTAT_DATA_UINT32 },
14133 { "outDestUnreachs", KSTAT_DATA_UINT32 },
14134 { "outTimeExcds", KSTAT_DATA_UINT32 },
14135 { "outParmProbs", KSTAT_DATA_UINT32 },
14136 { "outSrcQuenchs", KSTAT_DATA_UINT32 },
14137 { "outRedirects", KSTAT_DATA_UINT32 },
14138 { "outEchos", KSTAT_DATA_UINT32 },
14139 { "outEchoReps", KSTAT_DATA_UINT32 },
14140 { "outTimestamps", KSTAT_DATA_UINT32 },
14141 { "outTimestampReps", KSTAT_DATA_UINT32 },
14142 { "outAddrMasks", KSTAT_DATA_UINT32 },
14143 { "outAddrMaskReps", KSTAT_DATA_UINT32 },
14144 { "inChksumErrs", KSTAT_DATA_UINT32 },
14145 { "inUnknowns", KSTAT_DATA_UINT32 },
14146 { "inFragNeeded", KSTAT_DATA_UINT32 },
14147 { "outFragNeeded", KSTAT_DATA_UINT32 },
14148 { "outDrops", KSTAT_DATA_UINT32 },
14149 { "inOverFlows", KSTAT_DATA_UINT32 },
14150 { "inBadRedirects", KSTAT_DATA_UINT32 },
14151 };
14152
14153 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14154 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14155 if (ksp == NULL || ksp->ks_data == NULL)
14156 return (NULL);
14157
14158 bcopy(&template, ksp->ks_data, sizeof (template));
14159
14160 ksp->ks_update = icmp_kstat_update;
14161 ksp->ks_private = (void *)(uintptr_t)stackid;
14162
14163 kstat_install(ksp);
14164 return (ksp);
14165 }
14166
14167 static void
14168 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14169 {
14170 if (ksp != NULL) {
14171 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14172 kstat_delete_netstack(ksp, stackid);
14173 }
14174 }
14175
14176 static int
14177 icmp_kstat_update(kstat_t *kp, int rw)
14178 {
14179 icmp_named_kstat_t *icmpkp;
14180 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14181 netstack_t *ns;
14182 ip_stack_t *ipst;
14183
14184 if ((kp == NULL) || (kp->ks_data == NULL))
14185 return (EIO);
14186
14187 if (rw == KSTAT_WRITE)
14188 return (EACCES);
14189
14190 ns = netstack_find_by_stackid(stackid);
14191 if (ns == NULL)
14192 return (-1);
14193 ipst = ns->netstack_ip;
14194 if (ipst == NULL) {
14195 netstack_rele(ns);
14196 return (-1);
14197 }
14198 icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14199
14200 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs;
14201 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors;
14202 icmpkp->inDestUnreachs.value.ui32 =
14203 ipst->ips_icmp_mib.icmpInDestUnreachs;
14204 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds;
14205 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs;
14206 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs;
14207 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects;
14208 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos;
14209 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps;
14210 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps;
14211 icmpkp->inTimestampReps.value.ui32 =
14212 ipst->ips_icmp_mib.icmpInTimestampReps;
14213 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks;
14214 icmpkp->inAddrMaskReps.value.ui32 =
14215 ipst->ips_icmp_mib.icmpInAddrMaskReps;
14216 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs;
14217 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors;
14218 icmpkp->outDestUnreachs.value.ui32 =
14219 ipst->ips_icmp_mib.icmpOutDestUnreachs;
14220 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds;
14221 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs;
14222 icmpkp->outSrcQuenchs.value.ui32 =
14223 ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14224 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects;
14225 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos;
14226 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps;
14227 icmpkp->outTimestamps.value.ui32 =
14228 ipst->ips_icmp_mib.icmpOutTimestamps;
14229 icmpkp->outTimestampReps.value.ui32 =
14230 ipst->ips_icmp_mib.icmpOutTimestampReps;
14231 icmpkp->outAddrMasks.value.ui32 =
14232 ipst->ips_icmp_mib.icmpOutAddrMasks;
14233 icmpkp->outAddrMaskReps.value.ui32 =
14234 ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14235 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs;
14236 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns;
14237 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded;
14238 icmpkp->outFragNeeded.value.ui32 =
14239 ipst->ips_icmp_mib.icmpOutFragNeeded;
14240 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops;
14241 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows;
14242 icmpkp->inBadRedirects.value.ui32 =
14243 ipst->ips_icmp_mib.icmpInBadRedirects;
14244
14245 netstack_rele(ns);
14246 return (0);
14247 }
14248
14249 /*
14250 * This is the fanout function for raw socket opened for SCTP. Note
14251 * that it is called after SCTP checks that there is no socket which
14252 * wants a packet. Then before SCTP handles this out of the blue packet,
14253 * this function is called to see if there is any raw socket for SCTP.
