1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 
  26 #include <sys/types.h>
  27 #include <sys/param.h>
  28 #include <sys/sysmacros.h>
  29 #include <sys/signal.h>
  30 #include <sys/stack.h>
  31 #include <sys/pcb.h>
  32 #include <sys/user.h>
  33 #include <sys/systm.h>
  34 #include <sys/sysinfo.h>
  35 #include <sys/errno.h>
  36 #include <sys/cmn_err.h>
  37 #include <sys/cred.h>
  38 #include <sys/resource.h>
  39 #include <sys/task.h>
  40 #include <sys/project.h>
  41 #include <sys/proc.h>
  42 #include <sys/debug.h>
  43 #include <sys/disp.h>
  44 #include <sys/class.h>
  45 #include <vm/seg_kmem.h>
  46 #include <vm/seg_kp.h>
  47 #include <sys/machlock.h>
  48 #include <sys/kmem.h>
  49 #include <sys/varargs.h>
  50 #include <sys/turnstile.h>
  51 #include <sys/poll.h>
  52 #include <sys/vtrace.h>
  53 #include <sys/callb.h>
  54 #include <c2/audit.h>
  55 #include <sys/tnf.h>
  56 #include <sys/sobject.h>
  57 #include <sys/cpupart.h>
  58 #include <sys/pset.h>
  59 #include <sys/door.h>
  60 #include <sys/spl.h>
  61 #include <sys/copyops.h>
  62 #include <sys/rctl.h>
  63 #include <sys/brand.h>
  64 #include <sys/pool.h>
  65 #include <sys/zone.h>
  66 #include <sys/tsol/label.h>
  67 #include <sys/tsol/tndb.h>
  68 #include <sys/cpc_impl.h>
  69 #include <sys/sdt.h>
  70 #include <sys/reboot.h>
  71 #include <sys/kdi.h>
  72 #include <sys/schedctl.h>
  73 #include <sys/waitq.h>
  74 #include <sys/cpucaps.h>
  75 #include <sys/kiconv.h>
  76 
  77 struct kmem_cache *thread_cache;        /* cache of free threads */
  78 struct kmem_cache *lwp_cache;           /* cache of free lwps */
  79 struct kmem_cache *turnstile_cache;     /* cache of free turnstiles */
  80 
  81 /*
  82  * allthreads is only for use by kmem_readers.  All kernel loops can use
  83  * the current thread as a start/end point.
  84  */
  85 static kthread_t *allthreads = &t0; /* circular list of all threads */
  86 
  87 static kcondvar_t reaper_cv;            /* synchronization var */
  88 kthread_t       *thread_deathrow;       /* circular list of reapable threads */
  89 kthread_t       *lwp_deathrow;          /* circular list of reapable threads */
  90 kmutex_t        reaplock;               /* protects lwp and thread deathrows */
  91 int     thread_reapcnt = 0;             /* number of threads on deathrow */
  92 int     lwp_reapcnt = 0;                /* number of lwps on deathrow */
  93 int     reaplimit = 16;                 /* delay reaping until reaplimit */
  94 
  95 thread_free_lock_t      *thread_free_lock;
  96                                         /* protects tick thread from reaper */
  97 
  98 extern int nthread;
  99 
 100 /* System Scheduling classes. */
 101 id_t    syscid;                         /* system scheduling class ID */
 102 id_t    sysdccid = CLASS_UNUSED;        /* reset when SDC loads */
 103 
 104 void    *segkp_thread;                  /* cookie for segkp pool */
 105 
 106 int lwp_cache_sz = 32;
 107 int t_cache_sz = 8;
 108 static kt_did_t next_t_id = 1;
 109 
 110 /* Default mode for thread binding to CPUs and processor sets */
 111 int default_binding_mode = TB_ALLHARD;
 112 
 113 /*
 114  * Min/Max stack sizes for stack size parameters
 115  */
 116 #define MAX_STKSIZE     (32 * DEFAULTSTKSZ)
 117 #define MIN_STKSIZE     DEFAULTSTKSZ
 118 
 119 /*
 120  * default_stksize overrides lwp_default_stksize if it is set.
 121  */
 122 int     default_stksize;
 123 int     lwp_default_stksize;
 124 
 125 static zone_key_t zone_thread_key;
 126 
 127 unsigned int kmem_stackinfo;            /* stackinfo feature on-off */
 128 kmem_stkinfo_t *kmem_stkinfo_log;       /* stackinfo circular log */
 129 static kmutex_t kmem_stkinfo_lock;      /* protects kmem_stkinfo_log */
 130 
 131 /*
 132  * forward declarations for internal thread specific data (tsd)
 133  */
 134 static void *tsd_realloc(void *, size_t, size_t);
 135 
 136 void thread_reaper(void);
 137 
 138 /* forward declarations for stackinfo feature */
 139 static void stkinfo_begin(kthread_t *);
 140 static void stkinfo_end(kthread_t *);
 141 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
 142 
 143 /*ARGSUSED*/
 144 static int
 145 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
 146 {
 147         bzero(buf, sizeof (turnstile_t));
 148         return (0);
 149 }
 150 
 151 /*ARGSUSED*/
 152 static void
 153 turnstile_destructor(void *buf, void *cdrarg)
 154 {
 155         turnstile_t *ts = buf;
 156 
 157         ASSERT(ts->ts_free == NULL);
 158         ASSERT(ts->ts_waiters == 0);
 159         ASSERT(ts->ts_inheritor == NULL);
 160         ASSERT(ts->ts_sleepq[0].sq_first == NULL);
 161         ASSERT(ts->ts_sleepq[1].sq_first == NULL);
 162 }
 163 
 164 void
 165 thread_init(void)
 166 {
 167         kthread_t *tp;
 168         extern char sys_name[];
 169         extern void idle();
 170         struct cpu *cpu = CPU;
 171         int i;
 172         kmutex_t *lp;
 173 
 174         mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
 175         thread_free_lock =
 176             kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
 177         for (i = 0; i < THREAD_FREE_NUM; i++) {
 178                 lp = &thread_free_lock[i].tf_lock;
 179                 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
 180         }
 181 
 182 #if defined(__i386) || defined(__amd64)
 183         thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
 184             PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
 185 
 186         /*
 187          * "struct _klwp" includes a "struct pcb", which includes a
 188          * "struct fpu", which needs to be 64-byte aligned on amd64
 189          * (and even on i386) for xsave/xrstor.
 190          */
 191         lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
 192             64, NULL, NULL, NULL, NULL, NULL, 0);
 193 #else
 194         /*
 195          * Allocate thread structures from static_arena.  This prevents
 196          * issues where a thread tries to relocate its own thread
 197          * structure and touches it after the mapping has been suspended.
 198          */
 199         thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
 200             PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
 201 
 202         lwp_stk_cache_init();
 203 
 204         lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
 205             0, NULL, NULL, NULL, NULL, NULL, 0);
 206 #endif
 207 
 208         turnstile_cache = kmem_cache_create("turnstile_cache",
 209             sizeof (turnstile_t), 0,
 210             turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
 211 
 212         label_init();
 213         cred_init();
 214 
 215         /*
 216          * Initialize various resource management facilities.
 217          */
 218         rctl_init();
 219         cpucaps_init();
 220         /*
 221          * Zone_init() should be called before project_init() so that project ID
 222          * for the first project is initialized correctly.
 223          */
 224         zone_init();
 225         project_init();
 226         brand_init();
 227         kiconv_init();
 228         task_init();
 229         tcache_init();
 230         pool_init();
 231 
 232         curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
 233 
 234         /*
 235          * Originally, we had two parameters to set default stack
 236          * size: one for lwp's (lwp_default_stksize), and one for
 237          * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
 238          * Now we have a third parameter that overrides both if it is
 239          * set to a legal stack size, called default_stksize.
 240          */
 241 
 242         if (default_stksize == 0) {
 243                 default_stksize = DEFAULTSTKSZ;
 244         } else if (default_stksize % PAGESIZE != 0 ||
 245             default_stksize > MAX_STKSIZE ||
 246             default_stksize < MIN_STKSIZE) {
 247                 cmn_err(CE_WARN, "Illegal stack size. Using %d",
 248                     (int)DEFAULTSTKSZ);
 249                 default_stksize = DEFAULTSTKSZ;
 250         } else {
 251                 lwp_default_stksize = default_stksize;
 252         }
 253 
 254         if (lwp_default_stksize == 0) {
 255                 lwp_default_stksize = default_stksize;
 256         } else if (lwp_default_stksize % PAGESIZE != 0 ||
 257             lwp_default_stksize > MAX_STKSIZE ||
 258             lwp_default_stksize < MIN_STKSIZE) {
 259                 cmn_err(CE_WARN, "Illegal stack size. Using %d",
 260                     default_stksize);
 261                 lwp_default_stksize = default_stksize;
 262         }
 263 
 264         segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
 265             lwp_default_stksize,
 266             (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
 267 
 268         segkp_thread = segkp_cache_init(segkp, t_cache_sz,
 269             default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
 270 
 271         (void) getcid(sys_name, &syscid);
 272         curthread->t_cid = syscid;   /* current thread is t0 */
 273 
 274         /*
 275          * Set up the first CPU's idle thread.
