1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/utsname.h> 31 #include <sys/sysmacros.h> 32 33 #include <alloca.h> 34 #include <rtld_db.h> 35 #include <libgen.h> 36 #include <limits.h> 37 #include <string.h> 38 #include <stdlib.h> 39 #include <unistd.h> 40 #include <errno.h> 41 #include <gelf.h> 42 #include <stddef.h> 43 44 #include "libproc.h" 45 #include "Pcontrol.h" 46 #include "P32ton.h" 47 #include "Putil.h" 48 49 /* 50 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We 51 * allocate an additional structure to hold information from the core 52 * file, and attach this to the standard ps_prochandle in place of the 53 * ability to examine /proc/<pid>/ files. 54 */ 55 56 /* 57 * Basic i/o function for reading and writing from the process address space 58 * stored in the core file and associated shared libraries. We compute the 59 * appropriate fd and offsets, and let the provided prw function do the rest. 60 */ 61 static ssize_t 62 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 63 ssize_t (*prw)(int, void *, size_t, off64_t)) 64 { 65 ssize_t resid = n; 66 67 while (resid != 0) { 68 map_info_t *mp = Paddr2mptr(P, addr); 69 70 uintptr_t mapoff; 71 ssize_t len; 72 off64_t off; 73 int fd; 74 75 if (mp == NULL) 76 break; /* No mapping for this address */ 77 78 if (mp->map_pmap.pr_mflags & MA_RESERVED1) { 79 if (mp->map_file == NULL || mp->map_file->file_fd < 0) 80 break; /* No file or file not open */ 81 82 fd = mp->map_file->file_fd; 83 } else 84 fd = P->asfd; 85 86 mapoff = addr - mp->map_pmap.pr_vaddr; 87 len = MIN(resid, mp->map_pmap.pr_size - mapoff); 88 off = mp->map_offset + mapoff; 89 90 if ((len = prw(fd, buf, len, off)) <= 0) 91 break; 92 93 resid -= len; 94 addr += len; 95 buf = (char *)buf + len; 96 } 97 98 /* 99 * Important: Be consistent with the behavior of i/o on the as file: 100 * writing to an invalid address yields EIO; reading from an invalid 101 * address falls through to returning success and zero bytes. 102 */ 103 if (resid == n && n != 0 && prw != pread64) { 104 errno = EIO; 105 return (-1); 106 } 107 108 return (n - resid); 109 } 110 111 static ssize_t 112 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr) 113 { 114 return (core_rw(P, buf, n, addr, pread64)); 115 } 116 117 static ssize_t 118 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr) 119 { 120 return (core_rw(P, (void *)buf, n, addr, 121 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64)); 122 } 123 124 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core }; 125 126 /* 127 * Return the lwp_info_t for the given lwpid. If no such lwpid has been 128 * encountered yet, allocate a new structure and return a pointer to it. 129 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order. 130 */ 131 static lwp_info_t * 132 lwpid2info(struct ps_prochandle *P, lwpid_t id) 133 { 134 lwp_info_t *lwp = list_next(&P->core->core_lwp_head); 135 lwp_info_t *next; 136 uint_t i; 137 138 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) { 139 if (lwp->lwp_id == id) { 140 P->core->core_lwp = lwp; 141 return (lwp); 142 } 143 if (lwp->lwp_id < id) { 144 break; 145 } 146 } 147 148 next = lwp; 149 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL) 150 return (NULL); 151 152 list_link(lwp, next); 153 lwp->lwp_id = id; 154 155 P->core->core_lwp = lwp; 156 P->core->core_nlwp++; 157 158 return (lwp); 159 } 160 161 /* 162 * The core file itself contains a series of NOTE segments containing saved 163 * structures from /proc at the time the process died. For each note we 164 * comprehend, we define a function to read it in from the core file, 165 * convert it to our native data model if necessary, and store it inside 166 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the 167 * seek pointer on P->asfd positioned appropriately. We populate a table 168 * of pointers to these note functions below. 169 */ 170 171 static int 172 note_pstatus(struct ps_prochandle *P, size_t nbytes) 173 { 174 #ifdef _LP64 175 if (P->core->core_dmodel == PR_MODEL_ILP32) { 176 pstatus32_t ps32; 177 178 if (nbytes < sizeof (pstatus32_t) || 179 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 180 goto err; 181 182 pstatus_32_to_n(&ps32, &P->status); 183 184 } else 185 #endif 186 if (nbytes < sizeof (pstatus_t) || 187 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t)) 188 goto err; 189 190 P->orig_status = P->status; 191 P->pid = P->status.pr_pid; 192 193 return (0); 194 195 err: 196 dprintf("Pgrab_core: failed to read NT_PSTATUS\n"); 197 return (-1); 198 } 199 200 static int 201 note_lwpstatus(struct ps_prochandle *P, size_t nbytes) 202 { 203 lwp_info_t *lwp; 204 lwpstatus_t lps; 205 206 #ifdef _LP64 207 if (P->core->core_dmodel == PR_MODEL_ILP32) { 208 lwpstatus32_t l32; 209 210 if (nbytes < sizeof (lwpstatus32_t) || 211 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 212 goto err; 213 214 lwpstatus_32_to_n(&l32, &lps); 215 } else 216 #endif 217 if (nbytes < sizeof (lwpstatus_t) || 218 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 219 goto err; 220 221 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 222 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n"); 223 return (-1); 224 } 225 226 /* 227 * Erase a useless and confusing artifact of the kernel implementation: 228 * the lwps which did *not* create the core will show SIGKILL. We can 229 * be assured this is bogus because SIGKILL can't produce core files. 230 */ 231 if (lps.pr_cursig == SIGKILL) 232 lps.pr_cursig = 0; 233 234 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps)); 235 return (0); 236 237 err: 238 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n"); 239 return (-1); 240 } 241 242 static int 243 note_psinfo(struct ps_prochandle *P, size_t nbytes) 244 { 245 #ifdef _LP64 246 if (P->core->core_dmodel == PR_MODEL_ILP32) { 247 psinfo32_t ps32; 248 249 if (nbytes < sizeof (psinfo32_t) || 250 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 251 goto err; 252 253 psinfo_32_to_n(&ps32, &P->psinfo); 254 } else 255 #endif 256 if (nbytes < sizeof (psinfo_t) || 257 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t)) 258 goto err; 259 260 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname); 261 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs); 262 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 263 264 return (0); 265 266 err: 267 dprintf("Pgrab_core: failed to read NT_PSINFO\n"); 268 return (-1); 269 } 270 271 static int 272 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes) 273 { 274 lwp_info_t *lwp; 275 lwpsinfo_t lps; 276 277 #ifdef _LP64 278 if (P->core->core_dmodel == PR_MODEL_ILP32) { 279 lwpsinfo32_t l32; 280 281 if (nbytes < sizeof (lwpsinfo32_t) || 282 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 283 goto err; 284 285 lwpsinfo_32_to_n(&l32, &lps); 286 } else 287 #endif 288 if (nbytes < sizeof (lwpsinfo_t) || 289 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 290 goto err; 291 292 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 293 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n"); 294 return (-1); 295 } 296 297 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps)); 298 return (0); 299 300 err: 301 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n"); 302 return (-1); 303 } 304 305 static int 306 note_fdinfo(struct ps_prochandle *P, size_t nbytes) 307 { 308 prfdinfo_t prfd; 309 fd_info_t *fip; 310 311 if ((nbytes < sizeof (prfd)) || 312 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) { 313 dprintf("Pgrab_core: failed to read NT_FDINFO\n"); 314 return (-1); 315 } 316 317 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) { 318 dprintf("Pgrab_core: failed to add NT_FDINFO\n"); 319 return (-1); 320 } 321 (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd)); 322 return (0); 323 } 324 325 static int 326 note_platform(struct ps_prochandle *P, size_t nbytes) 327 { 328 char *plat; 329 330 if (P->core->core_platform != NULL) 331 return (0); /* Already seen */ 332 333 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) { 334 if (read(P->asfd, plat, nbytes) != nbytes) { 335 dprintf("Pgrab_core: failed to read NT_PLATFORM\n"); 336 free(plat); 337 return (-1); 338 } 339 plat[nbytes - 1] = '\0'; 340 P->core->core_platform = plat; 341 } 342 343 return (0); 344 } 345 346 static int 347 note_utsname(struct ps_prochandle *P, size_t nbytes) 348 { 349 size_t ubytes = sizeof (struct utsname); 350 struct utsname *utsp; 351 352 if (P->core->core_uts != NULL || nbytes < ubytes) 353 return (0); /* Already seen or bad size */ 354 355 if ((utsp = malloc(ubytes)) == NULL) 356 return (-1); 357 358 if (read(P->asfd, utsp, ubytes) != ubytes) { 359 dprintf("Pgrab_core: failed to read NT_UTSNAME\n"); 360 free(utsp); 361 return (-1); 362 } 363 364 if (_libproc_debug) { 365 dprintf("uts.sysname = \"%s\"\n", utsp->sysname); 366 dprintf("uts.nodename = \"%s\"\n", utsp->nodename); 367 dprintf("uts.release = \"%s\"\n", utsp->release); 368 dprintf("uts.version = \"%s\"\n", utsp->version); 369 dprintf("uts.machine = \"%s\"\n", utsp->machine); 370 } 371 372 P->core->core_uts = utsp; 373 return (0); 374 } 375 376 static int 377 note_content(struct ps_prochandle *P, size_t nbytes) 378 { 379 core_content_t content; 380 381 if (sizeof (P->core->core_content) != nbytes) 382 return (-1); 383 384 if (read(P->asfd, &content, sizeof (content)) != sizeof (content)) 385 return (-1); 386 387 P->core->core_content = content; 388 389 dprintf("core content = %llx\n", content); 390 391 return (0); 392 } 393 394 static int 395 note_cred(struct ps_prochandle *P, size_t nbytes) 396 { 397 prcred_t *pcrp; 398 int ngroups; 399 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t); 400 401 /* 402 * We allow for prcred_t notes that are actually smaller than a 403 * prcred_t since the last member isn't essential if there are 404 * no group memberships. This allows for more flexibility when it 405 * comes to slightly malformed -- but still valid -- notes. 406 */ 407 if (P->core->core_cred != NULL || nbytes < min_size) 408 return (0); /* Already seen or bad size */ 409 410 ngroups = (nbytes - min_size) / sizeof (gid_t); 411 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t); 412 413 if ((pcrp = malloc(nbytes)) == NULL) 414 return (-1); 415 416 if (read(P->asfd, pcrp, nbytes) != nbytes) { 417 dprintf("Pgrab_core: failed to read NT_PRCRED\n"); 418 free(pcrp); 419 return (-1); 420 } 421 422 if (pcrp->pr_ngroups > ngroups) { 423 dprintf("pr_ngroups = %d; resetting to %d based on note size\n", 424 pcrp->pr_ngroups, ngroups); 425 pcrp->pr_ngroups = ngroups; 426 } 427 428 P->core->core_cred = pcrp; 429 return (0); 430 } 431 432 #if defined(__i386) || defined(__amd64) 433 static int 434 note_ldt(struct ps_prochandle *P, size_t nbytes) 435 { 436 struct ssd *pldt; 437 uint_t nldt; 438 439 if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd)) 440 return (0); /* Already seen or bad size */ 441 442 nldt = nbytes / sizeof (struct ssd); 443 nbytes = nldt * sizeof (struct ssd); 444 445 if ((pldt = malloc(nbytes)) == NULL) 446 return (-1); 447 448 if (read(P->asfd, pldt, nbytes) != nbytes) { 449 dprintf("Pgrab_core: failed to read NT_LDT\n"); 450 free(pldt); 451 return (-1); 452 } 453 454 P->core->core_ldt = pldt; 455 P->core->core_nldt = nldt; 456 return (0); 457 } 458 #endif /* __i386 */ 459 460 static int 461 note_priv(struct ps_prochandle *P, size_t nbytes) 462 { 463 prpriv_t *pprvp; 464 465 if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t)) 466 return (0); /* Already seen or bad size */ 467 468 if ((pprvp = malloc(nbytes)) == NULL) 469 return (-1); 470 471 if (read(P->asfd, pprvp, nbytes) != nbytes) { 472 dprintf("Pgrab_core: failed to read NT_PRPRIV\n"); 473 free(pprvp); 474 return (-1); 475 } 476 477 P->core->core_priv = pprvp; 478 P->core->core_priv_size = nbytes; 479 return (0); 480 } 481 482 static int 483 note_priv_info(struct ps_prochandle *P, size_t nbytes) 484 { 485 extern void *__priv_parse_info(); 486 priv_impl_info_t *ppii; 487 488 if (P->core->core_privinfo != NULL || 489 nbytes < sizeof (priv_impl_info_t)) 490 return (0); /* Already seen or bad size */ 491 492 if ((ppii = malloc(nbytes)) == NULL) 493 return (-1); 494 495 if (read(P->asfd, ppii, nbytes) != nbytes || 496 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) { 497 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n"); 498 free(ppii); 499 return (-1); 500 } 501 502 P->core->core_privinfo = __priv_parse_info(ppii); 503 P->core->core_ppii = ppii; 504 return (0); 505 } 506 507 static int 508 note_zonename(struct ps_prochandle *P, size_t nbytes) 509 { 510 char *zonename; 511 512 if (P->core->core_zonename != NULL) 513 return (0); /* Already seen */ 514 515 if (nbytes != 0) { 516 if ((zonename = malloc(nbytes)) == NULL) 517 return (-1); 518 if (read(P->asfd, zonename, nbytes) != nbytes) { 519 dprintf("Pgrab_core: failed to read NT_ZONENAME\n"); 520 free(zonename); 521 return (-1); 522 } 523 zonename[nbytes - 1] = '\0'; 524 P->core->core_zonename = zonename; 525 } 526 527 return (0); 528 } 529 530 static int 531 note_auxv(struct ps_prochandle *P, size_t nbytes) 532 { 533 size_t n, i; 534 535 #ifdef _LP64 536 if (P->core->core_dmodel == PR_MODEL_ILP32) { 537 auxv32_t *a32; 538 539 n = nbytes / sizeof (auxv32_t); 540 nbytes = n * sizeof (auxv32_t); 541 a32 = alloca(nbytes); 542 543 if (read(P->asfd, a32, nbytes) != nbytes) { 544 dprintf("Pgrab_core: failed to read NT_AUXV\n"); 545 return (-1); 546 } 547 548 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL) 549 return (-1); 550 551 for (i = 0; i < n; i++) 552 auxv_32_to_n(&a32[i], &P->auxv[i]); 553 554 } else { 555 #endif 556 n = nbytes / sizeof (auxv_t); 557 nbytes = n * sizeof (auxv_t); 558 559 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL) 560 return (-1); 561 562 if (read(P->asfd, P->auxv, nbytes) != nbytes) { 563 free(P->auxv); 564 P->auxv = NULL; 565 return (-1); 566 } 567 #ifdef _LP64 568 } 569 #endif 570 571 if (_libproc_debug) { 572 for (i = 0; i < n; i++) { 573 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i, 574 P->auxv[i].a_type, P->auxv[i].a_un.a_val); 575 } 576 } 577 578 /* 579 * Defensive coding for loops which depend upon the auxv array being 580 * terminated by an AT_NULL element; in each case, we've allocated 581 * P->auxv to have an additional element which we force to be AT_NULL. 582 */ 583 P->auxv[n].a_type = AT_NULL; 584 P->auxv[n].a_un.a_val = 0L; 585 P->nauxv = (int)n; 586 587 return (0); 588 } 589 590 static int 591 note_xreg(struct ps_prochandle *P, size_t nbytes) 592 { 593 lwp_info_t *lwp = P->core->core_lwp; 594 size_t xbytes = sizeof (prxregset_t); 595 prxregset_t *xregs; 596 597 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes) 598 return (0); /* No lwp yet, already seen, or bad size */ 599 600 if ((xregs = malloc(xbytes)) == NULL) 601 return (-1); 602 #ifdef __sparc 603 if (read(P->asfd, xregs, xbytes) != xbytes) { 604 #else 605 panic("port me"); 606 #endif 607 dprintf("Pgrab_core: failed to read NT_PRXREG\n"); 608 free(xregs); 609 return (-1); 610 } 611 lwp->lwp_xregs = xregs; 612 return (0); 613 } 614 615 #ifdef __sparc 616 static int 617 note_gwindows(struct ps_prochandle *P, size_t nbytes) 618 { 619 lwp_info_t *lwp = P->core->core_lwp; 620 621 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0) 622 return (0); /* No lwp yet or already seen or no data */ 623 624 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL) 625 return (-1); 626 627 /* 628 * Since the amount of gwindows data varies with how many windows were 629 * actually saved, we just read up to the minimum of the note size 630 * and the size of the gwindows_t type. It doesn't matter if the read 631 * fails since we have to zero out gwindows first anyway. 