
new/usr/src/cmd/dladm/Makefile 1

**
 1760 Sun Feb 9 05:30:58 2014
new/usr/src/cmd/dladm/Makefile
4585 dladm(1m) needs a ’help’ subcommand
3755 dladm show-aggr documentation
3374 usage of ’dladm’ does not match to its man page
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 PROG= dladm
27 CFGFILES= secobj.conf

29 ROOTFS_PROG= $(PROG)
30 ROOTCFGDIR= $(ROOTETC)/dladm
31 ROOTCFGFILES= $(CFGFILES:%=$(ROOTCFGDIR)/%)

33 include ../Makefile.cmd

35 XGETFLAGS += -a -x $(PROG).xcl
36 LDLIBS += -L$(ROOT)/lib -lsocket
37 LDLIBS += -ldladm -ldlpi -lkstat -lsecdb -lbsm -linetutil -ldevinfo
38 LDLIBS += $(ZLAZYLOAD) -lrstp $(ZNOLAZYLOAD)

40 CERRWARN += -_gcc=-Wno-switch
41 CERRWARN += -_gcc=-Wno-unused-label
41 CERRWARN += -_gcc=-Wno-uninitialized

43 # For headers from librstp.
44 LINTFLAGS += -erroff=E_TRAILING_COMMA_IN_ENUM

46 $(ROOTCFGDIR)/secobj.conf := FILEMODE= 660

48 lint := ZLAZYLOAD=
49 lint := ZNOLAZYLOAD=

51 .KEEP_STATE:

53 all: $(ROOTFS_PROG)

55 install: all $(ROOTSBINPROG) $(ROOTCFGDIR) $(ROOTCFGFILES)
56 $(RM) $(ROOTUSRSBINPROG)
57 -$(SYMLINK) ../../sbin/$(PROG) $(ROOTUSRSBINPROG)

new/usr/src/cmd/dladm/Makefile 2

59 clean:

61 lint: lint_PROG

63 $(ROOTCFGDIR):
64 $(INS.dir)

66 $(ROOTCFGDIR)/%: $(ROOTCFGDIR) %
67 $(INS.file)

69 include ../Makefile.targ

new/usr/src/cmd/dladm/dladm.c 1

**
 255995 Sun Feb 9 05:30:58 2014
new/usr/src/cmd/dladm/dladm.c
4585 dladm(1m) needs a ’help’ subcommand
3755 dladm show-aggr documentation
3374 usage of ’dladm’ does not match to its man page
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #include <stdio.h>
26 #include <ctype.h>
27 #include <dlfcn.h>
28 #include <locale.h>
29 #include <signal.h>
30 #include <stdarg.h>
31 #include <stdlib.h>
32 #include <fcntl.h>
33 #include <string.h>
34 #include <stropts.h>
35 #include <sys/stat.h>
36 #include <errno.h>
37 #include <kstat.h>
38 #include <strings.h>
39 #include <getopt.h>
40 #include <unistd.h>
41 #include <priv.h>
42 #include <limits.h>
43 #include <termios.h>
44 #include <pwd.h>
45 #include <auth_attr.h>
46 #include <auth_list.h>
47 #include <libintl.h>
48 #include <libdevinfo.h>
49 #include <libdlpi.h>
50 #include <libdladm.h>
51 #include <libdllink.h>
52 #include <libdlstat.h>
53 #include <libdlaggr.h>
54 #include <libdlwlan.h>
55 #include <libdlvlan.h>
56 #include <libdlvnic.h>
57 #include <libdlib.h>
58 #include <libdlether.h>
59 #include <libdliptun.h>

new/usr/src/cmd/dladm/dladm.c 2

60 #include <libdlsim.h>
61 #include <libdlbridge.h>
62 #include <libinetutil.h>
63 #include <libvrrpadm.h>
64 #include <bsm/adt.h>
65 #include <bsm/adt_event.h>
66 #include <libdlvnic.h>
67 #include <sys/types.h>
68 #include <sys/socket.h>
69 #include <sys/ib/ib_types.h>
70 #include <sys/processor.h>
71 #include <netinet/in.h>
72 #include <arpa/inet.h>
73 #include <net/if_types.h>
74 #include <stddef.h>
75 #include <stp_in.h>
76 #include <ofmt.h>

78 #define MAXPORT 256
79 #define MAXVNIC 256
80 #define BUFLEN(lim, ptr) (((lim) > (ptr)) ? ((lim) - (ptr)) : 0)
81 #define MAXLINELEN 1024
82 #define SMF_UPGRADE_FILE "/var/svc/profile/upgrade"
83 #define SMF_UPGRADEDATALINK_FILE "/var/svc/profile/upgrade_datalink"
84 #define SMF_DLADM_UPGRADE_MSG " # added by dladm(1M)"
85 #define DLADM_DEFAULT_COL 80
86 #define DLADM_DEFAULT_CMD "show-link"
87 #endif /* ! codereview */

89 /*
90 * used by the wifi show-* commands to set up ofmt_field_t structures.
91 */
92 #define WIFI_CMD_SCAN 0x00000001
93 #define WIFI_CMD_SHOW 0x00000002
94 #define WIFI_CMD_ALL (WIFI_CMD_SCAN | WIFI_CMD_SHOW)

96 /* No larger than pktsum_t */
97 typedef struct brsum_s {
98 uint64_t drops;
99 uint64_t forward_dir;
100 uint64_t forward_mb;
101 uint64_t forward_unk;
102 uint64_t recv;
103 uint64_t sent;
104 } brsum_t;

106 /* No larger than pktsum_t */
107 typedef struct brlsum_s {
108 uint32_t cfgbpdu;
109 uint32_t tcnbpdu;
110 uint32_t rstpbpdu;
111 uint32_t txbpdu;
112 uint64_t drops;
113 uint64_t recv;
114 uint64_t xmit;
115 } brlsum_t;

117 typedef struct show_state {
118 boolean_t ls_firstonly;
119 boolean_t ls_donefirst;
120 pktsum_t ls_prevstats;
121 uint32_t ls_flags;
122 dladm_status_t ls_status;
123 ofmt_handle_t ls_ofmt;
124 boolean_t ls_parsable;
125 boolean_t ls_mac;

new/usr/src/cmd/dladm/dladm.c 3

126 boolean_t ls_hwgrp;
127 } show_state_t;

129 typedef struct show_grp_state {
130 pktsum_t gs_prevstats[MAXPORT];
131 uint32_t gs_flags;
132 dladm_status_t gs_status;
133 boolean_t gs_parsable;
134 boolean_t gs_lacp;
135 boolean_t gs_extended;
136 boolean_t gs_stats;
137 boolean_t gs_firstonly;
138 boolean_t gs_donefirst;
139 ofmt_handle_t gs_ofmt;
140 } show_grp_state_t;

142 typedef struct show_vnic_state {
143 datalink_id_t vs_vnic_id;
144 datalink_id_t vs_link_id;
145 char vs_vnic[MAXLINKNAMELEN];
146 char vs_link[MAXLINKNAMELEN];
147 boolean_t vs_parsable;
148 boolean_t vs_found;
149 boolean_t vs_firstonly;
150 boolean_t vs_donefirst;
151 boolean_t vs_stats;
152 boolean_t vs_printstats;
153 pktsum_t vs_totalstats;
154 pktsum_t vs_prevstats[MAXVNIC];
155 boolean_t vs_etherstub;
156 dladm_status_t vs_status;
157 uint32_t vs_flags;
158 ofmt_handle_t vs_ofmt;
159 } show_vnic_state_t;

161 typedef struct show_part_state {
162 datalink_id_t ps_over_id;
163 char ps_part[MAXLINKNAMELEN];
164 boolean_t ps_parsable;
165 boolean_t ps_found;
166 dladm_status_t ps_status;
167 uint32_t ps_flags;
168 ofmt_handle_t ps_ofmt;
169 } show_part_state_t;

171 typedef struct show_ib_state {
172 datalink_id_t is_link_id;
173 char is_link[MAXLINKNAMELEN];
174 boolean_t is_parsable;
175 dladm_status_t is_status;
176 uint32_t is_flags;
177 ofmt_handle_t is_ofmt;
178 } show_ib_state_t;

180 typedef struct show_usage_state_s {
181 boolean_t us_plot;
182 boolean_t us_parsable;
183 boolean_t us_printheader;
184 boolean_t us_first;
185 boolean_t us_showall;
186 ofmt_handle_t us_ofmt;
187 } show_usage_state_t;

189 /*
190 * callback functions for printing output and error diagnostics.
191 */

new/usr/src/cmd/dladm/dladm.c 4

192 static ofmt_cb_t print_default_cb, print_link_stats_cb, print_linkprop_cb;
193 static ofmt_cb_t print_lacp_cb, print_phys_one_mac_cb;
194 static ofmt_cb_t print_xaggr_cb, print_aggr_stats_cb;
195 static ofmt_cb_t print_phys_one_hwgrp_cb, print_wlan_attr_cb;
196 static ofmt_cb_t print_wifi_status_cb, print_link_attr_cb;
197 static void dladm_ofmt_check(ofmt_status_t, boolean_t, ofmt_handle_t);

199 typedef void cmdfunc_t(int, char **, const char *);

201 static cmdfunc_t do_show_link, do_show_wifi, do_show_phys;
202 static cmdfunc_t do_create_aggr, do_delete_aggr, do_add_aggr, do_remove_aggr;
203 static cmdfunc_t do_modify_aggr, do_show_aggr, do_up_aggr;
204 static cmdfunc_t do_scan_wifi, do_connect_wifi, do_disconnect_wifi;
205 static cmdfunc_t do_show_linkprop, do_set_linkprop, do_reset_linkprop;
206 static cmdfunc_t do_create_secobj, do_delete_secobj, do_show_secobj;
207 static cmdfunc_t do_init_linkprop, do_init_secobj;
208 static cmdfunc_t do_create_vlan, do_delete_vlan, do_up_vlan, do_show_vlan;
209 static cmdfunc_t do_rename_link, do_delete_phys, do_init_phys;
210 static cmdfunc_t do_show_linkmap;
211 static cmdfunc_t do_show_ether;
212 static cmdfunc_t do_create_vnic, do_delete_vnic, do_show_vnic;
213 static cmdfunc_t do_up_vnic;
214 static cmdfunc_t do_create_part, do_delete_part, do_show_part, do_show_ib;
215 static cmdfunc_t do_up_part;
216 static cmdfunc_t do_create_etherstub, do_delete_etherstub, do_show_etherstub;
217 static cmdfunc_t do_create_simnet, do_modify_simnet;
218 static cmdfunc_t do_delete_simnet, do_show_simnet, do_up_simnet;
219 static cmdfunc_t do_show_usage;
220 static cmdfunc_t do_create_bridge, do_modify_bridge, do_delete_bridge;
221 static cmdfunc_t do_add_bridge, do_remove_bridge, do_show_bridge;
222 static cmdfunc_t do_create_iptun, do_modify_iptun, do_delete_iptun;
223 static cmdfunc_t do_show_iptun, do_up_iptun, do_down_iptun;
224 static cmdfunc_t do_help;
225 #endif /* ! codereview */

227 static void do_up_vnic_common(int, char **, const char *, boolean_t);

229 static int show_part(dladm_handle_t, datalink_id_t, void *);

231 static void altroot_cmd(char *, int, char **);
232 static int show_linkprop_onelink(dladm_handle_t, datalink_id_t, void *);

234 static void link_stats(datalink_id_t, uint_t, char *, show_state_t *);
235 static void aggr_stats(datalink_id_t, show_grp_state_t *, uint_t);
236 static void vnic_stats(show_vnic_state_t *, uint32_t);

238 static int get_one_kstat(const char *, const char *, uint8_t,
239 void *, boolean_t);
240 static void get_mac_stats(const char *, pktsum_t *);
241 static void get_link_stats(const char *, pktsum_t *);
242 static uint64_t get_ifspeed(const char *, boolean_t);
243 static const char *get_linkstate(const char *, boolean_t, char *);
244 static const char *get_linkduplex(const char *, boolean_t, char *);

246 static iptun_type_t iptun_gettypebyname(char *);
247 static const char *iptun_gettypebyvalue(iptun_type_t);
248 static dladm_status_t print_iptun(dladm_handle_t, datalink_id_t,
249 show_state_t *);
250 static int print_iptun_walker(dladm_handle_t, datalink_id_t, void *);

252 static int show_etherprop(dladm_handle_t, datalink_id_t, void *);
253 static void show_ether_xprop(void *, dladm_ether_info_t *);
254 static boolean_t link_is_ether(const char *, datalink_id_t *);

256 static boolean_t str2int(const char *, int *);
257 static void die(const char *, ...);

new/usr/src/cmd/dladm/dladm.c 5

258 static void die_optdup(int);
259 static void die_opterr(int, int, const char *);
260 static void die_dlerr(dladm_status_t, const char *, ...);
261 static void warn(const char *, ...);
262 static void warn_dlerr(dladm_status_t, const char *, ...);

264 typedef struct cmd {
265 char *c_name;
266 cmdfunc_t *c_fn;
267 const char *c_usage;
268 } cmd_t;

270 static cmd_t cmds[] = {
271 { "rename-link", do_rename_link,
272 " rename-link <oldlink> <newlink>" },
273 { "show-link", do_show_link,
274 " show-link [-P] [[-p] -o <field>,..] "
275 "[-s [-i <interval>]] [<link>]" },
86 " show-link [-pP] [-o <field>,..] [-s [-i <interval>]] "
87 "[<link>]\n" },
276 { "create-aggr", do_create_aggr,
277 " create-aggr [-t] [-P <policy>] [-L <mode>] [-T <time>] "
278 "[-u <address>]\n"
279 "\t\t -l <link> [-l <link>...] <link>" },
280 { "delete-aggr", do_delete_aggr,
281 " delete-aggr [-t] <link>" },
282 { "add-aggr", do_add_aggr,
283 " add-aggr [-t] -l <link> [-l <link>...] <link>" },
284 { "remove-aggr", do_remove_aggr,
285 " remove-aggr [-t] -l <link> [-l <link>...] <link>" },
286 { "modify-aggr", do_modify_aggr,
287 " modify-aggr [-t] [-P <policy>] [-L <mode>] [-T <time>] "
288 "[-u <address>]\n"
289 "\t\t <link>" },
290 { "show-aggr", do_show_aggr,
291 " show-aggr [-PLx] [[-p] -o <field>,..] "
292 "[-s [-i <interval>]] [<link>]" },
103 " show-aggr [-pPLx] [-o <field>,..] [-s [-i <interval>]] "
104 "[<link>]\n" },
293 { "up-aggr", do_up_aggr, NULL },
294 { "scan-wifi", do_scan_wifi,
295 " scan-wifi [[-p] -o <field>,...] [<link>]" },
107 " scan-wifi [-p] [-o <field>,...] [<link>]" },
296 { "connect-wifi", do_connect_wifi,
297 " connect-wifi [-e <essid>] [-i <bssid>] [-k <key>,...] "
298 "[-s wep|wpa]\n"
299 "\t\t [-a open|shared] [-b bss|ibss] [-c] [-m a|b|g] "
300 "[-T <time>]\n"
301 "\t\t [<link>]" },
302 { "disconnect-wifi", do_disconnect_wifi,
303 " disconnect-wifi [-a] [<link>]" },
304 { "show-wifi", do_show_wifi,
305 " show-wifi [[-p] -o <field>,...] [<link>]" },
117 " show-wifi [-p] [-o <field>,...] [<link>]\n" },
306 { "set-linkprop", do_set_linkprop,
307 " set-linkprop [-t] -p <prop>=<value>[,...] <name>" },
308 { "reset-linkprop", do_reset_linkprop,
309 " reset-linkprop [-t] [-p <prop>,...] <name>" },
310 { "show-linkprop", do_show_linkprop,
311 " show-linkprop [-cP] [-o <field>,...] [-p <prop>,...] "
312 "<name>" },
124 "<name>\n" },
313 { "show-ether", do_show_ether,
314 " show-ether [-x] [[-p] -o <field>,...] <link>" },
126 " show-ether [-px][-o <field>,...] <link>\n" },
315 { "create-secobj", do_create_secobj,

new/usr/src/cmd/dladm/dladm.c 6

316 " create-secobj [-t] [-f <file>] -c <class> <secobj>" },
317 { "delete-secobj", do_delete_secobj,
318 " delete-secobj [-t] <secobj>[,...]" },
319 { "show-secobj", do_show_secobj,
320 " show-secobj [-P] [[-p] -o <field>,...] [<secobj>,...]" },
132 " show-secobj [-pP] [-o <field>,...] [<secobj>,...]\n" },
321 { "init-linkprop", do_init_linkprop, NULL },
322 { "init-secobj", do_init_secobj, NULL },
323 { "create-vlan", do_create_vlan,
324 " create-vlan [-ft] -l <link> -v <vid> [link]" },
325 { "delete-vlan", do_delete_vlan,
326 " delete-vlan [-t] <link>" },
327 { "show-vlan", do_show_vlan,
328 " show-vlan [-P] [[-p] -o <field>,...] [<link>]" },
140 " show-vlan [-pP] [-o <field>,..] [<link>]\n" },
329 { "up-vlan", do_up_vlan, NULL },
330 { "create-iptun", do_create_iptun,
331 " create-iptun [-t] -T <type> "
332 "[-a {local|remote}=<addr>,...] <link>]" },
333 { "delete-iptun", do_delete_iptun,
334 " delete-iptun [-t] <link>" },
335 { "modify-iptun", do_modify_iptun,
336 " modify-iptun [-t] -a {local|remote}=<addr>,... <link>" },
337 { "show-iptun", do_show_iptun,
338 " show-iptun [-P] [[-p] -o <field>,...] [<link>]" },
150 " show-iptun [-pP] [-o <field>,..] [<link>]\n" },
339 { "up-iptun", do_up_iptun, NULL },
340 { "down-iptun", do_down_iptun, NULL },
341 { "delete-phys", do_delete_phys,
342 " delete-phys <link>" },
343 { "show-phys", do_show_phys,
344 " show-phys [-P] [[-p] -o <field>,...] [-H] [<link>]" },
156 " show-phys [-pP] [-o <field>,..] [-H] [<link>]\n"},
345 { "init-phys", do_init_phys, NULL },
346 { "show-linkmap", do_show_linkmap, NULL },
347 { "create-vnic", do_create_vnic,
348 " create-vnic [-t] -l <link> [-m <value> | auto |\n"
349 "\t\t {factory [-n <slot-id>]} | {random [-r <prefix>]} |\n"
350 "\t\t {vrrp -V <vrid> -A {inet | inet6}} [-v <vid> [-f]]\n"
351 "\t\t [-p <prop>=<value>[,...]] [-R root-dir] <vnic-link>" },
163 "\t\t [-p <prop>=<value>[,...]] <vnic-link>" },
352 { "delete-vnic", do_delete_vnic,
353 " delete-vnic [-t] <vnic-link>" },
354 { "show-vnic", do_show_vnic,
355 " show-vnic [-P] [[-p] -o <field>,...] [-l <link>] "
356 "[-s [-i <interval>]] [<link>]" },
167 " show-vnic [-pP] [-l <link>] [-s [-i <interval>]] "
168 "[<link>]\n" },
357 { "up-vnic", do_up_vnic, NULL },
358 { "create-part", do_create_part,
359 " create-part [-t] [-f] -l <link> [-P <pkey>]\n"
360 "\t\t [-R <root-dir>] <part-link>" },
361 { "delete-part", do_delete_part,
362 " delete-part [-t] [-R <root-dir>] <part-link>"},
363 { "show-part", do_show_part,
364 " show-part [-P] [[-p] -o <field>,...] [-l <linkover>]\n"
176 " show-part [-pP] [-o <field>,...][-l <linkover>]\n"
365 "\t\t [<part-link>]" },
366 { "show-ib", do_show_ib,
367 " show-ib [[-p] -o <field>,...] [<link>]" },
179 " show-ib [-p] [-o <field>,...] [<link>]\n" },
368 { "up-part", do_up_part, NULL },
369 { "create-etherstub", do_create_etherstub,
370 " create-etherstub [-t] <link>" },
371 { "delete-etherstub", do_delete_etherstub,
372 " delete-etherstub [-t] <link>" },

new/usr/src/cmd/dladm/dladm.c 7

373 { "show-etherstub", do_show_etherstub,
374 " show-etherstub [-t] [<link>]\n" },
375 { "create-simnet", do_create_simnet, NULL },
376 { "modify-simnet", do_modify_simnet, NULL },
377 { "delete-simnet", do_delete_simnet, NULL },
378 { "show-simnet", do_show_simnet, NULL },
379 { "up-simnet", do_up_simnet, NULL },
380 { "create-bridge", do_create_bridge,
381 " create-bridge [-R <root-dir>] [-P <protect>] "
382 "[-p <priority>]\n"
383 "\t\t [-m <max-age>] [-h <hello-time>] [-d <forward-delay>]\n"
384 "\t\t [-f <force-protocol>] [-l <link>]... <bridge>" },
385 { "modify-bridge", do_modify_bridge,
386 " modify-bridge [-R <root-dir>] [-P <protect>] "
387 "[-p <priority>]\n"
388 "\t\t [-m <max-age>] [-h <hello-time>] [-d <forward-delay>]\n"
389 "\t\t [-f <force-protocol>] <bridge>" },
390 { "delete-bridge", do_delete_bridge,
391 " delete-bridge [-R <root-dir>] <bridge>" },
392 { "add-bridge", do_add_bridge,
393 " add-bridge [-R <root-dir>] -l <link> [-l <link>]... "
394 "<bridge>" },
395 { "remove-bridge", do_remove_bridge,
396 " remove-bridge [-R <root-dir>] -l <link> [-l <link>]... "
397 "<bridge>" },
398 { "show-bridge", do_show_bridge,
399 " show-bridge [[-p] -o <field>,...] [-s [-i <interval>]] "
211 " show-bridge [-p] [-o <field>,...] [-s [-i <interval>]] "
400 "[<bridge>]\n"
401 " show-bridge -l [[-p] -o <field>,...] [-s [-i <interval>]]"
213 " show-bridge -l [-p] [-o <field>,...] [-s [-i <interval>]]"
402 " <bridge>\n"
403 " show-bridge -f [[-p] -o <field>,...] [-s [-i <interval>]]"
215 " show-bridge -f [-p] [-o <field>,...] [-s [-i <interval>]]"
404 " <bridge>\n"
405 " show-bridge -t [[-p] -o <field>,...] [-s [-i <interval>]]"
406 " <bridge>" },
217 " show-bridge -t [-p] [-o <field>,...] [-s [-i <interval>]]"
218 " <bridge>\n" },
407 { "show-usage", do_show_usage,
408 " show-usage [-a] [-d | -F <format>] "
409 "[-s <DD/MM/YYYY,HH:MM:SS>]\n"
410 "\t\t [-e <DD/MM/YYYY,HH:MM:SS>] -f <logfile> [<link>]" },
411 { "help", do_help,
412 " help [<subcommand>]" }
222 "\t\t [-e <DD/MM/YYYY,HH:MM:SS>] -f <logfile> [<link>]" }
413 };

______unchanged_portion_omitted_

1127 static const ofmt_field_t usage_fields[] = {
1128 { "LINK", 13,
1129 offsetof(usage_fields_buf_t, usage_link), print_default_cb},
1130 { "DURATION", 11,
1131 offsetof(usage_fields_buf_t, usage_duration), print_default_cb},
1132 { "IPACKETS", 10,
1133 offsetof(usage_fields_buf_t, usage_ipackets), print_default_cb},
1134 { "RBYTES", 11,
1135 offsetof(usage_fields_buf_t, usage_rbytes), print_default_cb},
1136 { "OPACKETS", 10,
1137 offsetof(usage_fields_buf_t, usage_opackets), print_default_cb},
1138 { "OBYTES", 11,
1139 offsetof(usage_fields_buf_t, usage_obytes), print_default_cb},
1140 { "BANDWIDTH", 15,
1141 offsetof(usage_fields_buf_t, usage_bandwidth), print_default_cb},
1142 { NULL, 0, 0, NULL}}
1143 ;

new/usr/src/cmd/dladm/dladm.c 8

1145 /*
1146 * structures for ’dladm show-usage link’
1147 */

1149 typedef struct usage_l_fields_buf_s {
1150 char usage_l_link[12];
1151 char usage_l_stime[13];
1152 char usage_l_etime[13];
1153 char usage_l_rbytes[8];
1154 char usage_l_obytes[8];
1155 char usage_l_bandwidth[14];
1156 } usage_l_fields_buf_t;
______unchanged_portion_omitted_

1420 static ofmt_field_t bridge_trill_fields[] = {
1421 /* name, field width, offset, callback */
1422 { "NICK", 5,
1423 offsetof(bridge_trill_fields_buf_t, bridget_nick), print_default_cb },
1424 { "FLAGS", 6,
1425 offsetof(bridge_trill_fields_buf_t, bridget_flags), print_default_cb },
1426 { "LINK", 12,
1427 offsetof(bridge_trill_fields_buf_t, bridget_link), print_default_cb },
1428 { "NEXTHOP", 17,
1429 offsetof(bridge_trill_fields_buf_t, bridget_nexthop), print_default_cb },
1430 { NULL, 0, 0, NULL}};

1432 static char *progname;
1433 static sig_atomic_t signalled;

1435 /*
1436 * Handle to libdladm. Opened in main() before the sub-command
1437 * specific function is called.
1438 */
1439 static dladm_handle_t handle = NULL;

1441 #define DLADM_ETHERSTUB_NAME "etherstub"
1442 #define DLADM_IS_ETHERSTUB(id) (id == DATALINK_INVALID_LINKID)

1444 static void
1445 usage(void)
1446 {
1447 (void) fprintf(stderr, gettext("For more information, run: %s help\n"),
1448 progname);
1258 int i;
1259 cmd_t *cmdp;
1260 (void) fprintf(stderr, gettext("usage: dladm <subcommand> <args> ..."
1261 "\n"));
1262 for (i = 0; i < sizeof (cmds) / sizeof (cmds[0]); i++) {
1263 cmdp = &cmds[i];
1264 if (cmdp->c_usage != NULL)
1265 (void) fprintf(stderr, "%s\n", gettext(cmdp->c_usage));
1266 }

1450 /* close dladm handle if it was opened */
1451 if (handle != NULL)
1452 dladm_close(handle);

1454 exit(EXIT_FAILURE);
1455 }

1457 int
1458 main(int argc, char *argv[])
1459 {
1460 int i;

new/usr/src/cmd/dladm/dladm.c 9

1461 cmd_t *cmdp;
1462 dladm_status_t status;

1464 (void) setlocale(LC_ALL, "");
1465 #if !defined(TEXT_DOMAIN)
1466 #define TEXT_DOMAIN "SYS_TEST"
1467 #endif
1468 (void) textdomain(TEXT_DOMAIN);

1470 progname = argv[0];

1472 if (argc < 2) {
1473 argv[1] = DLADM_DEFAULT_CMD;
1474 argc++;
1475 }
1290 if (argc < 2)
1291 usage();

1477 for (i = 0; i < sizeof (cmds) / sizeof (cmds[0]); i++) {
1478 cmdp = &cmds[i];
1479 if (strcmp(argv[1], cmdp->c_name) == 0) {
1480 /* Open the libdladm handle */
1481 if ((status = dladm_open(&handle)) != DLADM_STATUS_OK) {
1482 die_dlerr(status,
1483 "could not open /dev/dld");
1484 }

1486 cmdp->c_fn(argc - 1, &argv[1], cmdp->c_usage);

1488 dladm_close(handle);
1489 return (EXIT_SUCCESS);
1490 }
1491 }

1493 (void) fprintf(stderr, gettext("%s: unknown subcommand ’%s’\n"),
1494 progname, argv[1]);
1495 usage();
1496 return (EXIT_FAILURE);
1497 }

1499 static int
1500 help_compare(const void *cmd1, const void *cmd2)
1501 {
1502 cmd_t *cmd1p = (cmd_t *)cmd1;
1503 cmd_t *cmd2p = (cmd_t *)cmd2;

1505 return (strcmp(cmd1p->c_name, cmd2p->c_name));
1506 }

1508 static void
1509 do_help(int argc, char *argv[], const char *use)
1510 {
1511 size_t nelems;
1512 int i, j, ncols = 3;
1513 boolean_t found = B_FALSE;

1515 _NOTE(ARGUNUSED(use));

1517 nelems = sizeof (cmds) / sizeof (cmd_t);

1519 if (argc < 2) {
1520 qsort(cmds, nelems, sizeof (cmd_t), help_compare);

1522 (void) fprintf(stderr, gettext(
1523 "usage: dladm help <subcommand>\n"
1524 "Subcommands are:\n"));

new/usr/src/cmd/dladm/dladm.c 10

1526 for (i = 0, j = 0; i < nelems; i++) {
1527 if (cmds[i].c_usage == NULL)
1528 continue;

1530 (void) fprintf(stderr, "%-20s", cmds[i].c_name);

1532 if (++j % ncols == 0)
1533 (void) putc(’\n’, stderr);
1534 }

1536 if (j % ncols != 0)
1537 (void) putc(’\n’, stderr);
1538 } else {
1539 for (i = 0; i < nelems; i++) {
1540 if (strcmp(argv[1], cmds[i].c_name) == 0) {
1541 (void) fprintf(stderr, "usage:\n%s\n",
1542 gettext(cmds[i].c_usage));
1543 found = B_TRUE;
1544 break;
1545 }
1546 }

1548 if (!found) {
1549 (void) fprintf(stderr, gettext(
1550 "%s: unknown subcommand ’%s’\n"),
1551 progname, argv[1]);
1552 usage();
1553 }
1554 }
1555 }

1557 #endif /* ! codereview */
1558 /*ARGSUSED*/
1559 static int
1560 show_usage_date(dladm_usage_t *usage, void *arg)
1561 {
1562 show_usage_state_t *state = (show_usage_state_t *)arg;
1563 time_t stime;
1564 char timebuf[20];
1565 dladm_status_t status;
1566 uint32_t flags;

1568 /*
1569 * Only show usage information for existing links unless ’-a’
1570 * is specified.
1571 */
1572 if (!state->us_showall) {
1573 if ((status = dladm_name2info(handle, usage->du_name,
1574 NULL, &flags, NULL, NULL)) != DLADM_STATUS_OK) {
1575 return (status);
1576 }
1577 if ((flags & DLADM_OPT_ACTIVE) == 0)
1578 return (DLADM_STATUS_LINKINVAL);
1579 }

1581 stime = usage->du_stime;
1582 (void) strftime(timebuf, sizeof (timebuf), "%m/%d/%Y",
1583 localtime(&stime));
1584 (void) printf("%s\n", timebuf);

1586 return (DLADM_STATUS_OK);
1587 }

1589 static int
1590 show_usage_time(dladm_usage_t *usage, void *arg)

new/usr/src/cmd/dladm/dladm.c 11

1591 {
1592 show_usage_state_t *state = (show_usage_state_t *)arg;
1593 char buf[DLADM_STRSIZE];
1594 usage_l_fields_buf_t ubuf;
1595 time_t time;
1596 double bw;
1597 dladm_status_t status;
1598 uint32_t flags;

1600 /*
1601 * Only show usage information for existing links unless ’-a’
1602 * is specified.
1603 */
1604 if (!state->us_showall) {
1605 if ((status = dladm_name2info(handle, usage->du_name,
1606 NULL, &flags, NULL, NULL)) != DLADM_STATUS_OK) {
1607 return (status);
1608 }
1609 if ((flags & DLADM_OPT_ACTIVE) == 0)
1610 return (DLADM_STATUS_LINKINVAL);
1611 }

1613 if (state->us_plot) {
1614 if (!state->us_printheader) {
1615 if (state->us_first) {
1616 (void) printf("# Time");
1617 state->us_first = B_FALSE;
1618 }
1619 (void) printf(" %s", usage->du_name);
1620 if (usage->du_last) {
1621 (void) printf("\n");
1622 state->us_first = B_TRUE;
1623 state->us_printheader = B_TRUE;
1624 }
1625 } else {
1626 if (state->us_first) {
1627 time = usage->du_etime;
1628 (void) strftime(buf, sizeof (buf), "%T",
1629 localtime(&time));
1630 state->us_first = B_FALSE;
1631 (void) printf("%s", buf);
1632 }
1633 bw = (double)usage->du_bandwidth/1000;
1634 (void) printf(" %.2f", bw);
1635 if (usage->du_last) {
1636 (void) printf("\n");
1637 state->us_first = B_TRUE;
1638 }
1639 }
1640 return (DLADM_STATUS_OK);
1641 }

1643 bzero(&ubuf, sizeof (ubuf));

1645 (void) snprintf(ubuf.usage_l_link, sizeof (ubuf.usage_l_link), "%s",
1646 usage->du_name);
1647 time = usage->du_stime;
1648 (void) strftime(buf, sizeof (buf), "%T", localtime(&time));
1649 (void) snprintf(ubuf.usage_l_stime, sizeof (ubuf.usage_l_stime), "%s",
1650 buf);
1651 time = usage->du_etime;
1652 (void) strftime(buf, sizeof (buf), "%T", localtime(&time));
1653 (void) snprintf(ubuf.usage_l_etime, sizeof (ubuf.usage_l_etime), "%s",
1654 buf);
1655 (void) snprintf(ubuf.usage_l_rbytes, sizeof (ubuf.usage_l_rbytes),
1656 "%llu", usage->du_rbytes);

new/usr/src/cmd/dladm/dladm.c 12

1657 (void) snprintf(ubuf.usage_l_obytes, sizeof (ubuf.usage_l_obytes),
1658 "%llu", usage->du_obytes);
1659 (void) snprintf(ubuf.usage_l_bandwidth, sizeof (ubuf.usage_l_bandwidth),
1660 "%s Mbps", dladm_bw2str(usage->du_bandwidth, buf));

1662 ofmt_print(state->us_ofmt, &ubuf);
1663 return (DLADM_STATUS_OK);
1664 }

1666 static int
1667 show_usage_res(dladm_usage_t *usage, void *arg)
1668 {
1669 show_usage_state_t *state = (show_usage_state_t *)arg;
1670 char buf[DLADM_STRSIZE];
1671 usage_fields_buf_t ubuf;
1672 dladm_status_t status;
1673 uint32_t flags;

1675 /*
1676 * Only show usage information for existing links unless ’-a’
1677 * is specified.
1678 */
1679 if (!state->us_showall) {
1680 if ((status = dladm_name2info(handle, usage->du_name,
1681 NULL, &flags, NULL, NULL)) != DLADM_STATUS_OK) {
1682 return (status);
1683 }
1684 if ((flags & DLADM_OPT_ACTIVE) == 0)
1685 return (DLADM_STATUS_LINKINVAL);
1686 }

1688 bzero(&ubuf, sizeof (ubuf));

1690 (void) snprintf(ubuf.usage_link, sizeof (ubuf.usage_link), "%s",
1691 usage->du_name);
1692 (void) snprintf(ubuf.usage_duration, sizeof (ubuf.usage_duration),
1693 "%llu", usage->du_duration);
1694 (void) snprintf(ubuf.usage_ipackets, sizeof (ubuf.usage_ipackets),
1695 "%llu", usage->du_ipackets);
1696 (void) snprintf(ubuf.usage_rbytes, sizeof (ubuf.usage_rbytes),
1697 "%llu", usage->du_rbytes);
1698 (void) snprintf(ubuf.usage_opackets, sizeof (ubuf.usage_opackets),
1699 "%llu", usage->du_opackets);
1700 (void) snprintf(ubuf.usage_obytes, sizeof (ubuf.usage_obytes),
1701 "%llu", usage->du_obytes);
1702 (void) snprintf(ubuf.usage_bandwidth, sizeof (ubuf.usage_bandwidth),
1703 "%s Mbps", dladm_bw2str(usage->du_bandwidth, buf));

1705 ofmt_print(state->us_ofmt, &ubuf);

1707 return (DLADM_STATUS_OK);
1708 }

1710 static boolean_t
1711 valid_formatspec(char *formatspec_str)
1712 {
1713 if (strcmp(formatspec_str, "gnuplot") == 0)
1714 return (B_TRUE);
1715 return (B_FALSE);

1717 }

1719 /*ARGSUSED*/
1720 static void
1721 do_show_usage(int argc, char *argv[], const char *use)
1722 {

new/usr/src/cmd/dladm/dladm.c 13

1723 char *file = NULL;
1724 int opt;
1725 dladm_status_t status;
1726 boolean_t d_arg = B_FALSE;
1727 char *stime = NULL;
1728 char *etime = NULL;
1729 char *resource = NULL;
1730 show_usage_state_t state;
1731 boolean_t o_arg = B_FALSE;
1732 boolean_t F_arg = B_FALSE;
1733 char *fields_str = NULL;
1734 char *formatspec_str = NULL;
1735 char *all_l_fields =
1736 "link,start,end,rbytes,obytes,bandwidth";
1737 ofmt_handle_t ofmt;
1738 ofmt_status_t oferr;
1739 uint_t ofmtflags = 0;

1741 bzero(&state, sizeof (show_usage_state_t));
1742 state.us_parsable = B_FALSE;
1743 state.us_printheader = B_FALSE;
1744 state.us_plot = B_FALSE;
1745 state.us_first = B_TRUE;

1747 while ((opt = getopt_long(argc, argv, "das:e:o:f:F:",
1748 usage_opts, NULL)) != -1) {
1749 switch (opt) {
1750 case ’d’:
1751 d_arg = B_TRUE;
1752 break;
1753 case ’a’:
1754 state.us_showall = B_TRUE;
1755 break;
1756 case ’f’:
1757 file = optarg;
1758 break;
1759 case ’s’:
1760 stime = optarg;
1761 break;
1762 case ’e’:
1763 etime = optarg;
1764 break;
1765 case ’o’:
1766 o_arg = B_TRUE;
1767 fields_str = optarg;
1768 break;
1769 case ’F’:
1770 state.us_plot = F_arg = B_TRUE;
1771 formatspec_str = optarg;
1772 break;
1773 default:
1774 die_opterr(optopt, opt, use);
1775 break;
1776 }
1777 }

1779 if (file == NULL)
1780 die("show-usage requires a file");

1782 if (optind == (argc-1)) {
1783 uint32_t flags;

1785 resource = argv[optind];
1786 if (!state.us_showall &&
1787 (((status = dladm_name2info(handle, resource, NULL, &flags,
1788 NULL, NULL)) != DLADM_STATUS_OK) ||

new/usr/src/cmd/dladm/dladm.c 14

1789 ((flags & DLADM_OPT_ACTIVE) == 0))) {
1790 die("invalid link: ’%s’", resource);
1791 }
1792 }

1794 if (F_arg && d_arg)
1795 die("incompatible -d and -F options");

1797 if (F_arg && valid_formatspec(formatspec_str) == B_FALSE)
1798 die("Format specifier %s not supported", formatspec_str);

1800 if (state.us_parsable)
1801 ofmtflags |= OFMT_PARSABLE;

1803 if (resource == NULL && stime == NULL && etime == NULL) {
1804 oferr = ofmt_open(fields_str, usage_fields, ofmtflags, 0,
1805 &ofmt);
1806 } else {
1807 if (!o_arg || (o_arg && strcasecmp(fields_str, "all") == 0))
1808 fields_str = all_l_fields;
1809 oferr = ofmt_open(fields_str, usage_l_fields, ofmtflags, 0,
1810 &ofmt);

1812 }
1813 dladm_ofmt_check(oferr, state.us_parsable, ofmt);
1814 state.us_ofmt = ofmt;

1816 if (d_arg) {
1817 /* Print log dates */
1818 status = dladm_usage_dates(show_usage_date,
1819 DLADM_LOGTYPE_LINK, file, resource, &state);
1820 } else if (resource == NULL && stime == NULL && etime == NULL &&
1821 !F_arg) {
1822 /* Print summary */
1823 status = dladm_usage_summary(show_usage_res,
1824 DLADM_LOGTYPE_LINK, file, &state);
1825 } else if (resource != NULL) {
1826 /* Print log entries for named resource */
1827 status = dladm_walk_usage_res(show_usage_time,
1828 DLADM_LOGTYPE_LINK, file, resource, stime, etime, &state);
1829 } else {
1830 /* Print time and information for each link */
1831 status = dladm_walk_usage_time(show_usage_time,
1832 DLADM_LOGTYPE_LINK, file, stime, etime, &state);
1833 }

1835 if (status != DLADM_STATUS_OK)
1836 die_dlerr(status, "show-usage");
1837 ofmt_close(ofmt);
1838 }

1840 static void
1841 do_create_aggr(int argc, char *argv[], const char *use)
1842 {
1843 int option;
1844 int key = 0;
1845 uint32_t policy = AGGR_POLICY_L4;
1846 aggr_lacp_mode_t lacp_mode = AGGR_LACP_OFF;
1847 aggr_lacp_timer_t lacp_timer = AGGR_LACP_TIMER_SHORT;
1848 dladm_aggr_port_attr_db_t port[MAXPORT];
1849 uint_t n, ndev, nlink;
1850 uint8_t mac_addr[ETHERADDRL];
1851 boolean_t mac_addr_fixed = B_FALSE;
1852 boolean_t P_arg = B_FALSE;
1853 boolean_t l_arg = B_FALSE;
1854 boolean_t u_arg = B_FALSE;

new/usr/src/cmd/dladm/dladm.c 15

1855 boolean_t T_arg = B_FALSE;
1856 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
1857 char *altroot = NULL;
1858 char name[MAXLINKNAMELEN];
1859 char *devs[MAXPORT];
1860 char *links[MAXPORT];
1861 dladm_status_t status;
1862 dladm_status_t pstatus;
1863 char propstr[DLADM_STRSIZE];
1864 dladm_arg_list_t *proplist = NULL;
1865 int i;
1866 datalink_id_t linkid;

1868 ndev = nlink = opterr = 0;
1869 bzero(propstr, DLADM_STRSIZE);

1871 while ((option = getopt_long(argc, argv, ":d:l:L:P:R:tfu:T:p:",
1872 lopts, NULL)) != -1) {
1873 switch (option) {
1874 case ’d’:
1875 if (ndev + nlink >= MAXPORT)
1876 die("too many ports specified");

1878 devs[ndev++] = optarg;
1879 break;
1880 case ’P’:
1881 if (P_arg)
1882 die_optdup(option);

1884 P_arg = B_TRUE;
1885 if (!dladm_aggr_str2policy(optarg, &policy))
1886 die("invalid policy ’%s’", optarg);
1887 break;
1888 case ’u’:
1889 if (u_arg)
1890 die_optdup(option);

1892 u_arg = B_TRUE;
1893 if (!dladm_aggr_str2macaddr(optarg, &mac_addr_fixed,
1894 mac_addr))
1895 die("invalid MAC address ’%s’", optarg);
1896 break;
1897 case ’l’:
1898 if (isdigit(optarg[strlen(optarg) - 1])) {

1900 /*
1901 * Ended with digit, possibly a link name.
1902 */
1903 if (ndev + nlink >= MAXPORT)
1904 die("too many ports specified");

1906 links[nlink++] = optarg;
1907 break;
1908 }
1909 /* FALLTHROUGH */
1910 case ’L’:
1911 if (l_arg)
1912 die_optdup(option);

1914 l_arg = B_TRUE;
1915 if (!dladm_aggr_str2lacpmode(optarg, &lacp_mode))
1916 die("invalid LACP mode ’%s’", optarg);
1917 break;
1918 case ’T’:
1919 if (T_arg)
1920 die_optdup(option);

new/usr/src/cmd/dladm/dladm.c 16

1922 T_arg = B_TRUE;
1923 if (!dladm_aggr_str2lacptimer(optarg, &lacp_timer))
1924 die("invalid LACP timer value ’%s’", optarg);
1925 break;
1926 case ’t’:
1927 flags &= ~DLADM_OPT_PERSIST;
1928 break;
1929 case ’f’:
1930 flags |= DLADM_OPT_FORCE;
1931 break;
1932 case ’R’:
1933 altroot = optarg;
1934 break;
1935 case ’p’:
1936 (void) strlcat(propstr, optarg, DLADM_STRSIZE);
1937 if (strlcat(propstr, ",", DLADM_STRSIZE) >=
1938 DLADM_STRSIZE)
1939 die("property list too long ’%s’", propstr);
1940 break;

1942 default:
1943 die_opterr(optopt, option, use);
1944 break;
1945 }
1946 }

1948 if (ndev + nlink == 0)
1949 usage();

1951 /* get key value or the aggregation name (required last argument) */
1952 if (optind != (argc-1))
1953 usage();

1955 if (!str2int(argv[optind], &key)) {
1956 if (strlcpy(name, argv[optind], MAXLINKNAMELEN) >=
1957 MAXLINKNAMELEN) {
1958 die("link name too long ’%s’", argv[optind]);
1959 }

1961 if (!dladm_valid_linkname(name))
1962 die("invalid link name ’%s’", argv[optind]);
1963 } else {
1964 (void) snprintf(name, MAXLINKNAMELEN, "aggr%d", key);
1965 }

1967 if (altroot != NULL)
1968 altroot_cmd(altroot, argc, argv);

1970 for (n = 0; n < ndev; n++) {
1971 if ((status = dladm_dev2linkid(handle, devs[n],
1972 &port[n].lp_linkid)) != DLADM_STATUS_OK) {
1973 die_dlerr(status, "invalid dev name ’%s’", devs[n]);
1974 }
1975 }

1977 for (n = 0; n < nlink; n++) {
1978 if ((status = dladm_name2info(handle, links[n],
1979 &port[ndev + n].lp_linkid, NULL, NULL, NULL)) !=
1980 DLADM_STATUS_OK) {
1981 die_dlerr(status, "invalid link name ’%s’", links[n]);
1982 }
1983 }

1985 status = dladm_aggr_create(handle, name, key, ndev + nlink, port,
1986 policy, mac_addr_fixed, (const uchar_t *)mac_addr, lacp_mode,

new/usr/src/cmd/dladm/dladm.c 17

1987 lacp_timer, flags);
1988 if (status != DLADM_STATUS_OK)
1989 goto done;

1991 if (dladm_parse_link_props(propstr, &proplist, B_FALSE)
1992 != DLADM_STATUS_OK)
1993 die("invalid aggregation property");

1995 if (proplist == NULL)
1996 return;

1998 status = dladm_name2info(handle, name, &linkid, NULL, NULL, NULL);
1999 if (status != DLADM_STATUS_OK)
2000 goto done;

2002 for (i = 0; i < proplist->al_count; i++) {
2003 dladm_arg_info_t *aip = &proplist->al_info[i];

2005 pstatus = dladm_set_linkprop(handle, linkid, aip->ai_name,
2006 aip->ai_val, aip->ai_count, flags);

2008 if (pstatus != DLADM_STATUS_OK) {
2009 die_dlerr(pstatus,
2010 "aggr creation succeeded but "
2011 "could not set property ’%s’", aip->ai_name);
2012 }
2013 }
2014 done:
2015 dladm_free_props(proplist);
2016 if (status != DLADM_STATUS_OK) {
2017 if (status == DLADM_STATUS_NONOTIF) {
2018 die("not all links have link up/down detection; must "
2019 "use -f (see dladm(1M))");
2020 } else {
2021 die_dlerr(status, "create operation failed");
2022 }
2023 }
2024 }

2026 /*
2027 * arg is either the key or the aggr name. Validate it and convert it to
2028 * the linkid if altroot is NULL.
2029 */
2030 static dladm_status_t
2031 i_dladm_aggr_get_linkid(const char *altroot, const char *arg,
2032 datalink_id_t *linkidp, uint32_t flags)
2033 {
2034 int key = 0;
2035 char *aggr = NULL;
2036 dladm_status_t status;

2038 if (!str2int(arg, &key))
2039 aggr = (char *)arg;

2041 if (aggr == NULL && key == 0)
2042 return (DLADM_STATUS_LINKINVAL);

2044 if (altroot != NULL)
2045 return (DLADM_STATUS_OK);

2047 if (aggr != NULL) {
2048 status = dladm_name2info(handle, aggr, linkidp, NULL, NULL,
2049 NULL);
2050 } else {
2051 status = dladm_key2linkid(handle, key, linkidp, flags);
2052 }

new/usr/src/cmd/dladm/dladm.c 18

2054 return (status);
2055 }

2057 static void
2058 do_delete_aggr(int argc, char *argv[], const char *use)
2059 {
2060 int option;
2061 char *altroot = NULL;
2062 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
2063 dladm_status_t status;
2064 datalink_id_t linkid;

2066 opterr = 0;
2067 while ((option = getopt_long(argc, argv, ":R:t", lopts, NULL)) != -1) {
2068 switch (option) {
2069 case ’t’:
2070 flags &= ~DLADM_OPT_PERSIST;
2071 break;
2072 case ’R’:
2073 altroot = optarg;
2074 break;
2075 default:
2076 die_opterr(optopt, option, use);
2077 break;
2078 }
2079 }

2081 /* get key value or the aggregation name (required last argument) */
2082 if (optind != (argc-1))
2083 usage();

2085 status = i_dladm_aggr_get_linkid(altroot, argv[optind], &linkid, flags);
2086 if (status != DLADM_STATUS_OK)
2087 goto done;

2089 if (altroot != NULL)
2090 altroot_cmd(altroot, argc, argv);

2092 status = dladm_aggr_delete(handle, linkid, flags);
2093 done:
2094 if (status != DLADM_STATUS_OK)
2095 die_dlerr(status, "delete operation failed");
2096 }

2098 static void
2099 do_add_aggr(int argc, char *argv[], const char *use)
2100 {
2101 int option;
2102 uint_t n, ndev, nlink;
2103 char *altroot = NULL;
2104 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
2105 datalink_id_t linkid;
2106 dladm_status_t status;
2107 dladm_aggr_port_attr_db_t port[MAXPORT];
2108 char *devs[MAXPORT];
2109 char *links[MAXPORT];

2111 ndev = nlink = opterr = 0;
2112 while ((option = getopt_long(argc, argv, ":d:l:R:tf", lopts,
2113 NULL)) != -1) {
2114 switch (option) {
2115 case ’d’:
2116 if (ndev + nlink >= MAXPORT)
2117 die("too many ports specified");

new/usr/src/cmd/dladm/dladm.c 19

2119 devs[ndev++] = optarg;
2120 break;
2121 case ’l’:
2122 if (ndev + nlink >= MAXPORT)
2123 die("too many ports specified");

2125 links[nlink++] = optarg;
2126 break;
2127 case ’t’:
2128 flags &= ~DLADM_OPT_PERSIST;
2129 break;
2130 case ’f’:
2131 flags |= DLADM_OPT_FORCE;
2132 break;
2133 case ’R’:
2134 altroot = optarg;
2135 break;
2136 default:
2137 die_opterr(optopt, option, use);
2138 break;
2139 }
2140 }

2142 if (ndev + nlink == 0)
2143 usage();

2145 /* get key value or the aggregation name (required last argument) */
2146 if (optind != (argc-1))
2147 usage();

2149 if ((status = i_dladm_aggr_get_linkid(altroot, argv[optind], &linkid,
2150 flags & (DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST))) !=
2151 DLADM_STATUS_OK) {
2152 goto done;
2153 }

2155 if (altroot != NULL)
2156 altroot_cmd(altroot, argc, argv);

2158 for (n = 0; n < ndev; n++) {
2159 if ((status = dladm_dev2linkid(handle, devs[n],
2160 &(port[n].lp_linkid))) != DLADM_STATUS_OK) {
2161 die_dlerr(status, "invalid <dev> ’%s’", devs[n]);
2162 }
2163 }

2165 for (n = 0; n < nlink; n++) {
2166 if ((status = dladm_name2info(handle, links[n],
2167 &port[n + ndev].lp_linkid, NULL, NULL, NULL)) !=
2168 DLADM_STATUS_OK) {
2169 die_dlerr(status, "invalid <link> ’%s’", links[n]);
2170 }
2171 }

2173 status = dladm_aggr_add(handle, linkid, ndev + nlink, port, flags);
2174 done:
2175 if (status != DLADM_STATUS_OK) {
2176 /*
2177 * checking DLADM_STATUS_NOTSUP is a temporary workaround
2178 * and should be removed once 6399681 is fixed.
2179 */
2180 if (status == DLADM_STATUS_NOTSUP) {
2181 die("add operation failed: link capabilities don’t "
2182 "match");
2183 } else if (status == DLADM_STATUS_NONOTIF) {
2184 die("not all links have link up/down detection; must "

new/usr/src/cmd/dladm/dladm.c 20

2185 "use -f (see dladm(1M))");
2186 } else {
2187 die_dlerr(status, "add operation failed");
2188 }
2189 }
2190 }

2192 static void
2193 do_remove_aggr(int argc, char *argv[], const char *use)
2194 {
2195 int option;
2196 dladm_aggr_port_attr_db_t port[MAXPORT];
2197 uint_t n, ndev, nlink;
2198 char *devs[MAXPORT];
2199 char *links[MAXPORT];
2200 char *altroot = NULL;
2201 uint32_t flags;
2202 datalink_id_t linkid;
2203 dladm_status_t status;

2205 flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
2206 ndev = nlink = opterr = 0;
2207 while ((option = getopt_long(argc, argv, ":d:l:R:t",
2208 lopts, NULL)) != -1) {
2209 switch (option) {
2210 case ’d’:
2211 if (ndev + nlink >= MAXPORT)
2212 die("too many ports specified");

2214 devs[ndev++] = optarg;
2215 break;
2216 case ’l’:
2217 if (ndev + nlink >= MAXPORT)
2218 die("too many ports specified");

2220 links[nlink++] = optarg;
2221 break;
2222 case ’t’:
2223 flags &= ~DLADM_OPT_PERSIST;
2224 break;
2225 case ’R’:
2226 altroot = optarg;
2227 break;
2228 default:
2229 die_opterr(optopt, option, use);
2230 break;
2231 }
2232 }

2234 if (ndev + nlink == 0)
2235 usage();

2237 /* get key value or the aggregation name (required last argument) */
2238 if (optind != (argc-1))
2239 usage();

2241 status = i_dladm_aggr_get_linkid(altroot, argv[optind], &linkid, flags);
2242 if (status != DLADM_STATUS_OK)
2243 goto done;

2245 if (altroot != NULL)
2246 altroot_cmd(altroot, argc, argv);

2248 for (n = 0; n < ndev; n++) {
2249 if ((status = dladm_dev2linkid(handle, devs[n],
2250 &(port[n].lp_linkid))) != DLADM_STATUS_OK) {

new/usr/src/cmd/dladm/dladm.c 21

2251 die_dlerr(status, "invalid <dev> ’%s’", devs[n]);
2252 }
2253 }

2255 for (n = 0; n < nlink; n++) {
2256 if ((status = dladm_name2info(handle, links[n],
2257 &port[n + ndev].lp_linkid, NULL, NULL, NULL)) !=
2258 DLADM_STATUS_OK) {
2259 die_dlerr(status, "invalid <link> ’%s’", links[n]);
2260 }
2261 }

2263 status = dladm_aggr_remove(handle, linkid, ndev + nlink, port, flags);
2264 done:
2265 if (status != DLADM_STATUS_OK)
2266 die_dlerr(status, "remove operation failed");
2267 }

2269 static void
2270 do_modify_aggr(int argc, char *argv[], const char *use)
2271 {
2272 int option;
2273 uint32_t policy = AGGR_POLICY_L4;
2274 aggr_lacp_mode_t lacp_mode = AGGR_LACP_OFF;
2275 aggr_lacp_timer_t lacp_timer = AGGR_LACP_TIMER_SHORT;
2276 uint8_t mac_addr[ETHERADDRL];
2277 boolean_t mac_addr_fixed = B_FALSE;
2278 uint8_t modify_mask = 0;
2279 char *altroot = NULL;
2280 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
2281 datalink_id_t linkid;
2282 dladm_status_t status;

2284 opterr = 0;
2285 while ((option = getopt_long(argc, argv, ":L:l:P:R:tu:T:", lopts,
2286 NULL)) != -1) {
2287 switch (option) {
2288 case ’P’:
2289 if (modify_mask & DLADM_AGGR_MODIFY_POLICY)
2290 die_optdup(option);

2292 modify_mask |= DLADM_AGGR_MODIFY_POLICY;

2294 if (!dladm_aggr_str2policy(optarg, &policy))
2295 die("invalid policy ’%s’", optarg);
2296 break;
2297 case ’u’:
2298 if (modify_mask & DLADM_AGGR_MODIFY_MAC)
2299 die_optdup(option);

2301 modify_mask |= DLADM_AGGR_MODIFY_MAC;

2303 if (!dladm_aggr_str2macaddr(optarg, &mac_addr_fixed,
2304 mac_addr))
2305 die("invalid MAC address ’%s’", optarg);
2306 break;
2307 case ’l’:
2308 case ’L’:
2309 if (modify_mask & DLADM_AGGR_MODIFY_LACP_MODE)
2310 die_optdup(option);

2312 modify_mask |= DLADM_AGGR_MODIFY_LACP_MODE;

2314 if (!dladm_aggr_str2lacpmode(optarg, &lacp_mode))
2315 die("invalid LACP mode ’%s’", optarg);
2316 break;

new/usr/src/cmd/dladm/dladm.c 22

2317 case ’T’:
2318 if (modify_mask & DLADM_AGGR_MODIFY_LACP_TIMER)
2319 die_optdup(option);

2321 modify_mask |= DLADM_AGGR_MODIFY_LACP_TIMER;

2323 if (!dladm_aggr_str2lacptimer(optarg, &lacp_timer))
2324 die("invalid LACP timer value ’%s’", optarg);
2325 break;
2326 case ’t’:
2327 flags &= ~DLADM_OPT_PERSIST;
2328 break;
2329 case ’R’:
2330 altroot = optarg;
2331 break;
2332 default:
2333 die_opterr(optopt, option, use);
2334 break;
2335 }
2336 }

2338 if (modify_mask == 0)
2339 die("at least one of the -PulT options must be specified");

2341 /* get key value or the aggregation name (required last argument) */
2342 if (optind != (argc-1))
2343 usage();

2345 status = i_dladm_aggr_get_linkid(altroot, argv[optind], &linkid, flags);
2346 if (status != DLADM_STATUS_OK)
2347 goto done;

2349 if (altroot != NULL)
2350 altroot_cmd(altroot, argc, argv);

2352 status = dladm_aggr_modify(handle, linkid, modify_mask, policy,
2353 mac_addr_fixed, (const uchar_t *)mac_addr, lacp_mode, lacp_timer,
2354 flags);

2356 done:
2357 if (status != DLADM_STATUS_OK)
2358 die_dlerr(status, "modify operation failed");
2359 }

2361 /*ARGSUSED*/
2362 static void
2363 do_up_aggr(int argc, char *argv[], const char *use)
2364 {
2365 datalink_id_t linkid = DATALINK_ALL_LINKID;
2366 dladm_status_t status;

2368 /*
2369 * get the key or the name of the aggregation (optional last argument)
2370 */
2371 if (argc == 2) {
2372 if ((status = i_dladm_aggr_get_linkid(NULL, argv[1], &linkid,
2373 DLADM_OPT_PERSIST)) != DLADM_STATUS_OK)
2374 goto done;
2375 } else if (argc > 2) {
2376 usage();
2377 }

2379 status = dladm_aggr_up(handle, linkid);
2380 done:
2381 if (status != DLADM_STATUS_OK) {
2382 if (argc == 2) {

new/usr/src/cmd/dladm/dladm.c 23

2383 die_dlerr(status,
2384 "could not bring up aggregation ’%s’", argv[1]);
2385 } else {
2386 die_dlerr(status, "could not bring aggregations up");
2387 }
2388 }
2389 }

2391 static void
2392 do_create_vlan(int argc, char *argv[], const char *use)
2393 {
2394 char *link = NULL;
2395 char drv[DLPI_LINKNAME_MAX];
2396 uint_t ppa;
2397 datalink_id_t linkid;
2398 datalink_id_t dev_linkid;
2399 int vid = 0;
2400 int option;
2401 uint32_t flags = (DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST);
2402 char *altroot = NULL;
2403 char vlan[MAXLINKNAMELEN];
2404 char propstr[DLADM_STRSIZE];
2405 dladm_arg_list_t *proplist = NULL;
2406 dladm_status_t status;

2408 opterr = 0;
2409 bzero(propstr, DLADM_STRSIZE);

2411 while ((option = getopt_long(argc, argv, ":tfR:l:v:p:",
2412 lopts, NULL)) != -1) {
2413 switch (option) {
2414 case ’v’:
2415 if (vid != 0)
2416 die_optdup(option);

2418 if (!str2int(optarg, &vid) || vid < 1 || vid > 4094)
2419 die("invalid VLAN identifier ’%s’", optarg);

2421 break;
2422 case ’l’:
2423 if (link != NULL)
2424 die_optdup(option);

2426 link = optarg;
2427 break;
2428 case ’t’:
2429 flags &= ~DLADM_OPT_PERSIST;
2430 break;
2431 case ’R’:
2432 altroot = optarg;
2433 break;
2434 case ’p’:
2435 (void) strlcat(propstr, optarg, DLADM_STRSIZE);
2436 if (strlcat(propstr, ",", DLADM_STRSIZE) >=
2437 DLADM_STRSIZE)
2438 die("property list too long ’%s’", propstr);
2439 break;
2440 case ’f’:
2441 flags |= DLADM_OPT_FORCE;
2442 break;
2443 default:
2444 die_opterr(optopt, option, use);
2445 break;
2446 }
2447 }

new/usr/src/cmd/dladm/dladm.c 24

2449 /* get vlan name if there is any */
2450 if ((vid == 0) || (link == NULL) || (argc - optind > 1))
2451 usage();

2453 if (optind == (argc - 1)) {
2454 if (strlcpy(vlan, argv[optind], MAXLINKNAMELEN) >=
2455 MAXLINKNAMELEN) {
2456 die("vlan name too long ’%s’", argv[optind]);
2457 }
2458 } else {
2459 if ((dlpi_parselink(link, drv, &ppa) != DLPI_SUCCESS) ||
2460 (ppa >= 1000) ||
2461 (dlpi_makelink(vlan, drv, vid * 1000 + ppa) !=
2462 DLPI_SUCCESS)) {
2463 die("invalid link name ’%s’", link);
2464 }
2465 }

2467 if (altroot != NULL)
2468 altroot_cmd(altroot, argc, argv);

2470 if (dladm_name2info(handle, link, &dev_linkid, NULL, NULL, NULL) !=
2471 DLADM_STATUS_OK) {
2472 die("invalid link name ’%s’", link);
2473 }

2475 if (dladm_parse_link_props(propstr, &proplist, B_FALSE)
2476 != DLADM_STATUS_OK)
2477 die("invalid vlan property");

2479 status = dladm_vlan_create(handle, vlan, dev_linkid, vid, proplist,
2480 flags, &linkid);
2481 switch (status) {
2482 case DLADM_STATUS_OK:
2483 break;

2485 case DLADM_STATUS_NOTSUP:
2486 die("VLAN over ’%s’ may require lowered MTU; must use -f (see "
2487 "dladm(1M))", link);
2488 break;

2490 case DLADM_STATUS_LINKBUSY:
2491 die("VLAN over ’%s’ may not use default_tag ID "
2492 "(see dladm(1M))", link);
2493 break;

2495 default:
2496 die_dlerr(status, "create operation failed");
2497 }
2498 }

2500 static void
2501 do_delete_vlan(int argc, char *argv[], const char *use)
2502 {
2503 int option;
2504 uint32_t flags = (DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST);
2505 char *altroot = NULL;
2506 datalink_id_t linkid;
2507 dladm_status_t status;

2509 opterr = 0;
2510 while ((option = getopt_long(argc, argv, ":R:t", lopts, NULL)) != -1) {
2511 switch (option) {
2512 case ’t’:
2513 flags &= ~DLADM_OPT_PERSIST;
2514 break;

new/usr/src/cmd/dladm/dladm.c 25

2515 case ’R’:
2516 altroot = optarg;
2517 break;
2518 default:
2519 die_opterr(optopt, option, use);
2520 break;
2521 }
2522 }

