1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
  14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
  15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
  16  */
  17 
  18 /*
  19  * blkdev driver for NVMe compliant storage devices
  20  *
  21  * This driver was written to conform to version 1.0e of the NVMe specification.
  22  * It may work with newer versions, but that is completely untested and disabled
  23  * by default.
  24  *
  25  * The driver has only been tested on x86 systems and will not work on big-
  26  * endian systems without changes to the code accessing registers and data
  27  * structures used by the hardware.
  28  *
  29  *
  30  * Interrupt Usage:
  31  *
  32  * The driver will use a FIXED interrupt while configuring the device as the
  33  * specification requires. Later in the attach process it will switch to MSI-X
  34  * or MSI if supported. The driver wants to have one interrupt vector per CPU,
  35  * but it will work correctly if less are available. Interrupts can be shared
  36  * by queues, the interrupt handler will iterate through the I/O queue array by
  37  * steps of n_intr_cnt. Usually only the admin queue will share an interrupt
  38  * with one I/O queue. The interrupt handler will retrieve completed commands
  39  * from all queues sharing an interrupt vector and will post them to a taskq
  40  * for completion processing.
  41  *
  42  *
  43  * Command Processing:
  44  *
  45  * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
  46  * to 65536 I/O commands. The driver will configure one I/O queue pair per
  47  * available interrupt vector, with the queue length usually much smaller than
  48  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
  49  * interrupt vectors will be used.
  50  *
  51  * Additionally the hardware provides a single special admin queue pair that can
  52  * hold up to 4096 admin commands.
  53  *
  54  * From the hardware perspective both queues of a queue pair are independent,
  55  * but they share some driver state: the command array (holding pointers to
  56  * commands currently being processed by the hardware) and the active command
  57  * counter. Access to the submission side of a queue pair and the shared state
  58  * is protected by nq_mutex. The completion side of a queue pair does not need
  59  * that protection apart from its access to the shared state; it is called only
  60  * in the interrupt handler which does not run concurrently for the same
  61  * interrupt vector.
  62  *
  63  * When a command is submitted to a queue pair the active command counter is
  64  * incremented and a pointer to the command is stored in the command array. The
  65  * array index is used as command identifier (CID) in the submission queue
  66  * entry. Some commands may take a very long time to complete, and if the queue
  67  * wraps around in that time a submission may find the next array slot to still
  68  * be used by a long-running command. In this case the array is sequentially
  69  * searched for the next free slot. The length of the command array is the same
  70  * as the configured queue length.
  71  *
  72  *
  73  * Namespace Support:
  74  *
  75  * NVMe devices can have multiple namespaces, each being a independent data
  76  * store. The driver supports multiple namespaces and creates a blkdev interface
  77  * for each namespace found. Namespaces can have various attributes to support
  78  * thin provisioning and protection information. This driver does not support
  79  * any of this and ignores namespaces that have these attributes.
  80  *
  81  *
  82  * Blkdev Interface:
  83  *
  84  * This driver uses blkdev to do all the heavy lifting involved with presenting
  85  * a disk device to the system. As a result, the processing of I/O requests is
  86  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
  87  * setup, and splitting of transfers into manageable chunks.
  88  *
  89  * I/O requests coming in from blkdev are turned into NVM commands and posted to
  90  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
  91  * queues. There is currently no timeout handling of I/O commands.
  92  *
  93  * Blkdev also supports querying device/media information and generating a
  94  * devid. The driver reports the best block size as determined by the namespace
  95  * format back to blkdev as physical block size to support partition and block
  96  * alignment. The devid is composed using the device vendor ID, model number,
  97  * serial number, and the namespace ID.
  98  *
  99  *
 100  * Error Handling:
 101  *
 102  * Error handling is currently limited to detecting fatal hardware errors,
 103  * either by asynchronous events, or synchronously through command status or
 104  * admin command timeouts. In case of severe errors the device is fenced off,
 105  * all further requests will return EIO. FMA is then called to fault the device.
 106  *
 107  * The hardware has a limit for outstanding asynchronous event requests. Before
 108  * this limit is known the driver assumes it is at least 1 and posts a single
 109  * asynchronous request. Later when the limit is known more asynchronous event
 110  * requests are posted to allow quicker reception of error information. When an
 111  * asynchronous event is posted by the hardware the driver will parse the error
 112  * status fields and log information or fault the device, depending on the
 113  * severity of the asynchronous event. The asynchronous event request is then
 114  * reused and posted to the admin queue again.
