1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/types.h>
30 #include <sys/utsname.h>
31 #include <sys/sysmacros.h>
32
33 #include <alloca.h>
34 #include <rtld_db.h>
35 #include <libgen.h>
36 #include <limits.h>
37 #include <string.h>
38 #include <stdlib.h>
39 #include <unistd.h>
40 #include <errno.h>
41 #include <gelf.h>
42 #include <stddef.h>
43
44 #include "libproc.h"
45 #include "Pcontrol.h"
46 #include "P32ton.h"
47 #include "Putil.h"
48
49 /*
50 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
51 * allocate an additional structure to hold information from the core
52 * file, and attach this to the standard ps_prochandle in place of the
53 * ability to examine /proc/<pid>/ files.
54 */
55
56 /*
57 * Basic i/o function for reading and writing from the process address space
58 * stored in the core file and associated shared libraries. We compute the
59 * appropriate fd and offsets, and let the provided prw function do the rest.
60 */
61 static ssize_t
62 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
63 ssize_t (*prw)(int, void *, size_t, off64_t))
64 {
65 ssize_t resid = n;
66
67 while (resid != 0) {
68 map_info_t *mp = Paddr2mptr(P, addr);
69
70 uintptr_t mapoff;
71 ssize_t len;
72 off64_t off;
73 int fd;
74
75 if (mp == NULL)
76 break; /* No mapping for this address */
77
78 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
79 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
80 break; /* No file or file not open */
81
82 fd = mp->map_file->file_fd;
83 } else
84 fd = P->asfd;
85
86 mapoff = addr - mp->map_pmap.pr_vaddr;
87 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
88 off = mp->map_offset + mapoff;
89
90 if ((len = prw(fd, buf, len, off)) <= 0)
91 break;
92
93 resid -= len;
94 addr += len;
95 buf = (char *)buf + len;
96 }
97
98 /*
99 * Important: Be consistent with the behavior of i/o on the as file:
100 * writing to an invalid address yields EIO; reading from an invalid
101 * address falls through to returning success and zero bytes.
102 */
103 if (resid == n && n != 0 && prw != pread64) {
104 errno = EIO;
105 return (-1);
106 }
107
108 return (n - resid);
109 }
110
111 static ssize_t
112 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr)
113 {
114 return (core_rw(P, buf, n, addr, pread64));
115 }
116
117 static ssize_t
118 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr)
119 {
120 return (core_rw(P, (void *)buf, n, addr,
121 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
122 }
123
124 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core };
125
126 /*
127 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
128 * encountered yet, allocate a new structure and return a pointer to it.
129 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
130 */
131 static lwp_info_t *
132 lwpid2info(struct ps_prochandle *P, lwpid_t id)
133 {
134 lwp_info_t *lwp = list_next(&P->core->core_lwp_head);
135 lwp_info_t *next;
136 uint_t i;
137
138 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) {
139 if (lwp->lwp_id == id) {
140 P->core->core_lwp = lwp;
141 return (lwp);
142 }
143 if (lwp->lwp_id < id) {
144 break;
145 }
146 }
147
148 next = lwp;
149 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
150 return (NULL);
151
152 list_link(lwp, next);
153 lwp->lwp_id = id;
154
155 P->core->core_lwp = lwp;
156 P->core->core_nlwp++;
157
158 return (lwp);
159 }
160
161 /*
162 * The core file itself contains a series of NOTE segments containing saved
163 * structures from /proc at the time the process died. For each note we
164 * comprehend, we define a function to read it in from the core file,
165 * convert it to our native data model if necessary, and store it inside
166 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
167 * seek pointer on P->asfd positioned appropriately. We populate a table
168 * of pointers to these note functions below.
169 */
170
171 static int
172 note_pstatus(struct ps_prochandle *P, size_t nbytes)
173 {
174 #ifdef _LP64
175 if (P->core->core_dmodel == PR_MODEL_ILP32) {
176 pstatus32_t ps32;
177
178 if (nbytes < sizeof (pstatus32_t) ||
179 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
180 goto err;
181
182 pstatus_32_to_n(&ps32, &P->status);
183
184 } else
185 #endif
186 if (nbytes < sizeof (pstatus_t) ||
187 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
188 goto err;
189
190 P->orig_status = P->status;
191 P->pid = P->status.pr_pid;
192
193 return (0);
194
195 err:
196 dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
197 return (-1);
198 }
199
200 static int
201 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
202 {
203 lwp_info_t *lwp;
204 lwpstatus_t lps;
205
206 #ifdef _LP64
207 if (P->core->core_dmodel == PR_MODEL_ILP32) {
208 lwpstatus32_t l32;
209
210 if (nbytes < sizeof (lwpstatus32_t) ||
211 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
212 goto err;
213
214 lwpstatus_32_to_n(&l32, &lps);
215 } else
216 #endif
217 if (nbytes < sizeof (lwpstatus_t) ||
218 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
219 goto err;
220
221 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
222 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
223 return (-1);
224 }
225
226 /*
227 * Erase a useless and confusing artifact of the kernel implementation:
228 * the lwps which did *not* create the core will show SIGKILL. We can
229 * be assured this is bogus because SIGKILL can't produce core files.
230 */
231 if (lps.pr_cursig == SIGKILL)
232 lps.pr_cursig = 0;
233
234 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
235 return (0);
236
237 err:
238 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
239 return (-1);
240 }
241
242 static int
243 note_psinfo(struct ps_prochandle *P, size_t nbytes)
244 {
245 #ifdef _LP64
246 if (P->core->core_dmodel == PR_MODEL_ILP32) {
247 psinfo32_t ps32;
248
249 if (nbytes < sizeof (psinfo32_t) ||
250 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
251 goto err;
252
253 psinfo_32_to_n(&ps32, &P->psinfo);
254 } else
255 #endif
256 if (nbytes < sizeof (psinfo_t) ||
257 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
258 goto err;
259
260 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
261 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
262 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
263
264 return (0);
265
266 err:
267 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
268 return (-1);
269 }
270
271 static int
272 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
273 {
274 lwp_info_t *lwp;
275 lwpsinfo_t lps;
276
277 #ifdef _LP64
278 if (P->core->core_dmodel == PR_MODEL_ILP32) {
279 lwpsinfo32_t l32;
280
281 if (nbytes < sizeof (lwpsinfo32_t) ||
282 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
283 goto err;
284
285 lwpsinfo_32_to_n(&l32, &lps);
286 } else
287 #endif
288 if (nbytes < sizeof (lwpsinfo_t) ||
289 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
290 goto err;
291
292 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
293 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
294 return (-1);
295 }
296
297 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
298 return (0);
299
300 err:
301 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
302 return (-1);
303 }
304
305 static int
306 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
307 {
308 prfdinfo_t prfd;
309 fd_info_t *fip;
310
311 if ((nbytes < sizeof (prfd)) ||
312 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
313 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
314 return (-1);
315 }
316
317 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
318 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
319 return (-1);
320 }
321 (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
322 return (0);
323 }
324
325 static int
326 note_platform(struct ps_prochandle *P, size_t nbytes)
327 {
328 char *plat;
329
330 if (P->core->core_platform != NULL)
331 return (0); /* Already seen */
332
333 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
334 if (read(P->asfd, plat, nbytes) != nbytes) {
335 dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
336 free(plat);
337 return (-1);
338 }
339 plat[nbytes - 1] = '\0';
340 P->core->core_platform = plat;
341 }
342
343 return (0);
344 }
345
346 static int
347 note_utsname(struct ps_prochandle *P, size_t nbytes)
348 {
349 size_t ubytes = sizeof (struct utsname);
350 struct utsname *utsp;
351
352 if (P->core->core_uts != NULL || nbytes < ubytes)
353 return (0); /* Already seen or bad size */
354
355 if ((utsp = malloc(ubytes)) == NULL)
356 return (-1);
357
358 if (read(P->asfd, utsp, ubytes) != ubytes) {
359 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
360 free(utsp);
361 return (-1);
362 }
363
364 if (_libproc_debug) {
365 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
366 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
367 dprintf("uts.release = \"%s\"\n", utsp->release);
368 dprintf("uts.version = \"%s\"\n", utsp->version);
369 dprintf("uts.machine = \"%s\"\n", utsp->machine);
370 }
371
372 P->core->core_uts = utsp;
373 return (0);
374 }
375
376 static int
377 note_content(struct ps_prochandle *P, size_t nbytes)
378 {
379 core_content_t content;
380
381 if (sizeof (P->core->core_content) != nbytes)
382 return (-1);
383
384 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
385 return (-1);
386
387 P->core->core_content = content;
388
389 dprintf("core content = %llx\n", content);
390
391 return (0);
392 }
393
394 static int
395 note_cred(struct ps_prochandle *P, size_t nbytes)
396 {
397 prcred_t *pcrp;
398 int ngroups;
399 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
400
401 /*
402 * We allow for prcred_t notes that are actually smaller than a
403 * prcred_t since the last member isn't essential if there are
404 * no group memberships. This allows for more flexibility when it
405 * comes to slightly malformed -- but still valid -- notes.
