1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/t_lock.h> 32 #include <sys/param.h> 33 #include <sys/cred.h> 34 #include <sys/debug.h> 35 #include <sys/inline.h> 36 #include <sys/kmem.h> 37 #include <sys/proc.h> 38 #include <sys/regset.h> 39 #include <sys/privregs.h> 40 #include <sys/sysmacros.h> 41 #include <sys/systm.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/psw.h> 45 #include <sys/pcb.h> 46 #include <sys/buf.h> 47 #include <sys/signal.h> 48 #include <sys/user.h> 49 #include <sys/cpuvar.h> 50 51 #include <sys/fault.h> 52 #include <sys/syscall.h> 53 #include <sys/procfs.h> 54 #include <sys/cmn_err.h> 55 #include <sys/stack.h> 56 #include <sys/debugreg.h> 57 #include <sys/copyops.h> 58 59 #include <sys/vmem.h> 60 #include <sys/mman.h> 61 #include <sys/vmparam.h> 62 #include <sys/fp.h> 63 #include <sys/archsystm.h> 64 #include <sys/vmsystm.h> 65 #include <vm/hat.h> 66 #include <vm/as.h> 67 #include <vm/seg.h> 68 #include <vm/seg_kmem.h> 69 #include <vm/seg_kp.h> 70 #include <vm/page.h> 71 72 #include <sys/sysi86.h> 73 74 #include <fs/proc/prdata.h> 75 76 int prnwatch = 10000; /* maximum number of watched areas */ 77 78 /* 79 * Force a thread into the kernel if it is not already there. 80 * This is a no-op on uniprocessors. 81 */ 82 /* ARGSUSED */ 83 void 84 prpokethread(kthread_t *t) 85 { 86 if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 87 poke_cpu(t->t_cpu->cpu_id); 88 } 89 90 /* 91 * Return general registers. 92 */ 93 void 94 prgetprregs(klwp_t *lwp, prgregset_t prp) 95 { 96 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 97 98 getgregs(lwp, prp); 99 } 100 101 /* 102 * Set general registers. 103 * (Note: This can be an alias to setgregs().) 104 */ 105 void 106 prsetprregs(klwp_t *lwp, prgregset_t prp, int initial) 107 { 108 if (initial) /* set initial values */ 109 lwptoregs(lwp)->r_ps = PSL_USER; 110 (void) setgregs(lwp, prp); 111 } 112 113 #ifdef _SYSCALL32_IMPL 114 115 /* 116 * Convert prgregset32 to native prgregset 117 */ 118 void 119 prgregset_32ton(klwp_t *lwp, prgregset32_t src, prgregset_t dst) 120 { 121 struct regs *rp = lwptoregs(lwp); 122 123 dst[REG_GSBASE] = lwp->lwp_pcb.pcb_gsbase; 124 dst[REG_FSBASE] = lwp->lwp_pcb.pcb_fsbase; 125 126 dst[REG_DS] = (uint16_t)src[DS]; 127 dst[REG_ES] = (uint16_t)src[ES]; 128 129 dst[REG_GS] = (uint16_t)src[GS]; 130 dst[REG_FS] = (uint16_t)src[FS]; 131 dst[REG_SS] = (uint16_t)src[SS]; 132 dst[REG_RSP] = (uint32_t)src[UESP]; 133 dst[REG_RFL] = 134 (rp->r_ps & ~PSL_USERMASK) | (src[EFL] & PSL_USERMASK); 135 dst[REG_CS] = (uint16_t)src[CS]; 136 dst[REG_RIP] = (uint32_t)src[EIP]; 137 dst[REG_ERR] = (uint32_t)src[ERR]; 138 dst[REG_TRAPNO] = (uint32_t)src[TRAPNO]; 139 dst[REG_RAX] = (uint32_t)src[EAX]; 140 dst[REG_RCX] = (uint32_t)src[ECX]; 141 dst[REG_RDX] = (uint32_t)src[EDX]; 142 dst[REG_RBX] = (uint32_t)src[EBX]; 143 dst[REG_RBP] = (uint32_t)src[EBP]; 144 dst[REG_RSI] = (uint32_t)src[ESI]; 145 dst[REG_RDI] = (uint32_t)src[EDI]; 146 dst[REG_R8] = dst[REG_R9] = dst[REG_R10] = dst[REG_R11] = 147 dst[REG_R12] = dst[REG_R13] = dst[REG_R14] = dst[REG_R15] = 0; 148 } 149 150 /* 151 * Return 32-bit general registers 152 */ 153 void 154 prgetprregs32(klwp_t *lwp, prgregset32_t prp) 155 { 156 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 157 getgregs32(lwp, prp); 158 } 159 160 #endif /* _SYSCALL32_IMPL */ 161 162 /* 163 * Get the syscall return values for the lwp. 164 */ 165 int 166 prgetrvals(klwp_t *lwp, long *rval1, long *rval2) 167 { 168 struct regs *r = lwptoregs(lwp); 169 170 if (r->r_ps & PS_C) 171 return (r->r_r0); 172 if (lwp->lwp_eosys == JUSTRETURN) { 173 *rval1 = 0; 174 *rval2 = 0; 175 } else if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE) { 176 /* 177 * XX64 Not sure we -really- need to do this, because the 178 * syscall return already masks off the bottom values ..? 