 276          * It runs whenever the CPU has nothing worthwhile to do.
 277          */
 278         tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
 279         cpu->cpu_idle_thread = tp;
 280         tp->t_preempt = 1;
 281         tp->t_disp_queue = cpu->cpu_disp;
 282         ASSERT(tp->t_disp_queue != NULL);
 283         tp->t_bound_cpu = cpu;
 284         tp->t_affinitycnt = 1;
 285 
 286         /*
 287          * Registering a thread in the callback table is usually
 288          * done in the initialization code of the thread. In this
 289          * case, we do it right after thread creation to avoid
 290          * blocking idle thread while registering itself. It also
 291          * avoids the possibility of reregistration in case a CPU
 292          * restarts its idle thread.
 293          */
 294         CALLB_CPR_INIT_SAFE(tp, "idle");
 295 
 296         /*
 297          * Create the thread_reaper daemon. From this point on, exited
 298          * threads will get reaped.
 299          */
 300         (void) thread_create(NULL, 0, (void (*)())thread_reaper,
 301             NULL, 0, &p0, TS_RUN, minclsyspri);
 302 
 303         /*
 304          * Finish initializing the kernel memory allocator now that
 305          * thread_create() is available.
 306          */
 307         kmem_thread_init();
 308 
 309         if (boothowto & RB_DEBUG)
 310                 kdi_dvec_thravail();
 311 }
 312 
 313 /*
 314  * Create a thread.
 315  *
 316  * thread_create() blocks for memory if necessary.  It never fails.
 317  *
 318  * If stk is NULL, the thread is created at the base of the stack
 319  * and cannot be swapped.
 320  */
 321 kthread_t *
 322 thread_create(
 323         caddr_t stk,
 324         size_t  stksize,
 325         void    (*proc)(),
 326         void    *arg,
 327         size_t  len,
 328         proc_t   *pp,
 329         int     state,
 330         pri_t   pri)
 331 {
 332         kthread_t *t;
 333         extern struct classfuncs sys_classfuncs;
 334         turnstile_t *ts;
 335 
 336         /*
 337          * Every thread keeps a turnstile around in case it needs to block.
 338          * The only reason the turnstile is not simply part of the thread
 339          * structure is that we may have to break the association whenever
 340          * more than one thread blocks on a given synchronization object.
 341          * From a memory-management standpoint, turnstiles are like the
 342          * "attached mblks" that hang off dblks in the streams allocator.
 343          */
 344         ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
 345 
 346         if (stk == NULL) {
 347                 /*
 348                  * alloc both thread and stack in segkp chunk
 349                  */
 350 
 351                 if (stksize < default_stksize)
 352                         stksize = default_stksize;
 353 
 354                 if (stksize == default_stksize) {
 355                         stk = (caddr_t)segkp_cache_get(segkp_thread);
 356                 } else {
 357                         stksize = roundup(stksize, PAGESIZE);
 358                         stk = (caddr_t)segkp_get(segkp, stksize,
 359                             (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
 360                 }
 361 
 362                 ASSERT(stk != NULL);
 363 
 364                 /*
 365                  * The machine-dependent mutex code may require that
 366                  * thread pointers (since they may be used for mutex owner
 367                  * fields) have certain alignment requirements.
 368                  * PTR24_ALIGN is the size of the alignment quanta.
 369                  * XXX - assumes stack grows toward low addresses.
 370                  */
 371                 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
 372                         cmn_err(CE_PANIC, "thread_create: proposed stack size"
 373                             " too small to hold thread.");
 374 #ifdef STACK_GROWTH_DOWN
 375                 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
 376                 stksize &= -PTR24_ALIGN;    /* make thread aligned */
 377                 t = (kthread_t *)(stk + stksize);
 378                 bzero(t, sizeof (kthread_t));
 379                 if (audit_active)
 380                         audit_thread_create(t);
 381                 t->t_stk = stk + stksize;
 382                 t->t_stkbase = stk;
 383 #else   /* stack grows to larger addresses */
 384                 stksize -= SA(sizeof (kthread_t));
 385                 t = (kthread_t *)(stk);
 386                 bzero(t, sizeof (kthread_t));
 387                 t->t_stk = stk + sizeof (kthread_t);
 388                 t->t_stkbase = stk + stksize + sizeof (kthread_t);
 389 #endif  /* STACK_GROWTH_DOWN */
 390                 t->t_flag |= T_TALLOCSTK;
 391                 t->t_swap = stk;
 392         } else {
 393                 t = kmem_cache_alloc(thread_cache, KM_SLEEP);
 394                 bzero(t, sizeof (kthread_t));
 395                 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
 396                 if (audit_active)
 397                         audit_thread_create(t);
 398                 /*
 399                  * Initialize t_stk to the kernel stack pointer to use
 400                  * upon entry to the kernel
 401                  */
 402 #ifdef STACK_GROWTH_DOWN
 403                 t->t_stk = stk + stksize;
 404                 t->t_stkbase = stk;
 405 #else
 406                 t->t_stk = stk;                      /* 3b2-like */
 407                 t->t_stkbase = stk + stksize;
 408 #endif /* STACK_GROWTH_DOWN */
 409         }
 410 
 411         if (kmem_stackinfo != 0) {
 412                 stkinfo_begin(t);
 413         }
 414 
 415         t->t_ts = ts;
 416 
 417         /*
 418          * p_cred could be NULL if it thread_create is called before cred_init
 419          * is called in main.
 420          */
 421         mutex_enter(&pp->p_crlock);
 422         if (pp->p_cred)
 423                 crhold(t->t_cred = pp->p_cred);
 424         mutex_exit(&pp->p_crlock);
 425         t->t_start = gethrestime_sec();
 426         t->t_startpc = proc;
 427         t->t_procp = pp;
 428         t->t_clfuncs = &sys_classfuncs.thread;
 429         t->t_cid = syscid;
 430         t->t_pri = pri;
 431         t->t_stime = ddi_get_lbolt();
 432         t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
 433         t->t_bind_cpu = PBIND_NONE;
 434         t->t_bindflag = (uchar_t)default_binding_mode;
 435         t->t_bind_pset = PS_NONE;
 436         t->t_plockp = &pp->p_lock;
 437         t->t_copyops = NULL;
 438         t->t_taskq = NULL;
 439         t->t_anttime = 0;
 440         t->t_hatdepth = 0;
 441 
 442         t->t_dtrace_vtime = 1;       /* assure vtimestamp is always non-zero */
 443 
 444         CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
 445 #ifndef NPROBE
 446         /* Kernel probe */
 447         tnf_thread_create(t);
 448 #endif /* NPROBE */
 449         LOCK_INIT_CLEAR(&t->t_lock);
 450 
 451         /*
 452          * Callers who give us a NULL proc must do their own
 453          * stack initialization.  e.g. lwp_create()
 454          */
 455         if (proc != NULL) {
 456                 t->t_stk = thread_stk_init(t->t_stk);
 457                 thread_load(t, proc, arg, len);
 458         }
 459 
 460         /*
 461          * Put a hold on project0. If this thread is actually in a
 462          * different project, then t_proj will be changed later in
 463          * lwp_create().  All kernel-only threads must be in project 0.
 464          */
 465         t->t_proj = project_hold(proj0p);
 466 
 467         lgrp_affinity_init(&t->t_lgrp_affinity);
 468 
 469         mutex_enter(&pidlock);
 470         nthread++;
 471         t->t_did = next_t_id++;
 472         t->t_prev = curthread->t_prev;
 473         t->t_next = curthread;
 474 
 475         /*
 476          * Add the thread to the list of all threads, and initialize
 477          * its t_cpu pointer.  We need to block preemption since
 478          * cpu_offline walks the thread list looking for threads
 479          * with t_cpu pointing to the CPU being offlined.  We want
 480          * to make sure that the list is consistent and that if t_cpu
 481          * is set, the thread is on the list.
 482          */
 483         kpreempt_disable();
 484         curthread->t_prev->t_next = t;
 485         curthread->t_prev = t;
 486 
 487         /*
 488          * Threads should never have a NULL t_cpu pointer so assign it
 489          * here.  If the thread is being created with state TS_RUN a
 490          * better CPU may be chosen when it is placed on the run queue.
 491          *
 492          * We need to keep kernel preemption disabled when setting all
 493          * three fields to keep them in sync.  Also, always create in
 494          * the default partition since that's where kernel threads go
 495          * (if this isn't a kernel thread, t_cpupart will be changed
 496          * in lwp_create before setting the thread runnable).
 497          */
 498         t->t_cpupart = &cp_default;
 499 
 500         /*
 501          * For now, affiliate this thread with the root lgroup.