 115  *
 116  * On command completion the command status is checked for errors. In case of
 117  * errors indicating a driver bug the driver panics. Almost all other error
 118  * status values just cause EIO to be returned.
 119  *
 120  * Command timeouts are currently detected for all admin commands except
 121  * asynchronous event requests. If a command times out and the hardware appears
 122  * to be healthy the driver attempts to abort the command. If this fails the
 123  * driver assumes the device to be dead, fences it off, and calls FMA to retire
 124  * it. In general admin commands are issued at attach time only. No timeout
 125  * handling of normal I/O commands is presently done.
 126  *
 127  * In some cases it may be possible that the ABORT command times out, too. In
 128  * that case the device is also declared dead and fenced off.
 129  *
 130  *
 131  * Quiesce / Fast Reboot:
 132  *
 133  * The driver currently does not support fast reboot. A quiesce(9E) entry point
 134  * is still provided which is used to send a shutdown notification to the
 135  * device.
 136  *
 137  *
 138  * Driver Configuration:
 139  *
 140  * The following driver properties can be changed to control some aspects of the
 141  * drivers operation:
 142  * - strict-version: can be set to 0 to allow devices conforming to newer
 143  *   versions to be used
 144  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
 145  *   specific command status as a fatal error leading device faulting
 146  * - admin-queue-len: the maximum length of the admin queue (16-4096)
 147  * - io-queue-len: the maximum length of the I/O queues (16-65536)
 148  * - async-event-limit: the maximum number of asynchronous event requests to be
 149  *   posted by the driver
 150  *
 151  *
 152  * TODO:
 153  * - figure out sane default for I/O queue depth reported to blkdev
 154  * - polled I/O support to support kernel core dumping
 155  * - FMA handling of media errors
 156  * - support for the Volatile Write Cache
 157  * - support for devices supporting very large I/O requests using chained PRPs
 158  * - support for querying log pages from user space
 159  * - support for configuring hardware parameters like interrupt coalescing
 160  * - support for media formatting and hard partitioning into namespaces
 161  * - support for big-endian systems
 162  * - support for fast reboot
 163  */
 164 
 165 #include <sys/byteorder.h>
 166 #ifdef _BIG_ENDIAN
 167 #error nvme driver needs porting for big-endian platforms
 168 #endif
 169 
 170 #include <sys/modctl.h>
 171 #include <sys/conf.h>
 172 #include <sys/devops.h>
 173 #include <sys/ddi.h>
 174 #include <sys/sunddi.h>
 175 #include <sys/bitmap.h>
 176 #include <sys/sysmacros.h>
 177 #include <sys/param.h>
 178 #include <sys/varargs.h>
 179 #include <sys/cpuvar.h>
 180 #include <sys/disp.h>
 181 #include <sys/blkdev.h>
 182 #include <sys/atomic.h>
 183 #include <sys/archsystm.h>
 184 #include <sys/sata/sata_hba.h>
 185 
 186 #include "nvme_reg.h"
 187 #include "nvme_var.h"
 188 
 189 
 190 /* NVMe spec version supported */
 191 static const int nvme_version_major = 1;
 192 static const int nvme_version_minor = 0;
 193 
 194 /* tunable for admin command timeout in seconds, default is 1s */
 195 static volatile int nvme_admin_cmd_timeout = 1;
 196 
 197 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
 198 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
 199 static int nvme_quiesce(dev_info_t *);
 200 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
 201 static int nvme_setup_interrupts(nvme_t *, int, int);
 202 static void nvme_release_interrupts(nvme_t *);
 203 static uint_t nvme_intr(caddr_t, caddr_t);
 204 
 205 static void nvme_shutdown(nvme_t *, int, boolean_t);
 206 static boolean_t nvme_reset(nvme_t *, boolean_t);
 207 static int nvme_init(nvme_t *);
 208 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
 209 static void nvme_free_cmd(nvme_cmd_t *);
 210 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
 211     bd_xfer_t *);
 212 static int nvme_admin_cmd(nvme_cmd_t *, int);
 213 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
 214 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
 215 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
 216 static void nvme_wakeup_cmd(void *);
