1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <mdb/mdb_param.h> 27 #include <mdb/mdb_modapi.h> 28 #include <mdb/mdb_ks.h> 29 #include <mdb/mdb_ctf.h> 30 31 #include <sys/types.h> 32 #include <sys/thread.h> 33 #include <sys/session.h> 34 #include <sys/user.h> 35 #include <sys/proc.h> 36 #include <sys/var.h> 37 #include <sys/t_lock.h> 38 #include <sys/callo.h> 39 #include <sys/priocntl.h> 40 #include <sys/class.h> 41 #include <sys/regset.h> 42 #include <sys/stack.h> 43 #include <sys/cpuvar.h> 44 #include <sys/vnode.h> 45 #include <sys/vfs.h> 46 #include <sys/flock_impl.h> 47 #include <sys/kmem_impl.h> 48 #include <sys/vmem_impl.h> 49 #include <sys/kstat.h> 50 #include <sys/dditypes.h> 51 #include <sys/ddi_impldefs.h> 52 #include <sys/sysmacros.h> 53 #include <sys/sysconf.h> 54 #include <sys/task.h> 55 #include <sys/project.h> 56 #include <sys/errorq_impl.h> 57 #include <sys/cred_impl.h> 58 #include <sys/zone.h> 59 #include <sys/panic.h> 60 #include <regex.h> 61 #include <sys/port_impl.h> 62 63 #include "avl.h" 64 #include "bio.h" 65 #include "bitset.h" 66 #include "combined.h" 67 #include "contract.h" 68 #include "cpupart_mdb.h" 69 #include "cred.h" 70 #include "ctxop.h" 71 #include "cyclic.h" 72 #include "damap.h" 73 #include "devinfo.h" 74 #include "findstack.h" 75 #include "fm.h" 76 #include "group.h" 77 #include "irm.h" 78 #include "kgrep.h" 79 #include "kmem.h" 80 #include "ldi.h" 81 #include "leaky.h" 82 #include "lgrp.h" 83 #include "list.h" 84 #include "log.h" 85 #include "mdi.h" 86 #include "memory.h" 87 #include "mmd.h" 88 #include "modhash.h" 89 #include "ndievents.h" 90 #include "net.h" 91 #include "netstack.h" 92 #include "nvpair.h" 93 #include "pg.h" 94 #include "rctl.h" 95 #include "sobj.h" 96 #include "streams.h" 97 #include "sysevent.h" 98 #include "taskq.h" 99 #include "thread.h" 100 #include "tsd.h" 101 #include "tsol.h" 102 #include "typegraph.h" 103 #include "vfs.h" 104 #include "zone.h" 105 #include "hotplug.h" 106 107 /* 108 * Surely this is defined somewhere... 109 */ 110 #define NINTR 16 111 112 #define KILOS 10 113 #define MEGS 20 114 #define GIGS 30 115 116 #ifndef STACK_BIAS 117 #define STACK_BIAS 0 118 #endif 119 120 static char 121 pstat2ch(uchar_t state) 122 { 123 switch (state) { 124 case SSLEEP: return ('S'); 125 case SRUN: return ('R'); 126 case SZOMB: return ('Z'); 127 case SIDL: return ('I'); 128 case SONPROC: return ('O'); 129 case SSTOP: return ('T'); 130 case SWAIT: return ('W'); 131 default: return ('?'); 132 } 133 } 134 135 #define PS_PRTTHREADS 0x1 136 #define PS_PRTLWPS 0x2 137 #define PS_PSARGS 0x4 138 #define PS_TASKS 0x8 139 #define PS_PROJECTS 0x10 140 #define PS_ZONES 0x20 141 142 static int 143 ps_threadprint(uintptr_t addr, const void *data, void *private) 144 { 145 const kthread_t *t = (const kthread_t *)data; 146 uint_t prt_flags = *((uint_t *)private); 147 148 static const mdb_bitmask_t t_state_bits[] = { 149 { "TS_FREE", UINT_MAX, TS_FREE }, 150 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 151 { "TS_RUN", TS_RUN, TS_RUN }, 152 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 153 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 154 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 155 { "TS_WAIT", TS_WAIT, TS_WAIT }, 156 { NULL, 0, 0 } 157 }; 158 159 if (prt_flags & PS_PRTTHREADS) 160 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 161 162 if (prt_flags & PS_PRTLWPS) 163 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 164 165 return (WALK_NEXT); 166 } 167 168 int 169 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 170 { 171 uint_t prt_flags = 0; 172 proc_t pr; 173 struct pid pid, pgid, sid; 174 sess_t session; 175 cred_t cred; 176 task_t tk; 177 kproject_t pj; 178 zone_t zn; 179 180 if (!(flags & DCMD_ADDRSPEC)) { 181 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 182 mdb_warn("can't walk 'proc'"); 183 return (DCMD_ERR); 184 } 185 return (DCMD_OK); 186 } 187 188 if (mdb_getopts(argc, argv, 189 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 190 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 191 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 192 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 193 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 194 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 195 return (DCMD_USAGE); 196 197 if (DCMD_HDRSPEC(flags)) { 198 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 199 "S", "PID", "PPID", "PGID", "SID"); 200 if (prt_flags & PS_TASKS) 201 mdb_printf("%5s ", "TASK"); 202 if (prt_flags & PS_PROJECTS) 203 mdb_printf("%5s ", "PROJ"); 204 if (prt_flags & PS_ZONES) 205 mdb_printf("%5s ", "ZONE"); 206 mdb_printf("%6s %10s %?s %s%</u>\n", 207 "UID", "FLAGS", "ADDR", "NAME"); 208 } 209 210 mdb_vread(&pr, sizeof (pr), addr); 211 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 212 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 213 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 214 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 215 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 216 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 217 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 218 if (prt_flags & PS_PROJECTS) 219 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 220 if (prt_flags & PS_ZONES) 221 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 222 223 mdb_printf("%c %6d %6d %6d %6d ", 224 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 225 sid.pid_id); 226 if (prt_flags & PS_TASKS) 227 mdb_printf("%5d ", tk.tk_tkid); 228 if (prt_flags & PS_PROJECTS) 229 mdb_printf("%5d ", pj.kpj_id); 230 if (prt_flags & PS_ZONES) 231 mdb_printf("%5d ", zn.zone_id); 232 mdb_printf("%6d 0x%08x %0?p %s\n", 233 cred.cr_uid, pr.p_flag, addr, 234 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 235 236 if (prt_flags & ~PS_PSARGS) 237 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 238 239 return (DCMD_OK); 240 } 241 242 #define PG_NEWEST 0x0001 243 #define PG_OLDEST 0x0002 244 #define PG_PIPE_OUT 0x0004 245 #define PG_EXACT_MATCH 0x0008 246 247 typedef struct pgrep_data { 248 uint_t pg_flags; 249 uint_t pg_psflags; 250 uintptr_t pg_xaddr; 251 hrtime_t pg_xstart; 252 const char *pg_pat; 253 #ifndef _KMDB 254 regex_t pg_reg; 255 #endif 256 } pgrep_data_t; 257 258 /*ARGSUSED*/ 259 static int 260 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 261 { 262 const proc_t *prp = pdata; 263 pgrep_data_t *pgp = data; 264 #ifndef _KMDB 265 regmatch_t pmatch; 266 #endif 267 268 /* 269 * kmdb doesn't have access to the reg* functions, so we fall back 270 * to strstr/strcmp. 271 */ 272 #ifdef _KMDB 273 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 274 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 275 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 276 return (WALK_NEXT); 277 #else 278 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 279 return (WALK_NEXT); 280 281 if ((pgp->pg_flags & PG_EXACT_MATCH) && 282 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 283 return (WALK_NEXT); 284 #endif 285 286 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 287 hrtime_t start; 288 289 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 290 prp->p_user.u_start.tv_nsec; 291 292 if (pgp->pg_flags & PG_NEWEST) { 293 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 294 pgp->pg_xaddr = addr; 295 pgp->pg_xstart = start; 296 } 297 } else { 298 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 299 pgp->pg_xaddr = addr; 300 pgp->pg_xstart = start; 301 } 302 } 303 304 } else if (pgp->pg_flags & PG_PIPE_OUT) { 305 mdb_printf("%p\n", addr); 306 307 } else { 308 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 309 mdb_warn("can't invoke 'ps'"); 310 return (WALK_DONE); 311 } 312 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 313 } 314 315 return (WALK_NEXT); 316 } 317 318 /*ARGSUSED*/ 319 int 320 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 321 { 322 pgrep_data_t pg; 323 int i; 324 #ifndef _KMDB 325 int err; 326 #endif 327 328 if (flags & DCMD_ADDRSPEC) 329 return (DCMD_USAGE); 330 331 pg.pg_flags = 0; 332 pg.pg_xaddr = 0; 333 334 i = mdb_getopts(argc, argv, 335 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 336 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 337 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 338 NULL); 339 340 argc -= i; 341 argv += i; 342 343 if (argc != 1) 344 return (DCMD_USAGE); 345 346 /* 347 * -n and -o are mutually exclusive. 348 */ 349 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 350 return (DCMD_USAGE); 351 352 if (argv->a_type != MDB_TYPE_STRING) 353 return (DCMD_USAGE); 354 355 if (flags & DCMD_PIPE_OUT) 356 pg.pg_flags |= PG_PIPE_OUT; 357 358 pg.pg_pat = argv->a_un.a_str; 359 if (DCMD_HDRSPEC(flags)) 360 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 361 else 362 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 363 364 #ifndef _KMDB 365 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 366 size_t nbytes; 367 char *buf; 368 369 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 370 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 371 (void) regerror(err, &pg.pg_reg, buf, nbytes); 372 mdb_warn("%s\n", buf); 373 374 return (DCMD_ERR); 375 } 376 #endif 377 378 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 379 mdb_warn("can't walk 'proc'"); 380 return (DCMD_ERR); 381 } 382 383 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 384 if (pg.pg_flags & PG_PIPE_OUT) { 385 mdb_printf("%p\n", pg.pg_xaddr); 386 } else { 387 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 388 0, NULL) != 0) { 389 mdb_warn("can't invoke 'ps'"); 390 return (DCMD_ERR); 391 } 392 } 393 } 394 395 return (DCMD_OK); 396 } 397 398 int 399 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 400 { 401 task_t tk; 402 kproject_t pj; 403 404 if (!(flags & DCMD_ADDRSPEC)) { 405 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 406 mdb_warn("can't walk task_cache"); 407 return (DCMD_ERR); 408 } 409 return (DCMD_OK); 410 } 411 if (DCMD_HDRSPEC(flags)) { 412 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 413 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 414 } 415 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 416 mdb_warn("can't read task_t structure at %p", addr); 417 return (DCMD_ERR); 418 } 419 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 420 mdb_warn("can't read project_t structure at %p", addr); 421 return (DCMD_ERR); 422 } 423 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 424 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 425 tk.tk_flags); 426 return (DCMD_OK); 427 } 428 429 int 430 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 431 { 432 kproject_t pj; 433 434 if (!(flags & DCMD_ADDRSPEC)) { 435 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 436 mdb_warn("can't walk projects"); 437 return (DCMD_ERR); 438 } 439 return (DCMD_OK); 440 } 441 if (DCMD_HDRSPEC(flags)) { 442 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 443 "ADDR", "PROJID", "ZONEID", "REFCNT"); 444 } 445 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 446 mdb_warn("can't read kproject_t structure at %p", addr); 447 return (DCMD_ERR); 448 } 449 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 450 pj.kpj_count); 451 return (DCMD_OK); 452 } 453 454 /* walk callouts themselves, either by list or id hash. */ 455 int 456 callout_walk_init(mdb_walk_state_t *wsp) 457 { 458 if (wsp->walk_addr == NULL) { 459 mdb_warn("callout doesn't support global walk"); 460 return (WALK_ERR); 461 } 462 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 463 return (WALK_NEXT); 464 } 465 466 #define CALLOUT_WALK_BYLIST 0 467 #define CALLOUT_WALK_BYID 1 468 469 /* the walker arg switches between walking by list (0) and walking by id (1). */ 470 int 471 callout_walk_step(mdb_walk_state_t *wsp) 472 { 473 int retval; 474 475 if (wsp->walk_addr == NULL) { 476 return (WALK_DONE); 477 } 478 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 479 wsp->walk_addr) == -1) { 480 mdb_warn("failed to read callout at %p", wsp->walk_addr); 481 return (WALK_DONE); 482 } 483 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 484 wsp->walk_cbdata); 485 486 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 487 wsp->walk_addr = 488 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 489 } else { 490 wsp->walk_addr = 491 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 492 } 493 494 return (retval); 495 } 496 497 void 498 callout_walk_fini(mdb_walk_state_t *wsp) 499 { 500 mdb_free(wsp->walk_data, sizeof (callout_t)); 501 } 502 503 /* 504 * walker for callout lists. This is different from hashes and callouts. 505 * Thankfully, it's also simpler. 506 */ 507 int 508 callout_list_walk_init(mdb_walk_state_t *wsp) 509 { 510 if (wsp->walk_addr == NULL) { 511 mdb_warn("callout list doesn't support global walk"); 512 return (WALK_ERR); 513 } 514 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 515 return (WALK_NEXT); 516 } 517 518 int 519 callout_list_walk_step(mdb_walk_state_t *wsp) 520 { 521 int retval; 522 523 if (wsp->walk_addr == NULL) { 524 return (WALK_DONE); 525 } 526 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 527 wsp->walk_addr) != sizeof (callout_list_t)) { 528 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 529 return (WALK_ERR); 530 } 531 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 532 wsp->walk_cbdata); 533 534 wsp->walk_addr = (uintptr_t) 535 (((callout_list_t *)wsp->walk_data)->cl_next); 536 537 return (retval); 538 } 539 540 void 541 callout_list_walk_fini(mdb_walk_state_t *wsp) 542 { 543 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 544 } 545 546 /* routines/structs to walk callout table(s) */ 547 typedef struct cot_data { 548 callout_table_t *ct0; 549 callout_table_t ct; 550 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 551 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 552 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 553 int cotndx; 554 int cotsize; 555 } cot_data_t; 556 557 int 558 callout_table_walk_init(mdb_walk_state_t *wsp) 559 { 560 int max_ncpus; 561 cot_data_t *cot_walk_data; 562 563 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 564 565 if (wsp->walk_addr == NULL) { 566 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 567 mdb_warn("failed to read 'callout_table'"); 568 return (WALK_ERR); 569 } 570 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 571 mdb_warn("failed to get callout_table array size"); 572 return (WALK_ERR); 573 } 574 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 575 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 576 } else { 577 /* not a global walk */ 578 cot_walk_data->cotsize = 1; 579 } 580 581 cot_walk_data->cotndx = 0; 582 wsp->walk_data = cot_walk_data; 583 584 return (WALK_NEXT); 585 } 586 587 int 588 callout_table_walk_step(mdb_walk_state_t *wsp) 589 { 590 int retval; 591 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 592 size_t size; 593 594 if (cotwd->cotndx >= cotwd->cotsize) { 595 return (WALK_DONE); 596 } 597 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 598 wsp->walk_addr) != sizeof (callout_table_t)) { 599 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 600 return (WALK_ERR); 601 } 602 603 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 604 if (cotwd->ct.ct_idhash != NULL) { 605 if (mdb_vread(cotwd->cot_idhash, size, 606 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 607 mdb_warn("failed to read id_hash at %p", 608 cotwd->ct.ct_idhash); 609 return (WALK_ERR); 610 } 611 } 612 if (cotwd->ct.ct_clhash != NULL) { 613 if (mdb_vread(&(cotwd->cot_clhash), size, 614 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 615 mdb_warn("failed to read cl_hash at %p", 616 cotwd->ct.ct_clhash); 617 return (WALK_ERR); 618 } 619 } 620 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 621 if (cotwd->ct.ct_kstat_data != NULL) { 622 if (mdb_vread(&(cotwd->ct_kstat_data), size, 623 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 624 mdb_warn("failed to read kstats at %p", 625 cotwd->ct.ct_kstat_data); 626 return (WALK_ERR); 627 } 628 } 629 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 630 wsp->walk_cbdata); 631 632 cotwd->cotndx++; 633 if (cotwd->cotndx >= cotwd->cotsize) { 634 return (WALK_DONE); 635 } 636 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 637 sizeof (callout_table_t)); 638 639 return (retval); 640 } 641 642 void 643 callout_table_walk_fini(mdb_walk_state_t *wsp) 644 { 645 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 646 } 647 648 static const char *co_typenames[] = { "R", "N" }; 649 650 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 651 652 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 653 654 /* callout flags, in no particular order */ 655 #define COF_REAL 0x00000001 656 #define COF_NORM 0x00000002 657 #define COF_LONG 0x00000004 658 #define COF_SHORT 0x00000008 659 #define COF_EMPTY 0x00000010 660 #define COF_TIME 0x00000020 661 #define COF_BEFORE 0x00000040 662 #define COF_AFTER 0x00000080 663 #define COF_SEQID 0x00000100 664 #define COF_FUNC 0x00000200 665 #define COF_ADDR 0x00000400 666 #define COF_EXEC 0x00000800 667 #define COF_HIRES 0x00001000 668 #define COF_ABS 0x00002000 669 #define COF_TABLE 0x00004000 670 #define COF_BYIDH 0x00008000 671 #define COF_FREE 0x00010000 672 #define COF_LIST 0x00020000 673 #define