1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/sysmacros.h> 29 #include <sys/signal.h> 30 #include <sys/stack.h> 31 #include <sys/pcb.h> 32 #include <sys/user.h> 33 #include <sys/systm.h> 34 #include <sys/sysinfo.h> 35 #include <sys/errno.h> 36 #include <sys/cmn_err.h> 37 #include <sys/cred.h> 38 #include <sys/resource.h> 39 #include <sys/task.h> 40 #include <sys/project.h> 41 #include <sys/proc.h> 42 #include <sys/debug.h> 43 #include <sys/disp.h> 44 #include <sys/class.h> 45 #include <vm/seg_kmem.h> 46 #include <vm/seg_kp.h> 47 #include <sys/machlock.h> 48 #include <sys/kmem.h> 49 #include <sys/varargs.h> 50 #include <sys/turnstile.h> 51 #include <sys/poll.h> 52 #include <sys/vtrace.h> 53 #include <sys/callb.h> 54 #include <c2/audit.h> 55 #include <sys/tnf.h> 56 #include <sys/sobject.h> 57 #include <sys/cpupart.h> 58 #include <sys/pset.h> 59 #include <sys/door.h> 60 #include <sys/spl.h> 61 #include <sys/copyops.h> 62 #include <sys/rctl.h> 63 #include <sys/brand.h> 64 #include <sys/pool.h> 65 #include <sys/zone.h> 66 #include <sys/tsol/label.h> 67 #include <sys/tsol/tndb.h> 68 #include <sys/cpc_impl.h> 69 #include <sys/sdt.h> 70 #include <sys/reboot.h> 71 #include <sys/kdi.h> 72 #include <sys/schedctl.h> 73 #include <sys/waitq.h> 74 #include <sys/cpucaps.h> 75 #include <sys/kiconv.h> 76 77 struct kmem_cache *thread_cache; /* cache of free threads */ 78 struct kmem_cache *lwp_cache; /* cache of free lwps */ 79 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 80 81 /* 82 * allthreads is only for use by kmem_readers. All kernel loops can use 83 * the current thread as a start/end point. 84 */ 85 static kthread_t *allthreads = &t0; /* circular list of all threads */ 86 87 static kcondvar_t reaper_cv; /* synchronization var */ 88 kthread_t *thread_deathrow; /* circular list of reapable threads */ 89 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 90 kmutex_t reaplock; /* protects lwp and thread deathrows */ 91 int thread_reapcnt = 0; /* number of threads on deathrow */ 92 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 93 int reaplimit = 16; /* delay reaping until reaplimit */ 94 95 thread_free_lock_t *thread_free_lock; 96 /* protects tick thread from reaper */ 97 98 extern int nthread; 99 100 /* System Scheduling classes. */ 101 id_t syscid; /* system scheduling class ID */ 102 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */ 103 104 void *segkp_thread; /* cookie for segkp pool */ 105 106 int lwp_cache_sz = 32; 107 int t_cache_sz = 8; 108 static kt_did_t next_t_id = 1; 109 110 /* Default mode for thread binding to CPUs and processor sets */ 111 int default_binding_mode = TB_ALLHARD; 112 113 /* 114 * Min/Max stack sizes for stack size parameters 115 */ 116 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 117 #define MIN_STKSIZE DEFAULTSTKSZ 118 119 /* 120 * default_stksize overrides lwp_default_stksize if it is set. 121 */ 122 int default_stksize; 123 int lwp_default_stksize; 124 125 static zone_key_t zone_thread_key; 126 127 unsigned int kmem_stackinfo; /* stackinfo feature on-off */ 128 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */ 129 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */ 130 131 /* 132 * forward declarations for internal thread specific data (tsd) 133 */ 134 static void *tsd_realloc(void *, size_t, size_t); 135 136 void thread_reaper(void); 137 138 /* forward declarations for stackinfo feature */ 139 static void stkinfo_begin(kthread_t *); 140 static void stkinfo_end(kthread_t *); 141 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t); 142 143 /*ARGSUSED*/ 144 static int 145 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 146 { 147 bzero(buf, sizeof (turnstile_t)); 148 return (0); 149 } 150 151 /*ARGSUSED*/ 152 static void 153 turnstile_destructor(void *buf, void *cdrarg) 154 { 155 turnstile_t *ts = buf; 156 157 ASSERT(ts->ts_free == NULL); 158 ASSERT(ts->ts_waiters == 0); 159 ASSERT(ts->ts_inheritor == NULL); 160 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 161 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 162 } 163 164 void 165 thread_init(void) 166 { 167 kthread_t *tp; 168 extern char sys_name[]; 169 extern void idle(); 170 struct cpu *cpu = CPU; 171 int i; 172 kmutex_t *lp; 173 174 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 175 thread_free_lock = 176 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 177 for (i = 0; i < THREAD_FREE_NUM; i++) { 178 lp = &thread_free_lock[i].tf_lock; 179 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 180 } 181 182 #if defined(__i386) || defined(__amd64) 183 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 184 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 185 186 /* 187 * "struct _klwp" includes a "struct pcb", which includes a 188 * "struct fpu", which needs to be 64-byte aligned on amd64 189 * (and even on i386) for xsave/xrstor. 190 */ 191 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 192 64, NULL, NULL, NULL, NULL, NULL, 0); 193 #else 194 /* 195 * Allocate thread structures from static_arena. This prevents 196 * issues where a thread tries to relocate its own thread 197 * structure and touches it after the mapping has been suspended. 198 */ 199 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 200 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 201 202 lwp_stk_cache_init(); 203 204 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 205 0, NULL, NULL, NULL, NULL, NULL, 0); 206 #endif 207 208 turnstile_cache = kmem_cache_create("turnstile_cache", 209 sizeof (turnstile_t), 0, 210 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 211 212 label_init(); 213 cred_init(); 214 215 /* 216 * Initialize various resource management facilities. 217 */ 218 rctl_init(); 219 cpucaps_init(); 220 /* 221 * Zone_init() should be called before project_init() so that project ID 222 * for the first project is initialized correctly. 223 */ 224 zone_init(); 225 project_init(); 226 brand_init(); 227 kiconv_init(); 228 task_init(); 229 tcache_init(); 230 pool_init(); 231 232 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 233 234 /* 235 * Originally, we had two parameters to set default stack 236 * size: one for lwp's (lwp_default_stksize), and one for 237 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 238 * Now we have a third parameter that overrides both if it is 239 * set to a legal stack size, called default_stksize. 240 */ 241 242 if (default_stksize == 0) { 243 default_stksize = DEFAULTSTKSZ; 244 } else if (default_stksize % PAGESIZE != 0 || 245 default_stksize > MAX_STKSIZE || 246 default_stksize < MIN_STKSIZE) { 247 cmn_err(CE_WARN, "Illegal stack size. Using %d", 248 (int)DEFAULTSTKSZ); 249 default_stksize = DEFAULTSTKSZ; 250 } else { 251 lwp_default_stksize = default_stksize; 252 } 253 254 if (lwp_default_stksize == 0) { 255 lwp_default_stksize = default_stksize; 256 } else if (lwp_default_stksize % PAGESIZE != 0 || 257 lwp_default_stksize > MAX_STKSIZE || 258 lwp_default_stksize < MIN_STKSIZE) { 259 cmn_err(CE_WARN, "Illegal stack size. Using %d", 260 default_stksize); 261 lwp_default_stksize = default_stksize; 262 } 263 264 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 265 lwp_default_stksize, 266 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 267 268 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 269 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 270 271 (void) getcid(sys_name, &syscid); 272 curthread->t_cid = syscid; /* current thread is t0 */ 273 274 /* 275 * Set up the first CPU's idle thread. 