new usr/src/cnd/ dl adml Makefile

R R R R

1760 Sun Feb 9 05:30:58 2014

new usr/src/cnd/ dl adml Makefile

4585
3755
3374

dl adm(1n) needs a 'hel p’ subconmmand
dl adm show aggr docunentation
usage of ’'dladm does not match to its nan page

hhkkkkkhkkkkkkkkkkk kAR kR kR hkkhkhkhkkkhkhkkkkkkkkkk kR kkkk kK k%

57

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyri ght 2010 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to |license terns.

HEHEHHHHFHHHFH R E TR

PROG= dl adm
CFGFI LES= secobj . conf

ROOTFS PROG= $(PROG)
ROOTCFGDI R= $(ROOTETC) / dI adm
ROOTCFGFI LES= $(CFGFI LES: %$(ROOTCFGDI R) / %

include ../ Mkefile.cnmd
XGETFLAGS += -a -x $(PROG) . xcl
LDLIBS += -L$(ROOT)/lib -1socket

LDLIBS += -ldladm-1dlpi -lkstat -lsecdb -Ibsm-linetutil -1Idevinfo
LDLI BS += $(ZLAZYLOAD) -Irstp $(ZNOLAZYLOAD)

CERRWARN += - _gcc=- Who- unused- | abel
CERRWARN += - _gcc=-Who-uninitialized

For headers fromlibrstp.
LI NTFLAGS += -errof f=E_TRAI LI NG COWA | N_ENUM

$(ROOTCFGDI R) / secobj . conf : = FI LEMODE= 660

lint := ZLAZYLOAD=
lint := ZNOLAZYLOAD=
. KEEP_STATE:

all: $(ROOTFS_PROG)

install: all $(ROOTSBI NPROG) $(ROOTCFGDIR) $(ROOTCFGFI LES)
$(RM $(ROOTUSRSBI NPROG)
~$(SYMLINK) ../../shin/$(PROG $(ROOTUSRSBI NPROG)

new usr/src/cnd/ dl adml Makefile

59
61

63
64

66
67

69

cl ean:

lint: I'i nt _PROG

$(ROOTCFGDI R) :
$(INS. dir)

$(ROOTCFGDI R) / % $(ROOTCFGDIR) %
$(INS. fi

i ncl ude

file)

../ Makefile.targ

new usr/ src/ cnd/ dl adnf dl adm ¢ 1 new usr/ src/ cnd/ dl adnf dl adm ¢
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 #I ncl ude <| | bdl SI m h>
255995 Sun Feb 9 05:30:58 2014 61 #include <libdl bridge. h>
new usr/ src/ cnd/ dl adnf dl adm ¢ 62 #include <libinetutil.h>
4585 dl adn{1m) needs a ' hel p° subcommand 63 #include <libvrrpadm h>
3755 dl adm show aggr docunent ati on 64 #include <bsm adt. h>
3374 usage of 'dladni does not match to its man page 65 #include <bsnf adt _event. h>
IR EEEEEEE SRS S SRS RS RS SRS RS RS EEERREEREEEEEEEEEEEEEEESEESSE] 66 #' ncl ude <| | bdl an C h>
1/* 67 #include <sys/types. h>
2 * CDDL HEADER START 68 #include <sys/socket.h>
3 * 69 #include <sys/ib/ib_types.h>
4 * The contents of this file are subject to the terms of the 70 #include <sys/processor. h>
5 * Common Devel opnent and Distribution License (the "License"). 71 #include <netinet/in.h>
6 * You may not use this file except in conpliance with the License. 72 #include <arpalinet.h>
7 * 73 #include <net/if_types. h>
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE 74 #include <stddef.h>
9 * or http://ww. opensol aris.org/os/licensing. 75 #include <stp_in.h>
10 * See the License for the specific |anguage governing perm ssions 76 #include <ofnt.h>
11 * and limtations under the License.
12 * 78 #define MAXPORT 256
13 * When distributing Covered Code, include this CDDL HEADER i n each 79 #define MAXVNI C 256
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 #define BUFLEN(lim ptr) (((rim > (ptr)) 2 ((lim - (ptr)) : 0)
15 * |f applicable, add the followi ng below this CDDL HEADER, with the 81 #define MAXLI NELEN 1024
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 #define SMF_UPGRADE_FI LE "/var/svc/profil e/ upgrade”
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 #define SMF_UPGRADEDATALI NK_FI LE "/ var/svc/profilel upgrade dat al i nk"
18 = 84 #define SMF_DLADM UPGRADE_NSG " # added by dl adn(1M"
19 * CDDL HEADER END 85 #defi ne DLADM DEFAULT_COL 80
20 */ 86 #defi ne DLADM DEFAULT_CMD "show | i nk"
21 | * 87 #endif /* | codereview */
22 */ Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved. ,
23 * 89 /*
90 * used by the wifi show* conmands to set up ofnt_field_t structures.
25 #include <stdio. h> 91 */
26 #include <ctype. h> 92 #define WFI_CVD_SCAN 0x00000001
27 #include <dlfcn. h> 93 #define W FI_CMD_SHOW 0x00000002
28 #include <l ocal e. h> 94 #define WFI_CVD ALL (WFI_CVD_SCAN | W FI _CMD_SHOW
29 #include <signal.h>
30 #include <stdarg. h> 96 /* No |arger than pktsumt */
31 #include <stdlib.h> 97 typedef struct brsums {
32 #include <fcntl. h> 98 ui nt 64 _t dr ops;
33 #include <string. h> 99 ui nt 64_t forward_dir;
34 #include <stropts. h> 100 ui nt 64_t f orwar d_nb;
35 #include <sys/stat.h> 101 ui nt64_t f or war d_unk;
36 #include <errno. h> 102 ui nt 64_t recv;
37 #include <kstat.h> 103 ui nt 64_t sent;
38 #include <strings. h> 104 } brsumt;
39 #include <getopt.h>
40 #incl ude <unistd. h> 106 /* No |l arger than pktsumt */
41 #include <priv. h> 107 typedef struct brlsums {
42 #include <limts.h> 108 ui nt 32_t cf gbpdu;
43 #include <term os. h> 109 ui nt 32_t t cnbpdu;
44 #incl ude <pwd. h> 110 ui nt 32_t r st pbpdu;
45 #include <auth_attr.h> 111 ui nt 32_t t xbpdu;
46 #include <auth_list.h> 112 ui nt 64_t dr ops;
47 #include <libintl.h> 113 ui nt 64_t recv;
48 #incl ude <l i bdevinfo. h> 114 ui nt 64_t xmt;
49 #include <li bdl pi . h> 115 } brlsumt;
50 #i nclude <libdl adm h>
51 #include <libdllink.h> 117 typedef struct show state {
52 #include <libdlstat.h> 118 bool ean_t I's_firstonly;
53 #include <libdl aggr. h> 119 bool ean_t | s_donefirst;
54 #include <libdlw an. h> 120 pktsum t | s_prevstats;
55 #include <libdlvlan. h> 121 ui nt 32_t I's_flags;
56 #include <libdlvnic.h> 122 dl adm status_t |s_status;
57 #include <libdlib.h> 123 of mt _handl e_t | s_ofnt;
58 #include <libdl ether. h> 124 bool ean_t I's_pa ar sabl e;
59 #include <libdliptun. h> 125 bool ean_t I's_mac;

new usr/src/cnd/ dl adnf dl adm ¢

126 bool ean_t I's_hwgr p;
127 } show state_t;

129 typedef struct show grp_state {
gs_prevst at s[MAXPORT] ;

130 pkt sum t

131 ui nt 32_t gs_fl ags;

132 dl adm status_t gs_status;
133 bool ean_t gs_ par sabl e;
134 bool ean_t gs_| a

135 bool ean_t gs_ extended
136 bool ean_t gs_stats;

137 bool ean_t gs_first onl y;
138 bool ean_t gs_donefirst;
139 of mt _handl e_t gs_ofnt;

140 } show grp_state_t;

142 typedef struct show vnic_state {
3

14 datal ink_id_t vs_vnic_id;

144 datal i nk_i d_t vs_link”id;

145 char vs_vni c| MAXLI NKNAMELEN] ;
146 char vs_l i nk[MAXLI NKNAMVELEN] ;
147 bool ean_t vs_par sabl e;

148 bool ean_t vs_found;

149 bool ean_t vs_firstonly;

150 bool ean_t vs_donefirst;

151 bool ean_t vs_stats;

152 bool ean_t VsS_printstats;

153 pkt sum t vs_total stats;

154 pkt sum t vs_prevstat s[MAXVNI C] ;
155 bool ean_t vs_et her st ub;

156 dl adm status_t vs_status;

157 ui nt 32_t vs_fl ags;

158 of mt _handl e_t vs_of nt;

159 } show vnic_state_t;

161 typedef struct show part_state {
162

datal ink_id_t ps_over _i d;
163 char ps_par t [MAXLI NKNAMVELEN ;
164 bool ean_t ps_par sabl e;
165 bool ean_t ps_found;
166 dl adm status_t ps_status;
167 ui nt32_t ps_fl ags;
168 of nt _handl e_t ps_of nt;

169 } show part_state_t;

171 typedef struct show_ ib_state {
172 datal i nk_id_t is_link_ id;

173 char is_link[MAXLI NKNAMELEN] ;
174 bool ean_t i s_parsabl e;

175 dl adm status_t is_status;

176 ui nt 32_t is_flags;

177 of mt _handl e_t is_ofnt;

178 } show_ib_state_t;

180 typedef struct show usage_state_s {

bool ean_t us_pl ot ;
182 bool ean_t us_par sabl e;
183 bool ean_t us_print header;
184 bool ean_t us_first;
185 bool ean_t us_showal | ;
186 of mt _handl e_t us_of nt;

187 } show usage_state_t;

189 /*

190 * callback functions for printing output and error diagnostics.

191 */

new usr/src/cnd/ dl adn dl adm ¢

192 static ofnt_cb_t print_default_cb, print_link_stats_cbh, print_|inkprop_ch;
193 static ofmt_cb_t print_lacp_ch, print_phys_one_mac_cb;
194 static ofnmt_cb_t print_xaggr_ cb print_aggr_stats_ch;
195 static ofnmt_ch_t print_phys_one_hwgrp_cb, print_ wan_attr_cb;
196 static ofnmt_cb_t print_wifi_status_cb, print_link_attr_ch;
G

197 static void dl adm of nt _check(of nt _status_t, bool ean_t, of nt _handl

199 typedef void cmdfunc_t(int, char **, const char *);

201 static cndfunc_t do_show_ |ink, do_show wi fi, do_show phys;

202 static cndfunc_t do_create_aggr, do_del ete_aggr, do_add _aggr, do_r enove_aggr;
203 static cndfunc_t do_nodify_aggr, do_show aggr, do _up_aggr

204 static cndfunc_t do_scan_wifi, do_connect_wfi, do_di sconnect wifi;

205 static cndfunc_t do_show_|inkprop, do_set_Ii nkpr op, do_reset Ti nkprop;

206 static cndfunc_t do_create_secobj, do_del ete_secobj, do_show secobj;

207 static cndfunc_t do_init_linkprop, do_init_secobj;

208 static cndfunc_t do_create_vlan, do_delete_vlan, do_up_vlan, do_show vlan;
209 static cndfunc_t do_renane_|ink, do_del ete_phys, do_init_phys;

210 static cndfunc_t do_show_| i nknap;

211 static cnmdfunc_t do_show et her;

212 static cndfunc_t do_create_vnic, do_delete_vnic, do_show vnic;

213 static cndfunc_t do_up_vnic;

214 static cndfunc_t do_creat e_part, do_del ete_part, do_show part, do_show. i b;
215 static cndfunc_t do_up_part;

216 static cndfunc_t do_create_etherstub, do_del ete_etherstub, do_show et herstub;
217 static cndfunc_t do_create_si met, do _nmodi fy_si met ;

218 static cmdfunc_t do_del ete_si met, do_show simet, do_up_si met ;

219 static cndfunc_t do_show usage;

220 static cndfunc_t do_create_bridge, do_nodify_bridge, do_delete_bridge;

221 static cndfunc_t do_add_bridge, do_remove bridge, do_show bri dge;

222 static cmdfunc_t do_create_iptun, do_nodify_iptun, do_del ete_iptun;

223 static cmdfunc_t do_show i ptun, do_up_iptun, do_down_i ptun;

224 static crmdfunc_t do_hel p;

225 #endif /* | codereview */

227 static void do_up_vni c_comon(int, char **, const char *, bool ean_t);

229 static int show part(dl admhandle_t, datalink_id_t, void *);

231 static void altroot _cnd(char *, int, char **);

232 static int show_| i nkprop_onel i nk(dl adm handl e_t, datalink_id_t, void *);
234 static void link_stats(datalink_id_t, uint_t, char *, show state_t *);
235 static void aggr_stats(datal i nk_id_t, show grp_state t *, uint_t);

236 static void vni c_st at s(show_vni ¢ state _t *, uint32_t);

238 static int get _one_kstat (const char *, const char *, uint8_t,

239 void *, boolean_t);

240 static void get _mac_stats(const char *, pktsumt *);

241 static void get _link_stats(const char *, pktsumt *);

242 static uint64_t get_ifspeed(const char *, boolean_t);

243 static const char *get _|l i nkstate(const char *, boolean_t, char *);
244 static const char *get _| i nkdupl ex(const char *, bool ean_t, char *);

246 static iptun_type_t i ptun_gettypebynanme(char *);
247 static const char *I ptun_gettypebyval ue(iptun_type_t);
248 static dl adm status_t print_iptun(dl adm handl e_t, datali nk id_t,

249 show state_t *);

250 static int print_i ptun_wal ker (dl adm_ hand! e _t, datalink_id_t,
252 static int show_et her prop(dl adm handl e_t, datalink_id_t, voi
253 static void show_et her _xprop(void *, dladmether_info_t *);

254 static bool ean_t l'ink_is_ether(const char *, datalink_id_t

256 static boolean_t str2int(const char *, int *);
257 static void di e(const char *, ...);

e_t);

void *);
d *);
*):

new usr/ src/ cnd/ dl adnf dl adm ¢ 5 new usr/ src/cnd/ dl adnf dl adm ¢
258 static void di e_optdup(int); 316 " create- secob] [-t] [-f <file>] -c <class> <secobj>" },
259 static void die_opterr(int, int, const char *); 317 { "del ete-secobj" do_del et e_secobj,
260 static void die_dlerr(dl adm status t, const char o) 318 " del et e- secobj [-t] <secobj>[,...]" 1,
261 static void war n(const char *, DR 319 {" show- secobj " do_show_secobj ,
262 static void war n dIerr(dIadmstatust const char *, ...); 320 show-secob] [-P] [[-p] -0 <field> ...] [<secobj>,...]" 1,
132 " show secobj [-pP] [-0 <field> ...] [<secob] > ...]\n"),
264 typedef struct cnd { 321 { "i nit-1inkpr op", do_i nit_Iinkprop, NULL 1,
265 char *c_naneg; 322 { "init-secobj" do_i nit_secobj, NULL 1,
266 cmdf unc_t *c_fn; 323 {" cr eate-vl an" do_create_vl an,
267 const char *c_usage; 324 creat e vl an [-ft] -T <link> -v <vid> [link]" },
268 } cnd_t; 325 {" deI ete-vl an" do_del ete_vl an,
326 del et e-vlan [-t] <link>" },
270 static cnd_t cnds[] = { 327 {" show- vl an" do_show_vl an,
271 { "renane-link", do_renane_l i nk, 328 show vl an [-P] [[-p] -0 <field>...] [<link>]" 1},
272 " rename- | i nk <ol dl i nk> <new i nk>" 1, 140 " show- vl an [-pP] [-0 <field> ..] [<link>]\n" I
273 { "showIlink", do_show_l| i nk, 329 {" up vl an" do_up_vl an, NULL I
274 " show- | i nk [-P] [[-p] -0 <field> ..] " 330 { "create-i pt un" do_create_iptun,
275 "[-s [-i <interval>]] [<link>]" }, 331 " createlptun [-t] -T <type>"
86 " show | i nk [-pP] [-0 <field> ..] [-s [-i <interval>]] " 332 "[- a{local|rermte} =<addr>,...] <link>]" },
87 "[<l'ink>]\ n" 1, 333 {" deI ete-iptun” do_del et e i ptun,
276 {" create aggr" do_create_aggr, 334 del et e- |ptun [-t] <link>" 1,
277 create- aggr [-t] [-P <policy>] [-L <nmpde>] [-T <tinme>] " 335 {" m)dl fy-iptun” do_nodi fy_i ptun,
278 "[-u <address>]\n" 336 m)dlfy |ptun [-t] -a {local |remte}=<addr>,... <link>" },
279 "\t\t -| <link> [-I <link> ..] <link>" 1, 337 { "show i ptun" do_show_i ptun,
280 {" deI ete-aggr" do_del ete_aggr, 338 " show i ptun [-P] [[-p] -0 <field> ...] [<link>]" ,
281 del ete: aggr [-t] <link>" 1, 150 " show-i ptun [-pP] [-0 <field> ..] [<link>]\n" ,
282 { " add aggr" do_add_aggr, 339 { "up—i ptun®, do_up_i ptun, NULL ,
283 add- aggr [-t] -1 <link> [-] <link> ..] <link>" }, 340 { "down-iptun" do_down_i ptun, NULL ,
284 {" rermve aggr” do_renove_aggr, 341 {" deI ete- phys do_del ete phys
285 reane aggr [-t] -1 <l nk> [-1 <link>...] <link>" }, 342 del et e- phys <link>" 1,
286 { " m)dl fy-aggr" do_nodi fy_. aggr 343 {" show- phys", do_show phys,
287 nodi fy aggr [-t] [- <po| icy>] [-L <nmode>] [-T <time>] " 344 show phys [-P] [[-p] -0 <field>...] [-H [<link>]" },
288 "[-u <address>]\n" 156 " show phys [-pP] [-0 <field>, ..] [H] [<link>]\n"},
289 "\t\t <li nk>" 1, 345 { "i ni t-phys", do_i nit _phys, NULL ,
290 { " show- aggr" do_show_aggr, 346 { "showli nknap , do_show_| i nkmap, NULL ,
291 show aggr [-PLx] [[-p] -0 <field> ..] " 347 {" cr eate-vnic" do_create_vnic,
292 "[-s [-i <interval>]] [<link>]" 1, 348 creat e-vni ¢ [-t] -1 <I|nk>[-m<value>| auto [\ n"
103 " show- aggr [-pPLx] [-o0 <field> ..] [-s [-i <interval>]] " 349 "\t\t {factory [-n <slot-id>]} | {random[-r <prefix>]} |\n"
104 "[<l'i nk>]\n" }, 350 "\t\t {vrrp -V <vrid> -A {inet | inet6}} [-v <vid> [-f]]\n"
293 { "up-aggr", do_up_aggr, NULL }, 351 "\t\t [-p <prop>=<val ue>[,] [-R root-di r] <vnic-link>" },
294 { "scan-wifi", do_scan_wi fl 163 "\t\t [-p <prop>=<value>[,...]] <vnic-link>" 1,
295 " scan-w fi [[-p] -0 <fiel d> ...] [<link>]" 1, 352 { "del ete-vnic", do_del et e vn| c,
107 " scan-w fi [-p] [-0 <field> ...] [<link>]" }, 353 " del et e-vnic [-t] <vnic-link>" },
296 {" connect wifi" do_connect _wi fi, 354 {" showL vnic" do_show_vni c,
297 connect - wi fi [-e <essid>] [-i <bssid>] [-k <key>, ...] " 355 show vni ¢ [-P] [[-p] -0 <field> ...] [-I <link>] "
298 "[-s wep|wpa]\n" 356 "[-s [-i <interval>]] [<link>]"
299 "\t\t [-a open|shared] [-b bss|ibss] [-c] [-ma|]blg] " 167 " show-vni ¢ [-pP] [-] <link>] [-s [-i <interval>]]
300 "[-T <tinme>]\n" 168 "[<l'ink>]\n" 1,
301 "\t\t [<link>]" 1. 357 { "up-vnic", do_up_vni c, NULL I
302 { "disconnect-wfi", do_di sconnect _wi fi, 358 { "create-part", do_create_part,
303 " disconnect-wifi [-a] [<link>]" } 359 " create-part [-t] [-f] -1 <link> [-P <pkey>]\n"
304 { " ShOW-\MfI do_show wi fi, 360 "\ttt [-R <root-dir>] <part-Ilink>" },
305 shows wi f i [[-p] -0 <fiel d>...] [<link>]" 1, 361 { "delete-part”, do_del ete_part,
117 " show wi fi [-p] [-0 <field>...] [<link>]\n" 1, 362 " delete-part [-t] [-R <root-dir>] <part-link>"},
306 {" set -linkprop", do_set _I| i nkprop, 363 {" show- part” do_show_part,
307 set-11 nkprop [-t] -p <prop>=<value>[,...] <nane>" 1}, 364 show part [-P] [[-p] -0 <field> ...] [-I <linkover>]\n"
308 { "reset-linkprop", do_reset _li nkprop, 176 " show part [-pP] [-0 <field>,] [-I <l'i nkover>]\n"
309 " reset-| | nkprop [-t] [-p <prop> ...] <nanme>" 1, 365 "\t [<part-link>]" ,
310 {" show-l i nkprop" do_show_| i nkpr op, 366 {" ShOW-I b", do_show_i b,
311 show-llnkprop [-cP] [-o0 <field> ...] [-p <prop>,...] " 367 showi b [[-p] -0 <field> ...] [<link>]" },
312 " <nanme>" 1, 179 " show-i b [-p] [-0 <field> ...] [<link>]\n" 1,
124 " <panme>\ n" }, 368 {" up part", do_up_part, NULL },
313 {" show- et her" do_show et her, 369 {" cr eat e- et her st ub”, do_create_et herstub,
314 show et her [-x] [[-p] -0 <field> ...] <link>" }, 370 creat e- et her st ub [-t] <link>" },
126 " show et her [-px][-0 <field> ...] <link>\n" }, 371 { "del ete-etherstub" do_del et e_et her st ub,
315 { "create-secobj", do_create_secobj, 372 " del et e- et her st ub [-t] <link>" },

new usr/src/cnd/ dl adnf dl adm ¢

373 {" show- et her st ub" do_show_et her st ub,

374 show et her st ub [-t] [<link>]\n" 1.

375 { "create-simet" do_creat e_si met, NULL 1.

376 { "nmodify-si met do_nodi fy_si met, NULL 1,

377 { "del ete-si met" do_del et e_si met NULL 1,

378 { "show simet", do_show_si met, NULL },

379 {" up si met " do_up_si met, NULL 1,

380 {" cr eate-bri dge do_create_bridge,

381 create- brldge [-R <root-dir>] [-P <protect>] "

382 [-p <priority>]\n"

383 Vit [-m <max-age>] [-h <hello-time>] [-d <forward-delay>]\n"
384 "\t\t [-f <force-protocol>] [-] <link>]... <bridge>" 1,

385 { "nodify-bridge", do_nodi fy_bri dge,

386 " modi fy- brldge [-R <root-dir>] [-P <protect>]

387 [-p <priority>]\n"

388 "\ttt [-m <max-age>] [-h <hello-time>] [-d <forward-delay>]\n"
389 "\t\t [-f <force-protocol >] <bridge>" ,

390 { "del ete-bridge", o_del ete_bri dge,

391 " del et e- bridge [-R <root-dir>] <bridge>" 1.

392 {" add bri dge", do_add_bri dge

393 add- brldge [-R <root- d|r>] -l <link> [-] <link>]... "
394 "<bridge>" s

395 {" rem)ve bridge", do_renove_bri dge,

396 renove- brldge [-R <root-dir>] -1 <link>[-1 <link>]...
397 "<bridge>" ,

398 {" show- bridge", do_show_bri dge,

399 show—brldge [[-p] -0 <field> ...] [-s [-i <interval>]]
211 show- bri dge [-p] [-0 <field> ...] [-s [-i <interval>]]
400 "[<bridge>]\n"

401 " show- bri dge -1 [[-p] -0 <field> ...] [-s [-i <interval>]
213 ! show- bri dge -1 [-p] [-o0 <field> ...] [-s [-i <interval>]
402 <bri dge>\n"

403 " show bri dge -f [[-p] -0 <field>...] [-s [-i <interval>]
215 " show- bri dge -f [-p] [-0 <field> ...] [-s [-i <interval>]
404 <bridge>\n"

405 " show- bri dge -t [[-p] -0 <field> ...] [-s [-i <interval>]
406 " <bridge>" ,

217 " show- bri dge -t [-p] [-0 <field> ...] [-s [-i <interval>]
218 <bri dge>\ n" s

407 {" showL usage", do_show_usage,

408 show usage [-a] [-d | -F <format>] "

409 "[-s <DD/ MM YYYY, HH: MM SS>]\ n"

410 "\t\t [-e <DD/ MM YYYY, HH: MM SS>] -f <logfile> [<link>]" },
411 { "hel p", do_hel p,

412 " elp [<subcommand>] " }
222} "\t [-e <DD) MM YYYY, HH: MM SS>] -f <logfile> [<link>]" }

413

__unchanged_portion_onitted_

1127 static const ofnt_field_t usage_fields[] =
13,

1128 { "LINK",

1129 of f set of (usage_fiel ds_buf _t, usage_|
1130 { " DURATI ON', 1,

1131 of f set of(usage fields_buf_t, usage_
1132 { "I PACKETS",

1133 of f set of(usage fields_buf_t, usage_
1134 { "RBYTES',

1135 of f set of(usage fields_buf_t, usage_|
1136 { "OPACKETS",

1137 of f set of(usage fields_buf_t, usage_
1138 { "OBYTES',

1139 of f set of(usage fields_buf_t, usage_
1140 { "BANDWDTH', 15,

1141 of f set of (usage_fiel ds_buf _t, usage_|

1142 { NULL, 0,
1143 ;

0, NULL}}

{

link), print_default_ch},
duration), print_default_chb},
i packets), print_default_ch},
rbytes), print_default_cb},
opackets), print_default_cb},
obytes), print_default_cb},
bandwi dt h), print_defaul t_cb},

]
]
K
]
]
]

new usr/src/cnd/ dl adnf dl adm ¢

1145 /*
1146 * structures for 'dl adm show usage |ink’
1147 */
1149 typedef struct wusage_| _fields_buf_s {
1150 char usage_| _|ink[12];
1151 char usage_| _stinme[13];
1152 char usage_| _etime[13];
1153 char usage_| _rbytes[8];
1154 char usage_| _obytes[8];
1155 cha usage_| _bandwi dt h[14];
1156 } usage_l| flel ds_buf _t;
__unchanged_portion_om tted_
1420 static ofnmt _field_t bridge_trill flelds[] = {
1421 /* nane, f| el d width, of fset, call back */
1422 { "NICK",
1423 offset of (bri dge trill _fields_buf_t, bridget_nick), print_default_cb },
1424 { "FLAGS
1425 offset of (bri dge trill _fields_buf_t, bridget_flags), print_default_cb },
1426 { * ,
1427 offsetof(bn dge trill_fields_buf_t, bridget_link), print_default_cb },
1428 { "NEXTHOP",
1429 of f set of (bri dge trill _fields_buf_t, bridget_nexthop), print_default_cb },
1430 { NULL, 0, 0, NULL}};
1432 static char *progname

static sig_atomc_t si gnal | ed;

1433

1435 /*

1436 * Handle to libdladm Opened in main() before the sub-command
1437 * specific function is called.

1438 */

1439 static dl adm handl e_t handl e = NULL;

1441 #define DLADM ETHERSTUB_NANME "et her st ub”

1442 #define DLADM | S ETHERSTUB(id) (id == DATALI NK_I NVALI D_LI NKI D)
1444 static void

1445 usage(voi d)

1446 {

1447 (void) fprintf(stderr, gettext("For nore infornmation, run: % help\n"),
1448 prognane) ;

1258 int i;

1259 cnd_t *cmdp;

1260 (void) fprintf(stderr, gettext("usage: dladm <subcommand> <args> ..."
1261 “\n"));

1262 for (i =0; i < sizeof (cnds) / sizeof (crmds[0]); i++) {
1263 cndp = &cnds[i];

1264 if (cmdp->c_usage != NULL)

1265 (void) fprintf(stderr, "%\n", gettext(cnup->c_usage));
1266 }

1450 /* close dladmhandle if it was opened */

1451 if (handle !'= NULL)

1452 dl adm cl ose(handl e) ;

1454 exi t (EXI T_FAI LURE)

1455 }

1457 int

1458 main(int argc, char *argv[])

1459 {

1460 int i;

new usr/src/cnd/ dl adnf dl adm ¢

1461 cnd_t *cmdp;
1462 dl adm status_t status;
1464 (void) setlocal e(LC_ALL, "");

1465 #if !defined(TEXT_ DO\/A
1466 #define TEXT_DOVAI N "SYS_TEST"

1467 #endi f

1468 (voi d) textdomai n(TEXT_DOVAIN) ;

1470 prognanme = argv[O0];

1472 if (argc < 2) {

1473 argv[1] = DLADM DEFAULT_CMD;

1474 ar gc++;

1475 1

1290 if (argc < 2)

1291 usage();

1477 for (i =0; i < sizeof (cmds) / sizeof (cmds[0]); i++) {

1478 cndp = &nus[i];

1479 if (st rcr'rp(ar gv[1], cndp->c_nane) == 0) {

1480 Open the I i bdl adm handl e */

1481 |f ((status = dl adm open(&handl e)) != DLADM STATUS OK) {
1482 die_dlerr(status,

1483 "coul d not open /dev/dld");

1484 }

1486 cmdp->c_fn(argc - 1, &argv[1l], cndp->c_usage);
1488 dl adm cl ose(handl e) ;

1489 return (EXl T_SUCCESS);

1490 }

1491 }

1493 (void) fprintf(stderr, gettext("%: unknown subconmand ' %’'\n"),
1494 pr ognarre argv[1]);

1495 usage()

1496 return (EXI T_FAI LURE) ;

1497 }

1499 static int
1500 hel p_conpare(const void *cndl, const void *cnd2)

1501 {

1502 cmd_t *cmdlp = (cnd_t *)cndl;

1503 cd_t *cnd2p = (cnd_t *)cnd2;

1505 return (strcnp(cndlp->c_nane, cnd2p->c_nane));
1506 }

1508 static void
1509 do_hel p(int argc, char *argv[], const char *use)

1510 {

1511 size_t nel ens;

1512 int i,],nCOlS—3

1513 bool ean_t found = B_FALSE;

1515 _ NOTE(ARGUNUSED(use)) ;

1517 nel ems = sizeof (cmds) / sizeof (cnd_t);

1519 if (argc < 2) {

1520 gsort(cnds, nel ens, sizeof (cnd_t), hel p_conpare);
1522 (void) fprintf(stderr, gettext(

1523 "usage: dl adm hel p <subcommand>\ n"

1524 "Subcommands are:\n"));

new usr/src/cnd/ dl adnf dl adm ¢

1526 for (i =0, j =0; i <nelems; i++) {

1527 if (cmds[i].c_usage == NULL)

1528 continue;

1530 (void) fprintf(stderr, "% 20s", cnds[i].c_nane);
1532 if (++ %ncols ==)

1533 (voi d) put c(’'\n", stderr);

1534 }

1536 if (j %ncols !'=0)

1537 (void) putc(’\n', stderr);

1538 } else {

1539 for (i =0; i < nelens; i++)

1540 if (strcnp(argv[1], cnmds[i].c_name) == 0) {
1541 (void) fprintf(stderr, "usage:\n%\n",
1542 gettext(cnds[i].c_usage));

1543 found = B_TRUE;

1544 br eak;

1545 }

1546 }

1548 if (!found) {

1549 (voi d) fprintf(stderr, gettext(

1550 &: unknown subconnand "U%'\n"),

1551 pr ognane, argv[1]);

1552 usage();

1553] }

1554 }

1555 }

1557 #endif /* | codereview */

1558 /* ARGSUSED*/

1559 static int

1560 show_usage_dat e(dl adm usage_t *usage, void *arg)

1561 {

1562 show_usage_state_t *state = (show usage_state_t *)arg;
1563 tinme_t stine;

1564 char ti mebuf[20];

1565 dl adm st atus_t st at us;

1566 ui nt32_t flags;

1568 *

1569 * 01I y show usage information for existing links unless '-a
1570 * is specified.

1571 */

1572 f (!state->us shovmll) {

1573 if ((status = dl adm nane2i nfo(handl e, usage->du_nane,
1574 NULL, &flags, NULL, NULL)) != DLADM_STATUS_CK) {
1575 return (stat us)

1576 }

1577 if ((flags & DLADM OPT_ACTI VE) == 0)

1578 return (DLADM STATUS_LI NKI NVAL) ;

1579 }

1581 stime = usage->du_sti ne;

1582 (void) strftine(timebuf, sizeof (timebuf), "% %/ %",

1583 local tinme(&stine));

1584 (void) printf("%\n", tinmebuf);

1586 return (DLADM STATUS X);

1587 }

1589 static int
1590 show usage_tinme(dl adm usage_t *usage, void *arg)

10

new usr/src/cnd/ dl adnf dl adm ¢

1591 {
1592
1593
1594
1595
1596
1597
1598

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

1643

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

show_usage_state_t *state = (show_usage_state_t *)arg;

char buf [DLADM_STRSI ZE] ;
usage_| _fiel ds_buf _t ubuf ;

time_t tinme;

doubl e bw;

dl adm status_t st at us;

ui nt32_t flags;

/*

* Only show usage information for existing links unless ’-a’
* is specified.
*

if (!state->us_showall) {
if ((status = dl adm nane2i nfo(handl e, usage->du_nane,
NULL, &flags, NULL, NULL)) != DLADM STATUS_OK) {
return (status);

}
1f ((flags & DLADM OPT_ACTI VE) == 0)
return (DLADM STATUS_LI NKI NVAL) ;

}

if (state->us_plot) {
if (!state->us_printheader) {
if (state->us_first) {
(void) printf("# Time");
state->us_first = B_FALSE;
}
(void) printf(" %", usage->du_nane);
if (usage->du_last) {
(void) printf("\n");
state->us_first = B_TRUE;
stat e->us_print header = B_TRUE;

} else {
if (state >us flrst) {
time = usage->du_etinme
(void) strftime(buf, 5|zeof (buf), "o,
Iocaltlne(&tlne))
state->us_first = B_FALSE;
(void) printf("%", buf)

= (doubl e) usage- >du_bandwi dt h/ 1000;
id) printf(" %2f", bw;
(usage->du_| ast) {
(void) printf("\n");
state->us_first = B_TRUE;

}
bw
(vo
if

}

}
return (DLADM STATUS K);
}

bzer o(&buf, sizeof (ubuf));

(void) snprintf(ubuf.usage_| _link, sizeof (ubuf.usage_|l_link), "%",
usage- >du_nane) ;

tinme = usage->du_sti ne;

(void) strftinme(buf, sizeof (buf), "9%@", localtine(&ine));

(void) snprintf(ubuf.usage_| _stinme, sizeof (ubuf.usage_|l_stine), "%",

buf);
tinme = usage->du_etine;
(void) strftinme(buf, sizeof (buf), "%, localtinme(&ine));

(void) snpri ntf(ubuf usage_| _etinme, sizeof (ubuf.usage_|_etinme), "%",
bu

uf);
(void) snprintf(ubuf.usage_| _rbytes, sizeof (ubuf.usage_|_rbytes),
"o | u", usage->du_rbytes);

11

new usr/src/cnd/ dl adnf dl adm ¢

1657
1658
1659
1660

1662
1663
1664 }

(voi d) snprintf (ubuf.usage_| _obytes, sizeof (ubuf.usage_|_obytes),
%% | u", usage->du_obytes);
(voi d) snprintf (ubuf. usage_l bandwi dth, sizeof (ubuf.usage_|_bandwi dth),
"% Mbps", dl adm bw2str(usage->du_bandwi dth, buf));

of m _print(state->us_ofnt, &ubuf);
return (DLADM STATUS X);

1666 static int
1667 show usage_res(dl adm usage_t *usage, void *arg)

1668 {
1669
1670
1671
1672
1673

1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686

1688

1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

1705

1707
1708 }

show_usage_state_t *state = (show usage_state_t *)arg;

char buf [DLADM STRSI ZE] ;
usage_fiel ds_buf _t ubuf ;

dl adm st atus_t st at us;

ui nt32_t flags;

/*

* Only show usage information for existing links unless ’'-a’

* is specified.
*/

if (!state->us_showall)
if ((status = dl adm nane2i nfo(handl e, usage->du_nane,
NULL, &flags, NULL, NULL)) != DLADM STATUS_OK) {
return (status);

}
if ((flags & DLADM OPT_ACTI VE) == 0)
return (DLADM STATUS LI NKI NVAL);
}

bzer o(&buf, sizeof (ubuf));

(void) snprintf(ubuf.usage_link, sizeof (ubuf.usage_link), "%",
usage- >du_nane) ;
(void) snpri ntf(ubuf usage_duration, sizeof (ubuf.usage_duration),
"o | u", usage->du_duration);
(voi d) snprl nt f (ubuf . usage_i packets, si zeof (ubuf.usage_i packets),
"% | u", usage->du_i packets);
(voi d) snprl nt f (ubuf. usage_rbytes, sizeof (ubuf.usage_rbytes),
"% | u", usage->du_rbytes);
(void) snprintf(ubuf.usage_opackets, sizeof (ubuf.usage_opackets),
"% | u", usage->du_opackets);
(void) snprintf(ubuf.usage_obytes, sizeof (ubuf.usage_obytes),
"o | u", usage->du_obytes);
(void) snprintf(ubuf.usage_bandw dth, sizeof (ubuf.usage_bandwi dth),
"o Mops", dl adm bw2str (usage->du_bandwi dth, buf));

of m _print(state->us_ofnt, &ubuf);
return (DLADM STATUS K);

1710 static bool ean_t
1711 valid_f ormat spec(char *formatspec_str)

1712 {
1713
1714
1715

1717 }

if (strcnp(formatspec_str,
return (B_TRUE);
return (B_FALSE);

"gnuplot") == 0)

1719 /* ARGSUSED*/
1720 static void
1721 do_show usage(int argc, char *argv[], const char *use)

1722 {

12

new usr/src/cnd/ dl adnf dl adm ¢

1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

1741
1742
1743
1744
1745

1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777

1779
1780

1782
1783

1785
1786
1787
1788

char *file = NULL;

int opt ;

dl adm status_t stat us;

bool ean_t d_arg = B_FALSE;

char *stime = NULL;

char *etime = NULL;

char *resource = NULL;

show_usage_state_t state;

bool ean_t o_arg = B_FALSE;

bool ean_t F_arg = B_FALSE;

char *fields_str = NULL;

char *f or mat spec_ str = NULL;

char *all | _fields =
"link,start, end, rbytes, obyt es, bandwi dt h"

of m_handl et of m

of m _status_t oferr;

ui nt _t ofmflags = 0O;

bzero(&st at e,
state.us_parsable = B FALSE;

state.us_printheader = B_FALSE;

state.us_plot = B_FALSE;
state.us_first = B_TRUE;

si zeof (show_usage_state_t));

while ((opt = getopt_|ong(argc, argv,
usage_opts, NULL)) != -1) {

switch (opt) {

case 'd:
d_arg = B_TRUE;
br eak;

case 'a':
state.us_showal | = B_TRUE;

br eak;
case 'f’:
file = optarg;
br eak;

F arg = B_TRUE

di e_opterr(optopt, opt, use);

case 's’:
stinme = optarg;
break;
case 'e’:
etime = optarg;
br eak;
case '0':
0_arg = B_TRUE
fields_str = optarg;
br eak;
case 'F':
state.us_plot =
format spec_str = optarg;
br eak;
defaul t:
br eak;
}

}
if (file == NULL)

di e("showusage requires a file");

if (optlnd == (argc 1)) {
fl ags;

resource = argv[optind
if (!state.us showall

1
&8

(((status = dl adm nane2i nf o(handl e,
NULL, NULL)) != DLADM STATUS OK) ||

"das:e:o:f:F: ",

resource,

13

NULL, &fl ags,

new usr/src/cnd/ dl adnf dl adm ¢

1789
1790
1791
1792

1794
1795

1797
1798

1800
1801

1803
1804
1805
1806
1807
1808
1809
1810

1812
1813
1814

1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833

1835
1836
1837
1838

1840
1841

}

((flags & DLADM OPT_ACT! IVE) =0)))
die("invalid link: "% ", resource);

}

if (F_ arg&&darg)
di e("inconpatible -d and -F options");

if (F_ arg && val i d_f ormat spec(formatspec_str) == B_FALSE)
di e("Format specifier % not supported", forr’ratspec str);

if (state.us_parsable)
of mtflags | = OFMI_PARSABLE;

if (resource == NULL && stinme == NULL && etine == NULL) {
oferr = of mt_open(fields_str, usage_fields, ofntflags, O,
&ofnt);
} else {
if (lo_arg || (o_arg && strcasecnp(fields_str, "all") == 0))
fields_str = all_|_fields;
oferr = ofmt_open(fields_str, usage_| fields, ofntflags, O,

&ofnt);

}
dl adm of nt _check(oferr,
state.us_ofmt = ofnt;

state.us_parsable, ofnt);

if (d_arg) {
/* Prlnt log dates */
status = dl adm usage_dat es(show_usage_dat e,
DLADM LOGTYPE_LINK, file, resource, &state);
} else if (resource == NULL & stinme == NULL &% etime == NULL &&
I F_arg)
/* Print summary */
status = dl adm usage_sunmary(show_usage_res,
DLADM LOGTYPE_LINK, file, &state);
} else if (resource != NULL) {
/* Print log entries for named resource */
status = dl adm wal k_usage_r es(show_usage_ti e,
DLADM LOGTYPE_LTNK, file, resource, stime, etime, &state);
} else {
/* Print time and information for each link */
status = dl adm wal k_usage_ti ne(show_usage_ti e,
DLADM LOGTYPE LTNK, file, stime, etineg, &state)

}

if (status != DLADM_ STATUS , OK)
die_dlerr(status, "show usage");
of mt _cl ose(of nt);

static void

do_create_aggr(int argc,

1842 {

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854

char *argv[], const char *use)

int option;
int key =0
ui nt32_t policy = AGGR POLI CY_L4;

aggr _| acp_node_t
aggr _lacp_tinmer_t

| acp_node = AGGR LACP_ OFF;
| acp_timer = AGGR_LACP_TI MER_SHORT;

dl adm aggr _port_attr_db_t por t [MAXPORT] ;
uint_t n, ndev, nlink;
uint8_t mac_addr [ETHERADDRL] ;

bool ean_t mac_addr _fixed = B_FALSE;
bool ean_t P_arg = B_FALSE;
bool ean_t | _arg = B_FALSE;
bool ean_t u_arg = B_FALSE;

new usr/src/cnd/ dl adnf dl adm ¢

1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866

1868
1869

1871
1872
1873
1874
1875
1876

1878
1879
1880
1881
1882

1884
1885
1886
1887
1888
1889
1890

1892
1893
1894
1895
1896
1897
1898

1900
1901
1902
1903
1904

1906
1907
1908
1909
1910
1911
1912

1914
1915
1916
1917
1918
1919
1920

bool ean_t

ui nt 32_t

char

char

char

char

dl adm status_t
dl adm st atus_t
char
dladmarg_list_t
int

datal ink_id_t

ndev = nlink = o

T_arg = B_FALSE;

fTags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST;

*al troot = NULL;

name[MAXLI NKNANELEN]

*devs[MAXPORT] ;

*| i nks[NAXPCRT]

st at us;

pst at us;

pr opstr [DLADM STRSI ZE] ;
pr oplist = NULL;

I|nk|d
pterr = 0;

bzero(propstr, DLADM STRSI ZE);

while ((option = getopt_long(argc, argv, ":d:l:L:P:Rtfu:T:p:",
= -1y {

| opts, NULL)
swtch (
case

)
opt ion) {

if (ndev + nlink >= MAXPORT)
die("too nmany ports specified");

devs[ndev++] = optarag;

case 'P:

case

u

br eak;
if (P_arg)
di e_opt dup(option);
P_arg = B_TRUE;
it (I'dl adm 1aggr _ str2policy(opt arg, &policy))
die("invalid policy "%’ ", optarg);
br eak;
if (u_arg)
di e_opt dup(option);
u_arg = B _TRUE;
i (Idl adm aggr_str2macaddr (optarg, &mac_addr_fi xed,
mac_addr))
die("invalid MAC address ' %’ ", optarg);
br eak;

case '|’:

i f (isdigit(optarg[strlen(optarg) - 1])) {

/*
* Ended with digit, possibly a |link nane.

if (ndev + nlink >= MAXPORT)
die("too many ports specified");

links[nlink++] = optarg;

case 'L':

case 'T':

br eak;

}

/* FALLTHROUGH */

if (I _arg)
di e_opt dup(option);

| _arg = B_TRUE;

i (T'dl adm aggr_str2l acpnode(optarg, & acp_node))
die("invalid LACP node "%’ ", optarg);

br eak

if (T_arg)

di e_opt dup(option);

15

new usr/src/cnd/ dl adnf dl adm ¢

1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940

1942
1943
1944
1945
1946

1948
1949

1951
1952
1953

1955
1956
1957
1958
1959

1961
1962
1963
1964
1965

1967
1968

1970
1971
1972
1973
1974
1975

1977
1978
1979
1980
1981
1982
1983

1985
1986

T arg = B_TRUE
i (I'dl adm aggr_str2l acpti ner(optarg, &I acp_tiner))
die("invalid LACP tinmer value ' %’ ", optarg);
br eak
case 't':
flags & ~DLADM OPT_PERSI ST;
br eak;
case 'f’:
flags | = DLADM OPT_FORCE;
break;
case 'R :
altroot = optarg;
break;
case 'p’:
(oid) strlcat(propstr, optarg, DLADM STRSI ZE);
if (strlcat(propstr, ",", DLADM STRSIZE) >=
DLADM STRSI ZE)
die("property list too long *%’'", propstr);
br eak;
defaul t:
di e_opterr(optopt, option, use);
br eak;
}
}
if (ndev + nlink == 0)
usage();

/* get key value or the aggregation name (required |ast argunent) */
if (optind !'= (argc-1))
usage();

if (!str2int(argv[optind], &key)) {
if (strlcpy(name, argv[optind], MAXLI NKNAMELEN) >=
MAXLI NKNAVELEN) {
die("link name too long %' ", argv[optind]);

if (!dladmvalid_linknane(nane))

die("invalid link name "%’ ", argv[optind]);
} else {
(void) snprintf(name, MAXLI NKNAMELEN, "aggr%d", key);
}
if (altroot != NULL)

altroot_cnd(altroot, argc, argv);

for (n = 0; n < ndev; n++) {
if ((status = dl admdev2linkid(handl e, devs[n],
&port[n] Ip linkid)) !'= DLADM STATUS_OK) {
"invalid dev nane ’ 9%’

di e_dl err(status, devs[n]);
}
}
for (n = 0; n < nlink; n++)
if ((status = dl adm nane2i nfo(handl e, |inks[n],
&port[ndev + n].Ip_linkid, NULL, NULL, NULL)) !=
DLADM STATUS OK) {
die_dlerr(status, "invalid link name %", links[n]);
}
}

status = dl adm aggr _create(handl e, nane, key, ndev + nlink, port,
policy, mac_addr_fixed, (const uchar_t *)nmac_addr, |acp_node,

new usr/ src/ cnd/ dl adnf dl adm ¢ 17
1987 lacp_tiner, flags);

1988 if (status != DLADM STATUS OK)

1989 got o done;

1991 if (dladm parse_link_props(propstr, &proplist, B_FALSE)

1992 | = DLADM STATUS_CK)

1993 die("invalid aggregation property");

1995 if (propl | st == NULL)

1996 turn;

1998 status = dl adm nane2i nfo(handl e, nanme, & inkid, NULL, NULL, NULL);
1999 if (status != DLADM STATUS_OK)

2000 got o done;

2002 for (i =0; i < proplist->al_count; i ++) {

2003 dl adm arg_info_t *alp &proplist->al _info[i];
2005 pstatus = dl adm set _| i nkprop(handl e, |inkid, aip->ai_nane,
2006 ai p->ai _val, aip->ai_count, flags);

2008 if (pstatus != DLADM STATUS_CK) {

2009 di e_dl err(pstatus,

2010 "aggr creation succeeded but

2011 "coul d not set property '%’", aip->ai_nane);
2012 }

2013

2014 done:

2015 dl adm free_props(proplist);

2016 if (status ! = DLADM STATUS OXK) {

2017 if (status == DLADM STATUS_NONOTI F) {

2018 die("not all links have |ink up/down detection; nust
2019 "use -f (see dladm(1M)");

2020 } else {

2021 die_dlerr(status, "create operation failed");
2022 }

2023 }

2024 }

2026 /*

2027 arg is either the key or the aggr nane. Validate it and convert it to
2028 * the linkid if altroot is NULL.

2029 */

2030 static dl adm status_t

2031 i _dl adm aggr _get _linki d(const char *altroot, const char *arg,

2032 datalink_id_t *linkidp, uint32_t flags)

2033 {

2034 int key = 0'

2035 char *aggr = NULL;

2036 dl adm status_t status;

2038 if (!str2int(arg, &key))

2039 aggr = (char *)arg;

2041 if (aggr == NULL && key == 0)

2042 return (DLADM STATUS_LI NKI NVAL) ;

2044 if (altroot !'= NULL)

2045 return (DLADM STATUS K);

2047 if (aggr != NULL) {

2048 status = dl adm nane2i nfo(handl e, aggr, |inkidp, NULL, NULL,
2049 NULL) ;

2050 } else {

2051 status = dl adm key2l i nki d(handl e, key, 1inkidp, flags);
2052 }

new usr/src/cnd/ dl adnf dl adm ¢

2054
2055 }

2057 static void

2058 do_del ete_aggr (i nt argc,

2059 {
2060
2061
2062
2063
2064

2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079

2081
2082
2083

2085
2086
2087

2089
2090

2092

2093 done:

2094
2095
2096 }

return (status);
char *argv[], const char *use)
int option;
char *al troot = NULL;
ui nt 32_t flags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST
dl adm st atus_t st at us;
datalink_id_t I'i nki d;
opterr = O;
while ((option = getopt_long(argc, argv, ":Rt", lopts, NULL)) != -1) {

switch (optlon) {

case
fl ags &= ~DLADM OPT_PERSI ST;
break;
case 'R :
altroot = optarg;
break;
defaul t:
di e_opterr(optopt, option, use);
) br eak;

}

/* get key value or the aggregation nane (required |ast argunent)
if (optind !'= (argc-1))

usage();
status = i _dladm aggr_get _|inkid(altroot, argv[optind], & inkid, flags);
if (st atus ! = DLADM STATUS_OK)

got o done;

if (altroot != NULL)
altroot_cnd(altroot, argc, argv);
status = dl adm aggr _del ete(handl e, 1inkid, flags);

if (status != DLADM STATUS OK)
die_dlerr(status, "delete operation failed");

2098 static void
2099 do_add_aggr (int argc, char *argv[], const char *use)

2100 {
2101
2102
2103
2104
2105
2106
2107
2108
2109

2111
2112
2113
2114
2115
2116
2117

int opti on;

uint_t n, ndev, nlink;

char *al troot = NULL;

ui nt 32_t flags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST;
dat al i nk_i d_t i nki d;

dl adm st at us_t st at us;

dl adm aggr _port_attr_db_t por t [MAXPORT] ;

char *devs[MAXPORT] ;

char *| i nks[MAXPORT] ;

ndev = nlink = opterr = 0;

while ((option = getopt_long(argc, argv, ":d:l:Rtf", lopts,
NULL)) !'= -1) {
svmtch (optlon) {
case 'd’

if (ndev + nlink >= MAXPORT)
die("too many ports specified");

18

new usr/src/cnd/ dl adnf dl adm ¢ 19

2119
2120
2121
2122
2123

2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140

2142
2143

2145
2146
2147

2149
2150
2151
2152
2153

2155
2156

2158
2159
2160
2161
2162
2163

2165
2166
2167
2168
2169
2170
2171

2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184

done:

devs[ndev++] = optarg;
break;

case "1’
if (ndev + nlink >= MAXPORT)

die("too many ports specified");

i nks[nlink++] = optarg;
br eak;

case 't’:
flags & ~DLADM OPT_PERSI ST;
break;

case 'f’:
flags | = DLADM OPT_FORCE;
break;

case 'R :
altroot = optarg;
br eak;

defaul t:
di e_opterr(optopt, option, use);
br eak;

}

}
if (ndev + nlink == 0)
usage();

/* get key value or the aggregation name (required |ast argunent) */

if (optind !'= (argc-1))
usage();
if ((status = i_dl adm aggr_get_linkid(altroot, argv[optind], & inkid,
flags & (DLADM OPT_ACTIVE | DLADM OPT_PERSIST))) !=
DLADM STATUS_OK) {
goto done;
}
if (altroot != NULL)
altroot_cnd(altroot, argc, argv);
for (n = 0; n < ndev; n++) {
if ((status = dl adm dev2linki d(handl e, devs[n],
&(port[n].lIp_linkid))) != DLADM STATUS_OK) {
die_dlerr(status, "invalid <dev> '9%’'", devs[n]);
}
}
for (n =0; n < nlink; n++)
if ((status = dl adm nane2i nfo(handl e, links[n],
&port[n + ndev].lp_linkid, NULL, NULL, NULL)) !=
DLADM STATUS_OK) {
die_dlerr(status, "invalid <link>"%"", links[n]);
}
}
status = dl adm aggr _add(handl e, linkid, ndev + nlink, port, flags);

if (status != DLADM STATUS OK) {
/*

* checki ng DLADM STATUS_NOTSUP is a tenporary workaround
* and shoul d be renpved once 6399681 is fixed.
*

/

if (status == DLADM STATUS NOTSUP)
di e("add operation failed:
"match");
} else if (status == DLADM STATUS NONOTI F) {
die("not all links have link up/down detection;

link capabilities don't

nust

new usr/src/cnd/ dl adnf dl adm ¢

2185 "use -f (see dladm(1M)");

2186 } else {

2187 die_dlerr(status, "add operation failed"
2188 }

2189 }

2190 }

2192 static void

2193 do_renpve_aggr(int argc, char *argv[], const char *use)

2194 {

2195 int option;

2196 dl adm aggr _port_attr_db_t por t [MAXPORT] ;

2197 uint_t n, ndev, nlink;

2198 char *devs[MAXPORT] ;

2199 char *| i nks[MAXPORT] ;

2200 char *al troot = NULL;

2201 ui nt32_t fl ags;

2202 datalink_id_t i nki d;

2203 dl adm st atus_t st at us;

2205 flags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST;

2206 ndev = nlink = opterr = O;

2207 while ((option = getopt_long(argc, argv, ":d:l:Rt",
2208 lopts, NULL)) != -1)

2209 switch (option) {

2210 case 'd:

2211 if (ndev + nlink >= MAXPORT)

2212 die("too many ports specified");
2214 devs[ndev++] = optarg;

2215 break;

2216 case '|’:

2217 if (ndev + nlink >= MAXPORT)

2218 die("too many ports specified");
2220 I'i nks[nlink++] = optarg;

2221 br eak;

2222 case 't’:

2223 flags & ~DLADM OPT_PERSI ST;

2224 break;

2225 case 'R :

2226 altroot = optarg;

2227 break;

2228 defaul t:

2229 di e_opterr(optopt, option, use);

2230 br eak;

2231 }

2232 1

2234 if (ndev + nlink == 0)

2235 usage();

2237 /* get key value or the aggregati on name (required | ast
2238 if (optind != (argc-1))

2239 usage();

2241 status = i_dl adm aggr _get _|inkid(altroot, argv[optind],
2242 if (status != DLADM STATUS OK)

2243 goto done;

2245 if (altroot !'= NULL)

2246 altroot_cnd(altroot, argc, argv);

2248 for (n = 0; n < ndev; n++)

2249 if ((status = dl adm dev2linki d(handl e, devs[n],
2250 &(port[n].lp_linkid))) != DLADM STATUS_OK) {

)

ar gument)

&linkid,

20

*/

flags);

new usr/src/cnd/ dl adnf dl adm ¢

2251
2252
2253

2255
2256
2257
2258
2259
2260
2261

2263
2264
2265
2266
2267

2269
2270

done:

}

die_dlerr(status, "invalid <dev> '%’'", devs[n]);
}
}
for (n=0; n< nI|nk n++) {
if ((status = dl adm nanme2i nfo(handl e, links[n],
&oort[n + ndev] . 1p_linkid, NULL, NULL, NULL)) I=
DLADM STATUS_CX) {
die dlerr(status, "invalid <link>"'%", links[n]);
}
}
status = dl adm aggr _renove(handl e, |inkid, ndev + nlink, port, flags);

if (status != DLADM STATUS OK)
die_dlerr(status, "renove operation failed");

static void

do_nodi fy_aggr(int argc,

2271 {

2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282

2284
2285
2286
2287
2288
2289
2290

2292

2294
2295
2296
2297
2298
2299

2301

2303
2304
2305
2306
2307
2308
2309
2310

2312
2314

2315
2316

char *argv[], const char *use)

int opti on;

uint 32_t policy = AGGR_POLI CY_L4;

aggr _| acp_node_t | acp_node = AGGR LACP_ G:F

aggr _lacp_tinmer_t | acp_timer = AGGR_LACP_TI MER_SHORT;

ui nt8_t mac_addr [ETHERADDRL] ;
bool ean_t mac_addr_fixed = B_FALSE;
ui nt 8_t nmodi fy_ rmsk = 0;
char *al troot = NULL;
ui nt 32_t flags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST;
datal i nk_i d_t i nki d
dl adm st at us_t st at us;
opterr = O;
while ((option = getopt_long(argc, argv, ":L:l:P:Rtu:T:", lopts,
NULL)) !'= -1)
swtch (optlon) {
case :
if (nmodify_mask & DLADM AGGR_MODI FY_PQLI CY)
di e_opt dup(option);
nodi fy_mask | = DLADM AGGR_MODI FY_PQLI CY;
if (!dladm 1aggr _ str2policy(optarg, é&policy))
die("invalid policy 9%’ ", optarg);
br eak;
case 'u':
if (modify mask & DLADM AGGR_MODI FY_MAC)
di e_opt dup(option);
nodi fy_mask | = DLADM AGGR_MODI FY_MAG;
if (!dl adm aggr_str2nmacaddr(optarg, &mac_addr_fi xed,
mac_addr))
die("invalid MAC address "%’ ", optarg);
break;
case 'l :
case 'L’:

if (rodify_mask & DLADM AGGR_MODI FY_LACP_MODE)
di e_opt dup(option);

nodi fy_mask | = DLADM AGGR_MODI FY_LACP_MODE;
if (!dl adm 1Laggr _ str 2l acpnode(opt arg, & acp_node))

die("invalid LACP node ’ %’ optarg);
br eak;

new usr/src/cnd/ dl adnf dl adm ¢

2317
2318
2319

2321

2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336

2338
2339

2341
2342
2343

2345
2346
2347

2349
2350

2352
2353
2354

2356
2357
2358
2359

2361
2362
2363
2364

2365
2366

2368
2369
2370
2371
2372
2373
2374
2375
2376
2377

2379
2380
2381
2382

case 'T':
if (modify mask & DLADM AGGR_MODI FY_LACP_TI MER)
di e_opt dup(option);
modi fy_mask | = DLADM AGGR_MODI FY_LACP_TI MER;

if (!dladm aggr_str2l acptinmer(optarg, & acp_tiner))

die("invalid LACP tinmer value "%’ ", optarg);
br eak;
case 't’:
flags & ~DLADM OPT_PERSI ST;
br eak;
case 'R :
altroot = optarg;
break;
defaul t:
di e_opterr(optopt, option, use);
br eak;
}

}

if (modify_mask == 0)
die("at |least one of the -Pul T options nust be specified");

/* get key value or the aggregation nane (required |ast argunent)
if (optind !'= (argc-1))

usage() ;
status = i _dladm aggr _get_linkid(altroot, argv[optind], & inkid, flags);
if (status I = DLADM STATUS_OK)

got o done;

if (altroot !'= NULL)
altroot_cnd(al troot, argc, argv);

status = dl adm aggr _nodi fy(handl e, Iinkid, nodify_mask, policy,
mac_addr_fixed, (const uchar_t *)nmac_addr, |acp_node, |acp_tiner,

flags);
done:
if (status != DLADM STATUS . OK)
die_dlerr(status, "nodify operation failed");
}
| * ARGSUSED* /

static void
do_up_aggr (i nt argc, char *argv[], const char *use)
{

done:

datalink_id_t l'i nki d = DATALI NK_ALL_LI NKI D;

dladm status_t status;
/*
* get the key or the name of the aggregation (optional |ast argunent)
*/
if (argc == 2) {

if ((status = i_dl adm aggr_get_I|inkid(NULL, argv[1], & inkid,

DLADM OPT_PERSI ST)) = DLADM STATUS_OK)
got o done;

} else if (argc > 2) {

usage() ;
}
status = dl adm aggr _up(handl e, linkid);
if (status != DLADM STATUS OK) {

if (argc == 2) {

22

new usr/src/cnd/ dl adnf dl adm ¢

23

2383 di e_dl err(status,

2384 "could not bring up aggregation '%’ ", argv[1]);
2385 } else {

2386 die_dlerr(status, "could not bring aggregations up");
2387 }

2388 }

2389 }

2391 static void

2392 do_create_vlan(int argc, char *argv[], const char *use)

2393 {

2394 char *['ink = NULL;

2395 char drv[DLPI _LI NKNAVE_MAX] ;

2396 uint_t ppa;

2397 datalink_id_t 11 nkid;

2398 dat al i nk_i d_t dev_li nki d;

2399 int vid = 0;

2400 int opti on;

2401 ui nt32_t flags = (DLADM OPT_ACTI VE | DLADM OPT_PERSI ST) ;
2402 char *al troot = NULL;

2403 char vl an[MAXLI NKNAMELEN ;

2404 char propst r[DLADM STRSI ZE] ;

2405 dladmarg_list_t *proplist = NULL;

2406 dl adm st at us_t st at us;

2408 opterr = 0;

2409 bzero(propstr, DLADM STRSI ZE);

2411 while ((option = get opt long(argc, argv, ":tfRl:v:ip:"

2412 lopts, NULL)) 1) {

2413 switch (Op'[l on) {

2414 case

2415 if (vid I'= 0)

2416 di e_opt dup(option);

2418 if (lstr2| nt(optarg, &id) || vid <1 || vid > 4094)
2419 die("invalid VLAN identifier '%’'", optarg)
2421 break;

2422 case 'l :

2423 if (link !'= NULL)

2424 di e_opt dup(option);

2426 link = optarg;

2427 br eak;

2428 case 't’:

2429 flags & ~DLADM OPT_PERSI ST;

2430 break;

2431 case 'R :

2432 altroot = optarg;

2433 br eak;

2434 case 'p’:

2435 (void) strlcat(propstr, optarg, DLADV STRSI ZE);

2436 if (strlcat(propstr, ",", DLADM STRSIZE) >=

2437 DLADM STRSI ZE)

2438 die("property list too long "%’ ", propstr);
2439 break;

2440 case 'f’:

2441 flags | = DLADM OPT_FORCE;

2442 break;

2443 defaul t:

2444 di e_opterr(optopt, option, use);

2445 br eak;

2446 }

2447 1

new usr/src/cnd/ dl adnf dl adm ¢

2449
2450
2451

2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465

2467
2468

2470
2471
2472
2473

2475
2476
2477

2479
2480
2481
2482
2483

2485
2486
2487
2488

2490
2491
2492
2493

2495
2496
2497
2498

2500
2501

}

/* get vlan name if there is any */
if ((vid ==0) || (link == NULL) ||
usage() ;

(argc -

if (optind == (argc - 1)) {
if (strlcpy(vlan, argv[optind],
MAXLI NKNAVELEN) {
die("vlan name too long ' %

optind > 1))

MAXLI NKNAMELEN) >=

argv[optind]);

_SUCCESS)

} else {
if ((dlpi_parselink(link, drv, &ppa) != DLPI
(ppa >= 1000) |
(dl pi _makel i nk(vlan, drv, vid * 1000 + ppa) !=
DLPI _ SS)) {
die("invalid link nane "%’ ", |ink);
}
}
if (altroot !'= NULL)
altroot_cnd(altroot, argc, argv);
if (dl adm nanme2i nfo(handl e, |ink, &dev_Ilinkid, NULL, NULL, NULL) !=

DLADM STATUS_(X)

die("invalid link name 9%’ ", |ink);
if (dladm parse_link pr ops(propstr, &proplist,
! = DLADM STATUS_OK
die("invalid vlan property");
status = dl adm vl an_creat e(handl e, vlan, dev_linkid,
flags, & inkid);

switch (status) {
case DLADM STATUS_CK:
br eak;

case DLADM STATUS_NOTSUP:
di e("VLAN over ' %’

"dladm(1M)"
br eak;

may require | owered MY,
1'ink);

case DLADM STATUS LI NKBUSY:
di e("VLAN over ' %’
"(see dladm(1M)",

br eak;

link);

defaul t:
die_dlerr(status,
}

static void

do_del ete_vl an(int argc,

2502 {

2503
2504
2505
2506
2507

2509
2510
2511
2512
2513
2514

char *argv[], const char *use)

int option;
ui nt 32_t flags = (DLADM OPT_ACTI VE |

char *altroot = NULL;
datalink_id_t I'i nki d;
dl adm status_t status;

opterr = 0;

while ((option = getopt_long(argc,
switch (optlon) {
case 't’

argv, ":Rt",

flags & ~DLADM OPT_PERS| ST
br eak;

"create operation failed");

| opt s,

B_FALSE)

vid, proplist,

nmust

may not use default_tag ID"

NULL))

use -f (see

DLADM OPT_PERSI ST)

1= -1)

24

new usr/src/cnd/ dl adnf dl adm ¢

2515 case 'R :

2516 altroot = optarg;

2517 br eak;

2518 defaul t:

2519 di e_opterr(optopt, option, use);

2520 break;

2521 }

2522 }

2524 /* get VLAN link name (required |ast argunent) */
2525 if (optind !'= (argc - 1))

2526 usage();

2528 if (altroot !'= NULL)

2529 altroot_cnd(altroot, argc, argv);

2531 status = dl adm nane2i nfo(handl e, argv[optind], & inkid, NULL,
2532 NULL) ;

2533 if (status != DLADM STATUS OK)

2534 got o done;

2536 status = dl adm vl an_del ete(handl e, Iinkid, flags);
2537 done:

2538 if (status != DLADM STATUS_OK)

2539 die_dlerr(status, "delete operation failed");
2540 }

2542 | * ARGSUSED* /

2543 static void

2544 do_up_vl an(int argc, char *argv[], const char *use)

2545 {

2546 do_up_vni c_comon(argc, argv, use, B TRUE);

2547 }

2549 static void

2550 do_renane_link(int argc, char *argv[], const char *use)

2551 {

2552 int option;

2553 char *linkl, *link2;

2554 char *al troot = NULL;

2555 dl adm status_t status;

2557 opterr = O;

2558 while ((option = getopt_long(argc, argv, ":R", lopts, NULL))
2559 switch (option) {

2560 case 'R :

2561 altroot = optarg;

2562 break;

2563 defaul t:

2564 di e_opterr(optopt, option, use);

2565 br eak;

2566 }

2567 }

2569 /* get linkl and |ink2 nane (required the last 2 argunents) */
2570 if (optind !'= (argc - 2))

2571 usage();

2573 if (altroot != NULL)

2574 altroot_cnd(altroot, argc, argv);

2576 l'inkl = argv[optind++];

2577 l'ink2 = argv[optind];

2578 if ((status = dl admrenane_| i nk(handl e, Iinkl, link2)) !=
2579 DLADM STATUS OK)

2580 die_dlerr(status, "renane operation failed");

NULL,

1= -1 {

25

new usr/src/cnd/ dl adnf dl adm ¢ 26
2581 }

2583 /* ARGSUSED*/
2584 static void
2585 do_del ete_phys(int argc,

char *argv[], const char *use)

2586 {

2587 datalink_id_t linkid = DATALI NK_ALL_LI NKI D

2588 dl adm status_t status;

2590 /* get link name (required the |last argunment) */

2591 if (argc > 2)

2592 usage();

2594 if (argc == 2) {

2595 if ((status = dl adm nane2i nfo(handl e, argv[1], & inkid, NULL,
2596 NULL, NULL)) != DLADM STATUS_OK)

2597 die_dlerr(status, "cannot delete "%’'", argv[1]);
2598 }

2600 if ((status = dl adm phys_del ete(handl e, linkid)) != DLADM STATUS OK) {
2601 if (argc == 2

2602 die_dlerr(status, "cannot delete '9%’", argv[1]);
2603 el se

2604 die_dlerr(status, "delete operation failed");

2605 }

2606 }

2608 /* ARGSUSED*/
2609 static int

2610 i _dl adm wal k_I i nkmap(dl adm handl e_t dh, datalink_id_t linkid, void *arg)
2611 {

2612 char nanme[MAXLI NKNAVELEN] ;

2613 char nmedi abuf [DLADM _STRSI ZE] ;

2614 char cl assbuf [DLADM STRSI ZE] ;

2615 datal i nk_cl ass_t cl ass;

2616 ui nt 32_t medi a;

2617 ui nt32_t flags;

2619 if (dladm datalink_id2info(dh, linkid, & lags, &class, &media, nane,
2620 MAXLI NKNAMVELEN) == DLADM STATUS

2621 (void) dladm cl ass2str(class, classbuf);

2622 (voi d) dl adm nedi a2str(nedia, nmedi abuf);

2623 (void) printf("%12s%8d % 12s% 20s %®d\ n", nane,
2624 l'inkid, classbuf, mediabuf, flags);

2625 }

2626 return (DLADM WALK_CONTI NUE) ;

2627 }

2629 /* ARGSUSED*/

2630 static void

2631 do_show_| i nkmap(int argc, char *argv[], const char *use)

2632 {

2633 if (argc !'= 1)

2634 die("invalid argunments");

2636 (void) printf("%12s%8s % 12s% 20s %s\n", "NAME', "LINKI D',
2637 "CLASS", "MEDI A", "FLAGS");

2639 (void) dladmwal k_dat al i nk_i d(i _dl adm wal k_| i nkmap, handl e, NULL,
2640 DATALI NK_CLASS_ALL, DATALI NK_ANY_MEDI ATYPE,

2641 DLADM OPT_ACTI VE | DLADM OPT_PERSI ST) ;

2642 }

2644 | *

2645 * Del ete inactive physical Iinks.