2524 /* get VLAN link name (required last argument) */
2525 if (optind != (argc - 1))
2526 usage();

2528 if (altroot != NULL)
2529 altroot_cmd(altroot, argc, argv);

2531 status = dladm_name2info(handle, argv[optind], &linkid, NULL, NULL,
2532 NULL);
2533 if (status != DLADM_STATUS_OK)
2534 goto done;

2536 status = dladm_vlan_delete(handle, linkid, flags);
2537 done:
2538 if (status != DLADM_STATUS_OK)
2539 die_dlerr(status, "delete operation failed");
2540 }

2542 /*ARGSUSED*/
2543 static void
2544 do_up_vlan(int argc, char *argv[], const char *use)
2545 {
2546 do_up_vnic_common(argc, argv, use, B_TRUE);
2547 }

2549 static void
2550 do_rename_link(int argc, char *argv[], const char *use)
2551 {
2552 int option;
2553 char *link1, *link2;
2554 char *altroot = NULL;
2555 dladm_status_t status;

2557 opterr = 0;
2558 while ((option = getopt_long(argc, argv, ":R:", lopts, NULL)) != -1) {
2559 switch (option) {
2560 case ’R’:
2561 altroot = optarg;
2562 break;
2563 default:
2564 die_opterr(optopt, option, use);
2565 break;
2566 }
2567 }

2569 /* get link1 and link2 name (required the last 2 arguments) */
2570 if (optind != (argc - 2))
2571 usage();

2573 if (altroot != NULL)
2574 altroot_cmd(altroot, argc, argv);

2576 link1 = argv[optind++];
2577 link2 = argv[optind];
2578 if ((status = dladm_rename_link(handle, link1, link2)) !=
2579 DLADM_STATUS_OK)
2580 die_dlerr(status, "rename operation failed");

new/usr/src/cmd/dladm/dladm.c 26

2581 }

2583 /*ARGSUSED*/
2584 static void
2585 do_delete_phys(int argc, char *argv[], const char *use)
2586 {
2587 datalink_id_t linkid = DATALINK_ALL_LINKID;
2588 dladm_status_t status;

2590 /* get link name (required the last argument) */
2591 if (argc > 2)
2592 usage();

2594 if (argc == 2) {
2595 if ((status = dladm_name2info(handle, argv[1], &linkid, NULL,
2596 NULL, NULL)) != DLADM_STATUS_OK)
2597 die_dlerr(status, "cannot delete ’%s’", argv[1]);
2598 }

2600 if ((status = dladm_phys_delete(handle, linkid)) != DLADM_STATUS_OK) {
2601 if (argc == 2)
2602 die_dlerr(status, "cannot delete ’%s’", argv[1]);
2603 else
2604 die_dlerr(status, "delete operation failed");
2605 }
2606 }

2608 /*ARGSUSED*/
2609 static int
2610 i_dladm_walk_linkmap(dladm_handle_t dh, datalink_id_t linkid, void *arg)
2611 {
2612 char name[MAXLINKNAMELEN];
2613 char mediabuf[DLADM_STRSIZE];
2614 char classbuf[DLADM_STRSIZE];
2615 datalink_class_t class;
2616 uint32_t media;
2617 uint32_t flags;

2619 if (dladm_datalink_id2info(dh, linkid, &flags, &class, &media, name,
2620 MAXLINKNAMELEN) == DLADM_STATUS_OK) {
2621 (void) dladm_class2str(class, classbuf);
2622 (void) dladm_media2str(media, mediabuf);
2623 (void) printf("%-12s%8d %-12s%-20s %6d\n", name,
2624 linkid, classbuf, mediabuf, flags);
2625 }
2626 return (DLADM_WALK_CONTINUE);
2627 }

2629 /*ARGSUSED*/
2630 static void
2631 do_show_linkmap(int argc, char *argv[], const char *use)
2632 {
2633 if (argc != 1)
2634 die("invalid arguments");

2636 (void) printf("%-12s%8s %-12s%-20s %6s\n", "NAME", "LINKID",
2637 "CLASS", "MEDIA", "FLAGS");

2639 (void) dladm_walk_datalink_id(i_dladm_walk_linkmap, handle, NULL,
2640 DATALINK_CLASS_ALL, DATALINK_ANY_MEDIATYPE,
2641 DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST);
2642 }

2644 /*
2645 * Delete inactive physical links.
2646 */

new/usr/src/cmd/dladm/dladm.c 27

2647 /*ARGSUSED*/
2648 static int
2649 purge_phys(dladm_handle_t dh, datalink_id_t linkid, void *arg)
2650 {
2651 datalink_class_t class;
2652 uint32_t flags;

2654 if (dladm_datalink_id2info(dh, linkid, &flags, &class, NULL, NULL, 0)
2655 != DLADM_STATUS_OK) {
2656 return (DLADM_WALK_CONTINUE);
2657 }

2659 if (class == DATALINK_CLASS_PHYS && !(flags & DLADM_OPT_ACTIVE))
2660 (void) dladm_phys_delete(dh, linkid);

2662 return (DLADM_WALK_CONTINUE);
2663 }

2665 /*ARGSUSED*/
2666 static void
2667 do_init_phys(int argc, char *argv[], const char *use)
2668 {
2669 di_node_t devtree;

2671 if (argc > 1)
2672 usage();

2674 /*
2675 * Force all the devices to attach, therefore all the network physical
2676 * devices can be known to the dlmgmtd daemon.
2677 */
2678 if ((devtree = di_init("/", DINFOFORCE | DINFOSUBTREE)) != DI_NODE_NIL)
2679 di_fini(devtree);

2681 (void) dladm_walk_datalink_id(purge_phys, handle, NULL,
2682 DATALINK_CLASS_PHYS, DATALINK_ANY_MEDIATYPE, DLADM_OPT_PERSIST);
2683 }

2685 /*
2686 * Print the active topology information.
2687 */
2688 void
2689 print_link_topology(show_state_t *state, datalink_id_t linkid,
2690 datalink_class_t class, link_fields_buf_t *lbuf)
2691 {
2692 uint32_t flags = state->ls_flags;
2693 dladm_status_t status;
2694 char tmpbuf[MAXLINKNAMELEN];

2696 lbuf->link_over[0] = ’\0’;
2697 lbuf->link_bridge[0] = ’\0’;

2699 switch (class) {
2700 case DATALINK_CLASS_AGGR:
2701 case DATALINK_CLASS_PHYS:
2702 case DATALINK_CLASS_ETHERSTUB:
2703 status = dladm_bridge_getlink(handle, linkid, lbuf->link_bridge,
2704 sizeof (lbuf->link_bridge));
2705 if (status != DLADM_STATUS_OK &&
2706 status != DLADM_STATUS_NOTFOUND)
2707 (void) strcpy(lbuf->link_bridge, "?");
2708 break;
2709 }

2711 switch (class) {
2712 case DATALINK_CLASS_VLAN: {

new/usr/src/cmd/dladm/dladm.c 28

2713 dladm_vlan_attr_t vinfo;

2715 if (dladm_vlan_info(handle, linkid, &vinfo, flags) !=
2716 DLADM_STATUS_OK) {
2717 (void) strcpy(lbuf->link_over, "?");
2718 break;
2719 }
2720 if (dladm_datalink_id2info(handle, vinfo.dv_linkid, NULL, NULL,
2721 NULL, lbuf->link_over, sizeof (lbuf->link_over)) !=
2722 DLADM_STATUS_OK)
2723 (void) strcpy(lbuf->link_over, "?");
2724 break;
2725 }
2726 case DATALINK_CLASS_AGGR: {
2727 dladm_aggr_grp_attr_t ginfo;
2728 int i;

2730 if (dladm_aggr_info(handle, linkid, &ginfo, flags) !=
2731 DLADM_STATUS_OK || ginfo.lg_nports == 0) {
2732 (void) strcpy(lbuf->link_over, "?");
2733 break;
2734 }
2735 for (i = 0; i < ginfo.lg_nports; i++) {
2736 if (dladm_datalink_id2info(handle,
2737 ginfo.lg_ports[i].lp_linkid, NULL, NULL, NULL,
2738 tmpbuf, sizeof (tmpbuf)) != DLADM_STATUS_OK) {
2739 (void) strcpy(lbuf->link_over, "?");
2740 break;
2741 }
2742 (void) strlcat(lbuf->link_over, tmpbuf,
2743 sizeof (lbuf->link_over));
2744 if (i != (ginfo.lg_nports - 1)) {
2745 (void) strlcat(lbuf->link_over, " ",
2746 sizeof (lbuf->link_over));
2747 }
2748 }
2749 free(ginfo.lg_ports);
2750 break;
2751 }
2752 case DATALINK_CLASS_VNIC: {
2753 dladm_vnic_attr_t vinfo;

2755 if (dladm_vnic_info(handle, linkid, &vinfo, flags) !=
2756 DLADM_STATUS_OK) {
2757 (void) strcpy(lbuf->link_over, "?");
2758 break;
2759 }
2760 if (dladm_datalink_id2info(handle, vinfo.va_link_id, NULL, NULL,
2761 NULL, lbuf->link_over, sizeof (lbuf->link_over)) !=
2762 DLADM_STATUS_OK)
2763 (void) strcpy(lbuf->link_over, "?");
2764 break;
2765 }

2767 case DATALINK_CLASS_PART: {
2768 dladm_part_attr_t pinfo;

2770 if (dladm_part_info(handle, linkid, &pinfo, flags) !=
2771 DLADM_STATUS_OK) {
2772 (void) strcpy(lbuf->link_over, "?");
2773 break;
2774 }
2775 if (dladm_datalink_id2info(handle, pinfo.dia_physlinkid, NULL,
2776 NULL, NULL, lbuf->link_over, sizeof (lbuf->link_over)) !=
2777 DLADM_STATUS_OK)
2778 (void) strcpy(lbuf->link_over, "?");

new/usr/src/cmd/dladm/dladm.c 29

2779 break;
2780 }

2782 case DATALINK_CLASS_BRIDGE: {
2783 datalink_id_t *dlp;
2784 uint_t i, nports;

2786 if (dladm_datalink_id2info(handle, linkid, NULL, NULL,
2787 NULL, tmpbuf, sizeof (tmpbuf)) != DLADM_STATUS_OK) {
2788 (void) strcpy(lbuf->link_over, "?");
2789 break;
2790 }
2791 if (tmpbuf[0] != ’\0’)
2792 tmpbuf[strlen(tmpbuf) - 1] = ’\0’;
2793 dlp = dladm_bridge_get_portlist(tmpbuf, &nports);
2794 if (dlp == NULL) {
2795 (void) strcpy(lbuf->link_over, "?");
2796 break;
2797 }
2798 for (i = 0; i < nports; i++) {
2799 if (dladm_datalink_id2info(handle, dlp[i], NULL,
2800 NULL, NULL, tmpbuf, sizeof (tmpbuf)) !=
2801 DLADM_STATUS_OK) {
2802 (void) strcpy(lbuf->link_over, "?");
2803 break;
2804 }
2805 (void) strlcat(lbuf->link_over, tmpbuf,
2806 sizeof (lbuf->link_over));
2807 if (i != nports - 1) {
2808 (void) strlcat(lbuf->link_over, " ",
2809 sizeof (lbuf->link_over));
2810 }
2811 }
2812 dladm_bridge_free_portlist(dlp);
2813 break;
2814 }

2816 case DATALINK_CLASS_SIMNET: {
2817 dladm_simnet_attr_t slinfo;

2819 if (dladm_simnet_info(handle, linkid, &slinfo, flags) !=
2820 DLADM_STATUS_OK) {
2821 (void) strcpy(lbuf->link_over, "?");
2822 break;
2823 }
2824 if (slinfo.sna_peer_link_id != DATALINK_INVALID_LINKID) {
2825 if (dladm_datalink_id2info(handle,
2826 slinfo.sna_peer_link_id, NULL, NULL, NULL,
2827 lbuf->link_over, sizeof (lbuf->link_over)) !=
2828 DLADM_STATUS_OK)
2829 (void) strcpy(lbuf->link_over, "?");
2830 }
2831 break;
2832 }
2833 }
2834 }

2836 static dladm_status_t
2837 print_link(show_state_t *state, datalink_id_t linkid, link_fields_buf_t *lbuf)
2838 {
2839 char link[MAXLINKNAMELEN];
2840 datalink_class_t class;
2841 uint_t mtu;
2842 uint32_t flags;
2843 dladm_status_t status;

new/usr/src/cmd/dladm/dladm.c 30

2845 if ((status = dladm_datalink_id2info(handle, linkid, &flags, &class,
2846 NULL, link, sizeof (link))) != DLADM_STATUS_OK) {
2847 goto done;
2848 }

2850 if (!(state->ls_flags & flags)) {
2851 status = DLADM_STATUS_NOTFOUND;
2852 goto done;
2853 }

2855 if (state->ls_flags == DLADM_OPT_ACTIVE) {
2856 dladm_attr_t dlattr;

2858 if (class == DATALINK_CLASS_PHYS) {
2859 dladm_phys_attr_t dpa;
2860 dlpi_handle_t dh;
2861 dlpi_info_t dlinfo;

2863 if ((status = dladm_phys_info(handle, linkid, &dpa,
2864 DLADM_OPT_ACTIVE)) != DLADM_STATUS_OK) {
2865 goto done;
2866 }

2868 if (!dpa.dp_novanity)
2869 goto link_mtu;

2871 /*
2872 * This is a physical link that does not have
2873 * vanity naming support.
2874 */
2875 if (dlpi_open(dpa.dp_dev, &dh, DLPI_DEVONLY) !=
2876 DLPI_SUCCESS) {
2877 status = DLADM_STATUS_NOTFOUND;
2878 goto done;
2879 }

2881 if (dlpi_info(dh, &dlinfo, 0) != DLPI_SUCCESS) {
2882 dlpi_close(dh);
2883 status = DLADM_STATUS_BADARG;
2884 goto done;
2885 }

2887 dlpi_close(dh);
2888 mtu = dlinfo.di_max_sdu;
2889 } else {
2890 link_mtu:
2891 status = dladm_info(handle, linkid, &dlattr);
2892 if (status != DLADM_STATUS_OK)
2893 goto done;
2894 mtu = dlattr.da_max_sdu;
2895 }
2896 }

2898 (void) snprintf(lbuf->link_name, sizeof (lbuf->link_name),
2899 "%s", link);
2900 (void) dladm_class2str(class, lbuf->link_class);
2901 if (state->ls_flags == DLADM_OPT_ACTIVE) {
2902 (void) snprintf(lbuf->link_mtu, sizeof (lbuf->link_mtu),
2903 "%u", mtu);
2904 (void) get_linkstate(link, B_TRUE, lbuf->link_state);
2905 }

2907 print_link_topology(state, linkid, class, lbuf);
2908 done:
2909 return (status);
2910 }

new/usr/src/cmd/dladm/dladm.c 31

2912 /* ARGSUSED */
2913 static int
2914 show_link(dladm_handle_t dh, datalink_id_t linkid, void *arg)
2915 {
2916 show_state_t *state = (show_state_t *)arg;
2917 dladm_status_t status;
2918 link_fields_buf_t lbuf;

2920 /*
2921 * first get all the link attributes into lbuf;
2922 */
2923 bzero(&lbuf, sizeof (link_fields_buf_t));
2924 if ((status = print_link(state, linkid, &lbuf)) == DLADM_STATUS_OK)
2925 ofmt_print(state->ls_ofmt, &lbuf);
2926 state->ls_status = status;
2927 return (DLADM_WALK_CONTINUE);
2928 }

2930 static boolean_t
2931 print_link_stats_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
2932 {
2933 link_args_t *largs = ofarg->ofmt_cbarg;
2934 pktsum_t *diff_stats = largs->link_s_psum;

2936 switch (ofarg->ofmt_id) {
2937 case LINK_S_LINK:
2938 (void) snprintf(buf, bufsize, "%s", largs->link_s_link);
2939 break;
2940 case LINK_S_IPKTS:
2941 (void) snprintf(buf, bufsize, "%llu", diff_stats->ipackets);
2942 break;
2943 case LINK_S_RBYTES:
2944 (void) snprintf(buf, bufsize, "%llu", diff_stats->rbytes);
2945 break;
2946 case LINK_S_IERRORS:
2947 (void) snprintf(buf, bufsize, "%u", diff_stats->ierrors);
2948 break;
2949 case LINK_S_OPKTS:
2950 (void) snprintf(buf, bufsize, "%llu", diff_stats->opackets);
2951 break;
2952 case LINK_S_OBYTES:
2953 (void) snprintf(buf, bufsize, "%llu", diff_stats->obytes);
2954 break;
2955 case LINK_S_OERRORS:
2956 (void) snprintf(buf, bufsize, "%u", diff_stats->oerrors);
2957 break;
2958 default:
2959 die("invalid input");
2960 break;
2961 }
2962 return (B_TRUE);
2963 }

2965 static int
2966 show_link_stats(dladm_handle_t dh, datalink_id_t linkid, void *arg)
2967 {
2968 char link[DLPI_LINKNAME_MAX];
2969 datalink_class_t class;
2970 show_state_t *state = arg;
2971 pktsum_t stats, diff_stats;
2972 dladm_phys_attr_t dpa;
2973 link_args_t largs;

2975 if (state->ls_firstonly) {
2976 if (state->ls_donefirst)

new/usr/src/cmd/dladm/dladm.c 32

2977 return (DLADM_WALK_CONTINUE);
2978 state->ls_donefirst = B_TRUE;
2979 } else {
2980 bzero(&state->ls_prevstats, sizeof (state->ls_prevstats));
2981 }

2983 if (dladm_datalink_id2info(dh, linkid, NULL, &class, NULL, link,
2984 DLPI_LINKNAME_MAX) != DLADM_STATUS_OK) {
2985 return (DLADM_WALK_CONTINUE);
2986 }

2988 if (class == DATALINK_CLASS_PHYS) {
2989 if (dladm_phys_info(dh, linkid, &dpa, DLADM_OPT_ACTIVE) !=
2990 DLADM_STATUS_OK) {
2991 return (DLADM_WALK_CONTINUE);
2992 }
2993 if (dpa.dp_novanity)
2994 get_mac_stats(dpa.dp_dev, &stats);
2995 else
2996 get_link_stats(link, &stats);
2997 } else {
2998 get_link_stats(link, &stats);
2999 }
3000 dladm_stats_diff(&diff_stats, &stats, &state->ls_prevstats);

3002 largs.link_s_link = link;
3003 largs.link_s_psum = &diff_stats;
3004 ofmt_print(state->ls_ofmt, &largs);

3006 state->ls_prevstats = stats;
3007 return (DLADM_WALK_CONTINUE);
3008 }

3011 static dladm_status_t
3012 print_aggr_info(show_grp_state_t *state, const char *link,
3013 dladm_aggr_grp_attr_t *ginfop)
3014 {
3015 char addr_str[ETHERADDRL * 3];
3016 laggr_fields_buf_t lbuf;

3018 (void) snprintf(lbuf.laggr_name, sizeof (lbuf.laggr_name),
3019 "%s", link);

3021 (void) dladm_aggr_policy2str(ginfop->lg_policy,
3022 lbuf.laggr_policy);

3024 if (ginfop->lg_mac_fixed) {
3025 (void) dladm_aggr_macaddr2str(ginfop->lg_mac, addr_str);
3026 (void) snprintf(lbuf.laggr_addrpolicy,
3027 sizeof (lbuf.laggr_addrpolicy), "fixed (%s)", addr_str);
3028 } else {
3029 (void) snprintf(lbuf.laggr_addrpolicy,
3030 sizeof (lbuf.laggr_addrpolicy), "auto");
3031 }

3033 (void) dladm_aggr_lacpmode2str(ginfop->lg_lacp_mode,
3034 lbuf.laggr_lacpactivity);
3035 (void) dladm_aggr_lacptimer2str(ginfop->lg_lacp_timer,
3036 lbuf.laggr_lacptimer);
3037 (void) snprintf(lbuf.laggr_flags, sizeof (lbuf.laggr_flags), "%c----",
3038 ginfop->lg_force ? ’f’ : ’-’);

3040 ofmt_print(state->gs_ofmt, &lbuf);

3042 return (DLADM_STATUS_OK);

new/usr/src/cmd/dladm/dladm.c 33

3043 }

3045 static boolean_t
3046 print_xaggr_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
3047 {
3048 const laggr_args_t *l = ofarg->ofmt_cbarg;
3049 boolean_t is_port = (l->laggr_lport >= 0);
3050 char tmpbuf[DLADM_STRSIZE];
3051 const char *objname;
3052 dladm_aggr_port_attr_t *portp;
3053 dladm_phys_attr_t dpa;

3055 if (is_port) {
3056 portp = &(l->laggr_ginfop->lg_ports[l->laggr_lport]);
3057 if (dladm_phys_info(handle, portp->lp_linkid, &dpa,
3058 DLADM_OPT_ACTIVE) != DLADM_STATUS_OK)
3059 objname = "?";
3060 else
3061 objname = dpa.dp_dev;
3062 } else {
3063 objname = l->laggr_link;
3064 }

3066 switch (ofarg->ofmt_id) {
3067 case AGGR_X_LINK:
3068 (void) snprintf(buf, bufsize, "%s",
3069 (is_port && !l->laggr_parsable ? " " : l->laggr_link));
3070 break;
3071 case AGGR_X_PORT:
3072 if (is_port) {
3073 if (dladm_datalink_id2info(handle, portp->lp_linkid,
3074 NULL, NULL, NULL, buf, bufsize) != DLADM_STATUS_OK)
3075 (void) sprintf(buf, "?");
3076 }
3077 break;

3079 case AGGR_X_SPEED:
3080 (void) snprintf(buf, bufsize, "%uMb",
3081 (uint_t)((get_ifspeed(objname, !is_port)) / 1000000ull));
3082 break;

3084 case AGGR_X_DUPLEX:
3085 (void) get_linkduplex(objname, !is_port, tmpbuf);
3086 (void) strlcpy(buf, tmpbuf, bufsize);
3087 break;

3089 case AGGR_X_STATE:
3090 (void) get_linkstate(objname, !is_port, tmpbuf);
3091 (void) strlcpy(buf, tmpbuf, bufsize);
3092 break;
3093 case AGGR_X_ADDRESS:
3094 (void) dladm_aggr_macaddr2str(
3095 (is_port ? portp->lp_mac : l->laggr_ginfop->lg_mac),
3096 tmpbuf);
3097 (void) strlcpy(buf, tmpbuf, bufsize);
3098 break;
3099 case AGGR_X_PORTSTATE:
3100 if (is_port) {
3101 (void) dladm_aggr_portstate2str(portp->lp_state,
3102 tmpbuf);
3103 (void) strlcpy(buf, tmpbuf, bufsize);
3104 }
3105 break;
3106 }
3107 err:
3108 *(l->laggr_status) = DLADM_STATUS_OK;

new/usr/src/cmd/dladm/dladm.c 34

3109 return (B_TRUE);
3110 }

3112 static dladm_status_t
3113 print_aggr_extended(show_grp_state_t *state, const char *link,
3114 dladm_aggr_grp_attr_t *ginfop)
3115 {
3116 int i;
3117 dladm_status_t status;
3118 laggr_args_t largs;

3120 largs.laggr_lport = -1;
3121 largs.laggr_link = link;
3122 largs.laggr_ginfop = ginfop;
3123 largs.laggr_status = &status;
3124 largs.laggr_parsable = state->gs_parsable;

3126 ofmt_print(state->gs_ofmt, &largs);

3128 if (status != DLADM_STATUS_OK)
3129 goto done;

3131 for (i = 0; i < ginfop->lg_nports; i++) {
3132 largs.laggr_lport = i;
3133 ofmt_print(state->gs_ofmt, &largs);
3134 if (status != DLADM_STATUS_OK)
3135 goto done;
3136 }

3138 status = DLADM_STATUS_OK;
3139 done:
3140 return (status);
3141 }

3143 static boolean_t
3144 print_lacp_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
3145 {
3146 const laggr_args_t *l = ofarg->ofmt_cbarg;
3147 int portnum;
3148 boolean_t is_port = (l->laggr_lport >= 0);
3149 dladm_aggr_port_attr_t *portp;
3150 aggr_lacp_state_t *lstate;

3152 if (!is_port)
3153 return (B_FALSE); /* cannot happen! */

3155 portnum = l->laggr_lport;
3156 portp = &(l->laggr_ginfop->lg_ports[portnum]);
3157 lstate = &(portp->lp_lacp_state);

3159 switch (ofarg->ofmt_id) {
3160 case AGGR_L_LINK:
3161 (void) snprintf(buf, bufsize, "%s",
3162 (portnum > 0 ? "" : l->laggr_link));
3163 break;

3165 case AGGR_L_PORT:
3166 if (dladm_datalink_id2info(handle, portp->lp_linkid, NULL, NULL,
3167 NULL, buf, bufsize) != DLADM_STATUS_OK)
3168 (void) sprintf(buf, "?");
3169 break;

3171 case AGGR_L_AGGREGATABLE:
3172 (void) snprintf(buf, bufsize, "%s",
3173 (lstate->bit.aggregation ? "yes" : "no"));
3174 break;

new/usr/src/cmd/dladm/dladm.c 35

3176 case AGGR_L_SYNC:
3177 (void) snprintf(buf, bufsize, "%s",
3178 (lstate->bit.sync ? "yes" : "no"));
3179 break;

3181 case AGGR_L_COLL:
3182 (void) snprintf(buf, bufsize, "%s",
3183 (lstate->bit.collecting ? "yes" : "no"));
3184 break;

3186 case AGGR_L_DIST:
3187 (void) snprintf(buf, bufsize, "%s",
3188 (lstate->bit.distributing ? "yes" : "no"));
3189 break;

3191 case AGGR_L_DEFAULTED:
3192 (void) snprintf(buf, bufsize, "%s",
3193 (lstate->bit.defaulted ? "yes" : "no"));
3194 break;

3196 case AGGR_L_EXPIRED:
3197 (void) snprintf(buf, bufsize, "%s",
3198 (lstate->bit.expired ? "yes" : "no"));
3199 break;
3200 }

3202 *(l->laggr_status) = DLADM_STATUS_OK;
3203 return (B_TRUE);
3204 }

3206 static dladm_status_t
3207 print_aggr_lacp(show_grp_state_t *state, const char *link,
3208 dladm_aggr_grp_attr_t *ginfop)
3209 {
3210 int i;
3211 dladm_status_t status;
3212 laggr_args_t largs;

3214 largs.laggr_link = link;
3215 largs.laggr_ginfop = ginfop;
3216 largs.laggr_status = &status;

3218 for (i = 0; i < ginfop->lg_nports; i++) {
3219 largs.laggr_lport = i;
3220 ofmt_print(state->gs_ofmt, &largs);
3221 if (status != DLADM_STATUS_OK)
3222 goto done;
3223 }

3225 status = DLADM_STATUS_OK;
3226 done:
3227 return (status);
3228 }

3230 static boolean_t
3231 print_aggr_stats_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
3232 {
3233 const laggr_args_t *l = ofarg->ofmt_cbarg;
3234 int portnum;
3235 boolean_t is_port = (l->laggr_lport >= 0);
3236 dladm_aggr_port_attr_t *portp;
3237 dladm_status_t *stat, status;
3238 pktsum_t *diff_stats;

3240 stat = l->laggr_status;

new/usr/src/cmd/dladm/dladm.c 36

3241 *stat = DLADM_STATUS_OK;

3243 if (is_port) {
3244 portnum = l->laggr_lport;
3245 portp = &(l->laggr_ginfop->lg_ports[portnum]);

3247 if ((status = dladm_datalink_id2info(handle,
3248 portp->lp_linkid, NULL, NULL, NULL, buf, bufsize)) !=
3249 DLADM_STATUS_OK) {
3250 goto err;
3251 }
3252 diff_stats = l->laggr_diffstats;
3253 }

3255 switch (ofarg->ofmt_id) {
3256 case AGGR_S_LINK:
3257 (void) snprintf(buf, bufsize, "%s",
3258 (is_port ? "" : l->laggr_link));
3259 break;
3260 case AGGR_S_PORT:
3261 /*
3262 * if (is_port), buf has port name. Otherwise we print
3263 * STR_UNDEF_VAL
3264 */
3265 break;

3267 case AGGR_S_IPKTS:
3268 if (is_port) {
3269 (void) snprintf(buf, bufsize, "%llu",
3270 diff_stats->ipackets);
3271 } else {
3272 (void) snprintf(buf, bufsize, "%llu",
3273 l->laggr_pktsumtot->ipackets);
3274 }
3275 break;

3277 case AGGR_S_RBYTES:
3278 if (is_port) {
3279 (void) snprintf(buf, bufsize, "%llu",
3280 diff_stats->rbytes);
3281 } else {
3282 (void) snprintf(buf, bufsize, "%llu",
3283 l->laggr_pktsumtot->rbytes);
3284 }
3285 break;

3287 case AGGR_S_OPKTS:
3288 if (is_port) {
3289 (void) snprintf(buf, bufsize, "%llu",
3290 diff_stats->opackets);
3291 } else {
3292 (void) snprintf(buf, bufsize, "%llu",
3293 l->laggr_pktsumtot->opackets);
3294 }
3295 break;
3296 case AGGR_S_OBYTES:
3297 if (is_port) {
3298 (void) snprintf(buf, bufsize, "%llu",
3299 diff_stats->obytes);
3300 } else {
3301 (void) snprintf(buf, bufsize, "%llu",
3302 l->laggr_pktsumtot->obytes);
3303 }
3304 break;

3306 case AGGR_S_IPKTDIST:

new/usr/src/cmd/dladm/dladm.c 37

3307 if (is_port) {
3308 (void) snprintf(buf, bufsize, "%-6.1f",
3309 (double)diff_stats->ipackets/
3310 (double)l->laggr_pktsumtot->ipackets * 100);
3311 }
3312 break;
3313 case AGGR_S_OPKTDIST:
3314 if (is_port) {
3315 (void) snprintf(buf, bufsize, "%-6.1f",
3316 (double)diff_stats->opackets/
3317 (double)l->laggr_pktsumtot->opackets * 100);
3318 }
3319 break;
3320 }
3321 return (B_TRUE);

3323 err:
3324 *stat = status;
3325 return (B_TRUE);
3326 }

3328 static dladm_status_t
3329 print_aggr_stats(show_grp_state_t *state, const char *link,
3330 dladm_aggr_grp_attr_t *ginfop)
3331 {
3332 dladm_phys_attr_t dpa;
3333 dladm_aggr_port_attr_t *portp;
3334 pktsum_t pktsumtot, *port_stat;
3335 dladm_status_t status;
3336 int i;
3337 laggr_args_t largs;

3339 /* sum the ports statistics */
3340 bzero(&pktsumtot, sizeof (pktsumtot));

3342 /* Allocate memory to keep stats of each port */
3343 port_stat = malloc(ginfop->lg_nports * sizeof (pktsum_t));
3344 if (port_stat == NULL) {
3345 /* Bail out; no memory */
3346 return (DLADM_STATUS_NOMEM);
3347 }

3350 for (i = 0; i < ginfop->lg_nports; i++) {

3352 portp = &(ginfop->lg_ports[i]);
3353 if ((status = dladm_phys_info(handle, portp->lp_linkid, &dpa,
3354 DLADM_OPT_ACTIVE)) != DLADM_STATUS_OK) {
3355 goto done;
3356 }

3358 get_mac_stats(dpa.dp_dev, &port_stat[i]);

3360 /*
3361 * Let’s re-use gs_prevstats[] to store the difference of the
3362 * counters since last use. We will store the new stats from
3363 * port_stat[] once we have the stats displayed.
3364 */

3366 dladm_stats_diff(&state->gs_prevstats[i], &port_stat[i],
3367 &state->gs_prevstats[i]);
3368 dladm_stats_total(&pktsumtot, &pktsumtot,
3369 &state->gs_prevstats[i]);
3370 }

3372 largs.laggr_lport = -1;

new/usr/src/cmd/dladm/dladm.c 38

3373 largs.laggr_link = link;
3374 largs.laggr_ginfop = ginfop;
3375 largs.laggr_status = &status;
3376 largs.laggr_pktsumtot = &pktsumtot;

3378 ofmt_print(state->gs_ofmt, &largs);

3380 if (status != DLADM_STATUS_OK)
3381 goto done;

3383 for (i = 0; i < ginfop->lg_nports; i++) {
3384 largs.laggr_lport = i;
3385 largs.laggr_diffstats = &state->gs_prevstats[i];
3386 ofmt_print(state->gs_ofmt, &largs);
3387 if (status != DLADM_STATUS_OK)
3388 goto done;
3389 }

3391 status = DLADM_STATUS_OK;
3392 for (i = 0; i < ginfop->lg_nports; i++)
3393 state->gs_prevstats[i] = port_stat[i];

3395 done:
3396 free(port_stat);
3397 return (status);
3398 }

3400 static dladm_status_t
3401 print_aggr(show_grp_state_t *state, datalink_id_t linkid)
3402 {
3403 char link[MAXLINKNAMELEN];
3404 dladm_aggr_grp_attr_t ginfo;
3405 uint32_t flags;
3406 dladm_status_t status;

3408 bzero(&ginfo, sizeof (dladm_aggr_grp_attr_t));
3409 if ((status = dladm_datalink_id2info(handle, linkid, &flags, NULL,
3410 NULL, link, MAXLINKNAMELEN)) != DLADM_STATUS_OK) {
3411 return (status);
3412 }

3414 if (!(state->gs_flags & flags))
3415 return (DLADM_STATUS_NOTFOUND);

3417 status = dladm_aggr_info(handle, linkid, &ginfo, state->gs_flags);
3418 if (status != DLADM_STATUS_OK)
3419 return (status);

3421 if (state->gs_lacp)
3422 status = print_aggr_lacp(state, link, &ginfo);
3423 else if (state->gs_extended)
3424 status = print_aggr_extended(state, link, &ginfo);
3425 else if (state->gs_stats)
3426 status = print_aggr_stats(state, link, &ginfo);
3427 else
3428 status = print_aggr_info(state, link, &ginfo);

3430 done:
3431 free(ginfo.lg_ports);
3432 return (status);
3433 }

3435 /* ARGSUSED */
3436 static int
3437 show_aggr(dladm_handle_t dh, datalink_id_t linkid, void *arg)
3438 {

new/usr/src/cmd/dladm/dladm.c 39

3439 show_grp_state_t *state = arg;

3441 state->gs_status = print_aggr(state, linkid);
3442 return (DLADM_WALK_CONTINUE);
3443 }

3445 static void
3446 do_show_link(int argc, char *argv[], const char *use)
3447 {
3448 int option;
3449 boolean_t s_arg = B_FALSE;
3450 boolean_t S_arg = B_FALSE;
3451 boolean_t i_arg = B_FALSE;
3452 uint32_t flags = DLADM_OPT_ACTIVE;
3453 boolean_t p_arg = B_FALSE;
3454 datalink_id_t linkid = DATALINK_ALL_LINKID;
3455 char linkname[MAXLINKNAMELEN];
3456 uint32_t interval = 0;
3457 show_state_t state;
3458 dladm_status_t status;
3459 boolean_t o_arg = B_FALSE;
3460 char *fields_str = NULL;
3461 char *all_active_fields = "link,class,mtu,state,bridge,over";
3462 char *all_inactive_fields = "link,class,bridge,over";
3463 char *allstat_fields =
3464 "link,ipackets,rbytes,ierrors,opackets,obytes,oerrors";
3465 ofmt_handle_t ofmt;
3466 ofmt_status_t oferr;
3467 uint_t ofmtflags = 0;

3469 bzero(&state, sizeof (state));

3471 opterr = 0;
3472 while ((option = getopt_long(argc, argv, ":pPsSi:o:",
3473 show_lopts, NULL)) != -1) {
3474 switch (option) {
3475 case ’p’:
3476 if (p_arg)
3477 die_optdup(option);

3479 p_arg = B_TRUE;
3480 break;
3481 case ’s’:
3482 if (s_arg)
3483 die_optdup(option);

3485 s_arg = B_TRUE;
3486 break;
3487 case ’P’:
3488 if (flags != DLADM_OPT_ACTIVE)
3489 die_optdup(option);

3491 flags = DLADM_OPT_PERSIST;
3492 break;
3493 case ’S’:
3494 if (S_arg)
3495 die_optdup(option);

3497 S_arg = B_TRUE;
3498 break;
3499 case ’o’:
3500 o_arg = B_TRUE;
3501 fields_str = optarg;
3502 break;
3503 case ’i’:
3504 if (i_arg)

new/usr/src/cmd/dladm/dladm.c 40

3505 die_optdup(option);

3507 i_arg = B_TRUE;
3508 if (!dladm_str2interval(optarg, &interval))
3509 die("invalid interval value ’%s’", optarg);
3510 break;
3511 default:
3512 die_opterr(optopt, option, use);
3513 break;
3514 }
3515 }

3517 if (i_arg && !(s_arg || S_arg))
3518 die("the option -i can be used only with -s or -S");

3520 if (s_arg && S_arg)
3521 die("the -s option cannot be used with -S");

3523 if (s_arg && flags != DLADM_OPT_ACTIVE)
3524 die("the option -P cannot be used with -s");

3526 if (S_arg && (p_arg || flags != DLADM_OPT_ACTIVE))
3527 die("the option -%c cannot be used with -S", p_arg ? ’p’ : ’P’);

3529 /* get link name (optional last argument) */
3530 if (optind == (argc-1)) {
3531 uint32_t f;

3533 if (strlcpy(linkname, argv[optind], MAXLINKNAMELEN) >=
3534 MAXLINKNAMELEN)
3535 die("link name too long");
3536 if ((status = dladm_name2info(handle, linkname, &linkid, &f,
3537 NULL, NULL)) != DLADM_STATUS_OK) {
3538 die_dlerr(status, "link %s is not valid", linkname);
3539 }

3541 if (!(f & flags)) {
3542 die_dlerr(DLADM_STATUS_BADARG, "link %s is %s",
3543 argv[optind], flags == DLADM_OPT_PERSIST ?
3544 "a temporary link" : "temporarily removed");
3545 }
3546 } else if (optind != argc) {
3547 usage();
3548 }

3550 if (p_arg && !o_arg)
3551 die("-p requires -o");

3553 if (S_arg) {
3554 dladm_continuous(handle, linkid, NULL, interval, LINK_REPORT);
3555 return;
3556 }

3558 if (p_arg && strcasecmp(fields_str, "all") == 0)
3559 die("\"-o all\" is invalid with -p");

3561 if (!o_arg || (o_arg && strcasecmp(fields_str, "all") == 0)) {
3562 if (s_arg)
3563 fields_str = allstat_fields;
3564 else if (flags & DLADM_OPT_ACTIVE)
3565 fields_str = all_active_fields;
3566 else
3567 fields_str = all_inactive_fields;
3568 }

3570 state.ls_parsable = p_arg;

new/usr/src/cmd/dladm/dladm.c 41

3571 state.ls_flags = flags;
3572 state.ls_donefirst = B_FALSE;

3574 if (s_arg) {
3575 link_stats(linkid, interval, fields_str, &state);
3576 return;
3577 }
3578 if (state.ls_parsable)
3579 ofmtflags |= OFMT_PARSABLE;
3580 oferr = ofmt_open(fields_str, link_fields, ofmtflags, 0, &ofmt);
3581 dladm_ofmt_check(oferr, state.ls_parsable, ofmt);
3582 state.ls_ofmt = ofmt;

3584 if (linkid == DATALINK_ALL_LINKID) {
3585 (void) dladm_walk_datalink_id(show_link, handle, &state,
3586 DATALINK_CLASS_ALL, DATALINK_ANY_MEDIATYPE, flags);
3587 } else {
3588 (void) show_link(handle, linkid, &state);
3589 if (state.ls_status != DLADM_STATUS_OK) {
3590 die_dlerr(state.ls_status, "failed to show link %s",
3591 argv[optind]);
3592 }
3593 }
3594 ofmt_close(ofmt);
3595 }

3597 static void
3598 do_show_aggr(int argc, char *argv[], const char *use)
3599 {
3600 boolean_t L_arg = B_FALSE;
3601 boolean_t s_arg = B_FALSE;
3602 boolean_t i_arg = B_FALSE;
3603 boolean_t p_arg = B_FALSE;
3604 boolean_t x_arg = B_FALSE;
3605 show_grp_state_t state;
3606 uint32_t flags = DLADM_OPT_ACTIVE;
3607 datalink_id_t linkid = DATALINK_ALL_LINKID;
3608 int option;
3609 uint32_t interval = 0;
3610 int key;
3611 dladm_status_t status;
3612 boolean_t o_arg = B_FALSE;
3613 char *fields_str = NULL;
3614 char *all_fields =
3615 "link,policy,addrpolicy,lacpactivity,lacptimer,flags";
3616 char *all_lacp_fields =
3617 "link,port,aggregatable,sync,coll,dist,defaulted,expired";
3618 char *all_stats_fields =
3619 "link,port,ipackets,rbytes,opackets,obytes,ipktdist,opktdist";
3620 char *all_extended_fields =
3621 "link,port,speed,duplex,state,address,portstate";
3622 const ofmt_field_t *pf;
3623 ofmt_handle_t ofmt;
3624 ofmt_status_t oferr;
3625 uint_t ofmtflags = 0;

3627 opterr = 0;
3628 while ((option = getopt_long(argc, argv, ":LpPxsi:o:",
3629 show_lopts, NULL)) != -1) {
3630 switch (option) {
3631 case ’L’:
3632 if (L_arg)
3633 die_optdup(option);

3635 L_arg = B_TRUE;
3636 break;

new/usr/src/cmd/dladm/dladm.c 42

3637 case ’p’:
3638 if (p_arg)
3639 die_optdup(option);

3641 p_arg = B_TRUE;
3642 break;
3643 case ’x’:
3644 if (x_arg)
3645 die_optdup(option);

3647 x_arg = B_TRUE;
3648 break;
3649 case ’P’:
3650 if (flags != DLADM_OPT_ACTIVE)
3651 die_optdup(option);

3653 flags = DLADM_OPT_PERSIST;
3654 break;
3655 case ’s’:
3656 if (s_arg)
3657 die_optdup(option);

3659 s_arg = B_TRUE;
3660 break;
3661 case ’o’:
3662 o_arg = B_TRUE;
3663 fields_str = optarg;
3664 break;
3665 case ’i’:
3666 if (i_arg)
3667 die_optdup(option);

3669 i_arg = B_TRUE;
3670 if (!dladm_str2interval(optarg, &interval))
3671 die("invalid interval value ’%s’", optarg);
3672 break;
3673 default:
3674 die_opterr(optopt, option, use);
3675 break;
3676 }
3677 }

3679 if (p_arg && !o_arg)
3680 die("-p requires -o");

3682 if (p_arg && strcasecmp(fields_str, "all") == 0)
3683 die("\"-o all\" is invalid with -p");

3685 if (i_arg && !s_arg)
3686 die("the option -i can be used only with -s");

3688 if (s_arg && (L_arg || p_arg || x_arg || flags != DLADM_OPT_ACTIVE)) {
3689 die("the option -%c cannot be used with -s",
3690 L_arg ? ’L’ : (p_arg ? ’p’ : (x_arg ? ’x’ : ’P’)));
3691 }

3693 if (L_arg && flags != DLADM_OPT_ACTIVE)
3694 die("the option -P cannot be used with -L");

3696 if (x_arg && (L_arg || flags != DLADM_OPT_ACTIVE))
3697 die("the option -%c cannot be used with -x", L_arg ? ’L’ : ’P’);

3699 /* get aggregation key or aggrname (optional last argument) */
3700 if (optind == (argc-1)) {
3701 if (!str2int(argv[optind], &key)) {
3702 status = dladm_name2info(handle, argv[optind],

new/usr/src/cmd/dladm/dladm.c 43

3703 &linkid, NULL, NULL, NULL);
3704 } else {
3705 status = dladm_key2linkid(handle, (uint16_t)key,
3706 &linkid, DLADM_OPT_ACTIVE);
3707 }

3709 if (status != DLADM_STATUS_OK)
3710 die("non-existent aggregation ’%s’", argv[optind]);

3712 } else if (optind != argc) {
3713 usage();
3714 }

3716 bzero(&state, sizeof (state));
3717 state.gs_lacp = L_arg;
3718 state.gs_stats = s_arg;
3719 state.gs_flags = flags;
3720 state.gs_parsable = p_arg;
3721 state.gs_extended = x_arg;

3723 if (!o_arg || (o_arg && strcasecmp(fields_str, "all") == 0)) {
3724 if (state.gs_lacp)
3725 fields_str = all_lacp_fields;
3726 else if (state.gs_stats)
3727 fields_str = all_stats_fields;
3728 else if (state.gs_extended)
3729 fields_str = all_extended_fields;
3730 else
3731 fields_str = all_fields;
3732 }

3734 if (state.gs_lacp) {
3735 pf = aggr_l_fields;
3736 } else if (state.gs_stats) {
3737 pf = aggr_s_fields;
3738 } else if (state.gs_extended) {
3739 pf = aggr_x_fields;
3740 } else {
3741 pf = laggr_fields;
3742 }

3744 if (state.gs_parsable)
3745 ofmtflags |= OFMT_PARSABLE;
3746 oferr = ofmt_open(fields_str, pf, ofmtflags, 0, &ofmt);
3747 dladm_ofmt_check(oferr, state.gs_parsable, ofmt);
3748 state.gs_ofmt = ofmt;

3750 if (s_arg) {
3751 aggr_stats(linkid, &state, interval);
3752 ofmt_close(ofmt);
3753 return;
3754 }

3756 if (linkid == DATALINK_ALL_LINKID) {
3757 (void) dladm_walk_datalink_id(show_aggr, handle, &state,
3758 DATALINK_CLASS_AGGR, DATALINK_ANY_MEDIATYPE, flags);
3759 } else {
3760 (void) show_aggr(handle, linkid, &state);
3761 if (state.gs_status != DLADM_STATUS_OK) {
3762 die_dlerr(state.gs_status, "failed to show aggr %s",
3763 argv[optind]);
3764 }
3765 }
3766 ofmt_close(ofmt);
3767 }

new/usr/src/cmd/dladm/dladm.c 44

3769 static dladm_status_t
3770 print_phys_default(show_state_t *state, datalink_id_t linkid,
3771 const char *link, uint32_t flags, uint32_t media)
3772 {
3773 dladm_phys_attr_t dpa;
3774 dladm_status_t status;
3775 link_fields_buf_t pattr;

3777 status = dladm_phys_info(handle, linkid, &dpa, state->ls_flags);
3778 if (status != DLADM_STATUS_OK)
3779 goto done;

3781 (void) snprintf(pattr.link_phys_device,
3782 sizeof (pattr.link_phys_device), "%s", dpa.dp_dev);
3783 (void) dladm_media2str(media, pattr.link_phys_media);
3784 if (state->ls_flags == DLADM_OPT_ACTIVE) {
3785 boolean_t islink;

3787 if (!dpa.dp_novanity) {
3788 (void) strlcpy(pattr.link_name, link,
3789 sizeof (pattr.link_name));
3790 islink = B_TRUE;
3791 } else {
3792 /*
3793 * This is a physical link that does not have
3794 * vanity naming support.
3795 */
3796 (void) strlcpy(pattr.link_name, dpa.dp_dev,
3797 sizeof (pattr.link_name));
3798 islink = B_FALSE;
3799 }

3801 (void) get_linkstate(pattr.link_name, islink,
3802 pattr.link_phys_state);
3803 (void) snprintf(pattr.link_phys_speed,
3804 sizeof (pattr.link_phys_speed), "%u",
3805 (uint_t)((get_ifspeed(pattr.link_name,
3806 islink)) / 1000000ull));
3807 (void) get_linkduplex(pattr.link_name, islink,
3808 pattr.link_phys_duplex);
3809 } else {
3810 (void) snprintf(pattr.link_name, sizeof (pattr.link_name),
3811 "%s", link);
3812 (void) snprintf(pattr.link_flags, sizeof (pattr.link_flags),
3813 "%c----", flags & DLADM_OPT_ACTIVE ? ’-’ : ’r’);
3814 }

3816 ofmt_print(state->ls_ofmt, &pattr);

3818 done:
3819 return (status);
3820 }

3822 typedef struct {
3823 show_state_t *ms_state;
3824 char *ms_link;
3825 dladm_macaddr_attr_t *ms_mac_attr;
3826 } print_phys_mac_state_t;

3828 /*
3829 * callback for ofmt_print()
3830 */
3831 static boolean_t
3832 print_phys_one_mac_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
3833 {
3834 print_phys_mac_state_t *mac_state = ofarg->ofmt_cbarg;

new/usr/src/cmd/dladm/dladm.c 45

3835 dladm_macaddr_attr_t *attr = mac_state->ms_mac_attr;
3836 boolean_t is_primary = (attr->ma_slot == 0);
3837 boolean_t is_parsable = mac_state->ms_state->ls_parsable;

3839 switch (ofarg->ofmt_id) {
3840 case PHYS_M_LINK:
3841 (void) snprintf(buf, bufsize, "%s",
3842 (is_primary || is_parsable) ? mac_state->ms_link : " ");
3843 break;
3844 case PHYS_M_SLOT:
3845 if (is_primary)
3846 (void) snprintf(buf, bufsize, gettext("primary"));
3847 else
3848 (void) snprintf(buf, bufsize, "%d", attr->ma_slot);
3849 break;
3850 case PHYS_M_ADDRESS:
3851 (void) dladm_aggr_macaddr2str(attr->ma_addr, buf);
3852 break;
3853 case PHYS_M_INUSE:
3854 (void) snprintf(buf, bufsize, "%s",
3855 attr->ma_flags & DLADM_MACADDR_USED ? gettext("yes") :
3856 gettext("no"));
3857 break;
3858 case PHYS_M_CLIENT:
3859 /*
3860 * CR 6678526: resolve link id to actual link name if
3861 * it is valid.
3862 */
3863 (void) snprintf(buf, bufsize, "%s", attr->ma_client_name);
3864 break;
3865 }

3867 return (B_TRUE);
3868 }

3870 typedef struct {
3871 show_state_t *hs_state;
3872 char *hs_link;
3873 dladm_hwgrp_attr_t *hs_grp_attr;
3874 } print_phys_hwgrp_state_t;

3876 static boolean_t
3877 print_phys_one_hwgrp_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
3878 {
3879 int i;
3880 boolean_t first = B_TRUE;
3881 int start = -1;
3882 int end = -1;
3883 char ringstr[RINGSTRLEN];
3884 char ringsubstr[RINGSTRLEN];

3886 print_phys_hwgrp_state_t *hg_state = ofarg->ofmt_cbarg;
3887 dladm_hwgrp_attr_t *attr = hg_state->hs_grp_attr;

3889 switch (ofarg->ofmt_id) {
3890 case PHYS_H_LINK:
3891 (void) snprintf(buf, bufsize, "%s", attr->hg_link_name);
3892 break;
3893 case PHYS_H_RINGTYPE:
3894 (void) snprintf(buf, bufsize, "%s",
3895 attr->hg_grp_type == DLADM_HWGRP_TYPE_RX ? "RX" : "TX");
3896 break;
3897 case PHYS_H_RINGS:
3898 ringstr[0] = ’\0’;
3899 for (i = 0; i < attr->hg_n_rings; i++) {
3900 uint_t index = attr->hg_rings[i];

new/usr/src/cmd/dladm/dladm.c 46

3902 if (start == -1) {
3903 start = index;
3904 end = index;
3905 } else if (index == end + 1) {
3906 end = index;
3907 } else {
3908 if (start == end) {
3909 if (first) {
3910 (void) snprintf(
3911 ringsubstr,
3912 RINGSTRLEN, "%d",
3913 start);
3914 first = B_FALSE;
3915 } else {
3916 (void) snprintf(
3917 ringsubstr,
3918 RINGSTRLEN, ",%d",
3919 start);
3920 }
3921 } else {
3922 if (first) {
3923 (void) snprintf(
3924 ringsubstr,
3925 RINGSTRLEN,
3926 "%d-%d",
3927 start, end);
3928 first = B_FALSE;
3929 } else {
3930 (void) snprintf(
3931 ringsubstr,
3932 RINGSTRLEN,
3933 ",%d-%d",
3934 start, end);
3935 }
3936 }
3937 (void) strlcat(ringstr, ringsubstr,
3938 RINGSTRLEN);
3939 start = index;
3940 end = index;
3941 }
3942 }
3943 /* The last one */
3944 if (start != -1) {
3945 if (first) {
3946 if (start == end) {
3947 (void) snprintf(buf, bufsize, "%d",
3948 start);
3949 } else {
3950 (void) snprintf(buf, bufsize, "%d-%d",
3951 start, end);
3952 }
3953 } else {
3954 if (start == end) {
3955 (void) snprintf(ringsubstr, RINGSTRLEN,
3956 ",%d", start);
3957 } else {
3958 (void) snprintf(ringsubstr, RINGSTRLEN,
3959 ",%d-%d", start, end);
3960 }
3961 (void) strlcat(ringstr, ringsubstr, RINGSTRLEN);
3962 (void) snprintf(buf, bufsize, "%s", ringstr);
3963 }
3964 }
3965 break;
3966 case PHYS_H_CLIENTS:

new/usr/src/cmd/dladm/dladm.c 47

3967 if (attr->hg_client_names[0] == ’\0’) {
3968 (void) snprintf(buf, bufsize, "--");
3969 } else {
3970 (void) snprintf(buf, bufsize, "%s ",
3971 attr->hg_client_names);
3972 }
3973 break;
3974 }

3976 return (B_TRUE);
3977 }

3979 /*
3980 * callback for dladm_walk_macaddr, invoked for each MAC address slot
3981 */
3982 static boolean_t
3983 print_phys_mac_callback(void *arg, dladm_macaddr_attr_t *attr)
3984 {
3985 print_phys_mac_state_t *mac_state = arg;
3986 show_state_t *state = mac_state->ms_state;

3988 mac_state->ms_mac_attr = attr;
3989 ofmt_print(state->ls_ofmt, mac_state);

3991 return (B_TRUE);
3992 }

3994 /*
3995 * invoked by show-phys -m for each physical data-link
3996 */
3997 static dladm_status_t
3998 print_phys_mac(show_state_t *state, datalink_id_t linkid, char *link)
3999 {
4000 print_phys_mac_state_t mac_state;

4002 mac_state.ms_state = state;
4003 mac_state.ms_link = link;

4005 return (dladm_walk_macaddr(handle, linkid, &mac_state,
4006 print_phys_mac_callback));
4007 }

4009 /*
4010 * callback for dladm_walk_hwgrp, invoked for each MAC hwgrp
4011 */
4012 static boolean_t
4013 print_phys_hwgrp_callback(void *arg, dladm_hwgrp_attr_t *attr)
4014 {
4015 print_phys_hwgrp_state_t *hwgrp_state = arg;
4016 show_state_t *state = hwgrp_state->hs_state;

4018 hwgrp_state->hs_grp_attr = attr;
4019 ofmt_print(state->ls_ofmt, hwgrp_state);

4021 return (B_TRUE);
4022 }

4024 /* invoked by show-phys -H for each physical data-link */
4025 static dladm_status_t
4026 print_phys_hwgrp(show_state_t *state, datalink_id_t linkid, char *link)
4027 {
4028 print_phys_hwgrp_state_t hwgrp_state;

4030 hwgrp_state.hs_state = state;
4031 hwgrp_state.hs_link = link;
4032 return (dladm_walk_hwgrp(handle, linkid, &hwgrp_state,

new/usr/src/cmd/dladm/dladm.c 48

4033 print_phys_hwgrp_callback));
4034 }

4036 /*
4037 * Parse the "local=<laddr>,remote=<raddr>" sub-options for the -a option of
4038 * *-iptun subcommands.
4039 */
4040 static void
4041 iptun_process_addrarg(char *addrarg, iptun_params_t *params)
4042 {
4043 char *addrval;

4045 while (*addrarg != ’\0’) {
4046 switch (getsubopt(&addrarg, iptun_addropts, &addrval)) {
4047 case IPTUN_LOCAL:
4048 params->iptun_param_flags |= IPTUN_PARAM_LADDR;
4049 if (strlcpy(params->iptun_param_laddr, addrval,
4050 sizeof (params->iptun_param_laddr)) >=
4051 sizeof (params->iptun_param_laddr))
4052 die("tunnel source address is too long");
4053 break;
4054 case IPTUN_REMOTE:
4055 params->iptun_param_flags |= IPTUN_PARAM_RADDR;
4056 if (strlcpy(params->iptun_param_raddr, addrval,
4057 sizeof (params->iptun_param_raddr)) >=
4058 sizeof (params->iptun_param_raddr))
4059 die("tunnel destination address is too long");
4060 break;
4061 default:
4062 die("invalid address type: %s", addrval);
4063 break;
4064 }
4065 }
4066 }

4068 /*
4069 * Convenience routine to process iptun-create/modify/delete subcommand
4070 * arguments.
4071 */
4072 static void
4073 iptun_process_args(int argc, char *argv[], const char *opts,
4074 iptun_params_t *params, uint32_t *flags, char *name, const char *use)
4075 {
4076 int option;
4077 char *altroot = NULL;

4079 if (params != NULL)
4080 bzero(params, sizeof (*params));
4081 *flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;

4083 opterr = 0;
4084 while ((option = getopt_long(argc, argv, opts, iptun_lopts, NULL)) !=
4085 -1) {
4086 switch (option) {
4087 case ’a’:
4088 iptun_process_addrarg(optarg, params);
4089 break;
4090 case ’R’:
4091 altroot = optarg;
4092 break;
4093 case ’t’:
4094 *flags &= ~DLADM_OPT_PERSIST;
4095 break;
4096 case ’T’:
4097 params->iptun_param_type = iptun_gettypebyname(optarg);
4098 if (params->iptun_param_type == IPTUN_TYPE_UNKNOWN)

new/usr/src/cmd/dladm/dladm.c 49

4099 die("unknown tunnel type: %s", optarg);
4100 params->iptun_param_flags |= IPTUN_PARAM_TYPE;
4101 break;
4102 default:
4103 die_opterr(optopt, option, use);
4104 break;
4105 }
4106 }

4108 /* Get the required tunnel name argument. */
4109 if (argc - optind != 1)
4110 usage();

4112 if (strlcpy(name, argv[optind], MAXLINKNAMELEN) >= MAXLINKNAMELEN)
4113 die("tunnel name is too long");

4115 if (altroot != NULL)
4116 altroot_cmd(altroot, argc, argv);
4117 }

4119 static void
4120 do_create_iptun(int argc, char *argv[], const char *use)
4121 {
4122 iptun_params_t params;
4123 dladm_status_t status;
4124 uint32_t flags;
4125 char name[MAXLINKNAMELEN];

4127 iptun_process_args(argc, argv, ":a:R:tT:", ¶ms, &flags, name,
4128 use);

4130 status = dladm_iptun_create(handle, name, ¶ms, flags);
4131 if (status != DLADM_STATUS_OK)
4132 die_dlerr(status, "could not create tunnel");
4133 }

4135 static void
4136 do_delete_iptun(int argc, char *argv[], const char *use)
4137 {
4138 uint32_t flags;
4139 datalink_id_t linkid;
4140 dladm_status_t status;
4141 char name[MAXLINKNAMELEN];

4143 iptun_process_args(argc, argv, ":R:t", NULL, &flags, name, use);

4145 status = dladm_name2info(handle, name, &linkid, NULL, NULL, NULL);
4146 if (status != DLADM_STATUS_OK)
4147 die_dlerr(status, "could not delete tunnel");
4148 status = dladm_iptun_delete(handle, linkid, flags);
4149 if (status != DLADM_STATUS_OK)
4150 die_dlerr(status, "could not delete tunnel");
4151 }

4153 static void
4154 do_modify_iptun(int argc, char *argv[], const char *use)
4155 {
4156 iptun_params_t params;
4157 uint32_t flags;
4158 dladm_status_t status;
4159 char name[MAXLINKNAMELEN];

4161 iptun_process_args(argc, argv, ":a:R:t", ¶ms, &flags, name, use);

4163 if ((status = dladm_name2info(handle, name, ¶ms.iptun_param_linkid,
4164 NULL, NULL, NULL)) != DLADM_STATUS_OK)

new/usr/src/cmd/dladm/dladm.c 50

4165 die_dlerr(status, "could not modify tunnel");
4166 status = dladm_iptun_modify(handle, ¶ms, flags);
4167 if (status != DLADM_STATUS_OK)
4168 die_dlerr(status, "could not modify tunnel");
4169 }

4171 static void
4172 do_show_iptun(int argc, char *argv[], const char *use)
4173 {
4174 char option;
4175 datalink_id_t linkid;
4176 uint32_t flags = DLADM_OPT_ACTIVE;
4177 char *name = NULL;
4178 dladm_status_t status;
4179 const char *fields_str = NULL;
4180 show_state_t state;
4181 ofmt_handle_t ofmt;
4182 ofmt_status_t oferr;
4183 uint_t ofmtflags = 0;

4185 bzero(&state, sizeof (state));
4186 opterr = 0;
4187 while ((option = getopt_long(argc, argv, ":pPo:",
4188 iptun_lopts, NULL)) != -1) {
4189 switch (option) {
4190 case ’o’:
4191 fields_str = optarg;
4192 break;
4193 case ’p’:
4194 state.ls_parsable = B_TRUE;
4195 ofmtflags = OFMT_PARSABLE;
4196 break;
4197 case ’P’:
4198 flags = DLADM_OPT_PERSIST;
4199 break;
4200 default:
4201 die_opterr(optopt, option, use);
4202 break;
4203 }
4204 }

4206 /*
4207 * Get the optional tunnel name argument. If there is one, it must
4208 * be the last thing remaining on the command-line.
4209 */
4210 if (argc - optind > 1)
4211 die(gettext(use));
4212 if (argc - optind == 1)
4213 name = argv[optind];

4215 oferr = ofmt_open(fields_str, iptun_fields, ofmtflags,
4216 DLADM_DEFAULT_COL, &ofmt);
4217 dladm_ofmt_check(oferr, state.ls_parsable, ofmt);

4219 state.ls_ofmt = ofmt;
4220 state.ls_flags = flags;

4222 if (name == NULL) {
4223 (void) dladm_walk_datalink_id(print_iptun_walker, handle,
4224 &state, DATALINK_CLASS_IPTUN, DATALINK_ANY_MEDIATYPE,
4225 flags);
4226 status = state.ls_status;
4227 } else {
4228 if ((status = dladm_name2info(handle, name, &linkid, NULL, NULL,
4229 NULL)) == DLADM_STATUS_OK)
4230 status = print_iptun(handle, linkid, &state);

new/usr/src/cmd/dladm/dladm.c 51

4231 }

4233 if (status != DLADM_STATUS_OK)
4234 die_dlerr(status, "unable to obtain tunnel status");
4235 }

4237 /* ARGSUSED */
4238 static void
4239 do_up_iptun(int argc, char *argv[], const char *use)
4240 {
4241 datalink_id_t linkid = DATALINK_ALL_LINKID;
4242 dladm_status_t status = DLADM_STATUS_OK;

4244 /*
4245 * Get the optional tunnel name argument. If there is one, it must
4246 * be the last thing remaining on the command-line.
4247 */
4248 if (argc - optind > 1)
4249 usage();
4250 if (argc - optind == 1) {
4251 status = dladm_name2info(handle, argv[optind], &linkid, NULL,
4252 NULL, NULL);
4253 }
4254 if (status == DLADM_STATUS_OK)
4255 status = dladm_iptun_up(handle, linkid);
4256 if (status != DLADM_STATUS_OK)
4257 die_dlerr(status, "unable to configure IP tunnel links");
4258 }