 502          * Since the kernel does not (presently) allocate its memory
 503          * in a locality aware fashion, the root is an appropriate home.
 504          * If this thread is later associated with an lwp, it will have
 505          * it's lgroup re-assigned at that time.
 506          */
 507         lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
 508 
 509         /*
 510          * Inherit the current cpu.  If this cpu isn't part of the chosen
 511          * lgroup, a new cpu will be chosen by cpu_choose when the thread
 512          * is ready to run.
 513          */
 514         if (CPU->cpu_part == &cp_default)
 515                 t->t_cpu = CPU;
 516         else
 517                 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
 518                     t->t_pri, NULL);
 519 
 520         t->t_disp_queue = t->t_cpu->cpu_disp;
 521         kpreempt_enable();
 522 
 523         /*
 524          * Initialize thread state and the dispatcher lock pointer.
 525          * Need to hold onto pidlock to block allthreads walkers until
 526          * the state is set.
 527          */
 528         switch (state) {
 529         case TS_RUN:
 530                 curthread->t_oldspl = splhigh();     /* get dispatcher spl */
 531                 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
 532                 CL_SETRUN(t);
 533                 thread_unlock(t);
 534                 break;
 535 
 536         case TS_ONPROC:
 537                 THREAD_ONPROC(t, t->t_cpu);
 538                 break;
 539 
 540         case TS_FREE:
 541                 /*
 542                  * Free state will be used for intr threads.
 543                  * The interrupt routine must set the thread dispatcher
 544                  * lock pointer (t_lockp) if starting on a CPU
 545                  * other than the current one.
 546                  */
 547                 THREAD_FREEINTR(t, CPU);
 548                 break;
 549 
 550         case TS_STOPPED:
 551                 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
 552                 break;
 553 
 554         default:                        /* TS_SLEEP, TS_ZOMB or TS_TRANS */
 555                 cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
 556         }
 557         mutex_exit(&pidlock);
 558         return (t);
 559 }
 560 
 561 /*
 562  * Move thread to project0 and take care of project reference counters.
 563  */
 564 void
 565 thread_rele(kthread_t *t)
 566 {
 567         kproject_t *kpj;
 568 
 569         thread_lock(t);
 570 
 571         ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
 572         kpj = ttoproj(t);
 573         t->t_proj = proj0p;
 574 
 575         thread_unlock(t);
 576 
 577         if (kpj != proj0p) {
 578                 project_rele(kpj);
 579                 (void) project_hold(proj0p);
 580         }
 581 }
 582 
 583 void
 584 thread_exit(void)
 585 {
 586         kthread_t *t = curthread;
 587 
 588         if ((t->t_proc_flag & TP_ZTHREAD) != 0)
 589                 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
 590 
 591         tsd_exit();             /* Clean up this thread's TSD */
 592 
 593         kcpc_passivate();       /* clean up performance counter state */
 594 
 595         /*
 596          * No kernel thread should have called poll() without arranging
 597          * calling pollcleanup() here.
 598          */
 599         ASSERT(t->t_pollstate == NULL);
 600         ASSERT(t->t_schedctl == NULL);
 601         if (t->t_door)
 602                 door_slam();    /* in case thread did an upcall */
 603 
 604 #ifndef NPROBE
 605         /* Kernel probe */
 606         if (t->t_tnf_tpdp)
 607                 tnf_thread_exit();
 608 #endif /* NPROBE */
 609 
 610         thread_rele(t);
 611         t->t_preempt++;
 612 
 613         /*
 614          * remove thread from the all threads list so that
 615          * death-row can use the same pointers.
 616          */
 617         mutex_enter(&pidlock);
 618         t->t_next->t_prev = t->t_prev;
 619         t->t_prev->t_next = t->t_next;
 620         ASSERT(allthreads != t);        /* t0 never exits */
 621         cv_broadcast(&t->t_joincv);      /* wake up anyone in thread_join */
 622         mutex_exit(&pidlock);
 623 
 624         if (t->t_ctx != NULL)
 625                 exitctx(t);
 626         if (t->t_procp->p_pctx != NULL)
 627                 exitpctx(t->t_procp);
 628 
 629         if (kmem_stackinfo != 0) {
 630                 stkinfo_end(t);
 631         }
 632 
 633         t->t_state = TS_ZOMB;        /* set zombie thread */
 634 
 635         swtch_from_zombie();    /* give up the CPU */
 636         /* NOTREACHED */
 637 }
 638 
 639 /*
 640  * Check to see if the specified thread is active (defined as being on
 641  * the thread list).  This is certainly a slow way to do this; if there's
 642  * ever a reason to speed it up, we could maintain a hash table of active
 643  * threads indexed by their t_did.
 644  */
 645 static kthread_t *
 646 did_to_thread(kt_did_t tid)
 647 {
 648         kthread_t *t;
 649 
 650         ASSERT(MUTEX_HELD(&pidlock));
 651         for (t = curthread->t_next; t != curthread; t = t->t_next) {
 652                 if (t->t_did == tid)
 653                         break;
 654         }
 655         if (t->t_did == tid)
 656                 return (t);
 657         else
 658                 return (NULL);
 659 }
 660 
 661 /*
 662  * Wait for specified thread to exit.  Returns immediately if the thread
 663  * could not be found, meaning that it has either already exited or never
 664  * existed.
 665  */
 666 void
 667 thread_join(kt_did_t tid)
 668 {
 669         kthread_t *t;
 670 
 671         ASSERT(tid != curthread->t_did);
 672         ASSERT(tid != t0.t_did);
 673 
 674         mutex_enter(&pidlock);
 675         /*
 676          * Make sure we check that the thread is on the thread list
 677          * before blocking on it; otherwise we could end up blocking on
 678          * a cv that's already been freed.  In other words, don't cache
 679          * the thread pointer across calls to cv_wait.
 680          *
 681          * The choice of loop invariant means that whenever a thread
 682          * is taken off the allthreads list, a cv_broadcast must be
 683          * performed on that thread's t_joincv to wake up any waiters.
 684          * The broadcast doesn't have to happen right away, but it
 685          * shouldn't be postponed indefinitely (e.g., by doing it in
 686          * thread_free which may only be executed when the deathrow
 687          * queue is processed.
 688          */
 689         while (t = did_to_thread(tid))
 690                 cv_wait(&t->t_joincv, &pidlock);
 691         mutex_exit(&pidlock);
 692 }
 693 
 694 void
 695 thread_free_prevent(kthread_t *t)
 696 {
 697         kmutex_t *lp;
 698 
 699         lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
 700         mutex_enter(lp);
 701 }
 702 
 703 void
 704 thread_free_allow(kthread_t *t)
 705 {
 706         kmutex_t *lp;
 707 
 708         lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
 709         mutex_exit(lp);
 710 }
 711 
 712 static void
 713 thread_free_barrier(kthread_t *t)
 714 {
 715         kmutex_t *lp;
 716 
 717         lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
 718         mutex_enter(lp);
 719         mutex_exit(lp);
 720 }
 721 
 722 void
 723 thread_free(kthread_t *t)
 724 {
 725         boolean_t allocstk = (t->t_flag & T_TALLOCSTK);
 726         klwp_t *lwp = t->t_lwp;
 727         caddr_t swap = t->t_swap;
 728 
 729         ASSERT(t != &t0 && t->t_state == TS_FREE);
 730         ASSERT(t->t_door == NULL);
 731         ASSERT(t->t_schedctl == NULL);
 732         ASSERT(t->t_pollstate == NULL);
 733 
 734         t->t_pri = 0;
 735         t->t_pc = 0;
 736         t->t_sp = 0;
 737         t->t_wchan0 = NULL;
 738         t->t_wchan = NULL;
 739         if (t->t_cred != NULL) {
 740                 crfree(t->t_cred);
 741                 t->t_cred = 0;
 742         }
 743         if (t->t_pdmsg) {
 744                 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
 745                 t->t_pdmsg = NULL;
 746         }
 747         if (audit_active)
 748                 audit_thread_free(t);
 749 #ifndef NPROBE
 750         if (t->t_tnf_tpdp)
 751                 tnf_thread_free(t);
 752 #endif /* NPROBE */
 753         if (t->t_cldata) {
 754                 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
 755         }
 756         if (t->t_rprof != NULL) {
 757                 kmem_free(t->t_rprof, sizeof (*t->t_rprof));
 758                 t->t_rprof = NULL;
 759         }
 760         t->t_lockp = NULL;   /* nothing should try to lock this thread now */
 761         if (lwp)
 762                 lwp_freeregs(lwp, 0);
 763         if (t->t_ctx)
 764                 freectx(t, 0);
 765         t->t_stk = NULL;
 766         if (lwp)
 767                 lwp_stk_fini(lwp);
 768         lock_clear(&t->t_lock);
 769 
 770         if (t->t_ts->ts_waiters > 0)
 771                 panic("thread_free: turnstile still active");
 772 
 773         kmem_cache_free(turnstile_cache, t->t_ts);
 774 
 775         free_afd(&t->t_activefd);
 776 
 777         /*
 778          * Barrier for the tick accounting code.  The tick accounting code
 779          * holds this lock to keep the thread from going away while it's
 780          * looking at it.
