
new/usr/src/uts/common/disp/thread.c 1

**
 51775 Sun Apr 7 23:57:51 2013
new/usr/src/uts/common/disp/thread.c
3625 we only need one thread_create_intr
**
______unchanged_portion_omitted_

313 /*
314 * Create a thread.
315 *
316 * thread_create() blocks for memory if necessary. It never fails.
317 *
318 * If stk is NULL, the thread is created at the base of the stack
319 * and cannot be swapped.
320 */
321 kthread_t *
322 thread_create(caddr_t stk, size_t stksize, void (*proc)(), void *arg,
323 size_t len, proc_t *pp, int state, pri_t pri)
322 thread_create(
323 caddr_t stk,
324 size_t stksize,
325 void (*proc)(),
326 void *arg,
327 size_t len,
328 proc_t *pp,
329 int state,
330 pri_t pri)
324 {
325 kthread_t *t;
326 extern struct classfuncs sys_classfuncs;
327 turnstile_t *ts;

329 /*
330 * Every thread keeps a turnstile around in case it needs to block.
331 * The only reason the turnstile is not simply part of the thread
332 * structure is that we may have to break the association whenever
333 * more than one thread blocks on a given synchronization object.
334 * From a memory-management standpoint, turnstiles are like the
335 * "attached mblks" that hang off dblks in the streams allocator.
336 */
337 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);

339 if (stk == NULL) {
340 /*
341 * alloc both thread and stack in segkp chunk
342 */

344 if (stksize < default_stksize)
345 stksize = default_stksize;

347 if (stksize == default_stksize) {
348 stk = (caddr_t)segkp_cache_get(segkp_thread);
349 } else {
350 stksize = roundup(stksize, PAGESIZE);
351 stk = (caddr_t)segkp_get(segkp, stksize,
352 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
353 }

355 ASSERT(stk != NULL);

357 /*
358 * The machine-dependent mutex code may require that
359 * thread pointers (since they may be used for mutex owner
360 * fields) have certain alignment requirements.
361 * PTR24_ALIGN is the size of the alignment quanta.
362 * XXX - assumes stack grows toward low addresses.

new/usr/src/uts/common/disp/thread.c 2

363 */
364 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
365 cmn_err(CE_PANIC, "thread_create: proposed stack size"
366 " too small to hold thread.");
367 #ifdef STACK_GROWTH_DOWN
368 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
369 stksize &= -PTR24_ALIGN; /* make thread aligned */
370 t = (kthread_t *)(stk + stksize);
371 bzero(t, sizeof (kthread_t));
372 if (audit_active)
373 audit_thread_create(t);
374 t->t_stk = stk + stksize;
375 t->t_stkbase = stk;
376 #else /* stack grows to larger addresses */
377 stksize -= SA(sizeof (kthread_t));
378 t = (kthread_t *)(stk);
379 bzero(t, sizeof (kthread_t));
380 t->t_stk = stk + sizeof (kthread_t);
381 t->t_stkbase = stk + stksize + sizeof (kthread_t);
382 #endif /* STACK_GROWTH_DOWN */
383 t->t_flag |= T_TALLOCSTK;
384 t->t_swap = stk;
385 } else {
386 t = kmem_cache_alloc(thread_cache, KM_SLEEP);
387 bzero(t, sizeof (kthread_t));
388 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
389 if (audit_active)
390 audit_thread_create(t);
391 /*
392 * Initialize t_stk to the kernel stack pointer to use
393 * upon entry to the kernel
394 */
395 #ifdef STACK_GROWTH_DOWN
396 t->t_stk = stk + stksize;
397 t->t_stkbase = stk;
398 #else
399 t->t_stk = stk; /* 3b2-like */
400 t->t_stkbase = stk + stksize;
401 #endif /* STACK_GROWTH_DOWN */
402 }

404 if (kmem_stackinfo != 0) {
405 stkinfo_begin(t);
406 }

408 t->t_ts = ts;

