new usr/src/uts/comon/di sp/thread.c 1 new usr/src/uts/comon/di sp/thread.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 363 */

51775 Sun Apr 7 23:57:51 2013 364 if (stksize <= sizeof (kthread_t) + PTR24_ALI GN)
new usr/src/uts/ common/ di sp/thread.c 365 crm_err (CE_PANIC, "thread_create: proposed stack size"
3625 we only need one thread_create_intr 366 " too small to hold thread.");

LEEE R R R EE SRR EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREREEEEEEEEESEE] 367 #Ifdef STAC'< WH m/\N
__unchanged_portion_onitted_ 368 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
369 stksize & -PTR24_ALI G\, /* make thread aligned */
313 /* 370 t = (kthread_t *)(stk + stksize);
314 * Create a thread. 371 bzero(t, sizeof (kthread_t));
315 * 372 if (audit_active)
316 * thread_create() blocks for nenory if necessary. It never fails. 373 audit _thread_create(t);
317 * 374 t->t_stk = stk + stksize;
318 * If stk is NULL, the thread is created at the base of the stack 375 t->t_stkbase = stk;
319 * and cannot be swapped. 376 #el se /* stack grows to | arger addresses */
320 */ 377 st ksi ze -= SA(si zeof (kthread t));
321 kthread_t * 378 t (kthread_t *)(stk);
322 thread_creat e(caddr_t stk size_t stksize, void (proc)(), void *arg, 379 bzero(t si zeof (kthread t));
323 size_t len, proc_t *pp, int state, pri_t pri) 380 t->t_stk -stk+S|zeof (kthreadt)
322 thread_creat e(381 t->t _stkbase = stk + stksize + sizeof (kthread_t);
323 caddr _t stk, 382 #endif /* STACK_GROAMH_DOWN */
324 size_t st ksi ze, 383 t->t_flag | = T_TALLOCSTK;
325 voi d (*proc) (), 384 t->t_swap = stk;
326 voi d *arg, 385 } else {
327 size_t len, 386 t = knem cache_al | oc(thread_cache, KM SLEEP);
328 proc_t *pp, 387 bzero(t sizeof (kthread_t));
329 I nt state, 388 ASSERT(((w ntptr_t)t & (PTR24 ALIGN - 1)) == 0);
330 pri_t pri) 389 if (audit_active)
324 { 390 audit _thread_create(t);
325 kthread_t *t; 391 /*
326 extern struct classfuncs sys_cl assfuncs; 392 * |Initialize t_stk to the kernel stack pointer to use
327 turnstile_t *ts; 393 * upon entry to the kernel
394 */
329 /* 395 #ifdef STACK_GROATH_DOMN
330 * Every thread keeps a turnstile around in case it needs to bl ock. 396 t->t_stk = stk + stksize;
331 * The only reason the turnstile is not sinply part of the thread 397 t->t_stkbase = stk;
332 * structure is that we may have to break the associati on whenever 398 #el se
333 * nore than one thread bl ocks on a given synchronization object. 399 t->t_stk = stk; /* 3b2-1ike */
334 * From a nmenory- managenent standpoint, turnstiles are |ike the 400 t->t_stkbase = stk + stksize;
335 * "attached nbl ks" that hang off dblks in the streams allocator. 401 #endif /* STACK _GROMH _DOWN */
336 */ 402 }
337 ts = knem cache_al l oc(turnstil e_cache, KM SLEEP);
404 if (kmemstackinfo !'= 0) {
339 if (stk == NULL) { 405 st ki nfo_begin(t);
340 /* 406 }
341 * alloc both thread and stack in segkp chunk
342 */ 408 t->t_ts = ts;
344 if (stksize < default_stksize) 410 I*
345 stksize = defaul t _stksize; 411 * p_cred could be NULL if it thread_create is called before cred_init
412 * is called in nain.
347 if (stksize == default_stksize) { 413 */
348 stk = (caddr_t) segkp_cache_get (segkp_t hread) ; 414 mut ex_ent er (&pp- >p_crl ock) ;
349 } else { 415 if (pp->p_cred)
350 st ksi ze = roundup(stksize, PAGESIZE); 416 crhol d(t->t_cred = pp->p_cred);
351 stk = (caddr_t)segkp_get (segkp, stksize, 417 mut ex_exi t (&pp->p_crl ock);
352 (KPD_HASREDZONE | KPD_NO ANON | KPD_LOCKED)) ; 418 t->t_start = gethrestinme_sec();
353 } 419 t->t_startpc = proc;
420 t->t_procp = pp;
355 ASSERT(stk != NULL); 421 t->t_clfuncs = &sys_classfuncs.thread;
422 t->t_cid = syscid;
357 /* 423 t->t_pri = pri;
358 * The machi ne- dependent nutex code may require that 424 t->t_stine = ddi _get Ibolt();
359 * thread pointers (since they may be used for nutex owner 425 t->t schedfl ag = TS LOAD | TS_DONT_SWAP,
360 * fields) have certain alignnent requirenents. 426 t->t _bind_cpu = PBI ND_NONE;
361 * PTRZ4_ALICGN is the size of the alignnment quanta. 427 t->t_bindflag = (uchar_t)defaul t_bi ndi ng_node;
362 * XXX - assunes stack grows toward | ow addresses. 428 t->t_bind_pset = PS_NONE;