406 */
407 if (P->core->core_cred != NULL || nbytes < min_size)
408 return (0); /* Already seen or bad size */
409
410 ngroups = (nbytes - min_size) / sizeof (gid_t);
411 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
412
413 if ((pcrp = malloc(nbytes)) == NULL)
414 return (-1);
415
416 if (read(P->asfd, pcrp, nbytes) != nbytes) {
417 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
418 free(pcrp);
419 return (-1);
420 }
421
422 if (pcrp->pr_ngroups > ngroups) {
423 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
424 pcrp->pr_ngroups, ngroups);
425 pcrp->pr_ngroups = ngroups;
426 }
427
428 P->core->core_cred = pcrp;
429 return (0);
430 }
431
432 #if defined(__i386) || defined(__amd64)
433 static int
434 note_ldt(struct ps_prochandle *P, size_t nbytes)
435 {
436 struct ssd *pldt;
437 uint_t nldt;
438
439 if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd))
440 return (0); /* Already seen or bad size */
441
442 nldt = nbytes / sizeof (struct ssd);
443 nbytes = nldt * sizeof (struct ssd);
444
445 if ((pldt = malloc(nbytes)) == NULL)
446 return (-1);
447
448 if (read(P->asfd, pldt, nbytes) != nbytes) {
449 dprintf("Pgrab_core: failed to read NT_LDT\n");
450 free(pldt);
451 return (-1);
452 }
453
454 P->core->core_ldt = pldt;
455 P->core->core_nldt = nldt;
456 return (0);
457 }
458 #endif /* __i386 */
459
460 static int
461 note_priv(struct ps_prochandle *P, size_t nbytes)
462 {
463 prpriv_t *pprvp;
464
465 if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t))
466 return (0); /* Already seen or bad size */
467
468 if ((pprvp = malloc(nbytes)) == NULL)
469 return (-1);
470
471 if (read(P->asfd, pprvp, nbytes) != nbytes) {
472 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
473 free(pprvp);
474 return (-1);
475 }
476
477 P->core->core_priv = pprvp;
478 P->core->core_priv_size = nbytes;
479 return (0);
480 }
481
482 static int
483 note_priv_info(struct ps_prochandle *P, size_t nbytes)
484 {
485 extern void *__priv_parse_info();
486 priv_impl_info_t *ppii;
487
488 if (P->core->core_privinfo != NULL ||
489 nbytes < sizeof (priv_impl_info_t))
490 return (0); /* Already seen or bad size */
491
492 if ((ppii = malloc(nbytes)) == NULL)
493 return (-1);
494
495 if (read(P->asfd, ppii, nbytes) != nbytes ||
496 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
497 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
498 free(ppii);
499 return (-1);
500 }
501
502 P->core->core_privinfo = __priv_parse_info(ppii);
503 P->core->core_ppii = ppii;
504 return (0);
505 }
506
507 static int
508 note_zonename(struct ps_prochandle *P, size_t nbytes)
509 {
510 char *zonename;
511
512 if (P->core->core_zonename != NULL)
513 return (0); /* Already seen */
514
515 if (nbytes != 0) {
516 if ((zonename = malloc(nbytes)) == NULL)
517 return (-1);
518 if (read(P->asfd, zonename, nbytes) != nbytes) {
519 dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
520 free(zonename);
521 return (-1);
522 }
523 zonename[nbytes - 1] = '\0';
524 P->core->core_zonename = zonename;
525 }
526
527 return (0);
528 }
529
530 static int
531 note_auxv(struct ps_prochandle *P, size_t nbytes)
532 {
533 size_t n, i;
534
535 #ifdef _LP64
536 if (P->core->core_dmodel == PR_MODEL_ILP32) {
537 auxv32_t *a32;
538
539 n = nbytes / sizeof (auxv32_t);
540 nbytes = n * sizeof (auxv32_t);
541 a32 = alloca(nbytes);
542
543 if (read(P->asfd, a32, nbytes) != nbytes) {
544 dprintf("Pgrab_core: failed to read NT_AUXV\n");
545 return (-1);
546 }
547
548 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
549 return (-1);
550
551 for (i = 0; i < n; i++)
552 auxv_32_to_n(&a32[i], &P->auxv[i]);
553
554 } else {
555 #endif
556 n = nbytes / sizeof (auxv_t);
557 nbytes = n * sizeof (auxv_t);
558
559 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
560 return (-1);
561
562 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
563 free(P->auxv);
564 P->auxv = NULL;
565 return (-1);
566 }
567 #ifdef _LP64
568 }
569 #endif
570
571 if (_libproc_debug) {
572 for (i = 0; i < n; i++) {
573 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
574 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
575 }
576 }
577
578 /*
579 * Defensive coding for loops which depend upon the auxv array being
580 * terminated by an AT_NULL element; in each case, we've allocated
581 * P->auxv to have an additional element which we force to be AT_NULL.
582 */
583 P->auxv[n].a_type = AT_NULL;
584 P->auxv[n].a_un.a_val = 0L;
585 P->nauxv = (int)n;
586
587 return (0);
588 }
589
590 static int
591 note_xreg(struct ps_prochandle *P, size_t nbytes)
592 {
593 lwp_info_t *lwp = P->core->core_lwp;
594 size_t xbytes = sizeof (prxregset_t);
595 prxregset_t *xregs;
596
597 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
598 return (0); /* No lwp yet, already seen, or bad size */
599
600 if ((xregs = malloc(xbytes)) == NULL)
601 return (-1);
602 #ifdef __sparc
603 if (read(P->asfd, xregs, xbytes) != xbytes) {
604 #else
605 panic("port me");
606 #endif
607 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
608 free(xregs);
609 return (-1);
610 }
611 lwp->lwp_xregs = xregs;
612 return (0);
613 }
614
615 #ifdef __sparc
616 static int
617 note_gwindows(struct ps_prochandle *P, size_t nbytes)
618 {
619 lwp_info_t *lwp = P->core->core_lwp;
620
621 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
622 return (0); /* No lwp yet or already seen or no data */
623
624 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
625 return (-1);
626
627 /*
628 * Since the amount of gwindows data varies with how many windows were
629 * actually saved, we just read up to the minimum of the note size
630 * and the size of the gwindows_t type. It doesn't matter if the read
631 * fails since we have to zero out gwindows first anyway.