COF_EXPREL 0x00040000 674 #define COF_HDR 0x00080000 675 #define COF_VERBOSE 0x00100000 676 #define COF_LONGLIST 0x00200000 677 #define COF_THDR 0x00400000 678 #define COF_LHDR 0x00800000 679 #define COF_CHDR 0x01000000 680 #define COF_PARAM 0x02000000 681 #define COF_DECODE 0x04000000 682 #define COF_HEAP 0x08000000 683 #define COF_QUEUE 0x10000000 684 685 /* show real and normal, short and long, expired and unexpired. */ 686 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 687 688 #define COF_LIST_FLAGS \ 689 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 690 691 /* private callout data for callback functions */ 692 typedef struct callout_data { 693 uint_t flags; /* COF_* */ 694 cpu_t *cpu; /* cpu pointer if given */ 695 int seqid; /* cpu seqid, or -1 */ 696 hrtime_t time; /* expiration time value */ 697 hrtime_t atime; /* expiration before value */ 698 hrtime_t btime; /* expiration after value */ 699 uintptr_t funcaddr; /* function address or NULL */ 700 uintptr_t param; /* parameter to function or NULL */ 701 hrtime_t now; /* current system time */ 702 int nsec_per_tick; /* for conversions */ 703 ulong_t ctbits; /* for decoding xid */ 704 callout_table_t *co_table; /* top of callout table array */ 705 int ndx; /* table index. */ 706 int bucket; /* which list/id bucket are we in */ 707 hrtime_t exp; /* expire time */ 708 int list_flags; /* copy of cl_flags */ 709 } callout_data_t; 710 711 /* this callback does the actual callback itself (finally). */ 712 /*ARGSUSED*/ 713 static int 714 callouts_cb(uintptr_t addr, const void *data, void *priv) 715 { 716 callout_data_t *coargs = (callout_data_t *)priv; 717 callout_t *co = (callout_t *)data; 718 int tableid, list_flags; 719 callout_id_t coid; 720 721 if ((coargs == NULL) || (co == NULL)) { 722 return (WALK_ERR); 723 } 724 725 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 726 /* 727 * The callout must have been reallocated. No point in 728 * walking any more. 729 */ 730 return (WALK_DONE); 731 } 732 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 733 /* 734 * The callout must have been freed. No point in 735 * walking any more. 736 */ 737 return (WALK_DONE); 738 } 739 if ((coargs->flags & COF_FUNC) && 740 (coargs->funcaddr != (uintptr_t)co->c_func)) { 741 return (WALK_NEXT); 742 } 743 if ((coargs->flags & COF_PARAM) && 744 (coargs->param != (uintptr_t)co->c_arg)) { 745 return (WALK_NEXT); 746 } 747 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 748 return (WALK_NEXT); 749 } 750 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 751 return (WALK_NEXT); 752 } 753 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 754 return (WALK_NEXT); 755 } 756 /* it is possible we don't have the exp time or flags */ 757 if (coargs->flags & COF_BYIDH) { 758 if (!(coargs->flags & COF_FREE)) { 759 /* we have to fetch the expire time ourselves. */ 760 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 761 (uintptr_t)co->c_list + offsetof(callout_list_t, 762 cl_expiration)) == -1) { 763 mdb_warn("failed to read expiration " 764 "time from %p", co->c_list); 765 coargs->exp = 0; 766 } 767 /* and flags. */ 768 if (mdb_vread(&coargs->list_flags, sizeof (int), 769 (uintptr_t)co->c_list + offsetof(callout_list_t, 770 cl_flags)) == -1) { 771 mdb_warn("failed to read list flags" 772 "from %p", co->c_list); 773 coargs->list_flags = 0; 774 } 775 } else { 776 /* free callouts can't use list pointer. */ 777 coargs->exp = 0; 778 coargs->list_flags = 0; 779 } 780 if (coargs->exp != 0) { 781 if ((coargs->flags & COF_TIME) && 782 (coargs->exp != coargs->time)) { 783 return (WALK_NEXT); 784 } 785 if ((coargs->flags & COF_BEFORE) && 786 (coargs->exp > coargs->btime)) { 787 return (WALK_NEXT); 788 } 789 if ((coargs->flags & COF_AFTER) && 790 (coargs->exp < coargs->atime)) { 791 return (WALK_NEXT); 792 } 793 } 794 /* tricky part, since both HIRES and ABS can be set */ 795 list_flags = coargs->list_flags; 796 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 797 /* both flags are set, only skip "regular" ones */ 798 if (! (list_flags & COF_LIST_FLAGS)) { 799 return (WALK_NEXT); 800 } 801 } else { 802 /* individual flags, or no flags */ 803 if ((coargs->flags & COF_HIRES) && 804 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 805 return (WALK_NEXT); 806 } 807 if ((coargs->flags & COF_ABS) && 808 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 809 return (WALK_NEXT); 810 } 811 } 812 /* 813 * We do the checks for COF_HEAP and COF_QUEUE here only if we 814 * are traversing BYIDH. If the traversal is by callout list, 815 * we do this check in callout_list_cb() to be more 816 * efficient. 817 */ 818 if ((coargs->flags & COF_HEAP) && 819 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 820 return (WALK_NEXT); 821 } 822 823 if ((coargs->flags & COF_QUEUE) && 824 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 825 return (WALK_NEXT); 826 } 827 } 828 829 #define callout_table_mask ((1 << coargs->ctbits) - 1) 830 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 831 #undef callout_table_mask 832 coid = CO_PLAIN_ID(co->c_xid); 833 834 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 835 /* 836 * We need to print the headers. If walking by id, then 837 * the list header isn't printed, so we must include 838 * that info here. 839 */ 840 if (!(coargs->flags & COF_VERBOSE)) { 841 mdb_printf("%<u>%3s %-1s %-14s %</u>", 842 "SEQ", "T", "EXP"); 843 } else if (coargs->flags & COF_BYIDH) { 844 mdb_printf("%<u>%-14s %</u>", "EXP"); 845 } 846 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 847 "XHAL", "XID", "FUNC(ARG)"); 848 if (coargs->flags & COF_LONGLIST) { 849 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 850 "PREVID", "NEXTID", "PREVL", "NEXTL"); 851 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 852 "DONE", "UTOS", "THREAD"); 853 } 854 mdb_printf("\n"); 855 coargs->flags &= ~COF_CHDR; 856 coargs->flags |= (COF_THDR | COF_LHDR); 857 } 858 859 if (!(coargs->flags & COF_ADDR)) { 860 if (!(coargs->flags & COF_VERBOSE)) { 861 mdb_printf("%-3d %1s %-14llx ", 862 TABLE_TO_SEQID(tableid), 863 co_typenames[tableid & CALLOUT_TYPE_MASK], 864 (coargs->flags & COF_EXPREL) ? 865 coargs->exp - coargs->now : coargs->exp); 866 } else if (coargs->flags & COF_BYIDH) { 867 mdb_printf("%-14x ", 868 (coargs->flags & COF_EXPREL) ? 869 coargs->exp - coargs->now : coargs->exp); 870 } 871 list_flags = coargs->list_flags; 872 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 873 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 874 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 875 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 876 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 877 (long long)coid, co->c_func, co->c_arg); 878 if (coargs->flags & COF_LONGLIST) { 879 mdb_printf(" %-?p %-?p %-?p %-?p", 880 co->c_idprev, co->c_idnext, co->c_clprev, 881 co->c_clnext); 882 mdb_printf(" %-?p %-4d %-0?p", 883 co->c_done, co->c_waiting, co->c_executor); 884 } 885 } else { 886 /* address only */ 887 mdb_printf("%-0p", addr); 888 } 889 mdb_printf("\n"); 890 return (WALK_NEXT); 891 } 892 893 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 894 /*ARGSUSED*/ 895 static int 896 callout_list_cb(uintptr_t addr, const void *data, void *priv) 897 { 898 callout_data_t *coargs = (callout_data_t *)priv; 899 callout_list_t *cl = (callout_list_t *)data; 900 callout_t *coptr; 901 int list_flags; 902 903 if ((coargs == NULL) || (cl == NULL)) { 904 return (WALK_ERR); 905 } 906 907 coargs->exp = cl->cl_expiration; 908 coargs->list_flags = cl->cl_flags; 909 if ((coargs->flags & COF_FREE) && 910 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 911 /* 912 * The callout list must have been reallocated. No point in 913 * walking any more. 914 */ 915 return (WALK_DONE); 916 } 917 if (!(coargs->flags & COF_FREE) && 918 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 919 /* 920 * The callout list must have been freed. No point in 921 * walking any more. 922 */ 923 return (WALK_DONE); 924 } 925 if ((coargs->flags & COF_TIME) && 926 (cl->cl_expiration != coargs->time)) { 927 return (WALK_NEXT); 928 } 929 if ((coargs->flags & COF_BEFORE) && 930 (cl->cl_expiration > coargs->btime)) { 931 return (WALK_NEXT); 932 } 933 if ((coargs->flags & COF_AFTER) && 934 (cl->cl_expiration < coargs->atime)) { 935 return (WALK_NEXT); 936 } 937 if (!(coargs->flags & COF_EMPTY) && 938 (cl->cl_callouts.ch_head == NULL)) { 939 return (WALK_NEXT); 940 } 941 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 942 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 943 /* both flags are set, only skip "regular" ones */ 944 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 945 return (WALK_NEXT); 946 } 947 } else { 948 if ((coargs->flags & COF_HIRES) && 949 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 950 return (WALK_NEXT); 951 } 952 if ((coargs->flags & COF_ABS) && 953 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 954 return (WALK_NEXT); 955 } 956 } 957 958 if ((coargs->flags & COF_HEAP) && 959 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 960 return (WALK_NEXT); 961 } 962 963 if ((coargs->flags & COF_QUEUE) && 964 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 965 return (WALK_NEXT); 966 } 967 968 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 969 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 970 if (!(coargs->flags & COF_VERBOSE)) { 971 /* don't be redundant again */ 972 mdb_printf("%<u>SEQ T %</u>"); 973 } 974 mdb_printf("%<u>EXP HA BUCKET " 975 "CALLOUTS %</u>"); 976 977 if (coargs->flags & COF_LONGLIST) { 978 mdb_printf("%<u> %-?s %-?s%</u>", 979 "PREV", "NEXT"); 980 } 981 mdb_printf("\n"); 982 coargs->flags &= ~COF_LHDR; 983 coargs->flags |= (COF_THDR | COF_CHDR); 984 } 985 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 986 if (!(coargs->flags & COF_ADDR)) { 987 if (!(coargs->flags & COF_VERBOSE)) { 988 mdb_printf("%3d %1s ", 989 TABLE_TO_SEQID(coargs->ndx), 990 co_typenames[coargs->ndx & 991 CALLOUT_TYPE_MASK]); 992 } 993 994 list_flags = coargs->list_flags; 995 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 996 (coargs->flags & COF_EXPREL) ? 997 coargs->exp - coargs->now : coargs->exp, 998 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 999 "H" : " ", 1000 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1001 "A" : " ", 1002 coargs->bucket, cl->cl_callouts.ch_head); 1003 1004 if (coargs->flags & COF_LONGLIST) { 1005 mdb_printf(" %-?p %-?p", 1006 cl->cl_prev, cl->cl_next); 1007 } 1008 } else { 1009 /* address only */ 1010 mdb_printf("%-0p", addr); 1011 } 1012 mdb_printf("\n"); 1013 if (coargs->flags & COF_LIST) { 1014 return (WALK_NEXT); 1015 } 1016 } 1017 /* yet another layer as we walk the actual callouts via list. */ 1018 if (cl->cl_callouts.ch_head == NULL) { 1019 return (WALK_NEXT); 1020 } 1021 /* free list structures do not have valid callouts off of them. */ 1022 if (coargs->flags & COF_FREE) { 1023 return (WALK_NEXT); 1024 } 1025 coptr = (callout_t *)cl->cl_callouts.ch_head; 1026 1027 if (coargs->flags & COF_VERBOSE) { 1028 mdb_inc_indent(4); 1029 } 1030 /* 1031 * walk callouts using yet another callback routine. 1032 * we use callouts_bytime because id hash is handled via 1033 * the callout_t_cb callback. 1034 */ 1035 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1036 (uintptr_t)coptr) == -1) { 1037 mdb_warn("cannot walk callouts at %p", coptr); 1038 return (WALK_ERR); 1039 } 1040 if (coargs->flags & COF_VERBOSE) { 1041 mdb_dec_indent(4); 1042 } 1043 1044 return (WALK_NEXT); 1045 } 1046 1047 /* this callback handles the details of callout table walking. */ 1048 static int 1049 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1050 { 1051 callout_data_t *coargs = (callout_data_t *)priv; 1052 cot_data_t *cotwd = (cot_data_t *)data; 1053 callout_table_t *ct = &(cotwd->ct); 1054 int index, seqid, cotype; 1055 int i; 1056 callout_list_t *clptr; 1057 callout_t *coptr; 1058 1059 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1060 return (WALK_ERR); 1061 } 1062 1063 index = ((char *)addr - (char *)coargs->co_table) / 1064 sizeof (callout_table_t); 1065 cotype = index & CALLOUT_TYPE_MASK; 1066 seqid = TABLE_TO_SEQID(index); 1067 1068 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1069 return (WALK_NEXT); 1070 } 1071 1072 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1073 return (WALK_NEXT); 1074 } 1075 1076 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1077 return (WALK_NEXT); 1078 } 1079 1080 if (!(coargs->flags & COF_EMPTY) && ( 1081 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 1082 return (WALK_NEXT); 1083 } 1084 1085 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1086 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1087 /* print table hdr */ 1088 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1089 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1090 coargs->flags &= ~COF_THDR; 1091 coargs->flags |= (COF_LHDR | COF_CHDR); 1092 if (coargs->flags & COF_LONGLIST) { 1093 /* more info! */ 1094 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1095 " %-?s %-?s %-?s%</u>", 1096 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1097 "PEND", "FREE", "LOCK"); 1098 } 1099 mdb_printf("\n"); 1100 } 1101 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1102 if (!(coargs->flags & COF_ADDR)) { 1103 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1104 seqid, co_typenames[cotype], 1105 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1106 ct->ct_heap); 1107 if (coargs->flags & COF_LONGLIST) { 1108 /* more info! */ 1109 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1110 " %-?lld %-?lld %-?p", 1111 ct->ct_heap_num, ct->ct_heap_max, 1112 ct->ct_taskq, ct->ct_expired.ch_head, 1113 ct->ct_queue.ch_head, 1114 cotwd->ct_timeouts_pending, 1115 cotwd->ct_allocations - 1116 cotwd->ct_timeouts_pending, 1117 ct->ct_mutex); 1118 } 1119 } else { 1120 /* address only */ 1121 mdb_printf("%-0?p", addr); 1122 } 1123 mdb_printf("\n"); 1124 if (coargs->flags & COF_TABLE) { 1125 return (WALK_NEXT); 1126 } 1127 } 1128 1129 coargs->ndx = index; 1130 if (coargs->flags & COF_VERBOSE) { 1131 mdb_inc_indent(4); 1132 } 1133 /* keep digging. */ 1134 if (!(coargs->flags & COF_BYIDH)) { 1135 /* walk the list hash table */ 1136 if (coargs->flags & COF_FREE) { 1137 clptr = ct->ct_lfree; 1138 coargs->bucket = 0; 1139 if (clptr == NULL) { 1140 return (WALK_NEXT); 1141 } 1142 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1143 (uintptr_t)clptr) == -1) { 1144 mdb_warn("cannot walk callout free list at %p", 1145 clptr); 1146 return (WALK_ERR); 1147 } 1148 } else { 1149 /* first print the expired list. */ 1150 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1151 if (clptr != NULL) { 1152 coargs->bucket = -1; 1153 if (mdb_pwalk("callout_list", callout_list_cb, 1154 coargs, (uintptr_t)clptr) == -1) { 1155 mdb_warn("cannot walk callout_list" 1156 " at %p", clptr); 1157 return (WALK_ERR); 1158 } 1159 } 1160 /* then, print the callout queue */ 1161 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1162 if (clptr != NULL) { 1163 coargs->bucket = -1; 1164 if (mdb_pwalk("callout_list", callout_list_cb, 1165 coargs, (uintptr_t)clptr) == -1) { 1166 mdb_warn("cannot walk callout_list" 1167 " at %p", clptr); 1168 return (WALK_ERR); 1169 } 1170 } 1171 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1172 if (ct->ct_clhash == NULL) { 1173 /* nothing to do */ 1174 break; 1175 } 1176 if (cotwd->cot_clhash[i].ch_head == NULL) { 1177 continue; 1178 } 1179 clptr = (callout_list_t *) 1180 cotwd->cot_clhash[i].ch_head; 1181 coargs->bucket = i; 1182 /* walk list with callback routine. */ 1183 if (mdb_pwalk("callout_list", callout_list_cb, 1184 coargs, (uintptr_t)clptr) == -1) { 1185 mdb_warn("cannot walk callout_list" 1186 " at %p", clptr); 1187 return (WALK_ERR); 1188 } 1189 } 1190 } 1191 } else { 1192 /* walk the id hash table. */ 1193 if (coargs->flags & COF_FREE) { 1194 coptr = ct->ct_free; 1195 coargs->bucket = 0; 1196 if (coptr == NULL) { 1197 return (WALK_NEXT); 1198 } 1199 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1200 (uintptr_t)coptr) == -1) { 1201 mdb_warn("cannot walk callout id free list" 1202 " at %p", coptr); 1203 return (WALK_ERR); 1204 } 1205 } else { 1206 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1207 if (ct->ct_idhash == NULL) { 1208 break; 1209 } 1210 coptr = (callout_t *) 1211 cotwd->cot_idhash[i].ch_head; 1212 if (coptr == NULL) { 1213 continue; 1214 } 1215 coargs->bucket = i; 1216 1217 /* 1218 * walk callouts directly by id. For id 1219 * chain, the callout list is just a header, 1220 * so there's no need to walk it. 1221 */ 1222 if (mdb_pwalk("callouts_byid", callouts_cb, 1223 coargs, (uintptr_t)coptr) == -1) { 1224 mdb_warn("cannot walk callouts at %p", 1225 coptr); 1226 return (WALK_ERR); 1227 } 1228 } 1229 } 1230 } 1231 if (coargs->flags & COF_VERBOSE) { 1232 mdb_dec_indent(4); 1233 } 1234 return (WALK_NEXT); 1235 } 1236 1237 /* 1238 * initialize some common info for both callout dcmds. 