14254 * If there is and it is bound to the correct address, the packet will
14255 * be sent to that socket. Note that only one raw socket can be bound to
14256 * a port. This is assured in ipcl_sctp_hash_insert();
14257 */
14258 void
14259 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14260 ip_recv_attr_t *ira)
14261 {
14262 conn_t *connp;
14263 queue_t *rq;
14264 boolean_t secure;
14265 ill_t *ill = ira->ira_ill;
14266 ip_stack_t *ipst = ill->ill_ipst;
14267 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
14268 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp;
14269 iaflags_t iraflags = ira->ira_flags;
14270 ill_t *rill = ira->ira_rill;
14271
14272 secure = iraflags & IRAF_IPSEC_SECURE;
14273
14274 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14275 ira, ipst);
14276 if (connp == NULL) {
14277 /*
14278 * Although raw sctp is not summed, OOB chunks must be.
14279 * Drop the packet here if the sctp checksum failed.
14280 */
14281 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14282 SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14283 freemsg(mp);
14284 return;
14285 }
14286 ira->ira_ill = ira->ira_rill = NULL;
14287 sctp_ootb_input(mp, ira, ipst);
14288 ira->ira_ill = ill;
14289 ira->ira_rill = rill;
14290 return;
14291 }
14292 rq = connp->conn_rq;
14293 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14294 CONN_DEC_REF(connp);
14295 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14296 freemsg(mp);
14297 return;
14298 }
14299 if (((iraflags & IRAF_IS_IPV4) ?
14300 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14301 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14302 secure) {
14303 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14304 ip6h, ira);
14305 if (mp == NULL) {
14306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14307 /* Note that mp is NULL */
14308 ip_drop_input("ipIfStatsInDiscards", mp, ill);
14309 CONN_DEC_REF(connp);
14310 return;
14311 }
14312 }
14313
14314 if (iraflags & IRAF_ICMP_ERROR) {
14315 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14316 } else {
14317 ill_t *rill = ira->ira_rill;
14318
14319 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14320 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14321 ira->ira_ill = ira->ira_rill = NULL;
14322 (connp->conn_recv)(connp, mp, NULL, ira);
14323 ira->ira_ill = ill;
14324 ira->ira_rill = rill;
14325 }
14326 CONN_DEC_REF(connp);
14327 }
14328
14329 /*
14330 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14331 * header before the ip payload.
14332 */
14333 static void
14334 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14335 {
14336 int len = (mp->b_wptr - mp->b_rptr);
14337 mblk_t *ip_mp;
14338
14339 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14340 if (is_fp_mp || len != fp_mp_len) {
14341 if (len > fp_mp_len) {
14342 /*
14343 * fastpath header and ip header in the first mblk
14344 */
14345 mp->b_rptr += fp_mp_len;
14346 } else {
14347 /*
14348 * ip_xmit_attach_llhdr had to prepend an mblk to
14349 * attach the fastpath header before ip header.
14350 */
14351 ip_mp = mp->b_cont;
14352 freeb(mp);
14353 mp = ip_mp;
14354 mp->b_rptr += (fp_mp_len - len);
14355 }
14356 } else {
14357 ip_mp = mp->b_cont;
14358 freeb(mp);
14359 mp = ip_mp;
14360 }
14361 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14362 freemsg(mp);
14363 }
14364
14365 /*
14366 * Normal post fragmentation function.
14367 *
14368 * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14369 * using the same state machine.
14370 *
14371 * We return an error on failure. In particular we return EWOULDBLOCK
14372 * when the driver flow controls. In that case this ensures that ip_wsrv runs
14373 * (currently by canputnext failure resulting in backenabling from GLD.)
14374 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14375 * indication that they can flow control until ip_wsrv() tells then to restart.
14376 *
14377 * If the nce passed by caller is incomplete, this function
14378 * queues the packet and if necessary, sends ARP request and bails.
14379 * If the Neighbor Cache passed is fully resolved, we simply prepend
14380 * the link-layer header to the packet, do ipsec hw acceleration
14381 * work if necessary, and send the packet out on the wire.