4260 /* ARGSUSED */
4261 static void
4262 do_down_iptun(int argc, char *argv[], const char *use)
4263 {
4264 datalink_id_t linkid = DATALINK_ALL_LINKID;
4265 dladm_status_t status = DLADM_STATUS_OK;

4267 /*
4268 * Get the optional tunnel name argument. If there is one, it must
4269 * be the last thing remaining on the command-line.
4270 */
4271 if (argc - optind > 1)
4272 usage();
4273 if (argc - optind == 1) {
4274 status = dladm_name2info(handle, argv[optind], &linkid, NULL,
4275 NULL, NULL);
4276 }
4277 if (status == DLADM_STATUS_OK)
4278 status = dladm_iptun_down(handle, linkid);
4279 if (status != DLADM_STATUS_OK)
4280 die_dlerr(status, "unable to bring down IP tunnel links");
4281 }

4283 static iptun_type_t
4284 iptun_gettypebyname(char *typestr)
4285 {
4286 int i;

4288 for (i = 0; iptun_types[i].type_name != NULL; i++) {
4289 if (strncmp(iptun_types[i].type_name, typestr,
4290 strlen(iptun_types[i].type_name)) == 0) {
4291 return (iptun_types[i].type_value);
4292 }
4293 }
4294 return (IPTUN_TYPE_UNKNOWN);
4295 }

new/usr/src/cmd/dladm/dladm.c 52

4297 static const char *
4298 iptun_gettypebyvalue(iptun_type_t type)
4299 {
4300 int i;

4302 for (i = 0; iptun_types[i].type_name != NULL; i++) {
4303 if (iptun_types[i].type_value == type)
4304 return (iptun_types[i].type_name);
4305 }
4306 return (NULL);
4307 }

4309 static dladm_status_t
4310 print_iptun(dladm_handle_t dh, datalink_id_t linkid, show_state_t *state)
4311 {
4312 dladm_status_t status;
4313 iptun_params_t params;
4314 iptun_fields_buf_t lbuf;
4315 const char *laddr;
4316 const char *raddr;

4318 params.iptun_param_linkid = linkid;
4319 status = dladm_iptun_getparams(dh, ¶ms, state->ls_flags);
4320 if (status != DLADM_STATUS_OK)
4321 return (status);

4323 /* LINK */
4324 status = dladm_datalink_id2info(dh, linkid, NULL, NULL, NULL,
4325 lbuf.iptun_name, sizeof (lbuf.iptun_name));
4326 if (status != DLADM_STATUS_OK)
4327 return (status);

4329 /* TYPE */
4330 (void) strlcpy(lbuf.iptun_type,
4331 iptun_gettypebyvalue(params.iptun_param_type),
4332 sizeof (lbuf.iptun_type));

4334 /* FLAGS */
4335 (void) memset(lbuf.iptun_flags, ’-’, IPTUN_NUM_FLAGS);
4336 lbuf.iptun_flags[IPTUN_NUM_FLAGS] = ’\0’;
4337 if (params.iptun_param_flags & IPTUN_PARAM_IPSECPOL)
4338 lbuf.iptun_flags[IPTUN_SFLAG_INDEX] = ’s’;
4339 if (params.iptun_param_flags & IPTUN_PARAM_IMPLICIT)
4340 lbuf.iptun_flags[IPTUN_IFLAG_INDEX] = ’i’;

4342 /* LOCAL */
4343 if (params.iptun_param_flags & IPTUN_PARAM_LADDR)
4344 laddr = params.iptun_param_laddr;
4345 else
4346 laddr = (state->ls_parsable) ? "" : "--";
4347 (void) strlcpy(lbuf.iptun_laddr, laddr, sizeof (lbuf.iptun_laddr));

4349 /* REMOTE */
4350 if (params.iptun_param_flags & IPTUN_PARAM_RADDR)
4351 raddr = params.iptun_param_raddr;
4352 else
4353 raddr = (state->ls_parsable) ? "" : "--";
4354 (void) strlcpy(lbuf.iptun_raddr, raddr, sizeof (lbuf.iptun_raddr));

4356 ofmt_print(state->ls_ofmt, &lbuf);

4358 return (DLADM_STATUS_OK);
4359 }

4361 static int
4362 print_iptun_walker(dladm_handle_t dh, datalink_id_t linkid, void *arg)

new/usr/src/cmd/dladm/dladm.c 53

4363 {
4364 ((show_state_t *)arg)->ls_status = print_iptun(dh, linkid, arg);
4365 return (DLADM_WALK_CONTINUE);
4366 }

4368 static dladm_status_t
4369 print_phys(show_state_t *state, datalink_id_t linkid)
4370 {
4371 char link[MAXLINKNAMELEN];
4372 uint32_t flags;
4373 dladm_status_t status;
4374 datalink_class_t class;
4375 uint32_t media;

4377 if ((status = dladm_datalink_id2info(handle, linkid, &flags, &class,
4378 &media, link, MAXLINKNAMELEN)) != DLADM_STATUS_OK) {
4379 goto done;
4380 }

4382 if (class != DATALINK_CLASS_PHYS) {
4383 status = DLADM_STATUS_BADARG;
4384 goto done;
4385 }

4387 if (!(state->ls_flags & flags)) {
4388 status = DLADM_STATUS_NOTFOUND;
4389 goto done;
4390 }

4392 if (state->ls_mac)
4393 status = print_phys_mac(state, linkid, link);
4394 else if (state->ls_hwgrp)
4395 status = print_phys_hwgrp(state, linkid, link);
4396 else
4397 status = print_phys_default(state, linkid, link, flags, media);

4399 done:
4400 return (status);
4401 }

4403 /* ARGSUSED */
4404 static int
4405 show_phys(dladm_handle_t dh, datalink_id_t linkid, void *arg)
4406 {
4407 show_state_t *state = arg;

4409 state->ls_status = print_phys(state, linkid);
4410 return (DLADM_WALK_CONTINUE);
4411 }

4413 /*
4414 * Print the active topology information.
4415 */
4416 static dladm_status_t
4417 print_vlan(show_state_t *state, datalink_id_t linkid, link_fields_buf_t *l)
4418 {
4419 dladm_vlan_attr_t vinfo;
4420 uint32_t flags;
4421 dladm_status_t status;

4423 if ((status = dladm_datalink_id2info(handle, linkid, &flags, NULL, NULL,
4424 l->link_name, sizeof (l->link_name))) != DLADM_STATUS_OK) {
4425 goto done;
4426 }

4428 if (!(state->ls_flags & flags)) {

new/usr/src/cmd/dladm/dladm.c 54

4429 status = DLADM_STATUS_NOTFOUND;
4430 goto done;
4431 }

4433 if ((status = dladm_vlan_info(handle, linkid, &vinfo,
4434 state->ls_flags)) != DLADM_STATUS_OK ||
4435 (status = dladm_datalink_id2info(handle, vinfo.dv_linkid, NULL,
4436 NULL, NULL, l->link_over, sizeof (l->link_over))) !=
4437 DLADM_STATUS_OK) {
4438 goto done;
4439 }

4441 (void) snprintf(l->link_vlan_vid, sizeof (l->link_vlan_vid), "%d",
4442 vinfo.dv_vid);
4443 (void) snprintf(l->link_flags, sizeof (l->link_flags), "%c----",
4444 vinfo.dv_force ? ’f’ : ’-’);

4446 done:
4447 return (status);
4448 }

4450 /* ARGSUSED */
4451 static int
4452 show_vlan(dladm_handle_t dh, datalink_id_t linkid, void *arg)
4453 {
4454 show_state_t *state = arg;
4455 dladm_status_t status;
4456 link_fields_buf_t lbuf;

4458 bzero(&lbuf, sizeof (link_fields_buf_t));
4459 status = print_vlan(state, linkid, &lbuf);
4460 if (status != DLADM_STATUS_OK)
4461 goto done;

4463 ofmt_print(state->ls_ofmt, &lbuf);

4465 done:
4466 state->ls_status = status;
4467 return (DLADM_WALK_CONTINUE);
4468 }

4470 static void
4471 do_show_phys(int argc, char *argv[], const char *use)
4472 {
4473 int option;
4474 uint32_t flags = DLADM_OPT_ACTIVE;
4475 boolean_t p_arg = B_FALSE;
4476 boolean_t o_arg = B_FALSE;
4477 boolean_t m_arg = B_FALSE;
4478 boolean_t H_arg = B_FALSE;
4479 datalink_id_t linkid = DATALINK_ALL_LINKID;
4480 show_state_t state;
4481 dladm_status_t status;
4482 char *fields_str = NULL;
4483 char *all_active_fields =
4484 "link,media,state,speed,duplex,device";
4485 char *all_inactive_fields = "link,device,media,flags";
4486 char *all_mac_fields = "link,slot,address,inuse,client";
4487 char *all_hwgrp_fields = "link,ringtype,rings,clients";
4488 const ofmt_field_t *pf;
4489 ofmt_handle_t ofmt;
4490 ofmt_status_t oferr;
4491 uint_t ofmtflags = 0;

4493 bzero(&state, sizeof (state));
4494 opterr = 0;

new/usr/src/cmd/dladm/dladm.c 55

4495 while ((option = getopt_long(argc, argv, ":pPo:mH",
4496 show_lopts, NULL)) != -1) {
4497 switch (option) {
4498 case ’p’:
4499 if (p_arg)
4500 die_optdup(option);

4502 p_arg = B_TRUE;
4503 break;
4504 case ’P’:
4505 if (flags != DLADM_OPT_ACTIVE)
4506 die_optdup(option);

4508 flags = DLADM_OPT_PERSIST;
4509 break;
4510 case ’o’:
4511 o_arg = B_TRUE;
4512 fields_str = optarg;
4513 break;
4514 case ’m’:
4515 m_arg = B_TRUE;
4516 break;
4517 case ’H’:
4518 H_arg = B_TRUE;
4519 break;
4520 default:
4521 die_opterr(optopt, option, use);
4522 break;
4523 }
4524 }

4526 if (p_arg && !o_arg)
4527 die("-p requires -o");

4529 if (m_arg && H_arg)
4530 die("-m cannot combine with -H");

4532 if (p_arg && strcasecmp(fields_str, "all") == 0)
4533 die("\"-o all\" is invalid with -p");

4535 /* get link name (optional last argument) */
4536 if (optind == (argc-1)) {
4537 if ((status = dladm_name2info(handle, argv[optind], &linkid,
4538 NULL, NULL, NULL)) != DLADM_STATUS_OK) {
4539 die_dlerr(status, "link %s is not valid", argv[optind]);
4540 }
4541 } else if (optind != argc) {
4542 usage();
4543 }

4545 state.ls_parsable = p_arg;
4546 state.ls_flags = flags;
4547 state.ls_donefirst = B_FALSE;
4548 state.ls_mac = m_arg;
4549 state.ls_hwgrp = H_arg;

4551 if (m_arg && !(flags & DLADM_OPT_ACTIVE)) {
4552 /*
4553 * We can only display the factory MAC addresses of
4554 * active data-links.
4555 */
4556 die("-m not compatible with -P");
4557 }

4559 if (!o_arg || (o_arg && strcasecmp(fields_str, "all") == 0)) {
4560 if (state.ls_mac)

new/usr/src/cmd/dladm/dladm.c 56

4561 fields_str = all_mac_fields;
4562 else if (state.ls_hwgrp)
4563 fields_str = all_hwgrp_fields;
4564 else if (state.ls_flags & DLADM_OPT_ACTIVE) {
4565 fields_str = all_active_fields;
4566 } else {
4567 fields_str = all_inactive_fields;
4568 }
4569 }

4571 if (state.ls_mac) {
4572 pf = phys_m_fields;
4573 } else if (state.ls_hwgrp) {
4574 pf = phys_h_fields;
4575 } else {
4576 pf = phys_fields;
4577 }

4579 if (state.ls_parsable)
4580 ofmtflags |= OFMT_PARSABLE;
4581 oferr = ofmt_open(fields_str, pf, ofmtflags, 0, &ofmt);
4582 dladm_ofmt_check(oferr, state.ls_parsable, ofmt);
4583 state.ls_ofmt = ofmt;

4585 if (linkid == DATALINK_ALL_LINKID) {
4586 (void) dladm_walk_datalink_id(show_phys, handle, &state,
4587 DATALINK_CLASS_PHYS, DATALINK_ANY_MEDIATYPE, flags);
4588 } else {
4589 (void) show_phys(handle, linkid, &state);
4590 if (state.ls_status != DLADM_STATUS_OK) {
4591 die_dlerr(state.ls_status,
4592 "failed to show physical link %s", argv[optind]);
4593 }
4594 }
4595 ofmt_close(ofmt);
4596 }

4598 static void
4599 do_show_vlan(int argc, char *argv[], const char *use)
4600 {
4601 int option;
4602 uint32_t flags = DLADM_OPT_ACTIVE;
4603 boolean_t p_arg = B_FALSE;
4604 datalink_id_t linkid = DATALINK_ALL_LINKID;
4605 show_state_t state;
4606 dladm_status_t status;
4607 boolean_t o_arg = B_FALSE;
4608 char *fields_str = NULL;
4609 ofmt_handle_t ofmt;
4610 ofmt_status_t oferr;
4611 uint_t ofmtflags = 0;

4613 bzero(&state, sizeof (state));

4615 opterr = 0;
4616 while ((option = getopt_long(argc, argv, ":pPo:",
4617 show_lopts, NULL)) != -1) {
4618 switch (option) {
4619 case ’p’:
4620 if (p_arg)
4621 die_optdup(option);

4623 p_arg = B_TRUE;
4624 break;
4625 case ’P’:
4626 if (flags != DLADM_OPT_ACTIVE)

new/usr/src/cmd/dladm/dladm.c 57

4627 die_optdup(option);

4629 flags = DLADM_OPT_PERSIST;
4630 break;
4631 case ’o’:
4632 o_arg = B_TRUE;
4633 fields_str = optarg;
4634 break;
4635 default:
4636 die_opterr(optopt, option, use);
4637 break;
4638 }
4639 }

4641 /* get link name (optional last argument) */
4642 if (optind == (argc-1)) {
4643 if ((status = dladm_name2info(handle, argv[optind], &linkid,
4644 NULL, NULL, NULL)) != DLADM_STATUS_OK) {
4645 die_dlerr(status, "link %s is not valid", argv[optind]);
4646 }
4647 } else if (optind != argc) {
4648 usage();
4649 }

4651 state.ls_parsable = p_arg;
4652 state.ls_flags = flags;
4653 state.ls_donefirst = B_FALSE;

4655 if (!o_arg || (o_arg && strcasecmp(fields_str, "all") == 0))
4656 fields_str = NULL;

4658 if (state.ls_parsable)
4659 ofmtflags |= OFMT_PARSABLE;
4660 oferr = ofmt_open(fields_str, vlan_fields, ofmtflags, 0, &ofmt);
4661 dladm_ofmt_check(oferr, state.ls_parsable, ofmt);
4662 state.ls_ofmt = ofmt;

4664 if (linkid == DATALINK_ALL_LINKID) {
4665 (void) dladm_walk_datalink_id(show_vlan, handle, &state,
4666 DATALINK_CLASS_VLAN, DATALINK_ANY_MEDIATYPE, flags);
4667 } else {
4668 (void) show_vlan(handle, linkid, &state);
4669 if (state.ls_status != DLADM_STATUS_OK) {
4670 die_dlerr(state.ls_status, "failed to show vlan %s",
4671 argv[optind]);
4672 }
4673 }
4674 ofmt_close(ofmt);
4675 }

4677 static void
4678 do_create_vnic(int argc, char *argv[], const char *use)
4679 {
4680 datalink_id_t linkid, dev_linkid;
4681 char devname[MAXLINKNAMELEN];
4682 char name[MAXLINKNAMELEN];
4683 boolean_t l_arg = B_FALSE;
4684 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
4685 char *altroot = NULL;
4686 int option;
4687 char *endp = NULL;
4688 dladm_status_t status;
4689 vnic_mac_addr_type_t mac_addr_type = VNIC_MAC_ADDR_TYPE_UNKNOWN;
4690 uchar_t *mac_addr = NULL;
4691 int mac_slot = -1;
4692 uint_t maclen = 0, mac_prefix_len = 0;

new/usr/src/cmd/dladm/dladm.c 58

4693 char propstr[DLADM_STRSIZE];
4694 dladm_arg_list_t *proplist = NULL;
4695 int vid = 0;
4696 int af = AF_UNSPEC;
4697 vrid_t vrid = VRRP_VRID_NONE;

4699 opterr = 0;
4700 bzero(propstr, DLADM_STRSIZE);

4702 while ((option = getopt_long(argc, argv, ":tfR:l:m:n:p:r:v:V:A:H",
4703 vnic_lopts, NULL)) != -1) {
4704 switch (option) {
4705 case ’t’:
4706 flags &= ~DLADM_OPT_PERSIST;
4707 break;
4708 case ’R’:
4709 altroot = optarg;
4710 break;
4711 case ’l’:
4712 if (strlcpy(devname, optarg, MAXLINKNAMELEN) >=
4713 MAXLINKNAMELEN)
4714 die("link name too long");
4715 l_arg = B_TRUE;
4716 break;
4717 case ’m’:
4718 if (mac_addr_type != VNIC_MAC_ADDR_TYPE_UNKNOWN)
4719 die("cannot specify -m option twice");

4721 if (strcmp(optarg, "fixed") == 0) {
4722 /*
4723 * A fixed MAC address must be specified
4724 * by its value, not by the keyword ’fixed’.
4725 */
4726 die("’fixed’ is not a valid MAC address");
4727 }
4728 if (dladm_vnic_str2macaddrtype(optarg,
4729 &mac_addr_type) != DLADM_STATUS_OK) {
4730 mac_addr_type = VNIC_MAC_ADDR_TYPE_FIXED;
4731 /* MAC address specified by value */
4732 mac_addr = _link_aton(optarg, (int *)&maclen);
4733 if (mac_addr == NULL) {
4734 if (maclen == (uint_t)-1)
4735 die("invalid MAC address");
4736 else
4737 die("out of memory");
4738 }
4739 }
4740 break;
4741 case ’n’:
4742 errno = 0;
4743 mac_slot = (int)strtol(optarg, &endp, 10);
4744 if (errno != 0 || *endp != ’\0’)
4745 die("invalid slot number");
4746 break;
4747 case ’p’:
4748 (void) strlcat(propstr, optarg, DLADM_STRSIZE);
4749 if (strlcat(propstr, ",", DLADM_STRSIZE) >=
4750 DLADM_STRSIZE)
4751 die("property list too long ’%s’", propstr);
4752 break;
4753 case ’r’:
4754 mac_addr = _link_aton(optarg, (int *)&mac_prefix_len);
4755 if (mac_addr == NULL) {
4756 if (mac_prefix_len == (uint_t)-1)
4757 die("invalid MAC address");
4758 else

new/usr/src/cmd/dladm/dladm.c 59

4759 die("out of memory");
4760 }
4761 break;
4762 case ’V’:
4763 if (!str2int(optarg, (int *)&vrid) ||
4764 vrid < VRRP_VRID_MIN || vrid > VRRP_VRID_MAX) {
4765 die("invalid VRRP identifier ’%s’", optarg);
4766 }

4768 break;
4769 case ’A’:
4770 if (strcmp(optarg, "inet") == 0)
4771 af = AF_INET;
4772 else if (strcmp(optarg, "inet6") == 0)
4773 af = AF_INET6;
4774 else
4775 die("invalid address family ’%s’", optarg);
4776 break;
4777 case ’v’:
4778 if (vid != 0)
4779 die_optdup(option);

4781 if (!str2int(optarg, &vid) || vid < 1 || vid > 4094)
4782 die("invalid VLAN identifier ’%s’", optarg);

4784 break;
4785 case ’f’:
4786 flags |= DLADM_OPT_FORCE;
4787 break;
4788 default:
4789 die_opterr(optopt, option, use);
4790 }
4791 }

4793 if (mac_addr_type == VNIC_MAC_ADDR_TYPE_UNKNOWN)
4794 mac_addr_type = VNIC_MAC_ADDR_TYPE_AUTO;

4796 /*
4797 * ’f’ - force, flag can be specified only with ’v’ - vlan.
4798 */
4799 if ((flags & DLADM_OPT_FORCE) != 0 && vid == 0)
4800 die("-f option can only be used with -v");

4802 if (mac_prefix_len != 0 && mac_addr_type != VNIC_MAC_ADDR_TYPE_RANDOM &&
4803 mac_addr_type != VNIC_MAC_ADDR_TYPE_FIXED)
4804 usage();

4806 if (mac_addr_type == VNIC_MAC_ADDR_TYPE_VRID) {
4807 if (vrid == VRRP_VRID_NONE || af == AF_UNSPEC ||
4808 mac_addr != NULL || maclen != 0 || mac_slot != -1 ||
4809 mac_prefix_len != 0) {
4810 usage();
4811 }
4812 } else if ((af != AF_UNSPEC || vrid != VRRP_VRID_NONE)) {
4813 usage();
4814 }

4816 /* check required options */
4817 if (!l_arg)
4818 usage();

4820 if (mac_slot != -1 && mac_addr_type != VNIC_MAC_ADDR_TYPE_FACTORY)
4821 usage();

4823 /* the VNIC id is the required operand */
4824 if (optind != (argc - 1))

new/usr/src/cmd/dladm/dladm.c 60

4825 usage();

4827 if (strlcpy(name, argv[optind], MAXLINKNAMELEN) >= MAXLINKNAMELEN)
4828 die("link name too long ’%s’", argv[optind]);

4830 if (!dladm_valid_linkname(name))
4831 die("invalid link name ’%s’", argv[optind]);

4833 if (altroot != NULL)
4834 altroot_cmd(altroot, argc, argv);

4836 if (dladm_name2info(handle, devname, &dev_linkid, NULL, NULL, NULL) !=
4837 DLADM_STATUS_OK)
4838 die("invalid link name ’%s’", devname);

4840 if (dladm_parse_link_props(propstr, &proplist, B_FALSE)
4841 != DLADM_STATUS_OK)
4842 die("invalid vnic property");

4844 status = dladm_vnic_create(handle, name, dev_linkid, mac_addr_type,
4845 mac_addr, maclen, &mac_slot, mac_prefix_len, vid, vrid, af,
4846 &linkid, proplist, flags);
4847 switch (status) {
4848 case DLADM_STATUS_OK:
4849 break;

4851 case DLADM_STATUS_LINKBUSY:
4852 die("VLAN over ’%s’ may not use default_tag ID "
4853 "(see dladm(1M))", devname);
4854 break;

4856 default:
4857 die_dlerr(status, "vnic creation over %s failed", devname);
4858 }

4860 dladm_free_props(proplist);
4861 free(mac_addr);
4862 }

4864 static void
4865 do_etherstub_check(const char *name, datalink_id_t linkid, boolean_t etherstub,
4866 uint32_t flags)
4867 {
4868 boolean_t is_etherstub;
4869 dladm_vnic_attr_t attr;

4871 if (dladm_vnic_info(handle, linkid, &attr, flags) != DLADM_STATUS_OK) {
4872 /*
4873 * Let the delete continue anyway.
4874 */
4875 return;
4876 }
4877 is_etherstub = (attr.va_link_id == DATALINK_INVALID_LINKID);
4878 if (is_etherstub != etherstub) {
4879 die("’%s’ is not %s", name,
4880 (is_etherstub ? "a vnic" : "an etherstub"));
4881 }
4882 }

4884 static void
4885 do_delete_vnic_common(int argc, char *argv[], const char *use,
4886 boolean_t etherstub)
4887 {
4888 int option;
4889 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
4890 datalink_id_t linkid;

new/usr/src/cmd/dladm/dladm.c 61

4891 char *altroot = NULL;
4892 dladm_status_t status;

4894 opterr = 0;
4895 while ((option = getopt_long(argc, argv, ":R:t", lopts,
4896 NULL)) != -1) {
4897 switch (option) {
4898 case ’t’:
4899 flags &= ~DLADM_OPT_PERSIST;
4900 break;
4901 case ’R’:
4902 altroot = optarg;
4903 break;
4904 default:
4905 die_opterr(optopt, option, use);
4906 }
4907 }

4909 /* get vnic name (required last argument) */
4910 if (optind != (argc - 1))
4911 usage();

4913 if (altroot != NULL)
4914 altroot_cmd(altroot, argc, argv);

4916 status = dladm_name2info(handle, argv[optind], &linkid, NULL, NULL,
4917 NULL);
4918 if (status != DLADM_STATUS_OK)
4919 die("invalid link name ’%s’", argv[optind]);

4921 if ((flags & DLADM_OPT_ACTIVE) != 0) {
4922 do_etherstub_check(argv[optind], linkid, etherstub,
4923 DLADM_OPT_ACTIVE);
4924 }
4925 if ((flags & DLADM_OPT_PERSIST) != 0) {
4926 do_etherstub_check(argv[optind], linkid, etherstub,
4927 DLADM_OPT_PERSIST);
4928 }

4930 status = dladm_vnic_delete(handle, linkid, flags);
4931 if (status != DLADM_STATUS_OK)
4932 die_dlerr(status, "vnic deletion failed");
4933 }

4935 static void
4936 do_delete_vnic(int argc, char *argv[], const char *use)
4937 {
4938 do_delete_vnic_common(argc, argv, use, B_FALSE);
4939 }

4941 /* ARGSUSED */
4942 static void
4943 do_up_vnic_common(int argc, char *argv[], const char *use, boolean_t vlan)
4944 {
4945 datalink_id_t linkid = DATALINK_ALL_LINKID;
4946 dladm_status_t status;
4947 char *type;

4949 type = vlan ? "vlan" : "vnic";

4951 /*
4952 * get the id or the name of the vnic/vlan (optional last argument)
4953 */
4954 if (argc == 2) {
4955 status = dladm_name2info(handle, argv[1], &linkid, NULL, NULL,
4956 NULL);

new/usr/src/cmd/dladm/dladm.c 62

4957 if (status != DLADM_STATUS_OK)
4958 goto done;

4960 } else if (argc > 2) {
4961 usage();
4962 }

4964 if (vlan)
4965 status = dladm_vlan_up(handle, linkid);
4966 else
4967 status = dladm_vnic_up(handle, linkid, 0);

4969 done:
4970 if (status != DLADM_STATUS_OK) {
4971 if (argc == 2) {
4972 die_dlerr(status,
4973 "could not bring up %s ’%s’", type, argv[1]);
4974 } else {
4975 die_dlerr(status, "could not bring %ss up", type);
4976 }
4977 }
4978 }

4980 static void
4981 do_up_vnic(int argc, char *argv[], const char *use)
4982 {
4983 do_up_vnic_common(argc, argv, use, B_FALSE);
4984 }

4986 static void
4987 dump_vnics_head(const char *dev)
4988 {
4989 if (strlen(dev))
4990 (void) printf("%s", dev);

4992 (void) printf("\tipackets rbytes opackets obytes ");

4994 if (strlen(dev))
4995 (void) printf("%%ipkts %%opkts\n");
4996 else
4997 (void) printf("\n");
4998 }

5000 static void
5001 dump_vnic_stat(const char *name, datalink_id_t vnic_id,
5002 show_vnic_state_t *state, pktsum_t *vnic_stats, pktsum_t *tot_stats)
5003 {
5004 pktsum_t diff_stats;
5005 pktsum_t *old_stats = &state->vs_prevstats[vnic_id];

5007 dladm_stats_diff(&diff_stats, vnic_stats, old_stats);

5009 (void) printf("%s", name);

5011 (void) printf("\t%-10llu", diff_stats.ipackets);
5012 (void) printf("%-12llu", diff_stats.rbytes);
5013 (void) printf("%-10llu", diff_stats.opackets);
5014 (void) printf("%-12llu", diff_stats.obytes);

5016 if (tot_stats) {
5017 if (tot_stats->ipackets == 0) {
5018 (void) printf("\t-");
5019 } else {
5020 (void) printf("\t%-6.1f", (double)diff_stats.ipackets/
5021 (double)tot_stats->ipackets * 100);
5022 }

new/usr/src/cmd/dladm/dladm.c 63

5023 if (tot_stats->opackets == 0) {
5024 (void) printf("\t-");
5025 } else {
5026 (void) printf("\t%-6.1f", (double)diff_stats.opackets/
5027 (double)tot_stats->opackets * 100);
5028 }
5029 }
5030 (void) printf("\n");

5032 *old_stats = *vnic_stats;
5033 }

5035 /*
5036 * Called from the walker dladm_vnic_walk_sys() for each vnic to display
5037 * vnic information or statistics.
5038 */
5039 static dladm_status_t
5040 print_vnic(show_vnic_state_t *state, datalink_id_t linkid)
5041 {
5042 dladm_vnic_attr_t attr, *vnic = &attr;
5043 dladm_status_t status;
5044 boolean_t is_etherstub;
5045 char devname[MAXLINKNAMELEN];
5046 char vnic_name[MAXLINKNAMELEN];
5047 char mstr[MAXMACADDRLEN * 3];
5048 vnic_fields_buf_t vbuf;

5050 if ((status = dladm_vnic_info(handle, linkid, vnic, state->vs_flags)) !=
5051 DLADM_STATUS_OK)
5052 return (status);

5054 is_etherstub = (vnic->va_link_id == DATALINK_INVALID_LINKID);
5055 if (state->vs_etherstub != is_etherstub) {
5056 /*
5057 * Want all etherstub but it’s not one, or want
5058 * non-etherstub and it’s one.
5059 */
5060 return (DLADM_STATUS_OK);
5061 }

5063 if (state->vs_link_id != DATALINK_ALL_LINKID) {
5064 if (state->vs_link_id != vnic->va_link_id)
5065 return (DLADM_STATUS_OK);
5066 }

5068 if (dladm_datalink_id2info(handle, linkid, NULL, NULL,
5069 NULL, vnic_name, sizeof (vnic_name)) != DLADM_STATUS_OK)
5070 return (DLADM_STATUS_BADARG);

5072 bzero(devname, sizeof (devname));
5073 if (!is_etherstub &&
5074 dladm_datalink_id2info(handle, vnic->va_link_id, NULL, NULL,
5075 NULL, devname, sizeof (devname)) != DLADM_STATUS_OK)
5076 (void) sprintf(devname, "?");

5078 state->vs_found = B_TRUE;
5079 if (state->vs_stats) {
5080 /* print vnic statistics */
5081 pktsum_t vnic_stats;

5083 if (state->vs_firstonly) {
5084 if (state->vs_donefirst)
5085 return (0);
5086 state->vs_donefirst = B_TRUE;
5087 }

new/usr/src/cmd/dladm/dladm.c 64

5089 if (!state->vs_printstats) {
5090 /*
5091 * get vnic statistics and add to the sum for the
5092 * named device.
5093 */
5094 get_link_stats(vnic_name, &vnic_stats);
5095 dladm_stats_total(&state->vs_totalstats, &vnic_stats,
5096 &state->vs_prevstats[vnic->va_vnic_id]);
5097 } else {
5098 /* get and print vnic statistics */
5099 get_link_stats(vnic_name, &vnic_stats);
5100 dump_vnic_stat(vnic_name, linkid, state, &vnic_stats,
5101 &state->vs_totalstats);
5102 }
5103 return (DLADM_STATUS_OK);
5104 } else {
5105 (void) snprintf(vbuf.vnic_link, sizeof (vbuf.vnic_link),
5106 "%s", vnic_name);

5108 if (!is_etherstub) {

5110 (void) snprintf(vbuf.vnic_over, sizeof (vbuf.vnic_over),
5111 "%s", devname);
5112 (void) snprintf(vbuf.vnic_speed,
5113 sizeof (vbuf.vnic_speed), "%u",
5114 (uint_t)((get_ifspeed(vnic_name, B_TRUE))
5115 / 1000000ull));

5117 switch (vnic->va_mac_addr_type) {
5118 case VNIC_MAC_ADDR_TYPE_FIXED:
5119 case VNIC_MAC_ADDR_TYPE_PRIMARY:
5120 (void) snprintf(vbuf.vnic_macaddrtype,
5121 sizeof (vbuf.vnic_macaddrtype),
5122 gettext("fixed"));
5123 break;
5124 case VNIC_MAC_ADDR_TYPE_RANDOM:
5125 (void) snprintf(vbuf.vnic_macaddrtype,
5126 sizeof (vbuf.vnic_macaddrtype),
5127 gettext("random"));
5128 break;
5129 case VNIC_MAC_ADDR_TYPE_FACTORY:
5130 (void) snprintf(vbuf.vnic_macaddrtype,
5131 sizeof (vbuf.vnic_macaddrtype),
5132 gettext("factory, slot %d"),
5133 vnic->va_mac_slot);
5134 break;
5135 case VNIC_MAC_ADDR_TYPE_VRID:
5136 (void) snprintf(vbuf.vnic_macaddrtype,
5137 sizeof (vbuf.vnic_macaddrtype),
5138 gettext("vrrp, %d/%s"),
5139 vnic->va_vrid, vnic->va_af == AF_INET ?
5140 "inet" : "inet6");
5141 break;
5142 }

5144 if (strlen(vbuf.vnic_macaddrtype) > 0) {
5145 (void) snprintf(vbuf.vnic_macaddr,
5146 sizeof (vbuf.vnic_macaddr), "%s",
5147 dladm_aggr_macaddr2str(vnic->va_mac_addr,
5148 mstr));
5149 }

5151 (void) snprintf(vbuf.vnic_vid, sizeof (vbuf.vnic_vid),
5152 "%d", vnic->va_vid);
5153 }

new/usr/src/cmd/dladm/dladm.c 65

5155 ofmt_print(state->vs_ofmt, &vbuf);

5157 return (DLADM_STATUS_OK);
5158 }
5159 }

5161 /* ARGSUSED */
5162 static int
5163 show_vnic(dladm_handle_t dh, datalink_id_t linkid, void *arg)
5164 {
5165 show_vnic_state_t *state = arg;

5167 state->vs_status = print_vnic(state, linkid);
5168 return (DLADM_WALK_CONTINUE);
5169 }

5171 static void
5172 do_show_vnic_common(int argc, char *argv[], const char *use,
5173 boolean_t etherstub)
5174 {
5175 int option;
5176 boolean_t s_arg = B_FALSE;
5177 boolean_t i_arg = B_FALSE;
5178 boolean_t l_arg = B_FALSE;
5179 uint32_t interval = 0, flags = DLADM_OPT_ACTIVE;
5180 datalink_id_t linkid = DATALINK_ALL_LINKID;
5181 datalink_id_t dev_linkid = DATALINK_ALL_LINKID;
5182 show_vnic_state_t state;
5183 dladm_status_t status;
5184 boolean_t o_arg = B_FALSE;
5185 char *fields_str = NULL;
5186 const ofmt_field_t *pf;
5187 char *all_e_fields = "link";
5188 ofmt_handle_t ofmt;
5189 ofmt_status_t oferr;
5190 uint_t ofmtflags = 0;

5192 bzero(&state, sizeof (state));
5193 opterr = 0;
5194 while ((option = getopt_long(argc, argv, ":pPl:si:o:", lopts,
5195 NULL)) != -1) {
5196 switch (option) {
5197 case ’p’:
5198 state.vs_parsable = B_TRUE;
5199 break;
5200 case ’P’:
5201 flags = DLADM_OPT_PERSIST;
5202 break;
5203 case ’l’:
5204 if (etherstub)
5205 die("option not supported for this command");

5207 if (strlcpy(state.vs_link, optarg, MAXLINKNAMELEN) >=
5208 MAXLINKNAMELEN)
5209 die("link name too long");

5211 l_arg = B_TRUE;
5212 break;
5213 case ’s’:
5214 if (s_arg) {
5215 die("the option -s cannot be specified "
5216 "more than once");
5217 }
5218 s_arg = B_TRUE;
5219 break;
5220 case ’i’:

new/usr/src/cmd/dladm/dladm.c 66

5221 if (i_arg) {
5222 die("the option -i cannot be specified "
5223 "more than once");
5224 }
5225 i_arg = B_TRUE;
5226 if (!dladm_str2interval(optarg, &interval))
5227 die("invalid interval value ’%s’", optarg);
5228 break;
5229 case ’o’:
5230 o_arg = B_TRUE;
5231 fields_str = optarg;
5232 break;
5233 default:
5234 die_opterr(optopt, option, use);
5235 }
5236 }

5238 if (i_arg && !s_arg)
5239 die("the option -i can be used only with -s");

5241 /* get vnic ID (optional last argument) */
5242 if (optind == (argc - 1)) {
5243 status = dladm_name2info(handle, argv[optind], &linkid, NULL,
5244 NULL, NULL);
5245 if (status != DLADM_STATUS_OK) {
5246 die_dlerr(status, "invalid vnic name ’%s’",
5247 argv[optind]);
5248 }
5249 (void) strlcpy(state.vs_vnic, argv[optind], MAXLINKNAMELEN);
5250 } else if (optind != argc) {
5251 usage();
5252 }

5254 if (l_arg) {
5255 status = dladm_name2info(handle, state.vs_link, &dev_linkid,
5256 NULL, NULL, NULL);
5257 if (status != DLADM_STATUS_OK) {
5258 die_dlerr(status, "invalid link name ’%s’",
5259 state.vs_link);
5260 }
5261 }

5263 state.vs_vnic_id = linkid;
5264 state.vs_link_id = dev_linkid;
5265 state.vs_etherstub = etherstub;
5266 state.vs_found = B_FALSE;
5267 state.vs_flags = flags;

5269 if (!o_arg || (o_arg && strcasecmp(fields_str, "all") == 0)) {
5270 if (etherstub)
5271 fields_str = all_e_fields;
5272 }
5273 pf = vnic_fields;

5275 if (state.vs_parsable)
5276 ofmtflags |= OFMT_PARSABLE;
5277 oferr = ofmt_open(fields_str, pf, ofmtflags, 0, &ofmt);
5278 dladm_ofmt_check(oferr, state.vs_parsable, ofmt);
5279 state.vs_ofmt = ofmt;

5281 if (s_arg) {
5282 /* Display vnic statistics */
5283 vnic_stats(&state, interval);
5284 ofmt_close(ofmt);
5285 return;
5286 }

new/usr/src/cmd/dladm/dladm.c 67

5288 /* Display vnic information */
5289 state.vs_donefirst = B_FALSE;

5291 if (linkid == DATALINK_ALL_LINKID) {
5292 (void) dladm_walk_datalink_id(show_vnic, handle, &state,
5293 DATALINK_CLASS_VNIC | DATALINK_CLASS_ETHERSTUB,
5294 DATALINK_ANY_MEDIATYPE, flags);
5295 } else {
5296 (void) show_vnic(handle, linkid, &state);
5297 if (state.vs_status != DLADM_STATUS_OK) {
5298 ofmt_close(ofmt);
5299 die_dlerr(state.vs_status, "failed to show vnic ’%s’",
5300 state.vs_vnic);
5301 }
5302 }
5303 ofmt_close(ofmt);
5304 }

5306 static void
5307 do_show_vnic(int argc, char *argv[], const char *use)
5308 {
5309 do_show_vnic_common(argc, argv, use, B_FALSE);
5310 }

5312 static void
5313 do_create_etherstub(int argc, char *argv[], const char *use)
5314 {
5315 uint32_t flags;
5316 char *altroot = NULL;
5317 int option;
5318 dladm_status_t status;
5319 char name[MAXLINKNAMELEN];
5320 uchar_t mac_addr[ETHERADDRL];

5322 name[0] = ’\0’;
5323 bzero(mac_addr, sizeof (mac_addr));
5324 flags = DLADM_OPT_ANCHOR | DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;

5326 opterr = 0;
5327 while ((option = getopt_long(argc, argv, "tR:",
5328 etherstub_lopts, NULL)) != -1) {
5329 switch (option) {
5330 case ’t’:
5331 flags &= ~DLADM_OPT_PERSIST;
5332 break;
5333 case ’R’:
5334 altroot = optarg;
5335 break;
5336 default:
5337 die_opterr(optopt, option, use);
5338 }
5339 }

5341 /* the etherstub id is the required operand */
5342 if (optind != (argc - 1))
5343 usage();

5345 if (strlcpy(name, argv[optind], MAXLINKNAMELEN) >= MAXLINKNAMELEN)
5346 die("link name too long ’%s’", argv[optind]);

5348 if (!dladm_valid_linkname(name))
5349 die("invalid link name ’%s’", argv[optind]);

5351 if (altroot != NULL)
5352 altroot_cmd(altroot, argc, argv);

new/usr/src/cmd/dladm/dladm.c 68

5354 status = dladm_vnic_create(handle, name, DATALINK_INVALID_LINKID,
5355 VNIC_MAC_ADDR_TYPE_AUTO, mac_addr, ETHERADDRL, NULL, 0, 0,
5356 VRRP_VRID_NONE, AF_UNSPEC, NULL, NULL, flags);
5357 if (status != DLADM_STATUS_OK)
5358 die_dlerr(status, "etherstub creation failed");
5359 }

5361 static void
5362 do_delete_etherstub(int argc, char *argv[], const char *use)
5363 {
5364 do_delete_vnic_common(argc, argv, use, B_TRUE);
5365 }

5367 /* ARGSUSED */
5368 static void
5369 do_show_etherstub(int argc, char *argv[], const char *use)
5370 {
5371 do_show_vnic_common(argc, argv, use, B_TRUE);
5372 }

5374 /* ARGSUSED */
5375 static void
5376 do_up_simnet(int argc, char *argv[], const char *use)
5377 {
5378 (void) dladm_simnet_up(handle, DATALINK_ALL_LINKID, 0);
5379 }

5381 static void
5382 do_create_simnet(int argc, char *argv[], const char *use)
5383 {
5384 uint32_t flags;
5385 char *altroot = NULL;
5386 char *media = NULL;
5387 uint32_t mtype = DL_ETHER;
5388 int option;
5389 dladm_status_t status;
5390 char name[MAXLINKNAMELEN];

5392 name[0] = ’\0’;
5393 flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;

5395 opterr = 0;
5396 while ((option = getopt_long(argc, argv, ":tR:m:",
5397 simnet_lopts, NULL)) != -1) {
5398 switch (option) {
5399 case ’t’:
5400 flags &= ~DLADM_OPT_PERSIST;
5401 break;
5402 case ’R’:
5403 altroot = optarg;
5404 break;
5405 case ’m’:
5406 media = optarg;
5407 break;
5408 default:
5409 die_opterr(optopt, option, use);
5410 }
5411 }

5413 /* the simnet id is the required operand */
5414 if (optind != (argc - 1))
5415 usage();

5417 if (strlcpy(name, argv[optind], MAXLINKNAMELEN) >= MAXLINKNAMELEN)
5418 die("link name too long ’%s’", argv[optind]);

new/usr/src/cmd/dladm/dladm.c 69

5420 if (!dladm_valid_linkname(name))
5421 die("invalid link name ’%s’", name);

5423 if (media != NULL) {
5424 mtype = dladm_str2media(media);
5425 if (mtype != DL_ETHER && mtype != DL_WIFI)
5426 die("media type ’%s’ is not supported", media);
5427 }

5429 if (altroot != NULL)
5430 altroot_cmd(altroot, argc, argv);

5432 status = dladm_simnet_create(handle, name, mtype, flags);
5433 if (status != DLADM_STATUS_OK)
5434 die_dlerr(status, "simnet creation failed");
5435 }

5437 static void
5438 do_delete_simnet(int argc, char *argv[], const char *use)
5439 {
5440 int option;
5441 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
5442 datalink_id_t linkid;
5443 char *altroot = NULL;
5444 dladm_status_t status;
5445 dladm_simnet_attr_t slinfo;

5447 opterr = 0;
5448 while ((option = getopt_long(argc, argv, ":tR:", simnet_lopts,
5449 NULL)) != -1) {
5450 switch (option) {
5451 case ’t’:
5452 flags &= ~DLADM_OPT_PERSIST;
5453 break;
5454 case ’R’:
5455 altroot = optarg;
5456 break;
5457 default:
5458 die_opterr(optopt, option, use);
5459 }
5460 }

5462 /* get simnet name (required last argument) */
5463 if (optind != (argc - 1))
5464 usage();

5466 if (!dladm_valid_linkname(argv[optind]))
5467 die("invalid link name ’%s’", argv[optind]);

5469 if (altroot != NULL)
5470 altroot_cmd(altroot, argc, argv);

5472 status = dladm_name2info(handle, argv[optind], &linkid, NULL, NULL,
5473 NULL);
5474 if (status != DLADM_STATUS_OK)
5475 die("simnet ’%s’ not found", argv[optind]);

5477 if ((status = dladm_simnet_info(handle, linkid, &slinfo,
5478 flags)) != DLADM_STATUS_OK)
5479 die_dlerr(status, "failed to retrieve simnet information");

5481 status = dladm_simnet_delete(handle, linkid, flags);
5482 if (status != DLADM_STATUS_OK)
5483 die_dlerr(status, "simnet deletion failed");
5484 }

new/usr/src/cmd/dladm/dladm.c 70

5486 static void
5487 do_modify_simnet(int argc, char *argv[], const char *use)
5488 {
5489 int option;
5490 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
5491 datalink_id_t linkid;
5492 datalink_id_t peer_linkid;
5493 char *altroot = NULL;
5494 dladm_status_t status;
5495 boolean_t p_arg = B_FALSE;

5497 opterr = 0;
5498 while ((option = getopt_long(argc, argv, ":tR:p:", simnet_lopts,
5499 NULL)) != -1) {
5500 switch (option) {
5501 case ’t’:
5502 flags &= ~DLADM_OPT_PERSIST;
5503 break;
5504 case ’R’:
5505 altroot = optarg;
5506 break;
5507 case ’p’:
5508 if (p_arg)
5509 die_optdup(option);
5510 p_arg = B_TRUE;
5511 if (strcasecmp(optarg, "none") == 0)
5512 peer_linkid = DATALINK_INVALID_LINKID;
5513 else if (dladm_name2info(handle, optarg, &peer_linkid,
5514 NULL, NULL, NULL) != DLADM_STATUS_OK)
5515 die("invalid peer link name ’%s’", optarg);
5516 break;
5517 default:
5518 die_opterr(optopt, option, use);
5519 }
5520 }

5522 /* get simnet name (required last argument) */
5523 if (optind != (argc - 1))
5524 usage();

5526 /* Nothing to do if no peer link argument */
5527 if (!p_arg)
5528 return;

5530 if (altroot != NULL)
5531 altroot_cmd(altroot, argc, argv);

5533 status = dladm_name2info(handle, argv[optind], &linkid, NULL, NULL,
5534 NULL);
5535 if (status != DLADM_STATUS_OK)
5536 die("invalid link name ’%s’", argv[optind]);

5538 status = dladm_simnet_modify(handle, linkid, peer_linkid, flags);
5539 if (status != DLADM_STATUS_OK)
5540 die_dlerr(status, "simnet modification failed");
5541 }

5543 static dladm_status_t
5544 print_simnet(show_state_t *state, datalink_id_t linkid)
5545 {
5546 dladm_simnet_attr_t slinfo;
5547 uint32_t flags;
5548 dladm_status_t status;
5549 simnet_fields_buf_t slbuf;
5550 char mstr[ETHERADDRL * 3];

new/usr/src/cmd/dladm/dladm.c 71

5552 bzero(&slbuf, sizeof (slbuf));
5553 if ((status = dladm_datalink_id2info(handle, linkid, &flags, NULL, NULL,
5554 slbuf.simnet_name, sizeof (slbuf.simnet_name)))
5555 != DLADM_STATUS_OK)
5556 return (status);

5558 if (!(state->ls_flags & flags))
5559 return (DLADM_STATUS_NOTFOUND);

5561 if ((status = dladm_simnet_info(handle, linkid, &slinfo,
5562 state->ls_flags)) != DLADM_STATUS_OK)
5563 return (status);

5565 if (slinfo.sna_peer_link_id != DATALINK_INVALID_LINKID &&
5566 (status = dladm_datalink_id2info(handle, slinfo.sna_peer_link_id,
5567 NULL, NULL, NULL, slbuf.simnet_otherlink,
5568 sizeof (slbuf.simnet_otherlink))) !=
5569 DLADM_STATUS_OK)
5570 return (status);

5572 if (slinfo.sna_mac_len > sizeof (slbuf.simnet_macaddr))
5573 return (DLADM_STATUS_BADVAL);

5575 (void) strlcpy(slbuf.simnet_macaddr,
5576 dladm_aggr_macaddr2str(slinfo.sna_mac_addr, mstr),
5577 sizeof (slbuf.simnet_macaddr));
5578 (void) dladm_media2str(slinfo.sna_type, slbuf.simnet_media);

5580 ofmt_print(state->ls_ofmt, &slbuf);
5581 return (status);
5582 }

5584 /* ARGSUSED */
5585 static int
5586 show_simnet(dladm_handle_t dh, datalink_id_t linkid, void *arg)
5587 {
5588 show_state_t *state = arg;

5590 state->ls_status = print_simnet(state, linkid);
5591 return (DLADM_WALK_CONTINUE);
5592 }

5594 static void
5595 do_show_simnet(int argc, char *argv[], const char *use)
5596 {
5597 int option;
5598 uint32_t flags = DLADM_OPT_ACTIVE;
5599 boolean_t p_arg = B_FALSE;
5600 datalink_id_t linkid = DATALINK_ALL_LINKID;
5601 show_state_t state;
5602 dladm_status_t status;
5603 boolean_t o_arg = B_FALSE;
5604 ofmt_handle_t ofmt;
5605 ofmt_status_t oferr;
5606 char *all_fields = "link,media,macaddress,otherlink";
5607 char *fields_str = all_fields;
5608 uint_t ofmtflags = 0;

5610 bzero(&state, sizeof (state));

5612 opterr = 0;
5613 while ((option = getopt_long(argc, argv, ":pPo:",
5614 show_lopts, NULL)) != -1) {
5615 switch (option) {
5616 case ’p’:

new/usr/src/cmd/dladm/dladm.c 72

5617 if (p_arg)
5618 die_optdup(option);

5620 p_arg = B_TRUE;
5621 state.ls_parsable = p_arg;
5622 break;
5623 case ’P’:
5624 if (flags != DLADM_OPT_ACTIVE)
5625 die_optdup(option);

5627 flags = DLADM_OPT_PERSIST;
5628 break;
5629 case ’o’:
5630 o_arg = B_TRUE;
5631 fields_str = optarg;
5632 break;
5633 default:
5634 die_opterr(optopt, option, use);
5635 break;
5636 }
5637 }

5639 if (p_arg && !o_arg)
5640 die("-p requires -o");

5642 if (strcasecmp(fields_str, "all") == 0) {
5643 if (p_arg)
5644 die("\"-o all\" is invalid with -p");
5645 fields_str = all_fields;
5646 }

5648 /* get link name (optional last argument) */
5649 if (optind == (argc-1)) {
5650 if ((status = dladm_name2info(handle, argv[optind], &linkid,
5651 NULL, NULL, NULL)) != DLADM_STATUS_OK) {
5652 die_dlerr(status, "link %s is not valid", argv[optind]);
5653 }
5654 } else if (optind != argc) {
5655 usage();
5656 }

5658 state.ls_flags = flags;
5659 state.ls_donefirst = B_FALSE;
5660 if (state.ls_parsable)
5661 ofmtflags |= OFMT_PARSABLE;
5662 oferr = ofmt_open(fields_str, simnet_fields, ofmtflags, 0, &ofmt);
5663 dladm_ofmt_check(oferr, state.ls_parsable, ofmt);
5664 state.ls_ofmt = ofmt;

5666 if (linkid == DATALINK_ALL_LINKID) {
5667 (void) dladm_walk_datalink_id(show_simnet, handle, &state,
5668 DATALINK_CLASS_SIMNET, DATALINK_ANY_MEDIATYPE, flags);
5669 } else {
5670 (void) show_simnet(handle, linkid, &state);
5671 if (state.ls_status != DLADM_STATUS_OK) {
5672 ofmt_close(ofmt);
5673 die_dlerr(state.ls_status, "failed to show simnet %s",
5674 argv[optind]);
5675 }
5676 }
5677 ofmt_close(ofmt);
5678 }

5680 static void
5681 link_stats(datalink_id_t linkid, uint_t interval, char *fields_str,
5682 show_state_t *state)

new/usr/src/cmd/dladm/dladm.c 73

5683 {
5684 ofmt_handle_t ofmt;
5685 ofmt_status_t oferr;
5686 uint_t ofmtflags = 0;

5688 if (state->ls_parsable)
5689 ofmtflags |= OFMT_PARSABLE;
5690 oferr = ofmt_open(fields_str, link_s_fields, ofmtflags, 0, &ofmt);
5691 dladm_ofmt_check(oferr, state->ls_parsable, ofmt);
5692 state->ls_ofmt = ofmt;

5694 /*
5695 * If an interval is specified, continuously show the stats
5696 * only for the first MAC port.
5697 */
5698 state->ls_firstonly = (interval != 0);

5700 for (;;) {
5701 state->ls_donefirst = B_FALSE;
5702 if (linkid == DATALINK_ALL_LINKID) {
5703 (void) dladm_walk_datalink_id(show_link_stats, handle,
5704 state, DATALINK_CLASS_ALL, DATALINK_ANY_MEDIATYPE,
5705 DLADM_OPT_ACTIVE);
5706 } else {
5707 (void) show_link_stats(handle, linkid, state);
5708 }

5710 if (interval == 0)
5711 break;

5713 (void) fflush(stdout);
5714 (void) sleep(interval);
5715 }
5716 ofmt_close(ofmt);
5717 }

5719 static void
5720 aggr_stats(datalink_id_t linkid, show_grp_state_t *state, uint_t interval)
5721 {
5722 /*
5723 * If an interval is specified, continuously show the stats
5724 * only for the first group.
5725 */
5726 state->gs_firstonly = (interval != 0);

5728 for (;;) {
5729 state->gs_donefirst = B_FALSE;
5730 if (linkid == DATALINK_ALL_LINKID)
5731 (void) dladm_walk_datalink_id(show_aggr, handle, state,
5732 DATALINK_CLASS_AGGR, DATALINK_ANY_MEDIATYPE,
5733 DLADM_OPT_ACTIVE);
5734 else
5735 (void) show_aggr(handle, linkid, state);

5737 if (interval == 0)
5738 break;

5740 (void) fflush(stdout);
5741 (void) sleep(interval);
5742 }
5743 }

5745 /* ARGSUSED */
5746 static void
5747 vnic_stats(show_vnic_state_t *sp, uint32_t interval)
5748 {

new/usr/src/cmd/dladm/dladm.c 74

5749 show_vnic_state_t state;
5750 boolean_t specific_link, specific_dev;

5752 /* Display vnic statistics */
5753 dump_vnics_head(sp->vs_link);

5755 bzero(&state, sizeof (state));
5756 state.vs_stats = B_TRUE;
5757 state.vs_vnic_id = sp->vs_vnic_id;
5758 state.vs_link_id = sp->vs_link_id;

5760 /*
5761 * If an interval is specified, and a vnic ID is not specified,
5762 * continuously show the stats only for the first vnic.
5763 */
5764 specific_link = (sp->vs_vnic_id != DATALINK_ALL_LINKID);
5765 specific_dev = (sp->vs_link_id != DATALINK_ALL_LINKID);

5767 for (;;) {
5768 /* Get stats for each vnic */
5769 state.vs_found = B_FALSE;
5770 state.vs_donefirst = B_FALSE;
5771 state.vs_printstats = B_FALSE;
5772 state.vs_flags = DLADM_OPT_ACTIVE;

5774 if (!specific_link) {
5775 (void) dladm_walk_datalink_id(show_vnic, handle, &state,
5776 DATALINK_CLASS_VNIC, DATALINK_ANY_MEDIATYPE,
5777 DLADM_OPT_ACTIVE);
5778 } else {
5779 (void) show_vnic(handle, sp->vs_vnic_id, &state);
5780 if (state.vs_status != DLADM_STATUS_OK) {
5781 die_dlerr(state.vs_status,
5782 "failed to show vnic ’%s’", sp->vs_vnic);
5783 }
5784 }

5786 if (specific_link && !state.vs_found)
5787 die("non-existent vnic ’%s’", sp->vs_vnic);
5788 if (specific_dev && !state.vs_found)
5789 die("device %s has no vnics", sp->vs_link);

5791 /* Show totals */
5792 if ((specific_link | specific_dev) && !interval) {
5793 (void) printf("Total");
5794 (void) printf("\t%-10llu",
5795 state.vs_totalstats.ipackets);
5796 (void) printf("%-12llu",
5797 state.vs_totalstats.rbytes);
5798 (void) printf("%-10llu",
5799 state.vs_totalstats.opackets);
5800 (void) printf("%-12llu\n",
5801 state.vs_totalstats.obytes);
5802 }

5804 /* Show stats for each vnic */
5805 state.vs_donefirst = B_FALSE;
5806 state.vs_printstats = B_TRUE;

5808 if (!specific_link) {
5809 (void) dladm_walk_datalink_id(show_vnic, handle, &state,
5810 DATALINK_CLASS_VNIC, DATALINK_ANY_MEDIATYPE,
5811 DLADM_OPT_ACTIVE);
5812 } else {
5813 (void) show_vnic(handle, sp->vs_vnic_id, &state);
5814 if (state.vs_status != DLADM_STATUS_OK) {

new/usr/src/cmd/dladm/dladm.c 75

5815 die_dlerr(state.vs_status,
5816 "failed to show vnic ’%s’", sp->vs_vnic);
5817 }
5818 }

5820 if (interval == 0)
5821 break;

5823 (void) fflush(stdout);
5824 (void) sleep(interval);
5825 }
5826 }

5828 static void
5829 get_mac_stats(const char *dev, pktsum_t *stats)
5830 {
5831 kstat_ctl_t *kcp;
5832 kstat_t *ksp;
5833 char module[DLPI_LINKNAME_MAX];
5834 uint_t instance;

5837 bzero(stats, sizeof (*stats));

5839 if (dlpi_parselink(dev, module, &instance) != DLPI_SUCCESS)
5840 return;

5842 if ((kcp = kstat_open()) == NULL) {
5843 warn("kstat open operation failed");
5844 return;
5845 }

5847 ksp = dladm_kstat_lookup(kcp, module, instance, "mac", NULL);
5848 if (ksp != NULL)
5849 dladm_get_stats(kcp, ksp, stats);

5851 (void) kstat_close(kcp);

5853 }

5855 static void
5856 get_link_stats(const char *link, pktsum_t *stats)
5857 {
5858 kstat_ctl_t *kcp;
5859 kstat_t *ksp;

5861 bzero(stats, sizeof (*stats));

5863 if ((kcp = kstat_open()) == NULL) {
5864 warn("kstat_open operation failed");
5865 return;
5866 }

5868 ksp = dladm_kstat_lookup(kcp, "link", 0, link, NULL);

5870 if (ksp != NULL)
5871 dladm_get_stats(kcp, ksp, stats);

5873 (void) kstat_close(kcp);
5874 }

5876 static int
5877 query_kstat(char *module, int instance, const char *name, const char *stat,
5878 uint8_t type, void *val)
5879 {
5880 kstat_ctl_t *kcp;

new/usr/src/cmd/dladm/dladm.c 76

5881 kstat_t *ksp;

5883 if ((kcp = kstat_open()) == NULL) {
5884 warn("kstat open operation failed");
5885 return (-1);
5886 }

5888 if ((ksp = kstat_lookup(kcp, module, instance, (char *)name)) == NULL) {
5889 /*
5890 * The kstat query could fail if the underlying MAC
5891 * driver was already detached.
5892 */
5893 goto bail;
5894 }

5896 if (kstat_read(kcp, ksp, NULL) == -1) {
5897 warn("kstat read failed");
5898 goto bail;
5899 }

5901 if (dladm_kstat_value(ksp, stat, type, val) < 0)
5902 goto bail;

5904 (void) kstat_close(kcp);
5905 return (0);

5907 bail:
5908 (void) kstat_close(kcp);
5909 return (-1);
5910 }

5912 static int
5913 get_one_kstat(const char *name, const char *stat, uint8_t type,
5914 void *val, boolean_t islink)
5915 {
5916 char module[DLPI_LINKNAME_MAX];
5917 uint_t instance;

5919 if (islink) {
5920 return (query_kstat("link", 0, name, stat, type, val));
5921 } else {
5922 if (dlpi_parselink(name, module, &instance) != DLPI_SUCCESS)
5923 return (-1);

5925 return (query_kstat(module, instance, "mac", stat, type, val));
5926 }
5927 }

5929 static uint64_t
5930 get_ifspeed(const char *name, boolean_t islink)
5931 {
5932 uint64_t ifspeed = 0;

5934 (void) get_one_kstat(name, "ifspeed", KSTAT_DATA_UINT64,
5935 &ifspeed, islink);

5937 return (ifspeed);
5938 }

5940 static const char *
5941 get_linkstate(const char *name, boolean_t islink, char *buf)
5942 {
5943 link_state_t linkstate;

5945 if (get_one_kstat(name, "link_state", KSTAT_DATA_UINT32,
5946 &linkstate, islink) != 0) {

new/usr/src/cmd/dladm/dladm.c 77

5947 (void) strlcpy(buf, "?", DLADM_STRSIZE);
5948 return (buf);
5949 }
5950 return (dladm_linkstate2str(linkstate, buf));
5951 }

5953 static const char *
5954 get_linkduplex(const char *name, boolean_t islink, char *buf)
5955 {
5956 link_duplex_t linkduplex;

5958 if (get_one_kstat(name, "link_duplex", KSTAT_DATA_UINT32,
5959 &linkduplex, islink) != 0) {
5960 (void) strlcpy(buf, "unknown", DLADM_STRSIZE);
5961 return (buf);
5962 }

5964 return (dladm_linkduplex2str(linkduplex, buf));
5965 }

5967 static int
5968 parse_wifi_fields(char *str, ofmt_handle_t *ofmt, uint_t cmdtype,
5969 boolean_t parsable)
5970 {
5971 ofmt_field_t *template, *of;
5972 ofmt_cb_t *fn;
5973 ofmt_status_t oferr;

5975 if (cmdtype == WIFI_CMD_SCAN) {
5976 template = wifi_common_fields;
5977 if (str == NULL)
5978 str = def_scan_wifi_fields;
5979 if (strcasecmp(str, "all") == 0)
5980 str = all_scan_wifi_fields;
5981 fn = print_wlan_attr_cb;
5982 } else if (cmdtype == WIFI_CMD_SHOW) {
5983 bcopy(wifi_common_fields, &wifi_show_fields[2],
5984 sizeof (wifi_common_fields));
5985 template = wifi_show_fields;
5986 if (str == NULL)
5987 str = def_show_wifi_fields;
5988 if (strcasecmp(str, "all") == 0)
5989 str = all_show_wifi_fields;
5990 fn = print_link_attr_cb;
5991 } else {
5992 return (-1);
5993 }

5995 for (of = template; of->of_name != NULL; of++) {
5996 if (of->of_cb == NULL)
5997 of->of_cb = fn;
5998 }

6000 oferr = ofmt_open(str, template, (parsable ? OFMT_PARSABLE : 0),
6001 0, ofmt);
6002 dladm_ofmt_check(oferr, parsable, *ofmt);
6003 return (0);
6004 }

6006 typedef struct print_wifi_state {
6007 char *ws_link;
6008 boolean_t ws_parsable;
6009 boolean_t ws_header;
6010 ofmt_handle_t ws_ofmt;
6011 } print_wifi_state_t;

new/usr/src/cmd/dladm/dladm.c 78

6013 typedef struct wlan_scan_args_s {
6014 print_wifi_state_t *ws_state;
6015 void *ws_attr;
6016 } wlan_scan_args_t;

6018 static boolean_t
6019 print_wlan_attr_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
6020 {
6021 wlan_scan_args_t *w = ofarg->ofmt_cbarg;
6022 print_wifi_state_t *statep = w->ws_state;
6023 dladm_wlan_attr_t *attrp = w->ws_attr;
6024 char tmpbuf[DLADM_STRSIZE];