410 /*
411 * p_cred could be NULL if it thread_create is called before cred_init
412 * is called in main.
413 */
414 mutex_enter(&pp->p_crlock);
415 if (pp->p_cred)
416 crhold(t->t_cred = pp->p_cred);
417 mutex_exit(&pp->p_crlock);
418 t->t_start = gethrestime_sec();
419 t->t_startpc = proc;
420 t->t_procp = pp;
421 t->t_clfuncs = &sys_classfuncs.thread;
422 t->t_cid = syscid;
423 t->t_pri = pri;
424 t->t_stime = ddi_get_lbolt();
425 t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
426 t->t_bind_cpu = PBIND_NONE;
427 t->t_bindflag = (uchar_t)default_binding_mode;
428 t->t_bind_pset = PS_NONE;

new/usr/src/uts/common/disp/thread.c 3

429 t->t_plockp = &pp->p_lock;
430 t->t_copyops = NULL;
431 t->t_taskq = NULL;
432 t->t_anttime = 0;
433 t->t_hatdepth = 0;

435 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */

437 CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
438 #ifndef NPROBE
439 /* Kernel probe */
440 tnf_thread_create(t);
441 #endif /* NPROBE */
442 LOCK_INIT_CLEAR(&t->t_lock);

444 /*
445 * Callers who give us a NULL proc must do their own
446 * stack initialization. e.g. lwp_create()
447 */
448 if (proc != NULL) {
449 t->t_stk = thread_stk_init(t->t_stk);
450 thread_load(t, proc, arg, len);
451 }

453 /*
454 * Put a hold on project0. If this thread is actually in a
455 * different project, then t_proj will be changed later in
456 * lwp_create(). All kernel-only threads must be in project 0.
457 */
458 t->t_proj = project_hold(proj0p);

460 lgrp_affinity_init(&t->t_lgrp_affinity);

462 mutex_enter(&pidlock);
463 nthread++;
464 t->t_did = next_t_id++;
465 t->t_prev = curthread->t_prev;
466 t->t_next = curthread;

468 /*
469 * Add the thread to the list of all threads, and initialize
470 * its t_cpu pointer. We need to block preemption since
471 * cpu_offline walks the thread list looking for threads
472 * with t_cpu pointing to the CPU being offlined. We want
473 * to make sure that the list is consistent and that if t_cpu
474 * is set, the thread is on the list.
475 */
476 kpreempt_disable();
477 curthread->t_prev->t_next = t;
478 curthread->t_prev = t;

480 /*
481 * Threads should never have a NULL t_cpu pointer so assign it
482 * here. If the thread is being created with state TS_RUN a
483 * better CPU may be chosen when it is placed on the run queue.
484 *
485 * We need to keep kernel preemption disabled when setting all
486 * three fields to keep them in sync. Also, always create in
487 * the default partition since that’s where kernel threads go
488 * (if this isn’t a kernel thread, t_cpupart will be changed
489 * in lwp_create before setting the thread runnable).
490 */
491 t->t_cpupart = &cp_default;

493 /*
494 * For now, affiliate this thread with the root lgroup.

new/usr/src/uts/common/disp/thread.c 4

495 * Since the kernel does not (presently) allocate its memory
496 * in a locality aware fashion, the root is an appropriate home.
497 * If this thread is later associated with an lwp, it will have
498 * it’s lgroup re-assigned at that time.
499 */
500 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);

502 /*
503 * Inherit the current cpu. If this cpu isn’t part of the chosen
504 * lgroup, a new cpu will be chosen by cpu_choose when the thread
505 * is ready to run.
506 */
507 if (CPU->cpu_part == &cp_default)
508 t->t_cpu = CPU;
509 else
510 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
511 t->t_pri, NULL);

513 t->t_disp_queue = t->t_cpu->cpu_disp;
514 kpreempt_enable();

516 /*
517 * Initialize thread state and the dispatcher lock pointer.
518 * Need to hold onto pidlock to block allthreads walkers until
519 * the state is set.
520 */
521 switch (state) {
522 case TS_RUN:
523 curthread->t_oldspl = splhigh(); /* get dispatcher spl */
524 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
525 CL_SETRUN(t);
526 thread_unlock(t);
527 break;

529 case TS_ONPROC:
530 THREAD_ONPROC(t, t->t_cpu);
531 break;

533 case TS_FREE:
534 /*
535 * Free state will be used for intr threads.
536 * The interrupt routine must set the thread dispatcher
537 * lock pointer (t_lockp) if starting on a CPU
538 * other than the current one.
539 */
540 THREAD_FREEINTR(t, CPU);
541 break;

543 case TS_STOPPED:
544 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
545 break;

547 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */
548 cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
549 }
550 mutex_exit(&pidlock);
551 return (t);
552 }