14382 */
14383 /* ARGSUSED6 */
14384 int
14385 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14386 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14387 {
14388 queue_t *wq;
14389 ill_t *ill = nce->nce_ill;
14390 ip_stack_t *ipst = ill->ill_ipst;
14391 uint64_t delta;
14392 boolean_t isv6 = ill->ill_isv6;
14393 boolean_t fp_mp;
14394 ncec_t *ncec = nce->nce_common;
14395 int64_t now = LBOLT_FASTPATH64;
14396 boolean_t is_probe;
14397
14398 DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14399
14400 ASSERT(mp != NULL);
14401 ASSERT(mp->b_datap->db_type == M_DATA);
14402 ASSERT(pkt_len == msgdsize(mp));
14403
14404 /*
14405 * If we have already been here and are coming back after ARP/ND.
14406 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14407 * in that case since they have seen the packet when it came here
14408 * the first time.
14409 */
14410 if (ixaflags & IXAF_NO_TRACE)
14411 goto sendit;
14412
14413 if (ixaflags & IXAF_IS_IPV4) {
14414 ipha_t *ipha = (ipha_t *)mp->b_rptr;
14415
14416 ASSERT(!isv6);
14417 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14418 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14419 !(ixaflags & IXAF_NO_PFHOOK)) {
14420 int error;
14421
14422 FW_HOOKS(ipst->ips_ip4_physical_out_event,
14423 ipst->ips_ipv4firewall_physical_out,
14424 NULL, ill, ipha, mp, mp, 0, ipst, error);
14425 DTRACE_PROBE1(ip4__physical__out__end,
14426 mblk_t *, mp);
14427 if (mp == NULL)
14428 return (error);
14429
14430 /* The length could have changed */
14431 pkt_len = msgdsize(mp);
14432 }
14433 if (ipst->ips_ip4_observe.he_interested) {
14434 /*
14435 * Note that for TX the zoneid is the sending
14436 * zone, whether or not MLP is in play.
14437 * Since the szone argument is the IP zoneid (i.e.,
14438 * zero for exclusive-IP zones) and ipobs wants
14439 * the system zoneid, we map it here.
14440 */
14441 szone = IP_REAL_ZONEID(szone, ipst);
14442
14443 /*
14444 * On the outbound path the destination zone will be
14445 * unknown as we're sending this packet out on the
14446 * wire.
14447 */
14448 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14449 ill, ipst);
14450 }
14451 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14452 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill,
14453 ipha_t *, ipha, ip6_t *, NULL, int, 0);
14454 } else {
14455 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14456
14457 ASSERT(isv6);
14458 ASSERT(pkt_len ==
14459 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14460 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14461 !(ixaflags & IXAF_NO_PFHOOK)) {
14462 int error;
14463
14464 FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14465 ipst->ips_ipv6firewall_physical_out,
14466 NULL, ill, ip6h, mp, mp, 0, ipst, error);
14467 DTRACE_PROBE1(ip6__physical__out__end,
14468 mblk_t *, mp);
14469 if (mp == NULL)
14470 return (error);
14471
14472 /* The length could have changed */
14473 pkt_len = msgdsize(mp);
14474 }
14475 if (ipst->ips_ip6_observe.he_interested) {
14476 /* See above */
14477 szone = IP_REAL_ZONEID(szone, ipst);
14478
14479 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14480 ill, ipst);
14481 }
14482 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14483 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill,
14484 ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14485 }
14486
14487 sendit:
14488 /*
14489 * We check the state without a lock because the state can never
14490 * move "backwards" to initial or incomplete.
14491 */
14492 switch (ncec->ncec_state) {
14493 case ND_REACHABLE:
14494 case ND_STALE:
14495 case ND_DELAY:
14496 case ND_PROBE:
14497 mp = ip_xmit_attach_llhdr(mp, nce);
14498 if (mp == NULL) {
14499 /*
14500 * ip_xmit_attach_llhdr has increased
14501 * ipIfStatsOutDiscards and called ip_drop_output()
14502 */
14503 return (ENOBUFS);
14504 }
14505 /*
14506 * check if nce_fastpath completed and we tagged on a
14507 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14508 */
14509 fp_mp = (mp->b_datap->db_type == M_DATA);
14510
14511 if (fp_mp &&
14512 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14513 ill_dld_direct_t *idd;
14514
14515 idd = &ill->ill_dld_capab->idc_direct;
14516 /*
14517 * Send the packet directly to DLD, where it
14518 * may be queued depending on the availability
14519 * of transmit resources at the media layer.