 781          */
 782         thread_free_barrier(t);
 783 
 784         ASSERT(ttoproj(t) == proj0p);
 785         project_rele(ttoproj(t));
 786 
 787         lgrp_affinity_free(&t->t_lgrp_affinity);
 788 
 789         mutex_enter(&pidlock);
 790         nthread--;
 791         mutex_exit(&pidlock);
 792 
 793         /*
 794          * Free thread, lwp and stack.  This needs to be done carefully, since
 795          * if T_TALLOCSTK is set, the thread is part of the stack.
 796          */
 797         t->t_lwp = NULL;
 798         t->t_swap = NULL;
 799 
 800         if (swap) {
 801                 segkp_release(segkp, swap);
 802         }
 803         if (lwp) {
 804                 kmem_cache_free(lwp_cache, lwp);
 805         }
 806         if (!allocstk) {
 807                 kmem_cache_free(thread_cache, t);
 808         }
 809 }
 810 
 811 /*
 812  * Removes threads associated with the given zone from a deathrow queue.
 813  * tp is a pointer to the head of the deathrow queue, and countp is a
 814  * pointer to the current deathrow count.  Returns a linked list of
 815  * threads removed from the list.
 816  */
 817 static kthread_t *
 818 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
 819 {
 820         kthread_t *tmp, *list = NULL;
 821         cred_t *cr;
 822 
 823         ASSERT(MUTEX_HELD(&reaplock));
 824         while (*tp != NULL) {
 825                 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
 826                         tmp = *tp;
 827                         *tp = tmp->t_forw;
 828                         tmp->t_forw = list;
 829                         list = tmp;
 830                         (*countp)--;
 831                 } else {
 832                         tp = &(*tp)->t_forw;
 833                 }
 834         }
 835         return (list);
 836 }
 837 
 838 static void
 839 thread_reap_list(kthread_t *t)
 840 {
 841         kthread_t *next;
 842 
 843         while (t != NULL) {
 844                 next = t->t_forw;
 845                 thread_free(t);
 846                 t = next;
 847         }
 848 }
 849 
 850 /* ARGSUSED */
 851 static void
 852 thread_zone_destroy(zoneid_t zoneid, void *unused)
 853 {
 854         kthread_t *t, *l;
 855 
 856         mutex_enter(&reaplock);
 857         /*
 858          * Pull threads and lwps associated with zone off deathrow lists.
 859          */
 860         t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
 861         l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
 862         mutex_exit(&reaplock);
 863 
 864         /*
 865          * Guard against race condition in mutex_owner_running:
 866          *      thread=owner(mutex)
 867          *      <interrupt>
 868          *                              thread exits mutex
 869          *                              thread exits
 870          *                              thread reaped
 871          *                              thread struct freed
 872          * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
 873          * A cross call to all cpus will cause the interrupt handler
 874          * to reset the PC if it is in mutex_owner_running, refreshing
 875          * stale thread pointers.
 876          */
 877         mutex_sync();   /* sync with mutex code */
 878 
 879         /*
 880          * Reap threads
 881          */
 882         thread_reap_list(t);
 883 
 884         /*
 885          * Reap lwps
 886          */
 887         thread_reap_list(l);
 888 }
 889 
 890 /*
 891  * cleanup zombie threads that are on deathrow.
 892  */
 893 void
 894 thread_reaper()
 895 {
 896         kthread_t *t, *l;
 897         callb_cpr_t cprinfo;
 898 
 899         /*
 900          * Register callback to clean up threads when zone is destroyed.
 901          */
 902         zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
 903 
 904         CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
 905         for (;;) {
 906                 mutex_enter(&reaplock);
 907                 while (thread_deathrow == NULL && lwp_deathrow == NULL) {
 908                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
 909                         cv_wait(&reaper_cv, &reaplock);
 910                         CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
 911                 }
 912                 /*
 913                  * mutex_sync() needs to be called when reaping, but
 914                  * not too often.  We limit reaping rate to once
 915                  * per second.  Reaplimit is max rate at which threads can
 916                  * be freed. Does not impact thread destruction/creation.
 917                  */
 918                 t = thread_deathrow;
 919                 l = lwp_deathrow;
 920                 thread_deathrow = NULL;
 921                 lwp_deathrow = NULL;
 922                 thread_reapcnt = 0;
 923                 lwp_reapcnt = 0;
 924                 mutex_exit(&reaplock);
 925 
 926                 /*
 927                  * Guard against race condition in mutex_owner_running:
 928                  *      thread=owner(mutex)
 929                  *      <interrupt>
 930                  *                              thread exits mutex
 931                  *                              thread exits
 932                  *                              thread reaped
 933                  *                              thread struct freed
 934                  * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
 935                  * A cross call to all cpus will cause the interrupt handler
 936                  * to reset the PC if it is in mutex_owner_running, refreshing
 937                  * stale thread pointers.
 938                  */
 939                 mutex_sync();   /* sync with mutex code */
 940                 /*
 941                  * Reap threads
 942                  */
 943                 thread_reap_list(t);
 944 
 945                 /*
 946                  * Reap lwps
 947                  */
 948                 thread_reap_list(l);
 949                 delay(hz);
 950         }
 951 }
 952 
 953 /*
 954  * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
 955  * thread_deathrow. The thread's state is changed already TS_FREE to indicate
 956  * that is reapable. The thread already holds the reaplock, and was already
 957  * freed.
 958  */
 959 void
 960 reapq_move_lq_to_tq(kthread_t *t)
 961 {
 962         ASSERT(t->t_state == TS_FREE);
 963         ASSERT(MUTEX_HELD(&reaplock));
 964         t->t_forw = thread_deathrow;
 965         thread_deathrow = t;
 966         thread_reapcnt++;
 967         if (lwp_reapcnt + thread_reapcnt > reaplimit)
 968                 cv_signal(&reaper_cv);  /* wake the reaper */
 969 }
 970 
 971 /*
 972  * This is called by resume() to put a zombie thread onto deathrow.
 973  * The thread's state is changed to TS_FREE to indicate that is reapable.
 974  * This is called from the idle thread so it must not block - just spin.
 975  */
 976 void
 977 reapq_add(kthread_t *t)
 978 {
 979         mutex_enter(&reaplock);
 980 
 981         /*
 982          * lwp_deathrow contains threads with lwp linkage and
 983          * swappable thread stacks which have the default stacksize.
 984          * These threads' lwps and stacks may be reused by lwp_create().
 985          *
 986          * Anything else goes on thread_deathrow(), where it will eventually
 987          * be thread_free()d.
 988          */
 989         if (t->t_flag & T_LWPREUSE) {
 990                 ASSERT(ttolwp(t) != NULL);
 991                 t->t_forw = lwp_deathrow;
 992                 lwp_deathrow = t;
 993                 lwp_reapcnt++;
 994         } else {
 995                 t->t_forw = thread_deathrow;
 996                 thread_deathrow = t;
 997                 thread_reapcnt++;
 998         }
 999         if (lwp_reapcnt + thread_reapcnt > reaplimit)
1000                 cv_signal(&reaper_cv);      /* wake the reaper */
1001         t->t_state = TS_FREE;
1002         lock_clear(&t->t_lock);
1003 
1004         /*
1005          * Before we return, we need to grab and drop the thread lock for
1006          * the dead thread.  At this point, the current thread is the idle
1007          * thread, and the dead thread's CPU lock points to the current
1008          * CPU -- and we must grab and drop the lock to synchronize with
1009          * a racing thread walking a blocking chain that the zombie thread
1010          * was recently in.  By this point, that blocking chain is (by
1011          * definition) stale:  the dead thread is not holding any locks, and
1012          * is therefore not in any blocking chains -- but if we do not regrab
1013          * our lock before freeing the dead thread's data structures, the
1014          * thread walking the (stale) blocking chain will die on memory
1015          * corruption when it attempts to drop the dead thread's lock.  We
1016          * only need do this once because there is no way for the dead thread
1017          * to ever again be on a blocking chain:  once we have grabbed and
1018          * dropped the thread lock, we are guaranteed that anyone that could
1019          * have seen this thread in a blocking chain can no longer see it.
1020          */
1021         thread_lock(t);
1022         thread_unlock(t);
1023 
1024         mutex_exit(&reaplock);
1025 }
1026 
1027 /*
1028  * Install thread context ops for the current thread.