1239 */ 1240 int 1241 callout_common_init(callout_data_t *coargs) 1242 { 1243 /* we need a couple of things */ 1244 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1245 mdb_warn("failed to read 'callout_table'"); 1246 return (DCMD_ERR); 1247 } 1248 /* need to get now in nsecs. Approximate with hrtime vars */ 1249 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1250 sizeof (hrtime_t)) { 1251 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1252 "hrtime_base") != sizeof (hrtime_t)) { 1253 mdb_warn("Could not determine current system time"); 1254 return (DCMD_ERR); 1255 } 1256 } 1257 1258 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1259 mdb_warn("failed to read 'callout_table_bits'"); 1260 return (DCMD_ERR); 1261 } 1262 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1263 mdb_warn("failed to read 'nsec_per_tick'"); 1264 return (DCMD_ERR); 1265 } 1266 return (DCMD_OK); 1267 } 1268 1269 /* 1270 * dcmd to print callouts. Optional addr limits to specific table. 1271 * Parses lots of options that get passed to callbacks for walkers. 1272 * Has it's own help function. 1273 */ 1274 /*ARGSUSED*/ 1275 int 1276 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1277 { 1278 callout_data_t coargs; 1279 /* getopts doesn't help much with stuff like this */ 1280 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1281 char *funcname = NULL; 1282 char *paramstr = NULL; 1283 uintptr_t Stmp, Ctmp; /* for getopt. */ 1284 int retval; 1285 1286 coargs.flags = COF_DEFAULT; 1287 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1288 coargs.seqid = -1; 1289 1290 if (mdb_getopts(argc, argv, 1291 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1292 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1293 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1294 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1295 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1296 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1297 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1298 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1299 'd', MDB_OPT_SETBITS, 1, &dflag, 1300 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1301 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1302 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1303 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1304 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1305 'k', MDB_OPT_SETBITS, 1, &kflag, 1306 'f', MDB_OPT_STR, &funcname, 1307 'p', MDB_OPT_STR, ¶mstr, 1308 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1309 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1310 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1311 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1312 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1313 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1314 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1315 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1316 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1317 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1318 NULL) != argc) { 1319 return (DCMD_USAGE); 1320 } 1321 1322 /* initialize from kernel variables */ 1323 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1324 return (retval); 1325 } 1326 1327 /* do some option post-processing */ 1328 if (kflag) { 1329 coargs.time *= coargs.nsec_per_tick; 1330 coargs.atime *= coargs.nsec_per_tick; 1331 coargs.btime *= coargs.nsec_per_tick; 1332 } 1333 1334 if (dflag) { 1335 coargs.time += coargs.now; 1336 coargs.atime += coargs.now; 1337 coargs.btime += coargs.now; 1338 } 1339 if (Sflag) { 1340 if (flags & DCMD_ADDRSPEC) { 1341 mdb_printf("-S option conflicts with explicit" 1342 " address\n"); 1343 return (DCMD_USAGE); 1344 } 1345 coargs.flags |= COF_SEQID; 1346 coargs.seqid = (int)Stmp; 1347 } 1348 if (Cflag) { 1349 if (flags & DCMD_ADDRSPEC) { 1350 mdb_printf("-C option conflicts with explicit" 1351 " address\n"); 1352 return (DCMD_USAGE); 1353 } 1354 if (coargs.flags & COF_SEQID) { 1355 mdb_printf("-C and -S are mutually exclusive\n"); 1356 return (DCMD_USAGE); 1357 } 1358 coargs.cpu = (cpu_t *)Ctmp; 1359 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1360 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1361 mdb_warn("failed to read cpu_t at %p", Ctmp); 1362 return (DCMD_ERR); 1363 } 1364 coargs.flags |= COF_SEQID; 1365 } 1366 /* avoid null outputs. */ 1367 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1368 coargs.flags |= COF_REAL | COF_NORM; 1369 } 1370 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1371 coargs.flags |= COF_LONG | COF_SHORT; 1372 } 1373 if (tflag) { 1374 if (aflag || bflag) { 1375 mdb_printf("-t and -a|b are mutually exclusive\n"); 1376 return (DCMD_USAGE); 1377 } 1378 coargs.flags |= COF_TIME; 1379 } 1380 if (aflag) { 1381 coargs.flags |= COF_AFTER; 1382 } 1383 if (bflag) { 1384 coargs.flags |= COF_BEFORE; 1385 } 1386 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1387 mdb_printf("value for -a must be earlier than the value" 1388 " for -b.\n"); 1389 return (DCMD_USAGE); 1390 } 1391 1392 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1393 mdb_printf("-H and -Q are mutually exclusive\n"); 1394 return (DCMD_USAGE); 1395 } 1396 1397 if (funcname != NULL) { 1398 GElf_Sym sym; 1399 1400 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1401 coargs.funcaddr = mdb_strtoull(funcname); 1402 } else { 1403 coargs.funcaddr = sym.st_value; 1404 } 1405 coargs.flags |= COF_FUNC; 1406 } 1407 1408 if (paramstr != NULL) { 1409 GElf_Sym sym; 1410 1411 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1412 coargs.param = mdb_strtoull(paramstr); 1413 } else { 1414 coargs.param = sym.st_value; 1415 } 1416 coargs.flags |= COF_PARAM; 1417 } 1418 1419 if (!(flags & DCMD_ADDRSPEC)) { 1420 /* don't pass "dot" if no addr. */ 1421 addr = NULL; 1422 } 1423 if (addr != NULL) { 1424 /* 1425 * a callout table was specified. Ignore -r|n option 1426 * to avoid null output. 1427 */ 1428 coargs.flags |= (COF_REAL | COF_NORM); 1429 } 1430 1431 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1432 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1433 } 1434 if (coargs.flags & COF_FREE) { 1435 coargs.flags |= COF_EMPTY; 1436 /* -F = free callouts, -FL = free lists */ 1437 if (!(coargs.flags & COF_LIST)) { 1438 coargs.flags |= COF_BYIDH; 1439 } 1440 } 1441 1442 /* walk table, using specialized callback routine. */ 1443 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1444 mdb_warn("cannot walk callout_table"); 1445 return (DCMD_ERR); 1446 } 1447 return (DCMD_OK); 1448 } 1449 1450 1451 /* 1452 * Given an extended callout id, dump its information. 1453 */ 1454 /*ARGSUSED*/ 1455 int 1456 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1457 { 1458 callout_data_t coargs; 1459 callout_table_t *ctptr; 1460 callout_table_t ct; 1461 callout_id_t coid; 1462 callout_t *coptr; 1463 int tableid; 1464 callout_id_t xid; 1465 ulong_t idhash; 1466 int i, retval; 1467 const mdb_arg_t *arg; 1468 size_t size; 1469 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1470 1471 coargs.flags = COF_DEFAULT | COF_BYIDH; 1472 i = mdb_getopts(argc, argv, 1473 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1474 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1475 NULL); 1476 argc -= i; 1477 argv += i; 1478 1479 if (argc != 1) { 1480 return (DCMD_USAGE); 1481 } 1482 arg = &argv[0]; 1483 1484 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1485 xid = arg->a_un.a_val; 1486 } else { 1487 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1488 } 1489 1490 if (DCMD_HDRSPEC(flags)) { 1491 coargs.flags |= COF_CHDR; 1492 } 1493 1494 1495 /* initialize from kernel variables */ 1496 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1497 return (retval); 1498 } 1499 1500 /* we must massage the environment so that the macros will play nice */ 1501 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1502 #define callout_table_bits coargs.ctbits 1503 #define nsec_per_tick coargs.nsec_per_tick 1504 tableid = CALLOUT_ID_TO_TABLE(xid); 1505 idhash = CALLOUT_IDHASH(xid); 1506 #undef callouts_table_bits 1507 #undef callout_table_mask 1508 #undef nsec_per_tick 1509 coid = CO_PLAIN_ID(xid); 1510 1511 if (flags & DCMD_ADDRSPEC) { 1512 mdb_printf("calloutid does not accept explicit address.\n"); 1513 return (DCMD_USAGE); 1514 } 1515 1516 if (coargs.flags & COF_DECODE) { 1517 if (DCMD_HDRSPEC(flags)) { 1518 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1519 "SEQ", "T", "XL", "XID", "IDHASH"); 1520 } 1521 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1522 TABLE_TO_SEQID(tableid), 1523 co_typenames[tableid & CALLOUT_TYPE_MASK], 1524 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1525 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1526 (long long)coid, idhash); 1527 return (DCMD_OK); 1528 } 1529 1530 /* get our table. Note this relies on the types being correct */ 1531 ctptr = coargs.co_table + tableid; 1532 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1533 mdb_warn("failed to read callout_table at %p", ctptr); 1534 return (DCMD_ERR); 1535 } 1536 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1537 if (ct.ct_idhash != NULL) { 1538 if (mdb_vread(&(cot_idhash), size, 1539 (uintptr_t)ct.ct_idhash) == -1) { 1540 mdb_warn("failed to read id_hash at %p", 1541 ct.ct_idhash); 1542 return (WALK_ERR); 1543 } 1544 } 1545 1546 /* callout at beginning of hash chain */ 1547 if (ct.ct_idhash == NULL) { 1548 mdb_printf("id hash chain for this xid is empty\n"); 1549 return (DCMD_ERR); 1550 } 1551 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1552 if (coptr == NULL) { 1553 mdb_printf("id hash chain for this xid is empty\n"); 1554 return (DCMD_ERR); 1555 } 1556 1557 coargs.ndx = tableid; 1558 coargs.bucket = idhash; 1559 1560 /* use the walker, luke */ 1561 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1562 (uintptr_t)coptr) == -1) { 1563 mdb_warn("cannot walk callouts at %p", coptr); 1564 return (WALK_ERR); 1565 } 1566 1567 return (DCMD_OK); 1568 } 1569 1570 void 1571 callout_help(void) 1572 { 1573 mdb_printf("callout: display callouts.\n" 1574 "Given a callout table address, display callouts from table.\n" 1575 "Without an address, display callouts from all tables.\n" 1576 "options:\n" 1577 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1578 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1579 " -x : limit display to callouts which are executing\n" 1580 " -h : limit display to callouts based on hrestime\n" 1581 " -B : limit display to callouts based on absolute time\n" 1582 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1583 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1584 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1585 " -d : interpret time option to -t|a|b as delta from current time\n" 1586 " -k : use ticks instead of nanoseconds as arguments to" 1587 " -t|a|b. Note that\n ticks are less accurate and may not" 1588 " match other tick times (ie: lbolt).\n" 1589 " -D : display exiration time as delta from current time\n" 1590 " -S seqid : limit display to callouts for this cpu sequence id\n" 1591 " -C addr : limit display to callouts for this cpu pointer\n" 1592 " -f name|addr : limit display to callouts with this function\n" 1593 " -p name|addr : limit display to callouts functions with this" 1594 " parameter\n" 1595 " -T : display the callout table itself, instead of callouts\n" 1596 " -L : display callout lists instead of callouts\n" 1597 " -E : with -T or L, display empty data structures.\n" 1598 " -i : traverse callouts by id hash instead of list hash\n" 1599 " -F : walk free callout list (free list with -i) instead\n" 1600 " -v : display more info for each item\n" 1601 " -V : show details of each level of info as it is traversed\n" 1602 " -H : limit display to callouts in the callout heap\n" 1603 " -Q : limit display to callouts in the callout queue\n" 1604 " -A : show only addresses. Useful for pipelines.\n"); 1605 } 1606 1607 void 1608 calloutid_help(void) 1609 { 1610 mdb_printf("calloutid: display callout by id.\n" 1611 "Given an extended callout id, display the callout infomation.\n" 1612 "options:\n" 1613 " -d : do not dereference callout, just decode the id.\n" 1614 " -v : verbose display more info about the callout\n"); 1615 } 1616 1617 /*ARGSUSED*/ 1618 int 1619 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1620 { 1621 long num_classes, i; 1622 sclass_t *class_tbl; 1623 GElf_Sym g_sclass; 1624 char class_name[PC_CLNMSZ]; 1625 size_t tbl_size; 1626 1627 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1628 mdb_warn("failed to find symbol sclass\n"); 1629 return (DCMD_ERR); 1630 } 1631 1632 tbl_size = (size_t)g_sclass.st_size; 1633 num_classes = tbl_size / (sizeof (sclass_t)); 1634 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1635 1636 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1637 mdb_warn("failed to read sclass"); 1638 return (DCMD_ERR); 1639 } 1640 1641 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1642 "INIT FCN", "CLASS FCN"); 1643 1644 for (i = 0; i < num_classes; i++) { 1645 if (mdb_vread(class_name, sizeof (class_name), 1646 (uintptr_t)class_tbl[i].cl_name) == -1) 1647 (void) strcpy(class_name, "???"); 1648 1649 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1650 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1651 } 1652 1653 return (DCMD_OK); 1654 } 1655 1656 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1657 1658 int 1659 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1660 { 1661 uintptr_t rootdir; 1662 vnode_t vn; 1663 char buf[MAXPATHLEN]; 1664 1665 uint_t opt_F = FALSE; 1666 1667 if (mdb_getopts(argc, argv, 1668 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1669 return (DCMD_USAGE); 1670 1671 if (!(flags & DCMD_ADDRSPEC)) { 1672 mdb_warn("expected explicit vnode_t address before ::\n"); 1673 return (DCMD_USAGE); 1674 } 1675 1676 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1677 mdb_warn("failed to read rootdir"); 1678 return (DCMD_ERR); 1679 } 1680 1681 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1682 return (DCMD_ERR); 1683 1684 if (*buf == '\0') { 1685 mdb_printf("??\n"); 1686 return (DCMD_OK); 1687 } 1688 1689 mdb_printf("%s", buf); 1690 if (opt_F && buf[strlen(buf)-1] != '/' && 1691 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1692 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1693 mdb_printf("\n"); 1694 1695 return (DCMD_OK); 1696 } 1697 1698 int 1699 ld_walk_init(mdb_walk_state_t *wsp) 1700 { 1701 wsp->walk_data = (void *)wsp->walk_addr; 1702 return (WALK_NEXT); 1703 } 1704 1705 int 1706 ld_walk_step(mdb_walk_state_t *wsp) 1707 { 1708 int status; 1709 lock_descriptor_t ld; 1710 1711 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1712 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1713 wsp->walk_addr); 1714 return (WALK_ERR); 1715 } 1716 1717 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1718 if (status == WALK_ERR) 1719 return (WALK_ERR); 1720 1721 wsp->walk_addr = (uintptr_t)ld.l_next; 1722 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1723 return (WALK_DONE); 1724 1725 return (status); 1726 } 1727 1728 int 1729 lg_walk_init(mdb_walk_state_t *wsp) 1730 { 1731 GElf_Sym sym; 1732 1733 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1734 mdb_warn("failed to find symbol 'lock_graph'\n"); 1735 return (WALK_ERR); 1736 } 1737 1738 wsp->walk_addr = (uintptr_t)sym.st_value; 1739 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1740 1741 return (WALK_NEXT); 1742 } 1743 1744 typedef struct lg_walk_data { 1745 uintptr_t startaddr; 1746 mdb_walk_cb_t callback; 1747 void *data; 1748 } lg_walk_data_t; 1749 1750 /* 1751 * We can't use ::walk lock_descriptor directly, because the head of each graph 1752 * is really a dummy lock. Rather than trying to dynamically determine if this 1753 * is a dummy node or not, we just filter out the initial element of the 1754 * list. 1755 */ 1756 static int 1757 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1758 { 1759 lg_walk_data_t *lw = priv; 1760 1761 if (addr != lw->startaddr) 1762 return (lw->callback(addr, data, lw->data)); 1763 1764 return (WALK_NEXT); 1765 } 1766 1767 int 1768 lg_walk_step(mdb_walk_state_t *wsp) 1769 { 1770 graph_t *graph; 1771 lg_walk_data_t lw; 1772 1773 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1774 return (WALK_DONE); 1775 1776 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1777 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1778 return (WALK_ERR); 1779 } 1780 1781 wsp->walk_addr += sizeof (graph); 1782 1783 if (graph == NULL) 1784 return (WALK_NEXT); 1785 1786 lw.callback = wsp->walk_callback; 1787 lw.data = wsp->walk_cbdata; 1788 1789 lw.startaddr = (uintptr_t)&(graph->active_locks); 1790 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1791 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1792 return (WALK_ERR); 1793 } 1794 1795 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1796 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1797 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1798 return (WALK_ERR); 1799 } 1800 1801 return (WALK_NEXT); 1802 } 1803 1804 /* 1805 * The space available for the path corresponding to the locked vnode depends 1806 * on whether we are printing 32- or 64-bit addresses. 