new usr/src/ uts/ comon/ di sp/thread.c

429
430
431
432
433

435

437
438
439
440
441
442

444
445
446
447
448
449
450
451

453
454
455
456
457
458

460

462
463
464
465
466

468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490
491

493
494

t->t_plockp = &p->p_| ock;
t->t_copyops = NULL;
t->t_taskg = NULL;
t->t_anttine = 0;
t->t_hatdepth = 0;

t->t_dtrace_vtime = 1; /* assure vtinmestanp is always non-zero */

CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
#i f ndef NPROBE
/* Kernel probe */
tnf_thread_create(t);
#endi f /* NPROBE */
LOCK_I NI T_CLEAR(&t - >t _I ock);

*

* Callers who give us a NULL proc nust do their own
* stack initialization. e.g. |lwp_create()
*
/
if (proc !'= NULL) {
t->t_stk = thread_stk_init(t->t_stk);
thread_l oad(t, proc, arg, len);

}

/*
* Put a hold on project0. If this thread is actually in a
* different project, then t_proj will be changed later in

* |wp_create(). Al kernel-only threads nmust be in project O.
*
/

t->t_proj = project_hol d(proj0p);
lgrp_affinity_init(&->t_lgrp_affinity);
mut ex_ent er (&pi dl ock);

nt hr ead++;
t->t_did = next_t_id++;

t->t_prev = curthread->t_prev;

t->t_next = curthread;

/*

* Add the thread to the list of all threads, and initialize
* its t_cpu pointer. W need to bl ock preenption since

* cpu_offline wal ks the thread |ist |ooking for threads

* with t_cpu pointing to the CPU being offlined. W want

*

to make sure that the list is consistent and that if t_cpu
* is set, the thread is on the list.

*/

kpreenpt _di sabl e();

curthread->t _prev->t_next =t;

curthread->t _prev = t;

/
Threads shoul d never have a NULL t_cpu pointer so assign it
here. If the thread is being created wth state TS RUN a

We need to keep kernel preenption disabled when setting all
three fields to keep themin sync. Also, always create in
the default partition since that’'s where kernel threads go
(if this isn't a kernel thread, t_cpupart will be changed

in lw_create before setting the thread runnable).

¥k ok ok k ok % ok kb
-~

t->t_cpupart = &cp_default;

/*
* For now, affiliate this thread with the root | group.

better CPU may be chosen when it is placed on the run queue.

new usr/src/ uts/ comon/ di sp/thread.c 4
495 * Since the kernel does not (presently) allocate its nmenory
496 * in alocality aware fashion, the root is an appropriate hone.
497 * |f this thread is later associated with an Iwp, it will have
498 * it’s lgroup re-assigned at that tine.
499
500 I grp_nove_thread(t, &cp_default.cp_Igrploads[LGRP_ROOTID], 1);
502 /*
503 * |Inherit the current cpu. |If this cpuisn't part of the chosen
504 * | group, a new cpu will be chosen by cpu_choose when the thread
505 * is ready to run.
506 *
507 if (CPU->cpu_part == &cp_defaul t)
508 t->t_cpu = CPU,
509 el se
510 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_Ipl,
511 t->t_pri, NULL);
513 t->t_di sp_queue = t->t_cpu->cpu_disp;
514 kpreenpt _enabl e();
516 /*
517 * Initialize thread state and the dispatcher |ock pointer.
518 * Need to hold onto pidlock to block allthreads wal kers until
519 * the state is set.
520 */
521 switch (state) {
522 case TS _RUN:
523 curthread->t_ol dspl = splhigh(); /* get dispatcher spl */
524 THREAD_SET_STATE(t, TS_STOPPED, &transition_| ock);
525 CL_SETRUN(t);
526 t hread_unl ock(t);
527 br eak;
529 case TS_ONPRCC:
530 THREAD ONPROC(t, t->t_cpu);
531 br eak;
533 case TS_FREE:
534 /*
535 * Free state will be used for intr threads.
536 * The interrupt routine nust set the thread dispatcher
537 * | ock pointer (t_lockp) if starting on a CPU
538 * other than the current one.
539 *
540 THREAD_FREEI NTR(t, CPU);
541 br eak;
543 case TS STOPPED:
544 THREAD_SET_STATE(t, TS_STOPPED, &stop_| ock);
545 br eak;
547 defaul t: /* TS _SLEEP, TS _ZOMB or TS_TRANS */
548) com_err (CE_PANIC, "thread_create: invalid state %", state);
549
550 mut ex_exi t (&pi dl ock) ;
551 return (t);
552 }
__unchanged_portion_omtted_
883 /*
884 * cleanup zonbie threads that are on deat hrow.
885 */
886 void