276 * It runs whenever the CPU has nothing worthwhile to do. 277 */ 278 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 279 cpu->cpu_idle_thread = tp; 280 tp->t_preempt = 1; 281 tp->t_disp_queue = cpu->cpu_disp; 282 ASSERT(tp->t_disp_queue != NULL); 283 tp->t_bound_cpu = cpu; 284 tp->t_affinitycnt = 1; 285 286 /* 287 * Registering a thread in the callback table is usually 288 * done in the initialization code of the thread. In this 289 * case, we do it right after thread creation to avoid 290 * blocking idle thread while registering itself. It also 291 * avoids the possibility of reregistration in case a CPU 292 * restarts its idle thread. 293 */ 294 CALLB_CPR_INIT_SAFE(tp, "idle"); 295 296 /* 297 * Create the thread_reaper daemon. From this point on, exited 298 * threads will get reaped. 299 */ 300 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 301 NULL, 0, &p0, TS_RUN, minclsyspri); 302 303 /* 304 * Finish initializing the kernel memory allocator now that 305 * thread_create() is available. 306 */ 307 kmem_thread_init(); 308 309 if (boothowto & RB_DEBUG) 310 kdi_dvec_thravail(); 311 } 312 313 /* 314 * Create a thread. 315 * 316 * thread_create() blocks for memory if necessary. It never fails. 317 * 318 * If stk is NULL, the thread is created at the base of the stack 319 * and cannot be swapped. 320 */ 321 kthread_t * 322 thread_create(caddr_t stk, size_t stksize, void (*proc)(), void *arg, 323 size_t len, proc_t *pp, int state, pri_t pri) 324 { 325 kthread_t *t; 326 extern struct classfuncs sys_classfuncs; 327 turnstile_t *ts; 328 329 /* 330 * Every thread keeps a turnstile around in case it needs to block. 331 * The only reason the turnstile is not simply part of the thread 332 * structure is that we may have to break the association whenever 333 * more than one thread blocks on a given synchronization object. 334 * From a memory-management standpoint, turnstiles are like the 335 * "attached mblks" that hang off dblks in the streams allocator. 336 */ 337 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 338 339 if (stk == NULL) { 340 /* 341 * alloc both thread and stack in segkp chunk 342 */ 343 344 if (stksize < default_stksize) 345 stksize = default_stksize; 346 347 if (stksize == default_stksize) { 348 stk = (caddr_t)segkp_cache_get(segkp_thread); 349 } else { 350 stksize = roundup(stksize, PAGESIZE); 351 stk = (caddr_t)segkp_get(segkp, stksize, 352 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 353 } 354 355 ASSERT(stk != NULL); 356 357 /* 358 * The machine-dependent mutex code may require that 359 * thread pointers (since they may be used for mutex owner 360 * fields) have certain alignment requirements. 361 * PTR24_ALIGN is the size of the alignment quanta. 362 * XXX - assumes stack grows toward low addresses. 363 */ 364 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 365 cmn_err(CE_PANIC, "thread_create: proposed stack size" 366 " too small to hold thread."); 367 #ifdef STACK_GROWTH_DOWN 368 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 369 stksize &= -PTR24_ALIGN; /* make thread aligned */ 370 t = (kthread_t *)(stk + stksize); 371 bzero(t, sizeof (kthread_t)); 372 if (audit_active) 373 audit_thread_create(t); 374 t->t_stk = stk + stksize; 375 t->t_stkbase = stk; 376 #else /* stack grows to larger addresses */ 377 stksize -= SA(sizeof (kthread_t)); 378 t = (kthread_t *)(stk); 379 bzero(t, sizeof (kthread_t)); 380 t->t_stk = stk + sizeof (kthread_t); 381 t->t_stkbase = stk + stksize + sizeof (kthread_t); 382 #endif /* STACK_GROWTH_DOWN */ 383 t->t_flag |= T_TALLOCSTK; 384 t->t_swap = stk; 385 } else { 386 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 387 bzero(t, sizeof (kthread_t)); 388 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 389 if (audit_active) 390 audit_thread_create(t); 391 /* 392 * Initialize t_stk to the kernel stack pointer to use 393 * upon entry to the kernel 394 */ 395 #ifdef STACK_GROWTH_DOWN 396 t->t_stk = stk + stksize; 397 t->t_stkbase = stk; 398 #else 399 t->t_stk = stk; /* 3b2-like */ 400 t->t_stkbase = stk + stksize; 401 #endif /* STACK_GROWTH_DOWN */ 402 } 403 404 if (kmem_stackinfo != 0) { 405 stkinfo_begin(t); 406 } 407 408 t->t_ts = ts; 409 410 /* 411 * p_cred could be NULL if it thread_create is called before cred_init 412 * is called in main. 413 */ 414 mutex_enter(&pp->p_crlock); 415 if (pp->p_cred) 416 crhold(t->t_cred = pp->p_cred); 417 mutex_exit(&pp->p_crlock); 418 t->t_start = gethrestime_sec(); 419 t->t_startpc = proc; 420 t->t_procp = pp; 421 t->t_clfuncs = &sys_classfuncs.thread; 422 t->t_cid = syscid; 423 t->t_pri = pri; 424 t->t_stime = ddi_get_lbolt(); 425 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 426 t->t_bind_cpu = PBIND_NONE; 427 t->t_bindflag = (uchar_t)default_binding_mode; 428 t->t_bind_pset = PS_NONE; 429 t->t_plockp = &pp->p_lock; 430 t->t_copyops = NULL; 431 t->t_taskq = NULL; 432 t->t_anttime = 0; 433 t->t_hatdepth = 0; 434 435 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 436 437 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 438 #ifndef NPROBE 439 /* Kernel probe */ 440 tnf_thread_create(t); 441 #endif /* NPROBE */ 442 LOCK_INIT_CLEAR(&t->t_lock); 443 444 /* 445 * Callers who give us a NULL proc must do their own 446 * stack initialization. e.g. lwp_create() 447 */ 448 if (proc != NULL) { 449 t->t_stk = thread_stk_init(t->t_stk); 450 thread_load(t, proc, arg, len); 451 } 452 453 /* 454 * Put a hold on project0. If this thread is actually in a 455 * different project, then t_proj will be changed later in 456 * lwp_create(). All kernel-only threads must be in project 0. 457 */ 458 t->t_proj = project_hold(proj0p); 459 460 lgrp_affinity_init(&t->t_lgrp_affinity); 461 462 mutex_enter(&pidlock); 463 nthread++; 464 t->t_did = next_t_id++; 465 t->t_prev = curthread->t_prev; 466 t->t_next = curthread; 467 468 /* 469 * Add the thread to the list of all threads, and initialize 470 * its t_cpu pointer. We need to block preemption since 471 * cpu_offline walks the thread list looking for threads 472 * with t_cpu pointing to the CPU being offlined. We want 473 * to make sure that the list is consistent and that if t_cpu 474 * is set, the thread is on the list. 475 */ 476 kpreempt_disable(); 477 curthread->t_prev->t_next = t; 478 curthread->t_prev = t; 479 480 /* 481 * Threads should never have a NULL t_cpu pointer so assign it 482 * here. If the thread is being created with state TS_RUN a 483 * better CPU may be chosen when it is placed on the run queue. 