1807 */ 1808 #ifdef _LP64 1809 #define LM_VNPATHLEN 20 1810 #else 1811 #define LM_VNPATHLEN 30 1812 #endif 1813 1814 /*ARGSUSED*/ 1815 static int 1816 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1817 { 1818 const lock_descriptor_t *ld = data; 1819 char buf[LM_VNPATHLEN]; 1820 proc_t p; 1821 1822 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1823 addr, ld->l_type == F_RDLCK ? "RD" : 1824 ld->l_type == F_WRLCK ? "WR" : "??", 1825 ld->l_state, ld->l_flock.l_pid, 1826 ld->l_flock.l_pid == 0 ? "<kernel>" : 1827 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1828 "<defunct>" : p.p_user.u_comm, 1829 ld->l_vnode); 1830 1831 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1832 sizeof (buf)); 1833 mdb_printf("%s\n", buf); 1834 1835 return (WALK_NEXT); 1836 } 1837 1838 /*ARGSUSED*/ 1839 int 1840 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1841 { 1842 if (DCMD_HDRSPEC(flags)) 1843 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1844 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1845 1846 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1847 } 1848 1849 /*ARGSUSED*/ 1850 int 1851 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1852 { 1853 if ((uintptr_t)f->f_vnode == *target) { 1854 mdb_printf("file %p\n", addr); 1855 *target = NULL; 1856 } 1857 1858 return (WALK_NEXT); 1859 } 1860 1861 /*ARGSUSED*/ 1862 int 1863 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1864 { 1865 uintptr_t t = *target; 1866 1867 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1868 mdb_warn("couldn't file walk proc %p", addr); 1869 return (WALK_ERR); 1870 } 1871 1872 if (t == NULL) 1873 mdb_printf("%p\n", addr); 1874 1875 return (WALK_NEXT); 1876 } 1877 1878 /*ARGSUSED*/ 1879 int 1880 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1881 { 1882 uintptr_t target = addr; 1883 1884 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1885 return (DCMD_USAGE); 1886 1887 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1888 mdb_warn("can't proc walk"); 1889 return (DCMD_ERR); 1890 } 1891 1892 return (DCMD_OK); 1893 } 1894 1895 typedef struct datafmt { 1896 char *hdr1; 1897 char *hdr2; 1898 char *dashes; 1899 char *fmt; 1900 } datafmt_t; 1901 1902 static datafmt_t kmemfmt[] = { 1903 { "cache ", "name ", 1904 "-------------------------", "%-25s " }, 1905 { " buf", " size", "------", "%6u " }, 1906 { " buf", "in use", "------", "%6u " }, 1907 { " buf", " total", "------", "%6u " }, 1908 { " memory", " in use", "----------", "%10lu%c " }, 1909 { " alloc", " succeed", "---------", "%9u " }, 1910 { "alloc", " fail", "-----", "%5u " }, 1911 { NULL, NULL, NULL, NULL } 1912 }; 1913 1914 static datafmt_t vmemfmt[] = { 1915 { "vmem ", "name ", 1916 "-------------------------", "%-*s " }, 1917 { " memory", " in use", "----------", "%9llu%c " }, 1918 { " memory", " total", "-----------", "%10llu%c " }, 1919 { " memory", " import", "----------", "%9llu%c " }, 1920 { " alloc", " succeed", "---------", "%9llu " }, 1921 { "alloc", " fail", "-----", "%5llu " }, 1922 { NULL, NULL, NULL, NULL } 1923 }; 1924 1925 /*ARGSUSED*/ 1926 static int 1927 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1928 { 1929 short rounds, prounds; 1930 1931 if (KMEM_DUMPCC(ccp)) { 1932 rounds = ccp->cc_dump_rounds; 1933 prounds = ccp->cc_dump_prounds; 1934 } else { 1935 rounds = ccp->cc_rounds; 1936 prounds = ccp->cc_prounds; 1937 } 1938 if (rounds > 0) 1939 *avail += rounds; 1940 if (prounds > 0) 1941 *avail += prounds; 1942 1943 return (WALK_NEXT); 1944 } 1945 1946 /*ARGSUSED*/ 1947 static int 1948 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1949 { 1950 *alloc += ccp->cc_alloc; 1951 1952 return (WALK_NEXT); 1953 } 1954 1955 /*ARGSUSED*/ 1956 static int 1957 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1958 { 1959 *avail += sp->slab_chunks - sp->slab_refcnt; 1960 1961 return (WALK_NEXT); 1962 } 1963 1964 typedef struct kmastat_vmem { 1965 uintptr_t kv_addr; 1966 struct kmastat_vmem *kv_next; 1967 size_t kv_meminuse; 1968 int kv_alloc; 1969 int kv_fail; 1970 } kmastat_vmem_t; 1971 1972 typedef struct kmastat_args { 1973 kmastat_vmem_t **ka_kvpp; 1974 uint_t ka_shift; 1975 } kmastat_args_t; 1976 1977 static int 1978 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1979 { 1980 kmastat_vmem_t **kvpp = kap->ka_kvpp; 1981 kmastat_vmem_t *kv; 1982 datafmt_t *dfp = kmemfmt; 1983 int magsize; 1984 1985 int avail, alloc, total; 1986 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1987 cp->cache_slabsize; 1988 1989 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1990 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1991 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1992 1993 magsize = kmem_get_magsize(cp); 1994 1995 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1996 avail = cp->cache_full.ml_total * magsize; 1997 total = cp->cache_buftotal; 1998 1999 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2000 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2001 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2002 2003 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2004 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2005 goto out; 2006 } 2007 2008 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2009 kv->kv_next = *kvpp; 2010 kv->kv_addr = (uintptr_t)cp->cache_arena; 2011 *kvpp = kv; 2012 out: 2013 kv->kv_meminuse += meminuse; 2014 kv->kv_alloc += alloc; 2015 kv->kv_fail += cp->cache_alloc_fail; 2016 2017 mdb_printf((dfp++)->fmt, cp->cache_name); 2018 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2019 mdb_printf((dfp++)->fmt, total - avail); 2020 mdb_printf((dfp++)->fmt, total); 2021 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2022 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2023 kap->ka_shift == KILOS ? 'K' : 'B'); 2024 mdb_printf((dfp++)->fmt, alloc); 2025 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2026 mdb_printf("\n"); 2027 2028 return (WALK_NEXT); 2029 } 2030 2031 static int 2032 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2033 { 2034 kmastat_vmem_t *kv = *kap->ka_kvpp; 2035 size_t len; 2036 2037 while (kv != NULL && kv->kv_addr != addr) 2038 kv = kv->kv_next; 2039 2040 if (kv == NULL || kv->kv_alloc == 0) 2041 return (WALK_NEXT); 2042 2043 len = MIN(17, strlen(v->vm_name)); 2044 2045 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2046 17 - len, "", "", "", "", 2047 kv->kv_meminuse >> kap->ka_shift, 2048 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2049 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2050 2051 return (WALK_NEXT); 2052 } 2053 2054 /*ARGSUSED*/ 2055 static int 2056 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2057 { 2058 datafmt_t *dfp = vmemfmt; 2059 const vmem_kstat_t *vkp = &v->vm_kstat; 2060 uintptr_t paddr; 2061 vmem_t parent; 2062 int ident = 0; 2063 2064 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2065 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2066 mdb_warn("couldn't trace %p's ancestry", addr); 2067 ident = 0; 2068 break; 2069 } 2070 paddr = (uintptr_t)parent.vm_source; 2071 } 2072 2073 mdb_printf("%*s", ident, ""); 2074 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2075 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2076 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2077 *shiftp == KILOS ? 'K' : 'B'); 2078 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2079 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2080 *shiftp == KILOS ? 'K' : 'B'); 2081 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2082 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2083 *shiftp == KILOS ? 'K' : 'B'); 2084 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2085 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2086 2087 mdb_printf("\n"); 2088 2089 return (WALK_NEXT); 2090 } 2091 2092 /*ARGSUSED*/ 2093 int 2094 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2095 { 2096 kmastat_vmem_t *kv = NULL; 2097 datafmt_t *dfp; 2098 kmastat_args_t ka; 2099 2100 ka.ka_shift = 0; 2101 if (mdb_getopts(argc, argv, 2102 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2103 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2104 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2105 return (DCMD_USAGE); 2106 2107 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2108 mdb_printf("%s ", dfp->hdr1); 2109 mdb_printf("\n"); 2110 2111 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2112 mdb_printf("%s ", dfp->hdr2); 2113 mdb_printf("\n"); 2114 2115 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2116 mdb_printf("%s ", dfp->dashes); 2117 mdb_printf("\n"); 2118 2119 ka.ka_kvpp = &kv; 2120 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2121 mdb_warn("can't walk 'kmem_cache'"); 2122 return (DCMD_ERR); 2123 } 2124 2125 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2126 mdb_printf("%s ", dfp->dashes); 2127 mdb_printf("\n"); 2128 2129 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2130 mdb_warn("can't walk 'vmem'"); 2131 return (DCMD_ERR); 2132 } 2133 2134 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2135 mdb_printf("%s ", dfp->dashes); 2136 mdb_printf("\n"); 2137 2138 mdb_printf("\n"); 2139 2140 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2141 mdb_printf("%s ", dfp->hdr1); 2142 mdb_printf("\n"); 2143 2144 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2145 mdb_printf("%s ", dfp->hdr2); 2146 mdb_printf("\n"); 2147 2148 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2149 mdb_printf("%s ", dfp->dashes); 2150 mdb_printf("\n"); 2151 2152 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2153 mdb_warn("can't walk 'vmem'"); 2154 return (DCMD_ERR); 2155 } 2156 2157 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2158 mdb_printf("%s ", dfp->dashes); 2159 mdb_printf("\n"); 2160 return (DCMD_OK); 2161 } 2162 2163 /* 2164 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2165 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2166 * unfortunately, a few of the segs are both large and sparse, so we could 2167 * spend quite a bit of time scanning VAs which have no backing pages. 2168 * 2169 * So for the few very sparse segs, we skip the segment itself, and scan 2170 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2171 * Currently, we do this for: 2172 * 2173 * SEG VMEM ARENA 2174 * kvseg heap_arena 2175 * kvseg32 heap32_arena 2176 * kvseg_core heap_core_arena 2177 * 2178 * In addition, we skip the segkpm segment in its entirety, since it is very 2179 * sparse, and contains no new kernel data. 2180 */ 2181 typedef struct kgrep_walk_data { 2182 kgrep_cb_func *kg_cb; 2183 void *kg_cbdata; 2184 uintptr_t kg_kvseg; 2185 uintptr_t kg_kvseg32; 2186 uintptr_t kg_kvseg_core; 2187 uintptr_t kg_segkpm; 2188 uintptr_t kg_heap_lp_base; 2189 uintptr_t kg_heap_lp_end; 2190 } kgrep_walk_data_t; 2191 2192 static int 2193 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2194 { 2195 uintptr_t base = (uintptr_t)seg->s_base; 2196 2197 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2198 addr == kg->kg_kvseg_core) 2199 return (WALK_NEXT); 2200 2201 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2202 return (WALK_NEXT); 2203 2204 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2205 } 2206 2207 /*ARGSUSED*/ 2208 static int 2209 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2210 { 2211 /* 2212 * skip large page heap address range - it is scanned by walking 2213 * allocated vmem_segs in the heap_lp_arena 2214 */ 2215 if (seg->vs_start == kg->kg_heap_lp_base && 2216 seg->vs_end == kg->kg_heap_lp_end) 2217 return (WALK_NEXT); 2218 2219 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2220 } 2221 2222 /*ARGSUSED*/ 2223 static int 2224 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2225 { 2226 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2227 } 2228 2229 static int 2230 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2231 { 2232 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2233 2234 if (strcmp(vmem->vm_name, "heap") != 0 && 2235 strcmp(vmem->vm_name, "heap32") != 0 && 2236 strcmp(vmem->vm_name, "heap_core") != 0 && 2237 strcmp(vmem->vm_name, "heap_lp") != 0) 2238 return (WALK_NEXT); 2239 2240 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2241 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2242 2243 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2244 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2245 return (WALK_ERR); 2246 } 2247 2248 return (WALK_NEXT); 2249 } 2250 2251 int 2252 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2253 { 2254 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2255 kgrep_walk_data_t kg; 2256 2257 if (mdb_get_state() == MDB_STATE_RUNNING) { 2258 mdb_warn("kgrep can only be run on a system " 2259 "dump or under kmdb; see dumpadm(1M)\n"); 2260 return (DCMD_ERR); 2261 } 2262 2263 if (mdb_lookup_by_name("kas", &kas) == -1) { 2264 mdb_warn("failed to locate 'kas' symbol\n"); 2265 return (DCMD_ERR); 2266 } 2267 2268 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2269 mdb_warn("failed to locate 'kvseg' symbol\n"); 2270 return (DCMD_ERR); 2271 } 2272 2273 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2274 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2275 return (DCMD_ERR); 2276 } 2277 2278 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2279 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2280 return (DCMD_ERR); 2281 } 2282 2283 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2284 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2285 return (DCMD_ERR); 2286 } 2287 2288 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2289 mdb_warn("failed to read 'heap_lp_base'\n"); 2290 return (DCMD_ERR); 2291 } 2292 2293 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2294 mdb_warn("failed to read 'heap_lp_end'\n"); 2295 return (DCMD_ERR); 2296 } 2297 2298 kg.kg_cb = cb; 2299 kg.kg_cbdata = cbdata; 2300 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2301 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2302 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2303 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2304 2305 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2306 &kg, kas.st_value) == -1) { 2307 mdb_warn("failed to walk kas segments"); 2308 return (DCMD_ERR); 2309 } 2310 2311 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2312 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2313 return (DCMD_ERR); 2314 } 2315 2316 return (DCMD_OK); 2317 } 2318 2319 size_t 2320 kgrep_subr_pagesize(void) 2321 { 2322 return (PAGESIZE); 2323 } 2324 2325 typedef struct file_walk_data { 2326 struct uf_entry *fw_flist; 2327 int fw_flistsz; 2328 int fw_ndx; 2329 int fw_nofiles; 2330 } file_walk_data_t; 2331 2332 int 2333 file_walk_init(mdb_walk_state_t *wsp) 2334 { 2335 file_walk_data_t *fw; 2336 proc_t p; 2337 2338 if (wsp->walk_addr == NULL) { 2339 mdb_warn("file walk doesn't support global walks\n"); 2340 return (WALK_ERR); 2341 } 2342 2343 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2344 2345 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2346 mdb_free(fw, sizeof (file_walk_data_t)); 2347 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2348 return (WALK_ERR); 2349 } 2350 2351 if (p.p_user.u_finfo.fi_nfiles == 0) { 2352 mdb_free(fw, sizeof (file_walk_data_t)); 2353 return (WALK_DONE); 2354 } 2355 2356 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2357 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2358 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2359 2360 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2361 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2362 mdb_warn("failed to read file array at %p", 2363 p.p_user.u_finfo.fi_list); 2364 mdb_free(fw->fw_flist, fw->fw_flistsz); 2365 mdb_free(fw, sizeof (file_walk_data_t)); 2366 return (WALK_ERR); 2367 } 2368 2369 fw->fw_ndx = 0; 2370 wsp->walk_data = fw; 2371 2372 return (WALK_NEXT); 2373 } 2374 2375 int 2376 file_walk_step(mdb_walk_state_t *wsp) 2377 { 2378 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2379 struct file file; 2380 uintptr_t fp; 2381 2382 again: 2383 if (fw->fw_ndx == fw->fw_nofiles) 2384 return (WALK_DONE); 2385 2386 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2387 goto again; 2388 2389 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2390 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2391 } 2392 2393 int 2394 allfile_walk_step(mdb_walk_state_t *wsp) 2395 { 2396 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2397 struct file file; 2398 uintptr_t fp; 2399 2400 if (fw->fw_ndx == fw->fw_nofiles) 2401 return (WALK_DONE); 2402 2403 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2404 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2405 else 2406 bzero(&file, sizeof (file)); 2407 2408 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2409 } 2410 2411 void 2412 file_walk_fini(mdb_walk_state_t *wsp) 2413 { 2414 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2415 2416 mdb_free(fw->fw_flist, fw->fw_flistsz); 2417 mdb_free(fw, sizeof (file_walk_data_t)); 2418 } 2419 2420 int 2421 port_walk_init(mdb_walk_state_t *wsp) 2422 { 2423 if (wsp->walk_addr == NULL) { 2424 mdb_warn("port walk doesn't support global walks\n"); 2425 return (WALK_ERR); 2426 } 2427 2428 if (mdb_layered_walk("file", wsp) == -1) { 2429 mdb_warn("couldn't walk 'file'"); 2430 return (WALK_ERR); 2431 } 2432 return (WALK_NEXT); 2433 } 2434 2435 int 2436 port_walk_step(mdb_walk_state_t *wsp) 2437 { 2438 struct vnode vn; 2439 uintptr_t vp; 2440 uintptr_t pp; 2441 struct port port; 2442 2443 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2444 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2445 mdb_warn("failed to read vnode_t at %p", vp); 2446 return (WALK_ERR); 2447 } 2448 