1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2011 Joyent, Inc. All rights reserved. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/suntpi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 #include <sys/taskq.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <sys/mac.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <inet/iptun/iptun_impl.h> 101 #include <inet/ipdrop.h> 102 #include <inet/ip_netinfo.h> 103 #include <inet/ilb_ip.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/pattr.h> 114 #include <inet/dccp/dccp_ip.h> 115 #include <inet/dccp/dccp_impl.h> 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <sys/squeue_impl.h> 127 #include <inet/ip_arp.h> 128 129 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 134 * IP_SQUEUE_ENTER: SQ_PROCESS 135 * IP_SQUEUE_FILL: SQ_FILL 136 */ 137 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 138 139 int ip_squeue_flag; 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 uint_t ird_flags; /* see below */ 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* Include ire_testhidden and IRE_IF_CLONE routes */ 181 #define IRD_REPORT_ALL 0x01 182 183 /* 184 * Cluster specific hooks. These should be NULL when booted as a non-cluster 185 */ 186 187 /* 188 * Hook functions to enable cluster networking 189 * On non-clustered systems these vectors must always be NULL. 190 * 191 * Hook function to Check ip specified ip address is a shared ip address 192 * in the cluster 193 * 194 */ 195 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 196 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 197 198 /* 199 * Hook function to generate cluster wide ip fragment identifier 200 */ 201 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 202 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 203 void *args) = NULL; 204 205 /* 206 * Hook function to generate cluster wide SPI. 207 */ 208 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 209 void *) = NULL; 210 211 /* 212 * Hook function to verify if the SPI is already utlized. 213 */ 214 215 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 216 217 /* 218 * Hook function to delete the SPI from the cluster wide repository. 219 */ 220 221 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 222 223 /* 224 * Hook function to inform the cluster when packet received on an IDLE SA 225 */ 226 227 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 228 in6_addr_t, in6_addr_t, void *) = NULL; 229 230 /* 231 * Synchronization notes: 232 * 233 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 234 * MT level protection given by STREAMS. IP uses a combination of its own 235 * internal serialization mechanism and standard Solaris locking techniques. 236 * The internal serialization is per phyint. This is used to serialize 237 * plumbing operations, IPMP operations, most set ioctls, etc. 238 * 239 * Plumbing is a long sequence of operations involving message 240 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 241 * involved in plumbing operations. A natural model is to serialize these 242 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 243 * parallel without any interference. But various set ioctls on hme0 are best 244 * serialized, along with IPMP operations and processing of DLPI control 245 * messages received from drivers on a per phyint basis. This serialization is 246 * provided by the ipsq_t and primitives operating on this. Details can 247 * be found in ip_if.c above the core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 253 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 254 * address of an ipif has to go through the ipsq_t. This ensures that only 255 * one such exclusive operation proceeds at any time on the ipif. It then 256 * waits for all refcnts 257 * associated with this ipif to come down to zero. The address is changed 258 * only after the ipif has been quiesced. Then the ipif is brought up again. 259 * More details are described above the comment in ip_sioctl_flags. 260 * 261 * Packet processing is based mostly on IREs and are fully multi-threaded 262 * using standard Solaris MT techniques. 263 * 264 * There are explicit locks in IP to handle: 265 * - The ip_g_head list maintained by mi_open_link() and friends. 266 * 267 * - The reassembly data structures (one lock per hash bucket) 268 * 269 * - conn_lock is meant to protect conn_t fields. The fields actually 270 * protected by conn_lock are documented in the conn_t definition. 271 * 272 * - ire_lock to protect some of the fields of the ire, IRE tables 273 * (one lock per hash bucket). Refer to ip_ire.c for details. 274 * 275 * - ndp_g_lock and ncec_lock for protecting NCEs. 276 * 277 * - ill_lock protects fields of the ill and ipif. Details in ip.h 278 * 279 * - ill_g_lock: This is a global reader/writer lock. Protects the following 280 * * The AVL tree based global multi list of all ills. 281 * * The linked list of all ipifs of an ill 282 * * The <ipsq-xop> mapping 283 * * <ill-phyint> association 284 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 285 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 286 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 287 * writer for the actual duration of the insertion/deletion/change. 288 * 289 * - ill_lock: This is a per ill mutex. 290 * It protects some members of the ill_t struct; see ip.h for details. 291 * It also protects the <ill-phyint> assoc. 292 * It also protects the list of ipifs hanging off the ill. 293 * 294 * - ipsq_lock: This is a per ipsq_t mutex lock. 295 * This protects some members of the ipsq_t struct; see ip.h for details. 296 * It also protects the <ipsq-ipxop> mapping 297 * 298 * - ipx_lock: This is a per ipxop_t mutex lock. 299 * This protects some members of the ipxop_t struct; see ip.h for details. 300 * 301 * - phyint_lock: This is a per phyint mutex lock. Protects just the 302 * phyint_flags 303 * 304 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 305 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 306 * uniqueness check also done atomically. 307 * 308 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 309 * group list linked by ill_usesrc_grp_next. It also protects the 310 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 311 * group is being added or deleted. This lock is taken as a reader when 312 * walking the list/group(eg: to get the number of members in a usesrc group). 313 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 314 * field is changing state i.e from NULL to non-NULL or vice-versa. For 315 * example, it is not necessary to take this lock in the initial portion 316 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 317 * operations are executed exclusively and that ensures that the "usesrc 318 * group state" cannot change. The "usesrc group state" change can happen 319 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 320 * 321 * Changing <ill-phyint>, <ipsq-xop> assocications: 322 * 323 * To change the <ill-phyint> association, the ill_g_lock must be held 324 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 325 * must be held. 326 * 327 * To change the <ipsq-xop> association, the ill_g_lock must be held as 328 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 329 * This is only done when ills are added or removed from IPMP groups. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 352 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 353 * arl_lock -> ill_lock 354 * ips_ire_dep_lock -> irb_lock 355 * 356 * When more than 1 ill lock is needed to be held, all ill lock addresses 357 * are sorted on address and locked starting from highest addressed lock 358 * downward. 359 * 360 * Multicast scenarios 361 * ips_ill_g_lock -> ill_mcast_lock 362 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 372 * 373 * Trusted Solaris scenarios 374 * 375 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 376 * igsa_lock -> gcdb_lock 377 * gcgrp_rwlock -> ire_lock 378 * gcgrp_rwlock -> gcdb_lock 379 * 380 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 381 * 382 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 383 * sq_lock -> conn_lock -> QLOCK(q) 384 * ill_lock -> ft_lock -> fe_lock 385 * 386 * Routing/forwarding table locking notes: 387 * 388 * Lock acquisition order: Radix tree lock, irb_lock. 389 * Requirements: 390 * i. Walker must not hold any locks during the walker callback. 391 * ii Walker must not see a truncated tree during the walk because of any node 392 * deletion. 393 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 394 * in many places in the code to walk the irb list. Thus even if all the 395 * ires in a bucket have been deleted, we still can't free the radix node 396 * until the ires have actually been inactive'd (freed). 397 * 398 * Tree traversal - Need to hold the global tree lock in read mode. 399 * Before dropping the global tree lock, need to either increment the ire_refcnt 400 * to ensure that the radix node can't be deleted. 401 * 402 * Tree add - Need to hold the global tree lock in write mode to add a 403 * radix node. To prevent the node from being deleted, increment the 404 * irb_refcnt, after the node is added to the tree. The ire itself is 405 * added later while holding the irb_lock, but not the tree lock. 406 * 407 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 408 * All associated ires must be inactive (i.e. freed), and irb_refcnt 409 * must be zero. 410 * 411 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 412 * global tree lock (read mode) for traversal. 413 * 414 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 415 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 416 * 417 * IPsec notes : 418 * 419 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 420 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 421 * ip_xmit_attr_t has the 422 * information used by the IPsec code for applying the right level of 423 * protection. The information initialized by IP in the ip_xmit_attr_t 424 * is determined by the per-socket policy or global policy in the system. 425 * For inbound datagrams, the ip_recv_attr_t 426 * starts out with nothing in it. It gets filled 427 * with the right information if it goes through the AH/ESP code, which 428 * happens if the incoming packet is secure. The information initialized 429 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 430 * the policy requirements needed by per-socket policy or global policy 431 * is met or not. 432 * 433 * For fully connected sockets i.e dst, src [addr, port] is known, 434 * conn_policy_cached is set indicating that policy has been cached. 435 * conn_in_enforce_policy may or may not be set depending on whether 436 * there is a global policy match or per-socket policy match. 437 * Policy inheriting happpens in ip_policy_set once the destination is known. 438 * Once the right policy is set on the conn_t, policy cannot change for 439 * this socket. This makes life simpler for TCP (UDP ?) where 440 * re-transmissions go out with the same policy. For symmetry, policy 441 * is cached for fully connected UDP sockets also. Thus if policy is cached, 442 * it also implies that policy is latched i.e policy cannot change 443 * on these sockets. As we have the right policy on the conn, we don't 444 * have to lookup global policy for every outbound and inbound datagram 445 * and thus serving as an optimization. Note that a global policy change 446 * does not affect fully connected sockets if they have policy. If fully 447 * connected sockets did not have any policy associated with it, global 448 * policy change may affect them. 449 * 450 * IP Flow control notes: 451 * --------------------- 452 * Non-TCP streams are flow controlled by IP. The way this is accomplished 453 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 454 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 455 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 456 * functions. 457 * 458 * Per Tx ring udp flow control: 459 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 460 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 461 * 462 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 463 * To achieve best performance, outgoing traffic need to be fanned out among 464 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 465 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 466 * the address of connp as fanout hint to mac_tx(). Under flow controlled 467 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 468 * cookie points to a specific Tx ring that is blocked. The cookie is used to 469 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 470 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 471 * connp's. The drain list is not a single list but a configurable number of 472 * lists. 473 * 474 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 475 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 476 * which is equal to 128. This array in turn contains a pointer to idl_t[], 477 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 478 * list will point to the list of connp's that are flow controlled. 479 * 480 * --------------- ------- ------- ------- 481 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 482 * | --------------- ------- ------- ------- 483 * | --------------- ------- ------- ------- 484 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 485 * ---------------- | --------------- ------- ------- ------- 486 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 487 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 488 * | --------------- ------- ------- ------- 489 * . . . . . 490 * | --------------- ------- ------- ------- 491 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 492 * --------------- ------- ------- ------- 493 * --------------- ------- ------- ------- 494 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 495 * | --------------- ------- ------- ------- 496 * | --------------- ------- ------- ------- 497 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 498 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 499 * ---------------- | . . . . 500 * | --------------- ------- ------- ------- 501 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 502 * --------------- ------- ------- ------- 503 * ..... 504 * ---------------- 505 * |idl_tx_list[n]|-> ... 506 * ---------------- 507 * 508 * When mac_tx() returns a cookie, the cookie is hashed into an index into 509 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 510 * to insert the conn onto. conn_drain_insert() asserts flow control for the 511 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 512 * Further, conn_blocked is set to indicate that the conn is blocked. 513 * 514 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 515 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 516 * is again hashed to locate the appropriate idl_tx_list, which is then 517 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 518 * the drain list and calls conn_drain_remove() to clear flow control (via 519 * calling su_txq_full() or clearing QFULL), and remove the conn from the 520 * drain list. 521 * 522 * Note that the drain list is not a single list but a (configurable) array of 523 * lists (8 elements by default). Synchronization between drain insertion and 524 * flow control wakeup is handled by using idl_txl->txl_lock, and only 525 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 526 * 527 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 528 * On the send side, if the packet cannot be sent down to the driver by IP 529 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 530 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 531 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 532 * control has been relieved, the blocked conns in the 0'th drain list are 533 * drained as in the non-STREAMS case. 534 * 535 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 536 * is done when the conn is inserted into the drain list (conn_drain_insert()) 537 * and cleared when the conn is removed from the it (conn_drain_remove()). 538 * 539 * IPQOS notes: 540 * 541 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 542 * and IPQoS modules. IPPF includes hooks in IP at different control points 543 * (callout positions) which direct packets to IPQoS modules for policy 544 * processing. Policies, if present, are global. 545 * 546 * The callout positions are located in the following paths: 547 * o local_in (packets destined for this host) 548 * o local_out (packets orginating from this host ) 549 * o fwd_in (packets forwarded by this m/c - inbound) 550 * o fwd_out (packets forwarded by this m/c - outbound) 551 * Hooks at these callout points can be enabled/disabled using the ndd variable 552 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 553 * By default all the callout positions are enabled. 554 * 555 * Outbound (local_out) 556 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 557 * 558 * Inbound (local_in) 559 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 560 * 561 * Forwarding (in and out) 562 * Hooks are placed in ire_recv_forward_v4/v6. 563 * 564 * IP Policy Framework processing (IPPF processing) 565 * Policy processing for a packet is initiated by ip_process, which ascertains 566 * that the classifier (ipgpc) is loaded and configured, failing which the 567 * packet resumes normal processing in IP. If the clasifier is present, the 568 * packet is acted upon by one or more IPQoS modules (action instances), per 569 * filters configured in ipgpc and resumes normal IP processing thereafter. 570 * An action instance can drop a packet in course of its processing. 571 * 572 * Zones notes: 573 * 574 * The partitioning rules for networking are as follows: 575 * 1) Packets coming from a zone must have a source address belonging to that 576 * zone. 577 * 2) Packets coming from a zone can only be sent on a physical interface on 578 * which the zone has an IP address. 579 * 3) Between two zones on the same machine, packet delivery is only allowed if 580 * there's a matching route for the destination and zone in the forwarding 581 * table. 582 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 583 * different zones can bind to the same port with the wildcard address 584 * (INADDR_ANY). 585 * 586 * The granularity of interface partitioning is at the logical interface level. 587 * Therefore, every zone has its own IP addresses, and incoming packets can be 588 * attributed to a zone unambiguously. A logical interface is placed into a zone 589 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 590 * structure. Rule (1) is implemented by modifying the source address selection 591 * algorithm so that the list of eligible addresses is filtered based on the 592 * sending process zone. 593 * 594 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 595 * across all zones, depending on their type. Here is the break-up: 596 * 597 * IRE type Shared/exclusive 598 * -------- ---------------- 599 * IRE_BROADCAST Exclusive 600 * IRE_DEFAULT (default routes) Shared (*) 601 * IRE_LOCAL Exclusive (x) 602 * IRE_LOOPBACK Exclusive 603 * IRE_PREFIX (net routes) Shared (*) 604 * IRE_IF_NORESOLVER (interface routes) Exclusive 605 * IRE_IF_RESOLVER (interface routes) Exclusive 606 * IRE_IF_CLONE (interface routes) Exclusive 607 * IRE_HOST (host routes) Shared (*) 608 * 609 * (*) A zone can only use a default or off-subnet route if the gateway is 610 * directly reachable from the zone, that is, if the gateway's address matches 611 * one of the zone's logical interfaces. 612 * 613 * (x) IRE_LOCAL are handled a bit differently. 614 * When ip_restrict_interzone_loopback is set (the default), 615 * ire_route_recursive restricts loopback using an IRE_LOCAL 616 * between zone to the case when L2 would have conceptually looped the packet 617 * back, i.e. the loopback which is required since neither Ethernet drivers 618 * nor Ethernet hardware loops them back. This is the case when the normal 619 * routes (ignoring IREs with different zoneids) would send out the packet on 620 * the same ill as the ill with which is IRE_LOCAL is associated. 621 * 622 * Multiple zones can share a common broadcast address; typically all zones 623 * share the 255.255.255.255 address. Incoming as well as locally originated 624 * broadcast packets must be dispatched to all the zones on the broadcast 625 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 626 * since some zones may not be on the 10.16.72/24 network. To handle this, each 627 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 628 * sent to every zone that has an IRE_BROADCAST entry for the destination 629 * address on the input ill, see ip_input_broadcast(). 630 * 631 * Applications in different zones can join the same multicast group address. 632 * The same logic applies for multicast as for broadcast. ip_input_multicast 633 * dispatches packets to all zones that have members on the physical interface. 634 */ 635 636 /* 637 * Squeue Fanout flags: 638 * 0: No fanout. 639 * 1: Fanout across all squeues 640 */ 641 boolean_t ip_squeue_fanout = 0; 642 643 /* 644 * Maximum dups allowed per packet. 645 */ 646 uint_t ip_max_frag_dups = 10; 647 648 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 649 cred_t *credp, boolean_t isv6); 650 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 651 652 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 653 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 654 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 655 ip_recv_attr_t *); 656 static void icmp_options_update(ipha_t *); 657 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 658 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 659 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 660 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 663 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 664 ip_recv_attr_t *); 665 666 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 667 char *ip_dot_addr(ipaddr_t, char *); 668 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 669 int ip_close(queue_t *, int); 670 static char *ip_dot_saddr(uchar_t *, char *); 671 static void ip_lrput(queue_t *, mblk_t *); 672 ipaddr_t ip_net_mask(ipaddr_t); 673 char *ip_nv_lookup(nv_t *, int); 674 void ip_rput(queue_t *, mblk_t *); 675 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 676 void *dummy_arg); 677 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 678 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 679 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 680 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 681 ip_stack_t *, boolean_t); 682 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 683 boolean_t); 684 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 689 ip_stack_t *ipst, boolean_t); 690 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 691 ip_stack_t *ipst, boolean_t); 692 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 705 ip_stack_t *ipst); 706 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 707 ip_stack_t *ipst); 708 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 709 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 710 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 711 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 712 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 713 714 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 715 mblk_t *); 716 717 static void conn_drain_init(ip_stack_t *); 718 static void conn_drain_fini(ip_stack_t *); 719 static void conn_drain(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 722 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 723 724 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 725 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 726 static void ip_stack_fini(netstackid_t stackid, void *arg); 727 728 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 729 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 730 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 731 const in6_addr_t *); 732 733 static int ip_squeue_switch(int); 734 735 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 736 static void ip_kstat_fini(netstackid_t, kstat_t *); 737 static int ip_kstat_update(kstat_t *kp, int rw); 738 static void *icmp_kstat_init(netstackid_t); 739 static void icmp_kstat_fini(netstackid_t, kstat_t *); 740 static int icmp_kstat_update(kstat_t *kp, int rw); 741 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 742 static void ip_kstat2_fini(netstackid_t, kstat_t *); 743 744 static void ipobs_init(ip_stack_t *); 745 static void ipobs_fini(ip_stack_t *); 746 747 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 748 749 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 750 751 static long ip_rput_pullups; 752 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 753 754 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 755 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 756 757 int ip_debug; 758 759 /* 760 * Multirouting/CGTP stuff 761 */ 762 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 763 764 /* 765 * IP tunables related declarations. Definitions are in ip_tunables.c 766 */ 767 extern mod_prop_info_t ip_propinfo_tbl[]; 768 extern int ip_propinfo_count; 769 770 /* 771 * Table of IP ioctls encoding the various properties of the ioctl and 772 * indexed based on the last byte of the ioctl command. Occasionally there 773 * is a clash, and there is more than 1 ioctl with the same last byte. 774 * In such a case 1 ioctl is encoded in the ndx table and the remaining 775 * ioctls are encoded in the misc table. An entry in the ndx table is 776 * retrieved by indexing on the last byte of the ioctl command and comparing 777 * the ioctl command with the value in the ndx table. In the event of a 778 * mismatch the misc table is then searched sequentially for the desired 779 * ioctl command. 780 * 781 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 782 */ 783 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 784 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 794 795 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 796 MISC_CMD, ip_siocaddrt, NULL }, 797 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 798 MISC_CMD, ip_siocdelrt, NULL }, 799 800 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 801 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 802 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 803 IF_CMD, ip_sioctl_get_addr, NULL }, 804 805 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 806 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 807 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 808 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 809 810 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 811 IPI_PRIV | IPI_WR, 812 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 813 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 814 IPI_MODOK | IPI_GET_CMD, 815 IF_CMD, ip_sioctl_get_flags, NULL }, 816 817 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 818 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 819 820 /* copyin size cannot be coded for SIOCGIFCONF */ 821 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 822 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 823 824 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 825 IF_CMD, ip_sioctl_mtu, NULL }, 826 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 827 IF_CMD, ip_sioctl_get_mtu, NULL }, 828 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 829 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 830 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 831 IF_CMD, ip_sioctl_brdaddr, NULL }, 832 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 833 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 834 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 835 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 836 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 837 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 838 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 839 IF_CMD, ip_sioctl_metric, NULL }, 840 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 841 842 /* See 166-168 below for extended SIOC*XARP ioctls */ 843 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 844 ARP_CMD, ip_sioctl_arp, NULL }, 845 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 846 ARP_CMD, ip_sioctl_arp, NULL }, 847 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 848 ARP_CMD, ip_sioctl_arp, NULL }, 849 850 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 872 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 873 MISC_CMD, if_unitsel, if_unitsel_restart }, 874 875 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 894 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 895 IPI_PRIV | IPI_WR | IPI_MODOK, 896 IF_CMD, ip_sioctl_sifname, NULL }, 897 898 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 911 912 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 913 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 914 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 915 IF_CMD, ip_sioctl_get_muxid, NULL }, 916 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 917 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 918 919 /* Both if and lif variants share same func */ 920 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 921 IF_CMD, ip_sioctl_get_lifindex, NULL }, 922 /* Both if and lif variants share same func */ 923 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 924 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 925 926 /* copyin size cannot be coded for SIOCGIFCONF */ 927 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 928 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 929 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 947 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 948 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 949 ip_sioctl_removeif_restart }, 950 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 951 IPI_GET_CMD | IPI_PRIV | IPI_WR, 952 LIF_CMD, ip_sioctl_addif, NULL }, 953 #define SIOCLIFADDR_NDX 112 954 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 955 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 956 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 957 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 958 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 959 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 960 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 961 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 962 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 963 IPI_PRIV | IPI_WR, 964 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 965 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 966 IPI_GET_CMD | IPI_MODOK, 967 LIF_CMD, ip_sioctl_get_flags, NULL }, 968 969 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 972 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 973 ip_sioctl_get_lifconf, NULL }, 974 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 975 LIF_CMD, ip_sioctl_mtu, NULL }, 976 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 977 LIF_CMD, ip_sioctl_get_mtu, NULL }, 978 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 979 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 980 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 981 LIF_CMD, ip_sioctl_brdaddr, NULL }, 982 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 983 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 984 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 985 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 986 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 987 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 988 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 989 LIF_CMD, ip_sioctl_metric, NULL }, 990 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 991 IPI_PRIV | IPI_WR | IPI_MODOK, 992 LIF_CMD, ip_sioctl_slifname, 993 ip_sioctl_slifname_restart }, 994 995 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 996 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 997 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 998 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 999 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1000 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1001 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1002 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1003 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1004 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1005 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1006 LIF_CMD, ip_sioctl_token, NULL }, 1007 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1008 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1009 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1010 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1011 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1012 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1013 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1014 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1015 1016 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1017 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1018 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1019 LIF_CMD, ip_siocdelndp_v6, NULL }, 1020 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1021 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1022 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1023 LIF_CMD, ip_siocsetndp_v6, NULL }, 1024 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1025 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1026 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1027 MISC_CMD, ip_sioctl_tonlink, NULL }, 1028 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1029 MISC_CMD, ip_sioctl_tmysite, NULL }, 1030 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1033 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1034 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1035 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1036 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1037 1038 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1041 LIF_CMD, ip_sioctl_get_binding, NULL }, 1042 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1043 IPI_PRIV | IPI_WR, 1044 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1045 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1046 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1047 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1048 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1049 1050 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1051 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 1055 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* These are handled in ip_sioctl_copyin_setup itself */ 1058 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1059 MISC_CMD, NULL, NULL }, 1060 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1061 MISC_CMD, NULL, NULL }, 1062 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1063 1064 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1065 ip_sioctl_get_lifconf, NULL }, 1066 1067 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1068 XARP_CMD, ip_sioctl_arp, NULL }, 1069 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1070 XARP_CMD, ip_sioctl_arp, NULL }, 1071 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1072 XARP_CMD, ip_sioctl_arp, NULL }, 1073 1074 /* SIOCPOPSOCKFS is not handled by IP */ 1075 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1076 1077 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1078 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1079 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1080 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1081 ip_sioctl_slifzone_restart }, 1082 /* 172-174 are SCTP ioctls and not handled by IP */ 1083 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1087 IPI_GET_CMD, LIF_CMD, 1088 ip_sioctl_get_lifusesrc, 0 }, 1089 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1090 IPI_PRIV | IPI_WR, 1091 LIF_CMD, ip_sioctl_slifusesrc, 1092 NULL }, 1093 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1094 ip_sioctl_get_lifsrcof, NULL }, 1095 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1098 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1099 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1100 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1101 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1102 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1103 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* SIOCSENABLESDP is handled by SDP */ 1105 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1106 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1107 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1108 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1109 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1110 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1111 ip_sioctl_ilb_cmd, NULL }, 1112 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1113 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1114 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1115 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1116 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1117 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1118 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1119 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1120 }; 1121 1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1123 1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1125 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1126 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { ND_GET, 0, 0, 0, NULL, NULL }, 1130 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1131 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1132 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1133 MISC_CMD, mrt_ioctl}, 1134 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1135 MISC_CMD, mrt_ioctl}, 1136 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1137 MISC_CMD, mrt_ioctl} 1138 }; 1139 1140 int ip_misc_ioctl_count = 1141 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1142 1143 int conn_drain_nthreads; /* Number of drainers reqd. */ 1144 /* Settable in /etc/system */ 1145 /* Defined in ip_ire.c */ 1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1149 1150 static nv_t ire_nv_arr[] = { 1151 { IRE_BROADCAST, "BROADCAST" }, 1152 { IRE_LOCAL, "LOCAL" }, 1153 { IRE_LOOPBACK, "LOOPBACK" }, 1154 { IRE_DEFAULT, "DEFAULT" }, 1155 { IRE_PREFIX, "PREFIX" }, 1156 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1157 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1158 { IRE_IF_CLONE, "IF_CLONE" }, 1159 { IRE_HOST, "HOST" }, 1160 { IRE_MULTICAST, "MULTICAST" }, 1161 { IRE_NOROUTE, "NOROUTE" }, 1162 { 0 } 1163 }; 1164 1165 nv_t *ire_nv_tbl = ire_nv_arr; 1166 1167 /* Simple ICMP IP Header Template */ 1168 static ipha_t icmp_ipha = { 1169 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1170 }; 1171 1172 struct module_info ip_mod_info = { 1173 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1174 IP_MOD_LOWAT 1175 }; 1176 1177 /* 1178 * Duplicate static symbols within a module confuses mdb; so we avoid the 1179 * problem by making the symbols here distinct from those in udp.c. 1180 */ 1181 1182 /* 1183 * Entry points for IP as a device and as a module. 1184 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1185 */ 1186 static struct qinit iprinitv4 = { 1187 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1188 &ip_mod_info 1189 }; 1190 1191 struct qinit iprinitv6 = { 1192 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1193 &ip_mod_info 1194 }; 1195 1196 static struct qinit ipwinit = { 1197 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1198 &ip_mod_info 1199 }; 1200 1201 static struct qinit iplrinit = { 1202 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1203 &ip_mod_info 1204 }; 1205 1206 static struct qinit iplwinit = { 1207 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1208 &ip_mod_info 1209 }; 1210 1211 /* For AF_INET aka /dev/ip */ 1212 struct streamtab ipinfov4 = { 1213 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1214 }; 1215 1216 /* For AF_INET6 aka /dev/ip6 */ 1217 struct streamtab ipinfov6 = { 1218 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1219 }; 1220 1221 #ifdef DEBUG 1222 boolean_t skip_sctp_cksum = B_FALSE; 1223 #endif 1224 1225 /* 1226 * Generate an ICMP fragmentation needed message. 1227 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1228 * constructed by the caller. 1229 */ 1230 void 1231 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1232 { 1233 icmph_t icmph; 1234 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1235 1236 mp = icmp_pkt_err_ok(mp, ira); 1237 if (mp == NULL) 1238 return; 1239 1240 bzero(&icmph, sizeof (icmph_t)); 1241 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1242 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1243 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1244 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1246 1247 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1248 } 1249 1250 /* 1251 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1252 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1253 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1254 * Likewise, if the ICMP error is misformed (too short, etc), then it 1255 * returns NULL. The caller uses this to determine whether or not to send 1256 * to raw sockets. 1257 * 1258 * All error messages are passed to the matching transport stream. 1259 * 1260 * The following cases are handled by icmp_inbound: 1261 * 1) It needs to send a reply back and possibly delivering it 1262 * to the "interested" upper clients. 1263 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1264 * 3) It needs to change some values in IP only. 1265 * 4) It needs to change some values in IP and upper layers e.g TCP 1266 * by delivering an error to the upper layers. 1267 * 1268 * We handle the above three cases in the context of IPsec in the 1269 * following way : 1270 * 1271 * 1) Send the reply back in the same way as the request came in. 1272 * If it came in encrypted, it goes out encrypted. If it came in 1273 * clear, it goes out in clear. Thus, this will prevent chosen 1274 * plain text attack. 1275 * 2) The client may or may not expect things to come in secure. 1276 * If it comes in secure, the policy constraints are checked 1277 * before delivering it to the upper layers. If it comes in 1278 * clear, ipsec_inbound_accept_clear will decide whether to 1279 * accept this in clear or not. In both the cases, if the returned 1280 * message (IP header + 8 bytes) that caused the icmp message has 1281 * AH/ESP headers, it is sent up to AH/ESP for validation before 1282 * sending up. If there are only 8 bytes of returned message, then 1283 * upper client will not be notified. 1284 * 3) Check with global policy to see whether it matches the constaints. 1285 * But this will be done only if icmp_accept_messages_in_clear is 1286 * zero. 1287 * 4) If we need to change both in IP and ULP, then the decision taken 1288 * while affecting the values in IP and while delivering up to TCP 1289 * should be the same. 1290 * 1291 * There are two cases. 1292 * 1293 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1294 * failed), we will not deliver it to the ULP, even though they 1295 * are *willing* to accept in *clear*. This is fine as our global 1296 * disposition to icmp messages asks us reject the datagram. 1297 * 1298 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1299 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1300 * to deliver it to ULP (policy failed), it can lead to 1301 * consistency problems. The cases known at this time are 1302 * ICMP_DESTINATION_UNREACHABLE messages with following code 1303 * values : 1304 * 1305 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1306 * and Upper layer rejects. Then the communication will 1307 * come to a stop. This is solved by making similar decisions 1308 * at both levels. Currently, when we are unable to deliver 1309 * to the Upper Layer (due to policy failures) while IP has 1310 * adjusted dce_pmtu, the next outbound datagram would 1311 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1312 * will be with the right level of protection. Thus the right 1313 * value will be communicated even if we are not able to 1314 * communicate when we get from the wire initially. But this 1315 * assumes there would be at least one outbound datagram after 1316 * IP has adjusted its dce_pmtu value. To make things 1317 * simpler, we accept in clear after the validation of 1318 * AH/ESP headers. 1319 * 1320 * - Other ICMP ERRORS : We may not be able to deliver it to the 1321 * upper layer depending on the level of protection the upper 1322 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1323 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1324 * should be accepted in clear when the Upper layer expects secure. 1325 * Thus the communication may get aborted by some bad ICMP 1326 * packets. 1327 */ 1328 mblk_t * 1329 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1330 { 1331 icmph_t *icmph; 1332 ipha_t *ipha; /* Outer header */ 1333 int ip_hdr_length; /* Outer header length */ 1334 boolean_t interested; 1335 ipif_t *ipif; 1336 uint32_t ts; 1337 uint32_t *tsp; 1338 timestruc_t now; 1339 ill_t *ill = ira->ira_ill; 1340 ip_stack_t *ipst = ill->ill_ipst; 1341 zoneid_t zoneid = ira->ira_zoneid; 1342 int len_needed; 1343 mblk_t *mp_ret = NULL; 1344 1345 ipha = (ipha_t *)mp->b_rptr; 1346 1347 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1348 1349 ip_hdr_length = ira->ira_ip_hdr_length; 1350 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1351 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1353 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1354 freemsg(mp); 1355 return (NULL); 1356 } 1357 /* Last chance to get real. */ 1358 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1359 if (ipha == NULL) { 1360 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1361 freemsg(mp); 1362 return (NULL); 1363 } 1364 } 1365 1366 /* The IP header will always be a multiple of four bytes */ 1367 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1368 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1369 icmph->icmph_code)); 1370 1371 /* 1372 * We will set "interested" to "true" if we should pass a copy to 1373 * the transport or if we handle the packet locally. 1374 */ 1375 interested = B_FALSE; 1376 switch (icmph->icmph_type) { 1377 case ICMP_ECHO_REPLY: 1378 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1379 break; 1380 case ICMP_DEST_UNREACHABLE: 1381 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1383 interested = B_TRUE; /* Pass up to transport */ 1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1385 break; 1386 case ICMP_SOURCE_QUENCH: 1387 interested = B_TRUE; /* Pass up to transport */ 1388 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1389 break; 1390 case ICMP_REDIRECT: 1391 if (!ipst->ips_ip_ignore_redirect) 1392 interested = B_TRUE; 1393 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1394 break; 1395 case ICMP_ECHO_REQUEST: 1396 /* 1397 * Whether to respond to echo requests that come in as IP 1398 * broadcasts or as IP multicast is subject to debate 1399 * (what isn't?). We aim to please, you pick it. 1400 * Default is do it. 1401 */ 1402 if (ira->ira_flags & IRAF_MULTICAST) { 1403 /* multicast: respond based on tunable */ 1404 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1405 } else if (ira->ira_flags & IRAF_BROADCAST) { 1406 /* broadcast: respond based on tunable */ 1407 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1408 } else { 1409 /* unicast: always respond */ 1410 interested = B_TRUE; 1411 } 1412 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1413 if (!interested) { 1414 /* We never pass these to RAW sockets */ 1415 freemsg(mp); 1416 return (NULL); 1417 } 1418 1419 /* Check db_ref to make sure we can modify the packet. */ 1420 if (mp->b_datap->db_ref > 1) { 1421 mblk_t *mp1; 1422 1423 mp1 = copymsg(mp); 1424 freemsg(mp); 1425 if (!mp1) { 1426 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1427 return (NULL); 1428 } 1429 mp = mp1; 1430 ipha = (ipha_t *)mp->b_rptr; 1431 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1432 } 1433 icmph->icmph_type = ICMP_ECHO_REPLY; 1434 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1435 icmp_send_reply_v4(mp, ipha, icmph, ira); 1436 return (NULL); 1437 1438 case ICMP_ROUTER_ADVERTISEMENT: 1439 case ICMP_ROUTER_SOLICITATION: 1440 break; 1441 case ICMP_TIME_EXCEEDED: 1442 interested = B_TRUE; /* Pass up to transport */ 1443 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1444 break; 1445 case ICMP_PARAM_PROBLEM: 1446 interested = B_TRUE; /* Pass up to transport */ 1447 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1448 break; 1449 case ICMP_TIME_STAMP_REQUEST: 1450 /* Response to Time Stamp Requests is local policy. */ 1451 if (ipst->ips_ip_g_resp_to_timestamp) { 1452 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1453 interested = 1454 ipst->ips_ip_g_resp_to_timestamp_bcast; 1455 else 1456 interested = B_TRUE; 1457 } 1458 if (!interested) { 1459 /* We never pass these to RAW sockets */ 1460 freemsg(mp); 1461 return (NULL); 1462 } 1463 1464 /* Make sure we have enough of the packet */ 1465 len_needed = ip_hdr_length + ICMPH_SIZE + 1466 3 * sizeof (uint32_t); 1467 1468 if (mp->b_wptr - mp->b_rptr < len_needed) { 1469 ipha = ip_pullup(mp, len_needed, ira); 1470 if (ipha == NULL) { 1471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1472 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1473 mp, ill); 1474 freemsg(mp); 1475 return (NULL); 1476 } 1477 /* Refresh following the pullup. */ 1478 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1479 } 1480 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1481 /* Check db_ref to make sure we can modify the packet. */ 1482 if (mp->b_datap->db_ref > 1) { 1483 mblk_t *mp1; 1484 1485 mp1 = copymsg(mp); 1486 freemsg(mp); 1487 if (!mp1) { 1488 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1489 return (NULL); 1490 } 1491 mp = mp1; 1492 ipha = (ipha_t *)mp->b_rptr; 1493 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1494 } 1495 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1496 tsp = (uint32_t *)&icmph[1]; 1497 tsp++; /* Skip past 'originate time' */ 1498 /* Compute # of milliseconds since midnight */ 1499 gethrestime(&now); 1500 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1501 now.tv_nsec / (NANOSEC / MILLISEC); 1502 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1503 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1504 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1505 icmp_send_reply_v4(mp, ipha, icmph, ira); 1506 return (NULL); 1507 1508 case ICMP_TIME_STAMP_REPLY: 1509 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1510 break; 1511 case ICMP_INFO_REQUEST: 1512 /* Per RFC 1122 3.2.2.7, ignore this. */ 1513 case ICMP_INFO_REPLY: 1514 break; 1515 case ICMP_ADDRESS_MASK_REQUEST: 1516 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1517 interested = 1518 ipst->ips_ip_respond_to_address_mask_broadcast; 1519 } else { 1520 interested = B_TRUE; 1521 } 1522 if (!interested) { 1523 /* We never pass these to RAW sockets */ 1524 freemsg(mp); 1525 return (NULL); 1526 } 1527 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1528 if (mp->b_wptr - mp->b_rptr < len_needed) { 1529 ipha = ip_pullup(mp, len_needed, ira); 1530 if (ipha == NULL) { 1531 BUMP_MIB(ill->ill_ip_mib, 1532 ipIfStatsInTruncatedPkts); 1533 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1534 ill); 1535 freemsg(mp); 1536 return (NULL); 1537 } 1538 /* Refresh following the pullup. */ 1539 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1540 } 1541 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1542 /* Check db_ref to make sure we can modify the packet. */ 1543 if (mp->b_datap->db_ref > 1) { 1544 mblk_t *mp1; 1545 1546 mp1 = copymsg(mp); 1547 freemsg(mp); 1548 if (!mp1) { 1549 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1550 return (NULL); 1551 } 1552 mp = mp1; 1553 ipha = (ipha_t *)mp->b_rptr; 1554 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1555 } 1556 /* 1557 * Need the ipif with the mask be the same as the source 1558 * address of the mask reply. For unicast we have a specific 1559 * ipif. For multicast/broadcast we only handle onlink 1560 * senders, and use the source address to pick an ipif. 1561 */ 1562 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1563 if (ipif == NULL) { 1564 /* Broadcast or multicast */ 1565 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1566 if (ipif == NULL) { 1567 freemsg(mp); 1568 return (NULL); 1569 } 1570 } 1571 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1572 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1573 ipif_refrele(ipif); 1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1575 icmp_send_reply_v4(mp, ipha, icmph, ira); 1576 return (NULL); 1577 1578 case ICMP_ADDRESS_MASK_REPLY: 1579 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1580 break; 1581 default: 1582 interested = B_TRUE; /* Pass up to transport */ 1583 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1584 break; 1585 } 1586 /* 1587 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1588 * if there isn't one. 1589 */ 1590 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1591 /* If there is an ICMP client and we want one too, copy it. */ 1592 1593 if (!interested) { 1594 /* Caller will deliver to RAW sockets */ 1595 return (mp); 1596 } 1597 mp_ret = copymsg(mp); 1598 if (mp_ret == NULL) { 1599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1600 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1601 } 1602 } else if (!interested) { 1603 /* Neither we nor raw sockets are interested. Drop packet now */ 1604 freemsg(mp); 1605 return (NULL); 1606 } 1607 1608 /* 1609 * ICMP error or redirect packet. Make sure we have enough of 1610 * the header and that db_ref == 1 since we might end up modifying 1611 * the packet. 1612 */ 1613 if (mp->b_cont != NULL) { 1614 if (ip_pullup(mp, -1, ira) == NULL) { 1615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1616 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1617 mp, ill); 1618 freemsg(mp); 1619 return (mp_ret); 1620 } 1621 } 1622 1623 if (mp->b_datap->db_ref > 1) { 1624 mblk_t *mp1; 1625 1626 mp1 = copymsg(mp); 1627 if (mp1 == NULL) { 1628 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1629 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1630 freemsg(mp); 1631 return (mp_ret); 1632 } 1633 freemsg(mp); 1634 mp = mp1; 1635 } 1636 1637 /* 1638 * In case mp has changed, verify the message before any further 1639 * processes. 1640 */ 1641 ipha = (ipha_t *)mp->b_rptr; 1642 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1643 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1644 freemsg(mp); 1645 return (mp_ret); 1646 } 1647 1648 switch (icmph->icmph_type) { 1649 case ICMP_REDIRECT: 1650 icmp_redirect_v4(mp, ipha, icmph, ira); 1651 break; 1652 case ICMP_DEST_UNREACHABLE: 1653 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1654 /* Update DCE and adjust MTU is icmp header if needed */ 1655 icmp_inbound_too_big_v4(icmph, ira); 1656 } 1657 /* FALLTHRU */ 1658 default: 1659 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1660 break; 1661 } 1662 return (mp_ret); 1663 } 1664 1665 /* 1666 * Send an ICMP echo, timestamp or address mask reply. 1667 * The caller has already updated the payload part of the packet. 1668 * We handle the ICMP checksum, IP source address selection and feed 1669 * the packet into ip_output_simple. 1670 */ 1671 static void 1672 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1673 ip_recv_attr_t *ira) 1674 { 1675 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1676 ill_t *ill = ira->ira_ill; 1677 ip_stack_t *ipst = ill->ill_ipst; 1678 ip_xmit_attr_t ixas; 1679 1680 /* Send out an ICMP packet */ 1681 icmph->icmph_checksum = 0; 1682 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1683 /* Reset time to live. */ 1684 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1685 { 1686 /* Swap source and destination addresses */ 1687 ipaddr_t tmp; 1688 1689 tmp = ipha->ipha_src; 1690 ipha->ipha_src = ipha->ipha_dst; 1691 ipha->ipha_dst = tmp; 1692 } 1693 ipha->ipha_ident = 0; 1694 if (!IS_SIMPLE_IPH(ipha)) 1695 icmp_options_update(ipha); 1696 1697 bzero(&ixas, sizeof (ixas)); 1698 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1699 ixas.ixa_zoneid = ira->ira_zoneid; 1700 ixas.ixa_cred = kcred; 1701 ixas.ixa_cpid = NOPID; 1702 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1703 ixas.ixa_ifindex = 0; 1704 ixas.ixa_ipst = ipst; 1705 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1706 1707 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1708 /* 1709 * This packet should go out the same way as it 1710 * came in i.e in clear, independent of the IPsec policy 1711 * for transmitting packets. 1712 */ 1713 ixas.ixa_flags |= IXAF_NO_IPSEC; 1714 } else { 1715 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1717 /* Note: mp already consumed and ip_drop_packet done */ 1718 return; 1719 } 1720 } 1721 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1722 /* 1723 * Not one or our addresses (IRE_LOCALs), thus we let 1724 * ip_output_simple pick the source. 1725 */ 1726 ipha->ipha_src = INADDR_ANY; 1727 ixas.ixa_flags |= IXAF_SET_SOURCE; 1728 } 1729 /* Should we send with DF and use dce_pmtu? */ 1730 if (ipst->ips_ipv4_icmp_return_pmtu) { 1731 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1732 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1733 } 1734 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1736 1737 (void) ip_output_simple(mp, &ixas); 1738 ixa_cleanup(&ixas); 1739 } 1740 1741 /* 1742 * Verify the ICMP messages for either for ICMP error or redirect packet. 1743 * The caller should have fully pulled up the message. If it's a redirect 1744 * packet, only basic checks on IP header will be done; otherwise, verify 1745 * the packet by looking at the included ULP header. 1746 * 1747 * Called before icmp_inbound_error_fanout_v4 is called. 1748 */ 1749 static boolean_t 1750 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1751 { 1752 ill_t *ill = ira->ira_ill; 1753 int hdr_length; 1754 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1755 conn_t *connp; 1756 ipha_t *ipha; /* Inner IP header */ 1757 1758 ipha = (ipha_t *)&icmph[1]; 1759 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1760 goto truncated; 1761 1762 hdr_length = IPH_HDR_LENGTH(ipha); 1763 1764 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1765 goto discard_pkt; 1766 1767 if (hdr_length < sizeof (ipha_t)) 1768 goto truncated; 1769 1770 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1771 goto truncated; 1772 1773 /* 1774 * Stop here for ICMP_REDIRECT. 1775 */ 1776 if (icmph->icmph_type == ICMP_REDIRECT) 1777 return (B_TRUE); 1778 1779 /* 1780 * ICMP errors only. 1781 */ 1782 switch (ipha->ipha_protocol) { 1783 case IPPROTO_UDP: 1784 /* 1785 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1786 * transport header. 1787 */ 1788 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1789 mp->b_wptr) 1790 goto truncated; 1791 break; 1792 case IPPROTO_TCP: { 1793 tcpha_t *tcpha; 1794 1795 /* 1796 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1797 * transport header. 1798 */ 1799 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1800 mp->b_wptr) 1801 goto truncated; 1802 1803 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1804 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1805 ipst); 1806 if (connp == NULL) 1807 goto discard_pkt; 1808 1809 if ((connp->conn_verifyicmp != NULL) && 1810 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1811 CONN_DEC_REF(connp); 1812 goto discard_pkt; 1813 } 1814 CONN_DEC_REF(connp); 1815 break; 1816 } 1817 case IPPROTO_SCTP: 1818 /* 1819 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1820 * transport header. 