2646 */

new usr/src/cnd/ dl adnf dl adm ¢ 27

2647 [* ARGSUSED*/
2648 static int

2649 purge_phys(dl adm handl e_t dh, datalink_id_t linkid, void *arg)
{

2650

2651 dat al i nk_cl ass_t cl ass;

2652 ui nt 32_t fl ags;

2654 if (dladm datalink_id2info(dh, linkid, &flags, &class, NULL, NULL, 0)
2655 I = DLADM STATUS_CK)

2656 return (DLADM WALK_CONTI NUE) ;

2657 1

2659 if (class == DATALI NK_CLASS_PHYS && ! (flags & DLADM OPT_ACTI VE))
2660 (voi d) dl adm phys_del ete(dh, |inkid);

2662 return (DLADM WALK_CONTI NUE) ;

2663 }

2665 /* ARGSUSED*/

2666 static void

2667 do_init_phys(int argc, char *argv[], const char *use)

2668 {

2669 di _node_t devtree;

2671 if (argc > 1)

2672 usage();

2674 /*

2675 * Force all the devices to attach, therefore all the network physical
2676 * devices can be known to the dl ngntd daenon.

2677 */

2678 if ((devtree = di init("/", DI NFOFORCE | DI NFOSUBTREE)) != DI _NODE NI L)
2679 di _fini(devtree);

2681 (void) dl admwal k_dat al i nk_i d(pur ge_phys, handl e, NULL,

2682 DATALI NK_CLASS _PHYS, DATALI NK_ANY_MEDI ATYPE, DLADM OPT_PERSI ST) ;
2683 }

2685 /*

2686 * Print the active topol ogy information.

2687 */

2688 void

2689 print_link_topol ogy(show state_t *state, datalink_id_t |inkid,

2690 datalink_class t class, link_fields_buf_t *Ibuf)

2691 {

2692 ui nt32_t flags = state->ls_flags;

2693 dl adm status_t status;

2694 char t npbuf [MAXLI NKNAMELEN ;

2696 | buf ->l'ink_over[0] = "'\0";

2697 I buf ->l'i nk_bridge[0] ="'\0";

2699 switch (class) {

2700 case DATALI NK_CLASS_AGGR:

2701 case DATALI NK_CLASS_PHYS:

2702 case DATALI NK_ CLASS ETHERSTUB:

2703 status = dl adm bri dge_get | i nk(handl e, linkid, |buf->link_bridge,
2704 si zeof (Ibuf->link_bridge));

2705 if (status !'= DLADM STATUS_OK &&

2706 status != DLADM STATUS | ,_NOTFOUND)

2707 (void) strcpy(lbuf->link_bridge, "?");

2708 br eak;

2709 }

2711 switch (class) {

2712 case DATALI NK_CLASS VLAN: {

new usr/ src/ cnd/ dl adnf dl adm ¢ 28
2713 dladmvlan_attr_t vi nf o;

2715 if (dladmyvlan_info(handle, linkid, &info, flags) !=
2716 DLADM STATUS_ {

2717 (v0| d) strcpy(l buf->link_over, "?");

2718 br eak;

2719 }

2720 1f (dladmdatalink_id2info(handl e, vinfo.dv_linkid, NULL, NULL,
2721 NULL, | buf ->l'i nk_over, sizeof (Ibuf->link over)) =
2722 DLADM STATUS_OK)

2723 (void) strcpy(lbuf->link_over, "?2");

2724 br eak;

2725 }

2726 case DATALI NK_CLASS AGGR {

2727 dl adm aggr_grp_attr_t gi nf o;

2728 int i;

2730 if (dladm aggr_i nfo(handl e, |inkid, &gi nf o, flags) !=
2731 DLADM STATUS OK || gi nf o. lg_ nports == O) {

2732 (v0| d) strcpy(l buf->link_over, "?");

2733 rea

2734

2735 for (i =0; i <ginfo.lg_nports; i++) {

2736 if (dl adm datalink_i d2i nfo(handl e,

2737 ginfo.lg_ports[i].lIp_linkid, NULL, NULL, NULL,
2738 tpbuf, sizeof (tnpbuf)) != DLADM STATUS OK) {
2739 (v0| d) strcpy(l buf->link_over, "?");

2740 bre

2741 }

2742 (void) strlcat(Ilbuf->link_over, tnpbuf,

2743 si zeof (Il buf->link_over));

2744 if (i '= (ginfo.lg_nports - 1))

2745 (void) strlcat(lbuf->link_over, " "

2746 si zeof (Ibuf->link_over));

2747 }

2748 }

2749 free(g| nfo.lg_ports);

2750 br eak

2751 }

2752 case DATALI NK_CLASS VNIC: {

2753 dladmvnic_attr_t vi nf o;

2755 if (dladmyvnic_info(handle, linkid, &info, flags) !=
2756 DLADM STATUS OK) {

2757 (void) strcpy(lbuf->link_over, "?");

2758 br eak;

2759 }

2760 1 f (dl adm datalink_i d2i nfo(handl e, vinfo.va_link_id, NULL, NULL,
2761 NULL, I buf - >l i nk_over, sizeof (Ibuf->link over)) I =
2762 DLADM_STATUS_OQ

2763 (void) strcpy(lbuf->link_over, "?");

2764 br eak;

2765 }

2767 case DATALI NK_CLASS_PART: {

2768 dl adm part_attr _t pi nf o;

2770 if (dladmpart_info(handle, linkid, &pinfo, flags) !=
2771 DLADM STATUS_OK) {

2772 (v0| d) strcpy(l buf->link_over, "?");

2773 br eak;

2774 }

2775 if (dl admdatalink_id2i nfo(handl e, pinfo.dia_physlinkid, NULL,
2776 NULL, NULL, | buf->link_over, sizeof (I|buf->link_over)) !=
2777 DLADM STATUS _OK)

2778 (void) strcpy(lbuf->link_over, "?");

new usr/src/cnd/ dl adnf dl adm ¢ 29

2779
2780

2782
2783
2784

2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814

2816
2817

2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834

2836
2837

}

br eak;
}

case DATALI NK_CLASS_BRI DCE: {
datal ink_id_t *dlp;
uint_t i, nports;

if (dladmdatalink_id2info(handle, linkid, NULL, NULL,

NULL, tnpbuf, sizeof (tnpbuf)) != DLADM STATUS O<) {
(void) strcpy(lbuf->link_over, "?");
br eak;
}
if (tnpbuf[0] !'="\0")
tnpbuf [strlen(tnpbuf) - 1] = '\0";
dlp = dl adm bri dge_get _portli st (tnpbuf, &nports);
if (dlp == NULL)
(void) strcpy(lbuf->link_over, "?");
break;

}
for (i =0; i < nports; i++) {
i f (dl adm datal i nk_i d2i nf o(handl e, dl
NULL, NULL, tnpbuf, sizeof (tnpbu
DLADM STATUS ,OK)
(v0| d) strcpy(l buf->link_over, "?");
brea

T

(void) strlcat(Ilbuf->link_over,
si zeof (Ibuf->link_over));

t mpbuf ,

if (i '= nports - 1)
(void) strlcat(lbuf->link_over, " "
si zeof (lbuf->link_over));
}
dl adm bri dge_free_portlist(dlp);

br eak;

}

case DATALI NK_CLASS_SI MNET: {
dl adm si met _attr_t slinfo;
if (dladmsi met_info(handl e,
DLADM STATUS_OK) {
(void) strcpy(lbuf->link_over, "?");
break;

linkid, &slinfo, flags) !=

}
if (slinfo.sna_peer_link_id != DATALI NK_| NVALI D LI NKID) {
if (dl adm dat al i nk_i d2i nf o(handl e,
slinfo.sna_peer_link_id, NULL, NULL, NULL,
I buf ->l'i nk_over, sizeof (Ilbuf->link_over)) !=
DLADM _STATUS_OK)
(void) strcpy(lbuf->link_over, "?");

}
br eak;

(-

static dl adm status_t

print

2838 {

2839
2840
2841
2842
2843

_link(show state_t *state,

datalink_id_t linkid, link_fields_buf_t *Ibuf)

char I'i nk[MAXLI NKNAVELEN] ;
datal i nk_cl ass_t cl ass;

uint_t nt u;

ui nt 32_t fl ags;

dl adm st at us_t st at us;

new usr/src/cnd/ dl adnf dl adm ¢

2845
2846
2847
2848

2850
2851
2852
2853

2855
2856

2858
2859
2860
2861

2863
2864
2865
2866

2868
2869

2871
2872
2873
2874
2875
2876
2877
2878
2879

2881
2882
2883
2884
2885

2887
2888
2889
2890
2891
2892
2893
2894
2895
2896

2898
2899
2900
2901
2902
2903
2904
2905

2907
2908
2909
2910

if ((status = dladmdatalink_id2info(handle, |inkid, &flags, &class,
NULL, link, sizeof (link))) != DLADM STATUS OK) {
got o done;
}
if (!(state->ls_flags & flags)) {
status = DLADM STATUS_NOTFOUND;
goto done;
}
if (state->ls_flags == DLADM OPT_ACTI VE) {
dl adm attr_t dlattr;
if (class == DATALI NK_CLASS_PHYS) ({
dl adm phys_attr_t dpa;
dl pi _handl e_t dh;
dl pi _info_t dlinfo
if ((status = dl adm phys_info(handl e, |inkid, &dpa,
DLADM OPT_ACTI VE)) " = DLADM STATUS_OK) {
goto done;
}
if (!dpa.dp_novanity)
goto link_ntu;
/*
* This is a physical link that does not have
* vanity nam ng support
*/
if (dl pi _open(dpa.dp_dev, &dh, DLPI_DEVONLY) !=
DLPI ~SUCCESS)
status = DLADM STATUS_NOTFOUND;
goto done;
}
if (dlpi_info(dh, &dlinfo, 0) !'= DLPI_SUCCESS) {
dl pi _cl ose(dh);
status = DLADM STATUS_BADARG
goto done;
}
dl pi _cl ose(dh);
ntu = dlinfo.di _max_sdu;
} else {
i nk_nt u:
status = dladm.info(handle, linkid, &dlattr);
if (status != DLADM STATUS_ OK)
got o done;
ntu = dlattr.da_nmax_sdu;
}
}
(void) snprintf(lbuf->link_nane, sizeof (Ibuf->link_nane)

"os", link);
(void) dladm cl ass2str(class, |buf->link_class);
if (state->ls_flags == DLADM OPT_ACTI VE) {
(void) snprintf(lbuf->link_ntu, sizeof (Ibuf->link_ntu)

"o ntu):
(void) get_linkstate(link, B_TRUE, |buf->link_state);

}

print_link_topol ogy(state, linkid, class, |buf);

done:

}

return (status);

new usr/ src/ cnd/ dl adnf dl adm ¢ 31 new usr/ src/ cnd/ dl adnf dl adm ¢
2977 return (DLADM WALK_CONTI NUE) ;
2912 /* ARGSUSED */ 2978 state->l s_donefirst = B_TRUE;
2913 static int 2979 } else {
2914 {show_l i nk(dl adm handl e_t dh, datalink_id_t linkid, void *arg) 2980) bzero(&state->ls_prevstats, sizeof (state->ls_prevstats));
2915 2981
2916 show_state_t *state = (show_ state_t *)arg;
2917 dl adm st at us_t st at us; 2983 if (dladmdatalink_id2info(dh, linkid, NULL, &class, NULL, Iink,
2918 I'ink_fiel ds_buf _t I buf ; 2984 DLPI _LI NKNAVE_MAX) ! = DLADM STATUS_OK) {
2985 return (DLADM WALK_CONTI NUE) ;
2920 /* 2986 }
2921 * first get all the link attributes into |buf;
2922 */ 2988 if (class == DATALI NK_CLASS PHYS) {
2923 bzero(& buf, sizeof (link_fields_buf_t)); 2989 if (dl adm phys_i nfo(dh, linkid, &pa, DLADM OPT_ACTIVE) !=
2924 if ((status = print_[i nk(state, Tinkid, & buf)) == DLADM STATUS OK) 2990 DLADM STATUS_OK)
2925 of mt _print (st ate->l s ofm &l buf) 2991 return (DLADM WALK_CONTI NUE) ;
2926 state->l s_status = status; 2992 }
2927 return (DLADM WALK_CONTI NUE) ; 2993 i f (dpa.dp_novanity)
2928 } 2994 get _mac_st at s(dpa. dp_dev, &stats);
2995 el se
2930 static bool ean_t 2996 get _link_stats(link, &stats);
2931 print_link_stats_cb(ofnt_arg_t *ofarg, char *buf, uint_t bufsize) 2997 } else {
2932 { 2998 get _link_stats(link, &stats);
2933 link_args_t *largs = of ar g- >of mt _cbar g; 2999 }
2934 pktsumt *diff_stats = largs->link_s_psum 3000 dladm stats_diff(&diff_stats, &stats, &state->ls_prevstats);
2936 switch (ofarg->ofnt_id) { 3002 largs.link_s_link = 1ink;
2937 case LINK_S LINK: 3003 largs.link_s_psum= &diff_stats;
2938 évm d) snprintf(buf, bufsize, "%", largs->link_s_link); 3004 of mi_print(state->l's_ofnt, & ar gs)
2939
2940 case LINK_S_ | PKTS: 3006 state->ls_prevstats = stats;
2941 (void) snprintf(buf, bufsize, "%Ilu", diff_stats->i packets); 3007 return (DLADM WALK_CONTI NUE)
2942 br eak; 3008 }
2943 case LI NK_S_RBYTES:
2944 (void) snprintf(buf, bufsize, "%Ilu", diff_stats->rbytes);
2945 br eak; 3011 static dladmstatus_t
2946 case LINK_S_I| ERRORS: 3012 print_aggr_i nfo(show grp_ st ate_t *state, const char *link,
2947 (void) snprintf(buf, bufsize, "%", diff_stats->ierrors); 3013 dladm aggr_grp_attr_t *gi nfop)
2948 br eak; 3014 {
2949 case LI NK_S_OPKTS: 3015 char addr _str[ETHERADDRL * 3];
2950 (v0| d) snprintf(buf, bufsize, "%Iu", diff_stats->opackets); 3016 | aggr _fiel ds_buf _t | buf ;
2951 eak;
2952 case LI NK S OBYTES: 3018 (void) snprintf(lbuf.laggr_nanme, sizeof (Ibuf.laggr_nane),
2953 (void) snprintf(buf, bufsize, "9%Ilu", diff_stats->obytes); 3019 "os", link);
2954 br eak;
2955 case LINK_S_CERRORS: 3021 (voi d) dl adm aggr _policy2str(ginfop->lg_policy,
2956 (void) snprintf(buf, bufsize, "%", diff_stats->oerrors); 3022 I buf . | aggr _policy);
2957 br eak;
2958 defaul t: 3024 if (ginfop->lg_mac_fixed) {
2959 die("invalid input"); 3025 (voi d) dl adm aggr _nmacaddr 2str (gi nfop->I g_mac, addr_str);
2960 br eak; 3026 (void) snprintf(lbuf.laggr_addrpolicy,
2961 } 3027 si zeof (Ibuf.laggr_addrpolicy), "fixed (%)", addr_str);
2962 return (B_TRUE); 3028 } else {
2963 } 3029 (void) snprintf(Ilbuf.laggr_addrpolicy,
3030 si zeof (Ibuf.laggr_addrpolicy), "auto");
2965 static int 3031 }
2966 show_| i nk_stats(dl adm handl e_t dh, datalink_id_t linkid, void *arg)
2967 { 3033 (voi d) dl adm aggr_| acpnode2str (gi nf op->l g_I acp_node,
2968 char I'i nk[DLPI _LI NKNAMVE_MAX] ; 3034 I buf . I aggr _l'acpactivity);
2969 dat al i nk_cl ass_t cl ass; 3035 (void) dladm aggr_| acpti mer2str(ginfop->lg_lacp_tiner,
2970 show_state_t *state = arg; 3036 I buf. | aggr_| acptimer);
2971 pkt sum t stats, diff_stats; 3037 (void) snpri ntf(lbuf.laggr fl ags si zeof (Ilbuf.laggr_flags), "%----",
2972 dl adm phys_attr_t dpa; 3038 ginfop->lg_force ? "f' : ")
2973 l'ink_args_t | args;
3040 of m _print(state->gs_ofnt, & buf);
2975 if (state->Is_firstonly) {
2976 if (state->ls_donefirst) 3042 return (DLADM STATUS OX);

new usr/src/cnd/ dl adnf dl adm ¢
3043 }

3045 static bool ean_t

33

3046 ?ri nt _xaggr_cb(ofnt _arg_t *ofarg, char *buf, uint_t bufsize)

3047

3048 const |aggr_args_t *| = ofarg->of nt _cbarg;

3049 bool ean_t is_port = (lI->laggr_|lport >= 0);

3050 char t npbuf [DLADM STRSI ZE] ;

3051 const char *obj nane;

3052 dl adm aggr _port _attr_t *portp;

3053 dl adm phys_attr_t dpa;

3055 if (is_port) {

3056 portp = &(Il->laggr_gi nfop->lg_ports[l->laggr_Iport]);
3057 1 f (dl adm phys_i nfo(handl e, portp->lp_Ilinkid, &dpa,

3058 DLADM OPT_ACTI VE) ! = DLADM STATUS_(X)

3059 obj name = "?";

3060 el se

3061 obj name = dpa. dp_dev;

3062 } else {

3063 obj name = | ->laggr_link;

3064 }

3066 switch (ofarg->of nt _id) {

3067 case AGGR_X_LINK:

3068 (void) snprintf(buf, bufsize, "%"

3069 (1s_port && !l -5 aggr parsabl e 7" " I ->laggr_link));
3070 br eak;

3071 case AGGR_X_PORT:

3072 if (is_port) {

3073 i f (dladmdatalink_i d2info(handl e, portp->lp_linkid,
3074 NULL, NULL, NULL, buf, bufsize) != DLADM STATUS_CK)
3075 (void) sprintf(buf, "?2");

3076

3077 br eak;

3079 case AGCR_X_SPEED:

3080 (void) snprintf(buf, bufsize, "%M",

3081 (uint_t)((get_ifspeed(objnane, !is_port)) / 1000000ull));
3082 br eak;

3084 case AGGR_X_DUPLEX:

3085 (voi d) get_linkdupl ex(objname, !is_port, tnpbuf);

3086 (v0| d) stricpy(buf, tnpbuf, bufsize);

3087 br eak;

3089 case AGCR_X_STATE:

3090 (void) get_linkstate(objnane, !is_port, tnpbuf);

3091 (void) strlcpy(buf, tnpbuf, buf si ze);

3092 br eak;

3093 case AGCR_X_ADDRESS:

3094 (voi d) dl adm aggr _nmacaddr 2str (

3095 (i s_port ? portp->lp_mac : |->laggr_ginfop->lg_mac),
3096 t mpbuf) ;

3097 (voi d) strl cpy(buf t mpbuf, bufsize);

3098 br eak

3099 case AGGR_X_PCRT STATE:

3100 if (is_port) {

3101 (voi d) dl adm aggr_portstate2str(portp->lp_state,
3102 t npbuf);

3103 (void) strl cpy(buf t npbuf, buf si ze);

3104 }

3105 br eak;

3106 }

3107 err:

3108 *(1

->| aggr _status) = DLADM STATUS_CX;

new usr/src/cnd/ dl adnf dl adm ¢

3109 return (B_TRUE);

3110 }

3112 static dl admstatus_t

3113 print_aggr_ext ended(show_ grp_ state_t *state, const char *link,
3114 dl adm aggr _grp_attr_t *gi nfop)

3115 {

3116 int i;

3117 dl adm status_t st at us;

3118 | aggr _args_t | args;

3120 largs.laggr_l port = -1;

3121 largs.laggr_link = 1ink;

3122 I args. | aggr_gi nfop = gi nfop;

3123 | args. | aggr_status = &status;

3124 | args. | aggr_parsabl e = state->gs_parsabl e;

3126 of m _print(state->gs_ofnt, & args);

3128 if (status != DLADM STATUS_OK)

3129 goto done;

3131 for (i =0; i < ginfop->lg_| nports i++) {

3132 Iargs laggr_lport =1;

3133 of mt _print(state- >gs_0f nt, & args);

3134 if (status != DLADM STATUS OK)

3135 got o done;

3136 }

3138 status = DLADM STATUS_CX;

3139 done:

3140 return (status);

3141 }

3143 static bool ean_t

3144 print_lacp_cb(ofnt _arg_t *ofarg, char *buf, uint_t bufsize)
3145 {

3146 const |aggr_args_t *| = ofarg->of nt_cbarg;
3147 int port num

3148 bool ean_t Is_port = (l->laggr_|lport >= 0);
3149 dl adm aggr _port_attr_t *portp;

3150 aggr _lacp_state_t *| state;

3152 if (lis_port)

3153 return (B_FALSE); /* cannot happen! */

3155 portnum = | - >l aggr_| port;

3156 portp = &(I->laggr_gi nfop->lg_ports[portnuni);

3157 | state = & portp->Ip_lacp_state);

3159 switch (ofarg->ofnt_id) {

3160 case AGGR L_LINK

3161 (void) snpri ntf(buf buf si ze, "%",

3162 (portnum> 0 ? ba | ->laggr_| i nk));
3163 br eak;

3165 case AGER _L_PORT:

3166 i T (dl adm datal i nk_i d2i nfo(handl e, portp->lp_linkid, NULL,
3167 NULL, “buf, bufsize) != DLADM STATUSfO()
3168 (voi d) sprintf(buf, "?");

3169 br eak;

3171 case AGGR _L_AGGREGATABLE:

3172 (void) snprintf(buf, bufsize, "%",

3173 (I state->bit.aggregation ? "yes" "no"));
3174 br eak;

34

NULL,

new usr/src/cnd/ dl adnf dl adm ¢

3176 case AGER _L_SYNC:

3177 (void) snprintf(buf, bufsize, "%",

3178 (I state->bit.sync ? "yes" : "no"));
3179 br eak;

3181 case AGCR L_COLL:

3182 (v0|d) snprintf(buf, buf3|ze "9&"

3183 (lstate->bit. col l ecti ng ? "yes" : "no"));
3184 br eak;

3186 case AGCR L_DI ST:

3187 (voi d) snprintf(buf, bufsize, "0/5",

3188 | state->bit.distributing ? "yes" : "no"));
3189 br eak

3191 case AGGR _L_DEFAULTED:

3192 (void) snprintf(buf, bufsize, "%",

3193 (I state->bit.defaulted ? "yes" : "no"));
3194 br eak;

3196 case AGCR _L_EXPI RED:

3197 (void) snprintf(buf, bufsize, "%",

3198 (I state->bit.expired ? "yes" : "no"));
3199 br eak;

3200 }

3202 *(1->l aggr_status) = DLADM STATUS_CX;

3203 return (B_TRUE);

3204 }

3206 static dladmstatus_t

3207 print_aggr_| acp(show grp_ st ate_t *state, const char *link,
3208 dl'adm aggr _grp_attr_t *ginfop)

3209 {

3210 int i

3211 dl adm status_t status;

3212 | aggr _args_t | args;

3214 largs.laggr_link = link;

3215 largs. | aggr_gi nfop = ginfop

3216 largs. | aggr_status = &status;

3218 for (i =0; i < ginfop->lg_nports; i++) {

3219 largs. laggr_l port =1}

3220 of m _print(state->gs_ofnt, & args);

3221 if (status != DLADM STATUS OK)

3222 got o done;

3223 }

3225 status = DLADM STATUS_CX;

3226 done:

3227 return (status);

3228 }

3230 static bool ean_t

3231 print_aggr_stats_cb(ofnt_arg_ t *ofarg, char *buf, uint_t bufsize)
3232 {

3233 const |aggr_args_t *| = of arg->of nt _cbarg;
3234 int port num

3235 bool ean_t Is_port = (l->laggr_|lport >= 0);
3236 dl adm aggr _port_attr_t *portp;

3237 dl adm st atus_t *stat, status;

3238 pkt sum t *di ff_stats;

3240 stat = | ->l aggr_st at us;

35

new usr/src/cnd/ dl adnf dl adm ¢

3241

3243
3244
3245

3247
3248
3249
3250
3251
3252
3253

3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265

3267
3268
3269
3270
3271
3272
3273
3274
3275

3277
3278
3279
3280
3281
3282
3283
3284
3285

3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304

3306

*stat = DLADM STATUS_CX;

if (is_port) {
portnum = | ->l aggr _| port;
portp = &I ->laggr_gi nfop >| g_ports[portnuni);

if ((status = dl adm datalink_i d2i nfo(handl e,
portp->lp_linkid, NULL, NULL, NULL, buf, bufsize)) !=
DLADM STATUS_OK) {

goto err;

}
diff_stats = |->laggr_diffstats;
}

switch (ofarg->ofnt _id) {
case AGCR S _LINK:
(voi d) snprl ntf(buf buf si ze, "%",

(1s_port ? : I->laggr_link));
br eak;
case AGGR_S_PORT:

/*

* if (is_port), buf has port nane. O herw se we print
* STR_UNDEF_ VAL

*

/
br eak;

case AGGR_S_| PKTS:
if (is_port)
(voi d) snprintf(buf, bufsize, "%Iu",
diff_stats->i packet s);
} else {
(void) snprintf(buf, bufsize, "%Ilu",
| - >l aggr _pkt sunt ot - >i packets);

br eak;

case AGCR_S_RBYTES:
if (is_port) {
(void) snprintf(buf, bufsize, "%Ilu",
di ff_stats->rbytes);
} else {
(void) snprintf(buf, bufsize, "%Iu",
| - >l aggr _pkt sunt ot - >r byt es) ;

}
br eak;

case AGGR_S_OPKTS:
if (is_port) {
(void) snprintf(buf, bufsize, "%Iu",
di ff_stats->opackets);
} else {
(void) snprintf(buf, bufsize, "%Ilu",
| - >l aggr _pkt sunt ot - >opacket s) ;

}
br eak;
case AGGR S OBYTES:
if (is_port) {
(void) snprintf(buf, bufsize, "%Iu",
di ff_stats->obytes);
} else {
(void) snprintf(buf, bufsize, "%Ilu",
| - >l aggr _pkt sunt ot - >obyt es) ;

br eak;

case AGCR_S_I PKTDI ST:

36

new usr/src/cnd/ dl adnf dl adm ¢

3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321

3323 err:

3324
3325
3326 }

if (is_port) {
(void) snprintf(buf, bufsize, "%6.1f",
(doubl e) di ff_st at s- >i packet s/
(doubl e) | - >l aggr _pkt sunt ot - >i packets * 100);

br eak;
case AGGR_S_OPKTDI ST:
if (is_port) {
(void) snprintf(buf, bufsize, "%6.1f",
(doubl e) di ff_st at s- >opacket s/
(doubl e) | - >l aggr _pkt sunt ot - >opackets * 100);

}
br eak;
}
return (B_TRUE);

*stat = status;
return (B_TRUE);

3328 static dl adm status_t
3329 print_aggr_stats(show grp_state_t *state, const char *link,

3330
3331 {
3332
3333
3334
3335
3336
3337

3339
3340

3342
3343
3344
3345
3346
3347

3350

3352
3353
3354
3355
3356

3358

3360
3361
3362
3363
3364

3366
3367
3368
3369
3370

3372

dl adm aggr _grp_attr_t *gi nfop)
dl adm phys_attr_t dpa;
dl adm aggr _port_attr_t *portp;
pktsum t pktsuntot, *port_stat;
dl adm st at us_t st at us;
int i;
| aggr_args_t | args;

/* sumthe ports statistics */
bzer o(&pkt suntot, sizeof (pktsuntot));

/* Allocate nenory to keep stats of each port */
port_stat = malloc(ginfop->lg_nports * sizeof (pktsumt));
If (port_stat == NULL) {

/* Bail out; no nenory */

return (DLADM STATUS NOVEM) ;

for (i =0; i <ginfop->lg_nports; i++) {

portp = & ginfop->lg_ports[i]);

if ((status = dl adm phys_i nfo(handl e, portp->lp_linkid, &dpa,
DLADM OPT_ACTI VE)) | = DLADM STATUS OK) {

) got o done;

get _mac_st at s(dpa. dp_dev, &port_stat[i]);

/*

* Let’'s re-use gs_prevstats[] to store the difference of the
* counters since last use. We will store the new stats from
* port_stat[] once we have the stats displayed.

*/

dl adm stats_di ff(&state->gs_prevstats[i],
&st at e->gs_prevstats[i]);
dl adm st at s_t ot al (&kt sunt ot ,
&t ate->gs_prevstats[i]);

&port_stat[i],
&pkt sunt ot ,

}
largs.laggr_l port = -1;

37

new usr/src/cnd/ dl adnf dl adm ¢

3373 largs.laggr_link = link;

3374 largs.laggr_ginfop = gi nf op;

3375 | args. | aggr_status = &st at us;

3376 |l args. | aggr _pkt sunt ot = &pktsuntot;

3378 of mt _print(state->gs_ofnt, & args);

3380 if (status != DLADM STATUS CK)

3381 goto done;

3383 for (i =0; i < ginfop->lg_| nports; i++) {
3384 Iargs | aggr_l port = 1i;

3385 largs. | aggr _ diffstats = &state- >gs_prevstats[i];
3386 of m_print(state->gs_ofnt, & args);
3387 if (status != DLADM_ STATUS ,_OK)
3388 got o done;

3389 }

3391 status = DLADM STATUS_OXK;

3392 for (i =0; i < ginfop->lg_nports; i++)
3393 state->gs_prevstats[i] = port_stat[i];
3395 done:

3396 free(port_stat);

3397 return (status);

3398 }

3400 static dladmstatus_t
3401 print_aggr(show grp_state_t *state, datalink_id_t |inkid)

3402 {

3403 char I'i nk[MAXLI NKNAVELEN] ;

3404 dl adm aggr _grp_attr_t gi nf o;

3405 ui nt 32_t flags;

3406 dl adm status_t stat us;

3408 bzer o(&gi nfo si zeof (dladmaggr _grp_attr_t));

3409 if ((status = dl adm datalink_i d2i nfo(handl'e, |inkid, &flags, NULL,
3410 NULL, |ink, MAXLCI NKNAMELEN)) != DLADM STATUS_O() {
3411 return (status);

3412 }

3414 if (!(state->gs_flags & flags))

3415 return (DLADM STATUS_NOTFOUND) ;

3417 status = dl adm aggr _i nfo(handl e, 1inkid, &ginfo, state->gs_flags);
3418 if (status != DLADM STATUS_ OK)

3419 return (status);

3421 if (state->gs_|acp)

3422 status = print_aggr_| acp(state, link, &ginfo);
3423 else if (state->gs_extended)

3424 status = print_aggr_extended(state, |ink, &ginfo);
3425 else if (state->gs_stats)

3426 status = print_aggr_stats(state, |link, &ginfo);
3427 el se

3428 status = print_aggr_info(state, |ink, &ginfo);
3430 done:

3431 free(ginfo.lg_ports);

3432 return (status);

3433 }

3435 /* ARGSUSED */

3436 static int

3437 show_aggr (dl adm handl e_t dh,

3438 {

datalink_id_t linkid, void *arg)

38

new usr/src/cnd/ dl adnf dl adm ¢

39

3439 show _grp_state_t *state = arg;

3441 state->gs_status = print_aggr(state, linkid);
3442 return (DLADM WALK_CONTI NUE) ;

3443 }

3445 static void

3446 do_show_|ink(int argc, char *argv[], const char *use)
3447 {

3448 int option;

3449 bool ean_t s_arg = B_FALSE;

3450 bool ean_t S arg = B_FALSE;

3451 bool ean_t i _arg = B_FALSE;

3452 ui nt 32_t fl ags = DLADM OPT_ACTI VE;
3453 bool ean_t p_arg = B_FALSE;

3454 datalink_id_t | Tnkid = DATALI NK_ALL_LI NKI D
3455 char |'i nkname[MAXLI NKNAMELEN ;

3456 ui nt 32_t interval = 0;

3457 show_state_t state;

3458 dl adm status_t status;

3459 bool ean_t o_arg = B_FALSE;

3460 char *fields_str = NULL,;

3461 char *al |l _active_fields = "link,class,ntu, state, bridge, over";
3462 char *al | _i nactive_fiel ds = "link, cl ass, bri dge, over";
3463 char *allstat_fields =

3464 "link,ipackets, rbytes,ierrors, opackets, obytes, oerrors";
3465 of mt _handl e_t of nt;

3466 of m _status_t oferr;

3467 ui nt _t of ntflags = O;

3469 bzero(&state, sizeof (state));

3471 opterr = O;

3472 whil e ((opt ion = getopt_long(argc, argv, ":pPsSi:o:"
3473 show_ | opts, NULL)) !'= -1) {

3474 switch (option) {

3475 case 'p’:

3476 if (p_arg)

3477 di e_opt dup(option);
3479 p_arg = B_TRUE

3480 br eak;

3481 case 's’:

3482 if (s_arg)

3483 di e_opt dup(option);
3485 s_arg = B_TRUE;

3486 break;

3487 case 'P:

3488 if (flags != DLADM OPT_ACTI VE)
3489 di e_opt dup(option);
3491 flags = DLADM OPT_PERSI ST;
3492 br eak;

3493 case 'S':

3494 if (S_arg)

3495 di e_opt dup(option);
3497 S arg = B_TRUE;

3498 break;

3499 case '0':

3500 o_arg = B_TRUE

3501 fields_str = optarg;

3502 break;

3503 case 'i':

3504 if (i_arg)

new usr/src/cnd/ dl adnf dl adm ¢

3505

3507
3508
3509
3510
3511
3512
3513
3514
3515

3517
3518

3520
3521

3523
3524

3526
3527

3529
3530
3531

3533
3534
3535
3536
3537
3538
3539

3541
3542
3543
3544
3545
3546
3547
3548

3550
3551

3553
3554
3555
3556

3558
3559

3561
3562
3563
3564
3565
3566
3567
3568

3570

40
di e_opt dup(option);
arg = B_TRUE
f (Tdl adm str2interval (optarg, & nterval))
die("invalid interval value '%'", optarg);
break;
defaul t:
di e_opterr(optopt, option, use);
br eak;
}
}
if (i_arg & !(s_arg || S arg))
die("the option -i can be used only with -s or -S");
if (s_ arg &% S arg)
e("the -s option cannot be used with -S");
if (s_arg & flags != DLADM OPT_ACTI VE)
die("the option -P cannot be used with -s");
if (Sarg & (p_arg || flags != DLADM OPT_ACTI VE))
die("the option -% cannot be used with -S", p_arg ? 'p’ P,

/* get link nane (optional |ast argunment) */
if (optind == (argc-1)) {
U|nt32t f;

if (strlcpy(linkname, argv[optind],
MAXLI NKNAMELEN)
die("link name too | ong");
if ((status = dl adm nanme2i nf o(handl e,
NULL, NULL)) != DLADM STATUS_OK)
di e_dl err(status,

}

if (1 (f &flags))
di e_dl err(DLADM STATUS_BADARG,
Targv[optind],

"a tenporary l|ink"

} else i% (optind !=
) usage() ;

if (p_arg && !'o_arg)
die("-p requires -0");

arge) {

"link % is not valid",

MAXLI NKNAMELEN) >=

li nknane, & inkid, &f,

i nknane) ;

"link % is %",
flags == DLADM OPT_PERSI ST ?
"tenporarily renoved");

if (S_arg) {
dl adm conti nuous(handl e, linkid, NULL, interval, LINK REPORT);
return;

}

if (p_arg & strcasecnp(fields_str, "all") == 0)
die("\"-o all\" is invalid with -p");

if (lo_arg || (o_arg & strcasecnp(fields_str, "all") == 0)) {

if (s_arg)

fields_str = allstat_fields;
else if (flags & DLADM OPT_ACTI VE)

fields_str = all _active_fields;
el se

fields_str = all_inactive_fields;

}

state.|ls_parsable = p_arg;

new usr/src/cnd/ dl adnf dl adm ¢

3571
3572

3574
3575
3576
3577
3578
3579
3580
3581
3582

3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595

3597
3598

3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625

3627
3628
3629
3630
3631
3632
3633

3635
3636

state.ls_flags = flags;
state.ls_donefirst = B FALSE;

if (s_arg) {
l'ink_stats(linkid, interval, fields_str, &state);
return;
}
if (state. Is parsabl e)
of mtflags | = OFMI_PARSABLE;
oferr = ofm _open(fields_str, link_fields, ofntflags, 0, &ofnt);
dl adm of nt _check(oferr, st ate. | s_parsable, ofnt);
state.|ls_ofnt = ofnt;
if (linkid == DATALINK_ALL_LINKID) {
(void) dl admwal k_dat al i nk_i d(show_| i nk, handl e, &state,

DATALI NK_CLASS ALL, DATALI NK_ANY_MEDI ATYPE, fl ags)
} else {
(void) show_|ink(handle, linkid, &state);
if (state.ls_status != DLADM_ STATUS ,_OK)
die dlerr(state.|s_status,
argv[optind]);
}

}
of mt _cl ose(of nt);

static void
do_show_aggr (i nt argc,
3599 {

char *argv[], const char *use)

bool ean_t L_arg = B_FALSE;
bool ean_t s_arg = B_FALSE;
bool ean_t i_arg = B_FALSE;
bool ean_t p_arg = B_FALSE;
bool ean_t x_arg = B_FALSE
show_grp_state_t state;
ui nt32_t flags = DLADM OPT_ACTI VE;
datalink_id_t l'inkid = DATALI NK_ALL_LI NKI D;
int option;
ui nt 32_t int erval = 0;
int key;
dl adm st atus_t st at us;
bool ean_t o_arg = B_FALSE;
char *fields_str = NULL;
char *all _fields =
"link, pol i cy, addr pol i cy, l'acpactivity,| acptl ner, flags";
char *all _lacp_fields =
"link, port, aggr egat abl e, sync, col | , di st, def aul t ed, expi red";
char *al | _stats_fi elds =
"link, port,ipackets, rbytes, opackets, obyt es, i pktdi st, opktdist";
char *al | _extended_fields =
"link, port, speed, dupl ex, st at e, addr ess, portstate”;
const ofnmt_field_t *pf;
of mt _handl e_t of nt;
of m _status_t oferr;
ui nt _t of mflags = O;
opterr = 0;
while ((option = getopt_long(argc, argv, ":LpPxsi:o:"
show | opts, NULL)) != -1) {
switch (optlon) {
case 'L’
i f (L_arg)
di e_opt dup(option);
L_arg = B TRUE
break;

"failed to show |link %",

41

new usr/src/cnd/ dl adnf dl adm ¢

3637
3638
3639

3641
3642
3643
3644
3645

3647
3648
3649
3650
3651

3653
3654
3655
3656
3657

3659
3660
3661
3662
3663
3664
3665
3666
3667

3669
3670
3671
3672
3673
3674
3675
3676
3677

3679
3680

3682
3683

3685
3686

3688
3689
3690
3691

3693
3694

3696
3697

3699
3700
3701
3702

if

if

if

if
if

/*

"%’ ", optarg);

case 'p’:
if (p_arg)
di e_opt dup(option);
p_arg = B_TRUE;
break;
case "X’ :
if (x_arg)
di e_opt dup(option);
x_arg = B_TRUE;
br eak;
case 'P:
if (flags != DLADM OPT_ACTI VE)
di e_opt dup(option);
flags = DLADM OPT_PERSI ST;
break;
case 's’:
if (s_arg)
di e_opt dup(option);
s_arg = B_TRUE;
br eak;
case '0:
o_arg = B_TRUE;
fields_str = optarg;
br eak;
case 'i’:
if (i_arg)
di e_opt dup(option);
i_arg = B_TRUE;
if (I'dladmstr2interval (optarg, & nterval))
die("invalid interval val ue
reak;
defaul t:
di e_opterr(optopt, option, use);
break;
}

(p_arg && !o_arg)
die("-p requires -0");

(p_arg && strcasecnp(fields_str,
die("\"-o all\"

all") == 0)
isinvalid with -p");

(i_arg & !s_arQg)

di e("the option -i

can be used only with -s");

42

(s_ arg&&(L arg || p_arg || x_arg || flags l—DLADI\/IODTACTIVE)) {

e("the opt|on -% cannot be used with -s",
L_arg ? 'L’ (p_arg ? 'p’ : (x_arg ? 'x
(L_arg && flags ! = DLADM OPT_ACTI VE)
di e("the option -P cannot be used with -L");
(x_arg && (L_arg || flags != DLADM OPT_ACTI VE))
die("the option -% cannot be used with -x"

get aggregati on key or aggrnane (optional

(optind ==

(argc-1))

if (!str2int(arg$/[optind], &key)) {

status = dl adm nane2i nf o(handl e,

"))

Larg ? 'L’

| ast argunent) */

argv[optind],

P

new usr/ src/ cnd/ dl adnf dl adm ¢ 43

3703
3704
3705
3706
3707

3709
3710

3712
3713
3714

3716
3717
3718
3719
3720
3721

3723
3724
3725
3726
3727
3728
3729
3730
3731
3732

3734
3735
3736
3737
3738
3739
3740
3741
3742

3744
3745
3746
3747
3748

3750
3751
3752
3753
3754

3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767 }

& inkid, NULL, NULL, NULL)
} else {
status = dl adm key2l i nki d(handl e, (uint16_t)key,
) & i nki d, DLADM OPT_ACTI VE) ;

if (status != DLADM STATUS_ OK)
di e("non-exi stent aggregation ’'%

argv[optind]);

} else if (optind != argc) {
) usage() ;

bzero(&state, sizeof (state));
state.gs_lacp = arg;

state.gs_stats =
state.gs_flags =
state. gs_parsabl e
st at e. gs_ext ended

if (to_arg || (o_arg && strcasecnp(fields_str, "all") == 0)) {
if (state.gs_| acp)
fields_str = all_lacp_fields;
else if (state.gs_ stats)
fields_str = all_stats_fields;
else if (state.gs_extended)
fields_str = all_extended_fi el ds;
el se
fields_str = all _fields;

}

if (state gs_| lacp) {
aggr _| _fields;

} else |f (state gs_stats) {
pf = aggr_s_fields;

} else if (state.gs_extended) {
pf = aggr_x_fields;

} else {
pf = laggr_fields;

}

if (state.gs_parsable)

of mflags | = OFMI_PARSABLE;
oferr = of mt _open(fields_str, pf, ofntflags, 0, &ofnt);
dl adm of nt _check(of err, state.gs_parsable, ofnt);
state.gs_ofnt = ofnt;

if (s_arg) {
aggr_stats(linkid, &state, interval);
of nt _cl ose(ofnt);
return;

}

if (linkid == DATALINK_ALL_LINKI D) {
(void) dl adm wal k_dat al i nk_i d(show_aggr, handl e, &state,
DATALI NK_CLASS AGGR, DATALI NK_ANY MEDI ATYPE, flags);

} else {
(void) show_ aggr(handle, |inkid, &state);
if (state.gs_status != DLADNLSTATUSfOQ {
die_dlerr(state.gs_status, "failed to show aggr %",
argv[optind]);
}

}
of m _cl ose(of nt);

new usr/ src/ cnd/ dl adnf dl adm ¢ 44

3769 static dladmstatus_t
3770 print_phys_defaul t (show state_t *state, datalink_id_t linkid,
const char *link, uint32_t flags, uint32_t nedia)

3771
3772
3773
3774
3775

3777
3778
3779

3781
3782
3783
3784
3785

3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799

3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814

3816

3818
3819
3820

3822
3823
3824
3825
3826

3828
3829
3830
3831
3832
3833

3834

{

done:

}
typedef

} print_

/*

dl adm phys_attr_t dpa;
dl adm status_t status;
link_fields_buf_t pattr;

status = dl adm phys_i nfo(handl e, |inkid, &dlpa, state->ls_flags);
if (status != DLADM STATUS_CK)
got o done;

(void) snprintf(pattr.|ink_phys_devi ce,
si zeof (pattr.link_phys_device), "%", dpa.dp_dev);
(void) dl adm nedi a2str(nmedia, pattr.li nk_phys_nedi a);
if (state->I's flags == DLADM OPT_ACTI VE) {
bool ean_t i slink;

if (!dpa.dp_novanity)
(void) strlcpy(pattr.link_nane, Iink,
sizeof (pattr.link_nane));
islink = B_TRUE;
} else {

* This is a physical link that does not have
* vanity nam ng support
&/

(void) strlcpy(pattr.link_nanme, dpa.dp_dev,
si zeof (pattr li nk_name));
ALSE;

islink = B_F
}
(void) get_linkstate(pattr.link_name, islink,
pattr.link_phys_state);
(void) snprintf(pattr.link_phys_speed,

si zeof (pattr.link_phys_speed), "%",
(uint_t)((get _ifspeed(pattr.|ink_narme,
islink)) / 1000000ull));

(void) get_linkduplex(pattr.link_nane, islink,
pattr.link_phys_dupl ex);

} else {
(voi d) snpri ntf(pattr.link_name, sizeof (pattr.link_nane),
‘%", 1ink);
(voi d) snprl ntf(pattr link_flags, sizeof (pattr I | nk_fl ags),
----", flags & DLADM OPT_ACTIVE ? -’ : 'r’);

}

of mt_print(state->ls_ofnt, &pattr);

return (status);

struct {
show_state_t *me_state;
char *ms_|ink;

dl adm macaddr _attr_t
phys_mac_state_t;

*ms_mac_attr;

* call back for ofnt_print()

*/

static bool ean_t

print_phys_one_mac_cb(ofnt_arg t *ofarg, char *buf,
{

uint_t bufsize)

print_phys_nmac_state_t *mac_state = of arg->of nt _cbarg;

new usr/src/cnd/ dl adnf dl adm ¢

3835
3836
3837

3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865

3867
3868

3870
3871
3872
3873
3874

3876
3877

3879
3880
3881
3882
3883
3884

3886
3887

3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900

}
t ypedef

} print_

dl adm macaddr _attr_t *attr = nac_state->ns_nac_attr;
bool ean_t is_primary = (attr->ma_slot == 0);
bool ean_t is_parsable = mac_state->ns_state->ls_parsabl e;

switch (ofarg->ofnt_id) {
case PHYS M LI NK:
(voi d) snprintf(buf, bufsize, "%",
b (| s_primary || |s_parsab| e) ? mac_state->ns_link : " ");
reak
case PHYS M SLOT:
if (is_primry)
| (void) snprintf(buf, bufsize, gettext("primry"));
el se
(void) snprintf(buf, bufsize, "%l", attr->ma_slot);
br eak;
case PHYS_M ADDRESS:
(voi d) dl adm aggr _macaddr2str(attr->nma_addr, buf);
br eak;
case PHYS_M | NUSE:
(void) snprintf(buf, bufsize, "%",
attr->ma_fl ags & DLADM_ IVACADDR USED ? gettext("yes")
gettext("no"));
br eak;
case PHYS_M CLI ENT:
/*

* CR 6678526: resolve link id to actual l|ink name if
* it is valid.
*

(void) snprintf(buf, bufsize, "%", attr->na_client_nane);
br eak;

}

return (B_TRUE);

struct {
show_state_t *hs_st at e;
char *hs_li nk;

dl adm hwgrp_attr_t *hs_grp_attr;
phys_hwgrp_state_t;

static bool ean_t
print_phys_one_hwgrp_cb(of mt_arg_t *ofarg, char *buf, uint_t bufsize)
3878 {

int i;

bool ean_t first = B TRUE;

int start = ;

int end = »1,

char ringstr[R NGSTRLEN] ;
char ri ngsubstr[R NGSTRLEN] ;

print_phys_hwgrp_state_t *hg_state = of arg->of nt _cbarg;
dladm hwgrp_attr_t *attr = hg_state->hs_grp_attr;

switch (ofarg->ofnt_id) {

case PHYS H LINK
(voi d) snprintf(buf, bufsize, "%", attr->hg_link_nane);
br eak

case PHYSinRI NGTYPE:
(void) snprintf(buf, bufsize, "%"

attr->hg_grp_type == DLADM_I-N‘GﬁP_TYPE_RX ? "RX" 1 "TXY);
br eak;
case PHYS_H_RI NGS:
ringstr[0] ='\0";
for (i =0; i < attr->hg_n_rings; i++) {
uint_t index = attr->hg_rings[i];

45

new usr/src/cnd/ dl adnf dl adm ¢

3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966

if (star

t ==-1) {
start = index;
end = i

dex;
} else if (index == end + 1) {

} else {

}

/* The | ast one
if (start I=-1)

end = index;

if (start == end) {
if (first) {

(void) snprintf(
ringsubstr,
RI NGSTRLEN, "od",

first

} else {

start)

= B_ FALSE

(void) snprintf(
ringsubstr,

} else {
if (first) {

RI NCSTRLEN ", od”

start);

(void) snprintf(
ringsubstr,
RI NGSTRLEN,

} else {

"%dl- ",

start, end);
first = B_FALSE;

(void) snprintf(
ringsubstr,
RI NGSTRLEN

}

}
(void) strlcat(ringstr,
TRLEN) ;

start = index;
end = index;

*/

! -1
if (first) {

} else {

}
br eak;
case PHYS_H CLI ENTS:

if (start == end) {
(voi d) snpri
start);
} else {
(void) snpri

" og- ogl”

start, end);

nt f (buf,

nt f (buf,

start, end);

if (start == end) {

ringsubstr,

buf si ze,

buf si ze,

(void) snprintf(ringsubstr,
", %", start);

} else {

(void) snprintf(ringsubstr,

" og- ogl"

}
(void) strlcat(ri ngstr
buf si ze,

(void) snprintf(buf,

start,

end) ;

ringsubstr,

"ot

46

"od",

VR

RI NGSTRLEN,

RI NGSTRLEN,

RI NGSTRLEN) ;
ringstr);

new usr/src/cnd/ dl adnf dl adm ¢

3967 if (attr->hg_client_nanmes[0] == "\0")

3968 (void) snprintf(buf, bufsize, "--");
3969 } else {

3970 (voi d) snprintf(buf, bufsize, "% ",
3971 tr->hg_client_nanes);

3972 }

3973 br eak;

3974 }

3976 return (B_TRUE);

3977 }

3979 /*

3980 * callback for dl admwal k_nmacaddr, invoked for each MAC address sl ot
3981 */

3982 static bool ean_t

3983 print_phys_nac_cal | back(void *arg, dl adm nmacaddr_attr_t *attr)
3984 {

3985 print_phys_mac_state_t *mac_state = arg;

3986 show state_t *state = nac_state->ns_state;

3988 mac_state->ms_nac_attr = attr;

3989 of mf_print(state->ls_ofnt, mac_state);

3991 return (B_TRUE);

3992 }

3994 /*

3995 * invoked by show phys -mfor each physical data-link

3996 */

3997 static dladmstatus_t

3998 print_phys_mac(show state_ t *state, datalink_id_t linkid, char *|ink)
3999 {

4000 print_phys_mac_state_t mac_state;

4002 mac_state.ns_state = state;

4003 mac_state.ns_link = |ink;

4005 return (dl admwal k_macaddr (handl e, |inkid, &mac_state,
4006 print_phys_mac_cal | back));

4007 }

4009 /*

4010 * call back for dl admwal k_hwgrp, invoked for each MAC hwgrp
4011 */

4012 static bool ean_t

4013 print_phys_hwgrp_cal | back(void *arg, dladmhwgrp_attr_t *attr)
4014 {

4015 print_phys_hwgrp_state_t *hwgrp_state = arg;

4016 show state_t *state = hwgrp_state->hs_state;

4018 hwgr p_state->hs_grp_attr = attr;

4019 of mt_print(state->ls_ofnt, hwgrp_state);

4021 return (B_TRUE);

4022 }

4024 /* invoked by show phys -H for each physical data-link */
4025 static dl admstatus_t

4026 print_phys_hwgrp(show state_t *state, datalink_id_t |inkid, char *|ink)
4027 {

4028 print_phys_hwgrp_state_t hwgrp_state;

4030 hwgr p_state. hs_state = state;

4031 hwgr p_state. hs_link = |ink;

4032 return (dl admwal k_hwgr p(handl e, linkid, &wgrp_state,

47

new usr/ src/ cnd/ dl adnf dl adm ¢ 48
4033 print_phys_hwgrp_cal | back));

4034 }

4036 /*

4037 * Parse the "l ocal =<l addr >, r enpt e=<r addr >" sub-options for the -a option of
4038 * *-jptun subcommands.

4039 *

4040 static void

382% ptun_process_addrarg(char *addrarg, iptun_parans_t *parans)

4043 char *addrval ;

4045 while (*addrarg !="\0")

4046 switch (getsubopt (&ddrarg, iptun_addropts, &addrval)) {
4047 case | PTUN_LOCAL:

4048 params->i ptun_param flags |= | PTUN_PARAM LADDR;
4049 i1 (strl cpy(par ans- >i pt un_param | addr, addrval,
4050 si zeof (parans->i ptun_param | addr)) >=

4051 si zeof (params->i ptun_param | addr))

4052 di e("tunnel source address is too long");
4053 br eak;

4054 case | PTUN_REMOTE:

4055 par anms- >i ptun_param fl ags | = | PTUN_PARAM RADDR;
4056 i1f (strlcpy(params->i ptun_param raddr, addrval,
4057 si zeof (params->i ptun_param raddr)) >=

4058 si zeof (params->i ptun_param raddr))

4059 di e("tunnel destination address is too long");
4060 br eak;

4061 defaul t:

4062 die("invalid address type: %", addrval);

4063 break;

4064 }

4065 }

4066 }

4068 /*

4069 * Conveni ence routine to process iptun-create/ nodify/del ete subcomrand
4070 * argunents.