______unchanged_portion_omitted_

883 /*
884 * cleanup zombie threads that are on deathrow.
885 */
886 void
887 thread_reaper(void)
894 thread_reaper()

new/usr/src/uts/common/disp/thread.c 5

888 {
889 kthread_t *t, *l;
890 callb_cpr_t cprinfo;

892 /*
893 * Register callback to clean up threads when zone is destroyed.
894 */
895 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);

897 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
898 for (;;) {
899 mutex_enter(&reaplock);
900 while (thread_deathrow == NULL && lwp_deathrow == NULL) {
901 CALLB_CPR_SAFE_BEGIN(&cprinfo);
902 cv_wait(&reaper_cv, &reaplock);
903 CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
904 }
905 /*
906 * mutex_sync() needs to be called when reaping, but
907 * not too often. We limit reaping rate to once
908 * per second. Reaplimit is max rate at which threads can
909 * be freed. Does not impact thread destruction/creation.
910 */
911 t = thread_deathrow;
912 l = lwp_deathrow;
913 thread_deathrow = NULL;
914 lwp_deathrow = NULL;
915 thread_reapcnt = 0;
916 lwp_reapcnt = 0;
917 mutex_exit(&reaplock);

919 /*
920 * Guard against race condition in mutex_owner_running:
921 * thread=owner(mutex)
922 * <interrupt>
923 * thread exits mutex
924 * thread exits
925 * thread reaped
926 * thread struct freed
927 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
928 * A cross call to all cpus will cause the interrupt handler
929 * to reset the PC if it is in mutex_owner_running, refreshing
930 * stale thread pointers.
931 */
932 mutex_sync(); /* sync with mutex code */
933 /*
934 * Reap threads
935 */
936 thread_reap_list(t);

938 /*
939 * Reap lwps
940 */
941 thread_reap_list(l);
942 delay(hz);
943 }
944 }

______unchanged_portion_omitted_

1020 /*
1021 * Install thread context ops for the current thread.
1022 */
1023 void
1024 installctx(kthread_t *t, void *arg, void (*save)(void *),
1025 void (*restore)(void *), void (*fork)(void *, void *),
1026 void (*lwp_create)(void *, void *), void (*exit)(void *),

new/usr/src/uts/common/disp/thread.c 6

1031 installctx(
1032 kthread_t *t,
1033 void *arg,
1034 void (*save)(void *),
1035 void (*restore)(void *),
1036 void (*fork)(void *, void *),
1037 void (*lwp_create)(void *, void *),
1038 void (*exit)(void *),
1027 void (*free)(void *, int))
1028 {
1029 struct ctxop *ctx;

1031 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1032 ctx->save_op = save;
1033 ctx->restore_op = restore;
1034 ctx->fork_op = fork;
1035 ctx->lwp_create_op = lwp_create;
1036 ctx->exit_op = exit;
1037 ctx->free_op = free;
1038 ctx->arg = arg;
1039 ctx->next = t->t_ctx;
1040 t->t_ctx = ctx;
1041 }

1043 /*
1044 * Remove the thread context ops from a thread.
1045 */
1046 int
1047 removectx(kthread_t *t, void *arg, void (*save)(void *),
1048 void (*restore)(void *), void (*fork)(void *, void *),
1049 void (*lwp_create)(void *, void *), void (*exit)(void *),
1059 removectx(
1060 kthread_t *t,
1061 void *arg,
1062 void (*save)(void *),
1063 void (*restore)(void *),
1064 void (*fork)(void *, void *),
1065 void (*lwp_create)(void *, void *),
1066 void (*exit)(void *),
1050 void (*free)(void *, int))
1051 {
1052 struct ctxop *ctx, *prev_ctx;

1054 /*
1055 * The incoming kthread_t (which is the thread for which the
1056 * context ops will be removed) should be one of the following:
1057 *
1058 * a) the current thread,
1059 *
1060 * b) a thread of a process that’s being forked (SIDL),
1061 *
1062 * c) a thread that belongs to the same process as the current
1063 * thread and for which the current thread is the agent thread,
1064 *
1065 * d) a thread that is TS_STOPPED which is indicative of it
1066 * being (if curthread is not an agent) a thread being created
1067 * as part of an lwp creation.
1068 */
1069 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1070 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);

