1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/t_lock.h> 32 #include <sys/param.h> 33 #include <sys/cred.h> 34 #include <sys/debug.h> 35 #include <sys/inline.h> 36 #include <sys/kmem.h> 37 #include <sys/proc.h> 38 #include <sys/regset.h> 39 #include <sys/privregs.h> 40 #include <sys/sysmacros.h> 41 #include <sys/systm.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/psw.h> 45 #include <sys/pcb.h> 46 #include <sys/buf.h> 47 #include <sys/signal.h> 48 #include <sys/user.h> 49 #include <sys/cpuvar.h> 50 51 #include <sys/fault.h> 52 #include <sys/syscall.h> 53 #include <sys/procfs.h> 54 #include <sys/cmn_err.h> 55 #include <sys/stack.h> 56 #include <sys/debugreg.h> 57 #include <sys/copyops.h> 58 59 #include <sys/vmem.h> 60 #include <sys/mman.h> 61 #include <sys/vmparam.h> 62 #include <sys/fp.h> 63 #include <sys/archsystm.h> 64 #include <sys/vmsystm.h> 65 #include <vm/hat.h> 66 #include <vm/as.h> 67 #include <vm/seg.h> 68 #include <vm/seg_kmem.h> 69 #include <vm/seg_kp.h> 70 #include <vm/page.h> 71 72 #include <sys/sysi86.h> 73 74 #include <fs/proc/prdata.h> 75 76 int prnwatch = 10000; /* maximum number of watched areas */ 77 78 /* 79 * Force a thread into the kernel if it is not already there. 80 * This is a no-op on uniprocessors. 81 */ 82 /* ARGSUSED */ 83 void 84 prpokethread(kthread_t *t) 85 { 86 if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 87 poke_cpu(t->t_cpu->cpu_id); 88 } 89 90 /* 91 * Return general registers. 92 */ 93 void 94 prgetprregs(klwp_t *lwp, prgregset_t prp) 95 { 96 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 97 98 getgregs(lwp, prp); 99 } 100 101 /* 102 * Set general registers. 103 * (Note: This can be an alias to setgregs().) 104 */ 105 void 106 prsetprregs(klwp_t *lwp, prgregset_t prp, int initial) 107 { 108 if (initial) /* set initial values */ 109 lwptoregs(lwp)->r_ps = PSL_USER; 110 (void) setgregs(lwp, prp); 111 } 112 113 #ifdef _SYSCALL32_IMPL 114 115 /* 116 * Convert prgregset32 to native prgregset 117 */ 118 void 119 prgregset_32ton(klwp_t *lwp, prgregset32_t src, prgregset_t dst) 120 { 121 struct regs *rp = lwptoregs(lwp); 122 123 dst[REG_GSBASE] = lwp->lwp_pcb.pcb_gsbase; 124 dst[REG_FSBASE] = lwp->lwp_pcb.pcb_fsbase; 125 126 dst[REG_DS] = (uint16_t)src[DS]; 127 dst[REG_ES] = (uint16_t)src[ES]; 128 129 dst[REG_GS] = (uint16_t)src[GS]; 130 dst[REG_FS] = (uint16_t)src[FS]; 131 dst[REG_SS] = (uint16_t)src[SS]; 132 dst[REG_RSP] = (uint32_t)src[UESP]; 133 dst[REG_RFL] = 134 (rp->r_ps & ~PSL_USERMASK) | (src[EFL] & PSL_USERMASK); 135 dst[REG_CS] = (uint16_t)src[CS]; 136 dst[REG_RIP] = (uint32_t)src[EIP]; 137 dst[REG_ERR] = (uint32_t)src[ERR]; 138 dst[REG_TRAPNO] = (uint32_t)src[TRAPNO]; 139 dst[REG_RAX] = (uint32_t)src[EAX]; 140 dst[REG_RCX] = (uint32_t)src[ECX]; 141 dst[REG_RDX] = (uint32_t)src[EDX]; 142 dst[REG_RBX] = (uint32_t)src[EBX]; 143 dst[REG_RBP] = (uint32_t)src[EBP]; 144 dst[REG_RSI] = (uint32_t)src[ESI]; 145 dst[REG_RDI] = (uint32_t)src[EDI]; 146 dst[REG_R8] = dst[REG_R9] = dst[REG_R10] = dst[REG_R11] = 147 dst[REG_R12] = dst[REG_R13] = dst[REG_R14] = dst[REG_R15] = 0; 148 } 149 150 /* 151 * Return 32-bit general registers 152 */ 153 void 154 prgetprregs32(klwp_t *lwp, prgregset32_t prp) 155 { 156 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 157 getgregs32(lwp, prp); 158 } 159 160 #endif /* _SYSCALL32_IMPL */ 161 162 /* 163 * Get the syscall return values for the lwp. 164 */ 165 int 166 prgetrvals(klwp_t *lwp, long *rval1, long *rval2) 167 { 168 struct regs *r = lwptoregs(lwp); 169 170 if (r->r_ps & PS_C) 171 return (r->r_r0); 172 if (lwp->lwp_eosys == JUSTRETURN) { 173 *rval1 = 0; 174 *rval2 = 0; 175 } else if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE) { 176 /* 177 * XX64 Not sure we -really- need to do this, because the 178 * syscall return already masks off the bottom values ..? 