 217 static void nvme_async_event_task(void *);
 218 
 219 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
 220 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
 221 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
 222 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
 223 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
 224 static inline int nvme_check_cmd_status(nvme_cmd_t *);
 225 
 226 static void nvme_abort_cmd(nvme_cmd_t *);
 227 static int nvme_async_event(nvme_t *);
 228 static void *nvme_get_logpage(nvme_t *, uint8_t, ...);
 229 static void *nvme_identify(nvme_t *, uint32_t);
 230 static int nvme_set_nqueues(nvme_t *, uint16_t);
 231 
 232 static void nvme_free_dma(nvme_dma_t *);
 233 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
 234     nvme_dma_t **);
 235 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
 236     nvme_dma_t **);
 237 static void nvme_free_qpair(nvme_qpair_t *);
 238 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
 239 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
 240 
 241 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
 242 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
 243 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
 244 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
 245 
 246 static boolean_t nvme_check_regs_hdl(nvme_t *);
 247 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
 248 
 249 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
 250 
 251 static void nvme_bd_xfer_done(void *);
 252 static void nvme_bd_driveinfo(void *, bd_drive_t *);
 253 static int nvme_bd_mediainfo(void *, bd_media_t *);
 254 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
 255 static int nvme_bd_read(void *, bd_xfer_t *);
 256 static int nvme_bd_write(void *, bd_xfer_t *);
 257 static int nvme_bd_sync(void *, bd_xfer_t *);
 258 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
 259 
 260 static void nvme_prepare_devid(nvme_t *, uint32_t);
 261 
 262 static void *nvme_state;
 263 static kmem_cache_t *nvme_cmd_cache;
 264 
 265 /*
 266  * DMA attributes for queue DMA memory
 267  *
 268  * Queue DMA memory must be page aligned. The maximum length of a queue is
 269  * 65536 entries, and an entry can be 64 bytes long.
 270  */
 271 static ddi_dma_attr_t nvme_queue_dma_attr = {
 272         .dma_attr_version       = DMA_ATTR_V0,
 273         .dma_attr_addr_lo       = 0,
 274         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 275         .dma_attr_count_max     = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
 276         .dma_attr_align         = 0x1000,
 277         .dma_attr_burstsizes    = 0x7ff,
 278         .dma_attr_minxfer       = 0x1000,
 279         .dma_attr_maxxfer       = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
 280         .dma_attr_seg           = 0xffffffffffffffffULL,
 281         .dma_attr_sgllen        = 1,
 282         .dma_attr_granular      = 1,
 283         .dma_attr_flags         = 0,
 284 };
 285 
 286 /*
 287  * DMA attributes for transfers using Physical Region Page (PRP) entries
 288  *
 289  * A PRP entry describes one page of DMA memory using the page size specified
 290  * in the controller configuration's memory page size register (CC.MPS). It uses
 291  * a 64bit base address aligned to this page size. There is no limitation on
 292  * chaining PRPs together for arbitrarily large DMA transfers.
 293  */
 294 static ddi_dma_attr_t nvme_prp_dma_attr = {
 295         .dma_attr_version       = DMA_ATTR_V0,
 296         .dma_attr_addr_lo       = 0,
 297         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 298         .dma_attr_count_max     = 0xfff,
 299         .dma_attr_align         = 0x1000,
 300         .dma_attr_burstsizes    = 0x7ff,
 301         .dma_attr_minxfer       = 0x1000,
 302         .dma_attr_maxxfer       = 0x1000,
 303         .dma_attr_seg           = 0xfff,
 304         .dma_attr_sgllen        = -1,
 305         .dma_attr_granular      = 1,
 306         .dma_attr_flags         = 0,
 307 };
 308 
 309 /*
 310  * DMA attributes for transfers using scatter/gather lists
 311  *
 312  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
 313  * 32bit length field. SGL Segment and SGL Last Segment entries require the
 314  * length to be a multiple of 16 bytes.