1821 */ 1822 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1823 mp->b_wptr) 1824 goto truncated; 1825 break; 1826 case IPPROTO_ESP: 1827 case IPPROTO_AH: 1828 break; 1829 case IPPROTO_ENCAP: 1830 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1831 mp->b_wptr) 1832 goto truncated; 1833 break; 1834 default: 1835 break; 1836 } 1837 1838 return (B_TRUE); 1839 1840 discard_pkt: 1841 /* Bogus ICMP error. */ 1842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1843 return (B_FALSE); 1844 1845 truncated: 1846 /* We pulled up everthing already. Must be truncated */ 1847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1848 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1849 return (B_FALSE); 1850 } 1851 1852 /* Table from RFC 1191 */ 1853 static int icmp_frag_size_table[] = 1854 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1855 1856 /* 1857 * Process received ICMP Packet too big. 1858 * Just handles the DCE create/update, including using the above table of 1859 * PMTU guesses. The caller is responsible for validating the packet before 1860 * passing it in and also to fanout the ICMP error to any matching transport 1861 * conns. Assumes the message has been fully pulled up and verified. 1862 * 1863 * Before getting here, the caller has called icmp_inbound_verify_v4() 1864 * that should have verified with ULP to prevent undoing the changes we're 1865 * going to make to DCE. For example, TCP might have verified that the packet 1866 * which generated error is in the send window. 1867 * 1868 * In some cases modified this MTU in the ICMP header packet; the caller 1869 * should pass to the matching ULP after this returns. 1870 */ 1871 static void 1872 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1873 { 1874 dce_t *dce; 1875 int old_mtu; 1876 int mtu, orig_mtu; 1877 ipaddr_t dst; 1878 boolean_t disable_pmtud; 1879 ill_t *ill = ira->ira_ill; 1880 ip_stack_t *ipst = ill->ill_ipst; 1881 uint_t hdr_length; 1882 ipha_t *ipha; 1883 1884 /* Caller already pulled up everything. */ 1885 ipha = (ipha_t *)&icmph[1]; 1886 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1887 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1888 ASSERT(ill != NULL); 1889 1890 hdr_length = IPH_HDR_LENGTH(ipha); 1891 1892 /* 1893 * We handle path MTU for source routed packets since the DCE 1894 * is looked up using the final destination. 1895 */ 1896 dst = ip_get_dst(ipha); 1897 1898 dce = dce_lookup_and_add_v4(dst, ipst); 1899 if (dce == NULL) { 1900 /* Couldn't add a unique one - ENOMEM */ 1901 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1902 ntohl(dst))); 1903 return; 1904 } 1905 1906 /* Check for MTU discovery advice as described in RFC 1191 */ 1907 mtu = ntohs(icmph->icmph_du_mtu); 1908 orig_mtu = mtu; 1909 disable_pmtud = B_FALSE; 1910 1911 mutex_enter(&dce->dce_lock); 1912 if (dce->dce_flags & DCEF_PMTU) 1913 old_mtu = dce->dce_pmtu; 1914 else 1915 old_mtu = ill->ill_mtu; 1916 1917 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1918 uint32_t length; 1919 int i; 1920 1921 /* 1922 * Use the table from RFC 1191 to figure out 1923 * the next "plateau" based on the length in 1924 * the original IP packet. 1925 */ 1926 length = ntohs(ipha->ipha_length); 1927 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1928 uint32_t, length); 1929 if (old_mtu <= length && 1930 old_mtu >= length - hdr_length) { 1931 /* 1932 * Handle broken BSD 4.2 systems that 1933 * return the wrong ipha_length in ICMP 1934 * errors. 1935 */ 1936 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1937 length, old_mtu)); 1938 length -= hdr_length; 1939 } 1940 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1941 if (length > icmp_frag_size_table[i]) 1942 break; 1943 } 1944 if (i == A_CNT(icmp_frag_size_table)) { 1945 /* Smaller than IP_MIN_MTU! */ 1946 ip1dbg(("Too big for packet size %d\n", 1947 length)); 1948 disable_pmtud = B_TRUE; 1949 mtu = ipst->ips_ip_pmtu_min; 1950 } else { 1951 mtu = icmp_frag_size_table[i]; 1952 ip1dbg(("Calculated mtu %d, packet size %d, " 1953 "before %d\n", mtu, length, old_mtu)); 1954 if (mtu < ipst->ips_ip_pmtu_min) { 1955 mtu = ipst->ips_ip_pmtu_min; 1956 disable_pmtud = B_TRUE; 1957 } 1958 } 1959 } 1960 if (disable_pmtud) 1961 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1962 else 1963 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1964 1965 dce->dce_pmtu = MIN(old_mtu, mtu); 1966 /* Prepare to send the new max frag size for the ULP. */ 1967 icmph->icmph_du_zero = 0; 1968 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1969 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1970 dce, int, orig_mtu, int, mtu); 1971 1972 /* We now have a PMTU for sure */ 1973 dce->dce_flags |= DCEF_PMTU; 1974 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1975 mutex_exit(&dce->dce_lock); 1976 /* 1977 * After dropping the lock the new value is visible to everyone. 1978 * Then we bump the generation number so any cached values reinspect 1979 * the dce_t. 1980 */ 1981 dce_increment_generation(dce); 1982 dce_refrele(dce); 1983 } 1984 1985 /* 1986 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1987 * calls this function. 1988 */ 1989 static mblk_t * 1990 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1991 { 1992 int length; 1993 1994 ASSERT(mp->b_datap->db_type == M_DATA); 1995 1996 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1997 ASSERT(mp->b_cont == NULL); 1998 1999 /* 2000 * The length that we want to overlay is the inner header 2001 * and what follows it. 2002 */ 2003 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2004 2005 /* 2006 * Overlay the inner header and whatever follows it over the 2007 * outer header. 2008 */ 2009 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2010 2011 /* Adjust for what we removed */ 2012 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2013 return (mp); 2014 } 2015 2016 /* 2017 * Try to pass the ICMP message upstream in case the ULP cares. 2018 * 2019 * If the packet that caused the ICMP error is secure, we send 2020 * it to AH/ESP to make sure that the attached packet has a 2021 * valid association. ipha in the code below points to the 2022 * IP header of the packet that caused the error. 2023 * 2024 * For IPsec cases, we let the next-layer-up (which has access to 2025 * cached policy on the conn_t, or can query the SPD directly) 2026 * subtract out any IPsec overhead if they must. We therefore make no 2027 * adjustments here for IPsec overhead. 2028 * 2029 * IFN could have been generated locally or by some router. 2030 * 2031 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2032 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2033 * This happens because IP adjusted its value of MTU on an 2034 * earlier IFN message and could not tell the upper layer, 2035 * the new adjusted value of MTU e.g. Packet was encrypted 2036 * or there was not enough information to fanout to upper 2037 * layers. Thus on the next outbound datagram, ire_send_wire 2038 * generates the IFN, where IPsec processing has *not* been 2039 * done. 2040 * 2041 * Note that we retain ixa_fragsize across IPsec thus once 2042 * we have picking ixa_fragsize and entered ipsec_out_process we do 2043 * no change the fragsize even if the path MTU changes before 2044 * we reach ip_output_post_ipsec. 2045 * 2046 * In the local case, IRAF_LOOPBACK will be set indicating 2047 * that IFN was generated locally. 2048 * 2049 * ROUTER : IFN could be secure or non-secure. 2050 * 2051 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2052 * packet in error has AH/ESP headers to validate the AH/ESP 2053 * headers. AH/ESP will verify whether there is a valid SA or 2054 * not and send it back. We will fanout again if we have more 2055 * data in the packet. 2056 * 2057 * If the packet in error does not have AH/ESP, we handle it 2058 * like any other case. 2059 * 2060 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2061 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2062 * valid SA or not and send it back. We will fanout again if 2063 * we have more data in the packet. 2064 * 2065 * If the packet in error does not have AH/ESP, we handle it 2066 * like any other case. 2067 * 2068 * The caller must have called icmp_inbound_verify_v4. 2069 */ 2070 static void 2071 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2072 { 2073 uint16_t *up; /* Pointer to ports in ULP header */ 2074 uint32_t ports; /* reversed ports for fanout */ 2075 ipha_t ripha; /* With reversed addresses */ 2076 ipha_t *ipha; /* Inner IP header */ 2077 uint_t hdr_length; /* Inner IP header length */ 2078 tcpha_t *tcpha; 2079 conn_t *connp; 2080 ill_t *ill = ira->ira_ill; 2081 ip_stack_t *ipst = ill->ill_ipst; 2082 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2083 ill_t *rill = ira->ira_rill; 2084 2085 /* Caller already pulled up everything. */ 2086 ipha = (ipha_t *)&icmph[1]; 2087 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2088 ASSERT(mp->b_cont == NULL); 2089 2090 hdr_length = IPH_HDR_LENGTH(ipha); 2091 ira->ira_protocol = ipha->ipha_protocol; 2092 2093 /* 2094 * We need a separate IP header with the source and destination 2095 * addresses reversed to do fanout/classification because the ipha in 2096 * the ICMP error is in the form we sent it out. 2097 */ 2098 ripha.ipha_src = ipha->ipha_dst; 2099 ripha.ipha_dst = ipha->ipha_src; 2100 ripha.ipha_protocol = ipha->ipha_protocol; 2101 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2102 2103 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2104 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2105 ntohl(ipha->ipha_dst), 2106 icmph->icmph_type, icmph->icmph_code)); 2107 2108 switch (ipha->ipha_protocol) { 2109 case IPPROTO_UDP: 2110 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2111 2112 /* Attempt to find a client stream based on port. */ 2113 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2114 ntohs(up[0]), ntohs(up[1]))); 2115 2116 /* Note that we send error to all matches. */ 2117 ira->ira_flags |= IRAF_ICMP_ERROR; 2118 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2119 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2120 return; 2121 2122 case IPPROTO_TCP: 2123 /* 2124 * Find a TCP client stream for this packet. 2125 * Note that we do a reverse lookup since the header is 2126 * in the form we sent it out. 2127 */ 2128 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2129 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2130 ipst); 2131 if (connp == NULL) 2132 goto discard_pkt; 2133 2134 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2135 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2136 mp = ipsec_check_inbound_policy(mp, connp, 2137 ipha, NULL, ira); 2138 if (mp == NULL) { 2139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2140 /* Note that mp is NULL */ 2141 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2142 CONN_DEC_REF(connp); 2143 return; 2144 } 2145 } 2146 2147 ira->ira_flags |= IRAF_ICMP_ERROR; 2148 ira->ira_ill = ira->ira_rill = NULL; 2149 if (IPCL_IS_TCP(connp)) { 2150 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2151 connp->conn_recvicmp, connp, ira, SQ_FILL, 2152 SQTAG_TCP_INPUT_ICMP_ERR); 2153 } else { 2154 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2155 (connp->conn_recv)(connp, mp, NULL, ira); 2156 CONN_DEC_REF(connp); 2157 } 2158 ira->ira_ill = ill; 2159 ira->ira_rill = rill; 2160 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2161 return; 2162 2163 case IPPROTO_SCTP: 2164 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2165 /* Find a SCTP client stream for this packet. */ 2166 ((uint16_t *)&ports)[0] = up[1]; 2167 ((uint16_t *)&ports)[1] = up[0]; 2168 2169 ira->ira_flags |= IRAF_ICMP_ERROR; 2170 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2171 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2172 return; 2173 2174 case IPPROTO_ESP: 2175 case IPPROTO_AH: 2176 if (!ipsec_loaded(ipss)) { 2177 ip_proto_not_sup(mp, ira); 2178 return; 2179 } 2180 2181 if (ipha->ipha_protocol == IPPROTO_ESP) 2182 mp = ipsecesp_icmp_error(mp, ira); 2183 else 2184 mp = ipsecah_icmp_error(mp, ira); 2185 if (mp == NULL) 2186 return; 2187 2188 /* Just in case ipsec didn't preserve the NULL b_cont */ 2189 if (mp->b_cont != NULL) { 2190 if (!pullupmsg(mp, -1)) 2191 goto discard_pkt; 2192 } 2193 2194 /* 2195 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2196 * correct, but we don't use them any more here. 2197 * 2198 * If succesful, the mp has been modified to not include 2199 * the ESP/AH header so we can fanout to the ULP's icmp 2200 * error handler. 2201 */ 2202 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2203 goto truncated; 2204 2205 /* Verify the modified message before any further processes. */ 2206 ipha = (ipha_t *)mp->b_rptr; 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2209 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2210 freemsg(mp); 2211 return; 2212 } 2213 2214 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2215 return; 2216 2217 case IPPROTO_ENCAP: { 2218 /* Look for self-encapsulated packets that caused an error */ 2219 ipha_t *in_ipha; 2220 2221 /* 2222 * Caller has verified that length has to be 2223 * at least the size of IP header. 2224 */ 2225 ASSERT(hdr_length >= sizeof (ipha_t)); 2226 /* 2227 * Check the sanity of the inner IP header like 2228 * we did for the outer header. 2229 */ 2230 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2231 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2232 goto discard_pkt; 2233 } 2234 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2235 goto discard_pkt; 2236 } 2237 /* Check for Self-encapsulated tunnels */ 2238 if (in_ipha->ipha_src == ipha->ipha_src && 2239 in_ipha->ipha_dst == ipha->ipha_dst) { 2240 2241 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2242 in_ipha); 2243 if (mp == NULL) 2244 goto discard_pkt; 2245 2246 /* 2247 * Just in case self_encap didn't preserve the NULL 2248 * b_cont 2249 */ 2250 if (mp->b_cont != NULL) { 2251 if (!pullupmsg(mp, -1)) 2252 goto discard_pkt; 2253 } 2254 /* 2255 * Note that ira_pktlen and ira_ip_hdr_length are no 2256 * longer correct, but we don't use them any more here. 2257 */ 2258 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2259 goto truncated; 2260 2261 /* 2262 * Verify the modified message before any further 2263 * processes. 2264 */ 2265 ipha = (ipha_t *)mp->b_rptr; 2266 hdr_length = IPH_HDR_LENGTH(ipha); 2267 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2268 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2269 freemsg(mp); 2270 return; 2271 } 2272 2273 /* 2274 * The packet in error is self-encapsualted. 2275 * And we are finding it further encapsulated 2276 * which we could not have possibly generated. 2277 */ 2278 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2279 goto discard_pkt; 2280 } 2281 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2282 return; 2283 } 2284 /* No self-encapsulated */ 2285 /* FALLTHRU */ 2286 } 2287 case IPPROTO_IPV6: 2288 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2289 &ripha.ipha_dst, ipst)) != NULL) { 2290 ira->ira_flags |= IRAF_ICMP_ERROR; 2291 connp->conn_recvicmp(connp, mp, NULL, ira); 2292 CONN_DEC_REF(connp); 2293 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2294 return; 2295 } 2296 /* 2297 * No IP tunnel is interested, fallthrough and see 2298 * if a raw socket will want it. 2299 */ 2300 /* FALLTHRU */ 2301 default: 2302 ira->ira_flags |= IRAF_ICMP_ERROR; 2303 ip_fanout_proto_v4(mp, &ripha, ira); 2304 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2305 return; 2306 } 2307 /* NOTREACHED */ 2308 discard_pkt: 2309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2310 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2311 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2312 freemsg(mp); 2313 return; 2314 2315 truncated: 2316 /* We pulled up everthing already. Must be truncated */ 2317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2318 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2319 freemsg(mp); 2320 } 2321 2322 /* 2323 * Common IP options parser. 2324 * 2325 * Setup routine: fill in *optp with options-parsing state, then 2326 * tail-call ipoptp_next to return the first option. 2327 */ 2328 uint8_t 2329 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2330 { 2331 uint32_t totallen; /* total length of all options */ 2332 2333 totallen = ipha->ipha_version_and_hdr_length - 2334 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2335 totallen <<= 2; 2336 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2337 optp->ipoptp_end = optp->ipoptp_next + totallen; 2338 optp->ipoptp_flags = 0; 2339 return (ipoptp_next(optp)); 2340 } 2341 2342 /* Like above but without an ipha_t */ 2343 uint8_t 2344 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2345 { 2346 optp->ipoptp_next = opt; 2347 optp->ipoptp_end = optp->ipoptp_next + totallen; 2348 optp->ipoptp_flags = 0; 2349 return (ipoptp_next(optp)); 2350 } 2351 2352 /* 2353 * Common IP options parser: extract next option. 2354 */ 2355 uint8_t 2356 ipoptp_next(ipoptp_t *optp) 2357 { 2358 uint8_t *end = optp->ipoptp_end; 2359 uint8_t *cur = optp->ipoptp_next; 2360 uint8_t opt, len, pointer; 2361 2362 /* 2363 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2364 * has been corrupted. 2365 */ 2366 ASSERT(cur <= end); 2367 2368 if (cur == end) 2369 return (IPOPT_EOL); 2370 2371 opt = cur[IPOPT_OPTVAL]; 2372 2373 /* 2374 * Skip any NOP options. 2375 */ 2376 while (opt == IPOPT_NOP) { 2377 cur++; 2378 if (cur == end) 2379 return (IPOPT_EOL); 2380 opt = cur[IPOPT_OPTVAL]; 2381 } 2382 2383 if (opt == IPOPT_EOL) 2384 return (IPOPT_EOL); 2385 2386 /* 2387 * Option requiring a length. 2388 */ 2389 if ((cur + 1) >= end) { 2390 optp->ipoptp_flags |= IPOPTP_ERROR; 2391 return (IPOPT_EOL); 2392 } 2393 len = cur[IPOPT_OLEN]; 2394 if (len < 2) { 2395 optp->ipoptp_flags |= IPOPTP_ERROR; 2396 return (IPOPT_EOL); 2397 } 2398 optp->ipoptp_cur = cur; 2399 optp->ipoptp_len = len; 2400 optp->ipoptp_next = cur + len; 2401 if (cur + len > end) { 2402 optp->ipoptp_flags |= IPOPTP_ERROR; 2403 return (IPOPT_EOL); 2404 } 2405 2406 /* 2407 * For the options which require a pointer field, make sure 2408 * its there, and make sure it points to either something 2409 * inside this option, or the end of the option. 2410 */ 2411 switch (opt) { 2412 case IPOPT_RR: 2413 case IPOPT_TS: 2414 case IPOPT_LSRR: 2415 case IPOPT_SSRR: 2416 if (len <= IPOPT_OFFSET) { 2417 optp->ipoptp_flags |= IPOPTP_ERROR; 2418 return (opt); 2419 } 2420 pointer = cur[IPOPT_OFFSET]; 2421 if (pointer - 1 > len) { 2422 optp->ipoptp_flags |= IPOPTP_ERROR; 2423 return (opt); 2424 } 2425 break; 2426 } 2427 2428 /* 2429 * Sanity check the pointer field based on the type of the 2430 * option. 2431 */ 2432 switch (opt) { 2433 case IPOPT_RR: 2434 case IPOPT_SSRR: 2435 case IPOPT_LSRR: 2436 if (pointer < IPOPT_MINOFF_SR) 2437 optp->ipoptp_flags |= IPOPTP_ERROR; 2438 break; 2439 case IPOPT_TS: 2440 if (pointer < IPOPT_MINOFF_IT) 2441 optp->ipoptp_flags |= IPOPTP_ERROR; 2442 /* 2443 * Note that the Internet Timestamp option also 2444 * contains two four bit fields (the Overflow field, 2445 * and the Flag field), which follow the pointer 2446 * field. We don't need to check that these fields 2447 * fall within the length of the option because this 2448 * was implicitely done above. We've checked that the 2449 * pointer value is at least IPOPT_MINOFF_IT, and that 2450 * it falls within the option. Since IPOPT_MINOFF_IT > 2451 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2452 */ 2453 ASSERT(len > IPOPT_POS_OV_FLG); 2454 break; 2455 } 2456 2457 return (opt); 2458 } 2459 2460 /* 2461 * Use the outgoing IP header to create an IP_OPTIONS option the way 2462 * it was passed down from the application. 2463 * 2464 * This is compatible with BSD in that it returns 2465 * the reverse source route with the final destination 2466 * as the last entry. The first 4 bytes of the option 2467 * will contain the final destination. 2468 */ 2469 int 2470 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2471 { 2472 ipoptp_t opts; 2473 uchar_t *opt; 2474 uint8_t optval; 2475 uint8_t optlen; 2476 uint32_t len = 0; 2477 uchar_t *buf1 = buf; 2478 uint32_t totallen; 2479 ipaddr_t dst; 2480 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2481 2482 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2483 return (0); 2484 2485 totallen = ipp->ipp_ipv4_options_len; 2486 if (totallen & 0x3) 2487 return (0); 2488 2489 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2490 len += IP_ADDR_LEN; 2491 bzero(buf1, IP_ADDR_LEN); 2492 2493 dst = connp->conn_faddr_v4; 2494 2495 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2496 optval != IPOPT_EOL; 2497 optval = ipoptp_next(&opts)) { 2498 int off; 2499 2500 opt = opts.ipoptp_cur; 2501 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2502 break; 2503 } 2504 optlen = opts.ipoptp_len; 2505 2506 switch (optval) { 2507 case IPOPT_SSRR: 2508 case IPOPT_LSRR: 2509 2510 /* 2511 * Insert destination as the first entry in the source 2512 * route and move down the entries on step. 2513 * The last entry gets placed at buf1. 2514 */ 2515 buf[IPOPT_OPTVAL] = optval; 2516 buf[IPOPT_OLEN] = optlen; 2517 buf[IPOPT_OFFSET] = optlen; 2518 2519 off = optlen - IP_ADDR_LEN; 2520 if (off < 0) { 2521 /* No entries in source route */ 2522 break; 2523 } 2524 /* Last entry in source route if not already set */ 2525 if (dst == INADDR_ANY) 2526 bcopy(opt + off, buf1, IP_ADDR_LEN); 2527 off -= IP_ADDR_LEN; 2528 2529 while (off > 0) { 2530 bcopy(opt + off, 2531 buf + off + IP_ADDR_LEN, 2532 IP_ADDR_LEN); 2533 off -= IP_ADDR_LEN; 2534 } 2535 /* ipha_dst into first slot */ 2536 bcopy(&dst, buf + off + IP_ADDR_LEN, 2537 IP_ADDR_LEN); 2538 buf += optlen; 2539 len += optlen; 2540 break; 2541 2542 default: 2543 bcopy(opt, buf, optlen); 2544 buf += optlen; 2545 len += optlen; 2546 break; 2547 } 2548 } 2549 done: 2550 /* Pad the resulting options */ 2551 while (len & 0x3) { 2552 *buf++ = IPOPT_EOL; 2553 len++; 2554 } 2555 return (len); 2556 } 2557 2558 /* 2559 * Update any record route or timestamp options to include this host. 2560 * Reverse any source route option. 2561 * This routine assumes that the options are well formed i.e. that they 2562 * have already been checked. 2563 */ 2564 static void 2565 icmp_options_update(ipha_t *ipha) 2566 { 2567 ipoptp_t opts; 2568 uchar_t *opt; 2569 uint8_t optval; 2570 ipaddr_t src; /* Our local address */ 2571 ipaddr_t dst; 2572 2573 ip2dbg(("icmp_options_update\n")); 2574 src = ipha->ipha_src; 2575 dst = ipha->ipha_dst; 2576 2577 for (optval = ipoptp_first(&opts, ipha); 2578 optval != IPOPT_EOL; 2579 optval = ipoptp_next(&opts)) { 2580 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2581 opt = opts.ipoptp_cur; 2582 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2583 optval, opts.ipoptp_len)); 2584 switch (optval) { 2585 int off1, off2; 2586 case IPOPT_SSRR: 2587 case IPOPT_LSRR: 2588 /* 2589 * Reverse the source route. The first entry 2590 * should be the next to last one in the current 2591 * source route (the last entry is our address). 2592 * The last entry should be the final destination. 2593 */ 2594 off1 = IPOPT_MINOFF_SR - 1; 2595 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2596 if (off2 < 0) { 2597 /* No entries in source route */ 2598 ip1dbg(( 2599 "icmp_options_update: bad src route\n")); 2600 break; 2601 } 2602 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2603 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2604 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2605 off2 -= IP_ADDR_LEN; 2606 2607 while (off1 < off2) { 2608 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2609 bcopy((char *)opt + off2, (char *)opt + off1, 2610 IP_ADDR_LEN); 2611 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2612 off1 += IP_ADDR_LEN; 2613 off2 -= IP_ADDR_LEN; 2614 } 2615 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2616 break; 2617 } 2618 } 2619 } 2620 2621 /* 2622 * Process received ICMP Redirect messages. 2623 * Assumes the caller has verified that the headers are in the pulled up mblk. 2624 * Consumes mp. 2625 */ 2626 static void 2627 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2628 { 2629 ire_t *ire, *nire; 2630 ire_t *prev_ire; 2631 ipaddr_t src, dst, gateway; 2632 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2633 ipha_t *inner_ipha; /* Inner IP header */ 2634 2635 /* Caller already pulled up everything. */ 2636 inner_ipha = (ipha_t *)&icmph[1]; 2637 src = ipha->ipha_src; 2638 dst = inner_ipha->ipha_dst; 2639 gateway = icmph->icmph_rd_gateway; 2640 /* Make sure the new gateway is reachable somehow. */ 2641 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2642 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2643 /* 2644 * Make sure we had a route for the dest in question and that 2645 * that route was pointing to the old gateway (the source of the 2646 * redirect packet.) 2647 * We do longest match and then compare ire_gateway_addr below. 2648 */ 2649 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2650 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2651 /* 2652 * Check that 2653 * the redirect was not from ourselves 2654 * the new gateway and the old gateway are directly reachable 2655 */ 2656 if (prev_ire == NULL || ire == NULL || 2657 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2658 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2659 !(ire->ire_type & IRE_IF_ALL) || 2660 prev_ire->ire_gateway_addr != src) { 2661 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2662 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2663 freemsg(mp); 2664 if (ire != NULL) 2665 ire_refrele(ire); 2666 if (prev_ire != NULL) 2667 ire_refrele(prev_ire); 2668 return; 2669 } 2670 2671 ire_refrele(prev_ire); 2672 ire_refrele(ire); 2673 2674 /* 2675 * TODO: more precise handling for cases 0, 2, 3, the latter two 2676 * require TOS routing 2677 */ 2678 switch (icmph->icmph_code) { 2679 case 0: 2680 case 1: 2681 /* TODO: TOS specificity for cases 2 and 3 */ 2682 case 2: 2683 case 3: 2684 break; 2685 default: 2686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2687 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2688 freemsg(mp); 2689 return; 2690 } 2691 /* 2692 * Create a Route Association. This will allow us to remember that 2693 * someone we believe told us to use the particular gateway. 2694 */ 2695 ire = ire_create( 2696 (uchar_t *)&dst, /* dest addr */ 2697 (uchar_t *)&ip_g_all_ones, /* mask */ 2698 (uchar_t *)&gateway, /* gateway addr */ 2699 IRE_HOST, 2700 NULL, /* ill */ 2701 ALL_ZONES, 2702 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2703 NULL, /* tsol_gc_t */ 2704 ipst); 2705 2706 if (ire == NULL) { 2707 freemsg(mp); 2708 return; 2709 } 2710 nire = ire_add(ire); 2711 /* Check if it was a duplicate entry */ 2712 if (nire != NULL && nire != ire) { 2713 ASSERT(nire->ire_identical_ref > 1); 2714 ire_delete(nire); 2715 ire_refrele(nire); 2716 nire = NULL; 2717 } 2718 ire = nire; 2719 if (ire != NULL) { 2720 ire_refrele(ire); /* Held in ire_add */ 2721 2722 /* tell routing sockets that we received a redirect */ 2723 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2724 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2725 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2726 } 2727 2728 /* 2729 * Delete any existing IRE_HOST type redirect ires for this destination. 2730 * This together with the added IRE has the effect of 2731 * modifying an existing redirect. 2732 */ 2733 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2734 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2735 if (prev_ire != NULL) { 2736 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2737 ire_delete(prev_ire); 2738 ire_refrele(prev_ire); 2739 } 2740 2741 freemsg(mp); 2742 } 2743 2744 /* 2745 * Generate an ICMP parameter problem message. 2746 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2747 * constructed by the caller. 2748 */ 2749 static void 2750 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2751 { 2752 icmph_t icmph; 2753 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2754 2755 mp = icmp_pkt_err_ok(mp, ira); 2756 if (mp == NULL) 2757 return; 2758 2759 bzero(&icmph, sizeof (icmph_t)); 2760 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2761 icmph.icmph_pp_ptr = ptr; 2762 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2763 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2764 } 2765 2766 /* 2767 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2768 * the ICMP header pointed to by "stuff". (May be called as writer.) 2769 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2770 * an icmp error packet can be sent. 2771 * Assigns an appropriate source address to the packet. If ipha_dst is 2772 * one of our addresses use it for source. Otherwise let ip_output_simple 2773 * pick the source address. 2774 */ 2775 static void 2776 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2777 { 2778 ipaddr_t dst; 2779 icmph_t *icmph; 2780 ipha_t *ipha; 2781 uint_t len_needed; 2782 size_t msg_len; 2783 mblk_t *mp1; 2784 ipaddr_t src; 2785 ire_t *ire; 2786 ip_xmit_attr_t ixas; 2787 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2788 2789 ipha = (ipha_t *)mp->b_rptr; 2790 2791 bzero(&ixas, sizeof (ixas)); 2792 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2793 ixas.ixa_zoneid = ira->ira_zoneid; 2794 ixas.ixa_ifindex = 0; 2795 ixas.ixa_ipst = ipst; 2796 ixas.ixa_cred = kcred; 2797 ixas.ixa_cpid = NOPID; 2798 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2799 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2800 2801 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2802 /* 2803 * Apply IPsec based on how IPsec was applied to 2804 * the packet that had the error. 2805 * 2806 * If it was an outbound packet that caused the ICMP 2807 * error, then the caller will have setup the IRA 2808 * appropriately. 2809 */ 2810 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2811 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2812 /* Note: mp already consumed and ip_drop_packet done */ 2813 return; 2814 } 2815 } else { 2816 /* 2817 * This is in clear. The icmp message we are building 2818 * here should go out in clear, independent of our policy. 2819 */ 2820 ixas.ixa_flags |= IXAF_NO_IPSEC; 2821 } 2822 2823 /* Remember our eventual destination */ 2824 dst = ipha->ipha_src; 2825 2826 /* 2827 * If the packet was for one of our unicast addresses, make 2828 * sure we respond with that as the source. Otherwise 2829 * have ip_output_simple pick the source address. 2830 */ 2831 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2832 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2833 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2834 if (ire != NULL) { 2835 ire_refrele(ire); 2836 src = ipha->ipha_dst; 2837 } else { 2838 src = INADDR_ANY; 2839 ixas.ixa_flags |= IXAF_SET_SOURCE; 2840 } 2841 2842 /* 2843 * Check if we can send back more then 8 bytes in addition to 2844 * the IP header. We try to send 64 bytes of data and the internal 2845 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2846 */ 2847 len_needed = IPH_HDR_LENGTH(ipha); 2848 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2849 ipha->ipha_protocol == IPPROTO_IPV6) { 2850 if (!pullupmsg(mp, -1)) { 2851 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2852 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2853 freemsg(mp); 2854 return; 2855 } 2856 ipha = (ipha_t *)mp->b_rptr; 2857 2858 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2859 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2860 len_needed)); 2861 } else { 2862 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2863 2864 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2865 len_needed += ip_hdr_length_v6(mp, ip6h); 2866 } 2867 } 2868 len_needed += ipst->ips_ip_icmp_return; 2869 msg_len = msgdsize(mp); 2870 if (msg_len > len_needed) { 2871 (void) adjmsg(mp, len_needed - msg_len); 2872 msg_len = len_needed; 2873 } 2874 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2875 if (mp1 == NULL) { 2876 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2877 freemsg(mp); 2878 return; 2879 } 2880 mp1->b_cont = mp; 2881 mp = mp1; 2882 2883 /* 2884 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2885 * node generates be accepted in peace by all on-host destinations. 2886 * If we do NOT assume that all on-host destinations trust 2887 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2888 * (Look for IXAF_TRUSTED_ICMP). 2889 */ 2890 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2891 2892 ipha = (ipha_t *)mp->b_rptr; 2893 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2894 *ipha = icmp_ipha; 2895 ipha->ipha_src = src; 2896 ipha->ipha_dst = dst; 2897 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2898 msg_len += sizeof (icmp_ipha) + len; 2899 if (msg_len > IP_MAXPACKET) { 2900 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2901 msg_len = IP_MAXPACKET; 2902 } 2903 ipha->ipha_length = htons((uint16_t)msg_len); 2904 icmph = (icmph_t *)&ipha[1]; 2905 bcopy(stuff, icmph, len); 2906 icmph->icmph_checksum = 0; 2907 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2908 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2909 2910 (void) ip_output_simple(mp, &ixas); 2911 ixa_cleanup(&ixas); 2912 } 2913 2914 /* 2915 * Determine if an ICMP error packet can be sent given the rate limit. 2916 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2917 * in milliseconds) and a burst size. Burst size number of packets can 2918 * be sent arbitrarely closely spaced. 2919 * The state is tracked using two variables to implement an approximate 2920 * token bucket filter: 2921 * icmp_pkt_err_last - lbolt value when the last burst started 2922 * icmp_pkt_err_sent - number of packets sent in current burst 2923 */ 2924 boolean_t 2925 icmp_err_rate_limit(ip_stack_t *ipst) 2926 { 2927 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2928 uint_t refilled; /* Number of packets refilled in tbf since last */ 2929 /* Guard against changes by loading into local variable */ 2930 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2931 2932 if (err_interval == 0) 2933 return (B_FALSE); 2934 2935 if (ipst->ips_icmp_pkt_err_last > now) { 2936 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2937 ipst->ips_icmp_pkt_err_last = 0; 2938 ipst->ips_icmp_pkt_err_sent = 0; 2939 } 2940 /* 2941 * If we are in a burst update the token bucket filter. 2942 * Update the "last" time to be close to "now" but make sure 2943 * we don't loose precision. 2944 */ 2945 if (ipst->ips_icmp_pkt_err_sent != 0) { 2946 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2947 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2948 ipst->ips_icmp_pkt_err_sent = 0; 2949 } else { 2950 ipst->ips_icmp_pkt_err_sent -= refilled; 2951 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2952 } 2953 } 2954 if (ipst->ips_icmp_pkt_err_sent == 0) { 2955 /* Start of new burst */ 2956 ipst->ips_icmp_pkt_err_last = now; 2957 } 2958 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2959 ipst->ips_icmp_pkt_err_sent++; 2960 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2961 ipst->ips_icmp_pkt_err_sent)); 2962 return (B_FALSE); 2963 } 2964 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2965 return (B_TRUE); 2966 } 2967 2968 /* 2969 * Check if it is ok to send an IPv4 ICMP error packet in 2970 * response to the IPv4 packet in mp. 2971 * Free the message and return null if no 2972 * ICMP error packet should be sent. 2973 */ 2974 static mblk_t * 2975 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2976 { 2977 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2978 icmph_t *icmph; 2979 ipha_t *ipha; 2980 uint_t len_needed; 2981 2982 if (!mp) 2983 return (NULL); 2984 ipha = (ipha_t *)mp->b_rptr; 2985 if (ip_csum_hdr(ipha)) { 2986 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2987 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2988 freemsg(mp); 2989 return (NULL); 2990 } 2991 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2992 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2993 CLASSD(ipha->ipha_dst) || 2994 CLASSD(ipha->ipha_src) || 2995 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2996 /* Note: only errors to the fragment with offset 0 */ 2997 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2998 freemsg(mp); 2999 return (NULL); 3000 } 3001 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3002 /* 3003 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3004 * errors in response to any ICMP errors. 3005 */ 3006 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3007 if (mp->b_wptr - mp->b_rptr < len_needed) { 3008 if (!pullupmsg(mp, len_needed)) { 3009 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3010 freemsg(mp); 3011 return (NULL); 3012 } 3013 ipha = (ipha_t *)mp->b_rptr; 3014 } 3015 icmph = (icmph_t *) 3016 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3017 switch (icmph->icmph_type) { 3018 case ICMP_DEST_UNREACHABLE: 3019 case ICMP_SOURCE_QUENCH: 3020 case ICMP_TIME_EXCEEDED: 3021 case ICMP_PARAM_PROBLEM: 3022 case ICMP_REDIRECT: 3023 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3024 freemsg(mp); 3025 return (NULL); 3026 default: 3027 break; 3028 } 3029 } 3030 /* 3031 * If this is a labeled system, then check to see if we're allowed to 3032 * send a response to this particular sender. If not, then just drop. 3033 */ 3034 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3035 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3036 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3037 freemsg(mp); 3038 return (NULL); 3039 } 3040 if (icmp_err_rate_limit(ipst)) { 3041 /* 3042 * Only send ICMP error packets every so often. 3043 * This should be done on a per port/source basis, 3044 * but for now this will suffice. 3045 */ 3046 freemsg(mp); 3047 return (NULL); 3048 } 3049 return (mp); 3050 } 3051 3052 /* 3053 * Called when a packet was sent out the same link that it arrived on. 3054 * Check if it is ok to send a redirect and then send it. 3055 */ 3056 void 3057 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3058 ip_recv_attr_t *ira) 3059 { 3060 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3061 ipaddr_t src, nhop; 3062 mblk_t *mp1; 3063 ire_t *nhop_ire; 3064 3065 /* 3066 * Check the source address to see if it originated 3067 * on the same logical subnet it is going back out on. 3068 * If so, we should be able to send it a redirect. 3069 * Avoid sending a redirect if the destination 3070 * is directly connected (i.e., we matched an IRE_ONLINK), 3071 * or if the packet was source routed out this interface. 3072 * 3073 * We avoid sending a redirect if the 3074 * destination is directly connected 3075 * because it is possible that multiple 3076 * IP subnets may have been configured on 3077 * the link, and the source may not 3078 * be on the same subnet as ip destination, 3079 * even though they are on the same 3080 * physical link. 3081 */ 3082 if ((ire->ire_type & IRE_ONLINK) || 3083 ip_source_routed(ipha, ipst)) 3084 return; 3085 3086 nhop_ire = ire_nexthop(ire); 3087 if (nhop_ire == NULL) 3088 return; 3089 3090 nhop = nhop_ire->ire_addr; 3091 3092 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3093 ire_t *ire2; 3094 3095 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3096 mutex_enter(&nhop_ire->ire_lock); 3097 ire2 = nhop_ire->ire_dep_parent; 3098 if (ire2 != NULL) 3099 ire_refhold(ire2); 3100 mutex_exit(&nhop_ire->ire_lock); 3101 ire_refrele(nhop_ire); 3102 nhop_ire = ire2; 3103 } 3104 if (nhop_ire == NULL) 3105 return; 3106 3107 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3108 3109 src = ipha->ipha_src; 3110 3111 /* 3112 * We look at the interface ire for the nexthop, 3113 * to see if ipha_src is in the same subnet 3114 * as the nexthop. 3115 */ 3116 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3117 /* 3118 * The source is directly connected. 3119 */ 3120 mp1 = copymsg(mp); 3121 if (mp1 != NULL) { 3122 icmp_send_redirect(mp1, nhop, ira); 3123 } 3124 } 3125 ire_refrele(nhop_ire); 3126 } 3127 3128 /* 3129 * Generate an ICMP redirect message. 3130 */ 3131 static void 3132 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3133 { 3134 icmph_t icmph; 3135 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3136 3137 mp = icmp_pkt_err_ok(mp, ira); 3138 if (mp == NULL) 3139 return; 3140 3141 bzero(&icmph, sizeof (icmph_t)); 3142 icmph.icmph_type = ICMP_REDIRECT; 3143 icmph.icmph_code = 1; 3144 icmph.icmph_rd_gateway = gateway; 3145 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3146 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3147 } 3148 3149 /* 3150 * Generate an ICMP time exceeded message. 3151 */ 3152 void 3153 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3154 { 3155 icmph_t icmph; 3156 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3157 3158 mp = icmp_pkt_err_ok(mp, ira); 3159 if (mp == NULL) 3160 return; 3161 3162 bzero(&icmph, sizeof (icmph_t)); 3163 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3164 icmph.icmph_code = code; 3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3166 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3167 } 3168 3169 /* 3170 * Generate an ICMP unreachable message. 3171 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3172 * constructed by the caller. 3173 */ 3174 void 3175 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3176 { 3177 icmph_t icmph; 3178 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3179 3180 mp = icmp_pkt_err_ok(mp, ira); 3181 if (mp == NULL) 3182 return; 3183 3184 bzero(&icmph, sizeof (icmph_t)); 3185 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3186 icmph.icmph_code = code; 3187 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3188 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3189 } 3190 3191 /* 3192 * Latch in the IPsec state for a stream based the policy in the listener 3193 * and the actions in the ip_recv_attr_t. 3194 * Called directly from TCP and SCTP. 3195 */ 3196 boolean_t 3197 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3198 { 3199 ASSERT(lconnp->conn_policy != NULL); 3200 ASSERT(connp->conn_policy == NULL); 3201 3202 IPPH_REFHOLD(lconnp->conn_policy); 3203 connp->conn_policy = lconnp->conn_policy; 3204 3205 if (ira->ira_ipsec_action != NULL) { 3206 if (connp->conn_latch == NULL) { 3207 connp->conn_latch = iplatch_create(); 3208 if (connp->conn_latch == NULL) 3209 return (B_FALSE); 3210 } 3211 ipsec_latch_inbound(connp, ira); 3212 } 3213 return (B_TRUE); 3214 } 3215 3216 /* 3217 * Verify whether or not the IP address is a valid local address. 3218 * Could be a unicast, including one for a down interface. 3219 * If allow_mcbc then a multicast or broadcast address is also 3220 * acceptable. 3221 * 3222 * In the case of a broadcast/multicast address, however, the 3223 * upper protocol is expected to reset the src address 3224 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3225 * no packets are emitted with broadcast/multicast address as 3226 * source address (that violates hosts requirements RFC 1122) 3227 * The addresses valid for bind are: 3228 * (1) - INADDR_ANY (0) 3229 * (2) - IP address of an UP interface 3230 * (3) - IP address of a DOWN interface 3231 * (4) - valid local IP broadcast addresses. In this case 3232 * the conn will only receive packets destined to 3233 * the specified broadcast address. 3234 * (5) - a multicast address. In this case 3235 * the conn will only receive packets destined to 3236 * the specified multicast address. Note: the 3237 * application still has to issue an 3238 * IP_ADD_MEMBERSHIP socket option. 3239 * 3240 * In all the above cases, the bound address must be valid in the current zone. 3241 * When the address is loopback, multicast or broadcast, there might be many 3242 * matching IREs so bind has to look up based on the zone. 3243 */ 3244 ip_laddr_t 3245 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3246 ip_stack_t *ipst, boolean_t allow_mcbc) 3247 { 3248 ire_t *src_ire; 3249 3250 ASSERT(src_addr != INADDR_ANY); 3251 3252 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3253 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3254 3255 /* 3256 * If an address other than in6addr_any is requested, 3257 * we verify that it is a valid address for bind 3258 * Note: Following code is in if-else-if form for 3259 * readability compared to a condition check. 3260 */ 3261 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3262 /* 3263 * (2) Bind to address of local UP interface 3264 */ 3265 ire_refrele(src_ire); 3266 return (IPVL_UNICAST_UP); 3267 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3268 /* 3269 * (4) Bind to broadcast address 3270 */ 3271 ire_refrele(src_ire); 3272 if (allow_mcbc) 3273 return (IPVL_BCAST); 3274 else 3275 return (IPVL_BAD); 3276 } else if (CLASSD(src_addr)) { 3277 /* (5) bind to multicast address. */ 3278 if (src_ire != NULL) 3279 ire_refrele(src_ire); 3280 3281 if (allow_mcbc) 3282 return (IPVL_MCAST); 3283 else 3284 return (IPVL_BAD); 3285 } else { 3286 ipif_t *ipif; 3287 3288 /* 3289 * (3) Bind to address of local DOWN interface? 3290 * (ipif_lookup_addr() looks up all interfaces 3291 * but we do not get here for UP interfaces 3292 * - case (2) above) 3293 */ 3294 if (src_ire != NULL) 3295 ire_refrele(src_ire); 3296 3297 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3298 if (ipif == NULL) 3299 return (IPVL_BAD); 3300 3301 /* Not a useful source? */ 3302 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3303 ipif_refrele(ipif); 3304 return (IPVL_BAD); 3305 } 3306 ipif_refrele(ipif); 3307 return (IPVL_UNICAST_DOWN); 3308 } 3309 } 3310 3311 /* 3312 * Insert in the bind fanout for IPv4 and IPv6. 3313 * The caller should already have used ip_laddr_verify_v*() before calling 3314 * this. 3315 */ 3316 int 3317 ip_laddr_fanout_insert(conn_t *connp) 3318 { 3319 int error; 3320 3321 /* 3322 * Allow setting new policies. For example, disconnects result 3323 * in us being called. As we would have set conn_policy_cached 3324 * to B_TRUE before, we should set it to B_FALSE, so that policy 3325 * can change after the disconnect. 3326 */ 3327 connp->conn_policy_cached = B_FALSE; 3328 3329 error = ipcl_bind_insert(connp); 3330 if (error != 0) { 3331 if (connp->conn_anon_port) { 3332 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3333 connp->conn_mlp_type, connp->conn_proto, 3334 ntohs(connp->conn_lport), B_FALSE); 3335 } 3336 connp->conn_mlp_type = mlptSingle; 3337 } 3338 return (error); 3339 } 3340 3341 /* 3342 * Verify that both the source and destination addresses are valid. If 3343 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3344 * i.e. have no route to it. Protocols like TCP want to verify destination 3345 * reachability, while tunnels do not. 3346 * 3347 * Determine the route, the interface, and (optionally) the source address 3348 * to use to reach a given destination. 3349 * Note that we allow connect to broadcast and multicast addresses when 3350 * IPDF_ALLOW_MCBC is set. 3351 * first_hop and dst_addr are normally the same, but if source routing 3352 * they will differ; in that case the first_hop is what we'll use for the 3353 * routing lookup but the dce and label checks will be done on dst_addr, 3354 * 3355 * If uinfo is set, then we fill in the best available information 3356 * we have for the destination. This is based on (in priority order) any 3357 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3358 * ill_mtu/ill_mc_mtu. 3359 * 3360 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3361 * always do the label check on dst_addr. 3362 */ 3363 int 3364 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3365 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3366 { 3367 ire_t *ire = NULL; 3368 int error = 0; 3369 ipaddr_t setsrc; /* RTF_SETSRC */ 3370 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3371 ip_stack_t *ipst = ixa->ixa_ipst; 3372 dce_t *dce; 3373 uint_t pmtu; 3374 uint_t generation; 3375 nce_t *nce; 3376 ill_t *ill = NULL; 3377 boolean_t multirt = B_FALSE; 3378 3379 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3380 3381 /* 3382 * We never send to zero; the ULPs map it to the loopback address. 3383 * We can't allow it since we use zero to mean unitialized in some 3384 * places. 3385 */ 3386 ASSERT(dst_addr != INADDR_ANY); 3387 3388 if (is_system_labeled()) { 3389 ts_label_t *tsl = NULL; 3390 3391 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3392 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3393 if (error != 0) 3394 return (error); 3395 if (tsl != NULL) { 3396 /* Update the label */ 3397 ip_xmit_attr_replace_tsl(ixa, tsl); 3398 } 3399 } 3400 3401 setsrc = INADDR_ANY; 3402 /* 3403 * Select a route; For IPMP interfaces, we would only select 3404 * a "hidden" route (i.e., going through a specific under_ill) 3405 * if ixa_ifindex has been specified. 3406 */ 3407 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3408 &generation, &setsrc, &error, &multirt); 3409 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3410 if (error != 0) 3411 goto bad_addr; 3412 3413 /* 3414 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3415 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3416 * Otherwise the destination needn't be reachable. 3417 * 3418 * If we match on a reject or black hole, then we've got a 3419 * local failure. May as well fail out the connect() attempt, 3420 * since it's never going to succeed. 3421 */ 3422 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3423 /* 3424 * If we're verifying destination reachability, we always want 3425 * to complain here. 3426 * 3427 * If we're not verifying destination reachability but the 3428 * destination has a route, we still want to fail on the 3429 * temporary address and broadcast address tests. 3430 * 3431 * In both cases do we let the code continue so some reasonable 3432 * information is returned to the caller. That enables the 3433 * caller to use (and even cache) the IRE. conn_ip_ouput will 3434 * use the generation mismatch path to check for the unreachable 3435 * case thereby avoiding any specific check in the main path. 3436 */ 3437 ASSERT(generation == IRE_GENERATION_VERIFY); 3438 if (flags & IPDF_VERIFY_DST) { 3439 /* 3440 * Set errno but continue to set up ixa_ire to be 3441 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3442 * That allows callers to use ip_output to get an 3443 * ICMP error back. 3444 */ 3445 if (!(ire->ire_type & IRE_HOST)) 3446 error = ENETUNREACH; 3447 else 3448 error = EHOSTUNREACH; 3449 } 3450 } 3451 3452 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3453 !(flags & IPDF_ALLOW_MCBC)) { 3454 ire_refrele(ire); 3455 ire = ire_reject(ipst, B_FALSE); 3456 generation = IRE_GENERATION_VERIFY; 3457 error = ENETUNREACH; 3458 } 3459 3460 /* Cache things */ 3461 if (ixa->ixa_ire != NULL) 3462 ire_refrele_notr(ixa->ixa_ire); 3463 #ifdef DEBUG 3464 ire_refhold_notr(ire); 3465 ire_refrele(ire); 3466 #endif 3467 ixa->ixa_ire = ire; 3468 ixa->ixa_ire_generation = generation; 3469 3470 /* 3471 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3472 * since some callers will send a packet to conn_ip_output() even if 3473 * there's an error. 3474 */ 3475 if (flags & IPDF_UNIQUE_DCE) { 3476 /* Fallback to the default dce if allocation fails */ 3477 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3478 if (dce != NULL) 3479 generation = dce->dce_generation; 3480 else 3481 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3482 } else { 3483 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3484 } 3485 ASSERT(dce != NULL); 3486 if (ixa->ixa_dce != NULL) 3487 dce_refrele_notr(ixa->ixa_dce); 3488 #ifdef DEBUG 3489 dce_refhold_notr(dce); 3490 dce_refrele(dce); 3491 #endif 3492 ixa->ixa_dce = dce; 3493 ixa->ixa_dce_generation = generation; 3494 3495 /* 3496 * For multicast with multirt we have a flag passed back from 3497 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3498 * possible multicast address. 3499 * We also need a flag for multicast since we can't check 3500 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3501 */ 3502 if (multirt) { 3503 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3504 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3505 } else { 3506 ixa->ixa_postfragfn = ire->ire_postfragfn; 3507 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3508 } 3509 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3510 /* Get an nce to cache. */ 3511 nce = ire_to_nce(ire, firsthop, NULL); 3512 if (nce == NULL) { 3513 /* Allocation failure? */ 3514 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3515 } else { 3516 if (ixa->ixa_nce != NULL) 3517 nce_refrele(ixa->ixa_nce); 3518 ixa->ixa_nce = nce; 3519 } 3520 } 3521 3522 /* 3523 * If the source address is a loopback address, the 3524 * destination had best be local or multicast. 3525 * If we are sending to an IRE_LOCAL using a loopback source then 3526 * it had better be the same zoneid. 3527 */ 3528 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3529 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3530 ire = NULL; /* Stored in ixa_ire */ 3531 error = EADDRNOTAVAIL; 3532 goto bad_addr; 3533 } 3534 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3535 ire = NULL; /* Stored in ixa_ire */ 3536 error = EADDRNOTAVAIL; 3537 goto bad_addr; 3538 } 3539 } 3540 if (ire->ire_type & IRE_BROADCAST) { 3541 /* 3542 * If the ULP didn't have a specified source, then we 3543 * make sure we reselect the source when sending 3544 * broadcasts out different interfaces. 3545 */ 3546 if (flags & IPDF_SELECT_SRC) 3547 ixa->ixa_flags |= IXAF_SET_SOURCE; 3548 else 3549 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3550 } 3551 3552 /* 3553 * Does the caller want us to pick a source address? 3554 */ 3555 if (flags & IPDF_SELECT_SRC) { 3556 ipaddr_t src_addr; 3557 3558 /* 3559 * We use use ire_nexthop_ill to avoid the under ipmp 3560 * interface for source address selection. Note that for ipmp 3561 * probe packets, ixa_ifindex would have been specified, and 3562 * the ip_select_route() invocation would have picked an ire 3563 * will ire_ill pointing at an under interface. 3564 */ 3565 ill = ire_nexthop_ill(ire); 3566 3567 /* If unreachable we have no ill but need some source */ 3568 if (ill == NULL) { 3569 src_addr = htonl(INADDR_LOOPBACK); 3570 /* Make sure we look for a better source address */ 3571 generation = SRC_GENERATION_VERIFY; 3572 } else { 3573 error = ip_select_source_v4(ill, setsrc, dst_addr, 3574 ixa->ixa_multicast_ifaddr, zoneid, 3575 ipst, &src_addr, &generation, NULL); 3576 if (error != 0) { 3577 ire = NULL; /* Stored in ixa_ire */ 3578 goto bad_addr; 3579 } 3580 } 3581 3582 /* 3583 * We allow the source address to to down. 3584 * However, we check that we don't use the loopback address 3585 * as a source when sending out on the wire. 3586 */ 3587 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3588 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3589 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3590 ire = NULL; /* Stored in ixa_ire */ 3591 error = EADDRNOTAVAIL; 3592 goto bad_addr; 3593 } 3594 3595 *src_addrp = src_addr; 3596 ixa->ixa_src_generation = generation; 3597 } 3598 3599 /* 3600 * Make sure we don't leave an unreachable ixa_nce in place 3601 * since ip_select_route is used when we unplumb i.e., remove 3602 * references on ixa_ire, ixa_nce, and ixa_dce. 3603 */ 3604 nce = ixa->ixa_nce; 3605 if (nce != NULL && nce->nce_is_condemned) { 3606 nce_refrele(nce); 3607 ixa->ixa_nce = NULL; 3608 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3609 } 3610 3611 /* 3612 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3613 * However, we can't do it for IPv4 multicast or broadcast. 3614 */ 3615 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3616 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3617 3618 /* 3619 * Set initial value for fragmentation limit. Either conn_ip_output 3620 * or ULP might updates it when there are routing changes. 3621 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3622 */ 3623 pmtu = ip_get_pmtu(ixa); 3624 ixa->ixa_fragsize = pmtu; 3625 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3626 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3627 ixa->ixa_pmtu = pmtu; 3628 3629 /* 3630 * Extract information useful for some transports. 3631 * First we look for DCE metrics. Then we take what we have in 3632 * the metrics in the route, where the offlink is used if we have 3633 * one. 3634 */ 3635 if (uinfo != NULL) { 3636 bzero(uinfo, sizeof (*uinfo)); 3637 3638 if (dce->dce_flags & DCEF_UINFO) 3639 *uinfo = dce->dce_uinfo; 3640 3641 rts_merge_metrics(uinfo, &ire->ire_metrics); 3642 3643 /* Allow ire_metrics to decrease the path MTU from above */ 3644 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3645 uinfo->iulp_mtu = pmtu; 3646 3647 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3648 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3649 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3650 } 3651 3652 if (ill != NULL) 3653 ill_refrele(ill); 3654 3655 return (error); 3656 3657 bad_addr: 3658 if (ire != NULL) 3659 ire_refrele(ire); 3660 3661 if (ill != NULL) 3662 ill_refrele(ill); 3663 3664 /* 3665 * Make sure we don't leave an unreachable ixa_nce in place 3666 * since ip_select_route is used when we unplumb i.e., remove 3667 * references on ixa_ire, ixa_nce, and ixa_dce. 3668 */ 3669 nce = ixa->ixa_nce; 3670 if (nce != NULL && nce->nce_is_condemned) { 3671 nce_refrele(nce); 3672 ixa->ixa_nce = NULL; 3673 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3674 } 3675 3676 return (error); 3677 } 3678 3679 3680 /* 3681 * Get the base MTU for the case when path MTU discovery is not used. 3682 * Takes the MTU of the IRE into account. 3683 */ 3684 uint_t 3685 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3686 { 3687 uint_t mtu; 3688 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3689 3690 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3691 mtu = ill->ill_mc_mtu; 3692 else 3693 mtu = ill->ill_mtu; 3694 3695 if (iremtu != 0 && iremtu < mtu) 3696 mtu = iremtu; 3697 3698 return (mtu); 3699 } 3700 3701 /* 3702 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3703 * Assumes that ixa_ire, dce, and nce have already been set up. 3704 * 3705 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3706 * We avoid path MTU discovery if it is disabled with ndd. 3707 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3708 * 3709 * NOTE: We also used to turn it off for source routed packets. That 3710 * is no longer required since the dce is per final destination. 3711 */ 3712 uint_t 3713 ip_get_pmtu(ip_xmit_attr_t *ixa) 3714 { 3715 ip_stack_t *ipst = ixa->ixa_ipst; 3716 dce_t *dce; 3717 nce_t *nce; 3718 ire_t *ire; 3719 uint_t pmtu; 3720 3721 ire = ixa->ixa_ire; 3722 dce = ixa->ixa_dce; 3723 nce = ixa->ixa_nce; 3724 3725 /* 3726 * If path MTU discovery has been turned off by ndd, then we ignore 3727 * any dce_pmtu and for IPv4 we will not set DF. 3728 */ 3729 if (!ipst->ips_ip_path_mtu_discovery) 3730 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3731 3732 pmtu = IP_MAXPACKET; 3733 /* 3734 * Decide whether whether IPv4 sets DF 3735 * For IPv6 "no DF" means to use the 1280 mtu 3736 */ 3737 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3738 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3739 } else { 3740 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3741 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3742 pmtu = IPV6_MIN_MTU; 3743 } 3744 3745 /* Check if the PMTU is to old before we use it */ 3746 if ((dce->dce_flags & DCEF_PMTU) && 3747 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3748 ipst->ips_ip_pathmtu_interval) { 3749 /* 3750 * Older than 20 minutes. Drop the path MTU information. 