1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/types.h>
30 #include <sys/utsname.h>
31 #include <sys/sysmacros.h>
32
33 #include <alloca.h>
34 #include <rtld_db.h>
35 #include <libgen.h>
36 #include <limits.h>
37 #include <string.h>
38 #include <stdlib.h>
39 #include <unistd.h>
40 #include <errno.h>
41 #include <gelf.h>
42 #include <stddef.h>
43
44 #include "libproc.h"
45 #include "Pcontrol.h"
46 #include "P32ton.h"
47 #include "Putil.h"
48
49 /*
50 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
51 * allocate an additional structure to hold information from the core
52 * file, and attach this to the standard ps_prochandle in place of the
53 * ability to examine /proc/<pid>/ files.
54 */
55
56 /*
57 * Basic i/o function for reading and writing from the process address space
58 * stored in the core file and associated shared libraries. We compute the
59 * appropriate fd and offsets, and let the provided prw function do the rest.
60 */
61 static ssize_t
62 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
63 ssize_t (*prw)(int, void *, size_t, off64_t))
64 {
65 ssize_t resid = n;
66
67 while (resid != 0) {
68 map_info_t *mp = Paddr2mptr(P, addr);
69
70 uintptr_t mapoff;
71 ssize_t len;
72 off64_t off;
73 int fd;
74
75 if (mp == NULL)
76 break; /* No mapping for this address */
77
78 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
79 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
80 break; /* No file or file not open */
81
82 fd = mp->map_file->file_fd;
83 } else
84 fd = P->asfd;
85
86 mapoff = addr - mp->map_pmap.pr_vaddr;
87 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
88 off = mp->map_offset + mapoff;
89
90 if ((len = prw(fd, buf, len, off)) <= 0)
91 break;
92
93 resid -= len;
94 addr += len;
95 buf = (char *)buf + len;
96 }
97
98 /*
99 * Important: Be consistent with the behavior of i/o on the as file:
100 * writing to an invalid address yields EIO; reading from an invalid
101 * address falls through to returning success and zero bytes.
102 */
103 if (resid == n && n != 0 && prw != pread64) {
104 errno = EIO;
105 return (-1);
106 }
107
108 return (n - resid);
109 }
110
111 static ssize_t
112 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr)
113 {
114 return (core_rw(P, buf, n, addr, pread64));
115 }
116
117 static ssize_t
118 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr)
119 {
120 return (core_rw(P, (void *)buf, n, addr,
121 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
122 }
123
124 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core };
125
126 /*
127 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
128 * encountered yet, allocate a new structure and return a pointer to it.
129 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
130 */
131 static lwp_info_t *
132 lwpid2info(struct ps_prochandle *P, lwpid_t id)
133 {
134 lwp_info_t *lwp = list_next(&P->core->core_lwp_head);
135 lwp_info_t *next;
136 uint_t i;
137
138 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) {
139 if (lwp->lwp_id == id) {
140 P->core->core_lwp = lwp;
141 return (lwp);
142 }
143 if (lwp->lwp_id < id) {
144 break;
145 }
146 }
147
148 next = lwp;
149 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
150 return (NULL);
151
152 list_link(lwp, next);
153 lwp->lwp_id = id;
154
155 P->core->core_lwp = lwp;
156 P->core->core_nlwp++;
157
158 return (lwp);
159 }
160
161 /*
162 * The core file itself contains a series of NOTE segments containing saved
163 * structures from /proc at the time the process died. For each note we
164 * comprehend, we define a function to read it in from the core file,
165 * convert it to our native data model if necessary, and store it inside
166 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
167 * seek pointer on P->asfd positioned appropriately. We populate a table
168 * of pointers to these note functions below.
169 */
170
171 static int
172 note_pstatus(struct ps_prochandle *P, size_t nbytes)
173 {
174 #ifdef _LP64
175 if (P->core->core_dmodel == PR_MODEL_ILP32) {
176 pstatus32_t ps32;
177
178 if (nbytes < sizeof (pstatus32_t) ||
179 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
180 goto err;
181
182 pstatus_32_to_n(&ps32, &P->status);
183
184 } else
185 #endif
186 if (nbytes < sizeof (pstatus_t) ||
187 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
188 goto err;
189
190 P->orig_status = P->status;
191 P->pid = P->status.pr_pid;
192
193 return (0);
194
195 err:
196 dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
197 return (-1);
198 }
199
200 static int
201 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
202 {
203 lwp_info_t *lwp;
204 lwpstatus_t lps;
205
206 #ifdef _LP64
207 if (P->core->core_dmodel == PR_MODEL_ILP32) {
208 lwpstatus32_t l32;
209
210 if (nbytes < sizeof (lwpstatus32_t) ||
211 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
212 goto err;
213
214 lwpstatus_32_to_n(&l32, &lps);
215 } else
216 #endif
217 if (nbytes < sizeof (lwpstatus_t) ||
218 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
219 goto err;
220
221 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
222 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
223 return (-1);
224 }
225
226 /*
227 * Erase a useless and confusing artifact of the kernel implementation:
228 * the lwps which did *not* create the core will show SIGKILL. We can
229 * be assured this is bogus because SIGKILL can't produce core files.
230 */
231 if (lps.pr_cursig == SIGKILL)
232 lps.pr_cursig = 0;
233
234 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
235 return (0);
236
237 err:
238 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
239 return (-1);
240 }
241
242 static int
243 note_psinfo(struct ps_prochandle *P, size_t nbytes)
244 {
245 #ifdef _LP64
246 if (P->core->core_dmodel == PR_MODEL_ILP32) {
247 psinfo32_t ps32;
248
249 if (nbytes < sizeof (psinfo32_t) ||
250 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
251 goto err;
252
253 psinfo_32_to_n(&ps32, &P->psinfo);
254 } else
255 #endif
256 if (nbytes < sizeof (psinfo_t) ||
257 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
258 goto err;
259
260 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
261 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
262 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
263
264 return (0);
265
266 err:
267 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
268 return (-1);
269 }
270
271 static int
272 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
273 {
274 lwp_info_t *lwp;
275 lwpsinfo_t lps;
276
277 #ifdef _LP64
278 if (P->core->core_dmodel == PR_MODEL_ILP32) {
279 lwpsinfo32_t l32;
280
281 if (nbytes < sizeof (lwpsinfo32_t) ||
282 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
283 goto err;
284
285 lwpsinfo_32_to_n(&l32, &lps);
286 } else
287 #endif
288 if (nbytes < sizeof (lwpsinfo_t) ||
289 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
290 goto err;
291
292 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
293 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
294 return (-1);
295 }
296
297 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
298 return (0);
299
300 err:
301 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
302 return (-1);
303 }
304
305 static int
306 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
307 {
308 prfdinfo_t prfd;
309 fd_info_t *fip;
310
311 if ((nbytes < sizeof (prfd)) ||
312 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
313 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
314 return (-1);
315 }
316
317 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
318 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
319 return (-1);
320 }
321 (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
322 return (0);
323 }
324
325 static int
326 note_platform(struct ps_prochandle *P, size_t nbytes)
327 {
328 char *plat;
329
330 if (P->core->core_platform != NULL)
331 return (0); /* Already seen */
332
333 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
334 if (read(P->asfd, plat, nbytes) != nbytes) {
335 dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
336 free(plat);
337 return (-1);
338 }
339 plat[nbytes - 1] = '\0';
340 P->core->core_platform = plat;
341 }
342
343 return (0);
344 }
345
346 static int
347 note_utsname(struct ps_prochandle *P, size_t nbytes)
348 {
349 size_t ubytes = sizeof (struct utsname);
350 struct utsname *utsp;
351
352 if (P->core->core_uts != NULL || nbytes < ubytes)
353 return (0); /* Already seen or bad size */
354
355 if ((utsp = malloc(ubytes)) == NULL)
356 return (-1);
357
358 if (read(P->asfd, utsp, ubytes) != ubytes) {
359 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
360 free(utsp);
361 return (-1);
362 }
363
364 if (_libproc_debug) {
365 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
366 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
367 dprintf("uts.release = \"%s\"\n", utsp->release);
368 dprintf("uts.version = \"%s\"\n", utsp->version);
369 dprintf("uts.machine = \"%s\"\n", utsp->machine);
370 }
371
372 P->core->core_uts = utsp;
373 return (0);
374 }
375
376 static int
377 note_content(struct ps_prochandle *P, size_t nbytes)
378 {
379 core_content_t content;
380
381 if (sizeof (P->core->core_content) != nbytes)
382 return (-1);
383
384 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
385 return (-1);
386
387 P->core->core_content = content;
388
389 dprintf("core content = %llx\n", content);
390
391 return (0);
392 }
393
394 static int
395 note_cred(struct ps_prochandle *P, size_t nbytes)
396 {
397 prcred_t *pcrp;
398 int ngroups;
399 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
400
401 /*
402 * We allow for prcred_t notes that are actually smaller than a
403 * prcred_t since the last member isn't essential if there are
404 * no group memberships. This allows for more flexibility when it
405 * comes to slightly malformed -- but still valid -- notes.