6026 if (ofarg->ofmt_id == 0) {
6027 (void) strlcpy(buf, (char *)statep->ws_link, bufsize);
6028 return (B_TRUE);
6029 }

6031 if ((ofarg->ofmt_id & attrp->wa_valid) == 0)
6032 return (B_TRUE);

6034 switch (ofarg->ofmt_id) {
6035 case DLADM_WLAN_ATTR_ESSID:
6036 (void) dladm_wlan_essid2str(&attrp->wa_essid, tmpbuf);
6037 break;
6038 case DLADM_WLAN_ATTR_BSSID:
6039 (void) dladm_wlan_bssid2str(&attrp->wa_bssid, tmpbuf);
6040 break;
6041 case DLADM_WLAN_ATTR_SECMODE:
6042 (void) dladm_wlan_secmode2str(&attrp->wa_secmode, tmpbuf);
6043 break;
6044 case DLADM_WLAN_ATTR_STRENGTH:
6045 (void) dladm_wlan_strength2str(&attrp->wa_strength, tmpbuf);
6046 break;
6047 case DLADM_WLAN_ATTR_MODE:
6048 (void) dladm_wlan_mode2str(&attrp->wa_mode, tmpbuf);
6049 break;
6050 case DLADM_WLAN_ATTR_SPEED:
6051 (void) dladm_wlan_speed2str(&attrp->wa_speed, tmpbuf);
6052 (void) strlcat(tmpbuf, "Mb", sizeof (tmpbuf));
6053 break;
6054 case DLADM_WLAN_ATTR_AUTH:
6055 (void) dladm_wlan_auth2str(&attrp->wa_auth, tmpbuf);
6056 break;
6057 case DLADM_WLAN_ATTR_BSSTYPE:
6058 (void) dladm_wlan_bsstype2str(&attrp->wa_bsstype, tmpbuf);
6059 break;
6060 }
6061 (void) strlcpy(buf, tmpbuf, bufsize);

6063 return (B_TRUE);
6064 }

6066 static boolean_t
6067 print_scan_results(void *arg, dladm_wlan_attr_t *attrp)
6068 {
6069 print_wifi_state_t *statep = arg;
6070 wlan_scan_args_t warg;

6072 bzero(&warg, sizeof (warg));
6073 warg.ws_state = statep;
6074 warg.ws_attr = attrp;
6075 ofmt_print(statep->ws_ofmt, &warg);
6076 return (B_TRUE);
6077 }

new/usr/src/cmd/dladm/dladm.c 79

6079 static int
6080 scan_wifi(dladm_handle_t dh, datalink_id_t linkid, void *arg)
6081 {
6082 print_wifi_state_t *statep = arg;
6083 dladm_status_t status;
6084 char link[MAXLINKNAMELEN];

6086 if ((status = dladm_datalink_id2info(dh, linkid, NULL, NULL, NULL, link,
6087 sizeof (link))) != DLADM_STATUS_OK) {
6088 return (DLADM_WALK_CONTINUE);
6089 }

6091 statep->ws_link = link;
6092 status = dladm_wlan_scan(dh, linkid, statep, print_scan_results);
6093 if (status != DLADM_STATUS_OK)
6094 die_dlerr(status, "cannot scan link ’%s’", statep->ws_link);

6096 return (DLADM_WALK_CONTINUE);
6097 }

6099 static boolean_t
6100 print_wifi_status_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
6101 {
6102 static char tmpbuf[DLADM_STRSIZE];
6103 wlan_scan_args_t *w = ofarg->ofmt_cbarg;
6104 dladm_wlan_linkattr_t *attrp = w->ws_attr;

6106 if ((ofarg->ofmt_id & attrp->la_valid) != 0) {
6107 (void) dladm_wlan_linkstatus2str(&attrp->la_status, tmpbuf);
6108 (void) strlcpy(buf, tmpbuf, bufsize);
6109 }
6110 return (B_TRUE);
6111 }

6113 static boolean_t
6114 print_link_attr_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
6115 {
6116 wlan_scan_args_t *w = ofarg->ofmt_cbarg, w1;
6117 print_wifi_state_t *statep = w->ws_state;
6118 dladm_wlan_linkattr_t *attrp = w->ws_attr;

6120 bzero(&w1, sizeof (w1));
6121 w1.ws_state = statep;
6122 w1.ws_attr = &attrp->la_wlan_attr;
6123 ofarg->ofmt_cbarg = &w1;
6124 return (print_wlan_attr_cb(ofarg, buf, bufsize));
6125 }

6127 static int
6128 show_wifi(dladm_handle_t dh, datalink_id_t linkid, void *arg)
6129 {
6130 print_wifi_state_t *statep = arg;
6131 dladm_wlan_linkattr_t attr;
6132 dladm_status_t status;
6133 char link[MAXLINKNAMELEN];
6134 wlan_scan_args_t warg;

6136 if ((status = dladm_datalink_id2info(dh, linkid, NULL, NULL, NULL, link,
6137 sizeof (link))) != DLADM_STATUS_OK) {
6138 return (DLADM_WALK_CONTINUE);
6139 }

6141 /* dladm_wlan_get_linkattr() memsets attr with 0 */
6142 status = dladm_wlan_get_linkattr(dh, linkid, &attr);
6143 if (status != DLADM_STATUS_OK)
6144 die_dlerr(status, "cannot get link attributes for %s", link);

new/usr/src/cmd/dladm/dladm.c 80

6146 statep->ws_link = link;

6148 bzero(&warg, sizeof (warg));
6149 warg.ws_state = statep;
6150 warg.ws_attr = &attr;
6151 ofmt_print(statep->ws_ofmt, &warg);
6152 return (DLADM_WALK_CONTINUE);
6153 }

6155 static void
6156 do_display_wifi(int argc, char **argv, int cmd, const char *use)
6157 {
6158 int option;
6159 char *fields_str = NULL;
6160 int (*callback)(dladm_handle_t, datalink_id_t, void *);
6161 print_wifi_state_t state;
6162 datalink_id_t linkid = DATALINK_ALL_LINKID;
6163 dladm_status_t status;

6165 if (cmd == WIFI_CMD_SCAN)
6166 callback = scan_wifi;
6167 else if (cmd == WIFI_CMD_SHOW)
6168 callback = show_wifi;
6169 else
6170 return;

6172 state.ws_parsable = B_FALSE;
6173 state.ws_header = B_TRUE;
6174 opterr = 0;
6175 while ((option = getopt_long(argc, argv, ":o:p",
6176 wifi_longopts, NULL)) != -1) {
6177 switch (option) {
6178 case ’o’:
6179 fields_str = optarg;
6180 break;
6181 case ’p’:
6182 state.ws_parsable = B_TRUE;
6183 break;
6184 default:
6185 die_opterr(optopt, option, use);
6186 }
6187 }

6189 if (state.ws_parsable && fields_str == NULL)
6190 die("-p requires -o");

6192 if (state.ws_parsable && strcasecmp(fields_str, "all") == 0)
6193 die("\"-o all\" is invalid with -p");

6195 if (optind == (argc - 1)) {
6196 if ((status = dladm_name2info(handle, argv[optind], &linkid,
6197 NULL, NULL, NULL)) != DLADM_STATUS_OK) {
6198 die_dlerr(status, "link %s is not valid", argv[optind]);
6199 }
6200 } else if (optind != argc) {
6201 usage();
6202 }

6204 if (parse_wifi_fields(fields_str, &state.ws_ofmt, cmd,
6205 state.ws_parsable) < 0)
6206 die("invalid field(s) specified");

6208 if (linkid == DATALINK_ALL_LINKID) {
6209 (void) dladm_walk_datalink_id(callback, handle, &state,
6210 DATALINK_CLASS_PHYS | DATALINK_CLASS_SIMNET,

new/usr/src/cmd/dladm/dladm.c 81

6211 DL_WIFI, DLADM_OPT_ACTIVE);
6212 } else {
6213 (void) (*callback)(handle, linkid, &state);
6214 }
6215 ofmt_close(state.ws_ofmt);
6216 }

6218 static void
6219 do_scan_wifi(int argc, char **argv, const char *use)
6220 {
6221 do_display_wifi(argc, argv, WIFI_CMD_SCAN, use);
6222 }

6224 static void
6225 do_show_wifi(int argc, char **argv, const char *use)
6226 {
6227 do_display_wifi(argc, argv, WIFI_CMD_SHOW, use);
6228 }

6230 typedef struct wlan_count_attr {
6231 uint_t wc_count;
6232 datalink_id_t wc_linkid;
6233 } wlan_count_attr_t;

6235 /* ARGSUSED */
6236 static int
6237 do_count_wlan(dladm_handle_t dh, datalink_id_t linkid, void *arg)
6238 {
6239 wlan_count_attr_t *cp = arg;

6241 if (cp->wc_count == 0)
6242 cp->wc_linkid = linkid;
6243 cp->wc_count++;
6244 return (DLADM_WALK_CONTINUE);
6245 }

6247 static int
6248 parse_wlan_keys(char *str, dladm_wlan_key_t **keys, uint_t *key_countp)
6249 {
6250 uint_t i;
6251 dladm_wlan_key_t *wk;
6252 int nfields = 1;
6253 char *field, *token, *lasts = NULL, c;

6255 token = str;
6256 while ((c = *token++) != NULL) {
6257 if (c == ’,’)
6258 nfields++;
6259 }
6260 token = strdup(str);
6261 if (token == NULL)
6262 return (-1);

6264 wk = malloc(nfields * sizeof (dladm_wlan_key_t));
6265 if (wk == NULL)
6266 goto fail;

6268 token = str;
6269 for (i = 0; i < nfields; i++) {
6270 char *s;
6271 dladm_secobj_class_t class;
6272 dladm_status_t status;

6274 field = strtok_r(token, ",", &lasts);
6275 token = NULL;

new/usr/src/cmd/dladm/dladm.c 82

6277 (void) strlcpy(wk[i].wk_name, field,
6278 DLADM_WLAN_MAX_KEYNAME_LEN);

6280 wk[i].wk_idx = 1;
6281 if ((s = strrchr(wk[i].wk_name, ’:’)) != NULL) {
6282 if (s[1] == ’\0’ || s[2] != ’\0’ || !isdigit(s[1]))
6283 goto fail;

6285 wk[i].wk_idx = (uint_t)(s[1] - ’0’);
6286 *s = ’\0’;
6287 }
6288 wk[i].wk_len = DLADM_WLAN_MAX_KEY_LEN;

6290 status = dladm_get_secobj(handle, wk[i].wk_name, &class,
6291 wk[i].wk_val, &wk[i].wk_len, 0);
6292 if (status != DLADM_STATUS_OK) {
6293 if (status == DLADM_STATUS_NOTFOUND) {
6294 status = dladm_get_secobj(handle, wk[i].wk_name,
6295 &class, wk[i].wk_val, &wk[i].wk_len,
6296 DLADM_OPT_PERSIST);
6297 }
6298 if (status != DLADM_STATUS_OK)
6299 goto fail;
6300 }
6301 wk[i].wk_class = class;
6302 }
6303 *keys = wk;
6304 *key_countp = i;
6305 free(token);
6306 return (0);
6307 fail:
6308 free(wk);
6309 free(token);
6310 return (-1);
6311 }

6313 static void
6314 do_connect_wifi(int argc, char **argv, const char *use)
6315 {
6316 int option;
6317 dladm_wlan_attr_t attr, *attrp;
6318 dladm_status_t status = DLADM_STATUS_OK;
6319 int timeout = DLADM_WLAN_CONNECT_TIMEOUT_DEFAULT;
6320 datalink_id_t linkid = DATALINK_ALL_LINKID;
6321 dladm_wlan_key_t *keys = NULL;
6322 uint_t key_count = 0;
6323 uint_t flags = 0;
6324 dladm_wlan_secmode_t keysecmode = DLADM_WLAN_SECMODE_NONE;
6325 char buf[DLADM_STRSIZE];

6327 opterr = 0;
6328 (void) memset(&attr, 0, sizeof (attr));
6329 while ((option = getopt_long(argc, argv, ":e:i:a:m:b:s:k:T:c",
6330 wifi_longopts, NULL)) != -1) {
6331 switch (option) {
6332 case ’e’:
6333 status = dladm_wlan_str2essid(optarg, &attr.wa_essid);
6334 if (status != DLADM_STATUS_OK)
6335 die("invalid ESSID ’%s’", optarg);

6337 attr.wa_valid |= DLADM_WLAN_ATTR_ESSID;
6338 /*
6339 * Try to connect without doing a scan.
6340 */
6341 flags |= DLADM_WLAN_CONNECT_NOSCAN;
6342 break;

new/usr/src/cmd/dladm/dladm.c 83

6343 case ’i’:
6344 status = dladm_wlan_str2bssid(optarg, &attr.wa_bssid);
6345 if (status != DLADM_STATUS_OK)
6346 die("invalid BSSID %s", optarg);

6348 attr.wa_valid |= DLADM_WLAN_ATTR_BSSID;
6349 break;
6350 case ’a’:
6351 status = dladm_wlan_str2auth(optarg, &attr.wa_auth);
6352 if (status != DLADM_STATUS_OK)
6353 die("invalid authentication mode ’%s’", optarg);

6355 attr.wa_valid |= DLADM_WLAN_ATTR_AUTH;
6356 break;
6357 case ’m’:
6358 status = dladm_wlan_str2mode(optarg, &attr.wa_mode);
6359 if (status != DLADM_STATUS_OK)
6360 die("invalid mode ’%s’", optarg);

6362 attr.wa_valid |= DLADM_WLAN_ATTR_MODE;
6363 break;
6364 case ’b’:
6365 if ((status = dladm_wlan_str2bsstype(optarg,
6366 &attr.wa_bsstype)) != DLADM_STATUS_OK) {
6367 die("invalid bsstype ’%s’", optarg);
6368 }

6370 attr.wa_valid |= DLADM_WLAN_ATTR_BSSTYPE;
6371 break;
6372 case ’s’:
6373 if ((status = dladm_wlan_str2secmode(optarg,
6374 &attr.wa_secmode)) != DLADM_STATUS_OK) {
6375 die("invalid security mode ’%s’", optarg);
6376 }

6378 attr.wa_valid |= DLADM_WLAN_ATTR_SECMODE;
6379 break;
6380 case ’k’:
6381 if (parse_wlan_keys(optarg, &keys, &key_count) < 0)
6382 die("invalid key(s) ’%s’", optarg);

6384 if (keys[0].wk_class == DLADM_SECOBJ_CLASS_WEP)
6385 keysecmode = DLADM_WLAN_SECMODE_WEP;
6386 else
6387 keysecmode = DLADM_WLAN_SECMODE_WPA;
6388 break;
6389 case ’T’:
6390 if (strcasecmp(optarg, "forever") == 0) {
6391 timeout = -1;
6392 break;
6393 }
6394 if (!str2int(optarg, &timeout) || timeout < 0)
6395 die("invalid timeout value ’%s’", optarg);
6396 break;
6397 case ’c’:
6398 flags |= DLADM_WLAN_CONNECT_CREATEIBSS;
6399 flags |= DLADM_WLAN_CONNECT_CREATEIBSS;
6400 break;
6401 default:
6402 die_opterr(optopt, option, use);
6403 break;
6404 }
6405 }

6407 if (keysecmode == DLADM_WLAN_SECMODE_NONE) {
6408 if ((attr.wa_valid & DLADM_WLAN_ATTR_SECMODE) != 0) {

new/usr/src/cmd/dladm/dladm.c 84

6409 die("key required for security mode ’%s’",
6410 dladm_wlan_secmode2str(&attr.wa_secmode, buf));
6411 }
6412 } else {
6413 if ((attr.wa_valid & DLADM_WLAN_ATTR_SECMODE) != 0 &&
6414 attr.wa_secmode != keysecmode)
6415 die("incompatible -s and -k options");
6416 attr.wa_valid |= DLADM_WLAN_ATTR_SECMODE;
6417 attr.wa_secmode = keysecmode;
6418 }

6420 if (optind == (argc - 1)) {
6421 if ((status = dladm_name2info(handle, argv[optind], &linkid,
6422 NULL, NULL, NULL)) != DLADM_STATUS_OK) {
6423 die_dlerr(status, "link %s is not valid", argv[optind]);
6424 }
6425 } else if (optind != argc) {
6426 usage();
6427 }

6429 if (linkid == DATALINK_ALL_LINKID) {
6430 wlan_count_attr_t wcattr;

6432 wcattr.wc_linkid = DATALINK_INVALID_LINKID;
6433 wcattr.wc_count = 0;
6434 (void) dladm_walk_datalink_id(do_count_wlan, handle, &wcattr,
6435 DATALINK_CLASS_PHYS | DATALINK_CLASS_SIMNET,
6436 DL_WIFI, DLADM_OPT_ACTIVE);
6437 if (wcattr.wc_count == 0) {
6438 die("no wifi links are available");
6439 } else if (wcattr.wc_count > 1) {
6440 die("link name is required when more than one wifi "
6441 "link is available");
6442 }
6443 linkid = wcattr.wc_linkid;
6444 }
6445 attrp = (attr.wa_valid == 0) ? NULL : &attr;
6446 again:
6447 if ((status = dladm_wlan_connect(handle, linkid, attrp, timeout, keys,
6448 key_count, flags)) != DLADM_STATUS_OK) {
6449 if ((flags & DLADM_WLAN_CONNECT_NOSCAN) != 0) {
6450 /*
6451 * Try again with scanning and filtering.
6452 */
6453 flags &= ~DLADM_WLAN_CONNECT_NOSCAN;
6454 goto again;
6455 }

6457 if (status == DLADM_STATUS_NOTFOUND) {
6458 if (attr.wa_valid == 0) {
6459 die("no wifi networks are available");
6460 } else {
6461 die("no wifi networks with the specified "
6462 "criteria are available");
6463 }
6464 }
6465 die_dlerr(status, "cannot connect");
6466 }
6467 free(keys);
6468 }

6470 /* ARGSUSED */
6471 static int
6472 do_all_disconnect_wifi(dladm_handle_t dh, datalink_id_t linkid, void *arg)
6473 {
6474 dladm_status_t status;

new/usr/src/cmd/dladm/dladm.c 85

6476 status = dladm_wlan_disconnect(dh, linkid);
6477 if (status != DLADM_STATUS_OK)
6478 warn_dlerr(status, "cannot disconnect link");

6480 return (DLADM_WALK_CONTINUE);
6481 }

6483 static void
6484 do_disconnect_wifi(int argc, char **argv, const char *use)
6485 {
6486 int option;
6487 datalink_id_t linkid = DATALINK_ALL_LINKID;
6488 boolean_t all_links = B_FALSE;
6489 dladm_status_t status;
6490 wlan_count_attr_t wcattr;

6492 opterr = 0;
6493 while ((option = getopt_long(argc, argv, ":a",
6494 wifi_longopts, NULL)) != -1) {
6495 switch (option) {
6496 case ’a’:
6497 all_links = B_TRUE;
6498 break;
6499 default:
6500 die_opterr(optopt, option, use);
6501 break;
6502 }
6503 }

6505 if (optind == (argc - 1)) {
6506 if ((status = dladm_name2info(handle, argv[optind], &linkid,
6507 NULL, NULL, NULL)) != DLADM_STATUS_OK) {
6508 die_dlerr(status, "link %s is not valid", argv[optind]);
6509 }
6510 } else if (optind != argc) {
6511 usage();
6512 }

6514 if (linkid == DATALINK_ALL_LINKID) {
6515 if (!all_links) {
6516 wcattr.wc_linkid = linkid;
6517 wcattr.wc_count = 0;
6518 (void) dladm_walk_datalink_id(do_count_wlan, handle,
6519 &wcattr,
6520 DATALINK_CLASS_PHYS | DATALINK_CLASS_SIMNET,
6521 DL_WIFI, DLADM_OPT_ACTIVE);
6522 if (wcattr.wc_count == 0) {
6523 die("no wifi links are available");
6524 } else if (wcattr.wc_count > 1) {
6525 die("link name is required when more than "
6526 "one wifi link is available");
6527 }
6528 linkid = wcattr.wc_linkid;
6529 } else {
6530 (void) dladm_walk_datalink_id(do_all_disconnect_wifi,
6531 handle, NULL,
6532 DATALINK_CLASS_PHYS | DATALINK_CLASS_SIMNET,
6533 DL_WIFI, DLADM_OPT_ACTIVE);
6534 return;
6535 }
6536 }
6537 status = dladm_wlan_disconnect(handle, linkid);
6538 if (status != DLADM_STATUS_OK)
6539 die_dlerr(status, "cannot disconnect");
6540 }

new/usr/src/cmd/dladm/dladm.c 86

6542 static void
6543 print_linkprop(datalink_id_t linkid, show_linkprop_state_t *statep,
6544 const char *propname, dladm_prop_type_t type, const char *format,
6545 char **pptr)
6546 {
6547 int i;
6548 char *ptr, *lim;
6549 char buf[DLADM_STRSIZE];
6550 char *unknown = "--", *notsup = "";
6551 char **propvals = statep->ls_propvals;
6552 uint_t valcnt = DLADM_MAX_PROP_VALCNT;
6553 dladm_status_t status;

6555 status = dladm_get_linkprop(handle, linkid, type, propname, propvals,
6556 &valcnt);
6557 if (status != DLADM_STATUS_OK) {
6558 if (status == DLADM_STATUS_TEMPONLY) {
6559 if (type == DLADM_PROP_VAL_MODIFIABLE &&
6560 statep->ls_persist) {
6561 valcnt = 1;
6562 propvals = &unknown;
6563 } else {
6564 statep->ls_status = status;
6565 statep->ls_retstatus = status;
6566 return;
6567 }
6568 } else if (status == DLADM_STATUS_NOTSUP ||
6569 statep->ls_persist) {
6570 valcnt = 1;
6571 if (type == DLADM_PROP_VAL_CURRENT ||
6572 type == DLADM_PROP_VAL_PERM)
6573 propvals = &unknown;
6574 else
6575 propvals = ¬sup;
6576 } else if (status == DLADM_STATUS_NOTDEFINED) {
6577 propvals = ¬sup; /* STR_UNDEF_VAL */
6578 } else {
6579 if (statep->ls_proplist &&
6580 statep->ls_status == DLADM_STATUS_OK) {
6581 warn_dlerr(status,
6582 "cannot get link property ’%s’ for %s",
6583 propname, statep->ls_link);
6584 }
6585 statep->ls_status = status;
6586 statep->ls_retstatus = status;
6587 return;
6588 }
6589 }

6591 statep->ls_status = DLADM_STATUS_OK;

6593 buf[0] = ’\0’;
6594 ptr = buf;
6595 lim = buf + DLADM_STRSIZE;
6596 for (i = 0; i < valcnt; i++) {
6597 if (propvals[i][0] == ’\0’ && !statep->ls_parsable)
6598 ptr += snprintf(ptr, lim - ptr, "--,");
6599 else
6600 ptr += snprintf(ptr, lim - ptr, "%s,", propvals[i]);
6601 if (ptr >= lim)
6602 break;
6603 }
6604 if (valcnt > 0)
6605 buf[strlen(buf) - 1] = ’\0’;

new/usr/src/cmd/dladm/dladm.c 87

6607 lim = statep->ls_line + MAX_PROP_LINE;
6608 if (statep->ls_parsable) {
6609 *pptr += snprintf(*pptr, lim - *pptr,
6610 "%s", buf);
6611 } else {
6612 *pptr += snprintf(*pptr, lim - *pptr, format, buf);
6613 }
6614 }

6616 static boolean_t
6617 print_linkprop_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
6618 {
6619 linkprop_args_t *arg = ofarg->ofmt_cbarg;
6620 char *propname = arg->ls_propname;
6621 show_linkprop_state_t *statep = arg->ls_state;
6622 char *ptr = statep->ls_line;
6623 char *lim = ptr + MAX_PROP_LINE;
6624 datalink_id_t linkid = arg->ls_linkid;

6626 switch (ofarg->ofmt_id) {
6627 case LINKPROP_LINK:
6628 (void) snprintf(ptr, lim - ptr, "%s", statep->ls_link);
6629 break;
6630 case LINKPROP_PROPERTY:
6631 (void) snprintf(ptr, lim - ptr, "%s", propname);
6632 break;
6633 case LINKPROP_VALUE:
6634 print_linkprop(linkid, statep, propname,
6635 statep->ls_persist ? DLADM_PROP_VAL_PERSISTENT :
6636 DLADM_PROP_VAL_CURRENT, "%s", &ptr);
6637 /*
6638 * If we failed to query the link property, for example, query
6639 * the persistent value of a non-persistable link property,
6640 * simply skip the output.
6641 */
6642 if (statep->ls_status != DLADM_STATUS_OK) {
6643 /*
6644 * Ignore the temponly error when we skip printing
6645 * link properties to avoid returning failure on exit.
6646 */
6647 if (statep->ls_retstatus == DLADM_STATUS_TEMPONLY)
6648 statep->ls_retstatus = DLADM_STATUS_OK;
6649 goto skip;
6650 }
6651 ptr = statep->ls_line;
6652 break;
6653 case LINKPROP_PERM:
6654 print_linkprop(linkid, statep, propname,
6655 DLADM_PROP_VAL_PERM, "%s", &ptr);
6656 if (statep->ls_status != DLADM_STATUS_OK)
6657 goto skip;
6658 ptr = statep->ls_line;
6659 break;
6660 case LINKPROP_DEFAULT:
6661 print_linkprop(linkid, statep, propname,
6662 DLADM_PROP_VAL_DEFAULT, "%s", &ptr);
6663 if (statep->ls_status != DLADM_STATUS_OK)
6664 goto skip;
6665 ptr = statep->ls_line;
6666 break;
6667 case LINKPROP_POSSIBLE:
6668 print_linkprop(linkid, statep, propname,
6669 DLADM_PROP_VAL_MODIFIABLE, "%s ", &ptr);
6670 if (statep->ls_status != DLADM_STATUS_OK)
6671 goto skip;
6672 ptr = statep->ls_line;

new/usr/src/cmd/dladm/dladm.c 88

6673 break;
6674 default:
6675 die("invalid input");
6676 break;
6677 }
6678 (void) strlcpy(buf, ptr, bufsize);
6679 return (B_TRUE);
6680 skip:
6681 return ((statep->ls_status == DLADM_STATUS_OK) ?
6682 B_TRUE : B_FALSE);
6683 }

6685 static boolean_t
6686 linkprop_is_supported(datalink_id_t linkid, const char *propname,
6687 show_linkprop_state_t *statep)
6688 {
6689 dladm_status_t status;
6690 uint_t valcnt = DLADM_MAX_PROP_VALCNT;

6692 /* if used with -p flag, always print output */
6693 if (statep->ls_proplist != NULL)
6694 return (B_TRUE);

6696 status = dladm_get_linkprop(handle, linkid, DLADM_PROP_VAL_DEFAULT,
6697 propname, statep->ls_propvals, &valcnt);

6699 if (status == DLADM_STATUS_OK)
6700 return (B_TRUE);

6702 /*
6703 * A system wide default value is not available for the
6704 * property. Check if current value can be retrieved.
6705 */
6706 status = dladm_get_linkprop(handle, linkid, DLADM_PROP_VAL_CURRENT,
6707 propname, statep->ls_propvals, &valcnt);

6709 return (status == DLADM_STATUS_OK);
6710 }

6712 /* ARGSUSED */
6713 static int
6714 show_linkprop(dladm_handle_t dh, datalink_id_t linkid, const char *propname,
6715 void *arg)
6716 {
6717 show_linkprop_state_t *statep = arg;
6718 linkprop_args_t ls_arg;

6720 bzero(&ls_arg, sizeof (ls_arg));
6721 ls_arg.ls_state = statep;
6722 ls_arg.ls_propname = (char *)propname;
6723 ls_arg.ls_linkid = linkid;

6725 /*
6726 * This will need to be fixed when kernel interfaces are added
6727 * to enable walking of all known private properties. For now,
6728 * we are limited to walking persistent private properties only.
6729 */
6730 if ((propname[0] == ’_’) && !statep->ls_persist &&
6731 (statep->ls_proplist == NULL))
6732 return (DLADM_WALK_CONTINUE);
6733 if (!statep->ls_parsable &&
6734 !linkprop_is_supported(linkid, propname, statep))
6735 return (DLADM_WALK_CONTINUE);

6737 ofmt_print(statep->ls_ofmt, &ls_arg);

new/usr/src/cmd/dladm/dladm.c 89

6739 return (DLADM_WALK_CONTINUE);
6740 }

6742 static void
6743 do_show_linkprop(int argc, char **argv, const char *use)
6744 {
6745 int option;
6746 char propstr[DLADM_STRSIZE];
6747 dladm_arg_list_t *proplist = NULL;
6748 datalink_id_t linkid = DATALINK_ALL_LINKID;
6749 show_linkprop_state_t state;
6750 uint32_t flags = DLADM_OPT_ACTIVE;
6751 dladm_status_t status;
6752 char *fields_str = NULL;
6753 ofmt_handle_t ofmt;
6754 ofmt_status_t oferr;
6755 uint_t ofmtflags = 0;

6757 bzero(propstr, DLADM_STRSIZE);
6758 opterr = 0;
6759 state.ls_propvals = NULL;
6760 state.ls_line = NULL;
6761 state.ls_parsable = B_FALSE;
6762 state.ls_persist = B_FALSE;
6763 state.ls_header = B_TRUE;
6764 state.ls_retstatus = DLADM_STATUS_OK;

6766 while ((option = getopt_long(argc, argv, ":p:cPo:",
6767 prop_longopts, NULL)) != -1) {
6768 switch (option) {
6769 case ’p’:
6770 (void) strlcat(propstr, optarg, DLADM_STRSIZE);
6771 if (strlcat(propstr, ",", DLADM_STRSIZE) >=
6772 DLADM_STRSIZE)
6773 die("property list too long ’%s’", propstr);
6774 break;
6775 case ’c’:
6776 state.ls_parsable = B_TRUE;
6777 break;
6778 case ’P’:
6779 state.ls_persist = B_TRUE;
6780 flags = DLADM_OPT_PERSIST;
6781 break;
6782 case ’o’:
6783 fields_str = optarg;
6784 break;
6785 default:
6786 die_opterr(optopt, option, use);
6787 break;
6788 }
6789 }

6791 if (optind == (argc - 1)) {
6792 if ((status = dladm_name2info(handle, argv[optind], &linkid,
6793 NULL, NULL, NULL)) != DLADM_STATUS_OK) {
6794 die_dlerr(status, "link %s is not valid", argv[optind]);
6795 }
6796 } else if (optind != argc) {
6797 usage();
6798 }

6800 if (dladm_parse_link_props(propstr, &proplist, B_TRUE)
6801 != DLADM_STATUS_OK)
6802 die("invalid link properties specified");
6803 state.ls_proplist = proplist;
6804 state.ls_status = DLADM_STATUS_OK;

new/usr/src/cmd/dladm/dladm.c 90

6806 if (state.ls_parsable)
6807 ofmtflags |= OFMT_PARSABLE;
6808 else
6809 ofmtflags |= OFMT_WRAP;

6811 oferr = ofmt_open(fields_str, linkprop_fields, ofmtflags, 0, &ofmt);
6812 dladm_ofmt_check(oferr, state.ls_parsable, ofmt);
6813 state.ls_ofmt = ofmt;

6815 if (linkid == DATALINK_ALL_LINKID) {
6816 (void) dladm_walk_datalink_id(show_linkprop_onelink, handle,
6817 &state, DATALINK_CLASS_ALL, DATALINK_ANY_MEDIATYPE, flags);
6818 } else {
6819 (void) show_linkprop_onelink(handle, linkid, &state);
6820 }
6821 ofmt_close(ofmt);
6822 dladm_free_props(proplist);

6824 if (state.ls_retstatus != DLADM_STATUS_OK) {
6825 dladm_close(handle);
6826 exit(EXIT_FAILURE);
6827 }
6828 }

6830 static int
6831 show_linkprop_onelink(dladm_handle_t hdl, datalink_id_t linkid, void *arg)
6832 {
6833 int i;
6834 char *buf;
6835 uint32_t flags;
6836 dladm_arg_list_t *proplist = NULL;
6837 show_linkprop_state_t *statep = arg;
6838 dlpi_handle_t dh = NULL;

6840 statep->ls_status = DLADM_STATUS_OK;

6842 if (dladm_datalink_id2info(hdl, linkid, &flags, NULL, NULL,
6843 statep->ls_link, MAXLINKNAMELEN) != DLADM_STATUS_OK) {
6844 statep->ls_status = DLADM_STATUS_NOTFOUND;
6845 return (DLADM_WALK_CONTINUE);
6846 }

6848 if ((statep->ls_persist && !(flags & DLADM_OPT_PERSIST)) ||
6849 (!statep->ls_persist && !(flags & DLADM_OPT_ACTIVE))) {
6850 statep->ls_status = DLADM_STATUS_BADARG;
6851 return (DLADM_WALK_CONTINUE);
6852 }

6854 proplist = statep->ls_proplist;

6856 /*
6857 * When some WiFi links are opened for the first time, their hardware
6858 * automatically scans for APs and does other slow operations. Thus,
6859 * if there are no open links, the retrieval of link properties
6860 * (below) will proceed slowly unless we hold the link open.
6861 *
6862 * Note that failure of dlpi_open() does not necessarily mean invalid
6863 * link properties, because dlpi_open() may fail because of incorrect
6864 * autopush configuration. Therefore, we ingore the return value of
6865 * dlpi_open().
6866 */
6867 if (!statep->ls_persist)
6868 (void) dlpi_open(statep->ls_link, &dh, 0);

6870 buf = malloc((sizeof (char *) + DLADM_PROP_VAL_MAX) *

new/usr/src/cmd/dladm/dladm.c 91

6871 DLADM_MAX_PROP_VALCNT + MAX_PROP_LINE);
6872 if (buf == NULL)
6873 die("insufficient memory");

6875 statep->ls_propvals = (char **)(void *)buf;
6876 for (i = 0; i < DLADM_MAX_PROP_VALCNT; i++) {
6877 statep->ls_propvals[i] = buf +
6878 sizeof (char *) * DLADM_MAX_PROP_VALCNT +
6879 i * DLADM_PROP_VAL_MAX;
6880 }
6881 statep->ls_line = buf +
6882 (sizeof (char *) + DLADM_PROP_VAL_MAX) * DLADM_MAX_PROP_VALCNT;

6884 if (proplist != NULL) {
6885 for (i = 0; i < proplist->al_count; i++) {
6886 (void) show_linkprop(hdl, linkid,
6887 proplist->al_info[i].ai_name, statep);
6888 }
6889 } else {
6890 (void) dladm_walk_linkprop(hdl, linkid, statep,
6891 show_linkprop);
6892 }
6893 if (dh != NULL)
6894 dlpi_close(dh);
6895 free(buf);
6896 return (DLADM_WALK_CONTINUE);
6897 }

6899 static int
6900 reset_one_linkprop(dladm_handle_t dh, datalink_id_t linkid,
6901 const char *propname, void *arg)
6902 {
6903 set_linkprop_state_t *statep = arg;
6904 dladm_status_t status;

6906 status = dladm_set_linkprop(dh, linkid, propname, NULL, 0,
6907 DLADM_OPT_ACTIVE | (statep->ls_temp ? 0 : DLADM_OPT_PERSIST));
6908 if (status != DLADM_STATUS_OK &&
6909 status != DLADM_STATUS_PROPRDONLY &&
6910 status != DLADM_STATUS_NOTSUP) {
6911 warn_dlerr(status, "cannot reset link property ’%s’ on ’%s’",
6912 propname, statep->ls_name);
6913 statep->ls_status = status;
6914 }

6916 return (DLADM_WALK_CONTINUE);
6917 }

6919 static void
6920 set_linkprop(int argc, char **argv, boolean_t reset, const char *use)
6921 {
6922 int i, option;
6923 char errmsg[DLADM_STRSIZE];
6924 char *altroot = NULL;
6925 datalink_id_t linkid;
6926 boolean_t temp = B_FALSE;
6927 dladm_status_t status = DLADM_STATUS_OK;
6928 char propstr[DLADM_STRSIZE];
6929 dladm_arg_list_t *proplist = NULL;

6931 opterr = 0;
6932 bzero(propstr, DLADM_STRSIZE);

6934 while ((option = getopt_long(argc, argv, ":p:R:t",
6935 prop_longopts, NULL)) != -1) {
6936 switch (option) {

new/usr/src/cmd/dladm/dladm.c 92

6937 case ’p’:
6938 (void) strlcat(propstr, optarg, DLADM_STRSIZE);
6939 if (strlcat(propstr, ",", DLADM_STRSIZE) >=
6940 DLADM_STRSIZE)
6941 die("property list too long ’%s’", propstr);
6942 break;
6943 case ’t’:
6944 temp = B_TRUE;
6945 break;
6946 case ’R’:
6947 altroot = optarg;
6948 break;
6949 default:
6950 die_opterr(optopt, option, use);

6952 }
6953 }

6955 /* get link name (required last argument) */
6956 if (optind != (argc - 1))
6957 usage();

6959 if (dladm_parse_link_props(propstr, &proplist, reset) !=
6960 DLADM_STATUS_OK)
6961 die("invalid link properties specified");

6963 if (proplist == NULL && !reset)
6964 die("link property must be specified");

6966 if (altroot != NULL) {
6967 dladm_free_props(proplist);
6968 altroot_cmd(altroot, argc, argv);
6969 }

6971 status = dladm_name2info(handle, argv[optind], &linkid, NULL, NULL,
6972 NULL);
6973 if (status != DLADM_STATUS_OK)
6974 die_dlerr(status, "link %s is not valid", argv[optind]);

6976 if (proplist == NULL) {
6977 set_linkprop_state_t state;

6979 state.ls_name = argv[optind];
6980 state.ls_reset = reset;
6981 state.ls_temp = temp;
6982 state.ls_status = DLADM_STATUS_OK;

6984 (void) dladm_walk_linkprop(handle, linkid, &state,
6985 reset_one_linkprop);

6987 status = state.ls_status;
6988 goto done;
6989 }

6991 for (i = 0; i < proplist->al_count; i++) {
6992 dladm_arg_info_t *aip = &proplist->al_info[i];
6993 char **val;
6994 uint_t count;

6996 if (reset) {
6997 val = NULL;
6998 count = 0;
6999 } else {
7000 val = aip->ai_val;
7001 count = aip->ai_count;
7002 if (count == 0) {

new/usr/src/cmd/dladm/dladm.c 93

7003 warn("no value specified for ’%s’",
7004 aip->ai_name);
7005 status = DLADM_STATUS_BADARG;
7006 continue;
7007 }
7008 }
7009 status = dladm_set_linkprop(handle, linkid, aip->ai_name, val,
7010 count, DLADM_OPT_ACTIVE | (temp ? 0 : DLADM_OPT_PERSIST));
7011 switch (status) {
7012 case DLADM_STATUS_OK:
7013 break;
7014 case DLADM_STATUS_NOTFOUND:
7015 warn("invalid link property ’%s’", aip->ai_name);
7016 break;
7017 case DLADM_STATUS_BADVAL: {
7018 int j;
7019 char *ptr, *lim;
7020 char **propvals = NULL;
7021 uint_t valcnt = DLADM_MAX_PROP_VALCNT;
7022 dladm_status_t s;

7024 ptr = malloc((sizeof (char *) +
7025 DLADM_PROP_VAL_MAX) * DLADM_MAX_PROP_VALCNT +
7026 MAX_PROP_LINE);

7028 propvals = (char **)(void *)ptr;
7029 if (propvals == NULL)
7030 die("insufficient memory");

7032 for (j = 0; j < DLADM_MAX_PROP_VALCNT; j++) {
7033 propvals[j] = ptr + sizeof (char *) *
7034 DLADM_MAX_PROP_VALCNT +
7035 j * DLADM_PROP_VAL_MAX;
7036 }
7037 s = dladm_get_linkprop(handle, linkid,
7038 DLADM_PROP_VAL_MODIFIABLE, aip->ai_name, propvals,
7039 &valcnt);

7041 if (s != DLADM_STATUS_OK) {
7042 warn_dlerr(status, "cannot set link property "
7043 "’%s’ on ’%s’", aip->ai_name, argv[optind]);
7044 free(propvals);
7045 break;
7046 }

7048 ptr = errmsg;
7049 lim = ptr + DLADM_STRSIZE;
7050 *ptr = ’\0’;
7051 for (j = 0; j < valcnt; j++) {
7052 ptr += snprintf(ptr, lim - ptr, "%s,",
7053 propvals[j]);
7054 if (ptr >= lim)
7055 break;
7056 }
7057 if (ptr > errmsg) {
7058 *(ptr - 1) = ’\0’;
7059 warn("link property ’%s’ must be one of: %s",
7060 aip->ai_name, errmsg);
7061 } else
7062 warn("invalid link property ’%s’", *val);
7063 free(propvals);
7064 break;
7065 }
7066 default:
7067 if (reset) {
7068 warn_dlerr(status, "cannot reset link property "

new/usr/src/cmd/dladm/dladm.c 94

7069 "’%s’ on ’%s’", aip->ai_name, argv[optind]);
7070 } else {
7071 warn_dlerr(status, "cannot set link property "
7072 "’%s’ on ’%s’", aip->ai_name, argv[optind]);
7073 }
7074 break;
7075 }
7076 }
7077 done:
7078 dladm_free_props(proplist);
7079 if (status != DLADM_STATUS_OK) {
7080 dladm_close(handle);
7081 exit(EXIT_FAILURE);
7082 }
7083 }

7085 static void
7086 do_set_linkprop(int argc, char **argv, const char *use)
7087 {
7088 set_linkprop(argc, argv, B_FALSE, use);
7089 }

7091 static void
7092 do_reset_linkprop(int argc, char **argv, const char *use)
7093 {
7094 set_linkprop(argc, argv, B_TRUE, use);
7095 }

7097 static int
7098 convert_secobj(char *buf, uint_t len, uint8_t *obj_val, uint_t *obj_lenp,
7099 dladm_secobj_class_t class)
7100 {
7101 int error = 0;

7103 if (class == DLADM_SECOBJ_CLASS_WPA) {
7104 if (len < 8 || len > 63)
7105 return (EINVAL);
7106 (void) memcpy(obj_val, buf, len);
7107 *obj_lenp = len;
7108 return (error);
7109 }

7111 if (class == DLADM_SECOBJ_CLASS_WEP) {
7112 switch (len) {
7113 case 5: /* ASCII key sizes */
7114 case 13:
7115 (void) memcpy(obj_val, buf, len);
7116 *obj_lenp = len;
7117 break;
7118 case 10: /* Hex key sizes, not preceded by 0x */
7119 case 26:
7120 error = hexascii_to_octet(buf, len, obj_val, obj_lenp);
7121 break;
7122 case 12: /* Hex key sizes, preceded by 0x */
7123 case 28:
7124 if (strncmp(buf, "0x", 2) != 0)
7125 return (EINVAL);
7126 error = hexascii_to_octet(buf + 2, len - 2,
7127 obj_val, obj_lenp);
7128 break;
7129 default:
7130 return (EINVAL);
7131 }
7132 return (error);
7133 }

new/usr/src/cmd/dladm/dladm.c 95

7135 return (ENOENT);
7136 }

7138 static void
7139 defersig(int sig)
7140 {
7141 signalled = sig;
7142 }

7144 static int
7145 get_secobj_from_tty(uint_t try, const char *objname, char *buf)
7146 {
7147 uint_t len = 0;
7148 int c;
7149 struct termios stored, current;
7150 void (*sigfunc)(int);

7152 /*
7153 * Turn off echo -- but before we do so, defer SIGINT handling
7154 * so that a ^C doesn’t leave the terminal corrupted.
7155 */
7156 sigfunc = signal(SIGINT, defersig);
7157 (void) fflush(stdin);
7158 (void) tcgetattr(0, &stored);
7159 current = stored;
7160 current.c_lflag &= ~(ICANON|ECHO);
7161 current.c_cc[VTIME] = 0;
7162 current.c_cc[VMIN] = 1;
7163 (void) tcsetattr(0, TCSANOW, ¤t);
7164 again:
7165 if (try == 1)
7166 (void) printf(gettext("provide value for ’%s’: "), objname);
7167 else
7168 (void) printf(gettext("confirm value for ’%s’: "), objname);

7170 (void) fflush(stdout);
7171 while (signalled == 0) {
7172 c = getchar();
7173 if (c == ’\n’ || c == ’\r’) {
7174 if (len != 0)
7175 break;
7176 (void) putchar(’\n’);
7177 goto again;
7178 }

7180 buf[len++] = c;
7181 if (len >= DLADM_SECOBJ_VAL_MAX - 1)
7182 break;
7183 (void) putchar(’*’);
7184 }

7186 (void) putchar(’\n’);
7187 (void) fflush(stdin);

7189 /*
7190 * Restore terminal setting and handle deferred signals.
7191 */
7192 (void) tcsetattr(0, TCSANOW, &stored);

7194 (void) signal(SIGINT, sigfunc);
7195 if (signalled != 0)
7196 (void) kill(getpid(), signalled);

7198 return (len);
7199 }

new/usr/src/cmd/dladm/dladm.c 96

7201 static int
7202 get_secobj_val(char *obj_name, uint8_t *obj_val, uint_t *obj_lenp,
7203 dladm_secobj_class_t class, FILE *filep)
7204 {
7205 int rval;
7206 uint_t len, len2;
7207 char buf[DLADM_SECOBJ_VAL_MAX], buf2[DLADM_SECOBJ_VAL_MAX];

7209 if (filep == NULL) {
7210 len = get_secobj_from_tty(1, obj_name, buf);
7211 rval = convert_secobj(buf, len, obj_val, obj_lenp, class);
7212 if (rval == 0) {
7213 len2 = get_secobj_from_tty(2, obj_name, buf2);
7214 if (len != len2 || memcmp(buf, buf2, len) != 0)
7215 rval = ENOTSUP;
7216 }
7217 return (rval);
7218 } else {
7219 for (;;) {
7220 if (fgets(buf, sizeof (buf), filep) == NULL)
7221 break;
7222 if (isspace(buf[0]))
7223 continue;

7225 len = strlen(buf);
7226 if (buf[len - 1] == ’\n’) {
7227 buf[len - 1] = ’\0’;
7228 len--;
7229 }
7230 break;
7231 }
7232 (void) fclose(filep);
7233 }
7234 return (convert_secobj(buf, len, obj_val, obj_lenp, class));
7235 }

7237 static boolean_t
7238 check_auth(const char *auth)
7239 {
7240 struct passwd *pw;

7242 if ((pw = getpwuid(getuid())) == NULL)
7243 return (B_FALSE);

7245 return (chkauthattr(auth, pw->pw_name) != 0);
7246 }

7248 static void
7249 audit_secobj(char *auth, char *class, char *obj,
7250 boolean_t success, boolean_t create)
7251 {
7252 adt_session_data_t *ah;
7253 adt_event_data_t *event;
7254 au_event_t flag;
7255 char *errstr;

7257 if (create) {
7258 flag = ADT_dladm_create_secobj;
7259 errstr = "ADT_dladm_create_secobj";
7260 } else {
7261 flag = ADT_dladm_delete_secobj;
7262 errstr = "ADT_dladm_delete_secobj";
7263 }

7265 if (adt_start_session(&ah, NULL, ADT_USE_PROC_DATA) != 0)
7266 die("adt_start_session: %s", strerror(errno));

new/usr/src/cmd/dladm/dladm.c 97

7268 if ((event = adt_alloc_event(ah, flag)) == NULL)
7269 die("adt_alloc_event (%s): %s", errstr, strerror(errno));

7271 /* fill in audit info */
7272 if (create) {
7273 event->adt_dladm_create_secobj.auth_used = auth;
7274 event->adt_dladm_create_secobj.obj_class = class;
7275 event->adt_dladm_create_secobj.obj_name = obj;
7276 } else {
7277 event->adt_dladm_delete_secobj.auth_used = auth;
7278 event->adt_dladm_delete_secobj.obj_class = class;
7279 event->adt_dladm_delete_secobj.obj_name = obj;
7280 }

7282 if (success) {
7283 if (adt_put_event(event, ADT_SUCCESS, ADT_SUCCESS) != 0) {
7284 die("adt_put_event (%s, success): %s", errstr,
7285 strerror(errno));
7286 }
7287 } else {
7288 if (adt_put_event(event, ADT_FAILURE,
7289 ADT_FAIL_VALUE_AUTH) != 0) {
7290 die("adt_put_event: (%s, failure): %s", errstr,
7291 strerror(errno));
7292 }
7293 }

7295 adt_free_event(event);
7296 (void) adt_end_session(ah);
7297 }

7299 static void
7300 do_create_secobj(int argc, char **argv, const char *use)
7301 {
7302 int option, rval;
7303 FILE *filep = NULL;
7304 char *obj_name = NULL;
7305 char *class_name = NULL;
7306 uint8_t obj_val[DLADM_SECOBJ_VAL_MAX];
7307 uint_t obj_len;
7308 boolean_t success, temp = B_FALSE;
7309 dladm_status_t status;
7310 dladm_secobj_class_t class = -1;
7311 uid_t euid;

7313 opterr = 0;
7314 (void) memset(obj_val, 0, DLADM_SECOBJ_VAL_MAX);
7315 while ((option = getopt_long(argc, argv, ":f:c:R:t",
7316 wifi_longopts, NULL)) != -1) {
7317 switch (option) {
7318 case ’f’:
7319 euid = geteuid();
7320 (void) seteuid(getuid());
7321 filep = fopen(optarg, "r");
7322 if (filep == NULL) {
7323 die("cannot open %s: %s", optarg,
7324 strerror(errno));
7325 }
7326 (void) seteuid(euid);
7327 break;
7328 case ’c’:
7329 class_name = optarg;
7330 status = dladm_str2secobjclass(optarg, &class);
7331 if (status != DLADM_STATUS_OK) {
7332 die("invalid secure object class ’%s’, "

new/usr/src/cmd/dladm/dladm.c 98

7333 "valid values are: wep, wpa", optarg);
7334 }
7335 break;
7336 case ’t’:
7337 temp = B_TRUE;
7338 break;
7339 case ’R’:
7340 status = dladm_set_rootdir(optarg);
7341 if (status != DLADM_STATUS_OK) {
7342 die_dlerr(status, "invalid directory "
7343 "specified");
7344 }
7345 break;
7346 default:
7347 die_opterr(optopt, option, use);
7348 break;
7349 }
7350 }

7352 if (optind == (argc - 1))
7353 obj_name = argv[optind];
7354 else if (optind != argc)
7355 usage();

7357 if (class == -1)
7358 die("secure object class required");

7360 if (obj_name == NULL)
7361 die("secure object name required");

7363 if (!dladm_valid_secobj_name(obj_name))
7364 die("invalid secure object name ’%s’", obj_name);

7366 success = check_auth(LINK_SEC_AUTH);
7367 audit_secobj(LINK_SEC_AUTH, class_name, obj_name, success, B_TRUE);
7368 if (!success)
7369 die("authorization ’%s’ is required", LINK_SEC_AUTH);

7371 rval = get_secobj_val(obj_name, obj_val, &obj_len, class, filep);
7372 if (rval != 0) {
7373 switch (rval) {
7374 case ENOENT:
7375 die("invalid secure object class");
7376 break;
7377 case EINVAL:
7378 die("invalid secure object value");
7379 break;
7380 case ENOTSUP:
7381 die("verification failed");
7382 break;
7383 default:
7384 die("invalid secure object: %s", strerror(rval));
7385 break;
7386 }
7387 }

7389 status = dladm_set_secobj(handle, obj_name, class, obj_val, obj_len,
7390 DLADM_OPT_CREATE | DLADM_OPT_ACTIVE);
7391 if (status != DLADM_STATUS_OK) {
7392 die_dlerr(status, "could not create secure object ’%s’",
7393 obj_name);
7394 }
7395 if (temp)
7396 return;

7398 status = dladm_set_secobj(handle, obj_name, class, obj_val, obj_len,

new/usr/src/cmd/dladm/dladm.c 99

7399 DLADM_OPT_PERSIST);
7400 if (status != DLADM_STATUS_OK) {
7401 warn_dlerr(status, "could not persistently create secure "
7402 "object ’%s’", obj_name);
7403 }
7404 }

7406 static void
7407 do_delete_secobj(int argc, char **argv, const char *use)
7408 {
7409 int i, option;
7410 boolean_t temp = B_FALSE;
7411 boolean_t success;
7412 dladm_status_t status, pstatus;
7413 int nfields = 1;
7414 char *field, *token, *lasts = NULL, c;

7416 opterr = 0;
7417 status = pstatus = DLADM_STATUS_OK;
7418 while ((option = getopt_long(argc, argv, ":R:t",
7419 wifi_longopts, NULL)) != -1) {
7420 switch (option) {
7421 case ’t’:
7422 temp = B_TRUE;
7423 break;
7424 case ’R’:
7425 status = dladm_set_rootdir(optarg);
7426 if (status != DLADM_STATUS_OK) {
7427 die_dlerr(status, "invalid directory "
7428 "specified");
7429 }
7430 break;
7431 default:
7432 die_opterr(optopt, option, use);
7433 break;
7434 }
7435 }

7437 if (optind != (argc - 1))
7438 die("secure object name required");

7440 token = argv[optind];
7441 while ((c = *token++) != NULL) {
7442 if (c == ’,’)
7443 nfields++;
7444 }
7445 token = strdup(argv[optind]);
7446 if (token == NULL)
7447 die("no memory");

7449 success = check_auth(LINK_SEC_AUTH);
7450 audit_secobj(LINK_SEC_AUTH, "unknown", argv[optind], success, B_FALSE);
7451 if (!success)
7452 die("authorization ’%s’ is required", LINK_SEC_AUTH);

7454 for (i = 0; i < nfields; i++) {

7456 field = strtok_r(token, ",", &lasts);
7457 token = NULL;
7458 status = dladm_unset_secobj(handle, field, DLADM_OPT_ACTIVE);
7459 if (!temp) {
7460 pstatus = dladm_unset_secobj(handle, field,
7461 DLADM_OPT_PERSIST);
7462 } else {
7463 pstatus = DLADM_STATUS_OK;
7464 }

new/usr/src/cmd/dladm/dladm.c 100

7466 if (status != DLADM_STATUS_OK) {
7467 warn_dlerr(status, "could not delete secure object "
7468 "’%s’", field);
7469 }
7470 if (pstatus != DLADM_STATUS_OK) {
7471 warn_dlerr(pstatus, "could not persistently delete "
7472 "secure object ’%s’", field);
7473 }
7474 }
7475 free(token);

7477 if (status != DLADM_STATUS_OK || pstatus != DLADM_STATUS_OK) {
7478 dladm_close(handle);
7479 exit(EXIT_FAILURE);
7480 }
7481 }

7483 typedef struct show_secobj_state {
7484 boolean_t ss_persist;
7485 boolean_t ss_parsable;
7486 boolean_t ss_header;
7487 ofmt_handle_t ss_ofmt;
7488 } show_secobj_state_t;

7491 static boolean_t
7492 show_secobj(dladm_handle_t dh, void *arg, const char *obj_name)
7493 {
7494 uint_t obj_len = DLADM_SECOBJ_VAL_MAX;
7495 uint8_t obj_val[DLADM_SECOBJ_VAL_MAX];
7496 char buf[DLADM_STRSIZE];
7497 uint_t flags = 0;
7498 dladm_secobj_class_t class;
7499 show_secobj_state_t *statep = arg;
7500 dladm_status_t status;
7501 secobj_fields_buf_t sbuf;

7503 bzero(&sbuf, sizeof (secobj_fields_buf_t));
7504 if (statep->ss_persist)
7505 flags |= DLADM_OPT_PERSIST;

7507 status = dladm_get_secobj(dh, obj_name, &class, obj_val, &obj_len,
7508 flags);
7509 if (status != DLADM_STATUS_OK)
7510 die_dlerr(status, "cannot get secure object ’%s’", obj_name);

7512 (void) snprintf(sbuf.ss_obj_name, sizeof (sbuf.ss_obj_name),
7513 obj_name);
7514 (void) dladm_secobjclass2str(class, buf);
7515 (void) snprintf(sbuf.ss_class, sizeof (sbuf.ss_class), "%s", buf);
7516 if (getuid() == 0) {
7517 char val[DLADM_SECOBJ_VAL_MAX * 2];
7518 uint_t len = sizeof (val);

7520 if (octet_to_hexascii(obj_val, obj_len, val, &len) == 0)
7521 (void) snprintf(sbuf.ss_val,
7522 sizeof (sbuf.ss_val), "%s", val);
7523 }
7524 ofmt_print(statep->ss_ofmt, &sbuf);
7525 return (B_TRUE);
7526 }

7528 static void
7529 do_show_secobj(int argc, char **argv, const char *use)
7530 {

new/usr/src/cmd/dladm/dladm.c 101

7531 int option;
7532 show_secobj_state_t state;
7533 dladm_status_t status;
7534 boolean_t o_arg = B_FALSE;
7535 uint_t i;
7536 uint_t flags;
7537 char *fields_str = NULL;
7538 char *def_fields = "object,class";
7539 char *all_fields = "object,class,value";
7540 char *field, *token, *lasts = NULL, c;
7541 ofmt_handle_t ofmt;
7542 ofmt_status_t oferr;
7543 uint_t ofmtflags = 0;

7545 opterr = 0;
7546 bzero(&state, sizeof (state));
7547 state.ss_parsable = B_FALSE;
7548 fields_str = def_fields;
7549 state.ss_persist = B_FALSE;
7550 state.ss_parsable = B_FALSE;
7551 state.ss_header = B_TRUE;
7552 while ((option = getopt_long(argc, argv, ":pPo:",
7553 wifi_longopts, NULL)) != -1) {
7554 switch (option) {
7555 case ’p’:
7556 state.ss_parsable = B_TRUE;
7557 break;
7558 case ’P’:
7559 state.ss_persist = B_TRUE;
7560 break;
7561 case ’o’:
7562 o_arg = B_TRUE;
7563 if (strcasecmp(optarg, "all") == 0)
7564 fields_str = all_fields;
7565 else
7566 fields_str = optarg;
7567 break;
7568 default:
7569 die_opterr(optopt, option, use);
7570 break;
7571 }
7572 }

7574 if (state.ss_parsable && !o_arg)
7575 die("option -c requires -o");

7577 if (state.ss_parsable && fields_str == all_fields)
7578 die("\"-o all\" is invalid with -p");

7580 if (state.ss_parsable)
7581 ofmtflags |= OFMT_PARSABLE;
7582 oferr = ofmt_open(fields_str, secobj_fields, ofmtflags, 0, &ofmt);
7583 dladm_ofmt_check(oferr, state.ss_parsable, ofmt);
7584 state.ss_ofmt = ofmt;

7586 flags = state.ss_persist ? DLADM_OPT_PERSIST : 0;

7588 if (optind == (argc - 1)) {
7589 uint_t obj_fields = 1;

7591 token = argv[optind];
7592 if (token == NULL)
7593 die("secure object name required");
7594 while ((c = *token++) != NULL) {
7595 if (c == ’,’)
7596 obj_fields++;

new/usr/src/cmd/dladm/dladm.c 102

7597 }
7598 token = strdup(argv[optind]);
7599 if (token == NULL)
7600 die("no memory");
7601 for (i = 0; i < obj_fields; i++) {
7602 field = strtok_r(token, ",", &lasts);
7603 token = NULL;
7604 if (!show_secobj(handle, &state, field))
7605 break;
7606 }
7607 free(token);
7608 ofmt_close(ofmt);
7609 return;
7610 } else if (optind != argc)
7611 usage();

7613 status = dladm_walk_secobj(handle, &state, show_secobj, flags);

7615 if (status != DLADM_STATUS_OK)
7616 die_dlerr(status, "show-secobj");
7617 ofmt_close(ofmt);
7618 }

7620 /*ARGSUSED*/
7621 static int
7622 i_dladm_init_linkprop(dladm_handle_t dh, datalink_id_t linkid, void *arg)
7623 {
7624 (void) dladm_init_linkprop(dh, linkid, B_TRUE);
7625 return (DLADM_WALK_CONTINUE);
7626 }

7628 /*ARGSUSED*/
7629 void
7630 do_init_linkprop(int argc, char **argv, const char *use)
7631 {
7632 int option;
7633 dladm_status_t status;
7634 datalink_id_t linkid = DATALINK_ALL_LINKID;
7635 datalink_media_t media = DATALINK_ANY_MEDIATYPE;
7636 uint_t any_media = B_TRUE;

7638 opterr = 0;
7639 while ((option = getopt(argc, argv, ":w")) != -1) {
7640 switch (option) {
7641 case ’w’:
7642 media = DL_WIFI;
7643 any_media = B_FALSE;
7644 break;
7645 default:
7646 /*
7647 * Because init-linkprop is not a public command,
7648 * print the usage instead.
7649 */
7650 usage();
7651 break;
7652 }
7653 }

7655 if (optind == (argc - 1)) {
7656 if ((status = dladm_name2info(handle, argv[optind], &linkid,
7657 NULL, NULL, NULL)) != DLADM_STATUS_OK)
7658 die_dlerr(status, "link %s is not valid", argv[optind]);
7659 } else if (optind != argc) {
7660 usage();
7661 }

new/usr/src/cmd/dladm/dladm.c 103

7663 if (linkid == DATALINK_ALL_LINKID) {
7664 /*
7665 * linkprops of links of other classes have been initialized as
7666 * part of the dladm up-xxx operation.
7667 */
7668 (void) dladm_walk_datalink_id(i_dladm_init_linkprop, handle,
7669 NULL, DATALINK_CLASS_PHYS, media, DLADM_OPT_PERSIST);
7670 } else {
7671 (void) dladm_init_linkprop(handle, linkid, any_media);
7672 }
7673 }

7675 static void
7676 do_show_ether(int argc, char **argv, const char *use)
7677 {
7678 int option;
7679 datalink_id_t linkid;
7680 print_ether_state_t state;
7681 char *fields_str = NULL;
7682 ofmt_handle_t ofmt;
7683 ofmt_status_t oferr;
7684 uint_t ofmtflags = 0;

7686 bzero(&state, sizeof (state));
7687 state.es_link = NULL;
7688 state.es_parsable = B_FALSE;

7690 while ((option = getopt_long(argc, argv, "o:px",
7691 showeth_lopts, NULL)) != -1) {
7692 switch (option) {
7693 case ’x’:
7694 state.es_extended = B_TRUE;
7695 break;
7696 case ’p’:
7697 state.es_parsable = B_TRUE;
7698 break;
7699 case ’o’:
7700 fields_str = optarg;
7701 break;
7702 default:
7703 die_opterr(optopt, option, use);
7704 break;
7705 }
7706 }

7708 if (optind == (argc - 1))
7709 state.es_link = argv[optind];

7711 if (state.es_parsable)
7712 ofmtflags |= OFMT_PARSABLE;
7713 oferr = ofmt_open(fields_str, ether_fields, ofmtflags,
7714 DLADM_DEFAULT_COL, &ofmt);
7715 dladm_ofmt_check(oferr, state.es_parsable, ofmt);
7716 state.es_ofmt = ofmt;

7718 if (state.es_link == NULL) {
7719 (void) dladm_walk_datalink_id(show_etherprop, handle, &state,
7720 DATALINK_CLASS_PHYS, DL_ETHER, DLADM_OPT_ACTIVE);
7721 } else {
7722 if (!link_is_ether(state.es_link, &linkid))
7723 die("invalid link specified");
7724 (void) show_etherprop(handle, linkid, &state);
7725 }
7726 ofmt_close(ofmt);
7727 }

new/usr/src/cmd/dladm/dladm.c 104

7729 static int
7730 show_etherprop(dladm_handle_t dh, datalink_id_t linkid, void *arg)
7731 {
7732 print_ether_state_t *statep = arg;
7733 ether_fields_buf_t ebuf;
7734 dladm_ether_info_t eattr;
7735 dladm_status_t status;

