
new/usr/src/cmd/dtrace/demo/sctpbytes.d 1

**
 1124 Sat Apr 12 11:18:53 2014
new/usr/src/cmd/dtrace/demo/sctpbytes.d
3903 DTrace SCTP Provider
**

1 #!/usr/sbin/dtrace -s
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 sctp:::receive
27 {
28 @bytes[args[2]->ip_saddr, args[4]->sctp_dport] =
29 sum(args[4]->sctp_length);
30 }

32 sctp:::send
33 {
34 @bytes[args[2]->ip_daddr, args[4]->sctp_sport] =
35 sum(args[4]->sctp_length);
36 }
37 #endif /* ! codereview */

new/usr/src/lib/libdtrace/Makefile.com 1

**
 7008 Sat Apr 12 11:18:54 2014
new/usr/src/lib/libdtrace/Makefile.com
3903 DTrace SCTP Provider
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright (c) 2012 by Delphix. All rights reserved.
24 #

26 LIBRARY = libdtrace.a
27 VERS = .1

29 LIBSRCS = \
30 dt_aggregate.c \
31 dt_as.c \
32 dt_buf.c \
33 dt_cc.c \
34 dt_cg.c \
35 dt_consume.c \
36 dt_decl.c \
37 dt_dis.c \
38 dt_dof.c \
39 dt_error.c \
40 dt_errtags.c \
41 dt_handle.c \
42 dt_ident.c \
43 dt_inttab.c \
44 dt_link.c \
45 dt_list.c \
46 dt_open.c \
47 dt_options.c \
48 dt_program.c \
49 dt_map.c \
50 dt_module.c \
51 dt_names.c \
52 dt_parser.c \
53 dt_pcb.c \
54 dt_pid.c \
55 dt_pq.c \
56 dt_pragma.c \
57 dt_print.c \
58 dt_printf.c \
59 dt_proc.c \
60 dt_provider.c \
61 dt_regset.c \

new/usr/src/lib/libdtrace/Makefile.com 2

62 dt_string.c \
63 dt_strtab.c \
64 dt_subr.c \
65 dt_work.c \
66 dt_xlator.c

68 LIBISASRCS = \
69 dt_isadep.c

71 OBJECTS = dt_lex.o dt_grammar.o $(MACHOBJS) $(LIBSRCS:%.c=%.o) $(LIBISASRCS:%.c=

73 DRTISRCS = dlink_init.c dlink_common.c
74 DRTIOBJS = $(DRTISRCS:%.c=pics/%.o)
75 DRTIOBJ = drti.o

77 LIBDAUDITSRCS = dlink_audit.c dlink_common.c
78 LIBDAUDITOBJS = $(LIBDAUDITSRCS:%.c=pics/%.o)
79 LIBDAUDIT = libdtrace_forceload.so

81 DLINKSRCS = dlink_common.c dlink_init.c dlink_audit.c

83 DLIBSRCS += \
84 errno.d \
85 fc.d \
86 io.d \
87 ip.d \
88 iscsit.d \
89 net.d \
90 nfs.d \
91 nfssrv.d \
92 procfs.d \
93 regs.d \
94 sched.d \
95 signal.d \
96 scsi.d \
97 srp.d \
98 sysevent.d \
99 tcp.d \
100 udp.d \
101 sctp.d \
102 #endif /* ! codereview */
103 unistd.d

105 include ../../Makefile.lib

107 SRCS = $(LIBSRCS:%.c=../common/%.c) $(LIBISASRCS:%.c=../$(MACH)/%.c)
108 LIBS = $(DYNLIB) $(LINTLIB)

110 SRCDIR = ../common

112 CLEANFILES += dt_lex.c dt_grammar.c dt_grammar.h y.output
113 CLEANFILES += ../common/procfs.sed ../common/procfs.d
114 CLEANFILES += ../common/io.sed ../common/io.d
115 CLEANFILES += ../common/ip.sed ../common/ip.d
116 CLEANFILES += ../common/net.sed ../common/net.d
117 CLEANFILES += ../common/errno.d ../common/signal.d
118 CLEANFILES += ../common/dt_errtags.c ../common/dt_names.c
119 CLEANFILES += ../common/sysevent.sed ../common/sysevent.d
120 CLEANFILES += ../common/tcp.sed ../common/tcp.d
121 CLEANFILES += ../common/udp.sed ../common/udp.d
122 CLEANFILES += ../common/sctp.sed ../common/sctp.d
123 #endif /* ! codereview */
124 CLEANFILES += $(LIBDAUDITOBJS) $(DRTIOBJS)

126 CLOBBERFILES += $(LIBDAUDIT) drti.o

new/usr/src/lib/libdtrace/Makefile.com 3

128 CPPFLAGS += -I../common -I.
129 CFLAGS += $(CCVERBOSE) $(C_BIGPICFLAGS)
130 CFLAGS64 += $(CCVERBOSE) $(C_BIGPICFLAGS)

132 CERRWARN += -_gcc=-Wno-unused-label
133 CERRWARN += -_gcc=-Wno-unused-variable
134 CERRWARN += -_gcc=-Wno-parentheses
135 CERRWARN += -_gcc=-Wno-uninitialized
136 CERRWARN += -_gcc=-Wno-switch

138 YYCFLAGS =
139 LDLIBS += -lgen -lproc -lrtld_db -lnsl -lsocket -lctf -lelf -lc
140 DRTILDLIBS = $(LDLIBS.lib) -lc

142 yydebug := YYCFLAGS += -DYYDEBUG

144 $(LINTLIB) := SRCS = $(SRCDIR)/$(LINTSRC)

146 LFLAGS = -t -v
147 YFLAGS = -d -v

149 ROOTDLIBDIR = $(ROOT)/usr/lib/dtrace
150 ROOTDLIBDIR64 = $(ROOT)/usr/lib/dtrace/64

152 ROOTDLIBS = $(DLIBSRCS:%=$(ROOTDLIBDIR)/%)
153 ROOTDOBJS = $(ROOTDLIBDIR)/$(DRTIOBJ) $(ROOTDLIBDIR)/$(LIBDAUDIT)
154 ROOTDOBJS64 = $(ROOTDLIBDIR64)/$(DRTIOBJ) $(ROOTDLIBDIR64)/$(LIBDAUDIT)

156 $(ROOTDLIBDIR)/%.d := FILEMODE=444
157 $(ROOTDLIBDIR)/%.o := FILEMODE=444
158 $(ROOTDLIBDIR64)/%.o := FILEMODE=444
159 $(ROOTDLIBDIR)/%.so := FILEMODE=555
160 $(ROOTDLIBDIR64)/%.so := FILEMODE=555

162 .KEEP_STATE:

164 all: $(LIBS) $(DRTIOBJ) $(LIBDAUDIT)

166 lint: lintdlink lintcheck

168 lintdlink: $(DLINKSRCS:%.c=../common/%.c)
169 $(LINT.c) $(DLINKSRCS:%.c=../common/%.c) $(DRTILDLIBS)

171 dt_lex.c: $(SRCDIR)/dt_lex.l dt_grammar.h
172 $(LEX) $(LFLAGS) $(SRCDIR)/dt_lex.l > $@

174 dt_grammar.c dt_grammar.h: $(SRCDIR)/dt_grammar.y
175 $(YACC) $(YFLAGS) $(SRCDIR)/dt_grammar.y
176 @mv y.tab.h dt_grammar.h
177 @mv y.tab.c dt_grammar.c

179 pics/dt_lex.o pics/dt_grammar.o := CFLAGS += $(YYCFLAGS)
180 pics/dt_lex.o pics/dt_grammar.o := CFLAGS64 += $(YYCFLAGS)

182 pics/dt_lex.o pics/dt_grammar.o := CERRWARN += -erroff=E_STATEMENT_NOT_REACHED
183 pics/dt_lex.o pics/dt_grammar.o := CCVERBOSE =

185 ../common/dt_errtags.c: ../common/mkerrtags.sh ../common/dt_errtags.h
186 sh ../common/mkerrtags.sh < ../common/dt_errtags.h > $@

188 ../common/dt_names.c: ../common/mknames.sh $(SRC)/uts/common/sys/dtrace.h
189 sh ../common/mknames.sh < $(SRC)/uts/common/sys/dtrace.h > $@

191 ../common/errno.d: ../common/mkerrno.sh $(SRC)/uts/common/sys/errno.h
192 sh ../common/mkerrno.sh < $(SRC)/uts/common/sys/errno.h > $@

new/usr/src/lib/libdtrace/Makefile.com 4

194 ../common/signal.d: ../common/mksignal.sh $(SRC)/uts/common/sys/iso/signal_iso.h
195 sh ../common/mksignal.sh < $(SRC)/uts/common/sys/iso/signal_iso.h > $@

197 ../common/%.sed: ../common/%.sed.in
198 $(COMPILE.cpp) -D_KERNEL $< | tr -d ’ ’ | tr ’"’ ’@’ | \
199 sed ’s/\&/\\\&/g’ | grep ’^s/’ > $@

201 ../common/procfs.d: ../common/procfs.sed ../common/procfs.d.in
202 sed -f ../common/procfs.sed < ../common/procfs.d.in > $@

204 ../common/io.d: ../common/io.sed ../common/io.d.in
205 sed -f ../common/io.sed < ../common/io.d.in > $@

207 ../common/ip.d: ../common/ip.sed ../common/ip.d.in
208 sed -f ../common/ip.sed < ../common/ip.d.in > $@

210 ../common/net.d: ../common/net.sed ../common/net.d.in
211 sed -f ../common/net.sed < ../common/net.d.in > $@

213 ../common/sysevent.d: ../common/sysevent.sed ../common/sysevent.d.in
214 sed -f ../common/sysevent.sed < ../common/sysevent.d.in > $@

216 ../common/tcp.d: ../common/tcp.sed ../common/tcp.d.in
101 ../common/tcp.d: ..//common/tcp.sed ../common/tcp.d.in
217 sed -f ../common/tcp.sed < ../common/tcp.d.in > $@

219 ../common/udp.d: ../common/udp.sed ../common/udp.d.in
220 sed -f ../common/udp.sed < ../common/udp.d.in > $@

222 ../common/sctp.d: ../common/sctp.sed ../common/sctp.d.in
223 sed -f ../common/sctp.sed < ../common/sctp.d.in > $@

225 #endif /* ! codereview */
226 pics/%.o: ../$(MACH)/%.c
227 $(COMPILE.c) -o $@ $<
228 $(POST_PROCESS_O)

230 pics/%.o: ../$(MACH)/%.s
231 $(COMPILE.s) -o $@ $<
232 $(POST_PROCESS_O)

234 $(DRTIOBJ): $(DRTIOBJS)
235 $(LD) -o $@ -r -Blocal -Breduce $(DRTIOBJS)
236 $(POST_PROCESS_O)

238 $(LIBDAUDIT): $(LIBDAUDITOBJS)
239 $(LINK.c) -o $@ $(GSHARED) -h$(LIBDAUDIT) $(ZTEXT) $(ZDEFS) $(BDIRECT) \
240 $(MAPFILE.PGA:%=-M%) $(MAPFILE.NED:%=-M%) $(LIBDAUDITOBJS) \
241 -lmapmalloc -lc -lproc
242 $(POST_PROCESS_SO)

244 $(ROOTDLIBDIR):
245 $(INS.dir)

247 $(ROOTDLIBDIR64): $(ROOTDLIBDIR)
248 $(INS.dir)

250 $(ROOTDLIBDIR)/%.d: ../common/%.d
251 $(INS.file)

253 $(ROOTDLIBDIR)/%.d: ../$(MACH)/%.d
254 $(INS.file)

256 $(ROOTDLIBDIR)/%.d: %.d
257 $(INS.file)

new/usr/src/lib/libdtrace/Makefile.com 5

259 $(ROOTDLIBDIR)/%.o: %.o
260 $(INS.file)

262 $(ROOTDLIBDIR64)/%.o: %.o
263 $(INS.file)

265 $(ROOTDLIBDIR)/%.so: %.so
266 $(INS.file)

268 $(ROOTDLIBDIR64)/%.so: %.so
269 $(INS.file)

271 $(ROOTDLIBS): $(ROOTDLIBDIR)

273 $(ROOTDOBJS): $(ROOTDLIBDIR)

275 $(ROOTDOBJS64): $(ROOTDLIBDIR64)

277 include ../../Makefile.targ

new/usr/src/lib/libdtrace/common/dt_open.c 1

**
 53723 Sat Apr 12 11:18:54 2014
new/usr/src/lib/libdtrace/common/dt_open.c
3903 DTrace SCTP Provider
**
______unchanged_portion_omitted_

82 /*
83 * The version number should be increased for every customer visible release
84 * of DTrace. The major number should be incremented when a fundamental
85 * change has been made that would affect all consumers, and would reflect
86 * sweeping changes to DTrace or the D language. The minor number should be
87 * incremented when a change is introduced that could break scripts that had
88 * previously worked; for example, adding a new built-in variable could break
89 * a script which was already using that identifier. The micro number should
90 * be changed when introducing functionality changes or major bug fixes that
91 * do not affect backward compatibility -- this is merely to make capabilities
92 * easily determined from the version number. Minor bugs do not require any
93 * modification to the version number.
94 */
95 #define DT_VERS_1_0 DT_VERSION_NUMBER(1, 0, 0)
96 #define DT_VERS_1_1 DT_VERSION_NUMBER(1, 1, 0)
97 #define DT_VERS_1_2 DT_VERSION_NUMBER(1, 2, 0)
98 #define DT_VERS_1_2_1 DT_VERSION_NUMBER(1, 2, 1)
99 #define DT_VERS_1_2_2 DT_VERSION_NUMBER(1, 2, 2)
100 #define DT_VERS_1_3 DT_VERSION_NUMBER(1, 3, 0)
101 #define DT_VERS_1_4 DT_VERSION_NUMBER(1, 4, 0)
102 #define DT_VERS_1_4_1 DT_VERSION_NUMBER(1, 4, 1)
103 #define DT_VERS_1_5 DT_VERSION_NUMBER(1, 5, 0)
104 #define DT_VERS_1_6 DT_VERSION_NUMBER(1, 6, 0)
105 #define DT_VERS_1_6_1 DT_VERSION_NUMBER(1, 6, 1)
106 #define DT_VERS_1_6_2 DT_VERSION_NUMBER(1, 6, 2)
107 #define DT_VERS_1_6_3 DT_VERSION_NUMBER(1, 6, 3)
108 #define DT_VERS_1_7 DT_VERSION_NUMBER(1, 7, 0)
109 #define DT_VERS_1_7_1 DT_VERSION_NUMBER(1, 7, 1)
110 #define DT_VERS_1_8 DT_VERSION_NUMBER(1, 8, 0)
111 #define DT_VERS_1_8_1 DT_VERSION_NUMBER(1, 8, 1)
112 #define DT_VERS_1_9 DT_VERSION_NUMBER(1, 9, 0)
113 #define DT_VERS_1_9_1 DT_VERSION_NUMBER(1, 9, 1)
114 #define DT_VERS_1_9_2 DT_VERSION_NUMBER(1, 9, 2)
115 #define DT_VERS_LATEST DT_VERS_1_9_2
116 #define DT_VERS_STRING "Sun D 1.9.2"
114 #define DT_VERS_LATEST DT_VERS_1_9_1
115 #define DT_VERS_STRING "Sun D 1.9.1"

118 const dt_version_t _dtrace_versions[] = {
119 DT_VERS_1_0, /* D API 1.0.0 (PSARC 2001/466) Solaris 10 FCS */
120 DT_VERS_1_1, /* D API 1.1.0 Solaris Express 6/05 */
121 DT_VERS_1_2, /* D API 1.2.0 Solaris 10 Update 1 */
122 DT_VERS_1_2_1, /* D API 1.2.1 Solaris Express 4/06 */
123 DT_VERS_1_2_2, /* D API 1.2.2 Solaris Express 6/06 */
124 DT_VERS_1_3, /* D API 1.3 Solaris Express 10/06 */
125 DT_VERS_1_4, /* D API 1.4 Solaris Express 2/07 */
126 DT_VERS_1_4_1, /* D API 1.4.1 Solaris Express 4/07 */
127 DT_VERS_1_5, /* D API 1.5 Solaris Express 7/07 */
128 DT_VERS_1_6, /* D API 1.6 */
129 DT_VERS_1_6_1, /* D API 1.6.1 */
130 DT_VERS_1_6_2, /* D API 1.6.2 */
131 DT_VERS_1_6_3, /* D API 1.6.3 */
132 DT_VERS_1_7, /* D API 1.7 */
133 DT_VERS_1_7_1, /* D API 1.7.1 */
134 DT_VERS_1_8, /* D API 1.8 */
135 DT_VERS_1_8_1, /* D API 1.8.1 */
136 DT_VERS_1_9, /* D API 1.9 */
137 DT_VERS_1_9_1, /* D API 1.9.1 */
138 DT_VERS_1_9_2, /* D API 1.9.2 */

new/usr/src/lib/libdtrace/common/dt_open.c 2

139 #endif /* ! codereview */
140 0
141 };

143 /*
144 * Table of global identifiers. This is used to populate the global identifier
145 * hash when a new dtrace client open occurs. For more info see dt_ident.h.
146 * The global identifiers that represent functions use the dt_idops_func ops
147 * and specify the private data pointer as a prototype string which is parsed
148 * when the identifier is first encountered. These prototypes look like ANSI
149 * C function prototypes except that the special symbol "@" can be used as a
150 * wildcard to represent a single parameter of any type (i.e. any dt_node_t).
151 * The standard "..." notation can also be used to represent varargs. An empty
152 * parameter list is taken to mean void (that is, no arguments are permitted).
153 * A parameter enclosed in square brackets (e.g. "[int]") denotes an optional
154 * argument.
155 */
156 static const dt_ident_t _dtrace_globals[] = {
157 { "alloca", DT_IDENT_FUNC, 0, DIF_SUBR_ALLOCA, DT_ATTR_STABCMN, DT_VERS_1_0,
158 &dt_idops_func, "void *(size_t)" },
159 { "arg0", DT_IDENT_SCALAR, 0, DIF_VAR_ARG0, DT_ATTR_STABCMN, DT_VERS_1_0,
160 &dt_idops_type, "int64_t" },
161 { "arg1", DT_IDENT_SCALAR, 0, DIF_VAR_ARG1, DT_ATTR_STABCMN, DT_VERS_1_0,
162 &dt_idops_type, "int64_t" },
163 { "arg2", DT_IDENT_SCALAR, 0, DIF_VAR_ARG2, DT_ATTR_STABCMN, DT_VERS_1_0,
164 &dt_idops_type, "int64_t" },
165 { "arg3", DT_IDENT_SCALAR, 0, DIF_VAR_ARG3, DT_ATTR_STABCMN, DT_VERS_1_0,
166 &dt_idops_type, "int64_t" },
167 { "arg4", DT_IDENT_SCALAR, 0, DIF_VAR_ARG4, DT_ATTR_STABCMN, DT_VERS_1_0,
168 &dt_idops_type, "int64_t" },
169 { "arg5", DT_IDENT_SCALAR, 0, DIF_VAR_ARG5, DT_ATTR_STABCMN, DT_VERS_1_0,
170 &dt_idops_type, "int64_t" },
171 { "arg6", DT_IDENT_SCALAR, 0, DIF_VAR_ARG6, DT_ATTR_STABCMN, DT_VERS_1_0,
172 &dt_idops_type, "int64_t" },
173 { "arg7", DT_IDENT_SCALAR, 0, DIF_VAR_ARG7, DT_ATTR_STABCMN, DT_VERS_1_0,
174 &dt_idops_type, "int64_t" },
175 { "arg8", DT_IDENT_SCALAR, 0, DIF_VAR_ARG8, DT_ATTR_STABCMN, DT_VERS_1_0,
176 &dt_idops_type, "int64_t" },
177 { "arg9", DT_IDENT_SCALAR, 0, DIF_VAR_ARG9, DT_ATTR_STABCMN, DT_VERS_1_0,
178 &dt_idops_type, "int64_t" },
179 { "args", DT_IDENT_ARRAY, 0, DIF_VAR_ARGS, DT_ATTR_STABCMN, DT_VERS_1_0,
180 &dt_idops_args, NULL },
181 { "avg", DT_IDENT_AGGFUNC, 0, DTRACEAGG_AVG, DT_ATTR_STABCMN, DT_VERS_1_0,
182 &dt_idops_func, "void(@)" },
183 { "basename", DT_IDENT_FUNC, 0, DIF_SUBR_BASENAME, DT_ATTR_STABCMN, DT_VERS_1_0,
184 &dt_idops_func, "string(const char *)" },
185 { "bcopy", DT_IDENT_FUNC, 0, DIF_SUBR_BCOPY, DT_ATTR_STABCMN, DT_VERS_1_0,
186 &dt_idops_func, "void(void *, void *, size_t)" },
187 { "breakpoint", DT_IDENT_ACTFUNC, 0, DT_ACT_BREAKPOINT,
188 DT_ATTR_STABCMN, DT_VERS_1_0,
189 &dt_idops_func, "void()" },
190 { "caller", DT_IDENT_SCALAR, 0, DIF_VAR_CALLER, DT_ATTR_STABCMN, DT_VERS_1_0,
191 &dt_idops_type, "uintptr_t" },
192 { "chill", DT_IDENT_ACTFUNC, 0, DT_ACT_CHILL, DT_ATTR_STABCMN, DT_VERS_1_0,
193 &dt_idops_func, "void(int)" },
194 { "cleanpath", DT_IDENT_FUNC, 0, DIF_SUBR_CLEANPATH, DT_ATTR_STABCMN,
195 DT_VERS_1_0, &dt_idops_func, "string(const char *)" },
196 { "clear", DT_IDENT_ACTFUNC, 0, DT_ACT_CLEAR, DT_ATTR_STABCMN, DT_VERS_1_0,
197 &dt_idops_func, "void(...)" },
198 { "commit", DT_IDENT_ACTFUNC, 0, DT_ACT_COMMIT, DT_ATTR_STABCMN, DT_VERS_1_0,
199 &dt_idops_func, "void(int)" },
200 { "copyin", DT_IDENT_FUNC, 0, DIF_SUBR_COPYIN, DT_ATTR_STABCMN, DT_VERS_1_0,
201 &dt_idops_func, "void *(uintptr_t, size_t)" },
202 { "copyinstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINSTR,
203 DT_ATTR_STABCMN, DT_VERS_1_0,
204 &dt_idops_func, "string(uintptr_t, [size_t])" },

new/usr/src/lib/libdtrace/common/dt_open.c 3

205 { "copyinto", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINTO, DT_ATTR_STABCMN,
206 DT_VERS_1_0, &dt_idops_func, "void(uintptr_t, size_t, void *)" },
207 { "copyout", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUT, DT_ATTR_STABCMN, DT_VERS_1_0,
208 &dt_idops_func, "void(void *, uintptr_t, size_t)" },
209 { "copyoutstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUTSTR,
210 DT_ATTR_STABCMN, DT_VERS_1_0,
211 &dt_idops_func, "void(char *, uintptr_t, size_t)" },
212 { "count", DT_IDENT_AGGFUNC, 0, DTRACEAGG_COUNT, DT_ATTR_STABCMN, DT_VERS_1_0,
213 &dt_idops_func, "void()" },
214 { "curthread", DT_IDENT_SCALAR, 0, DIF_VAR_CURTHREAD,
215 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_PRIVATE,
216 DTRACE_CLASS_COMMON }, DT_VERS_1_0,
217 &dt_idops_type, "genunix‘kthread_t *" },
218 { "ddi_pathname", DT_IDENT_FUNC, 0, DIF_SUBR_DDI_PATHNAME,
219 DT_ATTR_EVOLCMN, DT_VERS_1_0,
220 &dt_idops_func, "string(void *, int64_t)" },
221 { "denormalize", DT_IDENT_ACTFUNC, 0, DT_ACT_DENORMALIZE, DT_ATTR_STABCMN,
222 DT_VERS_1_0, &dt_idops_func, "void(...)" },
223 { "dirname", DT_IDENT_FUNC, 0, DIF_SUBR_DIRNAME, DT_ATTR_STABCMN, DT_VERS_1_0,
224 &dt_idops_func, "string(const char *)" },
225 { "discard", DT_IDENT_ACTFUNC, 0, DT_ACT_DISCARD, DT_ATTR_STABCMN, DT_VERS_1_0,
226 &dt_idops_func, "void(int)" },
227 { "epid", DT_IDENT_SCALAR, 0, DIF_VAR_EPID, DT_ATTR_STABCMN, DT_VERS_1_0,
228 &dt_idops_type, "uint_t" },
229 { "errno", DT_IDENT_SCALAR, 0, DIF_VAR_ERRNO, DT_ATTR_STABCMN, DT_VERS_1_0,
230 &dt_idops_type, "int" },
231 { "execname", DT_IDENT_SCALAR, 0, DIF_VAR_EXECNAME,
232 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
233 { "exit", DT_IDENT_ACTFUNC, 0, DT_ACT_EXIT, DT_ATTR_STABCMN, DT_VERS_1_0,
234 &dt_idops_func, "void(int)" },
235 { "freopen", DT_IDENT_ACTFUNC, 0, DT_ACT_FREOPEN, DT_ATTR_STABCMN,
236 DT_VERS_1_1, &dt_idops_func, "void(@, ...)" },
237 { "ftruncate", DT_IDENT_ACTFUNC, 0, DT_ACT_FTRUNCATE, DT_ATTR_STABCMN,
238 DT_VERS_1_0, &dt_idops_func, "void()" },
239 { "func", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
240 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
241 { "getmajor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMAJOR,
242 DT_ATTR_EVOLCMN, DT_VERS_1_0,
243 &dt_idops_func, "genunix‘major_t(genunix‘dev_t)" },
244 { "getminor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMINOR,
245 DT_ATTR_EVOLCMN, DT_VERS_1_0,
246 &dt_idops_func, "genunix‘minor_t(genunix‘dev_t)" },
247 { "htonl", DT_IDENT_FUNC, 0, DIF_SUBR_HTONL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
248 &dt_idops_func, "uint32_t(uint32_t)" },
249 { "htonll", DT_IDENT_FUNC, 0, DIF_SUBR_HTONLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
250 &dt_idops_func, "uint64_t(uint64_t)" },
251 { "htons", DT_IDENT_FUNC, 0, DIF_SUBR_HTONS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
252 &dt_idops_func, "uint16_t(uint16_t)" },
253 { "gid", DT_IDENT_SCALAR, 0, DIF_VAR_GID, DT_ATTR_STABCMN, DT_VERS_1_0,
254 &dt_idops_type, "gid_t" },
255 { "id", DT_IDENT_SCALAR, 0, DIF_VAR_ID, DT_ATTR_STABCMN, DT_VERS_1_0,
256 &dt_idops_type, "uint_t" },
257 { "index", DT_IDENT_FUNC, 0, DIF_SUBR_INDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
258 &dt_idops_func, "int(const char *, const char *, [int])" },
259 { "inet_ntoa", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA, DT_ATTR_STABCMN,
260 DT_VERS_1_5, &dt_idops_func, "string(ipaddr_t *)" },
261 { "inet_ntoa6", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA6, DT_ATTR_STABCMN,
262 DT_VERS_1_5, &dt_idops_func, "string(in6_addr_t *)" },
263 { "inet_ntop", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOP, DT_ATTR_STABCMN,
264 DT_VERS_1_5, &dt_idops_func, "string(int, void *)" },
265 { "ipl", DT_IDENT_SCALAR, 0, DIF_VAR_IPL, DT_ATTR_STABCMN, DT_VERS_1_0,
266 &dt_idops_type, "uint_t" },
267 { "jstack", DT_IDENT_ACTFUNC, 0, DT_ACT_JSTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
268 &dt_idops_func, "stack(...)" },
269 { "lltostr", DT_IDENT_FUNC, 0, DIF_SUBR_LLTOSTR, DT_ATTR_STABCMN, DT_VERS_1_0,
270 &dt_idops_func, "string(int64_t, [int])" },

new/usr/src/lib/libdtrace/common/dt_open.c 4

271 { "llquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LLQUANTIZE, DT_ATTR_STABCMN,
272 DT_VERS_1_7, &dt_idops_func,
273 "void(@, int32_t, int32_t, int32_t, int32_t, ...)" },
274 { "lquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LQUANTIZE,
275 DT_ATTR_STABCMN, DT_VERS_1_0,
276 &dt_idops_func, "void(@, int32_t, int32_t, ...)" },
277 { "max", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MAX, DT_ATTR_STABCMN, DT_VERS_1_0,
278 &dt_idops_func, "void(@)" },
279 { "min", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MIN, DT_ATTR_STABCMN, DT_VERS_1_0,
280 &dt_idops_func, "void(@)" },
281 { "mod", DT_IDENT_ACTFUNC, 0, DT_ACT_MOD, DT_ATTR_STABCMN,
282 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
283 { "msgdsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGDSIZE,
284 DT_ATTR_STABCMN, DT_VERS_1_0,
285 &dt_idops_func, "size_t(mblk_t *)" },
286 { "msgsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGSIZE,
287 DT_ATTR_STABCMN, DT_VERS_1_0,
288 &dt_idops_func, "size_t(mblk_t *)" },
289 { "mutex_owned", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNED,
290 DT_ATTR_EVOLCMN, DT_VERS_1_0,
291 &dt_idops_func, "int(genunix‘kmutex_t *)" },
292 { "mutex_owner", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNER,
293 DT_ATTR_EVOLCMN, DT_VERS_1_0,
294 &dt_idops_func, "genunix‘kthread_t *(genunix‘kmutex_t *)" },
295 { "mutex_type_adaptive", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_ADAPTIVE,
296 DT_ATTR_EVOLCMN, DT_VERS_1_0,
297 &dt_idops_func, "int(genunix‘kmutex_t *)" },
298 { "mutex_type_spin", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_SPIN,
299 DT_ATTR_EVOLCMN, DT_VERS_1_0,
300 &dt_idops_func, "int(genunix‘kmutex_t *)" },
301 { "ntohl", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
302 &dt_idops_func, "uint32_t(uint32_t)" },
303 { "ntohll", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
304 &dt_idops_func, "uint64_t(uint64_t)" },
305 { "ntohs", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
306 &dt_idops_func, "uint16_t(uint16_t)" },
307 { "normalize", DT_IDENT_ACTFUNC, 0, DT_ACT_NORMALIZE, DT_ATTR_STABCMN,
308 DT_VERS_1_0, &dt_idops_func, "void(...)" },
309 { "panic", DT_IDENT_ACTFUNC, 0, DT_ACT_PANIC, DT_ATTR_STABCMN, DT_VERS_1_0,
310 &dt_idops_func, "void()" },
311 { "pid", DT_IDENT_SCALAR, 0, DIF_VAR_PID, DT_ATTR_STABCMN, DT_VERS_1_0,
312 &dt_idops_type, "pid_t" },
313 { "ppid", DT_IDENT_SCALAR, 0, DIF_VAR_PPID, DT_ATTR_STABCMN, DT_VERS_1_0,
314 &dt_idops_type, "pid_t" },
315 { "print", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINT, DT_ATTR_STABCMN, DT_VERS_1_9,
316 &dt_idops_func, "void(@)" },
317 { "printa", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTA, DT_ATTR_STABCMN, DT_VERS_1_0,
318 &dt_idops_func, "void(@, ...)" },
319 { "printf", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTF, DT_ATTR_STABCMN, DT_VERS_1_0,
320 &dt_idops_func, "void(@, ...)" },
321 { "probefunc", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEFUNC,
322 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
323 { "probemod", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEMOD,
324 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
325 { "probename", DT_IDENT_SCALAR, 0, DIF_VAR_PROBENAME,
326 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
327 { "probeprov", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEPROV,
328 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
329 { "progenyof", DT_IDENT_FUNC, 0, DIF_SUBR_PROGENYOF,
330 DT_ATTR_STABCMN, DT_VERS_1_0,
331 &dt_idops_func, "int(pid_t)" },
332 { "quantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_QUANTIZE,
333 DT_ATTR_STABCMN, DT_VERS_1_0,
334 &dt_idops_func, "void(@, ...)" },
335 { "raise", DT_IDENT_ACTFUNC, 0, DT_ACT_RAISE, DT_ATTR_STABCMN, DT_VERS_1_0,
336 &dt_idops_func, "void(int)" },

new/usr/src/lib/libdtrace/common/dt_open.c 5

337 { "rand", DT_IDENT_FUNC, 0, DIF_SUBR_RAND, DT_ATTR_STABCMN, DT_VERS_1_0,
338 &dt_idops_func, "int()" },
339 { "rindex", DT_IDENT_FUNC, 0, DIF_SUBR_RINDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
340 &dt_idops_func, "int(const char *, const char *, [int])" },
341 { "rw_iswriter", DT_IDENT_FUNC, 0, DIF_SUBR_RW_ISWRITER,
342 DT_ATTR_EVOLCMN, DT_VERS_1_0,
343 &dt_idops_func, "int(genunix‘krwlock_t *)" },
344 { "rw_read_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_READ_HELD,
345 DT_ATTR_EVOLCMN, DT_VERS_1_0,
346 &dt_idops_func, "int(genunix‘krwlock_t *)" },
347 { "rw_write_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_WRITE_HELD,
348 DT_ATTR_EVOLCMN, DT_VERS_1_0,
349 &dt_idops_func, "int(genunix‘krwlock_t *)" },
350 { "self", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
351 &dt_idops_type, "void" },
352 { "setopt", DT_IDENT_ACTFUNC, 0, DT_ACT_SETOPT, DT_ATTR_STABCMN,
353 DT_VERS_1_2, &dt_idops_func, "void(const char *, [const char *])" },
354 { "speculate", DT_IDENT_ACTFUNC, 0, DT_ACT_SPECULATE,
355 DT_ATTR_STABCMN, DT_VERS_1_0,
356 &dt_idops_func, "void(int)" },
357 { "speculation", DT_IDENT_FUNC, 0, DIF_SUBR_SPECULATION,
358 DT_ATTR_STABCMN, DT_VERS_1_0,
359 &dt_idops_func, "int()" },
360 { "stack", DT_IDENT_ACTFUNC, 0, DT_ACT_STACK, DT_ATTR_STABCMN, DT_VERS_1_0,
361 &dt_idops_func, "stack(...)" },
362 { "stackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_STACKDEPTH,
363 DT_ATTR_STABCMN, DT_VERS_1_0,
364 &dt_idops_type, "uint32_t" },
365 { "stddev", DT_IDENT_AGGFUNC, 0, DTRACEAGG_STDDEV, DT_ATTR_STABCMN,
366 DT_VERS_1_6, &dt_idops_func, "void(@)" },
367 { "stop", DT_IDENT_ACTFUNC, 0, DT_ACT_STOP, DT_ATTR_STABCMN, DT_VERS_1_0,
368 &dt_idops_func, "void()" },
369 { "strchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,
370 &dt_idops_func, "string(const char *, char)" },
371 { "strlen", DT_IDENT_FUNC, 0, DIF_SUBR_STRLEN, DT_ATTR_STABCMN, DT_VERS_1_0,
372 &dt_idops_func, "size_t(const char *)" },
373 { "strjoin", DT_IDENT_FUNC, 0, DIF_SUBR_STRJOIN, DT_ATTR_STABCMN, DT_VERS_1_0,
374 &dt_idops_func, "string(const char *, const char *)" },
375 { "strrchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,
376 &dt_idops_func, "string(const char *, char)" },
377 { "strstr", DT_IDENT_FUNC, 0, DIF_SUBR_STRSTR, DT_ATTR_STABCMN, DT_VERS_1_1,
378 &dt_idops_func, "string(const char *, const char *)" },
379 { "strtok", DT_IDENT_FUNC, 0, DIF_SUBR_STRTOK, DT_ATTR_STABCMN, DT_VERS_1_1,
380 &dt_idops_func, "string(const char *, const char *)" },
381 { "substr", DT_IDENT_FUNC, 0, DIF_SUBR_SUBSTR, DT_ATTR_STABCMN, DT_VERS_1_1,
382 &dt_idops_func, "string(const char *, int, [int])" },
383 { "sum", DT_IDENT_AGGFUNC, 0, DTRACEAGG_SUM, DT_ATTR_STABCMN, DT_VERS_1_0,
384 &dt_idops_func, "void(@)" },
385 { "sym", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
386 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
387 { "system", DT_IDENT_ACTFUNC, 0, DT_ACT_SYSTEM, DT_ATTR_STABCMN, DT_VERS_1_0,
388 &dt_idops_func, "void(@, ...)" },
389 { "this", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
390 &dt_idops_type, "void" },
391 { "tid", DT_IDENT_SCALAR, 0, DIF_VAR_TID, DT_ATTR_STABCMN, DT_VERS_1_0,
392 &dt_idops_type, "id_t" },
393 { "timestamp", DT_IDENT_SCALAR, 0, DIF_VAR_TIMESTAMP,
394 DT_ATTR_STABCMN, DT_VERS_1_0,
395 &dt_idops_type, "uint64_t" },
396 { "tolower", DT_IDENT_FUNC, 0, DIF_SUBR_TOLOWER, DT_ATTR_STABCMN, DT_VERS_1_8,
397 &dt_idops_func, "string(const char *)" },
398 { "toupper", DT_IDENT_FUNC, 0, DIF_SUBR_TOUPPER, DT_ATTR_STABCMN, DT_VERS_1_8,
399 &dt_idops_func, "string(const char *)" },
400 { "trace", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACE, DT_ATTR_STABCMN, DT_VERS_1_0,
401 &dt_idops_func, "void(@)" },
402 { "tracemem", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACEMEM,

new/usr/src/lib/libdtrace/common/dt_open.c 6

403 DT_ATTR_STABCMN, DT_VERS_1_0,
404 &dt_idops_func, "void(@, size_t, ...)" },
405 { "trunc", DT_IDENT_ACTFUNC, 0, DT_ACT_TRUNC, DT_ATTR_STABCMN,
406 DT_VERS_1_0, &dt_idops_func, "void(...)" },
407 { "uaddr", DT_IDENT_ACTFUNC, 0, DT_ACT_UADDR, DT_ATTR_STABCMN,
408 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
409 { "ucaller", DT_IDENT_SCALAR, 0, DIF_VAR_UCALLER, DT_ATTR_STABCMN,
410 DT_VERS_1_2, &dt_idops_type, "uint64_t" },
411 { "ufunc", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
412 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
413 { "uid", DT_IDENT_SCALAR, 0, DIF_VAR_UID, DT_ATTR_STABCMN, DT_VERS_1_0,
414 &dt_idops_type, "uid_t" },
415 { "umod", DT_IDENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR_STABCMN,
416 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
417 { "uregs", DT_IDENT_ARRAY, 0, DIF_VAR_UREGS, DT_ATTR_STABCMN, DT_VERS_1_0,
418 &dt_idops_regs, NULL },
419 { "ustack", DT_IDENT_ACTFUNC, 0, DT_ACT_USTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
420 &dt_idops_func, "stack(...)" },
421 { "ustackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_USTACKDEPTH,
422 DT_ATTR_STABCMN, DT_VERS_1_2,
423 &dt_idops_type, "uint32_t" },
424 { "usym", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
425 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
426 { "vmregs", DT_IDENT_ARRAY, 0, DIF_VAR_VMREGS, DT_ATTR_STABCMN, DT_VERS_1_7,
427 &dt_idops_regs, NULL },
428 { "vtimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_VTIMESTAMP,
429 DT_ATTR_STABCMN, DT_VERS_1_0,
430 &dt_idops_type, "uint64_t" },
431 { "walltimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_WALLTIMESTAMP,
432 DT_ATTR_STABCMN, DT_VERS_1_0,
433 &dt_idops_type, "int64_t" },
434 { "zonename", DT_IDENT_SCALAR, 0, DIF_VAR_ZONENAME,
435 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
436 { NULL, 0, 0, 0, { 0, 0, 0 }, 0, NULL, NULL }
437 };