484 * 485 * We need to keep kernel preemption disabled when setting all 486 * three fields to keep them in sync. Also, always create in 487 * the default partition since that's where kernel threads go 488 * (if this isn't a kernel thread, t_cpupart will be changed 489 * in lwp_create before setting the thread runnable). 490 */ 491 t->t_cpupart = &cp_default; 492 493 /* 494 * For now, affiliate this thread with the root lgroup. 495 * Since the kernel does not (presently) allocate its memory 496 * in a locality aware fashion, the root is an appropriate home. 497 * If this thread is later associated with an lwp, it will have 498 * it's lgroup re-assigned at that time. 499 */ 500 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 501 502 /* 503 * Inherit the current cpu. If this cpu isn't part of the chosen 504 * lgroup, a new cpu will be chosen by cpu_choose when the thread 505 * is ready to run. 506 */ 507 if (CPU->cpu_part == &cp_default) 508 t->t_cpu = CPU; 509 else 510 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 511 t->t_pri, NULL); 512 513 t->t_disp_queue = t->t_cpu->cpu_disp; 514 kpreempt_enable(); 515 516 /* 517 * Initialize thread state and the dispatcher lock pointer. 518 * Need to hold onto pidlock to block allthreads walkers until 519 * the state is set. 520 */ 521 switch (state) { 522 case TS_RUN: 523 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 524 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 525 CL_SETRUN(t); 526 thread_unlock(t); 527 break; 528 529 case TS_ONPROC: 530 THREAD_ONPROC(t, t->t_cpu); 531 break; 532 533 case TS_FREE: 534 /* 535 * Free state will be used for intr threads. 536 * The interrupt routine must set the thread dispatcher 537 * lock pointer (t_lockp) if starting on a CPU 538 * other than the current one. 539 */ 540 THREAD_FREEINTR(t, CPU); 541 break; 542 543 case TS_STOPPED: 544 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 545 break; 546 547 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 548 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 549 } 550 mutex_exit(&pidlock); 551 return (t); 552 } 553 554 /* 555 * Move thread to project0 and take care of project reference counters. 556 */ 557 void 558 thread_rele(kthread_t *t) 559 { 560 kproject_t *kpj; 561 562 thread_lock(t); 563 564 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 565 kpj = ttoproj(t); 566 t->t_proj = proj0p; 567 568 thread_unlock(t); 569 570 if (kpj != proj0p) { 571 project_rele(kpj); 572 (void) project_hold(proj0p); 573 } 574 } 575 576 void 577 thread_exit(void) 578 { 579 kthread_t *t = curthread; 580 581 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 582 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 583 584 tsd_exit(); /* Clean up this thread's TSD */ 585 586 kcpc_passivate(); /* clean up performance counter state */ 587 588 /* 589 * No kernel thread should have called poll() without arranging 590 * calling pollcleanup() here. 591 */ 592 ASSERT(t->t_pollstate == NULL); 593 ASSERT(t->t_schedctl == NULL); 594 if (t->t_door) 595 door_slam(); /* in case thread did an upcall */ 596 597 #ifndef NPROBE 598 /* Kernel probe */ 599 if (t->t_tnf_tpdp) 600 tnf_thread_exit(); 601 #endif /* NPROBE */ 602 603 thread_rele(t); 604 t->t_preempt++; 605 606 /* 607 * remove thread from the all threads list so that 608 * death-row can use the same pointers. 609 */ 610 mutex_enter(&pidlock); 611 t->t_next->t_prev = t->t_prev; 612 t->t_prev->t_next = t->t_next; 613 ASSERT(allthreads != t); /* t0 never exits */ 614 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 615 mutex_exit(&pidlock); 616 617 if (t->t_ctx != NULL) 618 exitctx(t); 619 if (t->t_procp->p_pctx != NULL) 620 exitpctx(t->t_procp); 621 622 if (kmem_stackinfo != 0) { 623 stkinfo_end(t); 624 } 625 626 t->t_state = TS_ZOMB; /* set zombie thread */ 627 628 swtch_from_zombie(); /* give up the CPU */ 629 /* NOTREACHED */ 630 } 631 632 /* 633 * Check to see if the specified thread is active (defined as being on 634 * the thread list). This is certainly a slow way to do this; if there's 635 * ever a reason to speed it up, we could maintain a hash table of active 636 * threads indexed by their t_did. 637 */ 638 static kthread_t * 639 did_to_thread(kt_did_t tid) 640 { 641 kthread_t *t; 642 643 ASSERT(MUTEX_HELD(&pidlock)); 644 for (t = curthread->t_next; t != curthread; t = t->t_next) { 645 if (t->t_did == tid) 646 break; 647 } 648 if (t->t_did == tid) 649 return (t); 650 else 651 return (NULL); 652 } 653 654 /* 655 * Wait for specified thread to exit. Returns immediately if the thread 656 * could not be found, meaning that it has either already exited or never 657 * existed. 658 */ 659 void 660 thread_join(kt_did_t tid) 661 { 662 kthread_t *t; 663 664 ASSERT(tid != curthread->t_did); 665 ASSERT(tid != t0.t_did); 666 667 mutex_enter(&pidlock); 668 /* 669 * Make sure we check that the thread is on the thread list 670 * before blocking on it; otherwise we could end up blocking on 671 * a cv that's already been freed. In other words, don't cache 672 * the thread pointer across calls to cv_wait. 673 * 674 * The choice of loop invariant means that whenever a thread 675 * is taken off the allthreads list, a cv_broadcast must be 676 * performed on that thread's t_joincv to wake up any waiters. 677 * The broadcast doesn't have to happen right away, but it 678 * shouldn't be postponed indefinitely (e.g., by doing it in 679 * thread_free which may only be executed when the deathrow 680 * queue is processed. 681 */ 682 while (t = did_to_thread(tid)) 683 cv_wait(&t->t_joincv, &pidlock); 684 mutex_exit(&pidlock); 685 } 686 687 void 688 thread_free_prevent(kthread_t *t) 689 { 690 kmutex_t *lp; 691 692 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 693 mutex_enter(lp); 694 } 695 696 void 697 thread_free_allow(kthread_t *t) 698 { 699 kmutex_t *lp; 700 701 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 702 mutex_exit(lp); 703 } 704 705 static void 706 thread_free_barrier(kthread_t *t) 707 { 708 kmutex_t *lp; 709 710 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 711 mutex_enter(lp); 712 mutex_exit(lp); 713 } 714 715 void 716 thread_free(kthread_t *t) 717 { 718 boolean_t allocstk = (t->t_flag & T_TALLOCSTK); 719 klwp_t *lwp = t->t_lwp; 720 caddr_t swap = t->t_swap; 721 722 ASSERT(t != &t0 && t->t_state == TS_FREE); 723 ASSERT(t->t_door == NULL); 724 ASSERT(t->t_schedctl == NULL); 725 ASSERT(t->t_pollstate == NULL); 726 727 t->t_pri = 0; 728 t->t_pc = 0; 729 t->t_sp = 0; 730 t->t_wchan0 = NULL; 731 t->t_wchan = NULL; 732 if (t->t_cred != NULL) { 733 crfree(t->t_cred); 734 t->t_cred = 0; 735 } 736 if (t->t_pdmsg) { 737 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 738 t->t_pdmsg = NULL; 739 } 740 if (audit_active) 741 audit_thread_free(t); 742 #ifndef NPROBE 743 if (t->t_tnf_tpdp) 744 tnf_thread_free(t); 745 #endif /* NPROBE */ 746 if (t->t_cldata) { 747 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 748 } 749 if (t->t_rprof != NULL) { 750 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 751 t->t_rprof = NULL; 752 } 753 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 754 if (lwp) 755 lwp_freeregs(lwp, 0); 756 if (t->t_ctx) 757 freectx(t, 0); 758 t->t_stk = NULL; 759 if (lwp) 760 lwp_stk_fini(lwp); 761 lock_clear(&t->t_lock); 762 763 if (t->t_ts->ts_waiters > 0) 764 panic("thread_free: turnstile still active"); 765 766 kmem_cache_free(turnstile_cache, t->t_ts); 767 768 free_afd(&t->t_activefd); 769 770 /* 771 * Barrier for the tick accounting code. The tick accounting code 772 * holds this lock to keep the thread from going away while it's 773 * looking at it. 774 */ 775 thread_free_barrier(t); 776 777 ASSERT(ttoproj(t) == proj0p); 778 project_rele(ttoproj(t)); 779 780 lgrp_affinity_free(&t->t_lgrp_affinity); 781 782 mutex_enter(&pidlock); 783 nthread--; 784 mutex_exit(&pidlock); 785 786 /* 787 * Free thread, lwp and stack. This needs to be done carefully, since 788 * if T_TALLOCSTK is set, the thread is part of the stack. 