406 */
407 if (P->core->core_cred != NULL || nbytes < min_size)
408 return (0); /* Already seen or bad size */
409
410 ngroups = (nbytes - min_size) / sizeof (gid_t);
411 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
412
413 if ((pcrp = malloc(nbytes)) == NULL)
414 return (-1);
415
416 if (read(P->asfd, pcrp, nbytes) != nbytes) {
417 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
418 free(pcrp);
419 return (-1);
420 }
421
422 if (pcrp->pr_ngroups > ngroups) {
423 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
424 pcrp->pr_ngroups, ngroups);
425 pcrp->pr_ngroups = ngroups;
426 }
427
428 P->core->core_cred = pcrp;
429 return (0);
430 }
431
432 #if defined(__i386) || defined(__amd64)
433 static int
434 note_ldt(struct ps_prochandle *P, size_t nbytes)
435 {
436 struct ssd *pldt;
437 uint_t nldt;
438
439 if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd))
440 return (0); /* Already seen or bad size */
441
442 nldt = nbytes / sizeof (struct ssd);
443 nbytes = nldt * sizeof (struct ssd);
444
445 if ((pldt = malloc(nbytes)) == NULL)
446 return (-1);
447
448 if (read(P->asfd, pldt, nbytes) != nbytes) {
449 dprintf("Pgrab_core: failed to read NT_LDT\n");
450 free(pldt);
451 return (-1);
452 }
453
454 P->core->core_ldt = pldt;
455 P->core->core_nldt = nldt;
456 return (0);
457 }
458 #endif /* __i386 */
459
460 static int
461 note_priv(struct ps_prochandle *P, size_t nbytes)
462 {
463 prpriv_t *pprvp;
464
465 if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t))
466 return (0); /* Already seen or bad size */
467
468 if ((pprvp = malloc(nbytes)) == NULL)
469 return (-1);
470
471 if (read(P->asfd, pprvp, nbytes) != nbytes) {
472 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
473 free(pprvp);
474 return (-1);
475 }
476
477 P->core->core_priv = pprvp;
478 P->core->core_priv_size = nbytes;
479 return (0);
480 }
481
482 static int
483 note_priv_info(struct ps_prochandle *P, size_t nbytes)
484 {
485 extern void *__priv_parse_info();
486 priv_impl_info_t *ppii;
487
488 if (P->core->core_privinfo != NULL ||
489 nbytes < sizeof (priv_impl_info_t))
490 return (0); /* Already seen or bad size */
491
492 if ((ppii = malloc(nbytes)) == NULL)
493 return (-1);
494
495 if (read(P->asfd, ppii, nbytes) != nbytes ||
496 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
497 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
498 free(ppii);
499 return (-1);
500 }
501
502 P->core->core_privinfo = __priv_parse_info(ppii);
503 P->core->core_ppii = ppii;
504 return (0);
505 }
506
507 static int
508 note_zonename(struct ps_prochandle *P, size_t nbytes)
509 {
510 char *zonename;
511
512 if (P->core->core_zonename != NULL)
513 return (0); /* Already seen */
514
515 if (nbytes != 0) {
516 if ((zonename = malloc(nbytes)) == NULL)
517 return (-1);
518 if (read(P->asfd, zonename, nbytes) != nbytes) {
519 dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
520 free(zonename);
521 return (-1);
522 }
523 zonename[nbytes - 1] = '\0';
524 P->core->core_zonename = zonename;
525 }
526
527 return (0);
528 }
529
530 static int
531 note_auxv(struct ps_prochandle *P, size_t nbytes)
532 {
533 size_t n, i;
534
535 #ifdef _LP64
536 if (P->core->core_dmodel == PR_MODEL_ILP32) {
537 auxv32_t *a32;
538
539 n = nbytes / sizeof (auxv32_t);
540 nbytes = n * sizeof (auxv32_t);
541 a32 = alloca(nbytes);
542
543 if (read(P->asfd, a32, nbytes) != nbytes) {
544 dprintf("Pgrab_core: failed to read NT_AUXV\n");
545 return (-1);
546 }
547
548 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
549 return (-1);
550
551 for (i = 0; i < n; i++)
552 auxv_32_to_n(&a32[i], &P->auxv[i]);
553
554 } else {
555 #endif
556 n = nbytes / sizeof (auxv_t);
557 nbytes = n * sizeof (auxv_t);
558
559 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
560 return (-1);
561
562 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
563 free(P->auxv);
564 P->auxv = NULL;
565 return (-1);
566 }
567 #ifdef _LP64
568 }
569 #endif
570
571 if (_libproc_debug) {
572 for (i = 0; i < n; i++) {
573 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
574 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
575 }
576 }
577
578 /*
579 * Defensive coding for loops which depend upon the auxv array being
580 * terminated by an AT_NULL element; in each case, we've allocated
581 * P->auxv to have an additional element which we force to be AT_NULL.
582 */
583 P->auxv[n].a_type = AT_NULL;
584 P->auxv[n].a_un.a_val = 0L;
585 P->nauxv = (int)n;
586
587 return (0);
588 }
589
590 #ifdef __sparc
591 static int
592 note_xreg(struct ps_prochandle *P, size_t nbytes)
593 {
594 lwp_info_t *lwp = P->core->core_lwp;
595 size_t xbytes = sizeof (prxregset_t);
596 prxregset_t *xregs;
597
598 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
599 return (0); /* No lwp yet, already seen, or bad size */
600
601 if ((xregs = malloc(xbytes)) == NULL)
602 return (-1);
603
604 if (read(P->asfd, xregs, xbytes) != xbytes) {
605 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
606 free(xregs);
607 return (-1);
608 }
609
610 lwp->lwp_xregs = xregs;
611 return (0);
612 }
613
614 static int
615 note_gwindows(struct ps_prochandle *P, size_t nbytes)
616 {
617 lwp_info_t *lwp = P->core->core_lwp;
618
619 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
620 return (0); /* No lwp yet or already seen or no data */
621
622 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
623 return (-1);
624
625 /*
626 * Since the amount of gwindows data varies with how many windows were
627 * actually saved, we just read up to the minimum of the note size
628 * and the size of the gwindows_t type. It doesn't matter if the read
629 * fails since we have to zero out gwindows first anyway.