439 /*
440 * Tables of ILP32 intrinsic integer and floating-point type templates to use
441 * to populate the dynamic "C" CTF type container.
442 */
443 static const dt_intrinsic_t _dtrace_intrinsics_32[] = {
444 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
445 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
446 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
447 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
448 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
449 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
450 { "long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
451 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
452 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
453 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
454 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
455 { "signed long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
456 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
457 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
458 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
459 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
460 { "unsigned long", { 0, 0, 32 }, CTF_K_INTEGER },
461 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
462 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
463 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
464 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
465 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
466 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
467 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
468 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },

new/usr/src/lib/libdtrace/common/dt_open.c 7

469 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
470 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
471 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
472 { NULL, { 0, 0, 0 }, 0 }
473 };

475 /*
476 * Tables of LP64 intrinsic integer and floating-point type templates to use
477 * to populate the dynamic "C" CTF type container.
478 */
479 static const dt_intrinsic_t _dtrace_intrinsics_64[] = {
480 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
481 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
482 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
483 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
484 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
485 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
486 { "long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
487 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
488 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
489 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
490 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
491 { "signed long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
492 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
493 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
494 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
495 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
496 { "unsigned long", { 0, 0, 64 }, CTF_K_INTEGER },
497 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
498 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
499 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
500 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
501 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
502 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
503 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
504 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
505 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
506 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
507 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
508 { NULL, { 0, 0, 0 }, 0 }
509 };

511 /*
512 * Tables of ILP32 typedefs to use to populate the dynamic "D" CTF container.
513 * These aliases ensure that D definitions can use typical <sys/types.h> names.
514 */
515 static const dt_typedef_t _dtrace_typedefs_32[] = {
516 { "char", "int8_t" },
517 { "short", "int16_t" },
518 { "int", "int32_t" },
519 { "long long", "int64_t" },
520 { "int", "intptr_t" },
521 { "int", "ssize_t" },
522 { "unsigned char", "uint8_t" },
523 { "unsigned short", "uint16_t" },
524 { "unsigned", "uint32_t" },
525 { "unsigned long long", "uint64_t" },
526 { "unsigned char", "uchar_t" },
527 { "unsigned short", "ushort_t" },
528 { "unsigned", "uint_t" },
529 { "unsigned long", "ulong_t" },
530 { "unsigned long long", "u_longlong_t" },
531 { "int", "ptrdiff_t" },
532 { "unsigned", "uintptr_t" },
533 { "unsigned", "size_t" },
534 { "long", "id_t" },

new/usr/src/lib/libdtrace/common/dt_open.c 8

535 { "long", "pid_t" },
536 { NULL, NULL }
537 };

539 /*
540 * Tables of LP64 typedefs to use to populate the dynamic "D" CTF container.
541 * These aliases ensure that D definitions can use typical <sys/types.h> names.
542 */
543 static const dt_typedef_t _dtrace_typedefs_64[] = {
544 { "char", "int8_t" },
545 { "short", "int16_t" },
546 { "int", "int32_t" },
547 { "long", "int64_t" },
548 { "long", "intptr_t" },
549 { "long", "ssize_t" },
550 { "unsigned char", "uint8_t" },
551 { "unsigned short", "uint16_t" },
552 { "unsigned", "uint32_t" },
553 { "unsigned long", "uint64_t" },
554 { "unsigned char", "uchar_t" },
555 { "unsigned short", "ushort_t" },
556 { "unsigned", "uint_t" },
557 { "unsigned long", "ulong_t" },
558 { "unsigned long long", "u_longlong_t" },
559 { "long", "ptrdiff_t" },
560 { "unsigned long", "uintptr_t" },
561 { "unsigned long", "size_t" },
562 { "int", "id_t" },
563 { "int", "pid_t" },
564 { NULL, NULL }
565 };

567 /*
568 * Tables of ILP32 integer type templates used to populate the dtp->dt_ints[]
569 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
570 */
571 static const dt_intdesc_t _dtrace_ints_32[] = {
572 { "int", NULL, CTF_ERR, 0x7fffffffULL },
573 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
574 { "long", NULL, CTF_ERR, 0x7fffffffULL },
575 { "unsigned long", NULL, CTF_ERR, 0xffffffffULL },
576 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
577 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
578 };

580 /*
581 * Tables of LP64 integer type templates used to populate the dtp->dt_ints[]
582 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
583 */
584 static const dt_intdesc_t _dtrace_ints_64[] = {
585 { "int", NULL, CTF_ERR, 0x7fffffffULL },
586 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
587 { "long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
588 { "unsigned long", NULL, CTF_ERR, 0xffffffffffffffffULL },
589 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
590 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
591 };

593 /*
594 * Table of macro variable templates used to populate the macro identifier hash
595 * when a new dtrace client open occurs. Values are set by dtrace_update().
596 */
597 static const dt_ident_t _dtrace_macros[] = {
598 { "egid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
599 { "euid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
600 { "gid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },

new/usr/src/lib/libdtrace/common/dt_open.c 9

601 { "pid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
602 { "pgid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
603 { "ppid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
604 { "projid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
605 { "sid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
606 { "taskid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
607 { "target", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
608 { "uid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
609 { NULL, 0, 0, 0, { 0, 0, 0 }, 0 }
610 };

612 /*
613 * Hard-wired definition string to be compiled and cached every time a new
614 * DTrace library handle is initialized. This string should only be used to
615 * contain definitions that should be present regardless of DTRACE_O_NOLIBS.
616 */
617 static const char _dtrace_hardwire[] = "\
618 inline long NULL = 0; \n\
619 #pragma D binding \"1.0\" NULL\n\
620 ";

622 /*
623 * Default DTrace configuration to use when opening libdtrace DTRACE_O_NODEV.
624 * If DTRACE_O_NODEV is not set, we load the configuration from the kernel.
625 * The use of CTF_MODEL_NATIVE is more subtle than it might appear: we are
626 * relying on the fact that when running dtrace(1M), isaexec will invoke the
627 * binary with the same bitness as the kernel, which is what we want by default
628 * when generating our DIF. The user can override the choice using oflags.
629 */
630 static const dtrace_conf_t _dtrace_conf = {
631 DIF_VERSION, /* dtc_difversion */
632 DIF_DIR_NREGS, /* dtc_difintregs */
633 DIF_DTR_NREGS, /* dtc_diftupregs */
634 CTF_MODEL_NATIVE /* dtc_ctfmodel */
635 };

637 const dtrace_attribute_t _dtrace_maxattr = {
638 DTRACE_STABILITY_MAX,
639 DTRACE_STABILITY_MAX,
640 DTRACE_CLASS_MAX
641 };

643 const dtrace_attribute_t _dtrace_defattr = {
644 DTRACE_STABILITY_STABLE,
645 DTRACE_STABILITY_STABLE,
646 DTRACE_CLASS_COMMON
647 };

649 const dtrace_attribute_t _dtrace_symattr = {
650 DTRACE_STABILITY_PRIVATE,
651 DTRACE_STABILITY_PRIVATE,
652 DTRACE_CLASS_UNKNOWN
653 };

655 const dtrace_attribute_t _dtrace_typattr = {
656 DTRACE_STABILITY_PRIVATE,
657 DTRACE_STABILITY_PRIVATE,
658 DTRACE_CLASS_UNKNOWN
659 };

661 const dtrace_attribute_t _dtrace_prvattr = {
662 DTRACE_STABILITY_PRIVATE,
663 DTRACE_STABILITY_PRIVATE,
664 DTRACE_CLASS_UNKNOWN
665 };

new/usr/src/lib/libdtrace/common/dt_open.c 10

667 const dtrace_pattr_t _dtrace_prvdesc = {
668 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
669 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
670 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
671 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
672 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
673 };

675 const char *_dtrace_defcpp = "/usr/ccs/lib/cpp"; /* default cpp(1) to invoke */
676 const char *_dtrace_defld = "/usr/ccs/bin/ld"; /* default ld(1) to invoke */

678 const char *_dtrace_libdir = "/usr/lib/dtrace"; /* default library directory */
679 const char *_dtrace_provdir = "/dev/dtrace/provider"; /* provider directory */

681 int _dtrace_strbuckets = 211; /* default number of hash buckets (prime) */
682 int _dtrace_intbuckets = 256; /* default number of integer buckets (Pof2) */
683 uint_t _dtrace_strsize = 256; /* default size of string intrinsic type */
684 uint_t _dtrace_stkindent = 14; /* default whitespace indent for stack/ustack */
685 uint_t _dtrace_pidbuckets = 64; /* default number of pid hash buckets */
686 uint_t _dtrace_pidlrulim = 8; /* default number of pid handles to cache */
687 size_t _dtrace_bufsize = 512; /* default dt_buf_create() size */
688 int _dtrace_argmax = 32; /* default maximum number of probe arguments */

690 int _dtrace_debug = 0; /* debug messages enabled (off) */
691 const char *const _dtrace_version = DT_VERS_STRING; /* API version string */
692 int _dtrace_rdvers = RD_VERSION; /* rtld_db feature version */

694 typedef struct dt_fdlist {
695 int *df_fds; /* array of provider driver file descriptors */
696 uint_t df_ents; /* number of valid elements in df_fds[] */
697 uint_t df_size; /* size of df_fds[] */
698 } dt_fdlist_t;

700 #pragma init(_dtrace_init)
701 void
702 _dtrace_init(void)
703 {
704 _dtrace_debug = getenv("DTRACE_DEBUG") != NULL;

706 for (; _dtrace_rdvers > 0; _dtrace_rdvers--) {
707 if (rd_init(_dtrace_rdvers) == RD_OK)
708 break;
709 }
710 }

712 static dtrace_hdl_t *
713 set_open_errno(dtrace_hdl_t *dtp, int *errp, int err)
714 {
715 if (dtp != NULL)
716 dtrace_close(dtp);
717 if (errp != NULL)
718 *errp = err;
719 return (NULL);
720 }

722 static void
723 dt_provmod_open(dt_provmod_t **provmod, dt_fdlist_t *dfp)
724 {
725 dt_provmod_t *prov;
726 char path[PATH_MAX];
727 struct dirent *dp, *ep;
728 DIR *dirp;
729 int fd;

731 if ((dirp = opendir(_dtrace_provdir)) == NULL)
732 return; /* failed to open directory; just skip it */

new/usr/src/lib/libdtrace/common/dt_open.c 11

734 ep = alloca(sizeof (struct dirent) + PATH_MAX + 1);
735 bzero(ep, sizeof (struct dirent) + PATH_MAX + 1);

737 while (readdir_r(dirp, ep, &dp) == 0 && dp != NULL) {
738 if (dp->d_name[0] == ’.’)
739 continue; /* skip "." and ".." */

741 if (dfp->df_ents == dfp->df_size) {
742 uint_t size = dfp->df_size ? dfp->df_size * 2 : 16;
743 int *fds = realloc(dfp->df_fds, size * sizeof (int));

745 if (fds == NULL)
746 break; /* skip the rest of this directory */

748 dfp->df_fds = fds;
749 dfp->df_size = size;
750 }

752 (void) snprintf(path, sizeof (path), "%s/%s",
753 _dtrace_provdir, dp->d_name);

755 if ((fd = open(path, O_RDONLY)) == -1)
756 continue; /* failed to open driver; just skip it */

758 if (((prov = malloc(sizeof (dt_provmod_t))) == NULL) ||
759 (prov->dp_name = malloc(strlen(dp->d_name) + 1)) == NULL) {
760 free(prov);
761 (void) close(fd);
762 break;
763 }

765 (void) strcpy(prov->dp_name, dp->d_name);
766 prov->dp_next = *provmod;
767 *provmod = prov;

769 dt_dprintf("opened provider %s\n", dp->d_name);
770 dfp->df_fds[dfp->df_ents++] = fd;
771 }

773 (void) closedir(dirp);
774 }

776 static void
777 dt_provmod_destroy(dt_provmod_t **provmod)
778 {
779 dt_provmod_t *next, *current;

781 for (current = *provmod; current != NULL; current = next) {
782 next = current->dp_next;
783 free(current->dp_name);
784 free(current);
785 }

787 *provmod = NULL;
788 }

790 static const char *
791 dt_get_sysinfo(int cmd, char *buf, size_t len)
792 {
793 ssize_t rv = sysinfo(cmd, buf, len);
794 char *p = buf;

796 if (rv < 0 || rv > len)
797 (void) snprintf(buf, len, "%s", "Unknown");

new/usr/src/lib/libdtrace/common/dt_open.c 12

799 while ((p = strchr(p, ’.’)) != NULL)
800 *p++ = ’_’;

802 return (buf);
803 }

805 static dtrace_hdl_t *
806 dt_vopen(int version, int flags, int *errp,
807 const dtrace_vector_t *vector, void *arg)
808 {
809 dtrace_hdl_t *dtp = NULL;
810 int dtfd = -1, ftfd = -1, fterr = 0;
811 dtrace_prog_t *pgp;
812 dt_module_t *dmp;
813 dt_provmod_t *provmod = NULL;
814 int i, err;
815 struct rlimit rl;

817 const dt_intrinsic_t *dinp;
818 const dt_typedef_t *dtyp;
819 const dt_ident_t *idp;

821 dtrace_typeinfo_t dtt;
822 ctf_funcinfo_t ctc;
823 ctf_arinfo_t ctr;

825 dt_fdlist_t df = { NULL, 0, 0 };

827 char isadef[32], utsdef[32];
828 char s1[64], s2[64];

830 if (version <= 0)
831 return (set_open_errno(dtp, errp, EINVAL));

833 if (version > DTRACE_VERSION)
834 return (set_open_errno(dtp, errp, EDT_VERSION));

836 if (version < DTRACE_VERSION) {
837 /*
838 * Currently, increasing the library version number is used to
839 * denote a binary incompatible change. That is, a consumer
840 * of the library cannot run on a version of the library with
841 * a higher DTRACE_VERSION number than the consumer compiled
842 * against. Once the library API has been committed to,
843 * backwards binary compatibility will be required; at that
844 * time, this check should change to return EDT_OVERSION only
845 * if the specified version number is less than the version
846 * number at the time of interface commitment.
847 */
848 return (set_open_errno(dtp, errp, EDT_OVERSION));
849 }

851 if (flags & ~DTRACE_O_MASK)
852 return (set_open_errno(dtp, errp, EINVAL));

854 if ((flags & DTRACE_O_LP64) && (flags & DTRACE_O_ILP32))
855 return (set_open_errno(dtp, errp, EINVAL));

857 if (vector == NULL && arg != NULL)
858 return (set_open_errno(dtp, errp, EINVAL));

860 if (elf_version(EV_CURRENT) == EV_NONE)
861 return (set_open_errno(dtp, errp, EDT_ELFVERSION));

863 if (vector != NULL || (flags & DTRACE_O_NODEV))
864 goto alloc; /* do not attempt to open dtrace device */

new/usr/src/lib/libdtrace/common/dt_open.c 13

866 /*
867 * Before we get going, crank our limit on file descriptors up to the
868 * hard limit. This is to allow for the fact that libproc keeps file
869 * descriptors to objects open for the lifetime of the proc handle;
870 * without raising our hard limit, we would have an acceptably small
871 * bound on the number of processes that we could concurrently
872 * instrument with the pid provider.
873 */
874 if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
875 rl.rlim_cur = rl.rlim_max;
876 (void) setrlimit(RLIMIT_NOFILE, &rl);
877 }

879 /*
880 * Get the device path of each of the providers. We hold them open
881 * in the df.df_fds list until we open the DTrace driver itself,
882 * allowing us to see all of the probes provided on this system. Once
883 * we have the DTrace driver open, we can safely close all the providers
884 * now that they have registered with the framework.
885 */
886 dt_provmod_open(&provmod, &df);

888 dtfd = open("/dev/dtrace/dtrace", O_RDWR);
889 err = errno; /* save errno from opening dtfd */

891 ftfd = open("/dev/dtrace/provider/fasttrap", O_RDWR);
892 fterr = ftfd == -1 ? errno : 0; /* save errno from open ftfd */

894 while (df.df_ents-- != 0)
895 (void) close(df.df_fds[df.df_ents]);

897 free(df.df_fds);

899 /*
900 * If we failed to open the dtrace device, fail dtrace_open().
901 * We convert some kernel errnos to custom libdtrace errnos to
902 * improve the resulting message from the usual strerror().
903 */
904 if (dtfd == -1) {
905 dt_provmod_destroy(&provmod);
906 switch (err) {
907 case ENOENT:
908 err = EDT_NOENT;
909 break;
910 case EBUSY:
911 err = EDT_BUSY;
912 break;
913 case EACCES:
914 err = EDT_ACCESS;
915 break;
916 }
917 return (set_open_errno(dtp, errp, err));
918 }

920 (void) fcntl(dtfd, F_SETFD, FD_CLOEXEC);
921 (void) fcntl(ftfd, F_SETFD, FD_CLOEXEC);

923 alloc:
924 if ((dtp = malloc(sizeof (dtrace_hdl_t))) == NULL)
925 return (set_open_errno(dtp, errp, EDT_NOMEM));

927 bzero(dtp, sizeof (dtrace_hdl_t));
928 dtp->dt_oflags = flags;
929 dtp->dt_prcmode = DT_PROC_STOP_PREINIT;
930 dtp->dt_linkmode = DT_LINK_KERNEL;

new/usr/src/lib/libdtrace/common/dt_open.c 14

931 dtp->dt_linktype = DT_LTYP_ELF;
932 dtp->dt_xlatemode = DT_XL_STATIC;
933 dtp->dt_stdcmode = DT_STDC_XA;
934 dtp->dt_version = version;
935 dtp->dt_fd = dtfd;
936 dtp->dt_ftfd = ftfd;
937 dtp->dt_fterr = fterr;
938 dtp->dt_cdefs_fd = -1;
939 dtp->dt_ddefs_fd = -1;
940 dtp->dt_stdout_fd = -1;
941 dtp->dt_modbuckets = _dtrace_strbuckets;
942 dtp->dt_mods = calloc(dtp->dt_modbuckets, sizeof (dt_module_t *));
943 dtp->dt_provbuckets = _dtrace_strbuckets;
944 dtp->dt_provs = calloc(dtp->dt_provbuckets, sizeof (dt_provider_t *));
945 dt_proc_init(dtp);
946 dtp->dt_vmax = DT_VERS_LATEST;
947 dtp->dt_cpp_path = strdup(_dtrace_defcpp);
948 dtp->dt_cpp_argv = malloc(sizeof (char *));
949 dtp->dt_cpp_argc = 1;
950 dtp->dt_cpp_args = 1;
951 dtp->dt_ld_path = strdup(_dtrace_defld);
952 dtp->dt_provmod = provmod;
953 dtp->dt_vector = vector;
954 dtp->dt_varg = arg;
955 dt_dof_init(dtp);
956 (void) uname(&dtp->dt_uts);

958 if (dtp->dt_mods == NULL || dtp->dt_provs == NULL ||
959 dtp->dt_procs == NULL || dtp->dt_proc_env == NULL ||
960 dtp->dt_ld_path == NULL || dtp->dt_cpp_path == NULL ||
961 dtp->dt_cpp_argv == NULL)
962 return (set_open_errno(dtp, errp, EDT_NOMEM));

964 for (i = 0; i < DTRACEOPT_MAX; i++)
965 dtp->dt_options[i] = DTRACEOPT_UNSET;

967 dtp->dt_cpp_argv[0] = (char *)strbasename(dtp->dt_cpp_path);

969 (void) snprintf(isadef, sizeof (isadef), "-D__SUNW_D_%u",
970 (uint_t)(sizeof (void *) * NBBY));

972 (void) snprintf(utsdef, sizeof (utsdef), "-D__%s_%s",
973 dt_get_sysinfo(SI_SYSNAME, s1, sizeof (s1)),
974 dt_get_sysinfo(SI_RELEASE, s2, sizeof (s2)));

976 if (dt_cpp_add_arg(dtp, "-D__sun") == NULL ||
977 dt_cpp_add_arg(dtp, "-D__unix") == NULL ||
978 dt_cpp_add_arg(dtp, "-D__SVR4") == NULL ||
979 dt_cpp_add_arg(dtp, "-D__SUNW_D=1") == NULL ||
980 dt_cpp_add_arg(dtp, isadef) == NULL ||
981 dt_cpp_add_arg(dtp, utsdef) == NULL)
982 return (set_open_errno(dtp, errp, EDT_NOMEM));

984 if (flags & DTRACE_O_NODEV)
985 bcopy(&_dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf));
986 else if (dt_ioctl(dtp, DTRACEIOC_CONF, &dtp->dt_conf) != 0)
987 return (set_open_errno(dtp, errp, errno));

989 if (flags & DTRACE_O_LP64)
990 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_LP64;
991 else if (flags & DTRACE_O_ILP32)
992 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_ILP32;

994 #ifdef __sparc
995 /*
996 * On SPARC systems, __sparc is always defined for <sys/isa_defs.h>

new/usr/src/lib/libdtrace/common/dt_open.c 15

997 * and __sparcv9 is defined if we are doing a 64-bit compile.
998 */
999 if (dt_cpp_add_arg(dtp, "-D__sparc") == NULL)
1000 return (set_open_errno(dtp, errp, EDT_NOMEM));

1002 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64 &&
1003 dt_cpp_add_arg(dtp, "-D__sparcv9") == NULL)
1004 return (set_open_errno(dtp, errp, EDT_NOMEM));
1005 #endif

1007 #ifdef __x86
1008 /*
1009 * On x86 systems, __i386 is defined for <sys/isa_defs.h> for 32-bit
1010 * compiles and __amd64 is defined for 64-bit compiles. Unlike SPARC,
1011 * they are defined exclusive of one another (see PSARC 2004/619).
1012 */
1013 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64) {
1014 if (dt_cpp_add_arg(dtp, "-D__amd64") == NULL)
1015 return (set_open_errno(dtp, errp, EDT_NOMEM));
1016 } else {
1017 if (dt_cpp_add_arg(dtp, "-D__i386") == NULL)
1018 return (set_open_errno(dtp, errp, EDT_NOMEM));
1019 }
1020 #endif

1022 if (dtp->dt_conf.dtc_difversion < DIF_VERSION)
1023 return (set_open_errno(dtp, errp, EDT_DIFVERS));

1025 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32)
1026 bcopy(_dtrace_ints_32, dtp->dt_ints, sizeof (_dtrace_ints_32));
1027 else
1028 bcopy(_dtrace_ints_64, dtp->dt_ints, sizeof (_dtrace_ints_64));

1030 dtp->dt_macros = dt_idhash_create("macro", NULL, 0, UINT_MAX);
1031 dtp->dt_aggs = dt_idhash_create("aggregation", NULL,
1032 DTRACE_AGGVARIDNONE + 1, UINT_MAX);

1034 dtp->dt_globals = dt_idhash_create("global", _dtrace_globals,
1035 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1037 dtp->dt_tls = dt_idhash_create("thread local", NULL,
1038 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1040 if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL ||
1041 dtp->dt_globals == NULL || dtp->dt_tls == NULL)
1042 return (set_open_errno(dtp, errp, EDT_NOMEM));

1044 /*
1045 * Populate the dt_macros identifier hash table by hand: we can’t use
1046 * the dt_idhash_populate() mechanism because we’re not yet compiling
1047 * and dtrace_update() needs to immediately reference these idents.
1048 */
1049 for (idp = _dtrace_macros; idp->di_name != NULL; idp++) {
1050 if (dt_idhash_insert(dtp->dt_macros, idp->di_name,
1051 idp->di_kind, idp->di_flags, idp->di_id, idp->di_attr,
1052 idp->di_vers, idp->di_ops ? idp->di_ops : &dt_idops_thaw,
1053 idp->di_iarg, 0) == NULL)
1054 return (set_open_errno(dtp, errp, EDT_NOMEM));
1055 }

1057 /*
1058 * Update the module list using /system/object and load the values for
1059 * the macro variable definitions according to the current process.
1060 */
1061 dtrace_update(dtp);

new/usr/src/lib/libdtrace/common/dt_open.c 16

1063 /*
1064 * Select the intrinsics and typedefs we want based on the data model.
1065 * The intrinsics are under "C". The typedefs are added under "D".
1066 */
1067 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32) {
1068 dinp = _dtrace_intrinsics_32;
1069 dtyp = _dtrace_typedefs_32;
1070 } else {
1071 dinp = _dtrace_intrinsics_64;
1072 dtyp = _dtrace_typedefs_64;
1073 }

1075 /*
1076 * Create a dynamic CTF container under the "C" scope for intrinsic
1077 * types and types defined in ANSI-C header files that are included.
1078 */
1079 if ((dmp = dtp->dt_cdefs = dt_module_create(dtp, "C")) == NULL)
1080 return (set_open_errno(dtp, errp, EDT_NOMEM));

1082 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1083 return (set_open_errno(dtp, errp, EDT_CTF));

1085 dt_dprintf("created CTF container for %s (%p)\n",
1086 dmp->dm_name, (void *)dmp->dm_ctfp);

1088 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1089 ctf_setspecific(dmp->dm_ctfp, dmp);

1091 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1092 dmp->dm_modid = -1; /* no module ID */

1094 /*
1095 * Fill the dynamic "C" CTF container with all of the intrinsic
1096 * integer and floating-point types appropriate for this data model.
1097 */
1098 for (; dinp->din_name != NULL; dinp++) {
1099 if (dinp->din_kind == CTF_K_INTEGER) {
1100 err = ctf_add_integer(dmp->dm_ctfp, CTF_ADD_ROOT,
1101 dinp->din_name, &dinp->din_data);
1102 } else {
1103 err = ctf_add_float(dmp->dm_ctfp, CTF_ADD_ROOT,
1104 dinp->din_name, &dinp->din_data);
1105 }

1107 if (err == CTF_ERR) {
1108 dt_dprintf("failed to add %s to C container: %s\n",
1109 dinp->din_name, ctf_errmsg(
1110 ctf_errno(dmp->dm_ctfp)));
1111 return (set_open_errno(dtp, errp, EDT_CTF));
1112 }
1113 }

1115 if (ctf_update(dmp->dm_ctfp) != 0) {
1116 dt_dprintf("failed to update C container: %s\n",
1117 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1118 return (set_open_errno(dtp, errp, EDT_CTF));
1119 }

1121 /*
1122 * Add intrinsic pointer types that are needed to initialize printf
1123 * format dictionary types (see table in dt_printf.c).
1124 */
1125 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1126 ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1128 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,

new/usr/src/lib/libdtrace/common/dt_open.c 17

1129 ctf_lookup_by_name(dmp->dm_ctfp, "char"));

1131 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1132 ctf_lookup_by_name(dmp->dm_ctfp, "int"));

1134 if (ctf_update(dmp->dm_ctfp) != 0) {
1135 dt_dprintf("failed to update C container: %s\n",
1136 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1137 return (set_open_errno(dtp, errp, EDT_CTF));
1138 }

1140 /*
1141 * Create a dynamic CTF container under the "D" scope for types that
1142 * are defined by the D program itself or on-the-fly by the D compiler.
1143 * The "D" CTF container is a child of the "C" CTF container.
1144 */
1145 if ((dmp = dtp->dt_ddefs = dt_module_create(dtp, "D")) == NULL)
1146 return (set_open_errno(dtp, errp, EDT_NOMEM));

1148 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1149 return (set_open_errno(dtp, errp, EDT_CTF));

1151 dt_dprintf("created CTF container for %s (%p)\n",
1152 dmp->dm_name, (void *)dmp->dm_ctfp);

1154 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1155 ctf_setspecific(dmp->dm_ctfp, dmp);

1157 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1158 dmp->dm_modid = -1; /* no module ID */

1160 if (ctf_import(dmp->dm_ctfp, dtp->dt_cdefs->dm_ctfp) == CTF_ERR) {
1161 dt_dprintf("failed to import D parent container: %s\n",
1162 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1163 return (set_open_errno(dtp, errp, EDT_CTF));
1164 }

1166 /*
1167 * Fill the dynamic "D" CTF container with all of the built-in typedefs
1168 * that we need to use for our D variable and function definitions.
1169 * This ensures that basic inttypes.h names are always available to us.
1170 */
1171 for (; dtyp->dty_src != NULL; dtyp++) {
1172 if (ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1173 dtyp->dty_dst, ctf_lookup_by_name(dmp->dm_ctfp,
1174 dtyp->dty_src)) == CTF_ERR) {
1175 dt_dprintf("failed to add typedef %s %s to D "
1176 "container: %s", dtyp->dty_src, dtyp->dty_dst,
1177 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1178 return (set_open_errno(dtp, errp, EDT_CTF));
1179 }
1180 }

1182 /*
1183 * Insert a CTF ID corresponding to a pointer to a type of kind
1184 * CTF_K_FUNCTION we can use in the compiler for function pointers.
1185 * CTF treats all function pointers as "int (*)()" so we only need one.
1186 */
1187 ctc.ctc_return = ctf_lookup_by_name(dmp->dm_ctfp, "int");
1188 ctc.ctc_argc = 0;
1189 ctc.ctc_flags = 0;

1191 dtp->dt_type_func = ctf_add_function(dmp->dm_ctfp,
1192 CTF_ADD_ROOT, &ctc, NULL);

1194 dtp->dt_type_fptr = ctf_add_pointer(dmp->dm_ctfp,

new/usr/src/lib/libdtrace/common/dt_open.c 18

1195 CTF_ADD_ROOT, dtp->dt_type_func);

1197 /*
1198 * We also insert CTF definitions for the special D intrinsic types
1199 * string and <DYN> into the D container. The string type is added
1200 * as a typedef of char[n]. The <DYN> type is an alias for void.
1201 * We compare types to these special CTF ids throughout the compiler.
1202 */
1203 ctr.ctr_contents = ctf_lookup_by_name(dmp->dm_ctfp, "char");
1204 ctr.ctr_index = ctf_lookup_by_name(dmp->dm_ctfp, "long");
1205 ctr.ctr_nelems = _dtrace_strsize;

1207 dtp->dt_type_str = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1208 "string", ctf_add_array(dmp->dm_ctfp, CTF_ADD_ROOT, &ctr));

1210 dtp->dt_type_dyn = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1211 "<DYN>", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1213 dtp->dt_type_stack = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1214 "stack", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1216 dtp->dt_type_symaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1217 "_symaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1219 dtp->dt_type_usymaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1220 "_usymaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1222 if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_fptr == CTF_ERR ||
1223 dtp->dt_type_str == CTF_ERR || dtp->dt_type_dyn == CTF_ERR ||
1224 dtp->dt_type_stack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR ||
1225 dtp->dt_type_usymaddr == CTF_ERR) {
1226 dt_dprintf("failed to add intrinsic to D container: %s\n",
1227 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1228 return (set_open_errno(dtp, errp, EDT_CTF));
1229 }

1231 if (ctf_update(dmp->dm_ctfp) != 0) {
1232 dt_dprintf("failed update D container: %s\n",
1233 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1234 return (set_open_errno(dtp, errp, EDT_CTF));
1235 }

1237 /*
1238 * Initialize the integer description table used to convert integer
1239 * constants to the appropriate types. Refer to the comments above
1240 * dt_node_int() for a complete description of how this table is used.
1241 */
1242 for (i = 0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) {
1243 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY,
1244 dtp->dt_ints[i].did_name, &dtt) != 0) {
1245 dt_dprintf("failed to lookup integer type %s: %s\n",
1246 dtp->dt_ints[i].did_name,
1247 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1248 return (set_open_errno(dtp, errp, dtp->dt_errno));
1249 }
1250 dtp->dt_ints[i].did_ctfp = dtt.dtt_ctfp;
1251 dtp->dt_ints[i].did_type = dtt.dtt_type;
1252 }