789 */ 790 t->t_lwp = NULL; 791 t->t_swap = NULL; 792 793 if (swap) { 794 segkp_release(segkp, swap); 795 } 796 if (lwp) { 797 kmem_cache_free(lwp_cache, lwp); 798 } 799 if (!allocstk) { 800 kmem_cache_free(thread_cache, t); 801 } 802 } 803 804 /* 805 * Removes threads associated with the given zone from a deathrow queue. 806 * tp is a pointer to the head of the deathrow queue, and countp is a 807 * pointer to the current deathrow count. Returns a linked list of 808 * threads removed from the list. 809 */ 810 static kthread_t * 811 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 812 { 813 kthread_t *tmp, *list = NULL; 814 cred_t *cr; 815 816 ASSERT(MUTEX_HELD(&reaplock)); 817 while (*tp != NULL) { 818 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 819 tmp = *tp; 820 *tp = tmp->t_forw; 821 tmp->t_forw = list; 822 list = tmp; 823 (*countp)--; 824 } else { 825 tp = &(*tp)->t_forw; 826 } 827 } 828 return (list); 829 } 830 831 static void 832 thread_reap_list(kthread_t *t) 833 { 834 kthread_t *next; 835 836 while (t != NULL) { 837 next = t->t_forw; 838 thread_free(t); 839 t = next; 840 } 841 } 842 843 /* ARGSUSED */ 844 static void 845 thread_zone_destroy(zoneid_t zoneid, void *unused) 846 { 847 kthread_t *t, *l; 848 849 mutex_enter(&reaplock); 850 /* 851 * Pull threads and lwps associated with zone off deathrow lists. 852 */ 853 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 854 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 855 mutex_exit(&reaplock); 856 857 /* 858 * Guard against race condition in mutex_owner_running: 859 * thread=owner(mutex) 860 * <interrupt> 861 * thread exits mutex 862 * thread exits 863 * thread reaped 864 * thread struct freed 865 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 866 * A cross call to all cpus will cause the interrupt handler 867 * to reset the PC if it is in mutex_owner_running, refreshing 868 * stale thread pointers. 869 */ 870 mutex_sync(); /* sync with mutex code */ 871 872 /* 873 * Reap threads 874 */ 875 thread_reap_list(t); 876 877 /* 878 * Reap lwps 879 */ 880 thread_reap_list(l); 881 } 882 883 /* 884 * cleanup zombie threads that are on deathrow. 885 */ 886 void 887 thread_reaper(void) 888 { 889 kthread_t *t, *l; 890 callb_cpr_t cprinfo; 891 892 /* 893 * Register callback to clean up threads when zone is destroyed. 894 */ 895 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 896 897 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 898 for (;;) { 899 mutex_enter(&reaplock); 900 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 901 CALLB_CPR_SAFE_BEGIN(&cprinfo); 902 cv_wait(&reaper_cv, &reaplock); 903 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 904 } 905 /* 906 * mutex_sync() needs to be called when reaping, but 907 * not too often. We limit reaping rate to once 908 * per second. Reaplimit is max rate at which threads can 909 * be freed. Does not impact thread destruction/creation. 910 */ 911 t = thread_deathrow; 912 l = lwp_deathrow; 913 thread_deathrow = NULL; 914 lwp_deathrow = NULL; 915 thread_reapcnt = 0; 916 lwp_reapcnt = 0; 917 mutex_exit(&reaplock); 918 919 /* 920 * Guard against race condition in mutex_owner_running: 921 * thread=owner(mutex) 922 * <interrupt> 923 * thread exits mutex 924 * thread exits 925 * thread reaped 926 * thread struct freed 927 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 928 * A cross call to all cpus will cause the interrupt handler 929 * to reset the PC if it is in mutex_owner_running, refreshing 930 * stale thread pointers. 931 */ 932 mutex_sync(); /* sync with mutex code */ 933 /* 934 * Reap threads 935 */ 936 thread_reap_list(t); 937 938 /* 939 * Reap lwps 940 */ 941 thread_reap_list(l); 942 delay(hz); 943 } 944 } 945 946 /* 947 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto 948 * thread_deathrow. The thread's state is changed already TS_FREE to indicate 949 * that is reapable. The thread already holds the reaplock, and was already 950 * freed. 951 */ 952 void 953 reapq_move_lq_to_tq(kthread_t *t) 954 { 955 ASSERT(t->t_state == TS_FREE); 956 ASSERT(MUTEX_HELD(&reaplock)); 957 t->t_forw = thread_deathrow; 958 thread_deathrow = t; 959 thread_reapcnt++; 960 if (lwp_reapcnt + thread_reapcnt > reaplimit) 961 cv_signal(&reaper_cv); /* wake the reaper */ 962 } 963 964 /* 965 * This is called by resume() to put a zombie thread onto deathrow. 966 * The thread's state is changed to TS_FREE to indicate that is reapable. 967 * This is called from the idle thread so it must not block - just spin. 968 */ 969 void 970 reapq_add(kthread_t *t) 971 { 972 mutex_enter(&reaplock); 973 974 /* 975 * lwp_deathrow contains threads with lwp linkage and 976 * swappable thread stacks which have the default stacksize. 977 * These threads' lwps and stacks may be reused by lwp_create(). 978 * 979 * Anything else goes on thread_deathrow(), where it will eventually 980 * be thread_free()d. 981 */ 982 if (t->t_flag & T_LWPREUSE) { 983 ASSERT(ttolwp(t) != NULL); 984 t->t_forw = lwp_deathrow; 985 lwp_deathrow = t; 986 lwp_reapcnt++; 987 } else { 988 t->t_forw = thread_deathrow; 989 thread_deathrow = t; 990 thread_reapcnt++; 991 } 992 if (lwp_reapcnt + thread_reapcnt > reaplimit) 993 cv_signal(&reaper_cv); /* wake the reaper */ 994 t->t_state = TS_FREE; 995 lock_clear(&t->t_lock); 996 997 /* 998 * Before we return, we need to grab and drop the thread lock for 999 * the dead thread. At this point, the current thread is the idle 1000 * thread, and the dead thread's CPU lock points to the current 1001 * CPU -- and we must grab and drop the lock to synchronize with 1002 * a racing thread walking a blocking chain that the zombie thread 1003 * was recently in. By this point, that blocking chain is (by 1004 * definition) stale: the dead thread is not holding any locks, and 1005 * is therefore not in any blocking chains -- but if we do not regrab 1006 * our lock before freeing the dead thread's data structures, the 1007 * thread walking the (stale) blocking chain will die on memory 1008 * corruption when it attempts to drop the dead thread's lock. We 1009 * only need do this once because there is no way for the dead thread 1010 * to ever again be on a blocking chain: once we have grabbed and 1011 * dropped the thread lock, we are guaranteed that anyone that could 1012 * have seen this thread in a blocking chain can no longer see it. 1013 */ 1014 thread_lock(t); 1015 thread_unlock(t); 1016 1017 mutex_exit(&reaplock); 1018 } 1019 1020 /* 1021 * Install thread context ops for the current thread. 