4071 */

4072 static void

4073 i ptun_process_ar gs(l nt argc, char *argv[], const char *opts,

4074 i ptun_paranms_t *parans, uint32_t *flags, char *name, const char *use)
4075 {

4076 int option;

4077 char *al troot = NULL;

4079 if (params !'= NULL)

4080 bzer o(parans, sizeof (*parans));

4081 *fl ags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST;

4083 opterr = O;

4084 while ((option = getopt_long(argc, argv, opts, iptun_lopts, NULL)) !=
4085 -1) {

4086 swtch (optl on) {

4087 case 'a’

4088 i ptun_process_addrarg(optarg, parans);

4089 break;

4090 case 'R :

4091 altroot = optarg;

4092 break;

4093 case 't’':

4094 *flags & ~DLADM OPT_PERSI ST

4095 br eak;

4096 case 'T:

4097 par anms- >i pt un_param type = i ptun_gettypebynanme(optarg);
4098 i f (paranms->i ptun_param type == | PTUN_TYPE_UNKNOM)

new usr/ src/ cnd/ dl adnf dl adm ¢

4099 di e("unknown tunnel type: %", optarg);
4100 par anms- >i ptun_param fl ags | = | PTUN_PARAM TYPE;
4101 br eak;

4102 defaul t:

4103 di e_opterr(optopt, option, use);

4104 break;

4105 }

4106 }

4108 /* Get the required tunnel nanme argunent. */

4109 if (argc - optind != 1)

4110 usage();

4112 if (strlcpy(name, argv[optind], MAXLI NKNAMELEN) >= MAXLI NKNAVELEN)
4113 die("tunnel nanme is too long");

4115 if (altroot != NULL)

4116 altroot_cnd(altroot, argc, argv);

4117 }

4119 static void

4120 do_create_iptun(int argc, char *argv[], const char *use)

4121 {

4122 i ptun_parans_t parans;

4123 dl adm status_t status;

4124 ui nt32_t fl ags;

4125 char nanme[MAXLI NKNAVELEN] ;

4127 i ptun_process_args(argc, argv, ":a:RtT:", ¶ns, &flags, nane,
4128 use);

4130 status = dl adm.i ptun_creat e(handl e, nane, ¶ns, flags);

4131 if (status != DLADM STATUS OK)

4132 die_dlerr(status, "could not create tunnel");

4133 }

4135 static void

4136 do_del ete_iptun(int argc, char *argv[], const char *use)

4137 {

4138 uint 32_t fl ags;

4139 datalink_id_t I'i nki d;

4140 dl adm status_t status;

4141 char name[MAXLI NKNAVELEN] ;

4143 i ptun_process_args(argc, argv, ":Rt", NULL, &flags, nane, use);
4145 status = dl adm nane2i nfo(handl e, name, & inkid, NULL, NULL, NULL);
4146 if (status != DLADM STATUS OK)

4147 die_dlerr(status, "could not delete tunnel");

4148 status = dl adm.i ptun_del ete(handl e, linkid, flags);

4149 if (status != DLADM STATUS OK)

4150 die_dlerr(status, "could not delete tunnel");

4151 }

4153 static void

4154 do_nodi fy_i ptun(int argc, char *argv[], const char *use)

4155 {

4156 i ptun_parans_t parans;

4157 ui nt32_t fl ags;

4158 dl adm status_t status;

4159 char nanme[MAXLI NKNAVELEN] ;

4161 i ptun_process_args(argc, argv, ":a:Rt", ¶ns, &flags, nane, use);
4163 if ((status = dl adm nane2i nf o(handl e, nane, ¶ns.iptun_param|inkid,
4164 NULL, NULL, NULL)) != DLADM STATUS OK)

49

new usr/src/cnd/ dl adnf dl adm ¢

4165 die_dlerr(status, "could not nodify tunnel");
4166 status = dl adm.i pt un_nodi fy(handl e, ¶ms, flags);
4167 if (status != DLADM STATUS_OK)

4168 die_dlerr(status, "could not nodify tunnel");
4169 }

4171 static void

4172 ?o_show_i ptun(int argc, char *argv[], const char *use)

4173

4174 char option;

4175 datalink_id_t I'i nki d;

4176 ui nt32_t flags = DLADM OPT_ACTI VE;

4177 char *name = NULL;

4178 dl adm status_t status;

4179 const char *fields_str = NULL;

4180 show_state_t state;

4181 of mt _handl e_t of nt ;

4182 of m _status_t oferr;

4183 uint_t of mflags = O;

4185 bzero(&state, sizeof (state));

4186 opterr = O;

4187 while ((option = getopt_long(argc, argv, ":pPo:",

4188 iptun_lopts, NULL)) !'= -1) {

4189 switch (option) {

4190 case '0:

4191 fields_str = optarg;

4192 br eak;

4193 case 'p’:

4194 state.|s_parsabl e = B _TRUE;

4195 of mflags = OFMI_PARSABLE;

4196 break;

4197 case 'P':

4198 flags = DLADM OPT_PERSI ST;

4199 break;

4200 defaul t:

4201 di e_opterr(optopt, option, use);

4202 br eak;

4203 }

4204 }

4206 /*

4207 * Cet the optional tunnel name argunent. |f there is one, it nust
4208 * be the last thing remaining on the command-1ine.
4209 *

4210 if (argc - optind > 1)

4211 di e(gettext(use));

4212 if (argc - optind ==

4213 nane = argv[optind];

4215 oferr = ofmt _open(fields_str, iptun_fields, ofntflags,
4216 DLADM DEFAULT_COL, &ofnt);

4217 dl adm of nt _check(oferr, state.ls_parsable, ofnt);

4219 state.ls_ofnt = ofnt;

4220 state.ls_flags = flags;

4222 if (name == NULL) {

4223 (void) dladmwal k_datal i nk_i d(print_i ptun_wal ker, handl e,
4224 &state, DATALI NK_CLASS | PTUN, DATALI NK_ANY_MEDI ATYPE,
4225 flags);

4226 status = state.ls_status;

4227 } else {

4228 if ((status = dl adm nane2i nf o(handl e, nane, & inkid, NULL,
4229 NULL)) == DLADM STATUS OK)

4230 status = print_iptun(handle, linkid, &state);

50

NULL,

new usr/src/cnd/ dl adnf dl adm ¢

4231

4233
4234
4235 }

4237 | *

}

if (status != DLADM STATUS _OK)
die_dlerr(status, "unable to obtain tunnel status");

ARGSUSED */

4238 static void
4239 do_up_iptun(int argc, char *argv[], const char *use)
{

4240
4241
4242

4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258 }

4260 /*

datalink id t linkid = DATALI NK ALL_ LI NKI D
dl adm status_t status = DLADM STATUS_ CK;

/*
* CGet the optional tunnel nanme argunent. |f there is one, it nust
* be the last thing remaining on the command-Iine.
*
if (argc - optind > 1)
usage();
if (argc - optind ==

) {
status = dl adm nane2i nfo(handl e, argv[optind], & inkid, NULL,

NULL, NULL);

}
if (status == DLADM STATUS CK)
status = dl adm.iptun_up(handl e, |inkid);
if (status != DLADM STATUS . OK)
die_dlerr(status, "unable to configure IP tunnel |inks");

ARGSUSED */

4261 static void
4262 do_down_i ptun(int argc, char *argv[], const char *use)

4263 {
4264
4265

4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281 }

datalink_id_t l'i nki d = DATALI NK_ALL_LI NKI D;
dl adm status_t status = DLADM STATUS CK;

*

* Get the optional tunnel name argunent. |f there is one, it nust
* be the last thing remaining on the command-1ine.
*/
if (argc - optind > 1)
usage();
if (argc - optind == 1)

{
status = dl adm nane2i nfo(handl e, argv[optind], & inkid, NULL,

NULL, NULL);
}
if (status == DLADM_STATUS_O()
status = dl adm. i ptun_down(handl e, |inkid);
if (status != DLADM STATUS _OK)
die_dlerr(status, "unable to bring down IP tunnel links");

4283 static iptun_type_t
4284 i ptun_gettypebynane(char *typestr)

4285 {
4286

4288
4289
4290
4291
4292
4293
4294
4295 }

int i;

(i = 0; iptun_types[i].type_name != NULL; i++) {
if (strncnp(iptun_types[i].type_nane, typestr,
strlen(iptun_types[i].type_ nane)) == 0) {
return (iptun_types[i].type_ val ue)
}

}
return (1 PTUN_TYPE_UNKNOW) ;

new usr/src/cnd/ dl adnf dl adm ¢

4297 static const char *

4298 i ptun_gettypebyval ue(i ptun_type_t type)
4299 {

4300 int i;

4302 for (i = 0; iptun_types[i].type_name != NULL; i++) {
4303 if (iptun_types[i].type_value == type)

4304 return (iptun_types[i].type_nane);
4305 }

4306 return (NULL);

4307 }

4309 static dl adm status
4310 print_i ptun(dl adm | handl e_t dh, datalink_id_t linkid, show st

4311 {

4312 dl adm status_t st at us;

4313 i ptun_par anms_t par ans;

4314 iptun_fiel ds buf _t | buf ;

4315 const char *| addr ;

4316 const char *raddr;

4318 parans. i ptun_param | inkid = |inkid;

4319 status = dl adm i pt un_get par ans(dh, ¶ns, state->ls_flags);
4320 if (status != DLADM STATUS_OK)

4321 return (status);

4323 /* LINK */

4324 status = dl adm dat al i nk_i d2i nfo(dh, Iinkid, NULL, NULL, NULL,
4325 | buf . i ptun_nane, sizeof (Ibuf.iptun_nane));

4326 if (status != DLADM STATUS OK)

4327 return (status);

4329 /* TYPE */

4330 (void) strlcpy(lbuf.iptun_type,

4331 i ptun_gettypebyval ue(parans. i ptun_paramtype),
4332 si zeof (Il buf.iptun_type));

4334 /* FLAGS */

4335 (void) menset (I buf.iptun_flags, '-', |PTUN_NUM FLAGS);
4336 I'buf . iptun_flags[I PTUN.NOM FLAGS] = '\0’;

4337 if (params.iptun_paramflags & | PTUN_PARAM | PSECPO_)
4338 | buf . i ptun_flags[| PTUN_SFLAG | NDEX] =

4339 if (params.iptun_paramflags & | PTUN_PARAM I NPLI C| T)
4340 I buf.iptun_flags[IPTUN | FLAG INDEX] = 'i’;
4342 /* LOCAL */

4343 if (params.iptun_paramflags & | PTUN_PARAM LADDR)

4344 | addr = parans.iptun_param | addr;

4345 el se

4346 laddr = (state->ls_parsable) ?2 "" : "--";

4347 (void) strl cpy(l buf.iptun_Taddr, laddr, si zeof (I buf . iptun_|l addr));
4349 /* REMOTE */

4350 if (parans.iptun_paramflags & | PTUN_PARAM RADDR)

4351 raddr = parans.iptun_param raddr;

4352 el se

4353 raddr = (state->ls_parsable) 2 "" : "--";
4354 (void) strlcpy(lbuf.iptun_raddr, raddr, sizeof (lbuf.iptun_raddr));
4356 of m_print(state->ls_ofnt, & buf);

4358 return (DLADM STATUS X);

4359 }

4361 static int
4362 print_iptun_wal ker (dl adm handl e_t dh, datalink_id_t linkid,

ate_t *state)

voi d *arg)

new usr/ src/ cnd/ dl adnf dl adm ¢ 53
4363 {

4364 ((show_ state_t *)arg)->ls_status = print_iptun(dh, linkid, arg);
4365 return (DLADM WALK_CONTI NUE) ;

4366 }

4368 static dl adm status_t

4369 print_phys(show state_t *state, datalink_id_t |inkid)

4370 {

4371 char |'i nk[MAXLI NKNAMELEN] ;

4372 ui nt 32_t fl ags;

4373 dl adm st at us_t st at us;

4374 datal i nk_cl ass_t cl ass;

4375 ui nt32_t medi a;

4377 if ((status = dl adm datal i nk_i d2i nfo(handl e, linkid, &flags, &class,
4378 &nedi a, |ink, MAXLI NKNAMELEN)) != DLADM STATUS_OK) {

4379 goto done;

4380 }

4382 if (class != DATALI NK_CLASS_PHYS) {

4383 status = DLADM STATUS_BADARG

4384 got o done;

4385 1

4387 if (!(state->s_flags & flags)) {

4388 status = DLADM STATUS NOTFOUND;

4389 got o done;

4390 }

4392 if (state->ls_nac)

4393 status = print_phys_nmac(state, linkid, |ink);

4394 else if (state->ls_hwgrp)

4395 status = print_phys_hwgrp(state, linkid, link);

4396 el se

4397 status = print_phys_default(state, linkid, |ink, flags, nedia);
4399 done:

4400 return (status);

4401 }

4403 /* ARGSUSED */

4404 static int

4405 show_phys(dl adm handl e_t dh, datalink_id_t linkid, void *arg)

4406 {

4407 show_state_t *state = arg;

4409 state->ls_status = print phys(st ate, linkid);

4410 return (DLADMV\ALK CONTI NI

4411 }

4413 | *

4414 * Print the active topol ogy information.

4415 */

4416 static dl adm status_t

4417 print_vlan(show state_t *state, datalink_id_t linkid, link_fields_buf_t *I)
4418 {

4419 dladm vl an_attr_t vi nf o;

4420 ui nt32_t flags;

4421 dl adm st atus_t st at us;

4423 if ((status = dl adm datalink_i d2i nfo(handl e, linkid, &flags, NULL, NULL,
4424 I ->l'ink_name, sizeof (I->link_nanme))) != DLADM STATUS OK) {
4425 goto done;

4426 }

4428 if (! (state->Is_flags & flags)) {

new usr/src/cnd/ dl adnf dl adm ¢

4429 status = DLADM STATUS NOTFOUND;

4430 got o done;

4431 }

4433 if ((status = dladmvlan_info(handl e, Iinkid, &vinfo,

4434 state->l s _flags)) != DLADM STATUS K ||

4435 (status = dl adm dat al i nk_i d2i nf o(handl e, vinfo.dv_linkid, NULL,
4436 NULL, NULL, I->Tink_over, sizeof (l->li nk_over))) =

4437 DLADM_STATUS_G() {

4438 got o done;

4439 1

4441 (void) snprintf(l->link_vlan_vid, sizeof (I->link_vlan_vid), "%",
4442 vi nfo.dv_vid);

4443 (void) snprintf(l->link_fl ags sizeof (l->link_flags), "%----",
4444 vinfo.dv_force ? "7 :)

4446 done:

4447 return (status);

4448 }

4450 /* ARGSUSED */

4451 static int

4452 show_ vl an(dl adm handl e_t dh, datalink_id_t linkid, void *arg)

4453 {

4454 show state_t *state = arg;

4455 dl adm st at us_t st at us;

4456 l'ink_fields_buf_t | buf;

4458 bzero(& buf, sizeof (link_fields_buf_t));

4459 status = print_vlan(state, linkid, & buf);

4460 if (status != DLADM STATUS OK)

4461 goto done;

4463 of m_print(state->ls_ofnt, & buf);

4465 done:

4466 state->l s_status = status;

4467 return (DLADM WALK_CONTI NUE) ;

4468 }

4470 static void

4471 do_show_phys(int argc, char *argv[], const char *use)

4472 {

4473 int option;

4474 ui nt 32_t flags = DLADM OPT_ACTI VE;

4475 bool ean_t p_arg = B_FALSE;

4476 bool ean_t o_arg = B_FALSE;

4477 bool ean_t marg = B _FALSE;

4478 bool ean_t H arg = B_FALSE;

4479 datalink_id t linkid = DATALI NK_ALL_LI NKI D

4480 show_state_t state;

4481 dl adm status_t status;

4482 char *fields_str = NULL;

4483 char *al |l _active_fields =

4484 "l'i nk, medi a, st at e, speed, dupl ex, devi ce";

4485 char *all _inactive_fields = "link,device, nedi a, fl ags";
4486 char *all _mac_fields = "link,slot,address,inuse,client";
4487 char *al | _hwgrp_fiel ds —"Ilnk rlngtyperlngs clients";
4488 const ofmt _field_t *pf;

4489 of mt _handl e_t of nt ;

4490 of mt _status_t oferr;

4491 ui nt _t of ntflags = O;

4493 bzero(&state, sizeof (state));

4494 opterr = 0;

new usr/src/cnd/ dl adnf dl adm ¢ 55

4495
4496
4497
4498
4499
4500

4502
4503
4504
4505
4506

4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524

4526
4527

4529
4530

4532
4533

4535
4536
4537
4538
4539
4540
4541
4542
4543

4545
4546
4547
4548
4549

4551
4552
4553
4554
4555
4556
4557

4559
4560

while ((option = getopt Iong(argc argv, ":pPo:nmH",
show_| opts, NULL)) != - {

switch (optlon) {

case 'p’:
if (p_arg))
d| e_opt dup(option);
p_arg = B_TRUE;
br eak;
case 'P':
if (flags != DLADM OPT_ACTI VE)
di e_opt dup(option);
flags = DLADM OPT_PERSI ST;
break;
case '0':
o_arg = B_TRUE;
fields_str = optarg;
break;
case 'm:
marg = B _TRUE;
break;
case 'H:
H arg = B_TRUE;
br eak;
defaul t:
di e_opterr(optopt, option, use);
) br eak;

}

if (p_arg & !o_arg)
die("-p requires -0");

if (marg&&Harg)
die("-m cannot conbine with -H');

if (p_arg & strcasecnp(fields_str, "all") == 0)
die("\"-o all\" is invalid with -p");

/* get link name (optional |ast argument) */
if (optind == (argc-1))
if ((status = dl adm nanme2i nf o(handl e, argv[optind],
NULL, NULL, NULL)) != DLADM STATUS OK) {
dle dl err(status, "link % is not valid",

&linki d,
) argv[optind]);
} else if (optind !'= argc) {

usage();
}
state.|s_parsable = p_arg;
state.ls_flags = flags;
state.|ls_donefirst = B_FALSE;
state.ls_mac = marg;
state.ls_hwgrp = H arg;

if (marg & !(flags & DLADM OPT_ACTI VE)) {
/*

* We can only display the factory MAC addresses of
* active data-1inks.
*/

die("-mnot conpatible with -P");

if (lo_ arg || (o_arg && strcasecnp(fields_str, "all")
if (state.ls_mac)

=0)) {

new usr/src/cnd/ dl adnf dl adm ¢

argv[optind]);

4561 fields_str = all_mac_fields;

4562 else if (state.ls_hwgrp)

4563 fields_str = all hvxgrphelds
4564 else if (state.|ls_flags & DLADM OPT_ACTI VE) {
4565 fields_str = all _active_fields;
4566 } else {

4567 fields_str = all_inactive_fields;
4568 }

4569 }

4571 if (statels mac) {

4572 phys_mfields;

4573 } elself (statels “hwgrp) {

4574 pf = phys_h_fields;

4575 } else {

4576 pf = phys_fields;

4577 }

4579 if (state.ls_parsable)

4580 of mflags | = OFMI_PARSABLE;

4581 oferr = of mt _open(fields_str, pf, ofntflags, 0, &ofnt);
4582 dl adm of mt _check(oferr, st ate. | s_parsabl e, ofm);
4583 state.ls_ofnm = ofnt;

4585 if (linkid == DATALINK_ALL_LINKID) {

4586 (voi d) dl adm wal k_dat al i nk_i d(show_phys, handl e, &state,
4587 DATALI NK_CLASS_PHYS, DATALI NK_ANY_MEDI ATYPE, fl ags);
4588 } else {

4589 (voi d) show_phys(handle, linkid, &state);
4590 if (state.ls_status != DLADM STATUS > OK) {
4591 die dlerr(statels status,

4592 "failed to show physi cal link %",
4593 }

4594

4595 of m _cl ose(of nt);

4596 }

4598 static void

4599 do_show_ vl an(int argc, char *argv[], const char *use)
4600 {

4601 int option;

4602 ui nt 32_t flags = DLADM OPT_ACTI VE;

4603 bool ean_t p_arg = B_FALSE;

4604 datalink id t linkid = DATALI NK ALL_ LI NKI D
4605 show_state_t st at e;

4606 dl adm status_t status;

4607 bool ean_t o_arg = B_FALSE;

4608 char *fields_str = NULL;

4609 of mt _handl e_t of nt ;

4610 of m _status_t oferr;

4611 ui nt _t of ntflags = O;

4613 bzero(&state, sizeof (state));

4615 opterr = 0;

4616 while ((option = getopt_long(argc, argv, ":pPo:",
4617 show_| opt s, MJLL)) 1= -1) {

4618 switch (option) {

4619 case 'p’:

4620 if (p_arg)

4621 di e_opt dup(option);

4623 p_arg = B_TRUE;

4624 break;

4625 case 'P':

4626 if (flags ! = DLADM OPT_ACTI VE)

new usr/src/cnd/ dl adnf dl adm ¢

4627 di e_opt dup(option);

4629 flags = DLADM OPT_PERSI ST

4630 br eak;

4631 case '0':

4632 o_arg = B_TRUE;

4633 fields_str = optarg;

4634 br eak;

4635 defaul t:

4636 di e_opterr(optopt, option, use);

4637 break;

4638 }

4639 }

4641 /* get link nane (optional |ast argunent) */

4642 if (optind == (argc-1)) {

4643 if ((status = dl adm nane2i nf o(handl e, argv[optl nd],
4644 NULL, NULL, NULL)) != DLADM STATUS_CK

4645 die_dlerr(status, "link % is not val id"
4646 }

4647 } else if (optind !'= argc) {

4648 usage();

4649 1

4651 state.|s_parsable = p_arg;

4652 state.|ls_flags = flags;

4653 state.ls_donefirst = B_FALSE;

4655 if (lo_arg || (o arg & strcasecnp(fields_str, "all")
4656 fi eI _str = NULL;

4658 if (state.l s par sabl e)

4659 of mtflags | = OFMI_PARSABLE;

4660 oferr = ofnt open(fl elds_str, vlan_fields, ofntflags,
4661 dl adm of mt _check(of err, st ate. | s_parsable, ofnt);
4662 state.ls_ofmt = ofnt;

4664 if (linkid == DATALINK_ALL_LINKID) {

4665 (void) dl adm wal k_dat al i nk_i d(show_vl an, handl e,
4666 DATALI NK_CLASS_VLAN, DATALI NK_ANY_| MEDI ATYPE,
4667 } else {

4668 (void) show vlan(handle, linkid, &state);
4669 if (state.ls_status != DLADM STATUS_CK)

4670 die_dlerr(state.ls_status,

4671 argv[optind]);

4672 }

4673 }

4674 of mt _cl ose(of nt);

4675 }

4677 static void
4678 do_create_vnic(int argc, char *argv[], const char *use)

57

&l inkid,
argv[optind]);

0))

&ofnt) ;

&st at e,
flags);

"failed to show vlan %",

4679 {

4680 datalink_id_t l'inkid, dev_linkid;

4681 char devnanme[MAXLI NKNAMELEN] ;

4682 char name[MAXLI NKNAVELEN] ;

4683 bool ean_t | _arg = B_FALSE;

4684 ui nt32_t fTags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST
4685 char *al troot = NULL;

4686 int opti on;

4687 char *endp = NULL;

4688 dl adm st atus_t st at us;

4689 vni c_nac_addr _type_t mac_addr _type = VNI C_MAC_ADDR _TYPE_UNKNOW;
4690 uchar _t *mac_addr = NULL;

4691 int mac_slot = -1;

4692 uint_t maclen = 0, mac_prefix_len =

new usr/src/cnd/ dl adnf dl adm ¢

4693 char

4694 dladmarg_list_t
4695 int

4696 int

4697 vrid_t

4699 opterr = 0;
4700 bzero(propstr,

4702 while ((option
4703 vnic_|l opts,
4704 switch (
4705 case 't’
4706

4707

58

propst r[DLADM STRSI ZE] ;
*proplist = NULL;

vid = 0;

af = AF_UNSPEC,

vrid = VRRP_VRI D_NONE;

DLADM STRSI ZE) ;

= get opt Iong(argc argv, ":tfRI:mn:p:r:v:V:AH',
{

NULL)) !'= -
optl on) {

fl ags &= ~DLADM OPT_PERSI ST;
break;

4708 case 'R :

4709
4710

altroot = optarg;
break;

4711 case '|’:

4712
4713
4714
4715
4716

if (strlcpy(devnanme, optarg, MAXLI NKNAMELEN) >=
MAXLI NKNAMELEN)
die("link nane too |ong");
_arg = B_TRUE
break;

4717 case 'm:

4718
4719

4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740

if (mac_addr _type != VNI C_MAC _ADDR_TYPE_UNKNOWN)
di e("cannot specify -moption tw ce");

if (strc;rp(optarg, "fixed") == 0) {
*

* A fixed MAC address nust be specified
* by its value, not by the keyword 'fixed .

*

die(" fixed is not a valid MAC address");

}
if (dladmvnic_str2nmacaddrtype(optarag,
&mac_addr _type) != DLADM STATUS OK) {
mac_addr _type = VNI C_MAC_ADDR TYPE_FI XED;
/* MAC address specified by val ue */

4741 case 'n’:

4742
4743
4744
4745
4746

mac_addr = _link_aton(optarg, (int *)&nmaclen);
if (mac_addr == NULL)
if (maclen == (uint_t)-1)
die("invalid MAC address");
el se
) di e("out of menmory");
break;
errno = 0;
mac_slot = (int)strtol (optarg, &endp, 10);
if (errno '=0 || *endp !="\0
die("invalid slot number");
br eak;

4747 case 'p’:

4748
4749
4750
4751
4752

optarg, DLADM STRSI ZE);

(void) strlcat(propstr,
if DLADM STRSI ZE) >=

(strlcat(propstr, ",",
DLADM STRSI ZE)

4753 case 'r’:

4754
4755
4756
4757
4758

die("property list too long "%'", propstr);
break;
nmac_addr = Ilnk_aton(opt arg, (int *)&mac_prefix_|en);
if (mac_addr == NULL) {

if (mac_| preflx len == (uint_t)- 1)
die("invali d MAC address");
el se

new usr/src/cnd/ dl adnf dl adm ¢

4759
4760
4761
4762
4763
4764
4765
4766

4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779

4781
4782

4784
4785
4786
4787
4788
4789
4790
4791

4793
4794

4796
4797
4798
4799
4800

4802
4803
4804

4806
4807
4808
4809
4810
4811
4812
4813
4814

4816
4817
4818

4820
4821

4823
4824

di e("out of menory");

}
br eak;
case 'V :
if (!'str2int(optarg, (int *)&rid) ||
vrid < VRRP_.VRID MN || vrid > VRRPVRIDIVAX) {
die("invalid VRRP identifier ' 9%’ optarg);
br eak;
case 'A:

if (strcrrp(optarg, "inet") == 0)
AF_I NET;

else if (strcrrp(optarg, "inet6") == 0)
af AF_| NETS;

el se
die("invalid address famly "%’'", optarg);
break;
case 'V’
if (vid!=0)
di e_opt dup(option);
if (!str2int(optarg, &id) || vid <1 || vid > 4094)
die("invalid VLAN identifier "9’ ", optarg);
br eak;
case ' f’

flags | = DLADM OPT_FORCE;
br eak;
defaul t:
di e_opterr(optopt, option, use);
}

}

if (mac_addr_type == VNI C_MAC_ADDR_TYPE_UNKNOWN)
mac_addr _type = VNI C_MAC_ADDR TYPE_AUTO,

/*
* 'f' - force, flag can be specified only with 'v' - vlan.
*
if ((flags & DLADM OPT_FORCE) != 0 && vid == 0)
die("-f option can only be used with -v");

59

if (mac_prefix_len != 0 & mac_addr _type != VNI C_MAC ADDR TYPE_RANDOM &&

mac_addr _type ! = VNI C_MAC_ADDR_TYPE_FI XED)
usage();

if (mac_addr_type == VNI C_MAC ADDR TYPE VRI D) {
if (vrid == VRRP_VRID_NONE || af == AF_UNSPEC |
mac_addr !'= NULL [| maclen !'= 0 || mac_slot != -1 ||
mac_prefix_len = 0) {
usage();

} else i% ((af !'= AF_UNSPEC || vrid !'= VRRP_VRI D_NONE)) {
) usage();

/* check required options */

if (!'l_arg)
usage() ;

if (mac_slot !'= -1 && mac_addr_type != VNI C_VAC ADDR TYPE_FACTORY)
usage();

/* the VNIC id is the required operand */
if (optind !'= (argc - 1))

new usr/src/cnd/ dl adnf dl adm ¢

4825

4827
4828

4830
4831

4833
4834

4836
4837
4838

4840
4841
4842

4844
4845
4846
4847
4848
4849

4851
4852
4853
4854

4856
4857
4858

4860
4861
4862

4864
4865
4866

}

usage();

if (strlcpy(nane, argv[optind], MAXLI NKNAMELEN) >= MAXLI NKNAMELEN)
die("link name too long %' ", argv[optind]);

if (!dladmvalid_|inkname(nane))
die("invalid link nane "%’'", argv[optind]);

if (altroot != NULL)
altroot_cnd(altroot, argc, argv);

if (dl adm nane2i nfo(handl e, devnane, &dev_linkid, NULL, NULL, NULL) !=
DLADM _STATUS_(OX)
di e("invalid link name ' %'", devnane);

if (dladm parse_link_props(propstr, &proplist, B_FALSE)
! = DLADM STATUS_OX)
die("invalid vnic property");

status = dl adm vnic_create(handl e, nane, dev_linkid, mac_addr_type,
mac_addr, naclen, &mac_slot, nmac prefl x_Ten, vi d vrid, af,
& inkid, proplist, flags);
switch (status) {
case DLADM STATUS CX:
br eak;

case DLADM_STATUS_LI NKBUSY:
di e("VLAN over ' %’ may not use default_tag ID"
"(see dladm(1M)", devnane);
br eak;

defaul t:
di e_dl err(status,
}

dl adm free_props(proplist);
free(nmac_addr);

"vnic creation over % failed", devnane);

static void
do_et herstub_check(const char *nane, datalink_id_t |inkid, boolean_t etherstub,

4867 {

4868
4869

4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882

4884
4885
4886
4887
4888
4889
4890

}

uint32_t flags)

bool ean_t is_etherstub;
dladmvnic_attr_t attr;

if (dl adm;vni c_info(handle, linkid, &ttr, flags) != DLADM STATUS_OK) {
/: Let the del ete continue anyway.
re{ urn;

%s_etherstub = (attr.va_link_id == DATALI NK_I NVALI D_LI NKI D);

if (is_etherstub !'= etherstub) {

die("'%’ is not %", nanme,

(is_etherstub ? "a vnic" "an etherstub"));

static void
do_del ete_vni c_comon(int argc, char *argv[], const char *use,

{

bool ean_t et her st ub)

int option;
uint32_t flags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST;
datalink_id_t linkid;

60

new usr/src/cnd/ dl adnf dl adm ¢

4891 char *altroot = NULL;

4892 dl adm status_t status;

4894 opterr = O;

4895 while ((option = getopt_long(argc, argv, ":Rt", lopts,
4896 NULL)) !'= -1) {

4897 switch (option) {

4898 case 't’:

4899 flags & ~DLADM OPT_PERSI ST;

4900 break;

4901 case 'R :

4902 altroot = optarg;

4903 br eak;

4904 defaul t:

4905 di e_opterr(optopt, option, use);

4906 }

4907 }

4909 /* get vnic nane (required |last argunment) */

4910 if (optind I'= (argc - 1))

4911 usage();

4913 if (altroot !'= NULL)

4914 altroot_cnd(altroot, argc, argv);

4916 status = dl adm nane2i nfo(handl e, argv[optind], & inkid, NULL, NULL,
4917 NULL) ;

4918 if (status != DLADM STATUS_OK)

4919 die("invalid link name %", argv[optind]);
4921 if ((flags & DLADM OPT_ACTIVE) != 0)

4922 do_et herstub_check(argv[optind], linkid, etherstub,
4923 DLADM OPT_ACTI VE) ;

4924 }

4925 if ((flags & DLADM OPT_PERSI ST) != 0)

4926 do_et herstub_check(argv[optind], linkid, etherstub,
4927 DLADM OPT_PERSI ST) ;

4928 }

4930 status = dl adm vni c_del ete(handl e, linkid, flags);

4931 if (status != DLADM STATUS_CK)

4932 die_dlerr(status, "vnic deletion failed");

4933 }

4935 static void

4936 do_del ete_vnic(int argc, char *argv[], const char *use)
4937 {

4938 do_del ete_vni c_common(argc, argv, use, B FALSE);
4939 }

4941 /* ARGSUSED */
4942 static void
4943 do_up_vni c_common(int argc, char *argv[], const char *use, boolean_t vlan)

4944 {

4945 datalink_id_t l'inkid = DATALI NK_ALL_LI NKI D;

4946 dl adm status_t status;

4947 char *type;

4949 type = vlan ? "vlan" "vnic";

4951 I*

4952 * get the id or the name of the vnic/vlan (optional |ast argument)
4953 */

4954 if (argc == 2) {

4955 status = dl adm nane2i nfo(handl e, argv[1], & inkid, NULL, NULL,

4956 NULL) ;

61

new usr/ src/ cnd/ dl adnf dl adm ¢

4957 if (status != DLADM STATUS CK)

4958 got o done;

4960 } else if (argc > 2) {

4961 usage();

4962 }

4964 if (vlan)

4965 status = dl adm vl an_up(handl e, |inkid);

4966 el se

4967 status = dl adm vni c_up(handl e, linkid, 0);

4969 done:

4970 if (status != DLADM STATUS_CK) {

4971 if (argc == 2)

4972 di e_dl err(status,

4973 "could not bring up % '%’'", type, argv[1]);
4974 } else {

4975 die_dlerr(status, "could not bring %s up", type);
4976 }

4977 }

4978 }

4980 static void

4981 do_up_vnic(int argc, char *argv[], const char *use)

4982 {

4983 do_up_vni c_comon(argc, argv, use, B FALSE);

4984 }

4986 static void

4987 dunp_vni cs_head(const char *dev)

4988 {

4989 if (strlen(dev))

4990 (void) printf("9%", dev);

4992 (void) printf("\tipackets rbytes opackets obytes
4994 if (strlen(dev))

4995 (void) printf("9%6pkts %@pkts\n");

4996 el se

4997 (void) printf("\n");

4998 }

5000 static void

5001 dunp_vnic_stat(const char *nane, datalink_id_t vnic_id,

5002 show vnic_state_t *state, pktsumt *vnic_stats, pktsumt *tot_stats)
5003 {

5004 pkt sum t diff_stats;

5005 pkt sum t *old_stats = &state->vs_prevstats[vnic_id];
5007 dl adm stats_diff(&diff_stats, vnic_stats, old_stats);
5009 (void) printf("%", nane);

5011 (void) printf("\t% 10l lu", diff_stats.ipackets);

5012 (void) printf("%12l1u", diff_stats.rbytes);

5013 (void) printf("%10l1u", diff_stats.opackets);

5014 (void) printf("%12l1u", diff_stats.obytes);

5016 if (tot_stats)

5017 if (tot_stats->i packets == 0) {

5018 (void) printf("\t-");

5019 } else {

5020 (void) printf("\t%6.1f", (double)diff_stats.ipackets/
5021 (doubl e) t ot _st at s- >i packets * 100);
5022 }

62

new usr/src/cnd/ dl adnf dl adm ¢

5023
5024
5025
5026
5027
5028
5029
5030

5032
5033

5035 /

5036
5037
5038
5039
5040

}

*
*
*

*

if (tot_stats->opackets == 0) {
(voi d) printf("\t»)
} else {
(void) printf("\t%6.1f", (double)diff_stats.opackets/
(doubl e) t ot _st at s- >opackets * 100);
}

%voi d) printf("\n");

*ol d_stats = *vnic_stats;

Called fromthe wal ker dl adm vnic_wal k_sys() for each vnic to display
vnic i

| f
c information or statistics.

static dl adm status_t

print_vnic(show vnic_state_t *state,

5041 {

5042
5043
5044
5045
5046
5047
5048

5050
5051
5052

5054
5055
5056
5057
5058
5059
5060
5061

5063
5064
5065
5066

5068
5069
5070

5072
5073
5074
5075
5076

5078
5079
5080
5081

5083
5084
5085
5086
5087

datalink_id_t Iinkid)

dl adm vnic_attr_t attr, *vnic = &attr;

dl adm st at us_t st at us;

bool ean_t i s_etherstub;

char devname[MAXLI NKNAMVELEN ;

char vni c_name[MAXLI NKNAMELEN] ;

char nst r [MAXMACADDRLEN * 3] ;

vni c_fiel ds_buf _t vbuf ;

if ((status = dladmvnic_info(handle, linkid, vnic, state->vs_flags))

DLADM _STATUS_OK)
return (status);

is_etherstub = (vnic->va_link_id == DATALI NK_I NVALI D_LI NKI D) ;
if (state->vs_etherstub T=is etherstub) {
/*

* Want all etherstub but it’s not one,
* non-etherstub and it’s one.
*

or want

return (DLADM STATUS K);
}

if (state->vs_link_id !'= DATALINK_ALL_LINKI D) {
if (state->vs_link_id != vnic->va_link_id)
return (DLADM STATUS (K);
}

if (dladm datalink_id2info(handle, linkid, NULL, NULL,
NULL, vnic_nanme, sizeof (vnic_nane)) != DLADM STATUS_CK)
return (DLADM STATUS_BADARQG) ;

bzer o(devnane, sizeof (devnane));
if (!is_etherstub &&
dl adm dat al i nk_i d2i nfo(handl e, vnic->va_link_id, NULL, NULL,
NULL, devnane, sizeof (devnane)) != DLADM STATUS_OK)
(void) sprintf(devnane, "?");

state->vs_found = B_TRUE;

if (state->vs_stats) {
/* print vnic statistics */
pktsumt vnic_stats;

if (state->vs_firstonly) {
if (state->vs_donefirst)
return (0);
st at e->vs_donefirst = B_TRUE;

63

new usr/ src/ cnd/ dl adnf dl adm ¢ 64
5089 if (!state->vs_printstats) {

5090 /*

5091 * get vnic statistics and add to the sumfor the
5092 * naned devi ce.

5093 */

5094 get _link_stats(vnic_nanme, &vnic_stats);

5095 dl adm stats_total (&tate->vs_total stats, &nic_stats,
5096 &st at e->vs_prevstats[vnic->va_vnic_id]);

5097 } else {

5098 /* get and print vnic statistics */

5099 get _link_stats(vnic_nane, &vnic_stats);

5100 dunp_vni c_stat(vnic_nane, linkid, state, &nic_stats,
5101 &state->vs_total stats);

5102 }

5103 return (DLADM STATUS OK);

5104 } else {

5105 (voi d) snprintf(vbuf.vnic_link, sizeof (vbuf.vnic_link),
5106 %", vnic_nane);

5108 if (!is_etherstub) {

5110 (voi d) snprintf(vbuf.vnic_over, sizeof (vbuf.vnic_over),
5111 "o, devnane)

5112 (void) snpr| ntf(vbuf vni c_speed,

5113 si zeof (vbuf.vnic_speed), "%",

5114 (uint_t)((get |fspeed(vn| c_name, B _TRUE))

5115 /1000000ul 1)) ;

5117 switch (vnic->va_nac_addr_type) {

5118 case VNI C_MAC ADDR TYPE FI XED:

5119 case VNI C_VAC_ADDR_TYPE_PRI MARY:

5120 (void) snprintf(vbuf.vnic_nmacaddrtype,

5121 si zeof (vbuf.vnic_nacaddrtype),

5122 gettext("fixed"));

5123 br eak;

5124 case VN C NAC ADDR_TYPE_RANDOM

5125 (voi d) snpri ntf(vbuf vni c_nmacaddrt ype,

5126 si zeof (vbuf.vnic_macaddrtype),

5127 gettext ("randont'));

5128 br eak;

5129 case VNI C_ NAC ADDR_TYPE_FACTORY:

5130 (voi d) snpri ntf(vbuf vni c_nmacaddrtype,

5131 si zeof (vbuf vni c_nacaddrt ype),

5132 gettext("factory, slot %l"),

5133 vni c->va_nac_slot);

5134 br eak;

5135 case VNI C I\/AC ADDR_TYPE_VRI D:

5136 (voi d) snpri ntf(vbuf vni c_nacaddrt ype,

5137 si zeof (vbuf vni c_macaddrtype),

5138 gettext ("vrrp, %/ %"),

5139 vni c->va_vrid, vnic- >va_af == AF_I NET ?
5140 "inet" : "ineté6");

5141 br eak;

5142 }

5144 if (strlen(vbuf.vnic_macaddrtype) > 0) {

5145 (void) snprintf(vbuf.vnic_nmacaddr,

5146 si zeof (vbuf.vnic_nacaddr), "%",

5147 dl adm aggr _nmacaddr 2str (vni c- >va_nac_addr,
5148 mstr));

5149 }

5151 (voi d) snprintf(vbuf.vnic_vid, sizeof (vbuf.vnic_vid),
5152 "%d", vnic->va_vid);

5153 }

new usr/src/cnd/ dl adnf dl adm ¢

5155 of mt _print(state->vs_ofnt, &buf);

5157 return (DLADM STATUS OK);

5158 }

5159 }

5161 /* ARGSUSED */

5162 static int

5163 show_vni c(dl adm handl e_t dh, datalink_id_t linkid, void *arg)
5164 {

5165 show_vni c_state_t *state = arg;

5167 state->vs_status = print_vnic(state, linkid);

5168 return (DLADM WALK_CONTI NUE) ;

5169 }

5171 static void

5172 do_show_vni c_comon(int argc, char *argv[], const char *use,

5173 bool ean_t et her st ub)

5174 {

5175 int option;

5176 bool ean_t s_arg = B_FALSE;

5177 bool ean_t i_arg = B_FALSE;

5178 bool ean_t | _arg = B_FALSE;

5179 ui nt 32_t interval = 0, flags = DLADM OPT_ACTI VE;
5180 datalink_id_t l'inki d = DATALI NK_ALL_LI NKI D;
5181 dat al i nk_ d_t dev_|inkid = DATALI NK_ALL_LI NKI D;
5182 show_vni c_state_t state;

5183 dl adm st at us_t st at us;

5184 bool ean_t o_arg = B_FALSE;

5185 char *fields_str = NULL;

5186 const ofnt_field_t *pf ;

5187 char *all _e_fields = "link"

5188 of nt _handl e_t of nt;

5189 of m _status_t oferr;

5190 uint_t of mtflags = O;

5192 bzero(&state, sizeof (state));

5193 opterr = 0;

5194 while ((option = getopt_long(argc, argv, ":pPl:si:o:", lopts,
5195 NULL)) !'= -1) {

5196 switch (option) {

5197 case 'p’:

5198 state.vs_parsabl e = B_TRUE;

5199 br eak;

5200 case 'P:

5201 flags = DLADM OPT_PERSI ST;

5202 break;

5203 case 'l

5204 if (etherstub)

5205 di e("option not supported for this command");
5207 if (strlcpy(state.vs_link, optarg, MAXLI NKNAVELEN) >=
5208 MAXLI NKNAMELEN)

5209 die("link name too |ong");

5211 _arg = B _TRUE

5212 br eak;

5213 case 's’:

5214 if (s_arg) {

5215 die("the option -s cannot be specified "
5216 "nmore than once");

5217 }

5218 s_arg = B_TRUE;

5219 break;

5220 case 'i’:

65

new usr/src/cnd/ dl adnf dl adm ¢

5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236

5238
5239

5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252

5254
5255
5256
5257
5258
5259
5260
5261

5263
5264
5265
5266
5267

5269
5270
5271
5272
5273

5275
5276
5277
5278
5279

5281
5282
5283
5284
5285
5286

if (i_arg) {
die("the option -i cannot be specified "
) "nmore than once");
i_arg = B_TRUE;
i (I'dladm str2interval (optarg, & nterval))
die("invalid interval value '9%’", optarg);
br eak;
case 'o’
o_arg = B_TRUE;
fields_str = optarg;
br eak;
defaul t:
di e_opterr(optopt, option, use);
}
}
if (i_arg & !'s_arg)
die("the option -i can be used only with -s");

/* get vnic ID (optional |ast argument)
if (optind == (argc - 1))
status = dl adm nane2i nfo(handl e, argv[optind], & inkid, NULL,
NULL, NULL);
if (status != DLADM STATUS OK) {
die_dlerr(status, "invalid vnic name ' %" ",
argv[optind]);

}
(void) strlcpy(state.vs_vnic, argv[optind],
} else if (optind != argc)

MAXLI NKNAVELEN) ;

usage();
}
if (l_arg) {
status = dl adm nane2i nfo(handl e, state.vs_link, &dev_l|inkid,
NULL NULL, NULL);
if (status != DLADM STATUS OK) {
die dlerr(status, "invalid link name ' %' ",
state.vs_link);
}
}

state.vs_vnic_id = linkid,
state.vs_link_id = dev_linkid;
state.vs_etherstub = etherstub;
state.vs_found = B _FALSE;
state.vs_flags = flags;

if (lo_arg || (o_arg & strcasecnp(fields_str, "all") == 0)) {
if (etherstub)
fields_str = all_e_fields;

}
pf = vnic_fields;

if (state.vs_parsable)

of mflags | = OFMI_PARSABLE;
oferr = ofmt_open(fields_str, pf, ofmflags, 0, &ofnt);
dl adm of nt _check(oferr, st ate. vs_parsabl e, ofnt);
state.vs_ofnmt = ofnt;

if (s_arg) {
/* Display vnic statistics */
vnic_stats(&state, interval);
of mt _cl ose(ofnt);
return;

new usr/ src/ cnd/ dl adnf dl adm ¢ 67 new usr/ src/ cnd/ dl adnf dl adm ¢
5288 /* Display vnic information */ 5354 status = dl adm vnic_create(handl e, name, DATALI NK_| NVALI D LI NKI D,
5289 state.vs_donefirst = B_FALSE; 5355 VNI C_MAC_ADDR TYPE_AUTO, mac addr EI'HERADDRL NULL, O, O,
5356 VRRP_VRI D_NONE, AF_UNSPEC, NULL, NULL, fl ags) ;
5291 if (linkid == DATALINK_ALL_LINKID) { 5357 if (status != DLADM STATUS _OK)
5292 (voi d) dl adm wal k_dat al i nk_i d(show vni ¢, handle, &state, 5358 die_dlerr(status, "etherstub creation failed");
5293 DATALI NK_CLASS_VNI C | DATALI NK_ CLASS ETHERSTUB 5359 }
5294 DATALI NK_ANY_MEDI ATYPE, flags);
5295 } else { 5361 static void
5296 (void) show_vnic(handle, linkid, &state); 5362 do_del ete_et herstub(int argc, char *argv[], const char *use)
5297 if (state.vs status !|= DLADM STATUS OK) { 5363 {
5298 of mt_cl ose(ofnt); 5364 do_del et e_vni c_common(argc, argv, use, B TRUE);
5299 die_dlerr(state.vs_status, "failed to show vnic "%’ ", 5365 }
5300 state.vs_vnic);
5301 } 5367 /* ARGSUSED */
5302 } 5368 static void
5303 of nt _cl ose(ofnt); 5369 do_show_et herstub(int argc, char *argv[], const char *use)
5304 } 5370 {
5371 do_show_vni c_common(argc, argv, use, B TRUE);
5306 static void 5372 }
5307 do_show_vnic(int argc, char *argv[], const char *use)
5308 { 5374 /* ARGSUSED */
5309 do_show_vni c_comon(argc, argv, use, B FALSE); 5375 static void
5310 } 5376 ?o_up_si met (i nt argc, char *argv[], const char *use)
5377
5312 static void 5378 (voi d) dl adm si met _up(handl e, DATALI NK_ALL_LINKI D, 0);
5313 do_create_etherstub(int argc, char *argv[], const char *use) 5379 }
5314 {
5315 uint32_t flags; 5381 static void
5316 char *altroot = NULL; 5382 do_create_simet (int argc, char *argv[], const char *use)
5317 int option; 5383 {
5318 dl adm st atus_t status; 5384 uint32_t flags;
5319 char name[MAXLI NKNAMVELEN ; 5385 char *altroot = NULL;
5320 uchar _t mac_addr [ETHERADDRL] ; 5386 char *media = NULL;
5387 uint32_t nmype = DL_ETHER;
5322 name[0] = '\0; 5388 int option;
5323 bzero(mac_addr, sizeof (nmac_addr)); 5389 dl adm st atus_t status;
5324 flags = DLADM OPT_ANCHOR | DLADM | (PT ACTI VE | DLADM OPT_PERSI ST; 5390 char nane[MAXLI NKNAVELEN ;
5326 opterr = 0; 5392 nane[0] ='\0";
5327 while ((option = getopt_long(argc, argv, "tR", 5393 flags = DLADM ODT ACTI VE | DLADM OPT_PERSI ST;
5328 etherstub_|lopts, NULL)) != -1) {
5329 switch (optl on) { 5395 opterr = O;
5330 case 't’ 5396 whi | e ((opt ion = getopt_long(argc, argv, ":tRm",
5331 fl ags &= ~DLADM OPT_PERSI ST; 5397 simet _lopts, NULL)) !=-1) {
5332 br eak; 5398 switch (optl on) {
5333 case 'R : 5399 case 't’:
5334 altroot = optarg; 5400 flags & ~DLADM OPT_PERSI ST;
5335 br eak; 5401 br eak;
5336 defaul t: 5402 case 'R :
5337 di e_opterr(optopt, option, use); 5403 altroot = optarg;
5338 } 5404 break;
5339 } 5405 case 'm:
5406 nedia = optarg;
5341 /* the etherstub id is the required operand */ 5407 br eak;
5342 if (optind !'= (argc - 1)) 5408 defaul t:
5343 usage(); 5409 di e_opterr(optopt, option, use);
5410 }
5345 if (strlcpy(nane, argv[optind], MAXLI NKNAMELEN) >= MAXLI NKNAMELEN) 5411 }
5346 die("link name too long '%’'", argv[optind]);
5413 /* the simet id is the required operand */
5348 if (!dladmyvalid_|inkname(nane)) 5414 if (optind !'= (argc - 1))
5349 die("invalid link name "%’ ", argv[optind]); 5415 usage();
5351 if (altroot !'= NULL) 5417 if (strlcpy(name, argv[optind], MAXLI NKNAMELEN) >= MAXLI NKNAVELEN)
5352 altroot_cnd(altroot, argc, argv); 5418 die("link name too long '%’'", argv[optind]);

new usr/src/cnd/ dl adnf dl adm ¢

5420
5421

5423
5424
5425
5426
5427

5429
5430

5432
5433
5434
5435 }

if (!dladmvalid_|inkname(nane))
die("invalid link nane '%’", nane);

if (media !'= NULL) {
ntype = dl adm str2medi a(medi a) ;
if (mype != DL_ETHER && ntype != DL_WFI)

die("nmedia type "%’ is not supported", nedia);
}
if (altroot != NULL)
altroot_cnd(altroot, argc, argv);
status = dl adm si met _creat e(handl e, nanme, ntype, flags);

if (status != DLADM STATUS_OK)
die_dlerr(status, "simet creation failed");

5437 static void

5438 do_del ete_si met (i nt argc,

5439 {
5440
5441
5442
5443
5444
5445

5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460

5462
5463
5464

5466
5467

5469
5470

5472
5473
5474
5475

5477
5478
5479

5481
5482
5483
5484 }

char *argv[], const char *use)

int option;

uint32 t flags = DLADM OPT_ACTI VE | DLADM OPT_ PERSI ST
datalink_id_t Iinkid;

char *altroot = NULL;

dl adm status_t status;

dl adm si met _attr_t slinfo;

opterr = O;
while ((option = get opt _long(argc, argv, ":tR ", simet_|opts,
NULL)) I= -
switch (optlon) {
case 't’:
flags & ~DLADM OPT_PERSI ST;
break;
case 'R :
altroot = optarg;
br eak;
defaul t:
di e_opterr(optopt, option, use);
}
}

/* get simmet nane (required |ast argunment) */
if (optind I'= (argc - 1))

usage();
if (!dladmvalid I|nknarre(argv[opt|nd]))
die("invalid link name ' %’ ", argv[optind]);
if (altroot != NULL)

altroot_cnd(altroot, argc, argv);

status = dl adm nane2i nfo(handl e, argv[optind],
NULL) ;
if (status != DLADM STATUS_CK)
die("simet %’ not found", argv[optind]);
if ((status = dl adm si met_info(handle, linkid, &slinfo,
flags)) != DLADM STATUS CK)
die_dlerr(status,

status = dl adm si met _del ete(handl e, linkid, flags);
if (status != DLADM STATUS _OK)
die_dlerr(status, "simet deletion failed");

& inkid, NULL, NULL,

"failed to retrieve simet information");

69

new usr/src/cnd/ dl adn dl adm ¢

5486 static void

5487 do_nodi fy_simet (int argc, char *argv[], const char *use)

5488 {

5489 int option;

5490 uint32_t flags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST
5491 datalink_id_t Iinkid;

5492 datalink_id_t peer_linkid;

5493 char *altroot = NULL;

5494 dl adm status_t status;

5495 bool ean_t p_arg = B_FALSE;

5497 opterr = 0;

5498 while ((option = getopt_long(argc, argv, ":tRp:", simet
5499 NULL)) !'= -1)

5500 switch (option) {

5501 case 't’:

5502 flags & ~DLADM OPT_PERSI ST;

5503 break;

5504 case 'R :

5505 altroot = optarg;

5506 break;

5507 case 'p':

5508 if (p_arg)

5509 di e_opt dup(option);

5510 p_arg = B_TRUE,

5511 I f (strcasecnp(opt arg, "none") == 0
5512 peer _linkid = DATALI NK_I NVALI D_LI
5513 el se if (dl adm nane2i nfo(handle, optarg,
5514 NULL, NULL, NULL) != DLADM STATUS_O<)
5515 die("invalid peer link nane ' 9%’ ",
5516 break;

5517 defaul t:

5518 di e_opterr(optopt, option, use);

5519 }

5520 1

5522 /* get simmet nanme (required |ast argunent)

5523 if (optind !'= (argc - 1))

5524 usage();

5526 /* Nothing to do if no peer |ink argunent */

5527 if (!p_arg)

5528 return;

5530 if (altroot != NULL)

5531 altroot_cnd(altroot, argc, argv);

5533 status = dI adm nane2i nf o(handl e, argv[optind],

5534 NU

5535 if (stat us != DLADM STATUS _OK)

5536 die("invalid link name * %’ ", argv[optind]);
5538 status = dl adm si met _nodi fy(handl e, linkid, peer_linkid,
5539 if (status != DLADM STATUS O()

5540 die_dlerr(status, "simet nodification failed");
5541 }

5543 static dl adm status_t

5544 print_si met(show state_t *state, datalink_id_t Iinkid)

5545 {

5546 dl adm si met _attr_t slinfo;

5547 ui nt32_t flags;

5548 dl adm status_t st at us;

5549 si met _fiel ds_buf _t sl buf ;

5550 char mst r [ETHERADDRL * 3]

_lopts,

NKI D;

&peer _| i nkid,
optarg);

& inkid, NULL, NULL,

flags);

new usr/ src/ cnd/ dl adnf dl adm ¢ 71
5552 bzer o(&sl buf, sizeof (slbuf));

5553 if ((status = dladmdatalink_id2info(handle, linkid, &flags, NULL, NULL,
5554 sl buf. si met _nane, sizeof (slbuf.simet_nane)))

5555 | = DLADM STATUS_CK)

5556 return (status);

5558 if (!(state->ls_flags & flags))

5559 return (DLADM_STATUS_NOTFOUND) ;

5561 if ((status = dl adm si met _i nfo(handl e, linkid, &slinfo,
5562 state->ls_flags)) != DLADM STATUS_ CK)

5563 return (status);

5565 if (slinfo.sna_peer_link_id != DATALI NK_I NVALID LI NKI D &&
5566 (status = dl adm dat al i nk_i d2i nf o(handl e, slinfo.sna_peer_link_id,
5567 NULL, NULL, NULL, sl buf.simet_otherlink,

5568 si zeof (sl buf.simet_otherlink))) !=

5569 DLADM STATUS OX)

5570 return (status);

5572 if (slinfo.sna_mac_l en > sizeof (slbuf.simet_nacaddr))
5573 return (DLADM STATUS BADVAL) ;

5575 (voi d) strlcpy(sl buf.si mmet _macaddr,

5576 di adm aggr _macaddr 2str (sl info. sna_nac_addr, mstr),
5577 si zeof (sl buf.simmet_macaddr));

5578 (void) dl adm medi a2str(sTinfo.sna_type, slbuf.simet_nedia);
5580 of m _print(state->ls_ofnt, &slbuf);

5581 return (status);

5582 }

5584 /* ARGSUSED */

5585 static int

5586 show_si met (dl adm handl e_t dh, datalink_id_t linkid, void *arg)
5587 {

5588 show state_t *state = arg;

5590 state->ls_status = print_simet(state, linkid);

5591 return (DLADM WALK_CONTI NUE) ;

5592 }

5594 static void

5595 do_show_si met (i nt argc, char *argv[], const char *use)

5596 {

5597 int option;

5598 ui nt 32_t flags = DLADM OPT_ACTI VE;

5599 bool ean_t p_arg = B_FALSE,

5600 datalink_id_t I Tnkid = DATALI NK_ALL_LI NKI D;

5601 show_state_t state;

5602 dl adm status_t status;

5603 bool ean_t o_arg = B_FALSE;

5604 of mt _handl e_t of nt ;

5605 of m _status_t oferr;

5606 char *all _fields = "link, nedi a, macaddr ess, ot herl i nk"
5607 char *fields str = all_fields;

5608 ui nt _t ofntflags = O;

5610 bzero(&state, sizeof (state));

5612 opterr = 0;

5613 while ((option = getopt_long(argc, argv, ":pPo:",

5614 show_| opt s, NULL)) I=-1) {

5615 switch (option) {

5616 case 'p’:

new usr/src/cnd/ dl adnf dl adm ¢

5617
5618

5620
5621
5622
5623
5624
5625

5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637

5639
5640

5642
5643
5644
5645
5646

5648
5649
5650
5651
5652
5653
5654
5655
5656

5658
5659
5660
5661
5662
5663
5664

5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678

5680
5681
5682

if (p_arg)
di e_opt dup(option);

p_arg = B_TRUE;
state.|ls_parsable = p_arg;
br eak;
case 'P':
if (flags != DLADM OPT_ACTI VE)
di e_opt dup(option);

flags = DLADM OPT_PERSI ST;

br eak;
case '0':
o_arg = B_TRUE;
fields_str = optarg;
br eak;
defaul t:
di e_opterr(optopt, option, use);
break;
}

}

if (p_ arg&&'o ar g)
die("-p requires -0");

if (strcasecnp(fields_str, "all")
if (p_ arg)

(\"-o0 all\"

fields str = all_fields;

=0) {
isinvalid with -p");
}

/* get link name (optional |ast argunment) */
if (optind == (argc- 1))
if ((status = dl adm nane2i nfo(handl e, argv[optind],
NULL, NULL, NULL)) != DLADM STATUS OK) {
d| e_dl err(status, "l'ink % is not valid",

&linkid,
argv[optind]);

} else i% (optind !'= argc) {
) usage() ;

state.ls_flags = flags;
state.|ls_donefirst = B_FALSE;
if (state.ls_parsable)

of mflags | = OFMI_PARSABLE;

oferr = ofnt _open(fields_str, simet_fields, ofntflags, 0, &ofnt);
dl adm of nt _check(oferr, state.ls_parsable, ofnt);
state.ls_ofmt = ofnt;
if (linkid == DATALI NK_ALL_LINKID) {
(voi d) dl adm wal k_dat al i nk_i d(show_si met, handl e, &state,
DATALI NK_CLASS_SI MNET, “DATALI NK_ANY_MEDI ATYPE, flags);
} else {
(void) show simet(handl e, linkid, &state);
if (state.ls_status != DLADM_STATUS_O<) {
of mt _cl ose(ofnt);
die_dlerr(state.ls_status, "failed to show si met %",
) argv[optind]);

g z)fm_close(ofm);

static void
link_stats(datalink_id_t |inkid,
show_state_t *state)

uint_t interval, char *fields_str,

72

new usr/src/cnd/ dl adnf dl adm ¢

5683 {
5684
5685
5686

5688
5689
5690
5691
5692

5694
5695
5696
5697
5698

5700
5701
5702
5703
5704
5705
5706
5707
5708

5710
5711

5713
5714
5715
5716
5717 }

of mt _handl e_t of nt;
of m _status_t oferr;
uint_t of mtflags = O;

if (state->ls_parsable)
of mflags | = OFMI_PARSABLE;
oferr = ofnt _open(fields_str, link_s_fields, ofntflags, 0, &ofnt);
dl adm of nt _check(of err, state->ls_parsable, ofnt);
state->ls_ofmt = ofnt;

/*
* |f an interval is specified, continuously show the stats
* only for the first MAC port
*/
state->ls_firstonly = (interval != 0);
for (53) {
state->l's donefl rst = B_FALSE;
if (linkid == DATALI NK_ALL_LI NKI D)
(void) dl adm wal k_dat al i nk_i d(show | i nk_stats, handl e,
state, DATALINK_CLASS ALL, DATALI NK_ANY_MEDI ATYPE
DLADM OPT_ACTI VE)

} else {
) (void) show_ |ink_stats(handle, linkid, state);
if (interval == 0)

br eak;

(void) fflush(stdout);
(void) sleep(interval);

}
of nt _cl ose(ofnt);

5719 static void
5720 aggr_stats(datalink_id_t linkid, showgrp_state_t *state, uint_t interval)

5721 {
5722
5723
5724
5725
5726

5728
5729
5730
5731
5732
5733
5734
5735

5737
5738

5740
5741
5742
5743 }

5745 [*

/*

* |f an interval is specified, continuously show the stats
* only for the first group.

*/

state->gs_firstonly = (interval != 0);
for (;;)

{
stat e->gs_ donefl rst = B_FALSE;
if (linkid == DATALI NK_ALL_LI NKI D)

73

(voi d) dl adm wal k_dat al i nk_i d(show_aggr, handle, state,

DATALI NK_CLASS_AGGR, DATALI NK_ANY_MEDI ATYPE,
DLADM OPT_ACTI VE) ;
el se
(void) show_ aggr(handle, linkid, state);

if (interval == 0)
break;

(void) fflush(stdout);
(void) sleep(interval);

ARGSUSED */

5746 static void
5747 vnic_stats(show vnic_state_t *sp, uint32_t interval)

5748 {

new usr/ src/ cnd/ dl adnf dl adm ¢ 74
5749 show_vni c_state_t state;

5750 bool ean_t specific_link, specific_dey;

5752 /* Display vnic statistics */

5753 dunp_vni cs_head(sp->vs_Ilink);

5755 bzero(&state, sizeof (state));

5756 state.vs_stats = B_TRUE;

5757 state.vs_vnic_id = sp->vs_vnic_id;

5758 state.vs_link_id = sp->vs_link_id;

5760 /*

5761 * |f an interval is specified, and a vnic IDis not specified,
5762 * continuously show the stats only for the first vnic.

5763 */

5764 specific_li k = (sp->vs_vnic_id ! = DATALI NK_ALL_LI NKI D) ;

5765 specific_dev = (sp->vs_Tink_id ! = DATALI NK_ALL_LI NKI D);

5767 for (;;) {

5768 /* Get stats for each vnic */

5769 state.vs_found = B_FALSE;

5770 state.vs_donefirst = B_FALSE;

5771 state.vs_printstats = B_FALSE;

5772 state.vs_flags = DLADM OPT_ACTI VE;

5774 if (!specific_link)

5775 (voi d) dl admwal k_dat al i nk_i d(show_vni c, handle, &state,
5776 DATALI NK_CLASS_VNI C, DATALI NK_ANY_MEDI ATYPE,
5777 DLADM OPT_ACTI VE) ;

5778 } else {

5779 (voi d) show_vnic(handl e, sp->vs_vnic_id, &state);
5780 if (state.vs_status |—DLAD!\/ISTATUSO() {

5781 di e_dI err(state.vs_status,

5782 ““failed to show vnic ' 9%’ ", sSp->vs_vnic);
5783 }

5784 }

5786 if (specifi c_I ink & !state.vs_f ound)

5787 di e("non-existent vnic '%’ Sp->Vs_vnic);

5788 if (spem fic_dev & !state.vs found)

5789 di e("device % has no vnics", sp->vs_link);

5791 /* Show totals */

5792 if ((specific_link | specific_dev) & !interval) {

5793 (void) printf("Total");

5794 (void) printf("\t% 10l lu",

5795 state.vs_total stats. |packets)

5796 (void) printf("%1211u"

5797 state.vs_total st ats. rbytes);

5798 (void) printf("%210l1lu",

5799 state.vs_total stats. opackets)

5800 (void) printf("%1211u\n"

5801 state.vs_total stats. obyt es);

5802 }

5804 /* Show stats for each vnic */

5805 state.vs_donefirst = B_FALSE;

5806 state.vs_printstats = B_TRUE;

5808 if (!specific_link)

5809 (voi d) dl admwal k_dat al i nk_i d(show_vni c, handle, &state,
5810 DATALI NK_CLASS_VNI C, DATALI NK_ANY_| NEDI ATYPE,
5811 DLADM OPT_ACTI VE) ;

5812 } else {

5813 (voi d) show_ vnic(handl e, sp->vs_vnic_id, &state);
5814 if (state.vs_status |—DLADMSTATUSCK) {

new usr/src/cnd/ dl adnf dl adm ¢

5815 die_dlerr(state.vs_status,
5816 "failed to show vnic '9%’", sp->vs_vnic);
5817 }

5818 }

5820 if (interval == 0)

5821 br eak;

5823 (void) fflush(stdout);

5824 (void) sleep(interval);

5825 1

5826 }

5828 static void

5829 get _nmac_stats(const char *dev, pktsumt *stats)

5830 {

5831 kstat_ctl _t *kep;

5832 kst at _t *Kksp;

5833 char modul e[DLPI _LI NKNAVE_MAX] ;

5834 uint_t instance;

5837 bzero(stats, sizeof (*stats));

5839 if (dlpi_parselink(dev, nodule, & nstance) != DLPI_SUCCESS)
5840 return;

5842 if ((kcp = kstat_open()) == NULL) {

5843 warn("kstat open operation failed");

5844 return;

5845 }

5847 ksp = dl adm kst at _| ookup(kcp, nodul e, instance, "mac", NULL);
5848 if (ksp !'= NULL)

5849 dl adm get _stats(kcp, ksp, stats);

5851 (voi d) kstat_cl ose(kcp);

5853 }

5855 static void

5856 get_|ink_stats(const char *link, pktsumt *stats)

5857 {

5858 kstat_ctl _t *kep;

5859 kstat _t *ksp;

5861 bzero(stats, sizeof (*stats));

5863 if ((kcp = kstat_open()) == NULL)

5864 war n(" kst at_open operation failed");

5865 return;

5866 }

5868 ksp = dl adm kst at _| ookup(kcp, "link", 0, link, NULL);
5870 if (ksp !'= NULL)

5871 dl adm get _st at s(kcp, ksp, stats);

5873 (void) kstat_cl ose(kcp);

5874 }

5876 static int

5877 query_kstat (char *nodul e, int instance, const char *name, const char *stat,
5878 uint8_t type, void *val)

5879 {

5880 kstat_ctl _t *kcp;

75

new usr/ src/ cnd/ dl adnf dl adm ¢ 76
5881 kstat _t *ksp;

5883 if ((kcp = kstat_open()) == NULL)

5884 warn("kstat open operation failed");

5885 return (-1);

5886 }

5888 if ((ksp = kstat_| ookup(kcp, nodule, instance, (char *)nanme)) == NULL) {
5889 /*

5890 * The kstat query could fail if the underlying MAC
5891 * driver was al ready detached.