3751 */ 3752 mutex_enter(&dce->dce_lock); 3753 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3754 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3755 mutex_exit(&dce->dce_lock); 3756 dce_increment_generation(dce); 3757 } 3758 3759 /* The metrics on the route can lower the path MTU */ 3760 if (ire->ire_metrics.iulp_mtu != 0 && 3761 ire->ire_metrics.iulp_mtu < pmtu) 3762 pmtu = ire->ire_metrics.iulp_mtu; 3763 3764 /* 3765 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3766 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3767 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3768 */ 3769 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3770 if (dce->dce_flags & DCEF_PMTU) { 3771 if (dce->dce_pmtu < pmtu) 3772 pmtu = dce->dce_pmtu; 3773 3774 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3775 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3776 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3777 } else { 3778 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3779 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3780 } 3781 } else { 3782 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3783 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3784 } 3785 } 3786 3787 /* 3788 * If we have an IRE_LOCAL we use the loopback mtu instead of 3789 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3790 * mtu as IRE_LOOPBACK. 3791 */ 3792 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3793 uint_t loopback_mtu; 3794 3795 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3796 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3797 3798 if (loopback_mtu < pmtu) 3799 pmtu = loopback_mtu; 3800 } else if (nce != NULL) { 3801 /* 3802 * Make sure we don't exceed the interface MTU. 3803 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3804 * an ill. We'd use the above IP_MAXPACKET in that case just 3805 * to tell the transport something larger than zero. 3806 */ 3807 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3808 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3809 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3810 if (nce->nce_common->ncec_ill != nce->nce_ill && 3811 nce->nce_ill->ill_mc_mtu < pmtu) { 3812 /* 3813 * for interfaces in an IPMP group, the mtu of 3814 * the nce_ill (under_ill) could be different 3815 * from the mtu of the ncec_ill, so we take the 3816 * min of the two. 3817 */ 3818 pmtu = nce->nce_ill->ill_mc_mtu; 3819 } 3820 } else { 3821 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3822 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3823 if (nce->nce_common->ncec_ill != nce->nce_ill && 3824 nce->nce_ill->ill_mtu < pmtu) { 3825 /* 3826 * for interfaces in an IPMP group, the mtu of 3827 * the nce_ill (under_ill) could be different 3828 * from the mtu of the ncec_ill, so we take the 3829 * min of the two. 3830 */ 3831 pmtu = nce->nce_ill->ill_mtu; 3832 } 3833 } 3834 } 3835 3836 /* 3837 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3838 * Only applies to IPv6. 3839 */ 3840 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3841 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3842 switch (ixa->ixa_use_min_mtu) { 3843 case IPV6_USE_MIN_MTU_MULTICAST: 3844 if (ire->ire_type & IRE_MULTICAST) 3845 pmtu = IPV6_MIN_MTU; 3846 break; 3847 case IPV6_USE_MIN_MTU_ALWAYS: 3848 pmtu = IPV6_MIN_MTU; 3849 break; 3850 case IPV6_USE_MIN_MTU_NEVER: 3851 break; 3852 } 3853 } else { 3854 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3855 if (ire->ire_type & IRE_MULTICAST) 3856 pmtu = IPV6_MIN_MTU; 3857 } 3858 } 3859 3860 /* 3861 * After receiving an ICMPv6 "packet too big" message with a 3862 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3863 * will insert a 8-byte fragment header in every packet. We compensate 3864 * for those cases by returning a smaller path MTU to the ULP. 3865 * 3866 * In the case of CGTP then ip_output will add a fragment header. 3867 * Make sure there is room for it by telling a smaller number 3868 * to the transport. 3869 * 3870 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3871 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3872 * which is the size of the packets it can send. 3873 */ 3874 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3875 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3876 (ire->ire_flags & RTF_MULTIRT) || 3877 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3878 pmtu -= sizeof (ip6_frag_t); 3879 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3880 } 3881 } 3882 3883 return (pmtu); 3884 } 3885 3886 /* 3887 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3888 * the final piece where we don't. Return a pointer to the first mblk in the 3889 * result, and update the pointer to the next mblk to chew on. If anything 3890 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3891 * NULL pointer. 3892 */ 3893 mblk_t * 3894 ip_carve_mp(mblk_t **mpp, ssize_t len) 3895 { 3896 mblk_t *mp0; 3897 mblk_t *mp1; 3898 mblk_t *mp2; 3899 3900 if (!len || !mpp || !(mp0 = *mpp)) 3901 return (NULL); 3902 /* If we aren't going to consume the first mblk, we need a dup. */ 3903 if (mp0->b_wptr - mp0->b_rptr > len) { 3904 mp1 = dupb(mp0); 3905 if (mp1) { 3906 /* Partition the data between the two mblks. */ 3907 mp1->b_wptr = mp1->b_rptr + len; 3908 mp0->b_rptr = mp1->b_wptr; 3909 /* 3910 * after adjustments if mblk not consumed is now 3911 * unaligned, try to align it. If this fails free 3912 * all messages and let upper layer recover. 3913 */ 3914 if (!OK_32PTR(mp0->b_rptr)) { 3915 if (!pullupmsg(mp0, -1)) { 3916 freemsg(mp0); 3917 freemsg(mp1); 3918 *mpp = NULL; 3919 return (NULL); 3920 } 3921 } 3922 } 3923 return (mp1); 3924 } 3925 /* Eat through as many mblks as we need to get len bytes. */ 3926 len -= mp0->b_wptr - mp0->b_rptr; 3927 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3928 if (mp2->b_wptr - mp2->b_rptr > len) { 3929 /* 3930 * We won't consume the entire last mblk. Like 3931 * above, dup and partition it. 3932 */ 3933 mp1->b_cont = dupb(mp2); 3934 mp1 = mp1->b_cont; 3935 if (!mp1) { 3936 /* 3937 * Trouble. Rather than go to a lot of 3938 * trouble to clean up, we free the messages. 3939 * This won't be any worse than losing it on 3940 * the wire. 3941 */ 3942 freemsg(mp0); 3943 freemsg(mp2); 3944 *mpp = NULL; 3945 return (NULL); 3946 } 3947 mp1->b_wptr = mp1->b_rptr + len; 3948 mp2->b_rptr = mp1->b_wptr; 3949 /* 3950 * after adjustments if mblk not consumed is now 3951 * unaligned, try to align it. If this fails free 3952 * all messages and let upper layer recover. 3953 */ 3954 if (!OK_32PTR(mp2->b_rptr)) { 3955 if (!pullupmsg(mp2, -1)) { 3956 freemsg(mp0); 3957 freemsg(mp2); 3958 *mpp = NULL; 3959 return (NULL); 3960 } 3961 } 3962 *mpp = mp2; 3963 return (mp0); 3964 } 3965 /* Decrement len by the amount we just got. */ 3966 len -= mp2->b_wptr - mp2->b_rptr; 3967 } 3968 /* 3969 * len should be reduced to zero now. If not our caller has 3970 * screwed up. 3971 */ 3972 if (len) { 3973 /* Shouldn't happen! */ 3974 freemsg(mp0); 3975 *mpp = NULL; 3976 return (NULL); 3977 } 3978 /* 3979 * We consumed up to exactly the end of an mblk. Detach the part 3980 * we are returning from the rest of the chain. 3981 */ 3982 mp1->b_cont = NULL; 3983 *mpp = mp2; 3984 return (mp0); 3985 } 3986 3987 /* The ill stream is being unplumbed. Called from ip_close */ 3988 int 3989 ip_modclose(ill_t *ill) 3990 { 3991 boolean_t success; 3992 ipsq_t *ipsq; 3993 ipif_t *ipif; 3994 queue_t *q = ill->ill_rq; 3995 ip_stack_t *ipst = ill->ill_ipst; 3996 int i; 3997 arl_ill_common_t *ai = ill->ill_common; 3998 3999 /* 4000 * The punlink prior to this may have initiated a capability 4001 * negotiation. But ipsq_enter will block until that finishes or 4002 * times out. 4003 */ 4004 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4005 4006 /* 4007 * Open/close/push/pop is guaranteed to be single threaded 4008 * per stream by STREAMS. FS guarantees that all references 4009 * from top are gone before close is called. So there can't 4010 * be another close thread that has set CONDEMNED on this ill. 4011 * and cause ipsq_enter to return failure. 4012 */ 4013 ASSERT(success); 4014 ipsq = ill->ill_phyint->phyint_ipsq; 4015 4016 /* 4017 * Mark it condemned. No new reference will be made to this ill. 4018 * Lookup functions will return an error. Threads that try to 4019 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4020 * that the refcnt will drop down to zero. 4021 */ 4022 mutex_enter(&ill->ill_lock); 4023 ill->ill_state_flags |= ILL_CONDEMNED; 4024 for (ipif = ill->ill_ipif; ipif != NULL; 4025 ipif = ipif->ipif_next) { 4026 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4027 } 4028 /* 4029 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4030 * returns error if ILL_CONDEMNED is set 4031 */ 4032 cv_broadcast(&ill->ill_cv); 4033 mutex_exit(&ill->ill_lock); 4034 4035 /* 4036 * Send all the deferred DLPI messages downstream which came in 4037 * during the small window right before ipsq_enter(). We do this 4038 * without waiting for the ACKs because all the ACKs for M_PROTO 4039 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4040 */ 4041 ill_dlpi_send_deferred(ill); 4042 4043 /* 4044 * Shut down fragmentation reassembly. 4045 * ill_frag_timer won't start a timer again. 4046 * Now cancel any existing timer 4047 */ 4048 (void) untimeout(ill->ill_frag_timer_id); 4049 (void) ill_frag_timeout(ill, 0); 4050 4051 /* 4052 * Call ill_delete to bring down the ipifs, ilms and ill on 4053 * this ill. Then wait for the refcnts to drop to zero. 4054 * ill_is_freeable checks whether the ill is really quiescent. 4055 * Then make sure that threads that are waiting to enter the 4056 * ipsq have seen the error returned by ipsq_enter and have 4057 * gone away. Then we call ill_delete_tail which does the 4058 * DL_UNBIND_REQ with the driver and then qprocsoff. 4059 */ 4060 ill_delete(ill); 4061 mutex_enter(&ill->ill_lock); 4062 while (!ill_is_freeable(ill)) 4063 cv_wait(&ill->ill_cv, &ill->ill_lock); 4064 4065 while (ill->ill_waiters) 4066 cv_wait(&ill->ill_cv, &ill->ill_lock); 4067 4068 mutex_exit(&ill->ill_lock); 4069 4070 /* 4071 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4072 * it held until the end of the function since the cleanup 4073 * below needs to be able to use the ip_stack_t. 4074 */ 4075 netstack_hold(ipst->ips_netstack); 4076 4077 /* qprocsoff is done via ill_delete_tail */ 4078 ill_delete_tail(ill); 4079 /* 4080 * synchronously wait for arp stream to unbind. After this, we 4081 * cannot get any data packets up from the driver. 4082 */ 4083 arp_unbind_complete(ill); 4084 ASSERT(ill->ill_ipst == NULL); 4085 4086 /* 4087 * Walk through all conns and qenable those that have queued data. 4088 * Close synchronization needs this to 4089 * be done to ensure that all upper layers blocked 4090 * due to flow control to the closing device 4091 * get unblocked. 4092 */ 4093 ip1dbg(("ip_wsrv: walking\n")); 4094 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4095 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4096 } 4097 4098 /* 4099 * ai can be null if this is an IPv6 ill, or if the IPv4 4100 * stream is being torn down before ARP was plumbed (e.g., 4101 * /sbin/ifconfig plumbing a stream twice, and encountering 4102 * an error 4103 */ 4104 if (ai != NULL) { 4105 ASSERT(!ill->ill_isv6); 4106 mutex_enter(&ai->ai_lock); 4107 ai->ai_ill = NULL; 4108 if (ai->ai_arl == NULL) { 4109 mutex_destroy(&ai->ai_lock); 4110 kmem_free(ai, sizeof (*ai)); 4111 } else { 4112 cv_signal(&ai->ai_ill_unplumb_done); 4113 mutex_exit(&ai->ai_lock); 4114 } 4115 } 4116 4117 mutex_enter(&ipst->ips_ip_mi_lock); 4118 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4119 mutex_exit(&ipst->ips_ip_mi_lock); 4120 4121 /* 4122 * credp could be null if the open didn't succeed and ip_modopen 4123 * itself calls ip_close. 4124 */ 4125 if (ill->ill_credp != NULL) 4126 crfree(ill->ill_credp); 4127 4128 mutex_destroy(&ill->ill_saved_ire_lock); 4129 mutex_destroy(&ill->ill_lock); 4130 rw_destroy(&ill->ill_mcast_lock); 4131 mutex_destroy(&ill->ill_mcast_serializer); 4132 list_destroy(&ill->ill_nce); 4133 4134 /* 4135 * Now we are done with the module close pieces that 4136 * need the netstack_t. 4137 */ 4138 netstack_rele(ipst->ips_netstack); 4139 4140 mi_close_free((IDP)ill); 4141 q->q_ptr = WR(q)->q_ptr = NULL; 4142 4143 ipsq_exit(ipsq); 4144 4145 return (0); 4146 } 4147 4148 /* 4149 * This is called as part of close() for IP, UDP, ICMP, and RTS 4150 * in order to quiesce the conn. 4151 */ 4152 void 4153 ip_quiesce_conn(conn_t *connp) 4154 { 4155 boolean_t drain_cleanup_reqd = B_FALSE; 4156 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4157 boolean_t ilg_cleanup_reqd = B_FALSE; 4158 ip_stack_t *ipst; 4159 4160 ASSERT(!IPCL_IS_TCP(connp)); 4161 ipst = connp->conn_netstack->netstack_ip; 4162 4163 /* 4164 * Mark the conn as closing, and this conn must not be 4165 * inserted in future into any list. Eg. conn_drain_insert(), 4166 * won't insert this conn into the conn_drain_list. 4167 * 4168 * conn_idl, and conn_ilg cannot get set henceforth. 4169 */ 4170 mutex_enter(&connp->conn_lock); 4171 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4172 connp->conn_state_flags |= CONN_CLOSING; 4173 if (connp->conn_idl != NULL) 4174 drain_cleanup_reqd = B_TRUE; 4175 if (connp->conn_oper_pending_ill != NULL) 4176 conn_ioctl_cleanup_reqd = B_TRUE; 4177 if (connp->conn_dhcpinit_ill != NULL) { 4178 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4179 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4180 ill_set_inputfn(connp->conn_dhcpinit_ill); 4181 connp->conn_dhcpinit_ill = NULL; 4182 } 4183 if (connp->conn_ilg != NULL) 4184 ilg_cleanup_reqd = B_TRUE; 4185 mutex_exit(&connp->conn_lock); 4186 4187 if (conn_ioctl_cleanup_reqd) 4188 conn_ioctl_cleanup(connp); 4189 4190 if (is_system_labeled() && connp->conn_anon_port) { 4191 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4192 connp->conn_mlp_type, connp->conn_proto, 4193 ntohs(connp->conn_lport), B_FALSE); 4194 connp->conn_anon_port = 0; 4195 } 4196 connp->conn_mlp_type = mlptSingle; 4197 4198 /* 4199 * Remove this conn from any fanout list it is on. 4200 * and then wait for any threads currently operating 4201 * on this endpoint to finish 4202 */ 4203 ipcl_hash_remove(connp); 4204 4205 /* 4206 * Remove this conn from the drain list, and do any other cleanup that 4207 * may be required. (TCP conns are never flow controlled, and 4208 * conn_idl will be NULL.) 4209 */ 4210 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4211 idl_t *idl = connp->conn_idl; 4212 4213 mutex_enter(&idl->idl_lock); 4214 conn_drain(connp, B_TRUE); 4215 mutex_exit(&idl->idl_lock); 4216 } 4217 4218 if (connp == ipst->ips_ip_g_mrouter) 4219 (void) ip_mrouter_done(ipst); 4220 4221 if (ilg_cleanup_reqd) 4222 ilg_delete_all(connp); 4223 4224 /* 4225 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4226 * callers from write side can't be there now because close 4227 * is in progress. The only other caller is ipcl_walk 4228 * which checks for the condemned flag. 4229 */ 4230 mutex_enter(&connp->conn_lock); 4231 connp->conn_state_flags |= CONN_CONDEMNED; 4232 while (connp->conn_ref != 1) 4233 cv_wait(&connp->conn_cv, &connp->conn_lock); 4234 connp->conn_state_flags |= CONN_QUIESCED; 4235 mutex_exit(&connp->conn_lock); 4236 } 4237 4238 /* ARGSUSED */ 4239 int 4240 ip_close(queue_t *q, int flags) 4241 { 4242 conn_t *connp; 4243 4244 /* 4245 * Call the appropriate delete routine depending on whether this is 4246 * a module or device. 4247 */ 4248 if (WR(q)->q_next != NULL) { 4249 /* This is a module close */ 4250 return (ip_modclose((ill_t *)q->q_ptr)); 4251 } 4252 4253 connp = q->q_ptr; 4254 ip_quiesce_conn(connp); 4255 4256 qprocsoff(q); 4257 4258 /* 4259 * Now we are truly single threaded on this stream, and can 4260 * delete the things hanging off the connp, and finally the connp. 4261 * We removed this connp from the fanout list, it cannot be 4262 * accessed thru the fanouts, and we already waited for the 4263 * conn_ref to drop to 0. We are already in close, so 4264 * there cannot be any other thread from the top. qprocsoff 4265 * has completed, and service has completed or won't run in 4266 * future. 4267 */ 4268 ASSERT(connp->conn_ref == 1); 4269 4270 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4271 4272 connp->conn_ref--; 4273 ipcl_conn_destroy(connp); 4274 4275 q->q_ptr = WR(q)->q_ptr = NULL; 4276 return (0); 4277 } 4278 4279 /* 4280 * Wapper around putnext() so that ip_rts_request can merely use 4281 * conn_recv. 4282 */ 4283 /*ARGSUSED2*/ 4284 static void 4285 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4286 { 4287 conn_t *connp = (conn_t *)arg1; 4288 4289 putnext(connp->conn_rq, mp); 4290 } 4291 4292 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4293 /* ARGSUSED */ 4294 static void 4295 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4296 { 4297 freemsg(mp); 4298 } 4299 4300 /* 4301 * Called when the module is about to be unloaded 4302 */ 4303 void 4304 ip_ddi_destroy(void) 4305 { 4306 /* This needs to be called before destroying any transports. */ 4307 mutex_enter(&cpu_lock); 4308 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4309 mutex_exit(&cpu_lock); 4310 4311 tnet_fini(); 4312 4313 icmp_ddi_g_destroy(); 4314 rts_ddi_g_destroy(); 4315 udp_ddi_g_destroy(); 4316 dccp_ddi_g_destroy(); 4317 sctp_ddi_g_destroy(); 4318 tcp_ddi_g_destroy(); 4319 ilb_ddi_g_destroy(); 4320 dce_g_destroy(); 4321 ipsec_policy_g_destroy(); 4322 ipcl_g_destroy(); 4323 ip_net_g_destroy(); 4324 ip_ire_g_fini(); 4325 inet_minor_destroy(ip_minor_arena_sa); 4326 #if defined(_LP64) 4327 inet_minor_destroy(ip_minor_arena_la); 4328 #endif 4329 4330 #ifdef DEBUG 4331 list_destroy(&ip_thread_list); 4332 rw_destroy(&ip_thread_rwlock); 4333 tsd_destroy(&ip_thread_data); 4334 #endif 4335 4336 netstack_unregister(NS_IP); 4337 } 4338 4339 /* 4340 * First step in cleanup. 4341 */ 4342 /* ARGSUSED */ 4343 static void 4344 ip_stack_shutdown(netstackid_t stackid, void *arg) 4345 { 4346 ip_stack_t *ipst = (ip_stack_t *)arg; 4347 4348 #ifdef NS_DEBUG 4349 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4350 #endif 4351 4352 /* 4353 * Perform cleanup for special interfaces (loopback and IPMP). 4354 */ 4355 ip_interface_cleanup(ipst); 4356 4357 /* 4358 * The *_hook_shutdown()s start the process of notifying any 4359 * consumers that things are going away.... nothing is destroyed. 4360 */ 4361 ipv4_hook_shutdown(ipst); 4362 ipv6_hook_shutdown(ipst); 4363 arp_hook_shutdown(ipst); 4364 4365 mutex_enter(&ipst->ips_capab_taskq_lock); 4366 ipst->ips_capab_taskq_quit = B_TRUE; 4367 cv_signal(&ipst->ips_capab_taskq_cv); 4368 mutex_exit(&ipst->ips_capab_taskq_lock); 4369 } 4370 4371 /* 4372 * Free the IP stack instance. 4373 */ 4374 static void 4375 ip_stack_fini(netstackid_t stackid, void *arg) 4376 { 4377 ip_stack_t *ipst = (ip_stack_t *)arg; 4378 int ret; 4379 4380 #ifdef NS_DEBUG 4381 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4382 #endif 4383 /* 4384 * At this point, all of the notifications that the events and 4385 * protocols are going away have been run, meaning that we can 4386 * now set about starting to clean things up. 4387 */ 4388 ipobs_fini(ipst); 4389 ipv4_hook_destroy(ipst); 4390 ipv6_hook_destroy(ipst); 4391 arp_hook_destroy(ipst); 4392 ip_net_destroy(ipst); 4393 4394 ipmp_destroy(ipst); 4395 4396 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4397 ipst->ips_ip_mibkp = NULL; 4398 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4399 ipst->ips_icmp_mibkp = NULL; 4400 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4401 ipst->ips_ip_kstat = NULL; 4402 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4403 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4404 ipst->ips_ip6_kstat = NULL; 4405 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4406 4407 kmem_free(ipst->ips_propinfo_tbl, 4408 ip_propinfo_count * sizeof (mod_prop_info_t)); 4409 ipst->ips_propinfo_tbl = NULL; 4410 4411 dce_stack_destroy(ipst); 4412 ip_mrouter_stack_destroy(ipst); 4413 4414 ret = untimeout(ipst->ips_igmp_timeout_id); 4415 if (ret == -1) { 4416 ASSERT(ipst->ips_igmp_timeout_id == 0); 4417 } else { 4418 ASSERT(ipst->ips_igmp_timeout_id != 0); 4419 ipst->ips_igmp_timeout_id = 0; 4420 } 4421 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4422 if (ret == -1) { 4423 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4424 } else { 4425 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4426 ipst->ips_igmp_slowtimeout_id = 0; 4427 } 4428 ret = untimeout(ipst->ips_mld_timeout_id); 4429 if (ret == -1) { 4430 ASSERT(ipst->ips_mld_timeout_id == 0); 4431 } else { 4432 ASSERT(ipst->ips_mld_timeout_id != 0); 4433 ipst->ips_mld_timeout_id = 0; 4434 } 4435 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4436 if (ret == -1) { 4437 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4438 } else { 4439 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4440 ipst->ips_mld_slowtimeout_id = 0; 4441 } 4442 4443 ip_ire_fini(ipst); 4444 ip6_asp_free(ipst); 4445 conn_drain_fini(ipst); 4446 ipcl_destroy(ipst); 4447 4448 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4449 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4450 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4451 ipst->ips_ndp4 = NULL; 4452 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4453 ipst->ips_ndp6 = NULL; 4454 4455 if (ipst->ips_loopback_ksp != NULL) { 4456 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4457 ipst->ips_loopback_ksp = NULL; 4458 } 4459 4460 mutex_destroy(&ipst->ips_capab_taskq_lock); 4461 cv_destroy(&ipst->ips_capab_taskq_cv); 4462 4463 rw_destroy(&ipst->ips_srcid_lock); 4464 4465 mutex_destroy(&ipst->ips_ip_mi_lock); 4466 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4467 4468 mutex_destroy(&ipst->ips_igmp_timer_lock); 4469 mutex_destroy(&ipst->ips_mld_timer_lock); 4470 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4471 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4472 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4473 rw_destroy(&ipst->ips_ill_g_lock); 4474 4475 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4476 ipst->ips_phyint_g_list = NULL; 4477 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4478 ipst->ips_ill_g_heads = NULL; 4479 4480 ldi_ident_release(ipst->ips_ldi_ident); 4481 kmem_free(ipst, sizeof (*ipst)); 4482 } 4483 4484 /* 4485 * This function is called from the TSD destructor, and is used to debug 4486 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4487 * details. 4488 */ 4489 static void 4490 ip_thread_exit(void *phash) 4491 { 4492 th_hash_t *thh = phash; 4493 4494 rw_enter(&ip_thread_rwlock, RW_WRITER); 4495 list_remove(&ip_thread_list, thh); 4496 rw_exit(&ip_thread_rwlock); 4497 mod_hash_destroy_hash(thh->thh_hash); 4498 kmem_free(thh, sizeof (*thh)); 4499 } 4500 4501 /* 4502 * Called when the IP kernel module is loaded into the kernel 4503 */ 4504 void 4505 ip_ddi_init(void) 4506 { 4507 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4508 4509 /* 4510 * For IP and TCP the minor numbers should start from 2 since we have 4 4511 * initial devices: ip, ip6, tcp, tcp6. 4512 */ 4513 /* 4514 * If this is a 64-bit kernel, then create two separate arenas - 4515 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4516 * other for socket apps in the range 2^^18 through 2^^32-1. 4517 */ 4518 ip_minor_arena_la = NULL; 4519 ip_minor_arena_sa = NULL; 4520 #if defined(_LP64) 4521 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4522 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4523 cmn_err(CE_PANIC, 4524 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4525 } 4526 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4527 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4528 cmn_err(CE_PANIC, 4529 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4530 } 4531 #else 4532 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4533 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4534 cmn_err(CE_PANIC, 4535 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4536 } 4537 #endif 4538 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4539 4540 ipcl_g_init(); 4541 ip_ire_g_init(); 4542 ip_net_g_init(); 4543 4544 #ifdef DEBUG 4545 tsd_create(&ip_thread_data, ip_thread_exit); 4546 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4547 list_create(&ip_thread_list, sizeof (th_hash_t), 4548 offsetof(th_hash_t, thh_link)); 4549 #endif 4550 ipsec_policy_g_init(); 4551 tcp_ddi_g_init(); 4552 sctp_ddi_g_init(); 4553 dccp_ddi_g_init(); 4554 dce_g_init(); 4555 4556 /* 4557 * We want to be informed each time a stack is created or 4558 * destroyed in the kernel, so we can maintain the 4559 * set of udp_stack_t's. 4560 */ 4561 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4562 ip_stack_fini); 4563 4564 tnet_init(); 4565 4566 udp_ddi_g_init(); 4567 rts_ddi_g_init(); 4568 icmp_ddi_g_init(); 4569 ilb_ddi_g_init(); 4570 4571 /* This needs to be called after all transports are initialized. */ 4572 mutex_enter(&cpu_lock); 4573 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4574 mutex_exit(&cpu_lock); 4575 } 4576 4577 /* 4578 * Initialize the IP stack instance. 4579 */ 4580 static void * 4581 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4582 { 4583 ip_stack_t *ipst; 4584 size_t arrsz; 4585 major_t major; 4586 4587 #ifdef NS_DEBUG 4588 printf("ip_stack_init(stack %d)\n", stackid); 4589 #endif 4590 4591 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4592 ipst->ips_netstack = ns; 4593 4594 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4595 KM_SLEEP); 4596 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4597 KM_SLEEP); 4598 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4599 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4600 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4601 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4602 4603 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4604 ipst->ips_igmp_deferred_next = INFINITY; 4605 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4606 ipst->ips_mld_deferred_next = INFINITY; 4607 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4608 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4609 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4610 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4611 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4612 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4613 4614 ipcl_init(ipst); 4615 ip_ire_init(ipst); 4616 ip6_asp_init(ipst); 4617 ipif_init(ipst); 4618 conn_drain_init(ipst); 4619 ip_mrouter_stack_init(ipst); 4620 dce_stack_init(ipst); 4621 4622 ipst->ips_ip_multirt_log_interval = 1000; 4623 4624 ipst->ips_ill_index = 1; 4625 4626 ipst->ips_saved_ip_forwarding = -1; 4627 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4628 4629 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4630 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4631 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4632 4633 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4634 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4635 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4636 ipst->ips_ip6_kstat = 4637 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4638 4639 ipst->ips_ip_src_id = 1; 4640 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4641 4642 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4643 4644 ip_net_init(ipst, ns); 4645 ipv4_hook_init(ipst); 4646 ipv6_hook_init(ipst); 4647 arp_hook_init(ipst); 4648 ipmp_init(ipst); 4649 ipobs_init(ipst); 4650 4651 /* 4652 * Create the taskq dispatcher thread and initialize related stuff. 4653 */ 4654 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4655 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4656 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4657 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4658 4659 major = mod_name_to_major(INET_NAME); 4660 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4661 return (ipst); 4662 } 4663 4664 /* 4665 * Allocate and initialize a DLPI template of the specified length. (May be 4666 * called as writer.) 4667 */ 4668 mblk_t * 4669 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4670 { 4671 mblk_t *mp; 4672 4673 mp = allocb(len, BPRI_MED); 4674 if (!mp) 4675 return (NULL); 4676 4677 /* 4678 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4679 * of which we don't seem to use) are sent with M_PCPROTO, and 4680 * that other DLPI are M_PROTO. 4681 */ 4682 if (prim == DL_INFO_REQ) { 4683 mp->b_datap->db_type = M_PCPROTO; 4684 } else { 4685 mp->b_datap->db_type = M_PROTO; 4686 } 4687 4688 mp->b_wptr = mp->b_rptr + len; 4689 bzero(mp->b_rptr, len); 4690 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4691 return (mp); 4692 } 4693 4694 /* 4695 * Allocate and initialize a DLPI notification. (May be called as writer.) 4696 */ 4697 mblk_t * 4698 ip_dlnotify_alloc(uint_t notification, uint_t data) 4699 { 4700 dl_notify_ind_t *notifyp; 4701 mblk_t *mp; 4702 4703 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4704 return (NULL); 4705 4706 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4707 notifyp->dl_notification = notification; 4708 notifyp->dl_data = data; 4709 return (mp); 4710 } 4711 4712 mblk_t * 4713 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4714 { 4715 dl_notify_ind_t *notifyp; 4716 mblk_t *mp; 4717 4718 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4719 return (NULL); 4720 4721 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4722 notifyp->dl_notification = notification; 4723 notifyp->dl_data1 = data1; 4724 notifyp->dl_data2 = data2; 4725 return (mp); 4726 } 4727 4728 /* 4729 * Debug formatting routine. Returns a character string representation of the 4730 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4731 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4732 * 4733 * Once the ndd table-printing interfaces are removed, this can be changed to 4734 * standard dotted-decimal form. 4735 */ 4736 char * 4737 ip_dot_addr(ipaddr_t addr, char *buf) 4738 { 4739 uint8_t *ap = (uint8_t *)&addr; 4740 4741 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4742 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4743 return (buf); 4744 } 4745 4746 /* 4747 * Write the given MAC address as a printable string in the usual colon- 4748 * separated format. 4749 */ 4750 const char * 4751 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4752 { 4753 char *bp; 4754 4755 if (alen == 0 || buflen < 4) 4756 return ("?"); 4757 bp = buf; 4758 for (;;) { 4759 /* 4760 * If there are more MAC address bytes available, but we won't 4761 * have any room to print them, then add "..." to the string 4762 * instead. See below for the 'magic number' explanation. 4763 */ 4764 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4765 (void) strcpy(bp, "..."); 4766 break; 4767 } 4768 (void) sprintf(bp, "%02x", *addr++); 4769 bp += 2; 4770 if (--alen == 0) 4771 break; 4772 *bp++ = ':'; 4773 buflen -= 3; 4774 /* 4775 * At this point, based on the first 'if' statement above, 4776 * either alen == 1 and buflen >= 3, or alen > 1 and 4777 * buflen >= 4. The first case leaves room for the final "xx" 4778 * number and trailing NUL byte. The second leaves room for at 4779 * least "...". Thus the apparently 'magic' numbers chosen for 4780 * that statement. 4781 */ 4782 } 4783 return (buf); 4784 } 4785 4786 /* 4787 * Called when it is conceptually a ULP that would sent the packet 4788 * e.g., port unreachable and protocol unreachable. Check that the packet 4789 * would have passed the IPsec global policy before sending the error. 4790 * 4791 * Send an ICMP error after patching up the packet appropriately. 4792 * Uses ip_drop_input and bumps the appropriate MIB. 4793 */ 4794 void 4795 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4796 ip_recv_attr_t *ira) 4797 { 4798 ipha_t *ipha; 4799 boolean_t secure; 4800 ill_t *ill = ira->ira_ill; 4801 ip_stack_t *ipst = ill->ill_ipst; 4802 netstack_t *ns = ipst->ips_netstack; 4803 ipsec_stack_t *ipss = ns->netstack_ipsec; 4804 4805 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4806 4807 /* 4808 * We are generating an icmp error for some inbound packet. 4809 * Called from all ip_fanout_(udp, tcp, proto) functions. 4810 * Before we generate an error, check with global policy 4811 * to see whether this is allowed to enter the system. As 4812 * there is no "conn", we are checking with global policy. 4813 */ 4814 ipha = (ipha_t *)mp->b_rptr; 4815 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4816 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4817 if (mp == NULL) 4818 return; 4819 } 4820 4821 /* We never send errors for protocols that we do implement */ 4822 if (ira->ira_protocol == IPPROTO_ICMP || 4823 ira->ira_protocol == IPPROTO_IGMP) { 4824 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4825 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4826 freemsg(mp); 4827 return; 4828 } 4829 /* 4830 * Have to correct checksum since 4831 * the packet might have been 4832 * fragmented and the reassembly code in ip_rput 4833 * does not restore the IP checksum. 4834 */ 4835 ipha->ipha_hdr_checksum = 0; 4836 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4837 4838 switch (icmp_type) { 4839 case ICMP_DEST_UNREACHABLE: 4840 switch (icmp_code) { 4841 case ICMP_PROTOCOL_UNREACHABLE: 4842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4843 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4844 break; 4845 case ICMP_PORT_UNREACHABLE: 4846 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4847 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4848 break; 4849 } 4850 4851 icmp_unreachable(mp, icmp_code, ira); 4852 break; 4853 default: 4854 #ifdef DEBUG 4855 panic("ip_fanout_send_icmp_v4: wrong type"); 4856 /*NOTREACHED*/ 4857 #else 4858 freemsg(mp); 4859 break; 4860 #endif 4861 } 4862 } 4863 4864 /* 4865 * Used to send an ICMP error message when a packet is received for 4866 * a protocol that is not supported. The mblk passed as argument 4867 * is consumed by this function. 4868 */ 4869 void 4870 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4871 { 4872 ipha_t *ipha; 4873 4874 ipha = (ipha_t *)mp->b_rptr; 4875 if (ira->ira_flags & IRAF_IS_IPV4) { 4876 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4877 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4878 ICMP_PROTOCOL_UNREACHABLE, ira); 4879 } else { 4880 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4881 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4882 ICMP6_PARAMPROB_NEXTHEADER, ira); 4883 } 4884 } 4885 4886 /* 4887 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4888 * Handles IPv4 and IPv6. 4889 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4890 * Caller is responsible for dropping references to the conn. 4891 */ 4892 void 4893 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4894 ip_recv_attr_t *ira) 4895 { 4896 ill_t *ill = ira->ira_ill; 4897 ip_stack_t *ipst = ill->ill_ipst; 4898 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4899 boolean_t secure; 4900 uint_t protocol = ira->ira_protocol; 4901 iaflags_t iraflags = ira->ira_flags; 4902 queue_t *rq; 4903 4904 secure = iraflags & IRAF_IPSEC_SECURE; 4905 4906 rq = connp->conn_rq; 4907 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4908 switch (protocol) { 4909 case IPPROTO_ICMPV6: 4910 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4911 break; 4912 case IPPROTO_ICMP: 4913 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4914 break; 4915 default: 4916 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4917 break; 4918 } 4919 freemsg(mp); 4920 return; 4921 } 4922 4923 ASSERT(!(IPCL_IS_IPTUN(connp))); 4924 4925 if (((iraflags & IRAF_IS_IPV4) ? 4926 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4927 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4928 secure) { 4929 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4930 ip6h, ira); 4931 if (mp == NULL) { 4932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4933 /* Note that mp is NULL */ 4934 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4935 return; 4936 } 4937 } 4938 4939 if (iraflags & IRAF_ICMP_ERROR) { 4940 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4941 } else { 4942 ill_t *rill = ira->ira_rill; 4943 4944 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4945 ira->ira_ill = ira->ira_rill = NULL; 4946 /* Send it upstream */ 4947 (connp->conn_recv)(connp, mp, NULL, ira); 4948 ira->ira_ill = ill; 4949 ira->ira_rill = rill; 4950 } 4951 } 4952 4953 /* 4954 * Handle protocols with which IP is less intimate. There 4955 * can be more than one stream bound to a particular 4956 * protocol. When this is the case, normally each one gets a copy 4957 * of any incoming packets. 4958 * 4959 * IPsec NOTE : 4960 * 4961 * Don't allow a secure packet going up a non-secure connection. 4962 * We don't allow this because 4963 * 4964 * 1) Reply might go out in clear which will be dropped at 4965 * the sending side. 4966 * 2) If the reply goes out in clear it will give the 4967 * adversary enough information for getting the key in 4968 * most of the cases. 4969 * 4970 * Moreover getting a secure packet when we expect clear 4971 * implies that SA's were added without checking for 4972 * policy on both ends. This should not happen once ISAKMP 4973 * is used to negotiate SAs as SAs will be added only after 4974 * verifying the policy. 4975 * 4976 * Zones notes: 4977 * Earlier in ip_input on a system with multiple shared-IP zones we 4978 * duplicate the multicast and broadcast packets and send them up 4979 * with each explicit zoneid that exists on that ill. 4980 * This means that here we can match the zoneid with SO_ALLZONES being special. 4981 */ 4982 void 4983 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4984 { 4985 mblk_t *mp1; 4986 ipaddr_t laddr; 4987 conn_t *connp, *first_connp, *next_connp; 4988 connf_t *connfp; 4989 ill_t *ill = ira->ira_ill; 4990 ip_stack_t *ipst = ill->ill_ipst; 4991 4992 laddr = ipha->ipha_dst; 4993 4994 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 4995 mutex_enter(&connfp->connf_lock); 4996 connp = connfp->connf_head; 4997 for (connp = connfp->connf_head; connp != NULL; 4998 connp = connp->conn_next) { 4999 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5000 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5001 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5002 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5003 break; 5004 } 5005 } 5006 5007 if (connp == NULL) { 5008 /* 5009 * No one bound to these addresses. Is 5010 * there a client that wants all 5011 * unclaimed datagrams? 5012 */ 5013 mutex_exit(&connfp->connf_lock); 5014 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5015 ICMP_PROTOCOL_UNREACHABLE, ira); 5016 return; 5017 } 5018 5019 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5020 5021 CONN_INC_REF(connp); 5022 first_connp = connp; 5023 connp = connp->conn_next; 5024 5025 for (;;) { 5026 while (connp != NULL) { 5027 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5028 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5029 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5030 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5031 ira, connp))) 5032 break; 5033 connp = connp->conn_next; 5034 } 5035 5036 if (connp == NULL) { 5037 /* No more interested clients */ 5038 connp = first_connp; 5039 break; 5040 } 5041 if (((mp1 = dupmsg(mp)) == NULL) && 5042 ((mp1 = copymsg(mp)) == NULL)) { 5043 /* Memory allocation failed */ 5044 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5045 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5046 connp = first_connp; 5047 break; 5048 } 5049 5050 CONN_INC_REF(connp); 5051 mutex_exit(&connfp->connf_lock); 5052 5053 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5054 ira); 5055 5056 mutex_enter(&connfp->connf_lock); 5057 /* Follow the next pointer before releasing the conn. */ 5058 next_connp = connp->conn_next; 5059 CONN_DEC_REF(connp); 5060 connp = next_connp; 5061 } 5062 5063 /* Last one. Send it upstream. */ 5064 mutex_exit(&connfp->connf_lock); 5065 5066 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5067 5068 CONN_DEC_REF(connp); 5069 } 5070 5071 /* 5072 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5073 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5074 * is not consumed. 5075 * 5076 * One of three things can happen, all of which affect the passed-in mblk: 5077 * 5078 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5079 * 5080 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5081 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5082 * 5083 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5084 */ 5085 mblk_t * 5086 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5087 { 5088 int shift, plen, iph_len; 5089 ipha_t *ipha; 5090 udpha_t *udpha; 5091 uint32_t *spi; 5092 uint32_t esp_ports; 5093 uint8_t *orptr; 5094 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5095 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5096 5097 ipha = (ipha_t *)mp->b_rptr; 5098 iph_len = ira->ira_ip_hdr_length; 5099 plen = ira->ira_pktlen; 5100 5101 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5102 /* 5103 * Most likely a keepalive for the benefit of an intervening 5104 * NAT. These aren't for us, per se, so drop it. 5105 * 5106 * RFC 3947/8 doesn't say for sure what to do for 2-3 5107 * byte packets (keepalives are 1-byte), but we'll drop them 5108 * also. 5109 */ 5110 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5111 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5112 return (NULL); 5113 } 5114 5115 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5116 /* might as well pull it all up - it might be ESP. */ 5117 if (!pullupmsg(mp, -1)) { 5118 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5119 DROPPER(ipss, ipds_esp_nomem), 5120 &ipss->ipsec_dropper); 5121 return (NULL); 5122 } 5123 5124 ipha = (ipha_t *)mp->b_rptr; 5125 } 5126 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5127 if (*spi == 0) { 5128 /* UDP packet - remove 0-spi. */ 5129 shift = sizeof (uint32_t); 5130 } else { 5131 /* ESP-in-UDP packet - reduce to ESP. */ 5132 ipha->ipha_protocol = IPPROTO_ESP; 5133 shift = sizeof (udpha_t); 5134 } 5135 5136 /* Fix IP header */ 5137 ira->ira_pktlen = (plen - shift); 5138 ipha->ipha_length = htons(ira->ira_pktlen); 5139 ipha->ipha_hdr_checksum = 0; 5140 5141 orptr = mp->b_rptr; 5142 mp->b_rptr += shift; 5143 5144 udpha = (udpha_t *)(orptr + iph_len); 5145 if (*spi == 0) { 5146 ASSERT((uint8_t *)ipha == orptr); 5147 udpha->uha_length = htons(plen - shift - iph_len); 5148 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5149 esp_ports = 0; 5150 } else { 5151 esp_ports = *((uint32_t *)udpha); 5152 ASSERT(esp_ports != 0); 5153 } 5154 ovbcopy(orptr, orptr + shift, iph_len); 5155 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5156 ipha = (ipha_t *)(orptr + shift); 5157 5158 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5159 ira->ira_esp_udp_ports = esp_ports; 5160 ip_fanout_v4(mp, ipha, ira); 5161 return (NULL); 5162 } 5163 return (mp); 5164 } 5165 5166 /* 5167 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5168 * Handles IPv4 and IPv6. 5169 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5170 * Caller is responsible for dropping references to the conn. 5171 */ 5172 void 5173 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5174 ip_recv_attr_t *ira) 5175 { 5176 ill_t *ill = ira->ira_ill; 5177 ip_stack_t *ipst = ill->ill_ipst; 5178 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5179 boolean_t secure; 5180 iaflags_t iraflags = ira->ira_flags; 5181 5182 secure = iraflags & IRAF_IPSEC_SECURE; 5183 5184 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5185 !canputnext(connp->conn_rq)) { 5186 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5187 freemsg(mp); 5188 return; 5189 } 5190 5191 if (((iraflags & IRAF_IS_IPV4) ? 5192 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5193 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5194 secure) { 5195 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5196 ip6h, ira); 5197 if (mp == NULL) { 5198 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5199 /* Note that mp is NULL */ 5200 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5201 return; 5202 } 5203 } 5204 5205 /* 5206 * Since this code is not used for UDP unicast we don't need a NAT_T 5207 * check. Only ip_fanout_v4 has that check. 5208 */ 5209 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5210 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5211 } else { 5212 ill_t *rill = ira->ira_rill; 5213 5214 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5215 ira->ira_ill = ira->ira_rill = NULL; 5216 /* Send it upstream */ 5217 (connp->conn_recv)(connp, mp, NULL, ira); 5218 ira->ira_ill = ill; 5219 ira->ira_rill = rill; 5220 } 5221 } 5222 5223 /* 5224 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5225 * (Unicast fanout is handled in ip_input_v4.) 5226 * 5227 * If SO_REUSEADDR is set all multicast and broadcast packets 5228 * will be delivered to all conns bound to the same port. 5229 * 5230 * If there is at least one matching AF_INET receiver, then we will 5231 * ignore any AF_INET6 receivers. 5232 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5233 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5234 * packets. 5235 * 5236 * Zones notes: 5237 * Earlier in ip_input on a system with multiple shared-IP zones we 5238 * duplicate the multicast and broadcast packets and send them up 5239 * with each explicit zoneid that exists on that ill. 5240 * This means that here we can match the zoneid with SO_ALLZONES being special. 5241 */ 5242 void 5243 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5244 ip_recv_attr_t *ira) 5245 { 5246 ipaddr_t laddr; 5247 in6_addr_t v6faddr; 5248 conn_t *connp; 5249 connf_t *connfp; 5250 ipaddr_t faddr; 5251 ill_t *ill = ira->ira_ill; 5252 ip_stack_t *ipst = ill->ill_ipst; 5253 5254 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5255 5256 laddr = ipha->ipha_dst; 5257 faddr = ipha->ipha_src; 5258 5259 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5260 mutex_enter(&connfp->connf_lock); 5261 connp = connfp->connf_head; 5262 5263 /* 5264 * If SO_REUSEADDR has been set on the first we send the 5265 * packet to all clients that have joined the group and 5266 * match the port. 5267 */ 5268 while (connp != NULL) { 5269 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5270 conn_wantpacket(connp, ira, ipha) && 5271 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5272 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5273 break; 5274 connp = connp->conn_next; 5275 } 5276 5277 if (connp == NULL) 5278 goto notfound; 5279 5280 CONN_INC_REF(connp); 5281 5282 if (connp->conn_reuseaddr) { 5283 conn_t *first_connp = connp; 5284 conn_t *next_connp; 5285 mblk_t *mp1; 5286 5287 connp = connp->conn_next; 5288 for (;;) { 5289 while (connp != NULL) { 5290 if (IPCL_UDP_MATCH(connp, lport, laddr, 5291 fport, faddr) && 5292 conn_wantpacket(connp, ira, ipha) && 5293 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5294 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5295 ira, connp))) 5296 break; 5297 connp = connp->conn_next; 5298 } 5299 if (connp == NULL) { 5300 /* No more interested clients */ 5301 connp = first_connp; 5302 break; 5303 } 5304 if (((mp1 = dupmsg(mp)) == NULL) && 5305 ((mp1 = copymsg(mp)) == NULL)) { 5306 /* Memory allocation failed */ 5307 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5308 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5309 connp = first_connp; 5310 break; 5311 } 5312 CONN_INC_REF(connp); 5313 mutex_exit(&connfp->connf_lock); 5314 5315 IP_STAT(ipst, ip_udp_fanmb); 5316 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5317 NULL, ira); 5318 mutex_enter(&connfp->connf_lock); 5319 /* Follow the next pointer before releasing the conn */ 5320 next_connp = connp->conn_next; 5321 CONN_DEC_REF(connp); 5322 connp = next_connp; 5323 } 5324 } 5325 5326 /* Last one. Send it upstream. */ 5327 mutex_exit(&connfp->connf_lock); 5328 IP_STAT(ipst, ip_udp_fanmb); 5329 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5330 CONN_DEC_REF(connp); 5331 return; 5332 5333 notfound: 5334 mutex_exit(&connfp->connf_lock); 5335 /* 5336 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5337 * have already been matched above, since they live in the IPv4 5338 * fanout tables. This implies we only need to 5339 * check for IPv6 in6addr_any endpoints here. 5340 * Thus we compare using ipv6_all_zeros instead of the destination 5341 * address, except for the multicast group membership lookup which 5342 * uses the IPv4 destination. 5343 */ 5344 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5345 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5346 mutex_enter(&connfp->connf_lock); 5347 connp = connfp->connf_head; 5348 /* 5349 * IPv4 multicast packet being delivered to an AF_INET6 5350 * in6addr_any endpoint. 5351 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5352 * and not conn_wantpacket_v6() since any multicast membership is 5353 * for an IPv4-mapped multicast address. 5354 */ 5355 while (connp != NULL) { 5356 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5357 fport, v6faddr) && 5358 conn_wantpacket(connp, ira, ipha) && 5359 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5360 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5361 break; 5362 connp = connp->conn_next; 5363 } 5364 5365 if (connp == NULL) { 5366 /* 5367 * No one bound to this port. Is 5368 * there a client that wants all 5369 * unclaimed datagrams? 5370 */ 5371 mutex_exit(&connfp->connf_lock); 5372 5373 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5374 NULL) { 5375 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5376 ip_fanout_proto_v4(mp, ipha, ira); 5377 } else { 5378 /* 5379 * We used to attempt to send an icmp error here, but 5380 * since this is known to be a multicast packet 5381 * and we don't send icmp errors in response to 5382 * multicast, just drop the packet and give up sooner. 5383 */ 5384 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5385 freemsg(mp); 5386 } 5387 return; 5388 } 5389 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5390 5391 /* 5392 * If SO_REUSEADDR has been set on the first we send the 5393 * packet to all clients that have joined the group and 5394 * match the port. 5395 */ 5396 if (connp->conn_reuseaddr) { 5397 conn_t *first_connp = connp; 5398 conn_t *next_connp; 5399 mblk_t *mp1; 5400 5401 CONN_INC_REF(connp); 5402 connp = connp->conn_next; 5403 for (;;) { 5404 while (connp != NULL) { 5405 if (IPCL_UDP_MATCH_V6(connp, lport, 5406 ipv6_all_zeros, fport, v6faddr) && 5407 conn_wantpacket(connp, ira, ipha) && 5408 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5409 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5410 ira, connp))) 5411 break; 5412 connp = connp->conn_next; 5413 } 5414 if (connp == NULL) { 5415 /* No more interested clients */ 5416 connp = first_connp; 5417 break; 5418 } 5419 if (((mp1 = dupmsg(mp)) == NULL) && 5420 ((mp1 = copymsg(mp)) == NULL)) { 5421 /* Memory allocation failed */ 5422 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5423 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5424 connp = first_connp; 5425 break; 5426 } 5427 CONN_INC_REF(connp); 5428 mutex_exit(&connfp->connf_lock); 5429 5430 IP_STAT(ipst, ip_udp_fanmb); 5431 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5432 NULL, ira); 5433 mutex_enter(&connfp->connf_lock); 5434 /* Follow the next pointer before releasing the conn */ 5435 next_connp = connp->conn_next; 5436 CONN_DEC_REF(connp); 5437 connp = next_connp; 5438 } 5439 } 5440 5441 /* Last one. Send it upstream. */ 5442 mutex_exit(&connfp->connf_lock); 5443 IP_STAT(ipst, ip_udp_fanmb); 5444 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5445 CONN_DEC_REF(connp); 5446 } 5447 5448 /* 5449 * Split an incoming packet's IPv4 options into the label and the other options. 5450 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5451 * clearing out any leftover label or options. 5452 * Otherwise it just makes ipp point into the packet. 5453 * 5454 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5455 */ 5456 int 5457 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5458 { 5459 uchar_t *opt; 5460 uint32_t totallen; 5461 uint32_t optval; 5462 uint32_t optlen; 5463 5464 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5465 ipp->ipp_hoplimit = ipha->ipha_ttl; 5466 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5467 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5468 5469 /* 5470 * Get length (in 4 byte octets) of IP header options. 5471 */ 5472 totallen = ipha->ipha_version_and_hdr_length - 5473 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5474 5475 if (totallen == 0) { 5476 if (!allocate) 5477 return (0); 5478 5479 /* Clear out anything from a previous packet */ 5480 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5481 kmem_free(ipp->ipp_ipv4_options, 5482 ipp->ipp_ipv4_options_len); 5483 ipp->ipp_ipv4_options = NULL; 5484 ipp->ipp_ipv4_options_len = 0; 5485 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5486 } 5487 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5488 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5489 ipp->ipp_label_v4 = NULL; 5490 ipp->ipp_label_len_v4 = 0; 5491 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5492 } 5493 return (0); 5494 } 5495 5496 totallen <<= 2; 5497 opt = (uchar_t *)&ipha[1]; 5498 if (!is_system_labeled()) { 5499 5500 copyall: 5501 if (!allocate) { 5502 if (totallen != 0) { 5503 ipp->ipp_ipv4_options = opt; 5504 ipp->ipp_ipv4_options_len = totallen; 5505 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5506 } 5507 return (0); 5508 } 5509 /* Just copy all of options */ 5510 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5511 if (totallen == ipp->ipp_ipv4_options_len) { 5512 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5513 return (0); 5514 } 5515 kmem_free(ipp->ipp_ipv4_options, 5516 ipp->ipp_ipv4_options_len); 5517 ipp->ipp_ipv4_options = NULL; 5518 ipp->ipp_ipv4_options_len = 0; 5519 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5520 } 5521 if (totallen == 0) 5522 return (0); 5523 5524 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5525 if (ipp->ipp_ipv4_options == NULL) 5526 return (ENOMEM); 5527 ipp->ipp_ipv4_options_len = totallen; 5528 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5529 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5530 return (0); 5531 } 5532 5533 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5534 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5535 ipp->ipp_label_v4 = NULL; 5536 ipp->ipp_label_len_v4 = 0; 5537 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5538 } 5539 5540 /* 5541 * Search for CIPSO option. 5542 * We assume CIPSO is first in options if it is present. 5543 * If it isn't, then ipp_opt_ipv4_options will not include the options 5544 * prior to the CIPSO option. 5545 */ 5546 while (totallen != 0) { 5547 switch (optval = opt[IPOPT_OPTVAL]) { 5548 case IPOPT_EOL: 5549 return (0); 5550 case IPOPT_NOP: 5551 optlen = 1; 5552 break; 5553 default: 5554 if (totallen <= IPOPT_OLEN) 5555 return (EINVAL); 5556 optlen = opt[IPOPT_OLEN]; 5557 if (optlen < 2) 5558 return (EINVAL); 5559 } 5560 if (optlen > totallen) 5561 return (EINVAL); 5562 5563 switch (optval) { 5564 case IPOPT_COMSEC: 5565 if (!allocate) { 5566 ipp->ipp_label_v4 = opt; 5567 ipp->ipp_label_len_v4 = optlen; 5568 ipp->ipp_fields |= IPPF_LABEL_V4; 5569 } else { 5570 ipp->ipp_label_v4 = kmem_alloc(optlen, 5571 KM_NOSLEEP); 5572 if (ipp->ipp_label_v4 == NULL) 5573 return (ENOMEM); 5574 ipp->ipp_label_len_v4 = optlen; 5575 ipp->ipp_fields |= IPPF_LABEL_V4; 5576 bcopy(opt, ipp->ipp_label_v4, optlen); 5577 } 5578 totallen -= optlen; 5579 opt += optlen; 5580 5581 /* Skip padding bytes until we get to a multiple of 4 */ 5582 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5583 totallen--; 5584 opt++; 5585 } 5586 /* Remaining as ipp_ipv4_options */ 5587 goto copyall; 5588 } 5589 totallen -= optlen; 5590 opt += optlen; 5591 } 5592 /* No CIPSO found; return everything as ipp_ipv4_options */ 5593 totallen = ipha->ipha_version_and_hdr_length - 5594 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5595 totallen <<= 2; 5596 opt = (uchar_t *)&ipha[1]; 5597 goto copyall; 5598 } 5599 5600 /* 5601 * Efficient versions of lookup for an IRE when we only 5602 * match the address. 5603 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5604 * Does not handle multicast addresses. 5605 */ 5606 uint_t 5607 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5608 { 5609 ire_t *ire; 5610 uint_t result; 5611 5612 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5613 ASSERT(ire != NULL); 5614 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5615 result = IRE_NOROUTE; 5616 else 5617 result = ire->ire_type; 5618 ire_refrele(ire); 5619 return (result); 5620 } 5621 5622 /* 5623 * Efficient versions of lookup for an IRE when we only 5624 * match the address. 5625 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5626 * Does not handle multicast addresses. 5627 */ 5628 uint_t 5629 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5630 { 5631 ire_t *ire; 5632 uint_t result; 5633 5634 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5635 ASSERT(ire != NULL); 5636 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5637 result = IRE_NOROUTE; 5638 else 5639 result = ire->ire_type; 5640 ire_refrele(ire); 5641 return (result); 5642 } 5643 5644 /* 5645 * Nobody should be sending 5646 * packets up this stream 5647 */ 5648 static void 5649 ip_lrput(queue_t *q, mblk_t *mp) 5650 { 5651 switch (mp->b_datap->db_type) { 5652 case M_FLUSH: 5653 /* Turn around */ 5654 if (*mp->b_rptr & FLUSHW) { 5655 *mp->b_rptr &= ~FLUSHR; 5656 qreply(q, mp); 5657 return; 5658 } 5659 break; 5660 } 5661 freemsg(mp); 5662 } 5663 5664 /* Nobody should be sending packets down this stream */ 5665 /* ARGSUSED */ 5666 void 5667 ip_lwput(queue_t *q, mblk_t *mp) 5668 { 5669 freemsg(mp); 5670 } 5671 5672 /* 5673 * Move the first hop in any source route to ipha_dst and remove that part of 5674 * the source route. Called by other protocols. Errors in option formatting 5675 * are ignored - will be handled by ip_output_options. Return the final 5676 * destination (either ipha_dst or the last entry in a source route.) 5677 */ 5678 ipaddr_t 5679 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5680 { 5681 ipoptp_t opts; 5682 uchar_t *opt; 5683 uint8_t optval; 5684 uint8_t optlen; 5685 ipaddr_t dst; 5686 int i; 5687 ip_stack_t *ipst = ns->netstack_ip; 5688 5689 ip2dbg(("ip_massage_options\n")); 5690 dst = ipha->ipha_dst; 5691 for (optval = ipoptp_first(&opts, ipha); 5692 optval != IPOPT_EOL; 5693 optval = ipoptp_next(&opts)) { 5694 opt = opts.ipoptp_cur; 5695 switch (optval) { 5696 uint8_t off; 5697 case IPOPT_SSRR: 5698 case IPOPT_LSRR: 5699 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5700 ip1dbg(("ip_massage_options: bad src route\n")); 5701 break; 5702 } 5703 optlen = opts.ipoptp_len; 5704 off = opt[IPOPT_OFFSET]; 5705 off--; 5706 redo_srr: 5707 if (optlen < IP_ADDR_LEN || 5708 off > optlen - IP_ADDR_LEN) { 5709 /* End of source route */ 5710 ip1dbg(("ip_massage_options: end of SR\n")); 5711 break; 5712 } 5713 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5714 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5715 ntohl(dst))); 5716 /* 5717 * Check if our address is present more than 5718 * once as consecutive hops in source route. 5719 * XXX verify per-interface ip_forwarding 5720 * for source route? 5721 */ 5722 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5723 off += IP_ADDR_LEN; 5724 goto redo_srr; 5725 } 5726 if (dst == htonl(INADDR_LOOPBACK)) { 5727 ip1dbg(("ip_massage_options: loopback addr in " 5728 "source route!\n")); 5729 break; 5730 } 5731 /* 5732 * Update ipha_dst to be the first hop and remove the 5733 * first hop from the source route (by overwriting 5734 * part of the option with NOP options). 