632 */
633 #ifdef _LP64
634 if (P->core->core_dmodel == PR_MODEL_ILP32) {
635 gwindows32_t g32;
636
637 (void) memset(&g32, 0, sizeof (g32));
638 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
639 gwindows_32_to_n(&g32, lwp->lwp_gwins);
640
641 } else {
642 #endif
643 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
644 (void) read(P->asfd, lwp->lwp_gwins,
645 MIN(nbytes, sizeof (gwindows_t)));
646 #ifdef _LP64
647 }
648 #endif
649 return (0);
650 }
651
652 #ifdef __sparcv9
653 static int
654 note_asrs(struct ps_prochandle *P, size_t nbytes)
655 {
656 lwp_info_t *lwp = P->core->core_lwp;
657 int64_t *asrs;
658
659 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
660 return (0); /* No lwp yet, already seen, or bad size */
661
662 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
663 return (-1);
664
665 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
666 dprintf("Pgrab_core: failed to read NT_ASRS\n");
667 free(asrs);
668 return (-1);
669 }
670
671 lwp->lwp_asrs = asrs;
672 return (0);
673 }
674 #endif /* __sparcv9 */
675 #endif /* __sparc */
676
677 /*ARGSUSED*/
678 static int
679 note_notsup(struct ps_prochandle *P, size_t nbytes)
680 {
681 dprintf("skipping unsupported note type\n");
682 return (0);
683 }
684
685 /*
686 * Populate a table of function pointers indexed by Note type with our
687 * functions to process each type of core file note:
688 */
689 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
690 note_notsup, /* 0 unassigned */
691 note_notsup, /* 1 NT_PRSTATUS (old) */
692 note_notsup, /* 2 NT_PRFPREG (old) */
693 note_notsup, /* 3 NT_PRPSINFO (old) */
694 note_xreg, /* 4 NT_PRXREG */
695 note_platform, /* 5 NT_PLATFORM */
696 note_auxv, /* 6 NT_AUXV */
697 #ifdef __sparc
698 note_gwindows, /* 7 NT_GWINDOWS */
699 #ifdef __sparcv9
700 note_asrs, /* 8 NT_ASRS */
701 #else
702 note_notsup, /* 8 NT_ASRS */
703 #endif
704 #else
705 note_notsup, /* 7 NT_GWINDOWS */
706 note_notsup, /* 8 NT_ASRS */
707 #endif
708 #if defined(__i386) || defined(__amd64)
709 note_ldt, /* 9 NT_LDT */
710 #else
711 note_notsup, /* 9 NT_LDT */
712 #endif
713 note_pstatus, /* 10 NT_PSTATUS */
714 note_notsup, /* 11 unassigned */
715 note_notsup, /* 12 unassigned */
716 note_psinfo, /* 13 NT_PSINFO */
717 note_cred, /* 14 NT_PRCRED */
718 note_utsname, /* 15 NT_UTSNAME */
719 note_lwpstatus, /* 16 NT_LWPSTATUS */
720 note_lwpsinfo, /* 17 NT_LWPSINFO */
721 note_priv, /* 18 NT_PRPRIV */
722 note_priv_info, /* 19 NT_PRPRIVINFO */
723 note_content, /* 20 NT_CONTENT */
724 note_zonename, /* 21 NT_ZONENAME */
725 note_fdinfo, /* 22 NT_FDINFO */
726 };
727
728 /*
729 * Add information on the address space mapping described by the given
730 * PT_LOAD program header. We fill in more information on the mapping later.
731 */
732 static int
733 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
734 {
735 int err = 0;
736 prmap_t pmap;
737
738 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n",
739 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
740 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
741
742 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
743 pmap.pr_size = php->p_memsz;
744
745 /*
746 * If Pgcore() or elfcore() fail to write a mapping, they will set
747 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
748 */
749 if (php->p_flags & PF_SUNW_FAILURE) {
750 (void) pread64(P->asfd, &err,
751 sizeof (err), (off64_t)php->p_offset);
752
753 Perror_printf(P, "core file data for mapping at %p not saved: "
754 "%s\n", (void *)(uintptr_t)php->p_vaddr, strerror(err));
755 dprintf("core file data for mapping at %p not saved: %s\n",
756 (void *)(uintptr_t)php->p_vaddr, strerror(err));
757
758 } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) {
759 Perror_printf(P, "core file may be corrupt -- data for mapping "
760 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
761 dprintf("core file may be corrupt -- data for mapping "
762 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
763 }
764
765 /*
766 * The mapping name and offset will hopefully be filled in
767 * by the librtld_db agent. Unfortunately, if it isn't a
768 * shared library mapping, this information is gone forever.
769 */
770 pmap.pr_mapname[0] = '\0';
771 pmap.pr_offset = 0;
772
773 pmap.pr_mflags = 0;
774 if (php->p_flags & PF_R)
775 pmap.pr_mflags |= MA_READ;
776 if (php->p_flags & PF_W)
777 pmap.pr_mflags |= MA_WRITE;
778 if (php->p_flags & PF_X)
779 pmap.pr_mflags |= MA_EXEC;
780
781 if (php->p_filesz == 0)
782 pmap.pr_mflags |= MA_RESERVED1;
783
784 /*
785 * At the time of adding this mapping, we just zero the pagesize.
786 * Once we've processed more of the core file, we'll have the
787 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
788 */
789 pmap.pr_pagesize = 0;
790
791 /*
792 * Unfortunately whether or not the mapping was a System V
793 * shared memory segment is lost. We use -1 to mark it as not shm.
794 */
795 pmap.pr_shmid = -1;
796
797 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
798 }
799
800 /*
801 * Given a virtual address, name the mapping at that address using the
802 * specified name, and return the map_info_t pointer.
803 */
804 static map_info_t *
805 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
806 {
807 map_info_t *mp = Paddr2mptr(P, addr);
808
809 if (mp != NULL) {
810 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
811 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
812 }
813
814 return (mp);
815 }
816
817 /*
818 * libproc uses libelf for all of its symbol table manipulation. This function
819 * takes a symbol table and string table from a core file and places them
820 * in a memory backed elf file.