179 */ 180 *rval1 = r->r_r0 & (uint32_t)0xffffffffu; 181 *rval2 = r->r_r1 & (uint32_t)0xffffffffu; 182 } else { 183 *rval1 = r->r_r0; 184 *rval2 = r->r_r1; 185 } 186 return (0); 187 } 188 189 /* 190 * Does the system support floating-point, either through hardware 191 * or by trapping and emulating floating-point machine instructions? 192 */ 193 int 194 prhasfp(void) 195 { 196 extern int fp_kind; 197 198 return (fp_kind != FP_NO); 199 } 200 201 /* 202 * Get floating-point registers. 203 */ 204 void 205 prgetprfpregs(klwp_t *lwp, prfpregset_t *pfp) 206 { 207 bzero(pfp, sizeof (prfpregset_t)); 208 getfpregs(lwp, pfp); 209 } 210 211 #if defined(_SYSCALL32_IMPL) 212 void 213 prgetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp) 214 { 215 bzero(pfp, sizeof (*pfp)); 216 getfpregs32(lwp, pfp); 217 } 218 #endif /* _SYSCALL32_IMPL */ 219 220 /* 221 * Set floating-point registers. 222 * (Note: This can be an alias to setfpregs().) 223 */ 224 void 225 prsetprfpregs(klwp_t *lwp, prfpregset_t *pfp) 226 { 227 setfpregs(lwp, pfp); 228 } 229 230 #if defined(_SYSCALL32_IMPL) 231 void 232 prsetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp) 233 { 234 setfpregs32(lwp, pfp); 235 } 236 #endif /* _SYSCALL32_IMPL */ 237 238 /* 239 * Does the system support extra register state? 240 */ 241 /* ARGSUSED */ 242 int 243 prhasx(proc_t *p) 244 { 245 return (0); 246 } 247 248 /* 249 * Get the size of the extra registers. 250 */ 251 /* ARGSUSED */ 252 int 253 prgetprxregsize(proc_t *p) 254 { 255 return (0); 256 } 257 258 /* 259 * Get extra registers. 260 */ 261 /*ARGSUSED*/ 262 void 263 prgetprxregs(klwp_t *lwp, caddr_t prx) 264 { 265 /* no extra registers */ 266 } 267 268 /* 269 * Set extra registers. 270 */ 271 /*ARGSUSED*/ 272 void 273 prsetprxregs(klwp_t *lwp, caddr_t prx) 274 { 275 /* no extra registers */ 276 } 277 278 /* 279 * Return the base (lower limit) of the process stack. 280 */ 281 caddr_t 282 prgetstackbase(proc_t *p) 283 { 284 return (p->p_usrstack - p->p_stksize); 285 } 286 287 /* 288 * Return the "addr" field for pr_addr in prpsinfo_t. 289 * This is a vestige of the past, so whatever we return is OK. 290 */ 291 caddr_t 292 prgetpsaddr(proc_t *p) 293 { 294 return ((caddr_t)p); 295 } 296 297 /* 298 * Arrange to single-step the lwp. 299 */ 300 void 301 prstep(klwp_t *lwp, int watchstep) 302 { 303 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 304 305 /* 306 * flag LWP so that its r_efl trace bit (PS_T) will be set on 307 * next return to usermode. 308 */ 309 lwp->lwp_pcb.pcb_flags |= REQUEST_STEP; 310 lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP; 311 312 if (watchstep) 313 lwp->lwp_pcb.pcb_flags |= WATCH_STEP; 314 else 315 lwp->lwp_pcb.pcb_flags |= NORMAL_STEP; 316 317 aston(lwptot(lwp)); /* let trap() set PS_T in rp->r_efl */ 318 } 319 320 /* 321 * Undo prstep(). 