14520 * Return value should be taken into
14521 * account and flow control the TCP.
14522 */
14523 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14524 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14525 pkt_len);
14526
14527 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14528 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14529 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14530 } else {
14531 uintptr_t cookie;
14532
14533 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14534 mp, (uintptr_t)xmit_hint, 0)) != 0) {
14535 if (ixacookie != NULL)
14536 *ixacookie = cookie;
14537 return (EWOULDBLOCK);
14538 }
14539 }
14540 } else {
14541 wq = ill->ill_wq;
14542
14543 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14544 !canputnext(wq)) {
14545 if (ixacookie != NULL)
14546 *ixacookie = 0;
14547 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14548 nce->nce_fp_mp != NULL ?
14549 MBLKL(nce->nce_fp_mp) : 0);
14550 return (EWOULDBLOCK);
14551 }
14552 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14553 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14554 pkt_len);
14555 putnext(wq, mp);
14556 }
14557
14558 /*
14559 * The rest of this function implements Neighbor Unreachability
14560 * detection. Determine if the ncec is eligible for NUD.
14561 */
14562 if (ncec->ncec_flags & NCE_F_NONUD)
14563 return (0);
14564
14565 ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14566
14567 /*
14568 * Check for upper layer advice
14569 */
14570 if (ixaflags & IXAF_REACH_CONF) {
14571 timeout_id_t tid;
14572
14573 /*
14574 * It should be o.k. to check the state without
14575 * a lock here, at most we lose an advice.
14576 */
14577 ncec->ncec_last = TICK_TO_MSEC(now);
14578 if (ncec->ncec_state != ND_REACHABLE) {
14579 mutex_enter(&ncec->ncec_lock);
14580 ncec->ncec_state = ND_REACHABLE;
14581 tid = ncec->ncec_timeout_id;
14582 ncec->ncec_timeout_id = 0;
14583 mutex_exit(&ncec->ncec_lock);
14584 (void) untimeout(tid);
14585 if (ip_debug > 2) {
14586 /* ip1dbg */
14587 pr_addr_dbg("ip_xmit: state"
14588 " for %s changed to"
14589 " REACHABLE\n", AF_INET6,
14590 &ncec->ncec_addr);
14591 }
14592 }
14593 return (0);
14594 }
14595
14596 delta = TICK_TO_MSEC(now) - ncec->ncec_last;
14597 ip1dbg(("ip_xmit: delta = %" PRId64
14598 " ill_reachable_time = %d \n", delta,
14599 ill->ill_reachable_time));
14600 if (delta > (uint64_t)ill->ill_reachable_time) {
14601 mutex_enter(&ncec->ncec_lock);
14602 switch (ncec->ncec_state) {
14603 case ND_REACHABLE:
14604 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14605 /* FALLTHROUGH */
14606 case ND_STALE:
14607 /*
14608 * ND_REACHABLE is identical to
14609 * ND_STALE in this specific case. If
14610 * reachable time has expired for this
14611 * neighbor (delta is greater than
14612 * reachable time), conceptually, the
14613 * neighbor cache is no longer in
14614 * REACHABLE state, but already in
14615 * STALE state. So the correct
14616 * transition here is to ND_DELAY.
14617 */
14618 ncec->ncec_state = ND_DELAY;
14619 mutex_exit(&ncec->ncec_lock);
14620 nce_restart_timer(ncec,
14621 ipst->ips_delay_first_probe_time);
14622 if (ip_debug > 3) {
14623 /* ip2dbg */
14624 pr_addr_dbg("ip_xmit: state"
14625 " for %s changed to"
14626 " DELAY\n", AF_INET6,
14627 &ncec->ncec_addr);
14628 }
14629 break;
14630 case ND_DELAY:
14631 case ND_PROBE:
14632 mutex_exit(&ncec->ncec_lock);
14633 /* Timers have already started */
14634 break;
14635 case ND_UNREACHABLE:
14636 /*
14637 * nce_timer has detected that this ncec
14638 * is unreachable and initiated deleting
14639 * this ncec.
14640 * This is a harmless race where we found the
14641 * ncec before it was deleted and have
14642 * just sent out a packet using this
14643 * unreachable ncec.
14644 */
14645 mutex_exit(&ncec->ncec_lock);
14646 break;
14647 default:
14648 ASSERT(0);
14649 mutex_exit(&ncec->ncec_lock);
14650 }
14651 }
14652 return (0);
14653
14654 case ND_INCOMPLETE:
14655 /*
14656 * the state could have changed since we didn't hold the lock.