1254 /*
1255 * Now that we’ve created the "C" and "D" containers, move them to the
1256 * start of the module list so that these types and symbols are found
1257 * first (for stability) when iterating through the module list.
1258 */
1259 dt_list_delete(&dtp->dt_modlist, dtp->dt_ddefs);
1260 dt_list_prepend(&dtp->dt_modlist, dtp->dt_ddefs);

new/usr/src/lib/libdtrace/common/dt_open.c 19

1262 dt_list_delete(&dtp->dt_modlist, dtp->dt_cdefs);
1263 dt_list_prepend(&dtp->dt_modlist, dtp->dt_cdefs);

1265 if (dt_pfdict_create(dtp) == -1)
1266 return (set_open_errno(dtp, errp, dtp->dt_errno));

1268 /*
1269 * If we are opening libdtrace DTRACE_O_NODEV enable C_ZDEFS by default
1270 * because without /dev/dtrace open, we will not be able to load the
1271 * names and attributes of any providers or probes from the kernel.
1272 */
1273 if (flags & DTRACE_O_NODEV)
1274 dtp->dt_cflags |= DTRACE_C_ZDEFS;

1276 /*
1277 * Load hard-wired inlines into the definition cache by calling the
1278 * compiler on the raw definition string defined above.
1279 */
1280 if ((pgp = dtrace_program_strcompile(dtp, _dtrace_hardwire,
1281 DTRACE_PROBESPEC_NONE, DTRACE_C_EMPTY, 0, NULL)) == NULL) {
1282 dt_dprintf("failed to load hard-wired definitions: %s\n",
1283 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1284 return (set_open_errno(dtp, errp, EDT_HARDWIRE));
1285 }

1287 dt_program_destroy(dtp, pgp);

1289 /*
1290 * Set up the default DTrace library path. Once set, the next call to
1291 * dt_compile() will compile all the libraries. We intentionally defer
1292 * library processing to improve overhead for clients that don’t ever
1293 * compile, and to provide better error reporting (because the full
1294 * reporting of compiler errors requires dtrace_open() to succeed).
1295 */
1296 if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0)
1297 return (set_open_errno(dtp, errp, dtp->dt_errno));

1299 return (dtp);
1300 }

1302 dtrace_hdl_t *
1303 dtrace_open(int version, int flags, int *errp)
1304 {
1305 return (dt_vopen(version, flags, errp, NULL, NULL));
1306 }

1308 dtrace_hdl_t *
1309 dtrace_vopen(int version, int flags, int *errp,
1310 const dtrace_vector_t *vector, void *arg)
1311 {
1312 return (dt_vopen(version, flags, errp, vector, arg));
1313 }

1315 void
1316 dtrace_close(dtrace_hdl_t *dtp)
1317 {
1318 dt_ident_t *idp, *ndp;
1319 dt_module_t *dmp;
1320 dt_provider_t *pvp;
1321 dtrace_prog_t *pgp;
1322 dt_xlator_t *dxp;
1323 dt_dirpath_t *dirp;
1324 int i;

1326 if (dtp->dt_procs != NULL)

new/usr/src/lib/libdtrace/common/dt_open.c 20

1327 dt_proc_fini(dtp);

1329 while ((pgp = dt_list_next(&dtp->dt_programs)) != NULL)
1330 dt_program_destroy(dtp, pgp);

1332 while ((dxp = dt_list_next(&dtp->dt_xlators)) != NULL)
1333 dt_xlator_destroy(dtp, dxp);

1335 dt_free(dtp, dtp->dt_xlatormap);

1337 for (idp = dtp->dt_externs; idp != NULL; idp = ndp) {
1338 ndp = idp->di_next;
1339 dt_ident_destroy(idp);
1340 }

1342 if (dtp->dt_macros != NULL)
1343 dt_idhash_destroy(dtp->dt_macros);
1344 if (dtp->dt_aggs != NULL)
1345 dt_idhash_destroy(dtp->dt_aggs);
1346 if (dtp->dt_globals != NULL)
1347 dt_idhash_destroy(dtp->dt_globals);
1348 if (dtp->dt_tls != NULL)
1349 dt_idhash_destroy(dtp->dt_tls);

1351 while ((dmp = dt_list_next(&dtp->dt_modlist)) != NULL)
1352 dt_module_destroy(dtp, dmp);

1354 while ((pvp = dt_list_next(&dtp->dt_provlist)) != NULL)
1355 dt_provider_destroy(dtp, pvp);

1357 if (dtp->dt_fd != -1)
1358 (void) close(dtp->dt_fd);
1359 if (dtp->dt_ftfd != -1)
1360 (void) close(dtp->dt_ftfd);
1361 if (dtp->dt_cdefs_fd != -1)
1362 (void) close(dtp->dt_cdefs_fd);
1363 if (dtp->dt_ddefs_fd != -1)
1364 (void) close(dtp->dt_ddefs_fd);
1365 if (dtp->dt_stdout_fd != -1)
1366 (void) close(dtp->dt_stdout_fd);

1368 dt_epid_destroy(dtp);
1369 dt_aggid_destroy(dtp);
1370 dt_format_destroy(dtp);
1371 dt_strdata_destroy(dtp);
1372 dt_buffered_destroy(dtp);
1373 dt_aggregate_destroy(dtp);
1374 dt_pfdict_destroy(dtp);
1375 dt_provmod_destroy(&dtp->dt_provmod);
1376 dt_dof_fini(dtp);

1378 for (i = 1; i < dtp->dt_cpp_argc; i++)
1379 free(dtp->dt_cpp_argv[i]);

1381 while ((dirp = dt_list_next(&dtp->dt_lib_path)) != NULL) {
1382 dt_list_delete(&dtp->dt_lib_path, dirp);
1383 free(dirp->dir_path);
1384 free(dirp);
1385 }

1387 free(dtp->dt_cpp_argv);
1388 free(dtp->dt_cpp_path);
1389 free(dtp->dt_ld_path);

1391 free(dtp->dt_mods);
1392 free(dtp->dt_provs);

new/usr/src/lib/libdtrace/common/dt_open.c 21

1393 free(dtp);
1394 }

1396 int
1397 dtrace_provider_modules(dtrace_hdl_t *dtp, const char **mods, int nmods)
1398 {
1399 dt_provmod_t *prov;
1400 int i = 0;

1402 for (prov = dtp->dt_provmod; prov != NULL; prov = prov->dp_next, i++) {
1403 if (i < nmods)
1404 mods[i] = prov->dp_name;
1405 }

1407 return (i);
1408 }

1410 int
1411 dtrace_ctlfd(dtrace_hdl_t *dtp)
1412 {
1413 return (dtp->dt_fd);
1414 }

new/usr/src/lib/libdtrace/common/ip.d.in 1

**
 14492 Sat Apr 12 11:18:54 2014
new/usr/src/lib/libdtrace/common/ip.d.in
3903 DTrace SCTP Provider
**
______unchanged_portion_omitted_

171 /*
172 * void_ip_t is a void pointer to either an IPv4 or IPv6 header. It has
173 * its own type name so that a translator can be determined.
174 */
175 typedef uintptr_t void_ip_t;

177 /*
178 * __dtrace_ipsr_ill_t is used by the translator to take an ill_t plus an
179 * additional arg6 from the ip:::send and ip:::receive probes, and translate
179 * additional arg6 from the ip:::send and ip:::recieve probes, and translate
180 * them to an ifinfo_t.
181 */
182 typedef ill_t __dtrace_ipsr_ill_t;

184 /*
185 * __dtrace_tcp_void_ip_t is used by the translator to take either the
186 * non-NULL void_ip_t * passed in or, if it is NULL, uses arg3 (tcp_t *)
187 * from the tcp:::send and tcp:::receive probes to translate to an ipinfo_t.
187 * from the tcp:::send and tcp:::recieve probes to translate to an ipinfo_t.
188 * When no headers are available in the TCP fusion case for tcp:::send
189 * and tcp:::receive case, this allows us to present the consumer with header
190 * data based on the tcp_t * content in order to hide the implementation
191 * details of TCP fusion.
192 */
193 typedef void * __dtrace_tcp_void_ip_t;

195 #pragma D binding "1.5" translator
196 translator pktinfo_t < mblk_t *M > {
197 pkt_addr = NULL;
198 };

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/sctp.d.in 1

**
 3225 Sat Apr 12 11:18:54 2014
new/usr/src/lib/libdtrace/common/sctp.d.in
3903 DTrace SCTP Provider
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2013 David Hoeppner. All rights reserved.
14 */

16 #pragma D depends_on module unix
17 #pragma D depends_on provider sctp

19 /*
20 * SCTP connection states.
21 */
22 inline int32_t SCTP_STATE_IDLE = @SCTPS_IDLE@;
23 #pragma D binding "1.9.2" SCTP_STATE_IDLE
24 inline int32_t SCTP_STATE_BOUND = @SCTPS_BOUND@;
25 #pragma D binding "1.9.2" SCTP_STATE_BOUND
26 inline int32_t SCTP_STATE_LISTEN = @SCTPS_LISTEN@;
27 #pragma D binding "1.9.2" SCTP_STATE_LISTEN
28 inline int32_t SCTP_STATE_COOKIE_WAIT = @SCTPS_COOKIE_WAIT@;
29 #pragma D binding "1.9.2" SCTP_STATE_COOKIE_WAIT
30 inline int32_t SCTP_STATE_COOKIE_ECHOED = @SCTPS_COOKIE_ECHOED@;
31 #pragma D binding "1.9.2" SCTP_STATE_COOKIE_ECHOED
32 inline int32_t SCTP_STATE_ESTABLISHED = @SCTPS_ESTABLISHED@;
33 #pragma D binding "1.9.2" SCTP_STATE_ESTABLISHED
34 inline int32_t SCTP_STATE_SHUTDOWN_PENDING = @SCTPS_SHUTDOWN_PENDING@;
35 #pragma D binding "1.9.2" SCTP_STATE_SHUTDOWN_PENDING
36 inline int32_t SCTP_STATE_SHUTDOWN_SENT = @SCTPS_SHUTDOWN_SENT@;
37 #pragma D binding "1.9.2" SCTP_STATE_SHUTDOWN_SENT
38 inline int32_t SCTP_STATE_SHUTDOWN_RECEIVED = @SCTPS_SHUTDOWN_RECEIVED@;
39 #pragma D binding "1.9.2" SCTP_STATE_SHUTDOWN_RECEIVED
40 inline int32_t SCTP_STATE_SHUTDOWN_ACK_SENT = @SCTPS_SHUTDOWN_ACK_SENT@;
41 #pragma D binding "1.9.2" SCTP_STATE_SHUTDOWN_ACK_SENT

43 /*
44 * Convert a SCTP state value to a string.
45 */
46 inline string sctp_state_string[int32_t state] =
47 state == SCTP_STATE_IDLE ? "state-idle" :
48 state == SCTP_STATE_BOUND ? "state-bound" :
49 state == SCTP_STATE_LISTEN ? "state-listen" :
50 state == SCTP_STATE_COOKIE_WAIT ? "state-cookie-wait" :
51 state == SCTP_STATE_COOKIE_ECHOED ? "state-cookie-echoed" :
52 state == SCTP_STATE_ESTABLISHED ? "state-established" :
53 state == SCTP_STATE_SHUTDOWN_PENDING ? "state-shutdown-pending" :
54 state == SCTP_STATE_SHUTDOWN_SENT ? "state-shutdown-sent" :
55 state == SCTP_STATE_SHUTDOWN_RECEIVED ? "state-shutdown-received" :
56 state == SCTP_STATE_SHUTDOWN_ACK_SENT ? "state-shutdown-ack-sent" :
57 "<unknown>";
58 #pragma D binding "1.9.2" sctp_state_string

60 /*
61 * sctpinfo is the SCTP header fields.

new/usr/src/lib/libdtrace/common/sctp.d.in 2

62 */
63 typedef struct sctpinfo {
64 uint16_t sctp_sport; /* source port */
65 uint16_t sctp_dport; /* destination port */
66 uint32_t sctp_verify; /* verification tag */
67 uint32_t sctp_checksum; /* headers + data checksum */
68 sctp_chunk_hdr_t sctp_chunk_hdr;
69 sctp_hdr_t *sctp_hdr; /* raw SCTP header */
70 } sctpinfo_t;

72 /*
73 * sctpsinfo sctp state info.
74 */
75 typedef struct sctpsinfo {
76 string sctps_laddr; /* local address */
77 string sctps_raddr; /* remote address */
78 int32_t sctps_state; /* connection state */
79 } sctpsinfo_t;

81 #pragma D binding "1.9.2" translator
82 translator sctpinfo_t < sctp_hdr_t *S > {
83 sctp_sport = ntohs(S->sh_sport);
84 sctp_dport = ntohs(S->sh_dport);
85 sctp_verify = ntohl(S->sh_verf);
86 sctp_checksum = ntohl(S->sh_chksum);
87 sctp_hdr = S;
88 };
89 #endif /* ! codereview */

new/usr/src/lib/libdtrace/common/sctp.sed.in 1

**
 562 Sat Apr 12 11:18:55 2014
new/usr/src/lib/libdtrace/common/sctp.sed.in
3903 DTrace SCTP Provider
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2013 David Hoeppner. All rights reserved.
14 */

16 #include <netinet/sctp.h>

18 #define SED_REPLACE(x) s/#x/x/g

20 SED_REPLACE(SCTPS_IDLE)
21 #endif /* ! codereview */

new/usr/src/lib/libdtrace/common/tcp.d.in 1

**
 10644 Sat Apr 12 11:18:55 2014
new/usr/src/lib/libdtrace/common/tcp.d.in
3903 DTrace SCTP Provider
**
______unchanged_portion_omitted_

145 /*
146 * __dtrace_tcp_tcph_t is used by the tcpinfo_t * translator to take either
147 * the non-NULL tcph_t * passed in or, if it is NULL, uses arg3 (tcp_t *)
148 * from the tcp:::send and tcp:::receive probes and translates the tcp_t *
148 * from the tcp:::send and tcp:::recieve probes and translates the tcp_t *
149 * into the tcpinfo_t. When no headers are available - as is the case for
150 * TCP fusion tcp:::send and tcp:::receive - this allows us to present the
151 * consumer with header data based on tcp_t * content and hide TCP fusion
152 * implementation details.
153 */
154 typedef tcph_t * __dtrace_tcp_tcph_t;

156 #pragma D binding "1.6.3" translator
157 translator tcpinfo_t < tcph_t *T > {
158 tcp_sport = ntohs(*(uint16_t *)T->th_lport);
159 tcp_dport = ntohs(*(uint16_t *)T->th_fport);
160 tcp_seq = ntohl(*(uint32_t *)T->th_seq);
161 tcp_ack = ntohl(*(uint32_t *)T->th_ack);
162 tcp_offset = (*(uint8_t *)T->th_offset_and_rsrvd & 0xf0) >> 2;
163 tcp_flags = *(uint8_t *)T->th_flags;
164 tcp_window = ntohs(*(uint16_t *)T->th_win);
165 tcp_checksum = ntohs(*(uint16_t *)T->th_sum);
166 tcp_urgent = ntohs(*(uint16_t *)T->th_urp);
167 tcp_hdr = T;
168 };

______unchanged_portion_omitted_

new/usr/src/pkg/manifests/developer-dtrace.mf 1

**
 27077 Sat Apr 12 11:18:55 2014
new/usr/src/pkg/manifests/developer-dtrace.mf
3903 DTrace SCTP Provider
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # Copyright (c) 2012 by Delphix. All rights reserved.
28 #

30 set name=pkg.fmri value=pkg:/developer/dtrace@$(PKGVERS)
31 set name=pkg.description value="Dynamic Tracing (DTrace) Clients"
32 set name=pkg.summary value="DTrace Clients"
33 set name=info.classification \
34 value=org.opensolaris.category.2008:Development/System
35 set name=variant.arch value=$(ARCH)
36 dir path=usr group=sys
37 dir path=usr/demo
38 dir path=usr/demo/dtrace
39 dir path=usr/include
40 dir path=usr/include/sys
41 dir path=usr/lib
42 dir path=usr/lib/$(ARCH64)
43 dir path=usr/lib/devfsadm group=sys
44 dir path=usr/lib/devfsadm/linkmod group=sys
45 dir path=usr/lib/dtrace
46 dir path=usr/lib/dtrace/64
47 dir path=usr/lib/mdb group=sys
48 dir path=usr/lib/mdb/kvm group=sys
49 dir path=usr/lib/mdb/kvm/$(ARCH64) group=sys
50 dir path=usr/lib/mdb/raw group=sys
51 dir path=usr/lib/mdb/raw/$(ARCH64) group=sys
52 dir path=usr/sbin
53 dir path=usr/sbin/$(ARCH32)
54 dir path=usr/sbin/$(ARCH64)
55 dir path=usr/share
56 dir path=usr/share/lib
57 dir path=usr/share/lib/java group=sys
58 dir path=usr/share/lib/java/javadoc group=other
59 dir path=usr/share/lib/java/javadoc/dtrace group=other
60 dir path=usr/share/lib/java/javadoc/dtrace/api group=other
61 dir path=usr/share/lib/java/javadoc/dtrace/api/org group=other

new/usr/src/pkg/manifests/developer-dtrace.mf 2

62 dir path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris group=other
63 dir path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os group=other
64 dir path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace \
65 group=other
66 dir \
67 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
68 group=other
69 dir path=usr/share/lib/java/javadoc/dtrace/api/resources group=other
70 dir path=usr/share/lib/java/javadoc/dtrace/examples group=other
71 dir path=usr/share/lib/java/javadoc/dtrace/html group=other
72 dir path=usr/share/lib/java/javadoc/dtrace/images group=other
73 dir path=usr/share/man/man1m
74 dir path=usr/share/man/man3lib
75 file path=usr/demo/dtrace/applicat.d
76 file path=usr/demo/dtrace/badopen.d
77 file path=usr/demo/dtrace/begin.d
78 file path=usr/demo/dtrace/callout.d
79 file path=usr/demo/dtrace/clause.d
80 file path=usr/demo/dtrace/clear.d
81 file path=usr/demo/dtrace/countdown.d
82 file path=usr/demo/dtrace/counter.d
83 file path=usr/demo/dtrace/dateprof.d
84 file path=usr/demo/dtrace/delay.d
85 file path=usr/demo/dtrace/denorm.d
86 file path=usr/demo/dtrace/end.d
87 file path=usr/demo/dtrace/error.d
88 file path=usr/demo/dtrace/errorpath.d
89 file path=usr/demo/dtrace/find.d
90 file path=usr/demo/dtrace/firebird.d
91 file path=usr/demo/dtrace/hello.d
92 file path=usr/demo/dtrace/howlong.d
93 file path=usr/demo/dtrace/index.html
94 file path=usr/demo/dtrace/interp.d
95 file path=usr/demo/dtrace/interval.d
96 file path=usr/demo/dtrace/intr.d
97 file path=usr/demo/dtrace/iocpu.d
98 file path=usr/demo/dtrace/iosnoop.d
99 file path=usr/demo/dtrace/iothrough.d
100 file path=usr/demo/dtrace/iotime.d
101 file path=usr/demo/dtrace/ipio.d
102 file path=usr/demo/dtrace/ipproto.d
103 $(i386_ONLY)file path=usr/demo/dtrace/iprb.d
104 file path=usr/demo/dtrace/kstat.d
105 file path=usr/demo/dtrace/ksyms.d
106 file path=usr/demo/dtrace/libc.d
107 file path=usr/demo/dtrace/lquantize.d
108 file path=usr/demo/dtrace/lwptime.d
109 file path=usr/demo/dtrace/normalize.d
110 file path=usr/demo/dtrace/nscd.d
111 file path=usr/demo/dtrace/pri.d
112 file path=usr/demo/dtrace/printa.d
113 file path=usr/demo/dtrace/pritime.d
114 file path=usr/demo/dtrace/prof.d
115 file path=usr/demo/dtrace/profpri.d
116 file path=usr/demo/dtrace/progtime.d
117 file path=usr/demo/dtrace/putnext.d
118 file path=usr/demo/dtrace/qlen.d
119 file path=usr/demo/dtrace/qtime.d
120 file path=usr/demo/dtrace/renormalize.d
121 file path=usr/demo/dtrace/restest.d
122 file path=usr/demo/dtrace/ring.d
123 file path=usr/demo/dtrace/rtime.d
124 file path=usr/demo/dtrace/rwinfo.d
125 file path=usr/demo/dtrace/rwtime.d
126 file path=usr/demo/dtrace/sig.d
127 file path=usr/demo/dtrace/soffice.d

new/usr/src/pkg/manifests/developer-dtrace.mf 3

128 file path=usr/demo/dtrace/spec.d
129 file path=usr/demo/dtrace/specopen.d
130 file path=usr/demo/dtrace/ssd.d
131 file path=usr/demo/dtrace/syscall.d
132 file path=usr/demo/dtrace/tcp1stbyte.d
133 file path=usr/demo/dtrace/tcpbytes.d
134 file path=usr/demo/dtrace/tcpbytesstat.d
135 file path=usr/demo/dtrace/tcpconnlat.d
136 file path=usr/demo/dtrace/tcpio.d
137 file path=usr/demo/dtrace/tcpioflags.d
138 file path=usr/demo/dtrace/tcprst.d
139 file path=usr/demo/dtrace/tcpsnoop.d
140 file path=usr/demo/dtrace/tcpstate.d
141 file path=usr/demo/dtrace/tcptop.d
142 file path=usr/demo/dtrace/tick.d
143 file path=usr/demo/dtrace/ticktime.d
144 file path=usr/demo/dtrace/time.d
145 file path=usr/demo/dtrace/tracewrite.d
146 file path=usr/demo/dtrace/trunc.d
147 file path=usr/demo/dtrace/trussrw.d
148 file path=usr/demo/dtrace/udpbytes.d
149 file path=usr/demo/dtrace/udpbytesstat.d
150 file path=usr/demo/dtrace/udpio.d
151 file path=usr/demo/dtrace/udpsnoop.d
152 file path=usr/demo/dtrace/udptop.d
153 file path=usr/demo/dtrace/userfunc.d
154 file path=usr/demo/dtrace/whatfor.d
155 file path=usr/demo/dtrace/whatlock.d
156 file path=usr/demo/dtrace/where.d
157 file path=usr/demo/dtrace/whererun.d
158 file path=usr/demo/dtrace/whoexec.d
159 file path=usr/demo/dtrace/whofor.d
160 file path=usr/demo/dtrace/whoio.d
161 file path=usr/demo/dtrace/whopreempt.d
162 file path=usr/demo/dtrace/whoqueue.d
163 file path=usr/demo/dtrace/whosteal.d
164 file path=usr/demo/dtrace/whowrite.d
165 file path=usr/demo/dtrace/writes.d
166 file path=usr/demo/dtrace/writesbycmd.d
167 file path=usr/demo/dtrace/writesbycmdfd.d
168 file path=usr/demo/dtrace/writetime.d
169 file path=usr/demo/dtrace/writetimeq.d
170 file path=usr/demo/dtrace/xioctl.d
171 file path=usr/demo/dtrace/xterm.d
172 file path=usr/demo/dtrace/xwork.d
173 file path=usr/include/dtrace.h
174 file path=usr/include/sys/dtrace.h
175 file path=usr/include/sys/dtrace_impl.h
176 file path=usr/include/sys/fasttrap.h
177 file path=usr/include/sys/fasttrap_impl.h
178 file path=usr/include/sys/fasttrap_isa.h
179 file path=usr/include/sys/lockstat.h
180 file path=usr/include/sys/sdt.h
181 file path=usr/lib/$(ARCH64)/libdtrace.so.1
182 file path=usr/lib/$(ARCH64)/libdtrace_jni.so.1
183 file path=usr/lib/$(ARCH64)/llib-ldtrace.ln
184 file path=usr/lib/devfsadm/linkmod/SUNW_dtrace_link.so group=sys
185 file path=usr/lib/dtrace/64/drti.o mode=0444
186 file path=usr/lib/dtrace/64/libdtrace_forceload.so mode=0555
187 file path=usr/lib/dtrace/drti.o mode=0444
188 file path=usr/lib/dtrace/errno.d mode=0444
189 file path=usr/lib/dtrace/fc.d mode=0444
190 file path=usr/lib/dtrace/io.d mode=0444
191 file path=usr/lib/dtrace/ip.d mode=0444
192 file path=usr/lib/dtrace/iscsit.d mode=0444
193 file path=usr/lib/dtrace/libdtrace_forceload.so mode=0555

new/usr/src/pkg/manifests/developer-dtrace.mf 4

194 file path=usr/lib/dtrace/net.d mode=0444
195 file path=usr/lib/dtrace/nfs.d mode=0444
196 file path=usr/lib/dtrace/nfssrv.d mode=0444
197 file path=usr/lib/dtrace/procfs.d mode=0444
198 file path=usr/lib/dtrace/regs.d mode=0444
199 file path=usr/lib/dtrace/sched.d mode=0444
200 file path=usr/lib/dtrace/scsi.d mode=0444
201 file path=usr/lib/dtrace/sctp.d mode=0444
202 #endif /* ! codereview */
203 file path=usr/lib/dtrace/signal.d mode=0444
204 file path=usr/lib/dtrace/srp.d mode=0444
205 file path=usr/lib/dtrace/sysevent.d mode=0444
206 file path=usr/lib/dtrace/tcp.d mode=0444
207 file path=usr/lib/dtrace/udp.d mode=0444
208 file path=usr/lib/dtrace/unistd.d mode=0444
209 file path=usr/lib/libdtrace.so.1
210 file path=usr/lib/libdtrace_jni.so.1
211 file path=usr/lib/llib-ldtrace
212 file path=usr/lib/llib-ldtrace.ln
213 file path=usr/lib/mdb/kvm/$(ARCH64)/dtrace.so group=sys mode=0555
214 $(i386_ONLY)file path=usr/lib/mdb/kvm/dtrace.so group=sys mode=0555
215 file path=usr/lib/mdb/raw/$(ARCH64)/dof.so group=sys mode=0555
216 file path=usr/lib/mdb/raw/dof.so group=sys mode=0555
217 file path=usr/sbin/$(ARCH32)/dtrace mode=0555
218 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/intrstat mode=0555
219 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/lockstat mode=0555
220 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/plockstat mode=0555
221 file path=usr/sbin/$(ARCH64)/dtrace mode=0555
222 file path=usr/sbin/$(ARCH64)/intrstat mode=0555
223 file path=usr/sbin/$(ARCH64)/lockstat mode=0555
224 file path=usr/sbin/$(ARCH64)/plockstat mode=0555
225 file path=usr/share/lib/java/dtrace.jar group=sys
226 file path=usr/share/lib/java/javadoc/dtrace/api/allclasses-frame.html \
227 group=other
228 file path=usr/share/lib/java/javadoc/dtrace/api/allclasses-noframe.html \
229 group=other
230 file path=usr/share/lib/java/javadoc/dtrace/api/constant-values.html \
231 group=other
232 file path=usr/share/lib/java/javadoc/dtrace/api/deprecated-list.html \
233 group=other
234 file path=usr/share/lib/java/javadoc/dtrace/api/help-doc.html group=other
235 file path=usr/share/lib/java/javadoc/dtrace/api/index-all.html group=other
236 file path=usr/share/lib/java/javadoc/dtrace/api/index.html group=other
237 file \
238 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Aggrega
239 group=other
240 file \
241 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Aggrega
242 group=other
243 file \
244 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Aggrega
245 group=other
246 file \
247 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Aggrega
248 group=other
249 file \
250 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/AvgValu
251 group=other
252 file \
253 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
254 group=other
255 file \
256 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
257 group=other
258 file \
259 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume

new/usr/src/pkg/manifests/developer-dtrace.mf 5

260 group=other
261 file \
262 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
263 group=other
264 file \
265 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
266 group=other
267 file \
268 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
269 group=other
270 file \
271 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/CountVa
272 group=other
273 file \
274 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/DTraceE
275 group=other
276 file \
277 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/DataEve
278 group=other
279 file \
280 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Distrib
281 group=other
282 file \
283 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Distrib
284 group=other
285 file \
286 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Drop.Ki
287 group=other
288 file \
289 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Drop.ht
290 group=other
291 file \
292 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/DropEve
293 group=other
294 file \
295 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Error.h
296 group=other
297 file \
298 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ErrorEv
299 group=other
300 file \
301 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Excepti
302 group=other
303 file \
304 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ExitRec
305 group=other
306 file \
307 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Flow.Ki
308 group=other
309 file \
310 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Flow.ht
311 group=other
312 file \
313 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Interfa
314 group=other
315 file \
316 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Interfa
317 group=other
318 file \
319 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Interfa
320 group=other
321 file \
322 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/KernelS
323 group=other
324 file \
325 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/KernelS

new/usr/src/pkg/manifests/developer-dtrace.mf 6

326 group=other
327 file \
328 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/LinearD
329 group=other
330 file \
331 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/LocalCo
332 group=other
333 file \
334 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/LogDist
335 group=other
336 file \
337 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/LogLine
338 group=other
339 file \
340 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/MaxValu
341 group=other
342 file \
343 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/MinValu
344 group=other
345 file \
346 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Option.
347 group=other
348 file \
349 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/PrintaR
350 group=other
351 file \
352 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/PrintfR
353 group=other
354 file \
355 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Probe.h
356 group=other
357 file \
358 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeDa
359 group=other
360 file \
361 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeDa
362 group=other
363 file \
364 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeDe
365 group=other
366 file \
367 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeDe
368 group=other
369 file \
370 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeIn
371 group=other
372 file \
373 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Process
374 group=other
375 file \
376 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Process
377 group=other
378 file \
379 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Process
380 group=other
381 file \
382 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Program
383 group=other
384 file \
385 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Program
386 group=other
387 file \
388 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Program
389 group=other
390 file \
391 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Record.

new/usr/src/pkg/manifests/developer-dtrace.mf 7

392 group=other
393 file \
394 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ScalarR
395 group=other
396 file \
397 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/StackFr
398 group=other
399 file \
400 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/StackVa
401 group=other
402 file \
403 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/StddevV
404 group=other
405 file \
406 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/SumValu
407 group=other
408 file \
409 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/SymbolV
410 group=other
411 file \
412 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Tuple.h
413 group=other
414 file \
415 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/UserSta
416 group=other
417 file \
418 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/UserSym
419 group=other
420 file \
421 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/UserSym
422 group=other
423 file \
424 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ValueRe
425 group=other
426 file \
427 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
428 group=other
429 file \
430 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
431 group=other
432 file \
433 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
434 group=other
435 file \
436 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
437 group=other
438 file \
439 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
440 group=other
441 file \
442 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
443 group=other
444 file \
445 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
446 group=other
447 file \
448 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
449 group=other
450 file \
451 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
452 group=other
453 file \
454 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
455 group=other
456 file \
457 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u

new/usr/src/pkg/manifests/developer-dtrace.mf 8

458 group=other
459 file \
460 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
461 group=other
462 file \
463 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
464 group=other
465 file \
466 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
467 group=other
468 file \
469 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
470 group=other
471 file \
472 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
473 group=other
474 file \
475 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
476 group=other
477 file \
478 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
479 group=other
480 file \
481 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
482 group=other
483 file \
484 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
485 group=other
486 file \
487 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
488 group=other
489 file \
490 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
491 group=other
492 file \
493 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
494 group=other
495 file \
496 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
497 group=other
498 file \
499 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
500 group=other
501 file \
502 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
503 group=other
504 file \
505 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
506 group=other
507 file \
508 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
509 group=other
510 file \
511 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
512 group=other
513 file \
514 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
515 group=other
516 file \
517 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
518 group=other
519 file \
520 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
521 group=other
522 file \
523 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u

new/usr/src/pkg/manifests/developer-dtrace.mf 9

524 group=other
525 file \
526 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
527 group=other
528 file \
529 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
530 group=other
531 file \
532 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
533 group=other
534 file \
535 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
536 group=other
537 file \
538 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
539 group=other
540 file \
541 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
542 group=other
543 file \
544 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
545 group=other
546 file \
547 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
548 group=other
549 file \
550 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
551 group=other
552 file \
553 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
554 group=other
555 file \
556 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
557 group=other
558 file \
559 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
560 group=other
561 file \
562 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
563 group=other
564 file \
565 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
566 group=other
567 file \
568 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
569 group=other
570 file \
571 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
572 group=other
573 file \
574 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
575 group=other
576 file \
577 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
578 group=other
579 file \
580 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
581 group=other
582 file \
583 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
584 group=other
585 file \
586 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
587 group=other
588 file \
589 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u

new/usr/src/pkg/manifests/developer-dtrace.mf 10

590 group=other
591 file \
592 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
593 group=other
594 file \
595 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
596 group=other
597 file \
598 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
599 group=other
600 file \
601 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
602 group=other
603 file \
604 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
605 group=other
606 file \
607 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
608 group=other
609 file \
610 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
611 group=other
612 file \
613 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
614 group=other
615 file \
616 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/package
617 group=other
618 file \
619 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/package
620 group=other
621 file \
622 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/package
623 group=other
624 file \
625 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/package
626 group=other
627 file path=usr/share/lib/java/javadoc/dtrace/api/overview-tree.html group=other
628 file path=usr/share/lib/java/javadoc/dtrace/api/package-list group=other
629 file path=usr/share/lib/java/javadoc/dtrace/api/resources/inherit.gif \
630 group=other
631 file path=usr/share/lib/java/javadoc/dtrace/api/serialized-form.html \
632 group=other
633 file path=usr/share/lib/java/javadoc/dtrace/api/stylesheet.css group=other
634 file path=usr/share/lib/java/javadoc/dtrace/examples/TestAPI.java group=other
635 file path=usr/share/lib/java/javadoc/dtrace/examples/TestAPI2.java group=other
636 file path=usr/share/lib/java/javadoc/dtrace/examples/TestTarget.java \
637 group=other
638 file path=usr/share/lib/java/javadoc/dtrace/examples/hello.d group=other
639 file path=usr/share/lib/java/javadoc/dtrace/examples/intrstat.d group=other
640 file path=usr/share/lib/java/javadoc/dtrace/examples/syscall.d group=other
641 file path=usr/share/lib/java/javadoc/dtrace/examples/target.d group=other
642 file path=usr/share/lib/java/javadoc/dtrace/html/JavaDTraceAPI.html \
643 group=other
644 file path=usr/share/lib/java/javadoc/dtrace/html/fast.html group=other
645 file path=usr/share/lib/java/javadoc/dtrace/images/JavaDTraceAPI.gif \
646 group=other
647 file path=usr/share/man/man1m/dtrace.1m
648 file path=usr/share/man/man1m/intrstat.1m
649 file path=usr/share/man/man1m/lockstat.1m
650 file path=usr/share/man/man1m/plockstat.1m
651 file path=usr/share/man/man3lib/libdtrace.3lib
652 hardlink path=usr/sbin/dtrace target=../../usr/lib/isaexec
653 hardlink path=usr/sbin/intrstat target=../../usr/lib/isaexec
654 hardlink path=usr/sbin/lockstat target=../../usr/lib/isaexec
655 hardlink path=usr/sbin/plockstat target=../../usr/lib/isaexec

new/usr/src/pkg/manifests/developer-dtrace.mf 11

656 legacy pkg=SUNWdtrc desc="Dynamic Tracing (DTrace) Clients" \
657 name="DTrace Clients"
658 license cr_Sun license=cr_Sun
659 license lic_CDDL license=lic_CDDL
660 link path=usr/lib/$(ARCH64)/libdtrace.so target=libdtrace.so.1
661 link path=usr/lib/$(ARCH64)/libdtrace_jni.so target=libdtrace_jni.so.1
662 link path=usr/lib/libdtrace.so target=libdtrace.so.1
663 link path=usr/lib/libdtrace_jni.so target=libdtrace_jni.so.1

new/usr/src/uts/common/dtrace/sdt_subr.c 1

**
 55165 Sat Apr 12 11:18:55 2014
new/usr/src/uts/common/dtrace/sdt_subr.c
3903 DTrace SCTP Provider
**
______unchanged_portion_omitted_