887 thread_reaper(void)
894 thread_reaper()

new usr/src/ uts/ comon/ di sp/thread.c

new usr/src/ uts/ common/ di sp/thread.c

1031 install ct x(

888 {
889 kthread_t *t, *I;
890 callb_cpr_t cprinfo;
892 /*
893 * Register callback to clean up threads when zone is destroyed.
894 */
895 zone_key_creat e(&zone_t hread_key, NULL, NULL, thread_zone_destroy);
897 CALLB_CPR_I NI T(&cprinfo, &reaplock, callb_generic_cpr, _reaper");
898 for (;;)
899 mut ex_ent er (& eapl ock) ;
900 while (thread_ deat hrow == NULL && | wp_deat hrow == NULL) {
901 CALLB_CPR_SAFE_BEG N(&cprinfo);
902 cv_wai t (& eaper_cv, &reapl ock);
903 CALLB_CPR_SAFE_END(&cpri nfo, &reapl ock);
904 }
905 /*
906 * nmutex_sync() needs to be called when reaping,
907 * not too often. We limt reaping rate to once
908 * per second. Reaplimt is max rate at which threads can
909 * be freed. Does not inpact thread destruction/creation.
910 */
911 t = thread_deat hrow;
912 I = | wp_deat hrow,
913 thread_deat hrow = NULL;
914 | wp_deat hr ow = NULL;
915 thread_reapcnt = O;
916 I wp_reapcnt = O;
917 mut ex_exi t (&reapl ock) ;
919 /*
920 * Quard agai nst race condition in nmutex_owner_running:
921 * t hr ead=owner (nmut ex)
922 * <interrupt>
923 * thread exits nutex
924 * thread exits
925 * thread reaped
926 * thread struct freed
927 * cpu = thread->t_cpu <- BAD PO NTER DEREFERENCE.
928 * Across call to all cpus will cause the interrupt handler
929 * toreset the PCif it is in nutex_owner_running, refreshing
930 * stale thread pointers.
931 */
932 mut ex_sync(); /* sync with nutex code */
933 /*
934 * Reap threads
935 *
936 thread_reap_list(t);
938 I*
939 * Reap | wps
940 */
941 thread_reap_list(l);
942 del ay(hz);
943 }
944 }
__unchanged_portion_omtted_
1020 /*
1021 * Install thread context ops for the current thread.
1022 */
1023 voi d
1024 installctx(kthread_t *t, void *arg, void (*save)(void *),
1025 voi d (*restore)(vmd *), void (*fork)(void *, void *)
1026 void (*Iwp_create)(void *, void *), void (*exit)(void *),

1032 kt hread_t *t,

1033 voi d *arg,

1034 voi d (*save) (void *),

1035 voi d (*restore)(void *),

1036 voi d (*fork)(void *, void *),

1037 voi d (*pr create)(vmd *, void *),

1038 voi d (*exit)(void *),

1027 void (*free)(void *, int))

1028 {

1029 struct ctxop *ctx;

1031 ctx = kmem al | oc(sizeof (struct ctxop), KM SLEEP);

1032 ct x->save_op = save;

1033 ctx->r estore_op = restore;

1034 ctx->fork_op fork;

1035 ctx->l wp_ create _op = lwp_create;

1036 ctx->exit_op = exit;

1037 ctx->free_op = free;

1038 ctx->arg = arg;

1039 ctx->next = t->t_ctx;

1040 t->t_ctx = ctx;

1041 }

1043 /*

1044 * Renpve the thread context ops froma thread.

1045 */

1046 int

1047 renovect x(kthread_t *t, void *arg, void (* save)(vmd *)

1048 void (*restore)(void *), void (*fork)(void *, void *),

1049 void (*Iwp_create)(void *, void *), void (*exit)(void *),

1059 renovect x(

1060 kthread_t *t,

1061 voi d *arg,

1062 voi d (*save) (void *),

1063 voi d (*restore)(void *),

1064 voi d (*fork)(void *, void *),

1065 voi d (*I'wp_create)(void *, void *),

1066 voi d (*exit)(void *),

1050 void (*free)(void *, int))

1051 {

1052 struct ctxop *ctx, *prev_ctx;

1054 I*

1055 * The incom ng kthread_t (which is the thread for which the
1056 * context ops will be renpved) should be one of the follow ng:
1057 *

1058 * a) the current thread,

1059 *

1060 * b) a thread of a process that’'s being forked (SIDL),

1061 *

1062 * c) a thread that belongs to the same process as the current
1063 * thread and for which the current thread is the agent thread,
1064 *

1065 * d) a thread that is TS _STOPPED which is indicative of it
1066 * being (if curthread is not an agent) a thread being created
1067 * as part of an lwp creation.