7737 bzero(&ebuf, sizeof (ether_fields_buf_t));
7738 if (dladm_datalink_id2info(dh, linkid, NULL, NULL, NULL,
7739 ebuf.eth_link, sizeof (ebuf.eth_link)) != DLADM_STATUS_OK) {
7740 return (DLADM_WALK_CONTINUE);
7741 }

7743 status = dladm_ether_info(dh, linkid, &eattr);
7744 if (status != DLADM_STATUS_OK)
7745 goto cleanup;

7747 (void) strlcpy(ebuf.eth_ptype, "current", sizeof (ebuf.eth_ptype));

7749 (void) dladm_ether_autoneg2str(ebuf.eth_autoneg,
7750 sizeof (ebuf.eth_autoneg), &eattr, CURRENT);
7751 (void) dladm_ether_pause2str(ebuf.eth_pause,
7752 sizeof (ebuf.eth_pause), &eattr, CURRENT);
7753 (void) dladm_ether_spdx2str(ebuf.eth_spdx,
7754 sizeof (ebuf.eth_spdx), &eattr, CURRENT);
7755 (void) strlcpy(ebuf.eth_state,
7756 dladm_linkstate2str(eattr.lei_state, ebuf.eth_state),
7757 sizeof (ebuf.eth_state));
7758 (void) strlcpy(ebuf.eth_rem_fault,
7759 (eattr.lei_attr[CURRENT].le_fault ? "fault" : "none"),
7760 sizeof (ebuf.eth_rem_fault));

7762 ofmt_print(statep->es_ofmt, &ebuf);

7764 if (statep->es_extended)
7765 show_ether_xprop(arg, &eattr);

7767 cleanup:
7768 dladm_ether_info_done(&eattr);
7769 return (DLADM_WALK_CONTINUE);
7770 }

7772 /* ARGSUSED */
7773 static void
7774 do_init_secobj(int argc, char **argv, const char *use)
7775 {
7776 dladm_status_t status;

7778 status = dladm_init_secobj(handle);
7779 if (status != DLADM_STATUS_OK)
7780 die_dlerr(status, "secure object initialization failed");
7781 }

7783 enum bridge_func {
7784 brCreate, brAdd, brModify
7785 };

7787 static void
7788 create_modify_add_bridge(int argc, char **argv, const char *use,
7789 enum bridge_func func)
7790 {
7791 int option;
7792 uint_t n, i, nlink;
7793 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
7794 char *altroot = NULL;

new/usr/src/cmd/dladm/dladm.c 105

7795 char *links[MAXPORT];
7796 datalink_id_t linkids[MAXPORT];
7797 dladm_status_t status;
7798 const char *bridge;
7799 UID_STP_CFG_T cfg, cfg_old;
7800 dladm_bridge_prot_t brprot = DLADM_BRIDGE_PROT_UNKNOWN;
7801 dladm_bridge_prot_t brprot_old;

7803 /* Set up the default configuration values */
7804 cfg.field_mask = 0;
7805 cfg.bridge_priority = DEF_BR_PRIO;
7806 cfg.max_age = DEF_BR_MAXAGE;
7807 cfg.hello_time = DEF_BR_HELLOT;
7808 cfg.forward_delay = DEF_BR_FWDELAY;
7809 cfg.force_version = DEF_FORCE_VERS;

7811 nlink = opterr = 0;
7812 while ((option = getopt_long(argc, argv, ":P:R:d:f:h:l:m:p:",
7813 bridge_lopts, NULL)) != -1) {
7814 switch (option) {
7815 case ’P’:
7816 if (func == brAdd)
7817 die_opterr(optopt, option, use);
7818 status = dladm_bridge_str2prot(optarg, &brprot);
7819 if (status != DLADM_STATUS_OK)
7820 die_dlerr(status, "protection %s", optarg);
7821 break;
7822 case ’R’:
7823 altroot = optarg;
7824 break;
7825 case ’d’:
7826 if (func == brAdd)
7827 die_opterr(optopt, option, use);
7828 if (cfg.field_mask & BR_CFG_DELAY)
7829 die("forwarding delay set more than once");
7830 if (!str2int(optarg, &cfg.forward_delay) ||
7831 cfg.forward_delay < MIN_BR_FWDELAY ||
7832 cfg.forward_delay > MAX_BR_FWDELAY)
7833 die("incorrect forwarding delay");
7834 cfg.field_mask |= BR_CFG_DELAY;
7835 break;
7836 case ’f’:
7837 if (func == brAdd)
7838 die_opterr(optopt, option, use);
7839 if (cfg.field_mask & BR_CFG_FORCE_VER)
7840 die("force protocol set more than once");
7841 if (!str2int(optarg, &cfg.force_version) ||
7842 cfg.force_version < 0)
7843 die("incorrect force protocol");
7844 cfg.field_mask |= BR_CFG_FORCE_VER;
7845 break;
7846 case ’h’:
7847 if (func == brAdd)
7848 die_opterr(optopt, option, use);
7849 if (cfg.field_mask & BR_CFG_HELLO)
7850 die("hello time set more than once");
7851 if (!str2int(optarg, &cfg.hello_time) ||
7852 cfg.hello_time < MIN_BR_HELLOT ||
7853 cfg.hello_time > MAX_BR_HELLOT)
7854 die("incorrect hello time");
7855 cfg.field_mask |= BR_CFG_HELLO;
7856 break;
7857 case ’l’:
7858 if (func == brModify)
7859 die_opterr(optopt, option, use);
7860 if (nlink >= MAXPORT)

new/usr/src/cmd/dladm/dladm.c 106

7861 die("too many links specified");
7862 links[nlink++] = optarg;
7863 break;
7864 case ’m’:
7865 if (func == brAdd)
7866 die_opterr(optopt, option, use);
7867 if (cfg.field_mask & BR_CFG_AGE)
7868 die("max age set more than once");
7869 if (!str2int(optarg, &cfg.max_age) ||
7870 cfg.max_age < MIN_BR_MAXAGE ||
7871 cfg.max_age > MAX_BR_MAXAGE)
7872 die("incorrect max age");
7873 cfg.field_mask |= BR_CFG_AGE;
7874 break;
7875 case ’p’:
7876 if (func == brAdd)
7877 die_opterr(optopt, option, use);
7878 if (cfg.field_mask & BR_CFG_PRIO)
7879 die("priority set more than once");
7880 if (!str2int(optarg, &cfg.bridge_priority) ||
7881 cfg.bridge_priority < MIN_BR_PRIO ||
7882 cfg.bridge_priority > MAX_BR_PRIO)
7883 die("incorrect priority");
7884 cfg.bridge_priority &= 0xF000;
7885 cfg.field_mask |= BR_CFG_PRIO;
7886 break;
7887 default:
7888 die_opterr(optopt, option, use);
7889 break;
7890 }
7891 }

7893 /* get the bridge name (required last argument) */
7894 if (optind != (argc-1))
7895 usage();

7897 bridge = argv[optind];
7898 if (!dladm_valid_bridgename(bridge))
7899 die("invalid bridge name ’%s’", bridge);

7901 /*
7902 * Get the current properties, if any, and merge in with changes. This
7903 * is necessary (even with the field_mask feature) so that the
7904 * value-checking macros will produce the right results with proposed
7905 * changes to existing configuration. We only need it for those
7906 * parameters, though.
7907 */
7908 (void) dladm_bridge_get_properties(bridge, &cfg_old, &brprot_old);
7909 if (brprot == DLADM_BRIDGE_PROT_UNKNOWN)
7910 brprot = brprot_old;
7911 if (!(cfg.field_mask & BR_CFG_AGE))
7912 cfg.max_age = cfg_old.max_age;
7913 if (!(cfg.field_mask & BR_CFG_HELLO))
7914 cfg.hello_time = cfg_old.hello_time;
7915 if (!(cfg.field_mask & BR_CFG_DELAY))
7916 cfg.forward_delay = cfg_old.forward_delay;

7918 if (!CHECK_BRIDGE_CONFIG(cfg)) {
7919 warn("illegal forward delay / max age / hello time "
7920 "combination");
7921 if (NO_MAXAGE(cfg)) {
7922 die("no max age possible: need forward delay >= %d or "
7923 "hello time <= %d", MIN_FWDELAY_NOM(cfg),
7924 MAX_HELLOTIME_NOM(cfg));
7925 } else if (SMALL_MAXAGE(cfg)) {
7926 if (CAPPED_MAXAGE(cfg))

new/usr/src/cmd/dladm/dladm.c 107

7927 die("max age too small: need age >= %d and "
7928 "<= %d or hello time <= %d",
7929 MIN_MAXAGE(cfg), MAX_MAXAGE(cfg),
7930 MAX_HELLOTIME(cfg));
7931 else
7932 die("max age too small: need age >= %d or "
7933 "hello time <= %d",
7934 MIN_MAXAGE(cfg), MAX_HELLOTIME(cfg));
7935 } else if (FLOORED_MAXAGE(cfg)) {
7936 die("max age too large: need age >= %d and <= %d or "
7937 "forward delay >= %d",
7938 MIN_MAXAGE(cfg), MAX_MAXAGE(cfg),
7939 MIN_FWDELAY(cfg));
7940 } else {
7941 die("max age too large: need age <= %d or forward "
7942 "delay >= %d",
7943 MAX_MAXAGE(cfg), MIN_FWDELAY(cfg));
7944 }
7945 }

7947 if (altroot != NULL)
7948 altroot_cmd(altroot, argc, argv);

7950 for (n = 0; n < nlink; n++) {
7951 datalink_class_t class;
7952 uint32_t media;
7953 char pointless[DLADM_STRSIZE];

7955 if (dladm_name2info(handle, links[n], &linkids[n], NULL, &class,
7956 &media) != DLADM_STATUS_OK)
7957 die("invalid link name ’%s’", links[n]);
7958 if (class & ~(DATALINK_CLASS_PHYS | DATALINK_CLASS_AGGR |
7959 DATALINK_CLASS_ETHERSTUB | DATALINK_CLASS_SIMNET))
7960 die("%s %s cannot be bridged",
7961 dladm_class2str(class, pointless), links[n]);
7962 if (media != DL_ETHER && media != DL_100VG &&
7963 media != DL_ETH_CSMA && media != DL_100BT)
7964 die("%s interface %s cannot be bridged",
7965 dladm_media2str(media, pointless), links[n]);
7966 }

7968 if (func == brCreate)
7969 flags |= DLADM_OPT_CREATE;

7971 if (func != brAdd) {
7972 status = dladm_bridge_configure(handle, bridge, &cfg, brprot,
7973 flags);
7974 if (status != DLADM_STATUS_OK)
7975 die_dlerr(status, "create operation failed");
7976 }

7978 status = DLADM_STATUS_OK;
7979 for (n = 0; n < nlink; n++) {
7980 status = dladm_bridge_setlink(handle, linkids[n], bridge);
7981 if (status != DLADM_STATUS_OK)
7982 break;
7983 }

7985 if (n >= nlink) {
7986 /*
7987 * We were successful. If we’re creating a new bridge, then
7988 * there’s just one more step: enabling. If we’re modifying or
7989 * just adding links, then we’re done.
7990 */
7991 if (func != brCreate ||
7992 (status = dladm_bridge_enable(bridge)) == DLADM_STATUS_OK)

new/usr/src/cmd/dladm/dladm.c 108

7993 return;
7994 }

7996 /* clean up the partial configuration */
7997 for (i = 0; i < n; i++)
7998 (void) dladm_bridge_setlink(handle, linkids[i], "");

8000 /* if failure for brCreate, then delete the bridge */
8001 if (func == brCreate)
8002 (void) dladm_bridge_delete(handle, bridge, flags);

8004 if (n < nlink)
8005 die_dlerr(status, "unable to add link %s to bridge %s",
8006 links[n], bridge);
8007 else
8008 die_dlerr(status, "unable to enable bridge %s", bridge);
8009 }

8011 static void
8012 do_create_bridge(int argc, char **argv, const char *use)
8013 {
8014 create_modify_add_bridge(argc, argv, use, brCreate);
8015 }

8017 static void
8018 do_modify_bridge(int argc, char **argv, const char *use)
8019 {
8020 create_modify_add_bridge(argc, argv, use, brModify);
8021 }

8023 static void
8024 do_add_bridge(int argc, char **argv, const char *use)
8025 {
8026 create_modify_add_bridge(argc, argv, use, brAdd);
8027 }

8029 static void
8030 do_delete_bridge(int argc, char **argv, const char *use)
8031 {
8032 char option;
8033 char *altroot = NULL;
8034 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
8035 dladm_status_t status;

8037 opterr = 0;
8038 while ((option = getopt_long(argc, argv, ":R:", bridge_lopts, NULL)) !=
8039 -1) {
8040 switch (option) {
8041 case ’R’:
8042 altroot = optarg;
8043 break;
8044 default:
8045 die_opterr(optopt, option, use);
8046 break;
8047 }
8048 }

8050 /* get the bridge name (required last argument) */
8051 if (optind != (argc-1))
8052 usage();

8054 if (altroot != NULL)
8055 altroot_cmd(altroot, argc, argv);

8057 status = dladm_bridge_delete(handle, argv[optind], flags);
8058 if (status != DLADM_STATUS_OK)

new/usr/src/cmd/dladm/dladm.c 109

8059 die_dlerr(status, "delete operation failed");
8060 }

8062 static void
8063 do_remove_bridge(int argc, char **argv, const char *use)
8064 {
8065 char option;
8066 uint_t n, nlink;
8067 char *links[MAXPORT];
8068 datalink_id_t linkids[MAXPORT];
8069 char *altroot = NULL;
8070 dladm_status_t status;
8071 boolean_t removed_one;

8073 nlink = opterr = 0;
8074 while ((option = getopt_long(argc, argv, ":R:l:", bridge_lopts,
8075 NULL)) != -1) {
8076 switch (option) {
8077 case ’R’:
8078 altroot = optarg;
8079 break;
8080 case ’l’:
8081 if (nlink >= MAXPORT)
8082 die("too many links specified");
8083 links[nlink++] = optarg;
8084 break;
8085 default:
8086 die_opterr(optopt, option, use);
8087 break;
8088 }
8089 }

8091 if (nlink == 0)
8092 usage();

8094 /* get the bridge name (required last argument) */
8095 if (optind != (argc-1))
8096 usage();

8098 if (altroot != NULL)
8099 altroot_cmd(altroot, argc, argv);

8101 for (n = 0; n < nlink; n++) {
8102 char bridge[MAXLINKNAMELEN];

8104 if (dladm_name2info(handle, links[n], &linkids[n], NULL, NULL,
8105 NULL) != DLADM_STATUS_OK)
8106 die("invalid link name ’%s’", links[n]);
8107 status = dladm_bridge_getlink(handle, linkids[n], bridge,
8108 sizeof (bridge));
8109 if (status != DLADM_STATUS_OK &&
8110 status != DLADM_STATUS_NOTFOUND) {
8111 die_dlerr(status, "cannot get bridge status on %s",
8112 links[n]);
8113 }
8114 if (status == DLADM_STATUS_NOTFOUND ||
8115 strcmp(bridge, argv[optind]) != 0)
8116 die("link %s is not on bridge %s", links[n],
8117 argv[optind]);
8118 }

8120 removed_one = B_FALSE;
8121 for (n = 0; n < nlink; n++) {
8122 status = dladm_bridge_setlink(handle, linkids[n], "");
8123 if (status == DLADM_STATUS_OK) {
8124 removed_one = B_TRUE;

new/usr/src/cmd/dladm/dladm.c 110

8125 } else {
8126 warn_dlerr(status,
8127 "cannot remove link %s from bridge %s",
8128 links[n], argv[optind]);
8129 }
8130 }
8131 if (!removed_one)
8132 die("unable to remove any links from bridge %s", argv[optind]);
8133 }

8135 static void
8136 fmt_int(char *buf, size_t buflen, int value, int runvalue,
8137 boolean_t printstar)
8138 {
8139 (void) snprintf(buf, buflen, "%d", value);
8140 if (value != runvalue && printstar)
8141 (void) strlcat(buf, "*", buflen);
8142 }

8144 static void
8145 fmt_bridge_id(char *buf, size_t buflen, UID_BRIDGE_ID_T *bid)
8146 {
8147 (void) snprintf(buf, buflen, "%u/%x:%x:%x:%x:%x:%x", bid->prio,
8148 bid->addr[0], bid->addr[1], bid->addr[2], bid->addr[3],
8149 bid->addr[4], bid->addr[5]);
8150 }

8152 static dladm_status_t
8153 print_bridge(show_state_t *state, datalink_id_t linkid,
8154 bridge_fields_buf_t *bbuf)
8155 {
8156 char link[MAXLINKNAMELEN];
8157 datalink_class_t class;
8158 uint32_t flags;
8159 dladm_status_t status;
8160 UID_STP_CFG_T smfcfg, runcfg;
8161 UID_STP_STATE_T stpstate;
8162 dladm_bridge_prot_t smfprot, runprot;

8164 if ((status = dladm_datalink_id2info(handle, linkid, &flags, &class,
8165 NULL, link, sizeof (link))) != DLADM_STATUS_OK)
8166 return (status);

8168 if (!(state->ls_flags & flags))
8169 return (DLADM_STATUS_NOTFOUND);

8171 /* Convert observability node name back to bridge name */
8172 if (!dladm_observe_to_bridge(link))
8173 return (DLADM_STATUS_NOTFOUND);
8174 (void) strlcpy(bbuf->bridge_name, link, sizeof (bbuf->bridge_name));

8176 /*
8177 * If the running value differs from the one in SMF, and parsable
8178 * output is not requested, then we show the running value with an
8179 * asterisk.
8180 */
8181 (void) dladm_bridge_get_properties(bbuf->bridge_name, &smfcfg,
8182 &smfprot);
8183 (void) dladm_bridge_run_properties(bbuf->bridge_name, &runcfg,
8184 &runprot);
8185 (void) snprintf(bbuf->bridge_protect, sizeof (bbuf->bridge_protect),
8186 "%s%s", state->ls_parsable || smfprot == runprot ? "" : "*",
8187 dladm_bridge_prot2str(runprot));
8188 fmt_int(bbuf->bridge_priority, sizeof (bbuf->bridge_priority),
8189 smfcfg.bridge_priority, runcfg.bridge_priority,
8190 !state->ls_parsable && (runcfg.field_mask & BR_CFG_AGE));

new/usr/src/cmd/dladm/dladm.c 111

8191 fmt_int(bbuf->bridge_bmaxage, sizeof (bbuf->bridge_bmaxage),
8192 smfcfg.max_age, runcfg.max_age,
8193 !state->ls_parsable && (runcfg.field_mask & BR_CFG_AGE));
8194 fmt_int(bbuf->bridge_bhellotime,
8195 sizeof (bbuf->bridge_bhellotime), smfcfg.hello_time,
8196 runcfg.hello_time,
8197 !state->ls_parsable && (runcfg.field_mask & BR_CFG_HELLO));
8198 fmt_int(bbuf->bridge_bfwddelay, sizeof (bbuf->bridge_bfwddelay),
8199 smfcfg.forward_delay, runcfg.forward_delay,
8200 !state->ls_parsable && (runcfg.field_mask & BR_CFG_DELAY));
8201 fmt_int(bbuf->bridge_forceproto, sizeof (bbuf->bridge_forceproto),
8202 smfcfg.force_version, runcfg.force_version,
8203 !state->ls_parsable && (runcfg.field_mask & BR_CFG_FORCE_VER));
8204 fmt_int(bbuf->bridge_holdtime, sizeof (bbuf->bridge_holdtime),
8205 smfcfg.hold_time, runcfg.hold_time,
8206 !state->ls_parsable && (runcfg.field_mask & BR_CFG_HOLD_TIME));

8208 if (dladm_bridge_state(bbuf->bridge_name, &stpstate) ==
8209 DLADM_STATUS_OK) {
8210 fmt_bridge_id(bbuf->bridge_address,
8211 sizeof (bbuf->bridge_address), &stpstate.bridge_id);
8212 (void) snprintf(bbuf->bridge_tctime,
8213 sizeof (bbuf->bridge_tctime), "%lu",
8214 stpstate.timeSince_Topo_Change);
8215 (void) snprintf(bbuf->bridge_tccount,
8216 sizeof (bbuf->bridge_tccount), "%lu",
8217 stpstate.Topo_Change_Count);
8218 (void) snprintf(bbuf->bridge_tchange,
8219 sizeof (bbuf->bridge_tchange), "%u", stpstate.Topo_Change);
8220 fmt_bridge_id(bbuf->bridge_desroot,
8221 sizeof (bbuf->bridge_desroot), &stpstate.designated_root);
8222 (void) snprintf(bbuf->bridge_rootcost,
8223 sizeof (bbuf->bridge_rootcost), "%lu",
8224 stpstate.root_path_cost);
8225 (void) snprintf(bbuf->bridge_rootport,
8226 sizeof (bbuf->bridge_rootport), "%u", stpstate.root_port);
8227 (void) snprintf(bbuf->bridge_maxage,
8228 sizeof (bbuf->bridge_maxage), "%d", stpstate.max_age);
8229 (void) snprintf(bbuf->bridge_hellotime,
8230 sizeof (bbuf->bridge_hellotime), "%d", stpstate.hello_time);
8231 (void) snprintf(bbuf->bridge_fwddelay,
8232 sizeof (bbuf->bridge_fwddelay), "%d",
8233 stpstate.forward_delay);
8234 }
8235 return (DLADM_STATUS_OK);
8236 }

8238 static dladm_status_t
8239 print_bridge_stats(show_state_t *state, datalink_id_t linkid,
8240 bridge_statfields_buf_t *bbuf)
8241 {
8242 char link[MAXLINKNAMELEN];
8243 datalink_class_t class;
8244 uint32_t flags;
8245 dladm_status_t status;
8246 kstat_ctl_t *kcp;
8247 kstat_t *ksp;
8248 brsum_t *brsum = (brsum_t *)&state->ls_prevstats;
8249 brsum_t newval;

8251 #ifndef lint
8252 /* This is a compile-time assertion; optimizer normally fixes this */
8253 extern void brsum_t_is_too_large(void);

8255 if (sizeof (*brsum) > sizeof (state->ls_prevstats))
8256 brsum_t_is_too_large();

new/usr/src/cmd/dladm/dladm.c 112

8257 #endif

8259 if (state->ls_firstonly) {
8260 if (state->ls_donefirst)
8261 return (DLADM_WALK_CONTINUE);
8262 state->ls_donefirst = B_TRUE;
8263 } else {
8264 bzero(brsum, sizeof (*brsum));
8265 }
8266 bzero(&newval, sizeof (newval));

8268 if ((status = dladm_datalink_id2info(handle, linkid, &flags, &class,
8269 NULL, link, sizeof (link))) != DLADM_STATUS_OK)
8270 return (status);

8272 if (!(state->ls_flags & flags))
8273 return (DLADM_STATUS_NOTFOUND);

8275 if ((kcp = kstat_open()) == NULL) {
8276 warn("kstat open operation failed");
8277 return (DLADM_STATUS_OK);
8278 }
8279 if ((ksp = kstat_lookup(kcp, "bridge", 0, link)) != NULL &&
8280 kstat_read(kcp, ksp, NULL) != -1) {
8281 if (dladm_kstat_value(ksp, "drops", KSTAT_DATA_UINT64,
8282 &newval.drops) == DLADM_STATUS_OK) {
8283 (void) snprintf(bbuf->bridges_drops,
8284 sizeof (bbuf->bridges_drops), "%llu",
8285 newval.drops - brsum->drops);
8286 }
8287 if (dladm_kstat_value(ksp, "forward_direct", KSTAT_DATA_UINT64,
8288 &newval.forward_dir) == DLADM_STATUS_OK) {
8289 (void) snprintf(bbuf->bridges_forwards,
8290 sizeof (bbuf->bridges_forwards), "%llu",
8291 newval.forward_dir - brsum->forward_dir);
8292 }
8293 if (dladm_kstat_value(ksp, "forward_mbcast", KSTAT_DATA_UINT64,
8294 &newval.forward_mb) == DLADM_STATUS_OK) {
8295 (void) snprintf(bbuf->bridges_mbcast,
8296 sizeof (bbuf->bridges_mbcast), "%llu",
8297 newval.forward_mb - brsum->forward_mb);
8298 }
8299 if (dladm_kstat_value(ksp, "forward_unknown", KSTAT_DATA_UINT64,
8300 &newval.forward_unk) == DLADM_STATUS_OK) {
8301 (void) snprintf(bbuf->bridges_unknown,
8302 sizeof (bbuf->bridges_unknown), "%llu",
8303 newval.forward_unk - brsum->forward_unk);
8304 }
8305 if (dladm_kstat_value(ksp, "recv", KSTAT_DATA_UINT64,
8306 &newval.recv) == DLADM_STATUS_OK) {
8307 (void) snprintf(bbuf->bridges_recv,
8308 sizeof (bbuf->bridges_recv), "%llu",
8309 newval.recv - brsum->recv);
8310 }
8311 if (dladm_kstat_value(ksp, "sent", KSTAT_DATA_UINT64,
8312 &newval.sent) == DLADM_STATUS_OK) {
8313 (void) snprintf(bbuf->bridges_sent,
8314 sizeof (bbuf->bridges_sent), "%llu",
8315 newval.sent - brsum->sent);
8316 }
8317 }
8318 (void) kstat_close(kcp);

8320 /* Convert observability node name back to bridge name */
8321 if (!dladm_observe_to_bridge(link))
8322 return (DLADM_STATUS_NOTFOUND);

new/usr/src/cmd/dladm/dladm.c 113

8323 (void) strlcpy(bbuf->bridges_name, link, sizeof (bbuf->bridges_name));

8325 *brsum = newval;

8327 return (DLADM_STATUS_OK);
8328 }

8330 /*
8331 * This structure carries around extra state information for the show-bridge
8332 * command and allows us to use common support functions.
8333 */
8334 typedef struct {
8335 show_state_t state;
8336 boolean_t show_stats;
8337 const char *bridge;
8338 } show_brstate_t;

8340 /* ARGSUSED */
8341 static int
8342 show_bridge(dladm_handle_t handle, datalink_id_t linkid, void *arg)
8343 {
8344 show_brstate_t *brstate = arg;
8345 void *buf;

8347 if (brstate->show_stats) {
8348 bridge_statfields_buf_t bbuf;

8350 bzero(&bbuf, sizeof (bbuf));
8351 brstate->state.ls_status = print_bridge_stats(&brstate->state,
8352 linkid, &bbuf);
8353 buf = &bbuf;
8354 } else {
8355 bridge_fields_buf_t bbuf;

8357 bzero(&bbuf, sizeof (bbuf));
8358 brstate->state.ls_status = print_bridge(&brstate->state, linkid,
8359 &bbuf);
8360 buf = &bbuf;
8361 }
8362 if (brstate->state.ls_status == DLADM_STATUS_OK)
8363 ofmt_print(brstate->state.ls_ofmt, buf);
8364 return (DLADM_WALK_CONTINUE);
8365 }

8367 static void
8368 fmt_bool(char *buf, size_t buflen, int val)
8369 {
8370 (void) strlcpy(buf, val ? "yes" : "no", buflen);
8371 }

8373 static dladm_status_t
8374 print_bridge_link(show_state_t *state, datalink_id_t linkid,
8375 bridge_link_fields_buf_t *bbuf)
8376 {
8377 datalink_class_t class;
8378 uint32_t flags;
8379 dladm_status_t status;
8380 UID_STP_PORT_STATE_T stpstate;

8382 status = dladm_datalink_id2info(handle, linkid, &flags, &class, NULL,
8383 bbuf->bridgel_link, sizeof (bbuf->bridgel_link));
8384 if (status != DLADM_STATUS_OK)
8385 return (status);

8387 if (!(state->ls_flags & flags))
8388 return (DLADM_STATUS_NOTFOUND);

new/usr/src/cmd/dladm/dladm.c 114

8390 if (dladm_bridge_link_state(handle, linkid, &stpstate) ==
8391 DLADM_STATUS_OK) {
8392 (void) snprintf(bbuf->bridgel_index,
8393 sizeof (bbuf->bridgel_index), "%u", stpstate.port_no);
8394 if (dlsym(RTLD_PROBE, "STP_IN_state2str")) {
8395 (void) strlcpy(bbuf->bridgel_state,
8396 STP_IN_state2str(stpstate.state),
8397 sizeof (bbuf->bridgel_state));
8398 } else {
8399 (void) snprintf(bbuf->bridgel_state,
8400 sizeof (bbuf->bridgel_state), "%u",
8401 stpstate.state);
8402 }
8403 (void) snprintf(bbuf->bridgel_uptime,
8404 sizeof (bbuf->bridgel_uptime), "%lu", stpstate.uptime);
8405 (void) snprintf(bbuf->bridgel_opercost,
8406 sizeof (bbuf->bridgel_opercost), "%lu",
8407 stpstate.oper_port_path_cost);
8408 fmt_bool(bbuf->bridgel_operp2p, sizeof (bbuf->bridgel_operp2p),
8409 stpstate.oper_point2point);
8410 fmt_bool(bbuf->bridgel_operedge,
8411 sizeof (bbuf->bridgel_operedge), stpstate.oper_edge);
8412 fmt_bridge_id(bbuf->bridgel_desroot,
8413 sizeof (bbuf->bridgel_desroot), &stpstate.designated_root);
8414 (void) snprintf(bbuf->bridgel_descost,
8415 sizeof (bbuf->bridgel_descost), "%lu",
8416 stpstate.designated_cost);
8417 fmt_bridge_id(bbuf->bridgel_desbridge,
8418 sizeof (bbuf->bridgel_desbridge),
8419 &stpstate.designated_bridge);
8420 (void) snprintf(bbuf->bridgel_desport,
8421 sizeof (bbuf->bridgel_desport), "%u",
8422 stpstate.designated_port);
8423 fmt_bool(bbuf->bridgel_tcack, sizeof (bbuf->bridgel_tcack),
8424 stpstate.top_change_ack);
8425 }
8426 return (DLADM_STATUS_OK);
8427 }

8429 static dladm_status_t
8430 print_bridge_link_stats(show_state_t *state, datalink_id_t linkid,
8431 bridge_link_statfields_buf_t *bbuf)
8432 {
8433 datalink_class_t class;
8434 uint32_t flags;
8435 dladm_status_t status;
8436 UID_STP_PORT_STATE_T stpstate;
8437 kstat_ctl_t *kcp;
8438 kstat_t *ksp;
8439 char bridge[MAXLINKNAMELEN];
8440 char kstatname[MAXLINKNAMELEN*2 + 1];
8441 brlsum_t *brlsum = (brlsum_t *)&state->ls_prevstats;
8442 brlsum_t newval;

8444 #ifndef lint
8445 /* This is a compile-time assertion; optimizer normally fixes this */
8446 extern void brlsum_t_is_too_large(void);

8448 if (sizeof (*brlsum) > sizeof (state->ls_prevstats))
8449 brlsum_t_is_too_large();
8450 #endif

8452 if (state->ls_firstonly) {
8453 if (state->ls_donefirst)
8454 return (DLADM_WALK_CONTINUE);

new/usr/src/cmd/dladm/dladm.c 115

8455 state->ls_donefirst = B_TRUE;
8456 } else {
8457 bzero(brlsum, sizeof (*brlsum));
8458 }
8459 bzero(&newval, sizeof (newval));

8461 status = dladm_datalink_id2info(handle, linkid, &flags, &class, NULL,
8462 bbuf->bridgels_link, sizeof (bbuf->bridgels_link));
8463 if (status != DLADM_STATUS_OK)
8464 return (status);

8466 if (!(state->ls_flags & flags))
8467 return (DLADM_STATUS_NOTFOUND);

8469 if (dladm_bridge_link_state(handle, linkid, &stpstate) ==
8470 DLADM_STATUS_OK) {
8471 newval.cfgbpdu = stpstate.rx_cfg_bpdu_cnt;
8472 newval.tcnbpdu = stpstate.rx_tcn_bpdu_cnt;
8473 newval.rstpbpdu = stpstate.rx_rstp_bpdu_cnt;
8474 newval.txbpdu = stpstate.txCount;

8476 (void) snprintf(bbuf->bridgels_cfgbpdu,
8477 sizeof (bbuf->bridgels_cfgbpdu), "%lu",
8478 newval.cfgbpdu - brlsum->cfgbpdu);
8479 (void) snprintf(bbuf->bridgels_tcnbpdu,
8480 sizeof (bbuf->bridgels_tcnbpdu), "%lu",
8481 newval.tcnbpdu - brlsum->tcnbpdu);
8482 (void) snprintf(bbuf->bridgels_rstpbpdu,
8483 sizeof (bbuf->bridgels_rstpbpdu), "%lu",
8484 newval.rstpbpdu - brlsum->rstpbpdu);
8485 (void) snprintf(bbuf->bridgels_txbpdu,
8486 sizeof (bbuf->bridgels_txbpdu), "%lu",
8487 newval.txbpdu - brlsum->txbpdu);
8488 }

8490 if ((status = dladm_bridge_getlink(handle, linkid, bridge,
8491 sizeof (bridge))) != DLADM_STATUS_OK)
8492 goto bls_out;
8493 (void) snprintf(kstatname, sizeof (kstatname), "%s0-%s", bridge,
8494 bbuf->bridgels_link);
8495 if ((kcp = kstat_open()) == NULL) {
8496 warn("kstat open operation failed");
8497 goto bls_out;
8498 }
8499 if ((ksp = kstat_lookup(kcp, "bridge", 0, kstatname)) != NULL &&
8500 kstat_read(kcp, ksp, NULL) != -1) {
8501 if (dladm_kstat_value(ksp, "drops", KSTAT_DATA_UINT64,
8502 &newval.drops) != -1) {
8503 (void) snprintf(bbuf->bridgels_drops,
8504 sizeof (bbuf->bridgels_drops), "%llu",
8505 newval.drops - brlsum->drops);
8506 }
8507 if (dladm_kstat_value(ksp, "recv", KSTAT_DATA_UINT64,
8508 &newval.recv) != -1) {
8509 (void) snprintf(bbuf->bridgels_recv,
8510 sizeof (bbuf->bridgels_recv), "%llu",
8511 newval.recv - brlsum->recv);
8512 }
8513 if (dladm_kstat_value(ksp, "xmit", KSTAT_DATA_UINT64,
8514 &newval.xmit) != -1) {
8515 (void) snprintf(bbuf->bridgels_xmit,
8516 sizeof (bbuf->bridgels_xmit), "%llu",
8517 newval.xmit - brlsum->xmit);
8518 }
8519 }
8520 (void) kstat_close(kcp);

new/usr/src/cmd/dladm/dladm.c 116

8521 bls_out:
8522 *brlsum = newval;

8524 return (status);
8525 }

8527 static void
8528 show_bridge_link(datalink_id_t linkid, show_brstate_t *brstate)
8529 {
8530 void *buf;

8532 if (brstate->show_stats) {
8533 bridge_link_statfields_buf_t bbuf;

8535 bzero(&bbuf, sizeof (bbuf));
8536 brstate->state.ls_status = print_bridge_link_stats(
8537 &brstate->state, linkid, &bbuf);
8538 buf = &bbuf;
8539 } else {
8540 bridge_link_fields_buf_t bbuf;

8542 bzero(&bbuf, sizeof (bbuf));
8543 brstate->state.ls_status = print_bridge_link(&brstate->state,
8544 linkid, &bbuf);
8545 buf = &bbuf;
8546 }
8547 if (brstate->state.ls_status == DLADM_STATUS_OK)
8548 ofmt_print(brstate->state.ls_ofmt, buf);
8549 }

8551 /* ARGSUSED */
8552 static int
8553 show_bridge_link_walk(dladm_handle_t handle, datalink_id_t linkid, void *arg)
8554 {
8555 show_brstate_t *brstate = arg;
8556 char bridge[MAXLINKNAMELEN];

8558 if (dladm_bridge_getlink(handle, linkid, bridge, sizeof (bridge)) ==
8559 DLADM_STATUS_OK && strcmp(bridge, brstate->bridge) == 0) {
8560 show_bridge_link(linkid, brstate);
8561 }
8562 return (DLADM_WALK_CONTINUE);
8563 }

8565 static void
8566 show_bridge_fwd(dladm_handle_t handle, bridge_listfwd_t *blf,
8567 show_state_t *state)
8568 {
8569 bridge_fwd_fields_buf_t bbuf;

8571 bzero(&bbuf, sizeof (bbuf));
8572 (void) snprintf(bbuf.bridgef_dest, sizeof (bbuf.bridgef_dest),
8573 "%s", ether_ntoa((struct ether_addr *)blf->blf_dest));
8574 if (blf->blf_is_local) {
8575 (void) strlcpy(bbuf.bridgef_flags, "L",
8576 sizeof (bbuf.bridgef_flags));
8577 } else {
8578 (void) snprintf(bbuf.bridgef_age, sizeof (bbuf.bridgef_age),
8579 "%2d.%03d", blf->blf_ms_age / 1000, blf->blf_ms_age % 1000);
8580 if (blf->blf_trill_nick != 0) {
8581 (void) snprintf(bbuf.bridgef_output,
8582 sizeof (bbuf.bridgef_output), "%u",
8583 blf->blf_trill_nick);
8584 }
8585 }
8586 if (blf->blf_linkid != DATALINK_INVALID_LINKID &&

new/usr/src/cmd/dladm/dladm.c 117

8587 blf->blf_trill_nick == 0) {
8588 state->ls_status = dladm_datalink_id2info(handle,
8589 blf->blf_linkid, NULL, NULL, NULL, bbuf.bridgef_output,
8590 sizeof (bbuf.bridgef_output));
8591 }
8592 if (state->ls_status == DLADM_STATUS_OK)
8593 ofmt_print(state->ls_ofmt, &bbuf);
8594 }

8596 static void
8597 show_bridge_trillnick(trill_listnick_t *tln, show_state_t *state)
8598 {
8599 bridge_trill_fields_buf_t bbuf;

8601 bzero(&bbuf, sizeof (bbuf));
8602 (void) snprintf(bbuf.bridget_nick, sizeof (bbuf.bridget_nick),
8603 "%u", tln->tln_nick);
8604 if (tln->tln_ours) {
8605 (void) strlcpy(bbuf.bridget_flags, "L",
8606 sizeof (bbuf.bridget_flags));
8607 } else {
8608 state->ls_status = dladm_datalink_id2info(handle,
8609 tln->tln_linkid, NULL, NULL, NULL, bbuf.bridget_link,
8610 sizeof (bbuf.bridget_link));
8611 (void) snprintf(bbuf.bridget_nexthop,
8612 sizeof (bbuf.bridget_nexthop), "%s",
8613 ether_ntoa((struct ether_addr *)tln->tln_nexthop));
8614 }
8615 if (state->ls_status == DLADM_STATUS_OK)
8616 ofmt_print(state->ls_ofmt, &bbuf);
8617 }

8619 static void
8620 do_show_bridge(int argc, char **argv, const char *use)
8621 {
8622 int option;
8623 enum {
8624 bridgeMode, linkMode, fwdMode, trillMode
8625 } op_mode = bridgeMode;
8626 uint32_t flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
8627 boolean_t parsable = B_FALSE;
8628 datalink_id_t linkid = DATALINK_ALL_LINKID;
8629 int interval = 0;
8630 show_brstate_t brstate;
8631 dladm_status_t status;
8632 char *fields_str = NULL;
8633 /* default: bridge-related data */
8634 char *all_fields = "bridge,protect,address,priority,bmaxage,"
8635 "bhellotime,bfwddelay,forceproto,tctime,tccount,tchange,"
8636 "desroot,rootcost,rootport,maxage,hellotime,fwddelay,holdtime";
8637 char *default_fields = "bridge,protect,address,priority,"
8638 "desroot";
8639 char *all_statfields = "bridge,drops,forwards,mbcast,"
8640 "unknown,recv,sent";
8641 char *default_statfields = "bridge,drops,forwards,mbcast,"
8642 "unknown";
8643 /* -l: link-related data */
8644 char *all_link_fields = "link,index,state,uptime,opercost,"
8645 "operp2p,operedge,desroot,descost,desbridge,desport,tcack";
8646 char *default_link_fields = "link,state,uptime,desroot";
8647 char *all_link_statfields = "link,cfgbpdu,tcnbpdu,rstpbpdu,"
8648 "txbpdu,drops,recv,xmit";
8649 char *default_link_statfields = "link,drops,recv,xmit";
8650 /* -f: bridge forwarding table related data */
8651 char *default_fwd_fields = "dest,age,flags,output";
8652 /* -t: TRILL nickname table related data */

new/usr/src/cmd/dladm/dladm.c 118

8653 char *default_trill_fields = "nick,flags,link,nexthop";
8654 char *default_str;
8655 char *all_str;
8656 ofmt_field_t *field_arr;
8657 ofmt_handle_t ofmt;
8658 ofmt_status_t oferr;
8659 uint_t ofmtflags = 0;

8661 bzero(&brstate, sizeof (brstate));

8663 opterr = 0;
8664 while ((option = getopt_long(argc, argv, ":fi:lo:pst",
8665 bridge_show_lopts, NULL)) != -1) {
8666 switch (option) {
8667 case ’f’:
8668 if (op_mode != bridgeMode && op_mode != fwdMode)
8669 die("-f is incompatible with -l or -t");
8670 op_mode = fwdMode;
8671 break;
8672 case ’i’:
8673 if (interval != 0)
8674 die_optdup(option);
8675 if (!str2int(optarg, &interval) || interval == 0)
8676 die("invalid interval value ’%s’", optarg);
8677 break;
8678 case ’l’:
8679 if (op_mode != bridgeMode && op_mode != linkMode)
8680 die("-l is incompatible with -f or -t");
8681 op_mode = linkMode;
8682 break;
8683 case ’o’:
8684 fields_str = optarg;
8685 break;
8686 case ’p’:
8687 if (parsable)
8688 die_optdup(option);
8689 parsable = B_TRUE;
8690 break;
8691 case ’s’:
8692 if (brstate.show_stats)
8693 die_optdup(option);
8694 brstate.show_stats = B_TRUE;
8695 break;
8696 case ’t’:
8697 if (op_mode != bridgeMode && op_mode != trillMode)
8698 die("-t is incompatible with -f or -l");
8699 op_mode = trillMode;
8700 break;
8701 default:
8702 die_opterr(optopt, option, use);
8703 break;
8704 }
8705 }

8707 if (interval != 0 && !brstate.show_stats)
8708 die("the -i option can be used only with -s");

8710 if ((op_mode == fwdMode || op_mode == trillMode) && brstate.show_stats)
8711 die("the -f/-t and -s options cannot be used together");

8713 /* get the bridge name (optional last argument) */
8714 if (optind == (argc-1)) {
8715 char lname[MAXLINKNAMELEN];
8716 uint32_t lnkflg;
8717 datalink_class_t class;

new/usr/src/cmd/dladm/dladm.c 119

8719 brstate.bridge = argv[optind];
8720 (void) snprintf(lname, sizeof (lname), "%s0", brstate.bridge);
8721 if ((status = dladm_name2info(handle, lname, &linkid, &lnkflg,
8722 &class, NULL)) != DLADM_STATUS_OK) {
8723 die_dlerr(status, "bridge %s is not valid",
8724 brstate.bridge);
8725 }

8727 if (class != DATALINK_CLASS_BRIDGE)
8728 die("%s is not a bridge", brstate.bridge);

8730 if (!(lnkflg & flags)) {
8731 die_dlerr(DLADM_STATUS_BADARG,
8732 "bridge %s is temporarily removed", brstate.bridge);
8733 }
8734 } else if (optind != argc) {
8735 usage();
8736 } else if (op_mode != bridgeMode) {
8737 die("bridge name required for -l, -f, or -t");
8738 return;
8739 }

8741 brstate.state.ls_parsable = parsable;
8742 brstate.state.ls_flags = flags;
8743 brstate.state.ls_firstonly = (interval != 0);

8745 switch (op_mode) {
8746 case bridgeMode:
8747 if (brstate.show_stats) {
8748 default_str = default_statfields;
8749 all_str = all_statfields;
8750 field_arr = bridge_statfields;
8751 } else {
8752 default_str = default_fields;
8753 all_str = all_fields;
8754 field_arr = bridge_fields;
8755 }
8756 break;

8758 case linkMode:
8759 if (brstate.show_stats) {
8760 default_str = default_link_statfields;
8761 all_str = all_link_statfields;
8762 field_arr = bridge_link_statfields;
8763 } else {
8764 default_str = default_link_fields;
8765 all_str = all_link_fields;
8766 field_arr = bridge_link_fields;
8767 }
8768 break;

8770 case fwdMode:
8771 default_str = all_str = default_fwd_fields;
8772 field_arr = bridge_fwd_fields;
8773 break;

8775 case trillMode:
8776 default_str = all_str = default_trill_fields;
8777 field_arr = bridge_trill_fields;
8778 break;
8779 }

8781 if (fields_str == NULL)
8782 fields_str = default_str;
8783 else if (strcasecmp(fields_str, "all") == 0)
8784 fields_str = all_str;

new/usr/src/cmd/dladm/dladm.c 120

8786 if (parsable)
8787 ofmtflags |= OFMT_PARSABLE;
8788 oferr = ofmt_open(fields_str, field_arr, ofmtflags, 0, &ofmt);
8789 dladm_ofmt_check(oferr, brstate.state.ls_parsable, ofmt);
8790 brstate.state.ls_ofmt = ofmt;

8792 for (;;) {
8793 brstate.state.ls_donefirst = B_FALSE;
8794 switch (op_mode) {
8795 case bridgeMode:
8796 if (linkid == DATALINK_ALL_LINKID) {
8797 (void) dladm_walk_datalink_id(show_bridge,
8798 handle, &brstate, DATALINK_CLASS_BRIDGE,
8799 DATALINK_ANY_MEDIATYPE, flags);
8800 } else {
8801 (void) show_bridge(handle, linkid, &brstate);
8802 if (brstate.state.ls_status !=
8803 DLADM_STATUS_OK) {
8804 die_dlerr(brstate.state.ls_status,
8805 "failed to show bridge %s",
8806 brstate.bridge);
8807 }
8808 }
8809 break;

8811 case linkMode: {
8812 datalink_id_t *dlp;
8813 uint_t i, nlinks;

8815 dlp = dladm_bridge_get_portlist(brstate.bridge,
8816 &nlinks);
8817 if (dlp != NULL) {
8818 for (i = 0; i < nlinks; i++)
8819 show_bridge_link(dlp[i], &brstate);
8820 dladm_bridge_free_portlist(dlp);
8821 } else if (errno == ENOENT) {
8822 /* bridge not running; iterate on libdladm */
8823 (void) dladm_walk_datalink_id(
8824 show_bridge_link_walk, handle,
8825 &brstate, DATALINK_CLASS_PHYS |
8826 DATALINK_CLASS_AGGR |
8827 DATALINK_CLASS_ETHERSTUB,
8828 DATALINK_ANY_MEDIATYPE, flags);
8829 } else {
8830 die("unable to get port list for bridge %s: %s",
8831 brstate.bridge, strerror(errno));
8832 }
8833 break;
8834 }

8836 case fwdMode: {
8837 bridge_listfwd_t *blf;
8838 uint_t i, nfwd;

8840 blf = dladm_bridge_get_fwdtable(handle, brstate.bridge,
8841 &nfwd);
8842 if (blf == NULL) {
8843 die("unable to get forwarding entries for "
8844 "bridge %s", brstate.bridge);
8845 } else {
8846 for (i = 0; i < nfwd; i++)
8847 show_bridge_fwd(handle, blf + i,
8848 &brstate.state);
8849 dladm_bridge_free_fwdtable(blf);
8850 }

new/usr/src/cmd/dladm/dladm.c 121

8851 break;
8852 }

8854 case trillMode: {
8855 trill_listnick_t *tln;
8856 uint_t i, nnick;

8858 tln = dladm_bridge_get_trillnick(brstate.bridge,
8859 &nnick);
8860 if (tln == NULL) {
8861 if (errno == ENOENT)
8862 die("bridge %s is not running TRILL",
8863 brstate.bridge);
8864 else
8865 die("unable to get TRILL nickname "
8866 "entries for bridge %s",
8867 brstate.bridge);
8868 } else {
8869 for (i = 0; i < nnick; i++)
8870 show_bridge_trillnick(tln + i,
8871 &brstate.state);
8872 dladm_bridge_free_trillnick(tln);
8873 }
8874 break;
8875 }
8876 }
8877 if (interval == 0)
8878 break;
8879 (void) sleep(interval);
8880 }
8881 }

8883 /*
8884 * "-R" option support. It is used for live upgrading. Append dladm commands
8885 * to a upgrade script which will be run when the alternative root boots up:
8886 *
8887 * - If the /etc/dladm/datalink.conf file exists on the alternative root,
8888 * append dladm commands to the <altroot>/var/svc/profile/upgrade_datalink
8889 * script. This script will be run as part of the network/physical service.
8890 * We cannot defer this to /var/svc/profile/upgrade because then the
8891 * configuration will not be able to take effect before network/physical
8892 * plumbs various interfaces.
8893 *
8894 * - If the /etc/dladm/datalink.conf file does not exist on the alternative
8895 * root, append dladm commands to the <altroot>/var/svc/profile/upgrade script,
8896 * which will be run in the manifest-import service.
8897 *
8898 * Note that the SMF team is considering to move the manifest-import service
8899 * to be run at the very begining of boot. Once that is done, the need for
8900 * the /var/svc/profile/upgrade_datalink script will not exist any more.
8901 */
8902 static void
8903 altroot_cmd(char *altroot, int argc, char *argv[])
8904 {
8905 char path[MAXPATHLEN];
8906 struct stat stbuf;
8907 FILE *fp;
8908 int i;

8910 /*
8911 * Check for the existence of the /etc/dladm/datalink.conf
8912 * configuration file, and determine the name of script file.
8913 */
8914 (void) snprintf(path, MAXPATHLEN, "/%s/etc/dladm/datalink.conf",
8915 altroot);
8916 if (stat(path, &stbuf) < 0) {

new/usr/src/cmd/dladm/dladm.c 122

8917 (void) snprintf(path, MAXPATHLEN, "/%s/%s", altroot,
8918 SMF_UPGRADE_FILE);
8919 } else {
8920 (void) snprintf(path, MAXPATHLEN, "/%s/%s", altroot,
8921 SMF_UPGRADEDATALINK_FILE);
8922 }

8924 if ((fp = fopen(path, "a+")) == NULL)
8925 die("operation not supported on %s", altroot);

8927 (void) fprintf(fp, "/sbin/dladm ");
8928 for (i = 0; i < argc; i++) {
8929 /*
8930 * Directly write to the file if it is not the "-R <altroot>"
8931 * option. In which case, skip it.
8932 */
8933 if (strcmp(argv[i], "-R") != 0)
8934 (void) fprintf(fp, "%s ", argv[i]);
8935 else
8936 i ++;
8937 }
8938 (void) fprintf(fp, "%s\n", SMF_DLADM_UPGRADE_MSG);
8939 (void) fclose(fp);
8940 dladm_close(handle);
8941 exit(EXIT_SUCCESS);
8942 }

8944 /*
8945 * Convert the string to an integer. Note that the string must not have any
8946 * trailing non-integer characters.
8947 */
8948 static boolean_t
8949 str2int(const char *str, int *valp)
8950 {
8951 int val;
8952 char *endp = NULL;

8954 errno = 0;
8955 val = strtol(str, &endp, 10);
8956 if (errno != 0 || *endp != ’\0’)
8957 return (B_FALSE);

8959 *valp = val;
8960 return (B_TRUE);
8961 }

8963 /* PRINTFLIKE1 */
8964 static void
8965 warn(const char *format, ...)
8966 {
8967 va_list alist;

8969 format = gettext(format);
8970 (void) fprintf(stderr, "%s: warning: ", progname);

8972 va_start(alist, format);
8973 (void) vfprintf(stderr, format, alist);
8974 va_end(alist);

8976 (void) putc(’\n’, stderr);
8977 }

8979 /* PRINTFLIKE2 */
8980 static void
8981 warn_dlerr(dladm_status_t err, const char *format, ...)
8982 {

new/usr/src/cmd/dladm/dladm.c 123

8983 va_list alist;
8984 char errmsg[DLADM_STRSIZE];

8986 format = gettext(format);
8987 (void) fprintf(stderr, gettext("%s: warning: "), progname);

8989 va_start(alist, format);
8990 (void) vfprintf(stderr, format, alist);
8991 va_end(alist);
8992 (void) fprintf(stderr, ": %s\n", dladm_status2str(err, errmsg));
8993 }

8995 /*
8996 * Also closes the dladm handle if it is not NULL.
8997 */
8998 /* PRINTFLIKE2 */
8999 static void
9000 die_dlerr(dladm_status_t err, const char *format, ...)
9001 {
9002 va_list alist;
9003 char errmsg[DLADM_STRSIZE];

9005 format = gettext(format);
9006 (void) fprintf(stderr, "%s: ", progname);

9008 va_start(alist, format);
9009 (void) vfprintf(stderr, format, alist);
9010 va_end(alist);
9011 (void) fprintf(stderr, ": %s\n", dladm_status2str(err, errmsg));

9013 /* close dladm handle if it was opened */
9014 if (handle != NULL)
9015 dladm_close(handle);

9017 exit(EXIT_FAILURE);
9018 }

9020 /* PRINTFLIKE1 */
9021 static void
9022 die(const char *format, ...)
9023 {
9024 va_list alist;

9026 format = gettext(format);
9027 (void) fprintf(stderr, "%s: ", progname);

9029 va_start(alist, format);
9030 (void) vfprintf(stderr, format, alist);
9031 va_end(alist);

9033 (void) putc(’\n’, stderr);

9035 /* close dladm handle if it was opened */
9036 if (handle != NULL)
9037 dladm_close(handle);

9039 exit(EXIT_FAILURE);
9040 }

9042 static void
9043 die_optdup(int opt)
9044 {
9045 die("the option -%c cannot be specified more than once", opt);
9046 }

9048 static void

new/usr/src/cmd/dladm/dladm.c 124

9049 die_opterr(int opt, int opterr, const char *usage)
9050 {
9051 switch (opterr) {
9052 case ’:’:
9053 die("option ’-%c’ requires a value\nusage: %s", opt,
9054 gettext(usage));
9055 break;
9056 case ’?’:
9057 default:
9058 die("unrecognized option ’-%c’\nusage: %s", opt,
9059 gettext(usage));
9060 break;
9061 }
9062 }

9064 static void
9065 show_ether_xprop(void *arg, dladm_ether_info_t *eattr)
9066 {
9067 print_ether_state_t *statep = arg;
9068 ether_fields_buf_t ebuf;
9069 int i;

9071 for (i = CAPABLE; i <= PEERADV; i++) {
9072 bzero(&ebuf, sizeof (ebuf));
9073 (void) strlcpy(ebuf.eth_ptype, ptype[i],
9074 sizeof (ebuf.eth_ptype));
9075 (void) dladm_ether_autoneg2str(ebuf.eth_autoneg,
9076 sizeof (ebuf.eth_autoneg), eattr, i);
9077 (void) dladm_ether_spdx2str(ebuf.eth_spdx,
9078 sizeof (ebuf.eth_spdx), eattr, i);
9079 (void) dladm_ether_pause2str(ebuf.eth_pause,
9080 sizeof (ebuf.eth_pause), eattr, i);
9081 (void) strlcpy(ebuf.eth_rem_fault,
9082 (eattr->lei_attr[i].le_fault ? "fault" : "none"),
9083 sizeof (ebuf.eth_rem_fault));
9084 ofmt_print(statep->es_ofmt, &ebuf);
9085 }

9087 }

9089 static boolean_t
9090 link_is_ether(const char *link, datalink_id_t *linkid)
9091 {
9092 uint32_t media;
9093 datalink_class_t class;

9095 if (dladm_name2info(handle, link, linkid, NULL, &class, &media) ==
9096 DLADM_STATUS_OK) {
9097 if (class == DATALINK_CLASS_PHYS && media == DL_ETHER)
9098 return (B_TRUE);
9099 }
9100 return (B_FALSE);
9101 }

9103 /*
9104 * default output callback function that, when invoked,
9105 * prints string which is offset by ofmt_arg->ofmt_id within buf.
9106 */
9107 static boolean_t
9108 print_default_cb(ofmt_arg_t *ofarg, char *buf, uint_t bufsize)
9109 {
9110 char *value;

9112 value = (char *)ofarg->ofmt_cbarg + ofarg->ofmt_id;
9113 (void) strlcpy(buf, value, bufsize);
9114 return (B_TRUE);

new/usr/src/cmd/dladm/dladm.c 125

9115 }

9117 static void
9118 dladm_ofmt_check(ofmt_status_t oferr, boolean_t parsable,
9119 ofmt_handle_t ofmt)
9120 {
9121 char buf[OFMT_BUFSIZE];

9123 if (oferr == OFMT_SUCCESS)
9124 return;
9125 (void) ofmt_strerror(ofmt, oferr, buf, sizeof (buf));
9126 /*
9127 * All errors are considered fatal in parsable mode.
9128 * NOMEM errors are always fatal, regardless of mode.
9129 * For other errors, we print diagnostics in human-readable
9130 * mode and processs what we can.
9131 */
9132 if (parsable || oferr == OFMT_ENOFIELDS) {
9133 ofmt_close(ofmt);
9134 die(buf);
9135 } else {
9136 warn(buf);
9137 }
9138 }

9140 /*
9141 * Called from the walker dladm_walk_datalink_id() for each IB partition to
9142 * display IB partition specific information.
9143 */
9144 static dladm_status_t
9145 print_part(show_part_state_t *state, datalink_id_t linkid)
9146 {
9147 dladm_part_attr_t attr;
9148 dladm_status_t status;
9149 dladm_conf_t conf;
9150 char part_over[MAXLINKNAMELEN];
9151 char part_name[MAXLINKNAMELEN];
9152 part_fields_buf_t pbuf;
9153 boolean_t force_in_conf = B_FALSE;

9155 /*
9156 * Get the information about the IB partition from the partition
9157 * datlink ID ’linkid’.
9158 */
9159 if ((status = dladm_part_info(handle, linkid, &attr, state->ps_flags))
9160 != DLADM_STATUS_OK)
9161 return (status);

9163 /*
9164 * If an IB Phys link name was provided on the command line we have
9165 * the Phys link’s datalink ID in the ps_over_id field of the state
9166 * structure. Proceed only if the IB partition represented by ’linkid’
9167 * was created over Phys link denoted by ps_over_id. The
9168 * ’dia_physlinkid’ field of dladm_part_attr_t represents the IB Phys
9169 * link over which the partition was created.
9170 */
9171 if (state->ps_over_id != DATALINK_ALL_LINKID)
9172 if (state->ps_over_id != attr.dia_physlinkid)
9173 return (DLADM_STATUS_OK);

9175 /*
9176 * The linkid argument passed to this function is the datalink ID
9177 * of the IB Partition. Get the partitions name from this linkid.
9178 */
9179 if (dladm_datalink_id2info(handle, linkid, NULL, NULL,
9180 NULL, part_name, sizeof (part_name)) != DLADM_STATUS_OK)

new/usr/src/cmd/dladm/dladm.c 126

9181 return (DLADM_STATUS_BADARG);

9183 bzero(part_over, sizeof (part_over));

9185 /*
9186 * The ’dia_physlinkid’ field contains the datalink ID of the IB Phys
9187 * link over which the partition was created. Use this linkid to get the
9188 * linkover field.
9189 */
9190 if (dladm_datalink_id2info(handle, attr.dia_physlinkid, NULL, NULL,
9191 NULL, part_over, sizeof (part_over)) != DLADM_STATUS_OK)
9192 (void) sprintf(part_over, "?");
9193 state->ps_found = B_TRUE;

9195 /*
9196 * Read the FFORCE field from this datalink’s persistent configuration
9197 * database line to determine if this datalink was created forcibly.
9198 * If this datalink is a temporary datalink, then it will not have an
9199 * entry in the persistent configuration, so check if force create flag
9200 * is set in the partition attributes.
9201 *
9202 * We need this two level check since persistent partitions brought up
9203 * by up-part during boot will have force create flag always set, since
9204 * we want up-part to always succeed even if the port is currently down
9205 * or P_Key is not yet available in the subnet.
9206 */
9207 if ((status = dladm_getsnap_conf(handle, linkid, &conf)) ==
9208 DLADM_STATUS_OK) {
9209 (void) dladm_get_conf_field(handle, conf, FFORCE,
9210 &force_in_conf, sizeof (boolean_t));
9211 dladm_destroy_conf(handle, conf);
9212 } else if (status == DLADM_STATUS_NOTFOUND) {
9213 /*
9214 * for a temp link the force create flag will determine
9215 * whether it was created with force flag.
9216 */
9217 force_in_conf = ((attr.dia_flags & DLADM_PART_FORCE_CREATE)
9218 != 0);
9219 }

9221 (void) snprintf(pbuf.part_link, sizeof (pbuf.part_link),
9222 "%s", part_name);

9224 (void) snprintf(pbuf.part_over, sizeof (pbuf.part_over),
9225 "%s", part_over);

9227 (void) snprintf(pbuf.part_pkey, sizeof (pbuf.part_pkey),
9228 "%X", attr.dia_pkey);

9230 (void) get_linkstate(pbuf.part_link, B_TRUE, pbuf.part_state);

9232 (void) snprintf(pbuf.part_flags, sizeof (pbuf.part_flags),
9233 "%c----", force_in_conf ? ’f’ : ’-’);

9235 ofmt_print(state->ps_ofmt, &pbuf);

9237 return (DLADM_STATUS_OK);
9238 }

9240 /* ARGSUSED */
9241 static int
9242 show_part(dladm_handle_t dh, datalink_id_t linkid, void *arg)
9243 {
9244 ((show_part_state_t *)arg)->ps_status = print_part(arg, linkid);
9245 return (DLADM_WALK_CONTINUE);
9246 }

new/usr/src/cmd/dladm/dladm.c 127

9248 /*
9249 * Show the information about the IB partition objects.
9250 */
9251 static void
9252 do_show_part(int argc, char *argv[], const char *use)
9253 {
9254 int option;
9255 boolean_t l_arg = B_FALSE;
9256 uint32_t flags = DLADM_OPT_ACTIVE;
9257 datalink_id_t linkid = DATALINK_ALL_LINKID;
9258 datalink_id_t over_linkid = DATALINK_ALL_LINKID;
9259 char over_link[MAXLINKNAMELEN];
9260 show_part_state_t state;
9261 dladm_status_t status;
9262 boolean_t o_arg = B_FALSE;
9263 char *fields_str = NULL;
9264 ofmt_handle_t ofmt;
9265 ofmt_status_t oferr;
9266 uint_t ofmtflags = 0;

9268 bzero(&state, sizeof (state));
9269 opterr = 0;
9270 while ((option = getopt_long(argc, argv, ":pPl:o:", show_part_lopts,
9271 NULL)) != -1) {
9272 switch (option) {
9273 case ’p’:
9274 state.ps_parsable = B_TRUE;
9275 break;
9276 case ’P’:
9277 flags = DLADM_OPT_PERSIST;
9278 break;
9279 case ’l’:
9280 /*
9281 * The data link ID of the IB Phys link. When this
9282 * argument is provided we list only the partition
9283 * objects created over this IB Phys link.
9284 */
9285 if (strlcpy(over_link, optarg, MAXLINKNAMELEN) >=
9286 MAXLINKNAMELEN)
9287 die("link name too long");

9289 l_arg = B_TRUE;
9290 break;
9291 case ’o’:
9292 o_arg = B_TRUE;
9293 fields_str = optarg;
9294 break;
9295 default:
9296 die_opterr(optopt, option, use);
9297 }
9298 }