if (vn.v_type != VPORT) 2449 return (WALK_NEXT); 2450 2451 pp = (uintptr_t)vn.v_data; 2452 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2453 mdb_warn("failed to read port_t at %p", pp); 2454 return (WALK_ERR); 2455 } 2456 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2457 } 2458 2459 typedef struct portev_walk_data { 2460 list_node_t *pev_node; 2461 list_node_t *pev_last; 2462 size_t pev_offset; 2463 } portev_walk_data_t; 2464 2465 int 2466 portev_walk_init(mdb_walk_state_t *wsp) 2467 { 2468 portev_walk_data_t *pevd; 2469 struct port port; 2470 struct vnode vn; 2471 struct list *list; 2472 uintptr_t vp; 2473 2474 if (wsp->walk_addr == NULL) { 2475 mdb_warn("portev walk doesn't support global walks\n"); 2476 return (WALK_ERR); 2477 } 2478 2479 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2480 2481 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2482 mdb_free(pevd, sizeof (portev_walk_data_t)); 2483 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2484 return (WALK_ERR); 2485 } 2486 2487 vp = (uintptr_t)port.port_vnode; 2488 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2489 mdb_free(pevd, sizeof (portev_walk_data_t)); 2490 mdb_warn("failed to read vnode_t at %p", vp); 2491 return (WALK_ERR); 2492 } 2493 2494 if (vn.v_type != VPORT) { 2495 mdb_free(pevd, sizeof (portev_walk_data_t)); 2496 mdb_warn("input address (%p) does not point to an event port", 2497 wsp->walk_addr); 2498 return (WALK_ERR); 2499 } 2500 2501 if (port.port_queue.portq_nent == 0) { 2502 mdb_free(pevd, sizeof (portev_walk_data_t)); 2503 return (WALK_DONE); 2504 } 2505 list = &port.port_queue.portq_list; 2506 pevd->pev_offset = list->list_offset; 2507 pevd->pev_last = list->list_head.list_prev; 2508 pevd->pev_node = list->list_head.list_next; 2509 wsp->walk_data = pevd; 2510 return (WALK_NEXT); 2511 } 2512 2513 int 2514 portev_walk_step(mdb_walk_state_t *wsp) 2515 { 2516 portev_walk_data_t *pevd; 2517 struct port_kevent ev; 2518 uintptr_t evp; 2519 2520 pevd = (portev_walk_data_t *)wsp->walk_data; 2521 2522 if (pevd->pev_last == NULL) 2523 return (WALK_DONE); 2524 if (pevd->pev_node == pevd->pev_last) 2525 pevd->pev_last = NULL; /* last round */ 2526 2527 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2528 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2529 mdb_warn("failed to read port_kevent at %p", evp); 2530 return (WALK_DONE); 2531 } 2532 pevd->pev_node = ev.portkev_node.list_next; 2533 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2534 } 2535 2536 void 2537 portev_walk_fini(mdb_walk_state_t *wsp) 2538 { 2539 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2540 2541 if (pevd != NULL) 2542 mdb_free(pevd, sizeof (portev_walk_data_t)); 2543 } 2544 2545 typedef struct proc_walk_data { 2546 uintptr_t *pw_stack; 2547 int pw_depth; 2548 int pw_max; 2549 } proc_walk_data_t; 2550 2551 int 2552 proc_walk_init(mdb_walk_state_t *wsp) 2553 { 2554 GElf_Sym sym; 2555 proc_walk_data_t *pw; 2556 2557 if (wsp->walk_addr == NULL) { 2558 if (mdb_lookup_by_name("p0", &sym) == -1) { 2559 mdb_warn("failed to read 'practive'"); 2560 return (WALK_ERR); 2561 } 2562 wsp->walk_addr = (uintptr_t)sym.st_value; 2563 } 2564 2565 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2566 2567 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2568 mdb_warn("failed to read 'nproc'"); 2569 mdb_free(pw, sizeof (pw)); 2570 return (WALK_ERR); 2571 } 2572 2573 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2574 wsp->walk_data = pw; 2575 2576 return (WALK_NEXT); 2577 } 2578 2579 int 2580 proc_walk_step(mdb_walk_state_t *wsp) 2581 { 2582 proc_walk_data_t *pw = wsp->walk_data; 2583 uintptr_t addr = wsp->walk_addr; 2584 uintptr_t cld, sib; 2585 2586 int status; 2587 proc_t pr; 2588 2589 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2590 mdb_warn("failed to read proc at %p", addr); 2591 return (WALK_DONE); 2592 } 2593 2594 cld = (uintptr_t)pr.p_child; 2595 sib = (uintptr_t)pr.p_sibling; 2596 2597 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2598 pw->pw_depth--; 2599 goto sib; 2600 } 2601 2602 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2603 2604 if (status != WALK_NEXT) 2605 return (status); 2606 2607 if ((wsp->walk_addr = cld) != NULL) { 2608 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2609 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2610 addr, cld); 2611 goto sib; 2612 } 2613 2614 pw->pw_stack[pw->pw_depth++] = addr; 2615 2616 if (pw->pw_depth == pw->pw_max) { 2617 mdb_warn("depth %d exceeds max depth; try again\n", 2618 pw->pw_depth); 2619 return (WALK_DONE); 2620 } 2621 return (WALK_NEXT); 2622 } 2623 2624 sib: 2625 /* 2626 * We know that p0 has no siblings, and if another starting proc 2627 * was given, we don't want to walk its siblings anyway. 2628 */ 2629 if (pw->pw_depth == 0) 2630 return (WALK_DONE); 2631 2632 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2633 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2634 addr, sib); 2635 sib = NULL; 2636 } 2637 2638 if ((wsp->walk_addr = sib) == NULL) { 2639 if (pw->pw_depth > 0) { 2640 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2641 return (WALK_NEXT); 2642 } 2643 return (WALK_DONE); 2644 } 2645 2646 return (WALK_NEXT); 2647 } 2648 2649 void 2650 proc_walk_fini(mdb_walk_state_t *wsp) 2651 { 2652 proc_walk_data_t *pw = wsp->walk_data; 2653 2654 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2655 mdb_free(pw, sizeof (proc_walk_data_t)); 2656 } 2657 2658 int 2659 task_walk_init(mdb_walk_state_t *wsp) 2660 { 2661 task_t task; 2662 2663 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2664 mdb_warn("failed to read task at %p", wsp->walk_addr); 2665 return (WALK_ERR); 2666 } 2667 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2668 wsp->walk_data = task.tk_memb_list; 2669 return (WALK_NEXT); 2670 } 2671 2672 int 2673 task_walk_step(mdb_walk_state_t *wsp) 2674 { 2675 proc_t proc; 2676 int status; 2677 2678 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2679 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2680 return (WALK_DONE); 2681 } 2682 2683 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2684 2685 if (proc.p_tasknext == wsp->walk_data) 2686 return (WALK_DONE); 2687 2688 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2689 return (status); 2690 } 2691 2692 int 2693 project_walk_init(mdb_walk_state_t *wsp) 2694 { 2695 if (wsp->walk_addr == NULL) { 2696 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2697 mdb_warn("failed to read 'proj0p'"); 2698 return (WALK_ERR); 2699 } 2700 } 2701 wsp->walk_data = (void *)wsp->walk_addr; 2702 return (WALK_NEXT); 2703 } 2704 2705 int 2706 project_walk_step(mdb_walk_state_t *wsp) 2707 { 2708 uintptr_t addr = wsp->walk_addr; 2709 kproject_t pj; 2710 int status; 2711 2712 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2713 mdb_warn("failed to read project at %p", addr); 2714 return (WALK_DONE); 2715 } 2716 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2717 if (status != WALK_NEXT) 2718 return (status); 2719 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2720 if ((void *)wsp->walk_addr == wsp->walk_data) 2721 return (WALK_DONE); 2722 return (WALK_NEXT); 2723 } 2724 2725 static int 2726 generic_walk_step(mdb_walk_state_t *wsp) 2727 { 2728 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2729 wsp->walk_cbdata)); 2730 } 2731 2732 static int 2733 cpu_walk_cmp(const void *l, const void *r) 2734 { 2735 uintptr_t lhs = *((uintptr_t *)l); 2736 uintptr_t rhs = *((uintptr_t *)r); 2737 cpu_t lcpu, rcpu; 2738 2739 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2740 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2741 2742 if (lcpu.cpu_id < rcpu.cpu_id) 2743 return (-1); 2744 2745 if (lcpu.cpu_id > rcpu.cpu_id) 2746 return (1); 2747 2748 return (0); 2749 } 2750 2751 typedef struct cpu_walk { 2752 uintptr_t *cw_array; 2753 int cw_ndx; 2754 } cpu_walk_t; 2755 2756 int 2757 cpu_walk_init(mdb_walk_state_t *wsp) 2758 { 2759 cpu_walk_t *cw; 2760 int max_ncpus, i = 0; 2761 uintptr_t current, first; 2762 cpu_t cpu, panic_cpu; 2763 uintptr_t panicstr, addr; 2764 GElf_Sym sym; 2765 2766 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2767 2768 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2769 mdb_warn("failed to read 'max_ncpus'"); 2770 return (WALK_ERR); 2771 } 2772 2773 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2774 mdb_warn("failed to read 'panicstr'"); 2775 return (WALK_ERR); 2776 } 2777 2778 if (panicstr != NULL) { 2779 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2780 mdb_warn("failed to find 'panic_cpu'"); 2781 return (WALK_ERR); 2782 } 2783 2784 addr = (uintptr_t)sym.st_value; 2785 2786 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2787 mdb_warn("failed to read 'panic_cpu'"); 2788 return (WALK_ERR); 2789 } 2790 } 2791 2792 /* 2793 * Unfortunately, there is no platform-independent way to walk 2794 * CPUs in ID order. We therefore loop through in cpu_next order, 2795 * building an array of CPU pointers which will subsequently be 2796 * sorted. 2797 */ 2798 cw->cw_array = 2799 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2800 2801 if (mdb_readvar(&first, "cpu_list") == -1) { 2802 mdb_warn("failed to read 'cpu_list'"); 2803 return (WALK_ERR); 2804 } 2805 2806 current = first; 2807 do { 2808 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2809 mdb_warn("failed to read cpu at %p", current); 2810 return (WALK_ERR); 2811 } 2812 2813 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2814 cw->cw_array[i++] = addr; 2815 } else { 2816 cw->cw_array[i++] = current; 2817 } 2818 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2819 2820 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2821 wsp->walk_data = cw; 2822 2823 return (WALK_NEXT); 2824 } 2825 2826 int 2827 cpu_walk_step(mdb_walk_state_t *wsp) 2828 { 2829 cpu_walk_t *cw = wsp->walk_data; 2830 cpu_t cpu; 2831 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2832 2833 if (addr == NULL) 2834 return (WALK_DONE); 2835 2836 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2837 mdb_warn("failed to read cpu at %p", addr); 2838 return (WALK_DONE); 2839 } 2840 2841 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2842 } 2843 2844 typedef struct cpuinfo_data { 2845 intptr_t cid_cpu; 2846 uintptr_t **cid_ithr; 2847 char cid_print_head; 2848 char cid_print_thr; 2849 char cid_print_ithr; 2850 char cid_print_flags; 2851 } cpuinfo_data_t; 2852 2853 int 2854 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2855 { 2856 cpu_t c; 2857 int id; 2858 uint8_t pil; 2859 2860 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2861 return (WALK_NEXT); 2862 2863 if (thr->t_bound_cpu == NULL) { 2864 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2865 return (WALK_NEXT); 2866 } 2867 2868 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2869 2870 if ((id = c.cpu_id) >= NCPU) { 2871 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2872 thr->t_bound_cpu, id, NCPU); 2873 return (WALK_NEXT); 2874 } 2875 2876 if ((pil = thr->t_pil) >= NINTR) { 2877 mdb_warn("thread %p has pil (%d) greater than %d\n", 2878 addr, pil, NINTR); 2879 return (WALK_NEXT); 2880 } 2881 2882 if (cid->cid_ithr[id][pil] != NULL) { 2883 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2884 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2885 return (WALK_NEXT); 2886 } 2887 2888 cid->cid_ithr[id][pil] = addr; 2889 2890 return (WALK_NEXT); 2891 } 2892 2893 #define CPUINFO_IDWIDTH 3 2894 #define CPUINFO_FLAGWIDTH 9 2895 2896 #ifdef _LP64 2897 #if defined(__amd64) 2898 #define CPUINFO_TWIDTH 16 2899 #define CPUINFO_CPUWIDTH 16 2900 #else 2901 #define CPUINFO_CPUWIDTH 11 2902 #define CPUINFO_TWIDTH 11 2903 #endif 2904 #else 2905 #define CPUINFO_CPUWIDTH 8 2906 #define CPUINFO_TWIDTH 8 2907 #endif 2908 2909 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2910 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2911 #define CPUINFO_ITHRDELT 4 2912 2913 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2914 flagline < nflaglines ? flagbuf[flagline++] : "") 2915 2916 int 2917 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2918 { 2919 kthread_t t; 2920 disp_t disp; 2921 proc_t p; 2922 uintptr_t pinned; 2923 char **flagbuf; 2924 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2925 2926 const char *flags[] = { 2927 "RUNNING", "READY", "QUIESCED", "EXISTS", 2928 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2929 "SPARE", "FAULTED", NULL 2930 }; 2931 2932 if (cid->cid_cpu != -1) { 2933 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2934 return (WALK_NEXT); 2935 2936 /* 2937 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2938 */ 2939 cid->cid_cpu = -1; 2940 rval = WALK_DONE; 2941 } 2942 2943 if (cid->cid_print_head) { 2944 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2945 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2946 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2947 "PROC"); 2948 cid->cid_print_head = FALSE; 2949 } 2950 2951 bspl = cpu->cpu_base_spl; 2952 2953 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2954 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2955 return (WALK_ERR); 2956 } 2957 2958 mdb_printf("%3d %0*p %3x %4d %4d ", 2959 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2960 disp.disp_nrunnable, bspl); 2961 2962 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2963 mdb_printf("%3d ", t.t_pri); 2964 } else { 2965 mdb_printf("%3s ", "-"); 2966 } 2967 2968 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2969 cpu->cpu_kprunrun ? "yes" : "no"); 2970 2971 if (cpu->cpu_last_swtch) { 2972 mdb_printf("t-%-4d ", 2973 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 2974 } else { 2975 mdb_printf("%-6s ", "-"); 2976 } 2977 2978 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2979 2980 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2981 mdb_printf(" (idle)\n"); 2982 else if (cpu->cpu_thread == NULL) 2983 mdb_printf(" -\n"); 2984 else { 2985 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2986 mdb_printf(" %s\n", p.p_user.u_comm); 2987 } else { 2988 mdb_printf(" ?\n"); 2989 } 2990 } 2991 2992 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2993 2994 if (cid->cid_print_flags) { 2995 int first = 1, i, j, k; 2996 char *s; 2997 2998 cid->cid_print_head = TRUE; 2999 3000 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3001 if (!(cpu->cpu_flags & i)) 3002 continue; 3003 3004 if (first) { 3005 s = mdb_alloc(CPUINFO_THRDELT + 1, 3006 UM_GC | UM_SLEEP); 3007 3008 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3009 "%*s|%*s", CPUINFO_FLAGDELT, "", 3010 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3011 flagbuf[nflaglines++] = s; 3012 } 3013 3014 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3015 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3016 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3017 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3018 first ? "<--+" : ""); 3019 3020 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3021 s[k] = ' '; 3022 s[k] = '\0'; 3023 3024 flagbuf[nflaglines++] = s; 3025 first = 0; 3026 } 3027 } 3028 3029 if (cid->cid_print_ithr) { 3030 int i, found_one = FALSE; 3031 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3032 3033 for (i = NINTR - 1; i >= 0; i--) { 3034 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3035 3036 if (iaddr == NULL) 3037 continue; 3038 3039 if (!found_one) { 3040 found_one = TRUE; 3041 3042 CPUINFO_INDENT; 3043 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3044 CPUINFO_ITHRDELT, ""); 3045 3046 CPUINFO_INDENT; 3047 mdb_printf("%c%*s+--> %3s %s\n", 3048 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3049 "", "PIL", "THREAD"); 3050 } 3051 3052 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3053 mdb_warn("failed to read kthread_t at %p", 3054 iaddr); 3055 return (WALK_ERR); 3056 } 3057 3058 CPUINFO_INDENT; 3059 mdb_printf("%c%*s %3d %0*p\n", 3060 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3061 t.t_pil, CPUINFO_TWIDTH, iaddr); 3062 3063 pinned = (uintptr_t)t.t_intr; 3064 } 3065 3066 if (found_one && pinned != NULL) { 3067 cid->cid_print_head = TRUE; 3068 (void) strcpy(p.p_user.u_comm, "?"); 3069 3070 if (mdb_vread(&t, sizeof (t), 3071 (uintptr_t)pinned) == -1) { 3072 mdb_warn("failed to read kthread_t at %p", 3073 pinned); 3074 return (WALK_ERR); 3075 } 3076 if (mdb_vread(&p, sizeof (p), 3077 (uintptr_t)t.t_procp) == -1) { 3078 mdb_warn("failed to read proc_t at %p", 3079 t.t_procp); 3080 return (WALK_ERR); 3081 } 3082 3083 CPUINFO_INDENT; 3084 mdb_printf("%c%*s %3s %0*p %s\n", 3085 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3086 CPUINFO_TWIDTH, pinned, 3087 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3088 "(idle)" : p.p_user.u_comm); 3089 } 3090 } 3091 3092 if (disp.disp_nrunnable && cid->cid_print_thr) { 3093 dispq_t *dq; 3094 3095 int i, npri = disp.disp_npri; 3096 3097 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3098 3099 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3100 (uintptr_t)disp.disp_q) == -1) { 3101 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3102 return (WALK_ERR); 3103 } 3104 3105 CPUINFO_INDENT; 3106 mdb_printf("|\n"); 3107 3108 CPUINFO_INDENT; 3109 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3110 CPUINFO_TWIDTH, "THREAD", "PROC"); 3111 3112 for (i = npri - 1; i >= 0; i--) { 3113 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3114 3115 while (taddr != NULL) { 3116 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3117 mdb_warn("failed to read kthread_t " 3118 "at %p", taddr); 3119 return (WALK_ERR); 3120 } 3121 if (mdb_vread(&p, sizeof (p), 3122 (uintptr_t)t.t_procp) == -1) { 3123 mdb_warn("failed to read proc_t at %p", 3124 t.t_procp); 3125 return (WALK_ERR); 3126 } 3127 3128 CPUINFO_INDENT; 3129 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3130 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3131 3132 taddr = (uintptr_t)t.t_link; 3133 } 3134 } 3135 cid->cid_print_head = TRUE; 3136 } 3137 3138 while (flagline < nflaglines) 3139 mdb_printf("%s\n", flagbuf[flagline++]); 3140 3141 if (cid->cid_print_head) 3142 mdb_printf("\n"); 3143 3144 return (rval); 3145 } 3146 3147 int 3148 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3149 { 3150 uint_t verbose = FALSE; 3151 cpuinfo_data_t cid; 3152 3153 cid.cid_print_ithr = FALSE; 3154 cid.cid_print_thr = FALSE; 3155 cid.cid_print_flags = FALSE; 3156 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3157 cid.cid_cpu = -1; 3158 3159 if (flags & DCMD_ADDRSPEC) 3160 cid.cid_cpu = addr; 3161 3162 if (mdb_getopts(argc, argv, 3163 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3164 return (DCMD_USAGE); 3165 3166 if (verbose) { 3167 cid.cid_print_ithr = TRUE; 3168 cid.cid_print_thr = TRUE; 3169 cid.cid_print_flags = TRUE; 3170 cid.cid_print_head = TRUE; 3171 } 3172 3173 if (cid.cid_print_ithr) { 3174 int i; 3175 3176 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3177 * NCPU, UM_SLEEP | UM_GC); 3178 3179 for (i = 0; i < NCPU; i++) 3180 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3181 NINTR, UM_SLEEP | UM_GC); 3182 3183 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3184 &cid) == -1) { 3185 mdb_warn("couldn't walk thread"); 3186 return (DCMD_ERR); 3187 } 3188 } 3189 3190 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3191 mdb_warn("can't walk cpus"); 3192 return (DCMD_ERR); 3193 } 3194 3195 if (cid.cid_cpu != -1) { 3196 /* 3197 * We didn't find this CPU when we walked through the CPUs 3198 * (i.e. the address specified doesn't show up in the "cpu" 3199 * walk). However, the specified address may still correspond 3200 * to a valid cpu_t (for example, if the specified address is 3201 * the actual panicking cpu_t and not the cached panic_cpu). 