632 */ 633 #ifdef _LP64 634 if (P->core->core_dmodel == PR_MODEL_ILP32) { 635 gwindows32_t g32; 636 637 (void) memset(&g32, 0, sizeof (g32)); 638 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32))); 639 gwindows_32_to_n(&g32, lwp->lwp_gwins); 640 641 } else { 642 #endif 643 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t)); 644 (void) read(P->asfd, lwp->lwp_gwins, 645 MIN(nbytes, sizeof (gwindows_t))); 646 #ifdef _LP64 647 } 648 #endif 649 return (0); 650 } 651 652 #ifdef __sparcv9 653 static int 654 note_asrs(struct ps_prochandle *P, size_t nbytes) 655 { 656 lwp_info_t *lwp = P->core->core_lwp; 657 int64_t *asrs; 658 659 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t)) 660 return (0); /* No lwp yet, already seen, or bad size */ 661 662 if ((asrs = malloc(sizeof (asrset_t))) == NULL) 663 return (-1); 664 665 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) { 666 dprintf("Pgrab_core: failed to read NT_ASRS\n"); 667 free(asrs); 668 return (-1); 669 } 670 671 lwp->lwp_asrs = asrs; 672 return (0); 673 } 674 #endif /* __sparcv9 */ 675 #endif /* __sparc */ 676 677 /*ARGSUSED*/ 678 static int 679 note_notsup(struct ps_prochandle *P, size_t nbytes) 680 { 681 dprintf("skipping unsupported note type\n"); 682 return (0); 683 } 684 685 /* 686 * Populate a table of function pointers indexed by Note type with our 687 * functions to process each type of core file note: 688 */ 689 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = { 690 note_notsup, /* 0 unassigned */ 691 note_notsup, /* 1 NT_PRSTATUS (old) */ 692 note_notsup, /* 2 NT_PRFPREG (old) */ 693 note_notsup, /* 3 NT_PRPSINFO (old) */ 694 note_xreg, /* 4 NT_PRXREG */ 695 note_platform, /* 5 NT_PLATFORM */ 696 note_auxv, /* 6 NT_AUXV */ 697 #ifdef __sparc 698 note_gwindows, /* 7 NT_GWINDOWS */ 699 #ifdef __sparcv9 700 note_asrs, /* 8 NT_ASRS */ 701 #else 702 note_notsup, /* 8 NT_ASRS */ 703 #endif 704 #else 705 note_notsup, /* 7 NT_GWINDOWS */ 706 note_notsup, /* 8 NT_ASRS */ 707 #endif 708 #if defined(__i386) || defined(__amd64) 709 note_ldt, /* 9 NT_LDT */ 710 #else 711 note_notsup, /* 9 NT_LDT */ 712 #endif 713 note_pstatus, /* 10 NT_PSTATUS */ 714 note_notsup, /* 11 unassigned */ 715 note_notsup, /* 12 unassigned */ 716 note_psinfo, /* 13 NT_PSINFO */ 717 note_cred, /* 14 NT_PRCRED */ 718 note_utsname, /* 15 NT_UTSNAME */ 719 note_lwpstatus, /* 16 NT_LWPSTATUS */ 720 note_lwpsinfo, /* 17 NT_LWPSINFO */ 721 note_priv, /* 18 NT_PRPRIV */ 722 note_priv_info, /* 19 NT_PRPRIVINFO */ 723 note_content, /* 20 NT_CONTENT */ 724 note_zonename, /* 21 NT_ZONENAME */ 725 note_fdinfo, /* 22 NT_FDINFO */ 726 }; 727 728 /* 729 * Add information on the address space mapping described by the given 730 * PT_LOAD program header. We fill in more information on the mapping later. 731 */ 732 static int 733 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php) 734 { 735 int err = 0; 736 prmap_t pmap; 737 738 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n", 739 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz, 740 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset); 741 742 pmap.pr_vaddr = (uintptr_t)php->p_vaddr; 743 pmap.pr_size = php->p_memsz; 744 745 /* 746 * If Pgcore() or elfcore() fail to write a mapping, they will set 747 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us. 748 */ 749 if (php->p_flags & PF_SUNW_FAILURE) { 750 (void) pread64(P->asfd, &err, 751 sizeof (err), (off64_t)php->p_offset); 752 753 Perror_printf(P, "core file data for mapping at %p not saved: " 754 "%s\n", (void *)(uintptr_t)php->p_vaddr, strerror(err)); 755 dprintf("core file data for mapping at %p not saved: %s\n", 756 (void *)(uintptr_t)php->p_vaddr, strerror(err)); 757 758 } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) { 759 Perror_printf(P, "core file may be corrupt -- data for mapping " 760 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 761 dprintf("core file may be corrupt -- data for mapping " 762 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 763 } 764 765 /* 766 * The mapping name and offset will hopefully be filled in 767 * by the librtld_db agent. Unfortunately, if it isn't a 768 * shared library mapping, this information is gone forever. 769 */ 770 pmap.pr_mapname[0] = '\0'; 771 pmap.pr_offset = 0; 772 773 pmap.pr_mflags = 0; 774 if (php->p_flags & PF_R) 775 pmap.pr_mflags |= MA_READ; 776 if (php->p_flags & PF_W) 777 pmap.pr_mflags |= MA_WRITE; 778 if (php->p_flags & PF_X) 779 pmap.pr_mflags |= MA_EXEC; 780 781 if (php->p_filesz == 0) 782 pmap.pr_mflags |= MA_RESERVED1; 783 784 /* 785 * At the time of adding this mapping, we just zero the pagesize. 786 * Once we've processed more of the core file, we'll have the 787 * pagesize from the auxv's AT_PAGESZ element and we can fill this in. 788 */ 789 pmap.pr_pagesize = 0; 790 791 /* 792 * Unfortunately whether or not the mapping was a System V 793 * shared memory segment is lost. We use -1 to mark it as not shm. 794 */ 795 pmap.pr_shmid = -1; 796 797 return (Padd_mapping(P, php->p_offset, NULL, &pmap)); 798 } 799 800 /* 801 * Given a virtual address, name the mapping at that address using the 802 * specified name, and return the map_info_t pointer. 803 */ 804 static map_info_t * 805 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name) 806 { 807 map_info_t *mp = Paddr2mptr(P, addr); 808 809 if (mp != NULL) { 810 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ); 811 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 812 } 813 814 return (mp); 815 } 816 817 /* 818 * libproc uses libelf for all of its symbol table manipulation. This function 819 * takes a symbol table and string table from a core file and places them 820 * in a memory backed elf file. 821 */ 822 static void 823 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr, 824 GElf_Shdr *symtab, GElf_Shdr *strtab) 825 { 826 size_t size; 827 off64_t off, base; 828 map_info_t *mp; 829 file_info_t *fp; 830 Elf_Scn *scn; 831 Elf_Data *data; 832 833 if (symtab->sh_addr == 0 || 834 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL || 835 (fp = mp->map_file) == NULL) { 836 dprintf("fake_up_symtab: invalid section\n"); 837 return; 838 } 839 840 if (fp->file_symtab.sym_data_pri != NULL) { 841 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n", 842 (long)symtab->sh_addr); 843 return; 844 } 845 846 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 847 struct { 848 Elf32_Ehdr ehdr; 849 Elf32_Shdr shdr[3]; 850 char data[1]; 851 } *b; 852 853 base = sizeof (b->ehdr) + sizeof (b->shdr); 854 size = base + symtab->sh_size + strtab->sh_size; 855 856 if ((b = calloc(1, size)) == NULL) 857 return; 858 859 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 860 sizeof (ehdr->e_ident)); 861 b->ehdr.e_type = ehdr->e_type; 862 b->ehdr.e_machine = ehdr->e_machine; 863 b->ehdr.e_version = ehdr->e_version; 864 b->ehdr.e_flags = ehdr->e_flags; 865 b->ehdr.e_ehsize = sizeof (b->ehdr); 866 b->ehdr.e_shoff = sizeof (b->ehdr); 867 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 868 b->ehdr.e_shnum = 3; 869 off = 0; 870 871 b->shdr[1].sh_size = symtab->sh_size; 872 b->shdr[1].sh_type = SHT_SYMTAB; 873 b->shdr[1].sh_offset = off + base; 874 b->shdr[1].sh_entsize = sizeof (Elf32_Sym); 875 b->shdr[1].sh_link = 2; 876 b->shdr[1].sh_info = symtab->sh_info; 877 b->shdr[1].sh_addralign = symtab->sh_addralign; 878 879 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 880 symtab->sh_offset) != b->shdr[1].sh_size) { 881 dprintf("fake_up_symtab: pread of symtab[1] failed\n"); 882 free(b); 883 return; 884 } 885 886 off += b->shdr[1].sh_size; 887 888 b->shdr[2].sh_flags = SHF_STRINGS; 889 b->shdr[2].sh_size = strtab->sh_size; 890 b->shdr[2].sh_type = SHT_STRTAB; 891 b->shdr[2].sh_offset = off + base; 892 b->shdr[2].sh_info = strtab->sh_info; 893 b->shdr[2].sh_addralign = 1; 894 895 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 896 strtab->sh_offset) != b->shdr[2].sh_size) { 897 dprintf("fake_up_symtab: pread of symtab[2] failed\n"); 898 free(b); 899 return; 900 } 901 902 off += b->shdr[2].sh_size; 