179 */ 180 *rval1 = r->r_r0 & (uint32_t)0xffffffffu; 181 *rval2 = r->r_r1 & (uint32_t)0xffffffffu; 182 } else { 183 *rval1 = r->r_r0; 184 *rval2 = r->r_r1; 185 } 186 return (0); 187 } 188 189 /* 190 * Does the system support floating-point, either through hardware 191 * or by trapping and emulating floating-point machine instructions? 192 */ 193 int 194 prhasfp(void) 195 { 196 extern int fp_kind; 197 198 return (fp_kind != FP_NO); 199 } 200 201 /* 202 * Get floating-point registers. 203 */ 204 void 205 prgetprfpregs(klwp_t *lwp, prfpregset_t *pfp) 206 { 207 bzero(pfp, sizeof (prfpregset_t)); 208 getfpregs(lwp, pfp); 209 } 210 211 #if defined(_SYSCALL32_IMPL) 212 void 213 prgetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp) 214 { 215 bzero(pfp, sizeof (*pfp)); 216 getfpregs32(lwp, pfp); 217 } 218 #endif /* _SYSCALL32_IMPL */ 219 220 /* 221 * Set floating-point registers. 222 * (Note: This can be an alias to setfpregs().) 223 */ 224 void 225 prsetprfpregs(klwp_t *lwp, prfpregset_t *pfp) 226 { 227 setfpregs(lwp, pfp); 228 } 229 230 #if defined(_SYSCALL32_IMPL) 231 void 232 prsetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp) 233 { 234 setfpregs32(lwp, pfp); 235 } 236 #endif /* _SYSCALL32_IMPL */ 237 238 /* 239 * Does the system support extra register state? 240 */ 241 int 242 prhasx(proc_t *p) 243 { 244 /* XXX */ 245 return (1); 246 } 247 248 /* 249 * Get the size of the extra registers. 250 */ 251 int 252 prgetprxregsize(proc_t *p) 253 { 254 return (xregs_getsize(p)); 255 } 256 257 /* 258 * Get extra registers. 259 */ 260 void 261 prgetprxregs(klwp_t *lwp, caddr_t prx) 262 { 263 extern void xregs_get(struct _klwp *, caddr_t); 264 265 xregs_get(lwp, prx); 266 } 267 268 /* 269 * Set extra registers. 270 */ 271 void 272 prsetprxregs(klwp_t *lwp, caddr_t prx) 273 { 274 extern void xregs_set(struct _klwp *, caddr_t); 275 276 xregs_set(lwp, prx); 277 } 278 279 /* 280 * Return the base (lower limit) of the process stack. 281 */ 282 caddr_t 283 prgetstackbase(proc_t *p) 284 { 285 return (p->p_usrstack - p->p_stksize); 286 } 287 288 /* 289 * Return the "addr" field for pr_addr in prpsinfo_t. 290 * This is a vestige of the past, so whatever we return is OK. 291 */ 292 caddr_t 293 prgetpsaddr(proc_t *p) 294 { 295 return ((caddr_t)p); 296 } 297 298 /* 299 * Arrange to single-step the lwp. 300 */ 301 void 302 prstep(klwp_t *lwp, int watchstep) 303 { 304 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 305 306 /* 307 * flag LWP so that its r_efl trace bit (PS_T) will be set on 308 * next return to usermode. 309 */ 310 lwp->lwp_pcb.pcb_flags |= REQUEST_STEP; 311 lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP; 312 313 if (watchstep) 314 lwp->lwp_pcb.pcb_flags |= WATCH_STEP; 315 else 316 lwp->lwp_pcb.pcb_flags |= NORMAL_STEP; 317 318 aston(lwptot(lwp)); /* let trap() set PS_T in rp->r_efl */ 319 } 320 321 /* 322 * Undo prstep(). 