5892 */

5893 goto bail;

5894 }

5896 if (kstat_read(kcp, ksp, NULL) == -1) {

5897 warn("kstat read failed");

5898 goto bail;

5899 1

5901 if (dladmkstat_val ue(ksp, stat, type, val) < 0)

5902 goto bail;

5904 (void) kstat_cl ose(kecp);

5905 return (0);

5907 bail:

5908 (voi d) kstat_cl ose(kecp);

5909 return (-1);

5910 }

5912 static int

5913 get_one_kstat (const char *name, const char *stat, uint8_t type,

5914 void *val, bool ean_t islink)

5915 {

5916 char nmodul e[DLPI _LI NKNAVE_MAX] ;

5917 uint_t i nst ance;

5919 if (islink) {

5920 return (query_kstat("link", O, nane, stat, type, val));
5921 } else {

5922 if (dl pi_parselink(nane, nodule, & nstance) != DLPI_SUCCESS)
5923 return (-1);

5925 return (query_kstat(nmodul e, instance, "nmac", stat, type, val));
5926 }

5927 }

5929 static uint64_t

5930 get_i fspeed(const char *nane, bool ean_t islink)

5931 {

5932 uint64_t ifspeed = 0;

5934 (voi d) get_one_kstat(name, "ifspeed", KSTAT_DATA Ul NT64,
5935 & fspeed, islink);

5937 return (ifspeed);

5938 }

5940 static const char *

5941 get _linkstate(const char *nanme, boolean_t islink, char *buf)

5942 {

5943 link_state_t |'i nkst at e;

5945 if (get_one_kstat(name, "link_state", KSTAT_DATA U NT32,
5946 & inkstate, islink) !'=0) {

new usr/src/cnd/ dl adnf dl adm ¢

5947 (void) strlcpy(buf, "?", DLADM STRSI ZE);

5948 return (buf);

5949 }

5950 return (dladm|inkstate2str(linkstate, buf));

5951 }

5953 static const char *

5954 ?et _l'i nkdupl ex(const char *nane, bool ean_t islink, char *buf)
5955

5956 I'i nk_dupl ex_t I'i nkdupl ex;

5958 if (get_one_kstat(name, "link_duplex", KSTAT_DATA Ul NT32,
5959 &li nkdupl ex, islink) !=0

5960 (voird) strlcpy(buf, "unknown", DLADM STRSI ZE);
5961 return (buf);

5962 }

5964 return (dl adm.|inkdupl ex2str(linkdupl ex, buf));

5965 }

5967 static int

5968 parse_wifi_fields(char *str, ofnt_handle_t *ofnt, uint_t cndtype,
5969 bool ean_t parsabl e)

5970 {

5971 of mt_field_t = eerI ate, *of;

5972 of m _chb_t *fn

5973 of m _status_t of err

5975 if (cmdtype == WFI_CMVD_SCAN) {

5976 template = wifi_common_fields;

5977 if (str == NULL)

5978 str def _scan_wi fi _fields;

5979 if (st rcasecnp(str, "all") ==

5980 str = all _scan_wifi_fields;

5981 fn =print_wan_attr_cb;

5982 } elseif (crrdtype == WFI_CVD_S {

5983 bcopy(w fi _common_fields, &wifi_show fields[2],
5984 si zeof (wifi_comon f| el ds));

5985 template = wifi_show fields;

5986 if (str == NULL)

5987 str = def_show wifi _fields;

5988 if (strcasecnp(str, "all") == 0)

5989 str = all_show wi fi_fields;

5990 = print_link_attr_cbh;

5991 } else {

5992 return (-1);

5993 }

5995 for (of = tenplate; of- >of nane != NULL; of++) {

5996 if (of->of _cb == NULL)

5997 of =>of _cb = fn;

5998 }

6000 oferr = ofnt_open(str, tenplate, (parsable ? OFMI_PARSABLE :
6001 0, ofnt);

6002 dl adm of mt _check(of err, parsable, *ofnt);

6003 return (0);

6004 }

6006 typedef struct print_wifi_state {

6007 char *ws_|ink;

6008 bool ean_t ws_par sabl e;

6009 bool ean_t ws_header ;

6010 of mt handl e_t ws_of nt;

6011 } print_wifi_state_t;

0),

7

new usr/src/cnd/ dl adnf dl adm ¢ 78

6013 typedef struct

6014
6015

w an_scan_args_s {
print_wifi_state_t *ws_state;
voi d *ws_attr;

6016 } W an_scan_args_t;

6018 static bool ean_t

6019 print_w an_attr_cb(ofnt_arg_t *ofarg, char *buf,

6020 {
6021
6022
6023
6024

6026
6027
6028
6029

6031
6032

6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061

6063
6064 }

ui nt _t bufsize)
w an_scan_args_t *w = of ar g- >of nt _cbarg;
print_wifi_state_t *statep = w>ws_state;
dl admw an_attr_t *attrp = w>ws_attr;
char t npbuf [DLADM STRSI ZE] ;

if (ofarg->ofnt_id == 0) {
(voi d) strlcpy(buf
return (B_TRUE);

(char *)statep->ws_link, bufsize);

}

if ((ofarg->ofmt_id & attrp->wa_valid) == 0)
return (B_TRUE);

switch (ofarg->of mt_id) {

case DLADM W.AN_ATTR_ESSI D:
(void) dladmw an_essi d2str(&attrp->wa_essid,
br eak;

case DLADM WLAN_ATTR_BSSI D:
(void) dl admw an_bssi d2str (&attrp->wa_bssid,
br eak;

case DLADM_ V\LAN ATTR_SECMCDE:

t npbuf) ;

t npbuf) ;

(void) dl admw an_secnode2str (&attrp->wa_secnode, tnpbuf);
br eak;
case DLADM WLAN ATTR STRENGTH:
(void) dladmw an_strength2str(&attrp->wa_strength, tnpbuf);
br eak;
case DLADM WLAN_ATTR_MODE:
(v0| d) dl adm w an_node2str (&at trp->wa_node, tnpbuf);
eak;
case DLADM V\LAN ATTR_SPEED:
(void) dladmw an_speed2str(&attrp->wa_speed, tnpbuf);
(v0| d) strlcat (tnpbuf, "M", sizeof (tnpbuf));
case DLADM V\LAN ATTR_AUTH:
(void) dladmw an_aut h2str(&attrp->wa_auth, tnpbuf);
br eak;
case DLADM_V\LAN_ATFR_BSSTYPE:
(void) dl admw an_bsstype2str(&attrp->wa_bsstype, tnpbuf);

br eak;

}
(void) strlcpy(buf, tnpbuf, bufsize);

return (B_TRUE);

6066 static bool ean_t
6067 print_scan_results(void *arg, dladmw an_attr_t *attrp)

6068 {
6069
6070

6072
6073
6074
6075
6076
6077 }

print_wfi_state_t
w an_scan_args_t

*statep = arg;
war g;

bzero(&warg, sizeof (warg));

warg. ws_state = statep;
warg.ws_attr = attrp;

of mt _print(statep->ws_ofnt, &warg);
return (B_TRUE);

new usr/src/cnd/ dl adnf dl adm ¢

6079 static int

6080 scan_wifi (dl adm handl e_t dh, datalink_id_t linkid, void *arg)

6081 {

6082 print_wifi_state_t *statep = arg;

6083 dl adm status_t stat us;

6084 char I'i nk[MAXLI NKNAVELEN] ;

6086 if ((status = dladmdatalink_id2info(dh, linkid, NULL, NULL, NULL,
6087 sizeof (link))) !'= DLADM STATUS_ OK)

6088 return (DLADM WALK_CONTI NUE) ;

6089 1

6091 st at ep- >wsI|nk—I|nk

6092 status = dladm w an scan(dh linkid, statep, print_scan_results);
6093 if (status != DLADM STATUS OK)

6094 die_dlerr(status, "cannot scan link %’ ", statep->ws_link);
6096 return (DLADM WALK_CONTI NUE) ;

6097 }

6099 static bool ean_t

6100 print_wi fi_status_cb(ofnt_arg_t *ofarg, char *buf, uint_t bufsize)

6101 {

6102 static char t mpbuf [DLADM_STRSI ZE] ;

6103 w an_scan_args *w = of arg- >of nt _cbarg;

6104 dl adm w an_ Ilnkattr _t *attrp = w>ws_attr;

6106 if ((ofarg->ofnt_id & attrp->la_valid) != 0)

6107 (void) dladmw an_| i nkstatus2str(&attrp->la_status, tnpbuf);
6108 (void) strlcpy(buf, tnpbuf, bufsize);

6109 }

6110 return (B_TRUE);

6111 }

6113 static bool ean_t

6114 print_link_attr_cb(ofnt_arg_t *ofarg, char *buf, uint_t bufsize)

6115 {

6116 w an_scan_args_t *w = of arg->of nt _cbarg, wi;

6117 print_wifi_state_t *statep = w>ws_st at e;

6118 dl admw an_linkattr _t *attrp = w>ws_attr;

6120 bzero(&wl, sizeof (wl));

6121 wl.ws_state = statep;

6122 wl.ws_attr = &attrp->la_wan_attr;

6123 of arg->of nt _cbarg = &wi;

6124 return (print_wian_attr_cb(ofarg, buf, bufsize));

6125 }

6127 static int

6128 show wi fi (dl adm handl e_t dh, datalink_id_t linkid, void *arg)

6129 {

6130 print_wfi_state_t *statep = arg;

6131 dladmw an_linkattr _t attr;

6132 dl adm st at us_t st at us;

6133 char I'i nk[MAXLI NKNAMELEN] ;

6134 w an_scan_args_t war g;

6136 if ((status = dladmdatalink_id2info(dh, linkid, NULL, NULL, NULL,
6137 sizeof (link))) !'= DLADM STATUS OK) {

6138 return (DLADM WALK_CONTI NUE) ;

6139 1

6141 /* dladmw an_get _|inkattr() nmensets attr with 0 */

6142 status = dladmw an_get _linkattr(dh, linkid, &attr);

6143 if (st at us ! = DLADM STATUS _OK)

6144 die_dlerr(status, "cannot get link attributes for %", link);

79

l'i nk,

li nk,

new usr/ src/ cnd/ dl adnf dl adm ¢

6146 statep->ws_link = link;

6148 bzero(&warg, sizeof (warg));

6149 warg.ws_state = statep;

6150 warg.ws_attr = &attr;

6151 of mt_print(statep->ws_ofnt, &warg);

6152 return (DLADM WALK_CONTI NUE) ;

6153 }

6155 static void

6156 ?o_di splay_wifi(int argc, char **argv, int cnd, const char *use)
6157

6158 int opti on;

6159 char *fields str = NULL;

6160 int (*cal | back) (dl adm handl e_t, datalink_id t, void *);
6161 print_wifi_state_t state;

6162 datal ink_id_t l'inkid = DATALI NK_ALL_LI NKI D;
6163 dl adm st at us_t st at us;

6165 if (cmd == WFI_CVD_SCAN)

6166 cal I back = scan_wifi;

6167 else if (cnd == WFI q@smw

6168 cal | back = show wifi;

6169 el se

6170 return;

6172 state. ws_parsabl e = B_FALSE;

6173 st ate. ws_header = B_TRUE;

6174 opterr = 0;

6175 while ((option = getopt_long(argc, argv, ":o0:p",

6176 wifi_l ongopt s, NULL)) 1= -1) {

6177 swtch (optl on) {

6178 case

6179 fiel ds_str = optarag;

6180 break;

6181 case 'p’:

6182 state. ws_parsabl e = B_TRUE;

6183 break;

6184 defaul t:

6185 di e_opterr(optopt, option, use);

6186 }

6187 }

6189 if (state.ws_parsable && fields_str == NULL)

6190 die("-p requires -0");

6192 if (state.ws_parsable && strcasecnp(fi Id str, "all") == 0)
6193 die("\"-o0 all\" is invalid wit pY);

6195 if (optind == (argc - 1))

6196 if ((st atus = dl adm nane2i nf o(handl e, argv[optind], & inkid,
6197 NULL, NULL, NULL)) != DLADM STATUS OK) {
6198) di e_dl err(st atus, "link % is not valid", argv[optind]);
6199

6200 } else if (optind != argc) {

6201 usage();

6202 }

6204 if (parse_wfi_fields(fields_str, &state.ws_ofnt, cnd,
6205 state. ws_parsable) < 0)

6206 die("invalid field(s) specified");

6208 if (linkid == DATALINK_ALL_LINKID) {

6209 (voi d) dl admwal k_dat al i nk_i d(cal | back, handle, &state,
6210 DATALI NK_CLASS_PHYS | DATALI NK_CLASS_SI NNI:_l'

80

new usr/src/cnd/ dl adnf dl adm ¢

6211 DL_WFI, DLADM OPT_ACTI VE);

6212 } else {

6213 (void) (*callback)(handle, linkid, &state);
6214 }

6215 of mt _cl ose(state.ws_of nt);

6216 }

6218 static void

6219 do_scan_wi fi (int argc, char **argv, const char *use)
6220 {

6221 do_di splay_wifi(argc, argv, WFI_CVD SCAN, use);
6222 }

6224 static void

6225 do_show wi fi (int argc, char **argv, const char *use)
6226 {

6227 do_di splay_wifi (argc, argv, WFI_CVD SHOWN use);
6228 }

6230 typedef struct w an_count_attr {

6231 uint_t wc_count ;

6232 datal i nk_id_t we_l i nki d;

6233 } w an_count_attr_t;

6235 /* ARGSUSED */

6236 static int

6237 do_count _w an(dl adm handl e_t dh, datalink_id_t linkid, void *arg)
6238 {

6239 w an_count_attr_t *cp = arg;

6241 if (cp->wc_count == 0)

6242 cp->wc_linkid = linkid;

6243 cp->wc_count ++;

6244 return (DLADM WALK_CONTI NUE) ;

6245 }

6247 static int

6248 parse_w an_keys(char *str, dladmw an_key_t **keys, uint_t *key_countp)
6249 {

6250 uint_t i;

6251 dl adm w an_key_t *wk;

6252 int nfields = 1;

6253 char *field, *token, *lasts = NULL, c;
6255 token = str;

6256 while ((c = *token++) I'= NULL) {

6257 if (c ==

6258 nf| el ds++;

6259 }

6260 token = strdup(str);

6261 if (token == NULL)

6262 return (-1);

6264 wk = Iloc(nf|elds* si zeof (dladmw an_key_t));
6265 if (wk == NULL)

6266 goto fail;

6268 token = str;

6269 for (i =0; i <nfields; i++) {

6270 char *s;

6271 dl adm secobj _cl ass_t cl ass;

6272 dl adm st at us_t st at us;

6274 field = strtok_r(token, ",", & asts);
6275 t oken = NULL;

81

new usr/src/cnd/ dl adnf dl adm ¢

6277
6278

6280
6281
6282
6283

6285
6286
6287
6288

6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306

6307 fail:

6308
6309
6310
6311 }

82

(voi d) strlcpy(wk[i].wk_name, field,
ADM WLAN_MAX_KEYNANE LEN)

Wk[i].wk_idx =
if ((s = strrchr(V\,k[l] wk_nane,)) '- NULL) {
if (s[1] =="\0 T| s[2] || tisdigit(s[1]))
goto fail;
[|] V\k |dx = (uint_t)(s[1] - '0");
*S -—

}
Wk[i].wk_|en = DLADM W.AN MAX_KEY LEN

status = dl adm get _secobj (handl e, wk[i].wk_nane, &cl ass,
wWk[i].wk_val, &wk[i].wk_len, 0);
if (status != DLADM STATUS _OK)
if (status == DLADM STATUS_NOTFOUND)
status = dl adm get _secobj (handl e, wk[i].wk_narme,
&cl ass, wk[i].wk_val, &wk[i].wk_Ien,
DLADM OPT_PERSI ST) ;

}
if (status != DLADM STATUS_CK)
goto fail;

wk[i].wk_class = class;

}

*keys = wk;
*key_countp =
free(token);
return (0);

free(wk);
free(token);
return (-1);

6313 static void
6314 do_connect_wifi (int argc, char **argv, const char *use)

6315 {
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325

6327
6328
6329
6330
6331
6332
6333
6334
6335

6337
6338
6339
6340
6341
6342

int opti on;

dladmw an_attr_t attr, *attrp;

dl adm st at us_t status = DLADM STATUS_ CX;

int timeout = DLADM WLAN CO\INECT Tl MEOUT_DEFAULT;
datal i nk_id_t linkid = DATALI NK_ALL_LI NKI D,

dl adm wl an_key_t *keys = NULL;

ui nt _t key_count = 0;

uint _t flags = 0O;

dl adm w an_secnode_t keysecnode = DLADM W.AN_SECMODE_NONE;
char buf [DLADM_STRSI ZE] ;

opterr = O;

(voi d) manset(&attr 0, sizeof (attr));

while ((option = getopt_long(argc, argv, ":e:i:a:mb:s:k:T:c",

wifi_longopts, NULL)) != -1) {
switch (optlon) {
case 'e':
status = dl adm w an_str2essid(optarg, &attr.wa_essid);

if (status | = DLADM STATUS_OX)
die("invalid ESSID ' %’ ", optarg);

attr.wa_valid | = DLADM W.AN ATTR ESSI D;
/*
* Try to connect without doing a scan.
*

flags | = DLADM W.AN CONNECT NOSCAN;
br eak;

new usr/ src/ cnd/ dl adnf dl adm ¢ 83 new usr/ src/ cnd/ dl adnf dl adm ¢ 84
6343 case 'i’: 6409 die(" key required for security node ' %’
6344 status = dl adm w an_str2bssi d(optarg, &attr.wa_bssid); 6410 | adm W an_secnode2str(&attr. wa_ secm)de buf));
6345 if (st atus ! = DLADM STATUS > OK) 6411 }
6346 die("invalid BSSID %", optarg); 6412 } else {
6413 if ((attr.wa_valid & DLADM WLAN_ATTR_SECMODE) != 0 &&
6348 attr.wa_valid | = DLADM W.AN_ATTR_BSSI D; 6414 attr.wa_secnode ! = keysecnode)
6349 br eak; 6415 die("inconpatible -s and -k options");
6350 case 'a': 6416 attr.wa_valid | = DLADM W.AN_ATTR_SECMODE;
6351 status = dl admw an_str2auth(optarg, &attr.wa_auth); 6417 attr.wa_secnode = keysecnode;
6352 if (status != DLADM STATUS _OK) 6418 }
6353 die("invalid authentication node %' ", optarg);
6420 if (optind == (argc - 1)) {
6355 attr.wa_valid | = DLADM W.AN_ATTR_AUTH; 6421 if ((st atus = dl adm nane2i nf o(handl e, argv[optl nd], & inkid,
6356 br eak; 6422 NULL, NULL, NULL)) != DLADM_ STATUS
6357 case 'm: 6423 di e_dl err(st atus, "link % is not val id", argv[optind]);
6358 status = dl adm w an_str2node(optarg, &attr.wa_node); 6424 }
6359 if (st atus 1= DLADM STATUS O<) 6425 } else if (optind !'= argc) {
6360 die("invalid node "%’ ", optarg); 6426 usage();
6427 1
6362 attr.wa_valid | = DLADM W.AN_ATTR_MODE;
6363 br eak; 6429 if (linkid == DATALI NK_ALL_LINKID) {
6364 case 'b’: 6430 w an_count _attr_t wcattr;
6365 if ((status = dl adm w an_str2bsstype(optarag,
6366 &ttr.wa bsstyp e)) !'= DLADM STATUS OK) { 6432 weattr.we_linkid = DATALI NK_| NVALI D_LI NKI D;
6367 die("invalid bsstype '9%’", optarg); 6433 wcattr.we_count =
6368 } 6434 (voi d) dladm wal k dat al i nk_i d(do_count _wW an, handl e, &ucattr,
6435 DATALI NK_CLASS_PHYS | DATALI NK_CLASS Sl NNI:_l'
6370 attr.wa_valid | = DLADM W.AN_ATTR_BSSTYPE; 6436 DL_W Fl, DLADM OPT_ACTI VE) ;
6371 br eak; 6437 if (wcattr. we _count ==
6372 case 's’: 6438 die("no wifi links are available");
6373 if ((status = dl adm W an_str2secnode(optarg, 6439 } else if (wecattr.we_count > 1)
6374 &attr.wa secrmde)) ! = DLADM STATUS_OK) { 6440 die("link nanme is required when nore than one wifi
6375 die(Tinvalid security node %’ ", optarg); 6441 "link is avail able");
6376 } 6442 }
6443 linkid = weattr.wc_|inkid;
6378 attr.wa_valid | = DLADM W.AN ATTR SECMODE; 6444 1
6379 br eak; 6445 attrp = (attr.wa_valid == 0) ? NULL : &attr;
6380 case 'k’: 6446 again:
6381 if (parse_w an_keys(optarg, é&keys, &key_count) < 0) 6447 if ((status = dl admw an_connect (handl e, linkid, attrp, tinmeout, keys,
6382 die("invalid key(s) *%’", optarg); 6448 key_count, flags)) != DLADM STATUS OK) {
6449 if ((flags & DLADM W.AN_CONNECT_NGCSCAN) != 0) {
6384 if (keys[O0].wk_class == DLADM SECOBJ_CLASS_ WEP) 6450 [*
6385 keysecnode = DLADM W.AN SECMODE WEP, 6451 * Try again with scanning and filtering.
6386 el se 6452 */
6387 keysecnode = DLADM W.AN_SECMODE_WPA, 6453 flags & ~DLADM W.AN_CONNECT_NOSCAN;
6388 br eak; 6454 goto again;
6389 case 'T': 6455 }
6390 if (strcasecnp(optarg, "forever") == 0) {
6391 timeout = -1; 6457 if (status == DLADM STATUS NOTFOUND) {
6392 br eak; 6458 if (attr.wa_valid == 0) {
6393 } 6459 die("no wifi networks are available");
6394 if (lstr2| nt(optarg, &t ineout) || timeout < 0) 6460 } else {
6395 die("invalid tinmout value ' %’ optarg); 6461 die("no wifi networks with the specified "
6396 br eak; 6462 "criteria are avail able");
6397 case 'c¢’: 6463 }
6398 flags | = DLADM W.AN CONNECT CREATEI BSS; 6464 }
6399 flags | = DLADM W.AN_CONNECT_CREATEI BSS; 6465 die_dlerr(status, "cannot connect");
6400 br eak; 6466 }
6401 defaul t: 6467 free(keys);
6402 di e_opterr(optopt, option, use); 6468 }
6403 break;
6404 } 6470 /* ARGSUSED */
6405 } 6471 static int
6472 do_al | _di sconnect _wi fi (dl adm handl e_t dh, datalink_id_t |inkid, void *arg)
6407 if (keysecnode == DLADM W.AN SECMODE NONE) { 6473 {
6408 if ((attr wa_valid & DLADM W.AN_ATTR_SECMODE) != 0) { 6474 dl adm status_t status;

new usr/src/cnd/ dl adnf dl adm ¢

6476
6477
6478

6480
6481 }

status = dl adm w an_di sconnect (dh, i nkid);
if (status != DLADM STATUS OQ
war n_dl err (status, "cannot disconnect |ink");

return (DLADM WALK_CONTI NUE) ;

6483 static void
6484 do_di sconnect _wi fi (int argc, char **argv, const char *use)

6485 {
6486
6487
6488
6489
6490

6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503

6505
6506
6507
6508
6509
6510
6511
6512

6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540 }

int opti on;

datalink_id_t i nki d = DATALI NK_ALL_LI NKI D;
bool ean_t all _l'inks = B_FALSE;

dl adm st at us_t st at us;

w an_count _attr_t weattr;

= 0;
((option = getopt_l ong(argc, argv, ":a",
fi_l ongopts, NULL)) 1=-1) {
switch (optlon) {
case 'a':
all _links = B_TRUE;
br eak;
defaul t:
di e_opterr(optopt, option, use);
break;

opterr
il

e
wi

}

if (optind ——(argc— 1)) {
if ((status = dl adm nane2i nf o(handl e, argv[optind], & inkid,
NULL, NULL, NULL)) != DLADM_ STATUS . OK)

di e_dl err(status, "link % is not valid", argv[optind]);

} else i11 (optind !'= argc) {
) usage()

if (linkid == DATALINK ALL_LINKID) {
if (tall_links) {
weattr.we_linkid = Iinkid;
wecattr.we_count = 0;
(voi d) dl admwal k_dat al i nk_i d(do_count _wl an, handl e,
&wcattr,
DATALINK CLASS_PHYS | DATALI NK_CLASS_SI MNET,
DL_WFI, DLADM CPT __ACTI VE) ;
if (wcattr. wc count == 0) {
die("no wifi links are available");
} else if (weattr.we_count > 1) {
die("link name is required when nore than "
"one wifi link is available");

linkid = weattr.wc_|inkid;
} else {
(void) dl admwal k_datal i nk_i d(do_al | _di sconnect _wi fi,
handl e, NULL,
DATALI NK CLASS PHYS | DATALI NK_CLASS_SI M\ET,
DL_W FI, DLADM OPT_ACTI VE) ;
return;

}

status = dl adm w an_di sconnect (handl e, |inkid);
if (status != DLADM_ STATUS _OK)
die_dlerr(status, "cannot disconnect");

85

new usr/src/cnd/ dl adn dl adm ¢

6542 static void
6543 print_linkprop(datalink_id_t linkid, show_|inkprop_state_t *statep,

6544
6545

6546 {

6547
6548
6549
6550
6551
6552
6553

6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589

6591

6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605

const char *propnane, dladmprop_type_t type, const char *fornmat,
char **pptr)

int i;

char *ptr, *lim

char buf [DLADM_STRSI ZE] ;

char *unknown = "--", *notsup = "";

char **propval s = statep->ls_propval s;

ui nt _t val cnt = DLADM MAX_PROP_VALCNT;

dl adm status_t status;

status = dl adm get _| i nkprop(handl e, linkid, type, propnane, propvals,
&al cnt);

if (status != DLADM STATUS OK) {
if (status == DLADM STATUS_TEMPONLY) {
if (type == DLADM PROP_VAL_MODI FI ABLE &&
statep->ls per5|st) {

valcnt = 1;
propval s = &unknown;

} else {
statep->l s_status = status;
statep->l s_retstatus = status;
return;

}
} else if (status == DLADM STATUS NOTSUP |
statep->ls per5|st) {
valcnt = 1;
if (type == DLADM PROP_VAL CURRENT ||
type == DLADM PROP_VAL_PERW)
propval s = &unknown;
el se
propval s = ¬sup;
} else if (status == DLADM STATUS_NOTDEFI NED) {
propval s = ¬sup; /* STR_UNDEF_VAL */
} else {
if (statep->ls_proplist &%
statep->l s_status == DLADM STATUS OK) {
war n_dl err (status,
"cannot get link property "%’ for %",
propnane, statep->ls_link);

statep->l s_status = status;
statep->l s_retstatus = status;

return;
}
}
statep- >l s_status = DLADM STATUS_CX;
buf[0] = '\0";
ptr = buf;
lim= buf + DLADM STRSI ZE;
for (i =0; i <valcent; i++) {
if (propvals[i][0] == "'\0" && !statep->Is parsable)
ptr += snpr|ntf(ptr lim- ptr, "--,");
el se
ptr += snprintf(ptr, lim- ptr, "%,", propvals[i]);
if (ptr >=1im
br eak;

}
i1f (valcnt > 0)
buf[strlen(buf) - 1] ='\0";

new usr/ src/ cnd/ dl adnf dl adm ¢

6607 lim= statep->ls_line + MAX_PROP_LI NE;

6608 if (statep->ls_parsable) {

6609 *pptr += snprintf(*pptr, lim- *pptr,

6610 "U%s", buf);

6611 } else {

6612 *pptr += snprintf(*pptr, lim- *pptr, format, buf);
6613 }

6614 }

6616 static bool ean_t

6617 print_linkprop_cb(ofnt_arg_t *ofarg, char *buf, uint_t bufsize)

6618 {

6619 I'i nkprop_args_t *arg = of arg->of nt _cbarg;

6620 char *propname = arg->|ls_propnaneg;

6621 show_| i nkprop_state_t *statep = arg->ls_state;

6622 char *ptr = statep->ls_line;

6623 char *lim= ptr + MAX_PROP_LI NE;

6624 datal i nk_i d_t linkid = arg->ls_linkid;

6626 switch (ofarg->ofnt _id) {

6627 case LI NKPROP_LI NK:

6628 (void) snprintf(ptr, lim- ptr, "9%", statep->Is_link);
6629 br eak;

6630 case LI NKPROP_PROPERTY:

6631 (v0| d) snprintf(ptr, lim- ptr, "9%", propnane);

6632 br eak;

6633 case LI NKPRCP VALUE:

6634 print_linkprop(linkid, statep, propnane,

6635 stat ep->l s_persi st ? DLADM PROP_VAL_PERSI STENT :
6636 DLADM PROP_VAL_CURRENT, "9&", &ptr);

6637 /*

6638 * If we failed to query the link property, for exanple, query
6639 * the persistent value of a non-persistable link property,
6640 * sinply skip the output.

6641 */

6642 if (stat ep- >| s_status ! = DLADM STATUS_CK) {

6643 /*

6644 * |gnore the tenponly error when we skip printing
6645 * link properties to avoid returning failure on exit.
6646

6647 if (statep->ls_retstatus == DLADM STATUS_TEMPONLY)
6648 statep->ls_retstatus = DLADM STATUS_CK;
6649 got o skip;

6650 }

6651 ptr = statep->ls_line;

6652 br eak

6653 case LI NKPROP_PERM

6654 pri nt “linkprop(linkid, st atep propnarre

6655 ADM_PROP_VAL PERM "Os", &ptr);

6656 if (stat ep->ls_status != DLADM STATUS . OK)

6657 goto ski p;

6658 ptr :statep >l s_line;

6659 bre

6660 case LINKPRCP DEFAULT:

6661 pri nt _linkprop(linkid, st atep, propnane,

6662 ADM PROP_VAL_DEFAULT, "9%", &ptr);

6663 if (stat ep->l s_status != DLADM STATUS G()

6664 goto ski p;

6665 ptr = statep->Is_line;

6666 break

6667 case LI NKPROP_PCSSI BLE:

6668 print_linkprop(linkid, statep, propnane,

6669 DLADM PROP_VAL_MODI FI ABLE, "% ", &ptr);

6670 if (statep->ls_status != DLADM STATUS OK)

6671 got o ski p;

6672 ptr = statep->ls_line;

87

new usr/src/cnd/ dl adnf dl adm ¢

6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683

6685
6686
6687
6688
6689
6690

6692
6693
6694

6696
6697

6699
6700

6702
6703
6704
6705
6706
6707

6709
6710

6712
6713
6714
6715
6716
6717
6718

6720
6721
6722
6723

6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735

6737

br eak;
defaul t:
die("invalid input");
br eak;
}
(void) strlcpy(buf, ptr, bufsize);
return (B_TRUE);
ski p:
return ((statep >| s_status == DLADM STATUS_OK) ?
B TRUE : B FALSE);
}
static bool ean_t
I'i nkprop_i s_supported(datalink_id_t |inkid, const char *propnane,
show_| i nkprop_state_t *statep)
{
dl adm status_t status;
ui nt _| val cnt = DLADM MAX_PROP_VALCNT;
/* if used with -p flag, always print output */
if (statep->ls_proplist !'= NULL
return (B_TRUE);
status = dl adm get _|inkprop(handl e, |inkid, DLADM PROP_VAL_DEFAULT,
propnane, statep->ls_propvals, &alcnt);
if (status == DLADM STATUS_CK)
return (B_TRUE);
/*
* A system wi de default value is not available for the
* property. Check if current value can be retrieved.
*
/
status = dl adm get _| i nkprop(handl e, |inkid, DLADM PROP_VAL_CURRENT,
propnane, statep->ls_propvals, &valcnt);
return (status == DLADM STATUS X);
}
/* ARGSUSED */
static int
show_| i nkprop(dl adm handl e_t dh, datalink_id_t I|inkid, const char *propnane,
void *arQg)
{
show_| i nkprop_state_t *statep = arg;
l'i nkprop_args_t I's_arg;
bzero(& s_arg, sizeof (ls_arg));
Is_arg.ls_state = statep;
I's_arg.ls_pr opname = (char *) propnane;
Is_arg.ls_linkid = link
/*
* This will need to be fixed when kernel interfaces are added
* to enable wal king of all known private properties. For now,
* we are limted to wal king persistent private properties only.
*/
if ((propname[0] =="_") && I statep->l s_persist &&
(statep->ls_proplist == NULL))
return (DLADM WALK_CONTI NUE) ;
if (!statep->ls_parsable &&
I'linkprop_i s_supported(linkid, propnane, statep))
return (DLADM WALK_CONTI NUE) ;
of mt _print(statep->ls_ofnt, & s_arg);

new usr/ src/ cnd/ dl adnf dl adm ¢

6739 return (DLADM WALK_CONTI NUE) ;

6740

6742 static void

6743 do_show_| i nkprop(int argc, char **argv, const char *use)

6744 {

6745 int opti on;

6746 char propst r[DLADM STRSI ZE] ;

6747 dladmarg_list_t *proplist = NULL;

6748 datalink id t linkid = DATALI NK_ALL_LI NKI D;
6749 show_| i nkprop_state_t state;

6750 ui nt32_t flags = DLADM OPT_ACTI VE;
6751 dl adm st at us_t st at us;

6752 char *fields_str = NULL;

6753 of mt _handl e_t of nt;

6754 of m _status_t oferr;

6755 ui nt _t ofmflags = 0O;

6757 bzero(propstr, DLADM STRSI ZE);

6758 opterr = 0;

6759 state.|s_propval s = NULL;

6760 state.ls_line = NULL;

6761 state.|s_parsable = B FALSE;

6762 state. | s_persi st = B FALSE;

6763 state.|s_header = B_TRUE;

6764 state.|ls_retstatus = DLADM STATUS_CX;

6766 while ((option = getopt_long(argc, argv, ":p:cPo:",
6767 prop_| ongopts NULL)) = -1) {

6768 switch (option) {

6769 case 'p’:

6770 (void) strlcat(propstr, optarg, DLADM STRSI ZE);
6771 if (strlcat(propstr, ",", DLADM STRSIZE) >=
6772 DLADM STRSI ZE)

6773 die("property list too long *%’'", propstr);
6774 break;

6775 case 'c’:

6776 state.|s_parsabl e = B_TRUE;

6777 break;

6778 case 'P':

6779 state.|s_persist = B_TRUE;

6780 flags = DLADM OPT_PERSI ST;

6781 br eak;

6782 case '0':

6783 fields_str = optarg;

6784 br eak;

6785 defaul t:

6786 di e_opterr(optopt, option, use);

6787 br eak;

6788 }

6789 }

6791 if (optind == (argc - 1)) {

6792 if ((st atus = dl adm nanme2i nf o(handl e, argv[optind], & inkid,
6793 NULL, NULL, NULL)) != DLADM STATUS _OK)
6794 die_dlerr(status, "link % is not valid", argv[optind]);
6795 }

6796 } else if (optind !'= argc) {

6797 usage();

6798 }

6800 if (dladm parse_|ink_props(propstr, &proplist, B_TRUE)
6801 I'= DLADM STATUS_OK)

6802 die("inval | d link properties specified");

6803 state.ls_proplist = proplist;

6804 state.|ls_status = DLADM_STATUS_CK;

89

new usr/src/cnd/ dl adnf dl adm ¢

6806 if (state.ls_parsable)

6807 of mTlags | = OFMI_PARSABLE;

6808 el se

6809 of ntflags | = OFMI_WRAP;

6811 oferr = of nt _open(fields_str, linkprop_fields, ofntflags, 0, &ofnt);
6812 dl adm of nt _check(oferr, state.ls_parsable, ofnt);

6813 state.ls_ofnt = ofnt;

6815 if (linkid == DATALINK ALL_LINKID) {

6816 (voi d) dl adm wal k_dat al i nk_i d(show_| i nkprop_onel i nk, handl e,
6817 &state, DATALINK CLASS_ALL, DATALI NK_ANY_MEDI ATYPE, flags);
6818 } else {

6819 (void) show_|inkprop_onelink(handle, linkid, &state);

6820 }

6821 of mt _cl ose(ofnt);

6822 dl adm free props(propl ist);

6824 if (state.ls_retstatus != DLADM STATUS OK) {

6825 dl adm cl ose(handl e) ;

6826 exi t (EXI T_FAI LURE)

6827 1

6828 }

6830 static int

6831 show._| i nkprop_onel i nk(dl adm handl e_t hdl, datalink_id_t linkid, void *arg)
6832 {

6833 int i)

6834 char *buf ;

6835 ui nt 32_t fI ags;

6836 dladmarg_|ist_t *proplist = NULL;

6837 show Ti nkprop state_t *st at ep = arg;

6838 dl pi _handl e_ dh = NULL;

6840 statep->ls_status = DLADM STATUS OK;

6842 if (dladmdatalink_id2info(hdl, linkid, &flags, NULL, NULL,

6843 statep->ls_|ink, MAXLINKNAVELEN) != DLADM STATUS OK) {

6844 statep->ls_status = DLADM STATUS NOTFOUND;

6845 return (DLADM WALK_CONTI NUE) ;

6846 }

6848 if ((statep->ls_persist & !(flags & DLADM OPT_PERSI ST)) ||

6849 (!statep->ls_persist & !(flags & DLADM OPT_ACTIVE))) {

6850 statep->l s_status = DLADM STATUS_BADARG

6851 return (DLADM WALK_CONTI NUE) ;

6852 1

6854 proplist = statep->ls_proplist;

6856 /*

6857 * When some WFi links are opened for the first tine, their hardware
6858 * automatically scans for APs and does other slow operations. Thus,
6859 * if there are no open links, the retrieval of |ink properties
6860 * (below) will proceed slowy unless we hold the |ink open.

6861 *

6862 * Note that failure of dlpi_open() does not necessarily nean invalid
6863 * link properties, because dl pi _open() may fail because of incorrect
6864 * aut opush configuration. Therefore, we ingore the return val ue of
6865 * dl pi _open()

6866 */

6867 if (!statep->ls_persist)

6868 (voi d) dl pi _open(statep->Is_link, &dh, 0);

6870 buf = mall oc((sizeof (char *) + DLADM PROP_VAL_MAX) *

new usr/src/cnd/ dl adnf dl adm ¢

6871 DLADM_MAX_PROP_VALCNT + MAX_PROP_LI NE);

6872 if (buf == NULL)

6873 die("insufficient menory");

6875 st at ep- >Is _propvals = (char **)(void *)buf;

6876 for (I = 0; i < DLADM MAX_PROP_VALCNT; i++) {

6877 statep->ls_propval s[i] = buf +

6878 si zeof (char *) * DLADM MAX_ PROP_VALCNT +
6879 i * DLADM PROP_VAL_MAX;

6880

6881 statep->ls_line = buf +

6882 (sizeof (char *) + DLADM PROP_VAL_MAX) * DLADM MAX_PROP_VALCNT;
6884 if (proplist !'= NULL) {

6885 for (i =0; | < proplist->al_count; i++) {

6886 (void) show_linkprop(hdl, Iinkid

6887 proplist->al _info[i].ai_nane, statep);
6888

6889 } else {

6890 (void) dladmwal k_I i nkprop(hdl, linkid, statep,
6891 show | i nkprop);

6892 }

6893 if (dh !'= NULL)

6894 dl pi _cl ose(dh);

6895 free(buf);

6896 return (DLADM WALK_CONTI NUE) ;

6897 }

6899 static int

6900 reset_one_linkprop(dl adm handl e_t dh, datalink_id_t |inkid,

6901 const char *propnane, void *arg)

6902 {

6903 set _|inkprop_state_t *statep = arg;

6904 dl adm status_t stat us;

6906 status = dl adm set _| i nkprop(dh, Iinkid, pr opnanme, NULL, O,
6907 DLADM OPT _ACTIVE | (statep->l's_temp ? O : DLADM OPT_PERSI ST));
6908 if (status != DLADM STATUS_OK &&

6909 status ! = DLADM STATUS PROPRDONLY &&

6910 status != DLADM STATUS | hEWSUR

6911 warn_dl err(status, "cannot reset |link property '%’ on '%’'",
6912 propnane, statep->ls_nane);

6913 statep->l s_status = status;

6914 1

6916 return (DLADM WALK_CONTI NUE) ;

6917 }

6919 static void

6920 {set _linkprop(int argc, char **argv, bool ean_t reset, const char *use)
6921

6922 int i, option;

6923 char errnsg[DLADM _STRSI ZE] ;

6924 char *altroot = NULL;

6925 datalink_id_t I'i nki d;

6926 bool ean_t tenp = B FALSE;

6927 dl adm st at us_t status = DLADM STATUS_ CX;

6928 char propstr[DLADM STRSI ZE[;

6929 dladmarg_list_t *proplist = NULL;

6931 opterr = 0;

6932 bzero(propstr, DLADM STRSI ZE);

6934 while ((option = getopt_ ng(ar gc, argv, ":p:Rt",

6935 prop_I ongopt S, NULL)) 1= -1) {

6936 switch (optl on) {

91

new usr/src/cnd/ dl adnf dl adm ¢

6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950

6952
6953

6955
6956
6957

6959
6960
6961

6963
6964

6966
6967
6968
6969

6971
6972
6973
6974

6976
6977

6979
6980
6981
6982

6984
6985

6987
6988
6989

6991
6992
6993
6994

6996
6997
6998
6999
7000
7001
7002

case 'p’:
(void) strlcat(propstr, optarg, DLADM STRSI ZE);
if (strlcat(propstr, ",", DLADM STRSIZE) >=
DLADM STRSI ZE)
die("property list too long '%'",
break;
case 't’:
tenp = B_TRUE;
br eak;
case 'R :
altroot = optarg;
br eak;
defaul t:

di e_opterr(optopt, option, use);

}

/* get link nanme (required |ast argunent) */
if (optind I'= (argc - 1))
usage();

if (dladm parse_link_props(propstr, &proplist,
DLADM_STATUS_CX)
die("invalid link properties specified");

reset)

if (proplist == NULL && !reset)
die("link property nust be specified");

if (altroot !'= NULL) {
dl adm free_props(proplist);
altroot_cnd(altroot, argc, argv);

}

st at us
NULL) ;
if (status != DLADM STATUS_OK)
die_dlerr(status, "link % is not valid",

= dl adm _nane2i nf o(handl e, argv[optind], & inki

if (proplist == LL)
set Ilnkprop state_t state;

state.|ls_nane = argv[optind];
state.ls_reset = reset;
state.|ls_tenp —t enp;
state.|s_status = DLADM STATUS_ CK;

d, NULL, NULL,

argv[optind]);

(void) dl admwal k_I i nkprop(handl e, linkid, &state,

reset _one_l i nkprop);

status = state.|s_status;
got o done;

}

for (i =0; i < proplist->al_count; i++)
dl adm arg_i nfo_t *aip = &proplist->al
char **val ;
uint _t count;

if (reset) {
val = NULL;
count = O;

} else {
val = al p->ai _val ;
count = ai p >ai _count;
if (count == 0) {

_infolil;

propstr);

new usr/src/cnd/ dl adnf dl adm ¢

7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022

7024
7025
7026

7028
7029
7030

7032
7033
7034
7035
7036
7037
7038
7039

7041
7042
7043
7044
7045
7046

7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068

warn("no val ue specified for %' ",
ai p->ai _nane) ;
status = DLADM STATUS_BADARG

continue;

}

status = dl adm set _| i nkprop(handl e, 1inkid, aip->ai_name, val,
count, DLADM OPT_ACTIVE | (temp ? O : DLADM OPT_PERSI ST))

switch (status) {
case DLADM STATUS OK:

break;
case DLADM STATUS_NOTFOUND:

warn("invalid link property '%’'", aip->ai_nane);

break;
case DLADM STATUS BADVAL: {

int i

char *ptr, *lim

char **propval s = NULL;

= DLADM MAX_PROP_VALCNT

uint _t val cnt
dl adm status_t s;

ptr = malloc((sizeof (char *) +
DLADM PROP_VAL_MAX) * DLADM MAX_PROP_VALCNT +
MAX_PROP_LI NE) ;

propvals = (char **)(void *)ptr;
i f (propvals == NULL)
di e("insufficient nenory");

for (j = 0; j < DLADM MAX_PROP_VALCNT; j++) {
propval s[j] = ptr + sizeof (char *) *
DLADM MAX_PROP_VALCNT +
j * DLADM PROP_VAL_MNAX;
}
s = dl adm get _I| i nkprop(handl e, i nkid,
DLADM PROP_VAL_MODI FI ABLE, ai p->ai _nane, propvals,
&val cnt) ;

if (s !'= DLADM STATUS_OK)
warn_dl err(status, "cannot set link property "
"9’ on '%’", aip->ai_nanme, argv[optind])
free(propval s);
br eak;

errmsg;
ptr + DLADM STRSI ZE;
O

- x—g ==
-3

;] < wvalent; j++) {
r += snprintf(ptr, lim- ptr, "%,",
propval s[j]);
if (ptr >=11m
br eak;

}
if (ptr > errnsg) {
*(ptr - 1) ='\0";
warn("link property '%’ nust be one of: %",
ai p- >ai _name, errnsg);
} else
warn("invalid link property "% ", *val);
free(propval s);
br eak;

}
defaul t:
if (reset) {
warn_dl err(status, "cannot reset |link property

93

new usr/src/cnd/ dl adnf dl adm ¢

7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083

7085
7086

94

argv[optind]);

argv[optind]);

"'’ on '¥%’'", aip->ai_nane,
} else {
warn_dl err(status, "cannot set |ink property "
"'’ on '%’", aip->ai_nane,
break;
}
done:
dl adm free_props(proplist);
if (status !|= DLADM STATUS OK) {
dl adm cl ose(handl e) ;
exi t (EXI T_FAI LURE) ;
}
}
static void

do_set _| i nkprop(int argc, char **argv, const char *use)

7087 {

7088 set _linkprop(argc, argv, B_FALSE, use);

7089 }

7091 static void

7092 ?o_reset_linkprop(int argc, char **argv, const char *use)

7093

7094 set _| i nkprop(argc, argv, B_TRUE, use);

7095 }

7097 static int

7098 convert_secobj (char *buf, uint_t len, uint8_t *obj_val, uint_t *obj_Ienp,
7099 dl adm secobj _cl ass_t cl ass)

7100 {

7101 int error = 0;

7103 if (class == DLADM SECOBJ_CLASS WPA) {

7104 if (len <8 || len > 63)

7105 return (EI NVAL);

7106 (voi d) menctpy(obj_val, buf, len);

7107 *obj _lenp = len;

7108 return (error);

7109 }

7111 if (class == DLADM SECOBJ_CLASS_VEP) {

7112 switch (len) {

7113 case 5: /* ASCI| key sizes */

7114 case 13:

7115 (voi d) nenctpy(obj_val, buf, len);

7116 *obj _lenp = len;

7117 br eak;

7118 case 10: /* Hex key sizes, not preceded by O0x */
7119 case 26:

7120 error = hexascii_to_octet(buf, Ien, obj_val, obj_Ienp);
7121 br eak;

7122 case 12: /* Hex key sizes, preceded by 0x */
7123 case 28:

7124 if (strncmp(buf, "0x", 2) != 0)

7125 return (EINVAL);

7126 error = hexascii_to_octet(buf + 2, len - 2,
7127 obj _val, obj_lenp);

7128 break;

7129 defaul t:

7130 return (EI NVAL);

7131 }

7132 return (error);

7133 1

new usr/src/cnd/ dl adnf dl adm ¢

7135 return (ENCENT);
7136 }

7138 static void

7139 defersig(int sig)

7140 {

7141 signalled = sig;
7142 }

7144 static int
7145 get _secobj _fromtty(uint_t try, const char *objnanme, char *buf)

7146 {

7147 uint_t len = 0;

7148 int c;

7149 struct termos stored, current;

7150 voi d (*sigfunc)(int);

7152 /*

7153 * Turn of f echo -- but before we do so, defer SIG NT handling
7154 * so that a ~"C doesn’'t |eave the term nal corrupted.
7155 */

7156 sigfunc = signal (SI A NT, defersig);

7157 (void) fflush(stdin);

7158 (void) tcgetattr(0, &stored);

7159 current = stored;

7160 current.c_|flag & ~(1 CANON ECHO) ;

7161 current.c_cc[VTI ME] = O;

7162 current.c_cc[VM N = 1;

7163 (void) tcsetattr(0, TCSANOW ¤t);

7164 again:

7165 if (try == 1)

7166 (void) printf(gettext("provide value for "%’ : "), objnane);
7167 el se

7168 (void) printf(gettext("confirmvalue for "%’': "), objnane);
7170 (void) fflush(stdout);

7171 whil e (si gnal led ==)

7172 c = getchar();

7173 if (c ="\n || c="\r") {

7174 if (len = 0)

7175 r eak;

7176 (void) putchar(\n);

7177 got o agai n;

7178 }

7180 buf[l en++] = c;

7181 if (len >= DLADM SECOBJ_VAL_MAX - 1)

7182 break;

7183 (void) putchar(’'*");

7184 }

7186 (void) putchar(’\n’);

7187 (void) fflush(stdin);

7189 /*

7190 * Restore terminal setting and handl e deferred signals.
7191 */

7192 (void) tcsetattr(0, TCSANOW &stored);

7194 (voi d) signal (SIGNT, sigfunc);

7195 if (signalled != 0)

7196 (void) kill(getpid(), signalled);

7198 return (len);

7199 }

95

new usr/src/cnd/ dl adnf dl adm ¢ 96

7201 static int
7202 get _secobj _val (char *obj _nane, uint8_t *obj_val, uint_t *obj_Ienp,

7203 dl adm secobj _class_t class, FILE *filep)

7204 {

7205 int rval ;

7206 uint_t len, |en2;

7207 char buf [DLADM SECOBJ_VAL_MAX], buf 2[DLADM SECOBJ_VAL_MAX] ;
7209 if (fil ep == NULL) {

7210 = get_secobj _fromtty(1, obj_nane, buf);

7211 rval = convert_secobj (buf, i en, obj_val, obj_lenp, class);
7212 if (rval == 0) {

7213 | en2 = get_secobj _fromtty(2, obj_name, buf2);
7214 if (len!=1en2 || mencnp(buf, buf2, len) !=0)
7215 rval = ENOTSUP;

7216 }

7217 return (rval);

7218 } else {

7219 for (;;) {

7220 if (fget s(buf, sizeof (buf), filep) == NULL)
7221 eak;

7222 if (i sspace(buf [0]))

7223 conti nue;

7225 len = strlen(buf);

7226 if (buf[len - 1] ——’\n’){

7227 buf[len - 1] ="'\0";

7228 len--;

7229 }

7230 br eak;

7231 }

7232 (void) fclose(filep);

7233

7234 return (convert_secobj (buf, len, obj_val, obj_lenp, class));
7235 }

7237 static bool ean_t
7238 check_aut h(const char *auth)

7239 {

7240 struct passwd *pw,

7242 if ((pw = getpwiid(getuid())) == NULL)

7243 return (B_FALSE);

7245 return (chkauthattr(auth, pw >pw_nane) != 0)
7246 }

7248 static void
7249 audit _secobj (char *auth, char *class, char *obj,

7250 bool ean_t success, bool ean_t create)

7251 {

7252 adt _sessi on_data_t *ah;

7253 adt _event _data_t *event;

7254 au_event _t flag;

7255 char *errstr;

7257 if (create) {

7258 flag = ADT_dl adm creat e_secobj ;
7259 errstr = "ADT_dl adm create_secobj";
7260 } else {

7261 flag = ADT_dl adm del et e_secobj ;
7262 errstr = "ADT_dl adm del ete_secobj ";
7263 }

7265 if (adt_start_session(&h, NULL, ADT_USE_PROC DATA) != 0)

7266 di e("adt_start_session: %", strerror(errno));

new usr/src/cnd/ dl adnf dl adm ¢ 97

7268
7269

7271
7272
7273
7274
7275
7276
7277
7278
7279
7280

7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293

7295
7296
7297

7299
7300

7302
7303
7304
7305
7306
7307
7308
7309
7310
7311

7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332

}

if ((event = adt_alloc_event(ah, flag)) == NULL)

die("adt_all oc_event (%): %", errstr, strerror(errno));
/* fill in audit info */
if (create)

event - >adt _dl adm creat e_secobj . aut h_used = aut h;
event - >adt _dl adm creat e_secobj . obj _cl ass = cl ass;
event - >adt _dl adm cr eat e_secobj . obj _nanme = obj;

} else {
event - >adt _dl adm del et e_secobj . aut h_used = aut h;
event - >adt _dl adm del et e_secobj . obj _cl ass = cl ass;
event - >adt _dl adm del et e_secobj . obj _nanme = obj;

}

if (success) {
if (adt put event(event ADT_SUCCESS, ADT_SUCCESS) !'= 0) {
di e("adt _put_event (%, success): %", errstr,
strerror(errno));

} else {
if (adt_put_event(event, ADT_FAI LURE,
ADT_FAI L_VALUE_AUTH) != 0)
die("adt_put _event: (%, failure): %", errstr,
strerror(errno));

}

adt _free_event (event);
(voi d) adt_end_session(ah);

static void
do_create_secobj (int argc, char **argv, const char *use)
7301 {

int option, rval;

FI LE *filep = NULL

char *obj _name = NULL;

char *cl ass_name = NULL;
uint8_t obj _val [DLADM SECOBJ VAL _MAX] ;
uint_t obj _l en;

bool ean_t success, tenp = B_FALSE;
dl adm status_t st at us;

dl adm secobj _cl ass_t class = -1;

uid_t eui d;

opterr = 0;

(void) nenset (obj _val, 0, DLADM SECOBJ VAL M—\X)
while ((option —getopt Iong(argc argv, "‘f:c:Rt",
{

wi fi_|longopts, NULL)) != -1)
switch (optlon) {
case 'f’:

euid = geteuid();
(void) seteui d(get uid());
filep = fopen(optarg "r");
if (fllep == NULL)
di e("cannot open ¥%: %", optarg,
strerror(errno));

}
(v0|d) set eui d(eui d);
br eak;

c:
class_nane = optarg;
status = dl adm str2secobjcl ass(optarg, &cl ass);
i f (status I'= DLADM STATUS OK) {
die("invalid secure object class ' %’

case

new usr/src/cnd/ dl adnf dl adm ¢

7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350

7352
7353
7354
7355

7357
7358

7360
7361

7363
7364

7366
7367
7368
7369

7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387

7389
7390
7391
7392
7393
7394
7395
7396

7398

"valid values are: wep, wpa", optarg);

}
br eak;
case 't’:
tenp = B_TRUE;
break;
case 'R :
status = dl adm set _rootdir(optarg);
if (st atus | = DLADM STATUS > OK)

die_dlerr(status, "invalid directory "
"specified");
}
br eak;
defaul t:
di e_opterr(optopt, option, use);
br eak;
}
}
if (optind = (argc - 1))
obj _name = argv[optind];
else if (optind !'= argc)
usage() ;
if (class == -1)

di e("secure object class required");

if (obj_name == NULL)
di e("secure object nane required");

if (!dladmyvalid_secobj_nane(obj _nane))
die("invalid secure object name ' %’ obj _nane) ;

success = check_aut h(LI NK_SEC AUTH);
audi t _secobj (LI NK_SEC_AUTH, cl ass_nane, obj_nanme, success, B TRUE);
if (!success)

die("authorization %' is required", LINK SEC AUTH);

rval = get_secobj_val (obj _name, obj_val, &obj_len, class, filep);
if (rval 1= 0)
switch (rval) {
case ENOCENT:
die("invalid secure object class");
break;
case ElI NVAL
die("invalid secure object value");
br eak;

case ENOTSUP
die("verification failed");

br eak;
defaul t:

die("invalid secure object: %", strerror(rval));
) br eak;

}

status = dl adm set _secobj (handl e, obj_nane, class, obj_val, obj_len,
DLADM OPT_CREATE | DLADM OPT_ACTI VE) ;
if (status != DLADM STATUS . OK) {
die_dlerr(status, "could not create secure object ' %’ ",
“obj _nane) ;

}
if (tenp)
return;

status = dl adm set _secobj (handl e, obj_nane, class, obj_val, obj_len,

new usr/src/cnd/ dl adnf dl adm ¢ 99

7399
7400
7401
7402
7403
7404

7406
7407

7409
7410
7411
7412
7413
7414

7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435

7437
7438

7440
7441
7442
7443
7444
7445
7446
7447

7449
7450
7451
7452

7454

7456
7457
7458
7459
7460
7461
7462
7463
7464

DLADM OPT_PERSI ST) ;
if (status != DLADM STATUS_CK) ({
war n_dl err(status, "could not persistently create secure "
"object '¥%’'", obj_nane);

static void
do_del et e_secobj (int argc, char **argv, const char *use)
7408 {

int i, option;
bool ean_t tenp = B_FALSE;
bool ean_t success;
dl adm status_t status, pstatus;
int nfields = 1;
char *field, *token, *lasts = NULL, c;
opterr = 0;
status = pstatus = DLADM STATUS_OX;
while ((option = getopt _Tong(argc, argv, ":Rt",
wi fi_|ongopts, NULL)) != -1) {
switch (option) {
case 't’:
tenp = B_TRUE;
br eak;
case 'R :

status = dl adm set _rootdir(optarg);
if (Status 1 = DLADM STATUS > OK)
die_dlerr(status, "invalid directory "

"specified");
break;
defaul t:
di e_opterr(optopt, option, use);
break;
}

}

if (optind !'= (argc - 1))
di e("secure object name required");

token = argv[optind];
while ((c = *token++) I'= NULL) {
if

nfi el ds++;

}
token = strdup(argv[optl nd]);
if (token == NULL

die("no nmenory");

success = check_aut h(LI NK_SEC AUTH);
audi t _secobj (LI NK_SEC_AUTH, "unknown", argv[optind], success, B FALSE);
if (!success)

di e("authorization "%’ is required", LINK_ SEC AUTH);

for (i =0; i <nfields; i++) {
field = strtok_r(token, ",", & asts);
token = NULL;
status = dl adm unset _secobj (handl e, field, DLADM OPT_ACTI VE);
if (!tenp)
pstatus = dl adm unset_secobj (handl e, field,
DLADM OPT_PERSI ST) ;
} else {

pstatus = DLADM STATUS_CK;
}

new usr/src/cnd/ dl adnf dl adm ¢

7466
7467
7468
7469
7470
7471
7472
7473
7474
7475

7477
7478
7479
7480
7481 }

7483 typedef
7484
7485
7486
7487

if (status != DLADM STATUS_CK) {
war n_dl err(status, "could not delete secure object
"o, field);

}
1f (pstatus ! = DLADM STATUS_CK) {
warn_dl err(pstatus, "could not persistently delete "
"secure object '%’", field);

}

free(token);

if (status != DLADM STATUS K || pstatus != DLADM STATUS_OK) {
dl adm cl ose(handl e) ;
exi t (EXI T_FAI LURE)

}

struct show secobj _state {
bool ean_t ss_persi st;
bool ean_t ss_parsabl e;
bool ean_t ss_header;

of mt _handl e_t ss_ofnt;

7488 } show secobj state t;

7491 static bool ean_t
7492 show_secobj (dl adm handl e_t dh, void *arg, const char *obj_nane)

7493 {
7494
7495
7496
7497
7498
7499
7500
7501

7503
7504
7505

7507
7508
7509
7510

7512
7513
7514
7515
7516
7517
7518

7520
7521
7522
7523
7524
7525
7526 }

ui nt _t obj _| en = DLADM SECOBJ_VAL_MAX;
ui nt8_t obj —_val [DLADM SECOBJ_VAL_MAX] ;
char buf [DLADM STRSI ZE] ;

ui nt _t flags = 0O;

dl adm secobj _cl ass_t cl ass;

show_secobj _state_t *statep = arg;

dl adm status_t st at us;

secobj fields_buf _t sbuf ;

bzero(&shbuf, sizeof (secobj_fields_buf_t));
if (statep >ss_persi st)
flags [= DLADM OPT_PERSI ST;

status = dl adm get _secobj (dh, obj_nane, &class, obj_val, &obj_len
fl ag)
if (status != DLADM STATUS _OK)
die_dlerr(status, "cannot get secure object '%’", obj_nane);

(void) snprintf(sbuf.ss_obj_nane, sizeof (sbuf.ss_obj_nane),
obj _nane) ;
(voi d) dl adm secobj cl ass2str(cl ass, buf);
(void) snprintf(sbuf.ss_class, sizeof (sbuf.ss_class), "%", buf);
if (getuid() == 0) {
char val [DLADM SECOBJ_VAL_MAX * 2];
uint_t len = sizeof (val);

if (octet_to_hexascii(obj_val, obj_len, val, & en) == 0)
(void) snprintf(sbuf.ss_val,
si zeof (sbuf.ss_val), "u%", val);

}
of m _print(statep->ss_ofnt, &sbuf);
return (B_TRUE);

7528 static void
7529 do_show_secobj (int argc, char **argv, const char *use)

7530 {

new usr/src/cnd/ dl adnf dl adm ¢

7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543

7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572

7574
7575

7577
7578

7580
7581
7582
7583
7584

7586

7588
7589

7591
7592
7593
7594
7595
7596

int option;

show_secobj _state_t state;

dl adm status_t stat us;

bool ean_t o _arg = B_FALSE;

ui nt _t

uint_t fI ags;

char *fields_str = NULL;

char *def _fields = "object,class";
char *all _fields = "object, class, val ue";
char *field, *token, *lasts = NULL, c;
of mt _handl e_t of nt;

of m _status_t oferr;

ui nt _t ofmflags = O;

opterr = 0;

bzero(&state, sizeof (state));

state.ss_parsabl e = B_FALSE;

fields_str = def_fields;

state.ss_persist = B_FALSE;

state.ss_parsabl e = B_FALSE;

st ate. ss_header = B_TRUE;

while ((option = getopt_long(argc, argv, ":pPo:",

wi fi_longopts, NULL)) !=-1) {
switch (option) {
case 'p’:
state.ss_parsabl e = B_TRUE;
break;
case 'P:
state.ss_persist = B_TRUE;
br eak;
case '0':
o_arg = B_TRUE
if (strcasecnp(optarg, "all") == 0)
fields_str = all_fields;
el se
fields_str = optarg;
br eak;
defaul t:
di e_opterr(optopt, option, use);
break;
}

}

if (state ss_parsable && !o_arg)
die("option -c requires -0");

if (state ss parsable && fields_str == all_fields)
die("\"-o all\" is invalid with -p");

if (state.ss_parsable)
of mflags | = OFMI_PARSABLE;

oferr = ofmt_open(fields_str, secobj fields, ofntflags, 0, &ofnt);

dl adm of nt _check(oferr, State. ss_parsable, ofnt);
state.ss_ofnt = ofnt;

flags = state.ss_persist ? DLADM OPT_PERSI ST : 0;

if (optind == (argc - 1)) {
uint_t obj _fields = 1;
token = argv[optind];
if (token == NULL)
di e("secure object nanme required");
while ((c = *token++) I'= NULL)
if (c ==

Obj fields++;

new usr/ src/ cnd/ dl adnf dl adm ¢ 102
7597 }

7598 token = strdup(argv[optind]);

7599 if (token == NULL)

7600 di e("no nenory"

7601 for (i =0; i <obj_f|elds i++) {

7602 field = strtok_r(token, ",", & asts);

7603 token = NULL;

7604 if (!show secobj (handl e, &state, field))

7605 br eak;

7606 }

7607 free(token);

7608 of nt _cl ose(ofnt);

7609 return;

7610 } else if (optind != argc)

7611 usage();

7613 status = dl adm wal k_secobj (handl e, &state, show secobj, flags);
7615 if (status != DLADM . STATUS _OK)

7616 die_dlerr(status, "show secobj");

7617 of mt _cl ose(ofnt);

7618 }

7620 /* ARGSUSED*/

7621 static int

7622 i _dladm.init_linkprop(dl adm handle_t dh, datalink_id_t linkid, void *arg)
7623 {

7624 (void) dladm.init_linkprop(dh, linkid, B TRUE);

7625 return (DLADM WALK_CONTI NUE) ;

7626 }

7628 | * ARGSUSED*/

7629 void

7630 do_init_linkprop(int argc, char **argv, const char *use)

7631 {

7632 int opti on;

7633 dl adm st atus_t st at us;

7634 datalink_id_t l'inkid = DATALI NK_ALL_LI NKI D;

7635 dat al i nk_nedi a_t medi a = DATALI NK_ANY_MEDI ATYPE;

7636 uint_t any_nedi a = B_TRUE;

7638 opterr = 0;

7639 while ((option = getopt(argc, argv, ":w')) !=-1) {

7640 switch (optl on) {

7641 case ’

7642 media = = DL_WFI;

7643 any_nedi a = B_FALSE;

7644 break;

7645 defaul t:

7646 /

7647 * Because init-linkprop is not a public comand,
7648 * print the usage instead.