5735 */ 5736 ipha->ipha_dst = dst; 5737 /* Put the last entry in dst */ 5738 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5739 3; 5740 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5741 5742 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5743 ntohl(dst))); 5744 /* Move down and overwrite */ 5745 opt[IP_ADDR_LEN] = opt[0]; 5746 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5747 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5748 for (i = 0; i < IP_ADDR_LEN; i++) 5749 opt[i] = IPOPT_NOP; 5750 break; 5751 } 5752 } 5753 return (dst); 5754 } 5755 5756 /* 5757 * Return the network mask 5758 * associated with the specified address. 5759 */ 5760 ipaddr_t 5761 ip_net_mask(ipaddr_t addr) 5762 { 5763 uchar_t *up = (uchar_t *)&addr; 5764 ipaddr_t mask = 0; 5765 uchar_t *maskp = (uchar_t *)&mask; 5766 5767 #if defined(__i386) || defined(__amd64) 5768 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5769 #endif 5770 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5771 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5772 #endif 5773 if (CLASSD(addr)) { 5774 maskp[0] = 0xF0; 5775 return (mask); 5776 } 5777 5778 /* We assume Class E default netmask to be 32 */ 5779 if (CLASSE(addr)) 5780 return (0xffffffffU); 5781 5782 if (addr == 0) 5783 return (0); 5784 maskp[0] = 0xFF; 5785 if ((up[0] & 0x80) == 0) 5786 return (mask); 5787 5788 maskp[1] = 0xFF; 5789 if ((up[0] & 0xC0) == 0x80) 5790 return (mask); 5791 5792 maskp[2] = 0xFF; 5793 if ((up[0] & 0xE0) == 0xC0) 5794 return (mask); 5795 5796 /* Otherwise return no mask */ 5797 return ((ipaddr_t)0); 5798 } 5799 5800 /* Name/Value Table Lookup Routine */ 5801 char * 5802 ip_nv_lookup(nv_t *nv, int value) 5803 { 5804 if (!nv) 5805 return (NULL); 5806 for (; nv->nv_name; nv++) { 5807 if (nv->nv_value == value) 5808 return (nv->nv_name); 5809 } 5810 return ("unknown"); 5811 } 5812 5813 static int 5814 ip_wait_for_info_ack(ill_t *ill) 5815 { 5816 int err; 5817 5818 mutex_enter(&ill->ill_lock); 5819 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5820 /* 5821 * Return value of 0 indicates a pending signal. 5822 */ 5823 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5824 if (err == 0) { 5825 mutex_exit(&ill->ill_lock); 5826 return (EINTR); 5827 } 5828 } 5829 mutex_exit(&ill->ill_lock); 5830 /* 5831 * ip_rput_other could have set an error in ill_error on 5832 * receipt of M_ERROR. 5833 */ 5834 return (ill->ill_error); 5835 } 5836 5837 /* 5838 * This is a module open, i.e. this is a control stream for access 5839 * to a DLPI device. We allocate an ill_t as the instance data in 5840 * this case. 5841 */ 5842 static int 5843 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5844 { 5845 ill_t *ill; 5846 int err; 5847 zoneid_t zoneid; 5848 netstack_t *ns; 5849 ip_stack_t *ipst; 5850 5851 /* 5852 * Prevent unprivileged processes from pushing IP so that 5853 * they can't send raw IP. 5854 */ 5855 if (secpolicy_net_rawaccess(credp) != 0) 5856 return (EPERM); 5857 5858 ns = netstack_find_by_cred(credp); 5859 ASSERT(ns != NULL); 5860 ipst = ns->netstack_ip; 5861 ASSERT(ipst != NULL); 5862 5863 /* 5864 * For exclusive stacks we set the zoneid to zero 5865 * to make IP operate as if in the global zone. 5866 */ 5867 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5868 zoneid = GLOBAL_ZONEID; 5869 else 5870 zoneid = crgetzoneid(credp); 5871 5872 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5873 q->q_ptr = WR(q)->q_ptr = ill; 5874 ill->ill_ipst = ipst; 5875 ill->ill_zoneid = zoneid; 5876 5877 /* 5878 * ill_init initializes the ill fields and then sends down 5879 * down a DL_INFO_REQ after calling qprocson. 5880 */ 5881 err = ill_init(q, ill); 5882 5883 if (err != 0) { 5884 mi_free(ill); 5885 netstack_rele(ipst->ips_netstack); 5886 q->q_ptr = NULL; 5887 WR(q)->q_ptr = NULL; 5888 return (err); 5889 } 5890 5891 /* 5892 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5893 * 5894 * ill_init initializes the ipsq marking this thread as 5895 * writer 5896 */ 5897 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5898 err = ip_wait_for_info_ack(ill); 5899 if (err == 0) 5900 ill->ill_credp = credp; 5901 else 5902 goto fail; 5903 5904 crhold(credp); 5905 5906 mutex_enter(&ipst->ips_ip_mi_lock); 5907 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5908 sflag, credp); 5909 mutex_exit(&ipst->ips_ip_mi_lock); 5910 fail: 5911 if (err) { 5912 (void) ip_close(q, 0); 5913 return (err); 5914 } 5915 return (0); 5916 } 5917 5918 /* For /dev/ip aka AF_INET open */ 5919 int 5920 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5921 { 5922 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5923 } 5924 5925 /* For /dev/ip6 aka AF_INET6 open */ 5926 int 5927 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5928 { 5929 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5930 } 5931 5932 /* IP open routine. */ 5933 int 5934 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5935 boolean_t isv6) 5936 { 5937 conn_t *connp; 5938 major_t maj; 5939 zoneid_t zoneid; 5940 netstack_t *ns; 5941 ip_stack_t *ipst; 5942 5943 /* Allow reopen. */ 5944 if (q->q_ptr != NULL) 5945 return (0); 5946 5947 if (sflag & MODOPEN) { 5948 /* This is a module open */ 5949 return (ip_modopen(q, devp, flag, sflag, credp)); 5950 } 5951 5952 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5953 /* 5954 * Non streams based socket looking for a stream 5955 * to access IP 5956 */ 5957 return (ip_helper_stream_setup(q, devp, flag, sflag, 5958 credp, isv6)); 5959 } 5960 5961 ns = netstack_find_by_cred(credp); 5962 ASSERT(ns != NULL); 5963 ipst = ns->netstack_ip; 5964 ASSERT(ipst != NULL); 5965 5966 /* 5967 * For exclusive stacks we set the zoneid to zero 5968 * to make IP operate as if in the global zone. 5969 */ 5970 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5971 zoneid = GLOBAL_ZONEID; 5972 else 5973 zoneid = crgetzoneid(credp); 5974 5975 /* 5976 * We are opening as a device. This is an IP client stream, and we 5977 * allocate an conn_t as the instance data. 5978 */ 5979 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5980 5981 /* 5982 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5983 * done by netstack_find_by_cred() 5984 */ 5985 netstack_rele(ipst->ips_netstack); 5986 5987 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5988 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5989 connp->conn_ixa->ixa_zoneid = zoneid; 5990 connp->conn_zoneid = zoneid; 5991 5992 connp->conn_rq = q; 5993 q->q_ptr = WR(q)->q_ptr = connp; 5994 5995 /* Minor tells us which /dev entry was opened */ 5996 if (isv6) { 5997 connp->conn_family = AF_INET6; 5998 connp->conn_ipversion = IPV6_VERSION; 5999 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6000 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6001 } else { 6002 connp->conn_family = AF_INET; 6003 connp->conn_ipversion = IPV4_VERSION; 6004 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6005 } 6006 6007 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6008 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6009 connp->conn_minor_arena = ip_minor_arena_la; 6010 } else { 6011 /* 6012 * Either minor numbers in the large arena were exhausted 6013 * or a non socket application is doing the open. 6014 * Try to allocate from the small arena. 6015 */ 6016 if ((connp->conn_dev = 6017 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6018 /* CONN_DEC_REF takes care of netstack_rele() */ 6019 q->q_ptr = WR(q)->q_ptr = NULL; 6020 CONN_DEC_REF(connp); 6021 return (EBUSY); 6022 } 6023 connp->conn_minor_arena = ip_minor_arena_sa; 6024 } 6025 6026 maj = getemajor(*devp); 6027 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6028 6029 /* 6030 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6031 */ 6032 connp->conn_cred = credp; 6033 connp->conn_cpid = curproc->p_pid; 6034 /* Cache things in ixa without an extra refhold */ 6035 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6036 connp->conn_ixa->ixa_cred = connp->conn_cred; 6037 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6038 if (is_system_labeled()) 6039 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6040 6041 /* 6042 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6043 */ 6044 connp->conn_recv = ip_conn_input; 6045 connp->conn_recvicmp = ip_conn_input_icmp; 6046 6047 crhold(connp->conn_cred); 6048 6049 /* 6050 * If the caller has the process-wide flag set, then default to MAC 6051 * exempt mode. This allows read-down to unlabeled hosts. 6052 */ 6053 if (getpflags(NET_MAC_AWARE, credp) != 0) 6054 connp->conn_mac_mode = CONN_MAC_AWARE; 6055 6056 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6057 6058 connp->conn_rq = q; 6059 connp->conn_wq = WR(q); 6060 6061 /* Non-zero default values */ 6062 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6063 6064 /* 6065 * Make the conn globally visible to walkers 6066 */ 6067 ASSERT(connp->conn_ref == 1); 6068 mutex_enter(&connp->conn_lock); 6069 connp->conn_state_flags &= ~CONN_INCIPIENT; 6070 mutex_exit(&connp->conn_lock); 6071 6072 qprocson(q); 6073 6074 return (0); 6075 } 6076 6077 /* 6078 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6079 * all of them are copied to the conn_t. If the req is "zero", the policy is 6080 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6081 * fields. 6082 * We keep only the latest setting of the policy and thus policy setting 6083 * is not incremental/cumulative. 6084 * 6085 * Requests to set policies with multiple alternative actions will 6086 * go through a different API. 6087 */ 6088 int 6089 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6090 { 6091 uint_t ah_req = 0; 6092 uint_t esp_req = 0; 6093 uint_t se_req = 0; 6094 ipsec_act_t *actp = NULL; 6095 uint_t nact; 6096 ipsec_policy_head_t *ph; 6097 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6098 int error = 0; 6099 netstack_t *ns = connp->conn_netstack; 6100 ip_stack_t *ipst = ns->netstack_ip; 6101 ipsec_stack_t *ipss = ns->netstack_ipsec; 6102 6103 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6104 6105 /* 6106 * The IP_SEC_OPT option does not allow variable length parameters, 6107 * hence a request cannot be NULL. 6108 */ 6109 if (req == NULL) 6110 return (EINVAL); 6111 6112 ah_req = req->ipsr_ah_req; 6113 esp_req = req->ipsr_esp_req; 6114 se_req = req->ipsr_self_encap_req; 6115 6116 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6117 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6118 return (EINVAL); 6119 6120 /* 6121 * Are we dealing with a request to reset the policy (i.e. 6122 * zero requests). 6123 */ 6124 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6125 (esp_req & REQ_MASK) == 0 && 6126 (se_req & REQ_MASK) == 0); 6127 6128 if (!is_pol_reset) { 6129 /* 6130 * If we couldn't load IPsec, fail with "protocol 6131 * not supported". 6132 * IPsec may not have been loaded for a request with zero 6133 * policies, so we don't fail in this case. 6134 */ 6135 mutex_enter(&ipss->ipsec_loader_lock); 6136 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6137 mutex_exit(&ipss->ipsec_loader_lock); 6138 return (EPROTONOSUPPORT); 6139 } 6140 mutex_exit(&ipss->ipsec_loader_lock); 6141 6142 /* 6143 * Test for valid requests. Invalid algorithms 6144 * need to be tested by IPsec code because new 6145 * algorithms can be added dynamically. 6146 */ 6147 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6148 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6149 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6150 return (EINVAL); 6151 } 6152 6153 /* 6154 * Only privileged users can issue these 6155 * requests. 6156 */ 6157 if (((ah_req & IPSEC_PREF_NEVER) || 6158 (esp_req & IPSEC_PREF_NEVER) || 6159 (se_req & IPSEC_PREF_NEVER)) && 6160 secpolicy_ip_config(cr, B_FALSE) != 0) { 6161 return (EPERM); 6162 } 6163 6164 /* 6165 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6166 * are mutually exclusive. 6167 */ 6168 if (((ah_req & REQ_MASK) == REQ_MASK) || 6169 ((esp_req & REQ_MASK) == REQ_MASK) || 6170 ((se_req & REQ_MASK) == REQ_MASK)) { 6171 /* Both of them are set */ 6172 return (EINVAL); 6173 } 6174 } 6175 6176 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6177 6178 /* 6179 * If we have already cached policies in conn_connect(), don't 6180 * let them change now. We cache policies for connections 6181 * whose src,dst [addr, port] is known. 6182 */ 6183 if (connp->conn_policy_cached) { 6184 return (EINVAL); 6185 } 6186 6187 /* 6188 * We have a zero policies, reset the connection policy if already 6189 * set. This will cause the connection to inherit the 6190 * global policy, if any. 6191 */ 6192 if (is_pol_reset) { 6193 if (connp->conn_policy != NULL) { 6194 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6195 connp->conn_policy = NULL; 6196 } 6197 connp->conn_in_enforce_policy = B_FALSE; 6198 connp->conn_out_enforce_policy = B_FALSE; 6199 return (0); 6200 } 6201 6202 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6203 ipst->ips_netstack); 6204 if (ph == NULL) 6205 goto enomem; 6206 6207 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6208 if (actp == NULL) 6209 goto enomem; 6210 6211 /* 6212 * Always insert IPv4 policy entries, since they can also apply to 6213 * ipv6 sockets being used in ipv4-compat mode. 6214 */ 6215 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6216 IPSEC_TYPE_INBOUND, ns)) 6217 goto enomem; 6218 is_pol_inserted = B_TRUE; 6219 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6220 IPSEC_TYPE_OUTBOUND, ns)) 6221 goto enomem; 6222 6223 /* 6224 * We're looking at a v6 socket, also insert the v6-specific 6225 * entries. 6226 */ 6227 if (connp->conn_family == AF_INET6) { 6228 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6229 IPSEC_TYPE_INBOUND, ns)) 6230 goto enomem; 6231 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6232 IPSEC_TYPE_OUTBOUND, ns)) 6233 goto enomem; 6234 } 6235 6236 ipsec_actvec_free(actp, nact); 6237 6238 /* 6239 * If the requests need security, set enforce_policy. 6240 * If the requests are IPSEC_PREF_NEVER, one should 6241 * still set conn_out_enforce_policy so that ip_set_destination 6242 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6243 * for connections that we don't cache policy in at connect time, 6244 * if global policy matches in ip_output_attach_policy, we 6245 * don't wrongly inherit global policy. Similarly, we need 6246 * to set conn_in_enforce_policy also so that we don't verify 6247 * policy wrongly. 6248 */ 6249 if ((ah_req & REQ_MASK) != 0 || 6250 (esp_req & REQ_MASK) != 0 || 6251 (se_req & REQ_MASK) != 0) { 6252 connp->conn_in_enforce_policy = B_TRUE; 6253 connp->conn_out_enforce_policy = B_TRUE; 6254 } 6255 6256 return (error); 6257 #undef REQ_MASK 6258 6259 /* 6260 * Common memory-allocation-failure exit path. 6261 */ 6262 enomem: 6263 if (actp != NULL) 6264 ipsec_actvec_free(actp, nact); 6265 if (is_pol_inserted) 6266 ipsec_polhead_flush(ph, ns); 6267 return (ENOMEM); 6268 } 6269 6270 /* 6271 * Set socket options for joining and leaving multicast groups. 6272 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6273 * The caller has already check that the option name is consistent with 6274 * the address family of the socket. 6275 */ 6276 int 6277 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6278 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6279 { 6280 int *i1 = (int *)invalp; 6281 int error = 0; 6282 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6283 struct ip_mreq *v4_mreqp; 6284 struct ipv6_mreq *v6_mreqp; 6285 struct group_req *greqp; 6286 ire_t *ire; 6287 boolean_t done = B_FALSE; 6288 ipaddr_t ifaddr; 6289 in6_addr_t v6group; 6290 uint_t ifindex; 6291 boolean_t mcast_opt = B_TRUE; 6292 mcast_record_t fmode; 6293 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6294 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6295 6296 switch (name) { 6297 case IP_ADD_MEMBERSHIP: 6298 case IPV6_JOIN_GROUP: 6299 mcast_opt = B_FALSE; 6300 /* FALLTHRU */ 6301 case MCAST_JOIN_GROUP: 6302 fmode = MODE_IS_EXCLUDE; 6303 optfn = ip_opt_add_group; 6304 break; 6305 6306 case IP_DROP_MEMBERSHIP: 6307 case IPV6_LEAVE_GROUP: 6308 mcast_opt = B_FALSE; 6309 /* FALLTHRU */ 6310 case MCAST_LEAVE_GROUP: 6311 fmode = MODE_IS_INCLUDE; 6312 optfn = ip_opt_delete_group; 6313 break; 6314 default: 6315 ASSERT(0); 6316 } 6317 6318 if (mcast_opt) { 6319 struct sockaddr_in *sin; 6320 struct sockaddr_in6 *sin6; 6321 6322 greqp = (struct group_req *)i1; 6323 if (greqp->gr_group.ss_family == AF_INET) { 6324 sin = (struct sockaddr_in *)&(greqp->gr_group); 6325 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6326 } else { 6327 if (!inet6) 6328 return (EINVAL); /* Not on INET socket */ 6329 6330 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6331 v6group = sin6->sin6_addr; 6332 } 6333 ifaddr = INADDR_ANY; 6334 ifindex = greqp->gr_interface; 6335 } else if (inet6) { 6336 v6_mreqp = (struct ipv6_mreq *)i1; 6337 v6group = v6_mreqp->ipv6mr_multiaddr; 6338 ifaddr = INADDR_ANY; 6339 ifindex = v6_mreqp->ipv6mr_interface; 6340 } else { 6341 v4_mreqp = (struct ip_mreq *)i1; 6342 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6343 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6344 ifindex = 0; 6345 } 6346 6347 /* 6348 * In the multirouting case, we need to replicate 6349 * the request on all interfaces that will take part 6350 * in replication. We do so because multirouting is 6351 * reflective, thus we will probably receive multi- 6352 * casts on those interfaces. 6353 * The ip_multirt_apply_membership() succeeds if 6354 * the operation succeeds on at least one interface. 6355 */ 6356 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6357 ipaddr_t group; 6358 6359 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6360 6361 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6362 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6363 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6364 } else { 6365 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6366 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6367 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6368 } 6369 if (ire != NULL) { 6370 if (ire->ire_flags & RTF_MULTIRT) { 6371 error = ip_multirt_apply_membership(optfn, ire, connp, 6372 checkonly, &v6group, fmode, &ipv6_all_zeros); 6373 done = B_TRUE; 6374 } 6375 ire_refrele(ire); 6376 } 6377 6378 if (!done) { 6379 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6380 fmode, &ipv6_all_zeros); 6381 } 6382 return (error); 6383 } 6384 6385 /* 6386 * Set socket options for joining and leaving multicast groups 6387 * for specific sources. 6388 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6389 * The caller has already check that the option name is consistent with 6390 * the address family of the socket. 6391 */ 6392 int 6393 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6394 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6395 { 6396 int *i1 = (int *)invalp; 6397 int error = 0; 6398 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6399 struct ip_mreq_source *imreqp; 6400 struct group_source_req *gsreqp; 6401 in6_addr_t v6group, v6src; 6402 uint32_t ifindex; 6403 ipaddr_t ifaddr; 6404 boolean_t mcast_opt = B_TRUE; 6405 mcast_record_t fmode; 6406 ire_t *ire; 6407 boolean_t done = B_FALSE; 6408 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6409 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6410 6411 switch (name) { 6412 case IP_BLOCK_SOURCE: 6413 mcast_opt = B_FALSE; 6414 /* FALLTHRU */ 6415 case MCAST_BLOCK_SOURCE: 6416 fmode = MODE_IS_EXCLUDE; 6417 optfn = ip_opt_add_group; 6418 break; 6419 6420 case IP_UNBLOCK_SOURCE: 6421 mcast_opt = B_FALSE; 6422 /* FALLTHRU */ 6423 case MCAST_UNBLOCK_SOURCE: 6424 fmode = MODE_IS_EXCLUDE; 6425 optfn = ip_opt_delete_group; 6426 break; 6427 6428 case IP_ADD_SOURCE_MEMBERSHIP: 6429 mcast_opt = B_FALSE; 6430 /* FALLTHRU */ 6431 case MCAST_JOIN_SOURCE_GROUP: 6432 fmode = MODE_IS_INCLUDE; 6433 optfn = ip_opt_add_group; 6434 break; 6435 6436 case IP_DROP_SOURCE_MEMBERSHIP: 6437 mcast_opt = B_FALSE; 6438 /* FALLTHRU */ 6439 case MCAST_LEAVE_SOURCE_GROUP: 6440 fmode = MODE_IS_INCLUDE; 6441 optfn = ip_opt_delete_group; 6442 break; 6443 default: 6444 ASSERT(0); 6445 } 6446 6447 if (mcast_opt) { 6448 gsreqp = (struct group_source_req *)i1; 6449 ifindex = gsreqp->gsr_interface; 6450 if (gsreqp->gsr_group.ss_family == AF_INET) { 6451 struct sockaddr_in *s; 6452 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6453 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6454 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6455 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6456 } else { 6457 struct sockaddr_in6 *s6; 6458 6459 if (!inet6) 6460 return (EINVAL); /* Not on INET socket */ 6461 6462 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6463 v6group = s6->sin6_addr; 6464 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6465 v6src = s6->sin6_addr; 6466 } 6467 ifaddr = INADDR_ANY; 6468 } else { 6469 imreqp = (struct ip_mreq_source *)i1; 6470 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6471 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6472 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6473 ifindex = 0; 6474 } 6475 6476 /* 6477 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6478 */ 6479 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6480 v6src = ipv6_all_zeros; 6481 6482 /* 6483 * In the multirouting case, we need to replicate 6484 * the request as noted in the mcast cases above. 6485 */ 6486 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6487 ipaddr_t group; 6488 6489 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6490 6491 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6492 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6493 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6494 } else { 6495 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6496 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6497 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6498 } 6499 if (ire != NULL) { 6500 if (ire->ire_flags & RTF_MULTIRT) { 6501 error = ip_multirt_apply_membership(optfn, ire, connp, 6502 checkonly, &v6group, fmode, &v6src); 6503 done = B_TRUE; 6504 } 6505 ire_refrele(ire); 6506 } 6507 if (!done) { 6508 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6509 fmode, &v6src); 6510 } 6511 return (error); 6512 } 6513 6514 /* 6515 * Given a destination address and a pointer to where to put the information 6516 * this routine fills in the mtuinfo. 6517 * The socket must be connected. 6518 * For sctp conn_faddr is the primary address. 6519 */ 6520 int 6521 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6522 { 6523 uint32_t pmtu = IP_MAXPACKET; 6524 uint_t scopeid; 6525 6526 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6527 return (-1); 6528 6529 /* In case we never sent or called ip_set_destination_v4/v6 */ 6530 if (ixa->ixa_ire != NULL) 6531 pmtu = ip_get_pmtu(ixa); 6532 6533 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6534 scopeid = ixa->ixa_scopeid; 6535 else 6536 scopeid = 0; 6537 6538 bzero(mtuinfo, sizeof (*mtuinfo)); 6539 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6540 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6541 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6542 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6543 mtuinfo->ip6m_mtu = pmtu; 6544 6545 return (sizeof (struct ip6_mtuinfo)); 6546 } 6547 6548 /* 6549 * When the src multihoming is changed from weak to [strong, preferred] 6550 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6551 * and identify routes that were created by user-applications in the 6552 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6553 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6554 * is selected by finding an interface route for the gateway. 6555 */ 6556 /* ARGSUSED */ 6557 void 6558 ip_ire_rebind_walker(ire_t *ire, void *notused) 6559 { 6560 if (!ire->ire_unbound || ire->ire_ill != NULL) 6561 return; 6562 ire_rebind(ire); 6563 ire_delete(ire); 6564 } 6565 6566 /* 6567 * When the src multihoming is changed from [strong, preferred] to weak, 6568 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6569 * set any entries that were created by user-applications in the unbound state 6570 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6571 */ 6572 /* ARGSUSED */ 6573 void 6574 ip_ire_unbind_walker(ire_t *ire, void *notused) 6575 { 6576 ire_t *new_ire; 6577 6578 if (!ire->ire_unbound || ire->ire_ill == NULL) 6579 return; 6580 if (ire->ire_ipversion == IPV6_VERSION) { 6581 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6582 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6583 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6584 } else { 6585 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6586 (uchar_t *)&ire->ire_mask, 6587 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6588 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6589 } 6590 if (new_ire == NULL) 6591 return; 6592 new_ire->ire_unbound = B_TRUE; 6593 /* 6594 * The bound ire must first be deleted so that we don't return 6595 * the existing one on the attempt to add the unbound new_ire. 6596 */ 6597 ire_delete(ire); 6598 new_ire = ire_add(new_ire); 6599 if (new_ire != NULL) 6600 ire_refrele(new_ire); 6601 } 6602 6603 /* 6604 * When the settings of ip*_strict_src_multihoming tunables are changed, 6605 * all cached routes need to be recomputed. This recomputation needs to be 6606 * done when going from weaker to stronger modes so that the cached ire 6607 * for the connection does not violate the current ip*_strict_src_multihoming 6608 * setting. It also needs to be done when going from stronger to weaker modes, 6609 * so that we fall back to matching on the longest-matching-route (as opposed 6610 * to a shorter match that may have been selected in the strong mode 6611 * to satisfy src_multihoming settings). 6612 * 6613 * The cached ixa_ire entires for all conn_t entries are marked as 6614 * "verify" so that they will be recomputed for the next packet. 6615 */ 6616 void 6617 conn_ire_revalidate(conn_t *connp, void *arg) 6618 { 6619 boolean_t isv6 = (boolean_t)arg; 6620 6621 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6622 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6623 return; 6624 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6625 } 6626 6627 /* 6628 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6629 * When an ipf is passed here for the first time, if 6630 * we already have in-order fragments on the queue, we convert from the fast- 6631 * path reassembly scheme to the hard-case scheme. From then on, additional 6632 * fragments are reassembled here. We keep track of the start and end offsets 6633 * of each piece, and the number of holes in the chain. When the hole count 6634 * goes to zero, we are done! 6635 * 6636 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6637 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6638 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6639 * after the call to ip_reassemble(). 6640 */ 6641 int 6642 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6643 size_t msg_len) 6644 { 6645 uint_t end; 6646 mblk_t *next_mp; 6647 mblk_t *mp1; 6648 uint_t offset; 6649 boolean_t incr_dups = B_TRUE; 6650 boolean_t offset_zero_seen = B_FALSE; 6651 boolean_t pkt_boundary_checked = B_FALSE; 6652 6653 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6654 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6655 6656 /* Add in byte count */ 6657 ipf->ipf_count += msg_len; 6658 if (ipf->ipf_end) { 6659 /* 6660 * We were part way through in-order reassembly, but now there 6661 * is a hole. We walk through messages already queued, and 6662 * mark them for hard case reassembly. We know that up till 6663 * now they were in order starting from offset zero. 6664 */ 6665 offset = 0; 6666 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6667 IP_REASS_SET_START(mp1, offset); 6668 if (offset == 0) { 6669 ASSERT(ipf->ipf_nf_hdr_len != 0); 6670 offset = -ipf->ipf_nf_hdr_len; 6671 } 6672 offset += mp1->b_wptr - mp1->b_rptr; 6673 IP_REASS_SET_END(mp1, offset); 6674 } 6675 /* One hole at the end. */ 6676 ipf->ipf_hole_cnt = 1; 6677 /* Brand it as a hard case, forever. */ 6678 ipf->ipf_end = 0; 6679 } 6680 /* Walk through all the new pieces. */ 6681 do { 6682 end = start + (mp->b_wptr - mp->b_rptr); 6683 /* 6684 * If start is 0, decrease 'end' only for the first mblk of 6685 * the fragment. Otherwise 'end' can get wrong value in the 6686 * second pass of the loop if first mblk is exactly the 6687 * size of ipf_nf_hdr_len. 6688 */ 6689 if (start == 0 && !offset_zero_seen) { 6690 /* First segment */ 6691 ASSERT(ipf->ipf_nf_hdr_len != 0); 6692 end -= ipf->ipf_nf_hdr_len; 6693 offset_zero_seen = B_TRUE; 6694 } 6695 next_mp = mp->b_cont; 6696 /* 6697 * We are checking to see if there is any interesing data 6698 * to process. If there isn't and the mblk isn't the 6699 * one which carries the unfragmentable header then we 6700 * drop it. It's possible to have just the unfragmentable 6701 * header come through without any data. That needs to be 6702 * saved. 6703 * 6704 * If the assert at the top of this function holds then the 6705 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6706 * is infrequently traveled enough that the test is left in 6707 * to protect against future code changes which break that 6708 * invariant. 6709 */ 6710 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6711 /* Empty. Blast it. */ 6712 IP_REASS_SET_START(mp, 0); 6713 IP_REASS_SET_END(mp, 0); 6714 /* 6715 * If the ipf points to the mblk we are about to free, 6716 * update ipf to point to the next mblk (or NULL 6717 * if none). 6718 */ 6719 if (ipf->ipf_mp->b_cont == mp) 6720 ipf->ipf_mp->b_cont = next_mp; 6721 freeb(mp); 6722 continue; 6723 } 6724 mp->b_cont = NULL; 6725 IP_REASS_SET_START(mp, start); 6726 IP_REASS_SET_END(mp, end); 6727 if (!ipf->ipf_tail_mp) { 6728 ipf->ipf_tail_mp = mp; 6729 ipf->ipf_mp->b_cont = mp; 6730 if (start == 0 || !more) { 6731 ipf->ipf_hole_cnt = 1; 6732 /* 6733 * if the first fragment comes in more than one 6734 * mblk, this loop will be executed for each 6735 * mblk. Need to adjust hole count so exiting 6736 * this routine will leave hole count at 1. 6737 */ 6738 if (next_mp) 6739 ipf->ipf_hole_cnt++; 6740 } else 6741 ipf->ipf_hole_cnt = 2; 6742 continue; 6743 } else if (ipf->ipf_last_frag_seen && !more && 6744 !pkt_boundary_checked) { 6745 /* 6746 * We check datagram boundary only if this fragment 6747 * claims to be the last fragment and we have seen a 6748 * last fragment in the past too. We do this only 6749 * once for a given fragment. 6750 * 6751 * start cannot be 0 here as fragments with start=0 6752 * and MF=0 gets handled as a complete packet. These 6753 * fragments should not reach here. 6754 */ 6755 6756 if (start + msgdsize(mp) != 6757 IP_REASS_END(ipf->ipf_tail_mp)) { 6758 /* 6759 * We have two fragments both of which claim 6760 * to be the last fragment but gives conflicting 6761 * information about the whole datagram size. 6762 * Something fishy is going on. Drop the 6763 * fragment and free up the reassembly list. 6764 */ 6765 return (IP_REASS_FAILED); 6766 } 6767 6768 /* 6769 * We shouldn't come to this code block again for this 6770 * particular fragment. 6771 */ 6772 pkt_boundary_checked = B_TRUE; 6773 } 6774 6775 /* New stuff at or beyond tail? */ 6776 offset = IP_REASS_END(ipf->ipf_tail_mp); 6777 if (start >= offset) { 6778 if (ipf->ipf_last_frag_seen) { 6779 /* current fragment is beyond last fragment */ 6780 return (IP_REASS_FAILED); 6781 } 6782 /* Link it on end. */ 6783 ipf->ipf_tail_mp->b_cont = mp; 6784 ipf->ipf_tail_mp = mp; 6785 if (more) { 6786 if (start != offset) 6787 ipf->ipf_hole_cnt++; 6788 } else if (start == offset && next_mp == NULL) 6789 ipf->ipf_hole_cnt--; 6790 continue; 6791 } 6792 mp1 = ipf->ipf_mp->b_cont; 6793 offset = IP_REASS_START(mp1); 6794 /* New stuff at the front? */ 6795 if (start < offset) { 6796 if (start == 0) { 6797 if (end >= offset) { 6798 /* Nailed the hole at the begining. */ 6799 ipf->ipf_hole_cnt--; 6800 } 6801 } else if (end < offset) { 6802 /* 6803 * A hole, stuff, and a hole where there used 6804 * to be just a hole. 6805 */ 6806 ipf->ipf_hole_cnt++; 6807 } 6808 mp->b_cont = mp1; 6809 /* Check for overlap. */ 6810 while (end > offset) { 6811 if (end < IP_REASS_END(mp1)) { 6812 mp->b_wptr -= end - offset; 6813 IP_REASS_SET_END(mp, offset); 6814 BUMP_MIB(ill->ill_ip_mib, 6815 ipIfStatsReasmPartDups); 6816 break; 6817 } 6818 /* Did we cover another hole? */ 6819 if ((mp1->b_cont && 6820 IP_REASS_END(mp1) != 6821 IP_REASS_START(mp1->b_cont) && 6822 end >= IP_REASS_START(mp1->b_cont)) || 6823 (!ipf->ipf_last_frag_seen && !more)) { 6824 ipf->ipf_hole_cnt--; 6825 } 6826 /* Clip out mp1. */ 6827 if ((mp->b_cont = mp1->b_cont) == NULL) { 6828 /* 6829 * After clipping out mp1, this guy 6830 * is now hanging off the end. 6831 */ 6832 ipf->ipf_tail_mp = mp; 6833 } 6834 IP_REASS_SET_START(mp1, 0); 6835 IP_REASS_SET_END(mp1, 0); 6836 /* Subtract byte count */ 6837 ipf->ipf_count -= mp1->b_datap->db_lim - 6838 mp1->b_datap->db_base; 6839 freeb(mp1); 6840 BUMP_MIB(ill->ill_ip_mib, 6841 ipIfStatsReasmPartDups); 6842 mp1 = mp->b_cont; 6843 if (!mp1) 6844 break; 6845 offset = IP_REASS_START(mp1); 6846 } 6847 ipf->ipf_mp->b_cont = mp; 6848 continue; 6849 } 6850 /* 6851 * The new piece starts somewhere between the start of the head 6852 * and before the end of the tail. 6853 */ 6854 for (; mp1; mp1 = mp1->b_cont) { 6855 offset = IP_REASS_END(mp1); 6856 if (start < offset) { 6857 if (end <= offset) { 6858 /* Nothing new. */ 6859 IP_REASS_SET_START(mp, 0); 6860 IP_REASS_SET_END(mp, 0); 6861 /* Subtract byte count */ 6862 ipf->ipf_count -= mp->b_datap->db_lim - 6863 mp->b_datap->db_base; 6864 if (incr_dups) { 6865 ipf->ipf_num_dups++; 6866 incr_dups = B_FALSE; 6867 } 6868 freeb(mp); 6869 BUMP_MIB(ill->ill_ip_mib, 6870 ipIfStatsReasmDuplicates); 6871 break; 6872 } 6873 /* 6874 * Trim redundant stuff off beginning of new 6875 * piece. 6876 */ 6877 IP_REASS_SET_START(mp, offset); 6878 mp->b_rptr += offset - start; 6879 BUMP_MIB(ill->ill_ip_mib, 6880 ipIfStatsReasmPartDups); 6881 start = offset; 6882 if (!mp1->b_cont) { 6883 /* 6884 * After trimming, this guy is now 6885 * hanging off the end. 6886 */ 6887 mp1->b_cont = mp; 6888 ipf->ipf_tail_mp = mp; 6889 if (!more) { 6890 ipf->ipf_hole_cnt--; 6891 } 6892 break; 6893 } 6894 } 6895 if (start >= IP_REASS_START(mp1->b_cont)) 6896 continue; 6897 /* Fill a hole */ 6898 if (start > offset) 6899 ipf->ipf_hole_cnt++; 6900 mp->b_cont = mp1->b_cont; 6901 mp1->b_cont = mp; 6902 mp1 = mp->b_cont; 6903 offset = IP_REASS_START(mp1); 6904 if (end >= offset) { 6905 ipf->ipf_hole_cnt--; 6906 /* Check for overlap. */ 6907 while (end > offset) { 6908 if (end < IP_REASS_END(mp1)) { 6909 mp->b_wptr -= end - offset; 6910 IP_REASS_SET_END(mp, offset); 6911 /* 6912 * TODO we might bump 6913 * this up twice if there is 6914 * overlap at both ends. 6915 */ 6916 BUMP_MIB(ill->ill_ip_mib, 6917 ipIfStatsReasmPartDups); 6918 break; 6919 } 6920 /* Did we cover another hole? */ 6921 if ((mp1->b_cont && 6922 IP_REASS_END(mp1) 6923 != IP_REASS_START(mp1->b_cont) && 6924 end >= 6925 IP_REASS_START(mp1->b_cont)) || 6926 (!ipf->ipf_last_frag_seen && 6927 !more)) { 6928 ipf->ipf_hole_cnt--; 6929 } 6930 /* Clip out mp1. */ 6931 if ((mp->b_cont = mp1->b_cont) == 6932 NULL) { 6933 /* 6934 * After clipping out mp1, 6935 * this guy is now hanging 6936 * off the end. 6937 */ 6938 ipf->ipf_tail_mp = mp; 6939 } 6940 IP_REASS_SET_START(mp1, 0); 6941 IP_REASS_SET_END(mp1, 0); 6942 /* Subtract byte count */ 6943 ipf->ipf_count -= 6944 mp1->b_datap->db_lim - 6945 mp1->b_datap->db_base; 6946 freeb(mp1); 6947 BUMP_MIB(ill->ill_ip_mib, 6948 ipIfStatsReasmPartDups); 6949 mp1 = mp->b_cont; 6950 if (!mp1) 6951 break; 6952 offset = IP_REASS_START(mp1); 6953 } 6954 } 6955 break; 6956 } 6957 } while (start = end, mp = next_mp); 6958 6959 /* Fragment just processed could be the last one. Remember this fact */ 6960 if (!more) 6961 ipf->ipf_last_frag_seen = B_TRUE; 6962 6963 /* Still got holes? */ 6964 if (ipf->ipf_hole_cnt) 6965 return (IP_REASS_PARTIAL); 6966 /* Clean up overloaded fields to avoid upstream disasters. */ 6967 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6968 IP_REASS_SET_START(mp1, 0); 6969 IP_REASS_SET_END(mp1, 0); 6970 } 6971 return (IP_REASS_COMPLETE); 6972 } 6973 6974 /* 6975 * Fragmentation reassembly. Each ILL has a hash table for 6976 * queuing packets undergoing reassembly for all IPIFs 6977 * associated with the ILL. The hash is based on the packet 6978 * IP ident field. The ILL frag hash table was allocated 6979 * as a timer block at the time the ILL was created. Whenever 6980 * there is anything on the reassembly queue, the timer will 6981 * be running. Returns the reassembled packet if reassembly completes. 6982 */ 6983 mblk_t * 6984 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6985 { 6986 uint32_t frag_offset_flags; 6987 mblk_t *t_mp; 6988 ipaddr_t dst; 6989 uint8_t proto = ipha->ipha_protocol; 6990 uint32_t sum_val; 6991 uint16_t sum_flags; 6992 ipf_t *ipf; 6993 ipf_t **ipfp; 6994 ipfb_t *ipfb; 6995 uint16_t ident; 6996 uint32_t offset; 6997 ipaddr_t src; 6998 uint_t hdr_length; 6999 uint32_t end; 7000 mblk_t *mp1; 7001 mblk_t *tail_mp; 7002 size_t count; 7003 size_t msg_len; 7004 uint8_t ecn_info = 0; 7005 uint32_t packet_size; 7006 boolean_t pruned = B_FALSE; 7007 ill_t *ill = ira->ira_ill; 7008 ip_stack_t *ipst = ill->ill_ipst; 7009 7010 /* 7011 * Drop the fragmented as early as possible, if 7012 * we don't have resource(s) to re-assemble. 7013 */ 7014 if (ipst->ips_ip_reass_queue_bytes == 0) { 7015 freemsg(mp); 7016 return (NULL); 7017 } 7018 7019 /* Check for fragmentation offset; return if there's none */ 7020 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7021 (IPH_MF | IPH_OFFSET)) == 0) 7022 return (mp); 7023 7024 /* 7025 * We utilize hardware computed checksum info only for UDP since 7026 * IP fragmentation is a normal occurrence for the protocol. In 7027 * addition, checksum offload support for IP fragments carrying 7028 * UDP payload is commonly implemented across network adapters. 7029 */ 7030 ASSERT(ira->ira_rill != NULL); 7031 if (proto == IPPROTO_UDP && dohwcksum && 7032 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7033 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7034 mblk_t *mp1 = mp->b_cont; 7035 int32_t len; 7036 7037 /* Record checksum information from the packet */ 7038 sum_val = (uint32_t)DB_CKSUM16(mp); 7039 sum_flags = DB_CKSUMFLAGS(mp); 7040 7041 /* IP payload offset from beginning of mblk */ 7042 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7043 7044 if ((sum_flags & HCK_PARTIALCKSUM) && 7045 (mp1 == NULL || mp1->b_cont == NULL) && 7046 offset >= DB_CKSUMSTART(mp) && 7047 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7048 uint32_t adj; 7049 /* 7050 * Partial checksum has been calculated by hardware 7051 * and attached to the packet; in addition, any 7052 * prepended extraneous data is even byte aligned. 7053 * If any such data exists, we adjust the checksum; 7054 * this would also handle any postpended data. 7055 */ 7056 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7057 mp, mp1, len, adj); 7058 7059 /* One's complement subtract extraneous checksum */ 7060 if (adj >= sum_val) 7061 sum_val = ~(adj - sum_val) & 0xFFFF; 7062 else 7063 sum_val -= adj; 7064 } 7065 } else { 7066 sum_val = 0; 7067 sum_flags = 0; 7068 } 7069 7070 /* Clear hardware checksumming flag */ 7071 DB_CKSUMFLAGS(mp) = 0; 7072 7073 ident = ipha->ipha_ident; 7074 offset = (frag_offset_flags << 3) & 0xFFFF; 7075 src = ipha->ipha_src; 7076 dst = ipha->ipha_dst; 7077 hdr_length = IPH_HDR_LENGTH(ipha); 7078 end = ntohs(ipha->ipha_length) - hdr_length; 7079 7080 /* If end == 0 then we have a packet with no data, so just free it */ 7081 if (end == 0) { 7082 freemsg(mp); 7083 return (NULL); 7084 } 7085 7086 /* Record the ECN field info. */ 7087 ecn_info = (ipha->ipha_type_of_service & 0x3); 7088 if (offset != 0) { 7089 /* 7090 * If this isn't the first piece, strip the header, and 7091 * add the offset to the end value. 7092 */ 7093 mp->b_rptr += hdr_length; 7094 end += offset; 7095 } 7096 7097 /* Handle vnic loopback of fragments */ 7098 if (mp->b_datap->db_ref > 2) 7099 msg_len = 0; 7100 else 7101 msg_len = MBLKSIZE(mp); 7102 7103 tail_mp = mp; 7104 while (tail_mp->b_cont != NULL) { 7105 tail_mp = tail_mp->b_cont; 7106 if (tail_mp->b_datap->db_ref <= 2) 7107 msg_len += MBLKSIZE(tail_mp); 7108 } 7109 7110 /* If the reassembly list for this ILL will get too big, prune it */ 7111 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7112 ipst->ips_ip_reass_queue_bytes) { 7113 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7114 uint_t, ill->ill_frag_count, 7115 uint_t, ipst->ips_ip_reass_queue_bytes); 7116 ill_frag_prune(ill, 7117 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7118 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7119 pruned = B_TRUE; 7120 } 7121 7122 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7123 mutex_enter(&ipfb->ipfb_lock); 7124 7125 ipfp = &ipfb->ipfb_ipf; 7126 /* Try to find an existing fragment queue for this packet. */ 7127 for (;;) { 7128 ipf = ipfp[0]; 7129 if (ipf != NULL) { 7130 /* 7131 * It has to match on ident and src/dst address. 7132 */ 7133 if (ipf->ipf_ident == ident && 7134 ipf->ipf_src == src && 7135 ipf->ipf_dst == dst && 7136 ipf->ipf_protocol == proto) { 7137 /* 7138 * If we have received too many 7139 * duplicate fragments for this packet 7140 * free it. 7141 */ 7142 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7143 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7144 freemsg(mp); 7145 mutex_exit(&ipfb->ipfb_lock); 7146 return (NULL); 7147 } 7148 /* Found it. */ 7149 break; 7150 } 7151 ipfp = &ipf->ipf_hash_next; 7152 continue; 7153 } 7154 7155 /* 7156 * If we pruned the list, do we want to store this new 7157 * fragment?. We apply an optimization here based on the 7158 * fact that most fragments will be received in order. 7159 * So if the offset of this incoming fragment is zero, 7160 * it is the first fragment of a new packet. We will 7161 * keep it. Otherwise drop the fragment, as we have 7162 * probably pruned the packet already (since the 7163 * packet cannot be found). 7164 */ 7165 if (pruned && offset != 0) { 7166 mutex_exit(&ipfb->ipfb_lock); 7167 freemsg(mp); 7168 return (NULL); 7169 } 7170 7171 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7172 /* 7173 * Too many fragmented packets in this hash 7174 * bucket. Free the oldest. 7175 */ 7176 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7177 } 7178 7179 /* New guy. Allocate a frag message. */ 7180 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7181 if (mp1 == NULL) { 7182 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7183 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7184 freemsg(mp); 7185 reass_done: 7186 mutex_exit(&ipfb->ipfb_lock); 7187 return (NULL); 7188 } 7189 7190 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7191 mp1->b_cont = mp; 7192 7193 /* Initialize the fragment header. */ 7194 ipf = (ipf_t *)mp1->b_rptr; 7195 ipf->ipf_mp = mp1; 7196 ipf->ipf_ptphn = ipfp; 7197 ipfp[0] = ipf; 7198 ipf->ipf_hash_next = NULL; 7199 ipf->ipf_ident = ident; 7200 ipf->ipf_protocol = proto; 7201 ipf->ipf_src = src; 7202 ipf->ipf_dst = dst; 7203 ipf->ipf_nf_hdr_len = 0; 7204 /* Record reassembly start time. */ 7205 ipf->ipf_timestamp = gethrestime_sec(); 7206 /* Record ipf generation and account for frag header */ 7207 ipf->ipf_gen = ill->ill_ipf_gen++; 7208 ipf->ipf_count = MBLKSIZE(mp1); 7209 ipf->ipf_last_frag_seen = B_FALSE; 7210 ipf->ipf_ecn = ecn_info; 7211 ipf->ipf_num_dups = 0; 7212 ipfb->ipfb_frag_pkts++; 7213 ipf->ipf_checksum = 0; 7214 ipf->ipf_checksum_flags = 0; 7215 7216 /* Store checksum value in fragment header */ 7217 if (sum_flags != 0) { 7218 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7219 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7220 ipf->ipf_checksum = sum_val; 7221 ipf->ipf_checksum_flags = sum_flags; 7222 } 7223 7224 /* 7225 * We handle reassembly two ways. In the easy case, 7226 * where all the fragments show up in order, we do 7227 * minimal bookkeeping, and just clip new pieces on 7228 * the end. If we ever see a hole, then we go off 7229 * to ip_reassemble which has to mark the pieces and 7230 * keep track of the number of holes, etc. Obviously, 7231 * the point of having both mechanisms is so we can 7232 * handle the easy case as efficiently as possible. 7233 */ 7234 if (offset == 0) { 7235 /* Easy case, in-order reassembly so far. */ 7236 ipf->ipf_count += msg_len; 7237 ipf->ipf_tail_mp = tail_mp; 7238 /* 7239 * Keep track of next expected offset in 7240 * ipf_end. 7241 */ 7242 ipf->ipf_end = end; 7243 ipf->ipf_nf_hdr_len = hdr_length; 7244 } else { 7245 /* Hard case, hole at the beginning. */ 7246 ipf->ipf_tail_mp = NULL; 7247 /* 7248 * ipf_end == 0 means that we have given up 7249 * on easy reassembly. 7250 */ 7251 ipf->ipf_end = 0; 7252 7253 /* Forget checksum offload from now on */ 7254 ipf->ipf_checksum_flags = 0; 7255 7256 /* 7257 * ipf_hole_cnt is set by ip_reassemble. 7258 * ipf_count is updated by ip_reassemble. 7259 * No need to check for return value here 7260 * as we don't expect reassembly to complete 7261 * or fail for the first fragment itself. 7262 */ 7263 (void) ip_reassemble(mp, ipf, 7264 (frag_offset_flags & IPH_OFFSET) << 3, 7265 (frag_offset_flags & IPH_MF), ill, msg_len); 7266 } 7267 /* Update per ipfb and ill byte counts */ 7268 ipfb->ipfb_count += ipf->ipf_count; 7269 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7270 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7271 /* If the frag timer wasn't already going, start it. */ 7272 mutex_enter(&ill->ill_lock); 7273 ill_frag_timer_start(ill); 7274 mutex_exit(&ill->ill_lock); 7275 goto reass_done; 7276 } 7277 7278 /* 7279 * If the packet's flag has changed (it could be coming up 7280 * from an interface different than the previous, therefore 7281 * possibly different checksum capability), then forget about 7282 * any stored checksum states. Otherwise add the value to 7283 * the existing one stored in the fragment header. 7284 */ 7285 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7286 sum_val += ipf->ipf_checksum; 7287 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7288 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7289 ipf->ipf_checksum = sum_val; 7290 } else if (ipf->ipf_checksum_flags != 0) { 7291 /* Forget checksum offload from now on */ 7292 ipf->ipf_checksum_flags = 0; 7293 } 7294 7295 /* 7296 * We have a new piece of a datagram which is already being 7297 * reassembled. Update the ECN info if all IP fragments 7298 * are ECN capable. If there is one which is not, clear 7299 * all the info. If there is at least one which has CE 7300 * code point, IP needs to report that up to transport. 7301 */ 7302 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7303 if (ecn_info == IPH_ECN_CE) 7304 ipf->ipf_ecn = IPH_ECN_CE; 7305 } else { 7306 ipf->ipf_ecn = IPH_ECN_NECT; 7307 } 7308 if (offset && ipf->ipf_end == offset) { 7309 /* The new fragment fits at the end */ 7310 ipf->ipf_tail_mp->b_cont = mp; 7311 /* Update the byte count */ 7312 ipf->ipf_count += msg_len; 7313 /* Update per ipfb and ill byte counts */ 7314 ipfb->ipfb_count += msg_len; 7315 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7316 atomic_add_32(&ill->ill_frag_count, msg_len); 7317 if (frag_offset_flags & IPH_MF) { 7318 /* More to come. */ 7319 ipf->ipf_end = end; 7320 ipf->ipf_tail_mp = tail_mp; 7321 goto reass_done; 7322 } 7323 } else { 7324 /* Go do the hard cases. */ 7325 int ret; 7326 7327 if (offset == 0) 7328 ipf->ipf_nf_hdr_len = hdr_length; 7329 7330 /* Save current byte count */ 7331 count = ipf->ipf_count; 7332 ret = ip_reassemble(mp, ipf, 7333 (frag_offset_flags & IPH_OFFSET) << 3, 7334 (frag_offset_flags & IPH_MF), ill, msg_len); 7335 /* Count of bytes added and subtracted (freeb()ed) */ 7336 count = ipf->ipf_count - count; 7337 if (count) { 7338 /* Update per ipfb and ill byte counts */ 7339 ipfb->ipfb_count += count; 7340 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7341 atomic_add_32(&ill->ill_frag_count, count); 7342 } 7343 if (ret == IP_REASS_PARTIAL) { 7344 goto reass_done; 7345 } else if (ret == IP_REASS_FAILED) { 7346 /* Reassembly failed. Free up all resources */ 7347 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7348 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7349 IP_REASS_SET_START(t_mp, 0); 7350 IP_REASS_SET_END(t_mp, 0); 7351 } 7352 freemsg(mp); 7353 goto reass_done; 7354 } 7355 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7356 } 7357 /* 7358 * We have completed reassembly. Unhook the frag header from 7359 * the reassembly list. 7360 * 7361 * Before we free the frag header, record the ECN info 7362 * to report back to the transport. 7363 */ 7364 ecn_info = ipf->ipf_ecn; 7365 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7366 ipfp = ipf->ipf_ptphn; 7367 7368 /* We need to supply these to caller */ 7369 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7370 sum_val = ipf->ipf_checksum; 7371 else 7372 sum_val = 0; 7373 7374 mp1 = ipf->ipf_mp; 7375 count = ipf->ipf_count; 7376 ipf = ipf->ipf_hash_next; 7377 if (ipf != NULL) 7378 ipf->ipf_ptphn = ipfp; 7379 ipfp[0] = ipf; 7380 atomic_add_32(&ill->ill_frag_count, -count); 7381 ASSERT(ipfb->ipfb_count >= count); 7382 ipfb->ipfb_count -= count; 7383 ipfb->ipfb_frag_pkts--; 7384 mutex_exit(&ipfb->ipfb_lock); 7385 /* Ditch the frag header. */ 7386 mp = mp1->b_cont; 7387 7388 freeb(mp1); 7389 7390 /* Restore original IP length in header. */ 7391 packet_size = (uint32_t)msgdsize(mp); 7392 if (packet_size > IP_MAXPACKET) { 7393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7394 ip_drop_input("Reassembled packet too large", mp, ill); 7395 freemsg(mp); 7396 return (NULL); 7397 } 7398 7399 if (DB_REF(mp) > 1) { 7400 mblk_t *mp2 = copymsg(mp); 7401 7402 if (mp2 == NULL) { 7403 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7404 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7405 freemsg(mp); 7406 return (NULL); 7407 } 7408 freemsg(mp); 7409 mp = mp2; 7410 } 7411 ipha = (ipha_t *)mp->b_rptr; 7412 7413 ipha->ipha_length = htons((uint16_t)packet_size); 7414 /* We're now complete, zip the frag state */ 7415 ipha->ipha_fragment_offset_and_flags = 0; 7416 /* Record the ECN info. */ 7417 ipha->ipha_type_of_service &= 0xFC; 7418 ipha->ipha_type_of_service |= ecn_info; 7419 7420 /* Update the receive attributes */ 7421 ira->ira_pktlen = packet_size; 7422 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7423 7424 /* Reassembly is successful; set checksum information in packet */ 7425 DB_CKSUM16(mp) = (uint16_t)sum_val; 7426 DB_CKSUMFLAGS(mp) = sum_flags; 7427 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7428 7429 return (mp); 7430 } 7431 7432 /* 7433 * Pullup function that should be used for IP input in order to 7434 * ensure we do not loose the L2 source address; we need the l2 source 7435 * address for IP_RECVSLLA and for ndp_input. 7436 * 7437 * We return either NULL or b_rptr. 7438 */ 7439 void * 7440 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7441 { 7442 ill_t *ill = ira->ira_ill; 7443 7444 if (ip_rput_pullups++ == 0) { 7445 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7446 "ip_pullup: %s forced us to " 7447 " pullup pkt, hdr len %ld, hdr addr %p", 7448 ill->ill_name, len, (void *)mp->b_rptr); 7449 } 7450 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7451 ip_setl2src(mp, ira, ira->ira_rill); 7452 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7453 if (!pullupmsg(mp, len)) 7454 return (NULL); 7455 else 7456 return (mp->b_rptr); 7457 } 7458 7459 /* 7460 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7461 * When called from the ULP ira_rill will be NULL hence the caller has to 7462 * pass in the ill. 7463 */ 7464 /* ARGSUSED */ 7465 void 7466 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7467 { 7468 const uchar_t *addr; 7469 int alen; 7470 7471 if (ira->ira_flags & IRAF_L2SRC_SET) 7472 return; 7473 7474 ASSERT(ill != NULL); 7475 alen = ill->ill_phys_addr_length; 7476 ASSERT(alen <= sizeof (ira->ira_l2src)); 7477 if (ira->ira_mhip != NULL && 7478 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7479 bcopy(addr, ira->ira_l2src, alen); 7480 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7481 (addr = ill->ill_phys_addr) != NULL) { 7482 bcopy(addr, ira->ira_l2src, alen); 7483 } else { 7484 bzero(ira->ira_l2src, alen); 7485 } 7486 ira->ira_flags |= IRAF_L2SRC_SET; 7487 } 7488 7489 /* 7490 * check ip header length and align it. 7491 */ 7492 mblk_t * 7493 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7494 { 7495 ill_t *ill = ira->ira_ill; 7496 ssize_t len; 7497 7498 len = MBLKL(mp); 7499 7500 if (!OK_32PTR(mp->b_rptr)) 7501 IP_STAT(ill->ill_ipst, ip_notaligned); 7502 else 7503 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7504 7505 /* Guard against bogus device drivers */ 7506 if (len < 0) { 7507 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7508 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7509 freemsg(mp); 7510 return (NULL); 7511 } 7512 7513 if (len == 0) { 7514 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7515 mblk_t *mp1 = mp->b_cont; 7516 7517 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7518 ip_setl2src(mp, ira, ira->ira_rill); 7519 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7520 7521 freeb(mp); 7522 mp = mp1; 7523 if (mp == NULL) 7524 return (NULL); 7525 7526 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7527 return (mp); 7528 } 7529 if (ip_pullup(mp, min_size, ira) == NULL) { 7530 if (msgdsize(mp) < min_size) { 7531 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7532 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7533 } else { 7534 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7535 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7536 } 7537 freemsg(mp); 7538 return (NULL); 7539 } 7540 return (mp); 7541 } 7542 7543 /* 7544 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7545 */ 7546 mblk_t * 7547 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7548 uint_t min_size, ip_recv_attr_t *ira) 7549 { 7550 ill_t *ill = ira->ira_ill; 7551 7552 /* 7553 * Make sure we have data length consistent 7554 * with the IP header. 7555 */ 7556 if (mp->b_cont == NULL) { 7557 /* pkt_len is based on ipha_len, not the mblk length */ 7558 if (pkt_len < min_size) { 7559 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7560 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7561 freemsg(mp); 7562 return (NULL); 7563 } 7564 if (len < 0) { 7565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7566 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7567 freemsg(mp); 7568 return (NULL); 7569 } 7570 /* Drop any pad */ 7571 mp->b_wptr = rptr + pkt_len; 7572 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7573 ASSERT(pkt_len >= min_size); 7574 if (pkt_len < min_size) { 7575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7576 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7577 freemsg(mp); 7578 return (NULL); 7579 } 7580 if (len < 0) { 7581 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7582 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7583 freemsg(mp); 7584 return (NULL); 7585 } 7586 /* Drop any pad */ 7587 (void) adjmsg(mp, -len); 7588 /* 7589 * adjmsg may have freed an mblk from the chain, hence 7590 * invalidate any hw checksum here. This will force IP to 7591 * calculate the checksum in sw, but only for this packet. 7592 */ 7593 DB_CKSUMFLAGS(mp) = 0; 7594 IP_STAT(ill->ill_ipst, ip_multimblk); 7595 } 7596 return (mp); 7597 } 7598 7599 /* 7600 * Check that the IPv4 opt_len is consistent with the packet and pullup 7601 * the options. 7602 */ 7603 mblk_t * 7604 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7605 ip_recv_attr_t *ira) 7606 { 7607 ill_t *ill = ira->ira_ill; 7608 ssize_t len; 7609 7610 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7611 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7614 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7615 freemsg(mp); 7616 return (NULL); 7617 } 7618 7619 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7621 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7622 freemsg(mp); 7623 return (NULL); 7624 } 7625 /* 7626 * Recompute complete header length and make sure we 7627 * have access to all of it. 7628 */ 7629 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7630 if (len > (mp->b_wptr - mp->b_rptr)) { 7631 if (len > pkt_len) { 7632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7633 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7634 freemsg(mp); 7635 return (NULL); 7636 } 7637 if (ip_pullup(mp, len, ira) == NULL) { 7638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7639 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7640 freemsg(mp); 7641 return (NULL); 7642 } 7643 } 7644 return (mp); 7645 } 7646 7647 /* 7648 * Returns a new ire, or the same ire, or NULL. 7649 * If a different IRE is returned, then it is held; the caller 7650 * needs to release it. 7651 * In no case is there any hold/release on the ire argument. 7652 */ 7653 ire_t * 7654 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7655 { 7656 ire_t *new_ire; 7657 ill_t *ire_ill; 7658 uint_t ifindex; 7659 ip_stack_t *ipst = ill->ill_ipst; 7660 boolean_t strict_check = B_FALSE; 7661 7662 /* 7663 * IPMP common case: if IRE and ILL are in the same group, there's no 7664 * issue (e.g. packet received on an underlying interface matched an 7665 * IRE_LOCAL on its associated group interface). 7666 */ 7667 ASSERT(ire->ire_ill != NULL); 7668 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7669 return (ire); 7670 7671 /* 7672 * Do another ire lookup here, using the ingress ill, to see if the 7673 * interface is in a usesrc group. 7674 * As long as the ills belong to the same group, we don't consider 7675 * them to be arriving on the wrong interface. Thus, if the switch 7676 * is doing inbound load spreading, we won't drop packets when the 7677 * ip*_strict_dst_multihoming switch is on. 7678 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7679 * where the local address may not be unique. In this case we were 7680 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7681 * actually returned. The new lookup, which is more specific, should 7682 * only find the IRE_LOCAL associated with the ingress ill if one 7683 * exists. 7684 */ 7685 if (ire->ire_ipversion == IPV4_VERSION) { 7686 if (ipst->ips_ip_strict_dst_multihoming) 7687 strict_check = B_TRUE; 7688 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7689 IRE_LOCAL, ill, ALL_ZONES, NULL, 7690 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7691 } else { 7692 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7693 if (ipst->ips_ipv6_strict_dst_multihoming) 7694 strict_check = B_TRUE; 7695 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7696 IRE_LOCAL, ill, ALL_ZONES, NULL, 7697 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7698 } 7699 /* 7700 * If the same ire that was returned in ip_input() is found then this 7701 * is an indication that usesrc groups are in use. The packet 7702 * arrived on a different ill in the group than the one associated with 7703 * the destination address. If a different ire was found then the same 7704 * IP address must be hosted on multiple ills. This is possible with 7705 * unnumbered point2point interfaces. We switch to use this new ire in 7706 * order to have accurate interface statistics. 7707 */ 7708 if (new_ire != NULL) { 7709 /* Note: held in one case but not the other? Caller handles */ 7710 if (new_ire != ire) 7711 return (new_ire); 7712 /* Unchanged */ 7713 ire_refrele(new_ire); 7714 return (ire); 7715 } 7716 7717 /* 7718 * Chase pointers once and store locally. 7719 */ 7720 ASSERT(ire->ire_ill != NULL); 7721 ire_ill = ire->ire_ill; 7722 ifindex = ill->ill_usesrc_ifindex; 7723 7724 /* 7725 * Check if it's a legal address on the 'usesrc' interface. 7726 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7727 * can just check phyint_ifindex. 7728 */ 7729 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7730 return (ire); 7731 } 7732 7733 /* 7734 * If the ip*_strict_dst_multihoming switch is on then we can 7735 * only accept this packet if the interface is marked as routing. 