630 */
631 #ifdef _LP64
632 if (P->core->core_dmodel == PR_MODEL_ILP32) {
633 gwindows32_t g32;
634
635 (void) memset(&g32, 0, sizeof (g32));
636 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
637 gwindows_32_to_n(&g32, lwp->lwp_gwins);
638
639 } else {
640 #endif
641 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
642 (void) read(P->asfd, lwp->lwp_gwins,
643 MIN(nbytes, sizeof (gwindows_t)));
644 #ifdef _LP64
645 }
646 #endif
647 return (0);
648 }
649
650 #ifdef __sparcv9
651 static int
652 note_asrs(struct ps_prochandle *P, size_t nbytes)
653 {
654 lwp_info_t *lwp = P->core->core_lwp;
655 int64_t *asrs;
656
657 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
658 return (0); /* No lwp yet, already seen, or bad size */
659
660 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
661 return (-1);
662
663 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
664 dprintf("Pgrab_core: failed to read NT_ASRS\n");
665 free(asrs);
666 return (-1);
667 }
668
669 lwp->lwp_asrs = asrs;
670 return (0);
671 }
672 #endif /* __sparcv9 */
673 #endif /* __sparc */
674
675 /*ARGSUSED*/
676 static int
677 note_notsup(struct ps_prochandle *P, size_t nbytes)
678 {
679 dprintf("skipping unsupported note type\n");
680 return (0);
681 }
682
683 /*
684 * Populate a table of function pointers indexed by Note type with our
685 * functions to process each type of core file note:
686 */
687 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
688 note_notsup, /* 0 unassigned */
689 note_notsup, /* 1 NT_PRSTATUS (old) */
690 note_notsup, /* 2 NT_PRFPREG (old) */
691 note_notsup, /* 3 NT_PRPSINFO (old) */
692 #ifdef __sparc
693 note_xreg, /* 4 NT_PRXREG */
694 #else
695 note_notsup, /* 4 NT_PRXREG */
696 #endif
697 note_platform, /* 5 NT_PLATFORM */
698 note_auxv, /* 6 NT_AUXV */
699 #ifdef __sparc
700 note_gwindows, /* 7 NT_GWINDOWS */
701 #ifdef __sparcv9
702 note_asrs, /* 8 NT_ASRS */
703 #else
704 note_notsup, /* 8 NT_ASRS */
705 #endif
706 #else
707 note_notsup, /* 7 NT_GWINDOWS */
708 note_notsup, /* 8 NT_ASRS */
709 #endif
710 #if defined(__i386) || defined(__amd64)
711 note_ldt, /* 9 NT_LDT */
712 #else
713 note_notsup, /* 9 NT_LDT */
714 #endif
715 note_pstatus, /* 10 NT_PSTATUS */
716 note_notsup, /* 11 unassigned */
717 note_notsup, /* 12 unassigned */
718 note_psinfo, /* 13 NT_PSINFO */
719 note_cred, /* 14 NT_PRCRED */
720 note_utsname, /* 15 NT_UTSNAME */
721 note_lwpstatus, /* 16 NT_LWPSTATUS */
722 note_lwpsinfo, /* 17 NT_LWPSINFO */
723 note_priv, /* 18 NT_PRPRIV */
724 note_priv_info, /* 19 NT_PRPRIVINFO */
725 note_content, /* 20 NT_CONTENT */
726 note_zonename, /* 21 NT_ZONENAME */
727 note_fdinfo, /* 22 NT_FDINFO */
728 };
729
730 /*
731 * Add information on the address space mapping described by the given
732 * PT_LOAD program header. We fill in more information on the mapping later.
733 */
734 static int
735 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
736 {
737 int err = 0;
738 prmap_t pmap;
739
740 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n",
741 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
742 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
743
744 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
745 pmap.pr_size = php->p_memsz;
746
747 /*
748 * If Pgcore() or elfcore() fail to write a mapping, they will set
749 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
750 */
751 if (php->p_flags & PF_SUNW_FAILURE) {
752 (void) pread64(P->asfd, &err,
753 sizeof (err), (off64_t)php->p_offset);
754
755 Perror_printf(P, "core file data for mapping at %p not saved: "
756 "%s\n", (void *)(uintptr_t)php->p_vaddr, strerror(err));
757 dprintf("core file data for mapping at %p not saved: %s\n",
758 (void *)(uintptr_t)php->p_vaddr, strerror(err));
759
760 } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) {
761 Perror_printf(P, "core file may be corrupt -- data for mapping "
762 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
763 dprintf("core file may be corrupt -- data for mapping "
764 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
765 }
766
767 /*
768 * The mapping name and offset will hopefully be filled in
769 * by the librtld_db agent. Unfortunately, if it isn't a
770 * shared library mapping, this information is gone forever.
771 */
772 pmap.pr_mapname[0] = '\0';
773 pmap.pr_offset = 0;
774
775 pmap.pr_mflags = 0;
776 if (php->p_flags & PF_R)
777 pmap.pr_mflags |= MA_READ;
778 if (php->p_flags & PF_W)
779 pmap.pr_mflags |= MA_WRITE;
780 if (php->p_flags & PF_X)
781 pmap.pr_mflags |= MA_EXEC;
782
783 if (php->p_filesz == 0)
784 pmap.pr_mflags |= MA_RESERVED1;
785
786 /*
787 * At the time of adding this mapping, we just zero the pagesize.
788 * Once we've processed more of the core file, we'll have the
789 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
790 */
791 pmap.pr_pagesize = 0;
792
793 /*
794 * Unfortunately whether or not the mapping was a System V
795 * shared memory segment is lost. We use -1 to mark it as not shm.
796 */
797 pmap.pr_shmid = -1;
798
799 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
800 }
801
802 /*
803 * Given a virtual address, name the mapping at that address using the
804 * specified name, and return the map_info_t pointer.
805 */
806 static map_info_t *
807 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
808 {
809 map_info_t *mp = Paddr2mptr(P, addr);
810
811 if (mp != NULL) {
812 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
813 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
814 }
815
816 return (mp);
817 }
818
819 /*
820 * libproc uses libelf for all of its symbol table manipulation. This function
821 * takes a symbol table and string table from a core file and places them
822 * in a memory backed elf file.