1029  */
1030 void
1031 installctx(
1032         kthread_t *t,
1033         void    *arg,
1034         void    (*save)(void *),
1035         void    (*restore)(void *),
1036         void    (*fork)(void *, void *),
1037         void    (*lwp_create)(void *, void *),
1038         void    (*exit)(void *),
1039         void    (*free)(void *, int))
1040 {
1041         struct ctxop *ctx;
1042 
1043         ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1044         ctx->save_op = save;
1045         ctx->restore_op = restore;
1046         ctx->fork_op = fork;
1047         ctx->lwp_create_op = lwp_create;
1048         ctx->exit_op = exit;
1049         ctx->free_op = free;
1050         ctx->arg = arg;
1051         ctx->next = t->t_ctx;
1052         t->t_ctx = ctx;
1053 }
1054 
1055 /*
1056  * Remove the thread context ops from a thread.
1057  */
1058 int
1059 removectx(
1060         kthread_t *t,
1061         void    *arg,
1062         void    (*save)(void *),
1063         void    (*restore)(void *),
1064         void    (*fork)(void *, void *),
1065         void    (*lwp_create)(void *, void *),
1066         void    (*exit)(void *),
1067         void    (*free)(void *, int))
1068 {
1069         struct ctxop *ctx, *prev_ctx;
1070 
1071         /*
1072          * The incoming kthread_t (which is the thread for which the
1073          * context ops will be removed) should be one of the following:
1074          *
1075          * a) the current thread,
1076          *
1077          * b) a thread of a process that's being forked (SIDL),
1078          *
1079          * c) a thread that belongs to the same process as the current
1080          *    thread and for which the current thread is the agent thread,
1081          *
1082          * d) a thread that is TS_STOPPED which is indicative of it
1083          *    being (if curthread is not an agent) a thread being created
1084          *    as part of an lwp creation.
1085          */
1086         ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1087             ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1088 
1089         /*
1090          * Serialize modifications to t->t_ctx to prevent the agent thread
1091          * and the target thread from racing with each other during lwp exit.
1092          */
1093         mutex_enter(&t->t_ctx_lock);
1094         prev_ctx = NULL;
1095         for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
1096                 if (ctx->save_op == save && ctx->restore_op == restore &&
1097                     ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1098                     ctx->exit_op == exit && ctx->free_op == free &&
1099                     ctx->arg == arg) {
1100                         if (prev_ctx)
1101                                 prev_ctx->next = ctx->next;
1102                         else
1103                                 t->t_ctx = ctx->next;
1104                         mutex_exit(&t->t_ctx_lock);
1105                         if (ctx->free_op != NULL)
1106                                 (ctx->free_op)(ctx->arg, 0);
1107                         kmem_free(ctx, sizeof (struct ctxop));
1108                         return (1);
1109                 }
1110                 prev_ctx = ctx;
1111         }
1112         mutex_exit(&t->t_ctx_lock);
1113 
1114         return (0);
1115 }
1116 
1117 void
1118 savectx(kthread_t *t)
1119 {
1120         struct ctxop *ctx;
1121 
1122         ASSERT(t == curthread);
1123         for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1124                 if (ctx->save_op != NULL)
1125                         (ctx->save_op)(ctx->arg);
1126 }
1127 
1128 void
1129 restorectx(kthread_t *t)
1130 {
1131         struct ctxop *ctx;
1132 
1133         ASSERT(t == curthread);
1134         for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1135                 if (ctx->restore_op != NULL)
1136                         (ctx->restore_op)(ctx->arg);
1137 }
1138 
1139 void
1140 forkctx(kthread_t *t, kthread_t *ct)
1141 {
1142         struct ctxop *ctx;
1143 
1144         for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1145                 if (ctx->fork_op != NULL)
1146                         (ctx->fork_op)(t, ct);
1147 }
1148 
1149 /*
1150  * Note that this operator is only invoked via the _lwp_create
1151  * system call.  The system may have other reasons to create lwps
1152  * e.g. the agent lwp or the doors unreferenced lwp.
1153  */
1154 void
1155 lwp_createctx(kthread_t *t, kthread_t *ct)
1156 {
1157         struct ctxop *ctx;
1158 
1159         for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1160                 if (ctx->lwp_create_op != NULL)
1161                         (ctx->lwp_create_op)(t, ct);
1162 }
1163 
1164 /*
1165  * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1166  * needed when the thread/LWP leaves the processor for the last time. This
1167  * routine is not intended to deal with freeing memory; freectx() is used for
1168  * that purpose during thread_free(). This routine is provided to allow for
1169  * clean-up that can't wait until thread_free().
1170  */
1171 void
1172 exitctx(kthread_t *t)
1173 {
1174         struct ctxop *ctx;
1175 
1176         for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1177                 if (ctx->exit_op != NULL)
1178                         (ctx->exit_op)(t);
1179 }
1180 
1181 /*
1182  * freectx is called from thread_free() and exec() to get
1183  * rid of old thread context ops.
1184  */
1185 void
1186 freectx(kthread_t *t, int isexec)
1187 {
1188         struct ctxop *ctx;
1189 
1190         while ((ctx = t->t_ctx) != NULL) {
1191                 t->t_ctx = ctx->next;
1192                 if (ctx->free_op != NULL)
1193                         (ctx->free_op)(ctx->arg, isexec);
1194                 kmem_free(ctx, sizeof (struct ctxop));
1195         }
1196 }
1197 
1198 /*
1199  * freectx_ctx is called from lwp_create() when lwp is reused from
1200  * lwp_deathrow and its thread structure is added to thread_deathrow.
1201  * The thread structure to which this ctx was attached may be already
1202  * freed by the thread reaper so free_op implementations shouldn't rely
1203  * on thread structure to which this ctx was attached still being around.
1204  */
1205 void
1206 freectx_ctx(struct ctxop *ctx)
1207 {
1208         struct ctxop *nctx;
1209 
1210         ASSERT(ctx != NULL);
1211 
1212         do {
1213                 nctx = ctx->next;
1214                 if (ctx->free_op != NULL)
1215                         (ctx->free_op)(ctx->arg, 0);
1216                 kmem_free(ctx, sizeof (struct ctxop));
1217         } while ((ctx = nctx) != NULL);
1218 }
1219 
1220 /*
1221  * Set the thread running; arrange for it to be swapped in if necessary.
1222  */
1223 void
1224 setrun_locked(kthread_t *t)
1225 {
1226         ASSERT(THREAD_LOCK_HELD(t));
1227         if (t->t_state == TS_SLEEP) {
1228                 /*
1229                  * Take off sleep queue.
1230                  */
1231                 SOBJ_UNSLEEP(t->t_sobj_ops, t);
1232         } else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1233                 /*
1234                  * Already on dispatcher queue.
1235                  */
1236                 return;
1237         } else if (t->t_state == TS_WAIT) {
1238                 waitq_setrun(t);
1239         } else if (t->t_state == TS_STOPPED) {
1240                 /*
1241                  * All of the sending of SIGCONT (TC_XSTART) and /proc
1242                  * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1243                  * requested that the thread be run.
1244                  * Just calling setrun() is not sufficient to set a stopped
1245                  * thread running.  TP_TXSTART is always set if the thread
1246                  * is not stopped by a jobcontrol stop signal.
1247                  * TP_TPSTART is always set if /proc is not controlling it.
1248                  * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1249                  * The thread won't be stopped unless one of these
1250                  * three mechanisms did it.
1251                  *
1252                  * These flags must be set before calling setrun_locked(t).
1253                  * They can't be passed as arguments because the streams
1254                  * code calls setrun() indirectly and the mechanism for
1255                  * doing so admits only one argument.  Note that the
1256                  * thread must be locked in order to change t_schedflags.
1257                  */
1258                 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1259                         return;
1260                 /*
1261                  * Process is no longer stopped (a thread is running).
1262                  */
1263                 t->t_whystop = 0;
1264                 t->t_whatstop = 0;
1265                 /*
1266                  * Strictly speaking, we do not have to clear these
1267                  * flags here; they are cleared on entry to stop().
1268                  * However, they are confusing when doing kernel
1269                  * debugging or when they are revealed by ps(1).
1270                  */
1271                 t->t_schedflag &= ~TS_ALLSTART;
1272                 THREAD_TRANSITION(t);   /* drop stopped-thread lock */
1273                 ASSERT(t->t_lockp == &transition_lock);
1274                 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1275                 /*
1276                  * Let the class put the process on the dispatcher queue.
1277                  */
1278                 CL_SETRUN(t);
1279         }
1280 }
1281 
1282 void
1283 setrun(kthread_t *t)
1284 {
1285         thread_lock(t);
1286         setrun_locked(t);
1287         thread_unlock(t);
1288 }
1289 
1290 /*
1291  * Unpin an interrupted thread.
1292  *      When an interrupt occurs, the interrupt is handled on the stack
1293  *      of an interrupt thread, taken from a pool linked to the CPU structure.
1294  *
1295  *      When swtch() is switching away from an interrupt thread because it
1296  *      blocked or was preempted, this routine is called to complete the
1297  *      saving of the interrupted thread state, and returns the interrupted
1298  *      thread pointer so it may be resumed.