1068 */

1069 ASSERT(t == curthread || ttoproc(t)—>p75t at == SIDL ||

1070 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1072 /*

1073 * Serialize nodifications to t->t_ctx to prevent the agent thread
1074 * and the target thread fromracing with each other during lwp exit.
1075 */

1076 mut ex_enter (& ->t _ctx_| ock);

new usr/src/ uts/ comon/ di sp/thread.c

new usr/src/uts/ comon/di sp/thread.c

1077 prev_ctx = NULL;
1078 for (ctx = t->t_ctx; ctx !'= NULL; ctx = ctx->next) {
1079 if (ctx->save_op == save && ctx->restore_op == restore &&
1080 ctx->fork_op == fork && ctx->lwp_create_op == |wp_create &&
1081 ctx->exit_op == exit && ctx->free_op == free &&
1082 ctx->arg == arg) {
1083 if (prev_ctx)
1084 prev_ctx->next = ctx->next;
1085 el se
1086 t->t_ctx = ctx->next;
1087 mut ex_exit (& ->t_ctx_| ock);
1088 if (ctx->free_op != NULL)
1089 (ctx->free_op)(ctx->arg, 0);
1090 kmem free(ctx, sizeof (struct ctxop));
1091 return (1);
1092 }
1093 prev_ctx = ctx;
1094
1095 mut ex_exit (& ->t_ctx_l ock);
1097 return (0);
1098 }
____unchanged_portion_onitted_
1273 /*
1274 * Unpin an interrupted thread.
1275 * Wien an interrupt occurs, the interrupt is handled on the stack
1276 * of an interrupt thread, taken froma pool linked to the CPU structure.
1277 *
1278 * When swtch() is switching away froman interrupt thread because it
1279 * bl ocked or was preenpted, this routine is called to conplete the
1280 * saving of the interrupted thread state, and returns the interrupted
1281 * thread pointer so it may be resuned.
1282 *
1283 * Called by swtch() only at high spl.
1284 */

1285 kthread_t *
1286 t hread_unpi n(voi d)
1303 t hread_unpi n()

1287 {

1288 kt hread_t *t = curthread; /* current thread */

1289 kt hread_t *itp; /* interrupted thread */

1290 int i; /* interrupt level */

1291 extern int intr_passivate();

1293 ASSERT(t->t_intr !'= NULL);

1295 itp = t->t_intr; /* interrupted thread */

1296 t->t_intr = NULL; /* clear interrupt ptr */

1298 /*

1299 * Cet state frominterrupt thread for the one

1300 * it interrupted.

1301 */

1303 i = intr_passivate(t, itp);

1305 TRACE_5(TR_FAC_I NTR, TR_I NTR_PASSI VATE,

1306 "intr_passivate:level % curthread % (%) ithread % (9%)",
1307 i, t,t, itp, itp)

1309 /*

1310 * Dissociate the current thread fromthe interrupted thread’ s LWP.
1311 */

1312 t->t lwp = NULL

1314 /*

1315 * Interrupt handl ers above the |evel that spinlocks bl ock nust
1316 * not bl ock.

1317 */

1318 #if DEBUG

1319 if (i <0]| i > LOCK_LEVEL)

1320 crm_err (CE_PANIC, "thread_unpin: ipl out of range %",
1321 #endif

1323 /*

1324 * Conpute the CPU s base interrupt |evel based on the active
1325 * interrupts.

1326 */

1327 ASSERT(CPU- >cpu_intr_actv & (1 << i));

1328 set _base_spl ();

1330 return (itp);

1331 }

1333 /*

1351 * Create and initialize an interrupt thread.

1352 *
1353 *
1354 */
1355 voi d

Returns non-zero on error.
Called at spl7() or better.

1356 thread_create_intr(struct cpu *cp)

1357 {
1358

1360
1361

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

1386
1387
1388
1389
1390
1391

1393 #if defi
1394

1395

1396 #endi f

kt hread_t *tp;

tp = thread_

create(NULL, O,
(void (*)())

thread_create_intr, NULL, 0, &p0, TS ONPROC, 0);

Set the thread in the TS FREE state. The state will change

to TS_ ONPROC only while the interrupt is active. Think of these
as being on a private free list for the CPU. Being TS FREE keeps
inactive interrupt threads out of debugger thread lists.