823 */
824 static void
825 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
826 GElf_Shdr *symtab, GElf_Shdr *strtab)
827 {
828 size_t size;
829 off64_t off, base;
830 map_info_t *mp;
831 file_info_t *fp;
832 Elf_Scn *scn;
833 Elf_Data *data;
834
835 if (symtab->sh_addr == 0 ||
836 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
837 (fp = mp->map_file) == NULL) {
838 dprintf("fake_up_symtab: invalid section\n");
839 return;
840 }
841
842 if (fp->file_symtab.sym_data_pri != NULL) {
843 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
844 (long)symtab->sh_addr);
845 return;
846 }
847
848 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
849 struct {
850 Elf32_Ehdr ehdr;
851 Elf32_Shdr shdr[3];
852 char data[1];
853 } *b;
854
855 base = sizeof (b->ehdr) + sizeof (b->shdr);
856 size = base + symtab->sh_size + strtab->sh_size;
857
858 if ((b = calloc(1, size)) == NULL)
859 return;
860
861 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
862 sizeof (ehdr->e_ident));
863 b->ehdr.e_type = ehdr->e_type;
864 b->ehdr.e_machine = ehdr->e_machine;
865 b->ehdr.e_version = ehdr->e_version;
866 b->ehdr.e_flags = ehdr->e_flags;
867 b->ehdr.e_ehsize = sizeof (b->ehdr);
868 b->ehdr.e_shoff = sizeof (b->ehdr);
869 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
870 b->ehdr.e_shnum = 3;
871 off = 0;
872
873 b->shdr[1].sh_size = symtab->sh_size;
874 b->shdr[1].sh_type = SHT_SYMTAB;
875 b->shdr[1].sh_offset = off + base;
876 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
877 b->shdr[1].sh_link = 2;
878 b->shdr[1].sh_info = symtab->sh_info;
879 b->shdr[1].sh_addralign = symtab->sh_addralign;
880
881 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
882 symtab->sh_offset) != b->shdr[1].sh_size) {
883 dprintf("fake_up_symtab: pread of symtab[1] failed\n");
884 free(b);
885 return;
886 }
887
888 off += b->shdr[1].sh_size;
889
890 b->shdr[2].sh_flags = SHF_STRINGS;
891 b->shdr[2].sh_size = strtab->sh_size;
892 b->shdr[2].sh_type = SHT_STRTAB;
893 b->shdr[2].sh_offset = off + base;
894 b->shdr[2].sh_info = strtab->sh_info;
895 b->shdr[2].sh_addralign = 1;
896
897 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
898 strtab->sh_offset) != b->shdr[2].sh_size) {
899 dprintf("fake_up_symtab: pread of symtab[2] failed\n");
900 free(b);
901 return;
902 }
903
904 off += b->shdr[2].sh_size;
905
906 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
907 if (fp->file_symtab.sym_elf == NULL) {
908 free(b);
909 return;
910 }
911
912 fp->file_symtab.sym_elfmem = b;
913 #ifdef _LP64
914 } else {
915 struct {
916 Elf64_Ehdr ehdr;
917 Elf64_Shdr shdr[3];
918 char data[1];
919 } *b;
920
921 base = sizeof (b->ehdr) + sizeof (b->shdr);
922 size = base + symtab->sh_size + strtab->sh_size;
923
924 if ((b = calloc(1, size)) == NULL)
925 return;
926
927 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
928 sizeof (ehdr->e_ident));
929 b->ehdr.e_type = ehdr->e_type;
930 b->ehdr.e_machine = ehdr->e_machine;
931 b->ehdr.e_version = ehdr->e_version;
932 b->ehdr.e_flags = ehdr->e_flags;
933 b->ehdr.e_ehsize = sizeof (b->ehdr);
934 b->ehdr.e_shoff = sizeof (b->ehdr);
935 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
936 b->ehdr.e_shnum = 3;
937 off = 0;
938
939 b->shdr[1].sh_size = symtab->sh_size;
940 b->shdr[1].sh_type = SHT_SYMTAB;
941 b->shdr[1].sh_offset = off + base;
942 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
943 b->shdr[1].sh_link = 2;
944 b->shdr[1].sh_info = symtab->sh_info;
945 b->shdr[1].sh_addralign = symtab->sh_addralign;
946
947 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
948 symtab->sh_offset) != b->shdr[1].sh_size) {
949 free(b);
950 return;
951 }
952
953 off += b->shdr[1].sh_size;
954
955 b->shdr[2].sh_flags = SHF_STRINGS;
956 b->shdr[2].sh_size = strtab->sh_size;
957 b->shdr[2].sh_type = SHT_STRTAB;
958 b->shdr[2].sh_offset = off + base;
959 b->shdr[2].sh_info = strtab->sh_info;
960 b->shdr[2].sh_addralign = 1;
961
962 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
963 strtab->sh_offset) != b->shdr[2].sh_size) {
964 free(b);
965 return;
966 }
967
968 off += b->shdr[2].sh_size;
969
970 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
971 if (fp->file_symtab.sym_elf == NULL) {
972 free(b);
973 return;
974 }
975
976 fp->file_symtab.sym_elfmem = b;
977 #endif
978 }
979
980 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
981 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
982 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
983 (data = elf_getdata(scn, NULL)) == NULL) {
984 dprintf("fake_up_symtab: failed to get section data at %p\n",
985 (void *)scn);
986 goto err;
987 }
988
989 fp->file_symtab.sym_strs = data->d_buf;
990 fp->file_symtab.sym_strsz = data->d_size;
991 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
992 fp->file_symtab.sym_hdr_pri = *symtab;
993 fp->file_symtab.sym_strhdr = *strtab;
994
995 optimize_symtab(&fp->file_symtab);
996
997 return;
998 err:
999 (void) elf_end(fp->file_symtab.sym_elf);
1000 free(fp->file_symtab.sym_elfmem);
1001 fp->file_symtab.sym_elf = NULL;
1002 fp->file_symtab.sym_elfmem = NULL;
1003 }
1004
1005 static void
1006 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1007 {
1008 dst->p_type = src->p_type;
1009 dst->p_flags = src->p_flags;
1010 dst->p_offset = (Elf64_Off)src->p_offset;
1011 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1012 dst->p_paddr = (Elf64_Addr)src->p_paddr;
1013 dst->p_filesz = (Elf64_Xword)src->p_filesz;
1014 dst->p_memsz = (Elf64_Xword)src->p_memsz;
1015 dst->p_align = (Elf64_Xword)src->p_align;
1016 }
1017
1018 static void
1019 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1020 {
1021 dst->sh_name = src->sh_name;
1022 dst->sh_type = src->sh_type;
1023 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1024 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1025 dst->sh_offset = (Elf64_Off)src->sh_offset;
1026 dst->sh_size = (Elf64_Xword)src->sh_size;
1027 dst->sh_link = src->sh_link;
1028 dst->sh_info = src->sh_info;
1029 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1030 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1031 }
1032
1033 /*
1034 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1035 */
1036 static int
1037 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1038 {
1039 #ifdef _BIG_ENDIAN
1040 uchar_t order = ELFDATA2MSB;
1041 #else
1042 uchar_t order = ELFDATA2LSB;
1043 #endif
1044 Elf32_Ehdr e32;
1045 int is_noelf = -1;
1046 int isa_err = 0;
1047
1048 /*
1049 * Because 32-bit libelf cannot deal with large files, we need to read,
1050 * check, and convert the file header manually in case type == ET_CORE.
1051 */
1052 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1053 if (perr != NULL)
1054 *perr = G_FORMAT;
1055 goto err;
1056 }
1057 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1058 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1059 e32.e_version != EV_CURRENT) {
1060 if (perr != NULL) {
1061 if (is_noelf == 0 && isa_err) {
1062 *perr = G_ISAINVAL;
1063 } else {
1064 *perr = G_FORMAT;
1065 }
1066 }
1067 goto err;
1068 }
1069
1070 /*
1071 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1072 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1073 * and convert it to a elf_file_header_t. Otherwise, the file is
1074 * 32-bit, so convert e32 to a elf_file_header_t.
1075 */
1076 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1077 #ifdef _LP64
1078 Elf64_Ehdr e64;
1079
1080 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1081 if (perr != NULL)
1082 *perr = G_FORMAT;
1083 goto err;
1084 }
1085
1086 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1087 efp->e_hdr.e_type = e64.e_type;
1088 efp->e_hdr.e_machine = e64.e_machine;
1089 efp->e_hdr.e_version = e64.e_version;
1090 efp->e_hdr.e_entry = e64.e_entry;
1091 efp->e_hdr.e_phoff = e64.e_phoff;
1092 efp->e_hdr.e_shoff = e64.e_shoff;
1093 efp->e_hdr.e_flags = e64.e_flags;
1094 efp->e_hdr.e_ehsize = e64.e_ehsize;
1095 efp->e_hdr.e_phentsize = e64.e_phentsize;
1096 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1097 efp->e_hdr.e_shentsize = e64.e_shentsize;
1098 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1099 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1100 #else /* _LP64 */
1101 if (perr != NULL)
1102 *perr = G_LP64;
1103 goto err;
1104 #endif /* _LP64 */
1105 } else {
1106 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1107 efp->e_hdr.e_type = e32.e_type;
1108 efp->e_hdr.e_machine = e32.e_machine;
1109 efp->e_hdr.e_version = e32.e_version;
1110 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1111 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1112 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1113 efp->e_hdr.e_flags = e32.e_flags;
1114 efp->e_hdr.e_ehsize = e32.e_ehsize;
1115 efp->e_hdr.e_phentsize = e32.e_phentsize;
1116 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1117 efp->e_hdr.e_shentsize = e32.e_shentsize;
1118 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1119 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1120 }
1121
1122 /*
1123 * If the number of section headers or program headers or the section
1124 * header string table index would overflow their respective fields
1125 * in the ELF header, they're stored in the section header at index
1126 * zero. To simplify use elsewhere, we look for those sentinel values
1127 * here.