903 904 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 905 if (fp->file_symtab.sym_elf == NULL) { 906 free(b); 907 return; 908 } 909 910 fp->file_symtab.sym_elfmem = b; 911 #ifdef _LP64 912 } else { 913 struct { 914 Elf64_Ehdr ehdr; 915 Elf64_Shdr shdr[3]; 916 char data[1]; 917 } *b; 918 919 base = sizeof (b->ehdr) + sizeof (b->shdr); 920 size = base + symtab->sh_size + strtab->sh_size; 921 922 if ((b = calloc(1, size)) == NULL) 923 return; 924 925 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 926 sizeof (ehdr->e_ident)); 927 b->ehdr.e_type = ehdr->e_type; 928 b->ehdr.e_machine = ehdr->e_machine; 929 b->ehdr.e_version = ehdr->e_version; 930 b->ehdr.e_flags = ehdr->e_flags; 931 b->ehdr.e_ehsize = sizeof (b->ehdr); 932 b->ehdr.e_shoff = sizeof (b->ehdr); 933 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 934 b->ehdr.e_shnum = 3; 935 off = 0; 936 937 b->shdr[1].sh_size = symtab->sh_size; 938 b->shdr[1].sh_type = SHT_SYMTAB; 939 b->shdr[1].sh_offset = off + base; 940 b->shdr[1].sh_entsize = sizeof (Elf64_Sym); 941 b->shdr[1].sh_link = 2; 942 b->shdr[1].sh_info = symtab->sh_info; 943 b->shdr[1].sh_addralign = symtab->sh_addralign; 944 945 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 946 symtab->sh_offset) != b->shdr[1].sh_size) { 947 free(b); 948 return; 949 } 950 951 off += b->shdr[1].sh_size; 952 953 b->shdr[2].sh_flags = SHF_STRINGS; 954 b->shdr[2].sh_size = strtab->sh_size; 955 b->shdr[2].sh_type = SHT_STRTAB; 956 b->shdr[2].sh_offset = off + base; 957 b->shdr[2].sh_info = strtab->sh_info; 958 b->shdr[2].sh_addralign = 1; 959 960 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 961 strtab->sh_offset) != b->shdr[2].sh_size) { 962 free(b); 963 return; 964 } 965 966 off += b->shdr[2].sh_size; 967 968 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 969 if (fp->file_symtab.sym_elf == NULL) { 970 free(b); 971 return; 972 } 973 974 fp->file_symtab.sym_elfmem = b; 975 #endif 976 } 977 978 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL || 979 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL || 980 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL || 981 (data = elf_getdata(scn, NULL)) == NULL) { 982 dprintf("fake_up_symtab: failed to get section data at %p\n", 983 (void *)scn); 984 goto err; 985 } 986 987 fp->file_symtab.sym_strs = data->d_buf; 988 fp->file_symtab.sym_strsz = data->d_size; 989 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize; 990 fp->file_symtab.sym_hdr_pri = *symtab; 991 fp->file_symtab.sym_strhdr = *strtab; 992 993 optimize_symtab(&fp->file_symtab); 994 995 return; 996 err: 997 (void) elf_end(fp->file_symtab.sym_elf); 998 free(fp->file_symtab.sym_elfmem); 999 fp->file_symtab.sym_elf = NULL; 1000 fp->file_symtab.sym_elfmem = NULL; 1001 } 1002 1003 static void 1004 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst) 1005 { 1006 dst->p_type = src->p_type; 1007 dst->p_flags = src->p_flags; 1008 dst->p_offset = (Elf64_Off)src->p_offset; 1009 dst->p_vaddr = (Elf64_Addr)src->p_vaddr; 1010 dst->p_paddr = (Elf64_Addr)src->p_paddr; 1011 dst->p_filesz = (Elf64_Xword)src->p_filesz; 1012 dst->p_memsz = (Elf64_Xword)src->p_memsz; 1013 dst->p_align = (Elf64_Xword)src->p_align; 1014 } 1015 1016 static void 1017 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 1018 { 1019 dst->sh_name = src->sh_name; 1020 dst->sh_type = src->sh_type; 1021 dst->sh_flags = (Elf64_Xword)src->sh_flags; 1022 dst->sh_addr = (Elf64_Addr)src->sh_addr; 1023 dst->sh_offset = (Elf64_Off)src->sh_offset; 1024 dst->sh_size = (Elf64_Xword)src->sh_size; 1025 dst->sh_link = src->sh_link; 1026 dst->sh_info = src->sh_info; 1027 dst->sh_addralign = (Elf64_Xword)src->sh_addralign; 1028 dst->sh_entsize = (Elf64_Xword)src->sh_entsize; 1029 } 1030 1031 /* 1032 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class. 1033 */ 1034 static int 1035 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr) 1036 { 1037 #ifdef _BIG_ENDIAN 1038 uchar_t order = ELFDATA2MSB; 1039 #else 1040 uchar_t order = ELFDATA2LSB; 1041 #endif 1042 Elf32_Ehdr e32; 1043 int is_noelf = -1; 1044 int isa_err = 0; 1045 1046 /* 1047 * Because 32-bit libelf cannot deal with large files, we need to read, 1048 * check, and convert the file header manually in case type == ET_CORE. 1049 */ 1050 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) { 1051 if (perr != NULL) 1052 *perr = G_FORMAT; 1053 goto err; 1054 } 1055 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 || 1056 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) || 1057 e32.e_version != EV_CURRENT) { 1058 if (perr != NULL) { 1059 if (is_noelf == 0 && isa_err) { 1060 *perr = G_ISAINVAL; 1061 } else { 1062 *perr = G_FORMAT; 1063 } 1064 } 1065 goto err; 1066 } 1067 1068 /* 1069 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the 1070 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr, 1071 * and convert it to a elf_file_header_t. Otherwise, the file is 1072 * 32-bit, so convert e32 to a elf_file_header_t. 1073 */ 1074 if (e32.e_ident[EI_CLASS] == ELFCLASS64) { 1075 #ifdef _LP64 1076 Elf64_Ehdr e64; 1077 1078 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) { 1079 if (perr != NULL) 1080 *perr = G_FORMAT; 1081 goto err; 1082 } 1083 1084 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT); 1085 efp->e_hdr.e_type = e64.e_type; 1086 efp->e_hdr.e_machine = e64.e_machine; 1087 efp->e_hdr.e_version = e64.e_version; 1088 efp->e_hdr.e_entry = e64.e_entry; 1089 efp->e_hdr.e_phoff = e64.e_phoff; 1090 efp->e_hdr.e_shoff = e64.e_shoff; 1091 efp->e_hdr.e_flags = e64.e_flags; 1092 efp->e_hdr.e_ehsize = e64.e_ehsize; 1093 efp->e_hdr.e_phentsize = e64.e_phentsize; 1094 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum; 1095 efp->e_hdr.e_shentsize = e64.e_shentsize; 1096 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum; 1097 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx; 1098 #else /* _LP64 */ 1099 if (perr != NULL) 1100 *perr = G_LP64; 1101 goto err; 1102 #endif /* _LP64 */ 1103 } else { 1104 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT); 1105 efp->e_hdr.e_type = e32.e_type; 1106 efp->e_hdr.e_machine = e32.e_machine; 1107 efp->e_hdr.e_version = e32.e_version; 1108 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry; 1109 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff; 1110 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff; 1111 efp->e_hdr.e_flags = e32.e_flags; 1112 efp->e_hdr.e_ehsize = e32.e_ehsize; 1113 efp->e_hdr.e_phentsize = e32.e_phentsize; 1114 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum; 1115 efp->e_hdr.e_shentsize = e32.e_shentsize; 1116 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum; 1117 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx; 1118 } 1119 1120 /* 1121 * If the number of section headers or program headers or the section 1122 * header string table index would overflow their respective fields 1123 * in the ELF header, they're stored in the section header at index 1124 * zero. To simplify use elsewhere, we look for those sentinel values 1125 * here. 1126 */ 1127 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) || 1128 efp->e_hdr.e_shstrndx == SHN_XINDEX || 1129 efp->e_hdr.e_phnum == PN_XNUM) { 1130 GElf_Shdr shdr; 1131 1132 dprintf("extended ELF header\n"); 1133 1134 if (efp->e_hdr.e_shoff == 0) { 1135 if (perr != NULL) 1136 *perr = G_FORMAT; 1137 goto err; 1138 } 1139 1140 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1141 Elf32_Shdr shdr32; 1142 1143 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32), 1144 efp->e_hdr.e_shoff) != sizeof (shdr32)) { 1145 if (perr != NULL) 1146 *perr = G_FORMAT; 1147 goto err; 1148 } 1149 1150 core_shdr_to_gelf(&shdr32, &shdr); 1151 } else { 1152 if (pread64(efp->e_fd, &shdr, sizeof (shdr), 1153 efp->e_hdr.e_shoff) != sizeof (shdr)) { 1154 if (perr != NULL) 1155 *perr = G_FORMAT; 1156 goto err; 1157 } 1158 } 1159 1160 if (efp->e_hdr.e_shnum == 0) { 1161 efp->e_hdr.e_shnum = shdr.sh_size; 1162 dprintf("section header count %lu\n", 1163 (ulong_t)shdr.sh_size); 1164 } 1165 1166 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) { 1167 efp->e_hdr.e_shstrndx = shdr.sh_link; 1168 dprintf("section string index %u\n", shdr.sh_link); 1169 } 1170 1171 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) { 1172 efp->e_hdr.e_phnum = shdr.sh_info; 1173 dprintf("program header count %u\n", shdr.sh_info); 1174 } 1175 1176 } else if (efp->e_hdr.e_phoff != 0) { 1177 GElf_Phdr phdr; 1178 uint64_t phnum; 1179 1180 /* 1181 * It's possible this core file came from a system that 1182 * accidentally truncated the e_phnum field without correctly 1183 * using the extended format in the section header at index 1184 * zero. We try to detect and correct that specific type of 1185 * corruption by using the knowledge that the core dump 1186 * routines usually place the data referenced by the first 1187 * program header immediately after the last header element. 