821 */
822 static void
823 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
824 GElf_Shdr *symtab, GElf_Shdr *strtab)
825 {
826 size_t size;
827 off64_t off, base;
828 map_info_t *mp;
829 file_info_t *fp;
830 Elf_Scn *scn;
831 Elf_Data *data;
832
833 if (symtab->sh_addr == 0 ||
834 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
835 (fp = mp->map_file) == NULL) {
836 dprintf("fake_up_symtab: invalid section\n");
837 return;
838 }
839
840 if (fp->file_symtab.sym_data_pri != NULL) {
841 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
842 (long)symtab->sh_addr);
843 return;
844 }
845
846 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
847 struct {
848 Elf32_Ehdr ehdr;
849 Elf32_Shdr shdr[3];
850 char data[1];
851 } *b;
852
853 base = sizeof (b->ehdr) + sizeof (b->shdr);
854 size = base + symtab->sh_size + strtab->sh_size;
855
856 if ((b = calloc(1, size)) == NULL)
857 return;
858
859 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
860 sizeof (ehdr->e_ident));
861 b->ehdr.e_type = ehdr->e_type;
862 b->ehdr.e_machine = ehdr->e_machine;
863 b->ehdr.e_version = ehdr->e_version;
864 b->ehdr.e_flags = ehdr->e_flags;
865 b->ehdr.e_ehsize = sizeof (b->ehdr);
866 b->ehdr.e_shoff = sizeof (b->ehdr);
867 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
868 b->ehdr.e_shnum = 3;
869 off = 0;
870
871 b->shdr[1].sh_size = symtab->sh_size;
872 b->shdr[1].sh_type = SHT_SYMTAB;
873 b->shdr[1].sh_offset = off + base;
874 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
875 b->shdr[1].sh_link = 2;
876 b->shdr[1].sh_info = symtab->sh_info;
877 b->shdr[1].sh_addralign = symtab->sh_addralign;
878
879 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
880 symtab->sh_offset) != b->shdr[1].sh_size) {
881 dprintf("fake_up_symtab: pread of symtab[1] failed\n");
882 free(b);
883 return;
884 }
885
886 off += b->shdr[1].sh_size;
887
888 b->shdr[2].sh_flags = SHF_STRINGS;
889 b->shdr[2].sh_size = strtab->sh_size;
890 b->shdr[2].sh_type = SHT_STRTAB;
891 b->shdr[2].sh_offset = off + base;
892 b->shdr[2].sh_info = strtab->sh_info;
893 b->shdr[2].sh_addralign = 1;
894
895 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
896 strtab->sh_offset) != b->shdr[2].sh_size) {
897 dprintf("fake_up_symtab: pread of symtab[2] failed\n");
898 free(b);
899 return;
900 }
901
902 off += b->shdr[2].sh_size;
903
904 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
905 if (fp->file_symtab.sym_elf == NULL) {
906 free(b);
907 return;
908 }
909
910 fp->file_symtab.sym_elfmem = b;
911 #ifdef _LP64
912 } else {
913 struct {
914 Elf64_Ehdr ehdr;
915 Elf64_Shdr shdr[3];
916 char data[1];
917 } *b;
918
919 base = sizeof (b->ehdr) + sizeof (b->shdr);
920 size = base + symtab->sh_size + strtab->sh_size;
921
922 if ((b = calloc(1, size)) == NULL)
923 return;
924
925 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
926 sizeof (ehdr->e_ident));
927 b->ehdr.e_type = ehdr->e_type;
928 b->ehdr.e_machine = ehdr->e_machine;
929 b->ehdr.e_version = ehdr->e_version;
930 b->ehdr.e_flags = ehdr->e_flags;
931 b->ehdr.e_ehsize = sizeof (b->ehdr);
932 b->ehdr.e_shoff = sizeof (b->ehdr);
933 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
934 b->ehdr.e_shnum = 3;
935 off = 0;
936
937 b->shdr[1].sh_size = symtab->sh_size;
938 b->shdr[1].sh_type = SHT_SYMTAB;
939 b->shdr[1].sh_offset = off + base;
940 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
941 b->shdr[1].sh_link = 2;
942 b->shdr[1].sh_info = symtab->sh_info;
943 b->shdr[1].sh_addralign = symtab->sh_addralign;
944
945 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
946 symtab->sh_offset) != b->shdr[1].sh_size) {
947 free(b);
948 return;
949 }
950
951 off += b->shdr[1].sh_size;
952
953 b->shdr[2].sh_flags = SHF_STRINGS;
954 b->shdr[2].sh_size = strtab->sh_size;
955 b->shdr[2].sh_type = SHT_STRTAB;
956 b->shdr[2].sh_offset = off + base;
957 b->shdr[2].sh_info = strtab->sh_info;
958 b->shdr[2].sh_addralign = 1;
959
960 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
961 strtab->sh_offset) != b->shdr[2].sh_size) {
962 free(b);
963 return;
964 }
965
966 off += b->shdr[2].sh_size;
967
968 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
969 if (fp->file_symtab.sym_elf == NULL) {
970 free(b);
971 return;
972 }
973
974 fp->file_symtab.sym_elfmem = b;
975 #endif
976 }
977
978 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
979 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
980 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
981 (data = elf_getdata(scn, NULL)) == NULL) {
982 dprintf("fake_up_symtab: failed to get section data at %p\n",
983 (void *)scn);
984 goto err;
985 }
986
987 fp->file_symtab.sym_strs = data->d_buf;
988 fp->file_symtab.sym_strsz = data->d_size;
989 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
990 fp->file_symtab.sym_hdr_pri = *symtab;
991 fp->file_symtab.sym_strhdr = *strtab;
992
993 optimize_symtab(&fp->file_symtab);
994
995 return;
996 err:
997 (void) elf_end(fp->file_symtab.sym_elf);
998 free(fp->file_symtab.sym_elfmem);
999 fp->file_symtab.sym_elf = NULL;
1000 fp->file_symtab.sym_elfmem = NULL;
1001 }
1002
1003 static void
1004 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1005 {
1006 dst->p_type = src->p_type;
1007 dst->p_flags = src->p_flags;
1008 dst->p_offset = (Elf64_Off)src->p_offset;
1009 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1010 dst->p_paddr = (Elf64_Addr)src->p_paddr;
1011 dst->p_filesz = (Elf64_Xword)src->p_filesz;
1012 dst->p_memsz = (Elf64_Xword)src->p_memsz;
1013 dst->p_align = (Elf64_Xword)src->p_align;
1014 }
1015
1016 static void
1017 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1018 {
1019 dst->sh_name = src->sh_name;
1020 dst->sh_type = src->sh_type;
1021 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1022 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1023 dst->sh_offset = (Elf64_Off)src->sh_offset;
1024 dst->sh_size = (Elf64_Xword)src->sh_size;
1025 dst->sh_link = src->sh_link;
1026 dst->sh_info = src->sh_info;
1027 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1028 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1029 }
1030
1031 /*
1032 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1033 */
1034 static int
1035 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1036 {
1037 #ifdef _BIG_ENDIAN
1038 uchar_t order = ELFDATA2MSB;
1039 #else
1040 uchar_t order = ELFDATA2LSB;
1041 #endif
1042 Elf32_Ehdr e32;
1043 int is_noelf = -1;
1044 int isa_err = 0;
1045
1046 /*
1047 * Because 32-bit libelf cannot deal with large files, we need to read,
1048 * check, and convert the file header manually in case type == ET_CORE.
1049 */
1050 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1051 if (perr != NULL)
1052 *perr = G_FORMAT;
1053 goto err;
1054 }
1055 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1056 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1057 e32.e_version != EV_CURRENT) {
1058 if (perr != NULL) {
1059 if (is_noelf == 0 && isa_err) {
1060 *perr = G_ISAINVAL;
1061 } else {
1062 *perr = G_FORMAT;
1063 }
1064 }
1065 goto err;
1066 }
1067
1068 /*
1069 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1070 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1071 * and convert it to a elf_file_header_t. Otherwise, the file is
1072 * 32-bit, so convert e32 to a elf_file_header_t.
1073 */
1074 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1075 #ifdef _LP64
1076 Elf64_Ehdr e64;
1077
1078 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1079 if (perr != NULL)
1080 *perr = G_FORMAT;
1081 goto err;
1082 }
1083
1084 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1085 efp->e_hdr.e_type = e64.e_type;
1086 efp->e_hdr.e_machine = e64.e_machine;
1087 efp->e_hdr.e_version = e64.e_version;
1088 efp->e_hdr.e_entry = e64.e_entry;
1089 efp->e_hdr.e_phoff = e64.e_phoff;
1090 efp->e_hdr.e_shoff = e64.e_shoff;
1091 efp->e_hdr.e_flags = e64.e_flags;
1092 efp->e_hdr.e_ehsize = e64.e_ehsize;
1093 efp->e_hdr.e_phentsize = e64.e_phentsize;
1094 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1095 efp->e_hdr.e_shentsize = e64.e_shentsize;
1096 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1097 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1098 #else /* _LP64 */
1099 if (perr != NULL)
1100 *perr = G_LP64;
1101 goto err;
1102 #endif /* _LP64 */
1103 } else {
1104 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1105 efp->e_hdr.e_type = e32.e_type;
1106 efp->e_hdr.e_machine = e32.e_machine;
1107 efp->e_hdr.e_version = e32.e_version;
1108 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1109 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1110 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1111 efp->e_hdr.e_flags = e32.e_flags;
1112 efp->e_hdr.e_ehsize = e32.e_ehsize;
1113 efp->e_hdr.e_phentsize = e32.e_phentsize;
1114 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1115 efp->e_hdr.e_shentsize = e32.e_shentsize;
1116 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1117 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1118 }
1119
1120 /*
1121 * If the number of section headers or program headers or the section
1122 * header string table index would overflow their respective fields
1123 * in the ELF header, they're stored in the section header at index
1124 * zero. To simplify use elsewhere, we look for those sentinel values
1125 * here.