3202 * Point is: even if we didn't find it, we still want to try 3203 * to print the specified address as a cpu_t. 3204 */ 3205 cpu_t cpu; 3206 3207 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3208 mdb_warn("%p is neither a valid CPU ID nor a " 3209 "valid cpu_t address\n", cid.cid_cpu); 3210 return (DCMD_ERR); 3211 } 3212 3213 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3214 } 3215 3216 return (DCMD_OK); 3217 } 3218 3219 /*ARGSUSED*/ 3220 int 3221 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3222 { 3223 int i; 3224 3225 if (!(flags & DCMD_ADDRSPEC)) 3226 return (DCMD_USAGE); 3227 3228 for (i = 0; i < sizeof (addr) * NBBY; i++) 3229 mdb_printf("%p\n", addr ^ (1UL << i)); 3230 3231 return (DCMD_OK); 3232 } 3233 3234 int 3235 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3236 { 3237 if (p->p_as == *asp) 3238 mdb_printf("%p\n", addr); 3239 return (WALK_NEXT); 3240 } 3241 3242 /*ARGSUSED*/ 3243 int 3244 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3245 { 3246 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3247 return (DCMD_USAGE); 3248 3249 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3250 mdb_warn("failed to walk proc"); 3251 return (DCMD_ERR); 3252 } 3253 3254 return (DCMD_OK); 3255 } 3256 3257 /*ARGSUSED*/ 3258 int 3259 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3260 { 3261 proc_t parent; 3262 int ident = 0; 3263 uintptr_t paddr; 3264 3265 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3266 mdb_vread(&parent, sizeof (parent), paddr); 3267 paddr = (uintptr_t)parent.p_parent; 3268 } 3269 3270 mdb_inc_indent(ident); 3271 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3272 mdb_dec_indent(ident); 3273 3274 return (WALK_NEXT); 3275 } 3276 3277 void 3278 ptree_ancestors(uintptr_t addr, uintptr_t start) 3279 { 3280 proc_t p; 3281 3282 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3283 mdb_warn("couldn't read ancestor at %p", addr); 3284 return; 3285 } 3286 3287 if (p.p_parent != NULL) 3288 ptree_ancestors((uintptr_t)p.p_parent, start); 3289 3290 if (addr != start) 3291 (void) ptree_walk(addr, &p, NULL); 3292 } 3293 3294 /*ARGSUSED*/ 3295 int 3296 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3297 { 3298 if (!(flags & DCMD_ADDRSPEC)) 3299 addr = NULL; 3300 else 3301 ptree_ancestors(addr, addr); 3302 3303 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3304 mdb_warn("couldn't walk 'proc'"); 3305 return (DCMD_ERR); 3306 } 3307 3308 return (DCMD_OK); 3309 } 3310 3311 /*ARGSUSED*/ 3312 static int 3313 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3314 { 3315 int fdnum; 3316 const mdb_arg_t *argp = &argv[0]; 3317 proc_t p; 3318 uf_entry_t uf; 3319 3320 if ((flags & DCMD_ADDRSPEC) == 0) { 3321 mdb_warn("fd doesn't give global information\n"); 3322 return (DCMD_ERR); 3323 } 3324 if (argc != 1) 3325 return (DCMD_USAGE); 3326 3327 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3328 fdnum = argp->a_un.a_val; 3329 else 3330 fdnum = mdb_strtoull(argp->a_un.a_str); 3331 3332 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3333 mdb_warn("couldn't read proc_t at %p", addr); 3334 return (DCMD_ERR); 3335 } 3336 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3337 mdb_warn("process %p only has %d files open.\n", 3338 addr, p.p_user.u_finfo.fi_nfiles); 3339 return (DCMD_ERR); 3340 } 3341 if (mdb_vread(&uf, sizeof (uf_entry_t), 3342 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3343 mdb_warn("couldn't read uf_entry_t at %p", 3344 &p.p_user.u_finfo.fi_list[fdnum]); 3345 return (DCMD_ERR); 3346 } 3347 3348 mdb_printf("%p\n", uf.uf_file); 3349 return (DCMD_OK); 3350 } 3351 3352 /*ARGSUSED*/ 3353 static int 3354 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3355 { 3356 pid_t pid = (pid_t)addr; 3357 3358 if (argc != 0) 3359 return (DCMD_USAGE); 3360 3361 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3362 mdb_warn("PID 0t%d not found\n", pid); 3363 return (DCMD_ERR); 3364 } 3365 3366 mdb_printf("%p\n", addr); 3367 return (DCMD_OK); 3368 } 3369 3370 static char *sysfile_cmd[] = { 3371 "exclude:", 3372 "include:", 3373 "forceload:", 3374 "rootdev:", 3375 "rootfs:", 3376 "swapdev:", 3377 "swapfs:", 3378 "moddir:", 3379 "set", 3380 "unknown", 3381 }; 3382 3383 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3384 3385 /*ARGSUSED*/ 3386 static int 3387 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3388 { 3389 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3390 *target = NULL; 3391 return (WALK_DONE); 3392 } 3393 return (WALK_NEXT); 3394 } 3395 3396 /*ARGSUSED*/ 3397 static int 3398 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3399 { 3400 struct sysparam *sysp, sys; 3401 char var[256]; 3402 char modname[256]; 3403 char val[256]; 3404 char strval[256]; 3405 vmem_t *mod_sysfile_arena; 3406 void *straddr; 3407 3408 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3409 mdb_warn("failed to read sysparam_hd"); 3410 return (DCMD_ERR); 3411 } 3412 3413 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3414 mdb_warn("failed to read mod_sysfile_arena"); 3415 return (DCMD_ERR); 3416 } 3417 3418 while (sysp != NULL) { 3419 var[0] = '\0'; 3420 val[0] = '\0'; 3421 modname[0] = '\0'; 3422 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3423 mdb_warn("couldn't read sysparam %p", sysp); 3424 return (DCMD_ERR); 3425 } 3426 if (sys.sys_modnam != NULL && 3427 mdb_readstr(modname, 256, 3428 (uintptr_t)sys.sys_modnam) == -1) { 3429 mdb_warn("couldn't read modname in %p", sysp); 3430 return (DCMD_ERR); 3431 } 3432 if (sys.sys_ptr != NULL && 3433 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3434 mdb_warn("couldn't read ptr in %p", sysp); 3435 return (DCMD_ERR); 3436 } 3437 if (sys.sys_op != SETOP_NONE) { 3438 /* 3439 * Is this an int or a string? We determine this 3440 * by checking whether straddr is contained in 3441 * mod_sysfile_arena. If so, the walker will set 3442 * straddr to NULL. 3443 */ 3444 straddr = (void *)(uintptr_t)sys.sys_info; 3445 if (sys.sys_op == SETOP_ASSIGN && 3446 sys.sys_info != 0 && 3447 mdb_pwalk("vmem_seg", 3448 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3449 (uintptr_t)mod_sysfile_arena) == 0 && 3450 straddr == NULL && 3451 mdb_readstr(strval, 256, 3452 (uintptr_t)sys.sys_info) != -1) { 3453 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3454 strval); 3455 } else { 3456 (void) mdb_snprintf(val, sizeof (val), 3457 "0x%llx [0t%llu]", sys.sys_info, 3458 sys.sys_info); 3459 } 3460 } 3461 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3462 modname, modname[0] == '\0' ? "" : ":", 3463 var, sysfile_ops[sys.sys_op], val); 3464 3465 sysp = sys.sys_next; 3466 } 3467 3468 return (DCMD_OK); 3469 } 3470 3471 int 3472 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3473 { 3474 3475 if (*didp == thr->t_did) { 3476 mdb_printf("%p\n", addr); 3477 return (WALK_DONE); 3478 } else 3479 return (WALK_NEXT); 3480 } 3481 3482 /*ARGSUSED*/ 3483 int 3484 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3485 { 3486 const mdb_arg_t *argp = &argv[0]; 3487 kt_did_t did; 3488 3489 if (argc != 1) 3490 return (DCMD_USAGE); 3491 3492 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3493 3494 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3495 mdb_warn("failed to walk thread"); 3496 return (DCMD_ERR); 3497 3498 } 3499 return (DCMD_OK); 3500 3501 } 3502 3503 static int 3504 errorq_walk_init(mdb_walk_state_t *wsp) 3505 { 3506 if (wsp->walk_addr == NULL && 3507 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3508 mdb_warn("failed to read errorq_list"); 3509 return (WALK_ERR); 3510 } 3511 3512 return (WALK_NEXT); 3513 } 3514 3515 static int 3516 errorq_walk_step(mdb_walk_state_t *wsp) 3517 { 3518 uintptr_t addr = wsp->walk_addr; 3519 errorq_t eq; 3520 3521 if (addr == NULL) 3522 return (WALK_DONE); 3523 3524 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3525 mdb_warn("failed to read errorq at %p", addr); 3526 return (WALK_ERR); 3527 } 3528 3529 wsp->walk_addr = (uintptr_t)eq.eq_next; 3530 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3531 } 3532 3533 typedef struct eqd_walk_data { 3534 uintptr_t *eqd_stack; 3535 void *eqd_buf; 3536 ulong_t eqd_qpos; 3537 ulong_t eqd_qlen; 3538 size_t eqd_size; 3539 } eqd_walk_data_t; 3540 3541 /* 3542 * In order to walk the list of pending error queue elements, we push the 3543 * addresses of the corresponding data buffers in to the eqd_stack array. 3544 * The error lists are in reverse chronological order when iterating using 3545 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3546 * walker client gets addresses in order from oldest error to newest error. 3547 */ 3548 static void 3549 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3550 { 3551 errorq_elem_t eqe; 3552 3553 while (addr != NULL) { 3554 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3555 mdb_warn("failed to read errorq element at %p", addr); 3556 break; 3557 } 3558 3559 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3560 mdb_warn("errorq is overfull -- more than %lu " 3561 "elems found\n", eqdp->eqd_qlen); 3562 break; 3563 } 3564 3565 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3566 addr = (uintptr_t)eqe.eqe_prev; 3567 } 3568 } 3569 3570 static int 3571 eqd_walk_init(mdb_walk_state_t *wsp) 3572 { 3573 eqd_walk_data_t *eqdp; 3574 errorq_elem_t eqe, *addr; 3575 errorq_t eq; 3576 ulong_t i; 3577 3578 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3579 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3580 return (WALK_ERR); 3581 } 3582 3583 if (eq.eq_ptail != NULL && 3584 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3585 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3586 return (WALK_ERR); 3587 } 3588 3589 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3590 wsp->walk_data = eqdp; 3591 3592 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3593 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3594 eqdp->eqd_qlen = eq.eq_qlen; 3595 eqdp->eqd_qpos = 0; 3596 eqdp->eqd_size = eq.eq_size; 3597 3598 /* 3599 * The newest elements in the queue are on the pending list, so we 3600 * push those on to our stack first. 3601 */ 3602 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3603 3604 /* 3605 * If eq_ptail is set, it may point to a subset of the errors on the 3606 * pending list in the event a casptr() failed; if ptail's data is 3607 * already in our stack, NULL out eq_ptail and ignore it. 3608 */ 3609 if (eq.eq_ptail != NULL) { 3610 for (i = 0; i < eqdp->eqd_qpos; i++) { 3611 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3612 eq.eq_ptail = NULL; 3613 break; 3614 } 3615 } 3616 } 3617 3618 /* 3619 * If eq_phead is set, it has the processing list in order from oldest 3620 * to newest. Use this to recompute eq_ptail as best we can and then 3621 * we nicely fall into eqd_push_list() of eq_ptail below. 3622 */ 3623 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3624 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3625 eq.eq_ptail = addr; 3626 3627 /* 3628 * The oldest elements in the queue are on the processing list, subject 3629 * to machinations in the if-clauses above. Push any such elements. 3630 */ 3631 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3632 return (WALK_NEXT); 3633 } 3634 3635 static int 3636 eqd_walk_step(mdb_walk_state_t *wsp) 3637 { 3638 eqd_walk_data_t *eqdp = wsp->walk_data; 3639 uintptr_t addr; 3640 3641 if (eqdp->eqd_qpos == 0) 3642 return (WALK_DONE); 3643 3644 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3645 3646 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3647 mdb_warn("failed to read errorq data at %p", addr); 3648 return (WALK_ERR); 3649 } 3650 3651 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3652 } 3653 3654 static void 3655 eqd_walk_fini(mdb_walk_state_t *wsp) 3656 { 3657 eqd_walk_data_t *eqdp = wsp->walk_data; 3658 3659 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3660 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3661 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3662 } 3663 3664 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3665 3666 static int 3667 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3668 { 3669 int i; 3670 errorq_t eq; 3671 uint_t opt_v = FALSE; 3672 3673 if (!(flags & DCMD_ADDRSPEC)) { 3674 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3675 mdb_warn("can't walk 'errorq'"); 3676 return (DCMD_ERR); 3677 } 3678 return (DCMD_OK); 3679 } 3680 3681 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3682 argc -= i; 3683 argv += i; 3684 3685 if (argc != 0) 3686 return (DCMD_USAGE); 3687 3688 if (opt_v || DCMD_HDRSPEC(flags)) { 3689 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3690 "ADDR", "NAME", "S", "V", "N"); 3691 if (!opt_v) { 3692 mdb_printf("%7s %7s %7s%</u>\n", 3693 "ACCEPT", "DROP", "LOG"); 3694 } else { 3695 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3696 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3697 } 3698 } 3699 3700 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3701 mdb_warn("failed to read errorq at %p", addr); 3702 return (DCMD_ERR); 3703 } 3704 3705 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3706 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3707 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3708 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3709 3710 if (!opt_v) { 3711 mdb_printf("%7llu %7llu %7llu\n", 3712 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3713 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3714 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3715 } else { 3716 mdb_printf("%5s %6lu %6lu %3u %a\n", 3717 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3718 mdb_printf("%38s\n%41s" 3719 "%12s %llu\n" 3720 "%53s %llu\n" 3721 "%53s %llu\n" 3722 "%53s %llu\n" 3723 "%53s %llu\n" 3724 "%53s %llu\n" 3725 "%53s %llu\n" 3726 "%53s %llu\n\n", 3727 "|", "+-> ", 3728 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3729 "DROPPED", EQKSVAL(eq, eqk_dropped), 3730 "LOGGED", EQKSVAL(eq, eqk_logged), 3731 "RESERVED", EQKSVAL(eq, eqk_reserved), 3732 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3733 "COMMITTED", EQKSVAL(eq, eqk_committed), 3734 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3735 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3736 } 3737 3738 return (DCMD_OK); 3739 } 3740 3741 /*ARGSUSED*/ 3742 static int 3743 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3744 { 3745 cpu_t panic_cpu; 3746 kthread_t *panic_thread; 3747 void *buf; 3748 panic_data_t *pd; 3749 int i, n; 3750 3751 if (!mdb_prop_postmortem) { 3752 mdb_warn("panicinfo can only be run on a system " 3753 "dump; see dumpadm(1M)\n"); 3754 return (DCMD_ERR); 3755 } 3756 3757 if (flags & DCMD_ADDRSPEC || argc != 0) 3758 return (DCMD_USAGE); 3759 3760 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3761 mdb_warn("failed to read 'panic_cpu'"); 3762 else 3763 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3764 3765 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3766 mdb_warn("failed to read 'panic_thread'"); 3767 else 3768 mdb_printf("%16s %?p\n", "thread", panic_thread); 3769 3770 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3771 pd = (panic_data_t *)buf; 3772 3773 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3774 pd->pd_version != PANICBUFVERS) { 3775 mdb_warn("failed to read 'panicbuf'"); 3776 mdb_free(buf, PANICBUFSIZE); 3777 return (DCMD_ERR); 3778 } 3779 3780 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3781 3782 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3783 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3784 3785 for (i = 0; i < n; i++) 3786 mdb_printf("%16s %?llx\n", 3787 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3788 3789 mdb_free(buf, PANICBUFSIZE); 3790 return (DCMD_OK); 3791 } 3792 3793 /* 3794 * ::time dcmd, which will print a hires timestamp of when we entered the 3795 * debugger, or the lbolt value if used with the -l option. 