7736 */ 7737 if (!(strict_check)) 7738 return (ire); 7739 7740 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7741 return (ire); 7742 } 7743 return (NULL); 7744 } 7745 7746 /* 7747 * This function is used to construct a mac_header_info_s from a 7748 * DL_UNITDATA_IND message. 7749 * The address fields in the mhi structure points into the message, 7750 * thus the caller can't use those fields after freeing the message. 7751 * 7752 * We determine whether the packet received is a non-unicast packet 7753 * and in doing so, determine whether or not it is broadcast vs multicast. 7754 * For it to be a broadcast packet, we must have the appropriate mblk_t 7755 * hanging off the ill_t. If this is either not present or doesn't match 7756 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7757 * to be multicast. Thus NICs that have no broadcast address (or no 7758 * capability for one, such as point to point links) cannot return as 7759 * the packet being broadcast. 7760 */ 7761 void 7762 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7763 { 7764 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7765 mblk_t *bmp; 7766 uint_t extra_offset; 7767 7768 bzero(mhip, sizeof (struct mac_header_info_s)); 7769 7770 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7771 7772 if (ill->ill_sap_length < 0) 7773 extra_offset = 0; 7774 else 7775 extra_offset = ill->ill_sap_length; 7776 7777 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7778 extra_offset; 7779 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7780 extra_offset; 7781 7782 if (!ind->dl_group_address) 7783 return; 7784 7785 /* Multicast or broadcast */ 7786 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7787 7788 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7789 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7790 (bmp = ill->ill_bcast_mp) != NULL) { 7791 dl_unitdata_req_t *dlur; 7792 uint8_t *bphys_addr; 7793 7794 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7795 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7796 extra_offset; 7797 7798 if (bcmp(mhip->mhi_daddr, bphys_addr, 7799 ind->dl_dest_addr_length) == 0) 7800 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7801 } 7802 } 7803 7804 /* 7805 * This function is used to construct a mac_header_info_s from a 7806 * M_DATA fastpath message from a DLPI driver. 7807 * The address fields in the mhi structure points into the message, 7808 * thus the caller can't use those fields after freeing the message. 7809 * 7810 * We determine whether the packet received is a non-unicast packet 7811 * and in doing so, determine whether or not it is broadcast vs multicast. 7812 * For it to be a broadcast packet, we must have the appropriate mblk_t 7813 * hanging off the ill_t. If this is either not present or doesn't match 7814 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7815 * to be multicast. Thus NICs that have no broadcast address (or no 7816 * capability for one, such as point to point links) cannot return as 7817 * the packet being broadcast. 7818 */ 7819 void 7820 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7821 { 7822 mblk_t *bmp; 7823 struct ether_header *pether; 7824 7825 bzero(mhip, sizeof (struct mac_header_info_s)); 7826 7827 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7828 7829 pether = (struct ether_header *)((char *)mp->b_rptr 7830 - sizeof (struct ether_header)); 7831 7832 /* 7833 * Make sure the interface is an ethernet type, since we don't 7834 * know the header format for anything but Ethernet. Also make 7835 * sure we are pointing correctly above db_base. 7836 */ 7837 if (ill->ill_type != IFT_ETHER) 7838 return; 7839 7840 retry: 7841 if ((uchar_t *)pether < mp->b_datap->db_base) 7842 return; 7843 7844 /* Is there a VLAN tag? */ 7845 if (ill->ill_isv6) { 7846 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7847 pether = (struct ether_header *)((char *)pether - 4); 7848 goto retry; 7849 } 7850 } else { 7851 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7852 pether = (struct ether_header *)((char *)pether - 4); 7853 goto retry; 7854 } 7855 } 7856 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7857 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7858 7859 if (!(mhip->mhi_daddr[0] & 0x01)) 7860 return; 7861 7862 /* Multicast or broadcast */ 7863 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7864 7865 if ((bmp = ill->ill_bcast_mp) != NULL) { 7866 dl_unitdata_req_t *dlur; 7867 uint8_t *bphys_addr; 7868 uint_t addrlen; 7869 7870 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7871 addrlen = dlur->dl_dest_addr_length; 7872 if (ill->ill_sap_length < 0) { 7873 bphys_addr = (uchar_t *)dlur + 7874 dlur->dl_dest_addr_offset; 7875 addrlen += ill->ill_sap_length; 7876 } else { 7877 bphys_addr = (uchar_t *)dlur + 7878 dlur->dl_dest_addr_offset + 7879 ill->ill_sap_length; 7880 addrlen -= ill->ill_sap_length; 7881 } 7882 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7883 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7884 } 7885 } 7886 7887 /* 7888 * Handle anything but M_DATA messages 7889 * We see the DL_UNITDATA_IND which are part 7890 * of the data path, and also the other messages from the driver. 7891 */ 7892 void 7893 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7894 { 7895 mblk_t *first_mp; 7896 struct iocblk *iocp; 7897 struct mac_header_info_s mhi; 7898 7899 switch (DB_TYPE(mp)) { 7900 case M_PROTO: 7901 case M_PCPROTO: { 7902 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7903 DL_UNITDATA_IND) { 7904 /* Go handle anything other than data elsewhere. */ 7905 ip_rput_dlpi(ill, mp); 7906 return; 7907 } 7908 7909 first_mp = mp; 7910 mp = first_mp->b_cont; 7911 first_mp->b_cont = NULL; 7912 7913 if (mp == NULL) { 7914 freeb(first_mp); 7915 return; 7916 } 7917 ip_dlur_to_mhi(ill, first_mp, &mhi); 7918 if (ill->ill_isv6) 7919 ip_input_v6(ill, NULL, mp, &mhi); 7920 else 7921 ip_input(ill, NULL, mp, &mhi); 7922 7923 /* Ditch the DLPI header. */ 7924 freeb(first_mp); 7925 return; 7926 } 7927 case M_IOCACK: 7928 iocp = (struct iocblk *)mp->b_rptr; 7929 switch (iocp->ioc_cmd) { 7930 case DL_IOC_HDR_INFO: 7931 ill_fastpath_ack(ill, mp); 7932 return; 7933 default: 7934 putnext(ill->ill_rq, mp); 7935 return; 7936 } 7937 /* FALLTHRU */ 7938 case M_ERROR: 7939 case M_HANGUP: 7940 mutex_enter(&ill->ill_lock); 7941 if (ill->ill_state_flags & ILL_CONDEMNED) { 7942 mutex_exit(&ill->ill_lock); 7943 freemsg(mp); 7944 return; 7945 } 7946 ill_refhold_locked(ill); 7947 mutex_exit(&ill->ill_lock); 7948 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7949 B_FALSE); 7950 return; 7951 case M_CTL: 7952 putnext(ill->ill_rq, mp); 7953 return; 7954 case M_IOCNAK: 7955 ip1dbg(("got iocnak ")); 7956 iocp = (struct iocblk *)mp->b_rptr; 7957 switch (iocp->ioc_cmd) { 7958 case DL_IOC_HDR_INFO: 7959 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7960 return; 7961 default: 7962 break; 7963 } 7964 /* FALLTHRU */ 7965 default: 7966 putnext(ill->ill_rq, mp); 7967 return; 7968 } 7969 } 7970 7971 /* Read side put procedure. Packets coming from the wire arrive here. */ 7972 void 7973 ip_rput(queue_t *q, mblk_t *mp) 7974 { 7975 ill_t *ill; 7976 union DL_primitives *dl; 7977 7978 ill = (ill_t *)q->q_ptr; 7979 7980 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7981 /* 7982 * If things are opening or closing, only accept high-priority 7983 * DLPI messages. (On open ill->ill_ipif has not yet been 7984 * created; on close, things hanging off the ill may have been 7985 * freed already.) 7986 */ 7987 dl = (union DL_primitives *)mp->b_rptr; 7988 if (DB_TYPE(mp) != M_PCPROTO || 7989 dl->dl_primitive == DL_UNITDATA_IND) { 7990 inet_freemsg(mp); 7991 return; 7992 } 7993 } 7994 if (DB_TYPE(mp) == M_DATA) { 7995 struct mac_header_info_s mhi; 7996 7997 ip_mdata_to_mhi(ill, mp, &mhi); 7998 ip_input(ill, NULL, mp, &mhi); 7999 } else { 8000 ip_rput_notdata(ill, mp); 8001 } 8002 } 8003 8004 /* 8005 * Move the information to a copy. 8006 */ 8007 mblk_t * 8008 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8009 { 8010 mblk_t *mp1; 8011 ill_t *ill = ira->ira_ill; 8012 ip_stack_t *ipst = ill->ill_ipst; 8013 8014 IP_STAT(ipst, ip_db_ref); 8015 8016 /* Make sure we have ira_l2src before we loose the original mblk */ 8017 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8018 ip_setl2src(mp, ira, ira->ira_rill); 8019 8020 mp1 = copymsg(mp); 8021 if (mp1 == NULL) { 8022 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8023 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8024 freemsg(mp); 8025 return (NULL); 8026 } 8027 /* preserve the hardware checksum flags and data, if present */ 8028 if (DB_CKSUMFLAGS(mp) != 0) { 8029 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8030 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8031 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8032 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8033 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8034 } 8035 freemsg(mp); 8036 return (mp1); 8037 } 8038 8039 static void 8040 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8041 t_uscalar_t err) 8042 { 8043 if (dl_err == DL_SYSERR) { 8044 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8045 "%s: %s failed: DL_SYSERR (errno %u)\n", 8046 ill->ill_name, dl_primstr(prim), err); 8047 return; 8048 } 8049 8050 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8051 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8052 dl_errstr(dl_err)); 8053 } 8054 8055 /* 8056 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8057 * than DL_UNITDATA_IND messages. If we need to process this message 8058 * exclusively, we call qwriter_ip, in which case we also need to call 8059 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8060 */ 8061 void 8062 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8063 { 8064 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8065 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8066 queue_t *q = ill->ill_rq; 8067 t_uscalar_t prim = dloa->dl_primitive; 8068 t_uscalar_t reqprim = DL_PRIM_INVAL; 8069 8070 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8071 char *, dl_primstr(prim), ill_t *, ill); 8072 ip1dbg(("ip_rput_dlpi")); 8073 8074 /* 8075 * If we received an ACK but didn't send a request for it, then it 8076 * can't be part of any pending operation; discard up-front. 8077 */ 8078 switch (prim) { 8079 case DL_ERROR_ACK: 8080 reqprim = dlea->dl_error_primitive; 8081 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8082 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8083 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8084 dlea->dl_unix_errno)); 8085 break; 8086 case DL_OK_ACK: 8087 reqprim = dloa->dl_correct_primitive; 8088 break; 8089 case DL_INFO_ACK: 8090 reqprim = DL_INFO_REQ; 8091 break; 8092 case DL_BIND_ACK: 8093 reqprim = DL_BIND_REQ; 8094 break; 8095 case DL_PHYS_ADDR_ACK: 8096 reqprim = DL_PHYS_ADDR_REQ; 8097 break; 8098 case DL_NOTIFY_ACK: 8099 reqprim = DL_NOTIFY_REQ; 8100 break; 8101 case DL_CAPABILITY_ACK: 8102 reqprim = DL_CAPABILITY_REQ; 8103 break; 8104 } 8105 8106 if (prim != DL_NOTIFY_IND) { 8107 if (reqprim == DL_PRIM_INVAL || 8108 !ill_dlpi_pending(ill, reqprim)) { 8109 /* Not a DLPI message we support or expected */ 8110 freemsg(mp); 8111 return; 8112 } 8113 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8114 dl_primstr(reqprim))); 8115 } 8116 8117 switch (reqprim) { 8118 case DL_UNBIND_REQ: 8119 /* 8120 * NOTE: we mark the unbind as complete even if we got a 8121 * DL_ERROR_ACK, since there's not much else we can do. 8122 */ 8123 mutex_enter(&ill->ill_lock); 8124 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8125 cv_signal(&ill->ill_cv); 8126 mutex_exit(&ill->ill_lock); 8127 break; 8128 8129 case DL_ENABMULTI_REQ: 8130 if (prim == DL_OK_ACK) { 8131 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8132 ill->ill_dlpi_multicast_state = IDS_OK; 8133 } 8134 break; 8135 } 8136 8137 /* 8138 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8139 * need to become writer to continue to process it. Because an 8140 * exclusive operation doesn't complete until replies to all queued 8141 * DLPI messages have been received, we know we're in the middle of an 8142 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8143 * 8144 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8145 * Since this is on the ill stream we unconditionally bump up the 8146 * refcount without doing ILL_CAN_LOOKUP(). 8147 */ 8148 ill_refhold(ill); 8149 if (prim == DL_NOTIFY_IND) 8150 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8151 else 8152 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8153 } 8154 8155 /* 8156 * Handling of DLPI messages that require exclusive access to the ipsq. 8157 * 8158 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8159 * happen here. (along with mi_copy_done) 8160 */ 8161 /* ARGSUSED */ 8162 static void 8163 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8164 { 8165 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8166 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8167 int err = 0; 8168 ill_t *ill = (ill_t *)q->q_ptr; 8169 ipif_t *ipif = NULL; 8170 mblk_t *mp1 = NULL; 8171 conn_t *connp = NULL; 8172 t_uscalar_t paddrreq; 8173 mblk_t *mp_hw; 8174 boolean_t success; 8175 boolean_t ioctl_aborted = B_FALSE; 8176 boolean_t log = B_TRUE; 8177 8178 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8179 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8180 8181 ip1dbg(("ip_rput_dlpi_writer ..")); 8182 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8183 ASSERT(IAM_WRITER_ILL(ill)); 8184 8185 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8186 /* 8187 * The current ioctl could have been aborted by the user and a new 8188 * ioctl to bring up another ill could have started. We could still 8189 * get a response from the driver later. 8190 */ 8191 if (ipif != NULL && ipif->ipif_ill != ill) 8192 ioctl_aborted = B_TRUE; 8193 8194 switch (dloa->dl_primitive) { 8195 case DL_ERROR_ACK: 8196 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8197 dl_primstr(dlea->dl_error_primitive))); 8198 8199 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8200 char *, dl_primstr(dlea->dl_error_primitive), 8201 ill_t *, ill); 8202 8203 switch (dlea->dl_error_primitive) { 8204 case DL_DISABMULTI_REQ: 8205 ill_dlpi_done(ill, dlea->dl_error_primitive); 8206 break; 8207 case DL_PROMISCON_REQ: 8208 case DL_PROMISCOFF_REQ: 8209 case DL_UNBIND_REQ: 8210 case DL_ATTACH_REQ: 8211 case DL_INFO_REQ: 8212 ill_dlpi_done(ill, dlea->dl_error_primitive); 8213 break; 8214 case DL_NOTIFY_REQ: 8215 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8216 log = B_FALSE; 8217 break; 8218 case DL_PHYS_ADDR_REQ: 8219 /* 8220 * For IPv6 only, there are two additional 8221 * phys_addr_req's sent to the driver to get the 8222 * IPv6 token and lla. This allows IP to acquire 8223 * the hardware address format for a given interface 8224 * without having built in knowledge of the hardware 8225 * address. ill_phys_addr_pend keeps track of the last 8226 * DL_PAR sent so we know which response we are 8227 * dealing with. ill_dlpi_done will update 8228 * ill_phys_addr_pend when it sends the next req. 8229 * We don't complete the IOCTL until all three DL_PARs 8230 * have been attempted, so set *_len to 0 and break. 8231 */ 8232 paddrreq = ill->ill_phys_addr_pend; 8233 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8234 if (paddrreq == DL_IPV6_TOKEN) { 8235 ill->ill_token_length = 0; 8236 log = B_FALSE; 8237 break; 8238 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8239 ill->ill_nd_lla_len = 0; 8240 log = B_FALSE; 8241 break; 8242 } 8243 /* 8244 * Something went wrong with the DL_PHYS_ADDR_REQ. 8245 * We presumably have an IOCTL hanging out waiting 8246 * for completion. Find it and complete the IOCTL 8247 * with the error noted. 8248 * However, ill_dl_phys was called on an ill queue 8249 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8250 * set. But the ioctl is known to be pending on ill_wq. 8251 */ 8252 if (!ill->ill_ifname_pending) 8253 break; 8254 ill->ill_ifname_pending = 0; 8255 if (!ioctl_aborted) 8256 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8257 if (mp1 != NULL) { 8258 /* 8259 * This operation (SIOCSLIFNAME) must have 8260 * happened on the ill. Assert there is no conn 8261 */ 8262 ASSERT(connp == NULL); 8263 q = ill->ill_wq; 8264 } 8265 break; 8266 case DL_BIND_REQ: 8267 ill_dlpi_done(ill, DL_BIND_REQ); 8268 if (ill->ill_ifname_pending) 8269 break; 8270 mutex_enter(&ill->ill_lock); 8271 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8272 mutex_exit(&ill->ill_lock); 8273 /* 8274 * Something went wrong with the bind. We presumably 8275 * have an IOCTL hanging out waiting for completion. 8276 * Find it, take down the interface that was coming 8277 * up, and complete the IOCTL with the error noted. 8278 */ 8279 if (!ioctl_aborted) 8280 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8281 if (mp1 != NULL) { 8282 /* 8283 * This might be a result of a DL_NOTE_REPLUMB 8284 * notification. In that case, connp is NULL. 8285 */ 8286 if (connp != NULL) 8287 q = CONNP_TO_WQ(connp); 8288 8289 (void) ipif_down(ipif, NULL, NULL); 8290 /* error is set below the switch */ 8291 } 8292 break; 8293 case DL_ENABMULTI_REQ: 8294 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8295 8296 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8297 ill->ill_dlpi_multicast_state = IDS_FAILED; 8298 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8299 8300 printf("ip: joining multicasts failed (%d)" 8301 " on %s - will use link layer " 8302 "broadcasts for multicast\n", 8303 dlea->dl_errno, ill->ill_name); 8304 8305 /* 8306 * Set up for multi_bcast; We are the 8307 * writer, so ok to access ill->ill_ipif 8308 * without any lock. 8309 */ 8310 mutex_enter(&ill->ill_phyint->phyint_lock); 8311 ill->ill_phyint->phyint_flags |= 8312 PHYI_MULTI_BCAST; 8313 mutex_exit(&ill->ill_phyint->phyint_lock); 8314 8315 } 8316 freemsg(mp); /* Don't want to pass this up */ 8317 return; 8318 case DL_CAPABILITY_REQ: 8319 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8320 "DL_CAPABILITY REQ\n")); 8321 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8322 ill->ill_dlpi_capab_state = IDCS_FAILED; 8323 ill_capability_done(ill); 8324 freemsg(mp); 8325 return; 8326 } 8327 /* 8328 * Note the error for IOCTL completion (mp1 is set when 8329 * ready to complete ioctl). If ill_ifname_pending_err is 8330 * set, an error occured during plumbing (ill_ifname_pending), 8331 * so we want to report that error. 8332 * 8333 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8334 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8335 * expected to get errack'd if the driver doesn't support 8336 * these flags (e.g. ethernet). log will be set to B_FALSE 8337 * if these error conditions are encountered. 8338 */ 8339 if (mp1 != NULL) { 8340 if (ill->ill_ifname_pending_err != 0) { 8341 err = ill->ill_ifname_pending_err; 8342 ill->ill_ifname_pending_err = 0; 8343 } else { 8344 err = dlea->dl_unix_errno ? 8345 dlea->dl_unix_errno : ENXIO; 8346 } 8347 /* 8348 * If we're plumbing an interface and an error hasn't already 8349 * been saved, set ill_ifname_pending_err to the error passed 8350 * up. Ignore the error if log is B_FALSE (see comment above). 8351 */ 8352 } else if (log && ill->ill_ifname_pending && 8353 ill->ill_ifname_pending_err == 0) { 8354 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8355 dlea->dl_unix_errno : ENXIO; 8356 } 8357 8358 if (log) 8359 ip_dlpi_error(ill, dlea->dl_error_primitive, 8360 dlea->dl_errno, dlea->dl_unix_errno); 8361 break; 8362 case DL_CAPABILITY_ACK: 8363 ill_capability_ack(ill, mp); 8364 /* 8365 * The message has been handed off to ill_capability_ack 8366 * and must not be freed below 8367 */ 8368 mp = NULL; 8369 break; 8370 8371 case DL_INFO_ACK: 8372 /* Call a routine to handle this one. */ 8373 ill_dlpi_done(ill, DL_INFO_REQ); 8374 ip_ll_subnet_defaults(ill, mp); 8375 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8376 return; 8377 case DL_BIND_ACK: 8378 /* 8379 * We should have an IOCTL waiting on this unless 8380 * sent by ill_dl_phys, in which case just return 8381 */ 8382 ill_dlpi_done(ill, DL_BIND_REQ); 8383 8384 if (ill->ill_ifname_pending) { 8385 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8386 ill_t *, ill, mblk_t *, mp); 8387 break; 8388 } 8389 mutex_enter(&ill->ill_lock); 8390 ill->ill_dl_up = 1; 8391 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8392 mutex_exit(&ill->ill_lock); 8393 8394 if (!ioctl_aborted) 8395 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8396 if (mp1 == NULL) { 8397 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8398 break; 8399 } 8400 /* 8401 * mp1 was added by ill_dl_up(). if that is a result of 8402 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8403 */ 8404 if (connp != NULL) 8405 q = CONNP_TO_WQ(connp); 8406 /* 8407 * We are exclusive. So nothing can change even after 8408 * we get the pending mp. 8409 */ 8410 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8411 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8412 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8413 8414 /* 8415 * Now bring up the resolver; when that is complete, we'll 8416 * create IREs. Note that we intentionally mirror what 8417 * ipif_up() would have done, because we got here by way of 8418 * ill_dl_up(), which stopped ipif_up()'s processing. 8419 */ 8420 if (ill->ill_isv6) { 8421 /* 8422 * v6 interfaces. 8423 * Unlike ARP which has to do another bind 8424 * and attach, once we get here we are 8425 * done with NDP 8426 */ 8427 (void) ipif_resolver_up(ipif, Res_act_initial); 8428 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8429 err = ipif_up_done_v6(ipif); 8430 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8431 /* 8432 * ARP and other v4 external resolvers. 8433 * Leave the pending mblk intact so that 8434 * the ioctl completes in ip_rput(). 8435 */ 8436 if (connp != NULL) 8437 mutex_enter(&connp->conn_lock); 8438 mutex_enter(&ill->ill_lock); 8439 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8440 mutex_exit(&ill->ill_lock); 8441 if (connp != NULL) 8442 mutex_exit(&connp->conn_lock); 8443 if (success) { 8444 err = ipif_resolver_up(ipif, Res_act_initial); 8445 if (err == EINPROGRESS) { 8446 freemsg(mp); 8447 return; 8448 } 8449 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8450 } else { 8451 /* The conn has started closing */ 8452 err = EINTR; 8453 } 8454 } else { 8455 /* 8456 * This one is complete. Reply to pending ioctl. 8457 */ 8458 (void) ipif_resolver_up(ipif, Res_act_initial); 8459 err = ipif_up_done(ipif); 8460 } 8461 8462 if ((err == 0) && (ill->ill_up_ipifs)) { 8463 err = ill_up_ipifs(ill, q, mp1); 8464 if (err == EINPROGRESS) { 8465 freemsg(mp); 8466 return; 8467 } 8468 } 8469 8470 /* 8471 * If we have a moved ipif to bring up, and everything has 8472 * succeeded to this point, bring it up on the IPMP ill. 8473 * Otherwise, leave it down -- the admin can try to bring it 8474 * up by hand if need be. 8475 */ 8476 if (ill->ill_move_ipif != NULL) { 8477 if (err != 0) { 8478 ill->ill_move_ipif = NULL; 8479 } else { 8480 ipif = ill->ill_move_ipif; 8481 ill->ill_move_ipif = NULL; 8482 err = ipif_up(ipif, q, mp1); 8483 if (err == EINPROGRESS) { 8484 freemsg(mp); 8485 return; 8486 } 8487 } 8488 } 8489 break; 8490 8491 case DL_NOTIFY_IND: { 8492 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8493 uint_t orig_mtu, orig_mc_mtu; 8494 8495 switch (notify->dl_notification) { 8496 case DL_NOTE_PHYS_ADDR: 8497 err = ill_set_phys_addr(ill, mp); 8498 break; 8499 8500 case DL_NOTE_REPLUMB: 8501 /* 8502 * Directly return after calling ill_replumb(). 8503 * Note that we should not free mp as it is reused 8504 * in the ill_replumb() function. 8505 */ 8506 err = ill_replumb(ill, mp); 8507 return; 8508 8509 case DL_NOTE_FASTPATH_FLUSH: 8510 nce_flush(ill, B_FALSE); 8511 break; 8512 8513 case DL_NOTE_SDU_SIZE: 8514 case DL_NOTE_SDU_SIZE2: 8515 /* 8516 * The dce and fragmentation code can cope with 8517 * this changing while packets are being sent. 8518 * When packets are sent ip_output will discover 8519 * a change. 8520 * 8521 * Change the MTU size of the interface. 8522 */ 8523 mutex_enter(&ill->ill_lock); 8524 orig_mtu = ill->ill_mtu; 8525 orig_mc_mtu = ill->ill_mc_mtu; 8526 switch (notify->dl_notification) { 8527 case DL_NOTE_SDU_SIZE: 8528 ill->ill_current_frag = 8529 (uint_t)notify->dl_data; 8530 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8531 break; 8532 case DL_NOTE_SDU_SIZE2: 8533 ill->ill_current_frag = 8534 (uint_t)notify->dl_data1; 8535 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8536 break; 8537 } 8538 if (ill->ill_current_frag > ill->ill_max_frag) 8539 ill->ill_max_frag = ill->ill_current_frag; 8540 8541 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8542 ill->ill_mtu = ill->ill_current_frag; 8543 8544 /* 8545 * If ill_user_mtu was set (via 8546 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8547 */ 8548 if (ill->ill_user_mtu != 0 && 8549 ill->ill_user_mtu < ill->ill_mtu) 8550 ill->ill_mtu = ill->ill_user_mtu; 8551 8552 if (ill->ill_user_mtu != 0 && 8553 ill->ill_user_mtu < ill->ill_mc_mtu) 8554 ill->ill_mc_mtu = ill->ill_user_mtu; 8555 8556 if (ill->ill_isv6) { 8557 if (ill->ill_mtu < IPV6_MIN_MTU) 8558 ill->ill_mtu = IPV6_MIN_MTU; 8559 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8560 ill->ill_mc_mtu = IPV6_MIN_MTU; 8561 } else { 8562 if (ill->ill_mtu < IP_MIN_MTU) 8563 ill->ill_mtu = IP_MIN_MTU; 8564 if (ill->ill_mc_mtu < IP_MIN_MTU) 8565 ill->ill_mc_mtu = IP_MIN_MTU; 8566 } 8567 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8568 ill->ill_mc_mtu = ill->ill_mtu; 8569 } 8570 8571 mutex_exit(&ill->ill_lock); 8572 /* 8573 * Make sure all dce_generation checks find out 8574 * that ill_mtu/ill_mc_mtu has changed. 8575 */ 8576 if (orig_mtu != ill->ill_mtu || 8577 orig_mc_mtu != ill->ill_mc_mtu) { 8578 dce_increment_all_generations(ill->ill_isv6, 8579 ill->ill_ipst); 8580 } 8581 8582 /* 8583 * Refresh IPMP meta-interface MTU if necessary. 8584 */ 8585 if (IS_UNDER_IPMP(ill)) 8586 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8587 break; 8588 8589 case DL_NOTE_LINK_UP: 8590 case DL_NOTE_LINK_DOWN: { 8591 /* 8592 * We are writer. ill / phyint / ipsq assocs stable. 8593 * The RUNNING flag reflects the state of the link. 8594 */ 8595 phyint_t *phyint = ill->ill_phyint; 8596 uint64_t new_phyint_flags; 8597 boolean_t changed = B_FALSE; 8598 boolean_t went_up; 8599 8600 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8601 mutex_enter(&phyint->phyint_lock); 8602 8603 new_phyint_flags = went_up ? 8604 phyint->phyint_flags | PHYI_RUNNING : 8605 phyint->phyint_flags & ~PHYI_RUNNING; 8606 8607 if (IS_IPMP(ill)) { 8608 new_phyint_flags = went_up ? 8609 new_phyint_flags & ~PHYI_FAILED : 8610 new_phyint_flags | PHYI_FAILED; 8611 } 8612 8613 if (new_phyint_flags != phyint->phyint_flags) { 8614 phyint->phyint_flags = new_phyint_flags; 8615 changed = B_TRUE; 8616 } 8617 mutex_exit(&phyint->phyint_lock); 8618 /* 8619 * ill_restart_dad handles the DAD restart and routing 8620 * socket notification logic. 8621 */ 8622 if (changed) { 8623 ill_restart_dad(phyint->phyint_illv4, went_up); 8624 ill_restart_dad(phyint->phyint_illv6, went_up); 8625 } 8626 break; 8627 } 8628 case DL_NOTE_PROMISC_ON_PHYS: { 8629 phyint_t *phyint = ill->ill_phyint; 8630 8631 mutex_enter(&phyint->phyint_lock); 8632 phyint->phyint_flags |= PHYI_PROMISC; 8633 mutex_exit(&phyint->phyint_lock); 8634 break; 8635 } 8636 case DL_NOTE_PROMISC_OFF_PHYS: { 8637 phyint_t *phyint = ill->ill_phyint; 8638 8639 mutex_enter(&phyint->phyint_lock); 8640 phyint->phyint_flags &= ~PHYI_PROMISC; 8641 mutex_exit(&phyint->phyint_lock); 8642 break; 8643 } 8644 case DL_NOTE_CAPAB_RENEG: 8645 /* 8646 * Something changed on the driver side. 8647 * It wants us to renegotiate the capabilities 8648 * on this ill. One possible cause is the aggregation 8649 * interface under us where a port got added or 8650 * went away. 8651 * 8652 * If the capability negotiation is already done 8653 * or is in progress, reset the capabilities and 8654 * mark the ill's ill_capab_reneg to be B_TRUE, 8655 * so that when the ack comes back, we can start 8656 * the renegotiation process. 8657 * 8658 * Note that if ill_capab_reneg is already B_TRUE 8659 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8660 * the capability resetting request has been sent 8661 * and the renegotiation has not been started yet; 8662 * nothing needs to be done in this case. 8663 */ 8664 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8665 ill_capability_reset(ill, B_TRUE); 8666 ipsq_current_finish(ipsq); 8667 break; 8668 8669 case DL_NOTE_ALLOWED_IPS: 8670 ill_set_allowed_ips(ill, mp); 8671 break; 8672 default: 8673 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8674 "type 0x%x for DL_NOTIFY_IND\n", 8675 notify->dl_notification)); 8676 break; 8677 } 8678 8679 /* 8680 * As this is an asynchronous operation, we 8681 * should not call ill_dlpi_done 8682 */ 8683 break; 8684 } 8685 case DL_NOTIFY_ACK: { 8686 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8687 8688 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8689 ill->ill_note_link = 1; 8690 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8691 break; 8692 } 8693 case DL_PHYS_ADDR_ACK: { 8694 /* 8695 * As part of plumbing the interface via SIOCSLIFNAME, 8696 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8697 * whose answers we receive here. As each answer is received, 8698 * we call ill_dlpi_done() to dispatch the next request as 8699 * we're processing the current one. Once all answers have 8700 * been received, we use ipsq_pending_mp_get() to dequeue the 8701 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8702 * is invoked from an ill queue, conn_oper_pending_ill is not 8703 * available, but we know the ioctl is pending on ill_wq.) 8704 */ 8705 uint_t paddrlen, paddroff; 8706 uint8_t *addr; 8707 8708 paddrreq = ill->ill_phys_addr_pend; 8709 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8710 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8711 addr = mp->b_rptr + paddroff; 8712 8713 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8714 if (paddrreq == DL_IPV6_TOKEN) { 8715 /* 8716 * bcopy to low-order bits of ill_token 8717 * 8718 * XXX Temporary hack - currently, all known tokens 8719 * are 64 bits, so I'll cheat for the moment. 8720 */ 8721 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8722 ill->ill_token_length = paddrlen; 8723 break; 8724 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8725 ASSERT(ill->ill_nd_lla_mp == NULL); 8726 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8727 mp = NULL; 8728 break; 8729 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8730 ASSERT(ill->ill_dest_addr_mp == NULL); 8731 ill->ill_dest_addr_mp = mp; 8732 ill->ill_dest_addr = addr; 8733 mp = NULL; 8734 if (ill->ill_isv6) { 8735 ill_setdesttoken(ill); 8736 ipif_setdestlinklocal(ill->ill_ipif); 8737 } 8738 break; 8739 } 8740 8741 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8742 ASSERT(ill->ill_phys_addr_mp == NULL); 8743 if (!ill->ill_ifname_pending) 8744 break; 8745 ill->ill_ifname_pending = 0; 8746 if (!ioctl_aborted) 8747 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8748 if (mp1 != NULL) { 8749 ASSERT(connp == NULL); 8750 q = ill->ill_wq; 8751 } 8752 /* 8753 * If any error acks received during the plumbing sequence, 8754 * ill_ifname_pending_err will be set. Break out and send up 8755 * the error to the pending ioctl. 8756 */ 8757 if (ill->ill_ifname_pending_err != 0) { 8758 err = ill->ill_ifname_pending_err; 8759 ill->ill_ifname_pending_err = 0; 8760 break; 8761 } 8762 8763 ill->ill_phys_addr_mp = mp; 8764 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8765 mp = NULL; 8766 8767 /* 8768 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8769 * provider doesn't support physical addresses. We check both 8770 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8771 * not have physical addresses, but historically adversises a 8772 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8773 * its DL_PHYS_ADDR_ACK. 8774 */ 8775 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8776 ill->ill_phys_addr = NULL; 8777 } else if (paddrlen != ill->ill_phys_addr_length) { 8778 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8779 paddrlen, ill->ill_phys_addr_length)); 8780 err = EINVAL; 8781 break; 8782 } 8783 8784 if (ill->ill_nd_lla_mp == NULL) { 8785 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8786 err = ENOMEM; 8787 break; 8788 } 8789 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8790 } 8791 8792 if (ill->ill_isv6) { 8793 ill_setdefaulttoken(ill); 8794 ipif_setlinklocal(ill->ill_ipif); 8795 } 8796 break; 8797 } 8798 case DL_OK_ACK: 8799 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8800 dl_primstr((int)dloa->dl_correct_primitive), 8801 dloa->dl_correct_primitive)); 8802 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8803 char *, dl_primstr(dloa->dl_correct_primitive), 8804 ill_t *, ill); 8805 8806 switch (dloa->dl_correct_primitive) { 8807 case DL_ENABMULTI_REQ: 8808 case DL_DISABMULTI_REQ: 8809 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8810 break; 8811 case DL_PROMISCON_REQ: 8812 case DL_PROMISCOFF_REQ: 8813 case DL_UNBIND_REQ: 8814 case DL_ATTACH_REQ: 8815 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8816 break; 8817 } 8818 break; 8819 default: 8820 break; 8821 } 8822 8823 freemsg(mp); 8824 if (mp1 == NULL) 8825 return; 8826 8827 /* 8828 * The operation must complete without EINPROGRESS since 8829 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8830 * the operation will be stuck forever inside the IPSQ. 8831 */ 8832 ASSERT(err != EINPROGRESS); 8833 8834 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8835 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8836 ipif_t *, NULL); 8837 8838 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8839 case 0: 8840 ipsq_current_finish(ipsq); 8841 break; 8842 8843 case SIOCSLIFNAME: 8844 case IF_UNITSEL: { 8845 ill_t *ill_other = ILL_OTHER(ill); 8846 8847 /* 8848 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8849 * ill has a peer which is in an IPMP group, then place ill 8850 * into the same group. One catch: although ifconfig plumbs 8851 * the appropriate IPMP meta-interface prior to plumbing this 8852 * ill, it is possible for multiple ifconfig applications to 8853 * race (or for another application to adjust plumbing), in 8854 * which case the IPMP meta-interface we need will be missing. 8855 * If so, kick the phyint out of the group. 8856 */ 8857 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8858 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8859 ipmp_illgrp_t *illg; 8860 8861 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8862 if (illg == NULL) 8863 ipmp_phyint_leave_grp(ill->ill_phyint); 8864 else 8865 ipmp_ill_join_illgrp(ill, illg); 8866 } 8867 8868 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8869 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8870 else 8871 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8872 break; 8873 } 8874 case SIOCLIFADDIF: 8875 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8876 break; 8877 8878 default: 8879 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8880 break; 8881 } 8882 } 8883 8884 /* 8885 * ip_rput_other is called by ip_rput to handle messages modifying the global 8886 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8887 */ 8888 /* ARGSUSED */ 8889 void 8890 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8891 { 8892 ill_t *ill = q->q_ptr; 8893 struct iocblk *iocp; 8894 8895 ip1dbg(("ip_rput_other ")); 8896 if (ipsq != NULL) { 8897 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8898 ASSERT(ipsq->ipsq_xop == 8899 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8900 } 8901 8902 switch (mp->b_datap->db_type) { 8903 case M_ERROR: 8904 case M_HANGUP: 8905 /* 8906 * The device has a problem. We force the ILL down. It can 8907 * be brought up again manually using SIOCSIFFLAGS (via 8908 * ifconfig or equivalent). 8909 */ 8910 ASSERT(ipsq != NULL); 8911 if (mp->b_rptr < mp->b_wptr) 8912 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8913 if (ill->ill_error == 0) 8914 ill->ill_error = ENXIO; 8915 if (!ill_down_start(q, mp)) 8916 return; 8917 ipif_all_down_tail(ipsq, q, mp, NULL); 8918 break; 8919 case M_IOCNAK: { 8920 iocp = (struct iocblk *)mp->b_rptr; 8921 8922 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8923 /* 8924 * If this was the first attempt, turn off the fastpath 8925 * probing. 8926 */ 8927 mutex_enter(&ill->ill_lock); 8928 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8929 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8930 mutex_exit(&ill->ill_lock); 8931 /* 8932 * don't flush the nce_t entries: we use them 8933 * as an index to the ncec itself. 8934 */ 8935 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8936 ill->ill_name)); 8937 } else { 8938 mutex_exit(&ill->ill_lock); 8939 } 8940 freemsg(mp); 8941 break; 8942 } 8943 default: 8944 ASSERT(0); 8945 break; 8946 } 8947 } 8948 8949 /* 8950 * Update any source route, record route or timestamp options 8951 * When it fails it has consumed the message and BUMPed the MIB. 8952 */ 8953 boolean_t 8954 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8955 ip_recv_attr_t *ira) 8956 { 8957 ipoptp_t opts; 8958 uchar_t *opt; 8959 uint8_t optval; 8960 uint8_t optlen; 8961 ipaddr_t dst; 8962 ipaddr_t ifaddr; 8963 uint32_t ts; 8964 timestruc_t now; 8965 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8966 8967 ip2dbg(("ip_forward_options\n")); 8968 dst = ipha->ipha_dst; 8969 for (optval = ipoptp_first(&opts, ipha); 8970 optval != IPOPT_EOL; 8971 optval = ipoptp_next(&opts)) { 8972 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8973 opt = opts.ipoptp_cur; 8974 optlen = opts.ipoptp_len; 8975 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8976 optval, opts.ipoptp_len)); 8977 switch (optval) { 8978 uint32_t off; 8979 case IPOPT_SSRR: 8980 case IPOPT_LSRR: 8981 /* Check if adminstratively disabled */ 8982 if (!ipst->ips_ip_forward_src_routed) { 8983 BUMP_MIB(dst_ill->ill_ip_mib, 8984 ipIfStatsForwProhibits); 8985 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8986 mp, dst_ill); 8987 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8988 ira); 8989 return (B_FALSE); 8990 } 8991 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8992 /* 8993 * Must be partial since ip_input_options 8994 * checked for strict. 8995 */ 8996 break; 8997 } 8998 off = opt[IPOPT_OFFSET]; 8999 off--; 9000 redo_srr: 9001 if (optlen < IP_ADDR_LEN || 9002 off > optlen - IP_ADDR_LEN) { 9003 /* End of source route */ 9004 ip1dbg(( 9005 "ip_forward_options: end of SR\n")); 9006 break; 9007 } 9008 /* Pick a reasonable address on the outbound if */ 9009 ASSERT(dst_ill != NULL); 9010 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9011 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9012 NULL) != 0) { 9013 /* No source! Shouldn't happen */ 9014 ifaddr = INADDR_ANY; 9015 } 9016 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9017 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9018 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9019 ntohl(dst))); 9020 9021 /* 9022 * Check if our address is present more than 9023 * once as consecutive hops in source route. 9024 */ 9025 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9026 off += IP_ADDR_LEN; 9027 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9028 goto redo_srr; 9029 } 9030 ipha->ipha_dst = dst; 9031 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9032 break; 9033 case IPOPT_RR: 9034 off = opt[IPOPT_OFFSET]; 9035 off--; 9036 if (optlen < IP_ADDR_LEN || 9037 off > optlen - IP_ADDR_LEN) { 9038 /* No more room - ignore */ 9039 ip1dbg(( 9040 "ip_forward_options: end of RR\n")); 9041 break; 9042 } 9043 /* Pick a reasonable address on the outbound if */ 9044 ASSERT(dst_ill != NULL); 9045 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9046 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9047 NULL) != 0) { 9048 /* No source! Shouldn't happen */ 9049 ifaddr = INADDR_ANY; 9050 } 9051 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9052 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9053 break; 9054 case IPOPT_TS: 9055 /* Insert timestamp if there is room */ 9056 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9057 case IPOPT_TS_TSONLY: 9058 off = IPOPT_TS_TIMELEN; 9059 break; 9060 case IPOPT_TS_PRESPEC: 9061 case IPOPT_TS_PRESPEC_RFC791: 9062 /* Verify that the address matched */ 9063 off = opt[IPOPT_OFFSET] - 1; 9064 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9065 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9066 /* Not for us */ 9067 break; 9068 } 9069 /* FALLTHRU */ 9070 case IPOPT_TS_TSANDADDR: 9071 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9072 break; 9073 default: 9074 /* 9075 * ip_*put_options should have already 9076 * dropped this packet. 9077 */ 9078 cmn_err(CE_PANIC, "ip_forward_options: " 9079 "unknown IT - bug in ip_input_options?\n"); 9080 return (B_TRUE); /* Keep "lint" happy */ 9081 } 9082 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9083 /* Increase overflow counter */ 9084 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9085 opt[IPOPT_POS_OV_FLG] = 9086 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9087 (off << 4)); 9088 break; 9089 } 9090 off = opt[IPOPT_OFFSET] - 1; 9091 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9092 case IPOPT_TS_PRESPEC: 9093 case IPOPT_TS_PRESPEC_RFC791: 9094 case IPOPT_TS_TSANDADDR: 9095 /* Pick a reasonable addr on the outbound if */ 9096 ASSERT(dst_ill != NULL); 9097 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9098 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9099 NULL, NULL) != 0) { 9100 /* No source! Shouldn't happen */ 9101 ifaddr = INADDR_ANY; 9102 } 9103 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9104 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9105 /* FALLTHRU */ 9106 case IPOPT_TS_TSONLY: 9107 off = opt[IPOPT_OFFSET] - 1; 9108 /* Compute # of milliseconds since midnight */ 9109 gethrestime(&now); 9110 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9111 now.tv_nsec / (NANOSEC / MILLISEC); 9112 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9113 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9114 break; 9115 } 9116 break; 9117 } 9118 } 9119 return (B_TRUE); 9120 } 9121 9122 /* 9123 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9124 * returns 'true' if there are still fragments left on the queue, in 9125 * which case we restart the timer. 9126 */ 9127 void 9128 ill_frag_timer(void *arg) 9129 { 9130 ill_t *ill = (ill_t *)arg; 9131 boolean_t frag_pending; 9132 ip_stack_t *ipst = ill->ill_ipst; 9133 time_t timeout; 9134 9135 mutex_enter(&ill->ill_lock); 9136 ASSERT(!ill->ill_fragtimer_executing); 9137 if (ill->ill_state_flags & ILL_CONDEMNED) { 9138 ill->ill_frag_timer_id = 0; 9139 mutex_exit(&ill->ill_lock); 9140 return; 9141 } 9142 ill->ill_fragtimer_executing = 1; 9143 mutex_exit(&ill->ill_lock); 9144 9145 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9146 ipst->ips_ip_reassembly_timeout); 9147 9148 frag_pending = ill_frag_timeout(ill, timeout); 9149 9150 /* 9151 * Restart the timer, if we have fragments pending or if someone 9152 * wanted us to be scheduled again. 9153 */ 9154 mutex_enter(&ill->ill_lock); 9155 ill->ill_fragtimer_executing = 0; 9156 ill->ill_frag_timer_id = 0; 9157 if (frag_pending || ill->ill_fragtimer_needrestart) 9158 ill_frag_timer_start(ill); 9159 mutex_exit(&ill->ill_lock); 9160 } 9161 9162 void 9163 ill_frag_timer_start(ill_t *ill) 9164 { 9165 ip_stack_t *ipst = ill->ill_ipst; 9166 clock_t timeo_ms; 9167 9168 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9169 9170 /* If the ill is closing or opening don't proceed */ 9171 if (ill->ill_state_flags & ILL_CONDEMNED) 9172 return; 9173 9174 if (ill->ill_fragtimer_executing) { 9175 /* 9176 * ill_frag_timer is currently executing. Just record the 9177 * the fact that we want the timer to be restarted. 9178 * ill_frag_timer will post a timeout before it returns, 9179 * ensuring it will be called again. 9180 */ 9181 ill->ill_fragtimer_needrestart = 1; 9182 return; 9183 } 9184 9185 if (ill->ill_frag_timer_id == 0) { 9186 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9187 ipst->ips_ip_reassembly_timeout) * SECONDS; 9188 9189 /* 9190 * The timer is neither running nor is the timeout handler 9191 * executing. Post a timeout so that ill_frag_timer will be 9192 * called 9193 */ 9194 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9195 MSEC_TO_TICK(timeo_ms >> 1)); 9196 ill->ill_fragtimer_needrestart = 0; 9197 } 9198 } 9199 9200 /* 9201 * Update any source route, record route or timestamp options. 9202 * Check that we are at end of strict source route. 9203 * The options have already been checked for sanity in ip_input_options(). 9204 */ 9205 boolean_t 9206 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9207 { 9208 ipoptp_t opts; 9209 uchar_t *opt; 9210 uint8_t optval; 9211 uint8_t optlen; 9212 ipaddr_t dst; 9213 ipaddr_t ifaddr; 9214 uint32_t ts; 9215 timestruc_t now; 9216 ill_t *ill = ira->ira_ill; 9217 ip_stack_t *ipst = ill->ill_ipst; 9218 9219 ip2dbg(("ip_input_local_options\n")); 9220 9221 for (optval = ipoptp_first(&opts, ipha); 9222 optval != IPOPT_EOL; 9223 optval = ipoptp_next(&opts)) { 9224 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9225 opt = opts.ipoptp_cur; 9226 optlen = opts.ipoptp_len; 9227 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9228 optval, optlen)); 9229 switch (optval) { 9230 uint32_t off; 9231 case IPOPT_SSRR: 9232 case IPOPT_LSRR: 9233 off = opt[IPOPT_OFFSET]; 9234 off--; 9235 if (optlen < IP_ADDR_LEN || 9236 off > optlen - IP_ADDR_LEN) { 9237 /* End of source route */ 9238 ip1dbg(("ip_input_local_options: end of SR\n")); 9239 break; 9240 } 9241 /* 9242 * This will only happen if two consecutive entries 9243 * in the source route contains our address or if 9244 * it is a packet with a loose source route which 9245 * reaches us before consuming the whole source route 9246 */ 9247 ip1dbg(("ip_input_local_options: not end of SR\n")); 9248 if (optval == IPOPT_SSRR) { 9249 goto bad_src_route; 9250 } 9251 /* 9252 * Hack: instead of dropping the packet truncate the 9253 * source route to what has been used by filling the 9254 * rest with IPOPT_NOP. 9255 */ 9256 opt[IPOPT_OLEN] = (uint8_t)off; 9257 while (off < optlen) { 9258 opt[off++] = IPOPT_NOP; 9259 } 9260 break; 9261 case IPOPT_RR: 9262 off = opt[IPOPT_OFFSET]; 9263 off--; 9264 if (optlen < IP_ADDR_LEN || 9265 off > optlen - IP_ADDR_LEN) { 9266 /* No more room - ignore */ 9267 ip1dbg(( 9268 "ip_input_local_options: end of RR\n")); 9269 break; 9270 } 9271 /* Pick a reasonable address on the outbound if */ 9272 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9273 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9274 NULL) != 0) { 9275 /* No source! Shouldn't happen */ 9276 ifaddr = INADDR_ANY; 9277 } 9278 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9279 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9280 break; 9281 case IPOPT_TS: 9282 /* Insert timestamp if there is romm */ 9283 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9284 case IPOPT_TS_TSONLY: 9285 off = IPOPT_TS_TIMELEN; 9286 break; 9287 case IPOPT_TS_PRESPEC: 9288 case IPOPT_TS_PRESPEC_RFC791: 9289 /* Verify that the address matched */ 9290 off = opt[IPOPT_OFFSET] - 1; 9291 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9292 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9293 /* Not for us */ 9294 break; 9295 } 9296 /* FALLTHRU */ 9297 case IPOPT_TS_TSANDADDR: 9298 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9299 break; 9300 default: 9301 /* 9302 * ip_*put_options should have already 9303 * dropped this packet. 9304 */ 9305 cmn_err(CE_PANIC, "ip_input_local_options: " 9306 "unknown IT - bug in ip_input_options?\n"); 9307 return (B_TRUE); /* Keep "lint" happy */ 9308 } 9309 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9310 /* Increase overflow counter */ 9311 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9312 opt[IPOPT_POS_OV_FLG] = 9313 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9314 (off << 4)); 9315 break; 9316 } 9317 off = opt[IPOPT_OFFSET] - 1; 9318 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9319 case IPOPT_TS_PRESPEC: 9320 case IPOPT_TS_PRESPEC_RFC791: 9321 case IPOPT_TS_TSANDADDR: 9322 /* Pick a reasonable addr on the outbound if */ 9323 if (ip_select_source_v4(ill, INADDR_ANY, 9324 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9325 &ifaddr, NULL, NULL) != 0) { 9326 /* No source! Shouldn't happen */ 9327 ifaddr = INADDR_ANY; 9328 } 9329 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9330 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9331 /* FALLTHRU */ 9332 case IPOPT_TS_TSONLY: 9333 off = opt[IPOPT_OFFSET] - 1; 9334 /* Compute # of milliseconds since midnight */ 9335 gethrestime(&now); 9336 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9337 now.tv_nsec / (NANOSEC / MILLISEC); 9338 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9339 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9340 break; 9341 } 9342 break; 9343 } 9344 } 9345 return (B_TRUE); 9346 9347 bad_src_route: 9348 /* make sure we clear any indication of a hardware checksum */ 9349 DB_CKSUMFLAGS(mp) = 0; 9350 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9351 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9352 return (B_FALSE); 9353 9354 } 9355 9356 /* 9357 * Process IP options in an inbound packet. Always returns the nexthop. 9358 * Normally this is the passed in nexthop, but if there is an option 9359 * that effects the nexthop (such as a source route) that will be returned. 9360 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9361 * and mp freed. 9362 */ 9363 ipaddr_t 9364 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9365 ip_recv_attr_t *ira, int *errorp) 9366 { 9367 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9368 ipoptp_t opts; 9369 uchar_t *opt; 9370 uint8_t optval; 9371 uint8_t optlen; 9372 intptr_t code = 0; 9373 ire_t *ire; 9374 9375 ip2dbg(("ip_input_options\n")); 9376 *errorp = 0; 9377 for (optval = ipoptp_first(&opts, ipha); 9378 optval != IPOPT_EOL; 9379 optval = ipoptp_next(&opts)) { 9380 opt = opts.ipoptp_cur; 9381 optlen = opts.ipoptp_len; 9382 ip2dbg(("ip_input_options: opt %d, len %d\n", 9383 optval, optlen)); 9384 /* 9385 * Note: we need to verify the checksum before we 9386 * modify anything thus this routine only extracts the next 9387 * hop dst from any source route. 9388 */ 9389 switch (optval) { 9390 uint32_t off; 9391 case IPOPT_SSRR: 9392 case IPOPT_LSRR: 9393 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9394 if (optval == IPOPT_SSRR) { 9395 ip1dbg(("ip_input_options: not next" 9396 " strict source route 0x%x\n", 9397 ntohl(dst))); 9398 code = (char *)&ipha->ipha_dst - 9399 (char *)ipha; 9400 goto param_prob; /* RouterReq's */ 9401 } 9402 ip2dbg(("ip_input_options: " 9403 "not next source route 0x%x\n", 9404 ntohl(dst))); 9405 break; 9406 } 9407 9408 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9409 ip1dbg(( 9410 "ip_input_options: bad option offset\n")); 9411 code = (char *)&opt[IPOPT_OLEN] - 9412 (char *)ipha; 9413 goto param_prob; 9414 } 9415 off = opt[IPOPT_OFFSET]; 9416 off--; 9417 redo_srr: 9418 if (optlen < IP_ADDR_LEN || 9419 off > optlen - IP_ADDR_LEN) { 9420 /* End of source route */ 9421 ip1dbg(("ip_input_options: end of SR\n")); 9422 break; 9423 } 9424 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9425 ip1dbg(("ip_input_options: next hop 0x%x\n", 9426 ntohl(dst))); 9427 9428 /* 9429 * Check if our address is present more than 9430 * once as consecutive hops in source route. 9431 * XXX verify per-interface ip_forwarding 9432 * for source route? 9433 */ 9434 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9435 off += IP_ADDR_LEN; 9436 goto redo_srr; 9437 } 9438 9439 if (dst == htonl(INADDR_LOOPBACK)) { 9440 ip1dbg(("ip_input_options: loopback addr in " 9441 "source route!\n")); 9442 goto bad_src_route; 9443 } 9444 /* 9445 * For strict: verify that dst is directly 9446 * reachable. 9447 */ 9448 if (optval == IPOPT_SSRR) { 9449 ire = ire_ftable_lookup_v4(dst, 0, 0, 9450 IRE_INTERFACE, NULL, ALL_ZONES, 9451 ira->ira_tsl, 9452 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9453 NULL); 9454 if (ire == NULL) { 9455 ip1dbg(("ip_input_options: SSRR not " 9456 "directly reachable: 0x%x\n", 9457 ntohl(dst))); 9458 goto bad_src_route; 9459 } 9460 ire_refrele(ire); 9461 } 9462 /* 9463 * Defer update of the offset and the record route 9464 * until the packet is forwarded. 9465 */ 9466 break; 9467 case IPOPT_RR: 9468 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9469 ip1dbg(( 9470 "ip_input_options: bad option offset\n")); 9471 code = (char *)&opt[IPOPT_OLEN] - 9472 (char *)ipha; 9473 goto param_prob; 9474 } 9475 break; 9476 case IPOPT_TS: 9477 /* 9478 * Verify that length >= 5 and that there is either 9479 * room for another timestamp or that the overflow 9480 * counter is not maxed out. 9481 */ 9482 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9483 if (optlen < IPOPT_MINLEN_IT) { 9484 goto param_prob; 9485 } 9486 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9487 ip1dbg(( 9488 "ip_input_options: bad option offset\n")); 9489 code = (char *)&opt[IPOPT_OFFSET] - 9490 (char *)ipha; 9491 goto param_prob; 9492 } 9493 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9494 case IPOPT_TS_TSONLY: 9495 off = IPOPT_TS_TIMELEN; 9496 break; 9497 case IPOPT_TS_TSANDADDR: 9498 case IPOPT_TS_PRESPEC: 9499 case IPOPT_TS_PRESPEC_RFC791: 9500 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9501 break; 9502 default: 9503 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9504 (char *)ipha; 9505 goto param_prob; 9506 } 9507 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9508 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9509 /* 9510 * No room and the overflow counter is 15 9511 * already. 9512 */ 9513 goto param_prob; 9514 } 9515 break; 9516 } 9517 } 9518 9519 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9520 return (dst); 9521 } 9522 9523 ip1dbg(("ip_input_options: error processing IP options.")); 9524 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9525 9526 param_prob: 9527 /* make sure we clear any indication of a hardware checksum */ 9528 DB_CKSUMFLAGS(mp) = 0; 9529 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9530 icmp_param_problem(mp, (uint8_t)code, ira); 9531 *errorp = -1; 9532 return (dst); 9533 9534 bad_src_route: 9535 /* make sure we clear any indication of a hardware checksum */ 9536 DB_CKSUMFLAGS(mp) = 0; 9537 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9538 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9539 *errorp = -1; 9540 return (dst); 9541 } 9542 9543 /* 9544 * IP & ICMP info in >=14 msg's ... 9545 * - ip fixed part (mib2_ip_t) 9546 * - icmp fixed part (mib2_icmp_t) 9547 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9548 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9549 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9550 * - ipRouteAttributeTable (ip 102) labeled routes 9551 * - ip multicast membership (ip_member_t) 9552 * - ip multicast source filtering (ip_grpsrc_t) 9553 * - igmp fixed part (struct igmpstat) 9554 * - multicast routing stats (struct mrtstat) 9555 * - multicast routing vifs (array of struct vifctl) 9556 * - multicast routing routes (array of struct mfcctl) 9557 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9558 * One per ill plus one generic 9559 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9560 * One per ill plus one generic 9561 * - ipv6RouteEntry all IPv6 IREs 9562 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9563 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9564 * - ipv6AddrEntry all IPv6 ipifs 9565 * - ipv6 multicast membership (ipv6_member_t) 9566 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9567 * 9568 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9569 * already filled in by the caller. 9570 * If legacy_req is true then MIB structures needs to be truncated to their 9571 * legacy sizes before being returned. 9572 * Return value of 0 indicates that no messages were sent and caller 9573 * should free mpctl. 9574 */ 9575 int 9576 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9577 { 9578 ip_stack_t *ipst; 9579 sctp_stack_t *sctps; 9580 9581 if (q->q_next != NULL) { 9582 ipst = ILLQ_TO_IPST(q); 9583 } else { 9584 ipst = CONNQ_TO_IPST(q); 9585 } 9586 ASSERT(ipst != NULL); 9587 sctps = ipst->ips_netstack->netstack_sctp; 9588 9589 if (mpctl == NULL || mpctl->b_cont == NULL) { 9590 return (0); 9591 } 9592 9593 /* 9594 * For the purposes of the (broken) packet shell use 9595 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9596 * to make TCP and UDP appear first in the list of mib items. 9597 * TBD: We could expand this and use it in netstat so that 9598 * the kernel doesn't have to produce large tables (connections, 9599 * routes, etc) when netstat only wants the statistics or a particular 9600 * table. 