1128 */
1129 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1130 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1131 efp->e_hdr.e_phnum == PN_XNUM) {
1132 GElf_Shdr shdr;
1133
1134 dprintf("extended ELF header\n");
1135
1136 if (efp->e_hdr.e_shoff == 0) {
1137 if (perr != NULL)
1138 *perr = G_FORMAT;
1139 goto err;
1140 }
1141
1142 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1143 Elf32_Shdr shdr32;
1144
1145 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1146 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1147 if (perr != NULL)
1148 *perr = G_FORMAT;
1149 goto err;
1150 }
1151
1152 core_shdr_to_gelf(&shdr32, &shdr);
1153 } else {
1154 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1155 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1156 if (perr != NULL)
1157 *perr = G_FORMAT;
1158 goto err;
1159 }
1160 }
1161
1162 if (efp->e_hdr.e_shnum == 0) {
1163 efp->e_hdr.e_shnum = shdr.sh_size;
1164 dprintf("section header count %lu\n",
1165 (ulong_t)shdr.sh_size);
1166 }
1167
1168 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1169 efp->e_hdr.e_shstrndx = shdr.sh_link;
1170 dprintf("section string index %u\n", shdr.sh_link);
1171 }
1172
1173 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1174 efp->e_hdr.e_phnum = shdr.sh_info;
1175 dprintf("program header count %u\n", shdr.sh_info);
1176 }
1177
1178 } else if (efp->e_hdr.e_phoff != 0) {
1179 GElf_Phdr phdr;
1180 uint64_t phnum;
1181
1182 /*
1183 * It's possible this core file came from a system that
1184 * accidentally truncated the e_phnum field without correctly
1185 * using the extended format in the section header at index
1186 * zero. We try to detect and correct that specific type of
1187 * corruption by using the knowledge that the core dump
1188 * routines usually place the data referenced by the first
1189 * program header immediately after the last header element.
1190 */
1191 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1192 Elf32_Phdr phdr32;
1193
1194 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1195 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1196 if (perr != NULL)
1197 *perr = G_FORMAT;
1198 goto err;
1199 }
1200
1201 core_phdr_to_gelf(&phdr32, &phdr);
1202 } else {
1203 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1204 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1205 if (perr != NULL)
1206 *perr = G_FORMAT;
1207 goto err;
1208 }
1209 }
1210
1211 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1212 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1213 phnum /= efp->e_hdr.e_phentsize;
1214
1215 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1216 dprintf("suspicious program header count %u %u\n",
1217 (uint_t)phnum, efp->e_hdr.e_phnum);
1218
1219 /*
1220 * If the new program header count we computed doesn't
1221 * jive with count in the ELF header, we'll use the
1222 * data that's there and hope for the best.
1223 *
1224 * If it does, it's also possible that the section
1225 * header offset is incorrect; we'll check that and
1226 * possibly try to fix it.
1227 */
1228 if (phnum <= INT_MAX &&
1229 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1230
1231 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1232 efp->e_hdr.e_phentsize *
1233 (uint_t)efp->e_hdr.e_phnum) {
1234 efp->e_hdr.e_shoff =
1235 efp->e_hdr.e_phoff +
1236 efp->e_hdr.e_phentsize * phnum;
1237 }
1238
1239 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1240 dprintf("using new program header count\n");
1241 } else {
1242 dprintf("inconsistent program header count\n");
1243 }
1244 }
1245 }
1246
1247 /*
1248 * The libelf implementation was never ported to be large-file aware.
1249 * This is typically not a problem for your average executable or
1250 * shared library, but a large 32-bit core file can exceed 2GB in size.
1251 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1252 * in Pfgrab_core() below will do its own i/o and struct conversion.
1253 */
1254
1255 if (type == ET_CORE) {
1256 efp->e_elf = NULL;
1257 return (0);
1258 }
1259
1260 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1261 if (perr != NULL)
1262 *perr = G_ELF;
1263 goto err;
1264 }
1265
1266 return (0);
1267
1268 err:
1269 efp->e_elf = NULL;
1270 return (-1);
1271 }
1272
1273 /*
1274 * Open the specified file and then do a core_elf_fdopen on it.
1275 */
1276 static int
1277 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1278 {
1279 (void) memset(efp, 0, sizeof (elf_file_t));
1280
1281 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1282 if (core_elf_fdopen(efp, type, perr) == 0)
1283 return (0);
1284
1285 (void) close(efp->e_fd);
1286 efp->e_fd = -1;
1287 }
1288
1289 return (-1);
1290 }
1291
1292 /*
1293 * Close the ELF handle and file descriptor.
1294 */
1295 static void
1296 core_elf_close(elf_file_t *efp)
1297 {
1298 if (efp->e_elf != NULL) {
1299 (void) elf_end(efp->e_elf);
1300 efp->e_elf = NULL;
1301 }
1302
1303 if (efp->e_fd != -1) {
1304 (void) close(efp->e_fd);
1305 efp->e_fd = -1;
1306 }
1307 }
1308
1309 /*
1310 * Given an ELF file for a statically linked executable, locate the likely
1311 * primary text section and fill in rl_base with its virtual address.
1312 */
1313 static map_info_t *
1314 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1315 {
1316 GElf_Phdr phdr;
1317 uint_t i;
1318 size_t nphdrs;
1319
1320 if (elf_getphdrnum(elf, &nphdrs) == -1)
1321 return (NULL);
1322
1323 for (i = 0; i < nphdrs; i++) {
1324 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1325 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1326 rlp->rl_base = phdr.p_vaddr;
1327 return (Paddr2mptr(P, rlp->rl_base));
1328 }
1329 }
1330
1331 return (NULL);
1332 }
1333
1334 /*
1335 * Given an ELF file and the librtld_db structure corresponding to its primary
1336 * text mapping, deduce where its data segment was loaded and fill in
1337 * rl_data_base and prmap_t.pr_offset accordingly.
1338 */
1339 static map_info_t *
1340 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1341 {
1342 GElf_Ehdr ehdr;
1343 GElf_Phdr phdr;
1344 map_info_t *mp;
1345 uint_t i, pagemask;
1346 size_t nphdrs;
1347
1348 rlp->rl_data_base = NULL;
1349
1350 /*
1351 * Find the first loadable, writeable Phdr and compute rl_data_base
1352 * as the virtual address at which is was loaded.
1353 */
1354 if (gelf_getehdr(elf, &ehdr) == NULL ||
1355 elf_getphdrnum(elf, &nphdrs) == -1)
1356 return (NULL);
1357
1358 for (i = 0; i < nphdrs; i++) {
1359 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1360 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1361 rlp->rl_data_base = phdr.p_vaddr;
1362 if (ehdr.e_type == ET_DYN)
1363 rlp->rl_data_base += rlp->rl_base;
1364 break;
1365 }
1366 }
1367
1368 /*
1369 * If we didn't find an appropriate phdr or if the address we
1370 * computed has no mapping, return NULL.
1371 */
1372 if (rlp->rl_data_base == NULL ||
1373 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1374 return (NULL);
1375
1376 /*
1377 * It wouldn't be procfs-related code if we didn't make use of
1378 * unclean knowledge of segvn, even in userland ... the prmap_t's
1379 * pr_offset field will be the segvn offset from mmap(2)ing the
1380 * data section, which will be the file offset & PAGEMASK.
1381 */
1382 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1383 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1384
1385 return (mp);
1386 }
1387
1388 /*
1389 * Librtld_db agent callback for iterating over load object mappings.
1390 * For each load object, we allocate a new file_info_t, perform naming,
1391 * and attempt to construct a symbol table for the load object.
1392 */
1393 static int
1394 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1395 {
1396 char lname[PATH_MAX], buf[PATH_MAX];
1397 file_info_t *fp;
1398 map_info_t *mp;
1399
1400 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1401 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1402 return (1); /* Keep going; forget this if we can't get a name */
1403 }
1404
1405 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1406 lname, (void *)rlp->rl_base);
1407
1408 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1409 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1410 return (1); /* No mapping; advance to next mapping */
1411 }
1412
1413 /*
1414 * Create a new file_info_t for this mapping, and therefore for
1415 * this load object.