1022 */ 1023 void 1024 installctx(kthread_t *t, void *arg, void (*save)(void *), 1025 void (*restore)(void *), void (*fork)(void *, void *), 1026 void (*lwp_create)(void *, void *), void (*exit)(void *), 1027 void (*free)(void *, int)) 1028 { 1029 struct ctxop *ctx; 1030 1031 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 1032 ctx->save_op = save; 1033 ctx->restore_op = restore; 1034 ctx->fork_op = fork; 1035 ctx->lwp_create_op = lwp_create; 1036 ctx->exit_op = exit; 1037 ctx->free_op = free; 1038 ctx->arg = arg; 1039 ctx->next = t->t_ctx; 1040 t->t_ctx = ctx; 1041 } 1042 1043 /* 1044 * Remove the thread context ops from a thread. 1045 */ 1046 int 1047 removectx(kthread_t *t, void *arg, void (*save)(void *), 1048 void (*restore)(void *), void (*fork)(void *, void *), 1049 void (*lwp_create)(void *, void *), void (*exit)(void *), 1050 void (*free)(void *, int)) 1051 { 1052 struct ctxop *ctx, *prev_ctx; 1053 1054 /* 1055 * The incoming kthread_t (which is the thread for which the 1056 * context ops will be removed) should be one of the following: 1057 * 1058 * a) the current thread, 1059 * 1060 * b) a thread of a process that's being forked (SIDL), 1061 * 1062 * c) a thread that belongs to the same process as the current 1063 * thread and for which the current thread is the agent thread, 1064 * 1065 * d) a thread that is TS_STOPPED which is indicative of it 1066 * being (if curthread is not an agent) a thread being created 1067 * as part of an lwp creation. 1068 */ 1069 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1070 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1071 1072 /* 1073 * Serialize modifications to t->t_ctx to prevent the agent thread 1074 * and the target thread from racing with each other during lwp exit. 1075 */ 1076 mutex_enter(&t->t_ctx_lock); 1077 prev_ctx = NULL; 1078 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 1079 if (ctx->save_op == save && ctx->restore_op == restore && 1080 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 1081 ctx->exit_op == exit && ctx->free_op == free && 1082 ctx->arg == arg) { 1083 if (prev_ctx) 1084 prev_ctx->next = ctx->next; 1085 else 1086 t->t_ctx = ctx->next; 1087 mutex_exit(&t->t_ctx_lock); 1088 if (ctx->free_op != NULL) 1089 (ctx->free_op)(ctx->arg, 0); 1090 kmem_free(ctx, sizeof (struct ctxop)); 1091 return (1); 1092 } 1093 prev_ctx = ctx; 1094 } 1095 mutex_exit(&t->t_ctx_lock); 1096 1097 return (0); 1098 } 1099 1100 void 1101 savectx(kthread_t *t) 1102 { 1103 struct ctxop *ctx; 1104 1105 ASSERT(t == curthread); 1106 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1107 if (ctx->save_op != NULL) 1108 (ctx->save_op)(ctx->arg); 1109 } 1110 1111 void 1112 restorectx(kthread_t *t) 1113 { 1114 struct ctxop *ctx; 1115 1116 ASSERT(t == curthread); 1117 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1118 if (ctx->restore_op != NULL) 1119 (ctx->restore_op)(ctx->arg); 1120 } 1121 1122 void 1123 forkctx(kthread_t *t, kthread_t *ct) 1124 { 1125 struct ctxop *ctx; 1126 1127 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1128 if (ctx->fork_op != NULL) 1129 (ctx->fork_op)(t, ct); 1130 } 1131 1132 /* 1133 * Note that this operator is only invoked via the _lwp_create 1134 * system call. The system may have other reasons to create lwps 1135 * e.g. the agent lwp or the doors unreferenced lwp. 1136 */ 1137 void 1138 lwp_createctx(kthread_t *t, kthread_t *ct) 1139 { 1140 struct ctxop *ctx; 1141 1142 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1143 if (ctx->lwp_create_op != NULL) 1144 (ctx->lwp_create_op)(t, ct); 1145 } 1146 1147 /* 1148 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1149 * needed when the thread/LWP leaves the processor for the last time. This 1150 * routine is not intended to deal with freeing memory; freectx() is used for 1151 * that purpose during thread_free(). This routine is provided to allow for 1152 * clean-up that can't wait until thread_free(). 1153 */ 1154 void 1155 exitctx(kthread_t *t) 1156 { 1157 struct ctxop *ctx; 1158 1159 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1160 if (ctx->exit_op != NULL) 1161 (ctx->exit_op)(t); 1162 } 1163 1164 /* 1165 * freectx is called from thread_free() and exec() to get 1166 * rid of old thread context ops. 1167 */ 1168 void 1169 freectx(kthread_t *t, int isexec) 1170 { 1171 struct ctxop *ctx; 1172 1173 while ((ctx = t->t_ctx) != NULL) { 1174 t->t_ctx = ctx->next; 1175 if (ctx->free_op != NULL) 1176 (ctx->free_op)(ctx->arg, isexec); 1177 kmem_free(ctx, sizeof (struct ctxop)); 1178 } 1179 } 1180 1181 /* 1182 * freectx_ctx is called from lwp_create() when lwp is reused from 1183 * lwp_deathrow and its thread structure is added to thread_deathrow. 1184 * The thread structure to which this ctx was attached may be already 1185 * freed by the thread reaper so free_op implementations shouldn't rely 1186 * on thread structure to which this ctx was attached still being around. 1187 */ 1188 void 1189 freectx_ctx(struct ctxop *ctx) 1190 { 1191 struct ctxop *nctx; 1192 1193 ASSERT(ctx != NULL); 1194 1195 do { 1196 nctx = ctx->next; 1197 if (ctx->free_op != NULL) 1198 (ctx->free_op)(ctx->arg, 0); 1199 kmem_free(ctx, sizeof (struct ctxop)); 1200 } while ((ctx = nctx) != NULL); 1201 } 1202 1203 /* 1204 * Set the thread running; arrange for it to be swapped in if necessary. 1205 */ 1206 void 1207 setrun_locked(kthread_t *t) 1208 { 1209 ASSERT(THREAD_LOCK_HELD(t)); 1210 if (t->t_state == TS_SLEEP) { 1211 /* 1212 * Take off sleep queue. 1213 */ 1214 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1215 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1216 /* 1217 * Already on dispatcher queue. 1218 */ 1219 return; 1220 } else if (t->t_state == TS_WAIT) { 1221 waitq_setrun(t); 1222 } else if (t->t_state == TS_STOPPED) { 1223 /* 1224 * All of the sending of SIGCONT (TC_XSTART) and /proc 1225 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1226 * requested that the thread be run. 1227 * Just calling setrun() is not sufficient to set a stopped 1228 * thread running. TP_TXSTART is always set if the thread 1229 * is not stopped by a jobcontrol stop signal. 1230 * TP_TPSTART is always set if /proc is not controlling it. 1231 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1232 * The thread won't be stopped unless one of these 1233 * three mechanisms did it. 1234 * 1235 * These flags must be set before calling setrun_locked(t). 1236 * They can't be passed as arguments because the streams 1237 * code calls setrun() indirectly and the mechanism for 1238 * doing so admits only one argument. Note that the 1239 * thread must be locked in order to change t_schedflags. 1240 */ 1241 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1242 return; 1243 /* 1244 * Process is no longer stopped (a thread is running). 