1072 /*
1073 * Serialize modifications to t->t_ctx to prevent the agent thread
1074 * and the target thread from racing with each other during lwp exit.
1075 */
1076 mutex_enter(&t->t_ctx_lock);

new/usr/src/uts/common/disp/thread.c 7

1077 prev_ctx = NULL;
1078 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
1079 if (ctx->save_op == save && ctx->restore_op == restore &&
1080 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1081 ctx->exit_op == exit && ctx->free_op == free &&
1082 ctx->arg == arg) {
1083 if (prev_ctx)
1084 prev_ctx->next = ctx->next;
1085 else
1086 t->t_ctx = ctx->next;
1087 mutex_exit(&t->t_ctx_lock);
1088 if (ctx->free_op != NULL)
1089 (ctx->free_op)(ctx->arg, 0);
1090 kmem_free(ctx, sizeof (struct ctxop));
1091 return (1);
1092 }
1093 prev_ctx = ctx;
1094 }
1095 mutex_exit(&t->t_ctx_lock);

1097 return (0);
1098 }
______unchanged_portion_omitted_

1273 /*
1274 * Unpin an interrupted thread.
1275 * When an interrupt occurs, the interrupt is handled on the stack
1276 * of an interrupt thread, taken from a pool linked to the CPU structure.
1277 *
1278 * When swtch() is switching away from an interrupt thread because it
1279 * blocked or was preempted, this routine is called to complete the
1280 * saving of the interrupted thread state, and returns the interrupted
1281 * thread pointer so it may be resumed.
1282 *
1283 * Called by swtch() only at high spl.
1284 */
1285 kthread_t *
1286 thread_unpin(void)
1303 thread_unpin()
1287 {
1288 kthread_t *t = curthread; /* current thread */
1289 kthread_t *itp; /* interrupted thread */
1290 int i; /* interrupt level */
1291 extern int intr_passivate();

1293 ASSERT(t->t_intr != NULL);

1295 itp = t->t_intr; /* interrupted thread */
1296 t->t_intr = NULL; /* clear interrupt ptr */

1298 /*
1299 * Get state from interrupt thread for the one
1300 * it interrupted.
1301 */

1303 i = intr_passivate(t, itp);

1305 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1306 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1307 i, t, t, itp, itp);

1309 /*
1310 * Dissociate the current thread from the interrupted thread’s LWP.
1311 */
1312 t->t_lwp = NULL;

new/usr/src/uts/common/disp/thread.c 8

1314 /*
1315 * Interrupt handlers above the level that spinlocks block must
1316 * not block.
1317 */
1318 #if DEBUG
1319 if (i < 0 || i > LOCK_LEVEL)
1320 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1321 #endif

1323 /*
1324 * Compute the CPU’s base interrupt level based on the active
1325 * interrupts.
1326 */
1327 ASSERT(CPU->cpu_intr_actv & (1 << i));
1328 set_base_spl();

1330 return (itp);
1331 }

1333 /*
1351 * Create and initialize an interrupt thread.
1352 * Returns non-zero on error.
1353 * Called at spl7() or better.
1354 */
1355 void
1356 thread_create_intr(struct cpu *cp)
1357 {
1358 kthread_t *tp;

1360 tp = thread_create(NULL, 0,
1361 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);

1363 /*
1364 * Set the thread in the TS_FREE state. The state will change
1365 * to TS_ONPROC only while the interrupt is active. Think of these
1366 * as being on a private free list for the CPU. Being TS_FREE keeps
1367 * inactive interrupt threads out of debugger thread lists.
1368 *
1369 * We cannot call thread_create with TS_FREE because of the current
1370 * checks there for ONPROC. Fix this when thread_create takes flags.
1371 */
1372 THREAD_FREEINTR(tp, cp);

1374 /*
1375 * Nobody should ever reference the credentials of an interrupt
1376 * thread so make it NULL to catch any such references.
1377 */
1378 tp->t_cred = NULL;
1379 tp->t_flag |= T_INTR_THREAD;
1380 tp->t_cpu = cp;
1381 tp->t_bound_cpu = cp;
1382 tp->t_disp_queue = cp->cpu_disp;
1383 tp->t_affinitycnt = 1;
1384 tp->t_preempt = 1;

1386 /*
1387 * Don’t make a user-requested binding on this thread so that
1388 * the processor can be offlined.
1389 */
1390 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */
1391 tp->t_bind_pset = PS_NONE;