1299  *
1300  *      Called by swtch() only at high spl.
1301  */
1302 kthread_t *
1303 thread_unpin()
1304 {
1305         kthread_t       *t = curthread; /* current thread */
1306         kthread_t       *itp;           /* interrupted thread */
1307         int             i;              /* interrupt level */
1308         extern int      intr_passivate();
1309 
1310         ASSERT(t->t_intr != NULL);
1311 
1312         itp = t->t_intr;             /* interrupted thread */
1313         t->t_intr = NULL;            /* clear interrupt ptr */
1314 
1315         /*
1316          * Get state from interrupt thread for the one
1317          * it interrupted.
1318          */
1319 
1320         i = intr_passivate(t, itp);
1321 
1322         TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1323             "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1324             i, t, t, itp, itp);
1325 
1326         /*
1327          * Dissociate the current thread from the interrupted thread's LWP.
1328          */
1329         t->t_lwp = NULL;
1330 
1331         /*
1332          * Interrupt handlers above the level that spinlocks block must
1333          * not block.
1334          */
1335 #if DEBUG
1336         if (i < 0 || i > LOCK_LEVEL)
1337                 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1338 #endif
1339 
1340         /*
1341          * Compute the CPU's base interrupt level based on the active
1342          * interrupts.
1343          */
1344         ASSERT(CPU->cpu_intr_actv & (1 << i));
1345         set_base_spl();
1346 
1347         return (itp);
1348 }
1349 
1350 /*
1351  * Create and initialize an interrupt thread.
1352  *      Returns non-zero on error.
1353  *      Called at spl7() or better.
1354  */
1355 void
1356 thread_create_intr(struct cpu *cp)
1357 {
1358         kthread_t *tp;
1359 
1360         tp = thread_create(NULL, 0,
1361             (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1362 
1363         /*
1364          * Set the thread in the TS_FREE state.  The state will change
1365          * to TS_ONPROC only while the interrupt is active.  Think of these
1366          * as being on a private free list for the CPU.  Being TS_FREE keeps
1367          * inactive interrupt threads out of debugger thread lists.
1368          *
1369          * We cannot call thread_create with TS_FREE because of the current
1370          * checks there for ONPROC.  Fix this when thread_create takes flags.
1371          */
1372         THREAD_FREEINTR(tp, cp);
1373 
1374         /*
1375          * Nobody should ever reference the credentials of an interrupt
1376          * thread so make it NULL to catch any such references.
1377          */
1378         tp->t_cred = NULL;
1379         tp->t_flag |= T_INTR_THREAD;
1380         tp->t_cpu = cp;
1381         tp->t_bound_cpu = cp;
1382         tp->t_disp_queue = cp->cpu_disp;
1383         tp->t_affinitycnt = 1;
1384         tp->t_preempt = 1;
1385 
1386         /*
1387          * Don't make a user-requested binding on this thread so that
1388          * the processor can be offlined.
1389          */
1390         tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */
1391         tp->t_bind_pset = PS_NONE;
1392 
1393 #if defined(__i386) || defined(__amd64)
1394         tp->t_stk -= STACK_ALIGN;
1395         *(tp->t_stk) = 0;            /* terminate intr thread stack */
1396 #endif
1397 
1398         /*
1399          * Link onto CPU's interrupt pool.
1400          */
1401         tp->t_link = cp->cpu_intr_thread;
1402         cp->cpu_intr_thread = tp;
1403 }
1404 
1405 /*
1406  * TSD -- THREAD SPECIFIC DATA
1407  */
1408 static kmutex_t         tsd_mutex;       /* linked list spin lock */
1409 static uint_t           tsd_nkeys;       /* size of destructor array */
1410 /* per-key destructor funcs */
1411 static void             (**tsd_destructor)(void *);
1412 /* list of tsd_thread's */
1413 static struct tsd_thread        *tsd_list;
1414 
1415 /*
1416  * Default destructor
1417  *      Needed because NULL destructor means that the key is unused
1418  */
1419 /* ARGSUSED */
1420 void
1421 tsd_defaultdestructor(void *value)
1422 {}
1423 
1424 /*
1425  * Create a key (index into per thread array)
1426  *      Locks out tsd_create, tsd_destroy, and tsd_exit
1427  *      May allocate memory with lock held
1428  */
1429 void
1430 tsd_create(uint_t *keyp, void (*destructor)(void *))
1431 {
1432         int     i;
1433         uint_t  nkeys;
1434 
1435         /*
1436          * if key is allocated, do nothing
1437          */
1438         mutex_enter(&tsd_mutex);
1439         if (*keyp) {
1440                 mutex_exit(&tsd_mutex);
1441                 return;
1442         }
1443         /*
1444          * find an unused key
1445          */
1446         if (destructor == NULL)
1447                 destructor = tsd_defaultdestructor;
1448 
1449         for (i = 0; i < tsd_nkeys; ++i)
1450                 if (tsd_destructor[i] == NULL)
1451                         break;
1452 
1453         /*
1454          * if no unused keys, increase the size of the destructor array
1455          */
1456         if (i == tsd_nkeys) {
1457                 if ((nkeys = (tsd_nkeys << 1)) == 0)
1458                         nkeys = 1;
1459                 tsd_destructor =
1460                     (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1461                     (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1462                     (size_t)(nkeys * sizeof (void (*)(void *))));
1463                 tsd_nkeys = nkeys;
1464         }
1465 
1466         /*
1467          * allocate the next available unused key
1468          */
1469         tsd_destructor[i] = destructor;
1470         *keyp = i + 1;
1471         mutex_exit(&tsd_mutex);
1472 }
1473 
1474 /*
1475  * Destroy a key -- this is for unloadable modules
1476  *
1477  * Assumes that the caller is preventing tsd_set and tsd_get
1478  * Locks out tsd_create, tsd_destroy, and tsd_exit
1479  * May free memory with lock held
1480  */
1481 void
1482 tsd_destroy(uint_t *keyp)
1483 {
1484         uint_t key;
1485         struct tsd_thread *tsd;
1486 
1487         /*
1488          * protect the key namespace and our destructor lists
1489          */
1490         mutex_enter(&tsd_mutex);
1491         key = *keyp;
1492         *keyp = 0;
1493 
1494         ASSERT(key <= tsd_nkeys);
1495 
1496         /*
1497          * if the key is valid
1498          */
1499         if (key != 0) {
1500                 uint_t k = key - 1;
1501                 /*
1502                  * for every thread with TSD, call key's destructor
1503                  */
1504                 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1505                         /*
1506                          * no TSD for key in this thread
1507                          */
1508                         if (key > tsd->ts_nkeys)
1509                                 continue;
1510                         /*
1511                          * call destructor for key
1512                          */
1513                         if (tsd->ts_value[k] && tsd_destructor[k])
1514                                 (*tsd_destructor[k])(tsd->ts_value[k]);
1515                         /*
1516                          * reset value for key
1517                          */
1518                         tsd->ts_value[k] = NULL;
1519                 }
1520                 /*
1521                  * actually free the key (NULL destructor == unused)
1522                  */
1523                 tsd_destructor[k] = NULL;
1524         }
1525 
1526         mutex_exit(&tsd_mutex);
1527 }
1528 
1529 /*
1530  * Quickly return the per thread value that was stored with the specified key
1531  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1532  */
1533 void *
1534 tsd_get(uint_t key)
1535 {
1536         return (tsd_agent_get(curthread, key));
1537 }
1538 
1539 /*
1540  * Set a per thread value indexed with the specified key
1541  */
1542 int
1543 tsd_set(uint_t key, void *value)
1544 {
1545         return (tsd_agent_set(curthread, key, value));
1546 }
1547 
1548 /*
1549  * Like tsd_get(), except that the agent lwp can get the tsd of
1550  * another thread in the same process (the agent thread only runs when the
1551  * process is completely stopped by /proc), or syslwp is creating a new lwp.
1552  */
1553 void *
1554 tsd_agent_get(kthread_t *t, uint_t key)
1555 {
1556         struct tsd_thread *tsd = t->t_tsd;
1557 
1558         ASSERT(t == curthread ||
1559             ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1560 
1561         if (key && tsd != NULL && key <= tsd->ts_nkeys)
1562                 return (tsd->ts_value[key - 1]);
1563         return (NULL);
1564 }
1565 
1566 /*
1567  * Like tsd_set(), except that the agent lwp can set the tsd of
1568  * another thread in the same process, or syslwp can set the tsd
1569  * of a thread it's in the middle of creating.