1126 */
1127 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1128 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1129 efp->e_hdr.e_phnum == PN_XNUM) {
1130 GElf_Shdr shdr;
1131
1132 dprintf("extended ELF header\n");
1133
1134 if (efp->e_hdr.e_shoff == 0) {
1135 if (perr != NULL)
1136 *perr = G_FORMAT;
1137 goto err;
1138 }
1139
1140 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1141 Elf32_Shdr shdr32;
1142
1143 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1144 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1145 if (perr != NULL)
1146 *perr = G_FORMAT;
1147 goto err;
1148 }
1149
1150 core_shdr_to_gelf(&shdr32, &shdr);
1151 } else {
1152 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1153 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1154 if (perr != NULL)
1155 *perr = G_FORMAT;
1156 goto err;
1157 }
1158 }
1159
1160 if (efp->e_hdr.e_shnum == 0) {
1161 efp->e_hdr.e_shnum = shdr.sh_size;
1162 dprintf("section header count %lu\n",
1163 (ulong_t)shdr.sh_size);
1164 }
1165
1166 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1167 efp->e_hdr.e_shstrndx = shdr.sh_link;
1168 dprintf("section string index %u\n", shdr.sh_link);
1169 }
1170
1171 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1172 efp->e_hdr.e_phnum = shdr.sh_info;
1173 dprintf("program header count %u\n", shdr.sh_info);
1174 }
1175
1176 } else if (efp->e_hdr.e_phoff != 0) {
1177 GElf_Phdr phdr;
1178 uint64_t phnum;
1179
1180 /*
1181 * It's possible this core file came from a system that
1182 * accidentally truncated the e_phnum field without correctly
1183 * using the extended format in the section header at index
1184 * zero. We try to detect and correct that specific type of
1185 * corruption by using the knowledge that the core dump
1186 * routines usually place the data referenced by the first
1187 * program header immediately after the last header element.
1188 */
1189 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1190 Elf32_Phdr phdr32;
1191
1192 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1193 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1194 if (perr != NULL)
1195 *perr = G_FORMAT;
1196 goto err;
1197 }
1198
1199 core_phdr_to_gelf(&phdr32, &phdr);
1200 } else {
1201 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1202 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1203 if (perr != NULL)
1204 *perr = G_FORMAT;
1205 goto err;
1206 }
1207 }
1208
1209 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1210 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1211 phnum /= efp->e_hdr.e_phentsize;
1212
1213 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1214 dprintf("suspicious program header count %u %u\n",
1215 (uint_t)phnum, efp->e_hdr.e_phnum);
1216
1217 /*
1218 * If the new program header count we computed doesn't
1219 * jive with count in the ELF header, we'll use the
1220 * data that's there and hope for the best.
1221 *
1222 * If it does, it's also possible that the section
1223 * header offset is incorrect; we'll check that and
1224 * possibly try to fix it.
1225 */
1226 if (phnum <= INT_MAX &&
1227 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1228
1229 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1230 efp->e_hdr.e_phentsize *
1231 (uint_t)efp->e_hdr.e_phnum) {
1232 efp->e_hdr.e_shoff =
1233 efp->e_hdr.e_phoff +
1234 efp->e_hdr.e_phentsize * phnum;
1235 }
1236
1237 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1238 dprintf("using new program header count\n");
1239 } else {
1240 dprintf("inconsistent program header count\n");
1241 }
1242 }
1243 }
1244
1245 /*
1246 * The libelf implementation was never ported to be large-file aware.
1247 * This is typically not a problem for your average executable or
1248 * shared library, but a large 32-bit core file can exceed 2GB in size.
1249 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1250 * in Pfgrab_core() below will do its own i/o and struct conversion.
1251 */
1252
1253 if (type == ET_CORE) {
1254 efp->e_elf = NULL;
1255 return (0);
1256 }
1257
1258 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1259 if (perr != NULL)
1260 *perr = G_ELF;
1261 goto err;
1262 }
1263
1264 return (0);
1265
1266 err:
1267 efp->e_elf = NULL;
1268 return (-1);
1269 }
1270
1271 /*
1272 * Open the specified file and then do a core_elf_fdopen on it.
1273 */
1274 static int
1275 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1276 {
1277 (void) memset(efp, 0, sizeof (elf_file_t));
1278
1279 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1280 if (core_elf_fdopen(efp, type, perr) == 0)
1281 return (0);
1282
1283 (void) close(efp->e_fd);
1284 efp->e_fd = -1;
1285 }
1286
1287 return (-1);
1288 }
1289
1290 /*
1291 * Close the ELF handle and file descriptor.
1292 */
1293 static void
1294 core_elf_close(elf_file_t *efp)
1295 {
1296 if (efp->e_elf != NULL) {
1297 (void) elf_end(efp->e_elf);
1298 efp->e_elf = NULL;
1299 }
1300
1301 if (efp->e_fd != -1) {
1302 (void) close(efp->e_fd);
1303 efp->e_fd = -1;
1304 }
1305 }
1306
1307 /*
1308 * Given an ELF file for a statically linked executable, locate the likely
1309 * primary text section and fill in rl_base with its virtual address.
1310 */
1311 static map_info_t *
1312 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1313 {
1314 GElf_Phdr phdr;
1315 uint_t i;
1316 size_t nphdrs;
1317
1318 if (elf_getphdrnum(elf, &nphdrs) == -1)
1319 return (NULL);
1320
1321 for (i = 0; i < nphdrs; i++) {
1322 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1323 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1324 rlp->rl_base = phdr.p_vaddr;
1325 return (Paddr2mptr(P, rlp->rl_base));
1326 }
1327 }
1328
1329 return (NULL);
1330 }
1331
1332 /*
1333 * Given an ELF file and the librtld_db structure corresponding to its primary
1334 * text mapping, deduce where its data segment was loaded and fill in
1335 * rl_data_base and prmap_t.pr_offset accordingly.
1336 */
1337 static map_info_t *
1338 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1339 {
1340 GElf_Ehdr ehdr;
1341 GElf_Phdr phdr;
1342 map_info_t *mp;
1343 uint_t i, pagemask;
1344 size_t nphdrs;
1345
1346 rlp->rl_data_base = NULL;
1347
1348 /*
1349 * Find the first loadable, writeable Phdr and compute rl_data_base
1350 * as the virtual address at which is was loaded.
1351 */
1352 if (gelf_getehdr(elf, &ehdr) == NULL ||
1353 elf_getphdrnum(elf, &nphdrs) == -1)
1354 return (NULL);
1355
1356 for (i = 0; i < nphdrs; i++) {
1357 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1358 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1359 rlp->rl_data_base = phdr.p_vaddr;
1360 if (ehdr.e_type == ET_DYN)
1361 rlp->rl_data_base += rlp->rl_base;
1362 break;
1363 }
1364 }
1365
1366 /*
1367 * If we didn't find an appropriate phdr or if the address we
1368 * computed has no mapping, return NULL.
1369 */
1370 if (rlp->rl_data_base == NULL ||
1371 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1372 return (NULL);
1373
1374 /*
1375 * It wouldn't be procfs-related code if we didn't make use of
1376 * unclean knowledge of segvn, even in userland ... the prmap_t's
1377 * pr_offset field will be the segvn offset from mmap(2)ing the
1378 * data section, which will be the file offset & PAGEMASK.
1379 */
1380 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1381 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1382
1383 return (mp);
1384 }
1385
1386 /*
1387 * Librtld_db agent callback for iterating over load object mappings.
1388 * For each load object, we allocate a new file_info_t, perform naming,
1389 * and attempt to construct a symbol table for the load object.
1390 */
1391 static int
1392 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1393 {
1394 char lname[PATH_MAX], buf[PATH_MAX];
1395 file_info_t *fp;
1396 map_info_t *mp;
1397
1398 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1399 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1400 return (1); /* Keep going; forget this if we can't get a name */
1401 }
1402
1403 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1404 lname, (void *)rlp->rl_base);
1405
1406 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1407 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1408 return (1); /* No mapping; advance to next mapping */
1409 }
1410
1411 /*
1412 * Create a new file_info_t for this mapping, and therefore for
1413 * this load object.
1414 *
1415 * If there's an ELF header at the beginning of this mapping,
1416 * file_info_new() will try to use its section headers to
1417 * identify any other mappings that belong to this load object.