99 sdt_provider_t sdt_providers[] = {
100 { "vtrace", "__vtrace_", &vtrace_attr, 0 },
101 { "sysinfo", "__cpu_sysinfo_", &info_attr, 0 },
102 { "vminfo", "__cpu_vminfo_", &info_attr, 0 },
103 { "fpuinfo", "__fpuinfo_", &fpu_attr, 0 },
104 { "sched", "__sched_", &stab_attr, 0 },
105 { "proc", "__proc_", &stab_attr, 0 },
106 { "io", "__io_", &stab_attr, 0 },
107 { "ip", "__ip_", &stab_attr, 0 },
108 { "tcp", "__tcp_", &stab_attr, 0 },
109 { "udp", "__udp_", &stab_attr, 0 },
110 { "sctp", "__sctp_", &stab_attr, 0 },
111 #endif /* ! codereview */
112 { "mib", "__mib_", &stab_attr, 0 },
113 { "fsinfo", "__fsinfo_", &fsinfo_attr, 0 },
114 { "iscsi", "__iscsi_", &iscsi_attr, 0 },
115 { "nfsv3", "__nfsv3_", &stab_attr, 0 },
116 { "nfsv4", "__nfsv4_", &stab_attr, 0 },
117 { "xpv", "__xpv_", &xpv_attr, 0 },
118 { "fc", "__fc_", &fc_attr, 0 },
119 { "srp", "__srp_", &fc_attr, 0 },
120 { "sysevent", "__sysevent_", &stab_attr, 0 },
121 { "sdt", NULL, &sdt_attr, 0 },
122 { NULL }
123 };

125 sdt_argdesc_t sdt_args[] = {
126 { "sched", "wakeup", 0, 0, "kthread_t *", "lwpsinfo_t *" },
127 { "sched", "wakeup", 1, 0, "kthread_t *", "psinfo_t *" },
128 { "sched", "dequeue", 0, 0, "kthread_t *", "lwpsinfo_t *" },
129 { "sched", "dequeue", 1, 0, "kthread_t *", "psinfo_t *" },
130 { "sched", "dequeue", 2, 1, "disp_t *", "cpuinfo_t *" },
131 { "sched", "enqueue", 0, 0, "kthread_t *", "lwpsinfo_t *" },
132 { "sched", "enqueue", 1, 0, "kthread_t *", "psinfo_t *" },
133 { "sched", "enqueue", 2, 1, "disp_t *", "cpuinfo_t *" },
134 { "sched", "enqueue", 3, 2, "int" },
135 { "sched", "off-cpu", 0, 0, "kthread_t *", "lwpsinfo_t *" },
136 { "sched", "off-cpu", 1, 0, "kthread_t *", "psinfo_t *" },
137 { "sched", "tick", 0, 0, "kthread_t *", "lwpsinfo_t *" },
138 { "sched", "tick", 1, 0, "kthread_t *", "psinfo_t *" },
139 { "sched", "change-pri", 0, 0, "kthread_t *", "lwpsinfo_t *" },
140 { "sched", "change-pri", 1, 0, "kthread_t *", "psinfo_t *" },
141 { "sched", "change-pri", 2, 1, "pri_t" },
142 { "sched", "schedctl-nopreempt", 0, 0, "kthread_t *", "lwpsinfo_t *" },
143 { "sched", "schedctl-nopreempt", 1, 0, "kthread_t *", "psinfo_t *" },
144 { "sched", "schedctl-nopreempt", 2, 1, "int" },
145 { "sched", "schedctl-preempt", 0, 0, "kthread_t *", "lwpsinfo_t *" },
146 { "sched", "schedctl-preempt", 1, 0, "kthread_t *", "psinfo_t *" },
147 { "sched", "schedctl-yield", 0, 0, "int" },
148 { "sched", "surrender", 0, 0, "kthread_t *", "lwpsinfo_t *" },
149 { "sched", "surrender", 1, 0, "kthread_t *", "psinfo_t *" },
150 { "sched", "cpucaps-sleep", 0, 0, "kthread_t *", "lwpsinfo_t *" },
151 { "sched", "cpucaps-sleep", 1, 0, "kthread_t *", "psinfo_t *" },
152 { "sched", "cpucaps-wakeup", 0, 0, "kthread_t *", "lwpsinfo_t *" },
153 { "sched", "cpucaps-wakeup", 1, 0, "kthread_t *", "psinfo_t *" },

155 { "proc", "create", 0, 0, "proc_t *", "psinfo_t *" },
156 { "proc", "exec", 0, 0, "string" },
157 { "proc", "exec-failure", 0, 0, "int" },

new/usr/src/uts/common/dtrace/sdt_subr.c 2

158 { "proc", "exit", 0, 0, "int" },
159 { "proc", "fault", 0, 0, "int" },
160 { "proc", "fault", 1, 1, "siginfo_t *" },
161 { "proc", "lwp-create", 0, 0, "kthread_t *", "lwpsinfo_t *" },
162 { "proc", "lwp-create", 1, 0, "kthread_t *", "psinfo_t *" },
163 { "proc", "signal-clear", 0, 0, "int" },
164 { "proc", "signal-clear", 1, 1, "siginfo_t *" },
165 { "proc", "signal-discard", 0, 0, "kthread_t *", "lwpsinfo_t *" },
166 { "proc", "signal-discard", 1, 1, "proc_t *", "psinfo_t *" },
167 { "proc", "signal-discard", 2, 2, "int" },
168 { "proc", "signal-handle", 0, 0, "int" },
169 { "proc", "signal-handle", 1, 1, "siginfo_t *" },
170 { "proc", "signal-handle", 2, 2, "void (*)(void)" },
171 { "proc", "signal-send", 0, 0, "kthread_t *", "lwpsinfo_t *" },
172 { "proc", "signal-send", 1, 0, "kthread_t *", "psinfo_t *" },
173 { "proc", "signal-send", 2, 1, "int" },

175 { "io", "start", 0, 0, "buf_t *", "bufinfo_t *" },
176 { "io", "start", 1, 0, "buf_t *", "devinfo_t *" },
177 { "io", "start", 2, 0, "buf_t *", "fileinfo_t *" },
178 { "io", "done", 0, 0, "buf_t *", "bufinfo_t *" },
179 { "io", "done", 1, 0, "buf_t *", "devinfo_t *" },
180 { "io", "done", 2, 0, "buf_t *", "fileinfo_t *" },
181 { "io", "wait-start", 0, 0, "buf_t *", "bufinfo_t *" },
182 { "io", "wait-start", 1, 0, "buf_t *", "devinfo_t *" },
183 { "io", "wait-start", 2, 0, "buf_t *", "fileinfo_t *" },
184 { "io", "wait-done", 0, 0, "buf_t *", "bufinfo_t *" },
185 { "io", "wait-done", 1, 0, "buf_t *", "devinfo_t *" },
186 { "io", "wait-done", 2, 0, "buf_t *", "fileinfo_t *" },

188 { "mib", NULL, 0, 0, "int" },

190 { "fsinfo", NULL, 0, 0, "vnode_t *", "fileinfo_t *" },
191 { "fsinfo", NULL, 1, 1, "int", "int" },

193 { "iscsi", "async-send", 0, 0, "idm_conn_t *", "conninfo_t *" },
194 { "iscsi", "async-send", 1, 1, "iscsi_async_evt_hdr_t *",
195 "iscsiinfo_t *" },
196 { "iscsi", "login-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
197 { "iscsi", "login-command", 1, 1, "iscsi_login_hdr_t *",
198 "iscsiinfo_t *" },
199 { "iscsi", "login-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
200 { "iscsi", "login-response", 1, 1, "iscsi_login_rsp_hdr_t *",
201 "iscsiinfo_t *" },
202 { "iscsi", "logout-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
203 { "iscsi", "logout-command", 1, 1, "iscsi_logout_hdr_t *",
204 "iscsiinfo_t *" },
205 { "iscsi", "logout-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
206 { "iscsi", "logout-response", 1, 1, "iscsi_logout_rsp_hdr_t *",
207 "iscsiinfo_t *" },
208 { "iscsi", "data-request", 0, 0, "idm_conn_t *", "conninfo_t *" },
209 { "iscsi", "data-request", 1, 1, "iscsi_rtt_hdr_t *",
210 "iscsiinfo_t *" },
211 { "iscsi", "data-send", 0, 0, "idm_conn_t *", "conninfo_t *" },
212 { "iscsi", "data-send", 1, 1, "iscsi_data_rsp_hdr_t *",
213 "iscsiinfo_t *" },
214 { "iscsi", "data-receive", 0, 0, "idm_conn_t *", "conninfo_t *" },
215 { "iscsi", "data-receive", 1, 1, "iscsi_data_hdr_t *",
216 "iscsiinfo_t *" },
217 { "iscsi", "nop-send", 0, 0, "idm_conn_t *", "conninfo_t *" },
218 { "iscsi", "nop-send", 1, 1, "iscsi_nop_in_hdr_t *", "iscsiinfo_t *" },
219 { "iscsi", "nop-receive", 0, 0, "idm_conn_t *", "conninfo_t *" },
220 { "iscsi", "nop-receive", 1, 1, "iscsi_nop_out_hdr_t *",
221 "iscsiinfo_t *" },
222 { "iscsi", "scsi-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
223 { "iscsi", "scsi-command", 1, 1, "iscsi_scsi_cmd_hdr_t *",

new/usr/src/uts/common/dtrace/sdt_subr.c 3

224 "iscsiinfo_t *" },
225 { "iscsi", "scsi-command", 2, 2, "scsi_task_t *", "scsicmd_t *" },
226 { "iscsi", "scsi-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
227 { "iscsi", "scsi-response", 1, 1, "iscsi_scsi_rsp_hdr_t *",
228 "iscsiinfo_t *" },
229 { "iscsi", "task-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
230 { "iscsi", "task-command", 1, 1, "iscsi_scsi_task_mgt_hdr_t *",
231 "iscsiinfo_t *" },
232 { "iscsi", "task-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
233 { "iscsi", "task-response", 1, 1, "iscsi_scsi_task_mgt_rsp_hdr_t *",
234 "iscsiinfo_t *" },
235 { "iscsi", "text-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
236 { "iscsi", "text-command", 1, 1, "iscsi_text_hdr_t *",
237 "iscsiinfo_t *" },
238 { "iscsi", "text-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
239 { "iscsi", "text-response", 1, 1, "iscsi_text_rsp_hdr_t *",
240 "iscsiinfo_t *" },
241 { "iscsi", "xfer-start", 0, 0, "idm_conn_t *", "conninfo_t *" },
242 { "iscsi", "xfer-start", 1, 0, "idm_conn_t *", "iscsiinfo_t *" },
243 { "iscsi", "xfer-start", 2, 1, "uintptr_t", "xferinfo_t *" },
244 { "iscsi", "xfer-start", 3, 2, "uint32_t"},
245 { "iscsi", "xfer-start", 4, 3, "uintptr_t"},
246 { "iscsi", "xfer-start", 5, 4, "uint32_t"},
247 { "iscsi", "xfer-start", 6, 5, "uint32_t"},
248 { "iscsi", "xfer-start", 7, 6, "uint32_t"},
249 { "iscsi", "xfer-start", 8, 7, "int"},
250 { "iscsi", "xfer-done", 0, 0, "idm_conn_t *", "conninfo_t *" },
251 { "iscsi", "xfer-done", 1, 0, "idm_conn_t *", "iscsiinfo_t *" },
252 { "iscsi", "xfer-done", 2, 1, "uintptr_t", "xferinfo_t *" },
253 { "iscsi", "xfer-done", 3, 2, "uint32_t"},
254 { "iscsi", "xfer-done", 4, 3, "uintptr_t"},
255 { "iscsi", "xfer-done", 5, 4, "uint32_t"},
256 { "iscsi", "xfer-done", 6, 5, "uint32_t"},
257 { "iscsi", "xfer-done", 7, 6, "uint32_t"},
258 { "iscsi", "xfer-done", 8, 7, "int"},

260 { "nfsv3", "op-getattr-start", 0, 0, "struct svc_req *",
261 "conninfo_t *" },
262 { "nfsv3", "op-getattr-start", 1, 1, "nfsv3oparg_t *",
263 "nfsv3opinfo_t *" },
264 { "nfsv3", "op-getattr-start", 2, 3, "GETATTR3args *" },
265 { "nfsv3", "op-getattr-done", 0, 0, "struct svc_req *",
266 "conninfo_t *" },
267 { "nfsv3", "op-getattr-done", 1, 1, "nfsv3oparg_t *",
268 "nfsv3opinfo_t *" },
269 { "nfsv3", "op-getattr-done", 2, 3, "GETATTR3res *" },
270 { "nfsv3", "op-setattr-start", 0, 0, "struct svc_req *",
271 "conninfo_t *" },
272 { "nfsv3", "op-setattr-start", 1, 1, "nfsv3oparg_t *",
273 "nfsv3opinfo_t *" },
274 { "nfsv3", "op-setattr-start", 2, 3, "SETATTR3args *" },
275 { "nfsv3", "op-setattr-done", 0, 0, "struct svc_req *",
276 "conninfo_t *" },
277 { "nfsv3", "op-setattr-done", 1, 1, "nfsv3oparg_t *",
278 "nfsv3opinfo_t *" },
279 { "nfsv3", "op-setattr-done", 2, 3, "SETATTR3res *" },
280 { "nfsv3", "op-lookup-start", 0, 0, "struct svc_req *",
281 "conninfo_t *" },
282 { "nfsv3", "op-lookup-start", 1, 1, "nfsv3oparg_t *",
283 "nfsv3opinfo_t *" },
284 { "nfsv3", "op-lookup-start", 2, 3, "LOOKUP3args *" },
285 { "nfsv3", "op-lookup-done", 0, 0, "struct svc_req *",
286 "conninfo_t *" },
287 { "nfsv3", "op-lookup-done", 1, 1, "nfsv3oparg_t *",
288 "nfsv3opinfo_t *" },
289 { "nfsv3", "op-lookup-done", 2, 3, "LOOKUP3res *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 4

290 { "nfsv3", "op-access-start", 0, 0, "struct svc_req *",
291 "conninfo_t *" },
292 { "nfsv3", "op-access-start", 1, 1, "nfsv3oparg_t *",
293 "nfsv3opinfo_t *" },
294 { "nfsv3", "op-access-start", 2, 3, "ACCESS3args *" },
295 { "nfsv3", "op-access-done", 0, 0, "struct svc_req *",
296 "conninfo_t *" },
297 { "nfsv3", "op-access-done", 1, 1, "nfsv3oparg_t *",
298 "nfsv3opinfo_t *" },
299 { "nfsv3", "op-access-done", 2, 3, "ACCESS3res *" },
300 { "nfsv3", "op-commit-start", 0, 0, "struct svc_req *",
301 "conninfo_t *" },
302 { "nfsv3", "op-commit-start", 1, 1, "nfsv3oparg_t *",
303 "nfsv3opinfo_t *" },
304 { "nfsv3", "op-commit-start", 2, 3, "COMMIT3args *" },
305 { "nfsv3", "op-commit-done", 0, 0, "struct svc_req *",
306 "conninfo_t *" },
307 { "nfsv3", "op-commit-done", 1, 1, "nfsv3oparg_t *",
308 "nfsv3opinfo_t *" },
309 { "nfsv3", "op-commit-done", 2, 3, "COMMIT3res *" },
310 { "nfsv3", "op-create-start", 0, 0, "struct svc_req *",
311 "conninfo_t *" },
312 { "nfsv3", "op-create-start", 1, 1, "nfsv3oparg_t *",
313 "nfsv3opinfo_t *" },
314 { "nfsv3", "op-create-start", 2, 3, "CREATE3args *" },
315 { "nfsv3", "op-create-done", 0, 0, "struct svc_req *",
316 "conninfo_t *" },
317 { "nfsv3", "op-create-done", 1, 1, "nfsv3oparg_t *",
318 "nfsv3opinfo_t *" },
319 { "nfsv3", "op-create-done", 2, 3, "CREATE3res *" },
320 { "nfsv3", "op-fsinfo-start", 0, 0, "struct svc_req *",
321 "conninfo_t *" },
322 { "nfsv3", "op-fsinfo-start", 1, 1, "nfsv3oparg_t *",
323 "nfsv3opinfo_t *" },
324 { "nfsv3", "op-fsinfo-start", 2, 3, "FSINFO3args *" },
325 { "nfsv3", "op-fsinfo-done", 0, 0, "struct svc_req *",
326 "conninfo_t *" },
327 { "nfsv3", "op-fsinfo-done", 1, 1, "nfsv3oparg_t *",
328 "nfsv3opinfo_t *" },
329 { "nfsv3", "op-fsinfo-done", 2, 3, "FSINFO3res *" },
330 { "nfsv3", "op-fsstat-start", 0, 0, "struct svc_req *",
331 "conninfo_t *" },
332 { "nfsv3", "op-fsstat-start", 1, 1, "nfsv3oparg_t *",
333 "nfsv3opinfo_t *" },
334 { "nfsv3", "op-fsstat-start", 2, 3, "FSSTAT3args *" },
335 { "nfsv3", "op-fsstat-done", 0, 0, "struct svc_req *",
336 "conninfo_t *" },
337 { "nfsv3", "op-fsstat-done", 1, 1, "nfsv3oparg_t *",
338 "nfsv3opinfo_t *" },
339 { "nfsv3", "op-fsstat-done", 2, 3, "FSSTAT3res *" },
340 { "nfsv3", "op-link-start", 0, 0, "struct svc_req *",
341 "conninfo_t *" },
342 { "nfsv3", "op-link-start", 1, 1, "nfsv3oparg_t *",
343 "nfsv3opinfo_t *" },
344 { "nfsv3", "op-link-start", 2, 3, "LINK3args *" },
345 { "nfsv3", "op-link-done", 0, 0, "struct svc_req *",
346 "conninfo_t *" },
347 { "nfsv3", "op-link-done", 1, 1, "nfsv3oparg_t *",
348 "nfsv3opinfo_t *" },
349 { "nfsv3", "op-link-done", 2, 3, "LINK3res *" },
350 { "nfsv3", "op-mkdir-start", 0, 0, "struct svc_req *",
351 "conninfo_t *" },
352 { "nfsv3", "op-mkdir-start", 1, 1, "nfsv3oparg_t *",
353 "nfsv3opinfo_t *" },
354 { "nfsv3", "op-mkdir-start", 2, 3, "MKDIR3args *" },
355 { "nfsv3", "op-mkdir-done", 0, 0, "struct svc_req *",

new/usr/src/uts/common/dtrace/sdt_subr.c 5

356 "conninfo_t *" },
357 { "nfsv3", "op-mkdir-done", 1, 1, "nfsv3oparg_t *",
358 "nfsv3opinfo_t *" },
359 { "nfsv3", "op-mkdir-done", 2, 3, "MKDIR3res *" },
360 { "nfsv3", "op-mknod-start", 0, 0, "struct svc_req *",
361 "conninfo_t *" },
362 { "nfsv3", "op-mknod-start", 1, 1, "nfsv3oparg_t *",
363 "nfsv3opinfo_t *" },
364 { "nfsv3", "op-mknod-start", 2, 3, "MKNOD3args *" },
365 { "nfsv3", "op-mknod-done", 0, 0, "struct svc_req *",
366 "conninfo_t *" },
367 { "nfsv3", "op-mknod-done", 1, 1, "nfsv3oparg_t *",
368 "nfsv3opinfo_t *" },
369 { "nfsv3", "op-mknod-done", 2, 3, "MKNOD3res *" },
370 { "nfsv3", "op-null-start", 0, 0, "struct svc_req *",
371 "conninfo_t *" },
372 { "nfsv3", "op-null-start", 1, 1, "nfsv3oparg_t *",
373 "nfsv3opinfo_t *" },
374 { "nfsv3", "op-null-done", 0, 0, "struct svc_req *",
375 "conninfo_t *" },
376 { "nfsv3", "op-null-done", 1, 1, "nfsv3oparg_t *",
377 "nfsv3opinfo_t *" },
378 { "nfsv3", "op-pathconf-start", 0, 0, "struct svc_req *",
379 "conninfo_t *" },
380 { "nfsv3", "op-pathconf-start", 1, 1, "nfsv3oparg_t *",
381 "nfsv3opinfo_t *" },
382 { "nfsv3", "op-pathconf-start", 2, 3, "PATHCONF3args *" },
383 { "nfsv3", "op-pathconf-done", 0, 0, "struct svc_req *",
384 "conninfo_t *" },
385 { "nfsv3", "op-pathconf-done", 1, 1, "nfsv3oparg_t *",
386 "nfsv3opinfo_t *" },
387 { "nfsv3", "op-pathconf-done", 2, 3, "PATHCONF3res *" },
388 { "nfsv3", "op-read-start", 0, 0, "struct svc_req *",
389 "conninfo_t *" },
390 { "nfsv3", "op-read-start", 1, 1, "nfsv3oparg_t *",
391 "nfsv3opinfo_t *" },
392 { "nfsv3", "op-read-start", 2, 3, "READ3args *" },
393 { "nfsv3", "op-read-done", 0, 0, "struct svc_req *",
394 "conninfo_t *" },
395 { "nfsv3", "op-read-done", 1, 1, "nfsv3oparg_t *",
396 "nfsv3opinfo_t *" },
397 { "nfsv3", "op-read-done", 2, 3, "READ3res *" },
398 { "nfsv3", "op-readdir-start", 0, 0, "struct svc_req *",
399 "conninfo_t *" },
400 { "nfsv3", "op-readdir-start", 1, 1, "nfsv3oparg_t *",
401 "nfsv3opinfo_t *" },
402 { "nfsv3", "op-readdir-start", 2, 3, "READDIR3args *" },
403 { "nfsv3", "op-readdir-done", 0, 0, "struct svc_req *",
404 "conninfo_t *" },
405 { "nfsv3", "op-readdir-done", 1, 1, "nfsv3oparg_t *",
406 "nfsv3opinfo_t *" },
407 { "nfsv3", "op-readdir-done", 2, 3, "READDIR3res *" },
408 { "nfsv3", "op-readdirplus-start", 0, 0, "struct svc_req *",
409 "conninfo_t *" },
410 { "nfsv3", "op-readdirplus-start", 1, 1, "nfsv3oparg_t *",
411 "nfsv3opinfo_t *" },
412 { "nfsv3", "op-readdirplus-start", 2, 3, "READDIRPLUS3args *" },
413 { "nfsv3", "op-readdirplus-done", 0, 0, "struct svc_req *",
414 "conninfo_t *" },
415 { "nfsv3", "op-readdirplus-done", 1, 1, "nfsv3oparg_t *",
416 "nfsv3opinfo_t *" },
417 { "nfsv3", "op-readdirplus-done", 2, 3, "READDIRPLUS3res *" },
418 { "nfsv3", "op-readlink-start", 0, 0, "struct svc_req *",
419 "conninfo_t *" },
420 { "nfsv3", "op-readlink-start", 1, 1, "nfsv3oparg_t *",
421 "nfsv3opinfo_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 6

422 { "nfsv3", "op-readlink-start", 2, 3, "READLINK3args *" },
423 { "nfsv3", "op-readlink-done", 0, 0, "struct svc_req *",
424 "conninfo_t *" },
425 { "nfsv3", "op-readlink-done", 1, 1, "nfsv3oparg_t *",
426 "nfsv3opinfo_t *" },
427 { "nfsv3", "op-readlink-done", 2, 3, "READLINK3res *" },
428 { "nfsv3", "op-remove-start", 0, 0, "struct svc_req *",
429 "conninfo_t *" },
430 { "nfsv3", "op-remove-start", 1, 1, "nfsv3oparg_t *",
431 "nfsv3opinfo_t *" },
432 { "nfsv3", "op-remove-start", 2, 3, "REMOVE3args *" },
433 { "nfsv3", "op-remove-done", 0, 0, "struct svc_req *",
434 "conninfo_t *" },
435 { "nfsv3", "op-remove-done", 1, 1, "nfsv3oparg_t *",
436 "nfsv3opinfo_t *" },
437 { "nfsv3", "op-remove-done", 2, 3, "REMOVE3res *" },
438 { "nfsv3", "op-rename-start", 0, 0, "struct svc_req *",
439 "conninfo_t *" },
440 { "nfsv3", "op-rename-start", 1, 1, "nfsv3oparg_t *",
441 "nfsv3opinfo_t *" },
442 { "nfsv3", "op-rename-start", 2, 3, "RENAME3args *" },
443 { "nfsv3", "op-rename-done", 0, 0, "struct svc_req *",
444 "conninfo_t *" },
445 { "nfsv3", "op-rename-done", 1, 1, "nfsv3oparg_t *",
446 "nfsv3opinfo_t *" },
447 { "nfsv3", "op-rename-done", 2, 3, "RENAME3res *" },
448 { "nfsv3", "op-rmdir-start", 0, 0, "struct svc_req *",
449 "conninfo_t *" },
450 { "nfsv3", "op-rmdir-start", 1, 1, "nfsv3oparg_t *",
451 "nfsv3opinfo_t *" },
452 { "nfsv3", "op-rmdir-start", 2, 3, "RMDIR3args *" },
453 { "nfsv3", "op-rmdir-done", 0, 0, "struct svc_req *",
454 "conninfo_t *" },
455 { "nfsv3", "op-rmdir-done", 1, 1, "nfsv3oparg_t *",
456 "nfsv3opinfo_t *" },
457 { "nfsv3", "op-rmdir-done", 2, 3, "RMDIR3res *" },
458 { "nfsv3", "op-setattr-start", 0, 0, "struct svc_req *",
459 "conninfo_t *" },
460 { "nfsv3", "op-setattr-start", 1, 1, "nfsv3oparg_t *",
461 "nfsv3opinfo_t *" },
462 { "nfsv3", "op-setattr-start", 2, 3, "SETATTR3args *" },
463 { "nfsv3", "op-setattr-done", 0, 0, "struct svc_req *",
464 "conninfo_t *" },
465 { "nfsv3", "op-setattr-done", 1, 1, "nfsv3oparg_t *",
466 "nfsv3opinfo_t *" },
467 { "nfsv3", "op-setattr-done", 2, 3, "SETATTR3res *" },
468 { "nfsv3", "op-symlink-start", 0, 0, "struct svc_req *",
469 "conninfo_t *" },
470 { "nfsv3", "op-symlink-start", 1, 1, "nfsv3oparg_t *",
471 "nfsv3opinfo_t *" },
472 { "nfsv3", "op-symlink-start", 2, 3, "SYMLINK3args *" },
473 { "nfsv3", "op-symlink-done", 0, 0, "struct svc_req *",
474 "conninfo_t *" },
475 { "nfsv3", "op-symlink-done", 1, 1, "nfsv3oparg_t *",
476 "nfsv3opinfo_t *" },
477 { "nfsv3", "op-symlink-done", 2, 3, "SYMLINK3res *" },
478 { "nfsv3", "op-write-start", 0, 0, "struct svc_req *",
479 "conninfo_t *" },
480 { "nfsv3", "op-write-start", 1, 1, "nfsv3oparg_t *",
481 "nfsv3opinfo_t *" },
482 { "nfsv3", "op-write-start", 2, 3, "WRITE3args *" },
483 { "nfsv3", "op-write-done", 0, 0, "struct svc_req *",
484 "conninfo_t *" },
485 { "nfsv3", "op-write-done", 1, 1, "nfsv3oparg_t *",
486 "nfsv3opinfo_t *" },
487 { "nfsv3", "op-write-done", 2, 3, "WRITE3res *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 7

489 { "nfsv4", "null-start", 0, 0, "struct svc_req *", "conninfo_t *" },
490 { "nfsv4", "null-done", 0, 0, "struct svc_req *", "conninfo_t *" },
491 { "nfsv4", "compound-start", 0, 0, "struct compound_state *",
492 "conninfo_t *" },
493 { "nfsv4", "compound-start", 1, 0, "struct compound_state *",
494 "nfsv4opinfo_t *" },
495 { "nfsv4", "compound-start", 2, 1, "COMPOUND4args *" },
496 { "nfsv4", "compound-done", 0, 0, "struct compound_state *",
497 "conninfo_t *" },
498 { "nfsv4", "compound-done", 1, 0, "struct compound_state *",
499 "nfsv4opinfo_t *" },
500 { "nfsv4", "compound-done", 2, 1, "COMPOUND4res *" },
501 { "nfsv4", "op-access-start", 0, 0, "struct compound_state *",
502 "conninfo_t *"},
503 { "nfsv4", "op-access-start", 1, 0, "struct compound_state *",
504 "nfsv4opinfo_t *" },
505 { "nfsv4", "op-access-start", 2, 1, "ACCESS4args *" },
506 { "nfsv4", "op-access-done", 0, 0, "struct compound_state *",
507 "conninfo_t *" },
508 { "nfsv4", "op-access-done", 1, 0, "struct compound_state *",
509 "nfsv4opinfo_t *" },
510 { "nfsv4", "op-access-done", 2, 1, "ACCESS4res *" },
511 { "nfsv4", "op-close-start", 0, 0, "struct compound_state *",
512 "conninfo_t *" },
513 { "nfsv4", "op-close-start", 1, 0, "struct compound_state *",
514 "nfsv4opinfo_t *" },
515 { "nfsv4", "op-close-start", 2, 1, "CLOSE4args *" },
516 { "nfsv4", "op-close-done", 0, 0, "struct compound_state *",
517 "conninfo_t *" },
518 { "nfsv4", "op-close-done", 1, 0, "struct compound_state *",
519 "nfsv4opinfo_t *" },
520 { "nfsv4", "op-close-done", 2, 1, "CLOSE4res *" },
521 { "nfsv4", "op-commit-start", 0, 0, "struct compound_state *",
522 "conninfo_t *" },
523 { "nfsv4", "op-commit-start", 1, 0, "struct compound_state *",
524 "nfsv4opinfo_t *" },
525 { "nfsv4", "op-commit-start", 2, 1, "COMMIT4args *" },
526 { "nfsv4", "op-commit-done", 0, 0, "struct compound_state *",
527 "conninfo_t *" },
528 { "nfsv4", "op-commit-done", 1, 0, "struct compound_state *",
529 "nfsv4opinfo_t *" },
530 { "nfsv4", "op-commit-done", 2, 1, "COMMIT4res *" },
531 { "nfsv4", "op-create-start", 0, 0, "struct compound_state *",
532 "conninfo_t *" },
533 { "nfsv4", "op-create-start", 1, 0, "struct compound_state *",
534 "nfsv4opinfo_t *" },
535 { "nfsv4", "op-create-start", 2, 1, "CREATE4args *" },
536 { "nfsv4", "op-create-done", 0, 0, "struct compound_state *",
537 "conninfo_t *" },
538 { "nfsv4", "op-create-done", 1, 0, "struct compound_state *",
539 "nfsv4opinfo_t *" },
540 { "nfsv4", "op-create-done", 2, 1, "CREATE4res *" },
541 { "nfsv4", "op-delegpurge-start", 0, 0, "struct compound_state *",
542 "conninfo_t *" },
543 { "nfsv4", "op-delegpurge-start", 1, 0, "struct compound_state *",
544 "nfsv4opinfo_t *" },
545 { "nfsv4", "op-delegpurge-start", 2, 1, "DELEGPURGE4args *" },
546 { "nfsv4", "op-delegpurge-done", 0, 0, "struct compound_state *",
547 "conninfo_t *" },
548 { "nfsv4", "op-delegpurge-done", 1, 0, "struct compound_state *",
549 "nfsv4opinfo_t *" },
550 { "nfsv4", "op-delegpurge-done", 2, 1, "DELEGPURGE4res *" },
551 { "nfsv4", "op-delegreturn-start", 0, 0, "struct compound_state *",
552 "conninfo_t *" },
553 { "nfsv4", "op-delegreturn-start", 1, 0, "struct compound_state *",

new/usr/src/uts/common/dtrace/sdt_subr.c 8

554 "nfsv4opinfo_t *" },
555 { "nfsv4", "op-delegreturn-start", 2, 1, "DELEGRETURN4args *" },
556 { "nfsv4", "op-delegreturn-done", 0, 0, "struct compound_state *",
557 "conninfo_t *" },
558 { "nfsv4", "op-delegreturn-done", 1, 0, "struct compound_state *",
559 "nfsv4opinfo_t *" },
560 { "nfsv4", "op-delegreturn-done", 2, 1, "DELEGRETURN4res *" },
561 { "nfsv4", "op-getattr-start", 0, 0, "struct compound_state *",
562 "conninfo_t *" },
563 { "nfsv4", "op-getattr-start", 1, 0, "struct compound_state *",
564 "nfsv4opinfo_t *" },
565 { "nfsv4", "op-getattr-start", 2, 1, "GETATTR4args *" },
566 { "nfsv4", "op-getattr-done", 0, 0, "struct compound_state *",
567 "conninfo_t *" },
568 { "nfsv4", "op-getattr-done", 1, 0, "struct compound_state *",
569 "nfsv4opinfo_t *" },
570 { "nfsv4", "op-getattr-done", 2, 1, "GETATTR4res *" },
571 { "nfsv4", "op-getfh-start", 0, 0, "struct compound_state *",
572 "conninfo_t *" },
573 { "nfsv4", "op-getfh-start", 1, 0, "struct compound_state *",
574 "nfsv4opinfo_t *" },
575 { "nfsv4", "op-getfh-done", 0, 0, "struct compound_state *",
576 "conninfo_t *" },
577 { "nfsv4", "op-getfh-done", 1, 0, "struct compound_state *",
578 "nfsv4opinfo_t *" },
579 { "nfsv4", "op-getfh-done", 2, 1, "GETFH4res *" },
580 { "nfsv4", "op-link-start", 0, 0, "struct compound_state *",
581 "conninfo_t *" },
582 { "nfsv4", "op-link-start", 1, 0, "struct compound_state *",
583 "nfsv4opinfo_t *" },
584 { "nfsv4", "op-link-start", 2, 1, "LINK4args *" },
585 { "nfsv4", "op-link-done", 0, 0, "struct compound_state *",
586 "conninfo_t *" },
587 { "nfsv4", "op-link-done", 1, 0, "struct compound_state *",
588 "nfsv4opinfo_t *" },
589 { "nfsv4", "op-link-done", 2, 1, "LINK4res *" },
590 { "nfsv4", "op-lock-start", 0, 0, "struct compound_state *",
591 "conninfo_t *" },
592 { "nfsv4", "op-lock-start", 1, 0, "struct compound_state *",
593 "nfsv4opinfo_t *" },
594 { "nfsv4", "op-lock-start", 2, 1, "LOCK4args *" },
595 { "nfsv4", "op-lock-done", 0, 0, "struct compound_state *",
596 "conninfo_t *" },
597 { "nfsv4", "op-lock-done", 1, 0, "struct compound_state *",
598 "nfsv4opinfo_t *" },
599 { "nfsv4", "op-lock-done", 2, 1, "LOCK4res *" },
600 { "nfsv4", "op-lockt-start", 0, 0, "struct compound_state *",
601 "conninfo_t *" },
602 { "nfsv4", "op-lockt-start", 1, 0, "struct compound_state *",
603 "nfsv4opinfo_t *" },
604 { "nfsv4", "op-lockt-start", 2, 1, "LOCKT4args *" },
605 { "nfsv4", "op-lockt-done", 0, 0, "struct compound_state *",
606 "conninfo_t *" },
607 { "nfsv4", "op-lockt-done", 1, 0, "struct compound_state *",
608 "nfsv4opinfo_t *" },
609 { "nfsv4", "op-lockt-done", 2, 1, "LOCKT4res *" },
610 { "nfsv4", "op-locku-start", 0, 0, "struct compound_state *",
611 "conninfo_t *" },
612 { "nfsv4", "op-locku-start", 1, 0, "struct compound_state *",
613 "nfsv4opinfo_t *" },
614 { "nfsv4", "op-locku-start", 2, 1, "LOCKU4args *" },
615 { "nfsv4", "op-locku-done", 0, 0, "struct compound_state *",
616 "conninfo_t *" },
617 { "nfsv4", "op-locku-done", 1, 0, "struct compound_state *",
618 "nfsv4opinfo_t *" },
619 { "nfsv4", "op-locku-done", 2, 1, "LOCKU4res *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 9