1188 */ 1189 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1190 Elf32_Phdr phdr32; 1191 1192 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32), 1193 efp->e_hdr.e_phoff) != sizeof (phdr32)) { 1194 if (perr != NULL) 1195 *perr = G_FORMAT; 1196 goto err; 1197 } 1198 1199 core_phdr_to_gelf(&phdr32, &phdr); 1200 } else { 1201 if (pread64(efp->e_fd, &phdr, sizeof (phdr), 1202 efp->e_hdr.e_phoff) != sizeof (phdr)) { 1203 if (perr != NULL) 1204 *perr = G_FORMAT; 1205 goto err; 1206 } 1207 } 1208 1209 phnum = phdr.p_offset - efp->e_hdr.e_ehsize - 1210 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1211 phnum /= efp->e_hdr.e_phentsize; 1212 1213 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) { 1214 dprintf("suspicious program header count %u %u\n", 1215 (uint_t)phnum, efp->e_hdr.e_phnum); 1216 1217 /* 1218 * If the new program header count we computed doesn't 1219 * jive with count in the ELF header, we'll use the 1220 * data that's there and hope for the best. 1221 * 1222 * If it does, it's also possible that the section 1223 * header offset is incorrect; we'll check that and 1224 * possibly try to fix it. 1225 */ 1226 if (phnum <= INT_MAX && 1227 (uint16_t)phnum == efp->e_hdr.e_phnum) { 1228 1229 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff + 1230 efp->e_hdr.e_phentsize * 1231 (uint_t)efp->e_hdr.e_phnum) { 1232 efp->e_hdr.e_shoff = 1233 efp->e_hdr.e_phoff + 1234 efp->e_hdr.e_phentsize * phnum; 1235 } 1236 1237 efp->e_hdr.e_phnum = (Elf64_Word)phnum; 1238 dprintf("using new program header count\n"); 1239 } else { 1240 dprintf("inconsistent program header count\n"); 1241 } 1242 } 1243 } 1244 1245 /* 1246 * The libelf implementation was never ported to be large-file aware. 1247 * This is typically not a problem for your average executable or 1248 * shared library, but a large 32-bit core file can exceed 2GB in size. 1249 * So if type is ET_CORE, we don't bother doing elf_begin; the code 1250 * in Pfgrab_core() below will do its own i/o and struct conversion. 1251 */ 1252 1253 if (type == ET_CORE) { 1254 efp->e_elf = NULL; 1255 return (0); 1256 } 1257 1258 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) { 1259 if (perr != NULL) 1260 *perr = G_ELF; 1261 goto err; 1262 } 1263 1264 return (0); 1265 1266 err: 1267 efp->e_elf = NULL; 1268 return (-1); 1269 } 1270 1271 /* 1272 * Open the specified file and then do a core_elf_fdopen on it. 1273 */ 1274 static int 1275 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr) 1276 { 1277 (void) memset(efp, 0, sizeof (elf_file_t)); 1278 1279 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) { 1280 if (core_elf_fdopen(efp, type, perr) == 0) 1281 return (0); 1282 1283 (void) close(efp->e_fd); 1284 efp->e_fd = -1; 1285 } 1286 1287 return (-1); 1288 } 1289 1290 /* 1291 * Close the ELF handle and file descriptor. 1292 */ 1293 static void 1294 core_elf_close(elf_file_t *efp) 1295 { 1296 if (efp->e_elf != NULL) { 1297 (void) elf_end(efp->e_elf); 1298 efp->e_elf = NULL; 1299 } 1300 1301 if (efp->e_fd != -1) { 1302 (void) close(efp->e_fd); 1303 efp->e_fd = -1; 1304 } 1305 } 1306 1307 /* 1308 * Given an ELF file for a statically linked executable, locate the likely 1309 * primary text section and fill in rl_base with its virtual address. 1310 */ 1311 static map_info_t * 1312 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1313 { 1314 GElf_Phdr phdr; 1315 uint_t i; 1316 size_t nphdrs; 1317 1318 if (elf_getphdrnum(elf, &nphdrs) == -1) 1319 return (NULL); 1320 1321 for (i = 0; i < nphdrs; i++) { 1322 if (gelf_getphdr(elf, i, &phdr) != NULL && 1323 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) { 1324 rlp->rl_base = phdr.p_vaddr; 1325 return (Paddr2mptr(P, rlp->rl_base)); 1326 } 1327 } 1328 1329 return (NULL); 1330 } 1331 1332 /* 1333 * Given an ELF file and the librtld_db structure corresponding to its primary 1334 * text mapping, deduce where its data segment was loaded and fill in 1335 * rl_data_base and prmap_t.pr_offset accordingly. 1336 */ 1337 static map_info_t * 1338 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1339 { 1340 GElf_Ehdr ehdr; 1341 GElf_Phdr phdr; 1342 map_info_t *mp; 1343 uint_t i, pagemask; 1344 size_t nphdrs; 1345 1346 rlp->rl_data_base = NULL; 1347 1348 /* 1349 * Find the first loadable, writeable Phdr and compute rl_data_base 1350 * as the virtual address at which is was loaded. 1351 */ 1352 if (gelf_getehdr(elf, &ehdr) == NULL || 1353 elf_getphdrnum(elf, &nphdrs) == -1) 1354 return (NULL); 1355 1356 for (i = 0; i < nphdrs; i++) { 1357 if (gelf_getphdr(elf, i, &phdr) != NULL && 1358 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) { 1359 rlp->rl_data_base = phdr.p_vaddr; 1360 if (ehdr.e_type == ET_DYN) 1361 rlp->rl_data_base += rlp->rl_base; 1362 break; 1363 } 1364 } 1365 1366 /* 1367 * If we didn't find an appropriate phdr or if the address we 1368 * computed has no mapping, return NULL. 1369 */ 1370 if (rlp->rl_data_base == NULL || 1371 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL) 1372 return (NULL); 1373 1374 /* 1375 * It wouldn't be procfs-related code if we didn't make use of 1376 * unclean knowledge of segvn, even in userland ... the prmap_t's 1377 * pr_offset field will be the segvn offset from mmap(2)ing the 1378 * data section, which will be the file offset & PAGEMASK. 1379 */ 1380 pagemask = ~(mp->map_pmap.pr_pagesize - 1); 1381 mp->map_pmap.pr_offset = phdr.p_offset & pagemask; 1382 1383 return (mp); 1384 } 1385 1386 /* 1387 * Librtld_db agent callback for iterating over load object mappings. 1388 * For each load object, we allocate a new file_info_t, perform naming, 1389 * and attempt to construct a symbol table for the load object. 1390 */ 1391 static int 1392 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P) 1393 { 1394 char lname[PATH_MAX], buf[PATH_MAX]; 1395 file_info_t *fp; 1396 map_info_t *mp; 1397 1398 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) { 1399 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr); 1400 return (1); /* Keep going; forget this if we can't get a name */ 1401 } 1402 1403 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n", 1404 lname, (void *)rlp->rl_base); 1405 1406 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) { 1407 dprintf("no mapping for %p\n", (void *)rlp->rl_base); 1408 return (1); /* No mapping; advance to next mapping */ 1409 } 1410 1411 /* 1412 * Create a new file_info_t for this mapping, and therefore for 1413 * this load object. 1414 * 1415 * If there's an ELF header at the beginning of this mapping, 1416 * file_info_new() will try to use its section headers to 1417 * identify any other mappings that belong to this load object. 