1416 *
1417 * If there's an ELF header at the beginning of this mapping,
1418 * file_info_new() will try to use its section headers to
1419 * identify any other mappings that belong to this load object.
1420 */
1421 if ((fp = mp->map_file) == NULL &&
1422 (fp = file_info_new(P, mp)) == NULL) {
1423 P->core->core_errno = errno;
1424 dprintf("failed to malloc mapping data\n");
1425 return (0); /* Abort */
1426 }
1427 fp->file_map = mp;
1428
1429 /* Create a local copy of the load object representation */
1430 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1431 P->core->core_errno = errno;
1432 dprintf("failed to malloc mapping data\n");
1433 return (0); /* Abort */
1434 }
1435 *fp->file_lo = *rlp;
1436
1437 if (lname[0] != '\0') {
1438 /*
1439 * Naming dance part 1: if we got a name from librtld_db, then
1440 * copy this name to the prmap_t if it is unnamed. If the
1441 * file_info_t is unnamed, name it after the lname.
1442 */
1443 if (mp->map_pmap.pr_mapname[0] == '\0') {
1444 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1445 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1446 }
1447
1448 if (fp->file_lname == NULL)
1449 fp->file_lname = strdup(lname);
1450
1451 } else if (fp->file_lname == NULL &&
1452 mp->map_pmap.pr_mapname[0] != '\0') {
1453 /*
1454 * Naming dance part 2: if the mapping is named and the
1455 * file_info_t is not, name the file after the mapping.
1456 */
1457 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1458 }
1459
1460 if ((fp->file_rname == NULL) &&
1461 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
1462 fp->file_rname = strdup(buf);
1463
1464 if (fp->file_lname != NULL)
1465 fp->file_lbase = basename(fp->file_lname);
1466 if (fp->file_rname != NULL)
1467 fp->file_rbase = basename(fp->file_rname);
1468
1469 /* Associate the file and the mapping. */
1470 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
1471 fp->file_pname[PRMAPSZ - 1] = '\0';
1472
1473 /*
1474 * If no section headers were available then we'll have to
1475 * identify this load object's other mappings with what we've
1476 * got: the start and end of the object's corresponding
1477 * address space.
1478 */
1479 if (fp->file_saddrs == NULL) {
1480 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
1481 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
1482
1483 if (mp->map_file == NULL) {
1484 dprintf("core_iter_mapping %s: associating "
1485 "segment at %p\n",
1486 fp->file_pname,
1487 (void *)mp->map_pmap.pr_vaddr);
1488 mp->map_file = fp;
1489 fp->file_ref++;
1490 } else {
1491 dprintf("core_iter_mapping %s: segment at "
1492 "%p already associated with %s\n",
1493 fp->file_pname,
1494 (void *)mp->map_pmap.pr_vaddr,
1495 (mp == fp->file_map ? "this file" :
1496 mp->map_file->file_pname));
1497 }
1498 }
1499 }
1500
1501 /* Ensure that all this file's mappings are named. */
1502 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
1503 mp->map_file == fp; mp++) {
1504 if (mp->map_pmap.pr_mapname[0] == '\0' &&
1505 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
1506 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
1507 PRMAPSZ);
1508 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1509 }
1510 }
1511
1512 /* Attempt to build a symbol table for this file. */
1513 Pbuild_file_symtab(P, fp);
1514 if (fp->file_elf == NULL)
1515 dprintf("core_iter_mapping: no symtab for %s\n",
1516 fp->file_pname);
1517
1518 /* Locate the start of a data segment associated with this file. */
1519 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
1520 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
1521 fp->file_pname, (void *)fp->file_lo->rl_data_base,
1522 mp->map_pmap.pr_offset);
1523 } else {
1524 dprintf("core_iter_mapping: no data found for %s\n",
1525 fp->file_pname);
1526 }
1527
1528 return (1); /* Advance to next mapping */
1529 }
1530
1531 /*
1532 * Callback function for Pfindexec(). In order to confirm a given pathname,
1533 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
1534 */
1535 static int
1536 core_exec_open(const char *path, void *efp)
1537 {
1538 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
1539 return (1);
1540 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
1541 return (1);
1542 return (0);
1543 }
1544
1545 /*
1546 * Attempt to load any section headers found in the core file. If present,
1547 * this will refer to non-loadable data added to the core file by the kernel
1548 * based on coreadm(1M) settings, including CTF data and the symbol table.
1549 */
1550 static void
1551 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
1552 {
1553 GElf_Shdr *shp, *shdrs = NULL;
1554 char *shstrtab = NULL;
1555 ulong_t shstrtabsz;
1556 const char *name;
1557 map_info_t *mp;
1558
1559 size_t nbytes;
1560 void *buf;
1561 int i;
1562
1563 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
1564 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
1565 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
1566 return;
1567 }
1568
1569 /*
1570 * Read the section header table from the core file and then iterate
1571 * over the section headers, converting each to a GElf_Shdr.
1572 */
1573 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
1574 dprintf("failed to malloc %u section headers: %s\n",
1575 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
1576 return;
1577 }
1578
1579 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1580 if ((buf = malloc(nbytes)) == NULL) {
1581 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
1582 strerror(errno));
1583 free(shdrs);
1584 goto out;
1585 }
1586
1587 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
1588 dprintf("failed to read section headers at off %lld: %s\n",
1589 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
1590 free(buf);
1591 goto out;
1592 }
1593
1594 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1595 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
1596
1597 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
1598 core_shdr_to_gelf(p, &shdrs[i]);
1599 else
1600 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
1601 }
1602
1603 free(buf);
1604 buf = NULL;
1605
1606 /*
1607 * Read the .shstrtab section from the core file, terminating it with
1608 * an extra \0 so that a corrupt section will not cause us to die.
1609 */
1610 shp = &shdrs[efp->e_hdr.e_shstrndx];
1611 shstrtabsz = shp->sh_size;
1612
1613 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
1614 dprintf("failed to allocate %lu bytes for shstrtab\n",
1615 (ulong_t)shstrtabsz);
1616 goto out;
1617 }
1618
1619 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
1620 shp->sh_offset) != shstrtabsz) {
1621 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
1622 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
1623 goto out;
1624 }
1625
1626 shstrtab[shstrtabsz] = '\0';
1627
1628 /*
1629 * Now iterate over each section in the section header table, locating
1630 * sections of interest and initializing more of the ps_prochandle.
1631 */
1632 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1633 shp = &shdrs[i];
1634 name = shstrtab + shp->sh_name;
1635
1636 if (shp->sh_name >= shstrtabsz) {
1637 dprintf("skipping section [%d]: corrupt sh_name\n", i);
1638 continue;
1639 }
1640
1641 if (shp->sh_link >= efp->e_hdr.e_shnum) {
1642 dprintf("skipping section [%d]: corrupt sh_link\n", i);
1643 continue;
1644 }
1645
1646 dprintf("found section header %s (sh_addr 0x%llx)\n",
1647 name, (u_longlong_t)shp->sh_addr);
1648
1649 if (strcmp(name, ".SUNW_ctf") == 0) {
1650 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
1651 dprintf("no map at addr 0x%llx for %s [%d]\n",
1652 (u_longlong_t)shp->sh_addr, name, i);
1653 continue;
1654 }
1655
1656 if (mp->map_file == NULL ||
1657 mp->map_file->file_ctf_buf != NULL) {
1658 dprintf("no mapping file or duplicate buffer "
1659 "for %s [%d]\n", name, i);
1660 continue;
1661 }
1662
1663 if ((buf = malloc(shp->sh_size)) == NULL ||
1664 pread64(efp->e_fd, buf, shp->sh_size,
1665 shp->sh_offset) != shp->sh_size) {
1666 dprintf("skipping section %s [%d]: %s\n",
1667 name, i, strerror(errno));
1668 free(buf);
1669 continue;
1670 }
1671
1672 mp->map_file->file_ctf_size = shp->sh_size;
1673 mp->map_file->file_ctf_buf = buf;
1674
1675 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
1676 mp->map_file->file_ctf_dyn = 1;
1677
1678 } else if (strcmp(name, ".symtab") == 0) {
1679 fake_up_symtab(P, &efp->e_hdr,
1680 shp, &shdrs[shp->sh_link]);
1681 }
1682 }
1683 out:
1684 free(shstrtab);
1685 free(shdrs);
1686 }
1687
1688 /*
1689 * Main engine for core file initialization: given an fd for the core file
1690 * and an optional pathname, construct the ps_prochandle. The aout_path can
1691 * either be a suggested executable pathname, or a suggested directory to
1692 * use as a possible current working directory.