620 { "nfsv4", "op-lookup-start", 0, 0, "struct compound_state *",
621 "conninfo_t *" },
622 { "nfsv4", "op-lookup-start", 1, 0, "struct compound_state *",
623 "nfsv4opinfo_t *" },
624 { "nfsv4", "op-lookup-start", 2, 1, "LOOKUP4args *" },
625 { "nfsv4", "op-lookup-done", 0, 0, "struct compound_state *",
626 "conninfo_t *" },
627 { "nfsv4", "op-lookup-done", 1, 0, "struct compound_state *",
628 "nfsv4opinfo_t *" },
629 { "nfsv4", "op-lookup-done", 2, 1, "LOOKUP4res *" },
630 { "nfsv4", "op-lookupp-start", 0, 0, "struct compound_state *",
631 "conninfo_t *" },
632 { "nfsv4", "op-lookupp-start", 1, 0, "struct compound_state *",
633 "nfsv4opinfo_t *" },
634 { "nfsv4", "op-lookupp-done", 0, 0, "struct compound_state *",
635 "conninfo_t *" },
636 { "nfsv4", "op-lookupp-done", 1, 0, "struct compound_state *",
637 "nfsv4opinfo_t *" },
638 { "nfsv4", "op-lookupp-done", 2, 1, "LOOKUPP4res *" },
639 { "nfsv4", "op-nverify-start", 0, 0, "struct compound_state *",
640 "conninfo_t *" },
641 { "nfsv4", "op-nverify-start", 1, 0, "struct compound_state *",
642 "nfsv4opinfo_t *" },
643 { "nfsv4", "op-nverify-start", 2, 1, "NVERIFY4args *" },
644 { "nfsv4", "op-nverify-done", 0, 0, "struct compound_state *",
645 "conninfo_t *" },
646 { "nfsv4", "op-nverify-done", 1, 0, "struct compound_state *",
647 "nfsv4opinfo_t *" },
648 { "nfsv4", "op-nverify-done", 2, 1, "NVERIFY4res *" },
649 { "nfsv4", "op-open-start", 0, 0, "struct compound_state *",
650 "conninfo_t *" },
651 { "nfsv4", "op-open-start", 1, 0, "struct compound_state *",
652 "nfsv4opinfo_t *" },
653 { "nfsv4", "op-open-start", 2, 1, "OPEN4args *" },
654 { "nfsv4", "op-open-done", 0, 0, "struct compound_state *",
655 "conninfo_t *" },
656 { "nfsv4", "op-open-done", 1, 0, "struct compound_state *",
657 "nfsv4opinfo_t *" },
658 { "nfsv4", "op-open-done", 2, 1, "OPEN4res *" },
659 { "nfsv4", "op-open-confirm-start", 0, 0, "struct compound_state *",
660 "conninfo_t *" },
661 { "nfsv4", "op-open-confirm-start", 1, 0, "struct compound_state *",
662 "nfsv4opinfo_t *" },
663 { "nfsv4", "op-open-confirm-start", 2, 1, "OPEN_CONFIRM4args *" },
664 { "nfsv4", "op-open-confirm-done", 0, 0, "struct compound_state *",
665 "conninfo_t *" },
666 { "nfsv4", "op-open-confirm-done", 1, 0, "struct compound_state *",
667 "nfsv4opinfo_t *" },
668 { "nfsv4", "op-open-confirm-done", 2, 1, "OPEN_CONFIRM4res *" },
669 { "nfsv4", "op-open-downgrade-start", 0, 0, "struct compound_state *",
670 "conninfo_t *" },
671 { "nfsv4", "op-open-downgrade-start", 1, 0, "struct compound_state *",
672 "nfsv4opinfo_t *" },
673 { "nfsv4", "op-open-downgrade-start", 2, 1, "OPEN_DOWNGRADE4args *" },
674 { "nfsv4", "op-open-downgrade-done", 0, 0, "struct compound_state *",
675 "conninfo_t *" },
676 { "nfsv4", "op-open-downgrade-done", 1, 0, "struct compound_state *",
677 "nfsv4opinfo_t *" },
678 { "nfsv4", "op-open-downgrade-done", 2, 1, "OPEN_DOWNGRADE4res *" },
679 { "nfsv4", "op-openattr-start", 0, 0, "struct compound_state *",
680 "conninfo_t *" },
681 { "nfsv4", "op-openattr-start", 1, 0, "struct compound_state *",
682 "nfsv4opinfo_t *" },
683 { "nfsv4", "op-openattr-start", 2, 1, "OPENATTR4args *" },
684 { "nfsv4", "op-openattr-done", 0, 0, "struct compound_state *",
685 "conninfo_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 10

686 { "nfsv4", "op-openattr-done", 1, 0, "struct compound_state *",
687 "nfsv4opinfo_t *" },
688 { "nfsv4", "op-openattr-done", 2, 1, "OPENATTR4res *" },
689 { "nfsv4", "op-putfh-start", 0, 0, "struct compound_state *",
690 "conninfo_t *" },
691 { "nfsv4", "op-putfh-start", 1, 0, "struct compound_state *",
692 "nfsv4opinfo_t *" },
693 { "nfsv4", "op-putfh-start", 2, 1, "PUTFH4args *" },
694 { "nfsv4", "op-putfh-done", 0, 0, "struct compound_state *",
695 "conninfo_t *" },
696 { "nfsv4", "op-putfh-done", 1, 0, "struct compound_state *",
697 "nfsv4opinfo_t *" },
698 { "nfsv4", "op-putfh-done", 2, 1, "PUTFH4res *" },
699 { "nfsv4", "op-putpubfh-start", 0, 0, "struct compound_state *",
700 "conninfo_t *" },
701 { "nfsv4", "op-putpubfh-start", 1, 0, "struct compound_state *",
702 "nfsv4opinfo_t *" },
703 { "nfsv4", "op-putpubfh-done", 0, 0, "struct compound_state *",
704 "conninfo_t *" },
705 { "nfsv4", "op-putpubfh-done", 1, 0, "struct compound_state *",
706 "nfsv4opinfo_t *" },
707 { "nfsv4", "op-putpubfh-done", 2, 1, "PUTPUBFH4res *" },
708 { "nfsv4", "op-putrootfh-start", 0, 0, "struct compound_state *",
709 "conninfo_t *" },
710 { "nfsv4", "op-putrootfh-start", 1, 0, "struct compound_state *",
711 "nfsv4opinfo_t *" },
712 { "nfsv4", "op-putrootfh-done", 0, 0, "struct compound_state *",
713 "conninfo_t *" },
714 { "nfsv4", "op-putrootfh-done", 1, 0, "struct compound_state *",
715 "nfsv4opinfo_t *" },
716 { "nfsv4", "op-putrootfh-done", 2, 1, "PUTROOTFH4res *" },
717 { "nfsv4", "op-read-start", 0, 0, "struct compound_state *",
718 "conninfo_t *" },
719 { "nfsv4", "op-read-start", 1, 0, "struct compound_state *",
720 "nfsv4opinfo_t *" },
721 { "nfsv4", "op-read-start", 2, 1, "READ4args *" },
722 { "nfsv4", "op-read-done", 0, 0, "struct compound_state *",
723 "conninfo_t *" },
724 { "nfsv4", "op-read-done", 1, 0, "struct compound_state *",
725 "nfsv4opinfo_t *" },
726 { "nfsv4", "op-read-done", 2, 1, "READ4res *" },
727 { "nfsv4", "op-readdir-start", 0, 0, "struct compound_state *",
728 "conninfo_t *" },
729 { "nfsv4", "op-readdir-start", 1, 0, "struct compound_state *",
730 "nfsv4opinfo_t *" },
731 { "nfsv4", "op-readdir-start", 2, 1, "READDIR4args *" },
732 { "nfsv4", "op-readdir-done", 0, 0, "struct compound_state *",
733 "conninfo_t *" },
734 { "nfsv4", "op-readdir-done", 1, 0, "struct compound_state *",
735 "nfsv4opinfo_t *" },
736 { "nfsv4", "op-readdir-done", 2, 1, "READDIR4res *" },
737 { "nfsv4", "op-readlink-start", 0, 0, "struct compound_state *",
738 "conninfo_t *" },
739 { "nfsv4", "op-readlink-start", 1, 0, "struct compound_state *",
740 "nfsv4opinfo_t *" },
741 { "nfsv4", "op-readlink-done", 0, 0, "struct compound_state *",
742 "conninfo_t *" },
743 { "nfsv4", "op-readlink-done", 1, 0, "struct compound_state *",
744 "nfsv4opinfo_t *" },
745 { "nfsv4", "op-readlink-done", 2, 1, "READLINK4res *" },
746 { "nfsv4", "op-release-lockowner-start", 0, 0,
747 "struct compound_state *", "conninfo_t *" },
748 { "nfsv4", "op-release-lockowner-start", 1, 0,
749 "struct compound_state *", "nfsv4opinfo_t *" },
750 { "nfsv4", "op-release-lockowner-start", 2, 1,
751 "RELEASE_LOCKOWNER4args *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 11

752 { "nfsv4", "op-release-lockowner-done", 0, 0,
753 "struct compound_state *", "conninfo_t *" },
754 { "nfsv4", "op-release-lockowner-done", 1, 0,
755 "struct compound_state *", "nfsv4opinfo_t *" },
756 { "nfsv4", "op-release-lockowner-done", 2, 1,
757 "RELEASE_LOCKOWNER4res *" },
758 { "nfsv4", "op-remove-start", 0, 0, "struct compound_state *",
759 "conninfo_t *" },
760 { "nfsv4", "op-remove-start", 1, 0, "struct compound_state *",
761 "nfsv4opinfo_t *" },
762 { "nfsv4", "op-remove-start", 2, 1, "REMOVE4args *" },
763 { "nfsv4", "op-remove-done", 0, 0, "struct compound_state *",
764 "conninfo_t *" },
765 { "nfsv4", "op-remove-done", 1, 0, "struct compound_state *",
766 "nfsv4opinfo_t *" },
767 { "nfsv4", "op-remove-done", 2, 1, "REMOVE4res *" },
768 { "nfsv4", "op-rename-start", 0, 0, "struct compound_state *",
769 "conninfo_t *" },
770 { "nfsv4", "op-rename-start", 1, 0, "struct compound_state *",
771 "nfsv4opinfo_t *" },
772 { "nfsv4", "op-rename-start", 2, 1, "RENAME4args *" },
773 { "nfsv4", "op-rename-done", 0, 0, "struct compound_state *",
774 "conninfo_t *" },
775 { "nfsv4", "op-rename-done", 1, 0, "struct compound_state *",
776 "nfsv4opinfo_t *" },
777 { "nfsv4", "op-rename-done", 2, 1, "RENAME4res *" },
778 { "nfsv4", "op-renew-start", 0, 0, "struct compound_state *",
779 "conninfo_t *" },
780 { "nfsv4", "op-renew-start", 1, 0, "struct compound_state *",
781 "nfsv4opinfo_t *" },
782 { "nfsv4", "op-renew-start", 2, 1, "RENEW4args *" },
783 { "nfsv4", "op-renew-done", 0, 0, "struct compound_state *",
784 "conninfo_t *" },
785 { "nfsv4", "op-renew-done", 1, 0, "struct compound_state *",
786 "nfsv4opinfo_t *" },
787 { "nfsv4", "op-renew-done", 2, 1, "RENEW4res *" },
788 { "nfsv4", "op-restorefh-start", 0, 0, "struct compound_state *",
789 "conninfo_t *" },
790 { "nfsv4", "op-restorefh-start", 1, 0, "struct compound_state *",
791 "nfsv4opinfo_t *" },
792 { "nfsv4", "op-restorefh-done", 0, 0, "struct compound_state *",
793 "conninfo_t *" },
794 { "nfsv4", "op-restorefh-done", 1, 0, "struct compound_state *",
795 "nfsv4opinfo_t *" },
796 { "nfsv4", "op-restorefh-done", 2, 1, "RESTOREFH4res *" },
797 { "nfsv4", "op-savefh-start", 0, 0, "struct compound_state *",
798 "conninfo_t *" },
799 { "nfsv4", "op-savefh-start", 1, 0, "struct compound_state *",
800 "nfsv4opinfo_t *" },
801 { "nfsv4", "op-savefh-done", 0, 0, "struct compound_state *",
802 "conninfo_t *" },
803 { "nfsv4", "op-savefh-done", 1, 0, "struct compound_state *",
804 "nfsv4opinfo_t *" },
805 { "nfsv4", "op-savefh-done", 2, 1, "SAVEFH4res *" },
806 { "nfsv4", "op-secinfo-start", 0, 0, "struct compound_state *",
807 "conninfo_t *" },
808 { "nfsv4", "op-secinfo-start", 1, 0, "struct compound_state *",
809 "nfsv4opinfo_t *" },
810 { "nfsv4", "op-secinfo-start", 2, 1, "SECINFO4args *" },
811 { "nfsv4", "op-secinfo-done", 0, 0, "struct compound_state *",
812 "conninfo_t *" },
813 { "nfsv4", "op-secinfo-done", 1, 0, "struct compound_state *",
814 "nfsv4opinfo_t *" },
815 { "nfsv4", "op-secinfo-done", 2, 1, "SECINFO4res *" },
816 { "nfsv4", "op-setattr-start", 0, 0, "struct compound_state *",
817 "conninfo_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 12

818 { "nfsv4", "op-setattr-start", 1, 0, "struct compound_state *",
819 "nfsv4opinfo_t *" },
820 { "nfsv4", "op-setattr-start", 2, 1, "SETATTR4args *" },
821 { "nfsv4", "op-setattr-done", 0, 0, "struct compound_state *",
822 "conninfo_t *" },
823 { "nfsv4", "op-setattr-done", 1, 0, "struct compound_state *",
824 "nfsv4opinfo_t *" },
825 { "nfsv4", "op-setattr-done", 2, 1, "SETATTR4res *" },
826 { "nfsv4", "op-setclientid-start", 0, 0, "struct compound_state *",
827 "conninfo_t *" },
828 { "nfsv4", "op-setclientid-start", 1, 0, "struct compound_state *",
829 "nfsv4opinfo_t *" },
830 { "nfsv4", "op-setclientid-start", 2, 1, "SETCLIENTID4args *" },
831 { "nfsv4", "op-setclientid-done", 0, 0, "struct compound_state *",
832 "conninfo_t *" },
833 { "nfsv4", "op-setclientid-done", 1, 0, "struct compound_state *",
834 "nfsv4opinfo_t *" },
835 { "nfsv4", "op-setclientid-done", 2, 1, "SETCLIENTID4res *" },
836 { "nfsv4", "op-setclientid-confirm-start", 0, 0,
837 "struct compound_state *", "conninfo_t *" },
838 { "nfsv4", "op-setclientid-confirm-start", 1, 0,
839 "struct compound_state *", "nfsv4opinfo_t *" },
840 { "nfsv4", "op-setclientid-confirm-start", 2, 1,
841 "SETCLIENTID_CONFIRM4args *" },
842 { "nfsv4", "op-setclientid-confirm-done", 0, 0,
843 "struct compound_state *", "conninfo_t *" },
844 { "nfsv4", "op-setclientid-confirm-done", 1, 0,
845 "struct compound_state *", "nfsv4opinfo_t *" },
846 { "nfsv4", "op-setclientid-confirm-done", 2, 1,
847 "SETCLIENTID_CONFIRM4res *" },
848 { "nfsv4", "op-verify-start", 0, 0, "struct compound_state *",
849 "conninfo_t *" },
850 { "nfsv4", "op-verify-start", 1, 0, "struct compound_state *",
851 "nfsv4opinfo_t *" },
852 { "nfsv4", "op-verify-start", 2, 1, "VERIFY4args *" },
853 { "nfsv4", "op-verify-done", 0, 0, "struct compound_state *",
854 "conninfo_t *" },
855 { "nfsv4", "op-verify-done", 1, 0, "struct compound_state *",
856 "nfsv4opinfo_t *" },
857 { "nfsv4", "op-verify-done", 2, 1, "VERIFY4res *" },
858 { "nfsv4", "op-write-start", 0, 0, "struct compound_state *",
859 "conninfo_t *" },
860 { "nfsv4", "op-write-start", 1, 0, "struct compound_state *",
861 "nfsv4opinfo_t *" },
862 { "nfsv4", "op-write-start", 2, 1, "WRITE4args *" },
863 { "nfsv4", "op-write-done", 0, 0, "struct compound_state *",
864 "conninfo_t *" },
865 { "nfsv4", "op-write-done", 1, 0, "struct compound_state *",
866 "nfsv4opinfo_t *" },
867 { "nfsv4", "op-write-done", 2, 1, "WRITE4res *" },
868 { "nfsv4", "cb-recall-start", 0, 0, "rfs4_client_t *",
869 "conninfo_t *" },
870 { "nfsv4", "cb-recall-start", 1, 1, "rfs4_deleg_state_t *",
871 "nfsv4cbinfo_t *" },
872 { "nfsv4", "cb-recall-start", 2, 2, "CB_RECALL4args *" },
873 { "nfsv4", "cb-recall-done", 0, 0, "rfs4_client_t *",
874 "conninfo_t *" },
875 { "nfsv4", "cb-recall-done", 1, 1, "rfs4_deleg_state_t *",
876 "nfsv4cbinfo_t *" },
877 { "nfsv4", "cb-recall-done", 2, 2, "CB_RECALL4res *" },

879 { "ip", "send", 0, 0, "mblk_t *", "pktinfo_t *" },
880 { "ip", "send", 1, 1, "conn_t *", "csinfo_t *" },
881 { "ip", "send", 2, 2, "void_ip_t *", "ipinfo_t *" },
882 { "ip", "send", 3, 3, "__dtrace_ipsr_ill_t *", "ifinfo_t *" },
883 { "ip", "send", 4, 4, "ipha_t *", "ipv4info_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 13

884 { "ip", "send", 5, 5, "ip6_t *", "ipv6info_t *" },
885 { "ip", "send", 6, 6, "int" }, /* used by __dtrace_ipsr_ill_t */
886 { "ip", "receive", 0, 0, "mblk_t *", "pktinfo_t *" },
887 { "ip", "receive", 1, 1, "conn_t *", "csinfo_t *" },
888 { "ip", "receive", 2, 2, "void_ip_t *", "ipinfo_t *" },
889 { "ip", "receive", 3, 3, "__dtrace_ipsr_ill_t *", "ifinfo_t *" },
890 { "ip", "receive", 4, 4, "ipha_t *", "ipv4info_t *" },
891 { "ip", "receive", 5, 5, "ip6_t *", "ipv6info_t *" },
892 { "ip", "receive", 6, 6, "int" }, /* used by __dtrace_ipsr_ill_t */

894 { "tcp", "connect-established", 0, 0, "mblk_t *", "pktinfo_t *" },
895 { "tcp", "connect-established", 1, 1, "ip_xmit_attr_t *",
896 "csinfo_t *" },
897 { "tcp", "connect-established", 2, 2, "void_ip_t *", "ipinfo_t *" },
898 { "tcp", "connect-established", 3, 3, "tcp_t *", "tcpsinfo_t *" },
899 { "tcp", "connect-established", 4, 4, "tcph_t *", "tcpinfo_t *" },
900 { "tcp", "connect-refused", 0, 0, "mblk_t *", "pktinfo_t *" },
901 { "tcp", "connect-refused", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
902 { "tcp", "connect-refused", 2, 2, "void_ip_t *", "ipinfo_t *" },
903 { "tcp", "connect-refused", 3, 3, "tcp_t *", "tcpsinfo_t *" },
904 { "tcp", "connect-refused", 4, 4, "tcph_t *", "tcpinfo_t *" },
905 { "tcp", "connect-request", 0, 0, "mblk_t *", "pktinfo_t *" },
906 { "tcp", "connect-request", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
907 { "tcp", "connect-request", 2, 2, "void_ip_t *", "ipinfo_t *" },
908 { "tcp", "connect-request", 3, 3, "tcp_t *", "tcpsinfo_t *" },
909 { "tcp", "connect-request", 4, 4, "tcph_t *", "tcpinfo_t *" },
910 { "tcp", "accept-established", 0, 0, "mblk_t *", "pktinfo_t *" },
911 { "tcp", "accept-established", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
912 { "tcp", "accept-established", 2, 2, "void_ip_t *", "ipinfo_t *" },
913 { "tcp", "accept-established", 3, 3, "tcp_t *", "tcpsinfo_t *" },
914 { "tcp", "accept-established", 4, 4, "tcph_t *", "tcpinfo_t *" },
915 { "tcp", "accept-refused", 0, 0, "mblk_t *", "pktinfo_t *" },
916 { "tcp", "accept-refused", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
917 { "tcp", "accept-refused", 2, 2, "void_ip_t *", "ipinfo_t *" },
918 { "tcp", "accept-refused", 3, 3, "tcp_t *", "tcpsinfo_t *" },
919 { "tcp", "accept-refused", 4, 4, "tcph_t *", "tcpinfo_t *" },
920 { "tcp", "state-change", 0, 0, "void", "void" },
921 { "tcp", "state-change", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
922 { "tcp", "state-change", 2, 2, "void", "void" },
923 { "tcp", "state-change", 3, 3, "tcp_t *", "tcpsinfo_t *" },
924 { "tcp", "state-change", 4, 4, "void", "void" },
925 { "tcp", "state-change", 5, 5, "int32_t", "tcplsinfo_t *" },
926 { "tcp", "send", 0, 0, "mblk_t *", "pktinfo_t *" },
927 { "tcp", "send", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
928 { "tcp", "send", 2, 2, "__dtrace_tcp_void_ip_t *", "ipinfo_t *" },
929 { "tcp", "send", 3, 3, "tcp_t *", "tcpsinfo_t *" },
930 { "tcp", "send", 4, 4, "__dtrace_tcp_tcph_t *", "tcpinfo_t *" },
931 { "tcp", "receive", 0, 0, "mblk_t *", "pktinfo_t *" },
932 { "tcp", "receive", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
933 { "tcp", "receive", 2, 2, "__dtrace_tcp_void_ip_t *", "ipinfo_t *" },
934 { "tcp", "receive", 3, 3, "tcp_t *", "tcpsinfo_t *" },
935 { "tcp", "receive", 4, 4, "__dtrace_tcp_tcph_t *", "tcpinfo_t *" },

937 { "udp", "send", 0, 0, "mblk_t *", "pktinfo_t *" },
938 { "udp", "send", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
939 { "udp", "send", 2, 2, "void_ip_t *", "ipinfo_t *" },
940 { "udp", "send", 3, 3, "udp_t *", "udpsinfo_t *" },
941 { "udp", "send", 4, 4, "udpha_t *", "udpinfo_t *" },
942 { "udp", "receive", 0, 0, "mblk_t *", "pktinfo_t *" },
943 { "udp", "receive", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
944 { "udp", "receive", 2, 2, "void_ip_t *", "ipinfo_t *" },
945 { "udp", "receive", 3, 3, "udp_t *", "udpsinfo_t *" },
946 { "udp", "receive", 4, 4, "udpha_t *", "udpinfo_t *" },

948 { "sctp", "send", 0, 0, "mblk_t *", "pktinfo_t *" },
949 { "sctp", "send", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 14

950 { "sctp", "send", 2, 2, "void_ip_t *", "ipinfo_t *" },
951 { "sctp", "send", 3, 3, "sctp_t *", "sctpsinfo_t *" },
952 { "sctp", "send", 4, 4, "sctp_hdr_t *", "sctpinfo_t *" },

954 #endif /* ! codereview */
955 { "sysevent", "post", 0, 0, "evch_bind_t *", "syseventchaninfo_t *" },
956 { "sysevent", "post", 1, 1, "sysevent_impl_t *", "syseventinfo_t *" },

958 { "xpv", "add-to-physmap-end", 0, 0, "int" },
959 { "xpv", "add-to-physmap-start", 0, 0, "domid_t" },
960 { "xpv", "add-to-physmap-start", 1, 1, "uint_t" },
961 { "xpv", "add-to-physmap-start", 2, 2, "ulong_t" },
962 { "xpv", "add-to-physmap-start", 3, 3, "ulong_t" },
963 { "xpv", "decrease-reservation-end", 0, 0, "int" },
964 { "xpv", "decrease-reservation-start", 0, 0, "domid_t" },
965 { "xpv", "decrease-reservation-start", 1, 1, "ulong_t" },
966 { "xpv", "decrease-reservation-start", 2, 2, "uint_t" },
967 { "xpv", "decrease-reservation-start", 3, 3, "ulong_t *" },
968 { "xpv", "dom-create-start", 0, 0, "xen_domctl_t *" },
969 { "xpv", "dom-destroy-start", 0, 0, "domid_t" },
970 { "xpv", "dom-pause-start", 0, 0, "domid_t" },
971 { "xpv", "dom-unpause-start", 0, 0, "domid_t" },
972 { "xpv", "dom-create-end", 0, 0, "int" },
973 { "xpv", "dom-destroy-end", 0, 0, "int" },
974 { "xpv", "dom-pause-end", 0, 0, "int" },
975 { "xpv", "dom-unpause-end", 0, 0, "int" },
976 { "xpv", "evtchn-op-end", 0, 0, "int" },
977 { "xpv", "evtchn-op-start", 0, 0, "int" },
978 { "xpv", "evtchn-op-start", 1, 1, "void *" },
979 { "xpv", "increase-reservation-end", 0, 0, "int" },
980 { "xpv", "increase-reservation-start", 0, 0, "domid_t" },
981 { "xpv", "increase-reservation-start", 1, 1, "ulong_t" },
982 { "xpv", "increase-reservation-start", 2, 2, "uint_t" },
983 { "xpv", "increase-reservation-start", 3, 3, "ulong_t *" },
984 { "xpv", "mmap-end", 0, 0, "int" },
985 { "xpv", "mmap-entry", 0, 0, "ulong_t" },
986 { "xpv", "mmap-entry", 1, 1, "ulong_t" },
987 { "xpv", "mmap-entry", 2, 2, "ulong_t" },
988 { "xpv", "mmap-start", 0, 0, "domid_t" },
989 { "xpv", "mmap-start", 1, 1, "int" },
990 { "xpv", "mmap-start", 2, 2, "privcmd_mmap_entry_t *" },
991 { "xpv", "mmapbatch-end", 0, 0, "int" },
992 { "xpv", "mmapbatch-end", 1, 1, "struct seg *" },
993 { "xpv", "mmapbatch-end", 2, 2, "caddr_t" },
994 { "xpv", "mmapbatch-start", 0, 0, "domid_t" },
995 { "xpv", "mmapbatch-start", 1, 1, "int" },
996 { "xpv", "mmapbatch-start", 2, 2, "caddr_t" },
997 { "xpv", "mmu-ext-op-end", 0, 0, "int" },
998 { "xpv", "mmu-ext-op-start", 0, 0, "int" },
999 { "xpv", "mmu-ext-op-start", 1, 1, "struct mmuext_op *" },

1000 { "xpv", "mmu-update-start", 0, 0, "int" },
1001 { "xpv", "mmu-update-start", 1, 1, "int" },
1002 { "xpv", "mmu-update-start", 2, 2, "mmu_update_t *" },
1003 { "xpv", "mmu-update-end", 0, 0, "int" },
1004 { "xpv", "populate-physmap-end", 0, 0, "int" },
1005 { "xpv", "populate-physmap-start", 0, 0, "domid_t" },
1006 { "xpv", "populate-physmap-start", 1, 1, "ulong_t" },
1007 { "xpv", "populate-physmap-start", 2, 2, "ulong_t *" },
1008 { "xpv", "set-memory-map-end", 0, 0, "int" },
1009 { "xpv", "set-memory-map-start", 0, 0, "domid_t" },
1010 { "xpv", "set-memory-map-start", 1, 1, "int" },
1011 { "xpv", "set-memory-map-start", 2, 2, "struct xen_memory_map *" },
1012 { "xpv", "setvcpucontext-end", 0, 0, "int" },
1013 { "xpv", "setvcpucontext-start", 0, 0, "domid_t" },
1014 { "xpv", "setvcpucontext-start", 1, 1, "vcpu_guest_context_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 15

1016 { "srp", "service-up", 0, 0, "srpt_session_t *", "conninfo_t *" },
1017 { "srp", "service-up", 1, 0, "srpt_session_t *", "srp_portinfo_t *" },
1018 { "srp", "service-down", 0, 0, "srpt_session_t *", "conninfo_t *" },
1019 { "srp", "service-down", 1, 0, "srpt_session_t *",
1020 "srp_portinfo_t *" },
1021 { "srp", "login-command", 0, 0, "srpt_session_t *", "conninfo_t *" },
1022 { "srp", "login-command", 1, 0, "srpt_session_t *",
1023 "srp_portinfo_t *" },
1024 { "srp", "login-command", 2, 1, "srp_login_req_t *",
1025 "srp_logininfo_t *" },
1026 { "srp", "login-response", 0, 0, "srpt_session_t *", "conninfo_t *" },
1027 { "srp", "login-response", 1, 0, "srpt_session_t *",
1028 "srp_portinfo_t *" },
1029 { "srp", "login-response", 2, 1, "srp_login_rsp_t *",
1030 "srp_logininfo_t *" },
1031 { "srp", "login-response", 3, 2, "srp_login_rej_t *" },
1032 { "srp", "logout-command", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1033 { "srp", "logout-command", 1, 0, "srpt_channel_t *",
1034 "srp_portinfo_t *" },
1035 { "srp", "task-command", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1036 { "srp", "task-command", 1, 0, "srpt_channel_t *",
1037 "srp_portinfo_t *" },
1038 { "srp", "task-command", 2, 1, "srp_cmd_req_t *", "srp_taskinfo_t *" },
1039 { "srp", "task-response", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1040 { "srp", "task-response", 1, 0, "srpt_channel_t *",
1041 "srp_portinfo_t *" },
1042 { "srp", "task-response", 2, 1, "srp_rsp_t *", "srp_taskinfo_t *" },
1043 { "srp", "task-response", 3, 2, "scsi_task_t *" },
1044 { "srp", "task-response", 4, 3, "int8_t" },
1045 { "srp", "scsi-command", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1046 { "srp", "scsi-command", 1, 0, "srpt_channel_t *",
1047 "srp_portinfo_t *" },
1048 { "srp", "scsi-command", 2, 1, "scsi_task_t *", "scsicmd_t *" },
1049 { "srp", "scsi-command", 3, 2, "srp_cmd_req_t *", "srp_taskinfo_t *" },
1050 { "srp", "scsi-response", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1051 { "srp", "scsi-response", 1, 0, "srpt_channel_t *",
1052 "srp_portinfo_t *" },
1053 { "srp", "scsi-response", 2, 1, "srp_rsp_t *", "srp_taskinfo_t *" },
1054 { "srp", "scsi-response", 3, 2, "scsi_task_t *" },
1055 { "srp", "scsi-response", 4, 3, "int8_t" },
1056 { "srp", "xfer-start", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1057 { "srp", "xfer-start", 1, 0, "srpt_channel_t *",
1058 "srp_portinfo_t *" },
1059 { "srp", "xfer-start", 2, 1, "ibt_wr_ds_t *", "xferinfo_t *" },
1060 { "srp", "xfer-start", 3, 2, "srpt_iu_t *", "srp_taskinfo_t *" },
1061 { "srp", "xfer-start", 4, 3, "ibt_send_wr_t *"},
1062 { "srp", "xfer-start", 5, 4, "uint32_t" },
1063 { "srp", "xfer-start", 6, 5, "uint32_t" },
1064 { "srp", "xfer-start", 7, 6, "uint32_t" },
1065 { "srp", "xfer-start", 8, 7, "uint32_t" },
1066 { "srp", "xfer-done", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1067 { "srp", "xfer-done", 1, 0, "srpt_channel_t *",
1068 "srp_portinfo_t *" },
1069 { "srp", "xfer-done", 2, 1, "ibt_wr_ds_t *", "xferinfo_t *" },
1070 { "srp", "xfer-done", 3, 2, "srpt_iu_t *", "srp_taskinfo_t *" },
1071 { "srp", "xfer-done", 4, 3, "ibt_send_wr_t *"},
1072 { "srp", "xfer-done", 5, 4, "uint32_t" },
1073 { "srp", "xfer-done", 6, 5, "uint32_t" },
1074 { "srp", "xfer-done", 7, 6, "uint32_t" },
1075 { "srp", "xfer-done", 8, 7, "uint32_t" },

1077 { "fc", "link-up", 0, 0, "fct_i_local_port_t *", "conninfo_t *" },
1078 { "fc", "link-down", 0, 0, "fct_i_local_port_t *", "conninfo_t *" },
1079 { "fc", "fabric-login-start", 0, 0, "fct_i_local_port_t *",
1080 "conninfo_t *" },
1081 { "fc", "fabric-login-start", 1, 0, "fct_i_local_port_t *",

new/usr/src/uts/common/dtrace/sdt_subr.c 16

1082 "fc_port_info_t *" },
1083 { "fc", "fabric-login-end", 0, 0, "fct_i_local_port_t *",
1084 "conninfo_t *" },
1085 { "fc", "fabric-login-end", 1, 0, "fct_i_local_port_t *",
1086 "fc_port_info_t *" },
1087 { "fc", "rport-login-start", 0, 0, "fct_cmd_t *",
1088 "conninfo_t *" },
1089 { "fc", "rport-login-start", 1, 1, "fct_local_port_t *",
1090 "fc_port_info_t *" },
1091 { "fc", "rport-login-start", 2, 2, "fct_i_remote_port_t *",
1092 "fc_port_info_t *" },
1093 { "fc", "rport-login-start", 3, 3, "int", "int" },
1094 { "fc", "rport-login-end", 0, 0, "fct_cmd_t *",
1095 "conninfo_t *" },
1096 { "fc", "rport-login-end", 1, 1, "fct_local_port_t *",
1097 "fc_port_info_t *" },
1098 { "fc", "rport-login-end", 2, 2, "fct_i_remote_port_t *",
1099 "fc_port_info_t *" },
1100 { "fc", "rport-login-end", 3, 3, "int", "int" },
1101 { "fc", "rport-login-end", 4, 4, "int", "int" },
1102 { "fc", "rport-logout-start", 0, 0, "fct_cmd_t *",
1103 "conninfo_t *" },
1104 { "fc", "rport-logout-start", 1, 1, "fct_local_port_t *",
1105 "fc_port_info_t *" },
1106 { "fc", "rport-logout-start", 2, 2, "fct_i_remote_port_t *",
1107 "fc_port_info_t *" },
1108 { "fc", "rport-logout-start", 3, 3, "int", "int" },
1109 { "fc", "rport-logout-end", 0, 0, "fct_cmd_t *",
1110 "conninfo_t *" },
1111 { "fc", "rport-logout-end", 1, 1, "fct_local_port_t *",
1112 "fc_port_info_t *" },
1113 { "fc", "rport-logout-end", 2, 2, "fct_i_remote_port_t *",
1114 "fc_port_info_t *" },
1115 { "fc", "rport-logout-end", 3, 3, "int", "int" },
1116 { "fc", "scsi-command", 0, 0, "fct_cmd_t *",
1117 "conninfo_t *" },
1118 { "fc", "scsi-command", 1, 1, "fct_i_local_port_t *",
1119 "fc_port_info_t *" },
1120 { "fc", "scsi-command", 2, 2, "scsi_task_t *",
1121 "scsicmd_t *" },
1122 { "fc", "scsi-command", 3, 3, "fct_i_remote_port_t *",
1123 "fc_port_info_t *" },
1124 { "fc", "scsi-response", 0, 0, "fct_cmd_t *",
1125 "conninfo_t *" },
1126 { "fc", "scsi-response", 1, 1, "fct_i_local_port_t *",
1127 "fc_port_info_t *" },
1128 { "fc", "scsi-response", 2, 2, "scsi_task_t *",
1129 "scsicmd_t *" },
1130 { "fc", "scsi-response", 3, 3, "fct_i_remote_port_t *",
1131 "fc_port_info_t *" },
1132 { "fc", "xfer-start", 0, 0, "fct_cmd_t *",
1133 "conninfo_t *" },
1134 { "fc", "xfer-start", 1, 1, "fct_i_local_port_t *",
1135 "fc_port_info_t *" },
1136 { "fc", "xfer-start", 2, 2, "scsi_task_t *",
1137 "scsicmd_t *" },
1138 { "fc", "xfer-start", 3, 3, "fct_i_remote_port_t *",
1139 "fc_port_info_t *" },
1140 { "fc", "xfer-start", 4, 4, "stmf_data_buf_t *",
1141 "fc_xferinfo_t *" },
1142 { "fc", "xfer-done", 0, 0, "fct_cmd_t *",
1143 "conninfo_t *" },
1144 { "fc", "xfer-done", 1, 1, "fct_i_local_port_t *",
1145 "fc_port_info_t *" },
1146 { "fc", "xfer-done", 2, 2, "scsi_task_t *",
1147 "scsicmd_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 17