1570  *
1571  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1572  * May lock out tsd_destroy (and tsd_create), may allocate memory with
1573  * lock held
1574  */
1575 int
1576 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1577 {
1578         struct tsd_thread *tsd = t->t_tsd;
1579 
1580         ASSERT(t == curthread ||
1581             ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1582 
1583         if (key == 0)
1584                 return (EINVAL);
1585         if (tsd == NULL)
1586                 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1587         if (key <= tsd->ts_nkeys) {
1588                 tsd->ts_value[key - 1] = value;
1589                 return (0);
1590         }
1591 
1592         ASSERT(key <= tsd_nkeys);
1593 
1594         /*
1595          * lock out tsd_destroy()
1596          */
1597         mutex_enter(&tsd_mutex);
1598         if (tsd->ts_nkeys == 0) {
1599                 /*
1600                  * Link onto list of threads with TSD
1601                  */
1602                 if ((tsd->ts_next = tsd_list) != NULL)
1603                         tsd_list->ts_prev = tsd;
1604                 tsd_list = tsd;
1605         }
1606 
1607         /*
1608          * Allocate thread local storage and set the value for key
1609          */
1610         tsd->ts_value = tsd_realloc(tsd->ts_value,
1611             tsd->ts_nkeys * sizeof (void *),
1612             key * sizeof (void *));
1613         tsd->ts_nkeys = key;
1614         tsd->ts_value[key - 1] = value;
1615         mutex_exit(&tsd_mutex);
1616 
1617         return (0);
1618 }
1619 
1620 
1621 /*
1622  * Return the per thread value that was stored with the specified key
1623  *      If necessary, create the key and the value
1624  *      Assumes the caller is protecting *keyp from tsd_destroy
1625  */
1626 void *
1627 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1628 {
1629         void *value;
1630         uint_t key = *keyp;
1631         struct tsd_thread *tsd = curthread->t_tsd;
1632 
1633         if (tsd == NULL)
1634                 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1635         if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1636                 return (value);
1637         if (key == 0)
1638                 tsd_create(keyp, destroy);
1639         (void) tsd_set(*keyp, value = (*allocate)());
1640 
1641         return (value);
1642 }
1643 
1644 /*
1645  * Called from thread_exit() to run the destructor function for each tsd
1646  *      Locks out tsd_create and tsd_destroy
1647  *      Assumes that the destructor *DOES NOT* use tsd
1648  */
1649 void
1650 tsd_exit(void)
1651 {
1652         int i;
1653         struct tsd_thread *tsd = curthread->t_tsd;
1654 
1655         if (tsd == NULL)
1656                 return;
1657 
1658         if (tsd->ts_nkeys == 0) {
1659                 kmem_free(tsd, sizeof (*tsd));
1660                 curthread->t_tsd = NULL;
1661                 return;
1662         }
1663 
1664         /*
1665          * lock out tsd_create and tsd_destroy, call
1666          * the destructor, and mark the value as destroyed.
1667          */
1668         mutex_enter(&tsd_mutex);
1669 
1670         for (i = 0; i < tsd->ts_nkeys; i++) {
1671                 if (tsd->ts_value[i] && tsd_destructor[i])
1672                         (*tsd_destructor[i])(tsd->ts_value[i]);
1673                 tsd->ts_value[i] = NULL;
1674         }
1675 
1676         /*
1677          * remove from linked list of threads with TSD
1678          */
1679         if (tsd->ts_next)
1680                 tsd->ts_next->ts_prev = tsd->ts_prev;
1681         if (tsd->ts_prev)
1682                 tsd->ts_prev->ts_next = tsd->ts_next;
1683         if (tsd_list == tsd)
1684                 tsd_list = tsd->ts_next;
1685 
1686         mutex_exit(&tsd_mutex);
1687 
1688         /*
1689          * free up the TSD
1690          */
1691         kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1692         kmem_free(tsd, sizeof (struct tsd_thread));
1693         curthread->t_tsd = NULL;
1694 }
1695 
1696 /*
1697  * realloc
1698  */
1699 static void *
1700 tsd_realloc(void *old, size_t osize, size_t nsize)
1701 {
1702         void *new;
1703 
1704         new = kmem_zalloc(nsize, KM_SLEEP);
1705         if (old) {
1706                 bcopy(old, new, osize);
1707                 kmem_free(old, osize);
1708         }
1709         return (new);
1710 }
1711 
1712 /*
1713  * Return non-zero if an interrupt is being serviced.
1714  */
1715 int
1716 servicing_interrupt()
1717 {
1718         int onintr = 0;
1719 
1720         /* Are we an interrupt thread */
1721         if (curthread->t_flag & T_INTR_THREAD)
1722                 return (1);
1723         /* Are we servicing a high level interrupt? */
1724         if (CPU_ON_INTR(CPU)) {
1725                 kpreempt_disable();
1726                 onintr = CPU_ON_INTR(CPU);
1727                 kpreempt_enable();
1728         }
1729         return (onintr);
1730 }
1731 
1732 
1733 /*
1734  * Change the dispatch priority of a thread in the system.
1735  * Used when raising or lowering a thread's priority.
1736  * (E.g., priority inheritance)
1737  *
1738  * Since threads are queued according to their priority, we
1739  * we must check the thread's state to determine whether it
1740  * is on a queue somewhere. If it is, we've got to:
1741  *
1742  *      o Dequeue the thread.
1743  *      o Change its effective priority.
1744  *      o Enqueue the thread.
1745  *
1746  * Assumptions: The thread whose priority we wish to change
1747  * must be locked before we call thread_change_(e)pri().
1748  * The thread_change(e)pri() function doesn't drop the thread
1749  * lock--that must be done by its caller.
1750  */
1751 void
1752 thread_change_epri(kthread_t *t, pri_t disp_pri)
1753 {
1754         uint_t  state;
1755 
1756         ASSERT(THREAD_LOCK_HELD(t));
1757 
1758         /*
1759          * If the inherited priority hasn't actually changed,
1760          * just return.
1761          */
1762         if (t->t_epri == disp_pri)
1763                 return;
1764 
1765         state = t->t_state;
1766 
1767         /*
1768          * If it's not on a queue, change the priority with impunity.
1769          */
1770         if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1771                 t->t_epri = disp_pri;
1772                 if (state == TS_ONPROC) {
1773                         cpu_t *cp = t->t_disp_queue->disp_cpu;
1774 
1775                         if (t == cp->cpu_dispthread)
1776                                 cp->cpu_dispatch_pri = DISP_PRIO(t);
1777                 }
1778         } else if (state == TS_SLEEP) {
1779                 /*
1780                  * Take the thread out of its sleep queue.
1781                  * Change the inherited priority.
1782                  * Re-enqueue the thread.
1783                  * Each synchronization object exports a function
1784                  * to do this in an appropriate manner.
1785                  */
1786                 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1787         } else if (state == TS_WAIT) {
1788                 /*
1789                  * Re-enqueue a thread on the wait queue if its
1790                  * effective priority needs to change.
1791                  */
1792                 if (disp_pri != t->t_epri)
1793                         waitq_change_pri(t, disp_pri);
1794         } else {
1795                 /*
1796                  * The thread is on a run queue.
1797                  * Note: setbackdq() may not put the thread
1798                  * back on the same run queue where it originally
1799                  * resided.
1800                  */
1801                 (void) dispdeq(t);
1802                 t->t_epri = disp_pri;
1803                 setbackdq(t);
1804         }
1805         schedctl_set_cidpri(t);
1806 }
1807 
1808 /*
1809  * Function: Change the t_pri field of a thread.
1810  * Side Effects: Adjust the thread ordering on a run queue
1811  *               or sleep queue, if necessary.
1812  * Returns: 1 if the thread was on a run queue, else 0.
1813  */
1814 int
1815 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1816 {
1817         uint_t  state;
1818         int     on_rq = 0;
1819 
1820         ASSERT(THREAD_LOCK_HELD(t));
1821 
1822         state = t->t_state;
1823         THREAD_WILLCHANGE_PRI(t, disp_pri);
1824 
1825         /*
1826          * If it's not on a queue, change the priority with impunity.
1827          */
1828         if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1829                 t->t_pri = disp_pri;
1830 
1831                 if (state == TS_ONPROC) {
1832                         cpu_t *cp = t->t_disp_queue->disp_cpu;
1833 
1834                         if (t == cp->cpu_dispthread)
1835                                 cp->cpu_dispatch_pri = DISP_PRIO(t);
1836                 }
1837         } else if (state == TS_SLEEP) {
1838                 /*
1839                  * If the priority has changed, take the thread out of
1840                  * its sleep queue and change the priority.
1841                  * Re-enqueue the thread.
1842                  * Each synchronization object exports a function
1843                  * to do this in an appropriate manner.
1844                  */
1845                 if (disp_pri != t->t_pri)
1846                         SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1847         } else if (state == TS_WAIT) {
1848                 /*
1849                  * Re-enqueue a thread on the wait queue if its
1850                  * priority needs to change.
1851                  */
1852                 if (disp_pri != t->t_pri)
1853                         waitq_change_pri(t, disp_pri);
1854         } else {
1855                 /*
1856                  * The thread is on a run queue.
1857                  * Note: setbackdq() may not put the thread
1858                  * back on the same run queue where it originally
1859                  * resided.