7649 *

7650 usage();

7651 br eak;

7652 }

7653 1

7655 if (optind == (argc - 1))

7656 if ((st atus = dl adm nane2i nf o(handl e, argv[optind], & inkid,
7657 NULL, NULL, NULL)) != DLADM STATUS_OK)

7658 die_dl err(status, "link % is not valid", argv[optind]);
7659 } else if (optind !'= argc) {

7660 usage();

7661 1

new usr/src/cnd/ dl adnf dl adm ¢

7663 if (linkid == DATALI NK_ALL_LINKID) {

7664 /*

7665 * |inkprops of links of other classes have been initialized
7666 * part of the dl adm up-xxx operation.

7667 *

7668 (void) dl admwal k_datal i nk_i d(i _dl adm.init_Iinkprop, handle,
7669 NULL, DATALI NK_CLASS_PHYS, nedia, DLADM OPT_PERSI ST);
7670 } else {

7671 (void) dladm.init_linkprop(handle, linkid, any_nedia);
7672 }

7673 }

7675 static void

7676 do_show_ et her(int argc, char **argv, const char *use)

7677 {

7678 int option;

7679 datalink_id_t i nkid;

7680 print_ether_state_t state;

7681 char *fields_str = NULL;

7682 of nt _handl e_t of nt;

7683 of m _status_t oferr;

7684 uint_t of mflags = O;

7686 bzero(&state, sizeof (state));

7687 state.es_link = NULL;

7688 state. es_parsabl e = B_FALSE;

7690 while ((option = getopt_long(argc, argv, "o:px",

7691 showet h_l opts, NULL)) != -1) {

7692 switch (option) {

7693 case 'Xx':

7694 state. es_extended = B_TRUE;

7695 br eak;

7696 case 'p’:

7697 state. es_parsable = B_TRUE;

7698 br eak;

7699 case '0':

7700 fields_str = optarg;

7701 br eak;

7702 defaul t:

7703 di e_opterr(optopt, option, use);

7704 br eak;

7705 }

7706 1

7708 if (optind == (argc - 1))

7709 state.es_link = argv[optind];

7711 if (state.es_parsable)

7712 of mtflags | = OFMI_PARSABLE;

7713 oferr = of nt _open(fields_str, ether_fields, ofntflags,

7714 DLADM DEFAULT_COL, &ofnt);

7715 dl adm of nt _check(oferr, state.es_parsable, ofnt);

7716 state.es_ofnmt = ofnt;

7718 if (state.es_link == NULL) {

7719 (voi d) dl adm wal k_dat al i nk_i d(show_et her prop, handl e, &state,
7720 DATALI NK_CLASS_PHYS, DL_ETHER, DLADM OPT_ACTI VE);
7721 } else {

7722 if (!'link_is_ether(state.es_link, & inkid))

7723 die("invalid link specified");

7724 (voi d) show_etherprop(handle, linkid, &state);

7725 }

7726 of m _cl ose(of nt);

7727 }

103

as

new usr/src/cnd/ dl adnf dl adm ¢

7729 static int
7730 show_et her prop(dl adm handl e_t dh, datalink_id_t
7731 {

l'inkid, void *arg)

7732 print_ether_state_t *statep = arg;

7733 ether_fields_buf_t ebuf;

7734 dl adm et her _info_t eattr;

7735 dl adm status_t st at us;

7737 bzer o(&buf, sizeof (ether_fields_buf_t));

7738 if (dladmdatalink_id2info(dh, |inkid, NULL, NULL, NULL,
7739 ebuf.eth_link, sizeof (ebuf.eth_link)) != DLADM STATUS OK) {
7740 return (DLADM WALK_CONTI NUE) ;

7741 }

7743 status = dl adm et her _i nfo(dh, linkid, &eattr);

7744 if (status != DLADM STATUS_CK)

7745 goto cl eanup;

7747 (void) strlcpy(ebuf.eth_ptype, "current", sizeof (ebuf.eth_ptype));
7749 (voi d) dl adm et her _aut oneg2str (ebuf. et h_aut oneg,

7750 si zeof (ebuf.eth_autoneg), &eattr, CURRENT);

7751 (voi d) dl adm et her _pause2str (ebuf. et h_pause,

7752 si zeof (ebuf.eth_pause), &eattr, CURRENT);

7753 (voi d) dl adm et her _spdx2str (ebuf. et h_spdx,

7754 si zeof (ebuf.eth_spdx), &eattr, CURRENT);

7755 (void) strlcpy(ebuf.eth_state,

7756 dl adm | i nkst ate2str(eattr.lei _state, ebuf.eth_state),
7757 si zeof (ebuf.eth_state));

7758 (void) strlcpy(ebuf.eth_remfault,

7759 (eattr.lel_attr[CURRENT].le_fault ? "fault" "none"),
7760 sizeof (ebuf.eth_remfault));

7762 of mt _print(statep->es_ofnt, &ebuf);

7764 if (statep->es_extended)

7765 show_et her _xprop(arg, &eattr);

7767 cl eanup:

7768 dl adm et her _i nfo_done(&eattr);

7769 return (DLADM WALK_CONTI NUE) ;

7770 }

7772 | * ARGSUSED */

7773 static void

7774 do_init_secobj(int argc, char **argv, const char *use)
7775 {

7776 dl adm status_t status;

7778 status = dl adm.i ni t _secobj (handl e);

7779 if (status != DLADM STATUS OK)

7780 die_dlerr(status, "secure object initialization failed"
7781 }

7783 enum bridge_func {

7784 br Create, brAdd, brModify

7785 };

7787 static void

7788 create_nodify_add_bridge(int argc, char **argv, const char *use,
7789 enum bri dge_func func)

7790 {

7791 int option;

7792 uint_t n, i, nlink;

7793 ui nt 32_t

7794

char *al troot = NULL;

fiags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST

new usr/src/cnd/ dl adnf dl adm ¢

7795
7796
7797
7798
7799
7800
7801

7803
7804
7805
7806
7807
7808
7809

7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860

char

datal i nk_id_t
dl adm st at us_
const char

U D STP_CFG T

dl adm bri dge_prot _t
dl adm bri dge_prot _t

t

*| i nks[MAXPORT] ;

I'i nki ds[MAXPORT] ;

status;

*bridge;

cfg, cfg_old;

brprot = DLADM BRI DGE_PROT_UNKNOWN;
brprot_ol d;

/* Set up the def auIt configuration values */

cfg.field_nmask

,

cfg.bridge_priority = DEF_BR PRI G
DEF BR_MAXAGE;
cfg.helTo_tinme = DEF_BR HELLOT;

cfg. max_age =

cfg.forward_d
cfg.force_ver

nlink = opter
while ((optio
bridge_l o

el a
sio

r
n
pts,

y = DEF_BR_FWDELAY;
n = DEF_FORCE_VERS;

getopt _long(argc, argv, ":P-Rd:f:h:l:mp:",
{

NULL)) I= -1)

switch (optlon) {
case 'P':

case

case ’

case

case ’

case

if (func == br Add)
di e_opterr(optopt, option, use);
status = dl adm bridge_str2prot (optarg, &brprot);
if (status 1= DLADM | STATUS > OK)
die_dlerr(status, "protection %"
break;

altroot = optarg;
br eak;

if (func == br Add)
di e_opterr (optopt, optlon use);
|f(cfgf|eld rmsk&BRCFG DELAY)

die("forwardi ng del ay set nore than once");

if (!str2int(optarg, &cfg.forward_delay) ||
cfg.forward_delay < M N BR _FWDELAY ||
cfg. forward_del ay > MAX_BR _FWDELAY)
die("incorrect forwarding del ay");
cfg.field_mask | = BR_CFG DELAY;
br eak;

if (func == br Add)
di e_opterr(optopt, option, use);
if (cfg.field_nask & BR CFG FORCE_VER)
die("force protocol set nore than once");
if (!str2int(optarg, &cfg.force_version) ||
cfg.force version < 0)
die("incorrect force protocol");
gfg {(leld mask | = BR_CFG_FORCE_VER;
rea

if (func == brAdd)
di e_opterr(optopt, option, use);
if (cfg.fiel d_nask & BR_CFG HELLO
die("hello tine set nore than once");
if (!str2int(optarg, &cfg.hello_tine) ||
cfg.hello_time < MN_BR HELLOT |
cfg.hello_tinme > MAX_BR_ HELLOT)
die("incorrect hello time");
cfg.field_mask | = BR_CFG HELLQ,
br eak;

if (func == brMdify)
di e_opterr (optopt,

. option, use);
if (nlink >= MAXPORT)

optarg);

new usr/src/cnd/ dl adnf dl adm ¢

7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891

7893
7894
7895

7897
7898
7899

7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916

7918
7919
7920
7921
7922
7923
7924
7925
7926

die("too many |inks specified");
I'i nks[nlink++] = optarg;
br eak;
case 'm:
if (func == brAdd)
di e_opterr(optopt, option, use);
if (cfg.field_nask & BR_ CFG AGE)
die("max age set nore than once");
if (!str2int(optarg, &cfg.nmax age) |
cfg. max_age < M N_BR_MAXAGE |
cf g. max _age > MAX_BR_ I\/AXAGE
die("incorrect max age");
cfg.field_mask | = BR_CFG AGE;
break;
case 'p’:
if (func == brAdd)
di e_opterr(optopt, option, use);
if (cfg.field_mask & BR_CFG PRI O
die("priority set nore than once");
if (!str2int(optarg, &cfg.bridge_priority) ||
cfg.bridge_priority < MN.BR PRI O ||
cfg.bridge_priority > MAX_BR PRI O
die("incorrect priority");
cfg.bridge_priority & OxFO00O;
cfg.field_mask |= BR_CFG PRI G

br eak;
defaul t:

di e_opterr(optopt, option, use);
) br eak;

}

/* get the bridge nane (required |ast argument)
if (optind !'= (argc-1))
usage();

bridge = argv[optind];
if (!'dladmyvalid_bridgenanme(bridge))

die("invalid bridge nanme '%’'", bridge);

~

< ok k% Rk ok ¥

Get the current properties, if any, and merge in with changes. This
is necessary (even with the field_nmask feature) so that the

val ue-checki ng macros wi Il produce the right results with proposed
changes to existing configuration. W only need it for those
paraneters, though.

-~

(void) dladm bridge_get_properties(bridge, &fg_old, &brprot_old);
if (brprot == DLADM BRI DGE_PROT_UNKNOVN)

brprot = brprot_ol d;
if ('(cfg fleld mask & BR_CFG _AGE))

fg. e = cfg_ol d. max_age;

if ('(cfg fleld n'ask & BR CFG HELLO))

cfg.helTo_tinme = cfg_old.hello_tine;
if (!(cfg.field _mask & BR_CFG DELAY))

cfg.forward_del ay = cfg_ol d. forward_del ay;

i f (! CHECK_BRI DGE_CONFI G(cfg)) {
warn("illegal forward delay / max age / hello tinme
"conbi nati on");
if (NO MAXAGE(cfg)) {
die("no max age possible: need forward delay >= %l or "
"hello tine <= 9%@", M N_FWDELAY_NOM cfg),
MAX_HELLOTI ME NCMcfg))
} else if (SMALL_MAXAGE(cfg)) {
i f (CAPPED_MAXAGE(cfg))

new usr/src/cnd/ dl adnf dl adm ¢ 107

7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945

7947
7948

7950
7951
7952
7953

7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966

7968
7969

7971
7972
7973
7974
7975
7976

7978
7979
7980
7981
7982
7983

7985
7986
7987
7988
7989
7990
7991
7992

di e("max age too small: need age >= % and "
"<= 9% or hello tine <= %"
M N_MAXAGE(cfg), MAX MAXAGE(cfg),
MAX_HELLOTI I\/E(cf 9));
el se
die("max age too snall:
"hello tinme <= %",
M N_MAXAGE(cfg), MAX_HELLOTI ME(cfg));
} elseif (FLm?ED MAXAGE(cfg)) {
di e(max age too large: need age >= % and <= % or "
"forward delay >= %l"
M N_MAXAGE(cfg), MAX NAXAGE(cfg)
M N_FWDELAY(cf g))

need age >= %l or "

} else {
die("max age too large: need age <= % or forward "

"delay >= %",
MAX_ MAXAGE(cf g) M N_FWDELAY(cfg));

}

if (altroot != NULL)
altroot_cnd(altroot, argc, argv);

for (n =0; n < nlink; n++) {
datal i nk_cl ass_t cl ass;
uint32_t nedia;
char poi ntl ess[DLADM STRSI ZE] ;

if (dl admnanme2i nfo(handl e, links[n], & inkids[n], NULL, &class,
&mredi a) != DLADM STATUS_OK)
die("invalid link nane ’ %’ l'inks[n]);

if (class & ~(DATALI NK_CLASS PHYS | bATALINK CLASS_AGGR |
DATALI NK_CLASS_ETHERSTUB | DATALI NK_CLASS_SI MNET))
die("% % cannot be bridged",

dl adm cl ass2str(cl ass, pointless), links[n]);
if (media !'= DL_ETHER &% nedia != DL_100VG &&
media != DL_ETH CSMA &% nedia != DL_100BT)
die("% interface % cannot be bridged",
dl adm nmedi a2str (nmedi a, pointless), links[n]);

}

if (func == brCreate)
flags | = DLADM OPT_CREATE;

if (func !'= brAdd)
status = dl adm bridge_configure(handl e, bridge, &cfg, brprot,
flags);
if (status != DLADM STATUS _OK)
die dlerr(status, "create operation failed");

}
status = DLADM STATUS_CX;
for (n =0; n <nlink; n++) {
status = dl adm bridge_setlink(handle, linkids[n], bridge);
if (status != DLADM STATUS CK)
break;
}

if (n >:/nlink) {

* We were successful. |If we're creating a new bridge, then

* there’s just one nore step: enabling. |f we’re nodifying or
* just adding links, then we're done.

*

if (func !'= brCreate ||
(status = dl adm bri dge_enabl e(bri dge)) == DLADM STATUS_CK)

new usr/src/cnd/ dl adnf dl adm ¢

7993 return;

7994 1

7996 /* clean up the partial configuration */

7997 for (i =0; i <n; i++

7998 (void) dl adm_brl dge_setlink(handl e, linkids[i], "");
8000 /* if failure for brCreate, then delete the bridge */
8001 if (func == brCreate)

8002 (void) dl adm bri dge_del ete(handl e, bridge, flags);
8004 if (n < nlink)

8005 die_dlerr(status, "unable to add link % to bridge %",
8006 links[n], bridge);

8007 el se

8008 die_dlerr(status, "unable to enable bridge %", bridge);
8009 }

8011 static void

8012 do_create_bridge(int argc, char **argv, const char *use)

8013 {

8014 create_nodi fy_add_bridge(argc, argv, use, brCreate);

8015 }

8017 static void

8018 do_nodi fy_bridge(int argc, char **argv, const char *use)

8019 {

8020 create_nodi fy_add_bridge(argc, argv, use, brMdify);

8021 }

8023 static void

8024 do_add_bridge(int argc, char **argv, const char *use)

8025 {

8026 create_nodi fy_add_bridge(argc, argv, use, brAdd);

8027 }

8029 static void

8030 do_del ete_bridge(int argc, char **argv, const char *use)

8031 {

8032 char opti on;

8033 char *altroot = NULL

8034 ui nt 32_t flags = DLADM CPT ACTI VE | DLADM OPT_PERSI ST
8035 dl adm st at us_t st at us;

8037 opterr = 0;

8038 while ((option = getopt_long(argc, argv, ":R ™", bridge_|l opts, NULL))
8039 -1

8040 swtch (Op'[l on) {

8041 case

8042 altroot = optarg;

8043 br eak;

8044 defaul t:

8045 di e_opterr(optopt, option, use);

8046 br eak;

8047 }

8048 }

8050 /* get the bridge nane (required |ast argument)

8051 if (optind !'= (argc-1))

8052 usage();

8054 if (altroot != NULL)

8055 altroot_cnd(al troot, argc, argv);

8057 status = dl adm bridge_del et e(handl e, argv[optind], flags);
8058 if (status != DLADM STATUS_OK)

108

new usr/ src/ cnd/ dl adnf dl adm ¢ 109 new usr/ src/ cnd/ dl adnf dl adm ¢ 110
8059 die_dlerr(status, "delete operation failed"); 8125 } else {
8060 } 8126 war n_dl err (status,
8127 "cannot renove link % from bridge %",
8062 static void 8128 l'inks[n], argv[optind]);
8063 do_renpve_bridge(int argc, char **argv, const char *use) 8129 }
8064 { 8130
8065 char option; 8131 if (!renpved_one)
8066 ui nt _t n, nlink; 8132 di e("unable to renove any |inks frombridge %", argv[optind]);
8067 char *| i nks[MAXPORT] ; 8133 }
8068 datalink_id_t I'i nki ds[MAXPORT] ;
8069 char *al troot = NULL; 8135 static void
8070 dl adm status_t status; 8136 fnt_int(char *buf, size_t buflen, int value, int runvalue,
8071 bool ean_t renoved_one; 8137 bool ean_t printstar)
8138 {
8073 nlink = opterr = 0; 8139 (void) snprintf(buf, buflen, "%l", value);
8074 while ((option = getopt_long(argc, argv, ":R1:", bridge_lopts, 8140 if (value !'= runval ue && printstar)
8075 NULL)) !'= -1) { 8141 (void) strlcat(buf, "*", buflen);
8076 swtch (optl on) { 8142 }
8077 case 'R :
8078 altroot = opt ar g; 8144 static void
8079 br eak; 8145 fnt_bridge_id(char *buf, size_t buflen, UDBR DGE_IDT *bid)
8080 case '|’: 8146 {
8081 if (nlink >= MAXPORT) 8147 (void) snprintf(buf, buflen, "%/ %: %: %: %: %&: %", bid->prio,
8082 die("too many links specified"); 8148 bi d- >addr[0], bid->addr[1], bid->addr[2], bid->addr[3],
8083 I'i nks[nlink++] = optarg; 8149 bi d->addr[4], bid->addr[5]);
8084 br eak; 8150 }
8085 defaul t:
8086 di e_opterr(optopt, option, use); 8152 static dladm status_t
8087 br eak; 8153 print_bridge(show state_t *state, datalink_id_t |inkid,
8088 } 8154 bridge_fi el ds_buf _t *bbuf)
8089 } 8155 {
8156 char I'i nk[MAXLI NKNAVELEN] ;
8091 if (nlink == 0) 8157 dat al i nk_cl ass_t cl ass;
8092 usage(); 8158 ui nt 32_t flags;
8159 dl adm st atus_t st at us;
8094 /* get the bridge name (required | ast argunment) */ 8160 U D STP_CFG T snfcfg, runcfg;
8095 if (optind !'= (argc-1)) 8161 U D STP_STATE T st pstate;
8096 usage(); 8162 dl adm bri dge_prot _t snfprot, runprot;
8098 if (altroot !'= NULL) 8164 if ((status = dl adm datalink_i d2i nfo(handl e, linkid, &flags, &class,
8099 altroot_cnd(altroot, argc, argv); 8165 NULL, i nk sizeof (link))) != DLADM STATUS_CK)
8166 return (status);
8101 for (n = 0; n < nlink; n++)
8102 char bri dge[MAXLI NKNAMELEN] ; 8168 if (!(state->ls_flags & flags))
8169 return (DLADM STATUS_NOTFOUND) ;
8104 if (dl admnanme2i nfo(handle, links[n], & inkids[n], NULL, NULL,
8105 NULL) != DLADM STATUS_OK) 8171 /* Convert observability node nanme back to bridge nanme */
8106 d| e("invalid link name ' %’ links[n]); 8172 if (!dl admobserve_to_bridge(link))
8107 status = dl adm bridge_get!ink(handl e I'i nki ds[n] bridge, 8173 return (DLADM STATUS_NOTFQOUND) ;
8108 si zeof (bridge)); 8174 (void) strlcpy(bbuf->bridge_name, link, sizeof (bbuf->bridge_nane));
8109 if (status !'= DLADM_ STATUS_OK &&
8110 status != DLADM_ STATUS , NOTFOUND) { 8176 /*
8111 die_dlerr(status, "cannot get bridge status on %", 8177 * |f the running value differs fromthe one in SMF, and parsabl e
8112 “links[n]); 8178 * output is not requested, then we show the running value with an
8113 } 8179 * asterisk.
8114 if (status == DLADM STATUS NOTFOUND | | 8180 */
8115 strenp(bridge, argv| optind]) != 0) 8181 (void) dl adm bri dge_get _properties(bbuf->bridge_nane, &snfcfg,
8116 die("link % is not on bridge %", |inks[n], 8182 &snf prot);
8117 argv[optind]); 8183 (void) dl adm bridge_run_properties(bbuf->bridge_name, &runcfg,
8118 } 8184 &r unpr t)
8185 (void) snpri ntf(bbuf >bridge_protect, sizeof (bbuf->bridge_| prot ect),
8120 renoved_one = B_FALSE; 8186 "UsY%s", state->ls_parsable || snf prot == runprot ? "" : "*",
8121 for (n =0; n < nlink; n++) { 8187 dl adm_bri dge_prot 25tr(runpr0t))
8122 status = dl adm bridge_setlink(handl e, linkids[n], ""); 8188 fnt _i nt (bbuf->bridge_priority, si zeof (bbuf - >bridge_priority),
8123 if (status == DLADM STATUS_K) { 8189 snfcfg. bridge_priority, runcfg.bridge_priority,
8124 renoved_one = B_TRUE; 8190 Istate->l s_parsable & (runcfg.field_mask & BR_CFG AGE));

new usr/src/cnd/ dl adnf dl adm ¢ 111

8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206

8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236

8238
8239
8240

}

nt (bbuf - >bri dge_bmaxage, si zeof (bbuf->bridge_bnmaxage),
nf cfg. max_age, runcfg. max_age,
state->ls_parsable && (runcfg.field_nask & BR CFG AGE));
ft _i nt (bbuf - >bri dge_bhel | oti me,
i zeof (bbuf->bridge_bhellotine),
uncfg. hello_time,
tate->l s_parsable && (runcfg.field_mask & BR CFG HELLO));
t (bbuf - >bri dge_bfwddel ay, sizeof (bbuf->bridge_bfwddel ay),
cfg.forward_del ay, runcfg.forward_del ay,
tate->l s_parsable & (runcfg.fiel d_mask & BR_CFG DELAY));
t (bbuf - >bri dge_| forceproto, sizeof (bbuf >bridge_ forceprot 0),
cfg.force_version, runcfg.force_version,
tate- >l s_parsabl e 8& (runcfg. field mask & BR_CFG_FORCE_VER)) ;
t (bbuf - >bri dge_hol dti me, sizeof (bbuf->bridge_holdtime),
cfg.hold_tine, runcfg. hol d tine,
state->ls parsable && (runcfg. fleld mask & BR_CFG HOLD TI ME)) ;

snfcfg.hello_tine,
fmt
fmt

i
s
|
i
s
r
ls
I
s
|
I
s
|

fmt_i

snf
|

if (dladm bridge_stat e(bbuf->bridge_nane, &stpstate) ==
DLADM _STATUS_OK)
fmt _bridge_i d(bbuf->bri dge_address,
si zeof (bbuf->bridge_address),
(void) snprintf(bbuf->bridge_tcti ne,
si zeof (bbuf->bridge_tctine), "4 u",
stpstate.ti meSi nce_Topo_ Change)
(voi d) snprintf(bbuf->bridge_ tccount,
si zeof (bbuf->bridge_tccount), "4 u"
st pst at e. Topo_Change_Count) ;
(voi d) snprintf(bbuf->bridge_ tchange
si zeof (bbuf->bridge_tchange), "%",
ft _bridge_id(bbuf->bridge_ desroot
si zeof (bbuf->bridge_desroot), &stpstate.designated_root);
(voi d) snprintf(bbuf->bridge_rootcost,
si zeof (bbuf->bridge_rootcost), "%u"
stpstate.root_path_cost);
(voi d) snprintf(bbuf->bridge_root port
si zeof (bbuf->bridge_rootport), %1",
(voi d) snprintf(bbuf->bri dge_maxage,
si zeof (bbuf->bridge_naxage), "%l",
(voi d) snprintf(bbuf->bridge_helloting,
si zeof (bbuf->bridge_hellotine), "o%",
(voi d) snprintf(bbuf->bridge_fwddel ay,
si zeof (bbuf->bridge_fwddel ay), "%",
st pstate. forward_del ay) ;

&stpstate. bridge_id);

st pst at e. Topo_Change) ;

st pstate.root_port);
st pst at e. max_age) ;

stpstate. hello_tine);

}
return (DLADM STATUS CX);

static dl adm status_t

print_bridge_stats(show state_t *state,

datalink_id_t Iinkid,

bri dge_statfiel ds_buf _t *bbuf)

8241 {

8242
8243
8244
8245
8246
8247
8248
8249

8251
8252
8253

8255
8256

#i f ndef

char I'i nk[MAXLI NKNAVELEN] ;

datal i nk_cl ass_t cl ass;

ui nt32_t flags;

dl adm status_t stat us;

kstat_ctl _t *kep;

kstat _t *ksp;

brsum t *brsum = (brsumt *)&state->ls_prevstats;
brsum t newal ;

i nt

/* This is a conpile-time assertion; optimzer nornally fixes this */
extern void brsumt_is_too_large(void);

if (sizeof (*brsum > sizeof (state->ls_prevstats))
brsumt _is_too_large();

new usr/ src/ cnd/ dl adnf dl adm ¢ 112
8257 #endi f

8259 if (state->ls_firstonly) {

8260 if (state->ls_donefirst)

8261 return (DLADM WALK_CONTI NUE) ;

8262 state->l s_donefirst = B_TRUE;

8263 } else {

8264 bzero(brsum sizeof (*brsum);

8265

8266 bzero(&ewal , sizeof (newal));

8268 if ((status = dladmdatalink_id2info(handl e, |inkid, &flags, &class,
8269 NULL, i nk sizeof (link))) != DLADM STATUS_O<)

8270 return (status);

8272 if (!(state->Is_flags & flags))

8273 return (DLADM_STATUS_NOTFOUND) ;

8275 if ((kcp = kstat_open()) == NULL)

8276 war n("kstat open operation failed");

8277 return (DLADM STATUS K);

8278 }

8279 if ((ksp = kstat_| ookup(kcp, "bridge", 0, link)) != NULL &&
8280 kstat _read(kcp, ksp, NULL) != -1)

8281 if (dladmkstat_val ue(ksp, "drops", KSTAT_DATA Ul NT64,
8282 &newal . drops) == DLADM STATUS. > OK) {

8283 (void) snpri nt f (bbuf->bri dges_ drops

8284 si zeof (bbuf->bridges_drops), "%Iu",
8285 newal . drops - brsum >dr ops);

8286 }

8287 1 f (dl adm kst at_val ue(ksp, "forward_direct", KSTAT_DATA Ul NT64,
8288 &newal . forward_dir) == DLADM STATUS O() {

8289 (void) snpri ntf(bbuf >bri dges_f or war ds,

8290 si zeof (bbuf->bridges_forwards), "4 | u",
8291 newal . forward_dir - brsum>forward_dir);
8292 }

8293 if (dl admkstat_val ue(ksp, "forward_nbcast", KSTAT_DATA Ul NT64,
8294 &newval . f orward_nb) == DLADM STATUS_CK) {

8295 (void) snprintf(bbuf->bridges_nbcast,

8296 si zeof (bbuf->bridges_nbcast), "%Iu",
8297) newal . forward_nb - brsum >f orward_nb);
8298

8299 1 f (dl adm kst at_val ue(ksp, "forward_unknown", KSTAT_DATA Ul NT64,
8300 &newal . f orwar d_unk) == DLADM STATUS O() {

8301 (void) snpri ntf(bbuf >bri dges_unknown,

8302 si zeof (bbuf->bridges_unknown), "%Iu",
8303 newal . forward_unk - brsum >forward_unk);
8304 }

8305 if (dl admkstat_val ue(ksp, "recv", KSTAT_DATA Ul NT64,
8306 &newval . recv) == DLADM STATUS_CK) {

8307 (void) snprintf(bbuf->bridges_recv,

8308 si zeof (bbuf->bridges_recv), "%Iu",

8309 newal . recv - brsum >recv);

8310

8311 if (dl admkstat_val ue(ksp, "sent", KSTAT_DATA_ Ul NT64,
8312 &newal . sent) == DLADM STATUS OK) {

8313 (void) snpri nt f (bbuf - >bri dges_sent,

8314 si zeof (bbuf->bridges_sent), "4 u",

8315 newal . sent - brsum >sent);

8316 }

8317

8318 (voi d) kstat_cl ose(kcp);

8320 /* Convert observability node name back to bridge nane */
8321 if (!dl admobserve_to_bridge(link))

8322 return (DLADM_STATUS_NOTFOUND) ;

new usr/ src/ cnd/ dl adnf dl adm ¢ 113 new usr/ src/ cnd/ dl adnf dl adm ¢ 114
8323 (void) strlcpy(bbuf->bridges_nane, |ink, sizeof (bbuf->bridges_nane));
8390 if (dladmbridge_link_state(handle, linkid, &stpstate) ==
8325 *brsum = newal ; 8391 DLADM_STATUS _OK)
8392 (voi d) snprintf(bbuf->bridgel _index,
8327 return (DLADM STATUS K); 8393 si zeof (bbuf->bridgel _index), "%", stpstate.port_no);
8328 } 8394 if (dl sym(RTLD PROBE, "STP_IN state2str")) {
8395 (void) strlcpy(bbuf->bridgel _state,
8330 /* 8396 STP_I N state2str(stpstate.state),
8331 * This structure carries around extra state information for the show bridge 8397 si zeof (bbuf->bridgel_state));
8332 * command and allows us to use common support functions. 8398 } else {
8333 */ 8399 (void) snprintf(bbuf->bridgel _state,
8334 typedef struct { 8400 si zeof (bbuf->bridgel _state), "om",
8335 show_state_t state; 8401 stpstate.state);
8336 bool ean_t show_st at s; 8402 }
8337 const char *bri dge; 8403 (void) snprintf(bbuf->bridgel _uptinme,
8338 } show brstate_t; 8404 si zeof (bbuf->bridgel _uptime), "%u", stpstate.uptine);
8405 (void) snprintf(bbuf->bridgel _opercost,
8340 /* ARGSUSED */ 8406 si zeof (bbuf->bridgel _opercost), "%u",
8341 static int 8407 st pst at e. oper _port_path_cost);
8342 show_bridge(dl adm handl e_t handl e, datalink_id_t linkid, void *arg) 8408 fmt _bool (bbuf - >bri dgel _operp2p, sizeof (bbuf->bridgel operp2p),
8343 { 8409 st pst at e. oper _poi nt 2poi nt) ;
8344 show brstate_t *brstate = arg; 8410 f mt _bool (bbuf - >bri dgel _oper edge,
8345 voi d *buf; 8411 si zeof (bbuf->bridgel _operedge), stpstate.oper_edge);
8412 fnt _bridge_id(bbuf->bridgel _desroot,
8347 if (brstate->show stats) { 8413 si zeof (bbuf->bridgel _desroot), &stpstate.designated_root);
8348 bridge_statfields_buf_t bbuf; 8414 (voi d) snprintf(bbuf->bridgel descost,
8415 si zeof (bbuf->bridgel _descost), "%u",
8350 bzer o(&buf, sizeof (bbuf)); 8416 st pst at e. desi gnat ed_cost) ;
8351 brstate->state.|ls_status = print_bridge_stats(&brstate->state, 8417 ft_bridge_i d(bbuf->bridgel desbri dge,
8352 linkid, &bbuf); 8418 si zeof (bbuf->bri dgel _desbri dge),
8353 buf = &bbuf; 8419 &st pst at e. desi gnat ed bridge);
8354 } else { 8420 (void) snprintf(bbuf- >bridgel _desport,
8355 bridge_fiel ds_buf _t bbuf; 8421 si zeof (bbuf->bridgel _desport), "%w",
8422 st pst at e. desi gnated_port);
8357 bzer o(&buf, sizeof (bbuf)); 8423 f mt _bool (bbuf - >bri dgel _t cack, sizeof (bbuf->bridgel_tcack),
8358 brstate->state.ls_status = print_bridge(&brstate->state, |inkid, 8424 st pst ate. t op_change_ack) ;
8359 &bbuf) ; 8425 }
8360 buf = &bbuf; 8426 return (DLADM STATUS X);
8361 } 8427 }
8362 if (brstate->state.ls_status == DLADM STATUS_CK)
8363 of mt _print (brstate- >st at e.ls_ofnt, buf); 8429 static dladm status_t
8364 return (DLADM WALK_CONTI NUE) ; 8430 print_bridge_|ink_stats(show state_t *state, datalink_id_t linkid,
8365 } 8431 bridge_link_statfields_buf_t *bbuf)
8432 {
8367 static void 8433 datal i nk_cl ass_t cl ass;
8368 fnt_bool (char *buf, size_t buflen, int val) 8434 ui nt32_t flags;
8369 { 8435 dl adm status_t st at us;
8370 (void) strlcpy(buf, val ? "yes" : "no", buflen); 8436 Ul D_STP_PORT_STATE T st pstate;
8371 } 8437 kstat _ctl _t *Kkep;
8438 kstat _t *ksp;
8373 static dladmstatus_t 8439 char bri dge[MAXLI NKNAMELEN ;
8374 print_bridge_|ink(show state t *state, datalink_id_t linkid, 8440 char kst at name[MAXLI NKNAMELEN*2 + 1] ;
8375 bridge_| ink_fields_buf_t *bbuf) 8441 brlsumt *prlsum= (brlsumt *)&state->ls_prevstats;
8376 { 8442 brlsumt newal ;
8377 dat al i nk_cl ass_t cl ass;
8378 ui nt 32_t fl ags; 8444 #ifndef |int
8379 dl adm st at us_t st at us; 8445 /* This is a conpile-time assertion; optimzer nornally fixes this */
8380 Ul D_STP_PORT_STATE_T st pstate; 8446 extern void brlsumt_is_too_large(void);
8382 status = dl adm dat al i nk_i d2i nfo(handl e, |inkid, &flags, &class, NULL, 8448 if (sizeof (*brlsum > sizeof (state->ls_prevstats))
8383 bbuf - >bri dgel _Ii nk, sizeof (bbuf->bridgel_Ilink)); 8449 brlsumt_is_too_large();
8384 if (status != DLADM STATUS OK) 8450 #endi f
8385 return (status);
8452 if (state->ls_firstonly) {
8387 if (!(state->ls_flags & flags)) 8453 if (state->ls_donefirst)
8388 return (DLADM STATUS NOTFOUND) ; 8454 return (DLADM WALK_CONTI NUE) ;

new usr/src/cnd/ dl adnf dl adm ¢

8455
8456
8457
8458
8459

8461
8462
8463
8464

8466
8467

8469
8470
8471
8472
8473
8474

8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488

8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520

state->l s_donefirst = B_TRUE;
} else {

bzero(brl sum sizeof (*brlsum);
}
bzer o(&newal , sizeof (newal));
status = dl adm datalink_id2info(handl e, linkid, &flags,

bbuf - >bri dgel s_| i nk, sizeof (bbuf->bridgels_|link));

if (status != DLADM STATUS OK)

return (status);

&cl ass,

if (!(state->ls_flags & flags))
return (DLADM STATUS_NOTFQOUND) ;

if (dladmbridge_link_state(handle,
DLADM STATUS_OK) {
newal . cf gbpdu stpstate.rx_cfg_bpdu_cnt;
newal . t cnbpdu stpstate.rx_tcn_bpdu_cnt;
newal . rstpbpdu = stpstate.rx_rstp_bpdu_cnt;
newal . t xbpdu = st pstate.txCount;

l'inkid, &stpstate) ==

(voi d) snprintf(bbuf->bridgels_cfgbpdu,
si zeof (bbuf->bridgel s_cfgbpdu), "% u",
newal . cf gbpdu - brl sum >cf gbpdu);
(void) snprintf(bbuf->bridgels_tcnbpdu,
si zeof (bbuf->bridgels_tcnbpdu), "% u",
newal . tcnbpdu - brl sum >t cnbpdu);
(voi d) snprintf(bbuf->bridgels_rstpbpdu,
si zeof (bbuf->bridgels_rstpbpdu), "%u",
newal . rstpbpdu - brlsum >rstpbpdu);
(voi d) snprintf(bbuf->bridgels_txbpdu,
si zeof (bbuf->bridgel s_txbpdu), "% u",
newal . t xbpdu - brl sum >t xbpdu) ;

}

if ((status = dl adm bridge_getlink(handl e,
sizeof (bridge))) != DLADM STATUS_OK)
goto bl s_out;
(void) snprintf(kst at namne,
bbuf - >bri dgel s_l i nk) ;
if ((kcp = kstat_open()) == NULL)
warn("kstat open operation failed");
goto bl s_out;

linkid, bridge,

si zeof (kstatnane), "%O0-%", bridge,

}
if ((ksp = kstat_l ookup(kcp, "bridge", 0, kstatnane)) != NULL &&

kstat _read(kcp, ksp, NULL) != -1) {
if (dladmkstat_val ue(ksp, "drops", KSTAT_DATA Ul NT64,
&ewal .drops) != -1

) {
(void) snprintf(bbuf->bridgels_drops,
si zeof (bbuf->bridgels_drops), "%Ilu",
newal . drops - brlsum >drops);

}
if (dl admkstat_val ue(ksp, "recv",
&newal .recv) != -1
(void) snprintf(bbuf->bridgels_recv,
si zeof (bbuf->bridgels_recv), "%Iu",
newal . recv - brlsum>recv);

KSTAT_DATA_Ul NT64,

}
if (dladmkstat_val ue(ksp, "xmt", KSTAT_DATA Ul NT64,
&ewal . xmt) = -1) {
(void) snprintf(bbuf->bridgels_xnit,
si zeof (bbuf->bridgels xmt) 7y u",
newal . xmit - brlsum>xmt);

}
]Evoi d) kstat_cl ose(kcp);

NULL,

new usr/ src/ cnd/ dl adnf dl adm ¢ 116
8521 bl s_out:

8522 *brl sum = newal ;

8524 return (status);

8525 }

8527 static void

8528 {show_bri dge_link(datalink_id_t linkid, show brstate_t *brstate)

8529

8530 voi d *buf;

8532 if (brst ate >show_stats) {

8533 ridge_link_statfields_buf_t bbuf;

8535 bzer o(&buf, sizeof (bbuf))

8536 brstate->state.ls_status = print_bridge_link_stats(

8537 &brst ate->state, |linkid, &bbuf);

8538 buf = &bbuf;

8539 } else {

8540 bridge_link_fields_buf_t bbuf;

8542 bzer o(&buf, sizeof (bbuf));

8543 brstate->state.ls_status = print_bridge_link(&brstate->state,
8544 l'inkid, &bbuf);

8545 buf = &bbuf;

8546 }

8547 if (brstate->state.|s_status == DLADM STATUS_CK)

8548 of m_print(brstate->state.ls_ofnt, buf);

8549 }

8551 /* ARGSUSED */

8552 static int

8553 {show_bri dge_l i nk_wal k(dl adm handl e_t handl e, datalink_id_t linkid, void *arg)
8554

8555 show brstate_t *brstate = arg;

8556 char bridge[MAXLI NKNAMELEN ;

8558 if (dladm bridge_getlink(handle, Iinkid, bridge, sizeof (bridge))
8559 DLADM STATUS K && st rcnp(brl dge, br st at e- >br i dge) == 0) {
8560 show bridge_link(linkid, brstate);

8561 }

8562 return (DLADM WALK_CONTI NUE) ;

8563 }

8565 static void

8566 show bridge_fwd(dl adm handl e_t handl e, bridge_listfwd_t *blf,

8567 show state_t *state)

8568 {

8569 bridge_fwd_fiel ds_buf _t bbuf;

8571 bzer o(&buf, sizeof (bbuf));

8572 (void) snprintf(bbuf.bridgef_dest, sizeof (bbuf.bridgef_dest),
8573 "os", ether_ntoa((struct et her _addr *)blf->blf_dest));

8574 if (blf->blf_is_local)

8575 (void) strlcpy(bbuf.bridgef_flags, "L",

8576 si zeof (bbuf.bridgef_flags));

8577 } else {

8578 (void) snprintf(bbuf.bridgef_age, sizeof (bbuf.bridgef_age),
8579 "9@d. %93d", blf->blf_ns_age / 1000, blf->blf_ns_age % 1000);
8580 if (blf->blf_trill_nick I'=0) {

8581 (void) snprintf(bbuf.bridgef_output,

8582 si zeof (bbuf.bridgef_output), "o%m",

8583 bl f->blf_trill_nick);

8584 }

8585

8586 if (blf->blf_linkid != DATALI NK_I NVALI D_LI NKID &&

new usr/ src/ cnd/ dl adnf dl adm ¢ 117 new usr/ src/ cnd/ dl adnf dl adm ¢ 118
8587 bl f->blf_trill_nick == 0) { 8653 char *defaul t _trill_fields = "nick,flags,!|ink, nexthop";
8588 state->ls_status = dl adm dat al i nk_i d2i nf o(handl e, 8654 char *defaul t _str;
8589 bl f->bl f_linkid, NULL, NULL, NULL, bbuf.bri dgef out put, 8655 char *al |l _str;
8590 si zeof (bbuf. bri dgef _out put)) 8656 ofm _field_t *field_arr;
8591 } 8657 of nt _handl e_t of nt;
8592 if (state->|s_status == DLADM STATUS_CK) 8658 of mt _status_t oferr;
8593 of mt _print(state->ls_ofnt, &bbuf); 8659 ui nt _t ofmtflags = O;
8594 }
8661 bzero(&brstate, sizeof (brstate));
8596 static void
8597 show bridge_trillnick(trill_listnick_t *tln, show state_t *state) 8663 opterr = 0;
8598 { 8664 while ((option = getopt_long(argc, argv, ":fi:lo:pst",
8599 bridge_trill_fields_buf_t bbuf; 8665 bridge_show_ | opts, NULL)) != -1) {
8666 switch (option) {
8601 bzer o(&buf, sizeof (bbuf)); 8667 case 'f’:
8602 (void) snprintf(bbuf.bridget_nick, sizeof (bbuf.bridget_nick), 8668 if (op_node != bridgeMde && op_node != fwdMbde)
8603 "ou", tln->tln_nick); 8669 dle(" f |s incompatible with -1 or -t");
8604 if (tln->tln_ours) { 8670 op_node = fwdMbde
8605 (void) strlcpy(bbuf.bridget_flags, "L", 8671 br eak;
8606 si zeof (bbuf.bridget_flags)); 8672 case 'i’:
8607 } else { 8673 if (interval !'= 0)
8608 state->ls_status = dl adm datal i nk_i d2i nf o(handl e, 8674 di e_opt dup(option);
8609 tln->tIn_li nk| d, NULL, NULL, NULL, bbuf.bri dget I'ink, 8675 if (!str2int(optarg, & nterval) || interval == 0)
8610 si zeof (bbuf bri dget _| i nk)); 8676 die("invalid interval value '%’", optarg);
8611 (void) snprintf(bbuf.bri dget _next hop, 8677 br eak;
8612 si zeof (bbuf.bridget_nexthop), "%" 8678 case '|’:
8613 ether_ntoa((struct ether_addr *)tl n->tl n_next hop)); 8679 if (op_nmode != bridgeMde && op_node != |inkMbde)
8614 } 8680 die("-1 is inconpatible with -f or -t");
8615 if (state->ls_status == DLADM STATUS_OK) 8681 op_node = |inkMde;
8616 of mt_print(state->ls_ofnt, &bbuf); 8682 br eak;
8617 } 8683 case '0':
8684 fields_str = optarg;
8619 static void 8685 br eak;
8620 do_show_bridge(int argc, char **argv, const char *use) 8686 case 'p’:
8621 { 8687 if (parsable)
8622 int option; 8688 d| e_opt dup(opt ion);
8623 enum { 8689 parsabl e = B_TRUE;
8624 bri dgeMobde, |inkMde, fwdMode, trill Mde 8690 br eak;
8625 } op_m)de = bri dgeMode; 8691 case 's’:
8626 ui nt 32_t flags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST; 8692 if (brstate.show stats)
8627 bool ean_t parsable = B | FALSE; 8693 di e_opt dup(option);
8628 datalink_id_t linkid = DATALI NK_ALL_LI NKI D; 8694 brstate. show stats = B_TRU E
8629 int interval = 0; 8695 br eak;
8630 show brstate_t brstate; 8696 case 't’:
8631 dl adm status_t status; 8697 if (op_nmode != bridgeMde && op_node != trill Mode)
8632 char *fields_str = NULL; 8698 die("-t is inconpatible with -f or -1");
8633 /* default: bridge-related data */ 8699 op_node = trill Mde;
8634 char *all _fields = "bridge, protect, address, priority, bmaxage, " 8700 break;
8635 "bhel | oti ne, bf wddel ay, f orceproto, tcti me, t ccount, t change, " 8701 defaul t:
8636 "desroot, root cost, root port, maxage, hel | oti me, f wddel ay, hol dti me"; 8702 di e_opterr(optopt, option, use);
8637 char *defaul t _fields = "bridge, protect, address, priority," 8703 br eak;
8638 "desroot"; 8704 }
8639 char *all _statfields = "bridge,drops, f orwards, nbcast, " 8705 }
8640 "unknown, recv, sent";
8641 char *defaul t _statfields = "bridge, drops, forwards, nbcast, " 8707 if (interval '= 0 & !brstate.show stats)
8642 "unknown" 8708 die("the -i option can be used only with -s");
8643 /* -1: link- related data */
8644 char *all _link_fields = "link,index,state, uptine, opercost," 8710 if ((op_nopde == fwdMbde || op_node == trill Mode) && brstate.show stats)
8645 " oper p2p, oper edge, desr oot , descost, desbri dge, desport, t cack"; 8711 die("the -f/-t and -s options cannot be used together");
8646 char *default _link_fields = "link,state, upti me, desroot";
8647 char *all _link_statfields = "link, cfgbpdu,tcnbpdu, rst pbpdu, " 8713 /* get the bridge nanme (optional |ast argunment) */
8648 "t xbpdu, drops, recv, xmt"; 8714 if (optind == (argc-1)) {
8649 char *default _link_statfields = "link,drops,recv,xmt"; 8715 char | nane[MAXLI NKNAVELEN] ;
8650 /* -f: bridge forwarding table rel ated data */ 8716 uint32_t | nkfl g;
8651 char *default _fwd_fields = "dest, age, fl ags, out put"”; 8717 datal i nk_cl ass_t cl ass;
8652 /* -t: TRILL nicknane table related data */

new usr/src/cnd/ dl adnf dl adm ¢

8719
8720
8721
8722
8723
8724
8725

8727
8728

8730
8731
8732
8733
8734
8735
8736
8737
8738
8739

8741
8742
8743

8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756

8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768

8770
8771
8772
8773

8775
8776
8777
8778
8779

8781
8782
8783
8784

brstate. bridge = argv[optind];
(void) snpri ntf(l nane, sizeof (lnanme), "%0",

119

brstate. bridge);

if ((status = dl adm | nane2i nf o(handl e, I nanme, & inkid, & nkflg,

&l ass, NULL)) T'= DLADM STATUS OK) {

die dlierr(status, "bridge % is not valid",

“brstate. bridge);
}

if (class !'= DATALI NK_CLASS BRI DGE)
di

e("% is not a bridge", brstate.bridge);

if (l(InkfIg &flags) {
di e_dl er r (DLADM STATUS_BADARG,

rldge % is tenporarily renoved",

}

} else if (optind != argc) {
usage();

} else if (op_node != bridgeMde) {

die("bridge nanme required for -1, -f, or -t");
return;
}
brstate.state.ls_parsable = = par sabl e;
brstate.state.ls_flags = flag
brstate.state.ls_firstonly = (|nterval 1= 0);

switch (op_node) {
case bridgeMode:
if (brstate.show stats) {
defaul t_str = default_statfields;
all _str = all_statfields;
field_arr = bridge_statfields;
} else {
defaul t_str = defaul t_fields;
all _str = all_fields;
field_arr = bridge_fields;

}
br eak;

case |inkMbde:
if (brstate.show stats) {

default_str = default _link_statfields;
all _str = all_link_statfields;
field_arr = bridge_link_statfields;

} else {
default_str = default_link_fields;
all _str =a|| link_fields;
field_arr brldgellnkflelds

}

br eak;

case fwdMode:

default_str = all_str = default_fwd_fields;
field_arr = bridge_fwd_fields;

br eak;
case trill Mode:
default_str = all_str = default_trill_fields;
field_arr = bridge_trill_fields;
br eak;

}

if (fields_str == NULL)
fields_str = default_str;

else if (strcasecnp(fields_str, "all") == 0)
fields_str = all_str;

brstate. bridge);

new usr/src/cnd/ dl adnf dl adm ¢

8786
8787
8788
8789
8790

8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809

8811
8812
8813

8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834

8836
8837
8838

8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850

120

if (parsable)

of mflags | = OFMI_PARSABLE;
oferr = ofnt _open(fields_str, field_arr, ofntflags, 0, &ofnt);
dl adm of nt _check(oferr, brstate.state.|ls_parsable, ofnt);
brstate.state.ls_ofnmt = ofnt;

for (;;) {

brstate.state.ls_donefirst = B_FALSE;

switch (op_node) {

case bri dgeMde:

if (l'inkid == DATALINK_ALL_LINKI D) {
(void) dl adm wal k_dat al i nk_i d(show_bri dge,

handl e, &brstate, DATALI NK_CLASS BRI DGE,
DATALI NK_ANY_NEDI ATYPE, flags);

} else {
(void) show_bridge(handl e, linkid, &brstate);
if (brstate.state.ls_status =
DLADM STATUS (X)
die_dlerr(brstate.state.|s_status,
"failed to show bridge %",
brstate. bridge);
}
}
br eak;

case |inkMde: {
datalink_id_t *dlp;

uint_t i, nlinks;
dlp = dl adm bri dge_get _portlist(brstate. bridge,
&nl i nks);
if (dip!= NJLL) {
for (i =0; i < nlinks;

i ++)
show_bridge_Ii nk(dl p[i], &brstate);
dl adm brldge free_portlist(dlp);
} else if (errno == ENCENT) {
/* bridge not running; iterate on |ibdladm */
(void) dl adm wal k_dat al i nk_i d(
show_bridge_I| i nk_wal k, handl e,
&brstate, DATALI NK_CLASS PHYS
DATALI NK_CLASS_AGGR
DATALI NK_CLASS_ETHERSTUB,
DATALI NK_ANY_NEDI ATYPE, flags)
} else {
die("unable to get port list for bridge %: %",
brstate. bridge, strerror(errno));

}
br eak;

}

case fwdMode: {
bridge_listfwd_t *blf;
uint_t i, nfwd;

bl f = dl adm bridge_get_fwdtabl e(handl e, brstate.bridge,
&nf wd) ;
if (blf == NULL) {
die("unable to get forwarding entries for
"bridge %", brstate. bridge);

} else {
for (i =0; i < nfwd; i++)
show_bridge_fwd(handle, blf + i,
&rstate.state);
dl adm bri dge_free_fwdtabl e(bl f);

new usr/src/cnd/ dl adnf dl adm ¢ 121

8851
8852

8854
8855
8856

8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881

8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903

br eak;

}

case trill Mde:
trill_listnick_t
uint_t i, nnick;

*tln;

tln = dladmbridge_get_trillnick(brstate.bridge,
&nni ck) ;
if (tln == NULL) {
if (errno == ENCENT)
die("bridge % is not
brstate. bridge);

running TRILL",

el se
die("unable to get TRILL nicknane "
"entries for bridge %",
brstate. bridge);
} else {
for (i =0; i < nnick; i++)
show bridge_trillnick(tln + i,
&brstate. state);
dl adm bri dge_free trlllmck(tln)

}
br eak;

}
}
i

f (interval == 0)

(void) sl eep(i’ nterval);

-R' option support. It is used for |ive upgrading. Append dl adm conmands
to a upgrade script which will be run when the alternative root boots up:

- If the /etc/dladm datalink.conf file exists on the alternative root,
append dl adm conmands to the <al troot>/var/svc/profil e/ upgrade_datalink
script. This script will be run as part of the network/physical service.
We cannot defer this to /var/svc/profile/upgrade because then the
configuration will not be able to take effect before network/physical

pl unbs various interfaces.

- If the /etc/dl adm datalink.conf file does not exist on the alternative
root, append dl adm commands to the <al troot>/var/svc/profile/upgrade script,
which will be run in the nanifest-inport service.

Note that the SMF teamis considering to nove the nanifest-inport service
to be run at the very begining of boot. Once that is done, the need for
the /var/svc/profile/upgrade_datalink script will not exist any nore.

I I R

*/
static void
altroot _cnd(char *altroot, int

argc, char *argv[])

8904 {

8905
8906
8907
8908

8910
8911
8912
8913
8914
8915
8916

char pat h[MAXPATHLEN ;
struct stat st buf ;

FI LE *fp;

int i;

*

* Check for the existence of the /etc/dl adn datali nk. conf

* configuration file, and determine the name of script file.

*/

(void) snprintf(path, MAXPATHLEN, "/%s/etc/dl adm datalink.conf",
altroot);

if (stat(path, &stbuf) < 0) {

new usr/src/cnd/ dl adnf dl adm ¢

8917 (voi d) snprintf(path, MAXPATHLEN, "/%/ %", altroot,
8918 - UPGRADE_FI LE)

8919 } else {

8920 (voi d) snprintf(path, MAXPATHLEN, "/%/ %", altroot,
8921 UPGRADEDATALI NK_FI LE) ;

8922 }

8924 if ((fp = fopen(path, "a+")) == NULL)

8925 di e("operation not supported on %", altroot);
8927 (voi d) fprlntf(fp, "/sbin/dl adm");

8928 for (1 =0; i < argc; i++) {

8929 /*

8930 * Directly wite to the file if it is not the "-R <altroot>"
8931 * option. In which case, skip it.

8932

8933 |f (strcmp(argv[i], "-R') !'=0)

8934 (voi d) fprlntf(fp, "o ", argv[il);
8935 el se

8936 i+

8937

8938 (void) fprintf(fp, "%\n", SMF_DLADM UPGRADE_MSG);
8939 (void) fclose(fp);

8940 dl adm cl ose(handl e)

8941 exi t (EXI T_SUCCESS) ;

8942 }

8944 | *

8945 * Convert the string to an integer. Note that the string nust not have any
8946 * trailing non-integer characters.

8947 */

8948 static bool ean_t

8949 str2int(const char *str, int *valp)

8950 {

8951 int val ;

8952 char *endp = NULL;

8954 errno = 0;

8955 val = strtol (str, &endp, 10);

8956 if (errno!=0 || *endp !="\0")

8957 return (B_FALSE)

8959 *valp = val;

8960 return (B_TRUE);

8961 }

8963 /* PRI NTFLI KE1 */

8964 static void

8965 warn(const char *format, ...)

8966 {

8967 va_list alist;

8969 format = gettext(format);

8970 (void) fprintf(stderr, "%: warning: ", prognane)
8972 va_start(alist, format);

8973 (void) vfprintf(stderr, format, alist);

8974 va_end(alist);

8976 (void) putc(’'\n’, stderr);

8977 }

8979 /* PRI NTFLIKE2 */

8980 static void

8981 warn_dl err(dl adm status_t err, const char *format, ...)

8982 {

new usr/src/cnd/ dl adnf dl adm ¢

8983 va_list alist;

8984 char errmsg[DLADM STRSI ZE] ;

8986 format = gettext(format);

8987 (void) fprintf(stderr, gettext("%: warning: "), prognane);
8989 va_start(alist, format);

8990 (void) viprintf(stderr, format, alist);

8991 va_end(alist);

8992 (void) fprintf(stderr, ": %\n", dladmstatus2str(err, errnsg));
8993 }

8995 /*

8996 * Also closes the dladmhandle if it is not NULL.

8997 */

8998 /* PRI NTFLI KE2 */
8999 static void

9000 die_dlerr(dl admstatus_t err, const char *format, ...)
9001 {

9002 va_list alist;

9003 char errmsg[DLADM STRSI ZE] ;

9005 format = gettext(format);

9006 (void) fprintf(stderr, "%: ", prognane);

9008 va_start(alist, format);

9009 (void) vfprintf(stderr, format, alist);

9010 va_end(alist);

9011 (void) fprintf(stderr, ": 9%\n", dladmstatus2str(err, errnsg));
9013 /* close dladmhandle if it was opened */
9014 if (handle !'= NULL)

9015 dl adm cl ose(handl e) ;

9017 exi t (EXI T_FAI LURE)

9018 }

9020 /* PRI NTFLI KE1 */
9021 static void

9022 di e(const char *fornat, ...)

9023 {

9024 va_list alist;

9026 format = gettext(format);

9027 (void) fprintf(stderr, "%: ", prognane);
9029 va_start(alist, format);

9030 (void) vfprintf(stderr, format, alist);
9031 va_end(alist);

9033 (void) putc(’\n', stderr);

9035 /* close dladmhandle if it was opened */
9036 if (handle != NULL)

9037 dl adm cl ose(handl e) ;

9039 exi t (EXI T_FAI LURE)

9040 }

9042 static void

9043 di e_opt dup(int opt)

9044 {

9045 die("the option -% cannot be specified nore than once", opt)
9046 }

9048 static void

123

new usr/src/cnd/ dl adn dl adm ¢

9049 die_opterr(int opt, int opterr, const char *usage)

9050 {

9051 switch (opterr) {

9052 case ':’:

9053 die("option '-9%’ requires a val ue\nusage: %", opt,
9054 gettext (usage));

9055 br eak;

9056 case '?':

9057 defaul t:

9058 di e("unrecogni zed option '-9%’\nusage: %", opt,
9059 gettext(usage));

9060 br eak;

9061 }

9062 }

9064 static void
9065 show et her _xprop(void *arg, dladmether_info_t *eattr)

9066 {

9067 print_ether_state_t *statep = arg;

9068 ether _fiel ds_buf _t ebuf ;

9069 int i;

9071 for (i = CAPABLE, i <= PEERADV; i++) {

9072 bzer o(&buf, sizeof (ebuf));

9073 (void) strlcpy(ebuf.eth_ptype, ptype[i],

9074 si zeof (ebuf.eth_ptype));

9075 (voi d) dl adm et her _aut oneg2str (ebuf . et h_aut oneg,
9076 si zeof (ebuf.eth_autoneg), eattr, i);

9077 (voi d) dl adm et her _spdx2str (ebuf. et h_spdx,

9078 si zeof (ebuf.eth_spdx), eattr, i);

9079 (voi d) dl adm et her _pause2str (ebuf. et h_pause,
9080 si zeof (ebuf.eth_pause), eattr, i);

9081 (void) strlcpy(ebuf.eth_remfault,

9082 (eattr->lei_attr[i].le_fault ? "fault" : "none"),
9083 si zeof (ebuf.eth_remfault));

9084 of mt_print(statep->es_ofnt, &ebuf);

9085 }

9087 }

9089 static bool ean_t
9090 link_is_ether(const char *link, datalink_id_t *linkid)

9091 {

9092 uint32_t nedia;

9093 datal i nk_cl ass_t cl ass;

9095 if (dladm nanme2info(handle, link, linkid, NULL, &class, &media) ==
9096 DLADM STATUS OX)

9097 if (class == DATALI NK_CLASS_PHYS && nedia == DL_ETHER)
9098 return (B_TRUE);

9099 }

9100 return (B_FALSE);

9101 }

9103 /*

9104 * default output callback function that, when invoked,

9105 * prints string which is offset by ofnt_arg->ofnt_id within buf.
9106 */

9107 static bool ean_t

9108 print_default_cb(ofnt_arg_t *ofarg, char *buf, uint_t bufsize)

9109 {

9110 char *val ue;

9112 value = (char *)ofarg->ofnt_cbarg + ofarg->ofnt_id;
9113 (void) strlcpy(buf, value, bufsize);

9114 return (B_TRUE);

new usr/src/cnd/ dl adnf dl adm ¢ 125

9115 }

9117 static void
9118 dl adm of nt _check(of nt _status_t oferr, bool ean_t parsable,

9119
9120 {
9121

9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138 }

9140 /*

* Called fromthe wal ker dl adm wal k_datalink_id() for each IB partition to
* display IB partition specific information.

*

9141
9142
9143

of nt _handl e_t ofnt)

char buf [OFMT_BUFSI ZE] ;

if (oferr == OFMI_SUCCESS)

return;
(void) ofnmt_strerror(ofm, oferr, buf, sizeof (buf));
/

v
*
* Al errors are considered fatal in parsable node.
* NOMEM errors are always fatal, regardl ess of node.
* For other errors, we print diagnostics in human-readabl e
* node and processs what we can.
if (parsable || oferr == OFMI_ENCFI ELDS) {
of mt _cl ose(ofnt);
di e(buf);
} else

}

war n(buf) ;

9144 static dl admstatus_t
9145 print_part(show part_state_t *state, datalink_id_t |inkid)

9146 {
9147
9148
9149
9150
9151
9152
9153

9155
9156
9157
9158
9159
9160
9161

9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173

9175
9176
9177
9178
9179
9180

dl adm part_attr_t attr;

dl adm status_t stat us;

dl adm conf _t conf;

char part_over [MAXLI NKNAMVELEN] ;
char part _nane[MAXLI NKNAVELEN] ;
part _fields_buf _t pbuf ;

bool ean_t force_in_conf = B _FALSE;

/
Get the information about the IB partition fromthe partition
datlink ID " linkid .