322 */ 323 void 324 prnostep(klwp_t *lwp) 325 { 326 ASSERT(ttolwp(curthread) == lwp || 327 MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 328 329 /* 330 * flag LWP so that its r_efl trace bit (PS_T) will be cleared on 331 * next return to usermode. 332 */ 333 lwp->lwp_pcb.pcb_flags |= REQUEST_NOSTEP; 334 335 lwp->lwp_pcb.pcb_flags &= 336 ~(REQUEST_STEP|NORMAL_STEP|WATCH_STEP|DEBUG_PENDING); 337 338 aston(lwptot(lwp)); /* let trap() clear PS_T in rp->r_efl */ 339 } 340 341 /* 342 * Return non-zero if a single-step is in effect. 343 */ 344 int 345 prisstep(klwp_t *lwp) 346 { 347 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 348 349 return ((lwp->lwp_pcb.pcb_flags & 350 (NORMAL_STEP|WATCH_STEP|DEBUG_PENDING)) != 0); 351 } 352 353 /* 354 * Set the PC to the specified virtual address. 355 */ 356 void 357 prsvaddr(klwp_t *lwp, caddr_t vaddr) 358 { 359 struct regs *r = lwptoregs(lwp); 360 361 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 362 363 r->r_pc = (uintptr_t)vaddr; 364 } 365 366 /* 367 * Map address "addr" in address space "as" into a kernel virtual address. 368 * The memory is guaranteed to be resident and locked down. 369 */ 370 caddr_t 371 prmapin(struct as *as, caddr_t addr, int writing) 372 { 373 page_t *pp; 374 caddr_t kaddr; 375 pfn_t pfnum; 376 377 /* 378 * XXX - Because of past mistakes, we have bits being returned 379 * by getpfnum that are actually the page type bits of the pte. 380 * When the object we are trying to map is a memory page with 381 * a page structure everything is ok and we can use the optimal 382 * method, ppmapin. Otherwise, we have to do something special. 383 */ 384 pfnum = hat_getpfnum(as->a_hat, addr); 385 if (pf_is_memory(pfnum)) { 386 pp = page_numtopp_nolock(pfnum); 387 if (pp != NULL) { 388 ASSERT(PAGE_LOCKED(pp)); 389 kaddr = ppmapin(pp, writing ? 390 (PROT_READ | PROT_WRITE) : PROT_READ, (caddr_t)-1); 391 return (kaddr + ((uintptr_t)addr & PAGEOFFSET)); 392 } 393 } 394 395 /* 396 * Oh well, we didn't have a page struct for the object we were 397 * trying to map in; ppmapin doesn't handle devices, but allocating a 398 * heap address allows ppmapout to free virtual space when done. 399 */ 400 kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 401 402 hat_devload(kas.a_hat, kaddr, MMU_PAGESIZE, pfnum, 403 writing ? (PROT_READ | PROT_WRITE) : PROT_READ, 0); 404 405 return (kaddr + ((uintptr_t)addr & PAGEOFFSET)); 406 } 407 408 /* 409 * Unmap address "addr" in address space "as"; inverse of prmapin(). 410 */ 411 /* ARGSUSED */ 412 void 413 prmapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing) 414 { 415 extern void ppmapout(caddr_t); 416 417 vaddr = (caddr_t)((uintptr_t)vaddr & PAGEMASK); 418 ppmapout(vaddr); 419 } 420 421 /* 422 * Make sure the lwp is in an orderly state 423 * for inspection by a debugger through /proc. 424 * 425 * This needs to be called only once while the current thread remains in the 426 * kernel and needs to be called while holding no resources (mutex locks, etc). 427 * 428 * As a hedge against these conditions, if prstop() is called repeatedly 429 * before prunstop() is called, it does nothing and just returns. 430 * 431 * prunstop() must be called before the thread returns to user level. 