1148 { "fc", "xfer-done", 3, 3, "fct_i_remote_port_t *",
1149 "fc_port_info_t *" },
1150 { "fc", "xfer-done", 4, 4, "stmf_data_buf_t *",
1151 "fc_xferinfo_t *" },
1152 { "fc", "rscn-receive", 0, 0, "fct_i_local_port_t *",
1153 "conninfo_t *" },
1154 { "fc", "rscn-receive", 1, 1, "int", "int"},
1155 { "fc", "abts-receive", 0, 0, "fct_cmd_t *",
1156 "conninfo_t *" },
1157 { "fc", "abts-receive", 1, 1, "fct_i_local_port_t *",
1158 "fc_port_info_t *" },
1159 { "fc", "abts-receive", 2, 2, "fct_i_remote_port_t *",
1160 "fc_port_info_t *" },

1163 { NULL }
1164 };

1166 /*ARGSUSED*/
1167 void
1168 sdt_getargdesc(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc)
1169 {
1170 sdt_probe_t *sdp = parg;
1171 int i;

1173 desc->dtargd_native[0] = ’\0’;
1174 desc->dtargd_xlate[0] = ’\0’;

1176 for (i = 0; sdt_args[i].sda_provider != NULL; i++) {
1177 sdt_argdesc_t *a = &sdt_args[i];

1179 if (strcmp(sdp->sdp_provider->sdtp_name, a->sda_provider) != 0)
1180 continue;

1182 if (a->sda_name != NULL &&
1183 strcmp(sdp->sdp_name, a->sda_name) != 0)
1184 continue;

1186 if (desc->dtargd_ndx != a->sda_ndx)
1187 continue;

1189 if (a->sda_native != NULL)
1190 (void) strcpy(desc->dtargd_native, a->sda_native);

1192 if (a->sda_xlate != NULL)
1193 (void) strcpy(desc->dtargd_xlate, a->sda_xlate);

1195 desc->dtargd_mapping = a->sda_mapping;
1196 return;
1197 }

1199 desc->dtargd_ndx = DTRACE_ARGNONE;
1200 }

new/usr/src/uts/common/inet/sctp/sctp_bind.c 1

**
 22475 Sat Apr 12 11:18:55 2014
new/usr/src/uts/common/inet/sctp/sctp_bind.c
3903 DTrace SCTP Provider
**
______unchanged_portion_omitted_

124 int
125 sctp_listen(sctp_t *sctp)
126 {
127 sctp_tf_t *tf;
128 sctp_stack_t *sctps = sctp->sctp_sctps;
129 conn_t *connp = sctp->sctp_connp;

131 RUN_SCTP(sctp);
132 /*
133 * TCP handles listen() increasing the backlog, need to check
134 * if it should be handled here too
135 */
136 if (sctp->sctp_state > SCTPS_BOUND ||
137 (sctp->sctp_connp->conn_state_flags & CONN_CLOSING)) {
138 WAKE_SCTP(sctp);
139 return (EINVAL);
140 }

142 /* Do an anonymous bind for unbound socket doing listen(). */
143 if (sctp->sctp_nsaddrs == 0) {
144 struct sockaddr_storage ss;
145 int ret;

147 bzero(&ss, sizeof (ss));
148 ss.ss_family = connp->conn_family;

150 WAKE_SCTP(sctp);
151 if ((ret = sctp_bind(sctp, (struct sockaddr *)&ss,
152 sizeof (ss))) != 0)
153 return (ret);
154 RUN_SCTP(sctp)
155 }

157 /* Cache things in the ixa without any refhold */
158 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
159 connp->conn_ixa->ixa_cred = connp->conn_cred;
160 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
161 if (is_system_labeled())
162 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);

164 sctp->sctp_state = SCTPS_LISTEN;
165 DTRACE_SCTP6(state__change, void, NULL, ip_xmit_attr_t *,
166 connp->conn_ixa, void, NULL, sctp_t *, sctp, void, NULL,
167 int32_t, SCTPS_BOUND);
168 #endif /* ! codereview */
169 (void) random_get_pseudo_bytes(sctp->sctp_secret, SCTP_SECRET_LEN);
170 sctp->sctp_last_secret_update = ddi_get_lbolt64();
171 bzero(sctp->sctp_old_secret, SCTP_SECRET_LEN);

173 /*
174 * If there is an association limit, allocate and initialize
175 * the counter struct. Note that since listen can be called
176 * multiple times, the struct may have been allready allocated.
177 */
178 if (!list_is_empty(&sctps->sctps_listener_conf) &&
179 sctp->sctp_listen_cnt == NULL) {
180 sctp_listen_cnt_t *slc;
181 uint32_t ratio;

new/usr/src/uts/common/inet/sctp/sctp_bind.c 2

183 ratio = sctp_find_listener_conf(sctps,
184 ntohs(connp->conn_lport));
185 if (ratio != 0) {
186 uint32_t mem_ratio, tot_buf;

188 slc = kmem_alloc(sizeof (sctp_listen_cnt_t), KM_SLEEP);
189 /*
190 * Calculate the connection limit based on
191 * the configured ratio and maxusers. Maxusers
192 * are calculated based on memory size,
193 * ~ 1 user per MB. Note that the conn_rcvbuf
194 * and conn_sndbuf may change after a
195 * connection is accepted. So what we have
196 * is only an approximation.
197 */
198 if ((tot_buf = connp->conn_rcvbuf +
199 connp->conn_sndbuf) < MB) {
200 mem_ratio = MB / tot_buf;
201 slc->slc_max = maxusers / ratio * mem_ratio;
202 } else {
203 mem_ratio = tot_buf / MB;
204 slc->slc_max = maxusers / ratio / mem_ratio;
205 }
206 /* At least we should allow some associations! */
207 if (slc->slc_max < sctp_min_assoc_listener)
208 slc->slc_max = sctp_min_assoc_listener;
209 slc->slc_cnt = 1;
210 slc->slc_drop = 0;
211 sctp->sctp_listen_cnt = slc;
212 }
213 }

216 tf = &sctps->sctps_listen_fanout[SCTP_LISTEN_HASH(
217 ntohs(connp->conn_lport))];
218 sctp_listen_hash_insert(tf, sctp);

220 WAKE_SCTP(sctp);
221 return (0);
222 }

224 /*
225 * Bind the sctp_t to a sockaddr, which includes an address and other
226 * information, such as port or flowinfo.
227 */
228 int
229 sctp_bind(sctp_t *sctp, struct sockaddr *sa, socklen_t len)
230 {
231 int user_specified;
232 boolean_t bind_to_req_port_only;
233 in_port_t requested_port;
234 in_port_t allocated_port;
235 int err = 0;
236 conn_t *connp = sctp->sctp_connp;
237 uint_t scope_id;
238 sin_t *sin;
239 sin6_t *sin6;

241 ASSERT(sctp != NULL);

243 RUN_SCTP(sctp);

245 if ((sctp->sctp_state >= SCTPS_BOUND) ||
246 (sctp->sctp_connp->conn_state_flags & CONN_CLOSING) ||
247 (sa == NULL || len == 0)) {
248 /*

new/usr/src/uts/common/inet/sctp/sctp_bind.c 3

249 * Multiple binds not allowed for any SCTP socket
250 * Also binding with null address is not supported.
251 */
252 err = EINVAL;
253 goto done;
254 }

256 switch (sa->sa_family) {
257 case AF_INET:
258 sin = (sin_t *)sa;
259 if (len < sizeof (struct sockaddr_in) ||
260 connp->conn_family == AF_INET6) {
261 err = EINVAL;
262 goto done;
263 }
264 requested_port = ntohs(sin->sin_port);
265 break;
266 case AF_INET6:
267 sin6 = (sin6_t *)sa;
268 if (len < sizeof (struct sockaddr_in6) ||
269 connp->conn_family == AF_INET) {
270 err = EINVAL;
271 goto done;
272 }
273 requested_port = ntohs(sin6->sin6_port);
274 /* Set the flowinfo. */
275 connp->conn_flowinfo =
276 sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK;

278 scope_id = sin6->sin6_scope_id;
279 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
280 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
281 connp->conn_ixa->ixa_scopeid = scope_id;
282 connp->conn_incoming_ifindex = scope_id;
283 } else {
284 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
285 connp->conn_incoming_ifindex = connp->conn_bound_if;
286 }
287 break;
288 default:
289 err = EAFNOSUPPORT;
290 goto done;
291 }
292 bind_to_req_port_only = requested_port == 0 ? B_FALSE : B_TRUE;

294 err = sctp_select_port(sctp, &requested_port, &user_specified);
295 if (err != 0)
296 goto done;

298 if ((err = sctp_bind_add(sctp, sa, 1, B_TRUE,
299 user_specified == 1 ? htons(requested_port) : 0)) != 0) {
300 goto done;
301 }
302 err = sctp_bindi(sctp, requested_port, bind_to_req_port_only,
303 user_specified, &allocated_port);
304 if (err != 0) {
305 sctp_free_saddrs(sctp);
306 } else {
307 ASSERT(sctp->sctp_state == SCTPS_BOUND);
308 }
309 done:
310 WAKE_SCTP(sctp);
311 return (err);
312 }

314 /*

new/usr/src/uts/common/inet/sctp/sctp_bind.c 4

315 * Perform bind/unbind operation of a list of addresses on a sctp_t
316 */
317 int
318 sctp_bindx(sctp_t *sctp, const void *addrs, int addrcnt, int bindop)
319 {
320 ASSERT(sctp != NULL);
321 ASSERT(addrs != NULL);
322 ASSERT(addrcnt > 0);

324 switch (bindop) {
325 case SCTP_BINDX_ADD_ADDR:
326 return (sctp_bind_add(sctp, addrs, addrcnt, B_FALSE,
327 sctp->sctp_connp->conn_lport));
328 case SCTP_BINDX_REM_ADDR:
329 return (sctp_bind_del(sctp, addrs, addrcnt, B_FALSE));
330 default:
331 return (EINVAL);
332 }
333 }

335 /*
336 * Add a list of addresses to a sctp_t.
337 */
338 int
339 sctp_bind_add(sctp_t *sctp, const void *addrs, uint32_t addrcnt,
340 boolean_t caller_hold_lock, in_port_t port)
341 {
342 int err = 0;
343 boolean_t do_asconf = B_FALSE;
344 sctp_stack_t *sctps = sctp->sctp_sctps;
345 conn_t *connp = sctp->sctp_connp;

347 if (!caller_hold_lock)
348 RUN_SCTP(sctp);

350 if (sctp->sctp_state > SCTPS_ESTABLISHED ||
351 (sctp->sctp_connp->conn_state_flags & CONN_CLOSING)) {
352 if (!caller_hold_lock)
353 WAKE_SCTP(sctp);
354 return (EINVAL);
355 }

357 if (sctp->sctp_state > SCTPS_LISTEN) {
358 /*
359 * Let’s do some checking here rather than undoing the
360 * add later (for these reasons).
361 */
362 if (!sctps->sctps_addip_enabled ||
363 !sctp->sctp_understands_asconf ||
364 !sctp->sctp_understands_addip) {
365 if (!caller_hold_lock)
366 WAKE_SCTP(sctp);
367 return (EINVAL);
368 }
369 do_asconf = B_TRUE;
370 }
371 /*
372 * On a clustered node, for an inaddr_any bind, we will pass the list
373 * of all the addresses in the global list, minus any address on the
374 * loopback interface, and expect the clustering susbsystem to give us
375 * the correct list for the ’port’. For explicit binds we give the
376 * list of addresses and the clustering module validates it for the
377 * ’port’.
378 *
379 * On a non-clustered node, cl_sctp_check_addrs will be NULL and
380 * we proceed as usual.

new/usr/src/uts/common/inet/sctp/sctp_bind.c 5

381 */
382 if (cl_sctp_check_addrs != NULL) {
383 uchar_t *addrlist = NULL;
384 size_t size = 0;
385 int unspec = 0;
386 boolean_t do_listen;
387 uchar_t *llist = NULL;
388 size_t lsize = 0;

390 /*
391 * If we are adding addresses after listening, but before
392 * an association is established, we need to update the
393 * clustering module with this info.
394 */
395 do_listen = !do_asconf && sctp->sctp_state > SCTPS_BOUND &&
396 cl_sctp_listen != NULL;

398 err = sctp_get_addrlist(sctp, addrs, &addrcnt, &addrlist,
399 &unspec, &size);
400 if (err != 0) {
401 ASSERT(addrlist == NULL);
402 ASSERT(addrcnt == 0);
403 ASSERT(size == 0);
404 if (!caller_hold_lock)
405 WAKE_SCTP(sctp);
406 SCTP_KSTAT(sctps, sctp_cl_check_addrs);
407 return (err);
408 }
409 ASSERT(addrlist != NULL);
410 (*cl_sctp_check_addrs)(connp->conn_family, port, &addrlist,
411 size, &addrcnt, unspec == 1);
412 if (addrcnt == 0) {
413 /* We free the list */
414 kmem_free(addrlist, size);
415 if (!caller_hold_lock)
416 WAKE_SCTP(sctp);
417 return (EINVAL);
418 }
419 if (do_listen) {
420 lsize = sizeof (in6_addr_t) * addrcnt;
421 llist = kmem_alloc(lsize, KM_SLEEP);
422 }
423 err = sctp_valid_addr_list(sctp, addrlist, addrcnt, llist,
424 lsize);
425 if (err == 0 && do_listen) {
426 (*cl_sctp_listen)(connp->conn_family, llist,
427 addrcnt, connp->conn_lport);
428 /* list will be freed by the clustering module */
429 } else if (err != 0 && llist != NULL) {
430 kmem_free(llist, lsize);
431 }
432 /* free the list we allocated */
433 kmem_free(addrlist, size);
434 } else {
435 err = sctp_valid_addr_list(sctp, addrs, addrcnt, NULL, 0);
436 }
437 if (err != 0) {
438 if (!caller_hold_lock)
439 WAKE_SCTP(sctp);
440 return (err);
441 }
442 /* Need to send ASCONF messages */
443 if (do_asconf) {
444 err = sctp_add_ip(sctp, addrs, addrcnt);
445 if (err != 0) {
446 sctp_del_saddr_list(sctp, addrs, addrcnt, B_FALSE);

new/usr/src/uts/common/inet/sctp/sctp_bind.c 6

447 if (!caller_hold_lock)
448 WAKE_SCTP(sctp);
449 return (err);
450 }
451 }
452 if (!caller_hold_lock)
453 WAKE_SCTP(sctp);
454 return (0);
455 }

457 /*
458 * Remove one or more addresses bound to the sctp_t.
459 */
460 int
461 sctp_bind_del(sctp_t *sctp, const void *addrs, uint32_t addrcnt,
462 boolean_t caller_hold_lock)
463 {
464 int error = 0;
465 boolean_t do_asconf = B_FALSE;
466 uchar_t *ulist = NULL;
467 size_t usize = 0;
468 sctp_stack_t *sctps = sctp->sctp_sctps;
469 conn_t *connp = sctp->sctp_connp;

471 if (!caller_hold_lock)
472 RUN_SCTP(sctp);

474 if (sctp->sctp_state > SCTPS_ESTABLISHED ||
475 (sctp->sctp_connp->conn_state_flags & CONN_CLOSING)) {
476 if (!caller_hold_lock)
477 WAKE_SCTP(sctp);
478 return (EINVAL);
479 }
480 /*
481 * Fail the remove if we are beyond listen, but can’t send this
482 * to the peer.
483 */
484 if (sctp->sctp_state > SCTPS_LISTEN) {
485 if (!sctps->sctps_addip_enabled ||
486 !sctp->sctp_understands_asconf ||
487 !sctp->sctp_understands_addip) {
488 if (!caller_hold_lock)
489 WAKE_SCTP(sctp);
490 return (EINVAL);
491 }
492 do_asconf = B_TRUE;
493 }

495 /* Can’t delete the last address nor all of the addresses */
496 if (sctp->sctp_nsaddrs == 1 || addrcnt >= sctp->sctp_nsaddrs) {
497 if (!caller_hold_lock)
498 WAKE_SCTP(sctp);
499 return (EINVAL);
500 }

502 if (cl_sctp_unlisten != NULL && !do_asconf &&
503 sctp->sctp_state > SCTPS_BOUND) {
504 usize = sizeof (in6_addr_t) * addrcnt;
505 ulist = kmem_alloc(usize, KM_SLEEP);
506 }

508 error = sctp_del_ip(sctp, addrs, addrcnt, ulist, usize);
509 if (error != 0) {
510 if (ulist != NULL)
511 kmem_free(ulist, usize);
512 if (!caller_hold_lock)

new/usr/src/uts/common/inet/sctp/sctp_bind.c 7

513 WAKE_SCTP(sctp);
514 return (error);
515 }
516 /* ulist will be non-NULL only if cl_sctp_unlisten is non-NULL */
517 if (ulist != NULL) {
518 ASSERT(cl_sctp_unlisten != NULL);
519 (*cl_sctp_unlisten)(connp->conn_family, ulist, addrcnt,
520 connp->conn_lport);
521 /* ulist will be freed by the clustering module */
522 }
523 if (!caller_hold_lock)
524 WAKE_SCTP(sctp);
525 return (error);
526 }

528 /*
529 * Returns 0 for success, errno value otherwise.
530 *
531 * If the "bind_to_req_port_only" parameter is set and the requested port
532 * number is available, then set allocated_port to it. If not available,
533 * return an error.
534 *
535 * If the "bind_to_req_port_only" parameter is not set and the requested port
536 * number is available, then set allocated_port to it. If not available,
537 * find the first anonymous port we can and set allocated_port to that. If no
538 * anonymous ports are available, return an error.
539 *
540 * In either case, when succeeding, update the sctp_t to record the port number
541 * and insert it in the bind hash table.
542 */
543 int
544 sctp_bindi(sctp_t *sctp, in_port_t port, boolean_t bind_to_req_port_only,
545 int user_specified, in_port_t *allocated_port)
546 {
547 /* number of times we have run around the loop */
548 int count = 0;
549 /* maximum number of times to run around the loop */
550 int loopmax;
551 sctp_stack_t *sctps = sctp->sctp_sctps;
552 conn_t *connp = sctp->sctp_connp;
553 zone_t *zone = crgetzone(connp->conn_cred);
554 zoneid_t zoneid = connp->conn_zoneid;

556 /*
557 * Lookup for free addresses is done in a loop and "loopmax"
558 * influences how long we spin in the loop
559 */
560 if (bind_to_req_port_only) {
561 /*
562 * If the requested port is busy, don’t bother to look
563 * for a new one. Setting loop maximum count to 1 has
564 * that effect.
565 */
566 loopmax = 1;
567 } else {
568 /*
569 * If the requested port is busy, look for a free one
570 * in the anonymous port range.
571 * Set loopmax appropriately so that one does not look
572 * forever in the case all of the anonymous ports are in use.
573 */
574 loopmax = (sctps->sctps_largest_anon_port -
575 sctps->sctps_smallest_anon_port + 1);
576 }
577 do {
578 uint16_t lport;

new/usr/src/uts/common/inet/sctp/sctp_bind.c 8

579 sctp_tf_t *tbf;
580 sctp_t *lsctp;
581 int addrcmp;

583 lport = htons(port);

585 /*
586 * Ensure that the sctp_t is not currently in the bind hash.
587 * Hold the lock on the hash bucket to ensure that
588 * the duplicate check plus the insertion is an atomic
589 * operation.
590 *
591 * This function does an inline lookup on the bind hash list
592 * Make sure that we access only members of sctp_t
593 * and that we don’t look at sctp_sctp, since we are not
594 * doing a SCTPB_REFHOLD. For more details please see the notes
595 * in sctp_compress()
596 */
597 sctp_bind_hash_remove(sctp);
598 tbf = &sctps->sctps_bind_fanout[SCTP_BIND_HASH(port)];
599 mutex_enter(&tbf->tf_lock);
600 for (lsctp = tbf->tf_sctp; lsctp != NULL;
601 lsctp = lsctp->sctp_bind_hash) {
602 conn_t *lconnp = lsctp->sctp_connp;

604 if (lport != lconnp->conn_lport ||
605 lsctp->sctp_state < SCTPS_BOUND)
606 continue;

608 /*
609 * On a labeled system, we must treat bindings to ports
610 * on shared IP addresses by sockets with MAC exemption
611 * privilege as being in all zones, as there’s
612 * otherwise no way to identify the right receiver.
613 */
614 if (lconnp->conn_zoneid != zoneid &&
615 lconnp->conn_mac_mode == CONN_MAC_DEFAULT &&
616 connp->conn_mac_mode == CONN_MAC_DEFAULT)
617 continue;

619 addrcmp = sctp_compare_saddrs(sctp, lsctp);
620 if (addrcmp != SCTP_ADDR_DISJOINT) {
621 if (!connp->conn_reuseaddr) {
622 /* in use */
623 break;
624 } else if (lsctp->sctp_state == SCTPS_BOUND ||
625 lsctp->sctp_state == SCTPS_LISTEN) {
626 /*
627 * socket option SO_REUSEADDR is set
628 * on the binding sctp_t.
629 *
630 * We have found a match of IP source
631 * address and source port, which is
632 * refused regardless of the
633 * SO_REUSEADDR setting, so we break.
634 */
635 break;
636 }
637 }
638 }
639 if (lsctp != NULL) {
640 /* The port number is busy */
641 mutex_exit(&tbf->tf_lock);
642 } else {
643 if (is_system_labeled()) {
644 mlp_type_t addrtype, mlptype;

new/usr/src/uts/common/inet/sctp/sctp_bind.c 9

645 uint_t ipversion;

647 /*
648 * On a labeled system we must check the type
649 * of the binding requested by the user (either
650 * MLP or SLP on shared and private addresses),
651 * and that the user’s requested binding
652 * is permitted.
653 */
654 if (connp->conn_family == AF_INET)
655 ipversion = IPV4_VERSION;
656 else
657 ipversion = IPV6_VERSION;

659 addrtype = tsol_mlp_addr_type(
660 connp->conn_allzones ? ALL_ZONES :
661 zone->zone_id,
662 ipversion,
663 connp->conn_family == AF_INET ?
664 (void *)&sctp->sctp_ipha->ipha_src :
665 (void *)&sctp->sctp_ip6h->ip6_src,
666 sctps->sctps_netstack->netstack_ip);

668 /*
669 * tsol_mlp_addr_type returns the possibilities
670 * for the selected address. Since all local
671 * addresses are either private or shared, the
672 * return value mlptSingle means "local address
673 * not valid (interface not present)."
674 */
675 if (addrtype == mlptSingle) {
676 mutex_exit(&tbf->tf_lock);
677 return (EADDRNOTAVAIL);
678 }
679 mlptype = tsol_mlp_port_type(zone, IPPROTO_SCTP,
680 port, addrtype);
681 if (mlptype != mlptSingle) {
682 if (secpolicy_net_bindmlp(connp->
683 conn_cred) != 0) {
684 mutex_exit(&tbf->tf_lock);
685 return (EACCES);
686 }
687 /*
688 * If we’re binding a shared MLP, then
689 * make sure that this zone is the one
690 * that owns that MLP. Shared MLPs can
691 * be owned by at most one zone.
692 *
693 * No need to handle exclusive-stack
694 * zones since ALL_ZONES only applies
695 * to the shared stack.
696 */

698 if (mlptype == mlptShared &&
699 addrtype == mlptShared &&
700 connp->conn_zoneid !=
701 tsol_mlp_findzone(IPPROTO_SCTP,
702 lport)) {
703 mutex_exit(&tbf->tf_lock);
704 return (EACCES);
705 }
706 connp->conn_mlp_type = mlptype;
707 }
708 }
709 /*
710 * This port is ours. Insert in fanout and mark as

new/usr/src/uts/common/inet/sctp/sctp_bind.c 10

711 * bound to prevent others from getting the port
712 * number.
713 */
714 sctp->sctp_state = SCTPS_BOUND;
715 DTRACE_SCTP6(state__change, void, NULL,
716 ip_xmit_attr_t *, connp->conn_ixa, void, NULL,
717 scpt_t *, sctp, void, NULL,
718 int32_t, SCTPS_IDLE);
719 #endif /* ! codereview */
720 connp->conn_lport = lport;

722 ASSERT(&sctps->sctps_bind_fanout[
723 SCTP_BIND_HASH(port)] == tbf);
724 sctp_bind_hash_insert(tbf, sctp, 1);

726 mutex_exit(&tbf->tf_lock);

728 /*
729 * We don’t want sctp_next_port_to_try to "inherit"
730 * a port number supplied by the user in a bind.
731 *
732 * This is the only place where sctp_next_port_to_try
733 * is updated. After the update, it may or may not
734 * be in the valid range.
735 */
736 if (user_specified == 0)
737 sctps->sctps_next_port_to_try = port + 1;

739 *allocated_port = port;

741 return (0);
742 }

744 if ((count == 0) && (user_specified)) {
745 /*
746 * We may have to return an anonymous port. So
747 * get one to start with.
748 */
749 port = sctp_update_next_port(
750 sctps->sctps_next_port_to_try,
751 zone, sctps);
752 user_specified = 0;
753 } else {
754 port = sctp_update_next_port(port + 1, zone, sctps);
755 }
756 if (port == 0)
757 break;

759 /*
760 * Don’t let this loop run forever in the case where
761 * all of the anonymous ports are in use.
762 */
763 } while (++count < loopmax);

765 return (bind_to_req_port_only ? EADDRINUSE : EADDRNOTAVAIL);
766 }

768 /*
769 * Don’t let port fall into the privileged range.
770 * Since the extra privileged ports can be arbitrary we also
771 * ensure that we exclude those from consideration.
772 * sctp_g_epriv_ports is not sorted thus we loop over it until
773 * there are no changes.
774 *
775 * Note: No locks are held when inspecting sctp_g_*epriv_ports
776 * but instead the code relies on:

new/usr/src/uts/common/inet/sctp/sctp_bind.c 11

777 * - the fact that the address of the array and its size never changes
778 * - the atomic assignment of the elements of the array
779 */
780 in_port_t
781 sctp_update_next_port(in_port_t port, zone_t *zone, sctp_stack_t *sctps)
782 {
783 int i;
784 boolean_t restart = B_FALSE;

786 retry:
787 if (port < sctps->sctps_smallest_anon_port)
788 port = sctps->sctps_smallest_anon_port;

790 if (port > sctps->sctps_largest_anon_port) {
791 if (restart)
792 return (0);
793 restart = B_TRUE;
794 port = sctps->sctps_smallest_anon_port;
795 }

797 if (port < sctps->sctps_smallest_nonpriv_port)
798 port = sctps->sctps_smallest_nonpriv_port;

800 for (i = 0; i < sctps->sctps_g_num_epriv_ports; i++) {
801 if (port == sctps->sctps_g_epriv_ports[i]) {
802 port++;
803 /*
804 * Make sure whether the port is in the
805 * valid range.
806 *
807 * XXX Note that if sctp_g_epriv_ports contains
808 * all the anonymous ports this will be an
809 * infinite loop.
810 */
811 goto retry;
812 }
813 }

815 if (is_system_labeled() &&
816 (i = tsol_next_port(zone, port, IPPROTO_SCTP, B_TRUE)) != 0) {
817 port = i;
818 goto retry;
819 }

821 return (port);
822 }

new/usr/src/uts/common/inet/sctp/sctp_output.c 1

**
 66543 Sat Apr 12 11:18:56 2014
new/usr/src/uts/common/inet/sctp/sctp_output.c
3903 DTrace SCTP Provider
**
______unchanged_portion_omitted_

954 void
955 sctp_fast_rexmit(sctp_t *sctp)
956 {
957 mblk_t *mp, *head;
958 int pktlen = 0;
959 sctp_faddr_t *fp = NULL;
960 sctp_stack_t *sctps = sctp->sctp_sctps;

962 ASSERT(sctp->sctp_xmit_head != NULL);
963 mp = sctp_find_fast_rexmit_mblks(sctp, &pktlen, &fp);
964 if (mp == NULL) {
965 SCTP_KSTAT(sctps, sctp_fr_not_found);
966 return;
967 }
968 if ((head = sctp_add_proto_hdr(sctp, fp, mp, 0, NULL)) == NULL) {
969 freemsg(mp);
970 SCTP_KSTAT(sctps, sctp_fr_add_hdr);
971 return;
972 }
973 if ((pktlen > fp->sf_pmss) && fp->sf_isv4) {
974 ipha_t *iph = (ipha_t *)head->b_rptr;

976 iph->ipha_fragment_offset_and_flags = 0;
977 }

979 sctp_set_iplen(sctp, head, fp->sf_ixa);

981 DTRACE_SCTP5(send, mblk_t *, NULL, ip_xmit_attr_t *, fp->sf_ixa,
982 void_ip_t *, mp->b_rptr, sctp_t *, sctp, sctp_hdr_t *,
983 &mp->b_rptr[fp->sf_ixa->ixa_ip_hdr_length]);

985 #endif /* ! codereview */
986 (void) conn_ip_output(head, fp->sf_ixa);
987 BUMP_LOCAL(sctp->sctp_opkts);
988 sctp->sctp_active = fp->sf_lastactive = ddi_get_lbolt64();
989 }

991 void
992 sctp_output(sctp_t *sctp, uint_t num_pkt)
993 {
994 mblk_t *mp = NULL;
995 mblk_t *nmp;
996 mblk_t *head;
997 mblk_t *meta = sctp->sctp_xmit_tail;
998 mblk_t *fill = NULL;
999 uint16_t chunklen;
1000 uint32_t cansend;
1001 int32_t seglen;
1002 int32_t xtralen;
1003 int32_t sacklen;
1004 int32_t pad = 0;
1005 int32_t pathmax;
1006 int extra;
1007 int64_t now = LBOLT_FASTPATH64;
1008 sctp_faddr_t *fp;
1009 sctp_faddr_t *lfp;
1010 sctp_data_hdr_t *sdc;
1011 int error;
1012 boolean_t notsent = B_TRUE;

new/usr/src/uts/common/inet/sctp/sctp_output.c 2

1013 sctp_stack_t *sctps = sctp->sctp_sctps;
1014 uint32_t tsn;

1016 if (sctp->sctp_ftsn == sctp->sctp_lastacked + 1) {
1017 sacklen = 0;
1018 } else {
1019 /* send a SACK chunk */
1020 sacklen = sizeof (sctp_chunk_hdr_t) +
1021 sizeof (sctp_sack_chunk_t) +
1022 (sizeof (sctp_sack_frag_t) * sctp->sctp_sack_gaps);
1023 lfp = sctp->sctp_lastdata;
1024 ASSERT(lfp != NULL);
1025 if (lfp->sf_state != SCTP_FADDRS_ALIVE)
1026 lfp = sctp->sctp_current;
1027 }

1029 cansend = sctp->sctp_frwnd;
1030 if (sctp->sctp_unsent < cansend)
1031 cansend = sctp->sctp_unsent;

1033 /*
1034 * Start persist timer if unable to send or when
1035 * trying to send into a zero window. This timer
1036 * ensures the blocked send attempt is retried.
1037 */
1038 if ((cansend < sctp->sctp_current->sf_pmss / 2) &&
1039 (sctp->sctp_unacked != 0) &&
1040 (sctp->sctp_unacked < sctp->sctp_current->sf_pmss) &&
1041 !sctp->sctp_ndelay ||
1042 (cansend == 0 && sctp->sctp_unacked == 0 &&
1043 sctp->sctp_unsent != 0)) {
1044 head = NULL;
1045 fp = sctp->sctp_current;
1046 goto unsent_data;
1047 }
1048 if (meta != NULL)
1049 mp = meta->b_cont;
1050 while (cansend > 0 && num_pkt-- != 0) {
1051 pad = 0;

1053 /*
1054 * Find first segment eligible for transmit.
1055 */
1056 while (mp != NULL) {
1057 if (SCTP_CHUNK_CANSEND(mp))
1058 break;
1059 mp = mp->b_next;
1060 }
1061 if (mp == NULL) {
1062 meta = sctp_get_msg_to_send(sctp, &mp,
1063 meta == NULL ? NULL : meta->b_next, &error, sacklen,
1064 cansend, NULL);
1065 if (error != 0 || meta == NULL) {
1066 head = NULL;
1067 fp = sctp->sctp_current;
1068 goto unsent_data;
1069 }
1070 sctp->sctp_xmit_tail = meta;
1071 }

1073 sdc = (sctp_data_hdr_t *)mp->b_rptr;
1074 seglen = ntohs(sdc->sdh_len);
1075 xtralen = sizeof (*sdc);
1076 chunklen = seglen - xtralen;

1078 /*

new/usr/src/uts/common/inet/sctp/sctp_output.c 3

1079 * Check rwnd.
1080 */
1081 if (chunklen > cansend) {
1082 head = NULL;
1083 fp = SCTP_CHUNK_DEST(meta);
1084 if (fp == NULL || fp->sf_state != SCTP_FADDRS_ALIVE)
1085 fp = sctp->sctp_current;
1086 goto unsent_data;
1087 }
1088 if ((extra = seglen & (SCTP_ALIGN - 1)) != 0)
1089 extra = SCTP_ALIGN - extra;

1091 /*
1092 * Pick destination address, and check cwnd.
1093 */
1094 if (sacklen > 0 && (seglen + extra <= lfp->sf_cwnd -
1095 lfp->sf_suna) &&
1096 (seglen + sacklen + extra <= lfp->sf_pmss)) {
1097 /*
1098 * Only include SACK chunk if it can be bundled
1099 * with a data chunk, and sent to sctp_lastdata.
1100 */
1101 pathmax = lfp->sf_cwnd - lfp->sf_suna;