— ok ok kX
-

((status = dladm part_info(handl e, linkid, &ttr, state->ps_flags))
I = DLADM STATUS_OX)
return (status);

If an I B Phys link nane was provided on the conmand |ine we have
the Phys link's datalink IDin the ps_over_id field of the state
structure. Proceed only if the IB partition represented by ’'Iinkid
was created over Phys link denoted by ps_over_id. The
"dia_physlinkid field of dladmpart_attr_t represents the |IB Phys
l'ink over which the partition was created.

R EEEE R
-~

(state->ps_over_id ! = DATALI NK_ALL_LI NKI D)
if (state->ps_over_id != attr.dia_physlinkid)
return (DLADM STATUS (K);

/*
* The linkid argunent passed to this function is the datalink ID
* of the IB Partition. Get the partitions nane fromthis |inkid.
*

/
if (dladm datalink_i d2i nfo(handle, linkid, NULL, NULL,
NULL, part_nane, sizeof (part_nane)) != DLADM STATUS_ CK)

new usr/src/cnd/ dl adnf dl adm ¢ 126

9181
9183

9185
9186
9187
9188
9189
9190
9191
9192
9193

9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219

9221
9222

9224
9225

9227
9228

9230

9232
9233

9235

9237
9238 }

9240 /*

return (DLADM STATUS BADARG);
bzero(part_over, sizeof (part_over));

/*
* The 'dia_physlinkid field contains the datalink ID of the |IB Phys
* link over which the partition was created. Use this linkid to get the
* linkover field.
*
if (dladm datalink_i d2i nfo(handl e, attr.dia_physlinkid, NULL, NULL,

NULL, part_over, sizeof (part_over)) != DLADM STATUS CK)

(v0| d) spr|ntf(part over, "?");

state->ps_found = B_TRUE;

/
Read the FFORCE field fromthis datalink’s persistent configuration
dat abase line to deternmine if this datalink was created forcibly.

If this datalink is a tenporary datalink, then it will not have an
entry in the persistent configuration, so check if force create flag
is set in the partition attributes.

*
*
*
*
*
*
*
* W need this two | evel check since persistent partitions brought up
* by up-part during boot will have force create flag al ways set, since
* we want up-part to always succeed even if the port is currently down
*lor P_Key is not yet available in the subnet.
*
f ((status = dl adm getsnap_conf (handl e, linkid, &conf)) ==
DLADM STATUS_OK) {
(void) dladm get _conf_field(handl e, conf, FFORCE,
& orce_in_conf, sizeof (bool ean_t));

dl adm dest r oy_conf (handl e, conf);

} else if (status == DLADM STATUS_NOTFQUND) {
/*

* for a tenp link the force create flag will determ ne
* whether it was created with force fl ag.
*/
force_in_conf = ((attr.dia_flags & DLADM PART_FORCE_CREATE)
1= 0);
}

(void) snprintf(pbuf.part_link, sizeof (pbuf.part_link),
"os", part_name);

(void) snprintf(pbuf.part_over, sizeof (pbuf.part_over),
"os", part_over);

(voi d) snprintf (pbuf.part_pkey, sizeof (pbuf.part_pkey),
"', attr.di a_pkey);

(void) get_linkstate(pbuf.part_link, B_TRUE, pbuf.part_state);

(Vo'd) Snprlntf(pbuf part flags _sizeof (pbuf.part_flags)
----", force_in_conf ? 2 To7Y)¢

of mt _print(state->ps_ofnt, &pbuf);
return (DLADM STATUS_OX);

ARGSUSED */

9241 static int
9242 show_part (dl adm handl e_t dh, datalink_id_t linkid, void *arg)

9243 {
9244
9245
9246 }

((show part_state_t *)arg)->ps_status = print_part(arg, |inkid);
return (DLADM WALK_CONTI NUE) ;

new usr/src/cnd/ dl adnf dl adm ¢

9248 /*
* Show the infornation about the IB partition objects.

9249
9250

9251 static void
9252 do_show part (int argc, char *argv[], const char *use)

9253 {
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266

9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287

9289
9290
9291
9292
9293
9294
9295
9296
9297
9298

9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312

int option;
bool ean_t | _arg = B_FALSE;
uint 32_t flags = DLADM OPT_ACTI VE;
datalink_ id t linkid = DATALI NK_ALL_LI NKI D;
datalink_id_t over _linkid = DATALI NK_ALL_LI NKI D;
char over _| i nk[MAXLI NKNAMVELEN ;
show part_state_t state;
dl adm st atus_t st at us;
bool ean_t o_arg = B_FALSE;
char *fields_str = NULL;
of mt _handl e_t of nt;
of m _status_t oferr;
ui nt _t ofmflags = O;
bzero(&state, sizeof (state));
opterr = O;
while ((option = getopt_long(argc, argv, ":pPl:o:", show part_lopts,
NULL)) !'= -1)
switch (option) {
case 'p’:
state. ps_parsabl e = B_TRUE;
br eak;
case 'P':
flags = DLADM OPT_PERSI ST;
break;
case '|’:
* The data link ID of the IB Phys |ink. Wen this
* argunent is provided we list only the partition
*/obj ects created over this IB Phys link.
*
if (strlcpy(over_link, optarg, MAXLI NKNAMELEN) >=
MAXLI NKNANVELEN)
die("link name too |long");
| _arg = B_TRUE;
break;
case '0':
o_arg = B_TRUE;
fields_str = optarg;
break;
defaul t:
) di e_opterr(optopt, option, use);
}
/*

* Get the partition ID (optional |ast argunent).
*

if (optind == (argc - 1)) {
status = dl adm nane2i nf o(handl e, argv[optind], & inkid, NULL,

NULL, NULL);
if (status != DLADM STATUS_CK)
die_dlerr(status, "invalid partition link nane ' %' ",

argv[optind]);

}
(void) strlcpy(state.ps_part, argv[optind], MAXLI NKNAVELEN);
} else if (optind != argc) {

usage();

new usr/src/cnd/ dl adnf dl adm ¢

9313 }

9315 if (state.ps_parsable && !o0_arg)

9316 die("-p requires -0");

9318 /*

9319 * |f an IB Phys link name was provided as an argunent, then get its
9320 * datalink ID.

9321 *

9322 if (I_arg) {

9323 status = dl adm nanme2i nf o(handl e, over_Ilink, &over_linkid, NULL,
9324 NULL, NULL)

9325 if (status != DLADM STATUS CK)

9326 die_dlerr(status, "invalid link nane ' 9%’ ", over_|ink);
9327 }

9328 }

9330 state.ps_over_id = over_linkid; /* IB Phys link ID */

9331 state. ps_found = B_FALSE;

9332 state. ps_flags = flags;

9334 if (state.ps_parsable)

9335 of mtflags | = OFMI_PARSABLE

9336 oferr = of mt _open(fields_str, part_fields, ofntflags, 0, &ofnt);
9337 dl adm of nt _check(oferr, state.ps_parsable, ofnt);

9338 state.ps_ofmt = ofnt;

9340 /*

9341 * |f a specific IB partition nane was not provided as an argunent,
9342 * wal k all the datalinks and display the information for all

9343 * |B partitions. If IB Phys link was provided limt it to only
9344 * |B partitions created over that |B Phys |ink.

9345 */

9346 if (linkid == DATALI NK_ALL_LINKID) {

9347 (void) dl adm wal k_datal i nk_i d(show_part, handl e, &state,
9348 DATALI NK_CLASS PART, DATALI NK_ANY MEDI ATYPE, fl ags)
9349 } else {

9350 (voi d) show_ part(handle, linkid, &state);

9351 if (state.ps_status != DLADM STATUS_CK) ({

9352 of m _cl ose(ofnt);

9353 die_dlerr(state.ps_status, "failed to show I B partition"
9354 " '9s’", state.ps_part);

9355 }

9356 1

9357 of mt _cl ose(of nt);

9358 }

9361 /*

9362 * Called fromthe wal ker dl adm wal k_datalink_id() for each IB Phys link to
9363 * display IB specific information for these Phys Iinks.

9364 */

9365 static dl admstatus_t

9366 ?ri nt_i b(show_ ib_state_t *state, datalink_id_t phys_Ilinkid)

9367

9368 dladm.ib_attr_t attr;

9369 dl adm st atus_t st at us;

9370 char I'i nknanme[MAXLI NKNAVELEN ;

9371 char pkeyst r [MAXPKEYLEN] ;

9372 int 1;

9373 ib_fields_buf_t i buf;

9375 bzero(&attr, sizeof (attr));

9377 /*

9378 * Get the attributes of the IB Phys link fromactive/Persistent config

new usr/src/cnd/ dl adnf dl adm ¢

9379 * based on the flag passed.

9380 */

9381 if ((status = dladm.ib_info(handl e, phys_linkid, &attr,

9382 state->is_flags)) != DLADM STATUS_OK)

9383 return (status);

9385 if ((state->is_link_id != DATALINK ALL_LINKID) && (state->is_link_id
9386 I'= attr.dia_physlinkid)) {

9387 dladm free_ib_info(&ttr);

9388 return (DLADM STATUS_CX);

9389 1

9391 /*

9392 * Cet the data link name for the phys_linkid. If we are doing showib
9393 * for all 1B Phys links, we have only the datalink IDs not the
9394 * datalink name.

9395 *

9396 if (dladm datalink_i d2i nfo(handl e, phys_linkid, NULL, NULL, NULL,
9397 l'i nkname, MAXLTNKNAVELEN) ! = DLADM STATUS GQ

9398 return (status);

9400 (voi d) snprintf(ibuf.ib_link, sizeof (ibuf.ib_link),

9401 """, |inknane);

9403 (voi d) snprl ntf(ibuf.ib_portnum sizeof (ibuf.ib_portnum,

9404 "og", attr.dia_portnum;

9406 (voi d) snprintf(ibuf.ib_hcaguid, sizeof (ibuf.ib_hcaguid),

9407 % 1 X", attr.dia_hca_guid);

9409 (voi d) snprintf(ibuf.ib_portguid, sizeof (ibuf.ib_portguid),

9410 "1 X", attr.dia_port_guid);

9412 (void) get_linkstate(linknane, B_TRUE, ibuf.ib_state);

9414 I*

9415 * Create a conma separated |ist of pkeys fromthe pkey table returned
9416 * by the | P over IB driver instance.

9417 */

9418 bzero(ibuf.ib_pkeys, attr.dia_port_pkey tbhl_sz * sizeof (ib_pkey_ t));
9419 for (i =0; i < attr.dia_port_pkey thl_sz; T++)

9420 if (attr.dia_port_pkeys[i] !'= TB_ PKEY I NVALI D_FULL &&

9421 attr.dia port “pkeys[i] !'= IB_PKEY_I NVALID_LI M TED) {
9422 if (i ==0

9423 (void) snprintf(pkeystr, MAXPKEYLEN, "%X",
9424 attr.dia_port_pkeys[i]);

9425 el se

9426 (void) snprintf(pkeystr, MAXPKEYLEN, ", %",
9427 attr.dia_port pkeys[l])

9428 (void) strlcat(i buf.Tb _pkeys, pkeyst r, MAXPKEYSTRSZ) ;
9429 }

9430 }

9432 dladm free_ib_info(&ttr);

9434 of m_print(state->is_ofnt, & buf);

9436 return (DLADM STATUS X);

9437 }

9439 /* ARGSUSED */

9440 static int

9441 show_ i b(dl adm handl e_t dh, datalink_id_t linkid, void *arg)

9442 {

9443 ((show_ib_state_t *)arg)->is_status = print_ib(arg, linkid);

9444 return (DLADM WALK_CONTI NUE) ;

new usr/src/cnd/ dl adnf dl adm ¢

9445 }

9447 |
9448
9449
9450
9451

*

* Show the properties of one/all IB Phys |inks.
* show phys command since this will display IB specific i
* Phys link l'ike, HCA GU D, PORT GU D, PKEYS active for
*

/

9452 static void

9453 do_show_i b(int argc,

9454 {
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464

9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481

9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494

9496
9497

9499
9500
9501
9502
9503
9504

9506
9507
9508
9509
9510

char *argv[], const char *use)

this port etc.

int option;

ui nt32_t flags = DLADM OPT_ACTI VE;
datalink_id_t l'inkid = DATALI NK_ALL_LI NKI D;
show_i b_state_t state;

dl adm st atus_t st at us;

bool ean_t o_arg = B_ FALSE

char *Fields_str = NULL;

of mt _handl e_t of nt ;

of m _status_t oferr;

ui nt _t ofmflags = O;
bzero(&state, sizeof (state));
opterr = 0;
while ((option = getopt_long(argc, argv, ":po:", s
NULL)) !'= -
switch (option) {
case 'p’:
state.is_parsable = B _TRUE;
br eak;
case '0':
o_arg = B_TRUE
fields_str = optarg;
br eak;
defaul t:
di e_opterr(optopt, option, use);
}
}
/* get 1B Phys link ID (optional |ast argument) */
if (opt|nd == (argc - 1)) {
status = dl adm nane2i nfo(handl e, argv[opti

NULL, NULL);
if (status I= DLADM_STATUS_G<) {
die_dlerr(status, "invalid IB port
argv[optind]);

(void) strlcpy(state.is_link,
} else if (optind != argc) {
} usage();

if (state is_parsable && !o_arg)
e("-p requires -0");

/*

* linkid is the data link ID of the |IB Phys |ink.
* be DATALI NK_ALL_LI NKI D.

*/
state.isl nk_id = linkid;
state.is_flags = flags;

if (state.is_parsable)

of mflags | = OFMI_PARSABLE;
oferr = of mt _open(fields_str, ib_fields,
dl adm of nt _check(oferr, state.is parsable
state.is_ofnmt = ofnt;

of mfl ags,
ofmt);

argv[optind],

how_| opt s,

nd], & inkid,

name ' 9%’ ",

By defaul t

0, &ofnt);

130

This is different from
i nf or mati on about

the

NULL,

MAXLI NKNAMELEN) ;

it owill

new usr/src/cnd/ dl adnf dl adm ¢ 131

9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533

9535
9536
9537
9538
9539
9540
9541
9542
9543

9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556

9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576

*
*
*
*
*

If we are going to display the information for all 1B Phys |inks
then we’'ll walk through all the datalinks for datalinks of Phys
class and nedia type |B.

R

if (linkid == DATALINK_ALL_LINKID) {
(voi d) dl adm wal k_dat al i nk_i d(sh /i b, handle, &state,

DATALI NK_CLASS_PHYS, DL_I B, ags) ;
} else {
/*
* We need to display the infornmation only for the IB phys |ink
* linkid. Call show_.ib for this link.
*
(VI d) show_ib(handle, linkid, &state);
if (state.is_status != DLADM STATUS_CK) ({
of nt _cl ose(ofnt);
die_| dI err(state is_status, "failed to show I B Phys |ink"
"Us'", state.is I|nk)
}

of m _cl ose(of nt);

Create an | P over Infiniband partition object over an |IB Phys link. The IB
Phys link is associated with an Infiniband HCA port. The IB partition object
is created over a port, pkey conbination. This partition object represents

an instance of |IP over IB interface.
S

/*

ARGSUSED */

static void
do_create_part(int argc, char *argv[], const char *use)
9544 {

int status, option;

int flags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST;
char *pnane;

char *| _arg = NULL;

char *al troot = NULL;

datal i nk_id_t physlinkid = 0;
datalink_id_t partlinkid = 0O;

unsi gned | ong opt _pkey;

i b_pkey_t pkey = 0;

char *endp = NULL;

char propst r[DLADM STRSI ZE] ;

dladmarg_list_t *proplist = NULL;

propstr[O] ='\0";
while ((option = geto t

pt_long(argc, argv, ":tfl:P:Rp:",
part_lopts, NULL)) != -1) {
switch (option) {
case 't':
*
* Create a tenporary |B partition object. This
* instance is not entered into the persistent database
* soit will not be recreated automatically on a
* reboot .
*/
flags & ~DLADM OPT_PERSI ST;
break;
case 'l :
/*

* The IB phys link over which the partition object will
* be created.
*

/

| _arg = optarg;

new usr/src/cnd/ dl adnf dl adm ¢

9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599

9601
9602
9603
9604
9605
9606
9607
9608
9609
9610

9612
9613
9614

9616
9617
9618

9620

9622
9623
9624
9625
9626
9627

9629
9630
9631

9633
9634

9636
9637
9638
9639
9640
9641
9642

br eak;
case 'R :
altroot = optarg;
br eak;
case 'p’:
(void) strlcat(propstr, optarg, DLADM STRSI ZE);
if (strlicat(propstr, ",", DLADM STRSIZE) >=
DLADM STRSI ZE)
die("property list too long "%'", propstr);
break;
case 'P:
/*
* The P_Key for the port, pkey tuple of the partition
* object. This P_Key should exist in the |B subnet.
* The partition creation for a non-existent P_Key wll
* fail unless the -f option is used.
*
* The P_Key is expected to be a hexadeci mal nunber.
*
/
opt _pkey = strtoul (optarg, &endp, 16);
if (errno == ERANGE || opt_pkey > USHRT MAX | |
*endp !="\0")
die("Invalid pkey");
pkey = (ib_pkey_t)opt_pkey;
br eak;
case 'f’:
flags | = DLADM OPT_FORCE;
br eak;
defaul t:
di e_opterr(optopt, option, use);
break;
}
}
/* check required options */
if (!l_arg)
usage();

/* the partition name is a required operand */
if (optind I'= (argc - 1))
usage();

pnanme = argv[argc - 1];

/*

* Verify that the partition object’s name is in the valid link nanme
* format.

i f (!dladm val i d_I| i nkname(pnane))

die("Invalid link name ' %' ", pnane);
/* pkey is a mandatory argunent */
if (pkey ==

usage();
if (altroot != NULL)

altroot_cnd(altroot, argc, argv);

/*

* CGet the data link id of the IB Phys |ink over which we will be
* creating partition object.

*/

if (dl adm nane2i nfo(handle, | _arg,
&physli nkid, NULL, NULL NULL) !'= DLADM STATUS_OK)
d|e("inval|d iink name s’ ", | _arg)

new usr/src/cnd/ dl adnf dl adm ¢

9644 /*
9645 * parse the property list provided with -p option.
9646 *
9647 if (dladm parse_link_props(propstr, &proplist, B_FALSE)
9648 | = DLADM STATUS_OK)
9649 die(Tinvalid IB partition property");
9651 *
9652 * Call the library routine to create the partition object.
9653 */
9654 status = dl adm part_create(handl e, physlinkid, pkey, flags, pnane,
9655 &partlinkid, proplist);
9656 if (status != DLADM STATUS_CK)
9657 die_dlerr(status,
9658 "partition % creation over % failed", pkey, |_arg);
9659 }
9661 /*
9662 * Delete an IP over Infiniband partition object. The partition object should
9663 * be unplunbed before attenpting the del ete.
9664 */
9665 static void
9666 ?o_del ete_part(int argc, char *argv[], const char *use)
9667
9668 int option, flags = DLADM OPT_ACTI VE | DLADM OPT_PERSI ST;
9669 int status;
9670 char *altroot = NULL;
9671 datalink_id_t partid;
9673 opterr = 0;
9674 while ((option = getopt_l ong(argc, argv, "Rt", part_|lopts,
9675 NULL)) I= -
9676 tch (opti on) {
9677 case Tt
9678 flags & ~DLADM OPT_PERSI ST;
9679 br eak;
9680 case 'R :
9681 altroot = optarg;
9682 break;
9683 defaul t:
9684 di e_opterr(optopt, option, use);
9685 }
9686 1
9688 /* get partition nane (required |ast argument)
9689 if (optind !'= (argc - 1))
9690 usage();
9692 if (altroot != NULL)
9693 altroot_cnd(al troot, argc, argv);
9695 *
9696 * CGet the data link id of the partition object given the partition
9697 * nane.
9698 */
9699 status = dl adm nane2i nfo(handl e, argv[optind], &partid, NULL, NULL,
9700 NULL) ;
9701 if (status != DLADM STATUS OK)
9702 die("invalid link name * %’ ", argv[optind]);
9704 /*
9705 * Call the library routine to delete the IB partition. This wll
9706 * result inthe IB partition object and all 1ts resources getting
9707 * del et ed.
*

9708

/

new usr/src/cnd/ dl adnf dl adm ¢

9709
9710
9711
9712
9713 }
/

9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727 |

B

*/

*

status = dl adm part_del et e(handl e,

if (status != DLADM STATUS_CK)

die_dlerr(status, "%:
argv[optind]);

partid, flags);

partition deletion failed",

Bring up all or one IB partition already present in the persistent database
but not active yet.

Thi s sub-comand is used during the systemboot up to bring up all IB
partitions present in the persistent database. This is simlar to a

create partition except that, the partitions are always created even if the
HCA port is down or P_Key is not present in the IB subnet. This is sinilar
to using the 'force’ option while creating the partition except that the 'f’
flag will be set in the flags field only if the create-part for this command
was called with '-f' option.

ARGSUSED */

9728 static void

9729 do_up_part(int argc,
{

9730
9731
9732

9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746

9748
9749 }

char *argv[], const char *use)

datal i nk_id_t partid = DATALI NK_ALL_LI NKI D;
dl adm st atus_t status;

/*

* |If a partition nane was passed as an argunent, get its data |ink
* id. By default we'll attenpt to bring up all IB partition data
* links.

if (argc == 2) {
status = dl adm nane2i nf o(handl e,
NULL, NULL)
if (status != DLADM STATUS_CK)
return;
} else if (argc > 2) {
) usage()

(void) dl adm part_up(handl e,

argv[argc - 1], &partid, NULL,

partid, 0);

new usr/src/ man/ manlnf dl adm 1m 1

R R R R

110751 Sun Feb 9 05:30:59 2014
new usr/src/ man/ manlnf dl adm 1m

4585
3755
3374

dl adm(1n) needs a 'hel p’ subconmmand
dl adm show aggr docunentation
usage of ’'dladm does not match to its nan page

hhkkkkkhkkkkkkkkkkk kAR kR kR hkkhkhkhkkkhkhkkkkkkkkkk kR kkkk kK k%

\" te

.\" Copyright (c) 2008, Sun Mcrosystens, Inc. All Rights Reserved

\" Sun Mcrosystenms, Inc. gratefully acknow edges The Open G oup for perm ssion

.\" The Institute of Electrical and El ectronics Engineers and The Open G oup, ha

.\" are reprinted and reproduced in electronic formin the Sun OS Reference Manu

.\" and Electronics Engineers, Inc and The Qpen Goup. In the event of any discr
" This notice shall appear on any product containing this material.

.\" The contents of this file are subject to the terns of the Common Devel opnent

.\" See the License for the specific |anguage governing pernmissions and limtati

.\" fields enclosed by brackets "[]" replaced with your own identifying informat

. TH DLADM 1M "Feb 10, 2014"

. TH DLADM 1M " Sep 23, 2009"

SH NAME

dladm \- administer data I|inks

. SH SYNOPSI S

.LP

. nf
\f Bdl adm f R
fi

.LP

.n
#endif /* ! codereview */

\deIadmshow-Iink\fR[\fB \fR] [\fB-s\fR [\fB-i\fR\flinterval\fR]] [[\fB-p\fR

\fBdl adm renane-1ink\fR [\fB-RfR \flroot-dir\fR] \fllink\fR \flnewlink\fR

i

.LP

\deIadmdeIete phys\f R \ flphys-link\fR

\f Bdl adm show phys\fR [\fB-P\fR] [\fB-mfR [[\fB-p\fR \fB-o\fR \flfiel d\fR

Cfi

. LP

. nf

\fBdl adm create-aggr\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR] [\fB-P\fR \flpolicy
[\fB-T\fR\flItime\fR [\fB-u\fR \fladdress\fR] \fB-I\fR \flether-1ink1\fR [

\fBdl adm nodi fy-aggr\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR [\fB-P\fR \flpolicy
[\fB- T\fR\fltIn’E\fR] [\fB-u\fR \fladdress\fR] \flaggr-link\fR

\ f Bdl adm del et e-aggr\fR [\ B—t\fR] [\fB-RfR \flroot-dir\fR] \flaggr-link\fR

\ f Bdl adm add-aggr\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR] \fB-I\fR \flether-Iink

\flaggr-link\fR

\fBdl adm renpve-aggr\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR \fB-I\fR \flether-|
\fIaggr—Ilnk\fR

\ f Bdl adm show aggr\fR [\fB-PLx\fR] [\fB-s\fR [\fB-i\fR \flinterval\fRl] [[\fB-p\
[\flaggr-link\fR]

fi

.LP

. nf

\fBdl adm create-bridge\fR [\fB-P\fR \flprotect\fR] [\fB-RfR \flroot-dir\fR] [\f
[VfB-mfR \flnax-age\fR] [\fB-h\fR \flhello-tinme\fR] [\fB-d\fR \flforward-d
[\fB-I\fR\fIlink\fR ..] \flbridge-nane\fR

fi

.LP

. nf

\fBdl adm nodi fy-bridge\fR [\fB-P\fR \flprotect\fR] [\fB-RfR\flroot-dir\fR [\f
[\fB-mMfR \flnax-age\fR [\fB-h\fR \flhello-tinme\fR] [\fB-d\fR \flforward-d

new usr/src/ man/ manlnf dl adm 1m 2

59

60 .f

110

112 .

113
114
115
116
117

119
120
121
122
123
124

~\flbridge-narme\fR
i

o [P

. nf
\ f Bdl adm del ete-bridge\fR [\fB-RfR \flroot-dir\fR] \flbridge-nane\fR
i

o [P

. nf
\f Bdl adm add-bridge\fR [\fB-RfR \flroot-dir\fR \fB-I\fR\fllink\fR[\fB-I\fR\
fi

. LP
. nf
\fBdl adm renove-bridge\fR [\fB-RfR \flroot-dir\fR \fB-I\fR\fllink\fR [\fB-I\f
i

.LP

\deIadmshow-brldge\fR[\fB-fIt\fR] [\fB-s\fR [\fB-i\fR \flinterval\fR]] [[\fB-
[\flbridge-nanme\fR]
fi

.LP

nf

f Bdl adm creat e- vl an
f Bdl adm del et e- vl an
FBdI adm showvlan\fR [\

==
——h
polpy)
——r—

\
\
\

.LP
nf
\fB Bdl adm scan-wi fi\fR [[\fB-p\
\ f Bdl adm connect-wi fi\fR [
[\fB-s\fR none | we
[\fBmfRa | b |
adm di sconnect
ad

\ f Bdl
\ f Bdl adm show wi fi\

—

f B
f B R,...11 [\fIlwifi-link\fR]
Cfi

.LP

. nf

\f Bdl adm show-ether\fR [\fB-x\fR [[\fB-p\fR \fB-o\fR\fIfield\fR,...]] [\flet
fi

. LP
nf
dl adm set -1 i nkprop\fR

\fB oot-dir\fR \fB-p\fR \flI
\ fBdl adm reset -1 i nkprop\

\fB

Cfi

pr
root-dir\fR] [\fB-p\f R\f
B-o\fR\fIfieldfR,...]]

T

f
dl adm show- | i nkprop\ f R

v

\fBdl adm creat e- secobj\fR
\ f Bdl adm del et e- secobj \ fR
\ f Bdl adm show secobj \fR [\
i

ﬂﬁvﬁﬁ:[—

.LP

. nf

\ fBdl adm create-vnic\fR
{factory \fB-n\fR\
[\fB-V\fR \flvlan-i

\ f Bdl adm del et e- vni c\ f

ink\fR [\fB-
{random [
R=\flvalu
oot-dir\f

iy —
= =

new usr/src/ man/ manlnf dl adm 1m 3

125 \fBdl adm showvnic\fR [\fB-pP\fR] [\fB-s\fR [\fB-i\fR \flinterval\fR]] [\fB-o\fR
126 [\fB-I\fR\fIlink\fR] [\flvnic-link\fR]

127 . fi

129 . LP

130 . nf

131 \fBdl adm cr eat e- et her st ub\ f R [VfB-t\fR] [\fB-RfR\flroot-dir\fR] \fletherstub\f
132 \fBdl adm del ete-etherstub\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR] \fletherstub\f
133 \f Bdl adm show et herstub\fR [\fl et herstub\fR]

134 . fi

136 .LP

137 . nf

138 \fBdl adm create-i ptun\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR \fB-T\fR \fltype\f
139 \fliptun-link\fR

140 \fBdl adm nodi fy-i ptun\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR] [\fB-s\fR \fltsrc\
141 \fBdl adm del ete-i ptun\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR] \fliptun-link\fR
142 \fBdl adm showi ptun\fR [\fB-P\fR] [[\fB-p\fR] \fB-o\fR\fIfield\fR,] [\flip
143 . fi

145 . LP

146 . nf

147 \fBdl adm show usage\fR [\fB-a\fR] \fB-f\fR \flfilenane\fR [\fB-p\fR \flplotfile\
148 [\fB-e\fR\fItime\fR [\fllink\fR]

149 .fi

151 . LP

152 . nf

153 \fBdl adm hel p\f R [\ f | subcommand\ f R]

154 . fi

156 #endif /* ! codereview */

157 . SH DESCRI PTI ON

158 .sp

159 .LP

160 The \fBdl adm fR command is used to administer data-links. A data-link is

161 represented in the systemas a \fBSTREAMS DLPI\fR (v2) interface which can be
162 plunbed under protocol stacks such as \fBTCP/IP\fR Each data-link relies on
163 either a single network device or an aggregation of devices to send packets to
164 or receive packets froma network

165 .sp

166 . LP

167 Each \fBdl adm f R subcommand operates on one of the follow ng objects:

168 .sp

169 .ne 2

170 .na

171 \fB\fBlink\fRfR

172 . ad

173 .sp .6

174 .RS 4n

175 A dat alink, identified by a name. In general, the nane can use any al phanuneric
176 characters (or the underscore, \fB_\fR), but nust start with an al phabetic

177 character and end with a nunber. A datalink name can be at nost 31 characters,
178 and the ending nunmber nust be between 0 and 4294967294 (inclusive). The ending
179 nunber must not begin with a zero. Datalink names between 3 and 8 characters
180 are recommended.

181 .sp

182 Sone subconmmands operate only on certain types or classes of datalinks. For

183 those cases, the follow ng object nanes are used:

184 .sp

185 .ne 2

186 .na

187 \fB\fBphys-link\fRfR

188 . ad

189 .sp .6

190 . RS 4n

new usr/src/ man/ manlnf dl adm 1m

191
192

194
195

A physical datalink.
. RE

.sp
.ne 2

196 .n

197
198
199
200
201

a
\fB\fBvlan-1ink\fRfR
.ad

.sp .6

. RS 4n

A VLAN dat al i nk.

202 . RE

204
205
206
207

.sp
.ne 2

.na
\fB\fBaggr-link\fRfR

208 . ad

209
210
211

.sp .6
. RS 4n

An aggregation datalink (or a key; see NOTES).

212 . RE

214
215

.sp
.ne 2

216 .na

217
218
219
220
221

\fB\fBether-link\fRfR
.ad

"RS 4n

A physi cal Ethernet datalink.

222 . RE

224
225
226
227

.sp
.ne 2

. ha
\fB\fBwifi-link\fRfR
d

228 . al

229
230
231

.sp .6
. RS 4n
A WFi datalink.

232 .RE

234
235

.sp
.ne 2

236 .na

237
238
239
240
241
242
243

\fB\fBvnic-link\fRfR

.ad

.Sp .6

.RS 4n

A virtual network interface created on a link or an \fBetherstub\fR It is a
pseudo device that can be treated as if it were an network interface card on a
machi ne.

244 . RE

246
247
248
249
250
251
252
253

.sp
ne 2

\fB\fBI ptun-l1ink\fRfR
sp 6

RS 4n
An IP tunnel |ink.

254 . RE

256

. RE

new usr/src/ man/ manlnf dl adm 1m

258
259
260
261
262
263
264
265
266
267

269
270
271
272
273
274
275
276
277
278
279

280 .

282
283
284
285
286
287
288
289
290
291
292
293
294
295

.sp
.ne 2

.na
\fB\fBdev\f R fR
.ad

.Sp .6

. RS 4n

A network device, identified by concatenation of a driver name and an instance
nunber .

. RE

.sp
.ne 2

.na
\fB\ f Bet herstub\f R fR
.ad

.sp .6

. RS 4n

An Et hernet stub can be used instead of a physical NNCto create VNICs. VNI Cs
created on an \fBetherstub\fR will appear to be connected through a virtual
switch, allow ng conplete virtual networks to be built w thout physical

har dwar e.

RE

.sp
.ne 2

.na
\fB\fBbridge\fRfR
.ad

.sp .6

. RS 4n

A bridge instance, identified by an administratively-chosen name. The nane may
use any al phanuneric characters or the underscore, \fB \fR but nmust start and
end with an al phabetic character. A bridge nane can be at nost 31 characters.
The nane \fBdefaul t\fR is reserved, as are all names starting with \fBSUNWfR

.sp
Note that appending a zero (\fBO\fR) to a bridge name produces a valid |ink
name, used for observability.

296 . RE

298
299
300
301
302
303
304
305
306
307
308
309

311
312
313
314
315
316
317
318
319
320
321
322

.sp
.ne 2

. na
\fB\fBsecobj\fR fR
.ad

.sp .6

. RS 4n

A secure object, identified by an admi nistrativel y-chosen nane. The nane can
use any al phanuneric characters, as well as underscore (\fB \fR), period
(\fB\&\fR), and hyphen (\fB-\fR). A secure object name can be at nobst 32
characters.

. RE

. SS "Options"

.sp

.LP

Each \fBdl adm f R subconmand has its own set of options. However, nmany of the
subcommands have the followi ng as a common option:

.sp

.ne 2

. na
\fB\fB-RfR \flroot-dir\fR \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

. RS 4n

new usr/src/ man/ manlnf dl adm 1m

323
324

Specifies an alternate root directory where the operation-such as creation,
del etion, or renani ng-should apply.

325 . RE

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

. SS " SUBCOMVANDS"

.sp

.LP

The fol |l owi ng subcommands are supported:
.sp

.ne 2

.na

\ fB\f Bdl adm show | i nk\ f \
[[\fB-p\fRl \fB-o\fR\flIfie
.ad

.sp .6

. RS 4n

Show | ink configuration information (the default) or statistics, either for all
datalinks or for the specified link \fllink\fR By default, the systemis
configured with one datalink for each known network device.

.sp

.ne 2

B-i\fR\flinterval\fR]]

_.._h

)
S
o

.ha
\fB\fB-o\fR\flfield\fR,...], \fB--output\fR=\fIfield\fR,...]\fR

.ad

.sp .6

. RS 4n

A case-insensitive, conma-separated |list of output fields to display. Wien not
nodi fied by the \fB-s\fR option (described below), the field name nust be one
of the fields listed below, or the special value \fBall\fR to display all
fields. By default (w thout \fB-o\fR), \fBshow|ink\fR displays all fields.
.sp

.ne 2

. na
\fB\fBLINK\fR f R

.ad

.sp .6

. RS 4n

The nane of the datalink.

361 . RE

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

.sp
.ne 2

. ha
\f B\ f BCLASS\f R f R
.ad

.sp .6

. RS 4n

The class of the datalink. \fBdladmfR distingui shes between the foll ow ng
cl asses:

.sp
.ne 2

. na
\ f B\ f Bphys\fR fR
.ad

.sp .6

. RS 4n

A physical datalink. The \fBshow phys\fR subcomrand di spl ays nore detail for
this class of datalink.

381 .RE

383
384
385
386
387
388

.sp
.ne 2

.na
\fB\fBaggr\fR fR
.ad

.sp .6

new usr/src/ man/ manlnf dl adm 1m

389 . RS 4n

390 An | EEE 802.3ad |ink aggregation. The \fBshow aggr\fR subconmand di spl ays nore
391 detail for this class of datalink

392 .RE

394 .sp

395 .ne 2

396 .na

397 \fB\fBvlan\fR fR

398 . ad

399 .sp .6

400 . RS 4n

401 A VLAN datalink. The \fBshow vl an\fR subcommand di spl ays nore detail for this
402 cl ass of datalink.

403 . RE

405 .sp

406 .ne 2

407 . na

408 \fB\fBvnic\fR fR

409 . ad

410 .sp .6

411 . RS 4n

412 A virtual network interface. The \fBshow vnic\fR subcomand di spl ays nore
413 detail for this class of datalink

414 . RE

416 . RE

418 .sp

419 .ne 2

420 . na

421 \fB\fBMIW\fR fR

422 . ad

423 .sp .6

424 . RS 4n

425 The maxi mum transm ssion unit size for the datalink being displayed
426 . RE

428 .sp
429 .ne 2

430 . na

431 \fB\f BSTATE\f R f R

432 . ad

433 .sp .6

434 . RS 4n

435 The link state of the datalink. The state can be \fBup\fR \fBdown\fR, or
436 \ f Bunknown\ f R

437 . RE

439 .sp

440 .ne 2

441 . na

442 \fB\fBBRIDGE\fR fR

443 . ad

444 .sp .6

445 . RS 4n

446 The name of the bridge to which this link is assigned, if any
447 . RE

449 . sp

450 .ne 2

451 . na

452 \fB\f BOVER f R fR
453 . ad

454 .sp .6

new usr/src/ man/ manlnf dl adm 1m

455 . RS 4n

456 The physical datalink(s) over which the datalink is operating. This applies to
457 \fBaggr\fR, \fBbridge\fR and \fBvlan\fR cl asses of datalinks. A VLANis

458 created over a single physical datalink, a bridge has nultiple attached Iinks
459 and an aggregation is conprised of one or nore physical datalinks

460 . RE

462 When the \fB-o\fR option is used in conjunction with the \fB-s\fR option, used
463 to display link statistics, the field nane nmust be one of the fields |isted
464 bel ow, or the special value \fBallI\fRto display all fields

465 .sp

466 .ne 2

467 . na

468 \fB\fBLINK\fR fR

469 . ad

470 .sp .6

471 . RS 4n

472 The nane of the datalink

473 . RE

475 . sp

476 .ne 2

477 .na

478 \f B\ f Bl PACKETS\ f R f R

479 . ad

480 .sp .6

481 . RS 4n

482 Nunber of packets received on this |ink
483 . RE

485 . sp

486 .ne 2

487 . na

488 \fB\fBRBYTES\f R\ f R

489 . ad

490 .sp .6

491 . RS 4n

492 Nunber of bytes received on this link
493 . RE

495 .sp

496 .ne 2

497 . na

498 \fB\fBI ERRORS\fR f R
499 . ad

500 .sp .6

501 . RS 4n

502 Nunber of input errors
503 . RE

505 .sp

506 .ne 2

507 .na

508 \f B\ f BOPACKETS\f R\ f R

509 . ad

510 .sp .6

511 . RS 4n

512 Nunmber of packets sent on this link
513 . RE

515 .sp

516 .ne 2

517 .na

518 \fB\f BOBYTES\f R f R
519 . ad

520 .sp .6

new usr/src/ man/ manlnf dl adm 1m

521
522
17

. RS 4n
Nunmber of bytes sent on this |ink.
Nunber of bytes received on this l|ink.

523 . RE

525
526
527
528
529
530
531
532
533

535 .

537
538
539
540
541
542
543
544
545
546

548
549
550
551
552
553
554
555
556

558
559
560
561
562
563
564
565
566

568
569
570
571
572
573
574
575
576
577

.sp
.ne 2

.na
\ f B\ f BOERRORS\ f R\ f R
.ad

.sp .6

. RS 4n
Nunber of output errors.
. RE

RE

.sp
.ne 2

.na
\fB\fB-p\fR \fB--parseable\fRfR
.ad

.sp .6
. RS 4n

Di spl ay using a stabl e machi ne-parseable format. The \fB-o\fR option is

required with \fB-p\fR See "Parseabl e Qutput Format", bel ow
. RE

.sp
.ne 2

. na
\fB\fB-P\fR, \fB--persistent\fRfR
.ad

.sp .6

. RS 4n

Di splay the persistent |ink configuration.
.RE

.sp
.ne 2

.na
\fB\fB-s\fR \fB--statistics\fRfR
.ad

.sp .6

. RS 4n

Display link statistics.

. RE

.sp
.ne 2

. na
\fB\fB-i\fR\flinterval\fR, \fB--interval\fR=\flinterval \fRfR
.ad

.Sp .6

.RS 4n

Used with the \fB-s\fR option to specify an interval, in seconds,
statistics should be displayed. If this option is not specified,
wi || be displayed only once.

578 . RE

580

582
583
584
585

. RE

.sp
.ne 2

.na
\fB\fBdl admrenanme-link\fR [\fB-RfR \flroot-dir\fR \fllink\fR

at whi ch
statistics

new usr/src/ man/ manlnf dl adm 1m 10

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

604

606
607
608
609
610
611
612
613
614
615
616

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

648
649
650
651

\flnewlinkK\fRfR
.ad
.sp .6

.RS 4n

Rename \fllink\fR to \flnewlink\fR This is used to give a |link a nmeaningful

nanme, or to associate existing link configuration such as link properties of a
renoved device with a new device. See the \fBEXAMPLES\fR section for specific

exanpl es of how this subcommand is used.

.sp

.ne 2

. ha
\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

. RS 4n

See "Options," above.
. RE

. RE

.sp
.ne 2

.na
\fB\f Bdl adm del et e-phys\fR \fl phys-1ink\fRfR
.ad

.sp .6

.RS 4n

This command is used to delete the persistent configuration of a link

associ ated wi th physical hardware which has been renpved fromthe system See
the \ f BEXAMPLES\ f R secti on.

. RE

.sp
.ne 2

.ha

\f B\ f Bdl adm show phys\fR [\fB-P\fR] [[\fB-p\fR] \fB-o\fR\flfield\fR[,...]]
[\fB-HAfR] [\flphys-link\fRI\fR

.ad

.sp .6

. RS 4n

Show t he physical device and attributes of all physical links, or of the naned
physical link. Wthout \fB-P\fR, only physical links that are available on the
runni ng system are displ ayed.

.sp

.ne 2

.na
\fB\fB-HfRfR

.ad

.sp .6

.RS 4n

Show hardwar e resource usage, as returned by the NIC driver. Qutput from
\fB-H\ fR di spl ays the follow ng el enents:

.sp

.ne 2

. na
\fB\fBLINK\fR fR
.ad

.sp .6

.RS 4n
A physi cal device corresponding to a NIC driver.
.RE

.sp
.ne 2

. ha
\fB\f BGROUP\fR fR

new usr/src/ man/ manlnf dl adm 1m 11

652
653
654
655

.ad

.sp .6

. RS 4n

A collection of rings.

656 . RE

658
659
660
661
662
663
664
665
666

668
669
670
671
672
673
674
675
676
677

679
680
681
682
683
684
685
686

.Sp
.ne 2

.na
\ f B\ f BGROUPTYPE\ f R f R

.ad

.sp .6

.RS 4n

RX or TX. All rings in a group are of the sane group type.
.RE

.sp
.ne 2

. na
\fB\f BRINGS\f R f R
.ad

.sp .6

. RS 4n

A hardware resource used by a data link, subject to assignnent by a driver to
di fferent groups.

. RE

.sp
.ne 2

.na
\fB\f BCLI ENTS\f R f R

.ad

.Sp .6

.RS 4n

MAC clients that are using the rings within a group.

687 . RE

689

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

711
712
713
714
715
716
717

.RE

.sp
.ne 2

. na
\fB\fB-o\fR\fIfield\fR \fB--output\fR=\flfieldfRfR

.ad

.sp .6

.RS 4n

A case-insensitive, conma-separated |list of output fields to display. The field
name nmust be one of the fields listed below, or the special value \fBall\fR to
display all fields. For each link, the followi ng fields can be displayed:

.sp

.ne 2

. na
\fB\f BLINK\fR fR
.ad

.sp .6

.RS 4n

The nane of the datalink.
. RE

.sp
.ne 2

.na
\fB\f BMEDI A fR fR
.ad

.sp .6

. RS 4n

new usr/src/ man/ manlnf dl adm 1m 12

718
719

721
722
723
724
725
726
727
728
729

731
732
733
734
735
736
737
738
739

741
742
743
744
745
746
747
748
749
750
751

753
754
755
756
757
758
759
760

The nedia type provided by the physical datalink.
. RE

.sp
.ne 2

. na
\fB\f BSTATE\ f R f R

.ad

.sp .6

.RS 4n

The state of the link. This can be \fBup\fR, \fBdown\fR, or \fBunknown\fR
. RE

.sp
.ne 2

.na
\fB\f BSPEED\f R f R
.ad

.sp .6

. RS 4n

The current speed of the link, in nmegabits per second.
. RE

.sp
.ne 2

.na
\f B\ f BDUPLEX\ f R f R

.ad

.sp .6

.RS 4n

For Ethernet links, the full/half duplex status of the link is displayed if the
link state is \fBup\fR The duplex is displayed as \fBunknown\fR in all other
cases.

.RE

.sp
.ne 2

.na
\fB\fBDEVICE\f R fR

.ad

.sp .6

.RS 4n

The nane of the physical device under this |ink.

761 . RE

765
766
767
768
769
770
771
772
773
774

776
777
778
779
780
781
782
783

.RE

.sp
.ne 2

.na
\fB\fB-p\fR \fB--parseable\fRfR
ad

.sp .6

. RS 4n

Di spl ay using a stabl e machi ne-parseable format. The \fB-o\fR option is
required with \fB-p\fR See "Parseabl e Qutput Fornat", bel ow.

. RE

.sp
.ne 2

.nha
\fB\fB-P\fR \fB--persistent\fRfR

.ad

.sp .6

. RS 4n

Thi s option displays persistent configuration for all links, including those

new usr/src/ man/ manlnf dl adm 1m 13

784 that have been renpved fromthe system The output provides a \fBFLAGS\fR

785 colum in which the \fBr\fR flag indicates that the physical device associated
786 with a physical |ink has been renpved. For such links, \fBdelete-phys\fR can be
787 used to purge the link’s configuration fromthe system

788 . RE

790 . RE

792 .sp

793 .ne 2

794 . na

795 \fB\fBdl adm create-aggr\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR [\fB-P\fR
796 \flpolicy\fRl [\fB-L\fR \flnmode\fR] [\fB-T\fR\fltine\fR [\fB-u\fR

797 \fladdress\fR] \fB-I\fR \flether-linkI\fR [\fB-I\fR \flether-link2\fR ..]

798 \flaggr-linkK\fRfR

799 . ad

800 .sp .6

801 . RS 4n

802 Conbine a set of links into a single | EEE 802.3ad |ink aggregati on nanmed

803 \flaggr-link\fR The use of an integer \flkey\fR to generate a |ink nane for
804 the aggregation is also supported for backward conpatibility. Many of the

805 \fB*\fR\ fB-aggr\fR subconmands bel ow al so support the use of a \flkey\fR to
806 refer to a given aggregation, but use of the aggregation link name is

807 preferred. See the \fBNOTES\fR section for nore information on keys.

808 .sp

809 \fBdl adm fR supports a nunber of port selection policies for an aggregation of
810 ports. (See the description of the \fB-P\fR option, below.) If you do not

811 specify a policy, \fBcreate-aggr\fR uses the default, the L4 policy, described
812 under the \fB-P\fR option.

813 .sp

814 .ne 2

815 . na

816 \fB\fB-I\fR \flether-l1ink\fR, \fB--link\fR=\flether-link\fRfR

817 . ad

818 .sp .6

819 . RS 4n

820 Each Ethernet link (or port) in the aggregation is specified using an \fB-1\fR
821 option followed by the nane of the link to be included in the aggregation.
822 Multiple links are included in the aggregation by specifying multiple \fB-I1\fR
823 options. For backward conpatibility with previous versions of Solaris, the
824 \fBdl adm f R command al so supports the using the \fB-d\fR option (or

825 \fB--dev\fR) with a device name to specify |inks by their underlying device
826 name. The other \fB*\fR fB-aggr\fR subconmands that take \fB-1\fRoptions also
827 accept \fB-d\fR

828 . RE

830 .sp

831 .ne 2

832 .na

833 \fB\fB-t\fR \fB--tenmporary\fRfR

834 . ad

835 .sp .6

836 . RS 4n

837 Specifies that the aggregation is tenporary. Tenporary aggregations |last until
838 the next reboot.

839 . RE

841 .sp

842 .ne 2

843 .na

844 \fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR

845 . ad

846 .sp .6

847 . RS 4n

848 See "Options," above.

849 . RE

new usr/src/ man/ manlnf dl adm 1m 14

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

877
878
879
880
881
882
883
884
885
886

888
889
890
891
892
893
894
895
896
897
898
899

901
902

903 .
904 .i
905 .

906

907 .
908 .
909 .

911
912
913
914
915

.sp
.ne 2

.na
\fB\fB-P\fR\flpolicy\fR, \fB--policy\fR=\flpolicy\fRfR
.ad
. br

. na
\fB\fR

.ad

.sp .6

. RS 4n

Specifies the port selection policy to use for |oad spreading of outbound
traffic. The policy specifies which \fldev\fR object I's used to send packets. A
policy is a list of one or nore |ayers specifiers separated by commas. A |ayer
specifier is one of the follow ng:

.sp
.ne 2

.na
\fB\fBL2A\fR fR
.ad

.sp .6

. RS 4n

Sel ect outbound device according to source and destination \fBMAC\fR addresses
of the packet.

. RE

.sp
.ne 2

.na
\fB\fBL3\fRfR

.ad

.Sp .6

.RS 4n

Sel ect outbound device according to source and destination \fBIP\fR addresses
of the packet.

.RE

.sp
.ne 2

. na
\fB\fBLAfRfR

.ad

.sp .6

. RS 4n

Sel ect out bound devi ce according to the upper layer protocol information
contained in the packet. For \fBTCP\fR and \fBUDP\fR, this includes source and
destination ports. For IPsec, this includes the \fBSPI\fR (Security Paraneters
I ndex) .

.RE

For exanple, to use upper |ayer protocol information, the follow ng policy can
be used:

Note that policy L4 is the default.

.sp

To use the source and destination \fBMAC\fR addresses as well as the source and
destination \fBIP\fR addresses, the follow ng policy can be used:

.sp

new usr/src/ man/ manlnf dl adm 1m

916

917 .

918

919 .
920 .
921 .

923 .

925
926
927
928
929
930
931
932
933

Lin +2

.sp
.ne 2

.na
\fB\fB-L\fR \flnpde\fR \fB--lacp-node\fR=\flnode\fR fR
.ad

.sp .6
. RS 4n
Speci fi es whether \fBLACP\fR should be used and, if used, the node in which it
shoul d operate. Supported values are \fBoff\fR \fBactive\fR or \fBpassive\fR

934 . RE

936
937
938
939
940
941

942 .

943
944
945
946
947
948
949

951
952
953
954
955
956
957
958
959
960
961

965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

.sp
.ne 2

.nha
\fB\fB-T\fR\flItinme\fR, \fB--lacp-timer\fR-\fItime\fRfR

.ad

. br

na

\fB\fR

.ad

.sp .6

.RS 4n

Specifies the \fBLACP\fR tiner value. The supported values are \fBshort\fR or
\fBlong\fRjjj.

.RE

.sp
.ne 2

.na
\fB\fB-u\fR \fladdress\fR, \fB--unicast\fR=\fladdress\fRfR

.ad

.sp .6

.RS 4n

Specifies a fixed unicast hardware address to be used for the aggregation. If
this option is not specified, then an address is automatically chosen fromthe
set of addresses of the conponent devices.

.RE

. RE

.sp
.ne 2

.na
\ f B\ f Bdl adm nodi fy
\flpolicy\fR [\fB:
\fladdress\fR] \fla
.ad

.sp .6

. RS 4n

Modi fy the paraneters of the specified aggregation.
.sp

.ne 2

- \fB-P\fR
- f

ag
L\
99

= —Q
Q
=

.na
\fB\fB-t\fR \fB--tenporary\fRfR
ad

'sp .6
RS 4n

15

new usr/src/ man/ manlnf dl adm 1m 16

982
983
984

986
987

988 .

989

990 .

991
992
993
994

996
997
998
999
1000
1001
1002
1003
1004
1005

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

1018
1019
1020
1021
1022
1023

1024 .

1025
1026
1027
1028
1029
1030
1031

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1045
1047

Specifies that the nodification is tenporary. Tenporary aggregations |ast until
the next reboot.
. RE

.sp
.ne 2

na
\fB\fB-RfR \flroot-dir\fR \fB--root-dir\fR=\flroot-dir\fRfR
ad

.sp .6

. RS 4n

See "Options," above.
. RE

.sp
.ne 2

.na
\fB\fB-P\fR \flpolicy\fR \fB--policy\fR=\flpolicy\fRfR

.ad

.Sp .6

.RS 4n

Specifies the port selection policy to use for |oad spreading of outbound
traffic. See \fBdl admcreate-aggr\fR for a description of valid policy val ues.
.RE

.sp
.ne 2

. na
\fg\fB-L\fR \flnode\fR, \fB--lacp-node\fR=\flnode\fRfR
.a

.sp .6

. RS 4n

Speci fi es whether \fBLACP\fR should be used and, if used, the nbde in which it
shoul d operate. Supported values are \fBoff\fR, \fBactive\fR or \fBpassive\fR
. RE

.sp
.ne 2

.nha
\fB\fB-T\fR\fltime\fR \fB--lacp-timer\fRE\fItime\fRfR
.ad

. br

na

\fB\fR

.ad

.sp .6

. RS 4n

Specifies the \fBLACP\fR tiner val ue.
\fBlong\fR

.RE

The supported values are \fBshort\fR or

.sp
.ne 2

.na
\fB\fB-u\fR \fladdress\fR, \fB--unicast\fR=\fladdress\fRfR

.ad

.sp .6

. RS 4n

Specifies a fixed unicast hardware address to be used for the aggregation. I|f
this option is not specified, then an address is automatically chosen fromthe
set of addresses of the conponent devices.

. RE

. RE

.sp

new usr/src/ man/ manlnf dl adm 1m

1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

.ne 2

.na

\fB\fBdl adm del ete-aggr\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR]
\flaggr-link\fRfR

.ad

.sp .6

. RS 4n

Del etes the specified aggregation.

.sp
.ne 2

.na
\fB\fB-t\fR \fB--tenmporary\fRfR
.ad

.sp .6

. RS 4n

Specifies that the deletion is tenporary. Tenporary deletions last until the
next reboot.

1065 . RE

1067
1068
1069
1070
1071
1072
1073
1074

.sp
.ne 2

. na
\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

. RS 4n

See "Options," above.

1075 . RE

1077

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1099
1100
1101
1102
1103
1104
1105
1106
1107

.RE

.sp
.ne 2

.na
\fB\fBdl adm add-aggr\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR] \fB-I|
\flether-linkI\fR [\fB--link\fR=\flether-link2\fR. ..] \flaggr-link
.ad

.sp .6

. RS 4n

Adds links to the specified aggregation.

.sp

.ne 2

\fR
\fRfR

. ha
\fB\fB-I\fR \flether-1ink\fR, \fB--link\fR=\flether-l1ink\fRfR
.ad

.sp .6
. RS 4n
Speci fi es an Ethernet

link to add to the aggregation. Miultiple links can be
added by supplying multipl i
.RE

e \fB-1\fR options.

.sp
.ne 2

.na
\fB\fB-t\fR \fB--tenporary\fRfR

.ad

.sp .6

. RS 4n

Specifies that the additions are tenporary. Tenporary additions |ast
next reboot.

until the

1108 . RE

1110
1111
1112
1113

.sp
.ne 2

. ha
\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR

17

new usr/src/ man/ manlnf dl adm 1m 18

1114
1115
1116
1117
1118

1120

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

1142
1143
1144
1145
1146
1147
1148
1149
1150

.ad

.sp .6

. RS 4n

See "Options," above.
.RE

. RE

.sp
.ne 2

.na
\fB\fBdl adm renove-aggr\fR [\ fB-
\ f

R [\fB-RfR\flroot-dir\fR] \fB-1\fR
\flether-linkI\fR [\fB--1\fR= |
.ad

f
her-link2\fR ..] \flaggr-link\fRfR

.sp .6
. RS 4n
Rernoves |inks fromthe specified aggregation.

.sp
.ne 2

.na
\fB\fB-I\fR \flether-l1ink\fR \fB--link\fR=\flether-link\fRfR
.ad

.sp .6

. RS 4n

Specifies an Ethernet link to remove fromthe aggregation.
be added by supplying multiple \fB-1\fR options.

. RE

Ml tiple links can

.sp
.ne 2

.na
\fB\fB-t\fR \fB--tenporary\fRfR
.ad

.sp .6

.RS 4n

Specifies that the renovals are tenporary. Tenporary renoval
next reboot.

last until the

1151 . RE

1153
1154
1155
1156
1157
1158
1159
1160
1161

1163

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

.sp
.ne 2

.na

\fB\fB-RfR \flroot-dir\fR
.ad

.sp .6

. RS 4n

See "Options," above.

. RE

\fB--root-dir\fR=\flroot-dir\fRfR

.RE

.sp
.ne 2

. na

\fB\fBdl adm show aggr\fR [\fB-PLX\fR] [\fB-s\fR [\fB-i
[[\fB-p\fR \fB-o\fR\fIfield\fR[,...]] [\flaggr-Iink\
.ad

.Sp .6

.RS 4n

Show aggregation configuration (the default), \fBLACP\fR information, or
statistics, either for all aggregations or for the specified aggregation.

\fR\flinterval\fR]]
f f

f
RI\fR

.sp
By default (with no options), the followi ng fields can be displ ayed:
.sp

.ne 2

.na

new usr/src/ man/ manlnf dl adm 1m 19

1180
1181
1182
1183
1184
1185

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244

\fB\fBLINK\fR f R
.ad
.sp .6

.RS 4n

The nane of the aggregation |ink.
. RE

.sp
.ne 2

.na
\fB\f BPOLICWfR fR

.ad

.sp .6

. RS 4n

The LACP policy of the aggregation. See the \fBcreate-aggr\fR \fB-P\fR option
for a description of the possible val ues.

.RE

.sp
.ne 2

.na
\ f B\ f BADDRPOLI CN f R f R
.ad

.sp .6

.RS 4n

Either \fBauto\fR if the aggregation is configured to automatically configure
its unicast MAC address (the default if the \fB-u\fR option was not used to
create or nodify the aggregation), or \fBfixed\fR if \fB-u\fR was used to set
a fixed MAC address.

.RE

.sp
.ne 2

.na
\ f B\ f BLACPACTI VITWf R f R

.ad

.sp .6

.RS 4n

The LACP npode of the aggregation. Possible values are \fBoff\fR \fBactive\fR
or \fBpassive\fR, as set by the \fB-1\fR option to \fBcreate-aggr\fR or

\ f Bnodi fy-aggr\ f R

.RE

.sp
.ne 2

.na
\f B\ f BLACPTI MER f R f R

.ad

.sp .6

.RS 4n

The LACP tiner value of the aggregation as set by the \fB-T\fR option of
\fBcreate-aggr\fR or \fBnodify-aggr\fR

. RE

.sp
.ne 2

.na
\fB\f BFLAGS\fR f R

.ad

.sp .6

. RS 4n

A set of state flags associated with the aggregation. The only possible flag is
\fBf\fR which is displayed if the adnministrator forced the creation the
aggregation using the \fB-f\fR option to \fBcreate-aggr\fR Qher flags night
be defined in the future.

1245 . RE

new usr/src/ man/ manlnf dl adm 1m 20

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266

1268
1269
1270
1271
1272
1273
1274
1275

The \ fBshow aggr\fR conmand accepts the foll ow ng options:

.sp
.ne 2

.na
\fB\fB-L\fR, \fB--lacp\fRfR
.ad

.Sp .6

.RS 4n

Di spl ays detailed \fBLACP\fR information for the aggregation |ink and each
underlying port. Mst of the state information displayed by this option is
defined by | EEE 802.3. Wth this option, the follow ng fields can be displayed:
.sp

.ne 2

. na
\fB\f BLINK\fR fR
.ad

.sp .6

. RS 4n

The nane of the aggregation |ink.
.RE

.sp
.ne 2

.na
\fB\f BPORT\f R f R

.ad

.sp .6

.RS 4n

The nane of one of the underlying aggregation ports.

1276 . RE

1278
1279
1280
1281
1282
1283
1284
1285
1286

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297

1299
1300
1301
1302
1303
1304
1305
1306
1307

1309
1310
1311

.sp
.ne 2

. na
\ f B\ f BAGGREGATABLE\ f R\ f R
.ad

.sp .6

. RS 4n

Wiet her the port can be added to the aggregation.
.RE

.sp
.ne 2

.na
\fB\f BSYNC\fR f R

.ad

.sp .6

. RS 4n

If \fByes\fR, the system considers the port to be synchronized and part of the
aggregati on.

. RE

.sp
.ne 2

.na
\fB\f BCOLL\f R f R
.ad

.sp .6

. RS 4n

If \fByes\fR, collection of incomng franes is enabled on the associated port.
.RE

.sp

.ne 2
. ha

new usr/src/ man/ manlnf dl adm 1m 21

1312 \fB\fBDIST\fRfR

1313 . ad

1314 .sp .6

1315 . RS 4n

1316 If \fByes\fR, distribution of outgoing franes is enabled on the associ ated
1317 port.

1318 . RE

1320 .sp

1321 ne 2

1322

1323 \f B\ f BDEFAULTED\ f R f R

1324 . ad

1325 .sp .6

1326 . RS 4n

1327 If \fByes\fR, the port is using defaulted partner information (that is, has not
1328 received LACP data fromthe LACP partner).

1329 . RE

1331 .sp

1332 ne 2

1333

1%4\fEfBB@HEmefR

1335 . ad

1336 .sp .6

1337 . RS 4n

1338 If \fByes\fR the receive state of the port is in the \fBEXPIRED\ fR state.
1339 . RE

1341 .RE

1343 .sp

1344 .ne 2

1345

1346\fB\fB-x\fR \fB--extended\fRfR

1347 . ad

1348 .sp .6

1349 . RS 4n

1350 Di spl ay additional aggregation information including detailed information on
1351 each underlying port. Wth \fB-x\fR, the followi ng fields can be displayed:
1352 .sp

1353 ne 2

1354

1355 \fB\fBLI NK\ f RV f R

1356 . ad

1357 .sp .6

1358 . RS 4n

1359 The nane of the aggregation |ink.

1360 . RE

1362 .sp

1363 ne 2

1364

1365 \fB\fBPCRT\fR\fR

1366 . ad

1367 .sp .6

1368 . RS 4n

1369 The name of one of the underlying aggregation ports.
1370 . RE

1372 .sp

1373 ne 2

1374

1375 \f B\ f BSPEED\ f R\ f R
1376 . ad

1377 .sp .6

new usr/src/ man/ manlnf dl adm 1m 22

1378
1379

. RS 4n
The speed of the link or port in megabits per second.

1380 . RE

1382
1383

.sp
.ne 2

1384 .na

1385

\f B\ f BDUPLEX\ f R f R
d

1386 . a

1387
1388
1389
1390
1391
1392

1394
1395

.sp .6

. RS 4n

The full/half duplex status of the link or port is displayed if the link state
is \fBup\fR The duplex status is displayed as \fBunknown\fR in all other
cases.

. RE

.sp
.ne 2

1396 .na

1397

\fB\f BSTATE\fR fR
d

1398 . a

1399
1400
1401
1402

1404
1405
1406
1407
1408
1409
1410
1411

.sp .6

.RS 4n

The link state. This can be \fBup\fR, \fBdown\fR, or \fBunknown\fR
.RE

.sp
.ne 2

.na
\ f B\ f BADDRESS\ f R\ f R

.ad

.sp .6

. RS 4n

The MAC address of the link or port.