3796 * 3797 */ 3798 /*ARGSUSED*/ 3799 static int 3800 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3801 { 3802 uint_t opt_dec = FALSE; 3803 uint_t opt_lbolt = FALSE; 3804 uint_t opt_hex = FALSE; 3805 const char *fmt; 3806 hrtime_t result; 3807 3808 if (mdb_getopts(argc, argv, 3809 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 3810 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 3811 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 3812 NULL) != argc) 3813 return (DCMD_USAGE); 3814 3815 if (opt_dec && opt_hex) 3816 return (DCMD_USAGE); 3817 3818 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 3819 fmt = 3820 opt_hex ? "0x%llx\n" : 3821 opt_dec ? "0t%lld\n" : "%#llr\n"; 3822 3823 mdb_printf(fmt, result); 3824 return (DCMD_OK); 3825 } 3826 3827 void 3828 time_help(void) 3829 { 3830 mdb_printf("Prints the system time in nanoseconds.\n\n" 3831 "::time will return the timestamp at which we dropped into, \n" 3832 "if called from, kmdb(1); the core dump's high resolution \n" 3833 "time if inspecting one; or the running hires time if we're \n" 3834 "looking at a live system.\n\n" 3835 "Switches:\n" 3836 " -d report times in decimal\n" 3837 " -l prints the number of clock ticks since system boot\n" 3838 " -x report times in hexadecimal\n"); 3839 } 3840 3841 static const mdb_dcmd_t dcmds[] = { 3842 3843 /* from genunix.c */ 3844 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3845 { "binding_hash_entry", ":", "print driver names hash table entry", 3846 binding_hash_entry }, 3847 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 3848 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 3849 " [-FivVA]", 3850 "display callouts", callout, callout_help }, 3851 { "calloutid", "[-d|v] xid", "print callout by extended id", 3852 calloutid, calloutid_help }, 3853 { "class", NULL, "print process scheduler classes", class }, 3854 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3855 { "did2thread", "? kt_did", "find kernel thread for this id", 3856 did2thread }, 3857 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3858 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3859 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3860 { "lminfo", NULL, "print lock manager information", lminfo }, 3861 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3862 { "panicinfo", NULL, "print panic information", panicinfo }, 3863 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3864 { "project", NULL, "display kernel project(s)", project }, 3865 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3866 { "pgrep", "[-x] [-n | -o] pattern", 3867 "pattern match against all processes", pgrep }, 3868 { "ptree", NULL, "print process tree", ptree }, 3869 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3870 sysevent}, 3871 { "sysevent_channel", "?", "print sysevent channel database", 3872 sysevent_channel}, 3873 { "sysevent_class_list", ":", "print sysevent class list", 3874 sysevent_class_list}, 3875 { "sysevent_subclass_list", ":", 3876 "print sysevent subclass list", sysevent_subclass_list}, 3877 { "system", NULL, "print contents of /etc/system file", sysfile }, 3878 { "task", NULL, "display kernel task(s)", task }, 3879 { "time", "[-dlx]", "display system time", time, time_help }, 3880 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3881 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3882 whereopen }, 3883 3884 /* from bio.c */ 3885 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3886 3887 /* from bitset.c */ 3888 { "bitset", ":", "display a bitset", bitset, bitset_help }, 3889 3890 /* from contract.c */ 3891 { "contract", "?", "display a contract", cmd_contract }, 3892 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3893 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3894 3895 /* from cpupart.c */ 3896 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3897 3898 /* from cred.c */ 3899 { "cred", ":[-v]", "display a credential", cmd_cred }, 3900 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 3901 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 3902 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 3903 3904 /* from cyclic.c */ 3905 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3906 { "cycid", "?", "dump a cyclic id", cycid }, 3907 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3908 { "cyclic", ":", "developer information", cyclic }, 3909 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3910 3911 /* from damap.c */ 3912 { "damap", ":", "display a damap_t", damap, damap_help }, 3913 3914 /* from devinfo.c */ 3915 { "devbindings", "?[-qs] [device-name | major-num]", 3916 "print devinfo nodes bound to device-name or major-num", 3917 devbindings, devinfo_help }, 3918 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3919 devinfo_help }, 3920 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3921 devinfo_audit }, 3922 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3923 devinfo_audit_log }, 3924 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3925 devinfo_audit_node }, 3926 { "devinfo2driver", ":", "find driver name for this devinfo node", 3927 devinfo2driver }, 3928 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3929 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3930 dev2major }, 3931 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3932 dev2minor }, 3933 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3934 devt }, 3935 { "major2name", "?<major-num>", "convert major number to dev name", 3936 major2name }, 3937 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3938 minornodes }, 3939 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3940 modctl2devinfo }, 3941 { "name2major", "<dev-name>", "convert dev name to major number", 3942 name2major }, 3943 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3944 { "softstate", ":<instance>", "retrieve soft-state pointer", 3945 softstate }, 3946 { "devinfo_fm", ":", "devinfo fault managment configuration", 3947 devinfo_fm }, 3948 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3949 devinfo_fmce}, 3950 3951 /* from findstack.c */ 3952 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3953 { "findstack_debug", NULL, "toggle findstack debugging", 3954 findstack_debug }, 3955 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 3956 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 3957 "print unique kernel thread stacks", 3958 stacks, stacks_help }, 3959 3960 /* from fm.c */ 3961 { "ereport", "[-v]", "print ereports logged in dump", 3962 ereport }, 3963 3964 /* from group.c */ 3965 { "group", "?[-q]", "display a group", group}, 3966 3967 /* from hotplug.c */ 3968 { "hotplug", "?[-p]", "display a registered hotplug attachment", 3969 hotplug, hotplug_help }, 3970 3971 /* from irm.c */ 3972 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 3973 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 3974 irmreqs_dcmd }, 3975 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 3976 3977 /* from kgrep.c + genunix.c */ 3978 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3979 kgrep_help }, 3980 3981 /* from kmem.c */ 3982 { "allocdby", ":", "given a thread, print its allocated buffers", 3983 allocdby }, 3984 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3985 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3986 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3987 { "kmalog", "?[ fail | slab ]", 3988 "display kmem transaction log and stack traces", kmalog }, 3989 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3990 kmastat }, 3991 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3992 "of the kmem allocator", kmausers, kmausers_help }, 3993 { "kmem_cache", "?[-n name]", 3994 "print kernel memory caches", kmem_cache, kmem_cache_help}, 3995 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 3996 "[-B minbinsize]", "display slab usage per kmem cache", 3997 kmem_slabs, kmem_slabs_help }, 3998 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3999 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4000 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4001 kmem_verify }, 4002 { "vmem", "?", "print a vmem_t", vmem }, 4003 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4004 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4005 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4006 { "whatthread", ":[-v]", "print threads whose stack contains the " 4007 "given address", whatthread }, 4008 4009 /* from ldi.c */ 4010 { "ldi_handle", "?[-i]", "display a layered driver handle", 4011 ldi_handle, ldi_handle_help }, 4012 { "ldi_ident", NULL, "display a layered driver identifier", 4013 ldi_ident, ldi_ident_help }, 4014 4015 /* from leaky.c + leaky_subr.c */ 4016 { "findleaks", FINDLEAKS_USAGE, 4017 "search for potential kernel memory leaks", findleaks, 4018 findleaks_help }, 4019 4020 /* from lgrp.c */ 4021 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4022 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4023 4024 /* from log.c */ 4025 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4026 4027 /* from mdi.c */ 4028 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4029 "and detailed pi_prop list", mdipi }, 4030 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4031 mdiprops }, 4032 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4033 "list all paths", mdiphci }, 4034 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4035 "all phcis", mdivhci }, 4036 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4037 "client links", mdiclient_paths }, 4038 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4039 "phci links", mdiphci_paths }, 4040 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4041 mdiphcis }, 4042 4043 /* from memory.c */ 4044 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4045 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4046 { "memstat", NULL, "display memory usage summary", memstat }, 4047 { "page", "?", "display a summarized page_t", page }, 4048 { "pagelookup", "?[-v vp] [-o offset]", 4049 "find the page_t with the name {vp, offset}", 4050 pagelookup, pagelookup_help }, 4051 { "page_num2pp", ":", "find the page_t for a given page frame number", 4052 page_num2pp }, 4053 { "pmap", ":[-q]", "print process memory map", pmap }, 4054 { "seg", ":", "print address space segment", seg }, 4055 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4056 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4057 4058 /* from mmd.c */ 4059 { "multidata", ":[-sv]", "display a summarized multidata_t", 4060 multidata }, 4061 { "pattbl", ":", "display a summarized multidata attribute table", 4062 pattbl }, 4063 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4064 pattr2multidata }, 4065 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4066 pdesc2slab }, 4067 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4068 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4069 slab2multidata }, 4070 4071 /* from modhash.c */ 4072 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4073 "display information about one or all mod_hash structures", 4074 modhash, modhash_help }, 4075 { "modent", ":[-k | -v | -t type]", 4076 "display information about a mod_hash_entry", modent, 4077 modent_help }, 4078 4079 /* from net.c */ 4080 { "dladm", "?<sub-command> [flags]", "show data link information", 4081 dladm, dladm_help }, 4082 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4083 mi }, 4084 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp | dccp]", 4085 "show network statistics", netstat }, 4086 { "sonode", "?[-f inet | inet6 | unix | #] " 4087 "[-t stream | dgram | raw | #] [-p #]", 4088 "filter and display sonode", sonode }, 4089 4090 /* from netstack.c */ 4091 { "netstack", "", "show stack instances", netstack }, 4092 4093 /* from nvpair.c */ 4094 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4095 nvpair_print }, 4096 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4097 print_nvlist }, 4098 4099 /* from pg.c */ 4100 { "pg", "?[-q]", "display a pg", pg}, 4101 4102 /* from rctl.c */ 4103 { "rctl_dict", "?", "print systemwide default rctl definitions", 4104 rctl_dict }, 4105 { "rctl_list", ":[handle]", "print rctls for the given proc", 4106 rctl_list }, 4107 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4108 rctl }, 4109 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4110 "sequence", rctl_validate }, 4111 4112 /* from sobj.c */ 4113 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4114 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4115 mutex_help }, 4116 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4117 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4118 { "turnstile", "?", "display a turnstile", turnstile }, 4119 4120 /* from stream.c */ 4121 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4122 "print an mblk", mblk_prt, mblk_help }, 4123 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4124 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4125 mblk2dblk }, 4126 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4127 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4128 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4129 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4130 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4131 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4132 "filter and display STREAM queue", queue, queue_help }, 4133 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4134 "filter and display STREAM head", stdata, stdata_help }, 4135 { "str2mate", ":", "print mate of this stream", str2mate }, 4136 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4137 { "stream", ":", "display STREAM", stream }, 4138 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4139 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4140 "filter and display STREAM sync queue", syncq, syncq_help }, 4141 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4142 4143 /* from taskq.c */ 4144 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4145 "display a taskq", taskq, taskq_help }, 4146 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4147 4148 /* from thread.c */ 4149 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4150 thread_help }, 4151 { "threadlist", "?[-t] [-v [count]]", 4152 "display threads and associated C stack traces", threadlist, 4153 threadlist_help }, 4154 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4155 stackinfo_help }, 4156 4157 /* from tsd.c */ 4158 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4159 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4160 4161 /* 4162 * typegraph does not work under kmdb, as it requires too much memory 4163 * for its internal data structures. 