We cannot call thread_create with TS FREE because of the current
checks there for ONPROC. Fix this when thread_create takes flags.

* ok K ok kb * o

*

THREAD_FREEI NTR(tp, cp);

/*

* Nobody shoul d ever reference the credentials of an interrupt
*/thread so make it NULL to catch any such references.
*

tp->t_cred = NULL;

tp->t_flag | = T_I NTR_THREAD;

tp->t_cpu = cp;

t p- >t _bound_cpu = cp;

t p- >t _di sp_queue = cp->cpu_di sp;

tp->t_affinitycnt = 1;

tp->t_preenmpt = 1;

/*

* Don't neke a user-requested binding on this thread so that

* the processor can be offlined.

*/

t p->t _bi nd_cpu = PBI ND_NONE; /* no USER-requested binding */
tp->t _bi nd_pset = PS_NONE;

ned(__i386) || defined(__and64)
tp->t_stk -= STACK ALl G\,
(tp->t_stk) = O; / terminate intr thread stack */

new usr/src/ uts/ comon/ di sp/thread.c

1398 /*

1399 * Link onto CPU s interrupt pool.

1400 *

1401 tp->t_link = cp->cpu_intr_thread;

1402 cp->cpu_intr_thread = tp;

1403 }

1405 /*

1334 * TSD -- THREAD SPECI FI C DATA

1335 */

1336 static knmutex_t t sd_nut ex; /* linked list spin lock */
1337 static uint_t tsd_nkeys; /* size of destructor array */
1338 /* per-key destructor funcs */

1339 static void (**tsd_destructor)(void *);

1340 /* list of tsd_thread' s */

1341 static struct tsd_thread *tsd_list;

1343 /*

1344 * Default destructor

1345 * Needed because NULL destructor neans that the key is unused
1346 *

1347 /* ARGSUSED */

1348 voi d

1349 tsd_defaul tdestructor(void *val ue)

1350 {}

1352 /*

1353 * Create a key (index into per thread array)

1354 * Locks out tsd_create, tsd_destroy, and tsd_exit

1355 * May al |l ocate nmenory with | ock held

1356 */

1357 void

1358 tsd_create(uint_t *keyp, void (*destructor)(void *))

1359 {

1360 int i;

1361 uint_t nkeys;

1363 /*

1364 * if key is allocated, do nothing

1365 */

1366 nmut ex_ent er (& sd_nut ex) ;

1367 if (*keyp) {

1368 mut ex_exi t (& sd_mnut ex) ;

1369 return;

1370 }

1371 I*

1372 * find an unused key

1373 *

1374 if (destructor == NULL)

1375 destructor = tsd_defaul tdestructor;

1377 for (i =0; i < tsd_nkeys; ++i)

1378 if (tsd_destructor[i] == NULL)

1379 br eak;

1381 I*

1382 * if no unused keys, increase the size of the destructor array
1383 */

1384 if (i == tsd_nkeys) {

1385 if ((nkeys = (tsd_nkeys << 1)) == 0)

1386 nkeys = 1;

1387 tsd_destructor =

1388 (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1389 (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1390 (size_t)(nkeys * sizeof (void (*)(void *))));

new

1391
1392

1394
1395
1396
1397
1398
1399
1400

usr/src/ uts/ common/ di sp/thread. c

tsd_nkeys = nkeys;

/*
* allocate the next avail abl e unused key
*/

tsd_destructor[i] = destructor;
*keyp =i +1;
mut ex_exi t (& sd_nut ex) ;

}

____unchanged_portion_onitted_

new usr/src/uts/comon/di sp/thread_intr.c

R R R R

2882 Sun Apr 7 23:57:52 2013
new usr/src/uts/comon/di sp/thread_intr.c
3625 we only need one thread_create_intr

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END

*/

22 /| *
23 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.

25 =/

27 | *

28 * FILE NOTI CE BEG N

29 =

30 * This file should not be nodified. |If you wish to nodify it or have it
31 * nodified, please contact Sun M crosystens at <LFl 149367@ sun-.-com >
32 * (without anti-spam dashes)

33 *

34 * FILE NOTI CE END

35 */

37 #pragma i dent " %98V % % %E% SM "

27 #include <sys/cpuvar. h>

28 #include <sys/stack. h>

29 #include <vn seg_kp. h>

30 #include <sys/proc. h>

31 #include <sys/pset.h>

32 #include <sys/sysnacros. h>

34 /*
35 * Create and initialize an interrupt thread.
36 */

37 static void
38 thread_create_intr(cpu_t *cp)

39 {

40 kt hread_t *tp;

42 tp = thread_create(NULL, O,

43 (void (*)())thread_create_intr, NULL, 0, &0, TS ONPROC, 0);

45 /*

46 * Set the thread in the TS FREE state. The state will change

47 * to TS_ONPROC only while the interrupt is active. Think of these
48 * as being on a private free list for the CPU. Being TS_FREE keeps
49 * inactive interrupt threads out of debugger thread lists.

new usr/src/uts/comon/di sp/thread_intr.c

*
* We cannot call thread_create with TS FREE because of the current
* checks there for ONPROC. Fix this when thread_create takes flags.