1393 #if defined(__i386) || defined(__amd64)
1394 tp->t_stk -= STACK_ALIGN;
1395 *(tp->t_stk) = 0; /* terminate intr thread stack */
1396 #endif

new/usr/src/uts/common/disp/thread.c 9

1398 /*
1399 * Link onto CPU’s interrupt pool.
1400 */
1401 tp->t_link = cp->cpu_intr_thread;
1402 cp->cpu_intr_thread = tp;
1403 }

1405 /*
1334 * TSD -- THREAD SPECIFIC DATA
1335 */
1336 static kmutex_t tsd_mutex; /* linked list spin lock */
1337 static uint_t tsd_nkeys; /* size of destructor array */
1338 /* per-key destructor funcs */
1339 static void (**tsd_destructor)(void *);
1340 /* list of tsd_thread’s */
1341 static struct tsd_thread *tsd_list;

1343 /*
1344 * Default destructor
1345 * Needed because NULL destructor means that the key is unused
1346 */
1347 /* ARGSUSED */
1348 void
1349 tsd_defaultdestructor(void *value)
1350 {}

1352 /*
1353 * Create a key (index into per thread array)
1354 * Locks out tsd_create, tsd_destroy, and tsd_exit
1355 * May allocate memory with lock held
1356 */
1357 void
1358 tsd_create(uint_t *keyp, void (*destructor)(void *))
1359 {
1360 int i;
1361 uint_t nkeys;

1363 /*
1364 * if key is allocated, do nothing
1365 */
1366 mutex_enter(&tsd_mutex);
1367 if (*keyp) {
1368 mutex_exit(&tsd_mutex);
1369 return;
1370 }
1371 /*
1372 * find an unused key
1373 */
1374 if (destructor == NULL)
1375 destructor = tsd_defaultdestructor;

1377 for (i = 0; i < tsd_nkeys; ++i)
1378 if (tsd_destructor[i] == NULL)
1379 break;

1381 /*
1382 * if no unused keys, increase the size of the destructor array
1383 */
1384 if (i == tsd_nkeys) {
1385 if ((nkeys = (tsd_nkeys << 1)) == 0)
1386 nkeys = 1;
1387 tsd_destructor =
1388 (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1389 (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1390 (size_t)(nkeys * sizeof (void (*)(void *))));

new/usr/src/uts/common/disp/thread.c 10

1391 tsd_nkeys = nkeys;
1392 }

1394 /*
1395 * allocate the next available unused key
1396 */
1397 tsd_destructor[i] = destructor;
1398 *keyp = i + 1;
1399 mutex_exit(&tsd_mutex);
1400 }
______unchanged_portion_omitted_

new/usr/src/uts/common/disp/thread_intr.c 1

**
 2882 Sun Apr 7 23:57:52 2013
new/usr/src/uts/common/disp/thread_intr.c
3625 we only need one thread_create_intr
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * FILE NOTICE BEGIN
29 *
30 * This file should not be modified. If you wish to modify it or have it
31 * modified, please contact Sun Microsystems at <LFI149367@-sun-.-com->
32 * (without anti-spam dashes)
33 *
34 * FILE NOTICE END
35 */

37 #pragma ident "%Z%%M% %I% %E% SMI"

27 #include <sys/cpuvar.h>
28 #include <sys/stack.h>
29 #include <vm/seg_kp.h>
30 #include <sys/proc.h>
31 #include <sys/pset.h>
32 #include <sys/sysmacros.h>

34 /*
35 * Create and initialize an interrupt thread.
36 */
37 static void
38 thread_create_intr(cpu_t *cp)
39 {
40 kthread_t *tp;

42 tp = thread_create(NULL, 0,
43 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);

45 /*
46 * Set the thread in the TS_FREE state. The state will change
47 * to TS_ONPROC only while the interrupt is active. Think of these
48 * as being on a private free list for the CPU. Being TS_FREE keeps
49 * inactive interrupt threads out of debugger thread lists.

new/usr/src/uts/common/disp/thread_intr.c 2

50 *
51 * We cannot call thread_create with TS_FREE because of the current
52 * checks there for ONPROC. Fix this when thread_create takes flags.
53 */
54 THREAD_FREEINTR(tp, cp);