14657 * Re-verify state under lock.
14658 */
14659 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14660 mutex_enter(&ncec->ncec_lock);
14661 if (NCE_ISREACHABLE(ncec)) {
14662 mutex_exit(&ncec->ncec_lock);
14663 goto sendit;
14664 }
14665 /* queue the packet */
14666 nce_queue_mp(ncec, mp, is_probe);
14667 mutex_exit(&ncec->ncec_lock);
14668 DTRACE_PROBE2(ip__xmit__incomplete,
14669 (ncec_t *), ncec, (mblk_t *), mp);
14670 return (0);
14671
14672 case ND_INITIAL:
14673 /*
14674 * State could have changed since we didn't hold the lock, so
14675 * re-verify state.
14676 */
14677 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14678 mutex_enter(&ncec->ncec_lock);
14679 if (NCE_ISREACHABLE(ncec)) {
14680 mutex_exit(&ncec->ncec_lock);
14681 goto sendit;
14682 }
14683 nce_queue_mp(ncec, mp, is_probe);
14684 if (ncec->ncec_state == ND_INITIAL) {
14685 ncec->ncec_state = ND_INCOMPLETE;
14686 mutex_exit(&ncec->ncec_lock);
14687 /*
14688 * figure out the source we want to use
14689 * and resolve it.
14690 */
14691 ip_ndp_resolve(ncec);
14692 } else {
14693 mutex_exit(&ncec->ncec_lock);
14694 }
14695 return (0);
14696
14697 case ND_UNREACHABLE:
14698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14699 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14700 mp, ill);
14701 freemsg(mp);
14702 return (0);
14703
14704 default:
14705 ASSERT(0);
14706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14707 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14708 mp, ill);
14709 freemsg(mp);
14710 return (ENETUNREACH);
14711 }
14712 }
14713
14714 /*
14715 * Return B_TRUE if the buffers differ in length or content.
14716 * This is used for comparing extension header buffers.
14717 * Note that an extension header would be declared different
14718 * even if all that changed was the next header value in that header i.e.
14719 * what really changed is the next extension header.
14720 */
14721 boolean_t
14722 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14723 uint_t blen)
14724 {
14725 if (!b_valid)
14726 blen = 0;
14727
14728 if (alen != blen)
14729 return (B_TRUE);
14730 if (alen == 0)
14731 return (B_FALSE); /* Both zero length */
14732 return (bcmp(abuf, bbuf, alen));
14733 }
14734
14735 /*
14736 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14737 * Return B_FALSE if memory allocation fails - don't change any state!
14738 */
14739 boolean_t
14740 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14741 const void *src, uint_t srclen)
14742 {
14743 void *dst;
14744
14745 if (!src_valid)
14746 srclen = 0;
14747
14748 ASSERT(*dstlenp == 0);
14749 if (src != NULL && srclen != 0) {
14750 dst = mi_alloc(srclen, BPRI_MED);
14751 if (dst == NULL)
14752 return (B_FALSE);
14753 } else {
14754 dst = NULL;
14755 }
14756 if (*dstp != NULL)
14757 mi_free(*dstp);
14758 *dstp = dst;
14759 *dstlenp = dst == NULL ? 0 : srclen;
14760 return (B_TRUE);
14761 }
14762
14763 /*
14764 * Replace what is in *dst, *dstlen with the source.
14765 * Assumes ip_allocbuf has already been called.
14766 */
14767 void
14768 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14769 const void *src, uint_t srclen)
14770 {
14771 if (!src_valid)
14772 srclen = 0;
14773
14774 ASSERT(*dstlenp == srclen);
14775 if (src != NULL && srclen != 0)
14776 bcopy(src, *dstp, srclen);
14777 }
14778
14779 /*
14780 * Free the storage pointed to by the members of an ip_pkt_t.