1245 */ 1246 t->t_whystop = 0; 1247 t->t_whatstop = 0; 1248 /* 1249 * Strictly speaking, we do not have to clear these 1250 * flags here; they are cleared on entry to stop(). 1251 * However, they are confusing when doing kernel 1252 * debugging or when they are revealed by ps(1). 1253 */ 1254 t->t_schedflag &= ~TS_ALLSTART; 1255 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1256 ASSERT(t->t_lockp == &transition_lock); 1257 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1258 /* 1259 * Let the class put the process on the dispatcher queue. 1260 */ 1261 CL_SETRUN(t); 1262 } 1263 } 1264 1265 void 1266 setrun(kthread_t *t) 1267 { 1268 thread_lock(t); 1269 setrun_locked(t); 1270 thread_unlock(t); 1271 } 1272 1273 /* 1274 * Unpin an interrupted thread. 1275 * When an interrupt occurs, the interrupt is handled on the stack 1276 * of an interrupt thread, taken from a pool linked to the CPU structure. 1277 * 1278 * When swtch() is switching away from an interrupt thread because it 1279 * blocked or was preempted, this routine is called to complete the 1280 * saving of the interrupted thread state, and returns the interrupted 1281 * thread pointer so it may be resumed. 1282 * 1283 * Called by swtch() only at high spl. 1284 */ 1285 kthread_t * 1286 thread_unpin(void) 1287 { 1288 kthread_t *t = curthread; /* current thread */ 1289 kthread_t *itp; /* interrupted thread */ 1290 int i; /* interrupt level */ 1291 extern int intr_passivate(); 1292 1293 ASSERT(t->t_intr != NULL); 1294 1295 itp = t->t_intr; /* interrupted thread */ 1296 t->t_intr = NULL; /* clear interrupt ptr */ 1297 1298 /* 1299 * Get state from interrupt thread for the one 1300 * it interrupted. 1301 */ 1302 1303 i = intr_passivate(t, itp); 1304 1305 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1306 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1307 i, t, t, itp, itp); 1308 1309 /* 1310 * Dissociate the current thread from the interrupted thread's LWP. 1311 */ 1312 t->t_lwp = NULL; 1313 1314 /* 1315 * Interrupt handlers above the level that spinlocks block must 1316 * not block. 1317 */ 1318 #if DEBUG 1319 if (i < 0 || i > LOCK_LEVEL) 1320 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1321 #endif 1322 1323 /* 1324 * Compute the CPU's base interrupt level based on the active 1325 * interrupts. 1326 */ 1327 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1328 set_base_spl(); 1329 1330 return (itp); 1331 } 1332 1333 /* 1334 * TSD -- THREAD SPECIFIC DATA 1335 */ 1336 static kmutex_t tsd_mutex; /* linked list spin lock */ 1337 static uint_t tsd_nkeys; /* size of destructor array */ 1338 /* per-key destructor funcs */ 1339 static void (**tsd_destructor)(void *); 1340 /* list of tsd_thread's */ 1341 static struct tsd_thread *tsd_list; 1342 1343 /* 1344 * Default destructor 1345 * Needed because NULL destructor means that the key is unused 1346 */ 1347 /* ARGSUSED */ 1348 void 1349 tsd_defaultdestructor(void *value) 1350 {} 1351 1352 /* 1353 * Create a key (index into per thread array) 1354 * Locks out tsd_create, tsd_destroy, and tsd_exit 1355 * May allocate memory with lock held 1356 */ 1357 void 1358 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1359 { 1360 int i; 1361 uint_t nkeys; 1362 1363 /* 1364 * if key is allocated, do nothing 1365 */ 1366 mutex_enter(&tsd_mutex); 1367 if (*keyp) { 1368 mutex_exit(&tsd_mutex); 1369 return; 1370 } 1371 /* 1372 * find an unused key 1373 */ 1374 if (destructor == NULL) 1375 destructor = tsd_defaultdestructor; 1376 1377 for (i = 0; i < tsd_nkeys; ++i) 1378 if (tsd_destructor[i] == NULL) 1379 break; 1380 1381 /* 1382 * if no unused keys, increase the size of the destructor array 1383 */ 1384 if (i == tsd_nkeys) { 1385 if ((nkeys = (tsd_nkeys << 1)) == 0) 1386 nkeys = 1; 1387 tsd_destructor = 1388 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1389 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1390 (size_t)(nkeys * sizeof (void (*)(void *)))); 1391 tsd_nkeys = nkeys; 1392 } 1393 1394 /* 1395 * allocate the next available unused key 1396 */ 1397 tsd_destructor[i] = destructor; 1398 *keyp = i + 1; 1399 mutex_exit(&tsd_mutex); 1400 } 1401 1402 /* 1403 * Destroy a key -- this is for unloadable modules 1404 * 1405 * Assumes that the caller is preventing tsd_set and tsd_get 1406 * Locks out tsd_create, tsd_destroy, and tsd_exit 1407 * May free memory with lock held 1408 */ 1409 void 1410 tsd_destroy(uint_t *keyp) 1411 { 1412 uint_t key; 1413 struct tsd_thread *tsd; 1414 1415 /* 1416 * protect the key namespace and our destructor lists 1417 */ 1418 mutex_enter(&tsd_mutex); 1419 key = *keyp; 1420 *keyp = 0; 1421 1422 ASSERT(key <= tsd_nkeys); 1423 1424 /* 1425 * if the key is valid 1426 */ 1427 if (key != 0) { 1428 uint_t k = key - 1; 1429 /* 1430 * for every thread with TSD, call key's destructor 1431 */ 1432 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1433 /* 1434 * no TSD for key in this thread 1435 */ 1436 if (key > tsd->ts_nkeys) 1437 continue; 1438 /* 1439 * call destructor for key 1440 */ 1441 if (tsd->ts_value[k] && tsd_destructor[k]) 1442 (*tsd_destructor[k])(tsd->ts_value[k]); 1443 /* 1444 * reset value for key 1445 */ 1446 tsd->ts_value[k] = NULL; 1447 } 1448 /* 1449 * actually free the key (NULL destructor == unused) 1450 */ 1451 tsd_destructor[k] = NULL; 1452 } 1453 1454 mutex_exit(&tsd_mutex); 1455 } 1456 1457 /* 1458 * Quickly return the per thread value that was stored with the specified key 1459 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1460 */ 1461 void * 1462 tsd_get(uint_t key) 1463 { 1464 return (tsd_agent_get(curthread, key)); 1465 } 1466 1467 /* 1468 * Set a per thread value indexed with the specified key 1469 */ 1470 int 1471 tsd_set(uint_t key, void *value) 1472 { 1473 return (tsd_agent_set(curthread, key, value)); 1474 } 1475 1476 /* 1477 * Like tsd_get(), except that the agent lwp can get the tsd of 1478 * another thread in the same process (the agent thread only runs when the 1479 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1480 */ 1481 void * 1482 tsd_agent_get(kthread_t *t, uint_t key) 1483 { 1484 struct tsd_thread *tsd = t->t_tsd; 1485 1486 ASSERT(t == curthread || 1487 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1488 1489 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1490 return (tsd->ts_value[key - 1]); 1491 return (NULL); 1492 } 1493 1494 /* 1495 * Like tsd_set(), except that the agent lwp can set the tsd of 1496 * another thread in the same process, or syslwp can set the tsd 1497 * of a thread it's in the middle of creating. 