56 /*
57 * Nobody should ever reference the credentials of an interrupt
58 * thread so make it NULL to catch any such references.
59 */
60 tp->t_cred = NULL;
61 tp->t_flag |= T_INTR_THREAD;
62 tp->t_cpu = cp;
63 tp->t_bound_cpu = cp;
64 tp->t_disp_queue = cp->cpu_disp;
65 tp->t_affinitycnt = 1;
66 tp->t_preempt = 1;

68 /*
69 * Don’t make a user-requested binding on this thread so that
70 * the processor can be offlined.
71 */
72 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */
73 tp->t_bind_pset = PS_NONE;

75 #if defined(__i386) || defined(__amd64)
76 tp->t_stk -= STACK_ALIGN;
77 *(tp->t_stk) = 0; /* terminate intr thread stack */
78 #endif

80 /*
81 * Link onto CPU’s interrupt pool.
82 */
83 tp->t_link = cp->cpu_intr_thread;
84 cp->cpu_intr_thread = tp;
85 }

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/proc.h 1

**
 29252 Sun Apr 7 23:57:52 2013
new/usr/src/uts/common/sys/proc.h
3625 we only need one thread_create_intr
**
______unchanged_portion_omitted_

577 #ifdef _KERNEL

579 /* user profiling functions */

581 extern void profil_tick(uintptr_t);

583 /* process management functions */

585 extern int newproc(void (*)(), caddr_t, id_t, int, struct contract **, pid_t);
586 extern void vfwait(pid_t);
587 extern void proc_detach(proc_t *);
588 extern void freeproc(proc_t *);
589 extern void setrun(kthread_t *);
590 extern void setrun_locked(kthread_t *);
591 extern void exit(int, int);
592 extern int proc_exit(int, int);
593 extern void proc_is_exiting(proc_t *);
594 extern void relvm(void);
595 extern void add_ns(proc_t *, proc_t *);
596 extern void delete_ns(proc_t *, proc_t *);
597 extern void upcount_inc(uid_t, zoneid_t);
598 extern void upcount_dec(uid_t, zoneid_t);
599 extern int upcount_get(uid_t, zoneid_t);
600 #if defined(__x86)
601 extern selector_t setup_thrptr(proc_t *, uintptr_t);
602 extern void deferred_singlestep_trap(caddr_t);
603 #endif

605 extern void sigcld(proc_t *, sigqueue_t *);
606 extern void sigcld_delete(k_siginfo_t *);
607 extern void sigcld_repost(void);
608 extern int fsig(k_sigset_t *, kthread_t *);
609 extern void psig(void);
610 extern void stop(int, int);
611 extern int stop_on_fault(uint_t, k_siginfo_t *);
612 extern int issig(int);
613 extern int jobstopped(proc_t *);
614 extern void psignal(proc_t *, int);
615 extern void tsignal(kthread_t *, int);
616 extern void sigtoproc(proc_t *, kthread_t *, int);
617 extern void trapsig(k_siginfo_t *, int);
618 extern void realsigprof(int, int, int);
619 extern int eat_signal(kthread_t *, int);
620 extern int signal_is_blocked(kthread_t *, int);
621 extern int sigcheck(proc_t *, kthread_t *);
622 extern void sigdefault(proc_t *);

624 extern void pid_setmin(void);
625 extern pid_t pid_allocate(proc_t *, pid_t, int);
626 extern int pid_rele(struct pid *);
627 extern void pid_exit(proc_t *, struct task *);
628 extern void proc_entry_free(struct pid *);
629 extern proc_t *prfind(pid_t);
630 extern proc_t *prfind_zone(pid_t, zoneid_t);
631 extern proc_t *pgfind(pid_t);
632 extern proc_t *pgfind_zone(pid_t, zoneid_t);
633 extern proc_t *sprlock(pid_t);
634 extern proc_t *sprlock_zone(pid_t, zoneid_t);
635 extern int sprtrylock_proc(proc_t *);

new/usr/src/uts/common/sys/proc.h 2

636 extern void sprwaitlock_proc(proc_t *);
637 extern void sprlock_proc(proc_t *);
638 extern void sprunlock(proc_t *);
639 extern void pid_init(void);
640 extern proc_t *pid_entry(int);
641 extern int pid_slot(proc_t *);
642 extern void signal(pid_t, int);
643 extern void prsignal(struct pid *, int);
644 extern int uread(proc_t *, void *, size_t, uintptr_t);
645 extern int uwrite(proc_t *, void *, size_t, uintptr_t);