*
/
THREAD_FREEI NTR(t p, cp);
/*
* Nobody shoul d ever reference the credentials of an interrupt
* thread so make it NULL to catch any such references.
*
/
tp->t_cred = NULL;
tp->t_flag |_ T_I NTR_THREAD;
tp->t_cpu = cp;
t p- >t _bound_cpu = cp;
t p->t _di sp_queue = cp->cpu_di sp;
tp->t_affinitycnt = 1;
tp->t_preenpt = 1,

/*
* Don’t make a user-requested binding on this thread so that
* the processor can be offlined.

*

t p->t _bind_cpu = PBI ND_NONE;
tp- >t _bind_pset = PS_NONE;

/* no USER-requested binding */

#if defined(__i386) || def |ned(_and64)

tp->t_stk -= STACK ALI G\,

(tp->t_stk) = 0; / termnate intr thread stack */
#endi f

/*

* Link onto CPU s interrupt pool.

*

tp->t_link = cp->cpu_intr_thread;

cp->cpu_intr_thread = tp;

__unchanged_portion_onitted_

new usr/src/uts/comon/sys/proc. h 1 new usr/src/uts/comon/sys/proc. h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 636 extern VOId Spl’V\ﬂIthCk proc(proc t *)'
29252 Sun Apr 7 23:57:52 2013 637 extern void sprlock_proc(proc_t *);
new usr/src/uts/comon/sys/proc. h 638 extern void sprunlock(proc_t *);
3625 we only need one thread_create_intr 639 extern void pi d _init(void);
LEEE R R R EE SRR EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREREEEEEEEEESEE] 640 extern proc t pld entry(l nt)
__unchanged_portion_onitted_ 641 extern int pid_slot(proc_t *);
642 extern void si gnal(pld t, |nt)
577 #ifdef _KERNEL 643 extern void prsignal (struct pi d *,oint);
644 extern int uread(proc_t *, void *, size_t, uintptr_t);
579 /* user profiling functions */ 645 extern int uwite(proc_t *, void *, si ze_t uintptr_t);
581 extern void profil _tick(uintptr_t); 647 extern void pgsignal (struct pid *, int);
648 extern void pgjoin(proc_t *, struct pid *);
583 /* process managenent functions */ 649 extern void pgcreate(proc_t *);
650 extern void pgexit(proc_t *);
585 extern int newproc(void (*)(), caddr_t, id_t, int, struct contract **, pid_t); 651 extern void pgdetach(proc_t *);
586 extern void viwait(pid_t); 652 extern int pgnmenbers(pid_t);
587 extern void proc_det ach(proc to*);
588 extern void freeproc(proc_t *); 654 extern void init_nmstate(kthread_t *, int);
589 extern void setrun(kthread_t *)' 655 extern int new _nstate(kthread_t *, int);
590 extern void setrun_|l ocked(kthread_t *); 656 extern void restore_nstate(kthread_t *);
591 extern void exit(int, int); 657 extern void termnstate(kthread_t *);
592 extern int proc_eX|t(| nt, int); 658 extern void estimate_mnsacct (kthread_t *, hrtine_t);
593 extern void proc_i s_exi ting(proc_t *); 659 extern void di sabl e_nsacct (proc_t *);
594 extern void relvn(void); 660 extern hrtine_t nstate_aggr_state(proc_t *, int);
595 extern void add_ns(proc_t *, proc_t *); 661 extern hrtime_t nstate_thread_onproc_tinme(kthread_t *);
596 extern void delete_ns(proc_t *, proc_t *); 662 extern void nstate_systhread_ti mas(k hread_t *, hrtime_t *, hrtime_t *);
597 extern void upcount _inc(uid_t, zoneid_t); 663 extern void syscal | _nstate(int, int);
598 extern void upcount_dec(uid_t, zoneid_t);