 315  */
 316 static ddi_dma_attr_t nvme_sgl_dma_attr = {
 317         .dma_attr_version       = DMA_ATTR_V0,
 318         .dma_attr_addr_lo       = 0,
 319         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 320         .dma_attr_count_max     = 0xffffffffUL,
 321         .dma_attr_align         = 1,
 322         .dma_attr_burstsizes    = 0x7ff,
 323         .dma_attr_minxfer       = 0x10,
 324         .dma_attr_maxxfer       = 0xfffffffffULL,
 325         .dma_attr_seg           = 0xffffffffffffffffULL,
 326         .dma_attr_sgllen        = -1,
 327         .dma_attr_granular      = 0x10,
 328         .dma_attr_flags         = 0
 329 };
 330 
 331 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
 332         .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 333         .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
 334         .devacc_attr_dataorder  = DDI_STRICTORDER_ACC
 335 };
 336 
 337 static struct dev_ops nvme_dev_ops = {
 338         .devo_rev       = DEVO_REV,
 339         .devo_refcnt    = 0,
 340         .devo_getinfo   = ddi_no_info,
 341         .devo_identify  = nulldev,
 342         .devo_probe     = nulldev,
 343         .devo_attach    = nvme_attach,
 344         .devo_detach    = nvme_detach,
 345         .devo_reset     = nodev,
 346         .devo_cb_ops    = NULL,
 347         .devo_bus_ops   = NULL,
 348         .devo_power     = NULL,
 349         .devo_quiesce   = nvme_quiesce,
 350 };
 351 
 352 static struct modldrv nvme_modldrv = {
 353         .drv_modops     = &mod_driverops,
 354         .drv_linkinfo   = "NVMe v1.0e",
 355         .drv_dev_ops    = &nvme_dev_ops
 356 };
 357 
 358 static struct modlinkage nvme_modlinkage = {
 359         .ml_rev         = MODREV_1,
 360         .ml_linkage     = { &nvme_modldrv, NULL }
 361 };
 362 
 363 static bd_ops_t nvme_bd_ops = {
 364         .o_version      = BD_OPS_VERSION_0,
 365         .o_drive_info   = nvme_bd_driveinfo,
 366         .o_media_info   = nvme_bd_mediainfo,
 367         .o_devid_init   = nvme_bd_devid,
 368         .o_sync_cache   = nvme_bd_sync,
 369         .o_read         = nvme_bd_read,
 370         .o_write        = nvme_bd_write,
 371 };
 372 
 373 int
 374 _init(void)
 375 {
 376         int error;
 377 
 378         error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
 379         if (error != DDI_SUCCESS)
 380                 return (error);
 381 
 382         nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
 383             sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
 384 
 385         bd_mod_init(&nvme_dev_ops);
 386 
 387         error = mod_install(&nvme_modlinkage);
 388         if (error != DDI_SUCCESS) {
 389                 ddi_soft_state_fini(&nvme_state);
 390                 bd_mod_fini(&nvme_dev_ops);
 391         }
 392 
 393         return (error);
 394 }
 395 
 396 int
 397 _fini(void)
 398 {
 399         int error;
 400 
 401         error = mod_remove(&nvme_modlinkage);
 402         if (error == DDI_SUCCESS) {
 403                 ddi_soft_state_fini(&nvme_state);
 404                 kmem_cache_destroy(nvme_cmd_cache);
 405                 bd_mod_fini(&nvme_dev_ops);
 406         }
 407 
 408         return (error);
 409 }
 410 
 411 int
 412 _info(struct modinfo *modinfop)
 413 {
 414         return (mod_info(&nvme_modlinkage, modinfop));
 415 }
 416 
 417 static inline void
 418 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
 419 {
 420         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 421 
 422         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 423         ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
 424 }
 425 
 426 static inline void
 427 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
 428 {
 429         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 430 
 431         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 432         ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
 433 }
 434 
 435 static inline uint64_t
 436 nvme_get64(nvme_t *nvme, uintptr_t reg)
 437 {
 438         uint64_t val;
 439 
 440         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 441 
 442         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 443         val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
 444 
 445         return (val);
 446 }
 447 
 448 static inline uint32_t
 449 nvme_get32(nvme_t *nvme, uintptr_t reg)
 450 {
 451         uint32_t val;
 452 
 453         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 454 
 455         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 456         val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
 457 
 458         return (val);
 459 }
 460 
 461 static boolean_t
 462 nvme_check_regs_hdl(nvme_t *nvme)
 463 {
 464         ddi_fm_error_t error;
 465 
 466         ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
 467 
 468         if (error.fme_status != DDI_FM_OK)
 469                 return (B_TRUE);
 470 
 471         return (B_FALSE);
 472 }
 473 
 474 static boolean_t
 475 nvme_check_dma_hdl(nvme_dma_t *dma)
 476 {
 477         ddi_fm_error_t error;
 478 
 479         if (dma == NULL)
 480                 return (B_FALSE);
 481 
 482         ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
 483 
 484         if (error.fme_status != DDI_FM_OK)
 485                 return (B_TRUE);
 486 
 487         return (B_FALSE);
 488 }
 489 
 490 static void
 491 nvme_free_dma(nvme_dma_t *dma)
 492 {
 493         if (dma->nd_dmah != NULL)
 494                 (void) ddi_dma_unbind_handle(dma->nd_dmah);
 495         if (dma->nd_acch != NULL)
 496                 ddi_dma_mem_free(&dma->nd_acch);
 497         if (dma->nd_dmah != NULL)
 498                 ddi_dma_free_handle(&dma->nd_dmah);
 499         kmem_free(dma, sizeof (nvme_dma_t));
 500 }
 501 
 502 static int
 503 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
 504     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
 505 {
 506         nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
 507 
 508         if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
 509             &dma->nd_dmah) != DDI_SUCCESS) {
 510                 /*
 511                  * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
 512                  * the only other possible error is DDI_DMA_BADATTR which
 513                  * indicates a driver bug which should cause a panic.