1418 */ 1419 if ((fp = mp->map_file) == NULL && 1420 (fp = file_info_new(P, mp)) == NULL) { 1421 P->core->core_errno = errno; 1422 dprintf("failed to malloc mapping data\n"); 1423 return (0); /* Abort */ 1424 } 1425 fp->file_map = mp; 1426 1427 /* Create a local copy of the load object representation */ 1428 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) { 1429 P->core->core_errno = errno; 1430 dprintf("failed to malloc mapping data\n"); 1431 return (0); /* Abort */ 1432 } 1433 *fp->file_lo = *rlp; 1434 1435 if (lname[0] != '\0') { 1436 /* 1437 * Naming dance part 1: if we got a name from librtld_db, then 1438 * copy this name to the prmap_t if it is unnamed. If the 1439 * file_info_t is unnamed, name it after the lname. 1440 */ 1441 if (mp->map_pmap.pr_mapname[0] == '\0') { 1442 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ); 1443 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1444 } 1445 1446 if (fp->file_lname == NULL) 1447 fp->file_lname = strdup(lname); 1448 1449 } else if (fp->file_lname == NULL && 1450 mp->map_pmap.pr_mapname[0] != '\0') { 1451 /* 1452 * Naming dance part 2: if the mapping is named and the 1453 * file_info_t is not, name the file after the mapping. 1454 */ 1455 fp->file_lname = strdup(mp->map_pmap.pr_mapname); 1456 } 1457 1458 if ((fp->file_rname == NULL) && 1459 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL)) 1460 fp->file_rname = strdup(buf); 1461 1462 if (fp->file_lname != NULL) 1463 fp->file_lbase = basename(fp->file_lname); 1464 if (fp->file_rname != NULL) 1465 fp->file_rbase = basename(fp->file_rname); 1466 1467 /* Associate the file and the mapping. */ 1468 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ); 1469 fp->file_pname[PRMAPSZ - 1] = '\0'; 1470 1471 /* 1472 * If no section headers were available then we'll have to 1473 * identify this load object's other mappings with what we've 1474 * got: the start and end of the object's corresponding 1475 * address space. 1476 */ 1477 if (fp->file_saddrs == NULL) { 1478 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count && 1479 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) { 1480 1481 if (mp->map_file == NULL) { 1482 dprintf("core_iter_mapping %s: associating " 1483 "segment at %p\n", 1484 fp->file_pname, 1485 (void *)mp->map_pmap.pr_vaddr); 1486 mp->map_file = fp; 1487 fp->file_ref++; 1488 } else { 1489 dprintf("core_iter_mapping %s: segment at " 1490 "%p already associated with %s\n", 1491 fp->file_pname, 1492 (void *)mp->map_pmap.pr_vaddr, 1493 (mp == fp->file_map ? "this file" : 1494 mp->map_file->file_pname)); 1495 } 1496 } 1497 } 1498 1499 /* Ensure that all this file's mappings are named. */ 1500 for (mp = fp->file_map; mp < P->mappings + P->map_count && 1501 mp->map_file == fp; mp++) { 1502 if (mp->map_pmap.pr_mapname[0] == '\0' && 1503 !(mp->map_pmap.pr_mflags & MA_BREAK)) { 1504 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname, 1505 PRMAPSZ); 1506 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1507 } 1508 } 1509 1510 /* Attempt to build a symbol table for this file. */ 1511 Pbuild_file_symtab(P, fp); 1512 if (fp->file_elf == NULL) 1513 dprintf("core_iter_mapping: no symtab for %s\n", 1514 fp->file_pname); 1515 1516 /* Locate the start of a data segment associated with this file. */ 1517 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) { 1518 dprintf("found data for %s at %p (pr_offset 0x%llx)\n", 1519 fp->file_pname, (void *)fp->file_lo->rl_data_base, 1520 mp->map_pmap.pr_offset); 1521 } else { 1522 dprintf("core_iter_mapping: no data found for %s\n", 1523 fp->file_pname); 1524 } 1525 1526 return (1); /* Advance to next mapping */ 1527 } 1528 1529 /* 1530 * Callback function for Pfindexec(). In order to confirm a given pathname, 1531 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN. 1532 */ 1533 static int 1534 core_exec_open(const char *path, void *efp) 1535 { 1536 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0) 1537 return (1); 1538 if (core_elf_open(efp, path, ET_DYN, NULL) == 0) 1539 return (1); 1540 return (0); 1541 } 1542 1543 /* 1544 * Attempt to load any section headers found in the core file. If present, 1545 * this will refer to non-loadable data added to the core file by the kernel 1546 * based on coreadm(1M) settings, including CTF data and the symbol table. 1547 */ 1548 static void 1549 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp) 1550 { 1551 GElf_Shdr *shp, *shdrs = NULL; 1552 char *shstrtab = NULL; 1553 ulong_t shstrtabsz; 1554 const char *name; 1555 map_info_t *mp; 1556 1557 size_t nbytes; 1558 void *buf; 1559 int i; 1560 1561 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) { 1562 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n", 1563 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum); 1564 return; 1565 } 1566 1567 /* 1568 * Read the section header table from the core file and then iterate 1569 * over the section headers, converting each to a GElf_Shdr. 1570 */ 1571 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) { 1572 dprintf("failed to malloc %u section headers: %s\n", 1573 (uint_t)efp->e_hdr.e_shnum, strerror(errno)); 1574 return; 1575 } 1576 1577 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1578 if ((buf = malloc(nbytes)) == NULL) { 1579 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes, 1580 strerror(errno)); 1581 free(shdrs); 1582 goto out; 1583 } 1584 1585 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) { 1586 dprintf("failed to read section headers at off %lld: %s\n", 1587 (longlong_t)efp->e_hdr.e_shoff, strerror(errno)); 1588 free(buf); 1589 goto out; 1590 } 1591 1592 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1593 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i; 1594 1595 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) 1596 core_shdr_to_gelf(p, &shdrs[i]); 1597 else 1598 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr)); 1599 } 1600 1601 free(buf); 1602 buf = NULL; 1603 1604 /* 1605 * Read the .shstrtab section from the core file, terminating it with 1606 * an extra \0 so that a corrupt section will not cause us to die. 1607 */ 1608 shp = &shdrs[efp->e_hdr.e_shstrndx]; 1609 shstrtabsz = shp->sh_size; 1610 1611 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) { 1612 dprintf("failed to allocate %lu bytes for shstrtab\n", 1613 (ulong_t)shstrtabsz); 1614 goto out; 1615 } 1616 1617 if (pread64(efp->e_fd, shstrtab, shstrtabsz, 1618 shp->sh_offset) != shstrtabsz) { 1619 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n", 1620 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno)); 1621 goto out; 1622 } 1623 1624 shstrtab[shstrtabsz] = '\0'; 1625 1626 /* 1627 * Now iterate over each section in the section header table, locating 1628 * sections of interest and initializing more of the ps_prochandle. 1629 */ 1630 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1631 shp = &shdrs[i]; 1632 name = shstrtab + shp->sh_name; 1633 1634 if (shp->sh_name >= shstrtabsz) { 1635 dprintf("skipping section [%d]: corrupt sh_name\n", i); 1636 continue; 1637 } 1638 1639 if (shp->sh_link >= efp->e_hdr.e_shnum) { 1640 dprintf("skipping section [%d]: corrupt sh_link\n", i); 1641 continue; 1642 } 1643 1644 dprintf("found section header %s (sh_addr 0x%llx)\n", 1645 name, (u_longlong_t)shp->sh_addr); 1646 1647 if (strcmp(name, ".SUNW_ctf") == 0) { 1648 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) { 1649 dprintf("no map at addr 0x%llx for %s [%d]\n", 1650 (u_longlong_t)shp->sh_addr, name, i); 1651 continue; 1652 } 1653 1654 if (mp->map_file == NULL || 1655 mp->map_file->file_ctf_buf != NULL) { 1656 dprintf("no mapping file or duplicate buffer " 1657 "for %s [%d]\n", name, i); 1658 continue; 1659 } 1660 1661 if ((buf = malloc(shp->sh_size)) == NULL || 1662 pread64(efp->e_fd, buf, shp->sh_size, 1663 shp->sh_offset) != shp->sh_size) { 1664 dprintf("skipping section %s [%d]: %s\n", 1665 name, i, strerror(errno)); 1666 free(buf); 1667 continue; 1668 } 1669 1670 mp->map_file->file_ctf_size = shp->sh_size; 1671 mp->map_file->file_ctf_buf = buf; 1672 1673 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM) 1674 mp->map_file->file_ctf_dyn = 1; 1675 1676 } else if (strcmp(name, ".symtab") == 0) { 1677 fake_up_symtab(P, &efp->e_hdr, 1678 shp, &shdrs[shp->sh_link]); 1679 } 1680 } 1681 out: 1682 free(shstrtab); 1683 free(shdrs); 1684 } 1685 1686 /* 1687 * Main engine for core file initialization: given an fd for the core file 1688 * and an optional pathname, construct the ps_prochandle. The aout_path can 1689 * either be a suggested executable pathname, or a suggested directory to 1690 * use as a possible current working directory. 