599 extern int upcount_get(uid_t, zoneid_t); 665 extern wuint_t cpu_update_pct(kthread_t *, hrtinme_t);
600 #if defined(__x86)
601 extern selector_t setup_thrptr(proc_t *, uintptr_t); 667 extern void set _proc_pre_sys(proc_t *p);
602 extern void deferred_singlestep_trap(caddr_t); 668 extern void set_proc_post _sys(proc_t *p);
603 #endi f 669 extern void set_proc_sys(proc_t *p);
670 extern void set _proc_ast(proc_t *p);
605 extern void sigcld(proc_t *, sigqueue_t *); 671 extern void set _al |l _proc_sys(void);
606 extern void sigcld_delete(k_siginfo_t *); 672 extern void set _all _zone_usr_proc_sys(zoneid_t);
607 extern void sigcld_repost(void);
608 extern int fsig(k_sigset_t *, kthread_t *); 674 /* thread function prototypes */
609 extern void psig(void);
610 extern void stop(int, int); 676 extern kthread_t *thread_creat e(caddr t, size_t, void (*)(), void *,
611 extern int stop_on_fault(uint_t, k_siginfo_t *); 677 size_t, proc_t *, int, pri_t);
612 extern int issig(int); 676 extern kthread_t *thread_creat e(
613 extern int jobstopped(proc_t *); 677 caddr _t st k,
614 extern void psignal (proc_t *, int); 678 size t st ksi ze,
615 extern void tsignal (kthread_t *, int); 679 voi d (proc)()
616 extern void sigtoproc(proc_t *, kthread_t *, int); 680 voi d *arg,
617 extern void trapsig(k_siginfo_t *, i nt) 681 size_t I en,
618 extern void real sigprof (int, int, int); 682 proc_t *pp,
619 extern int eat_signal (kthread_ t *, int); 683 I nt state,
620 extern int signal _is_blocked(kthread_t *, int); 684 pri_t pri);
621 extern int si gcheck(roc_t *, kthread_t *); 678 extern void t hr ead eX|t(v0| d) NORETURN,
622 extern void si gdefault(proc to*); 679 extern void thread_free(kthread_t *);
680 extern void thread_rel e(kthread_t *);
624 extern void pid_setm n(void); 681 extern void thread_join(kt_did_t);
625 extern pid_t pid_allocate(proc_t *, pid_t, int); 682 extern int reaper (void);
626 extern int pid_rele(struct pid *); 683 extern void installctx(kthread_t *, void *, void (*)(), void (*)(),
627 extern void pid_exit(proc_t *, struct task *); 684 void (*)(), void (*)(), void (*)(), void (*)());
628 extern void proc_entry_free(struct pid *); 685 extern int renovect x(kthread_t *, void *, void (*)(), void (*)(),
629 extern proc_t *prfind(pid_t); 686 voi d ()() void (*)(), void (*)(), void (*)()):
630 extern proc_t *prfind_zone(pid_t, zoneid_t); 687 extern savect x(kthread_t *);
631 extern proc_t *pgfind(pid_t); 688 extern v0| d restorectx(kthread_t *);
632 extern proc_t *pgfind_zone(pid_t, zoneid_t); 689 extern void forkctx(kthread_t *, kthread_t *);
633 extern proc_t *sprlock(pid_t); 690 extern void | wp_createctx(kthread_t *, kthr ead |t *);
634 extern proc_t *sprlock_zone(pid_t, zoneid_t); 691 extern void exitctx(kthread_t *);

635 extern int sprtrylock_proc(proc_t *); 692 extern void freectx(kthread_t *, int);

new usr/src/uts/comon/sys/proc. h

693
694
695
696
697
698
699
700
701
702
703
704

706
707
708
709
710
711
712
713

715

717
718
719
725
726
727
728
729
730
731
732
733
734
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