1498 * 1499 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1500 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1501 * lock held 1502 */ 1503 int 1504 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1505 { 1506 struct tsd_thread *tsd = t->t_tsd; 1507 1508 ASSERT(t == curthread || 1509 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1510 1511 if (key == 0) 1512 return (EINVAL); 1513 if (tsd == NULL) 1514 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1515 if (key <= tsd->ts_nkeys) { 1516 tsd->ts_value[key - 1] = value; 1517 return (0); 1518 } 1519 1520 ASSERT(key <= tsd_nkeys); 1521 1522 /* 1523 * lock out tsd_destroy() 1524 */ 1525 mutex_enter(&tsd_mutex); 1526 if (tsd->ts_nkeys == 0) { 1527 /* 1528 * Link onto list of threads with TSD 1529 */ 1530 if ((tsd->ts_next = tsd_list) != NULL) 1531 tsd_list->ts_prev = tsd; 1532 tsd_list = tsd; 1533 } 1534 1535 /* 1536 * Allocate thread local storage and set the value for key 1537 */ 1538 tsd->ts_value = tsd_realloc(tsd->ts_value, 1539 tsd->ts_nkeys * sizeof (void *), 1540 key * sizeof (void *)); 1541 tsd->ts_nkeys = key; 1542 tsd->ts_value[key - 1] = value; 1543 mutex_exit(&tsd_mutex); 1544 1545 return (0); 1546 } 1547 1548 1549 /* 1550 * Return the per thread value that was stored with the specified key 1551 * If necessary, create the key and the value 1552 * Assumes the caller is protecting *keyp from tsd_destroy 1553 */ 1554 void * 1555 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1556 { 1557 void *value; 1558 uint_t key = *keyp; 1559 struct tsd_thread *tsd = curthread->t_tsd; 1560 1561 if (tsd == NULL) 1562 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1563 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1564 return (value); 1565 if (key == 0) 1566 tsd_create(keyp, destroy); 1567 (void) tsd_set(*keyp, value = (*allocate)()); 1568 1569 return (value); 1570 } 1571 1572 /* 1573 * Called from thread_exit() to run the destructor function for each tsd 1574 * Locks out tsd_create and tsd_destroy 1575 * Assumes that the destructor *DOES NOT* use tsd 1576 */ 1577 void 1578 tsd_exit(void) 1579 { 1580 int i; 1581 struct tsd_thread *tsd = curthread->t_tsd; 1582 1583 if (tsd == NULL) 1584 return; 1585 1586 if (tsd->ts_nkeys == 0) { 1587 kmem_free(tsd, sizeof (*tsd)); 1588 curthread->t_tsd = NULL; 1589 return; 1590 } 1591 1592 /* 1593 * lock out tsd_create and tsd_destroy, call 1594 * the destructor, and mark the value as destroyed. 1595 */ 1596 mutex_enter(&tsd_mutex); 1597 1598 for (i = 0; i < tsd->ts_nkeys; i++) { 1599 if (tsd->ts_value[i] && tsd_destructor[i]) 1600 (*tsd_destructor[i])(tsd->ts_value[i]); 1601 tsd->ts_value[i] = NULL; 1602 } 1603 1604 /* 1605 * remove from linked list of threads with TSD 1606 */ 1607 if (tsd->ts_next) 1608 tsd->ts_next->ts_prev = tsd->ts_prev; 1609 if (tsd->ts_prev) 1610 tsd->ts_prev->ts_next = tsd->ts_next; 1611 if (tsd_list == tsd) 1612 tsd_list = tsd->ts_next; 1613 1614 mutex_exit(&tsd_mutex); 1615 1616 /* 1617 * free up the TSD 1618 */ 1619 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1620 kmem_free(tsd, sizeof (struct tsd_thread)); 1621 curthread->t_tsd = NULL; 1622 } 1623 1624 /* 1625 * realloc 1626 */ 1627 static void * 1628 tsd_realloc(void *old, size_t osize, size_t nsize) 1629 { 1630 void *new; 1631 1632 new = kmem_zalloc(nsize, KM_SLEEP); 1633 if (old) { 1634 bcopy(old, new, osize); 1635 kmem_free(old, osize); 1636 } 1637 return (new); 1638 } 1639 1640 /* 1641 * Return non-zero if an interrupt is being serviced. 1642 */ 1643 int 1644 servicing_interrupt() 1645 { 1646 int onintr = 0; 1647 1648 /* Are we an interrupt thread */ 1649 if (curthread->t_flag & T_INTR_THREAD) 1650 return (1); 1651 /* Are we servicing a high level interrupt? */ 1652 if (CPU_ON_INTR(CPU)) { 1653 kpreempt_disable(); 1654 onintr = CPU_ON_INTR(CPU); 1655 kpreempt_enable(); 1656 } 1657 return (onintr); 1658 } 1659 1660 1661 /* 1662 * Change the dispatch priority of a thread in the system. 1663 * Used when raising or lowering a thread's priority. 1664 * (E.g., priority inheritance) 1665 * 1666 * Since threads are queued according to their priority, we 1667 * we must check the thread's state to determine whether it 1668 * is on a queue somewhere. If it is, we've got to: 1669 * 1670 * o Dequeue the thread. 1671 * o Change its effective priority. 1672 * o Enqueue the thread. 1673 * 1674 * Assumptions: The thread whose priority we wish to change 1675 * must be locked before we call thread_change_(e)pri(). 1676 * The thread_change(e)pri() function doesn't drop the thread 1677 * lock--that must be done by its caller. 1678 */ 1679 void 1680 thread_change_epri(kthread_t *t, pri_t disp_pri) 1681 { 1682 uint_t state; 1683 1684 ASSERT(THREAD_LOCK_HELD(t)); 1685 1686 /* 1687 * If the inherited priority hasn't actually changed, 1688 * just return. 1689 */ 1690 if (t->t_epri == disp_pri) 1691 return; 1692 1693 state = t->t_state; 1694 1695 /* 1696 * If it's not on a queue, change the priority with impunity. 1697 */ 1698 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1699 t->t_epri = disp_pri; 1700 if (state == TS_ONPROC) { 1701 cpu_t *cp = t->t_disp_queue->disp_cpu; 1702 1703 if (t == cp->cpu_dispthread) 1704 cp->cpu_dispatch_pri = DISP_PRIO(t); 1705 } 1706 } else if (state == TS_SLEEP) { 1707 /* 1708 * Take the thread out of its sleep queue. 1709 * Change the inherited priority. 1710 * Re-enqueue the thread. 1711 * Each synchronization object exports a function 1712 * to do this in an appropriate manner. 1713 */ 1714 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1715 } else if (state == TS_WAIT) { 1716 /* 1717 * Re-enqueue a thread on the wait queue if its 1718 * effective priority needs to change. 1719 */ 1720 if (disp_pri != t->t_epri) 1721 waitq_change_pri(t, disp_pri); 1722 } else { 1723 /* 1724 * The thread is on a run queue. 1725 * Note: setbackdq() may not put the thread 1726 * back on the same run queue where it originally 1727 * resided. 1728 */ 1729 (void) dispdeq(t); 1730 t->t_epri = disp_pri; 1731 setbackdq(t); 1732 } 1733 schedctl_set_cidpri(t); 1734 } 1735 1736 /* 1737 * Function: Change the t_pri field of a thread. 1738 * Side Effects: Adjust the thread ordering on a run queue 1739 * or sleep queue, if necessary. 1740 * Returns: 1 if the thread was on a run queue, else 0. 1741 */ 1742 int 1743 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1744 { 1745 uint_t state; 1746 int on_rq = 0; 1747 1748 ASSERT(THREAD_LOCK_HELD(t)); 1749 1750 state = t->t_state; 1751 THREAD_WILLCHANGE_PRI(t, disp_pri); 1752 1753 /* 1754 * If it's not on a queue, change the priority with impunity. 1755 */ 1756 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1757 t->t_pri = disp_pri; 1758 1759 if (state == TS_ONPROC) { 1760 cpu_t *cp = t->t_disp_queue->disp_cpu; 1761 1762 if (t == cp->cpu_dispthread) 1763 cp->cpu_dispatch_pri = DISP_PRIO(t); 1764 } 1765 } else if (state == TS_SLEEP) { 1766 /* 1767 * If the priority has changed, take the thread out of 1768 * its sleep queue and change the priority. 1769 * Re-enqueue the thread. 1770 * Each synchronization object exports a function 1771 * to do this in an appropriate manner. 1772 */ 1773 if (disp_pri != t->t_pri) 1774 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1775 } else if (state == TS_WAIT) { 1776 /* 1777 * Re-enqueue a thread on the wait queue if its 1778 * priority needs to change. 1779 */ 1780 if (disp_pri != t->t_pri) 1781 waitq_change_pri(t, disp_pri); 1782 } else { 1783 /* 1784 * The thread is on a run queue. 1785 * Note: setbackdq() may not put the thread 1786 * back on the same run queue where it originally 1787 * resided. 