9300 /*
9301 * Get the partition ID (optional last argument).
9302 */
9303 if (optind == (argc - 1)) {
9304 status = dladm_name2info(handle, argv[optind], &linkid, NULL,
9305 NULL, NULL);
9306 if (status != DLADM_STATUS_OK) {
9307 die_dlerr(status, "invalid partition link name ’%s’",
9308 argv[optind]);
9309 }
9310 (void) strlcpy(state.ps_part, argv[optind], MAXLINKNAMELEN);
9311 } else if (optind != argc) {
9312 usage();

new/usr/src/cmd/dladm/dladm.c 128

9313 }

9315 if (state.ps_parsable && !o_arg)
9316 die("-p requires -o");

9318 /*
9319 * If an IB Phys link name was provided as an argument, then get its
9320 * datalink ID.
9321 */
9322 if (l_arg) {
9323 status = dladm_name2info(handle, over_link, &over_linkid, NULL,
9324 NULL, NULL);
9325 if (status != DLADM_STATUS_OK) {
9326 die_dlerr(status, "invalid link name ’%s’", over_link);
9327 }
9328 }

9330 state.ps_over_id = over_linkid; /* IB Phys link ID */
9331 state.ps_found = B_FALSE;
9332 state.ps_flags = flags;

9334 if (state.ps_parsable)
9335 ofmtflags |= OFMT_PARSABLE;
9336 oferr = ofmt_open(fields_str, part_fields, ofmtflags, 0, &ofmt);
9337 dladm_ofmt_check(oferr, state.ps_parsable, ofmt);
9338 state.ps_ofmt = ofmt;

9340 /*
9341 * If a specific IB partition name was not provided as an argument,
9342 * walk all the datalinks and display the information for all
9343 * IB partitions. If IB Phys link was provided limit it to only
9344 * IB partitions created over that IB Phys link.
9345 */
9346 if (linkid == DATALINK_ALL_LINKID) {
9347 (void) dladm_walk_datalink_id(show_part, handle, &state,
9348 DATALINK_CLASS_PART, DATALINK_ANY_MEDIATYPE, flags);
9349 } else {
9350 (void) show_part(handle, linkid, &state);
9351 if (state.ps_status != DLADM_STATUS_OK) {
9352 ofmt_close(ofmt);
9353 die_dlerr(state.ps_status, "failed to show IB partition"
9354 " ’%s’", state.ps_part);
9355 }
9356 }
9357 ofmt_close(ofmt);
9358 }

9361 /*
9362 * Called from the walker dladm_walk_datalink_id() for each IB Phys link to
9363 * display IB specific information for these Phys links.
9364 */
9365 static dladm_status_t
9366 print_ib(show_ib_state_t *state, datalink_id_t phys_linkid)
9367 {
9368 dladm_ib_attr_t attr;
9369 dladm_status_t status;
9370 char linkname[MAXLINKNAMELEN];
9371 char pkeystr[MAXPKEYLEN];
9372 int i;
9373 ib_fields_buf_t ibuf;

9375 bzero(&attr, sizeof (attr));

9377 /*
9378 * Get the attributes of the IB Phys link from active/Persistent config

new/usr/src/cmd/dladm/dladm.c 129

9379 * based on the flag passed.
9380 */
9381 if ((status = dladm_ib_info(handle, phys_linkid, &attr,
9382 state->is_flags)) != DLADM_STATUS_OK)
9383 return (status);

9385 if ((state->is_link_id != DATALINK_ALL_LINKID) && (state->is_link_id
9386 != attr.dia_physlinkid)) {
9387 dladm_free_ib_info(&attr);
9388 return (DLADM_STATUS_OK);
9389 }

9391 /*
9392 * Get the data link name for the phys_linkid. If we are doing show-ib
9393 * for all IB Phys links, we have only the datalink IDs not the
9394 * datalink name.
9395 */
9396 if (dladm_datalink_id2info(handle, phys_linkid, NULL, NULL, NULL,
9397 linkname, MAXLINKNAMELEN) != DLADM_STATUS_OK)
9398 return (status);

9400 (void) snprintf(ibuf.ib_link, sizeof (ibuf.ib_link),
9401 "%s", linkname);

9403 (void) snprintf(ibuf.ib_portnum, sizeof (ibuf.ib_portnum),
9404 "%d", attr.dia_portnum);

9406 (void) snprintf(ibuf.ib_hcaguid, sizeof (ibuf.ib_hcaguid),
9407 "%llX", attr.dia_hca_guid);

9409 (void) snprintf(ibuf.ib_portguid, sizeof (ibuf.ib_portguid),
9410 "%llX", attr.dia_port_guid);

9412 (void) get_linkstate(linkname, B_TRUE, ibuf.ib_state);

9414 /*
9415 * Create a comma separated list of pkeys from the pkey table returned
9416 * by the IP over IB driver instance.
9417 */
9418 bzero(ibuf.ib_pkeys, attr.dia_port_pkey_tbl_sz * sizeof (ib_pkey_t));
9419 for (i = 0; i < attr.dia_port_pkey_tbl_sz; i++) {
9420 if (attr.dia_port_pkeys[i] != IB_PKEY_INVALID_FULL &&
9421 attr.dia_port_pkeys[i] != IB_PKEY_INVALID_LIMITED) {
9422 if (i == 0)
9423 (void) snprintf(pkeystr, MAXPKEYLEN, "%X",
9424 attr.dia_port_pkeys[i]);
9425 else
9426 (void) snprintf(pkeystr, MAXPKEYLEN, ",%X",
9427 attr.dia_port_pkeys[i]);
9428 (void) strlcat(ibuf.ib_pkeys, pkeystr, MAXPKEYSTRSZ);
9429 }
9430 }

9432 dladm_free_ib_info(&attr);

9434 ofmt_print(state->is_ofmt, &ibuf);

9436 return (DLADM_STATUS_OK);
9437 }

9439 /* ARGSUSED */
9440 static int
9441 show_ib(dladm_handle_t dh, datalink_id_t linkid, void *arg)
9442 {
9443 ((show_ib_state_t *)arg)->is_status = print_ib(arg, linkid);
9444 return (DLADM_WALK_CONTINUE);

new/usr/src/cmd/dladm/dladm.c 130

9445 }

9447 /*
9448 * Show the properties of one/all IB Phys links. This is different from
9449 * show-phys command since this will display IB specific information about the
9450 * Phys link like, HCA GUID, PORT GUID, PKEYS active for this port etc.
9451 */
9452 static void
9453 do_show_ib(int argc, char *argv[], const char *use)
9454 {
9455 int option;
9456 uint32_t flags = DLADM_OPT_ACTIVE;
9457 datalink_id_t linkid = DATALINK_ALL_LINKID;
9458 show_ib_state_t state;
9459 dladm_status_t status;
9460 boolean_t o_arg = B_FALSE;
9461 char *fields_str = NULL;
9462 ofmt_handle_t ofmt;
9463 ofmt_status_t oferr;
9464 uint_t ofmtflags = 0;

9466 bzero(&state, sizeof (state));
9467 opterr = 0;
9468 while ((option = getopt_long(argc, argv, ":po:", show_lopts,
9469 NULL)) != -1) {
9470 switch (option) {
9471 case ’p’:
9472 state.is_parsable = B_TRUE;
9473 break;
9474 case ’o’:
9475 o_arg = B_TRUE;
9476 fields_str = optarg;
9477 break;
9478 default:
9479 die_opterr(optopt, option, use);
9480 }
9481 }

9483 /* get IB Phys link ID (optional last argument) */
9484 if (optind == (argc - 1)) {
9485 status = dladm_name2info(handle, argv[optind], &linkid, NULL,
9486 NULL, NULL);
9487 if (status != DLADM_STATUS_OK) {
9488 die_dlerr(status, "invalid IB port name ’%s’",
9489 argv[optind]);
9490 }
9491 (void) strlcpy(state.is_link, argv[optind], MAXLINKNAMELEN);
9492 } else if (optind != argc) {
9493 usage();
9494 }

9496 if (state.is_parsable && !o_arg)
9497 die("-p requires -o");

9499 /*
9500 * linkid is the data link ID of the IB Phys link. By default it will
9501 * be DATALINK_ALL_LINKID.
9502 */
9503 state.is_link_id = linkid;
9504 state.is_flags = flags;

9506 if (state.is_parsable)
9507 ofmtflags |= OFMT_PARSABLE;
9508 oferr = ofmt_open(fields_str, ib_fields, ofmtflags, 0, &ofmt);
9509 dladm_ofmt_check(oferr, state.is_parsable, ofmt);
9510 state.is_ofmt = ofmt;

new/usr/src/cmd/dladm/dladm.c 131

9512 /*
9513 * If we are going to display the information for all IB Phys links
9514 * then we’ll walk through all the datalinks for datalinks of Phys
9515 * class and media type IB.
9516 */
9517 if (linkid == DATALINK_ALL_LINKID) {
9518 (void) dladm_walk_datalink_id(show_ib, handle, &state,
9519 DATALINK_CLASS_PHYS, DL_IB, flags);
9520 } else {
9521 /*
9522 * We need to display the information only for the IB phys link
9523 * linkid. Call show_ib for this link.
9524 */
9525 (void) show_ib(handle, linkid, &state);
9526 if (state.is_status != DLADM_STATUS_OK) {
9527 ofmt_close(ofmt);
9528 die_dlerr(state.is_status, "failed to show IB Phys link"
9529 " ’%s’", state.is_link);
9530 }
9531 }
9532 ofmt_close(ofmt);
9533 }

9535 /*
9536 * Create an IP over Infiniband partition object over an IB Phys link. The IB
9537 * Phys link is associated with an Infiniband HCA port. The IB partition object
9538 * is created over a port, pkey combination. This partition object represents
9539 * an instance of IP over IB interface.
9540 */
9541 /* ARGSUSED */
9542 static void
9543 do_create_part(int argc, char *argv[], const char *use)
9544 {
9545 int status, option;
9546 int flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
9547 char *pname;
9548 char *l_arg = NULL;
9549 char *altroot = NULL;
9550 datalink_id_t physlinkid = 0;
9551 datalink_id_t partlinkid = 0;
9552 unsigned long opt_pkey;
9553 ib_pkey_t pkey = 0;
9554 char *endp = NULL;
9555 char propstr[DLADM_STRSIZE];
9556 dladm_arg_list_t *proplist = NULL;

9558 propstr[0] = ’\0’;
9559 while ((option = getopt_long(argc, argv, ":tfl:P:R:p:",
9560 part_lopts, NULL)) != -1) {
9561 switch (option) {
9562 case ’t’:
9563 /*
9564 * Create a temporary IB partition object. This
9565 * instance is not entered into the persistent database
9566 * so it will not be recreated automatically on a
9567 * reboot.
9568 */
9569 flags &= ~DLADM_OPT_PERSIST;
9570 break;
9571 case ’l’:
9572 /*
9573 * The IB phys link over which the partition object will
9574 * be created.
9575 */
9576 l_arg = optarg;

new/usr/src/cmd/dladm/dladm.c 132

9577 break;
9578 case ’R’:
9579 altroot = optarg;
9580 break;
9581 case ’p’:
9582 (void) strlcat(propstr, optarg, DLADM_STRSIZE);
9583 if (strlcat(propstr, ",", DLADM_STRSIZE) >=
9584 DLADM_STRSIZE)
9585 die("property list too long ’%s’", propstr);
9586 break;
9587 case ’P’:
9588 /*
9589 * The P_Key for the port, pkey tuple of the partition
9590 * object. This P_Key should exist in the IB subnet.
9591 * The partition creation for a non-existent P_Key will
9592 * fail unless the -f option is used.
9593 *
9594 * The P_Key is expected to be a hexadecimal number.
9595 */
9596 opt_pkey = strtoul(optarg, &endp, 16);
9597 if (errno == ERANGE || opt_pkey > USHRT_MAX ||
9598 *endp != ’\0’)
9599 die("Invalid pkey");

9601 pkey = (ib_pkey_t)opt_pkey;
9602 break;
9603 case ’f’:
9604 flags |= DLADM_OPT_FORCE;
9605 break;
9606 default:
9607 die_opterr(optopt, option, use);
9608 break;
9609 }
9610 }

9612 /* check required options */
9613 if (!l_arg)
9614 usage();

9616 /* the partition name is a required operand */
9617 if (optind != (argc - 1))
9618 usage();

9620 pname = argv[argc - 1];

9622 /*
9623 * Verify that the partition object’s name is in the valid link name
9624 * format.
9625 */
9626 if (!dladm_valid_linkname(pname))
9627 die("Invalid link name ’%s’", pname);

9629 /* pkey is a mandatory argument */
9630 if (pkey == 0)
9631 usage();

9633 if (altroot != NULL)
9634 altroot_cmd(altroot, argc, argv);

9636 /*
9637 * Get the data link id of the IB Phys link over which we will be
9638 * creating partition object.
9639 */
9640 if (dladm_name2info(handle, l_arg,
9641 &physlinkid, NULL, NULL, NULL) != DLADM_STATUS_OK)
9642 die("invalid link name ’%s’", l_arg);

new/usr/src/cmd/dladm/dladm.c 133

9644 /*
9645 * parse the property list provided with -p option.
9646 */
9647 if (dladm_parse_link_props(propstr, &proplist, B_FALSE)
9648 != DLADM_STATUS_OK)
9649 die("invalid IB partition property");

9651 /*
9652 * Call the library routine to create the partition object.
9653 */
9654 status = dladm_part_create(handle, physlinkid, pkey, flags, pname,
9655 &partlinkid, proplist);
9656 if (status != DLADM_STATUS_OK)
9657 die_dlerr(status,
9658 "partition %x creation over %s failed", pkey, l_arg);
9659 }

9661 /*
9662 * Delete an IP over Infiniband partition object. The partition object should
9663 * be unplumbed before attempting the delete.
9664 */
9665 static void
9666 do_delete_part(int argc, char *argv[], const char *use)
9667 {
9668 int option, flags = DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST;
9669 int status;
9670 char *altroot = NULL;
9671 datalink_id_t partid;

9673 opterr = 0;
9674 while ((option = getopt_long(argc, argv, "R:t", part_lopts,
9675 NULL)) != -1) {
9676 switch (option) {
9677 case ’t’:
9678 flags &= ~DLADM_OPT_PERSIST;
9679 break;
9680 case ’R’:
9681 altroot = optarg;
9682 break;
9683 default:
9684 die_opterr(optopt, option, use);
9685 }
9686 }

9688 /* get partition name (required last argument) */
9689 if (optind != (argc - 1))
9690 usage();

9692 if (altroot != NULL)
9693 altroot_cmd(altroot, argc, argv);

9695 /*
9696 * Get the data link id of the partition object given the partition
9697 * name.
9698 */
9699 status = dladm_name2info(handle, argv[optind], &partid, NULL, NULL,
9700 NULL);
9701 if (status != DLADM_STATUS_OK)
9702 die("invalid link name ’%s’", argv[optind]);

9704 /*
9705 * Call the library routine to delete the IB partition. This will
9706 * result in the IB partition object and all its resources getting
9707 * deleted.
9708 */

new/usr/src/cmd/dladm/dladm.c 134

9709 status = dladm_part_delete(handle, partid, flags);
9710 if (status != DLADM_STATUS_OK)
9711 die_dlerr(status, "%s: partition deletion failed",
9712 argv[optind]);
9713 }

9715 /*
9716 * Bring up all or one IB partition already present in the persistent database
9717 * but not active yet.
9718 *
9719 * This sub-command is used during the system boot up to bring up all IB
9720 * partitions present in the persistent database. This is similar to a
9721 * create partition except that, the partitions are always created even if the
9722 * HCA port is down or P_Key is not present in the IB subnet. This is similar
9723 * to using the ’force’ option while creating the partition except that the ’f’
9724 * flag will be set in the flags field only if the create-part for this command
9725 * was called with ’-f’ option.
9726 */
9727 /* ARGSUSED */
9728 static void
9729 do_up_part(int argc, char *argv[], const char *use)
9730 {
9731 datalink_id_t partid = DATALINK_ALL_LINKID;
9732 dladm_status_t status;

9734 /*
9735 * If a partition name was passed as an argument, get its data link
9736 * id. By default we’ll attempt to bring up all IB partition data
9737 * links.
9738 */
9739 if (argc == 2) {
9740 status = dladm_name2info(handle, argv[argc - 1], &partid, NULL,
9741 NULL, NULL);
9742 if (status != DLADM_STATUS_OK)
9743 return;
9744 } else if (argc > 2) {
9745 usage();
9746 }

9748 (void) dladm_part_up(handle, partid, 0);
9749 }

new/usr/src/man/man1m/dladm.1m 1

**
 110751 Sun Feb 9 05:30:59 2014
new/usr/src/man/man1m/dladm.1m
4585 dladm(1m) needs a ’help’ subcommand
3755 dladm show-aggr documentation
3374 usage of ’dladm’ does not match to its man page
**

1 ’\" te
2 .\" Copyright (c) 2008, Sun Microsystems, Inc. All Rights Reserved
3 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
4 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
5 .\" are reprinted and reproduced in electronic form in the Sun OS Reference Manu
6 .\" and Electronics Engineers, Inc and The Open Group. In the event of any discr
7 .\" This notice shall appear on any product containing this material.
8 .\" The contents of this file are subject to the terms of the Common Development
9 .\" See the License for the specific language governing permissions and limitati

10 .\" fields enclosed by brackets "[]" replaced with your own identifying informat
11 .TH DLADM 1M "Feb 10, 2014"
11 .TH DLADM 1M "Sep 23, 2009"
12 .SH NAME
13 dladm \- administer data links
14 .SH SYNOPSIS
15 .LP
16 .nf
17 \fBdladm\fR
18 .fi

20 .LP
21 .nf
22 #endif /* ! codereview */
23 \fBdladm show-link\fR [\fB-P\fR] [\fB-s\fR [\fB-i\fR \fIinterval\fR]] [[\fB-p\fR
24 \fBdladm rename-link\fR [\fB-R\fR \fIroot-dir\fR] \fIlink\fR \fInew-link\fR
25 .fi

27 .LP
28 .nf
29 \fBdladm delete-phys\fR \fIphys-link\fR
30 \fBdladm show-phys\fR [\fB-P\fR] [\fB-m\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR[,..
31 .fi

33 .LP
34 .nf
35 \fBdladm create-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-P\fR \fIpolicy
36 [\fB-T\fR \fItime\fR] [\fB-u\fR \fIaddress\fR] \fB-l\fR \fIether-link1\fR [
37 \fBdladm modify-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-P\fR \fIpolicy
38 [\fB-T\fR \fItime\fR] [\fB-u\fR \fIaddress\fR] \fIaggr-link\fR
39 \fBdladm delete-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fIaggr-link\fR
40 \fBdladm add-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fB-l\fR \fIether-link
41 \fIaggr-link\fR
42 \fBdladm remove-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fB-l\fR \fIether-l
43 \fIaggr-link\fR
44 \fBdladm show-aggr\fR [\fB-PLx\fR] [\fB-s\fR [\fB-i\fR \fIinterval\fR]] [[\fB-p\
45 [\fIaggr-link\fR]
46 .fi

48 .LP
49 .nf
50 \fBdladm create-bridge\fR [\fB-P\fR \fIprotect\fR] [\fB-R\fR \fIroot-dir\fR] [\f
51 [\fB-m\fR \fImax-age\fR] [\fB-h\fR \fIhello-time\fR] [\fB-d\fR \fIforward-d
52 [\fB-l\fR \fIlink\fR...] \fIbridge-name\fR
53 .fi

55 .LP
56 .nf
57 \fBdladm modify-bridge\fR [\fB-P\fR \fIprotect\fR] [\fB-R\fR \fIroot-dir\fR] [\f
58 [\fB-m\fR \fImax-age\fR] [\fB-h\fR \fIhello-time\fR] [\fB-d\fR \fIforward-d

new/usr/src/man/man1m/dladm.1m 2

59 \fIbridge-name\fR
60 .fi

62 .LP
63 .nf
64 \fBdladm delete-bridge\fR [\fB-R\fR \fIroot-dir\fR] \fIbridge-name\fR
65 .fi

67 .LP
68 .nf
69 \fBdladm add-bridge\fR [\fB-R\fR \fIroot-dir\fR] \fB-l\fR \fIlink\fR [\fB-l\fR \
70 .fi

72 .LP
73 .nf
74 \fBdladm remove-bridge\fR [\fB-R\fR \fIroot-dir\fR] \fB-l\fR \fIlink\fR [\fB-l\f
75 .fi

77 .LP
78 .nf
79 \fBdladm show-bridge\fR [\fB-flt\fR] [\fB-s\fR [\fB-i\fR \fIinterval\fR]] [[\fB-
80 [\fIbridge-name\fR]
81 .fi

83 .LP
84 .nf
85 \fBdladm create-vlan\fR [\fB-ft\fR] [\fB-R\fR \fIroot-dir\fR] \fB-l\fR \fIether-
86 \fBdladm delete-vlan\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fIvlan-link\fR
87 \fBdladm show-vlan\fR [\fB-P\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]] [\fIvla
88 .fi

90 .LP
91 .nf
92 \fBdladm scan-wifi\fR [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]] [\fIwifi-link\fR]
93 \fBdladm connect-wifi\fR [\fB-e\fR \fIessid\fR] [\fB-i\fR \fIbssid\fR] [\fB-k\fR
94 [\fB-s\fR none | wep | wpa] [\fB-a\fR open | shared] [\fB-b\fR bss | ibss]
95 [\fB-m\fR a | b | g] [\fB-T\fR \fItime\fR] [\fIwifi-link\fR]
96 \fBdladm disconnect-wifi\fR [\fB-a\fR] [\fIwifi-link\fR]
97 \fBdladm show-wifi\fR [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]] [\fIwifi-link\fR]
98 .fi

100 .LP
101 .nf
102 \fBdladm show-ether\fR [\fB-x\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]] [\fIet
103 .fi

105 .LP
106 .nf
107 \fBdladm set-linkprop\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fB-p\fR \fIprop\f
108 \fBdladm reset-linkprop\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-p\fR \fIpro
109 \fBdladm show-linkprop\fR [\fB-P\fR] [[\fB-c\fR] \fB-o\fR \fIfield\fR[,...]] [\f
110 .fi

112 .LP
113 .nf
114 \fBdladm create-secobj\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-f\fR \fIfile
115 \fBdladm delete-secobj\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fIsecobj\fR[,...
116 \fBdladm show-secobj\fR [\fB-P\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]] [\fIs
117 .fi

119 .LP
120 .nf
121 \fBdladm create-vnic\fR [\fB-t\fR] \fB-l\fR \fIlink\fR [\fB-R\fR \fIroot-dir\fR]
122 {factory \fB-n\fR \fIslot-identifier\fR]} | {random [\fB-r\fR \fIprefix\fR]
123 [\fB-v\fR \fIvlan-id\fR] [\fB-p\fR \fIprop\fR=\fIvalue\fR[,...]] \fIvnic-li
124 \fBdladm delete-vnic\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fIvnic-link\fR

new/usr/src/man/man1m/dladm.1m 3

125 \fBdladm show-vnic\fR [\fB-pP\fR] [\fB-s\fR [\fB-i\fR \fIinterval\fR]] [\fB-o\fR
126 [\fB-l\fR \fIlink\fR] [\fIvnic-link\fR]
127 .fi

129 .LP
130 .nf
131 \fBdladm create-etherstub\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fIetherstub\f
132 \fBdladm delete-etherstub\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fIetherstub\f
133 \fBdladm show-etherstub\fR [\fIetherstub\fR]
134 .fi

136 .LP
137 .nf
138 \fBdladm create-iptun\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fB-T\fR \fItype\f
139 \fIiptun-link\fR
140 \fBdladm modify-iptun\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-s\fR \fItsrc\
141 \fBdladm delete-iptun\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fIiptun-link\fR
142 \fBdladm show-iptun\fR [\fB-P\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]] [\fIip
143 .fi

145 .LP
146 .nf
147 \fBdladm show-usage\fR [\fB-a\fR] \fB-f\fR \fIfilename\fR [\fB-p\fR \fIplotfile\
148 [\fB-e\fR \fItime\fR] [\fIlink\fR]
149 .fi

151 .LP
152 .nf
153 \fBdladm help\fR [\fIsubcommand\fR]
154 .fi

156 #endif /* ! codereview */
157 .SH DESCRIPTION
158 .sp
159 .LP
160 The \fBdladm\fR command is used to administer data-links. A data-link is
161 represented in the system as a \fBSTREAMS DLPI\fR (v2) interface which can be
162 plumbed under protocol stacks such as \fBTCP/IP\fR. Each data-link relies on
163 either a single network device or an aggregation of devices to send packets to
164 or receive packets from a network.
165 .sp
166 .LP
167 Each \fBdladm\fR subcommand operates on one of the following objects:
168 .sp
169 .ne 2
170 .na
171 \fB\fBlink\fR\fR
172 .ad
173 .sp .6
174 .RS 4n
175 A datalink, identified by a name. In general, the name can use any alphanumeric
176 characters (or the underscore, \fB_\fR), but must start with an alphabetic
177 character and end with a number. A datalink name can be at most 31 characters,
178 and the ending number must be between 0 and 4294967294 (inclusive). The ending
179 number must not begin with a zero. Datalink names between 3 and 8 characters
180 are recommended.
181 .sp
182 Some subcommands operate only on certain types or classes of datalinks. For
183 those cases, the following object names are used:
184 .sp
185 .ne 2
186 .na
187 \fB\fBphys-link\fR\fR
188 .ad
189 .sp .6
190 .RS 4n

new/usr/src/man/man1m/dladm.1m 4

191 A physical datalink.
192 .RE

194 .sp
195 .ne 2
196 .na
197 \fB\fBvlan-link\fR\fR
198 .ad
199 .sp .6
200 .RS 4n
201 A VLAN datalink.
202 .RE

204 .sp
205 .ne 2
206 .na
207 \fB\fBaggr-link\fR\fR
208 .ad
209 .sp .6
210 .RS 4n
211 An aggregation datalink (or a key; see NOTES).
212 .RE

214 .sp
215 .ne 2
216 .na
217 \fB\fBether-link\fR\fR
218 .ad
219 .sp .6
220 .RS 4n
221 A physical Ethernet datalink.
222 .RE

224 .sp
225 .ne 2
226 .na
227 \fB\fBwifi-link\fR\fR
228 .ad
229 .sp .6
230 .RS 4n
231 A WiFi datalink.
232 .RE

234 .sp
235 .ne 2
236 .na
237 \fB\fBvnic-link\fR\fR
238 .ad
239 .sp .6
240 .RS 4n
241 A virtual network interface created on a link or an \fBetherstub\fR. It is a
242 pseudo device that can be treated as if it were an network interface card on a
243 machine.
244 .RE

246 .sp
247 .ne 2
248 .na
249 \fB\fBiptun-link\fR\fR
250 .ad
251 .sp .6
252 .RS 4n
253 An IP tunnel link.
254 .RE

256 .RE

new/usr/src/man/man1m/dladm.1m 5

258 .sp
259 .ne 2
260 .na
261 \fB\fBdev\fR\fR
262 .ad
263 .sp .6
264 .RS 4n
265 A network device, identified by concatenation of a driver name and an instance
266 number.
267 .RE

269 .sp
270 .ne 2
271 .na
272 \fB\fBetherstub\fR\fR
273 .ad
274 .sp .6
275 .RS 4n
276 An Ethernet stub can be used instead of a physical NIC to create VNICs. VNICs
277 created on an \fBetherstub\fR will appear to be connected through a virtual
278 switch, allowing complete virtual networks to be built without physical
279 hardware.
280 .RE

282 .sp
283 .ne 2
284 .na
285 \fB\fBbridge\fR\fR
286 .ad
287 .sp .6
288 .RS 4n
289 A bridge instance, identified by an administratively-chosen name. The name may
290 use any alphanumeric characters or the underscore, \fB_\fR, but must start and
291 end with an alphabetic character. A bridge name can be at most 31 characters.
292 The name \fBdefault\fR is reserved, as are all names starting with \fBSUNW\fR.
293 .sp
294 Note that appending a zero (\fB0\fR) to a bridge name produces a valid link
295 name, used for observability.
296 .RE

298 .sp
299 .ne 2
300 .na
301 \fB\fBsecobj\fR\fR
302 .ad
303 .sp .6
304 .RS 4n
305 A secure object, identified by an administratively-chosen name. The name can
306 use any alphanumeric characters, as well as underscore (\fB_\fR), period
307 (\fB\&.\fR), and hyphen (\fB-\fR). A secure object name can be at most 32
308 characters.
309 .RE

311 .SS "Options"
312 .sp
313 .LP
314 Each \fBdladm\fR subcommand has its own set of options. However, many of the
315 subcommands have the following as a common option:
316 .sp
317 .ne 2
318 .na
319 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
320 .ad
321 .sp .6
322 .RS 4n

new/usr/src/man/man1m/dladm.1m 6

323 Specifies an alternate root directory where the operation-such as creation,
324 deletion, or renaming-should apply.
325 .RE

327 .SS "SUBCOMMANDS"
328 .sp
329 .LP
330 The following subcommands are supported:
331 .sp
332 .ne 2
333 .na
334 \fB\fBdladm show-link\fR [\fB-P\fR] [\fB-s\fR [\fB-i\fR \fIinterval\fR]]
335 [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]][\fIlink\fR]\fR
336 .ad
337 .sp .6
338 .RS 4n
339 Show link configuration information (the default) or statistics, either for all
340 datalinks or for the specified link \fIlink\fR. By default, the system is
341 configured with one datalink for each known network device.
342 .sp
343 .ne 2
344 .na
345 \fB\fB-o\fR \fIfield\fR[,...], \fB--output\fR=\fIfield\fR[,...]\fR
346 .ad
347 .sp .6
348 .RS 4n
349 A case-insensitive, comma-separated list of output fields to display. When not
350 modified by the \fB-s\fR option (described below), the field name must be one
351 of the fields listed below, or the special value \fBall\fR to display all
352 fields. By default (without \fB-o\fR), \fBshow-link\fR displays all fields.
353 .sp
354 .ne 2
355 .na
356 \fB\fBLINK\fR\fR
357 .ad
358 .sp .6
359 .RS 4n
360 The name of the datalink.
361 .RE

363 .sp
364 .ne 2
365 .na
366 \fB\fBCLASS\fR\fR
367 .ad
368 .sp .6
369 .RS 4n
370 The class of the datalink. \fBdladm\fR distinguishes between the following
371 classes:
372 .sp
373 .ne 2
374 .na
375 \fB\fBphys\fR\fR
376 .ad
377 .sp .6
378 .RS 4n
379 A physical datalink. The \fBshow-phys\fR subcommand displays more detail for
380 this class of datalink.
381 .RE

383 .sp
384 .ne 2
385 .na
386 \fB\fBaggr\fR\fR
387 .ad
388 .sp .6

new/usr/src/man/man1m/dladm.1m 7

389 .RS 4n
390 An IEEE 802.3ad link aggregation. The \fBshow-aggr\fR subcommand displays more
391 detail for this class of datalink.
392 .RE

394 .sp
395 .ne 2
396 .na
397 \fB\fBvlan\fR\fR
398 .ad
399 .sp .6
400 .RS 4n
401 A VLAN datalink. The \fBshow-vlan\fR subcommand displays more detail for this
402 class of datalink.
403 .RE

405 .sp
406 .ne 2
407 .na
408 \fB\fBvnic\fR\fR
409 .ad
410 .sp .6
411 .RS 4n
412 A virtual network interface. The \fBshow-vnic\fR subcommand displays more
413 detail for this class of datalink.
414 .RE

416 .RE

418 .sp
419 .ne 2
420 .na
421 \fB\fBMTU\fR\fR
422 .ad
423 .sp .6
424 .RS 4n
425 The maximum transmission unit size for the datalink being displayed.
426 .RE

428 .sp
429 .ne 2
430 .na
431 \fB\fBSTATE\fR\fR
432 .ad
433 .sp .6
434 .RS 4n
435 The link state of the datalink. The state can be \fBup\fR, \fBdown\fR, or
436 \fBunknown\fR.
437 .RE

439 .sp
440 .ne 2
441 .na
442 \fB\fBBRIDGE\fR\fR
443 .ad
444 .sp .6
445 .RS 4n
446 The name of the bridge to which this link is assigned, if any.
447 .RE

449 .sp
450 .ne 2
451 .na
452 \fB\fBOVER\fR\fR
453 .ad
454 .sp .6

new/usr/src/man/man1m/dladm.1m 8

455 .RS 4n
456 The physical datalink(s) over which the datalink is operating. This applies to
457 \fBaggr\fR, \fBbridge\fR, and \fBvlan\fR classes of datalinks. A VLAN is
458 created over a single physical datalink, a bridge has multiple attached links,
459 and an aggregation is comprised of one or more physical datalinks.
460 .RE

462 When the \fB-o\fR option is used in conjunction with the \fB-s\fR option, used
463 to display link statistics, the field name must be one of the fields listed
464 below, or the special value \fBall\fR to display all fields
465 .sp
466 .ne 2
467 .na
468 \fB\fBLINK\fR\fR
469 .ad
470 .sp .6
471 .RS 4n
472 The name of the datalink.
473 .RE

475 .sp
476 .ne 2
477 .na
478 \fB\fBIPACKETS\fR\fR
479 .ad
480 .sp .6
481 .RS 4n
482 Number of packets received on this link.
483 .RE

485 .sp
486 .ne 2
487 .na
488 \fB\fBRBYTES\fR\fR
489 .ad
490 .sp .6
491 .RS 4n
492 Number of bytes received on this link.
493 .RE

495 .sp
496 .ne 2
497 .na
498 \fB\fBIERRORS\fR\fR
499 .ad
500 .sp .6
501 .RS 4n
502 Number of input errors.
503 .RE

505 .sp
506 .ne 2
507 .na
508 \fB\fBOPACKETS\fR\fR
509 .ad
510 .sp .6
511 .RS 4n
512 Number of packets sent on this link.
513 .RE

515 .sp
516 .ne 2
517 .na
518 \fB\fBOBYTES\fR\fR
519 .ad
520 .sp .6

new/usr/src/man/man1m/dladm.1m 9

521 .RS 4n
522 Number of bytes sent on this link.
17 Number of bytes received on this link.
523 .RE

525 .sp
526 .ne 2
527 .na
528 \fB\fBOERRORS\fR\fR
529 .ad
530 .sp .6
531 .RS 4n
532 Number of output errors.
533 .RE

535 .RE

537 .sp
538 .ne 2
539 .na
540 \fB\fB-p\fR, \fB--parseable\fR\fR
541 .ad
542 .sp .6
543 .RS 4n
544 Display using a stable machine-parseable format. The \fB-o\fR option is
545 required with \fB-p\fR. See "Parseable Output Format", below.
546 .RE

548 .sp
549 .ne 2
550 .na
551 \fB\fB-P\fR, \fB--persistent\fR\fR
552 .ad
553 .sp .6
554 .RS 4n
555 Display the persistent link configuration.
556 .RE

558 .sp
559 .ne 2
560 .na
561 \fB\fB-s\fR, \fB--statistics\fR\fR
562 .ad
563 .sp .6
564 .RS 4n
565 Display link statistics.
566 .RE

568 .sp
569 .ne 2
570 .na
571 \fB\fB-i\fR \fIinterval\fR, \fB--interval\fR=\fIinterval\fR\fR
572 .ad
573 .sp .6
574 .RS 4n
575 Used with the \fB-s\fR option to specify an interval, in seconds, at which
576 statistics should be displayed. If this option is not specified, statistics
577 will be displayed only once.
578 .RE

580 .RE

582 .sp
583 .ne 2
584 .na
585 \fB\fBdladm rename-link\fR [\fB-R\fR \fIroot-dir\fR] \fIlink\fR

new/usr/src/man/man1m/dladm.1m 10

586 \fInew-link\fR\fR
587 .ad
588 .sp .6
589 .RS 4n
590 Rename \fIlink\fR to \fInew-link\fR. This is used to give a link a meaningful
591 name, or to associate existing link configuration such as link properties of a
592 removed device with a new device. See the \fBEXAMPLES\fR section for specific
593 examples of how this subcommand is used.
594 .sp
595 .ne 2
596 .na
597 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
598 .ad
599 .sp .6
600 .RS 4n
601 See "Options," above.
602 .RE

604 .RE

606 .sp
607 .ne 2
608 .na
609 \fB\fBdladm delete-phys\fR \fIphys-link\fR\fR
610 .ad
611 .sp .6
612 .RS 4n
613 This command is used to delete the persistent configuration of a link
614 associated with physical hardware which has been removed from the system. See
615 the \fBEXAMPLES\fR section.
616 .RE

618 .sp
619 .ne 2
620 .na
621 \fB\fBdladm show-phys\fR [\fB-P\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]]
622 [\fB-H\fR] [\fIphys-link\fR]\fR
623 .ad
624 .sp .6
625 .RS 4n
626 Show the physical device and attributes of all physical links, or of the named
627 physical link. Without \fB-P\fR, only physical links that are available on the
628 running system are displayed.
629 .sp
630 .ne 2
631 .na
632 \fB\fB-H\fR\fR
633 .ad
634 .sp .6
635 .RS 4n
636 Show hardware resource usage, as returned by the NIC driver. Output from
637 \fB-H\fR displays the following elements:
638 .sp
639 .ne 2
640 .na
641 \fB\fBLINK\fR\fR
642 .ad
643 .sp .6
644 .RS 4n
645 A physical device corresponding to a NIC driver.
646 .RE

648 .sp
649 .ne 2
650 .na
651 \fB\fBGROUP\fR\fR

new/usr/src/man/man1m/dladm.1m 11

652 .ad
653 .sp .6
654 .RS 4n
655 A collection of rings.
656 .RE

658 .sp
659 .ne 2
660 .na
661 \fB\fBGROUPTYPE\fR\fR
662 .ad
663 .sp .6
664 .RS 4n
665 RX or TX. All rings in a group are of the same group type.
666 .RE

668 .sp
669 .ne 2
670 .na
671 \fB\fBRINGS\fR\fR
672 .ad
673 .sp .6
674 .RS 4n
675 A hardware resource used by a data link, subject to assignment by a driver to
676 different groups.
677 .RE

679 .sp
680 .ne 2
681 .na
682 \fB\fBCLIENTS\fR\fR
683 .ad
684 .sp .6
685 .RS 4n
686 MAC clients that are using the rings within a group.
687 .RE

689 .RE

691 .sp
692 .ne 2
693 .na
694 \fB\fB-o\fR \fIfield\fR, \fB--output\fR=\fIfield\fR\fR
695 .ad
696 .sp .6
697 .RS 4n
698 A case-insensitive, comma-separated list of output fields to display. The field
699 name must be one of the fields listed below, or the special value \fBall\fR, to
700 display all fields. For each link, the following fields can be displayed:
701 .sp
702 .ne 2
703 .na
704 \fB\fBLINK\fR\fR
705 .ad
706 .sp .6
707 .RS 4n
708 The name of the datalink.
709 .RE

711 .sp
712 .ne 2
713 .na
714 \fB\fBMEDIA\fR\fR
715 .ad
716 .sp .6
717 .RS 4n

new/usr/src/man/man1m/dladm.1m 12

718 The media type provided by the physical datalink.
719 .RE

721 .sp
722 .ne 2
723 .na
724 \fB\fBSTATE\fR\fR
725 .ad
726 .sp .6
727 .RS 4n
728 The state of the link. This can be \fBup\fR, \fBdown\fR, or \fBunknown\fR.
729 .RE

731 .sp
732 .ne 2
733 .na
734 \fB\fBSPEED\fR\fR
735 .ad
736 .sp .6
737 .RS 4n
738 The current speed of the link, in megabits per second.
739 .RE

741 .sp
742 .ne 2
743 .na
744 \fB\fBDUPLEX\fR\fR
745 .ad
746 .sp .6
747 .RS 4n
748 For Ethernet links, the full/half duplex status of the link is displayed if the
749 link state is \fBup\fR. The duplex is displayed as \fBunknown\fR in all other
750 cases.
751 .RE

753 .sp
754 .ne 2
755 .na
756 \fB\fBDEVICE\fR\fR
757 .ad
758 .sp .6
759 .RS 4n
760 The name of the physical device under this link.
761 .RE

763 .RE

765 .sp
766 .ne 2
767 .na
768 \fB\fB-p\fR, \fB--parseable\fR\fR
769 .ad
770 .sp .6
771 .RS 4n
772 Display using a stable machine-parseable format. The \fB-o\fR option is
773 required with \fB-p\fR. See "Parseable Output Format", below.
774 .RE

776 .sp
777 .ne 2
778 .na
779 \fB\fB-P\fR, \fB--persistent\fR\fR
780 .ad
781 .sp .6
782 .RS 4n
783 This option displays persistent configuration for all links, including those

new/usr/src/man/man1m/dladm.1m 13

784 that have been removed from the system. The output provides a \fBFLAGS\fR
785 column in which the \fBr\fR flag indicates that the physical device associated
786 with a physical link has been removed. For such links, \fBdelete-phys\fR can be
787 used to purge the link’s configuration from the system.
788 .RE

790 .RE

792 .sp
793 .ne 2
794 .na
795 \fB\fBdladm create-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-P\fR
796 \fIpolicy\fR] [\fB-L\fR \fImode\fR] [\fB-T\fR \fItime\fR] [\fB-u\fR
797 \fIaddress\fR] \fB-l\fR \fIether-link1\fR [\fB-l\fR \fIether-link2\fR...]
798 \fIaggr-link\fR\fR
799 .ad
800 .sp .6
801 .RS 4n
802 Combine a set of links into a single IEEE 802.3ad link aggregation named
803 \fIaggr-link\fR. The use of an integer \fIkey\fR to generate a link name for
804 the aggregation is also supported for backward compatibility. Many of the
805 \fB*\fR\fB-aggr\fR subcommands below also support the use of a \fIkey\fR to
806 refer to a given aggregation, but use of the aggregation link name is
807 preferred. See the \fBNOTES\fR section for more information on keys.
808 .sp
809 \fBdladm\fR supports a number of port selection policies for an aggregation of
810 ports. (See the description of the \fB-P\fR option, below.) If you do not
811 specify a policy, \fBcreate-aggr\fR uses the default, the L4 policy, described
812 under the \fB-P\fR option.
813 .sp
814 .ne 2
815 .na
816 \fB\fB-l\fR \fIether-link\fR, \fB--link\fR=\fIether-link\fR\fR
817 .ad
818 .sp .6
819 .RS 4n
820 Each Ethernet link (or port) in the aggregation is specified using an \fB-l\fR
821 option followed by the name of the link to be included in the aggregation.
822 Multiple links are included in the aggregation by specifying multiple \fB-l\fR
823 options. For backward compatibility with previous versions of Solaris, the
824 \fBdladm\fR command also supports the using the \fB-d\fR option (or
825 \fB--dev\fR) with a device name to specify links by their underlying device
826 name. The other \fB*\fR\fB-aggr\fR subcommands that take \fB-l\fRoptions also
827 accept \fB-d\fR.
828 .RE

830 .sp
831 .ne 2
832 .na
833 \fB\fB-t\fR, \fB--temporary\fR\fR
834 .ad
835 .sp .6
836 .RS 4n
837 Specifies that the aggregation is temporary. Temporary aggregations last until
838 the next reboot.
839 .RE

841 .sp
842 .ne 2
843 .na
844 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
845 .ad
846 .sp .6
847 .RS 4n
848 See "Options," above.
849 .RE

new/usr/src/man/man1m/dladm.1m 14

851 .sp
852 .ne 2
853 .na
854 \fB\fB-P\fR \fIpolicy\fR, \fB--policy\fR=\fIpolicy\fR\fR
855 .ad
856 .br
857 .na
858 \fB\fR
859 .ad
860 .sp .6
861 .RS 4n
862 Specifies the port selection policy to use for load spreading of outbound
863 traffic. The policy specifies which \fIdev\fR object is used to send packets. A
864 policy is a list of one or more layers specifiers separated by commas. A layer
865 specifier is one of the following:
866 .sp
867 .ne 2
868 .na
869 \fB\fBL2\fR\fR
870 .ad
871 .sp .6
872 .RS 4n
873 Select outbound device according to source and destination \fBMAC\fR addresses
874 of the packet.
875 .RE

877 .sp
878 .ne 2
879 .na
880 \fB\fBL3\fR\fR
881 .ad
882 .sp .6
883 .RS 4n
884 Select outbound device according to source and destination \fBIP\fR addresses
885 of the packet.
886 .RE

888 .sp
889 .ne 2
890 .na
891 \fB\fBL4\fR\fR
892 .ad
893 .sp .6
894 .RS 4n
895 Select outbound device according to the upper layer protocol information
896 contained in the packet. For \fBTCP\fR and \fBUDP\fR, this includes source and
897 destination ports. For IPsec, this includes the \fBSPI\fR (Security Parameters
898 Index).
899 .RE

901 For example, to use upper layer protocol information, the following policy can
902 be used:
903 .sp
904 .in +2
905 .nf
906 -P L4
907 .fi
908 .in -2
909 .sp

911 Note that policy L4 is the default.
912 .sp
913 To use the source and destination \fBMAC\fR addresses as well as the source and
914 destination \fBIP\fR addresses, the following policy can be used:
915 .sp

new/usr/src/man/man1m/dladm.1m 15

916 .in +2
917 .nf
918 -P L2,L3
919 .fi
920 .in -2
921 .sp

923 .RE

925 .sp
926 .ne 2
927 .na
928 \fB\fB-L\fR \fImode\fR, \fB--lacp-mode\fR=\fImode\fR\fR
929 .ad
930 .sp .6
931 .RS 4n
932 Specifies whether \fBLACP\fR should be used and, if used, the mode in which it
933 should operate. Supported values are \fBoff\fR, \fBactive\fR or \fBpassive\fR.
934 .RE

936 .sp
937 .ne 2
938 .na
939 \fB\fB-T\fR \fItime\fR, \fB--lacp-timer\fR=\fItime\fR\fR
940 .ad
941 .br
942 .na
943 \fB\fR
944 .ad
945 .sp .6
946 .RS 4n
947 Specifies the \fBLACP\fR timer value. The supported values are \fBshort\fR or
948 \fBlong\fRjjj.
949 .RE

951 .sp
952 .ne 2
953 .na
954 \fB\fB-u\fR \fIaddress\fR, \fB--unicast\fR=\fIaddress\fR\fR
955 .ad
956 .sp .6
957 .RS 4n
958 Specifies a fixed unicast hardware address to be used for the aggregation. If
959 this option is not specified, then an address is automatically chosen from the
960 set of addresses of the component devices.
961 .RE

963 .RE

965 .sp
966 .ne 2
967 .na
968 \fB\fBdladm modify-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-P\fR
969 \fIpolicy\fR] [\fB-L\fR \fImode\fR] [\fB-T\fR \fItime\fR] [\fB-u\fR
970 \fIaddress\fR] \fIaggr-link\fR\fR
971 .ad
972 .sp .6
973 .RS 4n
974 Modify the parameters of the specified aggregation.
975 .sp
976 .ne 2
977 .na
978 \fB\fB-t\fR, \fB--temporary\fR\fR
979 .ad
980 .sp .6
981 .RS 4n

new/usr/src/man/man1m/dladm.1m 16

982 Specifies that the modification is temporary. Temporary aggregations last until
983 the next reboot.
984 .RE

986 .sp
987 .ne 2
988 .na
989 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
990 .ad
991 .sp .6
992 .RS 4n
993 See "Options," above.
994 .RE

996 .sp
997 .ne 2
998 .na
999 \fB\fB-P\fR \fIpolicy\fR, \fB--policy\fR=\fIpolicy\fR\fR

1000 .ad
1001 .sp .6
1002 .RS 4n
1003 Specifies the port selection policy to use for load spreading of outbound
1004 traffic. See \fBdladm create-aggr\fR for a description of valid policy values.
1005 .RE

1007 .sp
1008 .ne 2
1009 .na
1010 \fB\fB-L\fR \fImode\fR, \fB--lacp-mode\fR=\fImode\fR\fR
1011 .ad
1012 .sp .6
1013 .RS 4n
1014 Specifies whether \fBLACP\fR should be used and, if used, the mode in which it
1015 should operate. Supported values are \fBoff\fR, \fBactive\fR, or \fBpassive\fR.
1016 .RE

1018 .sp
1019 .ne 2
1020 .na
1021 \fB\fB-T\fR \fItime\fR, \fB--lacp-timer\fR=\fItime\fR\fR
1022 .ad
1023 .br
1024 .na
1025 \fB\fR
1026 .ad
1027 .sp .6
1028 .RS 4n
1029 Specifies the \fBLACP\fR timer value. The supported values are \fBshort\fR or
1030 \fBlong\fR.
1031 .RE

1033 .sp
1034 .ne 2
1035 .na
1036 \fB\fB-u\fR \fIaddress\fR, \fB--unicast\fR=\fIaddress\fR\fR
1037 .ad
1038 .sp .6
1039 .RS 4n
1040 Specifies a fixed unicast hardware address to be used for the aggregation. If
1041 this option is not specified, then an address is automatically chosen from the
1042 set of addresses of the component devices.
1043 .RE

1045 .RE

1047 .sp

new/usr/src/man/man1m/dladm.1m 17

1048 .ne 2
1049 .na
1050 \fB\fBdladm delete-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR]
1051 \fIaggr-link\fR\fR
1052 .ad
1053 .sp .6
1054 .RS 4n
1055 Deletes the specified aggregation.
1056 .sp
1057 .ne 2
1058 .na
1059 \fB\fB-t\fR, \fB--temporary\fR\fR
1060 .ad
1061 .sp .6
1062 .RS 4n
1063 Specifies that the deletion is temporary. Temporary deletions last until the
1064 next reboot.
1065 .RE

1067 .sp
1068 .ne 2
1069 .na
1070 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
1071 .ad
1072 .sp .6
1073 .RS 4n
1074 See "Options," above.
1075 .RE

1077 .RE

1079 .sp
1080 .ne 2
1081 .na
1082 \fB\fBdladm add-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fB-l\fR
1083 \fIether-link1\fR [\fB--link\fR=\fIether-link2\fR...] \fIaggr-link\fR\fR
1084 .ad
1085 .sp .6
1086 .RS 4n
1087 Adds links to the specified aggregation.
1088 .sp
1089 .ne 2
1090 .na
1091 \fB\fB-l\fR \fIether-link\fR, \fB--link\fR=\fIether-link\fR\fR
1092 .ad
1093 .sp .6
1094 .RS 4n
1095 Specifies an Ethernet link to add to the aggregation. Multiple links can be
1096 added by supplying multiple \fB-l\fR options.
1097 .RE

1099 .sp
1100 .ne 2
1101 .na
1102 \fB\fB-t\fR, \fB--temporary\fR\fR
1103 .ad
1104 .sp .6
1105 .RS 4n
1106 Specifies that the additions are temporary. Temporary additions last until the
1107 next reboot.
1108 .RE

1110 .sp
1111 .ne 2
1112 .na
1113 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR

new/usr/src/man/man1m/dladm.1m 18

1114 .ad
1115 .sp .6
1116 .RS 4n
1117 See "Options," above.
1118 .RE

1120 .RE

1122 .sp
1123 .ne 2
1124 .na
1125 \fB\fBdladm remove-aggr\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fB-l\fR
1126 \fIether-link1\fR [\fB--l\fR=\fIether-link2\fR...] \fIaggr-link\fR\fR
1127 .ad
1128 .sp .6
1129 .RS 4n
1130 Removes links from the specified aggregation.
1131 .sp
1132 .ne 2
1133 .na
1134 \fB\fB-l\fR \fIether-link\fR, \fB--link\fR=\fIether-link\fR\fR
1135 .ad
1136 .sp .6
1137 .RS 4n
1138 Specifies an Ethernet link to remove from the aggregation. Multiple links can
1139 be added by supplying multiple \fB-l\fR options.
1140 .RE

1142 .sp
1143 .ne 2
1144 .na
1145 \fB\fB-t\fR, \fB--temporary\fR\fR
1146 .ad
1147 .sp .6
1148 .RS 4n
1149 Specifies that the removals are temporary. Temporary removal last until the
1150 next reboot.
1151 .RE

1153 .sp
1154 .ne 2
1155 .na
1156 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
1157 .ad
1158 .sp .6
1159 .RS 4n
1160 See "Options," above.
1161 .RE

1163 .RE

1165 .sp
1166 .ne 2
1167 .na
1168 \fB\fBdladm show-aggr\fR [\fB-PLx\fR] [\fB-s\fR [\fB-i\fR \fIinterval\fR]]
1169 [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]] [\fIaggr-link\fR]\fR
1170 .ad
1171 .sp .6
1172 .RS 4n
1173 Show aggregation configuration (the default), \fBLACP\fR information, or
1174 statistics, either for all aggregations or for the specified aggregation.
1175 .sp
1176 By default (with no options), the following fields can be displayed:
1177 .sp
1178 .ne 2
1179 .na

new/usr/src/man/man1m/dladm.1m 19

1180 \fB\fBLINK\fR\fR
1181 .ad
1182 .sp .6
1183 .RS 4n
1184 The name of the aggregation link.
1185 .RE

1187 .sp
1188 .ne 2
1189 .na
1190 \fB\fBPOLICY\fR\fR
1191 .ad
1192 .sp .6
1193 .RS 4n
1194 The LACP policy of the aggregation. See the \fBcreate-aggr\fR \fB-P\fR option
1195 for a description of the possible values.
1196 .RE

1198 .sp
1199 .ne 2
1200 .na
1201 \fB\fBADDRPOLICY\fR\fR
1202 .ad
1203 .sp .6
1204 .RS 4n
1205 Either \fBauto\fR, if the aggregation is configured to automatically configure
1206 its unicast MAC address (the default if the \fB-u\fR option was not used to
1207 create or modify the aggregation), or \fBfixed\fR, if \fB-u\fR was used to set
1208 a fixed MAC address.
1209 .RE

1211 .sp
1212 .ne 2
1213 .na
1214 \fB\fBLACPACTIVITY\fR\fR
1215 .ad
1216 .sp .6
1217 .RS 4n
1218 The LACP mode of the aggregation. Possible values are \fBoff\fR, \fBactive\fR,
1219 or \fBpassive\fR, as set by the \fB-l\fR option to \fBcreate-aggr\fR or
1220 \fBmodify-aggr\fR.
1221 .RE

1223 .sp
1224 .ne 2
1225 .na
1226 \fB\fBLACPTIMER\fR\fR
1227 .ad
1228 .sp .6
1229 .RS 4n
1230 The LACP timer value of the aggregation as set by the \fB-T\fR option of
1231 \fBcreate-aggr\fR or \fBmodify-aggr\fR.
1232 .RE

1234 .sp
1235 .ne 2
1236 .na
1237 \fB\fBFLAGS\fR\fR
1238 .ad
1239 .sp .6
1240 .RS 4n
1241 A set of state flags associated with the aggregation. The only possible flag is
1242 \fBf\fR, which is displayed if the administrator forced the creation the
1243 aggregation using the \fB-f\fR option to \fBcreate-aggr\fR. Other flags might
1244 be defined in the future.
1245 .RE

new/usr/src/man/man1m/dladm.1m 20

1247 The \fBshow-aggr\fR command accepts the following options:
1248 .sp
1249 .ne 2
1250 .na
1251 \fB\fB-L\fR, \fB--lacp\fR\fR
1252 .ad
1253 .sp .6
1254 .RS 4n
1255 Displays detailed \fBLACP\fR information for the aggregation link and each
1256 underlying port. Most of the state information displayed by this option is
1257 defined by IEEE 802.3. With this option, the following fields can be displayed:
1258 .sp
1259 .ne 2
1260 .na
1261 \fB\fBLINK\fR\fR
1262 .ad
1263 .sp .6
1264 .RS 4n
1265 The name of the aggregation link.
1266 .RE

1268 .sp
1269 .ne 2
1270 .na
1271 \fB\fBPORT\fR\fR
1272 .ad
1273 .sp .6
1274 .RS 4n
1275 The name of one of the underlying aggregation ports.
1276 .RE

1278 .sp
1279 .ne 2
1280 .na
1281 \fB\fBAGGREGATABLE\fR\fR
1282 .ad
1283 .sp .6
1284 .RS 4n
1285 Whether the port can be added to the aggregation.
1286 .RE

1288 .sp
1289 .ne 2
1290 .na
1291 \fB\fBSYNC\fR\fR
1292 .ad
1293 .sp .6
1294 .RS 4n
1295 If \fByes\fR, the system considers the port to be synchronized and part of the
1296 aggregation.
1297 .RE

1299 .sp
1300 .ne 2
1301 .na
1302 \fB\fBCOLL\fR\fR
1303 .ad
1304 .sp .6
1305 .RS 4n
1306 If \fByes\fR, collection of incoming frames is enabled on the associated port.
1307 .RE

1309 .sp
1310 .ne 2
1311 .na

new/usr/src/man/man1m/dladm.1m 21

1312 \fB\fBDIST\fR\fR
1313 .ad
1314 .sp .6
1315 .RS 4n
1316 If \fByes\fR, distribution of outgoing frames is enabled on the associated
1317 port.
1318 .RE

1320 .sp
1321 .ne 2
1322 .na
1323 \fB\fBDEFAULTED\fR\fR
1324 .ad
1325 .sp .6
1326 .RS 4n
1327 If \fByes\fR, the port is using defaulted partner information (that is, has not
1328 received LACP data from the LACP partner).
1329 .RE

1331 .sp
1332 .ne 2
1333 .na
1334 \fB\fBEXPIRED\fR\fR
1335 .ad
1336 .sp .6
1337 .RS 4n
1338 If \fByes\fR, the receive state of the port is in the \fBEXPIRED\fR state.
1339 .RE

1341 .RE

1343 .sp
1344 .ne 2
1345 .na
1346 \fB\fB-x\fR, \fB--extended\fR\fR
1347 .ad
1348 .sp .6
1349 .RS 4n
1350 Display additional aggregation information including detailed information on
1351 each underlying port. With \fB-x\fR, the following fields can be displayed:
1352 .sp
1353 .ne 2
1354 .na
1355 \fB\fBLINK\fR\fR
1356 .ad
1357 .sp .6
1358 .RS 4n
1359 The name of the aggregation link.
1360 .RE

1362 .sp
1363 .ne 2
1364 .na
1365 \fB\fBPORT\fR\fR
1366 .ad
1367 .sp .6
1368 .RS 4n
1369 The name of one of the underlying aggregation ports.
1370 .RE

1372 .sp
1373 .ne 2
1374 .na
1375 \fB\fBSPEED\fR\fR
1376 .ad
1377 .sp .6

new/usr/src/man/man1m/dladm.1m 22

1378 .RS 4n
1379 The speed of the link or port in megabits per second.
1380 .RE

1382 .sp
1383 .ne 2
1384 .na
1385 \fB\fBDUPLEX\fR\fR
1386 .ad
1387 .sp .6
1388 .RS 4n
1389 The full/half duplex status of the link or port is displayed if the link state
1390 is \fBup\fR. The duplex status is displayed as \fBunknown\fR in all other
1391 cases.
1392 .RE

1394 .sp
1395 .ne 2
1396 .na
1397 \fB\fBSTATE\fR\fR
1398 .ad
1399 .sp .6
1400 .RS 4n
1401 The link state. This can be \fBup\fR, \fBdown\fR, or \fBunknown\fR.
1402 .RE

1404 .sp
1405 .ne 2
1406 .na
1407 \fB\fBADDRESS\fR\fR
1408 .ad
1409 .sp .6
1410 .RS 4n
1411 The MAC address of the link or port.
1412 .RE

1414 .sp
1415 .ne 2
1416 .na
1417 \fB\fBPORTSTATE\fR\fR
1418 .ad
1419 .sp .6
1420 .RS 4n
1421 This indicates whether the individual aggregation port is in the \fBstandby\fR
1422 or \fBattached\fR state.
1423 .RE

1425 .RE

1427 .sp
1428 .ne 2
1429 .na
1430 \fB\fB-o\fR \fIfield\fR[,...], \fB--output\fR=\fIfield\fR[,...]\fR
1431 .ad
1432 .sp .6
1433 .RS 4n
1434 A case-insensitive, comma-separated list of output fields to display. The field
1435 name must be one of the fields listed above, or the special value \fBall\fR, to
1436 display all fields. The fields applicable to the \fB-o\fR option are limited to
1437 those listed under each output mode. For example, if using \fB-L\fR, only the
1438 fields listed under \fB-L\fR, above, can be used with \fB-o\fR.
1439 .RE

1441 .sp
1442 .ne 2
1443 .na

new/usr/src/man/man1m/dladm.1m 23

1444 \fB\fB-p\fR, \fB--parseable\fR\fR
1445 .ad
1446 .sp .6
1447 .RS 4n
1448 Display using a stable machine-parseable format. The \fB-o\fR option is
1449 required with \fB-p\fR. See "Parseable Output Format", below.
1450 .RE

1452 .sp
1453 .ne 2
1454 .na
1455 \fB\fB-P\fR, \fB--persistent\fR\fR
1456 .ad
1457 .sp .6
1458 .RS 4n
1459 Display the persistent aggregation configuration rather than the state of the
1460 running system.
1461 .RE

1463 .sp
1464 .ne 2
1465 .na
1466 \fB\fB-s\fR, \fB--statistics\fR\fR
1467 .ad
1468 .sp .6
1469 .RS 4n
1470 Displays aggregation statistics.
1471 .RE

1473 .sp
1474 .ne 2
1475 .na
1476 \fB\fB-i\fR \fIinterval\fR, \fB--interval\fR=\fIinterval\fR\fR
1477 .ad
1478 .sp .6
1479 .RS 4n
1480 Used with the \fB-s\fR option to specify an interval, in seconds, at which
1481 statistics should be displayed. If this option is not specified, statistics
1482 will be displayed only once.
1483 .RE

1485 .RE

1487 .sp
1488 .ne 2
1489 .na
1490 \fB\fBdladm create-bridge\fR [\fB-P\fR \fIprotect\fR] [\fB-R\fR
1491 \fIroot-dir\fR] [\fB-p\fR \fIpriority\fR] [\fB-m\fR \fImax-age\fR] [\fB-h\fR
1492 \fIhello-time\fR] [\fB-d\fR \fIforward-delay\fR] [\fB-f\fR
1493 \fIforce-protocol\fR] [\fB-l\fR \fIlink\fR...] \fIbridge-name\fR\fR
1494 .ad
1495 .sp .6
1496 .RS 4n
1497 Create an 802.1D bridge instance and optionally assign one or more network
1498 links to the new bridge. By default, no bridge instances are present on the
1499 system.
1500 .sp
1501 In order to bridge between links, you must create at least one bridge instance.
1502 Each bridge instance is separate, and there is no forwarding connection between
1503 bridges.
1504 .sp
1505 .ne 2
1506 .na
1507 \fB\fB-P\fR \fIprotect\fR, \fB--protect\fR=\fIprotect\fR\fR
1508 .ad
1509 .sp .6

new/usr/src/man/man1m/dladm.1m 24

1510 .RS 4n
1511 Specifies a protection method. The defined protection methods are \fBstp\fR for
1512 the Spanning Tree Protocol and trill for \fBTRILL\fR, which is used on
1513 RBridges. The default value is \fBstp\fR.
1514 .RE

1516 .sp
1517 .ne 2
1518 .na
1519 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
1520 .ad
1521 .sp .6
1522 .RS 4n
1523 See "Options," above.
1524 .RE