14781 */
14782 void
14783 ip_pkt_free(ip_pkt_t *ipp)
14784 {
14785 uint_t fields = ipp->ipp_fields;
14786
14787 if (fields & IPPF_HOPOPTS) {
14788 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14789 ipp->ipp_hopopts = NULL;
14790 ipp->ipp_hopoptslen = 0;
14791 }
14792 if (fields & IPPF_RTHDRDSTOPTS) {
14793 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14794 ipp->ipp_rthdrdstopts = NULL;
14795 ipp->ipp_rthdrdstoptslen = 0;
14796 }
14797 if (fields & IPPF_DSTOPTS) {
14798 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14799 ipp->ipp_dstopts = NULL;
14800 ipp->ipp_dstoptslen = 0;
14801 }
14802 if (fields & IPPF_RTHDR) {
14803 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14804 ipp->ipp_rthdr = NULL;
14805 ipp->ipp_rthdrlen = 0;
14806 }
14807 if (fields & IPPF_IPV4_OPTIONS) {
14808 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14809 ipp->ipp_ipv4_options = NULL;
14810 ipp->ipp_ipv4_options_len = 0;
14811 }
14812 if (fields & IPPF_LABEL_V4) {
14813 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14814 ipp->ipp_label_v4 = NULL;
14815 ipp->ipp_label_len_v4 = 0;
14816 }
14817 if (fields & IPPF_LABEL_V6) {
14818 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14819 ipp->ipp_label_v6 = NULL;
14820 ipp->ipp_label_len_v6 = 0;
14821 }
14822 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14823 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14824 }
14825
14826 /*
14827 * Copy from src to dst and allocate as needed.
14828 * Returns zero or ENOMEM.
14829 *
14830 * The caller must initialize dst to zero.
14831 */
14832 int
14833 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14834 {
14835 uint_t fields = src->ipp_fields;
14836
14837 /* Start with fields that don't require memory allocation */
14838 dst->ipp_fields = fields &
14839 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14840 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14841
14842 dst->ipp_addr = src->ipp_addr;
14843 dst->ipp_unicast_hops = src->ipp_unicast_hops;
14844 dst->ipp_hoplimit = src->ipp_hoplimit;
14845 dst->ipp_tclass = src->ipp_tclass;
14846 dst->ipp_type_of_service = src->ipp_type_of_service;
14847
14848 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14849 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14850 return (0);
14851
14852 if (fields & IPPF_HOPOPTS) {
14853 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14854 if (dst->ipp_hopopts == NULL) {
14855 ip_pkt_free(dst);
14856 return (ENOMEM);
14857 }
14858 dst->ipp_fields |= IPPF_HOPOPTS;
14859 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14860 src->ipp_hopoptslen);
14861 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14862 }
14863 if (fields & IPPF_RTHDRDSTOPTS) {
14864 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14865 kmflag);
14866 if (dst->ipp_rthdrdstopts == NULL) {
14867 ip_pkt_free(dst);
14868 return (ENOMEM);
14869 }
14870 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14871 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14872 src->ipp_rthdrdstoptslen);
14873 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14874 }
14875 if (fields & IPPF_DSTOPTS) {
14876 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14877 if (dst->ipp_dstopts == NULL) {
14878 ip_pkt_free(dst);
14879 return (ENOMEM);
14880 }
14881 dst->ipp_fields |= IPPF_DSTOPTS;
14882 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14883 src->ipp_dstoptslen);
14884 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14885 }
14886 if (fields & IPPF_RTHDR) {
14887 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14888 if (dst->ipp_rthdr == NULL) {
14889 ip_pkt_free(dst);
14890 return (ENOMEM);
14891 }
14892 dst->ipp_fields |= IPPF_RTHDR;
14893 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14894 src->ipp_rthdrlen);
14895 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14896 }
14897 if (fields & IPPF_IPV4_OPTIONS) {
14898 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14899 kmflag);
14900 if (dst->ipp_ipv4_options == NULL) {
14901 ip_pkt_free(dst);
14902 return (ENOMEM);
14903 }
14904 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14905 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14906 src->ipp_ipv4_options_len);
14907 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14908 }
14909 if (fields & IPPF_LABEL_V4) {
14910 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14911 if (dst->ipp_label_v4 == NULL) {
14912 ip_pkt_free(dst);
14913 return (ENOMEM);
14914 }
14915 dst->ipp_fields |= IPPF_LABEL_V4;
14916 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14917 src->ipp_label_len_v4);
14918 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14919 }
14920 if (fields & IPPF_LABEL_V6) {
14921 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14922 if (dst->ipp_label_v6 == NULL) {
14923 ip_pkt_free(dst);
14924 return (ENOMEM);
14925 }
14926 dst->ipp_fields |= IPPF_LABEL_V6;
14927 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14928 src->ipp_label_len_v6);