1788 * 1789 * We still requeue the thread even if the priority 1790 * is unchanged to preserve round-robin (and other) 1791 * effects between threads of the same priority. 1792 */ 1793 on_rq = dispdeq(t); 1794 ASSERT(on_rq); 1795 t->t_pri = disp_pri; 1796 if (front) { 1797 setfrontdq(t); 1798 } else { 1799 setbackdq(t); 1800 } 1801 } 1802 schedctl_set_cidpri(t); 1803 return (on_rq); 1804 } 1805 1806 /* 1807 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a 1808 * specific pattern. 1809 */ 1810 static void 1811 stkinfo_begin(kthread_t *t) 1812 { 1813 caddr_t start; /* stack start */ 1814 caddr_t end; /* stack end */ 1815 uint64_t *ptr; /* pattern pointer */ 1816 1817 /* 1818 * Stack grows up or down, see thread_create(), 1819 * compute stack memory area start and end (start < end). 1820 */ 1821 if (t->t_stk > t->t_stkbase) { 1822 /* stack grows down */ 1823 start = t->t_stkbase; 1824 end = t->t_stk; 1825 } else { 1826 /* stack grows up */ 1827 start = t->t_stk; 1828 end = t->t_stkbase; 1829 } 1830 1831 /* 1832 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1833 * alignement for start and end in stack area boundaries 1834 * (protection against corrupt t_stkbase/t_stk data). 1835 */ 1836 if ((((uintptr_t)start) & 0x7) != 0) { 1837 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 1838 } 1839 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 1840 1841 if ((end <= start) || (end - start) > (1024 * 1024)) { 1842 /* negative or stack size > 1 meg, assume bogus */ 1843 return; 1844 } 1845 1846 /* fill stack area with a pattern (instead of zeros) */ 1847 ptr = (uint64_t *)((void *)start); 1848 while (ptr < (uint64_t *)((void *)end)) { 1849 *ptr++ = KMEM_STKINFO_PATTERN; 1850 } 1851 } 1852 1853 1854 /* 1855 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist, 1856 * compute the percentage of kernel stack really used, and set in the log 1857 * if it's the latest highest percentage. 1858 */ 1859 static void 1860 stkinfo_end(kthread_t *t) 1861 { 1862 caddr_t start; /* stack start */ 1863 caddr_t end; /* stack end */ 1864 uint64_t *ptr; /* pattern pointer */ 1865 size_t stksz; /* stack size */ 1866 size_t smallest = 0; 1867 size_t percent = 0; 1868 uint_t index = 0; 1869 uint_t i; 1870 static size_t smallest_percent = (size_t)-1; 1871 static uint_t full = 0; 1872 1873 /* create the stackinfo log, if doesn't already exist */ 1874 mutex_enter(&kmem_stkinfo_lock); 1875 if (kmem_stkinfo_log == NULL) { 1876 kmem_stkinfo_log = (kmem_stkinfo_t *) 1877 kmem_zalloc(KMEM_STKINFO_LOG_SIZE * 1878 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP); 1879 if (kmem_stkinfo_log == NULL) { 1880 mutex_exit(&kmem_stkinfo_lock); 1881 return; 1882 } 1883 } 1884 mutex_exit(&kmem_stkinfo_lock); 1885 1886 /* 1887 * Stack grows up or down, see thread_create(), 1888 * compute stack memory area start and end (start < end). 1889 */ 1890 if (t->t_stk > t->t_stkbase) { 1891 /* stack grows down */ 1892 start = t->t_stkbase; 1893 end = t->t_stk; 1894 } else { 1895 /* stack grows up */ 1896 start = t->t_stk; 1897 end = t->t_stkbase; 1898 } 1899 1900 /* stack size as found in kthread_t */ 1901 stksz = end - start; 1902 1903 /* 1904 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1905 * alignement for start and end in stack area boundaries 1906 * (protection against corrupt t_stkbase/t_stk data). 1907 */ 1908 if ((((uintptr_t)start) & 0x7) != 0) { 1909 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 1910 } 1911 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 1912 1913 if ((end <= start) || (end - start) > (1024 * 1024)) { 1914 /* negative or stack size > 1 meg, assume bogus */ 1915 return; 1916 } 1917 1918 /* search until no pattern in the stack */ 1919 if (t->t_stk > t->t_stkbase) { 1920 /* stack grows down */ 1921 #if defined(__i386) || defined(__amd64) 1922 /* 1923 * 6 longs are pushed on stack, see thread_load(). Skip 1924 * them, so if kthread has never run, percent is zero. 1925 * 8 bytes alignement is preserved for a 32 bit kernel, 1926 * 6 x 4 = 24, 24 is a multiple of 8. 1927 * 1928 */ 1929 end -= (6 * sizeof (long)); 1930 #endif 1931 ptr = (uint64_t *)((void *)start); 1932 while (ptr < (uint64_t *)((void *)end)) { 1933 if (*ptr != KMEM_STKINFO_PATTERN) { 1934 percent = stkinfo_percent(end, 1935 start, (caddr_t)ptr); 1936 break; 1937 } 1938 ptr++; 1939 } 1940 } else { 1941 /* stack grows up */ 1942 ptr = (uint64_t *)((void *)end); 1943 ptr--; 1944 while (ptr >= (uint64_t *)((void *)start)) { 1945 if (*ptr != KMEM_STKINFO_PATTERN) { 1946 percent = stkinfo_percent(start, 1947 end, (caddr_t)ptr); 1948 break; 1949 } 1950 ptr--; 1951 } 1952 } 1953 1954 DTRACE_PROBE3(stack__usage, kthread_t *, t, 1955 size_t, stksz, size_t, percent); 1956 1957 if (percent == 0) { 1958 return; 1959 } 1960 1961 mutex_enter(&kmem_stkinfo_lock); 1962 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) { 1963 /* 1964 * The log is full and already contains the highest values 1965 */ 1966 mutex_exit(&kmem_stkinfo_lock); 1967 return; 1968 } 1969 1970 /* keep a log of the highest used stack */ 1971 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) { 1972 if (kmem_stkinfo_log[i].percent == 0) { 1973 index = i; 1974 full++; 1975 break; 1976 } 1977 if (smallest == 0) { 1978 smallest = kmem_stkinfo_log[i].percent; 1979 index = i; 1980 continue; 1981 } 1982 if (kmem_stkinfo_log[i].percent < smallest) { 1983 smallest = kmem_stkinfo_log[i].percent; 1984 index = i; 1985 } 1986 } 1987 1988 if (percent >= kmem_stkinfo_log[index].percent) { 1989 kmem_stkinfo_log[index].kthread = (caddr_t)t; 1990 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc; 1991 kmem_stkinfo_log[index].start = start; 1992 kmem_stkinfo_log[index].stksz = stksz; 1993 kmem_stkinfo_log[index].percent = percent; 1994 kmem_stkinfo_log[index].t_tid = t->t_tid; 1995 kmem_stkinfo_log[index].cmd[0] = '\0'; 1996 if (t->t_tid != 0) { 1997 stksz = strlen((t->t_procp)->p_user.u_comm); 1998 if (stksz >= KMEM_STKINFO_STR_SIZE) { 1999 stksz = KMEM_STKINFO_STR_SIZE - 1; 2000 kmem_stkinfo_log[index].cmd[stksz] = '\0'; 2001 } else { 2002 stksz += 1; 2003 } 2004 (void) memcpy(kmem_stkinfo_log[index].cmd, 2005 (t->t_procp)->p_user.u_comm, stksz); 2006 } 2007 if (percent < smallest_percent) { 2008 smallest_percent = percent; 2009 } 2010 } 2011 mutex_exit(&kmem_stkinfo_lock); 2012 } 2013 2014 /* 2015 * Tunable kmem_stackinfo is set, compute stack utilization percentage. 2016 */ 2017 static size_t 2018 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp) 2019 { 2020 size_t percent; 2021 size_t s; 2022 2023 if (t_stk > t_stkbase) { 2024 /* stack grows down */ 2025 if (sp > t_stk) { 2026 return (0); 2027 } 2028 if (sp < t_stkbase) { 2029 return (100); 2030 } 2031 percent = t_stk - sp + 1; 2032 s = t_stk - t_stkbase + 1; 2033 } else { 2034 /* stack grows up */ 2035 if (sp < t_stk) { 2036 return (0); 2037 } 2038 if (sp > t_stkbase) { 2039 return (100); 2040 } 2041 percent = sp - t_stk + 1; 2042 s = t_stkbase - t_stk + 1; 2043 } 2044 percent = ((100 * percent) / s) + 1; 2045 if (percent > 100) { 2046 percent = 100; 2047 } 2048 return (percent); 2049 }