extern void installpctx(proc_t *, void *, void (*)(), void (*)(),
void (*)(), void (*)(), void (*)());
extern int reervepctx(proc_t *, void *, void (*)(), void (*)(),
VOId()() void (*)(), void (*)());
extern savepctx(proc_t *);
extern v0| d restorepctx(proc_t *);
extern void forkpctx(proc_t *, proc_t *);
extern void exitpctx(proc_t *);
extern void freepctx(proc_t *, int);
extern kthread_t *thread_unpin(void);
extern void “thread_init(void);
extern void thread_| oad(kthread_t *, void (*)(), caddr_t, size_t);
extern void tsd_create(uint_t *, void (*)(void *));
extern void tsd_destroy(uint_t *);
extern void *tsd_getcreate(uint_t *, void (*)(void *), void *(*)(void));
extern void *tsd_get(uint_t);
extern int tsd_set(uint_t, voi d *)s
extern void tsd_exit(void);
extern void *tsd_agent _get (kthread_t *, uint_t);
extern int tsd_agent _set(kthread_t *, uint_t, void *);
/* Iwp function prototypes */
extern kthread_t *|wp_kernel _create(proc_t *, void (*)(), void *, int, pri
extern klwp_t *lwp_create(void (*)(), caddr_t, size_ t, proc_t *, int, int,
const k_sigset_t *, int, id_t);
extern klwp_t *| wp_creat e(
voi d (*proc) (),
caddr _t arg,
size t |l en,
proc_t *p,
I nt state,
int pri,
const k_sigset_t *snask,
int cid,
id_t I wpi d) ;
extern kthread_t *idtot(proc_t *, id_t);
extern void | wp_hash_i n(proc_t *, prent_t *, tidhash_t *, uint_t, int);
extern void I wp_hash_out (proc_t *, id_t);
extern Iwpdir_t *lwp_hash_l| ookup(proc to*, id_t);
extern Iwpdir_t *lwp_hash_| ookup_and_| ock(proc_t *, id_t, kmutex_t **);
extern void | wp_create_done(kthread_t *);
extern void I wp_exit(void);
extern void | wp_pchb_exit(void);
extern void | wp_cl eanup(voi d);
extern int | wp_suspend(kthread_t *);
extern void I wp_continue(kthread_t *);
extern void hol dl wp(voi d);
extern void st opl wp(voi d);
extern int hol dl wps(int);
extern int hol dwat ch(vol d);
extern void pokel wps(proc_t *);
extern void conti nuel wps(proc_t *);
extern int exitlwps(int);
extern void | wp_ct npl copy(kl wp_t *, klwp_t *);
extern void Iwp_ctnpl _clear(klwp_t *);
extern kiwp_t *forklwp(klwp_t *, proc_t *, id_t);
extern void Iwp_l oad(klwp_t *, gregset_t, uintptr_t);
extern void I wp_setrval (klwp_t *, int, int);
extern void Iwp_forkregs(klwp_t *, klwp_t *);
extern void Iwp_freeregs(klwp_t *, int);
extern caddr_t Iwp_stk_init(klw_t *, caddr_t)
extern void | wp_stk_cache_init(void);
extern void Iwp_stk_fini(klw_t *);
extern void Iwp_installctx(klwp_t *);

_t)s

new usr/src/uts/comon/sys/proc. h

voi d
voi d

749 extern
750 extern

Iwp_rtt(void);
wp_rtt_initial(void);

|
751 extern int Iwp_setprivate(klwp_t *, int, uintptr_t);
752 extern void I wp_stat_update(lwp_stat_id_t, |ong);
753 extern void | wp_at t ach_br and hdI rs(klwp_t *);
754 extern void | wp_det ach_brand_hdl rs(klwp_t *);
756 #if defi ned(__sparcv9)
757 extern void | wp_rmodel _new wp(voi d);
758 extern void | wp_mmodel _shared_as(caddr _t, size_t);

759 #define LWP_MVODEL_NEW.WP()

760 #define LWP_MMODEL_SHARED AS(addr, sz)
761 tel se

762 #define LWP_MVODEL_NEW.WP()

763 #defi ne LWP_MVODEL_SHARED AS(addr, sz)
764 #endi f

766 [*

767 * Signal queue function prototypes. Mist

768 * dependenci es.
769 */

770 extern void sigqgfree(proc_t *);

771 extern void siginfofree(sigqueue_t *);
772 extern void sigdeq(proc_t *,
773 extern void sigdel g(proc_t *,
774 extern void sigaddq(proc_t *,

kt hread_t
kt hr ead_t

kthread_t *

| wp_nmodel _new wp(
| wp_nmodel

shar ed?’:ls((addr), (sz))

be here due to header ordering

int, sigqueue_t **);

*,oint);

, k_siginfo_t *, int);

775 extern void sigaddqa(proc_t *, kthread_t *, sigqueue_t *);

776 extern void siggsend(int, proc_t *, kthread_t *, sigqueue_t *);
777 extern void sigdupq(proc_t *, proc_t *);

778 extern int sigw llqueue(int, int);

779 extern sigghdr_t *sigqghdralloc(size_t,

uint_t);

780 extern sigqueue_t *sigqal l oc(sigghdr_t *);

781 extern void sigghdrfree(sigghdr_t *);

782 extern sigqueue_t *sigappend(k_sigset_t *,

783 k_sigset_t *, sigqueue_t *)

784 extern sigqueue_t *sigprepend(k_si géet t

si gqueue_t *,

*, sigqueue_t *,

785 k_sigset_t *, sigqueue_t *);

786 extern void winfo(proc_t *, k_sigi nfo_t *,int);

787 extern int wstat(int, int);

788 extern int sendsig(int, k_siginfo_t *, void (*)());
789 #if defined(_SYSCALL32_| NPL)

790 extern int sendsig32(int, k_siginfo_t *, void (*)());

791 #endi f

793 #endi f /* _KERNEL */
795 #ifdef __cplusplus
796

__unchanged_portion_onitted_