1693 */
1694 struct ps_prochandle *
1695 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
1696 {
1697 struct ps_prochandle *P;
1698 map_info_t *stk_mp, *brk_mp;
1699 const char *execname;
1700 char *interp;
1701 int i, notes, pagesize;
1702 uintptr_t addr, base_addr;
1703 struct stat64 stbuf;
1704 void *phbuf, *php;
1705 size_t nbytes;
1706
1707 elf_file_t aout;
1708 elf_file_t core;
1709
1710 Elf_Scn *scn, *intp_scn = NULL;
1711 Elf_Data *dp;
1712
1713 GElf_Phdr phdr, note_phdr;
1714 GElf_Shdr shdr;
1715 GElf_Xword nleft;
1716
1717 if (elf_version(EV_CURRENT) == EV_NONE) {
1718 dprintf("libproc ELF version is more recent than libelf\n");
1719 *perr = G_ELF;
1720 return (NULL);
1721 }
1722
1723 aout.e_elf = NULL;
1724 aout.e_fd = -1;
1725
1726 core.e_elf = NULL;
1727 core.e_fd = core_fd;
1728
1729 /*
1730 * Allocate and initialize a ps_prochandle structure for the core.
1731 * There are several key pieces of initialization here:
1732 *
1733 * 1. The PS_DEAD state flag marks this prochandle as a core file.
1734 * PS_DEAD also thus prevents all operations which require state
1735 * to be PS_STOP from operating on this handle.
1736 *
1737 * 2. We keep the core file fd in P->asfd since the core file contains
1738 * the remnants of the process address space.
1739 *
1740 * 3. We set the P->info_valid bit because all information about the
1741 * core is determined by the end of this function; there is no need
1742 * for proc_update_maps() to reload mappings at any later point.
1743 *
1744 * 4. The read/write ops vector uses our core_rw() function defined
1745 * above to handle i/o requests.
1746 */
1747 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
1748 *perr = G_STRANGE;
1749 return (NULL);
1750 }
1751
1752 (void) memset(P, 0, sizeof (struct ps_prochandle));
1753 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
1754 P->state = PS_DEAD;
1755 P->pid = (pid_t)-1;
1756 P->asfd = core.e_fd;
1757 P->ctlfd = -1;
1758 P->statfd = -1;
1759 P->agentctlfd = -1;
1760 P->agentstatfd = -1;
1761 P->zoneroot = NULL;
1762 P->info_valid = 1;
1763 P->ops = &P_core_ops;
1764
1765 Pinitsym(P);
1766
1767 /*
1768 * Fstat and open the core file and make sure it is a valid ELF core.
1769 */
1770 if (fstat64(P->asfd, &stbuf) == -1) {
1771 *perr = G_STRANGE;
1772 goto err;
1773 }
1774
1775 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
1776 goto err;
1777
1778 /*
1779 * Allocate and initialize a core_info_t to hang off the ps_prochandle
1780 * structure. We keep all core-specific information in this structure.
1781 */
1782 if ((P->core = calloc(1, sizeof (core_info_t))) == NULL) {
1783 *perr = G_STRANGE;
1784 goto err;
1785 }
1786
1787 list_link(&P->core->core_lwp_head, NULL);
1788 P->core->core_size = stbuf.st_size;
1789 /*
1790 * In the days before adjustable core file content, this was the
1791 * default core file content. For new core files, this value will
1792 * be overwritten by the NT_CONTENT note section.
1793 */
1794 P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
1795 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
1796 CC_CONTENT_SHANON;
1797
1798 switch (core.e_hdr.e_ident[EI_CLASS]) {
1799 case ELFCLASS32:
1800 P->core->core_dmodel = PR_MODEL_ILP32;
1801 break;
1802 case ELFCLASS64:
1803 P->core->core_dmodel = PR_MODEL_LP64;
1804 break;
1805 default:
1806 *perr = G_FORMAT;
1807 goto err;
1808 }
1809
1810 /*
1811 * Because the core file may be a large file, we can't use libelf to
1812 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
1813 */
1814 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
1815
1816 if ((phbuf = malloc(nbytes)) == NULL) {
1817 *perr = G_STRANGE;
1818 goto err;
1819 }
1820
1821 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
1822 *perr = G_STRANGE;
1823 free(phbuf);
1824 goto err;
1825 }
1826
1827 /*
1828 * Iterate through the program headers in the core file.
1829 * We're interested in two types of Phdrs: PT_NOTE (which
1830 * contains a set of saved /proc structures), and PT_LOAD (which
1831 * represents a memory mapping from the process's address space).
1832 * In the case of PT_NOTE, we're interested in the last PT_NOTE
1833 * in the core file; currently the first PT_NOTE (if present)
1834 * contains /proc structs in the pre-2.6 unstructured /proc format.
1835 */
1836 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
1837 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
1838 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
1839 else
1840 core_phdr_to_gelf(php, &phdr);
1841
1842 switch (phdr.p_type) {
1843 case PT_NOTE:
1844 note_phdr = phdr;
1845 notes++;
1846 break;
1847
1848 case PT_LOAD:
1849 if (core_add_mapping(P, &phdr) == -1) {
1850 *perr = G_STRANGE;
1851 free(phbuf);
1852 goto err;
1853 }
1854 break;
1855 }
1856
1857 php = (char *)php + core.e_hdr.e_phentsize;
1858 }
1859
1860 free(phbuf);
1861
1862 Psort_mappings(P);
1863
1864 /*
1865 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
1866 * was present, abort. The core file is either corrupt or too old.
1867 */
1868 if (notes == 0 || notes == 1) {
1869 *perr = G_NOTE;
1870 goto err;
1871 }
1872
1873 /*
1874 * Advance the seek pointer to the start of the PT_NOTE data
1875 */
1876 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
1877 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
1878 *perr = G_STRANGE;
1879 goto err;
1880 }
1881
1882 /*
1883 * Now process the PT_NOTE structures. Each one is preceded by
1884 * an Elf{32/64}_Nhdr structure describing its type and size.
1885 *
1886 * +--------+
1887 * | header |
1888 * +--------+
1889 * | name |
1890 * | ... |
1891 * +--------+
1892 * | desc |
1893 * | ... |
1894 * +--------+
1895 */
1896 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
1897 Elf64_Nhdr nhdr;
1898 off64_t off, namesz;
1899
1900 /*
1901 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
1902 * as different types, they are both of the same content and
1903 * size, so we don't need to worry about 32/64 conversion here.
1904 */
1905 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
1906 dprintf("Pgrab_core: failed to read ELF note header\n");
1907 *perr = G_NOTE;
1908 goto err;
1909 }
1910
1911 /*
1912 * According to the System V ABI, the amount of padding
1913 * following the name field should align the description
1914 * field on a 4 byte boundary for 32-bit binaries or on an 8
1915 * byte boundary for 64-bit binaries. However, this change
1916 * was not made correctly during the 64-bit port so all
1917 * descriptions can assume only 4-byte alignment. We ignore
1918 * the name field and the padding to 4-byte alignment.