323 */ 324 void 325 prnostep(klwp_t *lwp) 326 { 327 ASSERT(ttolwp(curthread) == lwp || 328 MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 329 330 /* 331 * flag LWP so that its r_efl trace bit (PS_T) will be cleared on 332 * next return to usermode. 333 */ 334 lwp->lwp_pcb.pcb_flags |= REQUEST_NOSTEP; 335 336 lwp->lwp_pcb.pcb_flags &= 337 ~(REQUEST_STEP|NORMAL_STEP|WATCH_STEP|DEBUG_PENDING); 338 339 aston(lwptot(lwp)); /* let trap() clear PS_T in rp->r_efl */ 340 } 341 342 /* 343 * Return non-zero if a single-step is in effect. 344 */ 345 int 346 prisstep(klwp_t *lwp) 347 { 348 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 349 350 return ((lwp->lwp_pcb.pcb_flags & 351 (NORMAL_STEP|WATCH_STEP|DEBUG_PENDING)) != 0); 352 } 353 354 /* 355 * Set the PC to the specified virtual address. 356 */ 357 void 358 prsvaddr(klwp_t *lwp, caddr_t vaddr) 359 { 360 struct regs *r = lwptoregs(lwp); 361 362 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 363 364 r->r_pc = (uintptr_t)vaddr; 365 } 366 367 /* 368 * Map address "addr" in address space "as" into a kernel virtual address. 369 * The memory is guaranteed to be resident and locked down. 370 */ 371 caddr_t 372 prmapin(struct as *as, caddr_t addr, int writing) 373 { 374 page_t *pp; 375 caddr_t kaddr; 376 pfn_t pfnum; 377 378 /* 379 * XXX - Because of past mistakes, we have bits being returned 380 * by getpfnum that are actually the page type bits of the pte. 381 * When the object we are trying to map is a memory page with 382 * a page structure everything is ok and we can use the optimal 383 * method, ppmapin. Otherwise, we have to do something special. 384 */ 385 pfnum = hat_getpfnum(as->a_hat, addr); 386 if (pf_is_memory(pfnum)) { 387 pp = page_numtopp_nolock(pfnum); 388 if (pp != NULL) { 389 ASSERT(PAGE_LOCKED(pp)); 390 kaddr = ppmapin(pp, writing ? 391 (PROT_READ | PROT_WRITE) : PROT_READ, (caddr_t)-1); 392 return (kaddr + ((uintptr_t)addr & PAGEOFFSET)); 393 } 394 } 395 396 /* 397 * Oh well, we didn't have a page struct for the object we were 398 * trying to map in; ppmapin doesn't handle devices, but allocating a 399 * heap address allows ppmapout to free virtual space when done. 400 */ 401 kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 402 403 hat_devload(kas.a_hat, kaddr, MMU_PAGESIZE, pfnum, 404 writing ? (PROT_READ | PROT_WRITE) : PROT_READ, 0); 405 406 return (kaddr + ((uintptr_t)addr & PAGEOFFSET)); 407 } 408 409 /* 410 * Unmap address "addr" in address space "as"; inverse of prmapin(). 411 */ 412 /* ARGSUSED */ 413 void 414 prmapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing) 415 { 416 extern void ppmapout(caddr_t); 417 418 vaddr = (caddr_t)((uintptr_t)vaddr & PAGEMASK); 419 ppmapout(vaddr); 420 } 421 422 /* 423 * Make sure the lwp is in an orderly state 424 * for inspection by a debugger through /proc. 425 * 426 * This needs to be called only once while the current thread remains in the 427 * kernel and needs to be called while holding no resources (mutex locks, etc). 428 * 429 * As a hedge against these conditions, if prstop() is called repeatedly 430 * before prunstop() is called, it does nothing and just returns. 431 * 432 * prunstop() must be called before the thread returns to user level. 