1412 . RE

1414
1415

.sp
.ne 2

1416 .na

1417

\ f B\ f BPORTSTATE\ f R f R
d

1418 . a

1419
1420
1421
1422

.sp .6

. RS 4n

Thi s indicates whether the individual aggregation port is in the \fBstandby\fR
or \fBattached\fR state.

1423 . RE

1425

1427
1428
1429
1430

.RE

.sp
.ne 2

. ha
\fB\fB-o\fR\flIfield\fR,...], \fB--output\fR=\fIfield\fR[,...]\fR
d

1431 . a

1432
1433
1434
1435
1436
1437
1438
1439

1441
1442
1443

.sp .6

. RS 4n

A case-insensitive, conma-separated list of output fields to display. The field
name nmust be one of the fields |isted above, or the special value \fBallI\fR to
display all fields. The fields applicable to the \fB-o\fR option are limted to
those listed under each output node. For exanple, if using \fB-L\fR only the
fields listed under \fB-L\fR, above, can be used with \fB-o\fR.

. RE

.sp
.ne 2
.na

new usr/src/ man/ manlnf dl adm 1m 23

1444

\fB\fB-p\fR \fB--parseable\fRfR

1445 . ad

1446
1447
1448
1449

.sp .6

.RS 4n

Di spl ay using a stable machi ne-parseable format. The \fB-o\fR option is
required with \fB-p\fR See "Parseabl e Qutput Fornat", bel ow.

1450 . RE

1452
1453

.sp
.ne 2

1454 .na

1455

\fB\fB-P\fR, \fB--persistent\fRfR
d

1456 . a

1457
1458
1459
1460

.sp .6

. RS 4n

Di spl ay the persistent aggregation configuration rather than the state of the
runni ng system

1461 . RE

1463
1464
1465
1466
1467
1468
1469
1470

.sp
ne 2

\fB\fB—s\fR \fB--statistics\fRfR
ad
.sp .6

RS 4n
Di spl ays aggregation statistics.

1471 .RE

1473
1474
1475
1476

.sp
.ne 2

. na
\fB\fB-i\fR\flinterval \fR, \fB--interval\fR=\flinterval \fRfR
d

1477 .a

1478
1479
1480
1481
1482

.sp 6

RS 4

Used \Mth the \fB-s\fR option to specify an interval, in seconds,
statistics should be displayed. If this option is not speci fi ed,
wiI| be displayed only once.

at which
statistics

1483 . RE

1485

1487
1488
1489
1490
1491
1492
1493

1494

1495
1496
1497
1498
1499
1500
1501
1502
1503

1504

1505

.RE

.sp
.ne 2

B\deI adm create
root-dir\fR] [

\f \fB-RfR
\fl

\flhello-tine\fR]

\fl

a

Imax-age\fR] [\fB-h\fR
\fR

———
—
-y
-0 -
=
.
Pyl
—_———
py)
—
——

df or ce-protocol \ e-name\fR fR

.sp .6

. RS 4n

Create an 802. 1D bridge instance and optionally assign one or nore network
links to the new bridge. By default, no bridge instances are present on the
system

.sp

In order to bridge between I|inks,
Each bridge instance is separate,
bri dges.

sp

.ne 2

you nust create at |east one bridge instance.
and there is no forwardi ng connection between

1506 . na

1507

\fB\fB-P\fR \flprotect\fR \fB--protect\fR=\flprotect\fRfR
d

1508 . al

1509

.sp .6

new usr/ src/ man/ manlnf dl adm 1m 24
1510 . RS 4n
1511 Specifies a protection nethod. The defined protection nmethods are \fBstp\fR for

1512
1513

the Spanning Tree Protocol and trill for \fBTRILL\fR, which is used on
RBri dges. The default value is \fBstp\fR

1514 . RE

1516
1517
1518
1519
1520
1521
1522

1523 See

.Sp
.ne 2

. na
\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

.RS 4n
"Options, "

above.

1524 . RE

1526
1527

.sp
.ne 2

1528 .na

1529

\fB\fB-p\fR \flpriority\fR \fB--priority\fR-\flpriority\fRfR
d

1530 . a

1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

1542
1543

.sp .6

RS 4n

SpeC|f|es the Bridge Priority. This sets the |EEE STP priority value for
determ ning the root bridge node in the network. The default value is
\fB32768\f R Valid values are \fBO\fR (highest priority) to \fB61440\fR (| owest
priority), in increments of 4096.

sp
If a value not evenl y divisible by 4096 is used, the systemsilently rounds
downward to the next |ower value that is divisible by 4096.

. RE

.sp
.ne 2

1544 .na

1545

\fB\fB-mM fR \flnmax-age\fR \fB--max-age\fR=\flmax-age\fR fR
d

1546 . a

1547
1548
1549
1550
1551
1552
1553
1554

.sp .6

.RS 4n

Speci fies the maxi num age for configuration information in seconds. This sets
the STP Bridge Max Age paranmeter. This value is used for all nodes in the
network if this node is the root bridge. Bridge link information ol der than
this tine is discarded. It defaults to 20 seconds. Valid values are from6 to
40 seconds. See the \fB-d\fR \flforward-delay\fR paranmeter for additional
constraints.

1555 . RE

1557
1558

.sp
.ne 2

1559 .na

1560
1561
1562
1563
1564
1565
1566
1567
1568

1570
1571

\fB\fB-h\fR \flhello-time\fR \fB--hello-tine\fR=\flhello-tine\fRfR

.ad

.sp .6

. RS 4n

Specifies the STP Bridge Hello Tinme paranmeter. \WWen this node is the root node,
it sends Configuration BPDUs at this interval throughout the network. The
default value is 2 seconds. Valid values are from1l to 10 seconds. See the
\fB-d\fR \flforward-del ay\fR parameter for additional constraints.

.RE

.sp
.ne 2

1572 .na

1573

\fB\fB-d\fR \flforward-delay\fR, \fB--forward-del ay\fR=\fIforward-delay\fR fR
d

1574 . al

1575

.sp .6

new usr/src/ man/ manlnf dl adm 1m

1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586

1588
1589
1590
1591

1593
1594
1595
1596

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626

. RS 4n

Specifies the STP Bridge Forward Del ay paraneter.
node, then all bridges in the network use this timer to sequence the |ink
states when a port is enabled. The default value is 15 seconds.

are from4 to 30 seconds.
Sp

Bri dges nust obey the follow ng two constraints:

.sp
Lin +2

. nf

2 * (\flforward-delay\fR - 1.0) >= \flmax-age\fR
\flmax-age\fR >= 2 * (\flhello-time\fR + 1.0)

fi

.in -2
.sp

Any paraneter setting that would violate those constraints is treated as an
error and causes the command to fail
provides valid alternatives to the supplied val ues.
. RE

.sp
.ne 2

.na
\fB\fB-f\fR \fIforce-protocol\fR
\fB--force-protocol\fR=\flforce-protocol\fRfR

.ad
.sp .6
.RS 4n

Speci fies the MSTP forced nmaxi num supported protocol .
Valid val ues are non-negative integers.
support RSTP or MSTP, so this currently has no effect.
from being used in the future,
or \fB2\fR for STP and RSTP.

RE

.sp
.ne 2

. na
\FBUfB-I\fR\fITink\fR, \fB--1ink\fR=\fllink\fRfR
.ad

.sp .6
.RS 4n

Specifies one or nore links to add to the new y-created bridge.
to creating the bridge and then adding one or nore |inks,
\ f Badd- bri dge\ f R subconmand. However,
entire comrand fails, and the new bridge itself
l'inks on the same command Ii ne,
permitted to create bridges without
assi gnnments, see the \fBadd-bridge\fR subcommand.

1627 . RE

1629
1630
1631
1632

1634
1635
1636
1637
1638
1639
1640

1641 .

Bridge creation and |ink assignment
privilege. Bridge creation mght fail

installed on the system
.RE

.sp
.ne 2

na

B\ f Bdl adm nodi fy
root-dir\fR] [

force-protocol\

Wien this node is the root

Val id val ues

with a diagnostic nessage.

The default value is 3.
i mpl ement ati on does not

the paranmeter may be set to \fBO\fR for STP only

This is simlar

if any of the links cannot be added,
is not created. To add multiple
repeat this option for each link.
For nore infornmation about

require the \fBPRIV_SYS DL_CONFI G fR

if the optional bridging feature is not

- e
\ f

hello-tine\fR] [\fB-d\fR
f f e-name\fR fR

new usr/src/ man/ manlnf dl adm 1m 26

1642
1643
1644
1645
1646
1647
1648
1649
1650

1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667

1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700

1702
1703
1704
1705
1706
1707

.sp .6

. RS 4n

Modi fy the operational paraneters of an existing bridge. The options are the
sane as for the \fBcreate-bridge\fR subconmand, except that the \fB-1\fR option
is not permtted. To add |links to an existing bridge, use the \fBadd-bridge\fR
subcommand.

.sp
Bridge parameter nodification requires the \fBPRIV_SYS DL_CONFI G fR privilege.
.RE

.sp
.ne 2

.na
\fB\fBdl adm del ete-bridge\fR [\fB-RfR \flroot-dir\fR] \flbridge-nane\fR fR
.ad

.sp .6

.RS 4n

Del ete a bridge instance. The bridge being deleted nust not have any attached
links. Use the \fBrenove-bridge\fR subcommand to deactivate |inks before

del eting a bridge.

.sp
Bridge deletion requires the \fBPRI V_SYS_DL_CONFI G fR privil ege.

.sp
The \fB-RfR (\fB--root-dir\fR) option is the same as for the
\ f Bcr eat e- bri dge\ f R subconmand.

. RE

.sp

.ne 2

.na

\fB\f Bdl adm add-bridge\fR [\fB-RfR \flroot-dir\fR \fB-I\fR\fllink\fR
[\fB-I\fR\flIlink\fR ..] \flbridge-nane\fR fR

.ad

.sp .6

. RS 4n

Add one or nore links to an existing bridge. If multiple links are specified,
and addi ng any one of themresults in an error, the command fails and no
changes are made to the system

.sp
Link addition to a bridge requires the \fBPRI V_SYS DL_CONFIGfR privilege.

.sp

A link may be a nmenber of at npbst one bridge. An error occurs when you attenpt
to add a link that already belongs to another bridge. To nove a link fromone
bridge instance to another, renove it fromthe current bridge before adding it
to a new one.

.sp
The l'inks assigned to a bridge nmust not also be VLANs, VNICs, or tunnels. Only
physi cal Ethernet datalinks, aggregation datalinks, wireless Iinks, and

Et hernet stubs are permtted to be assigned to a bridge.

.sp

Li nks assigned to a bridge nust all have the same MIU. This is checked when the
link is assigned. The link is added to the bridge in a deactivated formif it
is not the first link on the bridge and it has a differing MU

.sp
Note that systens using bridging should not set the \fBeeprom fR(1M
\ f Bl ocal - nac- address?\fR variable to fal se.

.sp
The options are the same as for the \fBcreate-bridge\fR subcommand.
.RE

.sp
.ne 2
.na
\ f B\ f Bdl adm r enp
[\fB-I\fR\flIi

R[\fB-RfR \flroot-dir\fR \fB-I\fR\fllink\fR
in r \fRf
.ad

ve- bridge\f
K\fR ..] \flbridge-nane\fR fR

new usr/src/ man/ manlnf dl adm 1m 27

1708
1709
1710
1711
1712
1713
1714
1715
1716
1717

1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742

.sp .6

. RS 4n

Renove one or nore links froma bridge instance. If nultiple links are

speci fied, and renoving any one of themwould result in an error, the command
fails and none are renoved.

.sp

Link renoval froma bridge requires the \fBPRI V_SYS DL_CONFIG fR privil ege.

.sp
The options are the sanme as for the \fBcreate-bridge\fR subcommand.
. RE

.sp
.ne 2
.nha
\ f B\ f Bdl adm show- bri dge\fR [
\Vflfiel

fB-flt\fR] B-s\fR[\fB-i\fR\flinterval \fR]]
[[\fB-p\fR \fB-o\fR ield\ f]
.ad

\ [\f f
ield\fR ...] [\flbridge-name\fR]\fR
.sp .6
. RS 4n
Show t he running status and configuration of bridges, their attached |inks,
| earned forwarding entries, and \fBTRILL\fR ni cknanme databases. \Wen showi ng
overal | bridge status and configuration, the bridge name can be omtted to show
all bridges. The other forns require a specified bridge.

.sp
The show bridge subcommand accepts the follow ng options:

.sp
.ne 2

. na
\fg\fB-i\fR \flinterval\fR \fB--interval\fR=\flinterval \fRfR
. al

.sp .6

. RS 4n

Used with the \fB-s\fR option to specify an interval, in seconds, at which
statistics should be displayed. If this option is not specified, statistics
wi I | be displayed only once.

1743 . RE

1745
1746
1747
1748
1749
1750
1751
1752
1753
1754

1756
1757
1758
1759
1760
1761
1762
1763
1764
1765

1767
1768
1769
1770
1771
1772
1773

.sp
.ne 2

.na
\fB\fB-s\fR, \fB--statistics\fRfR
.ad

.sp .6

. RS 4n

Di splay statistics for the specified bridges or for a given b
l'inks. This option cannot be used with the \fB-f\fR and \fB-t
. RE

ridge’ s attached
\fR options.

.sp
.ne 2

.na
\fB\fB-p\fR \fB--parseable\fRfR
.ad

.Sp .6

.RS 4n

Di splay using a stable machi ne-parsable fornat. See "Parsable Qutput Format,"
bel ow.

.RE

.sp
.ne 2

.na
\fB\fB-o\fR\flIfield\fR,...], \fB--output\fR=\fIfield\fR[,...]\fR
.ad

.sp .6

. RS 4n

new usr/src/ man/ manlnf dl adm 1m 28

1774
1775
1776

A case-insensitive, conma-separated |ist of output fields to display. The field
nanes are described bel ow. The special value all displays all fields. Each set
of fields has its own default set to display when \fB-o\fR is not specified.

1777 .RE

1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789

1791
1792
1793
1794
1795
1796
1797
1798
1799

1801
1802
1803
1804
1805
1806
1807
1808
1809
1810

1812
1813
1814
1815
1816
1817
1818
1819
1820
1821

1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

1834
1835
1836
1837
1838
1839

By default, the \fBshow bridge\fR subcommand shows bridge configuration. The
following fields can be shown:

.sp
.ne 2

.na
\fB\f BBRIDGE\ f R f R

.ad

.sp .6

. RS 4n

The nane of the bridge.
.RE

.sp
.ne 2

.na
\ f B\ f BADDRESS\ f R\ f R
.ad

.sp .6

. RS 4n

The Bridge Unique ldentifier value (MAC address).
. RE

.sp
.ne 2

.na
\fB\fBPRIORITNfR fR

.ad

.Sp .6

.RS 4n

Configured priority value; set by \fB-p\fRwith \fBcreate-bridge\fR and
\ f Bnodi fy-bridge\fR

.RE

.sp
.ne 2

.na
\ f B\ f BBMAXAGE\ f R f R

.ad

.sp .6

. RS 4n

Configured bridge maxi num age; set by \fB-mifRwith \fBcreate-bridge\fR and
\ f Bnodi fy-bridge\fR

. RE

.sp
.ne 2

. na

\ f B\ f BBHELLOTI ME\f R\ f R
.ad

.sp .6

. RS 4n

Configured bridge hello tine; set by \fB-h\fR with \fBcreate-bridge\fR and
\ f Brodi fy- bri dge\ f R
.RE

.sp

.ne 2

.na

\ f B\ f BBFWDDELAY\ f R\ f R
.ad

.sp .6

new usr/src/ man/ manlnf dl adm 1m

1840
1841
1842
1843

1845
1846
1847
1848
1849
1850
1851
1852
1853
1854

1856
1857
1858
1859
1860
1861
1862
1863

. RS 4n

Configured forwarding delay; set by \fB-d\ifRwith \fBcreate-bridge\fR and

\ fBnodi fy-bridge\fR
.RE

.sp

.ne 2

.na

\ f B\ f BFORCEPROTO\ f R\ f R
.ad

.sp .6
. RS 4n

Configured forced maxi num protocol; set by \fB-f\fRwith \fBcreate-bridge\fR

and \fBrodi fy-bridge\fR
.RE

.sp
.ne 2

.na
\fB\fBTCTIME\f R f R
.ad

.sp .6

. RS 4n
Tinme, in seconds, since |ast topology change.

1864 . RE

1866
1867
1868
1869
1870
1871
1872
1873
1874

1876
1877
1878
1879
1880
1881
1882
1883
1884

1886
1887
1888
1889
1890
1891
1892
1893
1894

1896
1897
1898
1899
1900
1901
1902
1903
1904

.sp
.ne 2

.na
\f B\ f BTCCOUNT\ f R\ f R

.ad

.sp .6

. RS 4n

Count of the nunber of topology changes.
. RE

.sp
.ne 2
. na
\fB\f BTCHANGE\ f R f R
.ad

.sp .6
. RS 4n

This indicates that a topol ogy change was detected.
.RE

.sp
.ne 2

.na

\f B\ f BDESROOT\f R f R

. ad

.sp .6

. RS 4n

Bridge Identifier of the root node.
.RE

.sp
.ne 2

.na

\ f B\ f BROOTCOST\ f R\ f R
.ad

.sp .6

.RS 4n
Cost of the path to the root node.
.RE

29

new usr/src/ man/ manlnf dl adm 1m

1906
1907
1908
1909
1910
1911
1912
1913
1914

1916
1917
1918
1919
1920
1921
1922
1923

.sp
.ne 2

. na
\fg\fBRCO PORT\fR fR
. al

.sp .6
.RS 4n

Port nunber used to reach the root node.
.RE

.sp
.ne 2

.na
\ f B\ f BVAXAGE\ f R f R

.ad

.sp .6

.RS 4n

Maxi mum age val ue fromthe root node.

1924 . RE

1926
1927
1928
1929
1930
1931
1932
1933

.sp
.ne 2

.nha
\fB\f BHELLOTI ME\ f R f R
.ad

.sp .6

.RS 4n
Hello time value fromthe root node.

1934 .RE

1936
1937
1938
1939
1940
1941
1942
1943

.sp
.ne 2

.na
\ f B\ f BFWDDELAY\ f R f R

.ad

.sp .6

. RS 4n

Forward del ay val ue fromthe root node.

1944 . RE

1946
1947
1948
1949
1950
1951
1952
1953
1954

1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969

1971

.sp
.ne 2

.na
\f B\ f BHOLDTI ME\ f R f R
. ad

.sp .6

. RS 4n
M ni mum BPDU i nterval .
. RE

By default, when the \fB-o\fR option is not specified,
\f BADDRESS\fR, \fBPRIORI TY\fR, and \fBDESROOT\fR fields are shown.

.sp
When the \fB-s\fR option is specified, the \fBshow bridge\fR subcomrand shows
bridge statistics. The follow ng fields can be shown:

.sp
.ne 2

.na
\fB\f BBRIDGE\ f R f R
.ad

.sp .6

. RS 4n

Bri dge nane.

. RE

.sp

only the \fBBRI DGE\fR,

30

new usr/src/ man/ manlnf dl adm 1m

1972 .ne 2

1973 . na

1974 \fB\f BDROPS\f R f R

1975 . ad

1976 .sp .6

1977 . RS 4n

1978 Nunber of packets dropped due to resource problens.
1979 . RE

1981 .sp

1982 .ne 2

1983 . na

1984 \f B\ f BFORWARDS\ f R f R

1985 . ad

1986 .sp .6

1987 . RS 4n

1988 Nunber of packets forwarded fromone link to another.
1989 . RE

1991 .sp

1992 .ne 2

1993 .na

1994 \f B\ f BMBCAST\f R f R

1995 . ad

1996 .sp .6

1997 .RS 4

1998 Nunber of multicast and broadcast packets handl ed by the bridge.
1999 . RE

2001 .sp

2002 .ne 2

2003 . na

2004 \fB\f BRECWfR fR

2005 . ad

2006 .sp .6

2007 . RS 4n

2008 Nunber of packets received on all attached |inks.
2009 . RE

2011 .sp

2012 .ne 2

2013 .na

2014 \fB\fBSENT\fR f R

2015 . ad

2016 .sp .6

2017 . RS 4n

2018 Nunber of packets sent on all attached |inks.
2019 . RE

2021 .sp

2022 .ne 2

2023 .na

2024 \fB\f BUNKNOM\ f R f R

2025 . ad

2026 .sp .6

2027 . RS 4n

2028 Nunber of packets handl ed that have an unknown destination. Such packets are
2029 sent to all links

2030 . RE

2032 By default, when the \fB-o\fR option is not specified, only the \fBBRI DGE\fR,
2033 \f BDROPS\f R, and \fBFORWARDS\fR fields are shown.

2034 .sp

2035 The \fBshow bridge\fR subconmand al so accepts the follow ng options:

2036 .sp

2037 .ne 2

31

new usr/src/ man/ manlnf dl adm 1m 32

2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054

2056
2057
2058
2059
2060
2061
2062
2063
2064

2066
2067
2068
2069
2070
2071
2072
2073
2074
2075

2077
2078
2079
2080
2081
2082
2083
2084

. ha
\fB\fB-1\fR \fB--link\fRfR
.ad

.sp .6

.RS 4n

Di splays link-related status and statistics infornmation for all links attached
to a single bridge instance. By using this option and wi thout the \fB-s\fR
option, the following fields can be displayed for each |ink:

.sp

.ne 2

.na
\fB\f BLINK\fR fR
.ad

.sp .6

.RS 4n

The I'ink nane
. RE

.sp
.ne 2

.na
\fB\fBINDEX\f R fR
.ad

.sp .6

.RS 4n
Port (link) index nunber on the bridge.
. RE

.sp
.ne 2

. na
\fB\f BSTATE\ f R f R
.ad

.sp .6

. RS 4n

State of the link. The state can be \fBdisabled\fR \fBdiscarding\fR,
\fBlearning\fR, \fBforwarding\fR \fBnon-stp\fR or \fBbad-nu\fR

. RE

.sp
.ne 2

. na
\fB\f BUPTI ME\f R f R

.ad

.sp .6

.RS 4n

Nunmber of seconds since the |last reset or initialization.

2085 . RE

2087
2088
2089
2090
2091
2092
2093
2094

.sp
.ne 2

.na
\ f B\ f BOPERCOST\ f R f R
.ad

.sp .6

. RS 4n
Actual cost in use (1-65535).

2095 . RE

2097
2098
2099
2100
2101
2102
2103

.sp
.ne 2

.na
\ f B\ f BOPERP2P\ f R f R
.ad

.sp .6

. RS 4n

new usr/src/ man/ manlnf dl adm 1m

2104
2105

2107
2108

Th| s indicates whether point-to-point (\fBP2P\fR) node been detected.

.sp
.ne 2

2109 .na

2110
2111
2112
2113
2114

\ f B\ f BOPEREDGE\ f R\ f R
.ad

RS 4n
This i ndicates whet her edge node has been detect ed.

2115 . RE

2117
2118
2119
2120

.sp
.ne 2

.na
\ f B\ f BDESROOT\ f R f R
d

2121 . a

2122
2123
2124

.sp .6
. RS 4n
The Root Bridge ldentifier that has been seen on this port.

2125 . RE

2127
2128

.sp
.ne 2

2129 .na

2130
2131
2132
2133
2134

\ f B\ f BDESCOST\ f R\ f R
.ad

RS 4n
Path cost to the network root node through the designated port.

2135 . RE

2137
2138
2139
2140

.sp
.ne 2

. ha
\ f B\ f BDESBRI DGE\ f R\ f R
d

2141 . al

2142
2143
2144
2145

2147
2148

.sp 6

RS 4

Br|dge Identifier for this port.
.RE

.sp
.ne 2

2149 .na

2150
2151
2152
2153
2154
2155

\ f B\ f BDESPORT\ f R\ f R

.ad

.sp .6

.RS 4n

The 1D and priority of the port used to transmt configuration nessages for
this port.

2156 . RE

2158
2159

.sp
.ne 2

2160 . na

2161
2162
2163
2164
2165

\fB\f BTCACK\ f R\ f R

.ad

.sp .6

. RS 4n

Thi s indicates whet her Topol ogy Change Acknow edge has been seen.

2166 . RE

2168
2169

is specified without the \fB-o\fR option, only the
\fBLINK\fR, \f AE\ \fBUPTIME\f R, and \fBDESROOT\fR fields are shown.

Wien the \fB-I opti n
R, BU

33

new usr/src/ man/ manlnf dl adm 1m

2170
2171
2172
2173
2174

.sp
Wien the \fB-1\fR option is specified, the \fB-s\fR option can be used to
display the following fields for each Iink:

.sp
.ne 2

2175 .na

2176
2177
2178
2179
2180

\fB\f BLINK\fR fR
.ad

.sp .6

.RS 4n

Li nk nane.

2181 . RE

2183
2184
2185
2186

.sp
.ne 2

.na
\fB\f BCFGBPDU f R f R
d

2187 . a

2188
2189
2190

.sp .6
. RS 4n
Nunber of configuration BPDUs received.

2191 . RE

2193
2194

.sp
.ne 2

2195 . na

2196
2197
2198
2199
2200

\f B\ f BTCNBPDU\ f R\ f R

.ad

.sp .6

.RS 4n

Nunber of topol ogy change BPDUs received.

2201 . RE

2203
2204
2205
2206

.sp
.ne 2

. ha
\f B\ f BRSTPBPDU\ f R f R
d

2207 . al

2208
2209
2210

.sp .6
. RS 4n
Nunber of Rapid Spanning Tree BPDUs received.

2211 .RE

2213
2214

.sp
.ne 2

2215 .na

2216
2217
2218
2219
2220

\f B\ f BTXBPDUW f R f R
.ad

"RS 4n
Number of BPDUs transmitted.

2221 .RE

2223
2224
2225
2226
2227
2228
2229
2230

.sp
.ne 2

.nha
\fB\f BDROPS\f R f R

.ad

.sp .6

.RS 4n

Nunber of packets dropped due to resource problens.

2231 . RE

2233
2234
2235

.sp
.ne 2
.na

new usr/src/ man/ manlnf dl adm 1m 35

2236
2237
2238
2239
2240
2241

2243
2244
2245
2246
2247
2248
2249
2250
2251

2253
2254
2255

2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274

2276
2277
2278
2279
2280
2281
2282
2283

\fB\f BRECWfR f R
.ad

.sp .6

.RS 4n

Nunber of packets received by the bridge.
. RE

.sp
.ne 2

.na
\fB\fBXMT\fR fR

.ad

.sp .6

.RS 4n

Nunber of packets sent by the bridge.
.RE

Wien the \fB-o\fR option is not specified, only the \fBLINK\fR, \fBDROPS\fR,
\fBRECWfR, and \fBXM T\fR fields are shown.
. RE

.sp
.ne 2

. na
\fg\fB—f\fR \fB--forwarding\fRfR
.a

.sp .6

. RS 4n

Di spl ays forwarding entries for a single bridge instance. Wth this option, the
followng fields can be shown for each forwarding entry:

.sp
.ne 2

. na
\fB\f BDEST\f R f R

.ad

.sp .6

. RS 4n

Destination MAC address.
. RE

.sp
.ne 2

. na

\fB\f BAGE\f R fR
.ad

.sp .6

.RS 4

Age of entry in seconds and mlliseconds. Ontted for local entries.

2284 . RE

2286
2287
2288
2289
2290
2291
2292
2293
2294

.sp
.ne 2

.na

\fB\f BFLAGS\fR f R

.ad

.sp .6

. RS 4n

The \fBL\fR (local) flag is shown if the MAC address belongs to an attached
link or to a VNIC on one of the attached Iinks.

2295 . RE

2297
2298
2299
2300
2301

.sp
.ne 2

.na
\ f B\ f BOUTPUT\ f R\ f R
.ad

new usr/src/ man/ manlnf dl adm 1m

2302
2303
2304
2305
2306
2307

2309
2310

2311

2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325

2326

2327
2328
2329

36

.sp .6

. RS 4n

For local entries, this is the nane of the attached Iink that has the MAC
address. Otherwi se, for bridges that use Spanning Tree Protocol, this is the
output interface name. For RBridges, this is the output \fBTRILL\fR nicknane.
. RE

When the \fB-o\fR option is not specified, the \fBDEST\fR, \fBAGE\fR,
\fBFLAGS\f R, and \fBOUTPUT\fR fiel ds are shown.
RE

.sp
.ne 2

.na
\fB\fB-t\fR \fB--tril[\fRfR

.ad

.sp .6

. RS 4n

Di spl ays \fBTRILL\fR ni ckname entries for a single bridge instance. Wth this
option, the following fields can be shown for each \fBTRILL\fR ni ckname entry:
.sp

.ne 2

.nha
\fB\fBNICK\fR\ f R
ad

.sp .6

.RS 4n
\fBTRILL\fR ni cknane for this RBridge, which is a nunber from1 to 65535.

2330 . RE

2332
2333
2334
2335
2336
2337
2338
2339

.sp
.ne 2

.na
\fB\f BFLAGS\fR fR

.ad

.sp .6

. RS 4n

The \fBL\fR flag is shown if the nicknane identifies the |ocal system

2340 . RE

2342
2343
2344
2345

2346

2347
2348
2349

.sp
.ne 2

.na
\fB\fBLINK\fR fR
ad

.sp .6

. RS 4n
Li nk name for output when sending nmessages to this RBridge.

2350 . RE

2352
2353
2354
2355
2356
2357
2358
2359
2360

.sp
.ne 2

.na

\ f B\ f BNEXTHOP\ f R\ f R

.ad

.sp .6

. RS 4n

MAC address of the next hop RBridge that is used to reach the RBridge with this
ni cknane.

2361 . RE

2363
2364
2365

2367

Wien the \fB-o\fR option is not specified, the \fBNICK\fR, \fBFLAGS\fR,
\fBLINK\fR, and \fBNEXTHOP\fR fi el ds are shown.
. RE

. RE

new usr/src/ man/ manlnf dl adm 1m

2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385

2386 . f
2387

2388

2390
2391
2392
2393

.sp
.ne 2

.na
\fB\fBdl adm creat e-vl an\f R[t\fR
\flether-link\fR\fB-vV\fR \fl d R [\f
.ad

.Sp .6

.RS 4n

Create a tagged VLAN link with an ID of \flvid\fR over Ethernet |ink
\flether-link\fR The nane of the VLAN link can be specified as
\flvian\fR-\fllink\fR |If the name is not specified, a nanme will be
automatically generated (assuming that \flether-link\fR is \flname\fR flPPA\ fR)
as:

.sp

Lin 42

dlr\fm \fB-I\fR

. nf

<\flnanme\fR><1000 * \flvlan-tag\fR + \fI PPA\f R>
i

in-2

.sp

For exanple, i t he nane
generated is \

.sp

.ne 2

\flether-link\fRis \fBbgel\fR and \flvid\fRis 2,

f
f Bbge2001\ f R

2394 .na

2395

\fB\fB-fA\fR \fB--force\fRfR
d

2396 . al

2397
2398
2399
2400
2401
2402

.sp .6

. RS 4n

Force the creation of the VLAN link. Sone devices do not allow frane sizes

| arge enough to include a VLAN header. When creating a VLAN |ink over such a
device, the \fB-f\fR option is needed, and the MIU of the IP interfaces on the
resulting VLAN nust be set to 1496 instead of 1500.

2403 . RE

2405
2406
2407
2408

.sp
.ne 2

. ha
\fB\fB-I\fR \flether-l1ink\fRfR
d

2409 . al

2410
2411
2412

.sp .6
.RS 4n
Speci fies Ethernet link over which VLAN is created

2413 . RE

2415
2416
2417
2418
2419
2420
2421
2422
2423

.sp
ne 2

\fB\fB t\fR \fB--tenmporary\fRfR

sp .6

RS 4n

Speci fies that the VLAN link is tenporary. Tenporary VLAN |inks last until the
next reboot.

2424 . RE

2426
2427

.sp
.ne 2

2428 .na

2429
2430
2431
2432
2433

\fB\fB-RfR \flroot-dir\fR \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

. RS 4n

See "Options," above.

37

new usr/src/ man/ manlnf dl adm 1m

2434
2436

2438
2439

38
. RE
. RE

.sp
.ne 2

2440 .na

2441
2442

B\ f Bdl adm del et e-

\ f viam\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR]
\flvlan-1ink\fRfR
d

2443 . a

2444
2445
2446

.sp .6
. RS 4n
Del ete the VLAN |ink specified.

2447 .s

2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458

2460
2461
2462
2463
2464
2465
2466
2467

p
The \ fBdel et e- vl an\ f Rsubconmand accepts the foll ow ng options:

.sp
ne 2

\fB\fB t\fR, \fB--tenporary\fRfR
ad

sp .6

RS 4n

Specifies that the deletion is tenporary. Tenporary deletions last until the
next reboot.

.RE

.sp
.ne 2

. na
\fB\fB-RfR \flroot-dir\fR \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

. RS 4n

See "Options," above.

2468 . RE

2470

2472
2473

. RE

.sp
.ne 2

2474 .n

2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486

a
\ f B\ f Bdl adm show-v I n\fR[\fB-P\fR] [[\fB-p\fR \fB-o\fR\flIfield\fR,...]]
[\flvlan-1ink\fR]\

.ad

RS 4n
Di splay VLAN configuration for all VLAN links or for the specified VLAN |ink.

.sp
The \ fBshow vl an\ f Rsubcommand accepts the follow ng options:
.sp

.ne 2

. ha
\fB\fB-o\fR\flIfield\fR,...], \fB--output\fR=\fIfield\fR[,...]\fR
d

2487 . al

2488
2489
2490
2491
2492
2493
2494

.sp .6

. RS 4n

A case-insensitive, conma-separated list of output fields to display. The field
name nmust be one of the fields |listed below, or the special value \fBallI\fR to
display all fields. For each VLAN link, the followi ng fields can be displayed:
.sp

.ne 2

2495 . na

2496
2497
2498
2499

\fB\fBLINK\fR fR
.ad

.sp .6

. RS 4n

new usr/src/ man/ manlnf dl adm 1m 39

2500
2501

2503
2504
2505
2506
2507
2508
2509
2510
2511

2513
2514
2515
2516
2517
2518
2519
2520
2521

2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539

2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551

2553
2554

2556

2558
2559
2560
2561
2562
2563
2564
2565

The nanme of the VLAN |ink.
RE

.sp
.ne 2

. na
\fB\fBVIDIfRfR

.ad

.sp .6

.RS 4n

The 1D associated with the VLAN
. RE

.sp
.ne 2

.na
\fB\f BOVER\ f R f R
.ad

.sp .6

. RS 4n

The nane of the physical |ink over which this VLAN is configured.
. RE

.sp
.ne 2

. na
\fB\f BFLAGS\ f R\ f R

.ad

.sp .6

.RS 4

A set of flags associated with the VLAN |link. Possible flags are:
.sp

.ne 2

.na
\fB\fBf\fRfR

.ad

.sp .6

.RS 4n

The VLAN was created using the \fB-f\fR option to \fBcreate-vlan\fR
.RE

.sp
.ne 2

.na
\fB\fBi\fRfR
.ad

.sp .6
. RS 4n
The VLAN was inplicitly created when the DLPI |ink was opened. These VLAN I|inks
are automatically deleted on last close of the DLPI link (for exanple, when the

IP interface associated with the VLAN |ink is unpl unbed).
. RE

Addi tional flags might be defined in the future.

.RE

. RE

.sp
.ne 2

.nha
\fB\fB-p\fR \fB--parseable\fRfR
.ad

.sp .6

. RS 4n
Di spl ay using a stable machi ne-parseable format. The \fB-o\fR option is

new usr/src/ man/ manlnf dl adm 1m 40

2566
2567

2569
2570
2571
2572
2573
2574
2575
2576
2577

required with \fB-p\fR See "Parseabl e Qutput Format", bel ow
. RE

.sp
.ne 2

.na
\fB\fB-P\fR, \fB--persistent\fRfR

.ad

.sp .6

. RS 4n

Di splay the persistent VLAN configuration rather than the state of the running
system

2578 . RE

2580

2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613

2615
2616
2617
2618
2619
2620
2621
2622

. RE

.sp
.ne 2

.na
\fB\fBdl adm scan-wi fi\fR [[\fB-p\fR] \fB-o\fR\fIfield\fR,...]]
[\flwifi-link\fRI\fR

.ad

.sp .6

. RS 4n

Scans for \fBWFi\fR networks, either on all \fBWFi\fR links, or just on the
specified \flwifi-link\fR

.sp
By default, currently all fields but \fBBSSTYPE\fR are displayed.

.sp
.ne 2

. na
\fB\fB-o\fR\flIfield\fR,...], \fB--output\fR=\flfield\fR,...]\fR
.ad

.sp .6

. RS 4n

A case-insensitive, conma-separated list of output fields to display. The field
name nmust be one of the fields listed below, or the special value \fBallI\fR to
display all fields. For each \fBWFi\fR network found, the follow ng fields can
be di spl ayed:

.sp

.ne 2

. na
\fB\f BLINK\f R f R

.ad

.Sp .6

.RS 4n

The nane of the link the \fBWFi\fR network is on.
. RE

.sp
.ne 2

.ha

\fB\fBESSID\fR\ fR

.ad

.sp .6

. RS 4n

The \fBESSID\fR (nane) of the \fBWFi\fR network.

2623 . RE

2625
2626
2627
2628
2629
2630
2631

.sp
.ne 2

.na
\fB\fBBSSID\fR fR
.ad

.sp .6

. RS 4n

new usr/src/ man/ manlnf dl adm 1m 41

2632
2633
2634
2635

2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647

2649
2650
2651
2652
2653
2654
2655
2656
2657

2659
2660
2661
2662
2663
2664
2665
2666
2667
2668

2670
2671
2672
2673
2674
2675
2676
2677

Ei ther the hardware address of the \fBWFi\fR network’s Access Point (for
\fBBSS\fR networks), or the \fBWFi\fR network’s randoniy generated uni que
token (for \fBIBSS\fR networks).

.RE

.sp
.ne 2

.na
\fB\f BSEQ\f R fR
.ad

.sp .6

. RS 4n

Either \fBnone\fR for a \fBWFi\fR network that uses no security, \fBwep\fR for
a \fBWFi\fR network that requires WEP (Wred Equival ent Privacy), or \fBwpa\fR
for a WFi network that requires WPA (W-Fi Protected Access).

. RE

.sp
.ne 2

.na
\fB\f BMODE\ f R\ f R
.ad

.sp .6

. RS 4n

The supported connecti on nodes: one or nore of \fBa\fR \fBb\fR or \fBg\fR
. RE

.sp
.ne 2

.na
\f B\ f BSTRENGTH\ f R f R

.ad

.sp .6

.RS 4n

The strength of the signal: one of \fBexcellent\fR \fBvery good\fR,
\fBgood\ fR, \fBweak\fR or \fBvery weak\fR

.RE

.sp
.ne 2

.na
\fB\f BSPEED\f R f R

.ad

.sp .6

. RS 4n

The nmaxi mum speed of the \fBWFi\fR network, in nmegabits per second.

2678 . RE

2680
2681
2682
2683

2684

2685
2686
2687
2688
2689

2691

2693
2694
2695
2696
2697

.sp
.ne 2

. ha
\ f B\ f BBSSTYPE\ f R\ f R
ad

.Sp .6

.RS 4n

Either \fBbss\fR for \fBBSS\fR (infrastructure) networks, or \fBibss\fR for
\ f BI BSS\ f R (ad- hoc) networks.

.RE

.RE

.sp
.ne 2

na
\fB\fB-p\fR, \fB--parseable\fRfR
ad

new usr/src/ man/ manlnf dl adm 1m

2698
2699
2700
2701
2702

2704

2706

2707 .

2708
2709
2710
2711
2712
2713

2714
2715

2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741

2743
2744
2745
2746
2747
2748
2749
2750
2751

2753
2754
2755
2756
2757
2758
2759
2760

42

.sp .6

. RS 4n

Di splay using a stable machi ne-parseable format. The \fB-o\fR option is
required with \fB-p\fR See "Parseabl e Qutput Format", bel ow.

.RE

onnect-wi fi\fR [\fB-e\f
key\fR ...] [\fB-s\fR\
open\ f Rl \ f Bshared\fR] [
a\ f RI\fBb\fRI\fBg\f R [

jp——
0300
———
— ==
owW_—0

Connects to a \fBWFi\fR network. This consists of four steps: \fldiscovery\fR
\flifiltration\fR, \flprioritization\fR and \flassociation\fR However, to
enabl e connections to non-broadcast \fBWFi\fR networks and to inprove
performance, if a \fBBSSID\IfR or \fBESSID\fR is specified using the \fB-e\fR or
\fB-i\fR options, then the first three steps are skipped and \fBconnect-wi fi\fR
imediately attenpts to associate with a \fBBSSID\fR or \fBESSID\fR that

mat ches the rest of the provided paranmeters. |f this association fails, but
there is a possibility that other networks matching the specified criteria
exist, then the traditional discovery process begins as specified bel ow.

.sp

The discovery step finds all available \fBWFi\fR networks on the specified
W Fi |ink, which nust not yet be connected. For adm nistrative convenience, if
there is only one \fBWFi\fR link on the system \flw fi-link\fR can be
omtted.

.sp
Once discovery is conplete, the list of networks is filtered according to the
val ue of the follow ng options:

.sp
.ne 2

. na
\fB\fB-e\fR \flessid,\fR\fB--essid\fR=\flessid\fRfR

.ad

.sp .6

.RS 4

Net wor ks that do not have the same \flessid\fR are filtered out.
. RE

.sp
.ne 2

.na
\fB\fB-b\fR \ fBbss\fR|\fBi bss\fR, \fB--bsstype\fR=\fBbss\fR|\fBi bss\fRfR
.ad

.sp .6

.RS 4n

Net wor ks that do not have the same \fBbsstype\fR are filtered out.
. RE

.sp
.ne 2

.na
\fB\fB-mMfR\fBa\fRI\fBb\fRI\fBg\fR \fB--nmode\fR=\fBa\fR|\fBb\fR\fBg\f R fR
.ad

.sp .6

. RS 4n

Net wor ks not appropriate for the specified 802.11 node are filtered out.

2761 . RE

2763

.sp

new usr/src/ man/ manlnf dl adm 1m

2764
2765
2766
2767
2768
2769
2770
2771
2772

2774
2775
2776
2777
2778
2779
2780
2781
2782

.ne 2

.na
\fB\fB-k\fR \flkey,...\fR \fB--key\fR=\flkey, ...\fRfR

.ad

.sp .6

.RS 4n

Use the specified \fBsecobj\fR naned by the key to connect to the network.
Net wor ks not appropriate for the specified keys are filtered out.

.RE

.sp
.ne 2

. na
\fB\fB-s\fR \fBnone\fR|\fBwe
\fB--sec\fR=\f fRI\f
.ad

.sp .6

. RS 4n

Net wor ks not appropriate for the specified security node are filtered out.

2783 . RE

2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800

2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812

2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824

Next, the remaining networks are prioritized, first by signal strength, and
then by nmaxi mum speed. Finally, an attenpt is made to associate with each
network in the list, in order, until one succeeds or no networks renain.

.sp

In addition to the options described above, the follow ng options also control
the behavior of \fBconnect-wifi\fR

.sp

.ne 2

.na
\fB\fB-a\fR \ fBopen\fR|\fBshared\fR, \fB--auth\fR=\fBopen\fR|\fBshared\fR fR
.ad

.Sp .6

.RS 4n

Connect using the specified authentication node.
\fBshared\fR are tried in order.

.RE

By default, \fBopen\fR and

.sp
.ne 2

. na
\fB\fB-c\fR, \fB--create-ibss\fRfR

.ad

.sp .6

. RS 4n

Used with \fB-b ibss\fR to create a new ad-hoc network if one matching the
specified \fBESSID\fR cannot be found. If no \fBESSID\fR i s specified, then
\fB-c -b ibss\fR always triggers the creation of a new ad-hoc network.

. RE

.sp
.ne 2

.na

\fB\fB-T\fR\fltime\fR \fB--tineout\fR=\fItinme\fRfR

.ad

.sp .6

. RS 4n

Speci fies the nunber of seconds to wait for association to succeed. |f
\fltine\fRis \fBforever\fR, then the associate will wait indefinitely. The
current default is ten seconds, but this mght change in the future. Tinmeouts
shorter than the default might not succeed reliably.

2825 . RE

2827
2828
2829

.sp
.ne 2
.na

43

new usr/src/ man/ manlnf dl adm 1m 44

2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844

2846

2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867

\fB\fB-k\fR \flkey,...\fR \fB--key\fR=\flkey,...\fRfR
.ad

.sp .6

.RS 4n

In addition to the filtering previously described, the specified keys will be
used to secure the association. The security node to use will be based on the
key class; if a security npbde was explicitly specified, it nust be conpatible
with the key class. Al keys nust be of the same class.

.sp

For security nodes that support nultiple key slots, the slot to place the key
will be specified by a colon followed by an index. Therefore, \fB-k nykey:3\fR
pl aces \fBmykey\fR in slot 3. By default, slot 1 is assumed. For security nodes
that support nultiple keys, a comma-separated |ist can be specified, with the
first key being the active key.

. RE

.RE

.sp
.ne 2

. na
\fB\fBdl adm di sconnect-wi fi\fR [\fB-a\fR [\flwifi-linkK\fRI\fR

.ad

.sp .6

.RS 4n

Di sconnect fromone or nmore \fBWFi\fR networks. If \flwifi-link\fR specifies a
connected \fBWFi\fR link, then it is disconnected. For adm nistrative
convenience, if only one \fBWFi\fR link is connected, \flwifi-link\fR can be
om tted.

.sp

.ne 2

.na
\fB\fB-a\fR, \fB--all-links\fRfR
.ad

.sp .6

. RS 4n

Di sconnects fromall connected links. This is primarily intended for use by
scripts.

2868 . RE

2870

2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895

. RE

.sp
.ne 2

.na
\fB\fBdl adm showw fi\fR[[\fB-p\fR \fB-o\fR\flfield\fR ...]
[\fiwifi-link\fRI\fR

.ad

.sp .6

.RS 4

Shows \fBW Fi\fR configuration information either for all
for the specified link \flwifi-link\fR

.sp

.ne 2

\fBWFi\fR |inks or

.na
\fB\fB-o\fR \flfield,...\fR \fB--output\fR=\flfield\fRfR
.ad

.sp .6

.RS 4n

A case-insensitive, conma-separated |list of output fields to display. The field
nane nmust be one of the fields listed below, or the special value \fBallI\fR to
display all fields. For each \fBWFi\fR link, the followi ng fields can be

di spl ayed:

.sp

.ne 2

. na

new usr/ src/ man/ manlnf dl adm 1m 45 new usr/src/ man/ manlni dl adm 1m 46
2896 \fB\fBLINK\fR fR 2962 \fB\f BSTRENGTH\ f R\ f R
2897 . ad 2963 . ad
2898 .sp .6 2964 .sp .6
2899 . RS 4n 2965 . RS 4n
2900 The nane of the |ink being displayed. 2966 The connection strength: one of \fBexcellent\fR \fBvery good\fR \fBgood\fR,
2901 . RE 2967 \fBweak\fR, or \fBvery weak\fR
2968 . RE
2903 .sp
2904 .ne 2 2970 .sp
2905 .na 2971 .ne 2
2906 \f B\ f BSTATUS\f R fR 2972 .na
2907 . ad 2973 \fB\f BSPEED\f R f R
2908 .sp .6 2974 . ad
2909 .RS 4 2975 .sp .6
2910 Either \fBconnected\fR if the link is connected, or \fBdisconnected\fRif it is 2976 . RS 4n
2911 not connected. If the link is disconnected, all remaining fields have the val ue 2977 The connection speed, in negabits per second.
2912 \fB--\fR 2978 . RE
2913 . RE
2980 .sp
2915 .sp 2981 .ne 2
2916 .ne 2 2982 .na
2917 .na 2983 \fB\f BAUTH\f R f R
2918 \fB\fBESSIDIfR fR 2984 . ad
2919 . ad 2985 .sp .6
2920 .sp .6 2986 . RS 4n
2921 . RS 4n 2987 Either \fBopen\fR or \fBshared\fR (see \fBconnect-wifi\fR).
2922 The \fBESSID fR (nane) of the connected \fBWFi\fR network. 2988 . RE
2923 . RE
2990 .sp
2925 .sp 2991 .ne 2
2926 .ne 2 2992 .na
2927 .na 2993 \fB\f BBSSTYPE\fR f R
2928 \fB\fBBSSID\fR fR 2994 . ad
2929 . ad 2995 .sp .6
2930 .sp .6 2996 . RS 4n
2931 . RS 4n 2997 Either \fBbss\fR for \fBBSS\fR (infrastructure) networks, or \fBibss\fR for
2932 Either the hardware address of the \fBWFi\fR network’s Access Point (for 2998 \fBIBSS\fR (ad-hoc) networks.
2933 \fBBSS\fR networks), or the \fBWFi\fR network’s random y generated uni que 2999 . RE
2934 token (for \fBIBSS\fR networks).
2935 . RE 3001 By default, currently all fields but \fBAUTH\fR, \fBBSSID\fR, \fBBSSTYPE\fR are
3002 di spl ayed.
2937 .sp 3003 . RE
2938 .ne 2
2939 .na 3005 .sp
2940 \fB\f BSEQ\f R f R 3006 .ne 2
2941 . ad 3007 .na
2942 .sp .6 3008 \fB\fB-p\fR, \fB--parseable\fRfR
2943 . RS 4n 3009 . ad
2944 Either \fBnone\fR for a \fBWFi\fR network that uses no security, \fBwep\fR for 3010 .sp .6
2945 a \fBWFi\fR network that requires WEP, or \fBwpa\fR for a WFi network that 3011 . RS 4n
2946 requires WPA 3012 Displays using a stabl e nachi ne-parseable format. The \fB-o\fR option is
2947 . RE 3013 required with \fB-p\fR See "Parseable Qutput Format", bel ow.
3014 . RE
2949 .sp
2950 .ne 2 3016 . RE
2951 .na
2952 \fB\f BMODE\ f R\ f R 3018 .sp
2953 . ad 3019 .ne 2
2954 .sp .6 3020 . na
2955 . RS 4n 3021 \fB\fBdl adm showether\fR [\fB-x\fR] [[\fB-p\fR] \fB-o\fR\flfield\fR ...]
2956 The supported connection nodes: one or nore of \fBa\fR, \fBb\fR, or \fBg\fR 3022 [\flether-link\fRI\fR
2957 . RE 3023 . ad
3024 .sp .6
2959 .sp 3025 . RS 4n
2960 .ne 2 3026 Shows state infornation either for all physical Ethernet links or for a
2961 .na 3027 specified physical Ethernet Iink.

new usr/src/ man/ manlnf dl adm 1m 47

3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048

3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061

3063
3064
3065
3066
3067
3068
3069
3070
3071

3073
3074
3075
3076
3077
3078
3079
3080
3081

3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093

.sp
The \ fBshow- et her\fR subconmand accepts the foll ow ng options:

.sp
.ne 2

. na
\fB\fB-o\fR\fIfield\fR ..., \fB--output\fR=\fIfield fRfR

.ad

.Sp .6

.RS 4n

A case-insensitive, conma-separated list of output fields to display. The field
nane nmust be one of the fields |listed below, or the special value \fBall\fR to
display all fields. For each link, the followi ng fields can be displayed:

.sp

.ne 2

.na
\fB\f BLINK\fR fR
.ad

.sp .6

. RS 4n

The nane of the link being displayed.
. RE

.sp
.ne 2

.na
\fB\f BPTYPE\f R f R

.ad

.sp .6

.RS 4n

Paranmeter type, where \fBcurrent\fR indicates the negotiated state of the I|ink,
\ f Bcapabl e\ fR i ndi cates capabilities supported by the device, \fBadv\fR
indicates the advertised capabilities, and \fBpeeradv\fR indicates the
capabilities advertised by the |ink-partner.

.RE

.sp
.ne 2

. na
\fB\f BSTATE\ f R f R

.ad

.sp .6

.RS 4n

The state of the Iink.
. RE

.sp
.ne 2

.nha
\fB\f BAUTOfR fR
.ad

.sp .6

.RS 4n
A \fByes\fR/\fBno\fR val ue indicating whether auto-negotiation is advertised.
.RE

.sp
.ne 2

.na
\ f B\ f BSPEED- DUPLEX\ f R\ f R

.ad

.sp .6

. RS 4n

Conbi nati ons of speed and dupl ex val ues available. The units of speed are
encoded with a trailing suffix of \fBGfR (G gabits/s) or \fBMfR (M/s).
Dupl ex val ues are encoded as \fBf\fR (full-duplex) or \fBh\fR (half-duplex).
. RE

new usr/src/ man/ manlnf dl adm 1m 48

3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107

3109
3110
3111
3112
3113
3114
3115
3116

.sp
.ne 2

.na
\fB\f BPAUSE\f R f R
.ad

.sp .6

. RS 4n

Fl ow control information. Can be \fBno\fR indicating no flow control is

avail able; \fBtx\fR, indicating that the end-point can transmt pause franes,
but ignores any received pause frames; \fBrx\fR, indicating that the end-point
recei ves and acts upon received pause franes; or \fBbi\fR indicating

bi -directional flowcontrol.

. RE

.sp
.ne 2

. na
\fB\f BREM FAULT\f R f R

.ad

.sp .6

. RS 4n

Fault detection information. Valid values are \fBnone\fR or \fBfault\fR

3117 . RE

3119
3120

3121

3123
3124
3125
3126
3127
3128
3129
3130
3131
3132

3134
3135
3136
3137
3138
3139
3140
3141
3142
3143

3145

3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159

By default, all fields except \fBREM FAULT\fR are displayed for the "current”
\f BPFTYPE\ f R
RE

.sp
.ne 2

.na
\fB\fB-p\fR, \fB--parseable\fRfR
. ad

.sp .6

. RS 4n

Di spl ays using a stable nmachi ne-parseable format. The \fB-o\fR option is
required with \fB-p\fR See "Parseabl e Qutput Format", bel ow

. RE

.sp
.ne 2

. ha
\fB\fB-x\fR, \fB--extended\fRfR
.ad

.sp .6

. RS 4n

Ext ended output is displayed for \fBPTYPE\fR val ues of \fBcurrent\fR
\ f Bcapabl e\ fR, \fBadv\fR and \fBpeeradv\fR

.RE

.RE

.sp
.ne 2

.nha
\ f B\ f Bdl adm set-1inkprop\fR [\
\flprop\fR=\flvalue\fR[,...] \
.ad

.sp .6

. RS 4n

Sets the values of one or nore properties on the link specified. The list of
properties and their possible values depend on the link type, the network

devi ce driver, and networking hardware. These properties can be retrieved using
\ f Bshow- I i nkprop\f R

.sp

B-RfR \flroot-dir\fR] \fB-p\fR

new usr/src/ man/ manlnf dl adm 1m 49

3160

.ne 2

3161 .na

3162
3163
3164
3165
3166
3167
3168

3170
3171
3172
3173
3174
3175
3176

3177 See

\fB\fB-t\fR \fB--tenporary\fRfR

.ad

.sp .6

.RS 4n

Specifies that the changes are tenporary. Tenporary changes last until the next
reboot .

.RE

.sp
.ne 2

. na
\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

.RS 4n
"Options, "

above.

3178 . RE

3180
3181

.sp
.ne 2

3182 .na

3183
3184

\fB\fB-p\fR \f

prop\fR—\fIvaIue\fR[.], \fB--prop\fR
\flprop\fR=\TfI VIR

value\fR[,

3185 . ad

3186
3187
3188

. br

.na

\fB\fR
d

3189 . al

3190
3191
3192

.sp .6
. RS 4n
A conme-separated |list of properties to set to the specified val ues.

3193 . RE

3195
3196

Note that when the persistent value is set,
sane val ue.

the tenporary val ue changes to the

3197 . RE

3199
3200

.sp
.ne 2

3201 .na

3202
3203

\fB\f Bdl adm reset-1inkp
k

op\fR [\fB-t\fR [\fB-RfR\flroot-dir\fR [\fB-p\fR
\flprop\fR ...] \fllink\fRfR

r
\fR

3204 . ad

3205
3206
3207
3208
3209
3210
3211
3212

.sp .6

. RS 4n

Resets one or nore properties to their values on the link specified. Properties
are reset to the values they had at startup. If no properties are specified,
all properties are reset. See \fBshow|inkprop\fR for a description of
properties.

.sp

.ne 2

3213 .na

3214
3215
3216
3217
3218
3219

\fB\fB-t\fR
.ad

.sp .6

. RS 4n
Specifies that the resets are tenporary. Values are reset to default val ues.
Tenporary resets last until the next reboot.

\fB--tenmporary\fRfR

3220 . RE

3222
3223

.sp
.ne 2

3224 .na

3225

\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR

new usr/src/ man/ manlnf dl adm 1m 50

3226
3227
3228
3229

.ad
.sp .6
. RS 4n

See "Options," above.

3230 . RE

3232
3233
3234
3235

.sp
.ne 2
\fB--prop\fR=\fl prop,

. ha
\EB\fB-p\fR\flprop, ...\fR AfRTR
d

3236 . a

3237
3238
3239

.sp .6
.RS 4n
A commm-separated |ist of properties to reset.

3240 . RE

3242
3243

Not e that when the persistent value is reset,
the sane val ue.

the tenporary val ue changes to

3244 . RE

3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259

.sp
.ne 2

na

\f B\ f Bdl adm sho
\fhfleld\fR[

2

PVER [\fB-P\fR [[\fB-c\fR \fBo\fR
VER\flprop\fR,...]1] [\fllink\fRI\fR

.sp .6

.RS 4n

Show the current or persistent values of one or nore properties, either for all
datalinks or for the specified |ink. By default, current values are shown.

no properties are specified, all available link properties are displayed. For
each property, the following fields are displayed:

.sp

.ne 2

3260 . na

3261

\fB\fB-o\fR\fIfield\fR,...], \fB--output\fR=\fIfieldfRfR
d

3262 . al

3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275

.sp .6

. RS 4n

A case-insensitive, conma-separated list of output fields to display. The field
name nust be one of the fields listed below, or the special value \fBallI\fR to
display all fields. For each link, the followi ng fields can be displayed:

.sp

.ne 2

. na
\fB\fBLINK\fR fR

.ad

.sp .6

. RS 4n

The nane of the datalink.

3276 . RE

3278
3279

.Sp
.ne 2

3280 .na

3281

\fB\f BPROPERT\ f R f R
d

3282 . a

3283
3284
3285

.sp .6
.RS 4n
The nane of the property.

3286 . RE

3288
3289

.sp
.ne 2

3290 .na

3291

\fB\f BPERMfR fR

new usr/src/ man/ manlnf dl adm 1m 51

3292
3293
3294
3295
3296
3297

3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310

3312
3313
3314
3315

3316

3317
3318
3319
3320

.ad

.sp .6

. RS 4n

The read/wite permssions of the property. The value shown is one of \fBro\fR
or \fBrwfR

. RE

.sp
.ne 2

. na
\fB\f BVALUE\ f R f R

.ad

.sp .6

. RS 4n

The current (or persistent) property value. If the value is not set, it is
shown as \fB--\fR If it is unknown, the value is shown as \fB?\fR Persistent
val ues that are not set or have been reset will be shown as \fB--\fR and w ||l
use the system \fBDEFAULT\fR value (if any).

. RE

.sp
.ne 2

. na
\ f B\ f BDEFAULT\f R f R
ad

.sp .6

. RS 4n

The default value of the property. If the property has no default val ue,
\fB--\fR is shown.

3321 . RE

3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333

3335
3336
3337
3338
3339
3340
3341

.sp
.ne 2

.na
\fB\f BPOSSI BLE\ f R f R

.ad

.Sp .6

.RS 4n

A commm-separated |ist of the values the property can have. If the values span
a nurmeric range, \fImn\fR - \flnax\fR m ght be shown as shorthand. If the
possi bl e val ues are unknown or unbounded, \fB--\fR is shown.

.RE

The list of properties depends on the link type and network device driver, and
the avail abl e values for a given property further depends on the underlying
network hardware and its state. General link properties are docunmented in the
\ f BLI NK PROPERTI ES\f R section. However, |ink properties that begin with
"\fB_\fR' (underbar) are specific to a given link or its underlying network
devi ce and subject to change or renpval. See the appropriate network device
driver man page for details.

3342 . RE

3344
3345

3346

3347
3348
3349
3350
3351
3352
3353

3355
3356
3357

.Sp
.ne 2

na
\fB\fB-c\fR \fB--parseable\fRfR
.ad

.sp .6

.RS 4n

Di splay using a stable machi ne-parseable fornat. The \fB-o\fR option is
required with this option. See "Parseable Qutput Format", bel ow

.sp
.ne 2
.na

new usr/src/ man/ manlnf dl adm 1m 52

3358
3359
3360
3361
3362
3363

3365
3366
3367
3368
3369
3370
3371
3372
3373
3374

3376

3378
3379

3380

3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410

3412
3413
3414
3415
3416
3417
3418
3419
3420

\fB\fB-P\fR \fB--persistent\fRfR
.ad

.sp .6

.RS 4n

Di spl ay persistent |ink property information
. RE

.sp
.ne 2

.na
\fB\fB-p\fR \flprop, ...\fR \fB--prop\fR=\flprop, ...\fRfR
ad

.sp .6

. RS 4n

A commm-separated |ist of properties to show. See the sections on link
properties follow ng subcommand descri ptions.

.RE

. RE

.sp
.ne 2

na
\fB\fBdl adm create-secobj\fR [\fB-t\fR] [\fB-RfR\flroot-dir\fR [\fB-f\fR
\fldfile\fR] \fB-c\fR \flclass\fR \flsecobj\fRfR

.a

.sp .6

. RS 4n

Create a secure object named \flsecobj\fR in the specified \flclass\fR to be

| ater used as a WEP or WPA key in connecting to an encrypted network. The val ue
of the secure object can either be provided interactively or read froma file.
The sequence of interactive pronpts and the file format depends on the cl ass of
the secure object.

.sp
Currently, the classes \fBwep\fR and \fBwpa\fR are supported. The \fBWEP\fR
(Wred Equival ent Privacy) key can be either 5 or 13 bytes long. It can be
provided either as an \fBASCII\fR or hexadecimal string -- thus, \fB12345\fR
and \fBOx3132333435\fR are equival ent 5-byte keys (the \fBOx\fR prefix can be
omtted). Afile containing a \fBWEP\fR key nust consist of a single |ine using
either \fBWEP\fR key fornat. The WPA (W-Fi Protected Access) key nust be
provided as an ASCI| string with a length between 8 and 63 bytes.

.sp
Thi s subcommand is only usable by users or roles that belong to the "Network
Link Security" \fBRBAC\fR profile.

.sp
.ne 2

. na
\fB\fB-c\fR \flclass\fR, \fB--class\fR=\flclass\fRfR
.ad

.sp .6

. RS 4n

\flclass\fR can be \fBwep\fR or \fBwpa\fR See precedi ng di scussion.
.RE

.sp
.ne 2

. na
\fB\fB-t\fR \fB--temporary\fRfR

.ad

.sp .6

. RS 4n

Specifies that the creation is tenporary. Tenporary creation last until the
next reboot.

3421 . RE

3423

.sp

new usr/src/ man/ manlnf dl adm 1m 53

3424
3425
3426
3427
3428
3429
3430
3431

3433
3434
3435
3436
3437
3438
3439
3440
3441
3442

.ne 2

. na
\fB\fB-RfR \flroot-dir\fR \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

.RS 4n

See "Options," above.