1526 .sp
1527 .ne 2
1528 .na
1529 \fB\fB-p\fR \fIpriority\fR, \fB--priority\fR=\fIpriority\fR\fR
1530 .ad
1531 .sp .6
1532 .RS 4n
1533 Specifies the Bridge Priority. This sets the IEEE STP priority value for
1534 determining the root bridge node in the network. The default value is
1535 \fB32768\fR. Valid values are \fB0\fR (highest priority) to \fB61440\fR (lowest
1536 priority), in increments of 4096.
1537 .sp
1538 If a value not evenly divisible by 4096 is used, the system silently rounds
1539 downward to the next lower value that is divisible by 4096.
1540 .RE

1542 .sp
1543 .ne 2
1544 .na
1545 \fB\fB-m\fR \fImax-age\fR, \fB--max-age\fR=\fImax-age\fR\fR
1546 .ad
1547 .sp .6
1548 .RS 4n
1549 Specifies the maximum age for configuration information in seconds. This sets
1550 the STP Bridge Max Age parameter. This value is used for all nodes in the
1551 network if this node is the root bridge. Bridge link information older than
1552 this time is discarded. It defaults to 20 seconds. Valid values are from 6 to
1553 40 seconds. See the \fB-d\fR \fIforward-delay\fR parameter for additional
1554 constraints.
1555 .RE

1557 .sp
1558 .ne 2
1559 .na
1560 \fB\fB-h\fR \fIhello-time\fR, \fB--hello-time\fR=\fIhello-time\fR\fR
1561 .ad
1562 .sp .6
1563 .RS 4n
1564 Specifies the STP Bridge Hello Time parameter. When this node is the root node,
1565 it sends Configuration BPDUs at this interval throughout the network. The
1566 default value is 2 seconds. Valid values are from 1 to 10 seconds. See the
1567 \fB-d\fR \fIforward-delay\fR parameter for additional constraints.
1568 .RE

1570 .sp
1571 .ne 2
1572 .na
1573 \fB\fB-d\fR \fIforward-delay\fR, \fB--forward-delay\fR=\fIforward-delay\fR\fR
1574 .ad
1575 .sp .6

new/usr/src/man/man1m/dladm.1m 25

1576 .RS 4n
1577 Specifies the STP Bridge Forward Delay parameter. When this node is the root
1578 node, then all bridges in the network use this timer to sequence the link
1579 states when a port is enabled. The default value is 15 seconds. Valid values
1580 are from 4 to 30 seconds.
1581 .sp
1582 Bridges must obey the following two constraints:
1583 .sp
1584 .in +2
1585 .nf
1586 2 * (\fIforward-delay\fR - 1.0) >= \fImax-age\fR

1588 \fImax-age\fR >= 2 * (\fIhello-time\fR + 1.0)
1589 .fi
1590 .in -2
1591 .sp

1593 Any parameter setting that would violate those constraints is treated as an
1594 error and causes the command to fail with a diagnostic message. The message
1595 provides valid alternatives to the supplied values.
1596 .RE

1598 .sp
1599 .ne 2
1600 .na
1601 \fB\fB-f\fR \fIforce-protocol\fR,
1602 \fB--force-protocol\fR=\fIforce-protocol\fR\fR
1603 .ad
1604 .sp .6
1605 .RS 4n
1606 Specifies the MSTP forced maximum supported protocol. The default value is 3.
1607 Valid values are non-negative integers. The current implementation does not
1608 support RSTP or MSTP, so this currently has no effect. However, to prevent MSTP
1609 from being used in the future, the parameter may be set to \fB0\fR for STP only
1610 or \fB2\fR for STP and RSTP.
1611 .RE

1613 .sp
1614 .ne 2
1615 .na
1616 \fB\fB-l\fR \fIlink\fR, \fB--link\fR=\fIlink\fR\fR
1617 .ad
1618 .sp .6
1619 .RS 4n
1620 Specifies one or more links to add to the newly-created bridge. This is similar
1621 to creating the bridge and then adding one or more links, as with the
1622 \fBadd-bridge\fR subcommand. However, if any of the links cannot be added, the
1623 entire command fails, and the new bridge itself is not created. To add multiple
1624 links on the same command line, repeat this option for each link. You are
1625 permitted to create bridges without links. For more information about link
1626 assignments, see the \fBadd-bridge\fR subcommand.
1627 .RE

1629 Bridge creation and link assignment require the \fBPRIV_SYS_DL_CONFIG\fR
1630 privilege. Bridge creation might fail if the optional bridging feature is not
1631 installed on the system.
1632 .RE

1634 .sp
1635 .ne 2
1636 .na
1637 \fB\fBdladm modify-bridge\fR [\fB-P\fR \fIprotect\fR] [\fB-R\fR
1638 \fIroot-dir\fR] [\fB-p\fR \fIpriority\fR] [\fB-m\fR \fImax-age\fR] [\fB-h\fR
1639 \fIhello-time\fR] [\fB-d\fR \fIforward-delay\fR] [\fB-f\fR
1640 \fIforce-protocol\fR] [\fB-l\fR \fIlink\fR...] \fIbridge-name\fR\fR
1641 .ad

new/usr/src/man/man1m/dladm.1m 26

1642 .sp .6
1643 .RS 4n
1644 Modify the operational parameters of an existing bridge. The options are the
1645 same as for the \fBcreate-bridge\fR subcommand, except that the \fB-l\fR option
1646 is not permitted. To add links to an existing bridge, use the \fBadd-bridge\fR
1647 subcommand.
1648 .sp
1649 Bridge parameter modification requires the \fBPRIV_SYS_DL_CONFIG\fR privilege.
1650 .RE

1652 .sp
1653 .ne 2
1654 .na
1655 \fB\fBdladm delete-bridge\fR [\fB-R\fR \fIroot-dir\fR] \fIbridge-name\fR\fR
1656 .ad
1657 .sp .6
1658 .RS 4n
1659 Delete a bridge instance. The bridge being deleted must not have any attached
1660 links. Use the \fBremove-bridge\fR subcommand to deactivate links before
1661 deleting a bridge.
1662 .sp
1663 Bridge deletion requires the \fBPRIV_SYS_DL_CONFIG\fR privilege.
1664 .sp
1665 The \fB-R\fR (\fB--root-dir\fR) option is the same as for the
1666 \fBcreate-bridge\fR subcommand.
1667 .RE

1669 .sp
1670 .ne 2
1671 .na
1672 \fB\fBdladm add-bridge\fR [\fB-R\fR \fIroot-dir\fR] \fB-l\fR \fIlink\fR
1673 [\fB-l\fR \fIlink\fR...] \fIbridge-name\fR\fR
1674 .ad
1675 .sp .6
1676 .RS 4n
1677 Add one or more links to an existing bridge. If multiple links are specified,
1678 and adding any one of them results in an error, the command fails and no
1679 changes are made to the system.
1680 .sp
1681 Link addition to a bridge requires the \fBPRIV_SYS_DL_CONFIG\fR privilege.
1682 .sp
1683 A link may be a member of at most one bridge. An error occurs when you attempt
1684 to add a link that already belongs to another bridge. To move a link from one
1685 bridge instance to another, remove it from the current bridge before adding it
1686 to a new one.
1687 .sp
1688 The links assigned to a bridge must not also be VLANs, VNICs, or tunnels. Only
1689 physical Ethernet datalinks, aggregation datalinks, wireless links, and
1690 Ethernet stubs are permitted to be assigned to a bridge.
1691 .sp
1692 Links assigned to a bridge must all have the same MTU. This is checked when the
1693 link is assigned. The link is added to the bridge in a deactivated form if it
1694 is not the first link on the bridge and it has a differing MTU.
1695 .sp
1696 Note that systems using bridging should not set the \fBeeprom\fR(1M)
1697 \fBlocal-mac-address?\fR variable to false.
1698 .sp
1699 The options are the same as for the \fBcreate-bridge\fR subcommand.
1700 .RE

1702 .sp
1703 .ne 2
1704 .na
1705 \fB\fBdladm remove-bridge\fR [\fB-R\fR \fIroot-dir\fR] \fB-l\fR \fIlink\fR
1706 [\fB-l\fR \fIlink\fR...] \fIbridge-name\fR\fR
1707 .ad

new/usr/src/man/man1m/dladm.1m 27

1708 .sp .6
1709 .RS 4n
1710 Remove one or more links from a bridge instance. If multiple links are
1711 specified, and removing any one of them would result in an error, the command
1712 fails and none are removed.
1713 .sp
1714 Link removal from a bridge requires the \fBPRIV_SYS_DL_CONFIG\fR privilege.
1715 .sp
1716 The options are the same as for the \fBcreate-bridge\fR subcommand.
1717 .RE

1719 .sp
1720 .ne 2
1721 .na
1722 \fB\fBdladm show-bridge\fR [\fB-flt\fR] [\fB-s\fR [\fB-i\fR \fIinterval\fR]]
1723 [[\fB-p\fR] \fB-o\fR \fIfield\fR,...] [\fIbridge-name\fR]\fR
1724 .ad
1725 .sp .6
1726 .RS 4n
1727 Show the running status and configuration of bridges, their attached links,
1728 learned forwarding entries, and \fBTRILL\fR nickname databases. When showing
1729 overall bridge status and configuration, the bridge name can be omitted to show
1730 all bridges. The other forms require a specified bridge.
1731 .sp
1732 The show-bridge subcommand accepts the following options:
1733 .sp
1734 .ne 2
1735 .na
1736 \fB\fB-i\fR \fIinterval\fR, \fB--interval\fR=\fIinterval\fR\fR
1737 .ad
1738 .sp .6
1739 .RS 4n
1740 Used with the \fB-s\fR option to specify an interval, in seconds, at which
1741 statistics should be displayed. If this option is not specified, statistics
1742 will be displayed only once.
1743 .RE

1745 .sp
1746 .ne 2
1747 .na
1748 \fB\fB-s\fR, \fB--statistics\fR\fR
1749 .ad
1750 .sp .6
1751 .RS 4n
1752 Display statistics for the specified bridges or for a given bridge’s attached
1753 links. This option cannot be used with the \fB-f\fR and \fB-t\fR options.
1754 .RE

1756 .sp
1757 .ne 2
1758 .na
1759 \fB\fB-p\fR, \fB--parseable\fR\fR
1760 .ad
1761 .sp .6
1762 .RS 4n
1763 Display using a stable machine-parsable format. See "Parsable Output Format,"
1764 below.
1765 .RE

1767 .sp
1768 .ne 2
1769 .na
1770 \fB\fB-o\fR \fIfield\fR[,...], \fB--output\fR=\fIfield\fR[,...]\fR
1771 .ad
1772 .sp .6
1773 .RS 4n

new/usr/src/man/man1m/dladm.1m 28

1774 A case-insensitive, comma-separated list of output fields to display. The field
1775 names are described below. The special value all displays all fields. Each set
1776 of fields has its own default set to display when \fB-o\fR is not specified.
1777 .RE

1779 By default, the \fBshow-bridge\fR subcommand shows bridge configuration. The
1780 following fields can be shown:
1781 .sp
1782 .ne 2
1783 .na
1784 \fB\fBBRIDGE\fR\fR
1785 .ad
1786 .sp .6
1787 .RS 4n
1788 The name of the bridge.
1789 .RE

1791 .sp
1792 .ne 2
1793 .na
1794 \fB\fBADDRESS\fR\fR
1795 .ad
1796 .sp .6
1797 .RS 4n
1798 The Bridge Unique Identifier value (MAC address).
1799 .RE

1801 .sp
1802 .ne 2
1803 .na
1804 \fB\fBPRIORITY\fR\fR
1805 .ad
1806 .sp .6
1807 .RS 4n
1808 Configured priority value; set by \fB-p\fR with \fBcreate-bridge\fR and
1809 \fBmodify-bridge\fR.
1810 .RE

1812 .sp
1813 .ne 2
1814 .na
1815 \fB\fBBMAXAGE\fR\fR
1816 .ad
1817 .sp .6
1818 .RS 4n
1819 Configured bridge maximum age; set by \fB-m\fR with \fBcreate-bridge\fR and
1820 \fBmodify-bridge\fR.
1821 .RE

1823 .sp
1824 .ne 2
1825 .na
1826 \fB\fBBHELLOTIME\fR\fR
1827 .ad
1828 .sp .6
1829 .RS 4n
1830 Configured bridge hello time; set by \fB-h\fR with \fBcreate-bridge\fR and
1831 \fBmodify-bridge\fR.
1832 .RE

1834 .sp
1835 .ne 2
1836 .na
1837 \fB\fBBFWDDELAY\fR\fR
1838 .ad
1839 .sp .6

new/usr/src/man/man1m/dladm.1m 29

1840 .RS 4n
1841 Configured forwarding delay; set by \fB-d\fR with \fBcreate-bridge\fR and
1842 \fBmodify-bridge\fR.
1843 .RE

1845 .sp
1846 .ne 2
1847 .na
1848 \fB\fBFORCEPROTO\fR\fR
1849 .ad
1850 .sp .6
1851 .RS 4n
1852 Configured forced maximum protocol; set by \fB-f\fR with \fBcreate-bridge\fR
1853 and \fBmodify-bridge\fR.
1854 .RE

1856 .sp
1857 .ne 2
1858 .na
1859 \fB\fBTCTIME\fR\fR
1860 .ad
1861 .sp .6
1862 .RS 4n
1863 Time, in seconds, since last topology change.
1864 .RE

1866 .sp
1867 .ne 2
1868 .na
1869 \fB\fBTCCOUNT\fR\fR
1870 .ad
1871 .sp .6
1872 .RS 4n
1873 Count of the number of topology changes.
1874 .RE

1876 .sp
1877 .ne 2
1878 .na
1879 \fB\fBTCHANGE\fR\fR
1880 .ad
1881 .sp .6
1882 .RS 4n
1883 This indicates that a topology change was detected.
1884 .RE

1886 .sp
1887 .ne 2
1888 .na
1889 \fB\fBDESROOT\fR\fR
1890 .ad
1891 .sp .6
1892 .RS 4n
1893 Bridge Identifier of the root node.
1894 .RE

1896 .sp
1897 .ne 2
1898 .na
1899 \fB\fBROOTCOST\fR\fR
1900 .ad
1901 .sp .6
1902 .RS 4n
1903 Cost of the path to the root node.
1904 .RE

new/usr/src/man/man1m/dladm.1m 30

1906 .sp
1907 .ne 2
1908 .na
1909 \fB\fBROOTPORT\fR\fR
1910 .ad
1911 .sp .6
1912 .RS 4n
1913 Port number used to reach the root node.
1914 .RE

1916 .sp
1917 .ne 2
1918 .na
1919 \fB\fBMAXAGE\fR\fR
1920 .ad
1921 .sp .6
1922 .RS 4n
1923 Maximum age value from the root node.
1924 .RE

1926 .sp
1927 .ne 2
1928 .na
1929 \fB\fBHELLOTIME\fR\fR
1930 .ad
1931 .sp .6
1932 .RS 4n
1933 Hello time value from the root node.
1934 .RE

1936 .sp
1937 .ne 2
1938 .na
1939 \fB\fBFWDDELAY\fR\fR
1940 .ad
1941 .sp .6
1942 .RS 4n
1943 Forward delay value from the root node.
1944 .RE

1946 .sp
1947 .ne 2
1948 .na
1949 \fB\fBHOLDTIME\fR\fR
1950 .ad
1951 .sp .6
1952 .RS 4n
1953 Minimum BPDU interval.
1954 .RE

1956 By default, when the \fB-o\fR option is not specified, only the \fBBRIDGE\fR,
1957 \fBADDRESS\fR, \fBPRIORITY\fR, and \fBDESROOT\fR fields are shown.
1958 .sp
1959 When the \fB-s\fR option is specified, the \fBshow-bridge\fR subcommand shows
1960 bridge statistics. The following fields can be shown:
1961 .sp
1962 .ne 2
1963 .na
1964 \fB\fBBRIDGE\fR\fR
1965 .ad
1966 .sp .6
1967 .RS 4n
1968 Bridge name.
1969 .RE

1971 .sp

new/usr/src/man/man1m/dladm.1m 31

1972 .ne 2
1973 .na
1974 \fB\fBDROPS\fR\fR
1975 .ad
1976 .sp .6
1977 .RS 4n
1978 Number of packets dropped due to resource problems.
1979 .RE

1981 .sp
1982 .ne 2
1983 .na
1984 \fB\fBFORWARDS\fR\fR
1985 .ad
1986 .sp .6
1987 .RS 4n
1988 Number of packets forwarded from one link to another.
1989 .RE

1991 .sp
1992 .ne 2
1993 .na
1994 \fB\fBMBCAST\fR\fR
1995 .ad
1996 .sp .6
1997 .RS 4n
1998 Number of multicast and broadcast packets handled by the bridge.
1999 .RE

2001 .sp
2002 .ne 2
2003 .na
2004 \fB\fBRECV\fR\fR
2005 .ad
2006 .sp .6
2007 .RS 4n
2008 Number of packets received on all attached links.
2009 .RE

2011 .sp
2012 .ne 2
2013 .na
2014 \fB\fBSENT\fR\fR
2015 .ad
2016 .sp .6
2017 .RS 4n
2018 Number of packets sent on all attached links.
2019 .RE

2021 .sp
2022 .ne 2
2023 .na
2024 \fB\fBUNKNOWN\fR\fR
2025 .ad
2026 .sp .6
2027 .RS 4n
2028 Number of packets handled that have an unknown destination. Such packets are
2029 sent to all links.
2030 .RE

2032 By default, when the \fB-o\fR option is not specified, only the \fBBRIDGE\fR,
2033 \fBDROPS\fR, and \fBFORWARDS\fR fields are shown.
2034 .sp
2035 The \fBshow-bridge\fR subcommand also accepts the following options:
2036 .sp
2037 .ne 2

new/usr/src/man/man1m/dladm.1m 32

2038 .na
2039 \fB\fB-l\fR, \fB--link\fR\fR
2040 .ad
2041 .sp .6
2042 .RS 4n
2043 Displays link-related status and statistics information for all links attached
2044 to a single bridge instance. By using this option and without the \fB-s\fR
2045 option, the following fields can be displayed for each link:
2046 .sp
2047 .ne 2
2048 .na
2049 \fB\fBLINK\fR\fR
2050 .ad
2051 .sp .6
2052 .RS 4n
2053 The link name.
2054 .RE

2056 .sp
2057 .ne 2
2058 .na
2059 \fB\fBINDEX\fR\fR
2060 .ad
2061 .sp .6
2062 .RS 4n
2063 Port (link) index number on the bridge.
2064 .RE

2066 .sp
2067 .ne 2
2068 .na
2069 \fB\fBSTATE\fR\fR
2070 .ad
2071 .sp .6
2072 .RS 4n
2073 State of the link. The state can be \fBdisabled\fR, \fBdiscarding\fR,
2074 \fBlearning\fR, \fBforwarding\fR, \fBnon-stp\fR, or \fBbad-mtu\fR.
2075 .RE

2077 .sp
2078 .ne 2
2079 .na
2080 \fB\fBUPTIME\fR\fR
2081 .ad
2082 .sp .6
2083 .RS 4n
2084 Number of seconds since the last reset or initialization.
2085 .RE

2087 .sp
2088 .ne 2
2089 .na
2090 \fB\fBOPERCOST\fR\fR
2091 .ad
2092 .sp .6
2093 .RS 4n
2094 Actual cost in use (1-65535).
2095 .RE

2097 .sp
2098 .ne 2
2099 .na
2100 \fB\fBOPERP2P\fR\fR
2101 .ad
2102 .sp .6
2103 .RS 4n

new/usr/src/man/man1m/dladm.1m 33

2104 This indicates whether point-to-point (\fBP2P\fR) mode been detected.
2105 .RE

2107 .sp
2108 .ne 2
2109 .na
2110 \fB\fBOPEREDGE\fR\fR
2111 .ad
2112 .sp .6
2113 .RS 4n
2114 This indicates whether edge mode has been detected.
2115 .RE

2117 .sp
2118 .ne 2
2119 .na
2120 \fB\fBDESROOT\fR\fR
2121 .ad
2122 .sp .6
2123 .RS 4n
2124 The Root Bridge Identifier that has been seen on this port.
2125 .RE

2127 .sp
2128 .ne 2
2129 .na
2130 \fB\fBDESCOST\fR\fR
2131 .ad
2132 .sp .6
2133 .RS 4n
2134 Path cost to the network root node through the designated port.
2135 .RE

2137 .sp
2138 .ne 2
2139 .na
2140 \fB\fBDESBRIDGE\fR\fR
2141 .ad
2142 .sp .6
2143 .RS 4n
2144 Bridge Identifier for this port.
2145 .RE

2147 .sp
2148 .ne 2
2149 .na
2150 \fB\fBDESPORT\fR\fR
2151 .ad
2152 .sp .6
2153 .RS 4n
2154 The ID and priority of the port used to transmit configuration messages for
2155 this port.
2156 .RE

2158 .sp
2159 .ne 2
2160 .na
2161 \fB\fBTCACK\fR\fR
2162 .ad
2163 .sp .6
2164 .RS 4n
2165 This indicates whether Topology Change Acknowledge has been seen.
2166 .RE

2168 When the \fB-l\fR option is specified without the \fB-o\fR option, only the
2169 \fBLINK\fR, \fBSTATE\fR, \fBUPTIME\fR, and \fBDESROOT\fR fields are shown.

new/usr/src/man/man1m/dladm.1m 34

2170 .sp
2171 When the \fB-l\fR option is specified, the \fB-s\fR option can be used to
2172 display the following fields for each link:
2173 .sp
2174 .ne 2
2175 .na
2176 \fB\fBLINK\fR\fR
2177 .ad
2178 .sp .6
2179 .RS 4n
2180 Link name.
2181 .RE

2183 .sp
2184 .ne 2
2185 .na
2186 \fB\fBCFGBPDU\fR\fR
2187 .ad
2188 .sp .6
2189 .RS 4n
2190 Number of configuration BPDUs received.
2191 .RE

2193 .sp
2194 .ne 2
2195 .na
2196 \fB\fBTCNBPDU\fR\fR
2197 .ad
2198 .sp .6
2199 .RS 4n
2200 Number of topology change BPDUs received.
2201 .RE

2203 .sp
2204 .ne 2
2205 .na
2206 \fB\fBRSTPBPDU\fR\fR
2207 .ad
2208 .sp .6
2209 .RS 4n
2210 Number of Rapid Spanning Tree BPDUs received.
2211 .RE

2213 .sp
2214 .ne 2
2215 .na
2216 \fB\fBTXBPDU\fR\fR
2217 .ad
2218 .sp .6
2219 .RS 4n
2220 Number of BPDUs transmitted.
2221 .RE

2223 .sp
2224 .ne 2
2225 .na
2226 \fB\fBDROPS\fR\fR
2227 .ad
2228 .sp .6
2229 .RS 4n
2230 Number of packets dropped due to resource problems.
2231 .RE

2233 .sp
2234 .ne 2
2235 .na

new/usr/src/man/man1m/dladm.1m 35

2236 \fB\fBRECV\fR\fR
2237 .ad
2238 .sp .6
2239 .RS 4n
2240 Number of packets received by the bridge.
2241 .RE

2243 .sp
2244 .ne 2
2245 .na
2246 \fB\fBXMIT\fR\fR
2247 .ad
2248 .sp .6
2249 .RS 4n
2250 Number of packets sent by the bridge.
2251 .RE

2253 When the \fB-o\fR option is not specified, only the \fBLINK\fR, \fBDROPS\fR,
2254 \fBRECV\fR, and \fBXMIT\fR fields are shown.
2255 .RE

2257 .sp
2258 .ne 2
2259 .na
2260 \fB\fB-f\fR, \fB--forwarding\fR\fR
2261 .ad
2262 .sp .6
2263 .RS 4n
2264 Displays forwarding entries for a single bridge instance. With this option, the
2265 following fields can be shown for each forwarding entry:
2266 .sp
2267 .ne 2
2268 .na
2269 \fB\fBDEST\fR\fR
2270 .ad
2271 .sp .6
2272 .RS 4n
2273 Destination MAC address.
2274 .RE

2276 .sp
2277 .ne 2
2278 .na
2279 \fB\fBAGE\fR\fR
2280 .ad
2281 .sp .6
2282 .RS 4n
2283 Age of entry in seconds and milliseconds. Omitted for local entries.
2284 .RE

2286 .sp
2287 .ne 2
2288 .na
2289 \fB\fBFLAGS\fR\fR
2290 .ad
2291 .sp .6
2292 .RS 4n
2293 The \fBL\fR (local) flag is shown if the MAC address belongs to an attached
2294 link or to a VNIC on one of the attached links.
2295 .RE

2297 .sp
2298 .ne 2
2299 .na
2300 \fB\fBOUTPUT\fR\fR
2301 .ad

new/usr/src/man/man1m/dladm.1m 36

2302 .sp .6
2303 .RS 4n
2304 For local entries, this is the name of the attached link that has the MAC
2305 address. Otherwise, for bridges that use Spanning Tree Protocol, this is the
2306 output interface name. For RBridges, this is the output \fBTRILL\fR nickname.
2307 .RE

2309 When the \fB-o\fR option is not specified, the \fBDEST\fR, \fBAGE\fR,
2310 \fBFLAGS\fR, and \fBOUTPUT\fR fields are shown.
2311 .RE

2313 .sp
2314 .ne 2
2315 .na
2316 \fB\fB-t\fR, \fB--trill\fR\fR
2317 .ad
2318 .sp .6
2319 .RS 4n
2320 Displays \fBTRILL\fR nickname entries for a single bridge instance. With this
2321 option, the following fields can be shown for each \fBTRILL\fR nickname entry:
2322 .sp
2323 .ne 2
2324 .na
2325 \fB\fBNICK\fR\fR
2326 .ad
2327 .sp .6
2328 .RS 4n
2329 \fBTRILL\fR nickname for this RBridge, which is a number from 1 to 65535.
2330 .RE

2332 .sp
2333 .ne 2
2334 .na
2335 \fB\fBFLAGS\fR\fR
2336 .ad
2337 .sp .6
2338 .RS 4n
2339 The \fBL\fR flag is shown if the nickname identifies the local system.
2340 .RE

2342 .sp
2343 .ne 2
2344 .na
2345 \fB\fBLINK\fR\fR
2346 .ad
2347 .sp .6
2348 .RS 4n
2349 Link name for output when sending messages to this RBridge.
2350 .RE

2352 .sp
2353 .ne 2
2354 .na
2355 \fB\fBNEXTHOP\fR\fR
2356 .ad
2357 .sp .6
2358 .RS 4n
2359 MAC address of the next hop RBridge that is used to reach the RBridge with this
2360 nickname.
2361 .RE

2363 When the \fB-o\fR option is not specified, the \fBNICK\fR, \fBFLAGS\fR,
2364 \fBLINK\fR, and \fBNEXTHOP\fR fields are shown.
2365 .RE

2367 .RE

new/usr/src/man/man1m/dladm.1m 37

2369 .sp
2370 .ne 2
2371 .na
2372 \fB\fBdladm create-vlan\fR [\fB-ft\fR] [\fB-R\fR \fIroot-dir\fR] \fB-l\fR
2373 \fIether-link\fR \fB-v\fR \fIvid\fR [\fIvlan-link\fR]\fR
2374 .ad
2375 .sp .6
2376 .RS 4n
2377 Create a tagged VLAN link with an ID of \fIvid\fR over Ethernet link
2378 \fIether-link\fR. The name of the VLAN link can be specified as
2379 \fIvlan\fR-\fIlink\fR. If the name is not specified, a name will be
2380 automatically generated (assuming that \fIether-link\fR is \fIname\fR\fIPPA\fR)
2381 as:
2382 .sp
2383 .in +2
2384 .nf
2385 <\fIname\fR><1000 * \fIvlan-tag\fR + \fIPPA\fR>
2386 .fi
2387 .in -2
2388 .sp

2390 For example, if \fIether-link\fR is \fBbge1\fR and \fIvid\fR is 2, the name
2391 generated is \fBbge2001\fR.
2392 .sp
2393 .ne 2
2394 .na
2395 \fB\fB-f\fR, \fB--force\fR\fR
2396 .ad
2397 .sp .6
2398 .RS 4n
2399 Force the creation of the VLAN link. Some devices do not allow frame sizes
2400 large enough to include a VLAN header. When creating a VLAN link over such a
2401 device, the \fB-f\fR option is needed, and the MTU of the IP interfaces on the
2402 resulting VLAN must be set to 1496 instead of 1500.
2403 .RE

2405 .sp
2406 .ne 2
2407 .na
2408 \fB\fB-l\fR \fIether-link\fR\fR
2409 .ad
2410 .sp .6
2411 .RS 4n
2412 Specifies Ethernet link over which VLAN is created.
2413 .RE

2415 .sp
2416 .ne 2
2417 .na
2418 \fB\fB-t\fR, \fB--temporary\fR\fR
2419 .ad
2420 .sp .6
2421 .RS 4n
2422 Specifies that the VLAN link is temporary. Temporary VLAN links last until the
2423 next reboot.
2424 .RE

2426 .sp
2427 .ne 2
2428 .na
2429 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
2430 .ad
2431 .sp .6
2432 .RS 4n
2433 See "Options," above.

new/usr/src/man/man1m/dladm.1m 38

2434 .RE

2436 .RE

2438 .sp
2439 .ne 2
2440 .na
2441 \fB\fBdladm delete-vlan\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR]
2442 \fIvlan-link\fR\fR
2443 .ad
2444 .sp .6
2445 .RS 4n
2446 Delete the VLAN link specified.
2447 .sp
2448 The \fBdelete-vlan\fRsubcommand accepts the following options:
2449 .sp
2450 .ne 2
2451 .na
2452 \fB\fB-t\fR, \fB--temporary\fR\fR
2453 .ad
2454 .sp .6
2455 .RS 4n
2456 Specifies that the deletion is temporary. Temporary deletions last until the
2457 next reboot.
2458 .RE

2460 .sp
2461 .ne 2
2462 .na
2463 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
2464 .ad
2465 .sp .6
2466 .RS 4n
2467 See "Options," above.
2468 .RE

2470 .RE

2472 .sp
2473 .ne 2
2474 .na
2475 \fB\fBdladm show-vlan\fR [\fB-P\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]]
2476 [\fIvlan-link\fR]\fR
2477 .ad
2478 .sp .6
2479 .RS 4n
2480 Display VLAN configuration for all VLAN links or for the specified VLAN link.
2481 .sp
2482 The \fBshow-vlan\fRsubcommand accepts the following options:
2483 .sp
2484 .ne 2
2485 .na
2486 \fB\fB-o\fR \fIfield\fR[,...], \fB--output\fR=\fIfield\fR[,...]\fR
2487 .ad
2488 .sp .6
2489 .RS 4n
2490 A case-insensitive, comma-separated list of output fields to display. The field
2491 name must be one of the fields listed below, or the special value \fBall\fR, to
2492 display all fields. For each VLAN link, the following fields can be displayed:
2493 .sp
2494 .ne 2
2495 .na
2496 \fB\fBLINK\fR\fR
2497 .ad
2498 .sp .6
2499 .RS 4n

new/usr/src/man/man1m/dladm.1m 39

2500 The name of the VLAN link.
2501 .RE

2503 .sp
2504 .ne 2
2505 .na
2506 \fB\fBVID\fR\fR
2507 .ad
2508 .sp .6
2509 .RS 4n
2510 The ID associated with the VLAN.
2511 .RE

2513 .sp
2514 .ne 2
2515 .na
2516 \fB\fBOVER\fR\fR
2517 .ad
2518 .sp .6
2519 .RS 4n
2520 The name of the physical link over which this VLAN is configured.
2521 .RE

2523 .sp
2524 .ne 2
2525 .na
2526 \fB\fBFLAGS\fR\fR
2527 .ad
2528 .sp .6
2529 .RS 4n
2530 A set of flags associated with the VLAN link. Possible flags are:
2531 .sp
2532 .ne 2
2533 .na
2534 \fB\fBf\fR\fR
2535 .ad
2536 .sp .6
2537 .RS 4n
2538 The VLAN was created using the \fB-f\fR option to \fBcreate-vlan\fR.
2539 .RE

2541 .sp
2542 .ne 2
2543 .na
2544 \fB\fBi\fR\fR
2545 .ad
2546 .sp .6
2547 .RS 4n
2548 The VLAN was implicitly created when the DLPI link was opened. These VLAN links
2549 are automatically deleted on last close of the DLPI link (for example, when the
2550 IP interface associated with the VLAN link is unplumbed).
2551 .RE

2553 Additional flags might be defined in the future.
2554 .RE

2556 .RE

2558 .sp
2559 .ne 2
2560 .na
2561 \fB\fB-p\fR, \fB--parseable\fR\fR
2562 .ad
2563 .sp .6
2564 .RS 4n
2565 Display using a stable machine-parseable format. The \fB-o\fR option is

new/usr/src/man/man1m/dladm.1m 40

2566 required with \fB-p\fR. See "Parseable Output Format", below.
2567 .RE

2569 .sp
2570 .ne 2
2571 .na
2572 \fB\fB-P\fR, \fB--persistent\fR\fR
2573 .ad
2574 .sp .6
2575 .RS 4n
2576 Display the persistent VLAN configuration rather than the state of the running
2577 system.
2578 .RE

2580 .RE

2582 .sp
2583 .ne 2
2584 .na
2585 \fB\fBdladm scan-wifi\fR [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]]
2586 [\fIwifi-link\fR]\fR
2587 .ad
2588 .sp .6
2589 .RS 4n
2590 Scans for \fBWiFi\fR networks, either on all \fBWiFi\fR links, or just on the
2591 specified \fIwifi-link\fR.
2592 .sp
2593 By default, currently all fields but \fBBSSTYPE\fR are displayed.
2594 .sp
2595 .ne 2
2596 .na
2597 \fB\fB-o\fR \fIfield\fR[,...], \fB--output\fR=\fIfield\fR[,...]\fR
2598 .ad
2599 .sp .6
2600 .RS 4n
2601 A case-insensitive, comma-separated list of output fields to display. The field
2602 name must be one of the fields listed below, or the special value \fBall\fR to
2603 display all fields. For each \fBWiFi\fR network found, the following fields can
2604 be displayed:
2605 .sp
2606 .ne 2
2607 .na
2608 \fB\fBLINK\fR\fR
2609 .ad
2610 .sp .6
2611 .RS 4n
2612 The name of the link the \fBWiFi\fR network is on.
2613 .RE

2615 .sp
2616 .ne 2
2617 .na
2618 \fB\fBESSID\fR\fR
2619 .ad
2620 .sp .6
2621 .RS 4n
2622 The \fBESSID\fR (name) of the \fBWiFi\fR network.
2623 .RE

2625 .sp
2626 .ne 2
2627 .na
2628 \fB\fBBSSID\fR\fR
2629 .ad
2630 .sp .6
2631 .RS 4n

new/usr/src/man/man1m/dladm.1m 41

2632 Either the hardware address of the \fBWiFi\fR network’s Access Point (for
2633 \fBBSS\fR networks), or the \fBWiFi\fR network’s randomly generated unique
2634 token (for \fBIBSS\fR networks).
2635 .RE

2637 .sp
2638 .ne 2
2639 .na
2640 \fB\fBSEC\fR\fR
2641 .ad
2642 .sp .6
2643 .RS 4n
2644 Either \fBnone\fR for a \fBWiFi\fR network that uses no security, \fBwep\fR for
2645 a \fBWiFi\fR network that requires WEP (Wired Equivalent Privacy), or \fBwpa\fR
2646 for a WiFi network that requires WPA (Wi-Fi Protected Access).
2647 .RE

2649 .sp
2650 .ne 2
2651 .na
2652 \fB\fBMODE\fR\fR
2653 .ad
2654 .sp .6
2655 .RS 4n
2656 The supported connection modes: one or more of \fBa\fR, \fBb\fR, or \fBg\fR.
2657 .RE

2659 .sp
2660 .ne 2
2661 .na
2662 \fB\fBSTRENGTH\fR\fR
2663 .ad
2664 .sp .6
2665 .RS 4n
2666 The strength of the signal: one of \fBexcellent\fR, \fBvery good\fR,
2667 \fBgood\fR, \fBweak\fR, or \fBvery weak\fR.
2668 .RE

2670 .sp
2671 .ne 2
2672 .na
2673 \fB\fBSPEED\fR\fR
2674 .ad
2675 .sp .6
2676 .RS 4n
2677 The maximum speed of the \fBWiFi\fR network, in megabits per second.
2678 .RE

2680 .sp
2681 .ne 2
2682 .na
2683 \fB\fBBSSTYPE\fR\fR
2684 .ad
2685 .sp .6
2686 .RS 4n
2687 Either \fBbss\fR for \fBBSS\fR (infrastructure) networks, or \fBibss\fR for
2688 \fBIBSS\fR (ad-hoc) networks.
2689 .RE

2691 .RE

2693 .sp
2694 .ne 2
2695 .na
2696 \fB\fB-p\fR, \fB--parseable\fR\fR
2697 .ad

new/usr/src/man/man1m/dladm.1m 42

2698 .sp .6
2699 .RS 4n
2700 Display using a stable machine-parseable format. The \fB-o\fR option is
2701 required with \fB-p\fR. See "Parseable Output Format", below.
2702 .RE

2704 .RE

2706 .sp
2707 .ne 2
2708 .na
2709 \fB\fBdladm connect-wifi\fR [\fB-e\fR \fIessid\fR] [\fB-i\fR \fIbssid\fR]
2710 [\fB-k\fR \fIkey\fR,...] [\fB-s\fR \fBnone\fR | \fBwep\fR | \fBwpa\fR]
2711 [\fB-a\fR \fBopen\fR|\fBshared\fR] [\fB-b\fR \fBbss\fR|\fBibss\fR] [\fB-c\fR]
2712 [\fB-m\fR \fBa\fR|\fBb\fR|\fBg\fR] [\fB-T\fR \fItime\fR] [\fIwifi-link\fR]\fR
2713 .ad
2714 .sp .6
2715 .RS 4n
2716 Connects to a \fBWiFi\fR network. This consists of four steps: \fIdiscovery\fR,
2717 \fIfiltration\fR, \fIprioritization\fR, and \fIassociation\fR. However, to
2718 enable connections to non-broadcast \fBWiFi\fR networks and to improve
2719 performance, if a \fBBSSID\fR or \fBESSID\fR is specified using the \fB-e\fR or
2720 \fB-i\fR options, then the first three steps are skipped and \fBconnect-wifi\fR
2721 immediately attempts to associate with a \fBBSSID\fR or \fBESSID\fR that
2722 matches the rest of the provided parameters. If this association fails, but
2723 there is a possibility that other networks matching the specified criteria
2724 exist, then the traditional discovery process begins as specified below.
2725 .sp
2726 The discovery step finds all available \fBWiFi\fR networks on the specified
2727 WiFi link, which must not yet be connected. For administrative convenience, if
2728 there is only one \fBWiFi\fR link on the system, \fIwifi-link\fR can be
2729 omitted.
2730 .sp
2731 Once discovery is complete, the list of networks is filtered according to the
2732 value of the following options:
2733 .sp
2734 .ne 2
2735 .na
2736 \fB\fB-e\fR \fIessid,\fR \fB--essid\fR=\fIessid\fR\fR
2737 .ad
2738 .sp .6
2739 .RS 4n
2740 Networks that do not have the same \fIessid\fR are filtered out.
2741 .RE

2743 .sp
2744 .ne 2
2745 .na
2746 \fB\fB-b\fR \fBbss\fR|\fBibss\fR, \fB--bsstype\fR=\fBbss\fR|\fBibss\fR\fR
2747 .ad
2748 .sp .6
2749 .RS 4n
2750 Networks that do not have the same \fBbsstype\fR are filtered out.
2751 .RE

2753 .sp
2754 .ne 2
2755 .na
2756 \fB\fB-m\fR \fBa\fR|\fBb\fR|\fBg\fR, \fB--mode\fR=\fBa\fR|\fBb\fR|\fBg\fR\fR
2757 .ad
2758 .sp .6
2759 .RS 4n
2760 Networks not appropriate for the specified 802.11 mode are filtered out.
2761 .RE

2763 .sp

new/usr/src/man/man1m/dladm.1m 43

2764 .ne 2
2765 .na
2766 \fB\fB-k\fR \fIkey,...\fR, \fB--key\fR=\fIkey, ...\fR\fR
2767 .ad
2768 .sp .6
2769 .RS 4n
2770 Use the specified \fBsecobj\fR named by the key to connect to the network.
2771 Networks not appropriate for the specified keys are filtered out.
2772 .RE

2774 .sp
2775 .ne 2
2776 .na
2777 \fB\fB-s\fR \fBnone\fR|\fBwep\fR|\fBwpa\fR,
2778 \fB--sec\fR=\fBnone\fR|\fBwep\fR|\fBwpa\fR\fR
2779 .ad
2780 .sp .6
2781 .RS 4n
2782 Networks not appropriate for the specified security mode are filtered out.
2783 .RE

2785 Next, the remaining networks are prioritized, first by signal strength, and
2786 then by maximum speed. Finally, an attempt is made to associate with each
2787 network in the list, in order, until one succeeds or no networks remain.
2788 .sp
2789 In addition to the options described above, the following options also control
2790 the behavior of \fBconnect-wifi\fR:
2791 .sp
2792 .ne 2
2793 .na
2794 \fB\fB-a\fR \fBopen\fR|\fBshared\fR, \fB--auth\fR=\fBopen\fR|\fBshared\fR\fR
2795 .ad
2796 .sp .6
2797 .RS 4n
2798 Connect using the specified authentication mode. By default, \fBopen\fR and
2799 \fBshared\fR are tried in order.
2800 .RE

2802 .sp
2803 .ne 2
2804 .na
2805 \fB\fB-c\fR, \fB--create-ibss\fR\fR
2806 .ad
2807 .sp .6
2808 .RS 4n
2809 Used with \fB-b ibss\fR to create a new ad-hoc network if one matching the
2810 specified \fBESSID\fR cannot be found. If no \fBESSID\fR is specified, then
2811 \fB-c -b ibss\fR always triggers the creation of a new ad-hoc network.
2812 .RE

2814 .sp
2815 .ne 2
2816 .na
2817 \fB\fB-T\fR \fItime\fR, \fB--timeout\fR=\fItime\fR\fR
2818 .ad
2819 .sp .6
2820 .RS 4n
2821 Specifies the number of seconds to wait for association to succeed. If
2822 \fItime\fR is \fBforever\fR, then the associate will wait indefinitely. The
2823 current default is ten seconds, but this might change in the future. Timeouts
2824 shorter than the default might not succeed reliably.
2825 .RE

2827 .sp
2828 .ne 2
2829 .na

new/usr/src/man/man1m/dladm.1m 44

2830 \fB\fB-k\fR \fIkey,...\fR, \fB--key\fR=\fIkey,...\fR\fR
2831 .ad
2832 .sp .6
2833 .RS 4n
2834 In addition to the filtering previously described, the specified keys will be
2835 used to secure the association. The security mode to use will be based on the
2836 key class; if a security mode was explicitly specified, it must be compatible
2837 with the key class. All keys must be of the same class.
2838 .sp
2839 For security modes that support multiple key slots, the slot to place the key
2840 will be specified by a colon followed by an index. Therefore, \fB-k mykey:3\fR
2841 places \fBmykey\fR in slot 3. By default, slot 1 is assumed. For security modes
2842 that support multiple keys, a comma-separated list can be specified, with the
2843 first key being the active key.
2844 .RE

2846 .RE

2848 .sp
2849 .ne 2
2850 .na
2851 \fB\fBdladm disconnect-wifi\fR [\fB-a\fR] [\fIwifi-link\fR]\fR
2852 .ad
2853 .sp .6
2854 .RS 4n
2855 Disconnect from one or more \fBWiFi\fR networks. If \fIwifi-link\fR specifies a
2856 connected \fBWiFi\fR link, then it is disconnected. For administrative
2857 convenience, if only one \fBWiFi\fR link is connected, \fIwifi-link\fR can be
2858 omitted.
2859 .sp
2860 .ne 2
2861 .na
2862 \fB\fB-a\fR, \fB--all-links\fR\fR
2863 .ad
2864 .sp .6
2865 .RS 4n
2866 Disconnects from all connected links. This is primarily intended for use by
2867 scripts.
2868 .RE

2870 .RE

2872 .sp
2873 .ne 2
2874 .na
2875 \fB\fBdladm show-wifi\fR [[\fB-p\fR] \fB-o\fR \fIfield\fR,...]
2876 [\fIwifi-link\fR]\fR
2877 .ad
2878 .sp .6
2879 .RS 4n
2880 Shows \fBWiFi\fR configuration information either for all \fBWiFi\fR links or
2881 for the specified link \fIwifi-link\fR.
2882 .sp
2883 .ne 2
2884 .na
2885 \fB\fB-o\fR \fIfield,...\fR, \fB--output\fR=\fIfield\fR\fR
2886 .ad
2887 .sp .6
2888 .RS 4n
2889 A case-insensitive, comma-separated list of output fields to display. The field
2890 name must be one of the fields listed below, or the special value \fBall\fR, to
2891 display all fields. For each \fBWiFi\fR link, the following fields can be
2892 displayed:
2893 .sp
2894 .ne 2
2895 .na

new/usr/src/man/man1m/dladm.1m 45

2896 \fB\fBLINK\fR\fR
2897 .ad
2898 .sp .6
2899 .RS 4n
2900 The name of the link being displayed.
2901 .RE

2903 .sp
2904 .ne 2
2905 .na
2906 \fB\fBSTATUS\fR\fR
2907 .ad
2908 .sp .6
2909 .RS 4n
2910 Either \fBconnected\fR if the link is connected, or \fBdisconnected\fR if it is
2911 not connected. If the link is disconnected, all remaining fields have the value
2912 \fB--\fR.
2913 .RE

2915 .sp
2916 .ne 2
2917 .na
2918 \fB\fBESSID\fR\fR
2919 .ad
2920 .sp .6
2921 .RS 4n
2922 The \fBESSID\fR (name) of the connected \fBWiFi\fR network.
2923 .RE

2925 .sp
2926 .ne 2
2927 .na
2928 \fB\fBBSSID\fR\fR
2929 .ad
2930 .sp .6
2931 .RS 4n
2932 Either the hardware address of the \fBWiFi\fR network’s Access Point (for
2933 \fBBSS\fR networks), or the \fBWiFi\fR network’s randomly generated unique
2934 token (for \fBIBSS\fR networks).
2935 .RE

2937 .sp
2938 .ne 2
2939 .na
2940 \fB\fBSEC\fR\fR
2941 .ad
2942 .sp .6
2943 .RS 4n
2944 Either \fBnone\fR for a \fBWiFi\fR network that uses no security, \fBwep\fR for
2945 a \fBWiFi\fR network that requires WEP, or \fBwpa\fR for a WiFi network that
2946 requires WPA.
2947 .RE

2949 .sp
2950 .ne 2
2951 .na
2952 \fB\fBMODE\fR\fR
2953 .ad
2954 .sp .6
2955 .RS 4n
2956 The supported connection modes: one or more of \fBa\fR, \fBb\fR, or \fBg\fR.
2957 .RE

2959 .sp
2960 .ne 2
2961 .na

new/usr/src/man/man1m/dladm.1m 46

2962 \fB\fBSTRENGTH\fR\fR
2963 .ad
2964 .sp .6
2965 .RS 4n
2966 The connection strength: one of \fBexcellent\fR, \fBvery good\fR, \fBgood\fR,
2967 \fBweak\fR, or \fBvery weak\fR.
2968 .RE

2970 .sp
2971 .ne 2
2972 .na
2973 \fB\fBSPEED\fR\fR
2974 .ad
2975 .sp .6
2976 .RS 4n
2977 The connection speed, in megabits per second.
2978 .RE

2980 .sp
2981 .ne 2
2982 .na
2983 \fB\fBAUTH\fR\fR
2984 .ad
2985 .sp .6
2986 .RS 4n
2987 Either \fBopen\fR or \fBshared\fR (see \fBconnect-wifi\fR).
2988 .RE

2990 .sp
2991 .ne 2
2992 .na
2993 \fB\fBBSSTYPE\fR\fR
2994 .ad
2995 .sp .6
2996 .RS 4n
2997 Either \fBbss\fR for \fBBSS\fR (infrastructure) networks, or \fBibss\fR for
2998 \fBIBSS\fR (ad-hoc) networks.
2999 .RE

3001 By default, currently all fields but \fBAUTH\fR, \fBBSSID\fR, \fBBSSTYPE\fR are
3002 displayed.
3003 .RE

3005 .sp
3006 .ne 2
3007 .na
3008 \fB\fB-p\fR, \fB--parseable\fR\fR
3009 .ad
3010 .sp .6
3011 .RS 4n
3012 Displays using a stable machine-parseable format. The \fB-o\fR option is
3013 required with \fB-p\fR. See "Parseable Output Format", below.
3014 .RE

3016 .RE

3018 .sp
3019 .ne 2
3020 .na
3021 \fB\fBdladm show-ether\fR [\fB-x\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR,...]
3022 [\fIether-link\fR]\fR
3023 .ad
3024 .sp .6
3025 .RS 4n
3026 Shows state information either for all physical Ethernet links or for a
3027 specified physical Ethernet link.

new/usr/src/man/man1m/dladm.1m 47

3028 .sp
3029 The \fBshow-ether\fR subcommand accepts the following options:
3030 .sp
3031 .ne 2
3032 .na
3033 \fB\fB-o\fR \fIfield\fR,..., \fB--output\fR=\fIfield\fR\fR
3034 .ad
3035 .sp .6
3036 .RS 4n
3037 A case-insensitive, comma-separated list of output fields to display. The field
3038 name must be one of the fields listed below, or the special value \fBall\fR to
3039 display all fields. For each link, the following fields can be displayed:
3040 .sp
3041 .ne 2
3042 .na
3043 \fB\fBLINK\fR\fR
3044 .ad
3045 .sp .6
3046 .RS 4n
3047 The name of the link being displayed.
3048 .RE

3050 .sp
3051 .ne 2
3052 .na
3053 \fB\fBPTYPE\fR\fR
3054 .ad
3055 .sp .6
3056 .RS 4n
3057 Parameter type, where \fBcurrent\fR indicates the negotiated state of the link,
3058 \fBcapable\fR indicates capabilities supported by the device, \fBadv\fR
3059 indicates the advertised capabilities, and \fBpeeradv\fR indicates the
3060 capabilities advertised by the link-partner.
3061 .RE

3063 .sp
3064 .ne 2
3065 .na
3066 \fB\fBSTATE\fR\fR
3067 .ad
3068 .sp .6
3069 .RS 4n
3070 The state of the link.
3071 .RE

3073 .sp
3074 .ne 2
3075 .na
3076 \fB\fBAUTO\fR\fR
3077 .ad
3078 .sp .6
3079 .RS 4n
3080 A \fByes\fR/\fBno\fR value indicating whether auto-negotiation is advertised.
3081 .RE

3083 .sp
3084 .ne 2
3085 .na
3086 \fB\fBSPEED-DUPLEX\fR\fR
3087 .ad
3088 .sp .6
3089 .RS 4n
3090 Combinations of speed and duplex values available. The units of speed are
3091 encoded with a trailing suffix of \fBG\fR (Gigabits/s) or \fBM\fR (Mb/s).
3092 Duplex values are encoded as \fBf\fR (full-duplex) or \fBh\fR (half-duplex).
3093 .RE

new/usr/src/man/man1m/dladm.1m 48

3095 .sp
3096 .ne 2
3097 .na
3098 \fB\fBPAUSE\fR\fR
3099 .ad
3100 .sp .6
3101 .RS 4n
3102 Flow control information. Can be \fBno\fR, indicating no flow control is
3103 available; \fBtx\fR, indicating that the end-point can transmit pause frames,
3104 but ignores any received pause frames; \fBrx\fR, indicating that the end-point
3105 receives and acts upon received pause frames; or \fBbi\fR, indicating
3106 bi-directional flow-control.
3107 .RE

3109 .sp
3110 .ne 2
3111 .na
3112 \fB\fBREM_FAULT\fR\fR
3113 .ad
3114 .sp .6
3115 .RS 4n
3116 Fault detection information. Valid values are \fBnone\fR or \fBfault\fR.
3117 .RE

3119 By default, all fields except \fBREM_FAULT\fR are displayed for the "current"
3120 \fBPTYPE\fR.
3121 .RE

3123 .sp
3124 .ne 2
3125 .na
3126 \fB\fB-p\fR, \fB--parseable\fR\fR
3127 .ad
3128 .sp .6
3129 .RS 4n
3130 Displays using a stable machine-parseable format. The \fB-o\fR option is
3131 required with \fB-p\fR. See "Parseable Output Format", below.
3132 .RE

3134 .sp
3135 .ne 2
3136 .na
3137 \fB\fB-x\fR, \fB--extended\fR\fR
3138 .ad
3139 .sp .6
3140 .RS 4n
3141 Extended output is displayed for \fBPTYPE\fR values of \fBcurrent\fR,
3142 \fBcapable\fR, \fBadv\fR and \fBpeeradv\fR.
3143 .RE

3145 .RE

3147 .sp
3148 .ne 2
3149 .na
3150 \fB\fBdladm set-linkprop\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fB-p\fR
3151 \fIprop\fR=\fIvalue\fR[,...] \fIlink\fR\fR
3152 .ad
3153 .sp .6
3154 .RS 4n
3155 Sets the values of one or more properties on the link specified. The list of
3156 properties and their possible values depend on the link type, the network
3157 device driver, and networking hardware. These properties can be retrieved using
3158 \fBshow-linkprop\fR.
3159 .sp

new/usr/src/man/man1m/dladm.1m 49

3160 .ne 2
3161 .na
3162 \fB\fB-t\fR, \fB--temporary\fR\fR
3163 .ad
3164 .sp .6
3165 .RS 4n
3166 Specifies that the changes are temporary. Temporary changes last until the next
3167 reboot.
3168 .RE

3170 .sp
3171 .ne 2
3172 .na
3173 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
3174 .ad
3175 .sp .6
3176 .RS 4n
3177 See "Options," above.
3178 .RE

3180 .sp
3181 .ne 2
3182 .na
3183 \fB\fB-p\fR \fIprop\fR=\fIvalue\fR[,...], \fB--prop\fR
3184 \fIprop\fR=\fIvalue\fR[,...]\fR
3185 .ad
3186 .br
3187 .na
3188 \fB\fR
3189 .ad
3190 .sp .6
3191 .RS 4n
3192 A comma-separated list of properties to set to the specified values.
3193 .RE

3195 Note that when the persistent value is set, the temporary value changes to the
3196 same value.
3197 .RE

3199 .sp
3200 .ne 2
3201 .na
3202 \fB\fBdladm reset-linkprop\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-p\fR
3203 \fIprop\fR,...] \fIlink\fR\fR
3204 .ad
3205 .sp .6
3206 .RS 4n
3207 Resets one or more properties to their values on the link specified. Properties
3208 are reset to the values they had at startup. If no properties are specified,
3209 all properties are reset. See \fBshow-linkprop\fR for a description of
3210 properties.
3211 .sp
3212 .ne 2
3213 .na
3214 \fB\fB-t\fR, \fB--temporary\fR\fR
3215 .ad
3216 .sp .6
3217 .RS 4n
3218 Specifies that the resets are temporary. Values are reset to default values.
3219 Temporary resets last until the next reboot.
3220 .RE

3222 .sp
3223 .ne 2
3224 .na
3225 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR

new/usr/src/man/man1m/dladm.1m 50

3226 .ad
3227 .sp .6
3228 .RS 4n
3229 See "Options," above.
3230 .RE

3232 .sp
3233 .ne 2
3234 .na
3235 \fB\fB-p\fR \fIprop, ...\fR, \fB--prop\fR=\fIprop, ...\fR\fR
3236 .ad
3237 .sp .6
3238 .RS 4n
3239 A comma-separated list of properties to reset.
3240 .RE

3242 Note that when the persistent value is reset, the temporary value changes to
3243 the same value.
3244 .RE

3246 .sp
3247 .ne 2
3248 .na
3249 \fB\fBdladm show-linkprop\fR [\fB-P\fR] [[\fB-c\fR] \fB-o\fR
3250 \fIfield\fR[,...]][\fB-p\fR \fIprop\fR[,...]] [\fIlink\fR]\fR
3251 .ad
3252 .sp .6
3253 .RS 4n
3254 Show the current or persistent values of one or more properties, either for all
3255 datalinks or for the specified link. By default, current values are shown. If
3256 no properties are specified, all available link properties are displayed. For
3257 each property, the following fields are displayed:
3258 .sp
3259 .ne 2
3260 .na
3261 \fB\fB-o\fR \fIfield\fR[,...], \fB--output\fR=\fIfield\fR\fR
3262 .ad
3263 .sp .6
3264 .RS 4n
3265 A case-insensitive, comma-separated list of output fields to display. The field
3266 name must be one of the fields listed below, or the special value \fBall\fR to
3267 display all fields. For each link, the following fields can be displayed:
3268 .sp
3269 .ne 2
3270 .na
3271 \fB\fBLINK\fR\fR
3272 .ad
3273 .sp .6
3274 .RS 4n
3275 The name of the datalink.
3276 .RE

3278 .sp
3279 .ne 2
3280 .na
3281 \fB\fBPROPERTY\fR\fR
3282 .ad
3283 .sp .6
3284 .RS 4n
3285 The name of the property.
3286 .RE

3288 .sp
3289 .ne 2
3290 .na
3291 \fB\fBPERM\fR\fR

new/usr/src/man/man1m/dladm.1m 51

3292 .ad
3293 .sp .6
3294 .RS 4n
3295 The read/write permissions of the property. The value shown is one of \fBro\fR
3296 or \fBrw\fR.
3297 .RE

3299 .sp
3300 .ne 2
3301 .na
3302 \fB\fBVALUE\fR\fR
3303 .ad
3304 .sp .6
3305 .RS 4n
3306 The current (or persistent) property value. If the value is not set, it is
3307 shown as \fB--\fR. If it is unknown, the value is shown as \fB?\fR. Persistent
3308 values that are not set or have been reset will be shown as \fB--\fR and will
3309 use the system \fBDEFAULT\fR value (if any).
3310 .RE

3312 .sp
3313 .ne 2
3314 .na
3315 \fB\fBDEFAULT\fR\fR
3316 .ad
3317 .sp .6
3318 .RS 4n
3319 The default value of the property. If the property has no default value,
3320 \fB--\fR is shown.
3321 .RE

3323 .sp
3324 .ne 2
3325 .na
3326 \fB\fBPOSSIBLE\fR\fR
3327 .ad
3328 .sp .6
3329 .RS 4n
3330 A comma-separated list of the values the property can have. If the values span
3331 a numeric range, \fImin\fR - \fImax\fR might be shown as shorthand. If the
3332 possible values are unknown or unbounded, \fB--\fR is shown.
3333 .RE

3335 The list of properties depends on the link type and network device driver, and
3336 the available values for a given property further depends on the underlying
3337 network hardware and its state. General link properties are documented in the
3338 \fBLINK PROPERTIES\fR section. However, link properties that begin with
3339 "\fB_\fR" (underbar) are specific to a given link or its underlying network
3340 device and subject to change or removal. See the appropriate network device
3341 driver man page for details.
3342 .RE

3344 .sp
3345 .ne 2
3346 .na
3347 \fB\fB-c\fR, \fB--parseable\fR\fR
3348 .ad
3349 .sp .6
3350 .RS 4n
3351 Display using a stable machine-parseable format. The \fB-o\fR option is
3352 required with this option. See "Parseable Output Format", below.
3353 .RE

3355 .sp
3356 .ne 2
3357 .na

new/usr/src/man/man1m/dladm.1m 52

3358 \fB\fB-P\fR, \fB--persistent\fR\fR
3359 .ad
3360 .sp .6
3361 .RS 4n
3362 Display persistent link property information
3363 .RE

3365 .sp
3366 .ne 2
3367 .na
3368 \fB\fB-p\fR \fIprop, ...\fR, \fB--prop\fR=\fIprop, ...\fR\fR
3369 .ad
3370 .sp .6
3371 .RS 4n
3372 A comma-separated list of properties to show. See the sections on link
3373 properties following subcommand descriptions.
3374 .RE

3376 .RE

3378 .sp
3379 .ne 2
3380 .na
3381 \fB\fBdladm create-secobj\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-f\fR
3382 \fIfile\fR] \fB-c\fR \fIclass\fR \fIsecobj\fR\fR
3383 .ad
3384 .sp .6
3385 .RS 4n
3386 Create a secure object named \fIsecobj\fR in the specified \fIclass\fR to be
3387 later used as a WEP or WPA key in connecting to an encrypted network. The value
3388 of the secure object can either be provided interactively or read from a file.
3389 The sequence of interactive prompts and the file format depends on the class of
3390 the secure object.
3391 .sp
3392 Currently, the classes \fBwep\fR and \fBwpa\fR are supported. The \fBWEP\fR
3393 (Wired Equivalent Privacy) key can be either 5 or 13 bytes long. It can be
3394 provided either as an \fBASCII\fR or hexadecimal string -- thus, \fB12345\fR
3395 and \fB0x3132333435\fR are equivalent 5-byte keys (the \fB0x\fR prefix can be
3396 omitted). A file containing a \fBWEP\fR key must consist of a single line using
3397 either \fBWEP\fR key format. The WPA (Wi-Fi Protected Access) key must be
3398 provided as an ASCII string with a length between 8 and 63 bytes.
3399 .sp
3400 This subcommand is only usable by users or roles that belong to the "Network
3401 Link Security" \fBRBAC\fR profile.
3402 .sp
3403 .ne 2
3404 .na
3405 \fB\fB-c\fR \fIclass\fR, \fB--class\fR=\fIclass\fR\fR
3406 .ad
3407 .sp .6
3408 .RS 4n
3409 \fIclass\fR can be \fBwep\fR or \fBwpa\fR. See preceding discussion.
3410 .RE

3412 .sp
3413 .ne 2
3414 .na
3415 \fB\fB-t\fR, \fB--temporary\fR\fR
3416 .ad
3417 .sp .6
3418 .RS 4n
3419 Specifies that the creation is temporary. Temporary creation last until the
3420 next reboot.
3421 .RE

3423 .sp

new/usr/src/man/man1m/dladm.1m 53

3424 .ne 2
3425 .na
3426 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
3427 .ad
3428 .sp .6
3429 .RS 4n
3430 See "Options," above.
3431 .RE

3433 .sp
3434 .ne 2
3435 .na
3436 \fB\fB-f\fR \fIfile\fR, \fB--file\fR=\fIfile\fR\fR
3437 .ad
3438 .sp .6
3439 .RS 4n
3440 Specifies a file that should be used to obtain the secure object’s value. The
3441 format of this file depends on the secure object class. See the \fBEXAMPLES\fR
3442 section for an example of using this option to set a \fBWEP\fR key.
3443 .RE

3445 .RE

3447 .sp
3448 .ne 2
3449 .na
3450 \fB\fBdladm delete-secobj\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR]
3451 \fIsecobj\fR[,...]\fR
3452 .ad
3453 .sp .6
3454 .RS 4n
3455 Delete one or more specified secure objects. This subcommand is only usable by
3456 users or roles that belong to the "Network Link Security" \fBRBAC\fR profile.
3457 .sp
3458 .ne 2
3459 .na
3460 \fB\fB-t\fR, \fB--temporary\fR\fR
3461 .ad
3462 .sp .6
3463 .RS 4n
3464 Specifies that the deletions are temporary. Temporary deletions last until the
3465 next reboot.
3466 .RE

3468 .sp
3469 .ne 2
3470 .na
3471 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
3472 .ad
3473 .sp .6
3474 .RS 4n
3475 See "Options," above.
3476 .RE