647 extern void pgsignal(struct pid *, int);
648 extern void pgjoin(proc_t *, struct pid *);
649 extern void pgcreate(proc_t *);
650 extern void pgexit(proc_t *);
651 extern void pgdetach(proc_t *);
652 extern int pgmembers(pid_t);

654 extern void init_mstate(kthread_t *, int);
655 extern int new_mstate(kthread_t *, int);
656 extern void restore_mstate(kthread_t *);
657 extern void term_mstate(kthread_t *);
658 extern void estimate_msacct(kthread_t *, hrtime_t);
659 extern void disable_msacct(proc_t *);
660 extern hrtime_t mstate_aggr_state(proc_t *, int);
661 extern hrtime_t mstate_thread_onproc_time(kthread_t *);
662 extern void mstate_systhread_times(kthread_t *, hrtime_t *, hrtime_t *);
663 extern void syscall_mstate(int, int);

665 extern uint_t cpu_update_pct(kthread_t *, hrtime_t);

667 extern void set_proc_pre_sys(proc_t *p);
668 extern void set_proc_post_sys(proc_t *p);
669 extern void set_proc_sys(proc_t *p);
670 extern void set_proc_ast(proc_t *p);
671 extern void set_all_proc_sys(void);
672 extern void set_all_zone_usr_proc_sys(zoneid_t);

674 /* thread function prototypes */

676 extern kthread_t *thread_create(caddr_t, size_t, void (*)(), void *,
677 size_t, proc_t *, int, pri_t);
676 extern kthread_t *thread_create(
677 caddr_t stk,
678 size_t stksize,
679 void (*proc)(),
680 void *arg,
681 size_t len,
682 proc_t *pp,
683 int state,
684 pri_t pri);
678 extern void thread_exit(void) __NORETURN;
679 extern void thread_free(kthread_t *);
680 extern void thread_rele(kthread_t *);
681 extern void thread_join(kt_did_t);
682 extern int reaper(void);
683 extern void installctx(kthread_t *, void *, void (*)(), void (*)(),
684 void (*)(), void (*)(), void (*)(), void (*)());
685 extern int removectx(kthread_t *, void *, void (*)(), void (*)(),
686 void (*)(), void (*)(), void (*)(), void (*)());
687 extern void savectx(kthread_t *);
688 extern void restorectx(kthread_t *);
689 extern void forkctx(kthread_t *, kthread_t *);
690 extern void lwp_createctx(kthread_t *, kthread_t *);
691 extern void exitctx(kthread_t *);
692 extern void freectx(kthread_t *, int);

new/usr/src/uts/common/sys/proc.h 3

693 extern void installpctx(proc_t *, void *, void (*)(), void (*)(),
694 void (*)(), void (*)(), void (*)());
695 extern int removepctx(proc_t *, void *, void (*)(), void (*)(),
696 void (*)(), void (*)(), void (*)());
697 extern void savepctx(proc_t *);
698 extern void restorepctx(proc_t *);
699 extern void forkpctx(proc_t *, proc_t *);
700 extern void exitpctx(proc_t *);
701 extern void freepctx(proc_t *, int);
702 extern kthread_t *thread_unpin(void);
703 extern void thread_init(void);
704 extern void thread_load(kthread_t *, void (*)(), caddr_t, size_t);

706 extern void tsd_create(uint_t *, void (*)(void *));
707 extern void tsd_destroy(uint_t *);
708 extern void *tsd_getcreate(uint_t *, void (*)(void *), void *(*)(void));
709 extern void *tsd_get(uint_t);
710 extern int tsd_set(uint_t, void *);
711 extern void tsd_exit(void);
712 extern void *tsd_agent_get(kthread_t *, uint_t);
713 extern int tsd_agent_set(kthread_t *, uint_t, void *);