14929 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14930 }
14931 if (fields & IPPF_FRAGHDR) {
14932 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14933 if (dst->ipp_fraghdr == NULL) {
14934 ip_pkt_free(dst);
14935 return (ENOMEM);
14936 }
14937 dst->ipp_fields |= IPPF_FRAGHDR;
14938 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14939 src->ipp_fraghdrlen);
14940 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14941 }
14942 return (0);
14943 }
14944
14945 /*
14946 * Returns INADDR_ANY if no source route
14947 */
14948 ipaddr_t
14949 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14950 {
14951 ipaddr_t nexthop = INADDR_ANY;
14952 ipoptp_t opts;
14953 uchar_t *opt;
14954 uint8_t optval;
14955 uint8_t optlen;
14956 uint32_t totallen;
14957
14958 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14959 return (INADDR_ANY);
14960
14961 totallen = ipp->ipp_ipv4_options_len;
14962 if (totallen & 0x3)
14963 return (INADDR_ANY);
14964
14965 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14966 optval != IPOPT_EOL;
14967 optval = ipoptp_next(&opts)) {
14968 opt = opts.ipoptp_cur;
14969 switch (optval) {
14970 uint8_t off;
14971 case IPOPT_SSRR:
14972 case IPOPT_LSRR:
14973 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14974 break;
14975 }
14976 optlen = opts.ipoptp_len;
14977 off = opt[IPOPT_OFFSET];
14978 off--;
14979 if (optlen < IP_ADDR_LEN ||
14980 off > optlen - IP_ADDR_LEN) {
14981 /* End of source route */
14982 break;
14983 }
14984 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14985 if (nexthop == htonl(INADDR_LOOPBACK)) {
14986 /* Ignore */
14987 nexthop = INADDR_ANY;
14988 break;
14989 }
14990 break;
14991 }
14992 }
14993 return (nexthop);
14994 }
14995
14996 /*
14997 * Reverse a source route.
14998 */
14999 void
15000 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15001 {
15002 ipaddr_t tmp;
15003 ipoptp_t opts;
15004 uchar_t *opt;
15005 uint8_t optval;
15006 uint32_t totallen;
15007
15008 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15009 return;
15010
15011 totallen = ipp->ipp_ipv4_options_len;
15012 if (totallen & 0x3)
15013 return;
15014
15015 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15016 optval != IPOPT_EOL;
15017 optval = ipoptp_next(&opts)) {
15018 uint8_t off1, off2;
15019
15020 opt = opts.ipoptp_cur;
15021 switch (optval) {
15022 case IPOPT_SSRR:
15023 case IPOPT_LSRR:
15024 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15025 break;
15026 }
15027 off1 = IPOPT_MINOFF_SR - 1;
15028 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15029 while (off2 > off1) {
15030 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15031 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15032 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15033 off2 -= IP_ADDR_LEN;
15034 off1 += IP_ADDR_LEN;
15035 }
15036 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15037 break;
15038 }
15039 }
15040 }
15041
15042 /*
15043 * Returns NULL if no routing header
15044 */
15045 in6_addr_t *
15046 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15047 {
15048 in6_addr_t *nexthop = NULL;
15049 ip6_rthdr0_t *rthdr;
15050
15051 if (!(ipp->ipp_fields & IPPF_RTHDR))
15052 return (NULL);
15053
15054 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15055 if (rthdr->ip6r0_segleft == 0)
15056 return (NULL);
15057
15058 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15059 return (nexthop);
15060 }
15061
15062 zoneid_t
15063 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15064 zoneid_t lookup_zoneid)
15065 {
15066 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15067 ire_t *ire;
15068 int ire_flags = MATCH_IRE_TYPE;
15069 zoneid_t zoneid = ALL_ZONES;
15070
15071 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15072 return (ALL_ZONES);
15073
15074 if (lookup_zoneid != ALL_ZONES)
15075 ire_flags |= MATCH_IRE_ZONEONLY;
15076 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15077 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15078 if (ire != NULL) {
15079 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15080 ire_refrele(ire);
15081 }
15082 return (zoneid);
15083 }
15084
15085 zoneid_t
15086 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15087 ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15088 {
15089 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15090 ire_t *ire;
15091 int ire_flags = MATCH_IRE_TYPE;
15092 zoneid_t zoneid = ALL_ZONES;
15093
15094 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15095 return (ALL_ZONES);
15096
15097 if (IN6_IS_ADDR_LINKLOCAL(addr))
15098 ire_flags |= MATCH_IRE_ILL;
15099
15100 if (lookup_zoneid != ALL_ZONES)
15101 ire_flags |= MATCH_IRE_ZONEONLY;
15102 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15103 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15104 if (ire != NULL) {
15105 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15106 ire_refrele(ire);
15107 }
15108 return (zoneid);
15109 }
15110
15111 /*
15112 * IP obserability hook support functions.