1919 */
1920 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
1921 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
1922 dprintf("failed to seek past name and padding\n");
1923 *perr = G_STRANGE;
1924 goto err;
1925 }
1926
1927 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
1928 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
1929
1930 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
1931
1932 /*
1933 * Invoke the note handler function from our table
1934 */
1935 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
1936 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
1937 *perr = G_NOTE;
1938 goto err;
1939 }
1940 } else
1941 (void) note_notsup(P, nhdr.n_descsz);
1942
1943 /*
1944 * Seek past the current note data to the next Elf_Nhdr
1945 */
1946 if (lseek64(P->asfd, off + nhdr.n_descsz,
1947 SEEK_SET) == (off64_t)-1) {
1948 dprintf("Pgrab_core: failed to seek to next nhdr\n");
1949 *perr = G_STRANGE;
1950 goto err;
1951 }
1952
1953 /*
1954 * Subtract the size of the header and its data from what
1955 * we have left to process.
1956 */
1957 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz;
1958 }
1959
1960 if (nleft != 0) {
1961 dprintf("Pgrab_core: note section malformed\n");
1962 *perr = G_STRANGE;
1963 goto err;
1964 }
1965
1966 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
1967 pagesize = getpagesize();
1968 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
1969 }
1970
1971 /*
1972 * Locate and label the mappings corresponding to the end of the
1973 * heap (MA_BREAK) and the base of the stack (MA_STACK).
1974 */
1975 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
1976 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
1977 P->status.pr_brksize - 1)) != NULL)
1978 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
1979 else
1980 brk_mp = NULL;
1981
1982 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
1983 stk_mp->map_pmap.pr_mflags |= MA_STACK;
1984
1985 /*
1986 * At this point, we have enough information to look for the
1987 * executable and open it: we have access to the auxv, a psinfo_t,
1988 * and the ability to read from mappings provided by the core file.
1989 */
1990 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
1991 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
1992 execname = P->execname ? P->execname : "a.out";
1993
1994 /*
1995 * Iterate through the sections, looking for the .dynamic and .interp
1996 * sections. If we encounter them, remember their section pointers.
1997 */
1998 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
1999 char *sname;
2000
2001 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2002 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2003 (size_t)shdr.sh_name)) == NULL)
2004 continue;
2005
2006 if (strcmp(sname, ".interp") == 0)
2007 intp_scn = scn;
2008 }
2009
2010 /*
2011 * Get the AT_BASE auxv element. If this is missing (-1), then
2012 * we assume this is a statically-linked executable.
2013 */
2014 base_addr = Pgetauxval(P, AT_BASE);
2015
2016 /*
2017 * In order to get librtld_db initialized, we'll need to identify
2018 * and name the mapping corresponding to the run-time linker. The
2019 * AT_BASE auxv element tells us the address where it was mapped,
2020 * and the .interp section of the executable tells us its path.
2021 * If for some reason that doesn't pan out, just use ld.so.1.
2022 */
2023 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2024 dp->d_size != 0) {
2025 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2026 interp = dp->d_buf;
2027
2028 } else if (base_addr != (uintptr_t)-1L) {
2029 if (P->core->core_dmodel == PR_MODEL_LP64)
2030 interp = "/usr/lib/64/ld.so.1";
2031 else
2032 interp = "/usr/lib/ld.so.1";
2033
2034 dprintf(".interp section is missing or could not be read; "
2035 "defaulting to %s\n", interp);
2036 } else
2037 dprintf("detected statically linked executable\n");
2038
2039 /*
2040 * If we have an AT_BASE element, name the mapping at that address
2041 * using the interpreter pathname. Name the corresponding data
2042 * mapping after the interpreter as well.
2043 */
2044 if (base_addr != (uintptr_t)-1L) {
2045 elf_file_t intf;
2046
2047 P->map_ldso = core_name_mapping(P, base_addr, interp);
2048
2049 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2050 rd_loadobj_t rl;
2051 map_info_t *dmp;
2052
2053 rl.rl_base = base_addr;
2054 dmp = core_find_data(P, intf.e_elf, &rl);
2055
2056 if (dmp != NULL) {
2057 dprintf("renamed data at %p to %s\n",
2058 (void *)rl.rl_data_base, interp);
2059 (void) strncpy(dmp->map_pmap.pr_mapname,
2060 interp, PRMAPSZ);
2061 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2062 }
2063 }
2064
2065 core_elf_close(&intf);
2066 }
2067
2068 /*
2069 * If we have an AT_ENTRY element, name the mapping at that address
2070 * using the special name "a.out" just like /proc does.
2071 */
2072 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2073 P->map_exec = core_name_mapping(P, addr, "a.out");
2074
2075 /*
2076 * If we're a statically linked executable, then just locate the
2077 * executable's text and data and name them after the executable.
2078 */
2079 if (base_addr == (uintptr_t)-1L) {
2080 map_info_t *tmp, *dmp;
2081 file_info_t *fp;
2082 rd_loadobj_t rl;
2083
2084 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2085 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2086 (void) strncpy(tmp->map_pmap.pr_mapname,
2087 execname, PRMAPSZ);
2088 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2089 (void) strncpy(dmp->map_pmap.pr_mapname,
2090 execname, PRMAPSZ);
2091 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2092 }
2093
2094 if ((P->map_exec = tmp) != NULL &&
2095 (fp = malloc(sizeof (file_info_t))) != NULL) {
2096
2097 (void) memset(fp, 0, sizeof (file_info_t));
2098
2099 list_link(fp, &P->file_head);
2100 tmp->map_file = fp;
2101 P->num_files++;
2102
2103 fp->file_ref = 1;
2104 fp->file_fd = -1;
2105
2106 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2107 fp->file_lname = strdup(execname);
2108
2109 if (fp->file_lo)
2110 *fp->file_lo = rl;
2111 if (fp->file_lname)
2112 fp->file_lbase = basename(fp->file_lname);
2113 if (fp->file_rname)
2114 fp->file_rbase = basename(fp->file_rname);
2115
2116 (void) strcpy(fp->file_pname,
2117 P->mappings[0].map_pmap.pr_mapname);
2118 fp->file_map = tmp;
2119
2120 Pbuild_file_symtab(P, fp);
2121
2122 if (dmp != NULL) {
2123 dmp->map_file = fp;
2124 fp->file_ref++;
2125 }
2126 }
2127 }
2128
2129 core_elf_close(&aout);
2130
2131 /*
2132 * We now have enough information to initialize librtld_db.
2133 * After it warms up, we can iterate through the load object chain
2134 * in the core, which will allow us to construct the file info
2135 * we need to provide symbol information for the other shared
2136 * libraries, and also to fill in the missing mapping names.
2137 */
2138 rd_log(_libproc_debug);
2139
2140 if ((P->rap = rd_new(P)) != NULL) {
2141 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2142 core_iter_mapping, P);
2143
2144 if (P->core->core_errno != 0) {
2145 errno = P->core->core_errno;
2146 *perr = G_STRANGE;
2147 goto err;
2148 }
2149 } else
2150 dprintf("failed to initialize rtld_db agent\n");
2151
2152 /*
2153 * If there are sections, load them and process the data from any
2154 * sections that we can use to annotate the file_info_t's.
2155 */
2156 core_load_shdrs(P, &core);
2157
2158 /*
2159 * If we previously located a stack or break mapping, and they are
2160 * still anonymous, we now assume that they were MAP_ANON mappings.
2161 * If brk_mp turns out to now have a name, then the heap is still
2162 * sitting at the end of the executable's data+bss mapping: remove
2163 * the previous MA_BREAK setting to be consistent with /proc.
2164 */
2165 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2166 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2167 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2168 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2169 else if (brk_mp != NULL)
2170 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2171
2172 *perr = 0;
2173 return (P);
2174
2175 err:
2176 Pfree(P);
2177 core_elf_close(&aout);
2178 return (NULL);
2179 }
2180
2181 /*
2182 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2183 */
2184 struct ps_prochandle *
2185 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2186 {
2187 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2188
2189 if ((fd = open64(core, oflag)) >= 0)
2190 return (Pfgrab_core(fd, aout, perr));
2191
2192 if (errno != ENOENT)
2193 *perr = G_STRANGE;
2194 else
2195 *perr = G_NOCORE;
2196
2197 return (NULL);
2198 }