1691 */ 1692 struct ps_prochandle * 1693 Pfgrab_core(int core_fd, const char *aout_path, int *perr) 1694 { 1695 struct ps_prochandle *P; 1696 map_info_t *stk_mp, *brk_mp; 1697 const char *execname; 1698 char *interp; 1699 int i, notes, pagesize; 1700 uintptr_t addr, base_addr; 1701 struct stat64 stbuf; 1702 void *phbuf, *php; 1703 size_t nbytes; 1704 1705 elf_file_t aout; 1706 elf_file_t core; 1707 1708 Elf_Scn *scn, *intp_scn = NULL; 1709 Elf_Data *dp; 1710 1711 GElf_Phdr phdr, note_phdr; 1712 GElf_Shdr shdr; 1713 GElf_Xword nleft; 1714 1715 if (elf_version(EV_CURRENT) == EV_NONE) { 1716 dprintf("libproc ELF version is more recent than libelf\n"); 1717 *perr = G_ELF; 1718 return (NULL); 1719 } 1720 1721 aout.e_elf = NULL; 1722 aout.e_fd = -1; 1723 1724 core.e_elf = NULL; 1725 core.e_fd = core_fd; 1726 1727 /* 1728 * Allocate and initialize a ps_prochandle structure for the core. 1729 * There are several key pieces of initialization here: 1730 * 1731 * 1. The PS_DEAD state flag marks this prochandle as a core file. 1732 * PS_DEAD also thus prevents all operations which require state 1733 * to be PS_STOP from operating on this handle. 1734 * 1735 * 2. We keep the core file fd in P->asfd since the core file contains 1736 * the remnants of the process address space. 1737 * 1738 * 3. We set the P->info_valid bit because all information about the 1739 * core is determined by the end of this function; there is no need 1740 * for proc_update_maps() to reload mappings at any later point. 1741 * 1742 * 4. The read/write ops vector uses our core_rw() function defined 1743 * above to handle i/o requests. 1744 */ 1745 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) { 1746 *perr = G_STRANGE; 1747 return (NULL); 1748 } 1749 1750 (void) memset(P, 0, sizeof (struct ps_prochandle)); 1751 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL); 1752 P->state = PS_DEAD; 1753 P->pid = (pid_t)-1; 1754 P->asfd = core.e_fd; 1755 P->ctlfd = -1; 1756 P->statfd = -1; 1757 P->agentctlfd = -1; 1758 P->agentstatfd = -1; 1759 P->zoneroot = NULL; 1760 P->info_valid = 1; 1761 P->ops = &P_core_ops; 1762 1763 Pinitsym(P); 1764 1765 /* 1766 * Fstat and open the core file and make sure it is a valid ELF core. 1767 */ 1768 if (fstat64(P->asfd, &stbuf) == -1) { 1769 *perr = G_STRANGE; 1770 goto err; 1771 } 1772 1773 if (core_elf_fdopen(&core, ET_CORE, perr) == -1) 1774 goto err; 1775 1776 /* 1777 * Allocate and initialize a core_info_t to hang off the ps_prochandle 1778 * structure. We keep all core-specific information in this structure. 1779 */ 1780 if ((P->core = calloc(1, sizeof (core_info_t))) == NULL) { 1781 *perr = G_STRANGE; 1782 goto err; 1783 } 1784 1785 list_link(&P->core->core_lwp_head, NULL); 1786 P->core->core_size = stbuf.st_size; 1787 /* 1788 * In the days before adjustable core file content, this was the 1789 * default core file content. For new core files, this value will 1790 * be overwritten by the NT_CONTENT note section. 1791 */ 1792 P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP | 1793 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON | 1794 CC_CONTENT_SHANON; 1795 1796 switch (core.e_hdr.e_ident[EI_CLASS]) { 1797 case ELFCLASS32: 1798 P->core->core_dmodel = PR_MODEL_ILP32; 1799 break; 1800 case ELFCLASS64: 1801 P->core->core_dmodel = PR_MODEL_LP64; 1802 break; 1803 default: 1804 *perr = G_FORMAT; 1805 goto err; 1806 } 1807 1808 /* 1809 * Because the core file may be a large file, we can't use libelf to 1810 * read the Phdrs. We use e_phnum and e_phentsize to simplify things. 1811 */ 1812 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize; 1813 1814 if ((phbuf = malloc(nbytes)) == NULL) { 1815 *perr = G_STRANGE; 1816 goto err; 1817 } 1818 1819 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) { 1820 *perr = G_STRANGE; 1821 free(phbuf); 1822 goto err; 1823 } 1824 1825 /* 1826 * Iterate through the program headers in the core file. 1827 * We're interested in two types of Phdrs: PT_NOTE (which 1828 * contains a set of saved /proc structures), and PT_LOAD (which 1829 * represents a memory mapping from the process's address space). 1830 * In the case of PT_NOTE, we're interested in the last PT_NOTE 1831 * in the core file; currently the first PT_NOTE (if present) 1832 * contains /proc structs in the pre-2.6 unstructured /proc format. 1833 */ 1834 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) { 1835 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64) 1836 (void) memcpy(&phdr, php, sizeof (GElf_Phdr)); 1837 else 1838 core_phdr_to_gelf(php, &phdr); 1839 1840 switch (phdr.p_type) { 1841 case PT_NOTE: 1842 note_phdr = phdr; 1843 notes++; 1844 break; 1845 1846 case PT_LOAD: 1847 if (core_add_mapping(P, &phdr) == -1) { 1848 *perr = G_STRANGE; 1849 free(phbuf); 1850 goto err; 1851 } 1852 break; 1853 } 1854 1855 php = (char *)php + core.e_hdr.e_phentsize; 1856 } 1857 1858 free(phbuf); 1859 1860 Psort_mappings(P); 1861 1862 /* 1863 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE 1864 * was present, abort. The core file is either corrupt or too old. 1865 */ 1866 if (notes == 0 || notes == 1) { 1867 *perr = G_NOTE; 1868 goto err; 1869 } 1870 1871 /* 1872 * Advance the seek pointer to the start of the PT_NOTE data 1873 */ 1874 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) { 1875 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n"); 1876 *perr = G_STRANGE; 1877 goto err; 1878 } 1879 1880 /* 1881 * Now process the PT_NOTE structures. Each one is preceded by 1882 * an Elf{32/64}_Nhdr structure describing its type and size. 1883 * 1884 * +--------+ 1885 * | header | 1886 * +--------+ 1887 * | name | 1888 * | ... | 1889 * +--------+ 1890 * | desc | 1891 * | ... | 1892 * +--------+ 1893 */ 1894 for (nleft = note_phdr.p_filesz; nleft > 0; ) { 1895 Elf64_Nhdr nhdr; 1896 off64_t off, namesz; 1897 1898 /* 1899 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr 1900 * as different types, they are both of the same content and 1901 * size, so we don't need to worry about 32/64 conversion here. 1902 */ 1903 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) { 1904 dprintf("Pgrab_core: failed to read ELF note header\n"); 1905 *perr = G_NOTE; 1906 goto err; 1907 } 1908 1909 /* 1910 * According to the System V ABI, the amount of padding 1911 * following the name field should align the description 1912 * field on a 4 byte boundary for 32-bit binaries or on an 8 1913 * byte boundary for 64-bit binaries. However, this change 1914 * was not made correctly during the 64-bit port so all 1915 * descriptions can assume only 4-byte alignment. We ignore 1916 * the name field and the padding to 4-byte alignment. 1917 */ 1918 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4); 1919 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) { 1920 dprintf("failed to seek past name and padding\n"); 1921 *perr = G_STRANGE; 1922 goto err; 1923 } 1924 1925 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n", 1926 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz); 1927 1928 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR); 1929 1930 /* 1931 * Invoke the note handler function from our table 1932 */ 1933 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) { 1934 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) { 1935 *perr = G_NOTE; 1936 goto err; 1937 } 1938 } else 1939 (void) note_notsup(P, nhdr.n_descsz); 1940 1941 /* 1942 * Seek past the current note data to the next Elf_Nhdr 1943 */ 1944 if (lseek64(P->asfd, off + nhdr.n_descsz, 1945 SEEK_SET) == (off64_t)-1) { 1946 dprintf("Pgrab_core: failed to seek to next nhdr\n"); 1947 *perr = G_STRANGE; 1948 goto err; 1949 } 1950 1951 /* 1952 * Subtract the size of the header and its data from what 1953 * we have left to process. 