1418 */
1419 if ((fp = mp->map_file) == NULL &&
1420 (fp = file_info_new(P, mp)) == NULL) {
1421 P->core->core_errno = errno;
1422 dprintf("failed to malloc mapping data\n");
1423 return (0); /* Abort */
1424 }
1425 fp->file_map = mp;
1426
1427 /* Create a local copy of the load object representation */
1428 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1429 P->core->core_errno = errno;
1430 dprintf("failed to malloc mapping data\n");
1431 return (0); /* Abort */
1432 }
1433 *fp->file_lo = *rlp;
1434
1435 if (lname[0] != '\0') {
1436 /*
1437 * Naming dance part 1: if we got a name from librtld_db, then
1438 * copy this name to the prmap_t if it is unnamed. If the
1439 * file_info_t is unnamed, name it after the lname.
1440 */
1441 if (mp->map_pmap.pr_mapname[0] == '\0') {
1442 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1443 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1444 }
1445
1446 if (fp->file_lname == NULL)
1447 fp->file_lname = strdup(lname);
1448
1449 } else if (fp->file_lname == NULL &&
1450 mp->map_pmap.pr_mapname[0] != '\0') {
1451 /*
1452 * Naming dance part 2: if the mapping is named and the
1453 * file_info_t is not, name the file after the mapping.
1454 */
1455 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1456 }
1457
1458 if ((fp->file_rname == NULL) &&
1459 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
1460 fp->file_rname = strdup(buf);
1461
1462 if (fp->file_lname != NULL)
1463 fp->file_lbase = basename(fp->file_lname);
1464 if (fp->file_rname != NULL)
1465 fp->file_rbase = basename(fp->file_rname);
1466
1467 /* Associate the file and the mapping. */
1468 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
1469 fp->file_pname[PRMAPSZ - 1] = '\0';
1470
1471 /*
1472 * If no section headers were available then we'll have to
1473 * identify this load object's other mappings with what we've
1474 * got: the start and end of the object's corresponding
1475 * address space.
1476 */
1477 if (fp->file_saddrs == NULL) {
1478 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
1479 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
1480
1481 if (mp->map_file == NULL) {
1482 dprintf("core_iter_mapping %s: associating "
1483 "segment at %p\n",
1484 fp->file_pname,
1485 (void *)mp->map_pmap.pr_vaddr);
1486 mp->map_file = fp;
1487 fp->file_ref++;
1488 } else {
1489 dprintf("core_iter_mapping %s: segment at "
1490 "%p already associated with %s\n",
1491 fp->file_pname,
1492 (void *)mp->map_pmap.pr_vaddr,
1493 (mp == fp->file_map ? "this file" :
1494 mp->map_file->file_pname));
1495 }
1496 }
1497 }
1498
1499 /* Ensure that all this file's mappings are named. */
1500 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
1501 mp->map_file == fp; mp++) {
1502 if (mp->map_pmap.pr_mapname[0] == '\0' &&
1503 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
1504 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
1505 PRMAPSZ);
1506 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1507 }
1508 }
1509
1510 /* Attempt to build a symbol table for this file. */
1511 Pbuild_file_symtab(P, fp);
1512 if (fp->file_elf == NULL)
1513 dprintf("core_iter_mapping: no symtab for %s\n",
1514 fp->file_pname);
1515
1516 /* Locate the start of a data segment associated with this file. */
1517 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
1518 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
1519 fp->file_pname, (void *)fp->file_lo->rl_data_base,
1520 mp->map_pmap.pr_offset);
1521 } else {
1522 dprintf("core_iter_mapping: no data found for %s\n",
1523 fp->file_pname);
1524 }
1525
1526 return (1); /* Advance to next mapping */
1527 }
1528
1529 /*
1530 * Callback function for Pfindexec(). In order to confirm a given pathname,
1531 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
1532 */
1533 static int
1534 core_exec_open(const char *path, void *efp)
1535 {
1536 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
1537 return (1);
1538 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
1539 return (1);
1540 return (0);
1541 }
1542
1543 /*
1544 * Attempt to load any section headers found in the core file. If present,
1545 * this will refer to non-loadable data added to the core file by the kernel
1546 * based on coreadm(1M) settings, including CTF data and the symbol table.
1547 */
1548 static void
1549 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
1550 {
1551 GElf_Shdr *shp, *shdrs = NULL;
1552 char *shstrtab = NULL;
1553 ulong_t shstrtabsz;
1554 const char *name;
1555 map_info_t *mp;
1556
1557 size_t nbytes;
1558 void *buf;
1559 int i;
1560
1561 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
1562 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
1563 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
1564 return;
1565 }
1566
1567 /*
1568 * Read the section header table from the core file and then iterate
1569 * over the section headers, converting each to a GElf_Shdr.
1570 */
1571 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
1572 dprintf("failed to malloc %u section headers: %s\n",
1573 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
1574 return;
1575 }
1576
1577 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1578 if ((buf = malloc(nbytes)) == NULL) {
1579 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
1580 strerror(errno));
1581 free(shdrs);
1582 goto out;
1583 }
1584
1585 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
1586 dprintf("failed to read section headers at off %lld: %s\n",
1587 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
1588 free(buf);
1589 goto out;
1590 }
1591
1592 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1593 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
1594
1595 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
1596 core_shdr_to_gelf(p, &shdrs[i]);
1597 else
1598 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
1599 }
1600
1601 free(buf);
1602 buf = NULL;
1603
1604 /*
1605 * Read the .shstrtab section from the core file, terminating it with
1606 * an extra \0 so that a corrupt section will not cause us to die.
1607 */
1608 shp = &shdrs[efp->e_hdr.e_shstrndx];
1609 shstrtabsz = shp->sh_size;
1610
1611 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
1612 dprintf("failed to allocate %lu bytes for shstrtab\n",
1613 (ulong_t)shstrtabsz);
1614 goto out;
1615 }
1616
1617 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
1618 shp->sh_offset) != shstrtabsz) {
1619 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
1620 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
1621 goto out;
1622 }
1623
1624 shstrtab[shstrtabsz] = '\0';
1625
1626 /*
1627 * Now iterate over each section in the section header table, locating
1628 * sections of interest and initializing more of the ps_prochandle.
1629 */
1630 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1631 shp = &shdrs[i];
1632 name = shstrtab + shp->sh_name;
1633
1634 if (shp->sh_name >= shstrtabsz) {
1635 dprintf("skipping section [%d]: corrupt sh_name\n", i);
1636 continue;
1637 }
1638
1639 if (shp->sh_link >= efp->e_hdr.e_shnum) {
1640 dprintf("skipping section [%d]: corrupt sh_link\n", i);
1641 continue;
1642 }
1643
1644 dprintf("found section header %s (sh_addr 0x%llx)\n",
1645 name, (u_longlong_t)shp->sh_addr);
1646
1647 if (strcmp(name, ".SUNW_ctf") == 0) {
1648 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
1649 dprintf("no map at addr 0x%llx for %s [%d]\n",
1650 (u_longlong_t)shp->sh_addr, name, i);
1651 continue;
1652 }
1653
1654 if (mp->map_file == NULL ||
1655 mp->map_file->file_ctf_buf != NULL) {
1656 dprintf("no mapping file or duplicate buffer "
1657 "for %s [%d]\n", name, i);
1658 continue;
1659 }
1660
1661 if ((buf = malloc(shp->sh_size)) == NULL ||
1662 pread64(efp->e_fd, buf, shp->sh_size,
1663 shp->sh_offset) != shp->sh_size) {
1664 dprintf("skipping section %s [%d]: %s\n",
1665 name, i, strerror(errno));
1666 free(buf);
1667 continue;
1668 }
1669
1670 mp->map_file->file_ctf_size = shp->sh_size;
1671 mp->map_file->file_ctf_buf = buf;
1672
1673 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
1674 mp->map_file->file_ctf_dyn = 1;
1675
1676 } else if (strcmp(name, ".symtab") == 0) {
1677 fake_up_symtab(P, &efp->e_hdr,
1678 shp, &shdrs[shp->sh_link]);
1679 }
1680 }
1681 out:
1682 free(shstrtab);
1683 free(shdrs);
1684 }
1685
1686 /*
1687 * Main engine for core file initialization: given an fd for the core file
1688 * and an optional pathname, construct the ps_prochandle. The aout_path can
1689 * either be a suggested executable pathname, or a suggested directory to
1690 * use as a possible current working directory.