9601 */ 9602 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9603 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9604 return (1); 9605 } 9606 } 9607 9608 if (level != MIB2_TCP) { 9609 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9610 return (1); 9611 } 9612 } 9613 9614 if (level != MIB2_UDP) { 9615 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9616 return (1); 9617 } 9618 } 9619 9620 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9621 ipst, legacy_req)) == NULL) { 9622 return (1); 9623 } 9624 9625 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9626 legacy_req)) == NULL) { 9627 return (1); 9628 } 9629 9630 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9631 return (1); 9632 } 9633 9634 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9635 return (1); 9636 } 9637 9638 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9639 return (1); 9640 } 9641 9642 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9643 return (1); 9644 } 9645 9646 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9647 legacy_req)) == NULL) { 9648 return (1); 9649 } 9650 9651 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9652 legacy_req)) == NULL) { 9653 return (1); 9654 } 9655 9656 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9657 return (1); 9658 } 9659 9660 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9661 return (1); 9662 } 9663 9664 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9665 return (1); 9666 } 9667 9668 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9669 return (1); 9670 } 9671 9672 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9673 return (1); 9674 } 9675 9676 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9677 return (1); 9678 } 9679 9680 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9681 if (mpctl == NULL) 9682 return (1); 9683 9684 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9685 if (mpctl == NULL) 9686 return (1); 9687 9688 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9689 return (1); 9690 } 9691 9692 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9693 return (1); 9694 } 9695 9696 if ((mpctl = dccp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9697 return (1); 9698 } 9699 9700 freemsg(mpctl); 9701 return (1); 9702 } 9703 9704 /* Get global (legacy) IPv4 statistics */ 9705 static mblk_t * 9706 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9707 ip_stack_t *ipst, boolean_t legacy_req) 9708 { 9709 mib2_ip_t old_ip_mib; 9710 struct opthdr *optp; 9711 mblk_t *mp2ctl; 9712 mib2_ipAddrEntry_t mae; 9713 9714 /* 9715 * make a copy of the original message 9716 */ 9717 mp2ctl = copymsg(mpctl); 9718 9719 /* fixed length IP structure... */ 9720 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9721 optp->level = MIB2_IP; 9722 optp->name = 0; 9723 SET_MIB(old_ip_mib.ipForwarding, 9724 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9725 SET_MIB(old_ip_mib.ipDefaultTTL, 9726 (uint32_t)ipst->ips_ip_def_ttl); 9727 SET_MIB(old_ip_mib.ipReasmTimeout, 9728 ipst->ips_ip_reassembly_timeout); 9729 SET_MIB(old_ip_mib.ipAddrEntrySize, 9730 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9731 sizeof (mib2_ipAddrEntry_t)); 9732 SET_MIB(old_ip_mib.ipRouteEntrySize, 9733 sizeof (mib2_ipRouteEntry_t)); 9734 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9735 sizeof (mib2_ipNetToMediaEntry_t)); 9736 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9737 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9738 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9739 sizeof (mib2_ipAttributeEntry_t)); 9740 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9741 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9742 9743 /* 9744 * Grab the statistics from the new IP MIB 9745 */ 9746 SET_MIB(old_ip_mib.ipInReceives, 9747 (uint32_t)ipmib->ipIfStatsHCInReceives); 9748 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9749 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9750 SET_MIB(old_ip_mib.ipForwDatagrams, 9751 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9752 SET_MIB(old_ip_mib.ipInUnknownProtos, 9753 ipmib->ipIfStatsInUnknownProtos); 9754 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9755 SET_MIB(old_ip_mib.ipInDelivers, 9756 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9757 SET_MIB(old_ip_mib.ipOutRequests, 9758 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9759 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9760 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9761 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9762 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9763 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9764 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9765 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9766 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9767 9768 /* ipRoutingDiscards is not being used */ 9769 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9770 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9771 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9772 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9773 SET_MIB(old_ip_mib.ipReasmDuplicates, 9774 ipmib->ipIfStatsReasmDuplicates); 9775 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9776 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9777 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9778 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9779 SET_MIB(old_ip_mib.rawipInOverflows, 9780 ipmib->rawipIfStatsInOverflows); 9781 9782 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9783 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9784 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9785 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9786 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9787 ipmib->ipIfStatsOutSwitchIPVersion); 9788 9789 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9790 (int)sizeof (old_ip_mib))) { 9791 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9792 (uint_t)sizeof (old_ip_mib))); 9793 } 9794 9795 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9796 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9797 (int)optp->level, (int)optp->name, (int)optp->len)); 9798 qreply(q, mpctl); 9799 return (mp2ctl); 9800 } 9801 9802 /* Per interface IPv4 statistics */ 9803 static mblk_t * 9804 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9805 boolean_t legacy_req) 9806 { 9807 struct opthdr *optp; 9808 mblk_t *mp2ctl; 9809 ill_t *ill; 9810 ill_walk_context_t ctx; 9811 mblk_t *mp_tail = NULL; 9812 mib2_ipIfStatsEntry_t global_ip_mib; 9813 mib2_ipAddrEntry_t mae; 9814 9815 /* 9816 * Make a copy of the original message 9817 */ 9818 mp2ctl = copymsg(mpctl); 9819 9820 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9821 optp->level = MIB2_IP; 9822 optp->name = MIB2_IP_TRAFFIC_STATS; 9823 /* Include "unknown interface" ip_mib */ 9824 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9825 ipst->ips_ip_mib.ipIfStatsIfIndex = 9826 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9827 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9828 (ipst->ips_ip_forwarding ? 1 : 2)); 9829 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9830 (uint32_t)ipst->ips_ip_def_ttl); 9831 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9832 sizeof (mib2_ipIfStatsEntry_t)); 9833 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9834 sizeof (mib2_ipAddrEntry_t)); 9835 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9836 sizeof (mib2_ipRouteEntry_t)); 9837 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9838 sizeof (mib2_ipNetToMediaEntry_t)); 9839 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9840 sizeof (ip_member_t)); 9841 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9842 sizeof (ip_grpsrc_t)); 9843 9844 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9845 9846 if (legacy_req) { 9847 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9848 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9849 } 9850 9851 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9852 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9853 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9854 "failed to allocate %u bytes\n", 9855 (uint_t)sizeof (global_ip_mib))); 9856 } 9857 9858 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9859 ill = ILL_START_WALK_V4(&ctx, ipst); 9860 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9861 ill->ill_ip_mib->ipIfStatsIfIndex = 9862 ill->ill_phyint->phyint_ifindex; 9863 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9864 (ipst->ips_ip_forwarding ? 1 : 2)); 9865 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9866 (uint32_t)ipst->ips_ip_def_ttl); 9867 9868 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9869 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9870 (char *)ill->ill_ip_mib, 9871 (int)sizeof (*ill->ill_ip_mib))) { 9872 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9873 "failed to allocate %u bytes\n", 9874 (uint_t)sizeof (*ill->ill_ip_mib))); 9875 } 9876 } 9877 rw_exit(&ipst->ips_ill_g_lock); 9878 9879 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9880 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9881 "level %d, name %d, len %d\n", 9882 (int)optp->level, (int)optp->name, (int)optp->len)); 9883 qreply(q, mpctl); 9884 9885 if (mp2ctl == NULL) 9886 return (NULL); 9887 9888 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9889 legacy_req)); 9890 } 9891 9892 /* Global IPv4 ICMP statistics */ 9893 static mblk_t * 9894 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9895 { 9896 struct opthdr *optp; 9897 mblk_t *mp2ctl; 9898 9899 /* 9900 * Make a copy of the original message 9901 */ 9902 mp2ctl = copymsg(mpctl); 9903 9904 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9905 optp->level = MIB2_ICMP; 9906 optp->name = 0; 9907 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9908 (int)sizeof (ipst->ips_icmp_mib))) { 9909 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9910 (uint_t)sizeof (ipst->ips_icmp_mib))); 9911 } 9912 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9913 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9914 (int)optp->level, (int)optp->name, (int)optp->len)); 9915 qreply(q, mpctl); 9916 return (mp2ctl); 9917 } 9918 9919 /* Global IPv4 IGMP statistics */ 9920 static mblk_t * 9921 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9922 { 9923 struct opthdr *optp; 9924 mblk_t *mp2ctl; 9925 9926 /* 9927 * make a copy of the original message 9928 */ 9929 mp2ctl = copymsg(mpctl); 9930 9931 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9932 optp->level = EXPER_IGMP; 9933 optp->name = 0; 9934 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9935 (int)sizeof (ipst->ips_igmpstat))) { 9936 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9937 (uint_t)sizeof (ipst->ips_igmpstat))); 9938 } 9939 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9940 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9941 (int)optp->level, (int)optp->name, (int)optp->len)); 9942 qreply(q, mpctl); 9943 return (mp2ctl); 9944 } 9945 9946 /* Global IPv4 Multicast Routing statistics */ 9947 static mblk_t * 9948 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9949 { 9950 struct opthdr *optp; 9951 mblk_t *mp2ctl; 9952 9953 /* 9954 * make a copy of the original message 9955 */ 9956 mp2ctl = copymsg(mpctl); 9957 9958 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9959 optp->level = EXPER_DVMRP; 9960 optp->name = 0; 9961 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9962 ip0dbg(("ip_mroute_stats: failed\n")); 9963 } 9964 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9965 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9966 (int)optp->level, (int)optp->name, (int)optp->len)); 9967 qreply(q, mpctl); 9968 return (mp2ctl); 9969 } 9970 9971 /* IPv4 address information */ 9972 static mblk_t * 9973 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9974 boolean_t legacy_req) 9975 { 9976 struct opthdr *optp; 9977 mblk_t *mp2ctl; 9978 mblk_t *mp_tail = NULL; 9979 ill_t *ill; 9980 ipif_t *ipif; 9981 uint_t bitval; 9982 mib2_ipAddrEntry_t mae; 9983 size_t mae_size; 9984 zoneid_t zoneid; 9985 ill_walk_context_t ctx; 9986 9987 /* 9988 * make a copy of the original message 9989 */ 9990 mp2ctl = copymsg(mpctl); 9991 9992 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9993 sizeof (mib2_ipAddrEntry_t); 9994 9995 /* ipAddrEntryTable */ 9996 9997 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9998 optp->level = MIB2_IP; 9999 optp->name = MIB2_IP_ADDR; 10000 zoneid = Q_TO_CONN(q)->conn_zoneid; 10001 10002 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10003 ill = ILL_START_WALK_V4(&ctx, ipst); 10004 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10005 for (ipif = ill->ill_ipif; ipif != NULL; 10006 ipif = ipif->ipif_next) { 10007 if (ipif->ipif_zoneid != zoneid && 10008 ipif->ipif_zoneid != ALL_ZONES) 10009 continue; 10010 /* Sum of count from dead IRE_LO* and our current */ 10011 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10012 if (ipif->ipif_ire_local != NULL) { 10013 mae.ipAdEntInfo.ae_ibcnt += 10014 ipif->ipif_ire_local->ire_ib_pkt_count; 10015 } 10016 mae.ipAdEntInfo.ae_obcnt = 0; 10017 mae.ipAdEntInfo.ae_focnt = 0; 10018 10019 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10020 OCTET_LENGTH); 10021 mae.ipAdEntIfIndex.o_length = 10022 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10023 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10024 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10025 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10026 mae.ipAdEntInfo.ae_subnet_len = 10027 ip_mask_to_plen(ipif->ipif_net_mask); 10028 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10029 for (bitval = 1; 10030 bitval && 10031 !(bitval & ipif->ipif_brd_addr); 10032 bitval <<= 1) 10033 noop; 10034 mae.ipAdEntBcastAddr = bitval; 10035 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10036 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10037 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10038 mae.ipAdEntInfo.ae_broadcast_addr = 10039 ipif->ipif_brd_addr; 10040 mae.ipAdEntInfo.ae_pp_dst_addr = 10041 ipif->ipif_pp_dst_addr; 10042 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10043 ill->ill_flags | ill->ill_phyint->phyint_flags; 10044 mae.ipAdEntRetransmitTime = 10045 ill->ill_reachable_retrans_time; 10046 10047 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10048 (char *)&mae, (int)mae_size)) { 10049 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10050 "allocate %u bytes\n", (uint_t)mae_size)); 10051 } 10052 } 10053 } 10054 rw_exit(&ipst->ips_ill_g_lock); 10055 10056 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10057 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10058 (int)optp->level, (int)optp->name, (int)optp->len)); 10059 qreply(q, mpctl); 10060 return (mp2ctl); 10061 } 10062 10063 /* IPv6 address information */ 10064 static mblk_t * 10065 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10066 boolean_t legacy_req) 10067 { 10068 struct opthdr *optp; 10069 mblk_t *mp2ctl; 10070 mblk_t *mp_tail = NULL; 10071 ill_t *ill; 10072 ipif_t *ipif; 10073 mib2_ipv6AddrEntry_t mae6; 10074 size_t mae6_size; 10075 zoneid_t zoneid; 10076 ill_walk_context_t ctx; 10077 10078 /* 10079 * make a copy of the original message 10080 */ 10081 mp2ctl = copymsg(mpctl); 10082 10083 mae6_size = (legacy_req) ? 10084 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10085 sizeof (mib2_ipv6AddrEntry_t); 10086 10087 /* ipv6AddrEntryTable */ 10088 10089 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10090 optp->level = MIB2_IP6; 10091 optp->name = MIB2_IP6_ADDR; 10092 zoneid = Q_TO_CONN(q)->conn_zoneid; 10093 10094 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10095 ill = ILL_START_WALK_V6(&ctx, ipst); 10096 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10097 for (ipif = ill->ill_ipif; ipif != NULL; 10098 ipif = ipif->ipif_next) { 10099 if (ipif->ipif_zoneid != zoneid && 10100 ipif->ipif_zoneid != ALL_ZONES) 10101 continue; 10102 /* Sum of count from dead IRE_LO* and our current */ 10103 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10104 if (ipif->ipif_ire_local != NULL) { 10105 mae6.ipv6AddrInfo.ae_ibcnt += 10106 ipif->ipif_ire_local->ire_ib_pkt_count; 10107 } 10108 mae6.ipv6AddrInfo.ae_obcnt = 0; 10109 mae6.ipv6AddrInfo.ae_focnt = 0; 10110 10111 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10112 OCTET_LENGTH); 10113 mae6.ipv6AddrIfIndex.o_length = 10114 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10115 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10116 mae6.ipv6AddrPfxLength = 10117 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10118 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10119 mae6.ipv6AddrInfo.ae_subnet_len = 10120 mae6.ipv6AddrPfxLength; 10121 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10122 10123 /* Type: stateless(1), stateful(2), unknown(3) */ 10124 if (ipif->ipif_flags & IPIF_ADDRCONF) 10125 mae6.ipv6AddrType = 1; 10126 else 10127 mae6.ipv6AddrType = 2; 10128 /* Anycast: true(1), false(2) */ 10129 if (ipif->ipif_flags & IPIF_ANYCAST) 10130 mae6.ipv6AddrAnycastFlag = 1; 10131 else 10132 mae6.ipv6AddrAnycastFlag = 2; 10133 10134 /* 10135 * Address status: preferred(1), deprecated(2), 10136 * invalid(3), inaccessible(4), unknown(5) 10137 */ 10138 if (ipif->ipif_flags & IPIF_NOLOCAL) 10139 mae6.ipv6AddrStatus = 3; 10140 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10141 mae6.ipv6AddrStatus = 2; 10142 else 10143 mae6.ipv6AddrStatus = 1; 10144 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10145 mae6.ipv6AddrInfo.ae_metric = 10146 ipif->ipif_ill->ill_metric; 10147 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10148 ipif->ipif_v6pp_dst_addr; 10149 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10150 ill->ill_flags | ill->ill_phyint->phyint_flags; 10151 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10152 mae6.ipv6AddrIdentifier = ill->ill_token; 10153 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10154 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10155 mae6.ipv6AddrRetransmitTime = 10156 ill->ill_reachable_retrans_time; 10157 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10158 (char *)&mae6, (int)mae6_size)) { 10159 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10160 "allocate %u bytes\n", 10161 (uint_t)mae6_size)); 10162 } 10163 } 10164 } 10165 rw_exit(&ipst->ips_ill_g_lock); 10166 10167 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10168 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10169 (int)optp->level, (int)optp->name, (int)optp->len)); 10170 qreply(q, mpctl); 10171 return (mp2ctl); 10172 } 10173 10174 /* IPv4 multicast group membership. */ 10175 static mblk_t * 10176 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10177 { 10178 struct opthdr *optp; 10179 mblk_t *mp2ctl; 10180 ill_t *ill; 10181 ipif_t *ipif; 10182 ilm_t *ilm; 10183 ip_member_t ipm; 10184 mblk_t *mp_tail = NULL; 10185 ill_walk_context_t ctx; 10186 zoneid_t zoneid; 10187 10188 /* 10189 * make a copy of the original message 10190 */ 10191 mp2ctl = copymsg(mpctl); 10192 zoneid = Q_TO_CONN(q)->conn_zoneid; 10193 10194 /* ipGroupMember table */ 10195 optp = (struct opthdr *)&mpctl->b_rptr[ 10196 sizeof (struct T_optmgmt_ack)]; 10197 optp->level = MIB2_IP; 10198 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10199 10200 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10201 ill = ILL_START_WALK_V4(&ctx, ipst); 10202 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10203 /* Make sure the ill isn't going away. */ 10204 if (!ill_check_and_refhold(ill)) 10205 continue; 10206 rw_exit(&ipst->ips_ill_g_lock); 10207 rw_enter(&ill->ill_mcast_lock, RW_READER); 10208 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10209 if (ilm->ilm_zoneid != zoneid && 10210 ilm->ilm_zoneid != ALL_ZONES) 10211 continue; 10212 10213 /* Is there an ipif for ilm_ifaddr? */ 10214 for (ipif = ill->ill_ipif; ipif != NULL; 10215 ipif = ipif->ipif_next) { 10216 if (!IPIF_IS_CONDEMNED(ipif) && 10217 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10218 ilm->ilm_ifaddr != INADDR_ANY) 10219 break; 10220 } 10221 if (ipif != NULL) { 10222 ipif_get_name(ipif, 10223 ipm.ipGroupMemberIfIndex.o_bytes, 10224 OCTET_LENGTH); 10225 } else { 10226 ill_get_name(ill, 10227 ipm.ipGroupMemberIfIndex.o_bytes, 10228 OCTET_LENGTH); 10229 } 10230 ipm.ipGroupMemberIfIndex.o_length = 10231 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10232 10233 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10234 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10235 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10236 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10237 (char *)&ipm, (int)sizeof (ipm))) { 10238 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10239 "failed to allocate %u bytes\n", 10240 (uint_t)sizeof (ipm))); 10241 } 10242 } 10243 rw_exit(&ill->ill_mcast_lock); 10244 ill_refrele(ill); 10245 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10246 } 10247 rw_exit(&ipst->ips_ill_g_lock); 10248 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10249 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10250 (int)optp->level, (int)optp->name, (int)optp->len)); 10251 qreply(q, mpctl); 10252 return (mp2ctl); 10253 } 10254 10255 /* IPv6 multicast group membership. */ 10256 static mblk_t * 10257 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10258 { 10259 struct opthdr *optp; 10260 mblk_t *mp2ctl; 10261 ill_t *ill; 10262 ilm_t *ilm; 10263 ipv6_member_t ipm6; 10264 mblk_t *mp_tail = NULL; 10265 ill_walk_context_t ctx; 10266 zoneid_t zoneid; 10267 10268 /* 10269 * make a copy of the original message 10270 */ 10271 mp2ctl = copymsg(mpctl); 10272 zoneid = Q_TO_CONN(q)->conn_zoneid; 10273 10274 /* ip6GroupMember table */ 10275 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10276 optp->level = MIB2_IP6; 10277 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10278 10279 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10280 ill = ILL_START_WALK_V6(&ctx, ipst); 10281 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10282 /* Make sure the ill isn't going away. */ 10283 if (!ill_check_and_refhold(ill)) 10284 continue; 10285 rw_exit(&ipst->ips_ill_g_lock); 10286 /* 10287 * Normally we don't have any members on under IPMP interfaces. 10288 * We report them as a debugging aid. 10289 */ 10290 rw_enter(&ill->ill_mcast_lock, RW_READER); 10291 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10292 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10293 if (ilm->ilm_zoneid != zoneid && 10294 ilm->ilm_zoneid != ALL_ZONES) 10295 continue; /* not this zone */ 10296 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10297 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10298 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10299 if (!snmp_append_data2(mpctl->b_cont, 10300 &mp_tail, 10301 (char *)&ipm6, (int)sizeof (ipm6))) { 10302 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10303 "failed to allocate %u bytes\n", 10304 (uint_t)sizeof (ipm6))); 10305 } 10306 } 10307 rw_exit(&ill->ill_mcast_lock); 10308 ill_refrele(ill); 10309 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10310 } 10311 rw_exit(&ipst->ips_ill_g_lock); 10312 10313 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10314 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10315 (int)optp->level, (int)optp->name, (int)optp->len)); 10316 qreply(q, mpctl); 10317 return (mp2ctl); 10318 } 10319 10320 /* IP multicast filtered sources */ 10321 static mblk_t * 10322 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10323 { 10324 struct opthdr *optp; 10325 mblk_t *mp2ctl; 10326 ill_t *ill; 10327 ipif_t *ipif; 10328 ilm_t *ilm; 10329 ip_grpsrc_t ips; 10330 mblk_t *mp_tail = NULL; 10331 ill_walk_context_t ctx; 10332 zoneid_t zoneid; 10333 int i; 10334 slist_t *sl; 10335 10336 /* 10337 * make a copy of the original message 10338 */ 10339 mp2ctl = copymsg(mpctl); 10340 zoneid = Q_TO_CONN(q)->conn_zoneid; 10341 10342 /* ipGroupSource table */ 10343 optp = (struct opthdr *)&mpctl->b_rptr[ 10344 sizeof (struct T_optmgmt_ack)]; 10345 optp->level = MIB2_IP; 10346 optp->name = EXPER_IP_GROUP_SOURCES; 10347 10348 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10349 ill = ILL_START_WALK_V4(&ctx, ipst); 10350 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10351 /* Make sure the ill isn't going away. */ 10352 if (!ill_check_and_refhold(ill)) 10353 continue; 10354 rw_exit(&ipst->ips_ill_g_lock); 10355 rw_enter(&ill->ill_mcast_lock, RW_READER); 10356 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10357 sl = ilm->ilm_filter; 10358 if (ilm->ilm_zoneid != zoneid && 10359 ilm->ilm_zoneid != ALL_ZONES) 10360 continue; 10361 if (SLIST_IS_EMPTY(sl)) 10362 continue; 10363 10364 /* Is there an ipif for ilm_ifaddr? */ 10365 for (ipif = ill->ill_ipif; ipif != NULL; 10366 ipif = ipif->ipif_next) { 10367 if (!IPIF_IS_CONDEMNED(ipif) && 10368 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10369 ilm->ilm_ifaddr != INADDR_ANY) 10370 break; 10371 } 10372 if (ipif != NULL) { 10373 ipif_get_name(ipif, 10374 ips.ipGroupSourceIfIndex.o_bytes, 10375 OCTET_LENGTH); 10376 } else { 10377 ill_get_name(ill, 10378 ips.ipGroupSourceIfIndex.o_bytes, 10379 OCTET_LENGTH); 10380 } 10381 ips.ipGroupSourceIfIndex.o_length = 10382 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10383 10384 ips.ipGroupSourceGroup = ilm->ilm_addr; 10385 for (i = 0; i < sl->sl_numsrc; i++) { 10386 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10387 continue; 10388 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10389 ips.ipGroupSourceAddress); 10390 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10391 (char *)&ips, (int)sizeof (ips)) == 0) { 10392 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10393 " failed to allocate %u bytes\n", 10394 (uint_t)sizeof (ips))); 10395 } 10396 } 10397 } 10398 rw_exit(&ill->ill_mcast_lock); 10399 ill_refrele(ill); 10400 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10401 } 10402 rw_exit(&ipst->ips_ill_g_lock); 10403 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10404 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10405 (int)optp->level, (int)optp->name, (int)optp->len)); 10406 qreply(q, mpctl); 10407 return (mp2ctl); 10408 } 10409 10410 /* IPv6 multicast filtered sources. */ 10411 static mblk_t * 10412 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10413 { 10414 struct opthdr *optp; 10415 mblk_t *mp2ctl; 10416 ill_t *ill; 10417 ilm_t *ilm; 10418 ipv6_grpsrc_t ips6; 10419 mblk_t *mp_tail = NULL; 10420 ill_walk_context_t ctx; 10421 zoneid_t zoneid; 10422 int i; 10423 slist_t *sl; 10424 10425 /* 10426 * make a copy of the original message 10427 */ 10428 mp2ctl = copymsg(mpctl); 10429 zoneid = Q_TO_CONN(q)->conn_zoneid; 10430 10431 /* ip6GroupMember table */ 10432 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10433 optp->level = MIB2_IP6; 10434 optp->name = EXPER_IP6_GROUP_SOURCES; 10435 10436 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10437 ill = ILL_START_WALK_V6(&ctx, ipst); 10438 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10439 /* Make sure the ill isn't going away. */ 10440 if (!ill_check_and_refhold(ill)) 10441 continue; 10442 rw_exit(&ipst->ips_ill_g_lock); 10443 /* 10444 * Normally we don't have any members on under IPMP interfaces. 10445 * We report them as a debugging aid. 10446 */ 10447 rw_enter(&ill->ill_mcast_lock, RW_READER); 10448 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10449 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10450 sl = ilm->ilm_filter; 10451 if (ilm->ilm_zoneid != zoneid && 10452 ilm->ilm_zoneid != ALL_ZONES) 10453 continue; 10454 if (SLIST_IS_EMPTY(sl)) 10455 continue; 10456 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10457 for (i = 0; i < sl->sl_numsrc; i++) { 10458 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10459 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10460 (char *)&ips6, (int)sizeof (ips6))) { 10461 ip1dbg(("ip_snmp_get_mib2_ip6_" 10462 "group_src: failed to allocate " 10463 "%u bytes\n", 10464 (uint_t)sizeof (ips6))); 10465 } 10466 } 10467 } 10468 rw_exit(&ill->ill_mcast_lock); 10469 ill_refrele(ill); 10470 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10471 } 10472 rw_exit(&ipst->ips_ill_g_lock); 10473 10474 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10475 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10476 (int)optp->level, (int)optp->name, (int)optp->len)); 10477 qreply(q, mpctl); 10478 return (mp2ctl); 10479 } 10480 10481 /* Multicast routing virtual interface table. */ 10482 static mblk_t * 10483 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10484 { 10485 struct opthdr *optp; 10486 mblk_t *mp2ctl; 10487 10488 /* 10489 * make a copy of the original message 10490 */ 10491 mp2ctl = copymsg(mpctl); 10492 10493 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10494 optp->level = EXPER_DVMRP; 10495 optp->name = EXPER_DVMRP_VIF; 10496 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10497 ip0dbg(("ip_mroute_vif: failed\n")); 10498 } 10499 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10500 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10501 (int)optp->level, (int)optp->name, (int)optp->len)); 10502 qreply(q, mpctl); 10503 return (mp2ctl); 10504 } 10505 10506 /* Multicast routing table. */ 10507 static mblk_t * 10508 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10509 { 10510 struct opthdr *optp; 10511 mblk_t *mp2ctl; 10512 10513 /* 10514 * make a copy of the original message 10515 */ 10516 mp2ctl = copymsg(mpctl); 10517 10518 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10519 optp->level = EXPER_DVMRP; 10520 optp->name = EXPER_DVMRP_MRT; 10521 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10522 ip0dbg(("ip_mroute_mrt: failed\n")); 10523 } 10524 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10525 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10526 (int)optp->level, (int)optp->name, (int)optp->len)); 10527 qreply(q, mpctl); 10528 return (mp2ctl); 10529 } 10530 10531 /* 10532 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10533 * in one IRE walk. 10534 */ 10535 static mblk_t * 10536 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10537 ip_stack_t *ipst) 10538 { 10539 struct opthdr *optp; 10540 mblk_t *mp2ctl; /* Returned */ 10541 mblk_t *mp3ctl; /* nettomedia */ 10542 mblk_t *mp4ctl; /* routeattrs */ 10543 iproutedata_t ird; 10544 zoneid_t zoneid; 10545 10546 /* 10547 * make copies of the original message 10548 * - mp2ctl is returned unchanged to the caller for his use 10549 * - mpctl is sent upstream as ipRouteEntryTable 10550 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10551 * - mp4ctl is sent upstream as ipRouteAttributeTable 10552 */ 10553 mp2ctl = copymsg(mpctl); 10554 mp3ctl = copymsg(mpctl); 10555 mp4ctl = copymsg(mpctl); 10556 if (mp3ctl == NULL || mp4ctl == NULL) { 10557 freemsg(mp4ctl); 10558 freemsg(mp3ctl); 10559 freemsg(mp2ctl); 10560 freemsg(mpctl); 10561 return (NULL); 10562 } 10563 10564 bzero(&ird, sizeof (ird)); 10565 10566 ird.ird_route.lp_head = mpctl->b_cont; 10567 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10568 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10569 /* 10570 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10571 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10572 * intended a temporary solution until a proper MIB API is provided 10573 * that provides complete filtering/caller-opt-in. 10574 */ 10575 if (level == EXPER_IP_AND_ALL_IRES) 10576 ird.ird_flags |= IRD_REPORT_ALL; 10577 10578 zoneid = Q_TO_CONN(q)->conn_zoneid; 10579 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10580 10581 /* ipRouteEntryTable in mpctl */ 10582 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10583 optp->level = MIB2_IP; 10584 optp->name = MIB2_IP_ROUTE; 10585 optp->len = msgdsize(ird.ird_route.lp_head); 10586 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10587 (int)optp->level, (int)optp->name, (int)optp->len)); 10588 qreply(q, mpctl); 10589 10590 /* ipNetToMediaEntryTable in mp3ctl */ 10591 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10592 10593 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10594 optp->level = MIB2_IP; 10595 optp->name = MIB2_IP_MEDIA; 10596 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10597 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10598 (int)optp->level, (int)optp->name, (int)optp->len)); 10599 qreply(q, mp3ctl); 10600 10601 /* ipRouteAttributeTable in mp4ctl */ 10602 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10603 optp->level = MIB2_IP; 10604 optp->name = EXPER_IP_RTATTR; 10605 optp->len = msgdsize(ird.ird_attrs.lp_head); 10606 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10607 (int)optp->level, (int)optp->name, (int)optp->len)); 10608 if (optp->len == 0) 10609 freemsg(mp4ctl); 10610 else 10611 qreply(q, mp4ctl); 10612 10613 return (mp2ctl); 10614 } 10615 10616 /* 10617 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10618 * ipv6NetToMediaEntryTable in an NDP walk. 10619 */ 10620 static mblk_t * 10621 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10622 ip_stack_t *ipst) 10623 { 10624 struct opthdr *optp; 10625 mblk_t *mp2ctl; /* Returned */ 10626 mblk_t *mp3ctl; /* nettomedia */ 10627 mblk_t *mp4ctl; /* routeattrs */ 10628 iproutedata_t ird; 10629 zoneid_t zoneid; 10630 10631 /* 10632 * make copies of the original message 10633 * - mp2ctl is returned unchanged to the caller for his use 10634 * - mpctl is sent upstream as ipv6RouteEntryTable 10635 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10636 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10637 */ 10638 mp2ctl = copymsg(mpctl); 10639 mp3ctl = copymsg(mpctl); 10640 mp4ctl = copymsg(mpctl); 10641 if (mp3ctl == NULL || mp4ctl == NULL) { 10642 freemsg(mp4ctl); 10643 freemsg(mp3ctl); 10644 freemsg(mp2ctl); 10645 freemsg(mpctl); 10646 return (NULL); 10647 } 10648 10649 bzero(&ird, sizeof (ird)); 10650 10651 ird.ird_route.lp_head = mpctl->b_cont; 10652 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10653 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10654 /* 10655 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10656 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10657 * intended a temporary solution until a proper MIB API is provided 10658 * that provides complete filtering/caller-opt-in. 10659 */ 10660 if (level == EXPER_IP_AND_ALL_IRES) 10661 ird.ird_flags |= IRD_REPORT_ALL; 10662 10663 zoneid = Q_TO_CONN(q)->conn_zoneid; 10664 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10665 10666 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10667 optp->level = MIB2_IP6; 10668 optp->name = MIB2_IP6_ROUTE; 10669 optp->len = msgdsize(ird.ird_route.lp_head); 10670 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10671 (int)optp->level, (int)optp->name, (int)optp->len)); 10672 qreply(q, mpctl); 10673 10674 /* ipv6NetToMediaEntryTable in mp3ctl */ 10675 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10676 10677 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10678 optp->level = MIB2_IP6; 10679 optp->name = MIB2_IP6_MEDIA; 10680 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10681 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10682 (int)optp->level, (int)optp->name, (int)optp->len)); 10683 qreply(q, mp3ctl); 10684 10685 /* ipv6RouteAttributeTable in mp4ctl */ 10686 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10687 optp->level = MIB2_IP6; 10688 optp->name = EXPER_IP_RTATTR; 10689 optp->len = msgdsize(ird.ird_attrs.lp_head); 10690 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10691 (int)optp->level, (int)optp->name, (int)optp->len)); 10692 if (optp->len == 0) 10693 freemsg(mp4ctl); 10694 else 10695 qreply(q, mp4ctl); 10696 10697 return (mp2ctl); 10698 } 10699 10700 /* 10701 * IPv6 mib: One per ill 10702 */ 10703 static mblk_t * 10704 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10705 boolean_t legacy_req) 10706 { 10707 struct opthdr *optp; 10708 mblk_t *mp2ctl; 10709 ill_t *ill; 10710 ill_walk_context_t ctx; 10711 mblk_t *mp_tail = NULL; 10712 mib2_ipv6AddrEntry_t mae6; 10713 mib2_ipIfStatsEntry_t *ise; 10714 size_t ise_size, iae_size; 10715 10716 /* 10717 * Make a copy of the original message 10718 */ 10719 mp2ctl = copymsg(mpctl); 10720 10721 /* fixed length IPv6 structure ... */ 10722 10723 if (legacy_req) { 10724 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10725 mib2_ipIfStatsEntry_t); 10726 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10727 } else { 10728 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10729 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10730 } 10731 10732 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10733 optp->level = MIB2_IP6; 10734 optp->name = 0; 10735 /* Include "unknown interface" ip6_mib */ 10736 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10737 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10738 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10739 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10740 ipst->ips_ipv6_forwarding ? 1 : 2); 10741 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10742 ipst->ips_ipv6_def_hops); 10743 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10744 sizeof (mib2_ipIfStatsEntry_t)); 10745 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10746 sizeof (mib2_ipv6AddrEntry_t)); 10747 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10748 sizeof (mib2_ipv6RouteEntry_t)); 10749 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10750 sizeof (mib2_ipv6NetToMediaEntry_t)); 10751 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10752 sizeof (ipv6_member_t)); 10753 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10754 sizeof (ipv6_grpsrc_t)); 10755 10756 /* 10757 * Synchronize 64- and 32-bit counters 10758 */ 10759 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10760 ipIfStatsHCInReceives); 10761 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10762 ipIfStatsHCInDelivers); 10763 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10764 ipIfStatsHCOutRequests); 10765 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10766 ipIfStatsHCOutForwDatagrams); 10767 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10768 ipIfStatsHCOutMcastPkts); 10769 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10770 ipIfStatsHCInMcastPkts); 10771 10772 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10773 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10774 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10775 (uint_t)ise_size)); 10776 } else if (legacy_req) { 10777 /* Adjust the EntrySize fields for legacy requests. */ 10778 ise = 10779 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10780 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10781 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10782 } 10783 10784 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10785 ill = ILL_START_WALK_V6(&ctx, ipst); 10786 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10787 ill->ill_ip_mib->ipIfStatsIfIndex = 10788 ill->ill_phyint->phyint_ifindex; 10789 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10790 ipst->ips_ipv6_forwarding ? 1 : 2); 10791 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10792 ill->ill_max_hops); 10793 10794 /* 10795 * Synchronize 64- and 32-bit counters 10796 */ 10797 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10798 ipIfStatsHCInReceives); 10799 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10800 ipIfStatsHCInDelivers); 10801 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10802 ipIfStatsHCOutRequests); 10803 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10804 ipIfStatsHCOutForwDatagrams); 10805 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10806 ipIfStatsHCOutMcastPkts); 10807 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10808 ipIfStatsHCInMcastPkts); 10809 10810 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10811 (char *)ill->ill_ip_mib, (int)ise_size)) { 10812 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10813 "%u bytes\n", (uint_t)ise_size)); 10814 } else if (legacy_req) { 10815 /* Adjust the EntrySize fields for legacy requests. */ 10816 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10817 (int)ise_size); 10818 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10819 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10820 } 10821 } 10822 rw_exit(&ipst->ips_ill_g_lock); 10823 10824 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10825 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10826 (int)optp->level, (int)optp->name, (int)optp->len)); 10827 qreply(q, mpctl); 10828 return (mp2ctl); 10829 } 10830 10831 /* 10832 * ICMPv6 mib: One per ill 10833 */ 10834 static mblk_t * 10835 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10836 { 10837 struct opthdr *optp; 10838 mblk_t *mp2ctl; 10839 ill_t *ill; 10840 ill_walk_context_t ctx; 10841 mblk_t *mp_tail = NULL; 10842 /* 10843 * Make a copy of the original message 10844 */ 10845 mp2ctl = copymsg(mpctl); 10846 10847 /* fixed length ICMPv6 structure ... */ 10848 10849 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10850 optp->level = MIB2_ICMP6; 10851 optp->name = 0; 10852 /* Include "unknown interface" icmp6_mib */ 10853 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10854 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10855 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10856 sizeof (mib2_ipv6IfIcmpEntry_t); 10857 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10858 (char *)&ipst->ips_icmp6_mib, 10859 (int)sizeof (ipst->ips_icmp6_mib))) { 10860 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10861 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10862 } 10863 10864 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10865 ill = ILL_START_WALK_V6(&ctx, ipst); 10866 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10867 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10868 ill->ill_phyint->phyint_ifindex; 10869 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10870 (char *)ill->ill_icmp6_mib, 10871 (int)sizeof (*ill->ill_icmp6_mib))) { 10872 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10873 "%u bytes\n", 10874 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10875 } 10876 } 10877 rw_exit(&ipst->ips_ill_g_lock); 10878 10879 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10880 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10881 (int)optp->level, (int)optp->name, (int)optp->len)); 10882 qreply(q, mpctl); 10883 return (mp2ctl); 10884 } 10885 10886 /* 10887 * ire_walk routine to create both ipRouteEntryTable and 10888 * ipRouteAttributeTable in one IRE walk 10889 */ 10890 static void 10891 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10892 { 10893 ill_t *ill; 10894 mib2_ipRouteEntry_t *re; 10895 mib2_ipAttributeEntry_t iaes; 10896 tsol_ire_gw_secattr_t *attrp; 10897 tsol_gc_t *gc = NULL; 10898 tsol_gcgrp_t *gcgrp = NULL; 10899 ip_stack_t *ipst = ire->ire_ipst; 10900 10901 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10902 10903 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10904 if (ire->ire_testhidden) 10905 return; 10906 if (ire->ire_type & IRE_IF_CLONE) 10907 return; 10908 } 10909 10910 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10911 return; 10912 10913 if ((attrp = ire->ire_gw_secattr) != NULL) { 10914 mutex_enter(&attrp->igsa_lock); 10915 if ((gc = attrp->igsa_gc) != NULL) { 10916 gcgrp = gc->gc_grp; 10917 ASSERT(gcgrp != NULL); 10918 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10919 } 10920 mutex_exit(&attrp->igsa_lock); 10921 } 10922 /* 10923 * Return all IRE types for route table... let caller pick and choose 10924 */ 10925 re->ipRouteDest = ire->ire_addr; 10926 ill = ire->ire_ill; 10927 re->ipRouteIfIndex.o_length = 0; 10928 if (ill != NULL) { 10929 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10930 re->ipRouteIfIndex.o_length = 10931 mi_strlen(re->ipRouteIfIndex.o_bytes); 10932 } 10933 re->ipRouteMetric1 = -1; 10934 re->ipRouteMetric2 = -1; 10935 re->ipRouteMetric3 = -1; 10936 re->ipRouteMetric4 = -1; 10937 10938 re->ipRouteNextHop = ire->ire_gateway_addr; 10939 /* indirect(4), direct(3), or invalid(2) */ 10940 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10941 re->ipRouteType = 2; 10942 else if (ire->ire_type & IRE_ONLINK) 10943 re->ipRouteType = 3; 10944 else 10945 re->ipRouteType = 4; 10946 10947 re->ipRouteProto = -1; 10948 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10949 re->ipRouteMask = ire->ire_mask; 10950 re->ipRouteMetric5 = -1; 10951 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10952 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10953 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10954 10955 re->ipRouteInfo.re_frag_flag = 0; 10956 re->ipRouteInfo.re_rtt = 0; 10957 re->ipRouteInfo.re_src_addr = 0; 10958 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10959 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10960 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10961 re->ipRouteInfo.re_flags = ire->ire_flags; 10962 10963 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10964 if (ire->ire_type & IRE_INTERFACE) { 10965 ire_t *child; 10966 10967 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10968 child = ire->ire_dep_children; 10969 while (child != NULL) { 10970 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10971 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10972 child = child->ire_dep_sib_next; 10973 } 10974 rw_exit(&ipst->ips_ire_dep_lock); 10975 } 10976 10977 if (ire->ire_flags & RTF_DYNAMIC) { 10978 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10979 } else { 10980 re->ipRouteInfo.re_ire_type = ire->ire_type; 10981 } 10982 10983 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10984 (char *)re, (int)sizeof (*re))) { 10985 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10986 (uint_t)sizeof (*re))); 10987 } 10988 10989 if (gc != NULL) { 10990 iaes.iae_routeidx = ird->ird_idx; 10991 iaes.iae_doi = gc->gc_db->gcdb_doi; 10992 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10993 10994 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10995 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10996 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10997 "bytes\n", (uint_t)sizeof (iaes))); 10998 } 10999 } 11000 11001 /* bump route index for next pass */ 11002 ird->ird_idx++; 11003 11004 kmem_free(re, sizeof (*re)); 11005 if (gcgrp != NULL) 11006 rw_exit(&gcgrp->gcgrp_rwlock); 11007 } 11008 11009 /* 11010 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11011 */ 11012 static void 11013 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11014 { 11015 ill_t *ill; 11016 mib2_ipv6RouteEntry_t *re; 11017 mib2_ipAttributeEntry_t iaes; 11018 tsol_ire_gw_secattr_t *attrp; 11019 tsol_gc_t *gc = NULL; 11020 tsol_gcgrp_t *gcgrp = NULL; 11021 ip_stack_t *ipst = ire->ire_ipst; 11022 11023 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11024 11025 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11026 if (ire->ire_testhidden) 11027 return; 11028 if (ire->ire_type & IRE_IF_CLONE) 11029 return; 11030 } 11031 11032 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11033 return; 11034 11035 if ((attrp = ire->ire_gw_secattr) != NULL) { 11036 mutex_enter(&attrp->igsa_lock); 11037 if ((gc = attrp->igsa_gc) != NULL) { 11038 gcgrp = gc->gc_grp; 11039 ASSERT(gcgrp != NULL); 11040 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11041 } 11042 mutex_exit(&attrp->igsa_lock); 11043 } 11044 /* 11045 * Return all IRE types for route table... let caller pick and choose 11046 */ 11047 re->ipv6RouteDest = ire->ire_addr_v6; 11048 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11049 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11050 re->ipv6RouteIfIndex.o_length = 0; 11051 ill = ire->ire_ill; 11052 if (ill != NULL) { 11053 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11054 re->ipv6RouteIfIndex.o_length = 11055 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11056 } 11057 11058 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11059 11060 mutex_enter(&ire->ire_lock); 11061 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11062 mutex_exit(&ire->ire_lock); 11063 11064 /* remote(4), local(3), or discard(2) */ 11065 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11066 re->ipv6RouteType = 2; 11067 else if (ire->ire_type & IRE_ONLINK) 11068 re->ipv6RouteType = 3; 11069 else 11070 re->ipv6RouteType = 4; 11071 11072 re->ipv6RouteProtocol = -1; 11073 re->ipv6RoutePolicy = 0; 11074 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11075 re->ipv6RouteNextHopRDI = 0; 11076 re->ipv6RouteWeight = 0; 11077 re->ipv6RouteMetric = 0; 11078 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11079 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11080 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11081 11082 re->ipv6RouteInfo.re_frag_flag = 0; 11083 re->ipv6RouteInfo.re_rtt = 0; 11084 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11085 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11086 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11087 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11088 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11089 11090 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11091 if (ire->ire_type & IRE_INTERFACE) { 11092 ire_t *child; 11093 11094 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11095 child = ire->ire_dep_children; 11096 while (child != NULL) { 11097 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11098 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11099 child = child->ire_dep_sib_next; 11100 } 11101 rw_exit(&ipst->ips_ire_dep_lock); 11102 } 11103 if (ire->ire_flags & RTF_DYNAMIC) { 11104 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11105 } else { 11106 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11107 } 11108 11109 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11110 (char *)re, (int)sizeof (*re))) { 11111 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11112 (uint_t)sizeof (*re))); 11113 } 11114 11115 if (gc != NULL) { 11116 iaes.iae_routeidx = ird->ird_idx; 11117 iaes.iae_doi = gc->gc_db->gcdb_doi; 11118 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11119 11120 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11121 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11122 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11123 "bytes\n", (uint_t)sizeof (iaes))); 11124 } 11125 } 11126 11127 /* bump route index for next pass */ 11128 ird->ird_idx++; 11129 11130 kmem_free(re, sizeof (*re)); 11131 if (gcgrp != NULL) 11132 rw_exit(&gcgrp->gcgrp_rwlock); 11133 } 11134 11135 /* 11136 * ncec_walk routine to create ipv6NetToMediaEntryTable 11137 */ 11138 static int 11139 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11140 { 11141 ill_t *ill; 11142 mib2_ipv6NetToMediaEntry_t ntme; 11143 11144 ill = ncec->ncec_ill; 11145 /* skip arpce entries, and loopback ncec entries */ 11146 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11147 return (0); 11148 /* 11149 * Neighbor cache entry attached to IRE with on-link 11150 * destination. 11151 * We report all IPMP groups on ncec_ill which is normally the upper. 11152 */ 11153 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11154 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11155 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11156 if (ncec->ncec_lladdr != NULL) { 11157 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11158 ntme.ipv6NetToMediaPhysAddress.o_length); 11159 } 11160 /* 11161 * Note: Returns ND_* states. Should be: 11162 * reachable(1), stale(2), delay(3), probe(4), 11163 * invalid(5), unknown(6) 11164 */ 11165 ntme.ipv6NetToMediaState = ncec->ncec_state; 11166 ntme.ipv6NetToMediaLastUpdated = 0; 11167 11168 /* other(1), dynamic(2), static(3), local(4) */ 11169 if (NCE_MYADDR(ncec)) { 11170 ntme.ipv6NetToMediaType = 4; 11171 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11172 ntme.ipv6NetToMediaType = 1; /* proxy */ 11173 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11174 ntme.ipv6NetToMediaType = 3; 11175 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11176 ntme.ipv6NetToMediaType = 1; 11177 } else { 11178 ntme.ipv6NetToMediaType = 2; 11179 } 11180 11181 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11182 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11183 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11184 (uint_t)sizeof (ntme))); 11185 } 11186 return (0); 11187 } 11188 11189 int 11190 nce2ace(ncec_t *ncec) 11191 { 11192 int flags = 0; 11193 11194 if (NCE_ISREACHABLE(ncec)) 11195 flags |= ACE_F_RESOLVED; 11196 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11197 flags |= ACE_F_AUTHORITY; 11198 if (ncec->ncec_flags & NCE_F_PUBLISH) 11199 flags |= ACE_F_PUBLISH; 11200 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11201 flags |= ACE_F_PERMANENT; 11202 if (NCE_MYADDR(ncec)) 11203 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11204 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11205 flags |= ACE_F_UNVERIFIED; 11206 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11207 flags |= ACE_F_AUTHORITY; 11208 if (ncec->ncec_flags & NCE_F_DELAYED) 11209 flags |= ACE_F_DELAYED; 11210 return (flags); 11211 } 11212 11213 /* 11214 * ncec_walk routine to create ipNetToMediaEntryTable 11215 */ 11216 static int 11217 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11218 { 11219 ill_t *ill; 11220 mib2_ipNetToMediaEntry_t ntme; 11221 const char *name = "unknown"; 11222 ipaddr_t ncec_addr; 11223 11224 ill = ncec->ncec_ill; 11225 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11226 ill->ill_net_type == IRE_LOOPBACK) 11227 return (0); 11228 11229 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11230 name = ill->ill_name; 11231 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11232 if (NCE_MYADDR(ncec)) { 11233 ntme.ipNetToMediaType = 4; 11234 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11235 ntme.ipNetToMediaType = 1; 11236 } else { 11237 ntme.ipNetToMediaType = 3; 11238 } 11239 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11240 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11241 ntme.ipNetToMediaIfIndex.o_length); 11242 11243 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11244 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11245 11246 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11247 ncec_addr = INADDR_BROADCAST; 11248 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11249 sizeof (ncec_addr)); 11250 /* 11251 * map all the flags to the ACE counterpart. 11252 */ 11253 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11254 11255 ntme.ipNetToMediaPhysAddress.o_length = 11256 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11257 11258 if (!NCE_ISREACHABLE(ncec)) 11259 ntme.ipNetToMediaPhysAddress.o_length = 0; 11260 else { 11261 if (ncec->ncec_lladdr != NULL) { 11262 bcopy(ncec->ncec_lladdr, 11263 ntme.ipNetToMediaPhysAddress.o_bytes, 11264 ntme.ipNetToMediaPhysAddress.o_length); 11265 } 11266 } 11267 11268 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11269 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11270 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11271 (uint_t)sizeof (ntme))); 11272 } 11273 return (0); 11274 } 11275 11276 /* 11277 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11278 */ 11279 /* ARGSUSED */ 11280 int 11281 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11282 { 11283 switch (level) { 11284 case MIB2_IP: 11285 case MIB2_ICMP: 11286 switch (name) { 11287 default: 11288 break; 11289 } 11290 return (1); 11291 default: 11292 return (1); 11293 } 11294 } 11295 11296 /* 11297 * When there exists both a 64- and 32-bit counter of a particular type 11298 * (i.e., InReceives), only the 64-bit counters are added. 11299 */ 11300 void 11301 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11302 { 11303 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11304 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11305 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11306 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11307 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11308 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11309 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11310 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11311 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11312 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11313 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11314 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11315 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11316 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11317 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11318 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11319 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11320 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11321 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11322 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11323 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11324 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11325 o2->ipIfStatsInWrongIPVersion); 11326 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11327 o2->ipIfStatsInWrongIPVersion); 11328 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11329 o2->ipIfStatsOutSwitchIPVersion); 11330 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11331 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11332 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11333 o2->ipIfStatsHCInForwDatagrams); 11334 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11335 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11336 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11337 o2->ipIfStatsHCOutForwDatagrams); 11338 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11339 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11340 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11341 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11342 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11343 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11344 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11345 o2->ipIfStatsHCOutMcastOctets); 11346 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11347 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11348 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11349 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11350 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11351 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11352 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11353 } 11354 11355 void 11356 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11357 { 11358 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11359 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11360 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11361 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11362 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11363 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11364 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11365 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11366 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11367 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11368 o2->ipv6IfIcmpInRouterSolicits); 11369 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11370 o2->ipv6IfIcmpInRouterAdvertisements); 11371 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11372 o2->ipv6IfIcmpInNeighborSolicits); 11373 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11374 o2->ipv6IfIcmpInNeighborAdvertisements); 11375 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11376 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11377 o2->ipv6IfIcmpInGroupMembQueries); 11378 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11379 o2->ipv6IfIcmpInGroupMembResponses); 11380 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11381 o2->ipv6IfIcmpInGroupMembReductions); 11382 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11383 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11384 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11385 o2->ipv6IfIcmpOutDestUnreachs); 11386 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11387 o2->ipv6IfIcmpOutAdminProhibs); 11388 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11389 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11390 o2->ipv6IfIcmpOutParmProblems); 11391 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11392 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11393 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11394 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11395 o2->ipv6IfIcmpOutRouterSolicits); 11396 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11397 o2->ipv6IfIcmpOutRouterAdvertisements); 11398 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11399 o2->ipv6IfIcmpOutNeighborSolicits); 11400 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11401 o2->ipv6IfIcmpOutNeighborAdvertisements); 11402 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11403 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11404 o2->ipv6IfIcmpOutGroupMembQueries); 11405 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11406 o2->ipv6IfIcmpOutGroupMembResponses); 11407 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11408 o2->ipv6IfIcmpOutGroupMembReductions); 11409 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11410 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11411 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11412 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11413 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11414 o2->ipv6IfIcmpInBadNeighborSolicitations); 11415 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11416 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11417 o2->ipv6IfIcmpInGroupMembTotal); 11418 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11419 o2->ipv6IfIcmpInGroupMembBadQueries); 11420 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11421 o2->ipv6IfIcmpInGroupMembBadReports); 11422 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11423 o2->ipv6IfIcmpInGroupMembOurReports); 11424 } 11425 11426 /* 11427 * Called before the options are updated to check if this packet will 11428 * be source routed from here. 11429 * This routine assumes that the options are well formed i.e. that they 11430 * have already been checked. 