1103 fp = lfp;
1104 if ((nmp = dupmsg(mp)) == NULL) {
1105 head = NULL;
1106 goto unsent_data;
1107 }
1108 SCTP_CHUNK_CLEAR_FLAGS(nmp);
1109 head = sctp_add_proto_hdr(sctp, fp, nmp, sacklen,
1110 &error);
1111 if (head == NULL) {
1112 /*
1113 * If none of the source addresses are
1114 * available (i.e error == EHOSTUNREACH),
1115 * pretend we have sent the data. We will
1116 * eventually time out trying to retramsmit
1117 * the data if the interface never comes up.
1118 * If we have already sent some stuff (i.e.,
1119 * notsent is B_FALSE) then we are fine, else
1120 * just mark this packet as sent.
1121 */
1122 if (notsent && error == EHOSTUNREACH) {
1123 SCTP_CHUNK_SENT(sctp, mp, sdc,
1124 fp, chunklen, meta);
1125 }
1126 freemsg(nmp);
1127 SCTP_KSTAT(sctps, sctp_output_failed);
1128 goto unsent_data;
1129 }
1130 seglen += sacklen;
1131 xtralen += sacklen;
1132 sacklen = 0;
1133 } else {
1134 fp = SCTP_CHUNK_DEST(meta);
1135 if (fp == NULL || fp->sf_state != SCTP_FADDRS_ALIVE)
1136 fp = sctp->sctp_current;
1137 /*
1138 * If we haven’t sent data to this destination for
1139 * a while, do slow start again.
1140 */
1141 if (now - fp->sf_lastactive > fp->sf_rto) {
1142 SET_CWND(fp, fp->sf_pmss,
1143 sctps->sctps_slow_start_after_idle);
1144 }

new/usr/src/uts/common/inet/sctp/sctp_output.c 4

1146 pathmax = fp->sf_cwnd - fp->sf_suna;
1147 if (seglen + extra > pathmax) {
1148 head = NULL;
1149 goto unsent_data;
1150 }
1151 if ((nmp = dupmsg(mp)) == NULL) {
1152 head = NULL;
1153 goto unsent_data;
1154 }
1155 SCTP_CHUNK_CLEAR_FLAGS(nmp);
1156 head = sctp_add_proto_hdr(sctp, fp, nmp, 0, &error);
1157 if (head == NULL) {
1158 /*
1159 * If none of the source addresses are
1160 * available (i.e error == EHOSTUNREACH),
1161 * pretend we have sent the data. We will
1162 * eventually time out trying to retramsmit
1163 * the data if the interface never comes up.
1164 * If we have already sent some stuff (i.e.,
1165 * notsent is B_FALSE) then we are fine, else
1166 * just mark this packet as sent.
1167 */
1168 if (notsent && error == EHOSTUNREACH) {
1169 SCTP_CHUNK_SENT(sctp, mp, sdc,
1170 fp, chunklen, meta);
1171 }
1172 freemsg(nmp);
1173 SCTP_KSTAT(sctps, sctp_output_failed);
1174 goto unsent_data;
1175 }
1176 }
1177 fp->sf_lastactive = now;
1178 if (pathmax > fp->sf_pmss)
1179 pathmax = fp->sf_pmss;
1180 SCTP_CHUNK_SENT(sctp, mp, sdc, fp, chunklen, meta);
1181 mp = mp->b_next;

1183 /*
1184 * Use this chunk to measure RTT?
1185 * Must not be a retransmision of an earlier chunk,
1186 * ensure the tsn is current.
1187 */
1188 tsn = ntohl(sdc->sdh_tsn);
1189 if (sctp->sctp_out_time == 0 && tsn == (sctp->sctp_ltsn - 1)) {
1190 sctp->sctp_out_time = now;
1191 sctp->sctp_rtt_tsn = tsn;
1192 }
1193 if (extra > 0) {
1194 fill = sctp_get_padding(sctp, extra);
1195 if (fill != NULL) {
1196 linkb(head, fill);
1197 pad = extra;
1198 seglen += extra;
1199 } else {
1200 goto unsent_data;
1201 }
1202 }
1203 /*
1204 * Bundle chunks. We linkb() the chunks together to send
1205 * downstream in a single packet.
1206 * Partial chunks MUST NOT be bundled with full chunks, so we
1207 * rely on sctp_get_msg_to_send() to only return messages that
1208 * will fit entirely in the current packet.
1209 */
1210 while (seglen < pathmax) {

new/usr/src/uts/common/inet/sctp/sctp_output.c 5

1211 int32_t new_len;
1212 int32_t new_xtralen;

1214 while (mp != NULL) {
1215 if (SCTP_CHUNK_CANSEND(mp))
1216 break;
1217 mp = mp->b_next;
1218 }
1219 if (mp == NULL) {
1220 meta = sctp_get_msg_to_send(sctp, &mp,
1221 meta->b_next, &error, seglen,
1222 (seglen - xtralen) >= cansend ? 0 :
1223 cansend - seglen, fp);
1224 if (error != 0)
1225 break;
1226 /* If no more eligible chunks, cease bundling */
1227 if (meta == NULL)
1228 break;
1229 sctp->sctp_xmit_tail = meta;
1230 }
1231 ASSERT(mp != NULL);
1232 if (!SCTP_CHUNK_ISSENT(mp) && SCTP_CHUNK_DEST(meta) &&
1233 fp != SCTP_CHUNK_DEST(meta)) {
1234 break;
1235 }
1236 sdc = (sctp_data_hdr_t *)mp->b_rptr;
1237 chunklen = ntohs(sdc->sdh_len);
1238 if ((extra = chunklen & (SCTP_ALIGN - 1)) != 0)
1239 extra = SCTP_ALIGN - extra;

1241 new_len = seglen + chunklen;
1242 new_xtralen = xtralen + sizeof (*sdc);
1243 chunklen -= sizeof (*sdc);

1245 if (new_len - new_xtralen > cansend ||
1246 new_len + extra > pathmax) {
1247 break;
1248 }
1249 if ((nmp = dupmsg(mp)) == NULL)
1250 break;
1251 if (extra > 0) {
1252 fill = sctp_get_padding(sctp, extra);
1253 if (fill != NULL) {
1254 pad += extra;
1255 new_len += extra;
1256 linkb(nmp, fill);
1257 } else {
1258 freemsg(nmp);
1259 break;
1260 }
1261 }
1262 seglen = new_len;
1263 xtralen = new_xtralen;
1264 SCTP_CHUNK_CLEAR_FLAGS(nmp);
1265 SCTP_CHUNK_SENT(sctp, mp, sdc, fp, chunklen, meta);
1266 linkb(head, nmp);
1267 mp = mp->b_next;
1268 }
1269 if ((seglen > fp->sf_pmss) && fp->sf_isv4) {
1270 ipha_t *iph = (ipha_t *)head->b_rptr;

1272 /*
1273 * Path MTU is different from what we thought it would
1274 * be when we created chunks, or IP headers have grown.
1275 * Need to clear the DF bit.
1276 */

new/usr/src/uts/common/inet/sctp/sctp_output.c 6

1277 iph->ipha_fragment_offset_and_flags = 0;
1278 }
1279 /* xmit segment */
1280 ASSERT(cansend >= seglen - pad - xtralen);
1281 cansend -= (seglen - pad - xtralen);
1282 dprint(2, ("sctp_output: Sending packet %d bytes, tsn %x "
1283 "ssn %d to %p (rwnd %d, cansend %d, lastack_rxd %x)\n",
1284 seglen - xtralen, ntohl(sdc->sdh_tsn),
1285 ntohs(sdc->sdh_ssn), (void *)fp, sctp->sctp_frwnd,
1286 cansend, sctp->sctp_lastack_rxd));
1287 sctp_set_iplen(sctp, head, fp->sf_ixa);

1289 DTRACE_SCTP5(send, mblk_t *, NULL, ip_xmit_attr_t *, fp->sf_ixa,
1290 void_ip_t *, head->b_rptr, sctp_t *, sctp, sctp_hdr_t *,
1291 &head->b_rptr[fp->sf_ixa->ixa_ip_hdr_length]);

1293 #endif /* ! codereview */
1294 (void) conn_ip_output(head, fp->sf_ixa);
1295 BUMP_LOCAL(sctp->sctp_opkts);
1296 /* arm rto timer (if not set) */
1297 if (!fp->sf_timer_running)
1298 SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->sf_rto);
1299 notsent = B_FALSE;
1300 }
1301 sctp->sctp_active = now;
1302 return;
1303 unsent_data:
1304 /* arm persist timer (if rto timer not set) */
1305 if (!fp->sf_timer_running)
1306 SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->sf_rto);
1307 if (head != NULL)
1308 freemsg(head);
1309 }

1311 /*
1312 * The following two functions initialize and destroy the cache
1313 * associated with the sets used for PR-SCTP.
1314 */
1315 void
1316 sctp_ftsn_sets_init(void)
1317 {
1318 sctp_kmem_ftsn_set_cache = kmem_cache_create("sctp_ftsn_set_cache",
1319 sizeof (sctp_ftsn_set_t), 0, NULL, NULL, NULL, NULL,
1320 NULL, 0);
1321 }

1323 void
1324 sctp_ftsn_sets_fini(void)
1325 {
1326 kmem_cache_destroy(sctp_kmem_ftsn_set_cache);
1327 }

1330 /* Free PR-SCTP sets */
1331 void
1332 sctp_free_ftsn_set(sctp_ftsn_set_t *s)
1333 {
1334 sctp_ftsn_set_t *p;

1336 while (s != NULL) {
1337 p = s->next;
1338 s->next = NULL;
1339 kmem_cache_free(sctp_kmem_ftsn_set_cache, s);
1340 s = p;
1341 }
1342 }

new/usr/src/uts/common/inet/sctp/sctp_output.c 7

1344 /*
1345 * Given a message meta block, meta, this routine creates or modifies
1346 * the set that will be used to generate a Forward TSN chunk. If the
1347 * entry for stream id, sid, for this message already exists, the
1348 * sequence number, ssn, is updated if it is greater than the existing
1349 * one. If an entry for this sid does not exist, one is created if
1350 * the size does not exceed fp->sf_pmss. We return false in case
1351 * or an error.
1352 */
1353 boolean_t
1354 sctp_add_ftsn_set(sctp_ftsn_set_t **s, sctp_faddr_t *fp, mblk_t *meta,
1355 uint_t *nsets, uint32_t *slen)
1356 {
1357 sctp_ftsn_set_t *p;
1358 sctp_msg_hdr_t *msg_hdr = (sctp_msg_hdr_t *)meta->b_rptr;
1359 uint16_t sid = htons(msg_hdr->smh_sid);
1360 /* msg_hdr->smh_ssn is already in NBO */
1361 uint16_t ssn = msg_hdr->smh_ssn;

1363 ASSERT(s != NULL && nsets != NULL);
1364 ASSERT((*nsets == 0 && *s == NULL) || (*nsets > 0 && *s != NULL));

1366 if (*s == NULL) {
1367 ASSERT((*slen + sizeof (uint32_t)) <= fp->sf_pmss);
1368 *s = kmem_cache_alloc(sctp_kmem_ftsn_set_cache, KM_NOSLEEP);
1369 if (*s == NULL)
1370 return (B_FALSE);
1371 (*s)->ftsn_entries.ftsn_sid = sid;
1372 (*s)->ftsn_entries.ftsn_ssn = ssn;
1373 (*s)->next = NULL;
1374 *nsets = 1;
1375 *slen += sizeof (uint32_t);
1376 return (B_TRUE);
1377 }
1378 for (p = *s; p->next != NULL; p = p->next) {
1379 if (p->ftsn_entries.ftsn_sid == sid) {
1380 if (SSN_GT(ssn, p->ftsn_entries.ftsn_ssn))
1381 p->ftsn_entries.ftsn_ssn = ssn;
1382 return (B_TRUE);
1383 }
1384 }
1385 /* the last one */
1386 if (p->ftsn_entries.ftsn_sid == sid) {
1387 if (SSN_GT(ssn, p->ftsn_entries.ftsn_ssn))
1388 p->ftsn_entries.ftsn_ssn = ssn;
1389 } else {
1390 if ((*slen + sizeof (uint32_t)) > fp->sf_pmss)
1391 return (B_FALSE);
1392 p->next = kmem_cache_alloc(sctp_kmem_ftsn_set_cache,
1393 KM_NOSLEEP);
1394 if (p->next == NULL)
1395 return (B_FALSE);
1396 p = p->next;
1397 p->ftsn_entries.ftsn_sid = sid;
1398 p->ftsn_entries.ftsn_ssn = ssn;
1399 p->next = NULL;
1400 (*nsets)++;
1401 *slen += sizeof (uint32_t);
1402 }
1403 return (B_TRUE);
1404 }

1406 /*
1407 * Given a set of stream id - sequence number pairs, this routing creates
1408 * a Forward TSN chunk. The cumulative TSN (advanced peer ack point)

new/usr/src/uts/common/inet/sctp/sctp_output.c 8

1409 * for the chunk is obtained from sctp->sctp_adv_pap. The caller
1410 * will add the IP/SCTP header.
1411 */
1412 mblk_t *
1413 sctp_make_ftsn_chunk(sctp_t *sctp, sctp_faddr_t *fp, sctp_ftsn_set_t *sets,
1414 uint_t nsets, uint32_t seglen)
1415 {
1416 mblk_t *ftsn_mp;
1417 sctp_chunk_hdr_t *ch_hdr;
1418 uint32_t *advtsn;
1419 uint16_t schlen;
1420 size_t xtralen;
1421 ftsn_entry_t *ftsn_entry;
1422 sctp_stack_t *sctps = sctp->sctp_sctps;

1424 seglen += sizeof (sctp_chunk_hdr_t);
1425 if (fp->sf_isv4)
1426 xtralen = sctp->sctp_hdr_len + sctps->sctps_wroff_xtra;
1427 else
1428 xtralen = sctp->sctp_hdr6_len + sctps->sctps_wroff_xtra;
1429 ftsn_mp = allocb(xtralen + seglen, BPRI_MED);
1430 if (ftsn_mp == NULL)
1431 return (NULL);
1432 ftsn_mp->b_rptr += xtralen;
1433 ftsn_mp->b_wptr = ftsn_mp->b_rptr + seglen;

1435 ch_hdr = (sctp_chunk_hdr_t *)ftsn_mp->b_rptr;
1436 ch_hdr->sch_id = CHUNK_FORWARD_TSN;
1437 ch_hdr->sch_flags = 0;
1438 /*
1439 * The cast here should not be an issue since seglen is
1440 * the length of the Forward TSN chunk.
1441 */
1442 schlen = (uint16_t)seglen;
1443 U16_TO_ABE16(schlen, &(ch_hdr->sch_len));

1445 advtsn = (uint32_t *)(ch_hdr + 1);
1446 U32_TO_ABE32(sctp->sctp_adv_pap, advtsn);
1447 ftsn_entry = (ftsn_entry_t *)(advtsn + 1);
1448 while (nsets > 0) {
1449 ASSERT((uchar_t *)&ftsn_entry[1] <= ftsn_mp->b_wptr);
1450 ftsn_entry->ftsn_sid = sets->ftsn_entries.ftsn_sid;
1451 ftsn_entry->ftsn_ssn = sets->ftsn_entries.ftsn_ssn;
1452 ftsn_entry++;
1453 sets = sets->next;
1454 nsets--;
1455 }
1456 return (ftsn_mp);
1457 }

1459 /*
1460 * Given a starting message, the routine steps through all the
1461 * messages whose TSN is less than sctp->sctp_adv_pap and creates
1462 * ftsn sets. The ftsn sets is then used to create an Forward TSN
1463 * chunk. All the messages, that have chunks that are included in the
1464 * ftsn sets, are flagged abandonded. If a message is partially sent
1465 * and is deemed abandoned, all remaining unsent chunks are marked
1466 * abandoned and are deducted from sctp_unsent.
1467 */
1468 void
1469 sctp_make_ftsns(sctp_t *sctp, mblk_t *meta, mblk_t *mp, mblk_t **nmp,
1470 sctp_faddr_t *fp, uint32_t *seglen)
1471 {
1472 mblk_t *mp1 = mp;
1473 mblk_t *mp_head = mp;
1474 mblk_t *meta_head = meta;

new/usr/src/uts/common/inet/sctp/sctp_output.c 9

1475 mblk_t *head;
1476 sctp_ftsn_set_t *sets = NULL;
1477 uint_t nsets = 0;
1478 uint16_t clen;
1479 sctp_data_hdr_t *sdc;
1480 uint32_t sacklen;
1481 uint32_t adv_pap = sctp->sctp_adv_pap;
1482 uint32_t unsent = 0;
1483 boolean_t ubit;
1484 sctp_stack_t *sctps = sctp->sctp_sctps;

1486 *seglen = sizeof (uint32_t);

1488 sdc = (sctp_data_hdr_t *)mp1->b_rptr;
1489 while (meta != NULL &&
1490 SEQ_GEQ(sctp->sctp_adv_pap, ntohl(sdc->sdh_tsn))) {
1491 /*
1492 * Skip adding FTSN sets for un-ordered messages as they do
1493 * not have SSNs.
1494 */
1495 ubit = SCTP_DATA_GET_UBIT(sdc);
1496 if (!ubit &&
1497 !sctp_add_ftsn_set(&sets, fp, meta, &nsets, seglen)) {
1498 meta = NULL;
1499 sctp->sctp_adv_pap = adv_pap;
1500 goto ftsn_done;
1501 }
1502 while (mp1 != NULL && SCTP_CHUNK_ISSENT(mp1)) {
1503 sdc = (sctp_data_hdr_t *)mp1->b_rptr;
1504 adv_pap = ntohl(sdc->sdh_tsn);
1505 mp1 = mp1->b_next;
1506 }
1507 meta = meta->b_next;
1508 if (meta != NULL) {
1509 mp1 = meta->b_cont;
1510 if (!SCTP_CHUNK_ISSENT(mp1))
1511 break;
1512 sdc = (sctp_data_hdr_t *)mp1->b_rptr;
1513 }
1514 }
1515 ftsn_done:
1516 /*
1517 * Can’t compare with sets == NULL, since we don’t add any
1518 * sets for un-ordered messages.
1519 */
1520 if (meta == meta_head)
1521 return;
1522 *nmp = sctp_make_ftsn_chunk(sctp, fp, sets, nsets, *seglen);
1523 sctp_free_ftsn_set(sets);
1524 if (*nmp == NULL)
1525 return;
1526 if (sctp->sctp_ftsn == sctp->sctp_lastacked + 1) {
1527 sacklen = 0;
1528 } else {
1529 sacklen = sizeof (sctp_chunk_hdr_t) +
1530 sizeof (sctp_sack_chunk_t) +
1531 (sizeof (sctp_sack_frag_t) * sctp->sctp_sack_gaps);
1532 if (*seglen + sacklen > sctp->sctp_lastdata->sf_pmss) {
1533 /* piggybacked SACK doesn’t fit */
1534 sacklen = 0;
1535 } else {
1536 fp = sctp->sctp_lastdata;
1537 }
1538 }
1539 head = sctp_add_proto_hdr(sctp, fp, *nmp, sacklen, NULL);
1540 if (head == NULL) {

new/usr/src/uts/common/inet/sctp/sctp_output.c 10

1541 freemsg(*nmp);
1542 *nmp = NULL;
1543 SCTP_KSTAT(sctps, sctp_send_ftsn_failed);
1544 return;
1545 }
1546 *seglen += sacklen;
1547 *nmp = head;

1549 /*
1550 * XXXNeed to optimise this, the reason it is done here is so
1551 * that we don’t have to undo in case of failure.
1552 */
1553 mp1 = mp_head;
1554 sdc = (sctp_data_hdr_t *)mp1->b_rptr;
1555 while (meta_head != NULL &&
1556 SEQ_GEQ(sctp->sctp_adv_pap, ntohl(sdc->sdh_tsn))) {
1557 if (!SCTP_IS_MSG_ABANDONED(meta_head))
1558 SCTP_MSG_SET_ABANDONED(meta_head);
1559 while (mp1 != NULL && SCTP_CHUNK_ISSENT(mp1)) {
1560 sdc = (sctp_data_hdr_t *)mp1->b_rptr;
1561 if (!SCTP_CHUNK_ISACKED(mp1)) {
1562 clen = ntohs(sdc->sdh_len) - sizeof (*sdc);
1563 SCTP_CHUNK_SENT(sctp, mp1, sdc, fp, clen,
1564 meta_head);
1565 }
1566 mp1 = mp1->b_next;
1567 }
1568 while (mp1 != NULL) {
1569 sdc = (sctp_data_hdr_t *)mp1->b_rptr;
1570 if (!SCTP_CHUNK_ABANDONED(mp1)) {
1571 ASSERT(!SCTP_CHUNK_ISSENT(mp1));
1572 unsent += ntohs(sdc->sdh_len) - sizeof (*sdc);
1573 SCTP_ABANDON_CHUNK(mp1);
1574 }
1575 mp1 = mp1->b_next;
1576 }
1577 meta_head = meta_head->b_next;
1578 if (meta_head != NULL) {
1579 mp1 = meta_head->b_cont;
1580 if (!SCTP_CHUNK_ISSENT(mp1))
1581 break;
1582 sdc = (sctp_data_hdr_t *)mp1->b_rptr;
1583 }
1584 }
1585 if (unsent > 0) {
1586 ASSERT(sctp->sctp_unsent >= unsent);
1587 sctp->sctp_unsent -= unsent;
1588 /*
1589 * Update ULP the amount of queued data, which is
1590 * sent-unack’ed + unsent.
1591 */
1592 if (!SCTP_IS_DETACHED(sctp))
1593 SCTP_TXQ_UPDATE(sctp);
1594 }
1595 }

1597 /*
1598 * This function steps through messages starting at meta and checks if
1599 * the message is abandoned. It stops when it hits an unsent chunk or
1600 * a message that has all its chunk acked. This is the only place
1601 * where the sctp_adv_pap is moved forward to indicated abandoned
1602 * messages.
1603 */
1604 void
1605 sctp_check_adv_ack_pt(sctp_t *sctp, mblk_t *meta, mblk_t *mp)
1606 {

new/usr/src/uts/common/inet/sctp/sctp_output.c 11

1607 uint32_t tsn = sctp->sctp_adv_pap;
1608 sctp_data_hdr_t *sdc;
1609 sctp_msg_hdr_t *msg_hdr;

1611 ASSERT(mp != NULL);
1612 sdc = (sctp_data_hdr_t *)mp->b_rptr;
1613 ASSERT(SEQ_GT(ntohl(sdc->sdh_tsn), sctp->sctp_lastack_rxd));
1614 msg_hdr = (sctp_msg_hdr_t *)meta->b_rptr;
1615 if (!SCTP_IS_MSG_ABANDONED(meta) &&
1616 !SCTP_MSG_TO_BE_ABANDONED(meta, msg_hdr, sctp)) {
1617 return;
1618 }
1619 while (meta != NULL) {
1620 while (mp != NULL && SCTP_CHUNK_ISSENT(mp)) {
1621 sdc = (sctp_data_hdr_t *)mp->b_rptr;
1622 tsn = ntohl(sdc->sdh_tsn);
1623 mp = mp->b_next;
1624 }
1625 if (mp != NULL)
1626 break;
1627 /*
1628 * We continue checking for successive messages only if there
1629 * is a chunk marked for retransmission. Else, we might
1630 * end up sending FTSN prematurely for chunks that have been
1631 * sent, but not yet acked.
1632 */
1633 if ((meta = meta->b_next) != NULL) {
1634 msg_hdr = (sctp_msg_hdr_t *)meta->b_rptr;
1635 if (!SCTP_IS_MSG_ABANDONED(meta) &&
1636 !SCTP_MSG_TO_BE_ABANDONED(meta, msg_hdr, sctp)) {
1637 break;
1638 }
1639 for (mp = meta->b_cont; mp != NULL; mp = mp->b_next) {
1640 if (!SCTP_CHUNK_ISSENT(mp)) {
1641 sctp->sctp_adv_pap = tsn;
1642 return;
1643 }
1644 if (SCTP_CHUNK_WANT_REXMIT(mp))
1645 break;
1646 }
1647 if (mp == NULL)
1648 break;
1649 }
1650 }
1651 sctp->sctp_adv_pap = tsn;
1652 }

1655 /*
1656 * Determine if we should bundle a data chunk with the chunk being
1657 * retransmitted. We bundle if
1658 *
1659 * - the chunk is sent to the same destination and unack’ed.
1660 *
1661 * OR
1662 *
1663 * - the chunk is unsent, i.e. new data.
1664 */
1665 #define SCTP_CHUNK_RX_CANBUNDLE(mp, fp) \
1666 (!SCTP_CHUNK_ABANDONED((mp)) && \
1667 ((SCTP_CHUNK_ISSENT((mp)) && (SCTP_CHUNK_DEST(mp) == (fp) && \
1668 !SCTP_CHUNK_ISACKED(mp))) || \
1669 (((mp)->b_flag & (SCTP_CHUNK_FLAG_REXMIT|SCTP_CHUNK_FLAG_SENT)) != \
1670 SCTP_CHUNK_FLAG_SENT)))

1672 /*

new/usr/src/uts/common/inet/sctp/sctp_output.c 12

1673 * Retransmit first segment which hasn’t been acked with cumtsn or send
1674 * a Forward TSN chunk, if appropriate.
1675 */
1676 void
1677 sctp_rexmit(sctp_t *sctp, sctp_faddr_t *oldfp)
1678 {
1679 mblk_t *mp;
1680 mblk_t *nmp = NULL;
1681 mblk_t *head;
1682 mblk_t *meta = sctp->sctp_xmit_head;
1683 mblk_t *fill;
1684 uint32_t seglen = 0;
1685 uint32_t sacklen;
1686 uint16_t chunklen;
1687 int extra;
1688 sctp_data_hdr_t *sdc;
1689 sctp_faddr_t *fp;
1690 uint32_t adv_pap = sctp->sctp_adv_pap;
1691 boolean_t do_ftsn = B_FALSE;
1692 boolean_t ftsn_check = B_TRUE;
1693 uint32_t first_ua_tsn;
1694 sctp_msg_hdr_t *mhdr;
1695 sctp_stack_t *sctps = sctp->sctp_sctps;
1696 int error;

1698 while (meta != NULL) {
1699 for (mp = meta->b_cont; mp != NULL; mp = mp->b_next) {
1700 uint32_t tsn;

1702 if (!SCTP_CHUNK_ISSENT(mp))
1703 goto window_probe;
1704 /*
1705 * We break in the following cases -
1706 *
1707 * if the advanced peer ack point includes the next
1708 * chunk to be retransmited - possibly the Forward
1709 * TSN was lost.
1710 *
1711 * if we are PRSCTP aware and the next chunk to be
1712 * retransmitted is now abandoned
1713 *
1714 * if the next chunk to be retransmitted is for
1715 * the dest on which the timer went off. (this
1716 * message is not abandoned).
1717 *
1718 * We check for Forward TSN only for the first
1719 * eligible chunk to be retransmitted. The reason
1720 * being if the first eligible chunk is skipped (say
1721 * it was sent to a destination other than oldfp)
1722 * then we cannot advance the cum TSN via Forward
1723 * TSN chunk.
1724 *
1725 * Also, ftsn_check is B_TRUE only for the first
1726 * eligible chunk, it will be B_FALSE for all
1727 * subsequent candidate messages for retransmission.
1728 */
1729 sdc = (sctp_data_hdr_t *)mp->b_rptr;
1730 tsn = ntohl(sdc->sdh_tsn);
1731 if (SEQ_GT(tsn, sctp->sctp_lastack_rxd)) {
1732 if (sctp->sctp_prsctp_aware && ftsn_check) {
1733 if (SEQ_GEQ(sctp->sctp_adv_pap, tsn)) {
1734 ASSERT(sctp->sctp_prsctp_aware);
1735 do_ftsn = B_TRUE;
1736 goto out;
1737 } else {
1738 sctp_check_adv_ack_pt(sctp,

new/usr/src/uts/common/inet/sctp/sctp_output.c 13

1739 meta, mp);
1740 if (SEQ_GT(sctp->sctp_adv_pap,
1741 adv_pap)) {
1742 do_ftsn = B_TRUE;
1743 goto out;
1744 }
1745 }
1746 ftsn_check = B_FALSE;
1747 }
1748 if (SCTP_CHUNK_DEST(mp) == oldfp)
1749 goto out;
1750 }
1751 }
1752 meta = meta->b_next;
1753 if (meta != NULL && sctp->sctp_prsctp_aware) {
1754 mhdr = (sctp_msg_hdr_t *)meta->b_rptr;

1756 while (meta != NULL && (SCTP_IS_MSG_ABANDONED(meta) ||
1757 SCTP_MSG_TO_BE_ABANDONED(meta, mhdr, sctp))) {
1758 meta = meta->b_next;
1759 }
1760 }
1761 }
1762 window_probe:
1763 /*
1764 * Retransmit fired for a destination which didn’t have
1765 * any unacked data pending.
1766 */
1767 if (sctp->sctp_unacked == 0 && sctp->sctp_unsent != 0) {
1768 /*
1769 * Send a window probe. Inflate frwnd to allow
1770 * sending one segment.
1771 */
1772 if (sctp->sctp_frwnd < (oldfp->sf_pmss - sizeof (*sdc)))
1773 sctp->sctp_frwnd = oldfp->sf_pmss - sizeof (*sdc);

1775 /* next TSN to send */
1776 sctp->sctp_rxt_nxttsn = sctp->sctp_ltsn;

1778 /*
1779 * The above sctp_frwnd adjustment is coarse. The "changed"
1780 * sctp_frwnd may allow us to send more than 1 packet. So
1781 * tell sctp_output() to send only 1 packet.
1782 */
1783 sctp_output(sctp, 1);

1785 /* Last sent TSN */
1786 sctp->sctp_rxt_maxtsn = sctp->sctp_ltsn - 1;
1787 ASSERT(sctp->sctp_rxt_maxtsn >= sctp->sctp_rxt_nxttsn);
1788 sctp->sctp_zero_win_probe = B_TRUE;
1789 SCTPS_BUMP_MIB(sctps, sctpOutWinProbe);
1790 }
1791 return;
1792 out:
1793 /*
1794 * After a time out, assume that everything has left the network. So
1795 * we can clear rxt_unacked for the original peer address.
1796 */
1797 oldfp->sf_rxt_unacked = 0;

1799 /*
1800 * If we were probing for zero window, don’t adjust retransmission
1801 * variables, but the timer is still backed off.
1802 */
1803 if (sctp->sctp_zero_win_probe) {
1804 mblk_t *pkt;

new/usr/src/uts/common/inet/sctp/sctp_output.c 14

1805 uint_t pkt_len;

1807 /*
1808 * Get the Zero Win Probe for retrasmission, sctp_rxt_nxttsn
1809 * and sctp_rxt_maxtsn will specify the ZWP packet.
1810 */
1811 fp = oldfp;
1812 if (oldfp->sf_state != SCTP_FADDRS_ALIVE)
1813 fp = sctp_rotate_faddr(sctp, oldfp);
1814 pkt = sctp_rexmit_packet(sctp, &meta, &mp, fp, &pkt_len);
1815 if (pkt != NULL) {
1816 ASSERT(pkt_len <= fp->sf_pmss);
1817 sctp_set_iplen(sctp, pkt, fp->sf_ixa);

1819 DTRACE_SCTP5(send, mblk_t *, NULL,
1820 ip_xmit_attr_t *, fp->sf_ixa,
1821 void_ip_t *, mp->b_rptr, sctp_t *, sctp, sctp_hdr_t
1822 &mp->b_rptr[fp->sf_ixa->ixa_ip_hdr_length]);

1824 #endif /* ! codereview */
1825 (void) conn_ip_output(pkt, fp->sf_ixa);
1826 BUMP_LOCAL(sctp->sctp_opkts);
1827 } else {
1828 SCTP_KSTAT(sctps, sctp_ss_rexmit_failed);
1829 }

1831 /*
1832 * The strikes will be clear by sctp_faddr_alive() when the
1833 * other side sends us an ack.
1834 */
1835 oldfp->sf_strikes++;
1836 sctp->sctp_strikes++;

1838 SCTP_CALC_RXT(sctp, oldfp, sctp->sctp_rto_max);
1839 if (oldfp != fp && oldfp->sf_suna != 0)
1840 SCTP_FADDR_TIMER_RESTART(sctp, oldfp, fp->sf_rto);
1841 SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->sf_rto);
1842 SCTPS_BUMP_MIB(sctps, sctpOutWinProbe);
1843 return;
1844 }

1846 /*
1847 * Enter slowstart for this destination
1848 */
1849 oldfp->sf_ssthresh = oldfp->sf_cwnd / 2;
1850 if (oldfp->sf_ssthresh < 2 * oldfp->sf_pmss)
1851 oldfp->sf_ssthresh = 2 * oldfp->sf_pmss;
1852 oldfp->sf_cwnd = oldfp->sf_pmss;
1853 oldfp->sf_pba = 0;
1854 fp = sctp_rotate_faddr(sctp, oldfp);
1855 ASSERT(fp != NULL);
1856 sdc = (sctp_data_hdr_t *)mp->b_rptr;

1858 first_ua_tsn = ntohl(sdc->sdh_tsn);
1859 if (do_ftsn) {
1860 sctp_make_ftsns(sctp, meta, mp, &nmp, fp, &seglen);
1861 if (nmp == NULL) {
1862 sctp->sctp_adv_pap = adv_pap;
1863 goto restart_timer;
1864 }
1865 head = nmp;
1866 /*
1867 * Move to the next unabandoned chunk. XXXCheck if meta will
1868 * always be marked abandoned.
1869 */
1870 while (meta != NULL && SCTP_IS_MSG_ABANDONED(meta))

new/usr/src/uts/common/inet/sctp/sctp_output.c 15

1871 meta = meta->b_next;
1872 if (meta != NULL)
1873 mp = mp->b_cont;
1874 else
1875 mp = NULL;
1876 goto try_bundle;
1877 }
1878 seglen = ntohs(sdc->sdh_len);
1879 chunklen = seglen - sizeof (*sdc);
1880 if ((extra = seglen & (SCTP_ALIGN - 1)) != 0)
1881 extra = SCTP_ALIGN - extra;

1883 /* Find out if we need to piggyback SACK. */
1884 if (sctp->sctp_ftsn == sctp->sctp_lastacked + 1) {
1885 sacklen = 0;
1886 } else {
1887 sacklen = sizeof (sctp_chunk_hdr_t) +
1888 sizeof (sctp_sack_chunk_t) +
1889 (sizeof (sctp_sack_frag_t) * sctp->sctp_sack_gaps);
1890 if (seglen + sacklen > sctp->sctp_lastdata->sf_pmss) {
1891 /* piggybacked SACK doesn’t fit */
1892 sacklen = 0;
1893 } else {
1894 /*
1895 * OK, we have room to send SACK back. But we
1896 * should send it back to the last fp where we
1897 * receive data from, unless sctp_lastdata equals
1898 * oldfp, then we should probably not send it
1899 * back to that fp. Also we should check that
1900 * the fp is alive.
1901 */
1902 if (sctp->sctp_lastdata != oldfp &&
1903 sctp->sctp_lastdata->sf_state ==
1904 SCTP_FADDRS_ALIVE) {
1905 fp = sctp->sctp_lastdata;
1906 }
1907 }
1908 }

1910 /*
1911 * Cancel RTT measurement if the retransmitted TSN is before the
1912 * TSN used for timimg.
1913 */
1914 if (sctp->sctp_out_time != 0 &&
1915 SEQ_GEQ(sctp->sctp_rtt_tsn, sdc->sdh_tsn)) {
1916 sctp->sctp_out_time = 0;
1917 }
1918 /* Clear the counter as the RTT calculation may be off. */
1919 fp->sf_rtt_updates = 0;
1920 oldfp->sf_rtt_updates = 0;

1922 /*
1923 * After a timeout, we should change the current faddr so that
1924 * new chunks will be sent to the alternate address.
1925 */
1926 sctp_set_faddr_current(sctp, fp);

1928 nmp = dupmsg(mp);
1929 if (nmp == NULL)
1930 goto restart_timer;
1931 if (extra > 0) {
1932 fill = sctp_get_padding(sctp, extra);
1933 if (fill != NULL) {
1934 linkb(nmp, fill);
1935 seglen += extra;
1936 } else {

new/usr/src/uts/common/inet/sctp/sctp_output.c 16

1937 freemsg(nmp);
1938 goto restart_timer;
1939 }
1940 }
1941 SCTP_CHUNK_CLEAR_FLAGS(nmp);
1942 head = sctp_add_proto_hdr(sctp, fp, nmp, sacklen, NULL);
1943 if (head == NULL) {
1944 freemsg(nmp);
1945 SCTP_KSTAT(sctps, sctp_rexmit_failed);
1946 goto restart_timer;
1947 }
1948 seglen += sacklen;