. RE

.sp
.ne 2

.na
\fB\fB-fAfR\fIfile\fR \fB--file\fRA\fIfile\fRfR
.ad

.sp .6

. RS 4n

Specifies a file that should be used to obtain the secure object’s value. The
format of this file depends on the secure object class. See the \fBEXAMPLES\fR
section for an exanple of using this option to set a \fBWEP\fR key.

3443 . RE

3445

3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465

. RE

.sp
.ne 2

.na
\ f B\ f Bdl adm del et e-secobj\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR]
\flsecobj\fR[,...]\fR

ad

.sp .6

. RS 4n

Del ete one or nore specified secure objects. This subcommand is only usable by
users or roles that belong to the "Network Link Security" \fBRBAC\fR profile.

.sp
.ne 2

.nha
\fB\fB-t\fR \fB--tenporary\fRfR
.ad

.sp .6

. RS 4n

Specifies that the deletions are tenporary. Tenporary deletions last until the
next reboot.

3466 . RE

3468
3469
3470
3471
3472
3473
3474
3475

.sp
.ne 2

. na
\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

. RS 4n
See "Options," above.

3476 .RE

3478

3480
3481
3482
3483
3484
3485
3486
3487
3488
3489

.RE

.sp
.ne 2

.na
\f B\ f Bdl adm show secobj \fR [\fB-P\fR] [[\fB-p\fR \fB-o\fR\flIfield\fR,...]]
[\flsecobj\fR ...]\fR

.ad

.sp .6

. RS 4n

Show current or persistent secure object information. If one or nore secure
objects are specified, then information for each is displayed. Otherwi se, all

new usr/src/ man/ manlnf dl adm 1m 54

3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515

3517
3518
3519
3520
3521
3522
3523
3524

current or persistent secure objects are displayed.

.sp
By default, current secure objects are displayed, which are all secure objects
that have either been persistently created and not tenporarily deleted, or
temporarily created.

.sp

For security reasons, it is not possible to show the value of a secure object.
.sp

.ne 2

.na
\fB\fB-o\fR\flfield\fR,...] , \fB--output\fR=\fIfield\fR,...]\fR

.ad

.sp .6

. RS 4n

A case-insensitive, conma-separated list of output fields to display. The field
nane nmust be one of the fields listed bel ow For displayed secure object, the
following fields can be shown:

.sp

.ne 2

.na
\fB\f BOBJECT\f R fR
.ad

.sp .6

. RS 4n

The nane of the secure object.
. RE

.sp
.ne 2

.na
\fB\f BCLASS\fR fR

.ad

.Sp .6

.RS 4n

The class of the secure object.

3525 . RE

3527

3529
3530
3531
3532
3533
3534
3535
3536
3537
3538

3540
3541
3542
3543
3544
3545
3546
3547
3548

3550

3552
3553
3554
3555

.RE

.sp
.ne 2

.na
\fB\fB-p\fR \fB--parseable\fRfR
ad

.sp .6

.RS 4n

Di splay using a stable machi ne-parseable fornmat. The \fB-o\fR option is
required with \fB-p\fR See "Parseabl e Qutput Fornat", bel ow.

.RE

.sp
.ne 2

.na

\fB\fB-P\fR, \fB--persistent\fRfR

. ad

.sp .6

. RS 4n

Di spl ay persistent secure object infornmation
.RE

. RE

.sp
.ne 2

. ha
\fB\fBdl adm create-vnic\fR [\fB-t\fR] \fB-I\fR\fllink\fR[\fB-RfR

new usr/src/ man/ manlnf dl adm 1m 55

3556
3557
3558

3559
3560
3561

3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572

3574
3575
3576
3577
3578
3579
3580
3581

B-n\fR
fB-v\fR

-link\fRfR

\fB-mfR \flvalue\fR
r\fR} | {random[\fB
fB-p\fR \flprop\fR=\f

.
o —>

r
\

Create a VNIC with name \flvnic-l1ink\fR over the specified Iink.

.sp
.ne 2

.na
\fB\fB-t\fR \fB--tenporary\fRfR

.ad

.sp .6

.RS 4n

Specifies that the VNIC is tenporary. Tenporary VNICs last until the next
reboot .

.RE

.sp
.ne 2

. na
\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

.RS 4n

See "Options," above.

3582 . RE

3584
3585
3586
3587
3588
3589
3590
3591
3592

3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621

.sp
.ne 2

. na
\FBUfB-IVfR\fITink\fR, \fB--1ink\fR=\fllink\fRfR
.ad

.sp .6

. RS 4n

\fllink\fR can be a physical link or an \fBetherstub\fR
.RE

.sp
.ne 2

. na
\fB\fB-mMfR \flvalue\fR | \flkeyword\fR \fB--mac-address\fR=\flvalue\fR |

\fl keyword\fR fR

.ad

.sp .6

.RS 4

Sets the VNIC s MAC address based on the specified value or keyword. If
\flvalue\fR is not a keyword, it is interpreted as a unicast MAC address, which
rmsij be valid for the underlying NIC. The foll owi ng speci al keywords can be
used:

.sp

.ne 2

.na

\fBfactory [\fB-n\fR \flslot-identifier\fR,\fR
.ad

. br

.na

\fBfactory [\fB--slot\fR=\fIslot-identifier\fRI\fR
ad

.sp .6

. RS 4n

Assign a factory MAC address to the VNIC. When a factory MAC address is
requested, \fB-mifR can be conmbined with the \fB-n\fR option to specify a MAC
address slot to be used. If \fB-n\fR is not specified, the systemw || choose
the next avail able factory MAC address. The \fB-mifR option of the

\ f Bshow phys\ f R subcommand can be used to display the list of factory MAC

new usr/src/ man/ manlnf dl adm 1m 56

3622
3623

3625 .
3626 .
3627 .

3628

3629 .
3630 .

3631
3632
3633
3634

3635 .

3636
3637
3638
3639
3640
3641
3642
3643

3645
3646

3647 .

3648
3649
3650
3651
3652
3653
3654
3655

3657
3658
3659
3660
3661
3662
3663
3664
3665

3667

3669
3670
3671
3672
3673
3674
3675
3676
3677
3678

3680

3682
3683
3684
3685
3686
3687

addresses, their slot identifiers, and their availability.
.RE

.na

\fBrandom [\fB-r\fR \flprefixX\fR],\fR

.ad

. br

na

\fBrandom [\ fB--nmac-prefi x\fR=\flprefi x\fRI\fR
ad

.sp .6

. RS 4n

Assign a random MAC address to the VNIC. A default prefix consisting of a valid
IEEE QUI with the local bit set will be used. That prefix can be overridden
with the \fB-r\fR option.

. RE

.sp
.ne 2

na

\fBaut o\ f R

.ad

.sp .6

.RS 4n

Try and use a factory MAC address first. If none is available, assign a random
MAC address. \fBauto\fR is the default action if the \fB-mfR option is not
speci fi ed.

.RE

.sp
.ne 2

.na

\fB\fB-vifR \flvlan-id\fRfR

.ad

.sp .6

.RS 4

Enabl e VLAN tagging for this VNIC. The VLAN tag will have id \flvlan-id\fR
.RE

.RE

.sp

.ne 2

.na

\fB\fB-p\fR \flprop\fR=\flvalue\fR ..., \fB--prop\fR
\flprop\fR=\flvalue\fR ... \fR

.ad

.Sp .6

.RS 4n

A commm-separated |ist of properties to set to the specified val ues.
.RE

.RE

.sp
.ne 2

. na

\fB\fBdl adm del ete-vnic\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR]
\flvnic-1ink\fRfR

.ad

new usr/src/ man/ manlnf dl adm 1m 57

3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699

.sp .6
. RS 4n
Del etes the specified VNIC

.sp
.ne 2

.na
\fB\fB-t\fR \fB--tenporary\fRfR

.ad

.sp .6

.RS 4n

Specifies that the deletion is tenporary. Tenporary deletions last until the
next reboot.

3700 . RE

3702
3703
3704
3705
3706
3707
3708
3709
3710

3712

3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743

3745
3746
3747
3748
3749
3750
3751
3752

.sp
.ne 2

. na
\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

.RS 4n

See "Options," above.

. RE

.RE

.sp
.ne 2

.na
\fB\fBdl adm showvnic\fR [\fB-pP\fR] [\
[\fB-o\fR\flIfield\fR,...]] [\fB-I\fR
.ad

.sp .6

.RS 4n

Show VNI C configuration infornmation (the default) or statistics, for all VN Gs,
all VNICs on a link, or only the specified \flvnic-link\fR

.sp

.ne 2

——

B-s
fll

. na
\fB\fB-o\fR\fIfield\fR,...] , \fB--output\fR=\fIfield\fR,...]\fR
.ad

.sp .6

. RS 4n

A case-insensitive, conma-separated list of output fields to display. The field
name nmust be one of the fields listed below. The field name nust be one of the
fields listed below, or the special value \fBall\fR to display all fields. By

default (w thout \fB-o\fR), \fBshowvnic\fR displays all fields.

.sp

.ne 2

. na
\fB\fBLINK\fR f R

.ad

.sp .6

.RS 4

The nane of the VNIC
.RE

.sp
.ne 2

.ha
\fB\f BOVER\ f R f R

.ad

.sp .6

. RS 4n

The nane of the physical link over which this VNIC is configured.

3753 . RE

new usr/src/ man/ manlnf dl adm 1m

3755
3756
3757
3758
3759
3760
3761
3762
3763

3765
3766
3767
3768
3769
3770
3771
3772
3773

3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791

58

.sp
.ne 2

.na
\fB\f BSPEED\f R f R
.ad

.sp .6

. RS 4n

The maxi mum speed of the VNIC, in negabits per second.
. RE

.sp
.ne 2

. na
\ f B\ f BVACADDRESS\ f R\ f R
.ad

.sp .6

. RS 4n

MAC address of the VNI C.
. RE

.sp
.ne 2

. na
\fg\fBMMJMIFWYPEfF%fR
. al

.sp .6

. RS 4n

MAC address type of the VNIC. \fBdladm fR distingui shes anong the foll owi ng MAC
addr ess types:

.sp
.ne 2

.na
\fB\fBrandom f R fR

.ad

.sp .6

. RS 4n

A random address assigned to the VNI C

3792 .RE

3794
3795
3796
3797
3798
3799
3800
3801
3802

3804
3806

3808
3809
3810
3811
3812
3813
3814
3815
3816
3817

3819

.sp
.ne 2

.na
\fB\fBfactory\fRfR

.ad

.sp .6

. RS 4n

A factory MAC address used by the VNI C
.RE

.RE

.RE

.sp
.ne 2

.na
\fB\fB-p\fR, \fB--parseable\fRfR
.ad

.sp .6

. RS 4n

Di spl ay using a stable machi ne-parseable format. The \fB-o\fR option is
required with \fB-p\fR See "Parseabl e Qutput Format", bel ow
. RE

.sp

new usr/src/ man/ manlnf dl adm 1m 59

3820
3821
3822
3823
3824
3825
3826
3827

3829
3830
3831
3832
3833
3834
3835
3836
3837

3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849

3851
3852
3853
3854
3855
3856
3857
3858
3859

3861

3863
3864
3865
3866
3867
3868

3869

3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884

.ne 2

.na
\fB\fB-P\fR, \fB--persistent\fRfR

.ad

.sp .6

. RS 4n

Di spl ay the persistent VNI C configuration.
.RE

.sp
.ne 2

. na
\fB\fB-s\fR \fB--statistics\fRfR
.ad

.sp .6

. RS 4n

Di spl ays VNI C statistics.
. RE

.sp
.ne 2

.nha
\fB\fB-i\fR\flinterval\fR, \fB--interval\fR=\flinterval \fRfR

.ad

.sp .6

.RS 4

Used with the \fB-s\fR option to specify an interval, in seconds, at which
statistics should be displayed. If this option is not specified, statistics
wi || be displayed only once.

.RE

.sp
.ne 2

.na
\VEBVFB-INVfFRAfITink\fR \fB--link\fR=\fIlink\fRfR
.ad

.sp .6

.RS 4n

Display information for all VNICs on the naned I|ink.
.RE

.RE

.sp
.ne 2

. na
\fB\fR
.ad
. br

na
\fB\fBdl adm create-etherstub\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR]
\fletherstub\fRfR

.ad

.sp .6

.RS 4n

Create an etherstub with the specified nane.

.sp

.ne 2

.na
\fB\fB-t\fR \fB--tenporary\fRfR
.ad

.sp .6

.RS 4n

Specifies that the etherstub is tenporary. Tenporary etherstubs do not persist
across reboots.

3885 . RE

new usr/src/ man/ manlnf dl adm 1m

3887
3888
3889
3890
3891
3892
3893
3894
3895

3897
3898
3899
3900

3902
3903

3904

3905
3906
3907

3908

3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923

.sp
.ne 2

. na
\fB\fB-RfR \flroot-dir\fR \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

. RS 4n

See "Options," above.
. RE

VNI Cs can be created on top of etherstubs instead of physical NICs. As with
physi cal N Cs, such a creation causes the stack to inplicitly create a virtual
sw tch between the VNICs created on top of the same etherstub.

. RE

.sp
.ne 2

na
\fB\fR

.ad

. br

na

\fB\fBdl adm del ete-etherstub\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR]
\fletherstub\fRfR

.ad

.sp .6

. RS 4n

Del ete the specified etherstub.

.sp
.ne 2

.na
\fB\fB-t\fR \fB--temporary\fRfR
. ad

.sp .6

. RS 4n

Specifies that the deletion is tenporary. Tenporary deletions last until the
next reboot.

3924 . RE

3926
3927
3928
3929
3930
3931
3932
3933

.sp
.ne 2

. na
\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

. RS 4n
See "Options," above.

3934 . RE

3936

3938
3939
3940
3941
3942
3943
3944
3945
3946
3947

3949
3950
3951

. RE

.Sp
.ne 2

.na
\ f B\ f Bdl adm show- et herstub\fR [\fletherstub\fR]\fR
.ad

.Sp .6

.RS 4n

Show al | configured etherstubs by default, or the specified etherstub if
\fletherstub\fR is specified.

.RE

.sp
.ne 2
.na

new usr/ src/ man/ manlnf dl adm 1m 61 new usr/ src/ man/ manlnf dl adm 1m 62
3952 \fB\fBdl adm create-i ptun\fR [\fB-t\fR [\fB-RfR \flroot-dir\fR \fB-T\fR 4018 | Pv4-over-1Pv6 and | Pv6-over-1Pv6 tunneling configurations.
3953 \fltype\fR [\fB-s\fR\fltsrc\fR] [\fB-d\fR\fltdst\fR] \fliptun-link\fRfR 4019 . RE
3954 . ad
3955 .sp .6 4021 .sp
3956 . RS 4n 4022 .ne 2
3957 Create an IP tunnel link naned \fliptun-link\fR Such links can additionally be 4023 . na
3958 protected with I Psec using \fBipsecconf\fR(1M. 4024 \fB\fB6t o4\ fRfR
3959 .sp 4025 . ad
3960 An | P tunnel is conceptually conprised of two parts: a virtual |ink between two 4026 .sp .6
3961 or nore | P nodes, and an IP interface above this link that allows the systemto 4027 . RS 4n
3962 transnit and receive | P packets encapsulated by the underlying link. This 4028 A 6to4, point-to-nultipoint tunnel as defined in | ETF RFC 3056. This type of
3963 subcommand creates a virtual link. The \fBifconfig\fR(1M comrand is used to 4029 tunnel requires an | Pv4 source address to function. An IPv6 interface is
3964 configure | P interfaces above the |ink. 4030 pl unbed on such a tunnel link to configure a 6to4 router.
3965 . sp 4031 . RE
3966 .ne 2
3967 .na 4033 . RE
3968 \fB\fB-t\fR \fB--tenporary\fRfR
3969 . ad 4035 .sp
3970 .sp .6 4036 .ne 2
3971 . RS 4n 4037 .na
3972 Specifies that the IP tunnel link is tenporary. Tenporary tunnels |ast until 4038 \fB\fB-s\fR \fltsrc\fR, \fB--tunnel-src\fR=\fltsrc\fRfR
3973 the next reboot. 4039 . ad
3974 . RE 4040 .sp .6
4041 . RS 4n
3976 .sp 4042 Literal |P address or hostname corresponding to the tunnel source. If a
3977 .ne 2 4043 hostnane is specified, it will be resolved to | P addresses, and one of those IP
3978 .na 4044 addresses will be used as the tunnel source. Because |P tunnels are created
3979 \fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR 4045 before naming services have been brought online during the boot process, it is
3980 . ad 4046 inportant that any hostnane used be included in \fB/etc/hosts\fR
3981 .sp .6 4047 .RE
3982 . RS 4n
3983 See "Options," above. 4049 .sp
3984 . RE 4050 .ne 2
4051 .na
3986 .sp 4052 \fB\fB-d\fR \fltdst\fR \fB--tunnel-dst\fR=\fltdst\fRfR
3987 .ne 2 4053 . ad
3988 . na 4054 .sp .6
3989 \fB\fB-T\fR \fltype\fR \fB--tunnel-type\fR=\fltype\fRfR 4055 . RS 4
3990 . ad 4056 Literal |P address or hostnanme corresponding to the tunnel destination.
3991 .sp .6 4057 . RE
3992 . RS 4n
3993 Specifies the type of tunnel to be created. The type nust be one of the 4059 . RE
3994 fol |l ow ng:
3995 .sp 4061 .sp
3996 .ne 2 4062 .ne 2
3997 .na 4063 . na
3998 \fB\fBi pv4\fRfR 4064 \fB\fBdl adm nodi fy-i ptun\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR [\fB-s\fR
3999 . ad 4065 \fltsrc\fR [\fB-d\fR\fltdst\fR] \fliptun-link\fRfR
4000 .sp .6 4066 . ad
4001 . RS 4n 4067 .sp .6
4002 A point-to-point, |P-over-1P tunnel between two |Pv4 nodes. This type of tunnel 4068 . RS 4n
4003 requires | Pv4 source and destination addresses to function. IPv4 and | Pv6 4069 Mdify the paraneters of the specified IP tunnel.
4004 interfaces can be plunbed above such a tunnel to create |Pv4-over-I|Pv4 and 4070 .sp
4005 | Pv6-over-1Pv4 tunneling configurations. 4071 .ne 2
4006 . RE 4072 .na
4073 \fB\fB-t\fR, \fB--tenporary\fRfR
4008 .sp 4074 . ad
4009 .ne 2 4075 .sp .6
4010 .na 4076 . RS 4n
4011 \fB\fBi pv6\fR fR 4077 Specifies that the nodification is tenmporary. Tenporary nodifications |ast
4012 . ad 4078 until the next reboot.
4013 .sp .6 4079 . RE
4014 . RS 4n
4015 A point-to-point, |IP-over-1P tunnel between two |Pv6 nodes as defined in | ETF 4081 .sp
4016 RFC 2473. This type of tunnel requires |IPv6 source and destinati on addresses to 4082 .ne 2
4017 function. I1Pv4 and I Pv6 interfaces can be plunbed above such a tunnel to create 4083 .na

new usr/src/ man/ manlnf dl adm 1m

4084
4085
4086
4087
4088
4089

4091
4092
4093
4094
4095
4096
4097
4098
4099
4100

4102
4103
4104
4105
4106
4107
4108
4109
4110

\fB\fB-RfR \flroot-dir\fR, \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

.RS 4n

See "Options," above.
. RE

.sp
.ne 2

.na
\fB\fB-s\fR\fltsrc\fR \fB--tunnel-src\fR=\fltsrc\fRfR
.ad

.sp .6

. RS 4n

Speci fies a new tunnel
description.

.RE

source address. See \fBcreate-iptun\fR for a

.sp
.ne 2

.na
\fB\fB-d\fR\fltdst\fR \fB--tunnel-dst\fR=\fltdst\fRfR
.ad

.sp .6

.RS 4n

Speci fies a new tunnel
description.

destination address. See \fBcreate-iptun\fR for a

4111 . RE

4113

4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133

4135
4136
4137
4138
4139
4140
4141
4142
4143

4145
4147

4148
4149

.RE

.sp
.ne 2

.na
\fB\fBdl adm del ete-i ptun\fR [\fB-t\fR] [\fB-RfR \flroot-dir\fR]
\fliptun-link\fRfR

ad

.sp .6

. RS 4n

Del ete the specified I P tunnel
.sp

.ne 2

li nk.

.na
\fB\fB-t\fR \fB--tenporary\fRfR
.ad

.sp .6

. RS 4n

Specifies that the deletion is tenporary. Tenporary deletions |last until
next reboot.

.RE

.sp
.ne 2

.na
\fB\fB-RfR \flroot-dir\fR \fB--root-dir\fR=\flroot-dir\fRfR
.ad

.sp .6

. RS 4n

See "Options," above.

. RE

. RE

.sp
.ne 2
.na

t he

63

new usr/src/ man/ manlnf dl adm 1m 64

4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164

4166
4167
4168
4169
4170
4171
4172
4173
4174
4175

4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195

\fB\fBdl adm showi ptun\fR [\fB-P\fR]
[\fliptun-link\fRI\fR

.ad

.sp .6

.RS 4n

Show | P tunnel
.sp

.ne 2

[[\fB-p\fR \fB-o\fR\fIfield\fR,...]]

link configuration for a single IP tunnel or all IP tunnels.

. na
\fB\fB-P\fR, \fB--persistent\fRfR
.ad

.sp .6

.RS 4n

Di splay the persistent |P tunnel configuration.
.RE

.sp
.ne 2

.na
\fB\fB-p\fR, \fB--parseable\fRfR
.ad

.sp .6

. RS 4n

Di spl ay using a stabl e machi ne-parseable fornat.
-p. See "Parseable Qutput Format", bel ow.

. RE

The -0 option is required with

.sp
.ne 2

.na
\fB\fB-o\fR\flfield\fR,...], \fB--output\fR=\fIfield\fR[,...]\fR

.ad

.Sp .6

.RS 4n

A case-insensitive, conma-separated |list of output fields to display. The field
nane nmust be one of the fields listed below, or the special value \fBallI\fR to
display all fields. By default (w thout \fB-o\fR), \fBshowiptun\fR displays
all fields.

.sp

.ne 2

.na
\fB\fBLINK\fR fR
.ad

.sp .6

. RS 4n

The nane of the I P tunnel Iink.

4196 . RE

4198
4199
4200
4201
4202
4203
4204
4205
4206

4208
4209
4210
4211
4212
4213
4214
4215

.sp
.ne 2

. ha
\fB\f BTYPE\ fR f R
.ad

.sp .6

.RS 4n

Type of tunnel as specified by the \fB-T\fR option of \fBcreate-iptun\fR
.RE

.sp
.ne 2

. nha
\fB\f BFLAGS\f R f R

.ad

.sp .6

. RS 4n

A set of flags associated with the |P tunnel

link. Possible flags are:

new usr/src/ man/ manlnf dl adm 1m

4216
4217

.sp
.ne 2

4218 .na

4219

\fg\st\fR\fR

4220 . al

4221
4222
4223
4224
4225
4226
4227
4228

.sp .6

. RS 4n

The IP tunnel link is protected by |Psec policy.
associated with the tunnel l|ink, enter:

.sp
.in +2

To display the | Psec policy

. nf
\fBipsecconf -In -i \fltunnel-link\fRfR

4229 . fi

4230
4231

4233

.in -2
.sp

See \fBi psecconf\fR(1M for nore details on how to configure |Psec policy.

4234 . RE

4236
4237

.sp
.ne 2

4238 .na

4239

\fB\fBiI\fRfR
d

4240 . al

4241
4242
4243
4244
4245
4246

.sp .6

.RS 4n

The 1P tunnel
automatically deleted when it
IP interface over the tunnel
on inplicit tunnel creation.

link was inplicitly created with \fBifconfig\fR(1M, and will be
is no longer referenced (that is, when the |ast
is unplunbed). See \fBifconfig\fR(1M for details

4247 . RE

4249

4251
4252

.RE

.sp
.ne 2

4253 . na

4254
4255
4256
4257
4258

\ f B\ f BSOURCE\ f R f R
.ad

.sp .6

.RS 4n

The tunnel source address.

4259 . RE

4261
4262
4263
4264

.sp
.ne 2

. ha
\f B\ f BDESTI NATION\f R f R
d

4265 . al

4266
4267
4268

.sp .6
. RS 4n

The tunnel destination address.

4269 . RE

4271
4273

4275
4276
4277
4278
4279
4280
4281

. RE
. RE

.sp
.nez

B\deI adm s
plotfile\f
time\fRl [

e\fR
fR
fR]

—_—

\f how usag
\fl R\fB-F\ \ f
\fl \f11ink\ \fR
.ad

65

new usr/src/ man/ manln dl adm 1m

4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298

4300
4301
4302
4303
4304
4305
4306
4307

.sp .6

. RS 4n

Show the historical network usage froma stored extended accounting file.
Configuration and enabling of network accounting through \fBacctadmfR(1M is
requi red. The default output will be the summary of network usage for the
entire period of tinme in which extended accounting was enabl ed.

.sp

.ne 2

.na
\fB\fB-a\fRfR

.ad

.sp .6

.RS 4n

Display all historical network usage for the specified period of time during
whi ch ext ended accounting is enabled. This includes the usage infornmation for
the links that have al ready been del et ed.

.RE

.sp
.ne 2

.na
\fB\fB-fA\fR \flIfilenane\fR,
.ad

.sp .6

.RS 4n

Read extended accounting records of network usage from\flfilename\fR

\fB--file\fR=\fIfilenane\fRfR

4308 . RE

4310
4311

.sp
.ne 2

4312 .na

4313

\fB\fB-RFfR\flformat\fR, \fB--format\fR=\flformat\fRfR
d

4314 . al

4315
4316
4317
4318
4319

4321
4322

.sp .6

RS 4n

Spemfles the format of \flplotfile\fR that is specified by the \fB-p\fR
option. As of this release, \fBgnuplot\fR is the only supported format.

. RE

.sp
.ne 2

4323 .na

4324

\fB\fB-p\fR \flplotfile\fR \fB--plot\fR=\flplotfile\fRfR
d

4325 . a

4326
4327
4328
4329

.sp .6

.RS 4n

Wite network usage data to a file of the format specified by the \fB-F\fR
option, which is required.

4330 . RE

4332
4333

.sp
.ne 2

4334 . n

4335
4336
4337

a
\fB\fB-s\fR\fltine\fR,
.ad
. br

\fB--start\fRE\fItime\fRfR

4338 . na

4339
4340
4341
4342
4343
4344
4345

4347

\fB\fB-e\fR\fltine\fR
.ad

.sp .6

. RS 4n

Start and stop tines for data display.
\EIMAFRAFIDDVFRAFIYYYN TR \fIhh\fR\
. RE

\fB--stop\fR=\flItine\fRfR

ime is in the format
ImMfR\flss\fR

.sp

new usr/src/ man/ manlnf dl adm 1m 67

4348 .ne 2

4349 . na

4350 \fB\fllink\fRfR

4351 . ad

4352 .sp .6

4353 . RS 4n

4354 | f specified, display the network usage only for the named |ink. O herw se,
4355 di splay network usage for all Iinks.

4356 . RE

4358 . RE

4360 .sp

4361 .ne 2

4362 . na

4363 \fB\fBdl adm hel p\fR [\ flsubcommand\f R\ fR

4364 . ad

4365 .sp .6

4366 . RS 4n

4367 Displays all subcommands or help on a single subconmmand.

4368 . RE

4370 #endif /* | codereview */

4371 . SS "Parseabl e Qut put Fornat"

4372 .sp

4373 . LP

4374 Many \fBdl adm f R subconmands have an option that displays output in a

4375 machi ne- parseable format. The output format is one or nore lines of colon
4376 (\fB:\fR) delimted fields. The fields displayed are specific to the subcommand
4377 used and are listed under the entry for the \fB-o\fR option for a given

4378 subcommand. CQutput includes only those fields requested by nmeans of the

4379 \fB-o\fR option, in the order requested.

4380 .sp

4381 . LP

4382 \Wen you request nultiple fields, any literal colon characters are escaped by a
4383 backslash (\fB\e\fR) before being output. Simlarly, literal backslash

4384 characters will also be escaped (\fB\e\e\fR). This escape format is parseable
4385 by using shell \fBread\fR(1) functions with the environnment variable

4386 \fBIFS=:\fR (see \fBEXAMPLES\fR, below). Note that escaping is not done when
4387 you request only a single field.

4388 . SS "CGeneral Link Properties"

4389 .sp

4390 . LP

4391 The foll owing general link properties are supported:

4392 .sp

4393 .ne 2

4394 . na

4395 \ f B\ f Baut opush\ f R f R

4396 . ad

4397 .sp .6

4398 . RS 4n

4399 Specifies the set of STREAMS npdul es to push on the stream associated with a
4400 link when its DLPI device is opened. It Is a space-delinmted |ist of nbdul es.
4401 .sp

4402 The optional special character sequence \fB[anchor]\fR indicates that a STREAMS
4403 anchor should be placed on the streamat the nodul e previously specified in the
4404 list. It is an error to specify nore than one anchor or to have an anchor first
4405 in the |ist.

4406 .sp

4407 The \ f Baut opush\ f R property is preferred over the nore general

4408 \ f Baut opush\ f R(1M command

4409 . RE

4411 .sp

4412 .ne 2

4413 . na

new usr/ src/ man/ manlnf dl adm 1m 68
4414 \fB\fBcpus\fR fR

4415 . ad

4416 .sp .6

4417 . RS 4n

4418 Bind the processing of packets for a given data link to a processor or a set of
4419 processors. The value can be a conma-separated |list of one or nore processor
4420 i1ds. If the list consists of nobre than one processor, the processing will

4421 spread out to all the processors. Connection to processor affinity and packet
4422 ordering for any individual connection will be maintained.

4423 .sp

4424 The processor or set of processors are not exclusively reserved for the link.
4425 Only the kernel threads and interrupts associated with processing of the |ink
4426 are bound to the processor or the set of processors specified. In case it is
4427 desired that processors be dedicated to the link, \fBpsrset\fR(1M can be used

4428
4429

to create a processor set and then specifying the processors fromthe processor
set to bind the link to.

4430 .s

4431
4432

p
If the Iink was al ready bound to processor or set of processors due to a
previ ous operation, the binding wll be renpved and the new set of processors

4433 will be used instead.

4434 .sp

4435 The default is no CPU binding, which is to say that the processing of packets
4436 is not bound to any specific processor or processor set.

4437 . RE

4439 .sp

4440 .ne 2

4441 . na

4442 \fB\fBlearn_limt\fRfR

4443 . ad

4444 .sp .6

4445 | RS 4n

4446 Linmts the nunber of new or changed MAC sources to be | earned over a bridge
4447 |ink. When the nunber exceeds this value, learning on that link is tenporarily
4448 di sabl ed. Only non-VLAN, non-VNI C type |inks have this property.

4449 . sp

4450 The default value is \fBlOOO\fR Valid values are greater or equal to O.

4451 . RE

4453 . sp

4454 . ne 2

4455 . na

4456 \fB\fBl earn_decay\fR fR

4457 . ad

4458 .sp .6

4459 . RS 4n

4460 Specifies the decay rate for source changes limted by \fBlearn_limt\fR This

4461
4462

nunber is subtracted fromthe counter for a bridge link every 5 seconds. Only
non- VLAN, non-VNI C type |inks have this property.

4463 .sp

4464 The default value is \fB200\fR Valid values are greater or equal to O.

4465 . RE

4467 . sp

4468 .ne 2

4469 . na

4470 \fB\f Bmaxbw f R f R

4471 . ad

4472 .sp .6

4473 . RS 4n

4474 Sets the full duplex bandwidth for the Iink. The bandwi dth is specified as an
4475 integer with one of the scale suffixes (\fBK\fR, \fBMfR, or \fBGfR for Kbps,
4476 Mops, and Gops). If no units are specified, the input value will be read as

4477

Mops. The default is no bandwidth limt.

4478 . RE

new usr/src/ man/ manlnf dl adm 1m 69

4480
4481

4482

4483
4484
4485
4486
4487
4488
4489

4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503

4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516

4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529

.sp
.ne 2

na
\fB\fBpriority\fRfR
.ad

.sp .6
. RS 4n
Sets the relative priority for the link. The value can be given as one of the
tokens \fBhigh\fR \fBmediumfR or \fBlowfR The default is \fBhigh\fR
. RE

.sp
.ne 2

. na
\fB\fBstp\fR fR
ad

.sp .6

. RS 4n

Enabl es or di sabl es Spanning Tree Protocol on a bridge link. Setting this value
to \fBO\fR di sabl es Spanning Tree, and puts the link into forwarding node with
BPDU guar di ng enabl ed. This node is appropriate for point-to-point |inks
connected only to end nodes. Only non-VLAN, non-VN C type |inks have this
property. The default value is \fB1\fR, to enable STP.

.RE

.sp
.ne 2

. na
\fB\fBforward\f R fR
.ad

.sp .6

. RS 4n

Enabl es or disables forwarding for a VLAN. Setting this value to \fBO\fR

di sabl es bridge forwarding for a VLAN |ink. Disabling bridge forwardi ng renpves
that VLAN fromthe "allowed set" for the bridge. The default value is \fBI\fR
to enabl e bridge forwarding for configured VLANs.

. RE

.sp
.ne 2

.na
\fB\fBdefault _tag\fRfR

.ad

.sp .6

. RS 4n

Sets the default VLAN ID that is assuned for untagged packets sent to and
received fromthis link. Only non-VLAN, non-VNIC type |inks have this property.
Setting this value to \fBO\fR disabl es the bridge forwardi ng of untagged
packets to and fromthe port. The default value is \fBVLAN ID 1\fR Valid

val ues values are fromO0 to 4094.

4530 . RE

4532
4533

4534

4535
4536
4537
4538
4539
4540
4541
4542

4544
4545

. Sp
.ne 2

na
\fB\fBstp_priority\fRfR
.ad

.Sp .6

.RS 4n

Sets the STP and RSTP Port Priority value, which is used to determ ne the
preferred root port on a bridge. Lower nunerical values are higher priority.
The default value is \fB128\fR Valid values range fromO to 255.

.RE

.sp
.ne 2

new usr/src/ man/ manlnf dl adm 1m

4546
4547
4548
4549
4550
4551
4552
4553
4554
4555

4557
4558

4559

4560
4561
4562
4563
4564
4565
4566
4567
4568

4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582

4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611

70

. na
\fB\fBstp_cost\fR fR

.ad

.sp .6

.RS 4n

Sets the STP and RSTP cost for using the link. The default value is \fBauto\fR,
which sets the cost based on |ink speed, using \fB10O\fR for 10Mops, \fB19\fR
for 100Mops, \fB4\fR for 1Gbps, and \fB2\fR for 10CGbps. Valid val ues range from
1 to 65535

. RE

.sp
.ne 2

na
\fB\fBstp_edge\fR fR
.ad

.sp .6

.RS 4

Enabl es or disables bridge edge port detection. If set to \fBO\fR (false), the
system assunes that the port is connected to other bridges even if no bridge
PDUs of any type are seen. The default value is \fBI\fR which detects edge
ports automatically.

. RE

.sp
.ne 2

.ha
\fB\fBstp_p2p\fRfR
.ad

.sp .6

. RS 4n

Sets bridge point-to-point operation node. Possible values are \fBtrue\fR,
\fBfal se\fR, and \fBauto\fR Wen set to \fBauto\fR point-to-point connections
are automatically discovered. Wien set to \fBtrue\fR the port node is forced
to use point-to-point. Wen set to \fBfalse\fR, the port node is forced to use
normal multipoint node. The default value is \fBauto\fR

. RE

.sp
.ne 2

.na
\fB\fBst p_ntheck\fR fR
ad

.sp .6

. RS 4n

Triggers the systemto run the RSTP \fBForce BPDU M grati on Check\fR procedure
on this link. The procedure is triggered by setting the property value to
\fB1\fR The property is automatically reset back to \fBO\fR This val ue cannot
be set unless the follow ng are true:

.RS +4

. TP

.iet \(bu

.el o

The link is bridged

RE

.RS +4

. TP

.iet \(bu

.el o

The bridge is protected by Spanning Tree
RE

.RS +4

. TP

.iet \(bu

.el o

The bridge \fBforce-protocol\fR value is at |east 2 (RSTP)

new usr/src/ man/ manlnf dl adm 1m 71

4612
4613
4614

4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628

The default value is O.
. RE

.sp
ne 2

\fB\fBzone\fR\fR

.ad

.sp .6

. RS 4n

Specifies the zone to which the Iink belongs. This property can be nodified
only tenmporarily through \fBdladmfR and thus the \fB-t\fR option nust be
specified. To nodify the zone assignnent such that it persists across reboots,
pl ease use \fBzonecfg\fR(1M. Possible val ues consist of any exclusive-1P zone
currently running on the system By default, the zone binding is as per

\ f Bzonecf g\ f R(1M

4629 . RE

4631
4632
4633
4634
4635
4636
4637

.SS "Wfi
.sp

.LP

The following \fBWFi\fR |link properties are supported. Note that the ability
to set a given property to a given value depends on the driver and hardware.
.sp

.ne 2

Li nk Properties"

4638 . na

4639

\ f B\ f Bchannel \f R fR
d

4640 . al

4641
4642
4643
4644
4645

.sp .6

. RS 4n

Speci fies the channel to use. This property can be nodified only by certain
\fBWFi\fR links when in \fBIBSS\fR nbde. The default value and all owed range
of values varies by regul atory domain.

4646 . RE

4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658

4660
4661

.sp
ne 2

\fB\prowerrmde\fR\fR
ad

.sp .6

RS 4n
Speci fies
\fBof f\fR
\fBfast\f
.RE

the power nanagenent node of the \fBWFi\fR |link. Possible values are
(di sabl e power managenent), \fBmax\fR (maxi num power savings), and
R (performance-sensitive power managenent). Default is \fBof f\fR.

.sp
.ne 2

4662 .n

4663

a
\fB\fBradio\fRfR
d

4664 . al

4665
4666
4667
4668
4669

4671
4672
4673
4674
4675
4676
4677

.sp .6

.RS 4n

Specifies the radio node of the \fBWFi\fR |ink.
or \fBoff\fR Default is \fBon\fR

.RE

Possi bl e val ues are \fBon\fR

.sp
ne 2

\fB\stpeed\fR\fR

sp6
.RS 4n

new usr/src/ man/ manlnf dl adm 1m

4678
4679

Specifies a fixed speed for the \fBWFi\fR link,

4680 \f Bshow | i nkprop\fR); common speeds include 1, 2, 11, and 54. By default,
4681 is no fixed speed.

4682 . RE

4684 .SS "Ethernet Link Properties"

4685 . sp

4686 .LP

4687 The following M1 Properties, as docunmented in \fBieee802.3\fR(5), are

4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699

supported in read-only node:
.RS +4

. TP

.iet \(bu

.el o

\deupIex\fR

. RE

.RS +4

TP

ie t \(bu
[

.el o
\fBstate\fR

4700 . RE

4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715

4716

4717

.RS +4
. TP
.iet \(bu
.el o
\ f Badv_aut oneg_cap\ f R
. RE
.RS +4
. TP
.ie t \ (bu
el

\fBadv _10gf dx_cap\f R

RS +4

. TP
.iet \(bu
el o
\ f Badv_1000f dx_cap\ f R

4718 . RE

4719
4720
4721
4722
4723
4724
4725
4726
4727

4728

4729

RS +4

TP

e t \ (bu
el

\fBadv 1000hdx_cap\ f R

RS +4
TP

et \ (bu

el o

\ f Badv_100f dx_cap\ f R

4730 . RE

4731
4732
4733
4734
4735

.RS +4

. TP

.iet \(bu

.el o

\ f Badv_100hdx_cap\ f R

4736 . RE

4737
4738
4739

4740

4741

.RS +4

. TP

.iet \(bu

el o

\ f Badv_10f dx_cap\ f R

4742 . RE

4743

.RS +4

72

in megabits per second. The
set of possible values depends on the driver and har dwar e (but is shown by

there

new usr/src/ man/ manlnf dl adm 1m 73

4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777

4779
4780
4781
4782
4783
4784
4785
4786
4787
4788

4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806

. TP

.iet \(bu

.el o

\ f Badv_10hdx_cap\f R
. RE

.sp
.LP

Each \fBadv_\fR property (for exanple, \fBadv_10fdx_cap\fR) also has a
read/write counterpart \fBen_\fR property (for exanple, \fBen_10fdx_cap\fR)
control ling paraneters used at auto-negotiation. In the absence of Power
Managenent, the \fBadv\fR* speed/ dupl ex paraneters provide the values that are
both negotiated and currently effective in hardware. However, wi th Power
Managenent enabl ed, the speed/ dupl ex capabilities currently exposed in hardware
m ght be a subset of the set of bits that were used in initial |ink paraneter
negotiation. Thus the M| \fBadv_\fR* paraneters are narked read-only, with an
addi tional set of \fBen_\fR* parameters for configuring speed and dupl ex
properties at initial negotiation.

.sSp

.LP

Note that the \fBadv_autoneg_cap\fR does not have an \fBen_autoneg_cap\fR
counterpart: the \fBadv_autoneg_cap\fRis a 0/1 switch that turns off/on

aut onegoti ation itself, and therefore cannot be inpacted by Power Managenent.
.sp

.LP

In addition, the follow ng Ethernet properties are reported:

.sp

.ne 2

.na
\fB\fBspeed\fR fR
.ad

.sp .6

. RS 4n

(read-only) The operating speed of the device, in Mps.
.RE

.sp
.ne 2

.na
\fB\fBntu\fRfR

.ad

.sSp .6

.RS 4n

The maxi num client SDU (Send Data Unit) supported by the device. Valid range is
68- 65536

.RE

.sp
.ne 2

.na

\fB\fBf lowctrI\fRfR

. ad

.sp .6

. RS 4n

Establ i shes flowcontrol nodes that will be advertised by the device. Valid
input is one of:

.sp

.ne 2

. na
\fB\fBno\fR fR

.ad

.sp .6

. RS 4n

No flow control enabl ed.

4807 . RE

4809

.sp

new usr/src/ man/ manlnf dl adm 1m

4810
4811
4812
4813
4814
4815
4816

.ne 2

.ha
\fB\fBrx\fRfR

.ad

.sp .6

. RS 4n

Recei ve, and act upon inconi ng pause franes.

4817 . RE

4819
4820
4821
4822
4823
4824
4825
4826
4827
4828

4830
4831
4832
4833
4834
4835
4836
4837

.sp
.ne 2

.na
\fB\fBtx\fRfR
.ad

.sp .6

. RS 4n

Transmit pause franmes to the peer when congestion occurs, but ignore received
pause franes.

. RE

.sp
.ne 2

. na
\fB\fBbi\fRfR
.ad

.sp .6

.RS 4n
Bi di rectional flow control.

4838 . RE

4840
4841
4842

4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855

4856

4857
4858
4859
4860
4861

4862
4863

4864
4865
4866
4867
4868
4869
4870
4871

Note that the actual settings for this value are constrained by the
capabilities allowed by the device and the |ink partner.
.RE

. sp
.ne 2

.na
\fB\f Bt agnode\f R f R
ad

.sp .6

. RS 4n

This link property controls the conditions in which 802.1Q VLAN tags will be
inserted in packets being transmitted on the link. Two node val ues can be
assigned to this property:

.sp

.ne 2

na
\fB\fBnornal \fR fR

.a

.RS 12n

Insert a VLAN tag in outgoing packets under the follow ng conditions:
.RS +4

.el o
The packet belongs to a VLAN
RE

.RS +4

. TP

.iet \(bu

.el o

The user requested priority tagging.

4872 . RE

4873
4875

. RE

.sp

new usr/src/ man/ manlnf dl adm 1m 75

4876

4877

4878
4879
4880
4881
4882
4883
4884

4886
4887

4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903

4905
4906
4907
4908
4909
4910
4911
4912
4913
4914

.ne 2

na
\fB\fBvl anonl y\f R fR

.ad

.RS 12n

Insert a VLAN tag only when the outgoing packet belongs to a VLAN. If a tag is
being inserted in this node and the user has al so requested a non-zero
priority, the priority is honored and included in the VLAN tag

.RE

The default value is \fBvlanonly\fR
.RE

.SS "I P Tunnel

.sp
LP

The fol | ow ng IP tunnel link properties are supported.

.sp
.ne 2

.na
\fB\fBhoplint\fRfR
.ad

Li nk Properties"

.sp .6

. RS 4n

Specifies the | Pv4 TTL or IPv6 hop limt for the encapsul ating outer |P header
of a tunnel link. This property exists for all tunnel types. The default val ue
is 64.

. RE

.sp
.ne 2

.na
\fB\fBencaplimt\fRfR
. ad

.sp .6

. RS 4n

Specifies the IPv6 encapsulation linmt for an I Pv6 tunnel as defined in RFC
2473. This value is the tunnel nesting limt for a given tunnel ed packet. The
default value is 4. A value of O disables the encapsulation limt.

4915 . RE

4917
4918
4919
4920
4921
4922
4923

4925
4926
4927
4928
4929
4930
4931

4933
4934
4935
4936
4937
4938
4939

4941

. SH EXAMPLES

. LP

\ f BExanpl e 1 \fRConfiguring an Aggregation

.sp

.LP

To configure a data-link over an aggregati on of devices \fBbgeO\fR and
\fBbgel\fR with key 1, enter the follow ng command:

.sp
Lin +2

. nf
\fBdl adm create-aggr -d bge0 -d bgel 1\fR
i

.in -2
.sp

.LP

\ f BExanpl e 2 \f RConnecting to a WFi Link
.sp

.LP

To connect to the nost optimal available unsecured network on a systemwith a
single \fBWFi\fR link (as per the prioritization rules specified for
\fBconnect-wi fi\fR), enter the follow ng command:

.sp

new usr/src/ man/ manlnf dl adm 1m

4942
4943
4944
4945
4946
4947

4949
4950
4951
4952
4953
4954

4956
4957
4958
4959
4960
4961
4962

4964
4965
4966
4967

4969
4970
4971
4972
4973
4974
4975
4976
4977

4978
4979
4980

4982
4983
4984
4985
4986
4987

4989
4990
4991
4992
4993
4994
4995

4997
4998
4999
5000
5001
5002

5004
5005
5006
5007

Lin +2

. nf

\fBdl adm connect-wi fi\fR
i

.in -2

.sp

.LP

\fBExanpl e 3 \fRCreating a WFi Key

.sp

.LP

To interactively create the \fBWEP\fR key \fBnykey\fR, enter the follow ng
command:

.sp
Lin +2

. nf

\ fBdl adm creat e- secobj -c wep nykey\fR
i

.in -2

.sp

.sp
.LP

Al ternatively, to non-interactively create the \fBWEP\fR key \fBnykey\fR using
the contents of a file:

.sp
Lin +2

. nf
\fBumask 077\fR

\fBcat >/tnp/nykey.$$ <<EOF\fR

\fB12345\f R

\ f BEOF\ f R

\fBdl adm create-secobj -c wep -f /tnp/nykey. $$ nykey\fR

\fBrm /tnp/ mykey. $$\ f R

f

in-2

sp

.LP

\ f BExanpl e 4 \f RConnecting to a Specified Encrypted WFi Link
.sp

.LP

To use key \fBnykey\fR to connect to \fBESSID\fR \fBwM an\fR on |ink \fBathO\fR,

enter the follow ng conmand:

.sp

.in +2

. nf

\fBdl adm connect-wi fi -k mykey -e wl an athO\fR
i

.in -2

.sp

.LP

\ f BExanpl e 5 \fRChangi ng a Link Property

.sp

.LP

To set \fBpowernpde\fR to the value \fBfast\fR on link \fBpcw O\fR, enter the
fol | owi ng command:

.sp
Lin +2

. nf
\fBdl adm set-1inkprop -p power node=fast pcw O\fR

76

new usr/src/ man/ manlnf dl adm 1m

5008
5009
5010

5012
5013
5014
5015
5016

5018
5019
5020
5021

5022 . f
5023

5024

5026
5027
5028
5029

5031
5032
5033
5034
5035
5036
5037

5039
5040
5041
5042
5043

5045
5046
5047
5048
5049
5050
5051

5053
5054
5055
5056
5057
5058
5059
5060
5061
5062

5064
5065
5066
5067
5068
5069
5070

5072
5073

fi
.in -2
.sp

. LP
\ f BExanpl e 6 \fRConnecting to a WPA-Protected WFi Link

.sp
.LP

Create a WPA key \fBpsk\fR and enter the follow ng command:

.sp
.in +2

. nf

\fBdl adm creat e-secobj -c wpa psk\fR
i

in-2

.sp

.sp
.LP

To then use key \fBpsk\fR to connect to ESSID \fBwM an\fR on |ink \fBathO\fR,
enter the foll owi ng conmand:

.sp

.in +2

. nf

\fBdl adm connect-wi fi -k psk -e wl an athO\fR
i

.in -2

.sp

.LP
\f BExanpl e 7 \fRRenam ng a Link

.sp
.LP
To renane the \fBbgeO\fR link to \fBmgntO\fR, enter the foll owi ng command:

.sp
in +2

. nf
\fBdl adm renane-1ink bge0 ngntO\fR
i

.in -2
.sp

.LP

\ f BExanpl e 8 \f RRepl acing a Network Card

.sp

.LP

Consi der that the \fBbgeO\fR device, whose |ink was naned \fBngntO\fR as shown
in the previous exanple, needs to be replaced with a \fBceO\fR device because
of a hardware failure. The \fBbgeO\fR NIC i s physically renoved, and repl aced
with a new \fBceO\fR NIC. To associate the newy added \fBceO\fR device with
the \fBmgnt O\ f R confi guration previously associated with \fBbgeO\fR, enter the
fol | owi ng command:

.sp
.in +2

. nf
\fBdl adm renane-1ink ce0 mgnt O\ f R
i

.in -2
.sp

. LP
\f BExanpl e 9 \f RRenpving a Network Card

7

new usr/src/ man/ manlnf dl adm 1m

5074
5075
5076
5077
5078
5079
5080
5081
5082

5084
5085
5086
5087

5088 . f

5089
5090

5092
5093
5094
5095
5096
5097

5099
5100
5101
5102
5103
5104
5105

5107
5108
5109
5110
5111

5113
5114
5115
5116
5117
5118
5119
5120
5121

5123
5124
5125
5126
5127
5128

5130
5131
5132
5133
5134
5135
5136
5137

5139

78

.sp
.LP

Suppose that in the previous exanple, the intent is not to replace the
\fBbgeO\fR NIC with another NIC, but rather to rempve and not replace the
hardware. In that case, the \fBmgntO\fR datalink configuration is not slated to
be associated with a different physical device as shown in the previous

exanpl e, but needs to be deleted. Enter the followi ng command to delete the
datal i nk configuration associated with the \fBmgntO\fR datalink, whose physical
hardware (\fBbgeO\fR in this case) has been renpved:

.sp
.in +2

. nf

\f Bdl adm del et e- phys ngnt O\ f R
i

.in -2

.sp

. LP

\ f BExanpl e 10 \fRUsi ng Parseabl e Qutput to Capture a Single Field
.sp

.LP

The foll owi ng assignnent saves the MIU of
\fBntu\fR

link \fBnetO\fR to a vari abl e naned

.sp
Lin +2

. nf
\fBntu="dl adm showlink -p -0 ntu net0'\fR
i

.in -2
.sp

.LP
\f BExanpl e 11 \fRUsi ng Parseable Qutput to Iterate over
.sp
.LP
The foll owi ng script displays the state of each link on the system

Li nks

.sp
Lin +2

state | while | FS=:

s read link state; do
s in state $state”

. nf
\fBdl adm show-1ink -p -0 |ink
print "Link $link i
done\ f R
i
.in -2
.sp

.LP

\ f BExanpl e 12 \f RConfi guring VNI Cs

.sp

. LP

Create two VNICs with nanes \fBhel | 0o0\fR and \fBtest1\fR over a single physical
l'ink \fBbgeO\fR

.sp
.in +2

. nf

\fBdl adm create-vnic -|
\fBdl adm create-vnic -1
Cfi

.in -2

.sp

.LP

bge0 hel | 00\ f R
bge0 test1\fR

new usr/src/ man/ manlnf dl adm 1m 79 new usr/src/ man/ manlnf dl adm 1m 80

5140 \fBExanpl e 13 \fRConfiguring VNICs and Al |l ocating Bandwi dth and Priority 5206 # \fBdladmcreate-vnic -1 bge0 -m 8:0:20:fe:4e: b8 -p cpus=0,1, 2,3 hell 00\fR
5141 .sp 5207 . fi
5142 . LP 5208 .in -2
5143 Create two VNICs with nanes \fBhell 0o0\fR and \fBtest1\fR over a single physical 5209 .sp
5144 link \fBbgeO\fR and make \fBhel | oO\fR a high priority VNNIC with a
5145 factory-assigned MAC address with a maxi mrum bandw dth of 50 Mops. Make 5211 . LP
5146 \fBtest1\fR a low priority VNIC with a random MAC address and a maxi mum 5212 \fBExanple 16 \fRCreating a Virtual Network Wthout a Physical NIC
5147 bandwi dth of 100Mops. 5213 .sp
5214 . LP
5149 .sp 5215 First, create an etherstub with nanme \fBstubl\fR
5150 .in +2
5151 . nf 5217 .sp
5152 # \fBdl adm create-vnic -1 bge0 -mfactory -p maxbw=50, priority=high hello0O\fR 5218 .in +2
5153 # \fBdl adm create-vnic -1 bge0 -m random -p maxbw=100M priority=low test1\fR 5219 . nf
5154 . fi 5220 # \fBdl adm create-etherstub stubl\fR
5155 .in -2 5221 .fi
5156 .sp 5222 .in -2
5223 .sp
5158 .LP
5159 \fBExanple 14 \fRConfiguring a VNNIC with a Factory MAC Address 5225 .sp
5160 .sp 5226 .LP
5161 . LP 5227 Create two VNICs with nanes \fBhell o0\fR and \fBtest1\fR on the etherstub. This
5162 First, list the available factory MAC addresses and choose one of them 5228 operation inplicitly creates a virtual sw tch connecting \fBhell 0o0\fR and
5229 \fBtest1\fR
5164 .sp
5165 .in +2 5231 .sp
5166 . nf 5232 .in +2
5167 # \fBdl adm show phys -m bgeO\ fR 5233 . nf
5168 LI NK SLoT ADDRESS I NUSE CLI ENT 5234 # \fBdl adm create-vnic -1 stubl helloO\fR
5169 bge0 primary 0: e0: 81: 27: d4: 47 yes bge0 5235 # \fBdl adm create-vnic -1 stubl testl1\fR
5170 bgeO 1 8:0: 20: fe: 4e: a5 no 5236 .fi
5171 bgeO 2 8: 0: 20: fe: 4e: ab no 5237 .in -2
5172 bge0 3 8:0:20: fe: 4e: a7 no 5238 .sp
5173 .fi
5174 .in -2 5240 .LP
5175 .sp 5241 \fBExanpl e 17 \fRShowi ng Network Usage
5242 .sp
5177 .sp 5243 . LP
5178 . LP 5244 Network usage statistics can be stored using the extended accounting facility,
5179 Create a VNI C naned \fBhel | 00\fR and use slot 1's address: 5245 \ f Bacct adm f R(1M .
5181 .sp 5247 .sp
5182 .in +2 5248 .in +2
5183 . nf 5249 . nf
5184 # \fBdladmcreate-vnic -1 bge0 -mfactory -n 1 helloO\fR 5250 # \fBacctadm-e basic -f /var/log/net.log net\fR
5185 # \f Bdl adm show phys -m bgeO\fR 5251 # \fBacctadm net\fR
5186 LI NK SLOoT ADDRESS I NUSE CLI ENT 5252 Net wor k accounting: active
5187 bgeO primry 0: e0: 81: 27: d4: 47 yes bge0 5253 Net wor k accounting file: /var/log/net.|og
5188 bge0 1 8:0:20:fe: 4e:ab yes hel | 00 5254 Tracked Network resources: basic
5189 bge0 2 8:0:20: fe: 4e: ab no 5255 Untracked Network resources: src_ip,dst_ip,src_port,dst_port, protocol,
5190 bgeO 3 8:0:20:fe: 4e: a7 no 5256 dsfield
5191 .fi 5257 .fi
5192 .in -2 5258 .in -2
5193 .sp 5259 .sp
5195 . LP 5261 .sp
5196 \fBExanple 15 \fRCreating a VNIC with User-Specified MAC Address, Binding it to 5262 .LP
5197 Set of Processors 5263 The saved historical data can be retrieved in summary formusing the
5198 .sp 5264 \ f Bshow usage\ f R subconmand:
5199 .LP
5200 Create a VNIC with nane \fBhel | o0O\fR, wth a user specified MAC address, and a 5266 .sp
5201 processor binding \fBO, 1, 2, 3\fR 5267 .in +2
5268 . nf
5203 .sp 5269 # \fBdl adm show usage -f /var/log/net.|log\fR
5204 .in +2 5270 LINK DURATI ON | PACKETS RBYTES OPACKETS OBYTES BANDW DTH

5205 . nf 5271 e1000g0 80 1031 546908 0 0 2. 44 Kbps

new usr/src/ man/ manlnf dl adm 1m 81

5272
5273
5274

5276
5277
5278

5279

5280
5281

5283
5284

5285
5286
5287
5288
5289

5291
5292
5293
5294

5296
5297
5298

5300

fi
.in -2
.sp

. LP

\ f BExanpl e 18 \fRDi spl ayi ng Bridge | nformation

.sp

LP

The fol |l owi ng commands use the \fBshow bridge\fR subcommand with no and various
opti ons.

\fBdl adm show br i dge\fR

PROTECT ADDRESS PRI ORI TY DESROOT

foo stp 32768/ 8:0: 20: bf : f 32768 8192/ 0: d0: 0: 76: 14: 38
bar stp 32768/ 8: 0: 20: e5: 8 32768 8192/ 0: dO: 0: 76: 14: 38

\ fBdl adm show-bridge -1 foo\fR

LI NK STATE UPTI ME DESROOT

hme0 f orwar di ng 117 8192/ 0: dO: 0: 76: 14: 38
gf el f orwar di ng 117 8192/ 0: dO: 0: 76: 14: 38

\deI adm show- bridge -s foo\fR
Rl DGE DROPS FORWARDS
foo 0 302

\fBdl adm show bridge -1s foo\fR
| DROPS RECV XM T

5301 LI NK

5302
5303

5305
5306
5307
5308
5309
5310
5311
5312
5313

5315
5316
5317
5318
5319
5320

5322

5323

5324

5325
5326
5327
5328

5329

5330

5331

5333
5334
5335

5337

hme0 0
gf el 0

360832
322311

31797
356852

\ f Bdl adm show bri dge -f foo\fR

DEST FLAGS QUTPUT
:0:20: bc: a7: dc 10 860 -- hnme0
:0:20: bf: f9: 69 -- L hneo
:0:20:¢0:20: 26 17.420 -- hrmre0
1 0:

i
in
p

00 00 00 CO

20: e5: 86: 11 -- L gf el
-2

.LP

\f BExanpl e 19 \fRCreating an | Pv4 Tunnel

.sp

LP

The fol | ow ng sequence of commands creates and then displays a persistent |Pv4
tunnel |ink named \fBmytunnel O\fR between 66.1.2.3 and 192.4.5. 6:

sp

.in +2

nf

\fBdl adm create-iptun -T ipv4d -s 66.1.2.3 -d 192.4.5.6 nytunnel O\fR
\ f Bdl adm show-i pt un nytunnel O\ f R
NK TYPE FLAGS SOURCE

unnel 0 ipvd -- 66.1.2.3

#
#
L

”y

DESTI NATI ON
192.4.5.6

t

fi
.in -2

sp
.Sp

.LP
A point-to-point IP interface can then be created over this tunnel [ink:

.sp

new usr/src/ man/ manlnf dl adm 1m

5338
5339
5340
5341
5342
5343

5345
5346
5347
5348
5349

5351
5352
5353
5354
5355
5356

5358
5359
5360
5361
5362
5363
5364
5365
5366
5367

5369
5370

5371

5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384

5386

82
in +2
\fBlfconf|g nytunnel O plunb 10.1.0.1 10.1.0.2 up\fR

i
.in -2
-Sp

.sp
.LP

As with any other IP interface, configuration persistence for this IP interface

is achi eved by placing the desired \fBifconfig\fR conmmands (in this case, the
command for "\fB10.1.0.1 10.1.0.2\fR") into \fB/etc/hostname. nytunnel O\ f R

.LP

\ f BExanpl e 20 \fRCreating a 6to4 Tunnel

.sp

.LP

The following conmand creates a 6to4 tunnel |ink. The |Pv4 address of the 6to4

router is 75.10.11.12.
-Sp
in 42
. nf
\fBdl adm create-iptun -T 6to4 -s 75.10.11.12 sitetunnel O\fR
\ f Bdl adm show-i ptun sitetunnel O\fR

NK

TYPE FLAGS
6tod4 --

DESTI NATI ON

#
#
L
5 75.10.11. 12 --

|
itetunnel 0

in -2

t
i
n
sp
sp
LP
The foll owi ng command plunbs an I Pv6 interface on this tunnel:
.sp
.in +2
. nf
\fBifconfig sitetunnel 0 inet6 plunmb up\fR
\fBifconfig sitetunnel 0 i net6\fR
sitetunnel 0: flags=2200041 <UP, RUNNI NG NONUD, | Pv6> ntu 65515 i ndex 3
inet tunnel src 75.10.11.12
tunnel hop limt 64
inet6 2002: 4b0a: bOc: : 1/ 16
i
.in -2
.sp

.sp

5387 .LP

5388
5389
5390

5392
5393
5394
5395
5396
5397
5398
5399

5401
5402
5403

Note that the system automatically configures the | Pv6 address on the 6to4 IP
interface. See \fBifconfig\fR(1M for a description of how | Pv6 addresses are
configured on 6to4 tunnel Iinks.

. SH ATTRI BUTES

.sp
.LP
See \fBattributes\fR(5) for descriptions of the follow ng attributes:

.sp

.LP
\ f B/ usr/sbhin\fR
.sp

.sp
. TS
box;

new usr/src/ man/ manlnf dl adm 1m 83

5404
5405
5406
5407
5408

c| c
| .
ATTRI BUTE TYPE ATTRI BUTE VALUE

Tnterface Stability Conmi tted

5409 . TE

5411
5412
5413
5414

5416
5417
5418
5419
5420
5421
5422
5423

.sp

. LP
\ fB/shin\fR
.sp

.sp
. TS
box;
c| c

ATTRI BUTE TYPE ATTRI BUTE VALUE
Tnterface Stability Conmi tted

5424 . TE

5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440

. SH SEE ALSO

.sp

.LP

\fBacctadm f R(1M, \fBautopush\fR(1M, \
\fBndd\ fR(1M, \fBpsrset\fR(1M, \fBwpad
\fBattributes\fR(5), \fBieee802.3\f),
. SH NOTES

.sp

.LP

The preferred nethod of referring to an aggregation in the aggregation
subcommands is by its |ink nane. Referring to an aggregation by its integer
\flkey\fR is supported for backward conpatibility, but is not necessary. Wen
creating an aggregation, if a \flkey\fR is specified instead of a |link nane,
the aggregation’s link name will be automatically generated by \fBdladm fR as
\fBaggr\fR flkey\fR

\f Bzonecfg\fR(1M,

config\fR(1M, \fBipsecconf\fR(1M,
fR(1IM, \ 1
\ f Bdl pi \ f R(7P)