1691 */
1692 struct ps_prochandle *
1693 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
1694 {
1695 struct ps_prochandle *P;
1696 map_info_t *stk_mp, *brk_mp;
1697 const char *execname;
1698 char *interp;
1699 int i, notes, pagesize;
1700 uintptr_t addr, base_addr;
1701 struct stat64 stbuf;
1702 void *phbuf, *php;
1703 size_t nbytes;
1704
1705 elf_file_t aout;
1706 elf_file_t core;
1707
1708 Elf_Scn *scn, *intp_scn = NULL;
1709 Elf_Data *dp;
1710
1711 GElf_Phdr phdr, note_phdr;
1712 GElf_Shdr shdr;
1713 GElf_Xword nleft;
1714
1715 if (elf_version(EV_CURRENT) == EV_NONE) {
1716 dprintf("libproc ELF version is more recent than libelf\n");
1717 *perr = G_ELF;
1718 return (NULL);
1719 }
1720
1721 aout.e_elf = NULL;
1722 aout.e_fd = -1;
1723
1724 core.e_elf = NULL;
1725 core.e_fd = core_fd;
1726
1727 /*
1728 * Allocate and initialize a ps_prochandle structure for the core.
1729 * There are several key pieces of initialization here:
1730 *
1731 * 1. The PS_DEAD state flag marks this prochandle as a core file.
1732 * PS_DEAD also thus prevents all operations which require state
1733 * to be PS_STOP from operating on this handle.
1734 *
1735 * 2. We keep the core file fd in P->asfd since the core file contains
1736 * the remnants of the process address space.
1737 *
1738 * 3. We set the P->info_valid bit because all information about the
1739 * core is determined by the end of this function; there is no need
1740 * for proc_update_maps() to reload mappings at any later point.
1741 *
1742 * 4. The read/write ops vector uses our core_rw() function defined
1743 * above to handle i/o requests.
1744 */
1745 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
1746 *perr = G_STRANGE;
1747 return (NULL);
1748 }
1749
1750 (void) memset(P, 0, sizeof (struct ps_prochandle));
1751 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
1752 P->state = PS_DEAD;
1753 P->pid = (pid_t)-1;
1754 P->asfd = core.e_fd;
1755 P->ctlfd = -1;
1756 P->statfd = -1;
1757 P->agentctlfd = -1;
1758 P->agentstatfd = -1;
1759 P->zoneroot = NULL;
1760 P->info_valid = 1;
1761 P->ops = &P_core_ops;
1762
1763 Pinitsym(P);
1764
1765 /*
1766 * Fstat and open the core file and make sure it is a valid ELF core.
1767 */
1768 if (fstat64(P->asfd, &stbuf) == -1) {
1769 *perr = G_STRANGE;
1770 goto err;
1771 }
1772
1773 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
1774 goto err;
1775
1776 /*
1777 * Allocate and initialize a core_info_t to hang off the ps_prochandle
1778 * structure. We keep all core-specific information in this structure.
1779 */
1780 if ((P->core = calloc(1, sizeof (core_info_t))) == NULL) {
1781 *perr = G_STRANGE;
1782 goto err;
1783 }
1784
1785 list_link(&P->core->core_lwp_head, NULL);
1786 P->core->core_size = stbuf.st_size;
1787 /*
1788 * In the days before adjustable core file content, this was the
1789 * default core file content. For new core files, this value will
1790 * be overwritten by the NT_CONTENT note section.
1791 */
1792 P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
1793 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
1794 CC_CONTENT_SHANON;
1795
1796 switch (core.e_hdr.e_ident[EI_CLASS]) {
1797 case ELFCLASS32:
1798 P->core->core_dmodel = PR_MODEL_ILP32;
1799 break;
1800 case ELFCLASS64:
1801 P->core->core_dmodel = PR_MODEL_LP64;
1802 break;
1803 default:
1804 *perr = G_FORMAT;
1805 goto err;
1806 }
1807
1808 /*
1809 * Because the core file may be a large file, we can't use libelf to
1810 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
1811 */
1812 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
1813
1814 if ((phbuf = malloc(nbytes)) == NULL) {
1815 *perr = G_STRANGE;
1816 goto err;
1817 }
1818
1819 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
1820 *perr = G_STRANGE;
1821 free(phbuf);
1822 goto err;
1823 }
1824
1825 /*
1826 * Iterate through the program headers in the core file.
1827 * We're interested in two types of Phdrs: PT_NOTE (which
1828 * contains a set of saved /proc structures), and PT_LOAD (which
1829 * represents a memory mapping from the process's address space).
1830 * In the case of PT_NOTE, we're interested in the last PT_NOTE
1831 * in the core file; currently the first PT_NOTE (if present)
1832 * contains /proc structs in the pre-2.6 unstructured /proc format.
1833 */
1834 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
1835 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
1836 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
1837 else
1838 core_phdr_to_gelf(php, &phdr);
1839
1840 switch (phdr.p_type) {
1841 case PT_NOTE:
1842 note_phdr = phdr;
1843 notes++;
1844 break;
1845
1846 case PT_LOAD:
1847 if (core_add_mapping(P, &phdr) == -1) {
1848 *perr = G_STRANGE;
1849 free(phbuf);
1850 goto err;
1851 }
1852 break;
1853 }
1854
1855 php = (char *)php + core.e_hdr.e_phentsize;
1856 }
1857
1858 free(phbuf);
1859
1860 Psort_mappings(P);
1861
1862 /*
1863 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
1864 * was present, abort. The core file is either corrupt or too old.
1865 */
1866 if (notes == 0 || notes == 1) {
1867 *perr = G_NOTE;
1868 goto err;
1869 }
1870
1871 /*
1872 * Advance the seek pointer to the start of the PT_NOTE data
1873 */
1874 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
1875 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
1876 *perr = G_STRANGE;
1877 goto err;
1878 }
1879
1880 /*
1881 * Now process the PT_NOTE structures. Each one is preceded by
1882 * an Elf{32/64}_Nhdr structure describing its type and size.
1883 *
1884 * +--------+
1885 * | header |
1886 * +--------+
1887 * | name |
1888 * | ... |
1889 * +--------+
1890 * | desc |
1891 * | ... |
1892 * +--------+
1893 */
1894 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
1895 Elf64_Nhdr nhdr;
1896 off64_t off, namesz;
1897
1898 /*
1899 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
1900 * as different types, they are both of the same content and
1901 * size, so we don't need to worry about 32/64 conversion here.
1902 */
1903 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
1904 dprintf("Pgrab_core: failed to read ELF note header\n");
1905 *perr = G_NOTE;
1906 goto err;
1907 }
1908
1909 /*
1910 * According to the System V ABI, the amount of padding
1911 * following the name field should align the description
1912 * field on a 4 byte boundary for 32-bit binaries or on an 8
1913 * byte boundary for 64-bit binaries. However, this change
1914 * was not made correctly during the 64-bit port so all
1915 * descriptions can assume only 4-byte alignment. We ignore
1916 * the name field and the padding to 4-byte alignment.