11431 */ 11432 boolean_t 11433 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11434 { 11435 ipoptp_t opts; 11436 uchar_t *opt; 11437 uint8_t optval; 11438 uint8_t optlen; 11439 ipaddr_t dst; 11440 11441 if (IS_SIMPLE_IPH(ipha)) { 11442 ip2dbg(("not source routed\n")); 11443 return (B_FALSE); 11444 } 11445 dst = ipha->ipha_dst; 11446 for (optval = ipoptp_first(&opts, ipha); 11447 optval != IPOPT_EOL; 11448 optval = ipoptp_next(&opts)) { 11449 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11450 opt = opts.ipoptp_cur; 11451 optlen = opts.ipoptp_len; 11452 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11453 optval, optlen)); 11454 switch (optval) { 11455 uint32_t off; 11456 case IPOPT_SSRR: 11457 case IPOPT_LSRR: 11458 /* 11459 * If dst is one of our addresses and there are some 11460 * entries left in the source route return (true). 11461 */ 11462 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11463 ip2dbg(("ip_source_routed: not next" 11464 " source route 0x%x\n", 11465 ntohl(dst))); 11466 return (B_FALSE); 11467 } 11468 off = opt[IPOPT_OFFSET]; 11469 off--; 11470 if (optlen < IP_ADDR_LEN || 11471 off > optlen - IP_ADDR_LEN) { 11472 /* End of source route */ 11473 ip1dbg(("ip_source_routed: end of SR\n")); 11474 return (B_FALSE); 11475 } 11476 return (B_TRUE); 11477 } 11478 } 11479 ip2dbg(("not source routed\n")); 11480 return (B_FALSE); 11481 } 11482 11483 /* 11484 * ip_unbind is called by the transports to remove a conn from 11485 * the fanout table. 11486 */ 11487 void 11488 ip_unbind(conn_t *connp) 11489 { 11490 11491 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11492 11493 if (is_system_labeled() && connp->conn_anon_port) { 11494 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11495 connp->conn_mlp_type, connp->conn_proto, 11496 ntohs(connp->conn_lport), B_FALSE); 11497 connp->conn_anon_port = 0; 11498 } 11499 connp->conn_mlp_type = mlptSingle; 11500 11501 ipcl_hash_remove(connp); 11502 } 11503 11504 /* 11505 * Used for deciding the MSS size for the upper layer. Thus 11506 * we need to check the outbound policy values in the conn. 11507 */ 11508 int 11509 conn_ipsec_length(conn_t *connp) 11510 { 11511 ipsec_latch_t *ipl; 11512 11513 ipl = connp->conn_latch; 11514 if (ipl == NULL) 11515 return (0); 11516 11517 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11518 return (0); 11519 11520 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11521 } 11522 11523 /* 11524 * Returns an estimate of the IPsec headers size. This is used if 11525 * we don't want to call into IPsec to get the exact size. 11526 */ 11527 int 11528 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11529 { 11530 ipsec_action_t *a; 11531 11532 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11533 return (0); 11534 11535 a = ixa->ixa_ipsec_action; 11536 if (a == NULL) { 11537 ASSERT(ixa->ixa_ipsec_policy != NULL); 11538 a = ixa->ixa_ipsec_policy->ipsp_act; 11539 } 11540 ASSERT(a != NULL); 11541 11542 return (a->ipa_ovhd); 11543 } 11544 11545 /* 11546 * If there are any source route options, return the true final 11547 * destination. Otherwise, return the destination. 11548 */ 11549 ipaddr_t 11550 ip_get_dst(ipha_t *ipha) 11551 { 11552 ipoptp_t opts; 11553 uchar_t *opt; 11554 uint8_t optval; 11555 uint8_t optlen; 11556 ipaddr_t dst; 11557 uint32_t off; 11558 11559 dst = ipha->ipha_dst; 11560 11561 if (IS_SIMPLE_IPH(ipha)) 11562 return (dst); 11563 11564 for (optval = ipoptp_first(&opts, ipha); 11565 optval != IPOPT_EOL; 11566 optval = ipoptp_next(&opts)) { 11567 opt = opts.ipoptp_cur; 11568 optlen = opts.ipoptp_len; 11569 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11570 switch (optval) { 11571 case IPOPT_SSRR: 11572 case IPOPT_LSRR: 11573 off = opt[IPOPT_OFFSET]; 11574 /* 11575 * If one of the conditions is true, it means 11576 * end of options and dst already has the right 11577 * value. 11578 */ 11579 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11580 off = optlen - IP_ADDR_LEN; 11581 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11582 } 11583 return (dst); 11584 default: 11585 break; 11586 } 11587 } 11588 11589 return (dst); 11590 } 11591 11592 /* 11593 * Outbound IP fragmentation routine. 11594 * Assumes the caller has checked whether or not fragmentation should 11595 * be allowed. Here we copy the DF bit from the header to all the generated 11596 * fragments. 11597 */ 11598 int 11599 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11600 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11601 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11602 { 11603 int i1; 11604 int hdr_len; 11605 mblk_t *hdr_mp; 11606 ipha_t *ipha; 11607 int ip_data_end; 11608 int len; 11609 mblk_t *mp = mp_orig; 11610 int offset; 11611 ill_t *ill = nce->nce_ill; 11612 ip_stack_t *ipst = ill->ill_ipst; 11613 mblk_t *carve_mp; 11614 uint32_t frag_flag; 11615 uint_t priority = mp->b_band; 11616 int error = 0; 11617 11618 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11619 11620 if (pkt_len != msgdsize(mp)) { 11621 ip0dbg(("Packet length mismatch: %d, %ld\n", 11622 pkt_len, msgdsize(mp))); 11623 freemsg(mp); 11624 return (EINVAL); 11625 } 11626 11627 if (max_frag == 0) { 11628 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11630 ip_drop_output("FragFails: zero max_frag", mp, ill); 11631 freemsg(mp); 11632 return (EINVAL); 11633 } 11634 11635 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11636 ipha = (ipha_t *)mp->b_rptr; 11637 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11638 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11639 11640 /* 11641 * Establish the starting offset. May not be zero if we are fragging 11642 * a fragment that is being forwarded. 11643 */ 11644 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11645 11646 /* TODO why is this test needed? */ 11647 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11648 /* TODO: notify ulp somehow */ 11649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11650 ip_drop_output("FragFails: bad starting offset", mp, ill); 11651 freemsg(mp); 11652 return (EINVAL); 11653 } 11654 11655 hdr_len = IPH_HDR_LENGTH(ipha); 11656 ipha->ipha_hdr_checksum = 0; 11657 11658 /* 11659 * Establish the number of bytes maximum per frag, after putting 11660 * in the header. 11661 */ 11662 len = (max_frag - hdr_len) & ~7; 11663 11664 /* Get a copy of the header for the trailing frags */ 11665 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11666 mp); 11667 if (hdr_mp == NULL) { 11668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11669 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11670 freemsg(mp); 11671 return (ENOBUFS); 11672 } 11673 11674 /* Store the starting offset, with the MoreFrags flag. */ 11675 i1 = offset | IPH_MF | frag_flag; 11676 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11677 11678 /* Establish the ending byte offset, based on the starting offset. */ 11679 offset <<= 3; 11680 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11681 11682 /* Store the length of the first fragment in the IP header. */ 11683 i1 = len + hdr_len; 11684 ASSERT(i1 <= IP_MAXPACKET); 11685 ipha->ipha_length = htons((uint16_t)i1); 11686 11687 /* 11688 * Compute the IP header checksum for the first frag. We have to 11689 * watch out that we stop at the end of the header. 11690 */ 11691 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11692 11693 /* 11694 * Now carve off the first frag. Note that this will include the 11695 * original IP header. 11696 */ 11697 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11699 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11700 freeb(hdr_mp); 11701 freemsg(mp_orig); 11702 return (ENOBUFS); 11703 } 11704 11705 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11706 11707 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11708 ixa_cookie); 11709 if (error != 0 && error != EWOULDBLOCK) { 11710 /* No point in sending the other fragments */ 11711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11712 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11713 freeb(hdr_mp); 11714 freemsg(mp_orig); 11715 return (error); 11716 } 11717 11718 /* No need to redo state machine in loop */ 11719 ixaflags &= ~IXAF_REACH_CONF; 11720 11721 /* Advance the offset to the second frag starting point. */ 11722 offset += len; 11723 /* 11724 * Update hdr_len from the copied header - there might be less options 11725 * in the later fragments. 11726 */ 11727 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11728 /* Loop until done. */ 11729 for (;;) { 11730 uint16_t offset_and_flags; 11731 uint16_t ip_len; 11732 11733 if (ip_data_end - offset > len) { 11734 /* 11735 * Carve off the appropriate amount from the original 11736 * datagram. 11737 */ 11738 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11739 mp = NULL; 11740 break; 11741 } 11742 /* 11743 * More frags after this one. Get another copy 11744 * of the header. 11745 */ 11746 if (carve_mp->b_datap->db_ref == 1 && 11747 hdr_mp->b_wptr - hdr_mp->b_rptr < 11748 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11749 /* Inline IP header */ 11750 carve_mp->b_rptr -= hdr_mp->b_wptr - 11751 hdr_mp->b_rptr; 11752 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11753 hdr_mp->b_wptr - hdr_mp->b_rptr); 11754 mp = carve_mp; 11755 } else { 11756 if (!(mp = copyb(hdr_mp))) { 11757 freemsg(carve_mp); 11758 break; 11759 } 11760 /* Get priority marking, if any. */ 11761 mp->b_band = priority; 11762 mp->b_cont = carve_mp; 11763 } 11764 ipha = (ipha_t *)mp->b_rptr; 11765 offset_and_flags = IPH_MF; 11766 } else { 11767 /* 11768 * Last frag. Consume the header. Set len to 11769 * the length of this last piece. 11770 */ 11771 len = ip_data_end - offset; 11772 11773 /* 11774 * Carve off the appropriate amount from the original 11775 * datagram. 11776 */ 11777 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11778 mp = NULL; 11779 break; 11780 } 11781 if (carve_mp->b_datap->db_ref == 1 && 11782 hdr_mp->b_wptr - hdr_mp->b_rptr < 11783 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11784 /* Inline IP header */ 11785 carve_mp->b_rptr -= hdr_mp->b_wptr - 11786 hdr_mp->b_rptr; 11787 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11788 hdr_mp->b_wptr - hdr_mp->b_rptr); 11789 mp = carve_mp; 11790 freeb(hdr_mp); 11791 hdr_mp = mp; 11792 } else { 11793 mp = hdr_mp; 11794 /* Get priority marking, if any. */ 11795 mp->b_band = priority; 11796 mp->b_cont = carve_mp; 11797 } 11798 ipha = (ipha_t *)mp->b_rptr; 11799 /* A frag of a frag might have IPH_MF non-zero */ 11800 offset_and_flags = 11801 ntohs(ipha->ipha_fragment_offset_and_flags) & 11802 IPH_MF; 11803 } 11804 offset_and_flags |= (uint16_t)(offset >> 3); 11805 offset_and_flags |= (uint16_t)frag_flag; 11806 /* Store the offset and flags in the IP header. */ 11807 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11808 11809 /* Store the length in the IP header. */ 11810 ip_len = (uint16_t)(len + hdr_len); 11811 ipha->ipha_length = htons(ip_len); 11812 11813 /* 11814 * Set the IP header checksum. Note that mp is just 11815 * the header, so this is easy to pass to ip_csum. 11816 */ 11817 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11818 11819 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11820 11821 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11822 nolzid, ixa_cookie); 11823 /* All done if we just consumed the hdr_mp. */ 11824 if (mp == hdr_mp) { 11825 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11826 return (error); 11827 } 11828 if (error != 0 && error != EWOULDBLOCK) { 11829 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11830 mblk_t *, hdr_mp); 11831 /* No point in sending the other fragments */ 11832 break; 11833 } 11834 11835 /* Otherwise, advance and loop. */ 11836 offset += len; 11837 } 11838 /* Clean up following allocation failure. */ 11839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11840 ip_drop_output("FragFails: loop ended", NULL, ill); 11841 if (mp != hdr_mp) 11842 freeb(hdr_mp); 11843 if (mp != mp_orig) 11844 freemsg(mp_orig); 11845 return (error); 11846 } 11847 11848 /* 11849 * Copy the header plus those options which have the copy bit set 11850 */ 11851 static mblk_t * 11852 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11853 mblk_t *src) 11854 { 11855 mblk_t *mp; 11856 uchar_t *up; 11857 11858 /* 11859 * Quick check if we need to look for options without the copy bit 11860 * set 11861 */ 11862 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11863 if (!mp) 11864 return (mp); 11865 mp->b_rptr += ipst->ips_ip_wroff_extra; 11866 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11867 bcopy(rptr, mp->b_rptr, hdr_len); 11868 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11869 return (mp); 11870 } 11871 up = mp->b_rptr; 11872 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11873 up += IP_SIMPLE_HDR_LENGTH; 11874 rptr += IP_SIMPLE_HDR_LENGTH; 11875 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11876 while (hdr_len > 0) { 11877 uint32_t optval; 11878 uint32_t optlen; 11879 11880 optval = *rptr; 11881 if (optval == IPOPT_EOL) 11882 break; 11883 if (optval == IPOPT_NOP) 11884 optlen = 1; 11885 else 11886 optlen = rptr[1]; 11887 if (optval & IPOPT_COPY) { 11888 bcopy(rptr, up, optlen); 11889 up += optlen; 11890 } 11891 rptr += optlen; 11892 hdr_len -= optlen; 11893 } 11894 /* 11895 * Make sure that we drop an even number of words by filling 11896 * with EOL to the next word boundary. 11897 */ 11898 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11899 hdr_len & 0x3; hdr_len++) 11900 *up++ = IPOPT_EOL; 11901 mp->b_wptr = up; 11902 /* Update header length */ 11903 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11904 return (mp); 11905 } 11906 11907 /* 11908 * Update any source route, record route, or timestamp options when 11909 * sending a packet back to ourselves. 11910 * Check that we are at end of strict source route. 11911 * The options have been sanity checked by ip_output_options(). 11912 */ 11913 void 11914 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11915 { 11916 ipoptp_t opts; 11917 uchar_t *opt; 11918 uint8_t optval; 11919 uint8_t optlen; 11920 ipaddr_t dst; 11921 uint32_t ts; 11922 timestruc_t now; 11923 11924 for (optval = ipoptp_first(&opts, ipha); 11925 optval != IPOPT_EOL; 11926 optval = ipoptp_next(&opts)) { 11927 opt = opts.ipoptp_cur; 11928 optlen = opts.ipoptp_len; 11929 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11930 switch (optval) { 11931 uint32_t off; 11932 case IPOPT_SSRR: 11933 case IPOPT_LSRR: 11934 off = opt[IPOPT_OFFSET]; 11935 off--; 11936 if (optlen < IP_ADDR_LEN || 11937 off > optlen - IP_ADDR_LEN) { 11938 /* End of source route */ 11939 break; 11940 } 11941 /* 11942 * This will only happen if two consecutive entries 11943 * in the source route contains our address or if 11944 * it is a packet with a loose source route which 11945 * reaches us before consuming the whole source route 11946 */ 11947 11948 if (optval == IPOPT_SSRR) { 11949 return; 11950 } 11951 /* 11952 * Hack: instead of dropping the packet truncate the 11953 * source route to what has been used by filling the 11954 * rest with IPOPT_NOP. 11955 */ 11956 opt[IPOPT_OLEN] = (uint8_t)off; 11957 while (off < optlen) { 11958 opt[off++] = IPOPT_NOP; 11959 } 11960 break; 11961 case IPOPT_RR: 11962 off = opt[IPOPT_OFFSET]; 11963 off--; 11964 if (optlen < IP_ADDR_LEN || 11965 off > optlen - IP_ADDR_LEN) { 11966 /* No more room - ignore */ 11967 ip1dbg(( 11968 "ip_output_local_options: end of RR\n")); 11969 break; 11970 } 11971 dst = htonl(INADDR_LOOPBACK); 11972 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11973 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11974 break; 11975 case IPOPT_TS: 11976 /* Insert timestamp if there is romm */ 11977 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11978 case IPOPT_TS_TSONLY: 11979 off = IPOPT_TS_TIMELEN; 11980 break; 11981 case IPOPT_TS_PRESPEC: 11982 case IPOPT_TS_PRESPEC_RFC791: 11983 /* Verify that the address matched */ 11984 off = opt[IPOPT_OFFSET] - 1; 11985 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11986 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11987 /* Not for us */ 11988 break; 11989 } 11990 /* FALLTHRU */ 11991 case IPOPT_TS_TSANDADDR: 11992 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11993 break; 11994 default: 11995 /* 11996 * ip_*put_options should have already 11997 * dropped this packet. 11998 */ 11999 cmn_err(CE_PANIC, "ip_output_local_options: " 12000 "unknown IT - bug in ip_output_options?\n"); 12001 return; /* Keep "lint" happy */ 12002 } 12003 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12004 /* Increase overflow counter */ 12005 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12006 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12007 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12008 (off << 4); 12009 break; 12010 } 12011 off = opt[IPOPT_OFFSET] - 1; 12012 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12013 case IPOPT_TS_PRESPEC: 12014 case IPOPT_TS_PRESPEC_RFC791: 12015 case IPOPT_TS_TSANDADDR: 12016 dst = htonl(INADDR_LOOPBACK); 12017 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12018 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12019 /* FALLTHRU */ 12020 case IPOPT_TS_TSONLY: 12021 off = opt[IPOPT_OFFSET] - 1; 12022 /* Compute # of milliseconds since midnight */ 12023 gethrestime(&now); 12024 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12025 now.tv_nsec / (NANOSEC / MILLISEC); 12026 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12027 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12028 break; 12029 } 12030 break; 12031 } 12032 } 12033 } 12034 12035 /* 12036 * Prepend an M_DATA fastpath header, and if none present prepend a 12037 * DL_UNITDATA_REQ. Frees the mblk on failure. 12038 * 12039 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12040 * If there is a change to them, the nce will be deleted (condemned) and 12041 * a new nce_t will be created when packets are sent. Thus we need no locks 12042 * to access those fields. 12043 * 12044 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12045 * we place b_band in dl_priority.dl_max. 12046 */ 12047 static mblk_t * 12048 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12049 { 12050 uint_t hlen; 12051 mblk_t *mp1; 12052 uint_t priority; 12053 uchar_t *rptr; 12054 12055 rptr = mp->b_rptr; 12056 12057 ASSERT(DB_TYPE(mp) == M_DATA); 12058 priority = mp->b_band; 12059 12060 ASSERT(nce != NULL); 12061 if ((mp1 = nce->nce_fp_mp) != NULL) { 12062 hlen = MBLKL(mp1); 12063 /* 12064 * Check if we have enough room to prepend fastpath 12065 * header 12066 */ 12067 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12068 rptr -= hlen; 12069 bcopy(mp1->b_rptr, rptr, hlen); 12070 /* 12071 * Set the b_rptr to the start of the link layer 12072 * header 12073 */ 12074 mp->b_rptr = rptr; 12075 return (mp); 12076 } 12077 mp1 = copyb(mp1); 12078 if (mp1 == NULL) { 12079 ill_t *ill = nce->nce_ill; 12080 12081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12082 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12083 freemsg(mp); 12084 return (NULL); 12085 } 12086 mp1->b_band = priority; 12087 mp1->b_cont = mp; 12088 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12089 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12090 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12091 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12092 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12093 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12094 /* 12095 * XXX disable ICK_VALID and compute checksum 12096 * here; can happen if nce_fp_mp changes and 12097 * it can't be copied now due to insufficient 12098 * space. (unlikely, fp mp can change, but it 12099 * does not increase in length) 12100 */ 12101 return (mp1); 12102 } 12103 mp1 = copyb(nce->nce_dlur_mp); 12104 12105 if (mp1 == NULL) { 12106 ill_t *ill = nce->nce_ill; 12107 12108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12109 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12110 freemsg(mp); 12111 return (NULL); 12112 } 12113 mp1->b_cont = mp; 12114 if (priority != 0) { 12115 mp1->b_band = priority; 12116 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12117 priority; 12118 } 12119 return (mp1); 12120 #undef rptr 12121 } 12122 12123 /* 12124 * Finish the outbound IPsec processing. This function is called from 12125 * ipsec_out_process() if the IPsec packet was processed 12126 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12127 * asynchronously. 12128 * 12129 * This is common to IPv4 and IPv6. 12130 */ 12131 int 12132 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12133 { 12134 iaflags_t ixaflags = ixa->ixa_flags; 12135 uint_t pktlen; 12136 12137 12138 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12139 if (ixaflags & IXAF_IS_IPV4) { 12140 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12141 12142 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12143 pktlen = ntohs(ipha->ipha_length); 12144 } else { 12145 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12146 12147 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12148 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12149 } 12150 12151 /* 12152 * We release any hard reference on the SAs here to make 12153 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12154 * on the SAs. 12155 * If in the future we want the hard latching of the SAs in the 12156 * ip_xmit_attr_t then we should remove this. 12157 */ 12158 if (ixa->ixa_ipsec_esp_sa != NULL) { 12159 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12160 ixa->ixa_ipsec_esp_sa = NULL; 12161 } 12162 if (ixa->ixa_ipsec_ah_sa != NULL) { 12163 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12164 ixa->ixa_ipsec_ah_sa = NULL; 12165 } 12166 12167 /* Do we need to fragment? */ 12168 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12169 pktlen > ixa->ixa_fragsize) { 12170 if (ixaflags & IXAF_IS_IPV4) { 12171 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12172 /* 12173 * We check for the DF case in ipsec_out_process 12174 * hence this only handles the non-DF case. 12175 */ 12176 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12177 pktlen, ixa->ixa_fragsize, 12178 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12179 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12180 &ixa->ixa_cookie)); 12181 } else { 12182 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12183 if (mp == NULL) { 12184 /* MIB and ip_drop_output already done */ 12185 return (ENOMEM); 12186 } 12187 pktlen += sizeof (ip6_frag_t); 12188 if (pktlen > ixa->ixa_fragsize) { 12189 return (ip_fragment_v6(mp, ixa->ixa_nce, 12190 ixa->ixa_flags, pktlen, 12191 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12192 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12193 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12194 } 12195 } 12196 } 12197 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12198 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12199 ixa->ixa_no_loop_zoneid, NULL)); 12200 } 12201 12202 /* 12203 * Finish the inbound IPsec processing. This function is called from 12204 * ipsec_out_process() if the IPsec packet was processed 12205 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12206 * asynchronously. 12207 * 12208 * This is common to IPv4 and IPv6. 12209 */ 12210 void 12211 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12212 { 12213 iaflags_t iraflags = ira->ira_flags; 12214 12215 /* Length might have changed */ 12216 if (iraflags & IRAF_IS_IPV4) { 12217 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12218 12219 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12220 ira->ira_pktlen = ntohs(ipha->ipha_length); 12221 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12222 ira->ira_protocol = ipha->ipha_protocol; 12223 12224 ip_fanout_v4(mp, ipha, ira); 12225 } else { 12226 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12227 uint8_t *nexthdrp; 12228 12229 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12230 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12231 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12232 &nexthdrp)) { 12233 /* Malformed packet */ 12234 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12235 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12236 freemsg(mp); 12237 return; 12238 } 12239 ira->ira_protocol = *nexthdrp; 12240 ip_fanout_v6(mp, ip6h, ira); 12241 } 12242 } 12243 12244 /* 12245 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12246 * 12247 * If this function returns B_TRUE, the requested SA's have been filled 12248 * into the ixa_ipsec_*_sa pointers. 12249 * 12250 * If the function returns B_FALSE, the packet has been "consumed", most 12251 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12252 * 12253 * The SA references created by the protocol-specific "select" 12254 * function will be released in ip_output_post_ipsec. 12255 */ 12256 static boolean_t 12257 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12258 { 12259 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12260 ipsec_policy_t *pp; 12261 ipsec_action_t *ap; 12262 12263 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12264 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12265 (ixa->ixa_ipsec_action != NULL)); 12266 12267 ap = ixa->ixa_ipsec_action; 12268 if (ap == NULL) { 12269 pp = ixa->ixa_ipsec_policy; 12270 ASSERT(pp != NULL); 12271 ap = pp->ipsp_act; 12272 ASSERT(ap != NULL); 12273 } 12274 12275 /* 12276 * We have an action. now, let's select SA's. 12277 * A side effect of setting ixa_ipsec_*_sa is that it will 12278 * be cached in the conn_t. 12279 */ 12280 if (ap->ipa_want_esp) { 12281 if (ixa->ixa_ipsec_esp_sa == NULL) { 12282 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12283 IPPROTO_ESP); 12284 } 12285 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12286 } 12287 12288 if (ap->ipa_want_ah) { 12289 if (ixa->ixa_ipsec_ah_sa == NULL) { 12290 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12291 IPPROTO_AH); 12292 } 12293 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12294 /* 12295 * The ESP and AH processing order needs to be preserved 12296 * when both protocols are required (ESP should be applied 12297 * before AH for an outbound packet). Force an ESP ACQUIRE 12298 * when both ESP and AH are required, and an AH ACQUIRE 12299 * is needed. 12300 */ 12301 if (ap->ipa_want_esp && need_ah_acquire) 12302 need_esp_acquire = B_TRUE; 12303 } 12304 12305 /* 12306 * Send an ACQUIRE (extended, regular, or both) if we need one. 12307 * Release SAs that got referenced, but will not be used until we 12308 * acquire _all_ of the SAs we need. 12309 */ 12310 if (need_ah_acquire || need_esp_acquire) { 12311 if (ixa->ixa_ipsec_ah_sa != NULL) { 12312 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12313 ixa->ixa_ipsec_ah_sa = NULL; 12314 } 12315 if (ixa->ixa_ipsec_esp_sa != NULL) { 12316 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12317 ixa->ixa_ipsec_esp_sa = NULL; 12318 } 12319 12320 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12321 return (B_FALSE); 12322 } 12323 12324 return (B_TRUE); 12325 } 12326 12327 /* 12328 * Handle IPsec output processing. 12329 * This function is only entered once for a given packet. 12330 * We try to do things synchronously, but if we need to have user-level 12331 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12332 * will be completed 12333 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12334 * - when asynchronous ESP is done it will do AH 12335 * 12336 * In all cases we come back in ip_output_post_ipsec() to fragment and 12337 * send out the packet. 12338 */ 12339 int 12340 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12341 { 12342 ill_t *ill = ixa->ixa_nce->nce_ill; 12343 ip_stack_t *ipst = ixa->ixa_ipst; 12344 ipsec_stack_t *ipss; 12345 ipsec_policy_t *pp; 12346 ipsec_action_t *ap; 12347 12348 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12349 12350 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12351 (ixa->ixa_ipsec_action != NULL)); 12352 12353 ipss = ipst->ips_netstack->netstack_ipsec; 12354 if (!ipsec_loaded(ipss)) { 12355 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12356 ip_drop_packet(mp, B_TRUE, ill, 12357 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12358 &ipss->ipsec_dropper); 12359 return (ENOTSUP); 12360 } 12361 12362 ap = ixa->ixa_ipsec_action; 12363 if (ap == NULL) { 12364 pp = ixa->ixa_ipsec_policy; 12365 ASSERT(pp != NULL); 12366 ap = pp->ipsp_act; 12367 ASSERT(ap != NULL); 12368 } 12369 12370 /* Handle explicit drop action and bypass. */ 12371 switch (ap->ipa_act.ipa_type) { 12372 case IPSEC_ACT_DISCARD: 12373 case IPSEC_ACT_REJECT: 12374 ip_drop_packet(mp, B_FALSE, ill, 12375 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12376 return (EHOSTUNREACH); /* IPsec policy failure */ 12377 case IPSEC_ACT_BYPASS: 12378 return (ip_output_post_ipsec(mp, ixa)); 12379 } 12380 12381 /* 12382 * The order of processing is first insert a IP header if needed. 12383 * Then insert the ESP header and then the AH header. 12384 */ 12385 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12386 /* 12387 * First get the outer IP header before sending 12388 * it to ESP. 12389 */ 12390 ipha_t *oipha, *iipha; 12391 mblk_t *outer_mp, *inner_mp; 12392 12393 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12394 (void) mi_strlog(ill->ill_rq, 0, 12395 SL_ERROR|SL_TRACE|SL_CONSOLE, 12396 "ipsec_out_process: " 12397 "Self-Encapsulation failed: Out of memory\n"); 12398 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12399 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12400 freemsg(mp); 12401 return (ENOBUFS); 12402 } 12403 inner_mp = mp; 12404 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12405 oipha = (ipha_t *)outer_mp->b_rptr; 12406 iipha = (ipha_t *)inner_mp->b_rptr; 12407 *oipha = *iipha; 12408 outer_mp->b_wptr += sizeof (ipha_t); 12409 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12410 sizeof (ipha_t)); 12411 oipha->ipha_protocol = IPPROTO_ENCAP; 12412 oipha->ipha_version_and_hdr_length = 12413 IP_SIMPLE_HDR_VERSION; 12414 oipha->ipha_hdr_checksum = 0; 12415 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12416 outer_mp->b_cont = inner_mp; 12417 mp = outer_mp; 12418 12419 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12420 } 12421 12422 /* If we need to wait for a SA then we can't return any errno */ 12423 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12424 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12425 !ipsec_out_select_sa(mp, ixa)) 12426 return (0); 12427 12428 /* 12429 * By now, we know what SA's to use. Toss over to ESP & AH 12430 * to do the heavy lifting. 12431 */ 12432 if (ap->ipa_want_esp) { 12433 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12434 12435 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12436 if (mp == NULL) { 12437 /* 12438 * Either it failed or is pending. In the former case 12439 * ipIfStatsInDiscards was increased. 12440 */ 12441 return (0); 12442 } 12443 } 12444 12445 if (ap->ipa_want_ah) { 12446 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12447 12448 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12449 if (mp == NULL) { 12450 /* 12451 * Either it failed or is pending. In the former case 12452 * ipIfStatsInDiscards was increased. 12453 */ 12454 return (0); 12455 } 12456 } 12457 /* 12458 * We are done with IPsec processing. Send it over 12459 * the wire. 12460 */ 12461 return (ip_output_post_ipsec(mp, ixa)); 12462 } 12463 12464 /* 12465 * ioctls that go through a down/up sequence may need to wait for the down 12466 * to complete. This involves waiting for the ire and ipif refcnts to go down 12467 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12468 */ 12469 /* ARGSUSED */ 12470 void 12471 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12472 { 12473 struct iocblk *iocp; 12474 mblk_t *mp1; 12475 ip_ioctl_cmd_t *ipip; 12476 int err; 12477 sin_t *sin; 12478 struct lifreq *lifr; 12479 struct ifreq *ifr; 12480 12481 iocp = (struct iocblk *)mp->b_rptr; 12482 ASSERT(ipsq != NULL); 12483 /* Existence of mp1 verified in ip_wput_nondata */ 12484 mp1 = mp->b_cont->b_cont; 12485 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12486 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12487 /* 12488 * Special case where ipx_current_ipif is not set: 12489 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12490 * We are here as were not able to complete the operation in 12491 * ipif_set_values because we could not become exclusive on 12492 * the new ipsq. 12493 */ 12494 ill_t *ill = q->q_ptr; 12495 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12496 } 12497 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12498 12499 if (ipip->ipi_cmd_type == IF_CMD) { 12500 /* This a old style SIOC[GS]IF* command */ 12501 ifr = (struct ifreq *)mp1->b_rptr; 12502 sin = (sin_t *)&ifr->ifr_addr; 12503 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12504 /* This a new style SIOC[GS]LIF* command */ 12505 lifr = (struct lifreq *)mp1->b_rptr; 12506 sin = (sin_t *)&lifr->lifr_addr; 12507 } else { 12508 sin = NULL; 12509 } 12510 12511 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12512 q, mp, ipip, mp1->b_rptr); 12513 12514 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12515 int, ipip->ipi_cmd, 12516 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12517 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12518 12519 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12520 } 12521 12522 /* 12523 * ioctl processing 12524 * 12525 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12526 * the ioctl command in the ioctl tables, determines the copyin data size 12527 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12528 * 12529 * ioctl processing then continues when the M_IOCDATA makes its way down to 12530 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12531 * associated 'conn' is refheld till the end of the ioctl and the general 12532 * ioctl processing function ip_process_ioctl() is called to extract the 12533 * arguments and process the ioctl. To simplify extraction, ioctl commands 12534 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12535 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12536 * is used to extract the ioctl's arguments. 12537 * 12538 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12539 * so goes thru the serialization primitive ipsq_try_enter. Then the 12540 * appropriate function to handle the ioctl is called based on the entry in 12541 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12542 * which also refreleases the 'conn' that was refheld at the start of the 12543 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12544 * 12545 * Many exclusive ioctls go thru an internal down up sequence as part of 12546 * the operation. For example an attempt to change the IP address of an 12547 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12548 * does all the cleanup such as deleting all ires that use this address. 12549 * Then we need to wait till all references to the interface go away. 12550 */ 12551 void 12552 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12553 { 12554 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12555 ip_ioctl_cmd_t *ipip = arg; 12556 ip_extract_func_t *extract_funcp; 12557 cmd_info_t ci; 12558 int err; 12559 boolean_t entered_ipsq = B_FALSE; 12560 12561 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12562 12563 if (ipip == NULL) 12564 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12565 12566 /* 12567 * SIOCLIFADDIF needs to go thru a special path since the 12568 * ill may not exist yet. This happens in the case of lo0 12569 * which is created using this ioctl. 12570 */ 12571 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12572 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12573 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12574 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12575 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12576 return; 12577 } 12578 12579 ci.ci_ipif = NULL; 12580 switch (ipip->ipi_cmd_type) { 12581 case MISC_CMD: 12582 case MSFILT_CMD: 12583 /* 12584 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12585 */ 12586 if (ipip->ipi_cmd == IF_UNITSEL) { 12587 /* ioctl comes down the ill */ 12588 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12589 ipif_refhold(ci.ci_ipif); 12590 } 12591 err = 0; 12592 ci.ci_sin = NULL; 12593 ci.ci_sin6 = NULL; 12594 ci.ci_lifr = NULL; 12595 extract_funcp = NULL; 12596 break; 12597 12598 case IF_CMD: 12599 case LIF_CMD: 12600 extract_funcp = ip_extract_lifreq; 12601 break; 12602 12603 case ARP_CMD: 12604 case XARP_CMD: 12605 extract_funcp = ip_extract_arpreq; 12606 break; 12607 12608 default: 12609 ASSERT(0); 12610 } 12611 12612 if (extract_funcp != NULL) { 12613 err = (*extract_funcp)(q, mp, ipip, &ci); 12614 if (err != 0) { 12615 DTRACE_PROBE4(ipif__ioctl, 12616 char *, "ip_process_ioctl finish err", 12617 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12618 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12619 return; 12620 } 12621 12622 /* 12623 * All of the extraction functions return a refheld ipif. 12624 */ 12625 ASSERT(ci.ci_ipif != NULL); 12626 } 12627 12628 if (!(ipip->ipi_flags & IPI_WR)) { 12629 /* 12630 * A return value of EINPROGRESS means the ioctl is 12631 * either queued and waiting for some reason or has 12632 * already completed. 12633 */ 12634 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12635 ci.ci_lifr); 12636 if (ci.ci_ipif != NULL) { 12637 DTRACE_PROBE4(ipif__ioctl, 12638 char *, "ip_process_ioctl finish RD", 12639 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12640 ipif_t *, ci.ci_ipif); 12641 ipif_refrele(ci.ci_ipif); 12642 } else { 12643 DTRACE_PROBE4(ipif__ioctl, 12644 char *, "ip_process_ioctl finish RD", 12645 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12646 } 12647 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12648 return; 12649 } 12650 12651 ASSERT(ci.ci_ipif != NULL); 12652 12653 /* 12654 * If ipsq is non-NULL, we are already being called exclusively 12655 */ 12656 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12657 if (ipsq == NULL) { 12658 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12659 NEW_OP, B_TRUE); 12660 if (ipsq == NULL) { 12661 ipif_refrele(ci.ci_ipif); 12662 return; 12663 } 12664 entered_ipsq = B_TRUE; 12665 } 12666 /* 12667 * Release the ipif so that ipif_down and friends that wait for 12668 * references to go away are not misled about the current ipif_refcnt 12669 * values. We are writer so we can access the ipif even after releasing 12670 * the ipif. 12671 */ 12672 ipif_refrele(ci.ci_ipif); 12673 12674 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12675 12676 /* 12677 * A return value of EINPROGRESS means the ioctl is 12678 * either queued and waiting for some reason or has 12679 * already completed. 12680 */ 12681 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12682 12683 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12684 int, ipip->ipi_cmd, 12685 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12686 ipif_t *, ci.ci_ipif); 12687 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12688 12689 if (entered_ipsq) 12690 ipsq_exit(ipsq); 12691 } 12692 12693 /* 12694 * Complete the ioctl. Typically ioctls use the mi package and need to 12695 * do mi_copyout/mi_copy_done. 12696 */ 12697 void 12698 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12699 { 12700 conn_t *connp = NULL; 12701 12702 if (err == EINPROGRESS) 12703 return; 12704 12705 if (CONN_Q(q)) { 12706 connp = Q_TO_CONN(q); 12707 ASSERT(connp->conn_ref >= 2); 12708 } 12709 12710 switch (mode) { 12711 case COPYOUT: 12712 if (err == 0) 12713 mi_copyout(q, mp); 12714 else 12715 mi_copy_done(q, mp, err); 12716 break; 12717 12718 case NO_COPYOUT: 12719 mi_copy_done(q, mp, err); 12720 break; 12721 12722 default: 12723 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12724 break; 12725 } 12726 12727 /* 12728 * The conn refhold and ioctlref placed on the conn at the start of the 12729 * ioctl are released here. 12730 */ 12731 if (connp != NULL) { 12732 CONN_DEC_IOCTLREF(connp); 12733 CONN_OPER_PENDING_DONE(connp); 12734 } 12735 12736 if (ipsq != NULL) 12737 ipsq_current_finish(ipsq); 12738 } 12739 12740 /* Handles all non data messages */ 12741 void 12742 ip_wput_nondata(queue_t *q, mblk_t *mp) 12743 { 12744 mblk_t *mp1; 12745 struct iocblk *iocp; 12746 ip_ioctl_cmd_t *ipip; 12747 conn_t *connp; 12748 cred_t *cr; 12749 char *proto_str; 12750 12751 if (CONN_Q(q)) 12752 connp = Q_TO_CONN(q); 12753 else 12754 connp = NULL; 12755 12756 switch (DB_TYPE(mp)) { 12757 case M_IOCTL: 12758 /* 12759 * IOCTL processing begins in ip_sioctl_copyin_setup which 12760 * will arrange to copy in associated control structures. 12761 */ 12762 ip_sioctl_copyin_setup(q, mp); 12763 return; 12764 case M_IOCDATA: 12765 /* 12766 * Ensure that this is associated with one of our trans- 12767 * parent ioctls. If it's not ours, discard it if we're 12768 * running as a driver, or pass it on if we're a module. 12769 */ 12770 iocp = (struct iocblk *)mp->b_rptr; 12771 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12772 if (ipip == NULL) { 12773 if (q->q_next == NULL) { 12774 goto nak; 12775 } else { 12776 putnext(q, mp); 12777 } 12778 return; 12779 } 12780 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12781 /* 12782 * The ioctl is one we recognise, but is not consumed 12783 * by IP as a module and we are a module, so we drop 12784 */ 12785 goto nak; 12786 } 12787 12788 /* IOCTL continuation following copyin or copyout. */ 12789 if (mi_copy_state(q, mp, NULL) == -1) { 12790 /* 12791 * The copy operation failed. mi_copy_state already 12792 * cleaned up, so we're out of here. 12793 */ 12794 return; 12795 } 12796 /* 12797 * If we just completed a copy in, we become writer and 12798 * continue processing in ip_sioctl_copyin_done. If it 12799 * was a copy out, we call mi_copyout again. If there is 12800 * nothing more to copy out, it will complete the IOCTL. 12801 */ 12802 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12803 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12804 mi_copy_done(q, mp, EPROTO); 12805 return; 12806 } 12807 /* 12808 * Check for cases that need more copying. A return 12809 * value of 0 means a second copyin has been started, 12810 * so we return; a return value of 1 means no more 12811 * copying is needed, so we continue. 12812 */ 12813 if (ipip->ipi_cmd_type == MSFILT_CMD && 12814 MI_COPY_COUNT(mp) == 1) { 12815 if (ip_copyin_msfilter(q, mp) == 0) 12816 return; 12817 } 12818 /* 12819 * Refhold the conn, till the ioctl completes. This is 12820 * needed in case the ioctl ends up in the pending mp 12821 * list. Every mp in the ipx_pending_mp list must have 12822 * a refhold on the conn to resume processing. The 12823 * refhold is released when the ioctl completes 12824 * (whether normally or abnormally). An ioctlref is also 12825 * placed on the conn to prevent TCP from removing the 12826 * queue needed to send the ioctl reply back. 12827 * In all cases ip_ioctl_finish is called to finish 12828 * the ioctl and release the refholds. 12829 */ 12830 if (connp != NULL) { 12831 /* This is not a reentry */ 12832 CONN_INC_REF(connp); 12833 CONN_INC_IOCTLREF(connp); 12834 } else { 12835 if (!(ipip->ipi_flags & IPI_MODOK)) { 12836 mi_copy_done(q, mp, EINVAL); 12837 return; 12838 } 12839 } 12840 12841 ip_process_ioctl(NULL, q, mp, ipip); 12842 12843 } else { 12844 mi_copyout(q, mp); 12845 } 12846 return; 12847 12848 case M_IOCNAK: 12849 /* 12850 * The only way we could get here is if a resolver didn't like 12851 * an IOCTL we sent it. This shouldn't happen. 12852 */ 12853 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12854 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12855 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12856 freemsg(mp); 12857 return; 12858 case M_IOCACK: 12859 /* /dev/ip shouldn't see this */ 12860 goto nak; 12861 case M_FLUSH: 12862 if (*mp->b_rptr & FLUSHW) 12863 flushq(q, FLUSHALL); 12864 if (q->q_next) { 12865 putnext(q, mp); 12866 return; 12867 } 12868 if (*mp->b_rptr & FLUSHR) { 12869 *mp->b_rptr &= ~FLUSHW; 12870 qreply(q, mp); 12871 return; 12872 } 12873 freemsg(mp); 12874 return; 12875 case M_CTL: 12876 break; 12877 case M_PROTO: 12878 case M_PCPROTO: 12879 /* 12880 * The only PROTO messages we expect are SNMP-related. 12881 */ 12882 switch (((union T_primitives *)mp->b_rptr)->type) { 12883 case T_SVR4_OPTMGMT_REQ: 12884 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12885 "flags %x\n", 12886 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12887 12888 if (connp == NULL) { 12889 proto_str = "T_SVR4_OPTMGMT_REQ"; 12890 goto protonak; 12891 } 12892 12893 /* 12894 * All Solaris components should pass a db_credp 12895 * for this TPI message, hence we ASSERT. 12896 * But in case there is some other M_PROTO that looks 12897 * like a TPI message sent by some other kernel 12898 * component, we check and return an error. 12899 */ 12900 cr = msg_getcred(mp, NULL); 12901 ASSERT(cr != NULL); 12902 if (cr == NULL) { 12903 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12904 if (mp != NULL) 12905 qreply(q, mp); 12906 return; 12907 } 12908 12909 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12910 proto_str = "Bad SNMPCOM request?"; 12911 goto protonak; 12912 } 12913 return; 12914 default: 12915 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12916 (int)*(uint_t *)mp->b_rptr)); 12917 freemsg(mp); 12918 return; 12919 } 12920 default: 12921 break; 12922 } 12923 if (q->q_next) { 12924 putnext(q, mp); 12925 } else 12926 freemsg(mp); 12927 return; 12928 12929 nak: 12930 iocp->ioc_error = EINVAL; 12931 mp->b_datap->db_type = M_IOCNAK; 12932 iocp->ioc_count = 0; 12933 qreply(q, mp); 12934 return; 12935 12936 protonak: 12937 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12938 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12939 qreply(q, mp); 12940 } 12941 12942 /* 12943 * Process IP options in an outbound packet. Verify that the nexthop in a 12944 * strict source route is onlink. 12945 * Returns non-zero if something fails in which case an ICMP error has been 12946 * sent and mp freed. 12947 * 12948 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12949 */ 12950 int 12951 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12952 { 12953 ipoptp_t opts; 12954 uchar_t *opt; 12955 uint8_t optval; 12956 uint8_t optlen; 12957 ipaddr_t dst; 12958 intptr_t code = 0; 12959 ire_t *ire; 12960 ip_stack_t *ipst = ixa->ixa_ipst; 12961 ip_recv_attr_t iras; 12962 12963 ip2dbg(("ip_output_options\n")); 12964 12965 dst = ipha->ipha_dst; 12966 for (optval = ipoptp_first(&opts, ipha); 12967 optval != IPOPT_EOL; 12968 optval = ipoptp_next(&opts)) { 12969 opt = opts.ipoptp_cur; 12970 optlen = opts.ipoptp_len; 12971 ip2dbg(("ip_output_options: opt %d, len %d\n", 12972 optval, optlen)); 12973 switch (optval) { 12974 uint32_t off; 12975 case IPOPT_SSRR: 12976 case IPOPT_LSRR: 12977 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12978 ip1dbg(( 12979 "ip_output_options: bad option offset\n")); 12980 code = (char *)&opt[IPOPT_OLEN] - 12981 (char *)ipha; 12982 goto param_prob; 12983 } 12984 off = opt[IPOPT_OFFSET]; 12985 ip1dbg(("ip_output_options: next hop 0x%x\n", 12986 ntohl(dst))); 12987 /* 12988 * For strict: verify that dst is directly 12989 * reachable. 12990 */ 12991 if (optval == IPOPT_SSRR) { 12992 ire = ire_ftable_lookup_v4(dst, 0, 0, 12993 IRE_INTERFACE, NULL, ALL_ZONES, 12994 ixa->ixa_tsl, 12995 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12996 NULL); 12997 if (ire == NULL) { 12998 ip1dbg(("ip_output_options: SSRR not" 12999 " directly reachable: 0x%x\n", 13000 ntohl(dst))); 13001 goto bad_src_route; 13002 } 13003 ire_refrele(ire); 13004 } 13005 break; 13006 case IPOPT_RR: 13007 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13008 ip1dbg(( 13009 "ip_output_options: bad option offset\n")); 13010 code = (char *)&opt[IPOPT_OLEN] - 13011 (char *)ipha; 13012 goto param_prob; 13013 } 13014 break; 13015 case IPOPT_TS: 13016 /* 13017 * Verify that length >=5 and that there is either 13018 * room for another timestamp or that the overflow 13019 * counter is not maxed out. 13020 */ 13021 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13022 if (optlen < IPOPT_MINLEN_IT) { 13023 goto param_prob; 13024 } 13025 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13026 ip1dbg(( 13027 "ip_output_options: bad option offset\n")); 13028 code = (char *)&opt[IPOPT_OFFSET] - 13029 (char *)ipha; 13030 goto param_prob; 13031 } 13032 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13033 case IPOPT_TS_TSONLY: 13034 off = IPOPT_TS_TIMELEN; 13035 break; 13036 case IPOPT_TS_TSANDADDR: 13037 case IPOPT_TS_PRESPEC: 13038 case IPOPT_TS_PRESPEC_RFC791: 13039 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13040 break; 13041 default: 13042 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13043 (char *)ipha; 13044 goto param_prob; 13045 } 13046 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13047 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13048 /* 13049 * No room and the overflow counter is 15 13050 * already. 13051 */ 13052 goto param_prob; 13053 } 13054 break; 13055 } 13056 } 13057 13058 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13059 return (0); 13060 13061 ip1dbg(("ip_output_options: error processing IP options.")); 13062 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13063 13064 param_prob: 13065 bzero(&iras, sizeof (iras)); 13066 iras.ira_ill = iras.ira_rill = ill; 13067 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13068 iras.ira_rifindex = iras.ira_ruifindex; 13069 iras.ira_flags = IRAF_IS_IPV4; 13070 13071 ip_drop_output("ip_output_options", mp, ill); 13072 icmp_param_problem(mp, (uint8_t)code, &iras); 13073 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13074 return (-1); 13075 13076 bad_src_route: 13077 bzero(&iras, sizeof (iras)); 13078 iras.ira_ill = iras.ira_rill = ill; 13079 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13080 iras.ira_rifindex = iras.ira_ruifindex; 13081 iras.ira_flags = IRAF_IS_IPV4; 13082 13083 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13084 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13085 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13086 return (-1); 13087 } 13088 13089 /* 13090 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13091 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13092 * thru /etc/system. 13093 */ 13094 #define CONN_MAXDRAINCNT 64 13095 13096 static void 13097 conn_drain_init(ip_stack_t *ipst) 13098 { 13099 int i, j; 13100 idl_tx_list_t *itl_tx; 13101 13102 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13103 13104 if ((ipst->ips_conn_drain_list_cnt == 0) || 13105 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13106 /* 13107 * Default value of the number of drainers is the 13108 * number of cpus, subject to maximum of 8 drainers. 13109 */ 13110 if (boot_max_ncpus != -1) 13111 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13112 else 13113 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13114 } 13115 13116 ipst->ips_idl_tx_list = 13117 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13118 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13119 itl_tx = &ipst->ips_idl_tx_list[i]; 13120 itl_tx->txl_drain_list = 13121 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13122 sizeof (idl_t), KM_SLEEP); 13123 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13124 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13125 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13126 MUTEX_DEFAULT, NULL); 13127 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13128 } 13129 } 13130 } 13131 13132 static void 13133 conn_drain_fini(ip_stack_t *ipst) 13134 { 13135 int i; 13136 idl_tx_list_t *itl_tx; 13137 13138 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13139 itl_tx = &ipst->ips_idl_tx_list[i]; 13140 kmem_free(itl_tx->txl_drain_list, 13141 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13142 } 13143 kmem_free(ipst->ips_idl_tx_list, 13144 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13145 ipst->ips_idl_tx_list = NULL; 13146 } 13147 13148 /* 13149 * Flow control has blocked us from proceeding. Insert the given conn in one 13150 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13151 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13152 * will call conn_walk_drain(). See the flow control notes at the top of this 13153 * file for more details. 13154 */ 13155 void 13156 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13157 { 13158 idl_t *idl = tx_list->txl_drain_list; 13159 uint_t index; 13160 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13161 13162 mutex_enter(&connp->conn_lock); 13163 if (connp->conn_state_flags & CONN_CLOSING) { 13164 /* 13165 * The conn is closing as a result of which CONN_CLOSING 13166 * is set. Return. 13167 */ 13168 mutex_exit(&connp->conn_lock); 13169 return; 13170 } else if (connp->conn_idl == NULL) { 13171 /* 13172 * Assign the next drain list round robin. We dont' use 13173 * a lock, and thus it may not be strictly round robin. 13174 * Atomicity of load/stores is enough to make sure that 13175 * conn_drain_list_index is always within bounds. 13176 */ 13177 index = tx_list->txl_drain_index; 13178 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13179 connp->conn_idl = &tx_list->txl_drain_list[index]; 13180 index++; 13181 if (index == ipst->ips_conn_drain_list_cnt) 13182 index = 0; 13183 tx_list->txl_drain_index = index; 13184 } else { 13185 ASSERT(connp->conn_idl->idl_itl == tx_list); 13186 } 13187 mutex_exit(&connp->conn_lock); 13188 13189 idl = connp->conn_idl; 13190 mutex_enter(&idl->idl_lock); 13191 if ((connp->conn_drain_prev != NULL) || 13192 (connp->conn_state_flags & CONN_CLOSING)) { 13193 /* 13194 * The conn is either already in the drain list or closing. 13195 * (We needed to check for CONN_CLOSING again since close can 13196 * sneak in between dropping conn_lock and acquiring idl_lock.) 13197 */ 13198 mutex_exit(&idl->idl_lock); 13199 return; 13200 } 13201 13202 /* 13203 * The conn is not in the drain list. Insert it at the 13204 * tail of the drain list. The drain list is circular 13205 * and doubly linked. idl_conn points to the 1st element 13206 * in the list. 13207 */ 13208 if (idl->idl_conn == NULL) { 13209 idl->idl_conn = connp; 13210 connp->conn_drain_next = connp; 13211 connp->conn_drain_prev = connp; 13212 } else { 13213 conn_t *head = idl->idl_conn; 13214 13215 connp->conn_drain_next = head; 13216 connp->conn_drain_prev = head->conn_drain_prev; 13217 head->conn_drain_prev->conn_drain_next = connp; 13218 head->conn_drain_prev = connp; 13219 } 13220 /* 13221 * For non streams based sockets assert flow control. 13222 */ 13223 conn_setqfull(connp, NULL); 13224 mutex_exit(&idl->idl_lock); 13225 } 13226 13227 static void 13228 conn_drain_remove(conn_t *connp) 13229 { 13230 idl_t *idl = connp->conn_idl; 13231 13232 if (idl != NULL) { 13233 /* 13234 * Remove ourself from the drain list. 13235 */ 13236 if (connp->conn_drain_next == connp) { 13237 /* Singleton in the list */ 13238 ASSERT(connp->conn_drain_prev == connp); 13239 idl->idl_conn = NULL; 13240 } else { 13241 connp->conn_drain_prev->conn_drain_next = 13242 connp->conn_drain_next; 13243 connp->conn_drain_next->conn_drain_prev = 13244 connp->conn_drain_prev; 13245 if (idl->idl_conn == connp) 13246 idl->idl_conn = connp->conn_drain_next; 13247 } 13248 13249 /* 13250 * NOTE: because conn_idl is associated with a specific drain 13251 * list which in turn is tied to the index the TX ring 13252 * (txl_cookie) hashes to, and because the TX ring can change 13253 * over the lifetime of the conn_t, we must clear conn_idl so 13254 * a subsequent conn_drain_insert() will set conn_idl again 13255 * based on the latest txl_cookie. 13256 */ 13257 connp->conn_idl = NULL; 13258 } 13259 connp->conn_drain_next = NULL; 13260 connp->conn_drain_prev = NULL; 13261 13262 conn_clrqfull(connp, NULL); 13263 /* 13264 * For streams based sockets open up flow control. 13265 */ 13266 if (!IPCL_IS_NONSTR(connp)) 13267 enableok(connp->conn_wq); 13268 } 13269 13270 /* 13271 * This conn is closing, and we are called from ip_close. OR 13272 * this conn is draining because flow-control on the ill has been relieved. 13273 * 13274 * We must also need to remove conn's on this idl from the list, and also 13275 * inform the sockfs upcalls about the change in flow-control. 13276 */ 13277 static void 13278 conn_drain(conn_t *connp, boolean_t closing) 13279 { 13280 idl_t *idl; 13281 conn_t *next_connp; 13282 13283 /* 13284 * connp->conn_idl is stable at this point, and no lock is needed 13285 * to check it. If we are called from ip_close, close has already 13286 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13287 * called us only because conn_idl is non-null. If we are called thru 13288 * service, conn_idl could be null, but it cannot change because 13289 * service is single-threaded per queue, and there cannot be another 13290 * instance of service trying to call conn_drain_insert on this conn 13291 * now. 13292 */ 13293 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13294 13295 /* 13296 * If the conn doesn't exist or is not on a drain list, bail. 13297 */ 13298 if (connp == NULL || connp->conn_idl == NULL || 13299 connp->conn_drain_prev == NULL) { 13300 return; 13301 } 13302 13303 idl = connp->conn_idl; 13304 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13305 13306 if (!closing) { 13307 next_connp = connp->conn_drain_next; 13308 while (next_connp != connp) { 13309 conn_t *delconnp = next_connp; 13310 13311 next_connp = next_connp->conn_drain_next; 13312 conn_drain_remove(delconnp); 13313 } 13314 ASSERT(connp->conn_drain_next == idl->idl_conn); 13315 } 13316 conn_drain_remove(connp); 13317 } 13318 13319 /* 13320 * Write service routine. Shared perimeter entry point. 13321 * The device queue's messages has fallen below the low water mark and STREAMS 13322 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13323 * each waiting conn. 13324 */ 13325 void 13326 ip_wsrv(queue_t *q) 13327 { 13328 ill_t *ill; 13329 13330 ill = (ill_t *)q->q_ptr; 13331 if (ill->ill_state_flags == 0) { 13332 ip_stack_t *ipst = ill->ill_ipst; 13333 13334 /* 13335 * The device flow control has opened up. 13336 * Walk through conn drain lists and qenable the 13337 * first conn in each list. This makes sense only 13338 * if the stream is fully plumbed and setup. 13339 * Hence the ill_state_flags check above. 13340 */ 13341 ip1dbg(("ip_wsrv: walking\n")); 13342 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13343 enableok(ill->ill_wq); 13344 } 13345 } 13346 13347 /* 13348 * Callback to disable flow control in IP. 13349 * 13350 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13351 * is enabled. 13352 * 13353 * When MAC_TX() is not able to send any more packets, dld sets its queue 13354 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13355 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13356 * function and wakes up corresponding mac worker threads, which in turn 13357 * calls this callback function, and disables flow control. 13358 */ 13359 void 13360 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13361 { 13362 ill_t *ill = (ill_t *)arg; 13363 ip_stack_t *ipst = ill->ill_ipst; 13364 idl_tx_list_t *idl_txl; 13365 13366 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13367 mutex_enter(&idl_txl->txl_lock); 13368 /* add code to to set a flag to indicate idl_txl is enabled */ 13369 conn_walk_drain(ipst, idl_txl); 13370 mutex_exit(&idl_txl->txl_lock); 13371 } 13372 13373 /* 13374 * Flow control has been relieved and STREAMS has backenabled us; drain 13375 * all the conn lists on `tx_list'. 