433 */ 434 /* ARGSUSED */ 435 void 436 prstop(int why, int what) 437 { 438 klwp_t *lwp = ttolwp(curthread); 439 struct regs *r = lwptoregs(lwp); 440 441 if (lwp->lwp_pcb.pcb_flags & PRSTOP_CALLED) 442 return; 443 444 /* 445 * Make sure we don't deadlock on a recursive call 446 * to prstop(). stop() tests the lwp_nostop flag. 447 */ 448 ASSERT(lwp->lwp_nostop == 0); 449 lwp->lwp_nostop = 1; 450 451 if (copyin_nowatch((caddr_t)r->r_pc, &lwp->lwp_pcb.pcb_instr, 452 sizeof (lwp->lwp_pcb.pcb_instr)) == 0) 453 lwp->lwp_pcb.pcb_flags |= INSTR_VALID; 454 else { 455 lwp->lwp_pcb.pcb_flags &= ~INSTR_VALID; 456 lwp->lwp_pcb.pcb_instr = 0; 457 } 458 459 (void) save_syscall_args(); 460 ASSERT(lwp->lwp_nostop == 1); 461 lwp->lwp_nostop = 0; 462 463 lwp->lwp_pcb.pcb_flags |= PRSTOP_CALLED; 464 aston(curthread); /* so prunstop() will be called */ 465 } 466 467 /* 468 * Inform prstop() that it should do its work again 469 * the next time it is called. 470 */ 471 void 472 prunstop(void) 473 { 474 ttolwp(curthread)->lwp_pcb.pcb_flags &= ~PRSTOP_CALLED; 475 } 476 477 /* 478 * Fetch the user-level instruction on which the lwp is stopped. 479 * It was saved by the lwp itself, in prstop(). 480 * Return non-zero if the instruction is valid. 481 */ 482 int 483 prfetchinstr(klwp_t *lwp, ulong_t *ip) 484 { 485 *ip = (ulong_t)(instr_t)lwp->lwp_pcb.pcb_instr; 486 return (lwp->lwp_pcb.pcb_flags & INSTR_VALID); 487 } 488 489 /* 490 * Called from trap() when a load or store instruction 491 * falls in a watched page but is not a watchpoint. 492 * We emulate the instruction in the kernel. 493 */ 494 /* ARGSUSED */ 495 int 496 pr_watch_emul(struct regs *rp, caddr_t addr, enum seg_rw rw) 497 { 498 #ifdef SOMEDAY 499 int res; 500 proc_t *p = curproc; 501 char *badaddr = (caddr_t)(-1); 502 int mapped; 503 504 /* prevent recursive calls to pr_watch_emul() */ 505 ASSERT(!(curthread->t_flag & T_WATCHPT)); 506 curthread->t_flag |= T_WATCHPT; 507 508 watch_disable_addr(addr, 8, rw); 509 res = do_unaligned(rp, &badaddr); 510 watch_enable_addr(addr, 8, rw); 511 512 curthread->t_flag &= ~T_WATCHPT; 513 if (res == SIMU_SUCCESS) { 514 /* adjust the pc */ 515 return (1); 516 } 517 #endif 518 return (0); 519 } 520 521 /* 522 * Return the number of active entries in the local descriptor table. 523 */ 524 int 525 prnldt(proc_t *p) 526 { 527 int limit, i, n; 528 user_desc_t *udp; 529 530 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 531 532 /* 533 * Currently 64 bit processes cannot have private LDTs. 534 */ 535 ASSERT(p->p_model != DATAMODEL_LP64 || p->p_ldt == NULL); 536 537 if (p->p_ldt == NULL) 538 return (0); 539 n = 0; 540 limit = p->p_ldtlimit; 541 ASSERT(limit >= 0 && limit < MAXNLDT); 542 543 /* 544 * Count all present user descriptors. 545 */ 546 for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++) 547 if (udp->usd_type != 0 || udp->usd_dpl != 0 || udp->usd_p != 0) 548 n++; 549 return (n); 550 } 551 552 /* 553 * Fetch the active entries from the local descriptor table. 554 */ 555 void 556 prgetldt(proc_t *p, struct ssd *ssd) 557 { 558 int i, limit; 559 user_desc_t *udp; 560 561 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 562 563 if (p->p_ldt == NULL) 564 return; 565 566 limit = p->p_ldtlimit; 567 ASSERT(limit >= 0 && limit < MAXNLDT); 568 569 /* 570 * All present user descriptors. 571 */ 572 for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++) 573 if (udp->usd_type != 0 || udp->usd_dpl != 0 || 574 udp->usd_p != 0) 575 usd_to_ssd(udp, ssd++, SEL_LDT(i)); 576 }