432 */ 433 /* ARGSUSED */ 434 void 435 prstop(int why, int what) 436 { 437 klwp_t *lwp = ttolwp(curthread); 438 struct regs *r = lwptoregs(lwp); 439 440 if (lwp->lwp_pcb.pcb_flags & PRSTOP_CALLED) 441 return; 442 443 /* 444 * Make sure we don't deadlock on a recursive call 445 * to prstop(). stop() tests the lwp_nostop flag. 446 */ 447 ASSERT(lwp->lwp_nostop == 0); 448 lwp->lwp_nostop = 1; 449 450 if (copyin_nowatch((caddr_t)r->r_pc, &lwp->lwp_pcb.pcb_instr, 451 sizeof (lwp->lwp_pcb.pcb_instr)) == 0) 452 lwp->lwp_pcb.pcb_flags |= INSTR_VALID; 453 else { 454 lwp->lwp_pcb.pcb_flags &= ~INSTR_VALID; 455 lwp->lwp_pcb.pcb_instr = 0; 456 } 457 458 (void) save_syscall_args(); 459 ASSERT(lwp->lwp_nostop == 1); 460 lwp->lwp_nostop = 0; 461 462 lwp->lwp_pcb.pcb_flags |= PRSTOP_CALLED; 463 aston(curthread); /* so prunstop() will be called */ 464 } 465 466 /* 467 * Inform prstop() that it should do its work again 468 * the next time it is called. 469 */ 470 void 471 prunstop(void) 472 { 473 ttolwp(curthread)->lwp_pcb.pcb_flags &= ~PRSTOP_CALLED; 474 } 475 476 /* 477 * Fetch the user-level instruction on which the lwp is stopped. 478 * It was saved by the lwp itself, in prstop(). 479 * Return non-zero if the instruction is valid. 480 */ 481 int 482 prfetchinstr(klwp_t *lwp, ulong_t *ip) 483 { 484 *ip = (ulong_t)(instr_t)lwp->lwp_pcb.pcb_instr; 485 return (lwp->lwp_pcb.pcb_flags & INSTR_VALID); 486 } 487 488 /* 489 * Called from trap() when a load or store instruction 490 * falls in a watched page but is not a watchpoint. 491 * We emulate the instruction in the kernel. 492 */ 493 /* ARGSUSED */ 494 int 495 pr_watch_emul(struct regs *rp, caddr_t addr, enum seg_rw rw) 496 { 497 #ifdef SOMEDAY 498 int res; 499 proc_t *p = curproc; 500 char *badaddr = (caddr_t)(-1); 501 int mapped; 502 503 /* prevent recursive calls to pr_watch_emul() */ 504 ASSERT(!(curthread->t_flag & T_WATCHPT)); 505 curthread->t_flag |= T_WATCHPT; 506 507 watch_disable_addr(addr, 8, rw); 508 res = do_unaligned(rp, &badaddr); 509 watch_enable_addr(addr, 8, rw); 510 511 curthread->t_flag &= ~T_WATCHPT; 512 if (res == SIMU_SUCCESS) { 513 /* adjust the pc */ 514 return (1); 515 } 516 #endif 517 return (0); 518 } 519 520 /* 521 * Return the number of active entries in the local descriptor table. 522 */ 523 int 524 prnldt(proc_t *p) 525 { 526 int limit, i, n; 527 user_desc_t *udp; 528 529 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 530 531 /* 532 * Currently 64 bit processes cannot have private LDTs. 533 */ 534 ASSERT(p->p_model != DATAMODEL_LP64 || p->p_ldt == NULL); 535 536 if (p->p_ldt == NULL) 537 return (0); 538 n = 0; 539 limit = p->p_ldtlimit; 540 ASSERT(limit >= 0 && limit < MAXNLDT); 541 542 /* 543 * Count all present user descriptors. 544 */ 545 for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++) 546 if (udp->usd_type != 0 || udp->usd_dpl != 0 || udp->usd_p != 0) 547 n++; 548 return (n); 549 } 550 551 /* 552 * Fetch the active entries from the local descriptor table. 553 */ 554 void 555 prgetldt(proc_t *p, struct ssd *ssd) 556 { 557 int i, limit; 558 user_desc_t *udp; 559 560 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 561 562 if (p->p_ldt == NULL) 563 return; 564 565 limit = p->p_ldtlimit; 566 ASSERT(limit >= 0 && limit < MAXNLDT); 567 568 /* 569 * All present user descriptors. 570 */ 571 for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++) 572 if (udp->usd_type != 0 || udp->usd_dpl != 0 || 573 udp->usd_p != 0) 574 usd_to_ssd(udp, ssd++, SEL_LDT(i)); 575 }