715 /* lwp function prototypes */

717 extern kthread_t *lwp_kernel_create(proc_t *, void (*)(), void *, int, pri_t);
718 extern klwp_t *lwp_create(void (*)(), caddr_t, size_t, proc_t *, int, int,
719 const k_sigset_t *, int, id_t);
725 extern klwp_t *lwp_create(
726 void (*proc)(),
727 caddr_t arg,
728 size_t len,
729 proc_t *p,
730 int state,
731 int pri,
732 const k_sigset_t *smask,
733 int cid,
734 id_t lwpid);
720 extern kthread_t *idtot(proc_t *, id_t);
721 extern void lwp_hash_in(proc_t *, lwpent_t *, tidhash_t *, uint_t, int);
722 extern void lwp_hash_out(proc_t *, id_t);
723 extern lwpdir_t *lwp_hash_lookup(proc_t *, id_t);
724 extern lwpdir_t *lwp_hash_lookup_and_lock(proc_t *, id_t, kmutex_t **);
725 extern void lwp_create_done(kthread_t *);
726 extern void lwp_exit(void);
727 extern void lwp_pcb_exit(void);
728 extern void lwp_cleanup(void);
729 extern int lwp_suspend(kthread_t *);
730 extern void lwp_continue(kthread_t *);
731 extern void holdlwp(void);
732 extern void stoplwp(void);
733 extern int holdlwps(int);
734 extern int holdwatch(void);
735 extern void pokelwps(proc_t *);
736 extern void continuelwps(proc_t *);
737 extern int exitlwps(int);
738 extern void lwp_ctmpl_copy(klwp_t *, klwp_t *);
739 extern void lwp_ctmpl_clear(klwp_t *);
740 extern klwp_t *forklwp(klwp_t *, proc_t *, id_t);
741 extern void lwp_load(klwp_t *, gregset_t, uintptr_t);
742 extern void lwp_setrval(klwp_t *, int, int);
743 extern void lwp_forkregs(klwp_t *, klwp_t *);
744 extern void lwp_freeregs(klwp_t *, int);
745 extern caddr_t lwp_stk_init(klwp_t *, caddr_t);
746 extern void lwp_stk_cache_init(void);
747 extern void lwp_stk_fini(klwp_t *);
748 extern void lwp_installctx(klwp_t *);

new/usr/src/uts/common/sys/proc.h 4

749 extern void lwp_rtt(void);
750 extern void lwp_rtt_initial(void);
751 extern int lwp_setprivate(klwp_t *, int, uintptr_t);
752 extern void lwp_stat_update(lwp_stat_id_t, long);
753 extern void lwp_attach_brand_hdlrs(klwp_t *);
754 extern void lwp_detach_brand_hdlrs(klwp_t *);

756 #if defined(__sparcv9)
757 extern void lwp_mmodel_newlwp(void);
758 extern void lwp_mmodel_shared_as(caddr_t, size_t);
759 #define LWP_MMODEL_NEWLWP() lwp_mmodel_newlwp()
760 #define LWP_MMODEL_SHARED_AS(addr, sz) lwp_mmodel_shared_as((addr), (sz))
761 #else
762 #define LWP_MMODEL_NEWLWP()
763 #define LWP_MMODEL_SHARED_AS(addr, sz)
764 #endif

766 /*
767 * Signal queue function prototypes. Must be here due to header ordering
768 * dependencies.
769 */
770 extern void sigqfree(proc_t *);
771 extern void siginfofree(sigqueue_t *);
772 extern void sigdeq(proc_t *, kthread_t *, int, sigqueue_t **);
773 extern void sigdelq(proc_t *, kthread_t *, int);
774 extern void sigaddq(proc_t *, kthread_t *, k_siginfo_t *, int);
775 extern void sigaddqa(proc_t *, kthread_t *, sigqueue_t *);
776 extern void sigqsend(int, proc_t *, kthread_t *, sigqueue_t *);
777 extern void sigdupq(proc_t *, proc_t *);
778 extern int sigwillqueue(int, int);
779 extern sigqhdr_t *sigqhdralloc(size_t, uint_t);
780 extern sigqueue_t *sigqalloc(sigqhdr_t *);
781 extern void sigqhdrfree(sigqhdr_t *);
782 extern sigqueue_t *sigappend(k_sigset_t *, sigqueue_t *,
783 k_sigset_t *, sigqueue_t *);
784 extern sigqueue_t *sigprepend(k_sigset_t *, sigqueue_t *,
785 k_sigset_t *, sigqueue_t *);
786 extern void winfo(proc_t *, k_siginfo_t *, int);
787 extern int wstat(int, int);
788 extern int sendsig(int, k_siginfo_t *, void (*)());
789 #if defined(_SYSCALL32_IMPL)
790 extern int sendsig32(int, k_siginfo_t *, void (*)());
791 #endif

793 #endif /* _KERNEL */

795 #ifdef __cplusplus
796 }

______unchanged_portion_omitted_