1954 */ 1955 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz; 1956 } 1957 1958 if (nleft != 0) { 1959 dprintf("Pgrab_core: note section malformed\n"); 1960 *perr = G_STRANGE; 1961 goto err; 1962 } 1963 1964 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) { 1965 pagesize = getpagesize(); 1966 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize); 1967 } 1968 1969 /* 1970 * Locate and label the mappings corresponding to the end of the 1971 * heap (MA_BREAK) and the base of the stack (MA_STACK). 1972 */ 1973 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) && 1974 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase + 1975 P->status.pr_brksize - 1)) != NULL) 1976 brk_mp->map_pmap.pr_mflags |= MA_BREAK; 1977 else 1978 brk_mp = NULL; 1979 1980 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL) 1981 stk_mp->map_pmap.pr_mflags |= MA_STACK; 1982 1983 /* 1984 * At this point, we have enough information to look for the 1985 * executable and open it: we have access to the auxv, a psinfo_t, 1986 * and the ability to read from mappings provided by the core file. 1987 */ 1988 (void) Pfindexec(P, aout_path, core_exec_open, &aout); 1989 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL"); 1990 execname = P->execname ? P->execname : "a.out"; 1991 1992 /* 1993 * Iterate through the sections, looking for the .dynamic and .interp 1994 * sections. If we encounter them, remember their section pointers. 1995 */ 1996 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) { 1997 char *sname; 1998 1999 if ((gelf_getshdr(scn, &shdr) == NULL) || 2000 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx, 2001 (size_t)shdr.sh_name)) == NULL) 2002 continue; 2003 2004 if (strcmp(sname, ".interp") == 0) 2005 intp_scn = scn; 2006 } 2007 2008 /* 2009 * Get the AT_BASE auxv element. If this is missing (-1), then 2010 * we assume this is a statically-linked executable. 2011 */ 2012 base_addr = Pgetauxval(P, AT_BASE); 2013 2014 /* 2015 * In order to get librtld_db initialized, we'll need to identify 2016 * and name the mapping corresponding to the run-time linker. The 2017 * AT_BASE auxv element tells us the address where it was mapped, 2018 * and the .interp section of the executable tells us its path. 2019 * If for some reason that doesn't pan out, just use ld.so.1. 2020 */ 2021 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL && 2022 dp->d_size != 0) { 2023 dprintf(".interp = <%s>\n", (char *)dp->d_buf); 2024 interp = dp->d_buf; 2025 2026 } else if (base_addr != (uintptr_t)-1L) { 2027 if (P->core->core_dmodel == PR_MODEL_LP64) 2028 interp = "/usr/lib/64/ld.so.1"; 2029 else 2030 interp = "/usr/lib/ld.so.1"; 2031 2032 dprintf(".interp section is missing or could not be read; " 2033 "defaulting to %s\n", interp); 2034 } else 2035 dprintf("detected statically linked executable\n"); 2036 2037 /* 2038 * If we have an AT_BASE element, name the mapping at that address 2039 * using the interpreter pathname. Name the corresponding data 2040 * mapping after the interpreter as well. 2041 */ 2042 if (base_addr != (uintptr_t)-1L) { 2043 elf_file_t intf; 2044 2045 P->map_ldso = core_name_mapping(P, base_addr, interp); 2046 2047 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) { 2048 rd_loadobj_t rl; 2049 map_info_t *dmp; 2050 2051 rl.rl_base = base_addr; 2052 dmp = core_find_data(P, intf.e_elf, &rl); 2053 2054 if (dmp != NULL) { 2055 dprintf("renamed data at %p to %s\n", 2056 (void *)rl.rl_data_base, interp); 2057 (void) strncpy(dmp->map_pmap.pr_mapname, 2058 interp, PRMAPSZ); 2059 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2060 } 2061 } 2062 2063 core_elf_close(&intf); 2064 } 2065 2066 /* 2067 * If we have an AT_ENTRY element, name the mapping at that address 2068 * using the special name "a.out" just like /proc does. 2069 */ 2070 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L) 2071 P->map_exec = core_name_mapping(P, addr, "a.out"); 2072 2073 /* 2074 * If we're a statically linked executable, then just locate the 2075 * executable's text and data and name them after the executable. 2076 */ 2077 if (base_addr == (uintptr_t)-1L) { 2078 map_info_t *tmp, *dmp; 2079 file_info_t *fp; 2080 rd_loadobj_t rl; 2081 2082 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL && 2083 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) { 2084 (void) strncpy(tmp->map_pmap.pr_mapname, 2085 execname, PRMAPSZ); 2086 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2087 (void) strncpy(dmp->map_pmap.pr_mapname, 2088 execname, PRMAPSZ); 2089 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2090 } 2091 2092 if ((P->map_exec = tmp) != NULL && 2093 (fp = malloc(sizeof (file_info_t))) != NULL) { 2094 2095 (void) memset(fp, 0, sizeof (file_info_t)); 2096 2097 list_link(fp, &P->file_head); 2098 tmp->map_file = fp; 2099 P->num_files++; 2100 2101 fp->file_ref = 1; 2102 fp->file_fd = -1; 2103 2104 fp->file_lo = malloc(sizeof (rd_loadobj_t)); 2105 fp->file_lname = strdup(execname); 2106 2107 if (fp->file_lo) 2108 *fp->file_lo = rl; 2109 if (fp->file_lname) 2110 fp->file_lbase = basename(fp->file_lname); 2111 if (fp->file_rname) 2112 fp->file_rbase = basename(fp->file_rname); 2113 2114 (void) strcpy(fp->file_pname, 2115 P->mappings[0].map_pmap.pr_mapname); 2116 fp->file_map = tmp; 2117 2118 Pbuild_file_symtab(P, fp); 2119 2120 if (dmp != NULL) { 2121 dmp->map_file = fp; 2122 fp->file_ref++; 2123 } 2124 } 2125 } 2126 2127 core_elf_close(&aout); 2128 2129 /* 2130 * We now have enough information to initialize librtld_db. 2131 * After it warms up, we can iterate through the load object chain 2132 * in the core, which will allow us to construct the file info 2133 * we need to provide symbol information for the other shared 2134 * libraries, and also to fill in the missing mapping names. 2135 */ 2136 rd_log(_libproc_debug); 2137 2138 if ((P->rap = rd_new(P)) != NULL) { 2139 (void) rd_loadobj_iter(P->rap, (rl_iter_f *) 2140 core_iter_mapping, P); 2141 2142 if (P->core->core_errno != 0) { 2143 errno = P->core->core_errno; 2144 *perr = G_STRANGE; 2145 goto err; 2146 } 2147 } else 2148 dprintf("failed to initialize rtld_db agent\n"); 2149 2150 /* 2151 * If there are sections, load them and process the data from any 2152 * sections that we can use to annotate the file_info_t's. 2153 */ 2154 core_load_shdrs(P, &core); 2155 2156 /* 2157 * If we previously located a stack or break mapping, and they are 2158 * still anonymous, we now assume that they were MAP_ANON mappings. 2159 * If brk_mp turns out to now have a name, then the heap is still 2160 * sitting at the end of the executable's data+bss mapping: remove 2161 * the previous MA_BREAK setting to be consistent with /proc. 2162 */ 2163 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0') 2164 stk_mp->map_pmap.pr_mflags |= MA_ANON; 2165 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0') 2166 brk_mp->map_pmap.pr_mflags |= MA_ANON; 2167 else if (brk_mp != NULL) 2168 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK; 2169 2170 *perr = 0; 2171 return (P); 2172 2173 err: 2174 Pfree(P); 2175 core_elf_close(&aout); 2176 return (NULL); 2177 } 2178 2179 /* 2180 * Grab a core file using a pathname. We just open it and call Pfgrab_core(). 2181 */ 2182 struct ps_prochandle * 2183 Pgrab_core(const char *core, const char *aout, int gflag, int *perr) 2184 { 2185 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR; 2186 2187 if ((fd = open64(core, oflag)) >= 0) 2188 return (Pfgrab_core(fd, aout, perr)); 2189 2190 if (errno != ENOENT) 2191 *perr = G_STRANGE; 2192 else 2193 *perr = G_NOCORE; 2194 2195 return (NULL); 2196 }