13376 */ 13377 static void 13378 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13379 { 13380 int i; 13381 idl_t *idl; 13382 13383 IP_STAT(ipst, ip_conn_walk_drain); 13384 13385 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13386 idl = &tx_list->txl_drain_list[i]; 13387 mutex_enter(&idl->idl_lock); 13388 conn_drain(idl->idl_conn, B_FALSE); 13389 mutex_exit(&idl->idl_lock); 13390 } 13391 } 13392 13393 /* 13394 * Determine if the ill and multicast aspects of that packets 13395 * "matches" the conn. 13396 */ 13397 boolean_t 13398 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13399 { 13400 ill_t *ill = ira->ira_rill; 13401 zoneid_t zoneid = ira->ira_zoneid; 13402 uint_t in_ifindex; 13403 ipaddr_t dst, src; 13404 13405 dst = ipha->ipha_dst; 13406 src = ipha->ipha_src; 13407 13408 /* 13409 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13410 * unicast, broadcast and multicast reception to 13411 * conn_incoming_ifindex. 13412 * conn_wantpacket is called for unicast, broadcast and 13413 * multicast packets. 13414 */ 13415 in_ifindex = connp->conn_incoming_ifindex; 13416 13417 /* mpathd can bind to the under IPMP interface, which we allow */ 13418 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13419 if (!IS_UNDER_IPMP(ill)) 13420 return (B_FALSE); 13421 13422 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13423 return (B_FALSE); 13424 } 13425 13426 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13427 return (B_FALSE); 13428 13429 if (!(ira->ira_flags & IRAF_MULTICAST)) 13430 return (B_TRUE); 13431 13432 if (connp->conn_multi_router) { 13433 /* multicast packet and multicast router socket: send up */ 13434 return (B_TRUE); 13435 } 13436 13437 if (ipha->ipha_protocol == IPPROTO_PIM || 13438 ipha->ipha_protocol == IPPROTO_RSVP) 13439 return (B_TRUE); 13440 13441 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13442 } 13443 13444 void 13445 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13446 { 13447 if (IPCL_IS_NONSTR(connp)) { 13448 (*connp->conn_upcalls->su_txq_full) 13449 (connp->conn_upper_handle, B_TRUE); 13450 if (flow_stopped != NULL) 13451 *flow_stopped = B_TRUE; 13452 } else { 13453 queue_t *q = connp->conn_wq; 13454 13455 ASSERT(q != NULL); 13456 if (!(q->q_flag & QFULL)) { 13457 mutex_enter(QLOCK(q)); 13458 if (!(q->q_flag & QFULL)) { 13459 /* still need to set QFULL */ 13460 q->q_flag |= QFULL; 13461 /* set flow_stopped to true under QLOCK */ 13462 if (flow_stopped != NULL) 13463 *flow_stopped = B_TRUE; 13464 mutex_exit(QLOCK(q)); 13465 } else { 13466 /* flow_stopped is left unchanged */ 13467 mutex_exit(QLOCK(q)); 13468 } 13469 } 13470 } 13471 } 13472 13473 void 13474 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13475 { 13476 if (IPCL_IS_NONSTR(connp)) { 13477 (*connp->conn_upcalls->su_txq_full) 13478 (connp->conn_upper_handle, B_FALSE); 13479 if (flow_stopped != NULL) 13480 *flow_stopped = B_FALSE; 13481 } else { 13482 queue_t *q = connp->conn_wq; 13483 13484 ASSERT(q != NULL); 13485 if (q->q_flag & QFULL) { 13486 mutex_enter(QLOCK(q)); 13487 if (q->q_flag & QFULL) { 13488 q->q_flag &= ~QFULL; 13489 /* set flow_stopped to false under QLOCK */ 13490 if (flow_stopped != NULL) 13491 *flow_stopped = B_FALSE; 13492 mutex_exit(QLOCK(q)); 13493 if (q->q_flag & QWANTW) 13494 qbackenable(q, 0); 13495 } else { 13496 /* flow_stopped is left unchanged */ 13497 mutex_exit(QLOCK(q)); 13498 } 13499 } 13500 } 13501 13502 mutex_enter(&connp->conn_lock); 13503 connp->conn_blocked = B_FALSE; 13504 mutex_exit(&connp->conn_lock); 13505 } 13506 13507 /* 13508 * Return the length in bytes of the IPv4 headers (base header, label, and 13509 * other IP options) that will be needed based on the 13510 * ip_pkt_t structure passed by the caller. 13511 * 13512 * The returned length does not include the length of the upper level 13513 * protocol (ULP) header. 13514 * The caller needs to check that the length doesn't exceed the max for IPv4. 13515 */ 13516 int 13517 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13518 { 13519 int len; 13520 13521 len = IP_SIMPLE_HDR_LENGTH; 13522 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13523 ASSERT(ipp->ipp_label_len_v4 != 0); 13524 /* We need to round up here */ 13525 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13526 } 13527 13528 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13529 ASSERT(ipp->ipp_ipv4_options_len != 0); 13530 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13531 len += ipp->ipp_ipv4_options_len; 13532 } 13533 return (len); 13534 } 13535 13536 /* 13537 * All-purpose routine to build an IPv4 header with options based 13538 * on the abstract ip_pkt_t. 13539 * 13540 * The caller has to set the source and destination address as well as 13541 * ipha_length. The caller has to massage any source route and compensate 13542 * for the ULP pseudo-header checksum due to the source route. 13543 */ 13544 void 13545 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13546 uint8_t protocol) 13547 { 13548 ipha_t *ipha = (ipha_t *)buf; 13549 uint8_t *cp; 13550 13551 /* Initialize IPv4 header */ 13552 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13553 ipha->ipha_length = 0; /* Caller will set later */ 13554 ipha->ipha_ident = 0; 13555 ipha->ipha_fragment_offset_and_flags = 0; 13556 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13557 ipha->ipha_protocol = protocol; 13558 ipha->ipha_hdr_checksum = 0; 13559 13560 if ((ipp->ipp_fields & IPPF_ADDR) && 13561 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13562 ipha->ipha_src = ipp->ipp_addr_v4; 13563 13564 cp = (uint8_t *)&ipha[1]; 13565 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13566 ASSERT(ipp->ipp_label_len_v4 != 0); 13567 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13568 cp += ipp->ipp_label_len_v4; 13569 /* We need to round up here */ 13570 while ((uintptr_t)cp & 0x3) { 13571 *cp++ = IPOPT_NOP; 13572 } 13573 } 13574 13575 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13576 ASSERT(ipp->ipp_ipv4_options_len != 0); 13577 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13578 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13579 cp += ipp->ipp_ipv4_options_len; 13580 } 13581 ipha->ipha_version_and_hdr_length = 13582 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13583 13584 ASSERT((int)(cp - buf) == buf_len); 13585 } 13586 13587 /* Allocate the private structure */ 13588 static int 13589 ip_priv_alloc(void **bufp) 13590 { 13591 void *buf; 13592 13593 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13594 return (ENOMEM); 13595 13596 *bufp = buf; 13597 return (0); 13598 } 13599 13600 /* Function to delete the private structure */ 13601 void 13602 ip_priv_free(void *buf) 13603 { 13604 ASSERT(buf != NULL); 13605 kmem_free(buf, sizeof (ip_priv_t)); 13606 } 13607 13608 /* 13609 * The entry point for IPPF processing. 13610 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13611 * routine just returns. 13612 * 13613 * When called, ip_process generates an ipp_packet_t structure 13614 * which holds the state information for this packet and invokes the 13615 * the classifier (via ipp_packet_process). The classification, depending on 13616 * configured filters, results in a list of actions for this packet. Invoking 13617 * an action may cause the packet to be dropped, in which case we return NULL. 13618 * proc indicates the callout position for 13619 * this packet and ill is the interface this packet arrived on or will leave 13620 * on (inbound and outbound resp.). 13621 * 13622 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13623 * on the ill corrsponding to the destination IP address. 13624 */ 13625 mblk_t * 13626 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13627 { 13628 ip_priv_t *priv; 13629 ipp_action_id_t aid; 13630 int rc = 0; 13631 ipp_packet_t *pp; 13632 13633 /* If the classifier is not loaded, return */ 13634 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13635 return (mp); 13636 } 13637 13638 ASSERT(mp != NULL); 13639 13640 /* Allocate the packet structure */ 13641 rc = ipp_packet_alloc(&pp, "ip", aid); 13642 if (rc != 0) 13643 goto drop; 13644 13645 /* Allocate the private structure */ 13646 rc = ip_priv_alloc((void **)&priv); 13647 if (rc != 0) { 13648 ipp_packet_free(pp); 13649 goto drop; 13650 } 13651 priv->proc = proc; 13652 priv->ill_index = ill_get_upper_ifindex(rill); 13653 13654 ipp_packet_set_private(pp, priv, ip_priv_free); 13655 ipp_packet_set_data(pp, mp); 13656 13657 /* Invoke the classifier */ 13658 rc = ipp_packet_process(&pp); 13659 if (pp != NULL) { 13660 mp = ipp_packet_get_data(pp); 13661 ipp_packet_free(pp); 13662 if (rc != 0) 13663 goto drop; 13664 return (mp); 13665 } else { 13666 /* No mp to trace in ip_drop_input/ip_drop_output */ 13667 mp = NULL; 13668 } 13669 drop: 13670 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13671 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13672 ip_drop_input("ip_process", mp, ill); 13673 } else { 13674 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13675 ip_drop_output("ip_process", mp, ill); 13676 } 13677 freemsg(mp); 13678 return (NULL); 13679 } 13680 13681 /* 13682 * Propagate a multicast group membership operation (add/drop) on 13683 * all the interfaces crossed by the related multirt routes. 13684 * The call is considered successful if the operation succeeds 13685 * on at least one interface. 13686 * 13687 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13688 * multicast addresses with the ire argument being the first one. 13689 * We walk the bucket to find all the of those. 13690 * 13691 * Common to IPv4 and IPv6. 13692 */ 13693 static int 13694 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13695 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13696 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13697 mcast_record_t fmode, const in6_addr_t *v6src) 13698 { 13699 ire_t *ire_gw; 13700 irb_t *irb; 13701 int ifindex; 13702 int error = 0; 13703 int result; 13704 ip_stack_t *ipst = ire->ire_ipst; 13705 ipaddr_t group; 13706 boolean_t isv6; 13707 int match_flags; 13708 13709 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13710 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13711 isv6 = B_FALSE; 13712 } else { 13713 isv6 = B_TRUE; 13714 } 13715 13716 irb = ire->ire_bucket; 13717 ASSERT(irb != NULL); 13718 13719 result = 0; 13720 irb_refhold(irb); 13721 for (; ire != NULL; ire = ire->ire_next) { 13722 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13723 continue; 13724 13725 /* We handle -ifp routes by matching on the ill if set */ 13726 match_flags = MATCH_IRE_TYPE; 13727 if (ire->ire_ill != NULL) 13728 match_flags |= MATCH_IRE_ILL; 13729 13730 if (isv6) { 13731 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13732 continue; 13733 13734 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13735 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13736 match_flags, 0, ipst, NULL); 13737 } else { 13738 if (ire->ire_addr != group) 13739 continue; 13740 13741 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13742 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13743 match_flags, 0, ipst, NULL); 13744 } 13745 /* No interface route exists for the gateway; skip this ire. */ 13746 if (ire_gw == NULL) 13747 continue; 13748 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13749 ire_refrele(ire_gw); 13750 continue; 13751 } 13752 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13753 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13754 13755 /* 13756 * The operation is considered a success if 13757 * it succeeds at least once on any one interface. 13758 */ 13759 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13760 fmode, v6src); 13761 if (error == 0) 13762 result = CGTP_MCAST_SUCCESS; 13763 13764 ire_refrele(ire_gw); 13765 } 13766 irb_refrele(irb); 13767 /* 13768 * Consider the call as successful if we succeeded on at least 13769 * one interface. Otherwise, return the last encountered error. 13770 */ 13771 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13772 } 13773 13774 /* 13775 * Return the expected CGTP hooks version number. 13776 */ 13777 int 13778 ip_cgtp_filter_supported(void) 13779 { 13780 return (ip_cgtp_filter_rev); 13781 } 13782 13783 /* 13784 * CGTP hooks can be registered by invoking this function. 13785 * Checks that the version number matches. 13786 */ 13787 int 13788 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13789 { 13790 netstack_t *ns; 13791 ip_stack_t *ipst; 13792 13793 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13794 return (ENOTSUP); 13795 13796 ns = netstack_find_by_stackid(stackid); 13797 if (ns == NULL) 13798 return (EINVAL); 13799 ipst = ns->netstack_ip; 13800 ASSERT(ipst != NULL); 13801 13802 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13803 netstack_rele(ns); 13804 return (EALREADY); 13805 } 13806 13807 ipst->ips_ip_cgtp_filter_ops = ops; 13808 13809 ill_set_inputfn_all(ipst); 13810 13811 netstack_rele(ns); 13812 return (0); 13813 } 13814 13815 /* 13816 * CGTP hooks can be unregistered by invoking this function. 13817 * Returns ENXIO if there was no registration. 13818 * Returns EBUSY if the ndd variable has not been turned off. 13819 */ 13820 int 13821 ip_cgtp_filter_unregister(netstackid_t stackid) 13822 { 13823 netstack_t *ns; 13824 ip_stack_t *ipst; 13825 13826 ns = netstack_find_by_stackid(stackid); 13827 if (ns == NULL) 13828 return (EINVAL); 13829 ipst = ns->netstack_ip; 13830 ASSERT(ipst != NULL); 13831 13832 if (ipst->ips_ip_cgtp_filter) { 13833 netstack_rele(ns); 13834 return (EBUSY); 13835 } 13836 13837 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13838 netstack_rele(ns); 13839 return (ENXIO); 13840 } 13841 ipst->ips_ip_cgtp_filter_ops = NULL; 13842 13843 ill_set_inputfn_all(ipst); 13844 13845 netstack_rele(ns); 13846 return (0); 13847 } 13848 13849 /* 13850 * Check whether there is a CGTP filter registration. 13851 * Returns non-zero if there is a registration, otherwise returns zero. 13852 * Note: returns zero if bad stackid. 13853 */ 13854 int 13855 ip_cgtp_filter_is_registered(netstackid_t stackid) 13856 { 13857 netstack_t *ns; 13858 ip_stack_t *ipst; 13859 int ret; 13860 13861 ns = netstack_find_by_stackid(stackid); 13862 if (ns == NULL) 13863 return (0); 13864 ipst = ns->netstack_ip; 13865 ASSERT(ipst != NULL); 13866 13867 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13868 ret = 1; 13869 else 13870 ret = 0; 13871 13872 netstack_rele(ns); 13873 return (ret); 13874 } 13875 13876 static int 13877 ip_squeue_switch(int val) 13878 { 13879 int rval; 13880 13881 switch (val) { 13882 case IP_SQUEUE_ENTER_NODRAIN: 13883 rval = SQ_NODRAIN; 13884 break; 13885 case IP_SQUEUE_ENTER: 13886 rval = SQ_PROCESS; 13887 break; 13888 case IP_SQUEUE_FILL: 13889 default: 13890 rval = SQ_FILL; 13891 break; 13892 } 13893 return (rval); 13894 } 13895 13896 static void * 13897 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13898 { 13899 kstat_t *ksp; 13900 13901 ip_stat_t template = { 13902 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13903 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13904 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13905 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13906 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13907 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13908 { "ip_opt", KSTAT_DATA_UINT64 }, 13909 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13910 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13911 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13912 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13913 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13914 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13915 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13916 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13917 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13918 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13919 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13920 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13921 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13922 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13923 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13924 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13925 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13926 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13927 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13928 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13929 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13930 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13931 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13932 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13933 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13934 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13935 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13936 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13937 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13938 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13939 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13940 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13941 }; 13942 13943 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13944 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13945 KSTAT_FLAG_VIRTUAL, stackid); 13946 13947 if (ksp == NULL) 13948 return (NULL); 13949 13950 bcopy(&template, ip_statisticsp, sizeof (template)); 13951 ksp->ks_data = (void *)ip_statisticsp; 13952 ksp->ks_private = (void *)(uintptr_t)stackid; 13953 13954 kstat_install(ksp); 13955 return (ksp); 13956 } 13957 13958 static void 13959 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13960 { 13961 if (ksp != NULL) { 13962 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13963 kstat_delete_netstack(ksp, stackid); 13964 } 13965 } 13966 13967 static void * 13968 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13969 { 13970 kstat_t *ksp; 13971 13972 ip_named_kstat_t template = { 13973 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13974 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13975 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13976 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13977 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13978 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13979 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13980 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13981 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13982 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13983 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13984 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13985 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13986 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13987 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13988 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13989 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13990 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13991 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13992 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13993 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13994 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13995 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13996 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13997 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13998 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 13999 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14000 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14001 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14002 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14003 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14004 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14005 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14006 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14007 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14008 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14009 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14010 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14011 }; 14012 14013 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14014 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14015 if (ksp == NULL || ksp->ks_data == NULL) 14016 return (NULL); 14017 14018 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14019 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14020 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14021 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14022 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14023 14024 template.netToMediaEntrySize.value.i32 = 14025 sizeof (mib2_ipNetToMediaEntry_t); 14026 14027 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14028 14029 bcopy(&template, ksp->ks_data, sizeof (template)); 14030 ksp->ks_update = ip_kstat_update; 14031 ksp->ks_private = (void *)(uintptr_t)stackid; 14032 14033 kstat_install(ksp); 14034 return (ksp); 14035 } 14036 14037 static void 14038 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14039 { 14040 if (ksp != NULL) { 14041 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14042 kstat_delete_netstack(ksp, stackid); 14043 } 14044 } 14045 14046 static int 14047 ip_kstat_update(kstat_t *kp, int rw) 14048 { 14049 ip_named_kstat_t *ipkp; 14050 mib2_ipIfStatsEntry_t ipmib; 14051 ill_walk_context_t ctx; 14052 ill_t *ill; 14053 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14054 netstack_t *ns; 14055 ip_stack_t *ipst; 14056 14057 if (kp == NULL || kp->ks_data == NULL) 14058 return (EIO); 14059 14060 if (rw == KSTAT_WRITE) 14061 return (EACCES); 14062 14063 ns = netstack_find_by_stackid(stackid); 14064 if (ns == NULL) 14065 return (-1); 14066 ipst = ns->netstack_ip; 14067 if (ipst == NULL) { 14068 netstack_rele(ns); 14069 return (-1); 14070 } 14071 ipkp = (ip_named_kstat_t *)kp->ks_data; 14072 14073 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14074 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14075 ill = ILL_START_WALK_V4(&ctx, ipst); 14076 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14077 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14078 rw_exit(&ipst->ips_ill_g_lock); 14079 14080 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14081 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14082 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14083 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14084 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14085 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14086 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14087 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14088 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14089 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14090 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14091 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14092 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14093 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14094 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14095 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14096 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14097 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14098 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14099 14100 ipkp->routingDiscards.value.ui32 = 0; 14101 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14102 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14103 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14104 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14105 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14106 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14107 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14108 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14109 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14110 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14111 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14112 14113 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14114 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14115 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14116 14117 netstack_rele(ns); 14118 14119 return (0); 14120 } 14121 14122 static void * 14123 icmp_kstat_init(netstackid_t stackid) 14124 { 14125 kstat_t *ksp; 14126 14127 icmp_named_kstat_t template = { 14128 { "inMsgs", KSTAT_DATA_UINT32 }, 14129 { "inErrors", KSTAT_DATA_UINT32 }, 14130 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14131 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14132 { "inParmProbs", KSTAT_DATA_UINT32 }, 14133 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14134 { "inRedirects", KSTAT_DATA_UINT32 }, 14135 { "inEchos", KSTAT_DATA_UINT32 }, 14136 { "inEchoReps", KSTAT_DATA_UINT32 }, 14137 { "inTimestamps", KSTAT_DATA_UINT32 }, 14138 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14139 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14140 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14141 { "outMsgs", KSTAT_DATA_UINT32 }, 14142 { "outErrors", KSTAT_DATA_UINT32 }, 14143 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14144 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14145 { "outParmProbs", KSTAT_DATA_UINT32 }, 14146 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14147 { "outRedirects", KSTAT_DATA_UINT32 }, 14148 { "outEchos", KSTAT_DATA_UINT32 }, 14149 { "outEchoReps", KSTAT_DATA_UINT32 }, 14150 { "outTimestamps", KSTAT_DATA_UINT32 }, 14151 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14152 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14153 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14154 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14155 { "inUnknowns", KSTAT_DATA_UINT32 }, 14156 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14157 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14158 { "outDrops", KSTAT_DATA_UINT32 }, 14159 { "inOverFlows", KSTAT_DATA_UINT32 }, 14160 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14161 }; 14162 14163 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14164 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14165 if (ksp == NULL || ksp->ks_data == NULL) 14166 return (NULL); 14167 14168 bcopy(&template, ksp->ks_data, sizeof (template)); 14169 14170 ksp->ks_update = icmp_kstat_update; 14171 ksp->ks_private = (void *)(uintptr_t)stackid; 14172 14173 kstat_install(ksp); 14174 return (ksp); 14175 } 14176 14177 static void 14178 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14179 { 14180 if (ksp != NULL) { 14181 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14182 kstat_delete_netstack(ksp, stackid); 14183 } 14184 } 14185 14186 static int 14187 icmp_kstat_update(kstat_t *kp, int rw) 14188 { 14189 icmp_named_kstat_t *icmpkp; 14190 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14191 netstack_t *ns; 14192 ip_stack_t *ipst; 14193 14194 if ((kp == NULL) || (kp->ks_data == NULL)) 14195 return (EIO); 14196 14197 if (rw == KSTAT_WRITE) 14198 return (EACCES); 14199 14200 ns = netstack_find_by_stackid(stackid); 14201 if (ns == NULL) 14202 return (-1); 14203 ipst = ns->netstack_ip; 14204 if (ipst == NULL) { 14205 netstack_rele(ns); 14206 return (-1); 14207 } 14208 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14209 14210 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14211 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14212 icmpkp->inDestUnreachs.value.ui32 = 14213 ipst->ips_icmp_mib.icmpInDestUnreachs; 14214 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14215 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14216 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14217 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14218 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14219 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14220 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14221 icmpkp->inTimestampReps.value.ui32 = 14222 ipst->ips_icmp_mib.icmpInTimestampReps; 14223 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14224 icmpkp->inAddrMaskReps.value.ui32 = 14225 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14226 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14227 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14228 icmpkp->outDestUnreachs.value.ui32 = 14229 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14230 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14231 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14232 icmpkp->outSrcQuenchs.value.ui32 = 14233 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14234 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14235 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14236 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14237 icmpkp->outTimestamps.value.ui32 = 14238 ipst->ips_icmp_mib.icmpOutTimestamps; 14239 icmpkp->outTimestampReps.value.ui32 = 14240 ipst->ips_icmp_mib.icmpOutTimestampReps; 14241 icmpkp->outAddrMasks.value.ui32 = 14242 ipst->ips_icmp_mib.icmpOutAddrMasks; 14243 icmpkp->outAddrMaskReps.value.ui32 = 14244 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14245 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14246 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14247 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14248 icmpkp->outFragNeeded.value.ui32 = 14249 ipst->ips_icmp_mib.icmpOutFragNeeded; 14250 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14251 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14252 icmpkp->inBadRedirects.value.ui32 = 14253 ipst->ips_icmp_mib.icmpInBadRedirects; 14254 14255 netstack_rele(ns); 14256 return (0); 14257 } 14258 14259 /* 14260 * This is the fanout function for raw socket opened for SCTP. Note 14261 * that it is called after SCTP checks that there is no socket which 14262 * wants a packet. Then before SCTP handles this out of the blue packet, 14263 * this function is called to see if there is any raw socket for SCTP. 14264 * If there is and it is bound to the correct address, the packet will 14265 * be sent to that socket. Note that only one raw socket can be bound to 14266 * a port. This is assured in ipcl_sctp_hash_insert(); 14267 */ 14268 void 14269 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14270 ip_recv_attr_t *ira) 14271 { 14272 conn_t *connp; 14273 queue_t *rq; 14274 boolean_t secure; 14275 ill_t *ill = ira->ira_ill; 14276 ip_stack_t *ipst = ill->ill_ipst; 14277 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14278 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14279 iaflags_t iraflags = ira->ira_flags; 14280 ill_t *rill = ira->ira_rill; 14281 14282 secure = iraflags & IRAF_IPSEC_SECURE; 14283 14284 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14285 ira, ipst); 14286 if (connp == NULL) { 14287 /* 14288 * Although raw sctp is not summed, OOB chunks must be. 14289 * Drop the packet here if the sctp checksum failed. 14290 */ 14291 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14292 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14293 freemsg(mp); 14294 return; 14295 } 14296 ira->ira_ill = ira->ira_rill = NULL; 14297 sctp_ootb_input(mp, ira, ipst); 14298 ira->ira_ill = ill; 14299 ira->ira_rill = rill; 14300 return; 14301 } 14302 rq = connp->conn_rq; 14303 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14304 CONN_DEC_REF(connp); 14305 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14306 freemsg(mp); 14307 return; 14308 } 14309 if (((iraflags & IRAF_IS_IPV4) ? 14310 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14311 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14312 secure) { 14313 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14314 ip6h, ira); 14315 if (mp == NULL) { 14316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14317 /* Note that mp is NULL */ 14318 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14319 CONN_DEC_REF(connp); 14320 return; 14321 } 14322 } 14323 14324 if (iraflags & IRAF_ICMP_ERROR) { 14325 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14326 } else { 14327 ill_t *rill = ira->ira_rill; 14328 14329 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14330 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14331 ira->ira_ill = ira->ira_rill = NULL; 14332 (connp->conn_recv)(connp, mp, NULL, ira); 14333 ira->ira_ill = ill; 14334 ira->ira_rill = rill; 14335 } 14336 CONN_DEC_REF(connp); 14337 } 14338 14339 /* 14340 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14341 * header before the ip payload. 14342 */ 14343 static void 14344 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14345 { 14346 int len = (mp->b_wptr - mp->b_rptr); 14347 mblk_t *ip_mp; 14348 14349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14350 if (is_fp_mp || len != fp_mp_len) { 14351 if (len > fp_mp_len) { 14352 /* 14353 * fastpath header and ip header in the first mblk 14354 */ 14355 mp->b_rptr += fp_mp_len; 14356 } else { 14357 /* 14358 * ip_xmit_attach_llhdr had to prepend an mblk to 14359 * attach the fastpath header before ip header. 14360 */ 14361 ip_mp = mp->b_cont; 14362 freeb(mp); 14363 mp = ip_mp; 14364 mp->b_rptr += (fp_mp_len - len); 14365 } 14366 } else { 14367 ip_mp = mp->b_cont; 14368 freeb(mp); 14369 mp = ip_mp; 14370 } 14371 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14372 freemsg(mp); 14373 } 14374 14375 /* 14376 * Normal post fragmentation function. 14377 * 14378 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14379 * using the same state machine. 14380 * 14381 * We return an error on failure. In particular we return EWOULDBLOCK 14382 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14383 * (currently by canputnext failure resulting in backenabling from GLD.) 14384 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14385 * indication that they can flow control until ip_wsrv() tells then to restart. 14386 * 14387 * If the nce passed by caller is incomplete, this function 14388 * queues the packet and if necessary, sends ARP request and bails. 14389 * If the Neighbor Cache passed is fully resolved, we simply prepend 14390 * the link-layer header to the packet, do ipsec hw acceleration 14391 * work if necessary, and send the packet out on the wire. 14392 */ 14393 /* ARGSUSED6 */ 14394 int 14395 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14396 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14397 { 14398 queue_t *wq; 14399 ill_t *ill = nce->nce_ill; 14400 ip_stack_t *ipst = ill->ill_ipst; 14401 uint64_t delta; 14402 boolean_t isv6 = ill->ill_isv6; 14403 boolean_t fp_mp; 14404 ncec_t *ncec = nce->nce_common; 14405 int64_t now = LBOLT_FASTPATH64; 14406 boolean_t is_probe; 14407 14408 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14409 14410 ASSERT(mp != NULL); 14411 ASSERT(mp->b_datap->db_type == M_DATA); 14412 ASSERT(pkt_len == msgdsize(mp)); 14413 14414 /* 14415 * If we have already been here and are coming back after ARP/ND. 14416 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14417 * in that case since they have seen the packet when it came here 14418 * the first time. 14419 */ 14420 if (ixaflags & IXAF_NO_TRACE) 14421 goto sendit; 14422 14423 if (ixaflags & IXAF_IS_IPV4) { 14424 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14425 14426 ASSERT(!isv6); 14427 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14428 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14429 !(ixaflags & IXAF_NO_PFHOOK)) { 14430 int error; 14431 14432 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14433 ipst->ips_ipv4firewall_physical_out, 14434 NULL, ill, ipha, mp, mp, 0, ipst, error); 14435 DTRACE_PROBE1(ip4__physical__out__end, 14436 mblk_t *, mp); 14437 if (mp == NULL) 14438 return (error); 14439 14440 /* The length could have changed */ 14441 pkt_len = msgdsize(mp); 14442 } 14443 if (ipst->ips_ip4_observe.he_interested) { 14444 /* 14445 * Note that for TX the zoneid is the sending 14446 * zone, whether or not MLP is in play. 14447 * Since the szone argument is the IP zoneid (i.e., 14448 * zero for exclusive-IP zones) and ipobs wants 14449 * the system zoneid, we map it here. 14450 */ 14451 szone = IP_REAL_ZONEID(szone, ipst); 14452 14453 /* 14454 * On the outbound path the destination zone will be 14455 * unknown as we're sending this packet out on the 14456 * wire. 14457 */ 14458 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14459 ill, ipst); 14460 } 14461 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14462 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14463 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14464 } else { 14465 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14466 14467 ASSERT(isv6); 14468 ASSERT(pkt_len == 14469 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14470 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14471 !(ixaflags & IXAF_NO_PFHOOK)) { 14472 int error; 14473 14474 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14475 ipst->ips_ipv6firewall_physical_out, 14476 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14477 DTRACE_PROBE1(ip6__physical__out__end, 14478 mblk_t *, mp); 14479 if (mp == NULL) 14480 return (error); 14481 14482 /* The length could have changed */ 14483 pkt_len = msgdsize(mp); 14484 } 14485 if (ipst->ips_ip6_observe.he_interested) { 14486 /* See above */ 14487 szone = IP_REAL_ZONEID(szone, ipst); 14488 14489 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14490 ill, ipst); 14491 } 14492 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14493 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14494 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14495 } 14496 14497 sendit: 14498 /* 14499 * We check the state without a lock because the state can never 14500 * move "backwards" to initial or incomplete. 14501 */ 14502 switch (ncec->ncec_state) { 14503 case ND_REACHABLE: 14504 case ND_STALE: 14505 case ND_DELAY: 14506 case ND_PROBE: 14507 mp = ip_xmit_attach_llhdr(mp, nce); 14508 if (mp == NULL) { 14509 /* 14510 * ip_xmit_attach_llhdr has increased 14511 * ipIfStatsOutDiscards and called ip_drop_output() 14512 */ 14513 return (ENOBUFS); 14514 } 14515 /* 14516 * check if nce_fastpath completed and we tagged on a 14517 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14518 */ 14519 fp_mp = (mp->b_datap->db_type == M_DATA); 14520 14521 if (fp_mp && 14522 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14523 ill_dld_direct_t *idd; 14524 14525 idd = &ill->ill_dld_capab->idc_direct; 14526 /* 14527 * Send the packet directly to DLD, where it 14528 * may be queued depending on the availability 14529 * of transmit resources at the media layer. 14530 * Return value should be taken into 14531 * account and flow control the TCP. 14532 */ 14533 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14534 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14535 pkt_len); 14536 14537 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14538 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14539 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14540 } else { 14541 uintptr_t cookie; 14542 14543 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14544 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14545 if (ixacookie != NULL) 14546 *ixacookie = cookie; 14547 return (EWOULDBLOCK); 14548 } 14549 } 14550 } else { 14551 wq = ill->ill_wq; 14552 14553 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14554 !canputnext(wq)) { 14555 if (ixacookie != NULL) 14556 *ixacookie = 0; 14557 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14558 nce->nce_fp_mp != NULL ? 14559 MBLKL(nce->nce_fp_mp) : 0); 14560 return (EWOULDBLOCK); 14561 } 14562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14563 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14564 pkt_len); 14565 putnext(wq, mp); 14566 } 14567 14568 /* 14569 * The rest of this function implements Neighbor Unreachability 14570 * detection. Determine if the ncec is eligible for NUD. 14571 */ 14572 if (ncec->ncec_flags & NCE_F_NONUD) 14573 return (0); 14574 14575 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14576 14577 /* 14578 * Check for upper layer advice 14579 */ 14580 if (ixaflags & IXAF_REACH_CONF) { 14581 timeout_id_t tid; 14582 14583 /* 14584 * It should be o.k. to check the state without 14585 * a lock here, at most we lose an advice. 14586 */ 14587 ncec->ncec_last = TICK_TO_MSEC(now); 14588 if (ncec->ncec_state != ND_REACHABLE) { 14589 mutex_enter(&ncec->ncec_lock); 14590 ncec->ncec_state = ND_REACHABLE; 14591 tid = ncec->ncec_timeout_id; 14592 ncec->ncec_timeout_id = 0; 14593 mutex_exit(&ncec->ncec_lock); 14594 (void) untimeout(tid); 14595 if (ip_debug > 2) { 14596 /* ip1dbg */ 14597 pr_addr_dbg("ip_xmit: state" 14598 " for %s changed to" 14599 " REACHABLE\n", AF_INET6, 14600 &ncec->ncec_addr); 14601 } 14602 } 14603 return (0); 14604 } 14605 14606 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14607 ip1dbg(("ip_xmit: delta = %" PRId64 14608 " ill_reachable_time = %d \n", delta, 14609 ill->ill_reachable_time)); 14610 if (delta > (uint64_t)ill->ill_reachable_time) { 14611 mutex_enter(&ncec->ncec_lock); 14612 switch (ncec->ncec_state) { 14613 case ND_REACHABLE: 14614 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14615 /* FALLTHROUGH */ 14616 case ND_STALE: 14617 /* 14618 * ND_REACHABLE is identical to 14619 * ND_STALE in this specific case. If 14620 * reachable time has expired for this 14621 * neighbor (delta is greater than 14622 * reachable time), conceptually, the 14623 * neighbor cache is no longer in 14624 * REACHABLE state, but already in 14625 * STALE state. So the correct 14626 * transition here is to ND_DELAY. 14627 */ 14628 ncec->ncec_state = ND_DELAY; 14629 mutex_exit(&ncec->ncec_lock); 14630 nce_restart_timer(ncec, 14631 ipst->ips_delay_first_probe_time); 14632 if (ip_debug > 3) { 14633 /* ip2dbg */ 14634 pr_addr_dbg("ip_xmit: state" 14635 " for %s changed to" 14636 " DELAY\n", AF_INET6, 14637 &ncec->ncec_addr); 14638 } 14639 break; 14640 case ND_DELAY: 14641 case ND_PROBE: 14642 mutex_exit(&ncec->ncec_lock); 14643 /* Timers have already started */ 14644 break; 14645 case ND_UNREACHABLE: 14646 /* 14647 * nce_timer has detected that this ncec 14648 * is unreachable and initiated deleting 14649 * this ncec. 14650 * This is a harmless race where we found the 14651 * ncec before it was deleted and have 14652 * just sent out a packet using this 14653 * unreachable ncec. 14654 */ 14655 mutex_exit(&ncec->ncec_lock); 14656 break; 14657 default: 14658 ASSERT(0); 14659 mutex_exit(&ncec->ncec_lock); 14660 } 14661 } 14662 return (0); 14663 14664 case ND_INCOMPLETE: 14665 /* 14666 * the state could have changed since we didn't hold the lock. 14667 * Re-verify state under lock. 14668 */ 14669 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14670 mutex_enter(&ncec->ncec_lock); 14671 if (NCE_ISREACHABLE(ncec)) { 14672 mutex_exit(&ncec->ncec_lock); 14673 goto sendit; 14674 } 14675 /* queue the packet */ 14676 nce_queue_mp(ncec, mp, is_probe); 14677 mutex_exit(&ncec->ncec_lock); 14678 DTRACE_PROBE2(ip__xmit__incomplete, 14679 (ncec_t *), ncec, (mblk_t *), mp); 14680 return (0); 14681 14682 case ND_INITIAL: 14683 /* 14684 * State could have changed since we didn't hold the lock, so 14685 * re-verify state. 14686 */ 14687 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14688 mutex_enter(&ncec->ncec_lock); 14689 if (NCE_ISREACHABLE(ncec)) { 14690 mutex_exit(&ncec->ncec_lock); 14691 goto sendit; 14692 } 14693 nce_queue_mp(ncec, mp, is_probe); 14694 if (ncec->ncec_state == ND_INITIAL) { 14695 ncec->ncec_state = ND_INCOMPLETE; 14696 mutex_exit(&ncec->ncec_lock); 14697 /* 14698 * figure out the source we want to use 14699 * and resolve it. 14700 */ 14701 ip_ndp_resolve(ncec); 14702 } else { 14703 mutex_exit(&ncec->ncec_lock); 14704 } 14705 return (0); 14706 14707 case ND_UNREACHABLE: 14708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14709 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14710 mp, ill); 14711 freemsg(mp); 14712 return (0); 14713 14714 default: 14715 ASSERT(0); 14716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14717 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14718 mp, ill); 14719 freemsg(mp); 14720 return (ENETUNREACH); 14721 } 14722 } 14723 14724 /* 14725 * Return B_TRUE if the buffers differ in length or content. 14726 * This is used for comparing extension header buffers. 14727 * Note that an extension header would be declared different 14728 * even if all that changed was the next header value in that header i.e. 14729 * what really changed is the next extension header. 14730 */ 14731 boolean_t 14732 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14733 uint_t blen) 14734 { 14735 if (!b_valid) 14736 blen = 0; 14737 14738 if (alen != blen) 14739 return (B_TRUE); 14740 if (alen == 0) 14741 return (B_FALSE); /* Both zero length */ 14742 return (bcmp(abuf, bbuf, alen)); 14743 } 14744 14745 /* 14746 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14747 * Return B_FALSE if memory allocation fails - don't change any state! 14748 */ 14749 boolean_t 14750 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14751 const void *src, uint_t srclen) 14752 { 14753 void *dst; 14754 14755 if (!src_valid) 14756 srclen = 0; 14757 14758 ASSERT(*dstlenp == 0); 14759 if (src != NULL && srclen != 0) { 14760 dst = mi_alloc(srclen, BPRI_MED); 14761 if (dst == NULL) 14762 return (B_FALSE); 14763 } else { 14764 dst = NULL; 14765 } 14766 if (*dstp != NULL) 14767 mi_free(*dstp); 14768 *dstp = dst; 14769 *dstlenp = dst == NULL ? 0 : srclen; 14770 return (B_TRUE); 14771 } 14772 14773 /* 14774 * Replace what is in *dst, *dstlen with the source. 14775 * Assumes ip_allocbuf has already been called. 14776 */ 14777 void 14778 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14779 const void *src, uint_t srclen) 14780 { 14781 if (!src_valid) 14782 srclen = 0; 14783 14784 ASSERT(*dstlenp == srclen); 14785 if (src != NULL && srclen != 0) 14786 bcopy(src, *dstp, srclen); 14787 } 14788 14789 /* 14790 * Free the storage pointed to by the members of an ip_pkt_t. 14791 */ 14792 void 14793 ip_pkt_free(ip_pkt_t *ipp) 14794 { 14795 uint_t fields = ipp->ipp_fields; 14796 14797 if (fields & IPPF_HOPOPTS) { 14798 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14799 ipp->ipp_hopopts = NULL; 14800 ipp->ipp_hopoptslen = 0; 14801 } 14802 if (fields & IPPF_RTHDRDSTOPTS) { 14803 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14804 ipp->ipp_rthdrdstopts = NULL; 14805 ipp->ipp_rthdrdstoptslen = 0; 14806 } 14807 if (fields & IPPF_DSTOPTS) { 14808 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14809 ipp->ipp_dstopts = NULL; 14810 ipp->ipp_dstoptslen = 0; 14811 } 14812 if (fields & IPPF_RTHDR) { 14813 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14814 ipp->ipp_rthdr = NULL; 14815 ipp->ipp_rthdrlen = 0; 14816 } 14817 if (fields & IPPF_IPV4_OPTIONS) { 14818 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14819 ipp->ipp_ipv4_options = NULL; 14820 ipp->ipp_ipv4_options_len = 0; 14821 } 14822 if (fields & IPPF_LABEL_V4) { 14823 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14824 ipp->ipp_label_v4 = NULL; 14825 ipp->ipp_label_len_v4 = 0; 14826 } 14827 if (fields & IPPF_LABEL_V6) { 14828 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14829 ipp->ipp_label_v6 = NULL; 14830 ipp->ipp_label_len_v6 = 0; 14831 } 14832 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14833 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14834 } 14835 14836 /* 14837 * Copy from src to dst and allocate as needed. 14838 * Returns zero or ENOMEM. 14839 * 14840 * The caller must initialize dst to zero. 14841 */ 14842 int 14843 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14844 { 14845 uint_t fields = src->ipp_fields; 14846 14847 /* Start with fields that don't require memory allocation */ 14848 dst->ipp_fields = fields & 14849 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14850 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14851 14852 dst->ipp_addr = src->ipp_addr; 14853 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14854 dst->ipp_hoplimit = src->ipp_hoplimit; 14855 dst->ipp_tclass = src->ipp_tclass; 14856 dst->ipp_type_of_service = src->ipp_type_of_service; 14857 14858 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14859 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14860 return (0); 14861 14862 if (fields & IPPF_HOPOPTS) { 14863 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14864 if (dst->ipp_hopopts == NULL) { 14865 ip_pkt_free(dst); 14866 return (ENOMEM); 14867 } 14868 dst->ipp_fields |= IPPF_HOPOPTS; 14869 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14870 src->ipp_hopoptslen); 14871 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14872 } 14873 if (fields & IPPF_RTHDRDSTOPTS) { 14874 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14875 kmflag); 14876 if (dst->ipp_rthdrdstopts == NULL) { 14877 ip_pkt_free(dst); 14878 return (ENOMEM); 14879 } 14880 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14881 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14882 src->ipp_rthdrdstoptslen); 14883 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14884 } 14885 if (fields & IPPF_DSTOPTS) { 14886 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14887 if (dst->ipp_dstopts == NULL) { 14888 ip_pkt_free(dst); 14889 return (ENOMEM); 14890 } 14891 dst->ipp_fields |= IPPF_DSTOPTS; 14892 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14893 src->ipp_dstoptslen); 14894 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14895 } 14896 if (fields & IPPF_RTHDR) { 14897 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14898 if (dst->ipp_rthdr == NULL) { 14899 ip_pkt_free(dst); 14900 return (ENOMEM); 14901 } 14902 dst->ipp_fields |= IPPF_RTHDR; 14903 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14904 src->ipp_rthdrlen); 14905 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14906 } 14907 if (fields & IPPF_IPV4_OPTIONS) { 14908 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14909 kmflag); 14910 if (dst->ipp_ipv4_options == NULL) { 14911 ip_pkt_free(dst); 14912 return (ENOMEM); 14913 } 14914 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14915 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14916 src->ipp_ipv4_options_len); 14917 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14918 } 14919 if (fields & IPPF_LABEL_V4) { 14920 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14921 if (dst->ipp_label_v4 == NULL) { 14922 ip_pkt_free(dst); 14923 return (ENOMEM); 14924 } 14925 dst->ipp_fields |= IPPF_LABEL_V4; 14926 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14927 src->ipp_label_len_v4); 14928 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14929 } 14930 if (fields & IPPF_LABEL_V6) { 14931 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14932 if (dst->ipp_label_v6 == NULL) { 14933 ip_pkt_free(dst); 14934 return (ENOMEM); 14935 } 14936 dst->ipp_fields |= IPPF_LABEL_V6; 14937 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14938 src->ipp_label_len_v6); 14939 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14940 } 14941 if (fields & IPPF_FRAGHDR) { 14942 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14943 if (dst->ipp_fraghdr == NULL) { 14944 ip_pkt_free(dst); 14945 return (ENOMEM); 14946 } 14947 dst->ipp_fields |= IPPF_FRAGHDR; 14948 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14949 src->ipp_fraghdrlen); 14950 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14951 } 14952 return (0); 14953 } 14954 14955 /* 14956 * Returns INADDR_ANY if no source route 14957 */ 14958 ipaddr_t 14959 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14960 { 14961 ipaddr_t nexthop = INADDR_ANY; 14962 ipoptp_t opts; 14963 uchar_t *opt; 14964 uint8_t optval; 14965 uint8_t optlen; 14966 uint32_t totallen; 14967 14968 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14969 return (INADDR_ANY); 14970 14971 totallen = ipp->ipp_ipv4_options_len; 14972 if (totallen & 0x3) 14973 return (INADDR_ANY); 14974 14975 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14976 optval != IPOPT_EOL; 14977 optval = ipoptp_next(&opts)) { 14978 opt = opts.ipoptp_cur; 14979 switch (optval) { 14980 uint8_t off; 14981 case IPOPT_SSRR: 14982 case IPOPT_LSRR: 14983 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14984 break; 14985 } 14986 optlen = opts.ipoptp_len; 14987 off = opt[IPOPT_OFFSET]; 14988 off--; 14989 if (optlen < IP_ADDR_LEN || 14990 off > optlen - IP_ADDR_LEN) { 14991 /* End of source route */ 14992 break; 14993 } 14994 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14995 if (nexthop == htonl(INADDR_LOOPBACK)) { 14996 /* Ignore */ 14997 nexthop = INADDR_ANY; 14998 break; 14999 } 15000 break; 15001 } 15002 } 15003 return (nexthop); 15004 } 15005 15006 /* 15007 * Reverse a source route. 15008 */ 15009 void 15010 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15011 { 15012 ipaddr_t tmp; 15013 ipoptp_t opts; 15014 uchar_t *opt; 15015 uint8_t optval; 15016 uint32_t totallen; 15017 15018 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15019 return; 15020 15021 totallen = ipp->ipp_ipv4_options_len; 15022 if (totallen & 0x3) 15023 return; 15024 15025 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15026 optval != IPOPT_EOL; 15027 optval = ipoptp_next(&opts)) { 15028 uint8_t off1, off2; 15029 15030 opt = opts.ipoptp_cur; 15031 switch (optval) { 15032 case IPOPT_SSRR: 15033 case IPOPT_LSRR: 15034 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15035 break; 15036 } 15037 off1 = IPOPT_MINOFF_SR - 1; 15038 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15039 while (off2 > off1) { 15040 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15041 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15042 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15043 off2 -= IP_ADDR_LEN; 15044 off1 += IP_ADDR_LEN; 15045 } 15046 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15047 break; 15048 } 15049 } 15050 } 15051 15052 /* 15053 * Returns NULL if no routing header 15054 */ 15055 in6_addr_t * 15056 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15057 { 15058 in6_addr_t *nexthop = NULL; 15059 ip6_rthdr0_t *rthdr; 15060 15061 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15062 return (NULL); 15063 15064 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15065 if (rthdr->ip6r0_segleft == 0) 15066 return (NULL); 15067 15068 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15069 return (nexthop); 15070 } 15071 15072 zoneid_t 15073 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15074 zoneid_t lookup_zoneid) 15075 { 15076 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15077 ire_t *ire; 15078 int ire_flags = MATCH_IRE_TYPE; 15079 zoneid_t zoneid = ALL_ZONES; 15080 15081 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15082 return (ALL_ZONES); 15083 15084 if (lookup_zoneid != ALL_ZONES) 15085 ire_flags |= MATCH_IRE_ZONEONLY; 15086 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15087 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15088 if (ire != NULL) { 15089 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15090 ire_refrele(ire); 15091 } 15092 return (zoneid); 15093 } 15094 15095 zoneid_t 15096 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15097 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15098 { 15099 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15100 ire_t *ire; 15101 int ire_flags = MATCH_IRE_TYPE; 15102 zoneid_t zoneid = ALL_ZONES; 15103 15104 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15105 return (ALL_ZONES); 15106 15107 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15108 ire_flags |= MATCH_IRE_ILL; 15109 15110 if (lookup_zoneid != ALL_ZONES) 15111 ire_flags |= MATCH_IRE_ZONEONLY; 15112 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15113 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15114 if (ire != NULL) { 15115 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15116 ire_refrele(ire); 15117 } 15118 return (zoneid); 15119 } 15120 15121 /* 15122 * IP obserability hook support functions. 15123 */ 15124 static void 15125 ipobs_init(ip_stack_t *ipst) 15126 { 15127 netid_t id; 15128 15129 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15130 15131 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15132 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15133 15134 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15135 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15136 } 15137 15138 static void 15139 ipobs_fini(ip_stack_t *ipst) 15140 { 15141 15142 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15143 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15144 } 15145 15146 /* 15147 * hook_pkt_observe_t is composed in network byte order so that the 15148 * entire mblk_t chain handed into hook_run can be used as-is. 15149 * The caveat is that use of the fields, such as the zone fields, 15150 * requires conversion into host byte order first. 15151 */ 15152 void 15153 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15154 const ill_t *ill, ip_stack_t *ipst) 15155 { 15156 hook_pkt_observe_t *hdr; 15157 uint64_t grifindex; 15158 mblk_t *imp; 15159 15160 imp = allocb(sizeof (*hdr), BPRI_HI); 15161 if (imp == NULL) 15162 return; 15163 15164 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15165 /* 15166 * b_wptr is set to make the apparent size of the data in the mblk_t 15167 * to exclude the pointers at the end of hook_pkt_observer_t. 15168 */ 15169 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15170 imp->b_cont = mp; 15171 15172 ASSERT(DB_TYPE(mp) == M_DATA); 15173 15174 if (IS_UNDER_IPMP(ill)) 15175 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15176 else 15177 grifindex = 0; 15178 15179 hdr->hpo_version = 1; 15180 hdr->hpo_htype = htons(htype); 15181 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15182 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15183 hdr->hpo_grifindex = htonl(grifindex); 15184 hdr->hpo_zsrc = htonl(zsrc); 15185 hdr->hpo_zdst = htonl(zdst); 15186 hdr->hpo_pkt = imp; 15187 hdr->hpo_ctx = ipst->ips_netstack; 15188 15189 if (ill->ill_isv6) { 15190 hdr->hpo_family = AF_INET6; 15191 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15192 ipst->ips_ipv6observing, (hook_data_t)hdr); 15193 } else { 15194 hdr->hpo_family = AF_INET; 15195 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15196 ipst->ips_ipv4observing, (hook_data_t)hdr); 15197 } 15198 15199 imp->b_cont = NULL; 15200 freemsg(imp); 15201 } 15202 15203 /* 15204 * Utility routine that checks if `v4srcp' is a valid address on underlying 15205 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15206 * associated with `v4srcp' on success. NOTE: if this is not called from 15207 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15208 * group during or after this lookup. 15209 */ 15210 boolean_t 15211 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15212 { 15213 ipif_t *ipif; 15214 15215 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15216 if (ipif != NULL) { 15217 if (ipifp != NULL) 15218 *ipifp = ipif; 15219 else 15220 ipif_refrele(ipif); 15221 return (B_TRUE); 15222 } 15223 15224 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15225 *v4srcp)); 15226 return (B_FALSE); 15227 } 15228 15229 /* 15230 * Transport protocol call back function for CPU state change. 15231 */ 15232 /* ARGSUSED */ 15233 static int 15234 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15235 { 15236 processorid_t cpu_seqid; 15237 netstack_handle_t nh; 15238 netstack_t *ns; 15239 15240 ASSERT(MUTEX_HELD(&cpu_lock)); 15241 15242 switch (what) { 15243 case CPU_CONFIG: 15244 case CPU_ON: 15245 case CPU_INIT: 15246 case CPU_CPUPART_IN: 15247 cpu_seqid = cpu[id]->cpu_seqid; 15248 netstack_next_init(&nh); 15249 while ((ns = netstack_next(&nh)) != NULL) { 15250 dccp_stack_cpu_add(ns->netstack_dccp, cpu_seqid); 15251 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15252 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15253 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15254 netstack_rele(ns); 15255 } 15256 netstack_next_fini(&nh); 15257 break; 15258 case CPU_UNCONFIG: 15259 case CPU_OFF: 15260 case CPU_CPUPART_OUT: 15261 /* 15262 * Nothing to do. We don't remove the per CPU stats from 15263 * the IP stack even when the CPU goes offline. 15264 */ 15265 break; 15266 default: 15267 break; 15268 } 15269 return (0); 15270 }