4164 */ 4165 #ifndef _KMDB 4166 /* from typegraph.c */ 4167 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4168 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4169 findfalse }, 4170 { "typegraph", NULL, "build type graph", typegraph }, 4171 { "istype", ":type", "manually set object type", istype }, 4172 { "notype", ":", "manually clear object type", notype }, 4173 { "whattype", ":", "determine object type", whattype }, 4174 #endif 4175 4176 /* from vfs.c */ 4177 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4178 { "pfiles", ":[-fp]", "print process file information", pfiles, 4179 pfiles_help }, 4180 4181 /* from zone.c */ 4182 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4183 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4184 "selected zones", zsd }, 4185 4186 { NULL } 4187 }; 4188 4189 static const mdb_walker_t walkers[] = { 4190 4191 /* from genunix.c */ 4192 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4193 callout_walk_init, callout_walk_step, callout_walk_fini, 4194 (void *)CALLOUT_WALK_BYLIST }, 4195 { "callouts_byid", "walk callouts by id hash chain", 4196 callout_walk_init, callout_walk_step, callout_walk_fini, 4197 (void *)CALLOUT_WALK_BYID }, 4198 { "callout_list", "walk a callout list", callout_list_walk_init, 4199 callout_list_walk_step, callout_list_walk_fini }, 4200 { "callout_table", "walk callout table array", callout_table_walk_init, 4201 callout_table_walk_step, callout_table_walk_fini }, 4202 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4203 { "ereportq_dump", "walk list of ereports in dump error queue", 4204 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4205 { "ereportq_pend", "walk list of ereports in pending error queue", 4206 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4207 { "errorq", "walk list of system error queues", 4208 errorq_walk_init, errorq_walk_step, NULL }, 4209 { "errorq_data", "walk pending error queue data buffers", 4210 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4211 { "allfile", "given a proc pointer, list all file pointers", 4212 file_walk_init, allfile_walk_step, file_walk_fini }, 4213 { "file", "given a proc pointer, list of open file pointers", 4214 file_walk_init, file_walk_step, file_walk_fini }, 4215 { "lock_descriptor", "walk lock_descriptor_t structures", 4216 ld_walk_init, ld_walk_step, NULL }, 4217 { "lock_graph", "walk lock graph", 4218 lg_walk_init, lg_walk_step, NULL }, 4219 { "port", "given a proc pointer, list of created event ports", 4220 port_walk_init, port_walk_step, NULL }, 4221 { "portev", "given a port pointer, list of events in the queue", 4222 portev_walk_init, portev_walk_step, portev_walk_fini }, 4223 { "proc", "list of active proc_t structures", 4224 proc_walk_init, proc_walk_step, proc_walk_fini }, 4225 { "projects", "walk a list of kernel projects", 4226 project_walk_init, project_walk_step, NULL }, 4227 { "sysevent_pend", "walk sysevent pending queue", 4228 sysevent_pend_walk_init, sysevent_walk_step, 4229 sysevent_walk_fini}, 4230 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4231 sysevent_walk_step, sysevent_walk_fini}, 4232 { "sysevent_channel", "walk sysevent channel subscriptions", 4233 sysevent_channel_walk_init, sysevent_channel_walk_step, 4234 sysevent_channel_walk_fini}, 4235 { "sysevent_class_list", "walk sysevent subscription's class list", 4236 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4237 sysevent_class_list_walk_fini}, 4238 { "sysevent_subclass_list", 4239 "walk sysevent subscription's subclass list", 4240 sysevent_subclass_list_walk_init, 4241 sysevent_subclass_list_walk_step, 4242 sysevent_subclass_list_walk_fini}, 4243 { "task", "given a task pointer, walk its processes", 4244 task_walk_init, task_walk_step, NULL }, 4245 4246 /* from avl.c */ 4247 { AVL_WALK_NAME, AVL_WALK_DESC, 4248 avl_walk_init, avl_walk_step, avl_walk_fini }, 4249 4250 /* from bio.c */ 4251 { "buf", "walk the bio buf hash", 4252 buf_walk_init, buf_walk_step, buf_walk_fini }, 4253 4254 /* from contract.c */ 4255 { "contract", "walk all contracts, or those of the specified type", 4256 ct_walk_init, generic_walk_step, NULL }, 4257 { "ct_event", "walk events on a contract event queue", 4258 ct_event_walk_init, generic_walk_step, NULL }, 4259 { "ct_listener", "walk contract event queue listeners", 4260 ct_listener_walk_init, generic_walk_step, NULL }, 4261 4262 /* from cpupart.c */ 4263 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4264 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4265 NULL }, 4266 { "cpupart_walk", "walk the set of cpu partitions", 4267 cpupart_walk_init, cpupart_walk_step, NULL }, 4268 4269 /* from ctxop.c */ 4270 { "ctxop", "walk list of context ops on a thread", 4271 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4272 4273 /* from cyclic.c */ 4274 { "cyccpu", "walk per-CPU cyc_cpu structures", 4275 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4276 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4277 cycomni_walk_init, cycomni_walk_step, NULL }, 4278 { "cyctrace", "walk cyclic trace buffer", 4279 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4280 4281 /* from devinfo.c */ 4282 { "binding_hash", "walk all entries in binding hash table", 4283 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4284 { "devinfo", "walk devinfo tree or subtree", 4285 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4286 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4287 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4288 devinfo_audit_log_walk_fini}, 4289 { "devinfo_audit_node", "walk per-devinfo audit history", 4290 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4291 devinfo_audit_node_walk_fini}, 4292 { "devinfo_children", "walk children of devinfo node", 4293 devinfo_children_walk_init, devinfo_children_walk_step, 4294 devinfo_children_walk_fini }, 4295 { "devinfo_parents", "walk ancestors of devinfo node", 4296 devinfo_parents_walk_init, devinfo_parents_walk_step, 4297 devinfo_parents_walk_fini }, 4298 { "devinfo_siblings", "walk siblings of devinfo node", 4299 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4300 { "devi_next", "walk devinfo list", 4301 NULL, devi_next_walk_step, NULL }, 4302 { "devnames", "walk devnames array", 4303 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4304 { "minornode", "given a devinfo node, walk minor nodes", 4305 minornode_walk_init, minornode_walk_step, NULL }, 4306 { "softstate", 4307 "given an i_ddi_soft_state*, list all in-use driver stateps", 4308 soft_state_walk_init, soft_state_walk_step, 4309 NULL, NULL }, 4310 { "softstate_all", 4311 "given an i_ddi_soft_state*, list all driver stateps", 4312 soft_state_walk_init, soft_state_all_walk_step, 4313 NULL, NULL }, 4314 { "devinfo_fmc", 4315 "walk a fault management handle cache active list", 4316 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4317 4318 /* from group.c */ 4319 { "group", "walk all elements of a group", 4320 group_walk_init, group_walk_step, NULL }, 4321 4322 /* from irm.c */ 4323 { "irmpools", "walk global list of interrupt pools", 4324 irmpools_walk_init, list_walk_step, list_walk_fini }, 4325 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4326 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4327 4328 /* from kmem.c */ 4329 { "allocdby", "given a thread, walk its allocated bufctls", 4330 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4331 { "bufctl", "walk a kmem cache's bufctls", 4332 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4333 { "bufctl_history", "walk the available history of a bufctl", 4334 bufctl_history_walk_init, bufctl_history_walk_step, 4335 bufctl_history_walk_fini }, 4336 { "freedby", "given a thread, walk its freed bufctls", 4337 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4338 { "freectl", "walk a kmem cache's free bufctls", 4339 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4340 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4341 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4342 { "freemem", "walk a kmem cache's free memory", 4343 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4344 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4345 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4346 { "kmem", "walk a kmem cache", 4347 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4348 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4349 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4350 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4351 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4352 { "kmem_log", "walk the kmem transaction log", 4353 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4354 { "kmem_slab", "given a kmem cache, walk its slabs", 4355 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4356 { "kmem_slab_partial", 4357 "given a kmem cache, walk its partially allocated slabs (min 1)", 4358 kmem_slab_walk_partial_init, combined_walk_step, 4359 combined_walk_fini }, 4360 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4361 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4362 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4363 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4364 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4365 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4366 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4367 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4368 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4369 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4370 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4371 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4372 4373 /* from ldi.c */ 4374 { "ldi_handle", "walk the layered driver handle hash", 4375 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4376 { "ldi_ident", "walk the layered driver identifier hash", 4377 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4378 4379 /* from leaky.c + leaky_subr.c */ 4380 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4381 "stack trace", 4382 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4383 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4384 "leaks w/ same stack trace", 4385 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4386 4387 /* from lgrp.c */ 4388 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4389 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4390 { "lgrptbl", "walk lgroup table", 4391 lgrp_walk_init, lgrp_walk_step, NULL }, 4392 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4393 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4394 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4395 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4396 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4397 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4398 4399 /* from list.c */ 4400 { LIST_WALK_NAME, LIST_WALK_DESC, 4401 list_walk_init, list_walk_step, list_walk_fini }, 4402 4403 /* from mdi.c */ 4404 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4405 mdi_pi_client_link_walk_init, 4406 mdi_pi_client_link_walk_step, 4407 mdi_pi_client_link_walk_fini }, 4408 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4409 mdi_pi_phci_link_walk_init, 4410 mdi_pi_phci_link_walk_step, 4411 mdi_pi_phci_link_walk_fini }, 4412 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4413 mdi_phci_ph_next_walk_init, 4414 mdi_phci_ph_next_walk_step, 4415 mdi_phci_ph_next_walk_fini }, 4416 4417 /* from memory.c */ 4418 { "allpages", "walk all pages, including free pages", 4419 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4420 { "anon", "given an amp, list allocated anon structures", 4421 anon_walk_init, anon_walk_step, anon_walk_fini, 4422 ANON_WALK_ALLOC }, 4423 { "anon_all", "given an amp, list contents of all anon slots", 4424 anon_walk_init, anon_walk_step, anon_walk_fini, 4425 ANON_WALK_ALL }, 4426 { "memlist", "walk specified memlist", 4427 NULL, memlist_walk_step, NULL }, 4428 { "page", "walk all pages, or those from the specified vnode", 4429 page_walk_init, page_walk_step, page_walk_fini }, 4430 { "seg", "given an as, list of segments", 4431 seg_walk_init, avl_walk_step, avl_walk_fini }, 4432 { "segvn_anon", 4433 "given a struct segvn_data, list allocated anon structures", 4434 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4435 ANON_WALK_ALLOC }, 4436 { "segvn_anon_all", 4437 "given a struct segvn_data, list contents of all anon slots", 4438 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4439 ANON_WALK_ALL }, 4440 { "segvn_pages", 4441 "given a struct segvn_data, list resident pages in " 4442 "offset order", 4443 segvn_pages_walk_init, segvn_pages_walk_step, 4444 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4445 { "segvn_pages_all", 4446 "for each offset in a struct segvn_data, give page_t pointer " 4447 "(if resident), or NULL.", 4448 segvn_pages_walk_init, segvn_pages_walk_step, 4449 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4450 { "swapinfo", "walk swapinfo structures", 4451 swap_walk_init, swap_walk_step, NULL }, 4452 4453 /* from mmd.c */ 4454 { "pattr", "walk pattr_t structures", pattr_walk_init, 4455 mmdq_walk_step, mmdq_walk_fini }, 4456 { "pdesc", "walk pdesc_t structures", 4457 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4458 { "pdesc_slab", "walk pdesc_slab_t structures", 4459 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4460 4461 /* from modhash.c */ 4462 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4463 modhash_walk_step, NULL }, 4464 { "modent", "walk list of entries in a given mod_hash", 4465 modent_walk_init, modent_walk_step, modent_walk_fini }, 4466 { "modchain", "walk list of entries in a given mod_hash_entry", 4467 NULL, modchain_walk_step, NULL }, 4468 4469 /* from net.c */ 4470 { "icmp", "walk ICMP control structures using MI for all stacks", 4471 mi_payload_walk_init, mi_payload_walk_step, NULL, 4472 &mi_icmp_arg }, 4473 { "mi", "given a MI_O, walk the MI", 4474 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4475 { "sonode", "given a sonode, walk its children", 4476 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4477 { "icmp_stacks", "walk all the icmp_stack_t", 4478 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4479 { "tcp_stacks", "walk all the tcp_stack_t", 4480 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4481 { "udp_stacks", "walk all the udp_stack_t", 4482 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4483 { "dccp_stacks", "walk all the dccp_stack_t", 4484 dccp_stacks_walk_init, dccp_stacks_walk_step, NULL }, 4485 4486 /* from netstack.c */ 4487 { "netstack", "walk a list of kernel netstacks", 4488 netstack_walk_init, netstack_walk_step, NULL }, 4489 4490 /* from nvpair.c */ 4491 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4492 nvpair_walk_init, nvpair_walk_step, NULL }, 4493 4494 /* from rctl.c */ 4495 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4496 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4497 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4498 rctl_set_walk_step, NULL }, 4499 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4500 rctl_val_walk_init, rctl_val_walk_step }, 4501 4502 /* from sobj.c */ 4503 { "blocked", "walk threads blocked on a given sobj", 4504 blocked_walk_init, blocked_walk_step, NULL }, 4505 { "wchan", "given a wchan, list of blocked threads", 4506 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4507 4508 /* from stream.c */ 4509 { "b_cont", "walk mblk_t list using b_cont", 4510 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4511 { "b_next", "walk mblk_t list using b_next", 4512 mblk_walk_init, b_next_step, mblk_walk_fini }, 4513 { "qlink", "walk queue_t list using q_link", 4514 queue_walk_init, queue_link_step, queue_walk_fini }, 4515 { "qnext", "walk queue_t list using q_next", 4516 queue_walk_init, queue_next_step, queue_walk_fini }, 4517 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4518 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4519 { "readq", "walk read queue side of stdata", 4520 str_walk_init, strr_walk_step, str_walk_fini }, 4521 { "writeq", "walk write queue side of stdata", 4522 str_walk_init, strw_walk_step, str_walk_fini }, 4523 4524 /* from taskq.c */ 4525 { "taskq_thread", "given a taskq_t, list all of its threads", 4526 taskq_thread_walk_init, 4527 taskq_thread_walk_step, 4528 taskq_thread_walk_fini }, 4529 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4530 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4531 4532 /* from thread.c */ 4533 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4534 deathrow_walk_init, deathrow_walk_step, NULL }, 4535 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4536 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4537 { "cpupart_dispq", 4538 "given a cpupart_t, walk threads in dispatcher queues", 4539 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4540 { "lwp_deathrow", "walk lwp_deathrow", 4541 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4542 { "thread", "global or per-process kthread_t structures", 4543 thread_walk_init, thread_walk_step, thread_walk_fini }, 4544 { "thread_deathrow", "walk threads on thread_deathrow", 4545 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4546 4547 /* from tsd.c */ 4548 { "tsd", "walk list of thread-specific data", 4549 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4550 4551 /* from tsol.c */ 4552 { "tnrh", "walk remote host cache structures", 4553 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4554 { "tnrhtp", "walk remote host template structures", 4555 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4556 4557 /* 4558 * typegraph does not work under kmdb, as it requires too much memory 4559 * for its internal data structures. 4560 */ 4561 #ifndef _KMDB 4562 /* from typegraph.c */ 4563 { "typeconflict", "walk buffers with conflicting type inferences", 4564 typegraph_walk_init, typeconflict_walk_step }, 4565 { "typeunknown", "walk buffers with unknown types", 4566 typegraph_walk_init, typeunknown_walk_step }, 4567 #endif 4568 4569 /* from vfs.c */ 4570 { "vfs", "walk file system list", 4571 vfs_walk_init, vfs_walk_step }, 4572 4573 /* from zone.c */ 4574 { "zone", "walk a list of kernel zones", 4575 zone_walk_init, zone_walk_step, NULL }, 4576 { "zsd", "walk list of zsd entries for a zone", 4577 zsd_walk_init, zsd_walk_step, NULL }, 4578 4579 { NULL } 4580 }; 4581 4582 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4583 4584 /*ARGSUSED*/ 4585 static void 4586 genunix_statechange_cb(void *ignored) 4587 { 4588 /* 4589 * Force ::findleaks and ::stacks to let go any cached state. 4590 */ 4591 leaky_cleanup(1); 4592 stacks_cleanup(1); 4593 4594 kmem_statechange(); /* notify kmem */ 4595 } 4596 4597 const mdb_modinfo_t * 4598 _mdb_init(void) 4599 { 4600 kmem_init(); 4601 4602 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4603 genunix_statechange_cb, NULL); 4604 4605 return (&modinfo); 4606 } 4607 4608 void 4609 _mdb_fini(void) 4610 { 4611 leaky_cleanup(1); 4612 stacks_cleanup(1); 4613 }