3478 .RE

3480 .sp
3481 .ne 2
3482 .na
3483 \fB\fBdladm show-secobj\fR [\fB-P\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]]
3484 [\fIsecobj\fR,...]\fR
3485 .ad
3486 .sp .6
3487 .RS 4n
3488 Show current or persistent secure object information. If one or more secure
3489 objects are specified, then information for each is displayed. Otherwise, all

new/usr/src/man/man1m/dladm.1m 54

3490 current or persistent secure objects are displayed.
3491 .sp
3492 By default, current secure objects are displayed, which are all secure objects
3493 that have either been persistently created and not temporarily deleted, or
3494 temporarily created.
3495 .sp
3496 For security reasons, it is not possible to show the value of a secure object.
3497 .sp
3498 .ne 2
3499 .na
3500 \fB\fB-o\fR \fIfield\fR[,...] , \fB--output\fR=\fIfield\fR[,...]\fR
3501 .ad
3502 .sp .6
3503 .RS 4n
3504 A case-insensitive, comma-separated list of output fields to display. The field
3505 name must be one of the fields listed below. For displayed secure object, the
3506 following fields can be shown:
3507 .sp
3508 .ne 2
3509 .na
3510 \fB\fBOBJECT\fR\fR
3511 .ad
3512 .sp .6
3513 .RS 4n
3514 The name of the secure object.
3515 .RE

3517 .sp
3518 .ne 2
3519 .na
3520 \fB\fBCLASS\fR\fR
3521 .ad
3522 .sp .6
3523 .RS 4n
3524 The class of the secure object.
3525 .RE

3527 .RE

3529 .sp
3530 .ne 2
3531 .na
3532 \fB\fB-p\fR, \fB--parseable\fR\fR
3533 .ad
3534 .sp .6
3535 .RS 4n
3536 Display using a stable machine-parseable format. The \fB-o\fR option is
3537 required with \fB-p\fR. See "Parseable Output Format", below.
3538 .RE

3540 .sp
3541 .ne 2
3542 .na
3543 \fB\fB-P\fR, \fB--persistent\fR\fR
3544 .ad
3545 .sp .6
3546 .RS 4n
3547 Display persistent secure object information
3548 .RE

3550 .RE

3552 .sp
3553 .ne 2
3554 .na
3555 \fB\fBdladm create-vnic\fR [\fB-t\fR] \fB-l\fR \fIlink\fR [\fB-R\fR

new/usr/src/man/man1m/dladm.1m 55

3556 \fIroot-dir\fR] [\fB-m\fR \fIvalue\fR | auto | {factory [\fB-n\fR
3557 \fIslot-identifier\fR]} | {random [\fB-r\fR \fIprefix\fR]}] [\fB-v\fR
3558 \fIvlan-id\fR] [\fB-p\fR \fIprop\fR=\fIvalue\fR[,...]] \fIvnic-link\fR\fR
3559 .ad
3560 .sp .6
3561 .RS 4n
3562 Create a VNIC with name \fIvnic-link\fR over the specified link.
3563 .sp
3564 .ne 2
3565 .na
3566 \fB\fB-t\fR, \fB--temporary\fR\fR
3567 .ad
3568 .sp .6
3569 .RS 4n
3570 Specifies that the VNIC is temporary. Temporary VNICs last until the next
3571 reboot.
3572 .RE

3574 .sp
3575 .ne 2
3576 .na
3577 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
3578 .ad
3579 .sp .6
3580 .RS 4n
3581 See "Options," above.
3582 .RE

3584 .sp
3585 .ne 2
3586 .na
3587 \fB\fB-l\fR \fIlink\fR, \fB--link\fR=\fIlink\fR\fR
3588 .ad
3589 .sp .6
3590 .RS 4n
3591 \fIlink\fR can be a physical link or an \fBetherstub\fR.
3592 .RE

3594 .sp
3595 .ne 2
3596 .na
3597 \fB\fB-m\fR \fIvalue\fR | \fIkeyword\fR, \fB--mac-address\fR=\fIvalue\fR |
3598 \fIkeyword\fR\fR
3599 .ad
3600 .sp .6
3601 .RS 4n
3602 Sets the VNIC’s MAC address based on the specified value or keyword. If
3603 \fIvalue\fR is not a keyword, it is interpreted as a unicast MAC address, which
3604 must be valid for the underlying NIC. The following special keywords can be
3605 used:
3606 .sp
3607 .ne 2
3608 .na
3609 \fBfactory [\fB-n\fR \fIslot-identifier\fR],\fR
3610 .ad
3611 .br
3612 .na
3613 \fBfactory [\fB--slot\fR=\fIslot-identifier\fR]\fR
3614 .ad
3615 .sp .6
3616 .RS 4n
3617 Assign a factory MAC address to the VNIC. When a factory MAC address is
3618 requested, \fB-m\fR can be combined with the \fB-n\fR option to specify a MAC
3619 address slot to be used. If \fB-n\fR is not specified, the system will choose
3620 the next available factory MAC address. The \fB-m\fR option of the
3621 \fBshow-phys\fR subcommand can be used to display the list of factory MAC

new/usr/src/man/man1m/dladm.1m 56

3622 addresses, their slot identifiers, and their availability.
3623 .RE

3625 .sp
3626 .ne 2
3627 .na
3628 \fB\fR
3629 .ad
3630 .br
3631 .na
3632 \fBrandom [\fB-r\fR \fIprefix\fR],\fR
3633 .ad
3634 .br
3635 .na
3636 \fBrandom [\fB--mac-prefix\fR=\fIprefix\fR]\fR
3637 .ad
3638 .sp .6
3639 .RS 4n
3640 Assign a random MAC address to the VNIC. A default prefix consisting of a valid
3641 IEEE OUI with the local bit set will be used. That prefix can be overridden
3642 with the \fB-r\fR option.
3643 .RE

3645 .sp
3646 .ne 2
3647 .na
3648 \fBauto\fR
3649 .ad
3650 .sp .6
3651 .RS 4n
3652 Try and use a factory MAC address first. If none is available, assign a random
3653 MAC address. \fBauto\fR is the default action if the \fB-m\fR option is not
3654 specified.
3655 .RE

3657 .sp
3658 .ne 2
3659 .na
3660 \fB\fB-v\fR \fIvlan-id\fR\fR
3661 .ad
3662 .sp .6
3663 .RS 4n
3664 Enable VLAN tagging for this VNIC. The VLAN tag will have id \fIvlan-id\fR.
3665 .RE

3667 .RE

3669 .sp
3670 .ne 2
3671 .na
3672 \fB\fB-p\fR \fIprop\fR=\fIvalue\fR,..., \fB--prop\fR
3673 \fIprop\fR=\fIvalue\fR,...\fR
3674 .ad
3675 .sp .6
3676 .RS 4n
3677 A comma-separated list of properties to set to the specified values.
3678 .RE

3680 .RE

3682 .sp
3683 .ne 2
3684 .na
3685 \fB\fBdladm delete-vnic\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR]
3686 \fIvnic-link\fR\fR
3687 .ad

new/usr/src/man/man1m/dladm.1m 57

3688 .sp .6
3689 .RS 4n
3690 Deletes the specified VNIC.
3691 .sp
3692 .ne 2
3693 .na
3694 \fB\fB-t\fR, \fB--temporary\fR\fR
3695 .ad
3696 .sp .6
3697 .RS 4n
3698 Specifies that the deletion is temporary. Temporary deletions last until the
3699 next reboot.
3700 .RE

3702 .sp
3703 .ne 2
3704 .na
3705 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
3706 .ad
3707 .sp .6
3708 .RS 4n
3709 See "Options," above.
3710 .RE

3712 .RE

3714 .sp
3715 .ne 2
3716 .na
3717 \fB\fBdladm show-vnic\fR [\fB-pP\fR] [\fB-s\fR [\fB-i\fR \fIinterval\fR]]
3718 [\fB-o\fR \fIfield\fR[,...]] [\fB-l\fR \fIlink\fR] [\fIvnic-link\fR]\fR
3719 .ad
3720 .sp .6
3721 .RS 4n
3722 Show VNIC configuration information (the default) or statistics, for all VNICs,
3723 all VNICs on a link, or only the specified \fIvnic-link\fR.
3724 .sp
3725 .ne 2
3726 .na
3727 \fB\fB-o\fR \fIfield\fR[,...] , \fB--output\fR=\fIfield\fR[,...]\fR
3728 .ad
3729 .sp .6
3730 .RS 4n
3731 A case-insensitive, comma-separated list of output fields to display. The field
3732 name must be one of the fields listed below. The field name must be one of the
3733 fields listed below, or the special value \fBall\fR to display all fields. By
3734 default (without \fB-o\fR), \fBshow-vnic\fR displays all fields.
3735 .sp
3736 .ne 2
3737 .na
3738 \fB\fBLINK\fR\fR
3739 .ad
3740 .sp .6
3741 .RS 4n
3742 The name of the VNIC.
3743 .RE

3745 .sp
3746 .ne 2
3747 .na
3748 \fB\fBOVER\fR\fR
3749 .ad
3750 .sp .6
3751 .RS 4n
3752 The name of the physical link over which this VNIC is configured.
3753 .RE

new/usr/src/man/man1m/dladm.1m 58

3755 .sp
3756 .ne 2
3757 .na
3758 \fB\fBSPEED\fR\fR
3759 .ad
3760 .sp .6
3761 .RS 4n
3762 The maximum speed of the VNIC, in megabits per second.
3763 .RE

3765 .sp
3766 .ne 2
3767 .na
3768 \fB\fBMACADDRESS\fR\fR
3769 .ad
3770 .sp .6
3771 .RS 4n
3772 MAC address of the VNIC.
3773 .RE

3775 .sp
3776 .ne 2
3777 .na
3778 \fB\fBMACADDRTYPE\fR\fR
3779 .ad
3780 .sp .6
3781 .RS 4n
3782 MAC address type of the VNIC. \fBdladm\fR distinguishes among the following MAC
3783 address types:
3784 .sp
3785 .ne 2
3786 .na
3787 \fB\fBrandom\fR\fR
3788 .ad
3789 .sp .6
3790 .RS 4n
3791 A random address assigned to the VNIC.
3792 .RE

3794 .sp
3795 .ne 2
3796 .na
3797 \fB\fBfactory\fR\fR
3798 .ad
3799 .sp .6
3800 .RS 4n
3801 A factory MAC address used by the VNIC.
3802 .RE

3804 .RE

3806 .RE

3808 .sp
3809 .ne 2
3810 .na
3811 \fB\fB-p\fR, \fB--parseable\fR\fR
3812 .ad
3813 .sp .6
3814 .RS 4n
3815 Display using a stable machine-parseable format. The \fB-o\fR option is
3816 required with \fB-p\fR. See "Parseable Output Format", below.
3817 .RE

3819 .sp

new/usr/src/man/man1m/dladm.1m 59

3820 .ne 2
3821 .na
3822 \fB\fB-P\fR, \fB--persistent\fR\fR
3823 .ad
3824 .sp .6
3825 .RS 4n
3826 Display the persistent VNIC configuration.
3827 .RE

3829 .sp
3830 .ne 2
3831 .na
3832 \fB\fB-s\fR, \fB--statistics\fR\fR
3833 .ad
3834 .sp .6
3835 .RS 4n
3836 Displays VNIC statistics.
3837 .RE

3839 .sp
3840 .ne 2
3841 .na
3842 \fB\fB-i\fR \fIinterval\fR, \fB--interval\fR=\fIinterval\fR\fR
3843 .ad
3844 .sp .6
3845 .RS 4n
3846 Used with the \fB-s\fR option to specify an interval, in seconds, at which
3847 statistics should be displayed. If this option is not specified, statistics
3848 will be displayed only once.
3849 .RE

3851 .sp
3852 .ne 2
3853 .na
3854 \fB\fB-l\fR \fIlink\fR, \fB--link\fR=\fIlink\fR\fR
3855 .ad
3856 .sp .6
3857 .RS 4n
3858 Display information for all VNICs on the named link.
3859 .RE

3861 .RE

3863 .sp
3864 .ne 2
3865 .na
3866 \fB\fR
3867 .ad
3868 .br
3869 .na
3870 \fB\fBdladm create-etherstub\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR]
3871 \fIetherstub\fR\fR
3872 .ad
3873 .sp .6
3874 .RS 4n
3875 Create an etherstub with the specified name.
3876 .sp
3877 .ne 2
3878 .na
3879 \fB\fB-t\fR, \fB--temporary\fR\fR
3880 .ad
3881 .sp .6
3882 .RS 4n
3883 Specifies that the etherstub is temporary. Temporary etherstubs do not persist
3884 across reboots.
3885 .RE

new/usr/src/man/man1m/dladm.1m 60

3887 .sp
3888 .ne 2
3889 .na
3890 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
3891 .ad
3892 .sp .6
3893 .RS 4n
3894 See "Options," above.
3895 .RE

3897 VNICs can be created on top of etherstubs instead of physical NICs. As with
3898 physical NICs, such a creation causes the stack to implicitly create a virtual
3899 switch between the VNICs created on top of the same etherstub.
3900 .RE

3902 .sp
3903 .ne 2
3904 .na
3905 \fB\fR
3906 .ad
3907 .br
3908 .na
3909 \fB\fBdladm delete-etherstub\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR]
3910 \fIetherstub\fR\fR
3911 .ad
3912 .sp .6
3913 .RS 4n
3914 Delete the specified etherstub.
3915 .sp
3916 .ne 2
3917 .na
3918 \fB\fB-t\fR, \fB--temporary\fR\fR
3919 .ad
3920 .sp .6
3921 .RS 4n
3922 Specifies that the deletion is temporary. Temporary deletions last until the
3923 next reboot.
3924 .RE

3926 .sp
3927 .ne 2
3928 .na
3929 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
3930 .ad
3931 .sp .6
3932 .RS 4n
3933 See "Options," above.
3934 .RE

3936 .RE

3938 .sp
3939 .ne 2
3940 .na
3941 \fB\fBdladm show-etherstub\fR [\fIetherstub\fR]\fR
3942 .ad
3943 .sp .6
3944 .RS 4n
3945 Show all configured etherstubs by default, or the specified etherstub if
3946 \fIetherstub\fR is specified.
3947 .RE

3949 .sp
3950 .ne 2
3951 .na

new/usr/src/man/man1m/dladm.1m 61

3952 \fB\fBdladm create-iptun\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] \fB-T\fR
3953 \fItype\fR [\fB-s\fR \fItsrc\fR] [\fB-d\fR \fItdst\fR] \fIiptun-link\fR\fR
3954 .ad
3955 .sp .6
3956 .RS 4n
3957 Create an IP tunnel link named \fIiptun-link\fR. Such links can additionally be
3958 protected with IPsec using \fBipsecconf\fR(1M).
3959 .sp
3960 An IP tunnel is conceptually comprised of two parts: a virtual link between two
3961 or more IP nodes, and an IP interface above this link that allows the system to
3962 transmit and receive IP packets encapsulated by the underlying link. This
3963 subcommand creates a virtual link. The \fBifconfig\fR(1M) command is used to
3964 configure IP interfaces above the link.
3965 .sp
3966 .ne 2
3967 .na
3968 \fB\fB-t\fR, \fB--temporary\fR\fR
3969 .ad
3970 .sp .6
3971 .RS 4n
3972 Specifies that the IP tunnel link is temporary. Temporary tunnels last until
3973 the next reboot.
3974 .RE

3976 .sp
3977 .ne 2
3978 .na
3979 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
3980 .ad
3981 .sp .6
3982 .RS 4n
3983 See "Options," above.
3984 .RE

3986 .sp
3987 .ne 2
3988 .na
3989 \fB\fB-T\fR \fItype\fR, \fB--tunnel-type\fR=\fItype\fR\fR
3990 .ad
3991 .sp .6
3992 .RS 4n
3993 Specifies the type of tunnel to be created. The type must be one of the
3994 following:
3995 .sp
3996 .ne 2
3997 .na
3998 \fB\fBipv4\fR\fR
3999 .ad
4000 .sp .6
4001 .RS 4n
4002 A point-to-point, IP-over-IP tunnel between two IPv4 nodes. This type of tunnel
4003 requires IPv4 source and destination addresses to function. IPv4 and IPv6
4004 interfaces can be plumbed above such a tunnel to create IPv4-over-IPv4 and
4005 IPv6-over-IPv4 tunneling configurations.
4006 .RE

4008 .sp
4009 .ne 2
4010 .na
4011 \fB\fBipv6\fR\fR
4012 .ad
4013 .sp .6
4014 .RS 4n
4015 A point-to-point, IP-over-IP tunnel between two IPv6 nodes as defined in IETF
4016 RFC 2473. This type of tunnel requires IPv6 source and destination addresses to
4017 function. IPv4 and IPv6 interfaces can be plumbed above such a tunnel to create

new/usr/src/man/man1m/dladm.1m 62

4018 IPv4-over-IPv6 and IPv6-over-IPv6 tunneling configurations.
4019 .RE

4021 .sp
4022 .ne 2
4023 .na
4024 \fB\fB6to4\fR\fR
4025 .ad
4026 .sp .6
4027 .RS 4n
4028 A 6to4, point-to-multipoint tunnel as defined in IETF RFC 3056. This type of
4029 tunnel requires an IPv4 source address to function. An IPv6 interface is
4030 plumbed on such a tunnel link to configure a 6to4 router.
4031 .RE

4033 .RE

4035 .sp
4036 .ne 2
4037 .na
4038 \fB\fB-s\fR \fItsrc\fR, \fB--tunnel-src\fR=\fItsrc\fR\fR
4039 .ad
4040 .sp .6
4041 .RS 4n
4042 Literal IP address or hostname corresponding to the tunnel source. If a
4043 hostname is specified, it will be resolved to IP addresses, and one of those IP
4044 addresses will be used as the tunnel source. Because IP tunnels are created
4045 before naming services have been brought online during the boot process, it is
4046 important that any hostname used be included in \fB/etc/hosts\fR.
4047 .RE

4049 .sp
4050 .ne 2
4051 .na
4052 \fB\fB-d\fR \fItdst\fR, \fB--tunnel-dst\fR=\fItdst\fR\fR
4053 .ad
4054 .sp .6
4055 .RS 4n
4056 Literal IP address or hostname corresponding to the tunnel destination.
4057 .RE

4059 .RE

4061 .sp
4062 .ne 2
4063 .na
4064 \fB\fBdladm modify-iptun\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR] [\fB-s\fR
4065 \fItsrc\fR] [\fB-d\fR \fItdst\fR] \fIiptun-link\fR\fR
4066 .ad
4067 .sp .6
4068 .RS 4n
4069 Modify the parameters of the specified IP tunnel.
4070 .sp
4071 .ne 2
4072 .na
4073 \fB\fB-t\fR, \fB--temporary\fR\fR
4074 .ad
4075 .sp .6
4076 .RS 4n
4077 Specifies that the modification is temporary. Temporary modifications last
4078 until the next reboot.
4079 .RE

4081 .sp
4082 .ne 2
4083 .na

new/usr/src/man/man1m/dladm.1m 63

4084 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
4085 .ad
4086 .sp .6
4087 .RS 4n
4088 See "Options," above.
4089 .RE

4091 .sp
4092 .ne 2
4093 .na
4094 \fB\fB-s\fR \fItsrc\fR, \fB--tunnel-src\fR=\fItsrc\fR\fR
4095 .ad
4096 .sp .6
4097 .RS 4n
4098 Specifies a new tunnel source address. See \fBcreate-iptun\fR for a
4099 description.
4100 .RE

4102 .sp
4103 .ne 2
4104 .na
4105 \fB\fB-d\fR \fItdst\fR, \fB--tunnel-dst\fR=\fItdst\fR\fR
4106 .ad
4107 .sp .6
4108 .RS 4n
4109 Specifies a new tunnel destination address. See \fBcreate-iptun\fR for a
4110 description.
4111 .RE

4113 .RE

4115 .sp
4116 .ne 2
4117 .na
4118 \fB\fBdladm delete-iptun\fR [\fB-t\fR] [\fB-R\fR \fIroot-dir\fR]
4119 \fIiptun-link\fR\fR
4120 .ad
4121 .sp .6
4122 .RS 4n
4123 Delete the specified IP tunnel link.
4124 .sp
4125 .ne 2
4126 .na
4127 \fB\fB-t\fR, \fB--temporary\fR\fR
4128 .ad
4129 .sp .6
4130 .RS 4n
4131 Specifies that the deletion is temporary. Temporary deletions last until the
4132 next reboot.
4133 .RE

4135 .sp
4136 .ne 2
4137 .na
4138 \fB\fB-R\fR \fIroot-dir\fR, \fB--root-dir\fR=\fIroot-dir\fR\fR
4139 .ad
4140 .sp .6
4141 .RS 4n
4142 See "Options," above.
4143 .RE

4145 .RE

4147 .sp
4148 .ne 2
4149 .na

new/usr/src/man/man1m/dladm.1m 64

4150 \fB\fBdladm show-iptun\fR [\fB-P\fR] [[\fB-p\fR] \fB-o\fR \fIfield\fR[,...]]
4151 [\fIiptun-link\fR]\fR
4152 .ad
4153 .sp .6
4154 .RS 4n
4155 Show IP tunnel link configuration for a single IP tunnel or all IP tunnels.
4156 .sp
4157 .ne 2
4158 .na
4159 \fB\fB-P\fR, \fB--persistent\fR\fR
4160 .ad
4161 .sp .6
4162 .RS 4n
4163 Display the persistent IP tunnel configuration.
4164 .RE

4166 .sp
4167 .ne 2
4168 .na
4169 \fB\fB-p\fR, \fB--parseable\fR\fR
4170 .ad
4171 .sp .6
4172 .RS 4n
4173 Display using a stable machine-parseable format. The -o option is required with
4174 -p. See "Parseable Output Format", below.
4175 .RE

4177 .sp
4178 .ne 2
4179 .na
4180 \fB\fB-o\fR \fIfield\fR[,...], \fB--output\fR=\fIfield\fR[,...]\fR
4181 .ad
4182 .sp .6
4183 .RS 4n
4184 A case-insensitive, comma-separated list of output fields to display. The field
4185 name must be one of the fields listed below, or the special value \fBall\fR, to
4186 display all fields. By default (without \fB-o\fR), \fBshow-iptun\fR displays
4187 all fields.
4188 .sp
4189 .ne 2
4190 .na
4191 \fB\fBLINK\fR\fR
4192 .ad
4193 .sp .6
4194 .RS 4n
4195 The name of the IP tunnel link.
4196 .RE

4198 .sp
4199 .ne 2
4200 .na
4201 \fB\fBTYPE\fR\fR
4202 .ad
4203 .sp .6
4204 .RS 4n
4205 Type of tunnel as specified by the \fB-T\fR option of \fBcreate-iptun\fR.
4206 .RE

4208 .sp
4209 .ne 2
4210 .na
4211 \fB\fBFLAGS\fR\fR
4212 .ad
4213 .sp .6
4214 .RS 4n
4215 A set of flags associated with the IP tunnel link. Possible flags are:

new/usr/src/man/man1m/dladm.1m 65

4216 .sp
4217 .ne 2
4218 .na
4219 \fB\fBs\fR\fR
4220 .ad
4221 .sp .6
4222 .RS 4n
4223 The IP tunnel link is protected by IPsec policy. To display the IPsec policy
4224 associated with the tunnel link, enter:
4225 .sp
4226 .in +2
4227 .nf
4228 # \fBipsecconf -ln -i \fItunnel-link\fR\fR
4229 .fi
4230 .in -2
4231 .sp

4233 See \fBipsecconf\fR(1M) for more details on how to configure IPsec policy.
4234 .RE

4236 .sp
4237 .ne 2
4238 .na
4239 \fB\fBi\fR\fR
4240 .ad
4241 .sp .6
4242 .RS 4n
4243 The IP tunnel link was implicitly created with \fBifconfig\fR(1M), and will be
4244 automatically deleted when it is no longer referenced (that is, when the last
4245 IP interface over the tunnel is unplumbed). See \fBifconfig\fR(1M) for details
4246 on implicit tunnel creation.
4247 .RE

4249 .RE

4251 .sp
4252 .ne 2
4253 .na
4254 \fB\fBSOURCE\fR\fR
4255 .ad
4256 .sp .6
4257 .RS 4n
4258 The tunnel source address.
4259 .RE

4261 .sp
4262 .ne 2
4263 .na
4264 \fB\fBDESTINATION\fR\fR
4265 .ad
4266 .sp .6
4267 .RS 4n
4268 The tunnel destination address.
4269 .RE

4271 .RE

4273 .RE

4275 .sp
4276 .ne 2
4277 .na
4278 \fB\fBdladm show-usage\fR [\fB-a\fR] \fB-f\fR \fIfilename\fR [\fB-p\fR
4279 \fIplotfile\fR \fB-F\fR \fIformat\fR] [\fB-s\fR \fItime\fR] [\fB-e\fR
4280 \fItime\fR] [\fIlink\fR]\fR
4281 .ad

new/usr/src/man/man1m/dladm.1m 66

4282 .sp .6
4283 .RS 4n
4284 Show the historical network usage from a stored extended accounting file.
4285 Configuration and enabling of network accounting through \fBacctadm\fR(1M) is
4286 required. The default output will be the summary of network usage for the
4287 entire period of time in which extended accounting was enabled.
4288 .sp
4289 .ne 2
4290 .na
4291 \fB\fB-a\fR\fR
4292 .ad
4293 .sp .6
4294 .RS 4n
4295 Display all historical network usage for the specified period of time during
4296 which extended accounting is enabled. This includes the usage information for
4297 the links that have already been deleted.
4298 .RE

4300 .sp
4301 .ne 2
4302 .na
4303 \fB\fB-f\fR \fIfilename\fR, \fB--file\fR=\fIfilename\fR\fR
4304 .ad
4305 .sp .6
4306 .RS 4n
4307 Read extended accounting records of network usage from \fIfilename\fR.
4308 .RE

4310 .sp
4311 .ne 2
4312 .na
4313 \fB\fB-F\fR \fIformat\fR, \fB--format\fR=\fIformat\fR\fR
4314 .ad
4315 .sp .6
4316 .RS 4n
4317 Specifies the format of \fIplotfile\fR that is specified by the \fB-p\fR
4318 option. As of this release, \fBgnuplot\fR is the only supported format.
4319 .RE

4321 .sp
4322 .ne 2
4323 .na
4324 \fB\fB-p\fR \fIplotfile\fR, \fB--plot\fR=\fIplotfile\fR\fR
4325 .ad
4326 .sp .6
4327 .RS 4n
4328 Write network usage data to a file of the format specified by the \fB-F\fR
4329 option, which is required.
4330 .RE

4332 .sp
4333 .ne 2
4334 .na
4335 \fB\fB-s\fR \fItime\fR, \fB--start\fR=\fItime\fR\fR
4336 .ad
4337 .br
4338 .na
4339 \fB\fB-e\fR \fItime\fR, \fB--stop\fR=\fItime\fR\fR
4340 .ad
4341 .sp .6
4342 .RS 4n
4343 Start and stop times for data display. Time is in the format
4344 \fIMM\fR/\fIDD\fR/\fIYYYY\fR,\fIhh\fR:\fImm\fR:\fIss\fR.
4345 .RE

4347 .sp

new/usr/src/man/man1m/dladm.1m 67

4348 .ne 2
4349 .na
4350 \fB\fIlink\fR\fR
4351 .ad
4352 .sp .6
4353 .RS 4n
4354 If specified, display the network usage only for the named link. Otherwise,
4355 display network usage for all links.
4356 .RE

4358 .RE

4360 .sp
4361 .ne 2
4362 .na
4363 \fB\fBdladm help\fR [\fIsubcommand\fR]\fR
4364 .ad
4365 .sp .6
4366 .RS 4n
4367 Displays all subcommands or help on a single subcommand.
4368 .RE

4370 #endif /* ! codereview */
4371 .SS "Parseable Output Format"
4372 .sp
4373 .LP
4374 Many \fBdladm\fR subcommands have an option that displays output in a
4375 machine-parseable format. The output format is one or more lines of colon
4376 (\fB:\fR) delimited fields. The fields displayed are specific to the subcommand
4377 used and are listed under the entry for the \fB-o\fR option for a given
4378 subcommand. Output includes only those fields requested by means of the
4379 \fB-o\fR option, in the order requested.
4380 .sp
4381 .LP
4382 When you request multiple fields, any literal colon characters are escaped by a
4383 backslash (\fB\e\fR) before being output. Similarly, literal backslash
4384 characters will also be escaped (\fB\e\e\fR). This escape format is parseable
4385 by using shell \fBread\fR(1) functions with the environment variable
4386 \fBIFS=:\fR (see \fBEXAMPLES\fR, below). Note that escaping is not done when
4387 you request only a single field.
4388 .SS "General Link Properties"
4389 .sp
4390 .LP
4391 The following general link properties are supported:
4392 .sp
4393 .ne 2
4394 .na
4395 \fB\fBautopush\fR\fR
4396 .ad
4397 .sp .6
4398 .RS 4n
4399 Specifies the set of STREAMS modules to push on the stream associated with a
4400 link when its DLPI device is opened. It is a space-delimited list of modules.
4401 .sp
4402 The optional special character sequence \fB[anchor]\fR indicates that a STREAMS
4403 anchor should be placed on the stream at the module previously specified in the
4404 list. It is an error to specify more than one anchor or to have an anchor first
4405 in the list.
4406 .sp
4407 The \fBautopush\fR property is preferred over the more general
4408 \fBautopush\fR(1M) command.
4409 .RE

4411 .sp
4412 .ne 2
4413 .na

new/usr/src/man/man1m/dladm.1m 68

4414 \fB\fBcpus\fR\fR
4415 .ad
4416 .sp .6
4417 .RS 4n
4418 Bind the processing of packets for a given data link to a processor or a set of
4419 processors. The value can be a comma-separated list of one or more processor
4420 ids. If the list consists of more than one processor, the processing will
4421 spread out to all the processors. Connection to processor affinity and packet
4422 ordering for any individual connection will be maintained.
4423 .sp
4424 The processor or set of processors are not exclusively reserved for the link.
4425 Only the kernel threads and interrupts associated with processing of the link
4426 are bound to the processor or the set of processors specified. In case it is
4427 desired that processors be dedicated to the link, \fBpsrset\fR(1M) can be used
4428 to create a processor set and then specifying the processors from the processor
4429 set to bind the link to.
4430 .sp
4431 If the link was already bound to processor or set of processors due to a
4432 previous operation, the binding will be removed and the new set of processors
4433 will be used instead.
4434 .sp
4435 The default is no CPU binding, which is to say that the processing of packets
4436 is not bound to any specific processor or processor set.
4437 .RE

4439 .sp
4440 .ne 2
4441 .na
4442 \fB\fBlearn_limit\fR\fR
4443 .ad
4444 .sp .6
4445 .RS 4n
4446 Limits the number of new or changed MAC sources to be learned over a bridge
4447 link. When the number exceeds this value, learning on that link is temporarily
4448 disabled. Only non-VLAN, non-VNIC type links have this property.
4449 .sp
4450 The default value is \fB1000\fR. Valid values are greater or equal to 0.
4451 .RE

4453 .sp
4454 .ne 2
4455 .na
4456 \fB\fBlearn_decay\fR\fR
4457 .ad
4458 .sp .6
4459 .RS 4n
4460 Specifies the decay rate for source changes limited by \fBlearn_limit\fR. This
4461 number is subtracted from the counter for a bridge link every 5 seconds. Only
4462 non-VLAN, non-VNIC type links have this property.
4463 .sp
4464 The default value is \fB200\fR. Valid values are greater or equal to 0.
4465 .RE

4467 .sp
4468 .ne 2
4469 .na
4470 \fB\fBmaxbw\fR\fR
4471 .ad
4472 .sp .6
4473 .RS 4n
4474 Sets the full duplex bandwidth for the link. The bandwidth is specified as an
4475 integer with one of the scale suffixes (\fBK\fR, \fBM\fR, or \fBG\fR for Kbps,
4476 Mbps, and Gbps). If no units are specified, the input value will be read as
4477 Mbps. The default is no bandwidth limit.
4478 .RE

new/usr/src/man/man1m/dladm.1m 69

4480 .sp
4481 .ne 2
4482 .na
4483 \fB\fBpriority\fR\fR
4484 .ad
4485 .sp .6
4486 .RS 4n
4487 Sets the relative priority for the link. The value can be given as one of the
4488 tokens \fBhigh\fR, \fBmedium\fR, or \fBlow\fR. The default is \fBhigh\fR.
4489 .RE

4491 .sp
4492 .ne 2
4493 .na
4494 \fB\fBstp\fR\fR
4495 .ad
4496 .sp .6
4497 .RS 4n
4498 Enables or disables Spanning Tree Protocol on a bridge link. Setting this value
4499 to \fB0\fR disables Spanning Tree, and puts the link into forwarding mode with
4500 BPDU guarding enabled. This mode is appropriate for point-to-point links
4501 connected only to end nodes. Only non-VLAN, non-VNIC type links have this
4502 property. The default value is \fB1\fR, to enable STP.
4503 .RE

4505 .sp
4506 .ne 2
4507 .na
4508 \fB\fBforward\fR\fR
4509 .ad
4510 .sp .6
4511 .RS 4n
4512 Enables or disables forwarding for a VLAN. Setting this value to \fB0\fR
4513 disables bridge forwarding for a VLAN link. Disabling bridge forwarding removes
4514 that VLAN from the "allowed set" for the bridge. The default value is \fB1\fR,
4515 to enable bridge forwarding for configured VLANs.
4516 .RE

4518 .sp
4519 .ne 2
4520 .na
4521 \fB\fBdefault_tag\fR\fR
4522 .ad
4523 .sp .6
4524 .RS 4n
4525 Sets the default VLAN ID that is assumed for untagged packets sent to and
4526 received from this link. Only non-VLAN, non-VNIC type links have this property.
4527 Setting this value to \fB0\fR disables the bridge forwarding of untagged
4528 packets to and from the port. The default value is \fBVLAN ID 1\fR. Valid
4529 values values are from 0 to 4094.
4530 .RE

4532 .sp
4533 .ne 2
4534 .na
4535 \fB\fBstp_priority\fR\fR
4536 .ad
4537 .sp .6
4538 .RS 4n
4539 Sets the STP and RSTP Port Priority value, which is used to determine the
4540 preferred root port on a bridge. Lower numerical values are higher priority.
4541 The default value is \fB128\fR. Valid values range from 0 to 255.
4542 .RE

4544 .sp
4545 .ne 2

new/usr/src/man/man1m/dladm.1m 70

4546 .na
4547 \fB\fBstp_cost\fR\fR
4548 .ad
4549 .sp .6
4550 .RS 4n
4551 Sets the STP and RSTP cost for using the link. The default value is \fBauto\fR,
4552 which sets the cost based on link speed, using \fB100\fR for 10Mbps, \fB19\fR
4553 for 100Mbps, \fB4\fR for 1Gbps, and \fB2\fR for 10Gbps. Valid values range from
4554 1 to 65535.
4555 .RE

4557 .sp
4558 .ne 2
4559 .na
4560 \fB\fBstp_edge\fR\fR
4561 .ad
4562 .sp .6
4563 .RS 4n
4564 Enables or disables bridge edge port detection. If set to \fB0\fR (false), the
4565 system assumes that the port is connected to other bridges even if no bridge
4566 PDUs of any type are seen. The default value is \fB1\fR, which detects edge
4567 ports automatically.
4568 .RE

4570 .sp
4571 .ne 2
4572 .na
4573 \fB\fBstp_p2p\fR\fR
4574 .ad
4575 .sp .6
4576 .RS 4n
4577 Sets bridge point-to-point operation mode. Possible values are \fBtrue\fR,
4578 \fBfalse\fR, and \fBauto\fR. When set to \fBauto\fR, point-to-point connections
4579 are automatically discovered. When set to \fBtrue\fR, the port mode is forced
4580 to use point-to-point. When set to \fBfalse\fR, the port mode is forced to use
4581 normal multipoint mode. The default value is \fBauto\fR.
4582 .RE

4584 .sp
4585 .ne 2
4586 .na
4587 \fB\fBstp_mcheck\fR\fR
4588 .ad
4589 .sp .6
4590 .RS 4n
4591 Triggers the system to run the RSTP \fBForce BPDU Migration Check\fR procedure
4592 on this link. The procedure is triggered by setting the property value to
4593 \fB1\fR. The property is automatically reset back to \fB0\fR. This value cannot
4594 be set unless the following are true:
4595 .RS +4
4596 .TP
4597 .ie t \(bu
4598 .el o
4599 The link is bridged
4600 .RE
4601 .RS +4
4602 .TP
4603 .ie t \(bu
4604 .el o
4605 The bridge is protected by Spanning Tree
4606 .RE
4607 .RS +4
4608 .TP
4609 .ie t \(bu
4610 .el o
4611 The bridge \fBforce-protocol\fR value is at least 2 (RSTP)

new/usr/src/man/man1m/dladm.1m 71

4612 .RE
4613 The default value is 0.
4614 .RE

4616 .sp
4617 .ne 2
4618 .na
4619 \fB\fBzone\fR\fR
4620 .ad
4621 .sp .6
4622 .RS 4n
4623 Specifies the zone to which the link belongs. This property can be modified
4624 only temporarily through \fBdladm\fR, and thus the \fB-t\fR option must be
4625 specified. To modify the zone assignment such that it persists across reboots,
4626 please use \fBzonecfg\fR(1M). Possible values consist of any exclusive-IP zone
4627 currently running on the system. By default, the zone binding is as per
4628 \fBzonecfg\fR(1M).
4629 .RE

4631 .SS "Wifi Link Properties"
4632 .sp
4633 .LP
4634 The following \fBWiFi\fR link properties are supported. Note that the ability
4635 to set a given property to a given value depends on the driver and hardware.
4636 .sp
4637 .ne 2
4638 .na
4639 \fB\fBchannel\fR\fR
4640 .ad
4641 .sp .6
4642 .RS 4n
4643 Specifies the channel to use. This property can be modified only by certain
4644 \fBWiFi\fR links when in \fBIBSS\fR mode. The default value and allowed range
4645 of values varies by regulatory domain.
4646 .RE

4648 .sp
4649 .ne 2
4650 .na
4651 \fB\fBpowermode\fR\fR
4652 .ad
4653 .sp .6
4654 .RS 4n
4655 Specifies the power management mode of the \fBWiFi\fR link. Possible values are
4656 \fBoff\fR (disable power management), \fBmax\fR (maximum power savings), and
4657 \fBfast\fR (performance-sensitive power management). Default is \fBoff\fR.
4658 .RE

4660 .sp
4661 .ne 2
4662 .na
4663 \fB\fBradio\fR\fR
4664 .ad
4665 .sp .6
4666 .RS 4n
4667 Specifies the radio mode of the \fBWiFi\fR link. Possible values are \fBon\fR
4668 or \fBoff\fR. Default is \fBon\fR.
4669 .RE

4671 .sp
4672 .ne 2
4673 .na
4674 \fB\fBspeed\fR\fR
4675 .ad
4676 .sp .6
4677 .RS 4n

new/usr/src/man/man1m/dladm.1m 72

4678 Specifies a fixed speed for the \fBWiFi\fR link, in megabits per second. The
4679 set of possible values depends on the driver and hardware (but is shown by
4680 \fBshow-linkprop\fR); common speeds include 1, 2, 11, and 54. By default, there
4681 is no fixed speed.
4682 .RE

4684 .SS "Ethernet Link Properties"
4685 .sp
4686 .LP
4687 The following MII Properties, as documented in \fBieee802.3\fR(5), are
4688 supported in read-only mode:
4689 .RS +4
4690 .TP
4691 .ie t \(bu
4692 .el o
4693 \fBduplex\fR
4694 .RE
4695 .RS +4
4696 .TP
4697 .ie t \(bu
4698 .el o
4699 \fBstate\fR
4700 .RE
4701 .RS +4
4702 .TP
4703 .ie t \(bu
4704 .el o
4705 \fBadv_autoneg_cap\fR
4706 .RE
4707 .RS +4
4708 .TP
4709 .ie t \(bu
4710 .el o
4711 \fBadv_10gfdx_cap\fR
4712 .RE
4713 .RS +4
4714 .TP
4715 .ie t \(bu
4716 .el o
4717 \fBadv_1000fdx_cap\fR
4718 .RE
4719 .RS +4
4720 .TP
4721 .ie t \(bu
4722 .el o
4723 \fBadv_1000hdx_cap\fR
4724 .RE
4725 .RS +4
4726 .TP
4727 .ie t \(bu
4728 .el o
4729 \fBadv_100fdx_cap\fR
4730 .RE
4731 .RS +4
4732 .TP
4733 .ie t \(bu
4734 .el o
4735 \fBadv_100hdx_cap\fR
4736 .RE
4737 .RS +4
4738 .TP
4739 .ie t \(bu
4740 .el o
4741 \fBadv_10fdx_cap\fR
4742 .RE
4743 .RS +4

new/usr/src/man/man1m/dladm.1m 73

4744 .TP
4745 .ie t \(bu
4746 .el o
4747 \fBadv_10hdx_cap\fR
4748 .RE
4749 .sp
4750 .LP
4751 Each \fBadv_\fR property (for example, \fBadv_10fdx_cap\fR) also has a
4752 read/write counterpart \fBen_\fR property (for example, \fBen_10fdx_cap\fR)
4753 controlling parameters used at auto-negotiation. In the absence of Power
4754 Management, the \fBadv\fR* speed/duplex parameters provide the values that are
4755 both negotiated and currently effective in hardware. However, with Power
4756 Management enabled, the speed/duplex capabilities currently exposed in hardware
4757 might be a subset of the set of bits that were used in initial link parameter
4758 negotiation. Thus the MII \fBadv_\fR* parameters are marked read-only, with an
4759 additional set of \fBen_\fR* parameters for configuring speed and duplex
4760 properties at initial negotiation.
4761 .sp
4762 .LP
4763 Note that the \fBadv_autoneg_cap\fR does not have an \fBen_autoneg_cap\fR
4764 counterpart: the \fBadv_autoneg_cap\fR is a 0/1 switch that turns off/on
4765 autonegotiation itself, and therefore cannot be impacted by Power Management.
4766 .sp
4767 .LP
4768 In addition, the following Ethernet properties are reported:
4769 .sp
4770 .ne 2
4771 .na
4772 \fB\fBspeed\fR\fR
4773 .ad
4774 .sp .6
4775 .RS 4n
4776 (read-only) The operating speed of the device, in Mbps.
4777 .RE

4779 .sp
4780 .ne 2
4781 .na
4782 \fB\fBmtu\fR\fR
4783 .ad
4784 .sp .6
4785 .RS 4n
4786 The maximum client SDU (Send Data Unit) supported by the device. Valid range is
4787 68-65536.
4788 .RE

4790 .sp
4791 .ne 2
4792 .na
4793 \fB\fBflowctrl\fR\fR
4794 .ad
4795 .sp .6
4796 .RS 4n
4797 Establishes flow-control modes that will be advertised by the device. Valid
4798 input is one of:
4799 .sp
4800 .ne 2
4801 .na
4802 \fB\fBno\fR\fR
4803 .ad
4804 .sp .6
4805 .RS 4n
4806 No flow control enabled.
4807 .RE

4809 .sp

new/usr/src/man/man1m/dladm.1m 74

4810 .ne 2
4811 .na
4812 \fB\fBrx\fR\fR
4813 .ad
4814 .sp .6
4815 .RS 4n
4816 Receive, and act upon incoming pause frames.
4817 .RE

4819 .sp
4820 .ne 2
4821 .na
4822 \fB\fBtx\fR\fR
4823 .ad
4824 .sp .6
4825 .RS 4n
4826 Transmit pause frames to the peer when congestion occurs, but ignore received
4827 pause frames.
4828 .RE

4830 .sp
4831 .ne 2
4832 .na
4833 \fB\fBbi\fR\fR
4834 .ad
4835 .sp .6
4836 .RS 4n
4837 Bidirectional flow control.
4838 .RE

4840 Note that the actual settings for this value are constrained by the
4841 capabilities allowed by the device and the link partner.
4842 .RE

4844 .sp
4845 .ne 2
4846 .na
4847 \fB\fBtagmode\fR\fR
4848 .ad
4849 .sp .6
4850 .RS 4n
4851 This link property controls the conditions in which 802.1Q VLAN tags will be
4852 inserted in packets being transmitted on the link. Two mode values can be
4853 assigned to this property:
4854 .sp
4855 .ne 2
4856 .na
4857 \fB\fBnormal\fR\fR
4858 .ad
4859 .RS 12n
4860 Insert a VLAN tag in outgoing packets under the following conditions:
4861 .RS +4
4862 .TP
4863 .ie t \(bu
4864 .el o
4865 The packet belongs to a VLAN.
4866 .RE
4867 .RS +4
4868 .TP
4869 .ie t \(bu
4870 .el o
4871 The user requested priority tagging.
4872 .RE
4873 .RE

4875 .sp

new/usr/src/man/man1m/dladm.1m 75

4876 .ne 2
4877 .na
4878 \fB\fBvlanonly\fR\fR
4879 .ad
4880 .RS 12n
4881 Insert a VLAN tag only when the outgoing packet belongs to a VLAN. If a tag is
4882 being inserted in this mode and the user has also requested a non-zero
4883 priority, the priority is honored and included in the VLAN tag.
4884 .RE

4886 The default value is \fBvlanonly\fR.
4887 .RE

4889 .SS "IP Tunnel Link Properties"
4890 .sp
4891 .LP
4892 The following IP tunnel link properties are supported.
4893 .sp
4894 .ne 2
4895 .na
4896 \fB\fBhoplimit\fR\fR
4897 .ad
4898 .sp .6
4899 .RS 4n
4900 Specifies the IPv4 TTL or IPv6 hop limit for the encapsulating outer IP header
4901 of a tunnel link. This property exists for all tunnel types. The default value
4902 is 64.
4903 .RE

4905 .sp
4906 .ne 2
4907 .na
4908 \fB\fBencaplimit\fR\fR
4909 .ad
4910 .sp .6
4911 .RS 4n
4912 Specifies the IPv6 encapsulation limit for an IPv6 tunnel as defined in RFC
4913 2473. This value is the tunnel nesting limit for a given tunneled packet. The
4914 default value is 4. A value of 0 disables the encapsulation limit.
4915 .RE

4917 .SH EXAMPLES
4918 .LP
4919 \fBExample 1 \fRConfiguring an Aggregation
4920 .sp
4921 .LP
4922 To configure a data-link over an aggregation of devices \fBbge0\fR and
4923 \fBbge1\fR with key 1, enter the following command:

4925 .sp
4926 .in +2
4927 .nf
4928 # \fBdladm create-aggr -d bge0 -d bge1 1\fR
4929 .fi
4930 .in -2
4931 .sp

4933 .LP
4934 \fBExample 2 \fRConnecting to a WiFi Link
4935 .sp
4936 .LP
4937 To connect to the most optimal available unsecured network on a system with a
4938 single \fBWiFi\fR link (as per the prioritization rules specified for
4939 \fBconnect-wifi\fR), enter the following command:

4941 .sp

new/usr/src/man/man1m/dladm.1m 76

4942 .in +2
4943 .nf
4944 # \fBdladm connect-wifi\fR
4945 .fi
4946 .in -2
4947 .sp

4949 .LP
4950 \fBExample 3 \fRCreating a WiFi Key
4951 .sp
4952 .LP
4953 To interactively create the \fBWEP\fR key \fBmykey\fR, enter the following
4954 command:

4956 .sp
4957 .in +2
4958 .nf
4959 # \fBdladm create-secobj -c wep mykey\fR
4960 .fi
4961 .in -2
4962 .sp

4964 .sp
4965 .LP
4966 Alternatively, to non-interactively create the \fBWEP\fR key \fBmykey\fR using
4967 the contents of a file:

4969 .sp
4970 .in +2
4971 .nf
4972 # \fBumask 077\fR
4973 # \fBcat >/tmp/mykey.$$ <<EOF\fR
4974 \fB12345\fR
4975 \fBEOF\fR
4976 # \fBdladm create-secobj -c wep -f /tmp/mykey.$$ mykey\fR
4977 # \fBrm /tmp/mykey.$$\fR
4978 .fi
4979 .in -2
4980 .sp

4982 .LP
4983 \fBExample 4 \fRConnecting to a Specified Encrypted WiFi Link
4984 .sp
4985 .LP
4986 To use key \fBmykey\fR to connect to \fBESSID\fR \fBwlan\fR on link \fBath0\fR,
4987 enter the following command:

4989 .sp
4990 .in +2
4991 .nf
4992 # \fBdladm connect-wifi -k mykey -e wlan ath0\fR
4993 .fi
4994 .in -2
4995 .sp

4997 .LP
4998 \fBExample 5 \fRChanging a Link Property
4999 .sp
5000 .LP
5001 To set \fBpowermode\fR to the value \fBfast\fR on link \fBpcwl0\fR, enter the
5002 following command:

5004 .sp
5005 .in +2
5006 .nf
5007 # \fBdladm set-linkprop -p powermode=fast pcwl0\fR

new/usr/src/man/man1m/dladm.1m 77

5008 .fi
5009 .in -2
5010 .sp

5012 .LP
5013 \fBExample 6 \fRConnecting to a WPA-Protected WiFi Link
5014 .sp
5015 .LP
5016 Create a WPA key \fBpsk\fR and enter the following command:

5018 .sp
5019 .in +2
5020 .nf
5021 # \fBdladm create-secobj -c wpa psk\fR
5022 .fi
5023 .in -2
5024 .sp

5026 .sp
5027 .LP
5028 To then use key \fBpsk\fR to connect to ESSID \fBwlan\fR on link \fBath0\fR,
5029 enter the following command:

5031 .sp
5032 .in +2
5033 .nf
5034 # \fBdladm connect-wifi -k psk -e wlan ath0\fR
5035 .fi
5036 .in -2
5037 .sp

5039 .LP
5040 \fBExample 7 \fRRenaming a Link
5041 .sp
5042 .LP
5043 To rename the \fBbge0\fR link to \fBmgmt0\fR, enter the following command:

5045 .sp
5046 .in +2
5047 .nf
5048 # \fBdladm rename-link bge0 mgmt0\fR
5049 .fi
5050 .in -2
5051 .sp

5053 .LP
5054 \fBExample 8 \fRReplacing a Network Card
5055 .sp
5056 .LP
5057 Consider that the \fBbge0\fR device, whose link was named \fBmgmt0\fR as shown
5058 in the previous example, needs to be replaced with a \fBce0\fR device because
5059 of a hardware failure. The \fBbge0\fR NIC is physically removed, and replaced
5060 with a new \fBce0\fR NIC. To associate the newly added \fBce0\fR device with
5061 the \fBmgmt0\fR configuration previously associated with \fBbge0\fR, enter the
5062 following command:

5064 .sp
5065 .in +2
5066 .nf
5067 # \fBdladm rename-link ce0 mgmt0\fR
5068 .fi
5069 .in -2
5070 .sp

5072 .LP
5073 \fBExample 9 \fRRemoving a Network Card

new/usr/src/man/man1m/dladm.1m 78

5074 .sp
5075 .LP
5076 Suppose that in the previous example, the intent is not to replace the
5077 \fBbge0\fR NIC with another NIC, but rather to remove and not replace the
5078 hardware. In that case, the \fBmgmt0\fR datalink configuration is not slated to
5079 be associated with a different physical device as shown in the previous
5080 example, but needs to be deleted. Enter the following command to delete the
5081 datalink configuration associated with the \fBmgmt0\fR datalink, whose physical
5082 hardware (\fBbge0\fR in this case) has been removed:

5084 .sp
5085 .in +2
5086 .nf
5087 # \fBdladm delete-phys mgmt0\fR
5088 .fi
5089 .in -2
5090 .sp

5092 .LP
5093 \fBExample 10 \fRUsing Parseable Output to Capture a Single Field
5094 .sp
5095 .LP
5096 The following assignment saves the MTU of link \fBnet0\fR to a variable named
5097 \fBmtu\fR.

5099 .sp
5100 .in +2
5101 .nf
5102 # \fBmtu=‘dladm show-link -p -o mtu net0‘\fR
5103 .fi
5104 .in -2
5105 .sp

5107 .LP
5108 \fBExample 11 \fRUsing Parseable Output to Iterate over Links
5109 .sp
5110 .LP
5111 The following script displays the state of each link on the system.

5113 .sp
5114 .in +2
5115 .nf
5116 # \fBdladm show-link -p -o link,state | while IFS=: read link state; do
5117 print "Link $link is in state $state"
5118 done\fR
5119 .fi
5120 .in -2
5121 .sp

5123 .LP
5124 \fBExample 12 \fRConfiguring VNICs
5125 .sp
5126 .LP
5127 Create two VNICs with names \fBhello0\fR and \fBtest1\fR over a single physical
5128 link \fBbge0\fR:

5130 .sp
5131 .in +2
5132 .nf
5133 # \fBdladm create-vnic -l bge0 hello0\fR
5134 # \fBdladm create-vnic -l bge0 test1\fR
5135 .fi
5136 .in -2
5137 .sp

5139 .LP

new/usr/src/man/man1m/dladm.1m 79

5140 \fBExample 13 \fRConfiguring VNICs and Allocating Bandwidth and Priority
5141 .sp
5142 .LP
5143 Create two VNICs with names \fBhello0\fR and \fBtest1\fR over a single physical
5144 link \fBbge0\fR and make \fBhello0\fR a high priority VNIC with a
5145 factory-assigned MAC address with a maximum bandwidth of 50 Mbps. Make
5146 \fBtest1\fR a low priority VNIC with a random MAC address and a maximum
5147 bandwidth of 100Mbps.

5149 .sp
5150 .in +2
5151 .nf
5152 # \fBdladm create-vnic -l bge0 -m factory -p maxbw=50,priority=high hello0\fR
5153 # \fBdladm create-vnic -l bge0 -m random -p maxbw=100M,priority=low test1\fR
5154 .fi
5155 .in -2
5156 .sp

5158 .LP
5159 \fBExample 14 \fRConfiguring a VNIC with a Factory MAC Address
5160 .sp
5161 .LP
5162 First, list the available factory MAC addresses and choose one of them:

5164 .sp
5165 .in +2
5166 .nf
5167 # \fBdladm show-phys -m bge0\fR
5168 LINK SLOT ADDRESS INUSE CLIENT
5169 bge0 primary 0:e0:81:27:d4:47 yes bge0
5170 bge0 1 8:0:20:fe:4e:a5 no
5171 bge0 2 8:0:20:fe:4e:a6 no
5172 bge0 3 8:0:20:fe:4e:a7 no
5173 .fi
5174 .in -2
5175 .sp

5177 .sp
5178 .LP
5179 Create a VNIC named \fBhello0\fR and use slot 1’s address:

5181 .sp
5182 .in +2
5183 .nf
5184 # \fBdladm create-vnic -l bge0 -m factory -n 1 hello0\fR
5185 # \fBdladm show-phys -m bge0\fR
5186 LINK SLOT ADDRESS INUSE CLIENT
5187 bge0 primary 0:e0:81:27:d4:47 yes bge0
5188 bge0 1 8:0:20:fe:4e:a5 yes hello0
5189 bge0 2 8:0:20:fe:4e:a6 no
5190 bge0 3 8:0:20:fe:4e:a7 no
5191 .fi
5192 .in -2
5193 .sp

5195 .LP
5196 \fBExample 15 \fRCreating a VNIC with User-Specified MAC Address, Binding it to
5197 Set of Processors
5198 .sp
5199 .LP
5200 Create a VNIC with name \fBhello0\fR, with a user specified MAC address, and a
5201 processor binding \fB0, 1, 2, 3\fR.

5203 .sp
5204 .in +2
5205 .nf

new/usr/src/man/man1m/dladm.1m 80

5206 # \fBdladm create-vnic -l bge0 -m 8:0:20:fe:4e:b8 -p cpus=0,1,2,3 hello0\fR
5207 .fi
5208 .in -2
5209 .sp

5211 .LP
5212 \fBExample 16 \fRCreating a Virtual Network Without a Physical NIC
5213 .sp
5214 .LP
5215 First, create an etherstub with name \fBstub1\fR:

5217 .sp
5218 .in +2
5219 .nf
5220 # \fBdladm create-etherstub stub1\fR
5221 .fi
5222 .in -2
5223 .sp

5225 .sp
5226 .LP
5227 Create two VNICs with names \fBhello0\fR and \fBtest1\fR on the etherstub. This
5228 operation implicitly creates a virtual switch connecting \fBhello0\fR and
5229 \fBtest1\fR.

5231 .sp
5232 .in +2
5233 .nf
5234 # \fBdladm create-vnic -l stub1 hello0\fR
5235 # \fBdladm create-vnic -l stub1 test1\fR
5236 .fi
5237 .in -2
5238 .sp

5240 .LP
5241 \fBExample 17 \fRShowing Network Usage
5242 .sp
5243 .LP
5244 Network usage statistics can be stored using the extended accounting facility,
5245 \fBacctadm\fR(1M).

5247 .sp
5248 .in +2
5249 .nf
5250 # \fBacctadm -e basic -f /var/log/net.log net\fR
5251 # \fBacctadm net\fR
5252 Network accounting: active
5253 Network accounting file: /var/log/net.log
5254 Tracked Network resources: basic
5255 Untracked Network resources: src_ip,dst_ip,src_port,dst_port,protocol,
5256 dsfield
5257 .fi
5258 .in -2
5259 .sp

5261 .sp
5262 .LP
5263 The saved historical data can be retrieved in summary form using the
5264 \fBshow-usage\fR subcommand:

5266 .sp
5267 .in +2
5268 .nf
5269 # \fBdladm show-usage -f /var/log/net.log\fR
5270 LINK DURATION IPACKETS RBYTES OPACKETS OBYTES BANDWIDTH
5271 e1000g0 80 1031 546908 0 0 2.44 Kbps

new/usr/src/man/man1m/dladm.1m 81

5272 .fi
5273 .in -2
5274 .sp

5276 .LP
5277 \fBExample 18 \fRDisplaying Bridge Information
5278 .sp
5279 .LP
5280 The following commands use the \fBshow-bridge\fR subcommand with no and various
5281 options.

5283 .sp
5284 .in +2
5285 .nf
5286 # \fBdladm show-bridge\fR
5287 BRIDGE PROTECT ADDRESS PRIORITY DESROOT
5288 foo stp 32768/8:0:20:bf:f 32768 8192/0:d0:0:76:14:38
5289 bar stp 32768/8:0:20:e5:8 32768 8192/0:d0:0:76:14:38

5291 # \fBdladm show-bridge -l foo\fR
5292 LINK STATE UPTIME DESROOT
5293 hme0 forwarding 117 8192/0:d0:0:76:14:38
5294 qfe1 forwarding 117 8192/0:d0:0:76:14:38

5296 # \fBdladm show-bridge -s foo\fR
5297 BRIDGE DROPS FORWARDS
5298 foo 0 302

5300 # \fBdladm show-bridge -ls foo\fR
5301 LINK DROPS RECV XMIT
5302 hme0 0 360832 31797
5303 qfe1 0 322311 356852

5305 # \fBdladm show-bridge -f foo\fR
5306 DEST AGE FLAGS OUTPUT
5307 8:0:20:bc:a7:dc 10.860 -- hme0
5308 8:0:20:bf:f9:69 -- L hme0
5309 8:0:20:c0:20:26 17.420 -- hme0
5310 8:0:20:e5:86:11 -- L qfe1
5311 .fi
5312 .in -2
5313 .sp

5315 .LP
5316 \fBExample 19 \fRCreating an IPv4 Tunnel
5317 .sp
5318 .LP
5319 The following sequence of commands creates and then displays a persistent IPv4
5320 tunnel link named \fBmytunnel0\fR between 66.1.2.3 and 192.4.5.6:

5322 .sp
5323 .in +2
5324 .nf
5325 # \fBdladm create-iptun -T ipv4 -s 66.1.2.3 -d 192.4.5.6 mytunnel0\fR
5326 # \fBdladm show-iptun mytunnel0\fR
5327 LINK TYPE FLAGS SOURCE DESTINATION
5328 mytunnel0 ipv4 -- 66.1.2.3 192.4.5.6
5329 .fi
5330 .in -2
5331 .sp

5333 .sp
5334 .LP
5335 A point-to-point IP interface can then be created over this tunnel link:

5337 .sp

new/usr/src/man/man1m/dladm.1m 82

5338 .in +2
5339 .nf
5340 # \fBifconfig mytunnel0 plumb 10.1.0.1 10.1.0.2 up\fR
5341 .fi
5342 .in -2
5343 .sp

5345 .sp
5346 .LP
5347 As with any other IP interface, configuration persistence for this IP interface
5348 is achieved by placing the desired \fBifconfig\fR commands (in this case, the
5349 command for "\fB10.1.0.1 10.1.0.2\fR") into \fB/etc/hostname.mytunnel0\fR.

5351 .LP
5352 \fBExample 20 \fRCreating a 6to4 Tunnel
5353 .sp
5354 .LP
5355 The following command creates a 6to4 tunnel link. The IPv4 address of the 6to4
5356 router is 75.10.11.12.

5358 .sp
5359 .in +2
5360 .nf
5361 # \fBdladm create-iptun -T 6to4 -s 75.10.11.12 sitetunnel0\fR
5362 # \fBdladm show-iptun sitetunnel0\fR
5363 LINK TYPE FLAGS SOURCE DESTINATION
5364 sitetunnel0 6to4 -- 75.10.11.12 --
5365 .fi
5366 .in -2
5367 .sp

5369 .sp
5370 .LP
5371 The following command plumbs an IPv6 interface on this tunnel:

5373 .sp
5374 .in +2
5375 .nf
5376 # \fBifconfig sitetunnel0 inet6 plumb up\fR
5377 # \fBifconfig sitetunnel0 inet6\fR
5378 sitetunnel0: flags=2200041 <UP,RUNNING,NONUD,IPv6> mtu 65515 index 3
5379 inet tunnel src 75.10.11.12
5380 tunnel hop limit 64
5381 inet6 2002:4b0a:b0c::1/16
5382 .fi
5383 .in -2
5384 .sp

5386 .sp
5387 .LP
5388 Note that the system automatically configures the IPv6 address on the 6to4 IP
5389 interface. See \fBifconfig\fR(1M) for a description of how IPv6 addresses are
5390 configured on 6to4 tunnel links.

5392 .SH ATTRIBUTES
5393 .sp
5394 .LP
5395 See \fBattributes\fR(5) for descriptions of the following attributes:
5396 .sp
5397 .LP
5398 \fB/usr/sbin\fR
5399 .sp

5401 .sp
5402 .TS
5403 box;

new/usr/src/man/man1m/dladm.1m 83

5404 c | c
5405 l | l .
5406 ATTRIBUTE TYPE ATTRIBUTE VALUE
5407 _
5408 Interface Stability Committed
5409 .TE

5411 .sp
5412 .LP
5413 \fB/sbin\fR
5414 .sp

5416 .sp
5417 .TS
5418 box;
5419 c | c
5420 l | l .
5421 ATTRIBUTE TYPE ATTRIBUTE VALUE
5422 _
5423 Interface Stability Committed
5424 .TE

5426 .SH SEE ALSO
5427 .sp
5428 .LP
5429 \fBacctadm\fR(1M), \fBautopush\fR(1M), \fBifconfig\fR(1M), \fBipsecconf\fR(1M),
5430 \fBndd\fR(1M), \fBpsrset\fR(1M), \fBwpad\fR(1M), \fBzonecfg\fR(1M),
5431 \fBattributes\fR(5), \fBieee802.3\fR(5), \fBdlpi\fR(7P)
5432 .SH NOTES
5433 .sp
5434 .LP
5435 The preferred method of referring to an aggregation in the aggregation
5436 subcommands is by its link name. Referring to an aggregation by its integer
5437 \fIkey\fR is supported for backward compatibility, but is not necessary. When
5438 creating an aggregation, if a \fIkey\fR is specified instead of a link name,
5439 the aggregation’s link name will be automatically generated by \fBdladm\fR as
5440 \fBaggr\fR\fIkey\fR.