15113 */
15114 static void
15115 ipobs_init(ip_stack_t *ipst)
15116 {
15117 netid_t id;
15118
15119 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15120
15121 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15122 VERIFY(ipst->ips_ip4_observe_pr != NULL);
15123
15124 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15125 VERIFY(ipst->ips_ip6_observe_pr != NULL);
15126 }
15127
15128 static void
15129 ipobs_fini(ip_stack_t *ipst)
15130 {
15131
15132 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15133 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15134 }
15135
15136 /*
15137 * hook_pkt_observe_t is composed in network byte order so that the
15138 * entire mblk_t chain handed into hook_run can be used as-is.
15139 * The caveat is that use of the fields, such as the zone fields,
15140 * requires conversion into host byte order first.
15141 */
15142 void
15143 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15144 const ill_t *ill, ip_stack_t *ipst)
15145 {
15146 hook_pkt_observe_t *hdr;
15147 uint64_t grifindex;
15148 mblk_t *imp;
15149
15150 imp = allocb(sizeof (*hdr), BPRI_HI);
15151 if (imp == NULL)
15152 return;
15153
15154 hdr = (hook_pkt_observe_t *)imp->b_rptr;
15155 /*
15156 * b_wptr is set to make the apparent size of the data in the mblk_t
15157 * to exclude the pointers at the end of hook_pkt_observer_t.
15158 */
15159 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15160 imp->b_cont = mp;
15161
15162 ASSERT(DB_TYPE(mp) == M_DATA);
15163
15164 if (IS_UNDER_IPMP(ill))
15165 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15166 else
15167 grifindex = 0;
15168
15169 hdr->hpo_version = 1;
15170 hdr->hpo_htype = htons(htype);
15171 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15172 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15173 hdr->hpo_grifindex = htonl(grifindex);
15174 hdr->hpo_zsrc = htonl(zsrc);
15175 hdr->hpo_zdst = htonl(zdst);
15176 hdr->hpo_pkt = imp;
15177 hdr->hpo_ctx = ipst->ips_netstack;
15178
15179 if (ill->ill_isv6) {
15180 hdr->hpo_family = AF_INET6;
15181 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15182 ipst->ips_ipv6observing, (hook_data_t)hdr);
15183 } else {
15184 hdr->hpo_family = AF_INET;
15185 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15186 ipst->ips_ipv4observing, (hook_data_t)hdr);
15187 }
15188
15189 imp->b_cont = NULL;
15190 freemsg(imp);
15191 }
15192
15193 /*
15194 * Utility routine that checks if `v4srcp' is a valid address on underlying
15195 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif
15196 * associated with `v4srcp' on success. NOTE: if this is not called from
15197 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15198 * group during or after this lookup.
15199 */
15200 boolean_t
15201 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15202 {
15203 ipif_t *ipif;
15204
15205 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15206 if (ipif != NULL) {
15207 if (ipifp != NULL)
15208 *ipifp = ipif;
15209 else
15210 ipif_refrele(ipif);
15211 return (B_TRUE);
15212 }
15213
15214 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15215 *v4srcp));
15216 return (B_FALSE);
15217 }
15218
15219 /*
15220 * Transport protocol call back function for CPU state change.
15221 */
15222 /* ARGSUSED */
15223 static int
15224 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15225 {
15226 processorid_t cpu_seqid;
15227 netstack_handle_t nh;
15228 netstack_t *ns;
15229
15230 ASSERT(MUTEX_HELD(&cpu_lock));
15231
15232 switch (what) {
15233 case CPU_CONFIG:
15234 case CPU_ON:
15235 case CPU_INIT:
15236 case CPU_CPUPART_IN:
15237 cpu_seqid = cpu[id]->cpu_seqid;
15238 netstack_next_init(&nh);
15239 while ((ns = netstack_next(&nh)) != NULL) {
15240 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15241 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15242 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15243 netstack_rele(ns);
15244 }
15245 netstack_next_fini(&nh);
15246 break;
15247 case CPU_UNCONFIG:
15248 case CPU_OFF:
15249 case CPU_CPUPART_OUT:
15250 /*
15251 * Nothing to do. We don't remove the per CPU stats from
15252 * the IP stack even when the CPU goes offline.
15253 */
15254 break;
15255 default:
15256 break;
15257 }
15258 return (0);
15259 }