1950 SCTP_CHUNK_SENT(sctp, mp, sdc, fp, chunklen, meta);

1952 mp = mp->b_next;

1954 try_bundle:
1955 /* We can at least and at most send 1 packet at timeout. */
1956 while (seglen < fp->sf_pmss) {
1957 int32_t new_len;

1959 /* Go through the list to find more chunks to be bundled. */
1960 while (mp != NULL) {
1961 /* Check if the chunk can be bundled. */
1962 if (SCTP_CHUNK_RX_CANBUNDLE(mp, oldfp))
1963 break;
1964 mp = mp->b_next;
1965 }
1966 /* Go to the next message. */
1967 if (mp == NULL) {
1968 for (meta = meta->b_next; meta != NULL;
1969 meta = meta->b_next) {
1970 mhdr = (sctp_msg_hdr_t *)meta->b_rptr;

1972 if (SCTP_IS_MSG_ABANDONED(meta) ||
1973 SCTP_MSG_TO_BE_ABANDONED(meta, mhdr,
1974 sctp)) {
1975 continue;
1976 }

1978 mp = meta->b_cont;
1979 goto try_bundle;
1980 }
1981 /*
1982 * Check if there is a new message which potentially
1983 * could be bundled with this retransmission.
1984 */
1985 meta = sctp_get_msg_to_send(sctp, &mp, NULL, &error,
1986 seglen, fp->sf_pmss - seglen, NULL);
1987 if (error != 0 || meta == NULL) {
1988 /* No more chunk to be bundled. */
1989 break;
1990 } else {
1991 goto try_bundle;
1992 }
1993 }

1995 sdc = (sctp_data_hdr_t *)mp->b_rptr;
1996 new_len = ntohs(sdc->sdh_len);
1997 chunklen = new_len - sizeof (*sdc);

1999 if ((extra = new_len & (SCTP_ALIGN - 1)) != 0)
2000 extra = SCTP_ALIGN - extra;
2001 if ((new_len = seglen + new_len + extra) > fp->sf_pmss)
2002 break;

new/usr/src/uts/common/inet/sctp/sctp_output.c 17

2003 if ((nmp = dupmsg(mp)) == NULL)
2004 break;

2006 if (extra > 0) {
2007 fill = sctp_get_padding(sctp, extra);
2008 if (fill != NULL) {
2009 linkb(nmp, fill);
2010 } else {
2011 freemsg(nmp);
2012 break;
2013 }
2014 }
2015 linkb(head, nmp);

2017 SCTP_CHUNK_CLEAR_FLAGS(nmp);
2018 SCTP_CHUNK_SENT(sctp, mp, sdc, fp, chunklen, meta);

2020 seglen = new_len;
2021 mp = mp->b_next;
2022 }
2023 done_bundle:
2024 if ((seglen > fp->sf_pmss) && fp->sf_isv4) {
2025 ipha_t *iph = (ipha_t *)head->b_rptr;

2027 /*
2028 * Path MTU is different from path we thought it would
2029 * be when we created chunks, or IP headers have grown.
2030 * Need to clear the DF bit.
2031 */
2032 iph->ipha_fragment_offset_and_flags = 0;
2033 }
2034 fp->sf_rxt_unacked += seglen;

2036 dprint(2, ("sctp_rexmit: Sending packet %d bytes, tsn %x "
2037 "ssn %d to %p (rwnd %d, lastack_rxd %x)\n",
2038 seglen, ntohl(sdc->sdh_tsn), ntohs(sdc->sdh_ssn),
2039 (void *)fp, sctp->sctp_frwnd, sctp->sctp_lastack_rxd));

2041 sctp->sctp_rexmitting = B_TRUE;
2042 sctp->sctp_rxt_nxttsn = first_ua_tsn;
2043 sctp->sctp_rxt_maxtsn = sctp->sctp_ltsn - 1;
2044 sctp_set_iplen(sctp, head, fp->sf_ixa);

2046 DTRACE_SCTP5(send, mblk_t *, NULL, ip_xmit_attr_t *, fp->sf_ixa,
2047 void_ip_t *, mp->b_rptr, sctp_t *, sctp, sctp_hdr_t *,
2048 &mp->b_rptr[fp->sf_ixa->ixa_ip_hdr_length]);

2050 #endif /* ! codereview */
2051 (void) conn_ip_output(head, fp->sf_ixa);
2052 BUMP_LOCAL(sctp->sctp_opkts);

2054 /*
2055 * Restart the oldfp timer with exponential backoff and
2056 * the new fp timer for the retransmitted chunks.
2057 */
2058 restart_timer:
2059 oldfp->sf_strikes++;
2060 sctp->sctp_strikes++;
2061 SCTP_CALC_RXT(sctp, oldfp, sctp->sctp_rto_max);
2062 /*
2063 * If there is still some data in the oldfp, restart the
2064 * retransmission timer. If there is no data, the heartbeat will
2065 * continue to run so it will do its job in checking the reachability
2066 * of the oldfp.
2067 */
2068 if (oldfp != fp && oldfp->sf_suna != 0)

new/usr/src/uts/common/inet/sctp/sctp_output.c 18

2069 SCTP_FADDR_TIMER_RESTART(sctp, oldfp, oldfp->sf_rto);

2071 /*
2072 * Should we restart the timer of the new fp? If there is
2073 * outstanding data to the new fp, the timer should be
2074 * running already. So restarting it means that the timer
2075 * will fire later for those outstanding data. But if
2076 * we don’t restart it, the timer will fire too early for the
2077 * just retransmitted chunks to the new fp. The reason is that we
2078 * don’t keep a timestamp on when a chunk is retransmitted.
2079 * So when the timer fires, it will just search for the
2080 * chunk with the earliest TSN sent to new fp. This probably
2081 * is the chunk we just retransmitted. So for now, let’s
2082 * be conservative and restart the timer of the new fp.
2083 */
2084 SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->sf_rto);

2086 sctp->sctp_active = ddi_get_lbolt64();
2087 }

2089 /*
2090 * This function is called by sctp_ss_rexmit() to create a packet
2091 * to be retransmitted to the given fp. The given meta and mp
2092 * parameters are respectively the sctp_msg_hdr_t and the mblk of the
2093 * first chunk to be retransmitted. This is also called when we want
2094 * to retransmit a zero window probe from sctp_rexmit() or when we
2095 * want to retransmit the zero window probe after the window has
2096 * opened from sctp_got_sack().
2097 */
2098 mblk_t *
2099 sctp_rexmit_packet(sctp_t *sctp, mblk_t **meta, mblk_t **mp, sctp_faddr_t *fp,
2100 uint_t *packet_len)
2101 {
2102 uint32_t seglen = 0;
2103 uint16_t chunklen;
2104 int extra;
2105 mblk_t *nmp;
2106 mblk_t *head;
2107 mblk_t *fill;
2108 sctp_data_hdr_t *sdc;
2109 sctp_msg_hdr_t *mhdr;

2111 sdc = (sctp_data_hdr_t *)(*mp)->b_rptr;
2112 seglen = ntohs(sdc->sdh_len);
2113 chunklen = seglen - sizeof (*sdc);
2114 if ((extra = seglen & (SCTP_ALIGN - 1)) != 0)
2115 extra = SCTP_ALIGN - extra;

2117 nmp = dupmsg(*mp);
2118 if (nmp == NULL)
2119 return (NULL);
2120 if (extra > 0) {
2121 fill = sctp_get_padding(sctp, extra);
2122 if (fill != NULL) {
2123 linkb(nmp, fill);
2124 seglen += extra;
2125 } else {
2126 freemsg(nmp);
2127 return (NULL);
2128 }
2129 }
2130 SCTP_CHUNK_CLEAR_FLAGS(nmp);
2131 head = sctp_add_proto_hdr(sctp, fp, nmp, 0, NULL);
2132 if (head == NULL) {
2133 freemsg(nmp);
2134 return (NULL);

new/usr/src/uts/common/inet/sctp/sctp_output.c 19

2135 }
2136 SCTP_CHUNK_SENT(sctp, *mp, sdc, fp, chunklen, *meta);
2137 /*
2138 * Don’t update the TSN if we are doing a Zero Win Probe.
2139 */
2140 if (!sctp->sctp_zero_win_probe)
2141 sctp->sctp_rxt_nxttsn = ntohl(sdc->sdh_tsn);
2142 *mp = (*mp)->b_next;

2144 try_bundle:
2145 while (seglen < fp->sf_pmss) {
2146 int32_t new_len;

2148 /*
2149 * Go through the list to find more chunks to be bundled.
2150 * We should only retransmit sent by unack’ed chunks. Since
2151 * they were sent before, the peer’s receive window should
2152 * be able to receive them.
2153 */
2154 while (*mp != NULL) {
2155 /* Check if the chunk can be bundled. */
2156 if (SCTP_CHUNK_ISSENT(*mp) && !SCTP_CHUNK_ISACKED(*mp))
2157 break;
2158 *mp = (*mp)->b_next;
2159 }
2160 /* Go to the next message. */
2161 if (*mp == NULL) {
2162 for (*meta = (*meta)->b_next; *meta != NULL;
2163 *meta = (*meta)->b_next) {
2164 mhdr = (sctp_msg_hdr_t *)(*meta)->b_rptr;

2166 if (SCTP_IS_MSG_ABANDONED(*meta) ||
2167 SCTP_MSG_TO_BE_ABANDONED(*meta, mhdr,
2168 sctp)) {
2169 continue;
2170 }

2172 *mp = (*meta)->b_cont;
2173 goto try_bundle;
2174 }
2175 /* No more chunk to be bundled. */
2176 break;
2177 }

2179 sdc = (sctp_data_hdr_t *)(*mp)->b_rptr;
2180 /* Don’t bundle chunks beyond sctp_rxt_maxtsn. */
2181 if (SEQ_GT(ntohl(sdc->sdh_tsn), sctp->sctp_rxt_maxtsn))
2182 break;
2183 new_len = ntohs(sdc->sdh_len);
2184 chunklen = new_len - sizeof (*sdc);

2186 if ((extra = new_len & (SCTP_ALIGN - 1)) != 0)
2187 extra = SCTP_ALIGN - extra;
2188 if ((new_len = seglen + new_len + extra) > fp->sf_pmss)
2189 break;
2190 if ((nmp = dupmsg(*mp)) == NULL)
2191 break;

2193 if (extra > 0) {
2194 fill = sctp_get_padding(sctp, extra);
2195 if (fill != NULL) {
2196 linkb(nmp, fill);
2197 } else {
2198 freemsg(nmp);
2199 break;
2200 }

new/usr/src/uts/common/inet/sctp/sctp_output.c 20

2201 }
2202 linkb(head, nmp);

2204 SCTP_CHUNK_CLEAR_FLAGS(nmp);
2205 SCTP_CHUNK_SENT(sctp, *mp, sdc, fp, chunklen, *meta);
2206 /*
2207 * Don’t update the TSN if we are doing a Zero Win Probe.
2208 */
2209 if (!sctp->sctp_zero_win_probe)
2210 sctp->sctp_rxt_nxttsn = ntohl(sdc->sdh_tsn);

2212 seglen = new_len;
2213 *mp = (*mp)->b_next;
2214 }
2215 *packet_len = seglen;
2216 fp->sf_rxt_unacked += seglen;
2217 return (head);
2218 }

2220 /*
2221 * sctp_ss_rexmit() is called when we get a SACK after a timeout which
2222 * advances the cum_tsn but the cum_tsn is still less than what we have sent
2223 * (sctp_rxt_maxtsn) at the time of the timeout. This SACK is a "partial"
2224 * SACK. We retransmit unacked chunks without having to wait for another
2225 * timeout. The rationale is that the SACK should not be "partial" if all the
2226 * lost chunks have been retransmitted. Since the SACK is "partial,"
2227 * the chunks between the cum_tsn and the sctp_rxt_maxtsn should still
2228 * be missing. It is better for us to retransmit them now instead
2229 * of waiting for a timeout.
2230 */
2231 void
2232 sctp_ss_rexmit(sctp_t *sctp)
2233 {
2234 mblk_t *meta;
2235 mblk_t *mp;
2236 mblk_t *pkt;
2237 sctp_faddr_t *fp;
2238 uint_t pkt_len;
2239 uint32_t tot_wnd;
2240 sctp_data_hdr_t *sdc;
2241 int burst;
2242 sctp_stack_t *sctps = sctp->sctp_sctps;

2244 ASSERT(!sctp->sctp_zero_win_probe);

2246 /*
2247 * If the last cum ack is smaller than what we have just
2248 * retransmitted, simply return.
2249 */
2250 if (SEQ_GEQ(sctp->sctp_lastack_rxd, sctp->sctp_rxt_nxttsn))
2251 sctp->sctp_rxt_nxttsn = sctp->sctp_lastack_rxd + 1;
2252 else
2253 return;
2254 ASSERT(SEQ_LEQ(sctp->sctp_rxt_nxttsn, sctp->sctp_rxt_maxtsn));

2256 /*
2257 * After a timer fires, sctp_current should be set to the new
2258 * fp where the retransmitted chunks are sent.
2259 */
2260 fp = sctp->sctp_current;

2262 /*
2263 * Since we are retransmitting, we only need to use cwnd to determine
2264 * how much we can send as we were allowed (by peer’s receive window)
2265 * to send those retransmitted chunks previously when they are first
2266 * sent. If we record how much we have retransmitted but

new/usr/src/uts/common/inet/sctp/sctp_output.c 21

2267 * unacknowledged using rxt_unacked, then the amount we can now send
2268 * is equal to cwnd minus rxt_unacked.
2269 *
2270 * The field rxt_unacked is incremented when we retransmit a packet
2271 * and decremented when we got a SACK acknowledging something. And
2272 * it is reset when the retransmission timer fires as we assume that
2273 * all packets have left the network after a timeout. If this
2274 * assumption is not true, it means that after a timeout, we can
2275 * get a SACK acknowledging more than rxt_unacked (its value only
2276 * contains what is retransmitted when the timer fires). So
2277 * rxt_unacked will become very big (it is an unsiged int so going
2278 * negative means that the value is huge). This is the reason we
2279 * always send at least 1 MSS bytes.
2280 *
2281 * The reason why we do not have an accurate count is that we
2282 * only know how many packets are outstanding (using the TSN numbers).
2283 * But we do not know how many bytes those packets contain. To
2284 * have an accurate count, we need to walk through the send list.
2285 * As it is not really important to have an accurate count during
2286 * retransmission, we skip this walk to save some time. This should
2287 * not make the retransmission too aggressive to cause congestion.
2288 */
2289 if (fp->sf_cwnd <= fp->sf_rxt_unacked)
2290 tot_wnd = fp->sf_pmss;
2291 else
2292 tot_wnd = fp->sf_cwnd - fp->sf_rxt_unacked;

2294 /* Find the first unack’ed chunk */
2295 for (meta = sctp->sctp_xmit_head; meta != NULL; meta = meta->b_next) {
2296 sctp_msg_hdr_t *mhdr = (sctp_msg_hdr_t *)meta->b_rptr;

2298 if (SCTP_IS_MSG_ABANDONED(meta) ||
2299 SCTP_MSG_TO_BE_ABANDONED(meta, mhdr, sctp)) {
2300 continue;
2301 }

2303 for (mp = meta->b_cont; mp != NULL; mp = mp->b_next) {
2304 /* Again, this may not be possible */
2305 if (!SCTP_CHUNK_ISSENT(mp))
2306 return;
2307 sdc = (sctp_data_hdr_t *)mp->b_rptr;
2308 if (ntohl(sdc->sdh_tsn) == sctp->sctp_rxt_nxttsn)
2309 goto found_msg;
2310 }
2311 }

2313 /* Everything is abandoned... */
2314 return;

2316 found_msg:
2317 if (!fp->sf_timer_running)
2318 SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->sf_rto);
2319 pkt = sctp_rexmit_packet(sctp, &meta, &mp, fp, &pkt_len);
2320 if (pkt == NULL) {
2321 SCTP_KSTAT(sctps, sctp_ss_rexmit_failed);
2322 return;
2323 }
2324 if ((pkt_len > fp->sf_pmss) && fp->sf_isv4) {
2325 ipha_t *iph = (ipha_t *)pkt->b_rptr;

2327 /*
2328 * Path MTU is different from path we thought it would
2329 * be when we created chunks, or IP headers have grown.
2330 * Need to clear the DF bit.
2331 */
2332 iph->ipha_fragment_offset_and_flags = 0;

new/usr/src/uts/common/inet/sctp/sctp_output.c 22

2333 }
2334 sctp_set_iplen(sctp, pkt, fp->sf_ixa);

2336 DTRACE_SCTP5(send, mblk_t *, NULL, ip_xmit_attr_t *, fp->sf_ixa,
2337 void_ip_t *, mp->b_rptr, sctp_t *, sctp, sctp_hdr_t *,
2338 &mp->b_rptr[fp->sf_ixa->ixa_ip_hdr_length]);

2340 #endif /* ! codereview */
2341 (void) conn_ip_output(pkt, fp->sf_ixa);
2342 BUMP_LOCAL(sctp->sctp_opkts);

2344 /* Check and see if there is more chunk to be retransmitted. */
2345 if (tot_wnd <= pkt_len || tot_wnd - pkt_len < fp->sf_pmss ||
2346 meta == NULL)
2347 return;
2348 if (mp == NULL)
2349 meta = meta->b_next;
2350 if (meta == NULL)
2351 return;

2353 /* Retransmit another packet if the window allows. */
2354 for (tot_wnd -= pkt_len, burst = sctps->sctps_maxburst - 1;
2355 meta != NULL && burst > 0; meta = meta->b_next, burst--) {
2356 if (mp == NULL)
2357 mp = meta->b_cont;
2358 for (; mp != NULL; mp = mp->b_next) {
2359 /* Again, this may not be possible */
2360 if (!SCTP_CHUNK_ISSENT(mp))
2361 return;
2362 if (!SCTP_CHUNK_ISACKED(mp))
2363 goto found_msg;
2364 }
2365 }
2366 }

new/usr/src/uts/common/sys/sdt.h 1

**
 17598 Sat Apr 12 11:18:56 2014
new/usr/src/uts/common/sys/sdt.h
3903 DTrace SCTP Provider
**
______unchanged_portion_omitted_

144 #define DTRACE_SCHED(name) \
145 DTRACE_PROBE(__sched_##name);

147 #define DTRACE_SCHED1(name, type1, arg1) \
148 DTRACE_PROBE1(__sched_##name, type1, arg1);

150 #define DTRACE_SCHED2(name, type1, arg1, type2, arg2) \
151 DTRACE_PROBE2(__sched_##name, type1, arg1, type2, arg2);

153 #define DTRACE_SCHED3(name, type1, arg1, type2, arg2, type3, arg3) \
154 DTRACE_PROBE3(__sched_##name, type1, arg1, type2, arg2, type3, arg3);

156 #define DTRACE_SCHED4(name, type1, arg1, type2, arg2, \
157 type3, arg3, type4, arg4) \
158 DTRACE_PROBE4(__sched_##name, type1, arg1, type2, arg2, \
159 type3, arg3, type4, arg4);

161 #define DTRACE_PROC(name) \
162 DTRACE_PROBE(__proc_##name);

164 #define DTRACE_PROC1(name, type1, arg1) \
165 DTRACE_PROBE1(__proc_##name, type1, arg1);

167 #define DTRACE_PROC2(name, type1, arg1, type2, arg2) \
168 DTRACE_PROBE2(__proc_##name, type1, arg1, type2, arg2);

170 #define DTRACE_PROC3(name, type1, arg1, type2, arg2, type3, arg3) \
171 DTRACE_PROBE3(__proc_##name, type1, arg1, type2, arg2, type3, arg3);

173 #define DTRACE_PROC4(name, type1, arg1, type2, arg2, \
174 type3, arg3, type4, arg4) \
175 DTRACE_PROBE4(__proc_##name, type1, arg1, type2, arg2, \
176 type3, arg3, type4, arg4);

178 #define DTRACE_IO(name) \
179 DTRACE_PROBE(__io_##name);

181 #define DTRACE_IO1(name, type1, arg1) \
182 DTRACE_PROBE1(__io_##name, type1, arg1);

184 #define DTRACE_IO2(name, type1, arg1, type2, arg2) \
185 DTRACE_PROBE2(__io_##name, type1, arg1, type2, arg2);

187 #define DTRACE_IO3(name, type1, arg1, type2, arg2, type3, arg3) \
188 DTRACE_PROBE3(__io_##name, type1, arg1, type2, arg2, type3, arg3);

190 #define DTRACE_IO4(name, type1, arg1, type2, arg2, \
191 type3, arg3, type4, arg4) \
192 DTRACE_PROBE4(__io_##name, type1, arg1, type2, arg2, \
193 type3, arg3, type4, arg4);

195 #define DTRACE_ISCSI_2(name, type1, arg1, type2, arg2) \
196 DTRACE_PROBE2(__iscsi_##name, type1, arg1, type2, arg2);

198 #define DTRACE_ISCSI_3(name, type1, arg1, type2, arg2, type3, arg3) \
199 DTRACE_PROBE3(__iscsi_##name, type1, arg1, type2, arg2, type3, arg3);

201 #define DTRACE_ISCSI_4(name, type1, arg1, type2, arg2, \
202 type3, arg3, type4, arg4) \

new/usr/src/uts/common/sys/sdt.h 2

203 DTRACE_PROBE4(__iscsi_##name, type1, arg1, type2, arg2, \
204 type3, arg3, type4, arg4);

206 #define DTRACE_ISCSI_5(name, type1, arg1, type2, arg2, \
207 type3, arg3, type4, arg4, type5, arg5) \
208 DTRACE_PROBE5(__iscsi_##name, type1, arg1, type2, arg2, \
209 type3, arg3, type4, arg4, type5, arg5);

211 #define DTRACE_ISCSI_6(name, type1, arg1, type2, arg2, \
212 type3, arg3, type4, arg4, type5, arg5, type6, arg6) \
213 DTRACE_PROBE6(__iscsi_##name, type1, arg1, type2, arg2, \
214 type3, arg3, type4, arg4, type5, arg5, type6, arg6);

216 #define DTRACE_ISCSI_7(name, type1, arg1, type2, arg2, \
217 type3, arg3, type4, arg4, type5, arg5, type6, arg6, type7, arg7) \
218 DTRACE_PROBE7(__iscsi_##name, type1, arg1, type2, arg2, \
219 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
220 type7, arg7);

222 #define DTRACE_ISCSI_8(name, type1, arg1, type2, arg2, \
223 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
224 type7, arg7, type8, arg8) \
225 DTRACE_PROBE8(__iscsi_##name, type1, arg1, type2, arg2, \
226 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
227 type7, arg7, type8, arg8);

229 #define DTRACE_NFSV3_3(name, type1, arg1, type2, arg2, \
230 type3, arg3) \
231 DTRACE_PROBE3(__nfsv3_##name, type1, arg1, type2, arg2, \
232 type3, arg3);
233 #define DTRACE_NFSV3_4(name, type1, arg1, type2, arg2, \
234 type3, arg3, type4, arg4) \
235 DTRACE_PROBE4(__nfsv3_##name, type1, arg1, type2, arg2, \
236 type3, arg3, type4, arg4);

238 #define DTRACE_NFSV4_1(name, type1, arg1) \
239 DTRACE_PROBE1(__nfsv4_##name, type1, arg1);

241 #define DTRACE_NFSV4_2(name, type1, arg1, type2, arg2) \
242 DTRACE_PROBE2(__nfsv4_##name, type1, arg1, type2, arg2);

244 #define DTRACE_NFSV4_3(name, type1, arg1, type2, arg2, type3, arg3) \
245 DTRACE_PROBE3(__nfsv4_##name, type1, arg1, type2, arg2, type3, arg3);

247 #define DTRACE_SMB_1(name, type1, arg1) \
248 DTRACE_PROBE1(__smb_##name, type1, arg1);

250 #define DTRACE_SMB_2(name, type1, arg1, type2, arg2) \
251 DTRACE_PROBE2(__smb_##name, type1, arg1, type2, arg2);

253 #define DTRACE_IP(name) \
254 DTRACE_PROBE(__ip_##name);

256 #define DTRACE_IP1(name, type1, arg1) \
257 DTRACE_PROBE1(__ip_##name, type1, arg1);

259 #define DTRACE_IP2(name, type1, arg1, type2, arg2) \
260 DTRACE_PROBE2(__ip_##name, type1, arg1, type2, arg2);

262 #define DTRACE_IP3(name, type1, arg1, type2, arg2, type3, arg3) \
263 DTRACE_PROBE3(__ip_##name, type1, arg1, type2, arg2, type3, arg3);

265 #define DTRACE_IP4(name, type1, arg1, type2, arg2, \
266 type3, arg3, type4, arg4) \
267 DTRACE_PROBE4(__ip_##name, type1, arg1, type2, arg2, \
268 type3, arg3, type4, arg4);

new/usr/src/uts/common/sys/sdt.h 3

270 #define DTRACE_IP5(name, type1, arg1, type2, arg2, \
271 type3, arg3, type4, arg4, type5, arg5) \
272 DTRACE_PROBE5(__ip_##name, type1, arg1, type2, arg2, \
273 type3, arg3, type4, arg4, type5, arg5);

275 #define DTRACE_IP6(name, type1, arg1, type2, arg2, \
276 type3, arg3, type4, arg4, type5, arg5, type6, arg6) \
277 DTRACE_PROBE6(__ip_##name, type1, arg1, type2, arg2, \
278 type3, arg3, type4, arg4, type5, arg5, type6, arg6);

280 #define DTRACE_IP7(name, type1, arg1, type2, arg2, type3, arg3, \
281 type4, arg4, type5, arg5, type6, arg6, type7, arg7) \
282 DTRACE_PROBE7(__ip_##name, type1, arg1, type2, arg2, \
283 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
284 type7, arg7);

286 #define DTRACE_TCP(name) \
287 DTRACE_PROBE(__tcp_##name);

289 #define DTRACE_TCP1(name, type1, arg1) \
290 DTRACE_PROBE1(__tcp_##name, type1, arg1);

292 #define DTRACE_TCP2(name, type1, arg1, type2, arg2) \
293 DTRACE_PROBE2(__tcp_##name, type1, arg1, type2, arg2);

295 #define DTRACE_TCP3(name, type1, arg1, type2, arg2, type3, arg3) \
296 DTRACE_PROBE3(__tcp_##name, type1, arg1, type2, arg2, type3, arg3);

298 #define DTRACE_TCP4(name, type1, arg1, type2, arg2, \
299 type3, arg3, type4, arg4) \
300 DTRACE_PROBE4(__tcp_##name, type1, arg1, type2, arg2, \
301 type3, arg3, type4, arg4);

303 #define DTRACE_TCP5(name, type1, arg1, type2, arg2, \
304 type3, arg3, type4, arg4, type5, arg5) \
305 DTRACE_PROBE5(__tcp_##name, type1, arg1, type2, arg2, \
306 type3, arg3, type4, arg4, type5, arg5);

308 #define DTRACE_TCP6(name, type1, arg1, type2, arg2, \
309 type3, arg3, type4, arg4, type5, arg5, type6, arg6) \
310 DTRACE_PROBE6(__tcp_##name, type1, arg1, type2, arg2, \
311 type3, arg3, type4, arg4, type5, arg5, type6, arg6);

313 #define DTRACE_UDP(name) \
314 DTRACE_PROBE(__udp_##name);

316 #define DTRACE_UDP1(name, type1, arg1) \
317 DTRACE_PROBE1(__udp_##name, type1, arg1);

319 #define DTRACE_UDP2(name, type1, arg1, type2, arg2) \
320 DTRACE_PROBE2(__udp_##name, type1, arg1, type2, arg2);

322 #define DTRACE_UDP3(name, type1, arg1, type2, arg2, type3, arg3) \
323 DTRACE_PROBE3(__udp_##name, type1, arg1, type2, arg2, type3, arg3);

325 #define DTRACE_UDP4(name, type1, arg1, type2, arg2, \
326 type3, arg3, type4, arg4) \
327 DTRACE_PROBE4(__udp_##name, type1, arg1, type2, arg2, \
328 type3, arg3, type4, arg4);

330 #define DTRACE_UDP5(name, type1, arg1, type2, arg2, \
331 type3, arg3, type4, arg4, type5, arg5) \
332 DTRACE_PROBE5(__udp_##name, type1, arg1, type2, arg2, \
333 type3, arg3, type4, arg4, type5, arg5);

new/usr/src/uts/common/sys/sdt.h 4

335 #define DTRACE_SCTP(name) \
336 DTRACE_PROBE(__sctp_##name);

338 #define DTRACE_SCTP1(name, type1, arg1) \
339 DTRACE_PROBE1(__sctp_##name, type1, arg1);

341 #define DTRACE_SCTP2(name, type1, arg1, type2, arg2) \
342 DTRACE_PROBE2(__sctp_##name, type1, arg1, type2, arg2);

344 #define DTRACE_SCTP3(name, type1, arg1, type2, arg2, type3, arg3) \
345 DTRACE_PROBE3(__sctp_##name, type1, arg1, type2, arg2, type3, arg3);

347 #define DTRACE_SCTP4(name, type1, arg1, type2, arg2, \
348 type3, arg3, type4, arg4) \
349 DTRACE_PROBE4(__sctp_##name, type1, arg1, type2, arg2, \
350 type3, arg3, type4, arg4);

352 #define DTRACE_SCTP5(name, type1, arg1, type2, arg2, \
353 type3, arg3, type4, arg4, type5, arg5) \
354 DTRACE_PROBE5(__sctp_##name, type1, arg1, type2, arg2, \
355 type3, arg3, type4, arg4, type5, arg5);

357 #define DTRACE_SCTP6(name, type1, arg1, type2, arg2, \
358 type3, arg3, type4, arg4, type5, arg5, type6, arg6) \
359 DTRACE_PROBE6(__sctp_##name, type1, arg1, type2, arg2, \
360 type3, arg3, type4, arg4, type5, arg5, type6, arg6);
361 #endif /* ! codereview */

363 #define DTRACE_SYSEVENT2(name, type1, arg1, type2, arg2) \
364 DTRACE_PROBE2(__sysevent_##name, type1, arg1, type2, arg2);

366 #define DTRACE_XPV(name) \
367 DTRACE_PROBE(__xpv_##name);

369 #define DTRACE_XPV1(name, type1, arg1) \
370 DTRACE_PROBE1(__xpv_##name, type1, arg1);

372 #define DTRACE_XPV2(name, type1, arg1, type2, arg2) \
373 DTRACE_PROBE2(__xpv_##name, type1, arg1, type2, arg2);

375 #define DTRACE_XPV3(name, type1, arg1, type2, arg2, type3, arg3) \
376 DTRACE_PROBE3(__xpv_##name, type1, arg1, type2, arg2, type3, arg3);

378 #define DTRACE_XPV4(name, type1, arg1, type2, arg2, type3, arg3, \
379 type4, arg4) \
380 DTRACE_PROBE4(__xpv_##name, type1, arg1, type2, arg2, \
381 type3, arg3, type4, arg4);

383 #define DTRACE_FC_1(name, type1, arg1) \
384 DTRACE_PROBE1(__fc_##name, type1, arg1);

386 #define DTRACE_FC_2(name, type1, arg1, type2, arg2) \
387 DTRACE_PROBE2(__fc_##name, type1, arg1, type2, arg2);

389 #define DTRACE_FC_3(name, type1, arg1, type2, arg2, type3, arg3) \
390 DTRACE_PROBE3(__fc_##name, type1, arg1, type2, arg2, type3, arg3);

392 #define DTRACE_FC_4(name, type1, arg1, type2, arg2, type3, arg3, type4, arg4) \
393 DTRACE_PROBE4(__fc_##name, type1, arg1, type2, arg2, type3, arg3, \
394 type4, arg4);

396 #define DTRACE_FC_5(name, type1, arg1, type2, arg2, type3, arg3, \
397 type4, arg4, type5, arg5) \
398 DTRACE_PROBE5(__fc_##name, type1, arg1, type2, arg2, type3, arg3, \
399 type4, arg4, type5, arg5);

new/usr/src/uts/common/sys/sdt.h 5

401 #define DTRACE_SRP_1(name, type1, arg1) \
402 DTRACE_PROBE1(__srp_##name, type1, arg1);

404 #define DTRACE_SRP_2(name, type1, arg1, type2, arg2) \
405 DTRACE_PROBE2(__srp_##name, type1, arg1, type2, arg2);

407 #define DTRACE_SRP_3(name, type1, arg1, type2, arg2, type3, arg3) \
408 DTRACE_PROBE3(__srp_##name, type1, arg1, type2, arg2, type3, arg3);

410 #define DTRACE_SRP_4(name, type1, arg1, type2, arg2, type3, arg3, \
411 type4, arg4) \
412 DTRACE_PROBE4(__srp_##name, type1, arg1, type2, arg2, \
413 type3, arg3, type4, arg4);

415 #define DTRACE_SRP_5(name, type1, arg1, type2, arg2, type3, arg3, \
416 type4, arg4, type5, arg5) \
417 DTRACE_PROBE5(__srp_##name, type1, arg1, type2, arg2, \
418 type3, arg3, type4, arg4, type5, arg5);

420 #define DTRACE_SRP_6(name, type1, arg1, type2, arg2, type3, arg3, \
421 type4, arg4, type5, arg5, type6, arg6) \
422 DTRACE_PROBE6(__srp_##name, type1, arg1, type2, arg2, \
423 type3, arg3, type4, arg4, type5, arg5, type6, arg6);

425 #define DTRACE_SRP_7(name, type1, arg1, type2, arg2, type3, arg3, \
426 type4, arg4, type5, arg5, type6, arg6, type7, arg7) \
427 DTRACE_PROBE7(__srp_##name, type1, arg1, type2, arg2, \
428 type3, arg3, type4, arg4, type5, arg5, type6, arg6, type7, arg7);

430 #define DTRACE_SRP_8(name, type1, arg1, type2, arg2, type3, arg3, \
431 type4, arg4, type5, arg5, type6, arg6, type7, arg7, type8, arg8) \
432 DTRACE_PROBE8(__srp_##name, type1, arg1, type2, arg2, \
433 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
434 type7, arg7, type8, arg8);

436 /*
437 * the set-error SDT probe is extra static, in that we declare its fake
438 * function literally, rather than with the DTRACE_PROBE1() macro. This is
439 * necessary so that SET_ERROR() can evaluate to a value, which wouldn’t
440 * be possible if it required multiple statements (to declare the function
441 * and then call it).
442 *
443 * SET_ERROR() uses the comma operator so that it can be used without much
444 * additional code. For example, "return (EINVAL);" becomes
445 * "return (SET_ERROR(EINVAL));". Note that the argument will be evaluated
446 * twice, so it should not have side effects (e.g. something like:
447 * "return (SET_ERROR(log_error(EINVAL, info)));" would log the error twice).
448 */
449 extern void __dtrace_probe_set__error(uintptr_t);
450 #define SET_ERROR(err) (__dtrace_probe_set__error(err), err)

452 #endif /* _KERNEL */

454 extern const char *sdt_prefix;

456 typedef struct sdt_probedesc {
457 char *sdpd_name; /* name of this probe */
458 unsigned long sdpd_offset; /* offset of call in text */
459 struct sdt_probedesc *sdpd_next; /* next static probe */
460 } sdt_probedesc_t;

462 #ifdef __cplusplus
463 }
464 #endif

466 #endif /* _SYS_SDT_H */