1917 */
1918 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
1919 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
1920 dprintf("failed to seek past name and padding\n");
1921 *perr = G_STRANGE;
1922 goto err;
1923 }
1924
1925 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
1926 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
1927
1928 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
1929
1930 /*
1931 * Invoke the note handler function from our table
1932 */
1933 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
1934 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
1935 *perr = G_NOTE;
1936 goto err;
1937 }
1938 } else
1939 (void) note_notsup(P, nhdr.n_descsz);
1940
1941 /*
1942 * Seek past the current note data to the next Elf_Nhdr
1943 */
1944 if (lseek64(P->asfd, off + nhdr.n_descsz,
1945 SEEK_SET) == (off64_t)-1) {
1946 dprintf("Pgrab_core: failed to seek to next nhdr\n");
1947 *perr = G_STRANGE;
1948 goto err;
1949 }
1950
1951 /*
1952 * Subtract the size of the header and its data from what
1953 * we have left to process.
1954 */
1955 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz;
1956 }
1957
1958 if (nleft != 0) {
1959 dprintf("Pgrab_core: note section malformed\n");
1960 *perr = G_STRANGE;
1961 goto err;
1962 }
1963
1964 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
1965 pagesize = getpagesize();
1966 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
1967 }
1968
1969 /*
1970 * Locate and label the mappings corresponding to the end of the
1971 * heap (MA_BREAK) and the base of the stack (MA_STACK).
1972 */
1973 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
1974 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
1975 P->status.pr_brksize - 1)) != NULL)
1976 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
1977 else
1978 brk_mp = NULL;
1979
1980 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
1981 stk_mp->map_pmap.pr_mflags |= MA_STACK;
1982
1983 /*
1984 * At this point, we have enough information to look for the
1985 * executable and open it: we have access to the auxv, a psinfo_t,
1986 * and the ability to read from mappings provided by the core file.
1987 */
1988 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
1989 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
1990 execname = P->execname ? P->execname : "a.out";
1991
1992 /*
1993 * Iterate through the sections, looking for the .dynamic and .interp
1994 * sections. If we encounter them, remember their section pointers.
1995 */
1996 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
1997 char *sname;
1998
1999 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2000 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2001 (size_t)shdr.sh_name)) == NULL)
2002 continue;
2003
2004 if (strcmp(sname, ".interp") == 0)
2005 intp_scn = scn;
2006 }
2007
2008 /*
2009 * Get the AT_BASE auxv element. If this is missing (-1), then
2010 * we assume this is a statically-linked executable.
2011 */
2012 base_addr = Pgetauxval(P, AT_BASE);
2013
2014 /*
2015 * In order to get librtld_db initialized, we'll need to identify
2016 * and name the mapping corresponding to the run-time linker. The
2017 * AT_BASE auxv element tells us the address where it was mapped,
2018 * and the .interp section of the executable tells us its path.
2019 * If for some reason that doesn't pan out, just use ld.so.1.
2020 */
2021 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2022 dp->d_size != 0) {
2023 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2024 interp = dp->d_buf;
2025
2026 } else if (base_addr != (uintptr_t)-1L) {
2027 if (P->core->core_dmodel == PR_MODEL_LP64)
2028 interp = "/usr/lib/64/ld.so.1";
2029 else
2030 interp = "/usr/lib/ld.so.1";
2031
2032 dprintf(".interp section is missing or could not be read; "
2033 "defaulting to %s\n", interp);
2034 } else
2035 dprintf("detected statically linked executable\n");
2036
2037 /*
2038 * If we have an AT_BASE element, name the mapping at that address
2039 * using the interpreter pathname. Name the corresponding data
2040 * mapping after the interpreter as well.
2041 */
2042 if (base_addr != (uintptr_t)-1L) {
2043 elf_file_t intf;
2044
2045 P->map_ldso = core_name_mapping(P, base_addr, interp);
2046
2047 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2048 rd_loadobj_t rl;
2049 map_info_t *dmp;
2050
2051 rl.rl_base = base_addr;
2052 dmp = core_find_data(P, intf.e_elf, &rl);
2053
2054 if (dmp != NULL) {
2055 dprintf("renamed data at %p to %s\n",
2056 (void *)rl.rl_data_base, interp);
2057 (void) strncpy(dmp->map_pmap.pr_mapname,
2058 interp, PRMAPSZ);
2059 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2060 }
2061 }
2062
2063 core_elf_close(&intf);
2064 }
2065
2066 /*
2067 * If we have an AT_ENTRY element, name the mapping at that address
2068 * using the special name "a.out" just like /proc does.
2069 */
2070 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2071 P->map_exec = core_name_mapping(P, addr, "a.out");
2072
2073 /*
2074 * If we're a statically linked executable, then just locate the
2075 * executable's text and data and name them after the executable.
2076 */
2077 if (base_addr == (uintptr_t)-1L) {
2078 map_info_t *tmp, *dmp;
2079 file_info_t *fp;
2080 rd_loadobj_t rl;
2081
2082 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2083 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2084 (void) strncpy(tmp->map_pmap.pr_mapname,
2085 execname, PRMAPSZ);
2086 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2087 (void) strncpy(dmp->map_pmap.pr_mapname,
2088 execname, PRMAPSZ);
2089 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2090 }
2091
2092 if ((P->map_exec = tmp) != NULL &&
2093 (fp = malloc(sizeof (file_info_t))) != NULL) {
2094
2095 (void) memset(fp, 0, sizeof (file_info_t));
2096
2097 list_link(fp, &P->file_head);
2098 tmp->map_file = fp;
2099 P->num_files++;
2100
2101 fp->file_ref = 1;
2102 fp->file_fd = -1;
2103
2104 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2105 fp->file_lname = strdup(execname);
2106
2107 if (fp->file_lo)
2108 *fp->file_lo = rl;
2109 if (fp->file_lname)
2110 fp->file_lbase = basename(fp->file_lname);
2111 if (fp->file_rname)
2112 fp->file_rbase = basename(fp->file_rname);
2113
2114 (void) strcpy(fp->file_pname,
2115 P->mappings[0].map_pmap.pr_mapname);
2116 fp->file_map = tmp;
2117
2118 Pbuild_file_symtab(P, fp);
2119
2120 if (dmp != NULL) {
2121 dmp->map_file = fp;
2122 fp->file_ref++;
2123 }
2124 }
2125 }
2126
2127 core_elf_close(&aout);
2128
2129 /*
2130 * We now have enough information to initialize librtld_db.
2131 * After it warms up, we can iterate through the load object chain
2132 * in the core, which will allow us to construct the file info
2133 * we need to provide symbol information for the other shared
2134 * libraries, and also to fill in the missing mapping names.
2135 */
2136 rd_log(_libproc_debug);
2137
2138 if ((P->rap = rd_new(P)) != NULL) {
2139 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2140 core_iter_mapping, P);
2141
2142 if (P->core->core_errno != 0) {
2143 errno = P->core->core_errno;
2144 *perr = G_STRANGE;
2145 goto err;
2146 }
2147 } else
2148 dprintf("failed to initialize rtld_db agent\n");
2149
2150 /*
2151 * If there are sections, load them and process the data from any
2152 * sections that we can use to annotate the file_info_t's.
2153 */
2154 core_load_shdrs(P, &core);
2155
2156 /*
2157 * If we previously located a stack or break mapping, and they are
2158 * still anonymous, we now assume that they were MAP_ANON mappings.
2159 * If brk_mp turns out to now have a name, then the heap is still
2160 * sitting at the end of the executable's data+bss mapping: remove
2161 * the previous MA_BREAK setting to be consistent with /proc.
2162 */
2163 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2164 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2165 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2166 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2167 else if (brk_mp != NULL)
2168 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2169
2170 *perr = 0;
2171 return (P);
2172
2173 err:
2174 Pfree(P);
2175 core_elf_close(&aout);
2176 return (NULL);
2177 }
2178
2179 /*
2180 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2181 */
2182 struct ps_prochandle *
2183 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2184 {
2185 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2186
2187 if ((fd = open64(core, oflag)) >= 0)
2188 return (Pfgrab_core(fd, aout, perr));
2189
2190 if (errno != ENOENT)
2191 *perr = G_STRANGE;
2192 else
2193 *perr = G_NOCORE;
2194
2195 return (NULL);
2196 }