1860                  *
1861                  * We still requeue the thread even if the priority
1862                  * is unchanged to preserve round-robin (and other)
1863                  * effects between threads of the same priority.
1864                  */
1865                 on_rq = dispdeq(t);
1866                 ASSERT(on_rq);
1867                 t->t_pri = disp_pri;
1868                 if (front) {
1869                         setfrontdq(t);
1870                 } else {
1871                         setbackdq(t);
1872                 }
1873         }
1874         schedctl_set_cidpri(t);
1875         return (on_rq);
1876 }
1877 
1878 /*
1879  * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
1880  * specific pattern.
1881  */
1882 static void
1883 stkinfo_begin(kthread_t *t)
1884 {
1885         caddr_t start;  /* stack start */
1886         caddr_t end;    /* stack end  */
1887         uint64_t *ptr;  /* pattern pointer */
1888 
1889         /*
1890          * Stack grows up or down, see thread_create(),
1891          * compute stack memory area start and end (start < end).
1892          */
1893         if (t->t_stk > t->t_stkbase) {
1894                 /* stack grows down */
1895                 start = t->t_stkbase;
1896                 end = t->t_stk;
1897         } else {
1898                 /* stack grows up */
1899                 start = t->t_stk;
1900                 end = t->t_stkbase;
1901         }
1902 
1903         /*
1904          * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1905          * alignement for start and end in stack area boundaries
1906          * (protection against corrupt t_stkbase/t_stk data).
1907          */
1908         if ((((uintptr_t)start) & 0x7) != 0) {
1909                 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1910         }
1911         end = (caddr_t)(((uintptr_t)end) & (~0x7));
1912 
1913         if ((end <= start) || (end - start) > (1024 * 1024)) {
1914                 /* negative or stack size > 1 meg, assume bogus */
1915                 return;
1916         }
1917 
1918         /* fill stack area with a pattern (instead of zeros) */
1919         ptr = (uint64_t *)((void *)start);
1920         while (ptr < (uint64_t *)((void *)end)) {
1921                 *ptr++ = KMEM_STKINFO_PATTERN;
1922         }
1923 }
1924 
1925 
1926 /*
1927  * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
1928  * compute the percentage of kernel stack really used, and set in the log
1929  * if it's the latest highest percentage.
1930  */
1931 static void
1932 stkinfo_end(kthread_t *t)
1933 {
1934         caddr_t start;  /* stack start */
1935         caddr_t end;    /* stack end  */
1936         uint64_t *ptr;  /* pattern pointer */
1937         size_t stksz;   /* stack size */
1938         size_t smallest = 0;
1939         size_t percent = 0;
1940         uint_t index = 0;
1941         uint_t i;
1942         static size_t smallest_percent = (size_t)-1;
1943         static uint_t full = 0;
1944 
1945         /* create the stackinfo log, if doesn't already exist */
1946         mutex_enter(&kmem_stkinfo_lock);
1947         if (kmem_stkinfo_log == NULL) {
1948                 kmem_stkinfo_log = (kmem_stkinfo_t *)
1949                     kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
1950                     (sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
1951                 if (kmem_stkinfo_log == NULL) {
1952                         mutex_exit(&kmem_stkinfo_lock);
1953                         return;
1954                 }
1955         }
1956         mutex_exit(&kmem_stkinfo_lock);
1957 
1958         /*
1959          * Stack grows up or down, see thread_create(),
1960          * compute stack memory area start and end (start < end).
1961          */
1962         if (t->t_stk > t->t_stkbase) {
1963                 /* stack grows down */
1964                 start = t->t_stkbase;
1965                 end = t->t_stk;
1966         } else {
1967                 /* stack grows up */
1968                 start = t->t_stk;
1969                 end = t->t_stkbase;
1970         }
1971 
1972         /* stack size as found in kthread_t */
1973         stksz = end - start;
1974 
1975         /*
1976          * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1977          * alignement for start and end in stack area boundaries
1978          * (protection against corrupt t_stkbase/t_stk data).
1979          */
1980         if ((((uintptr_t)start) & 0x7) != 0) {
1981                 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1982         }
1983         end = (caddr_t)(((uintptr_t)end) & (~0x7));
1984 
1985         if ((end <= start) || (end - start) > (1024 * 1024)) {
1986                 /* negative or stack size > 1 meg, assume bogus */
1987                 return;
1988         }
1989 
1990         /* search until no pattern in the stack */
1991         if (t->t_stk > t->t_stkbase) {
1992                 /* stack grows down */
1993 #if defined(__i386) || defined(__amd64)
1994                 /*
1995                  * 6 longs are pushed on stack, see thread_load(). Skip
1996                  * them, so if kthread has never run, percent is zero.
1997                  * 8 bytes alignement is preserved for a 32 bit kernel,
1998                  * 6 x 4 = 24, 24 is a multiple of 8.
1999                  *
2000                  */
2001                 end -= (6 * sizeof (long));
2002 #endif
2003                 ptr = (uint64_t *)((void *)start);
2004                 while (ptr < (uint64_t *)((void *)end)) {
2005                         if (*ptr != KMEM_STKINFO_PATTERN) {
2006                                 percent = stkinfo_percent(end,
2007                                     start, (caddr_t)ptr);
2008                                 break;
2009                         }
2010                         ptr++;
2011                 }
2012         } else {
2013                 /* stack grows up */
2014                 ptr = (uint64_t *)((void *)end);
2015                 ptr--;
2016                 while (ptr >= (uint64_t *)((void *)start)) {
2017                         if (*ptr != KMEM_STKINFO_PATTERN) {
2018                                 percent = stkinfo_percent(start,
2019                                     end, (caddr_t)ptr);
2020                                 break;
2021                         }
2022                         ptr--;
2023                 }
2024         }
2025 
2026         DTRACE_PROBE3(stack__usage, kthread_t *, t,
2027             size_t, stksz, size_t, percent);
2028 
2029         if (percent == 0) {
2030                 return;
2031         }
2032 
2033         mutex_enter(&kmem_stkinfo_lock);
2034         if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
2035                 /*
2036                  * The log is full and already contains the highest values
2037                  */
2038                 mutex_exit(&kmem_stkinfo_lock);
2039                 return;
2040         }
2041 
2042         /* keep a log of the highest used stack */
2043         for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
2044                 if (kmem_stkinfo_log[i].percent == 0) {
2045                         index = i;
2046                         full++;
2047                         break;
2048                 }
2049                 if (smallest == 0) {
2050                         smallest = kmem_stkinfo_log[i].percent;
2051                         index = i;
2052                         continue;
2053                 }
2054                 if (kmem_stkinfo_log[i].percent < smallest) {
2055                         smallest = kmem_stkinfo_log[i].percent;
2056                         index = i;
2057                 }
2058         }
2059 
2060         if (percent >= kmem_stkinfo_log[index].percent) {
2061                 kmem_stkinfo_log[index].kthread = (caddr_t)t;
2062                 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
2063                 kmem_stkinfo_log[index].start = start;
2064                 kmem_stkinfo_log[index].stksz = stksz;
2065                 kmem_stkinfo_log[index].percent = percent;
2066                 kmem_stkinfo_log[index].t_tid = t->t_tid;
2067                 kmem_stkinfo_log[index].cmd[0] = '\0';
2068                 if (t->t_tid != 0) {
2069                         stksz = strlen((t->t_procp)->p_user.u_comm);
2070                         if (stksz >= KMEM_STKINFO_STR_SIZE) {
2071                                 stksz = KMEM_STKINFO_STR_SIZE - 1;
2072                                 kmem_stkinfo_log[index].cmd[stksz] = '\0';
2073                         } else {
2074                                 stksz += 1;
2075                         }
2076                         (void) memcpy(kmem_stkinfo_log[index].cmd,
2077                             (t->t_procp)->p_user.u_comm, stksz);
2078                 }
2079                 if (percent < smallest_percent) {
2080                         smallest_percent = percent;
2081                 }
2082         }
2083         mutex_exit(&kmem_stkinfo_lock);
2084 }
2085 
2086 /*
2087  * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2088  */
2089 static size_t
2090 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
2091 {
2092         size_t percent;
2093         size_t s;
2094 
2095         if (t_stk > t_stkbase) {
2096                 /* stack grows down */
2097                 if (sp > t_stk) {
2098                         return (0);
2099                 }
2100                 if (sp < t_stkbase) {
2101                         return (100);
2102                 }
2103                 percent = t_stk - sp + 1;
2104                 s = t_stk - t_stkbase + 1;
2105         } else {
2106                 /* stack grows up */
2107                 if (sp < t_stk) {
2108                         return (0);
2109                 }
2110                 if (sp > t_stkbase) {
2111                         return (100);
2112                 }
2113                 percent = sp - t_stk + 1;
2114                 s = t_stkbase - t_stk + 1;
2115         }
2116         percent = ((100 * percent) / s) + 1;
2117         if (percent > 100) {
2118                 percent = 100;
2119         }
2120         return (percent);
2121 }