 514                  */
 515                 dev_err(nvme->n_dip, CE_PANIC,
 516                     "!failed to get DMA handle, check DMA attributes");
 517                 return (DDI_FAILURE);
 518         }
 519 
 520         /*
 521          * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
 522          * or the flags are conflicting, which isn't the case here.
 523          */
 524         (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
 525             DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
 526             &dma->nd_len, &dma->nd_acch);
 527 
 528         if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
 529             dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
 530             &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
 531                 dev_err(nvme->n_dip, CE_WARN,
 532                     "!failed to bind DMA memory");
 533                 atomic_inc_32(&nvme->n_dma_bind_err);
 534                 *ret = NULL;
 535                 nvme_free_dma(dma);
 536                 return (DDI_FAILURE);
 537         }
 538 
 539         bzero(dma->nd_memp, dma->nd_len);
 540 
 541         *ret = dma;
 542         return (DDI_SUCCESS);
 543 }
 544 
 545 static int
 546 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
 547     uint_t flags, nvme_dma_t **dma)
 548 {
 549         uint32_t len = nentry * qe_len;
 550         ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
 551 
 552         len = roundup(len, nvme->n_pagesize);
 553 
 554         q_dma_attr.dma_attr_minxfer = len;
 555 
 556         if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
 557             != DDI_SUCCESS) {
 558                 dev_err(nvme->n_dip, CE_WARN,
 559                     "!failed to get DMA memory for queue");
 560                 goto fail;
 561         }
 562 
 563         if ((*dma)->nd_ncookie != 1) {
 564                 dev_err(nvme->n_dip, CE_WARN,
 565                     "!got too many cookies for queue DMA");
 566                 goto fail;
 567         }
 568 
 569         return (DDI_SUCCESS);
 570 
 571 fail:
 572         if (*dma) {
 573                 nvme_free_dma(*dma);
 574                 *dma = NULL;
 575         }
 576 
 577         return (DDI_FAILURE);
 578 }
 579 
 580 static void
 581 nvme_free_qpair(nvme_qpair_t *qp)
 582 {
 583         int i;
 584 
 585         mutex_destroy(&qp->nq_mutex);
 586 
 587         if (qp->nq_sqdma != NULL)
 588                 nvme_free_dma(qp->nq_sqdma);
 589         if (qp->nq_cqdma != NULL)
 590                 nvme_free_dma(qp->nq_cqdma);
 591 
 592         if (qp->nq_active_cmds > 0)
 593                 for (i = 0; i != qp->nq_nentry; i++)
 594                         if (qp->nq_cmd[i] != NULL)
 595                                 nvme_free_cmd(qp->nq_cmd[i]);
 596 
 597         if (qp->nq_cmd != NULL)
 598                 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
 599 
 600         kmem_free(qp, sizeof (nvme_qpair_t));
 601 }
 602 
 603 static int
 604 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
 605     int idx)
 606 {
 607         nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
 608 
 609         mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
 610             DDI_INTR_PRI(nvme->n_intr_pri));
 611 
 612         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
 613             DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
 614                 goto fail;
 615 
 616         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
 617             DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
 618                 goto fail;
 619 
 620         qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
 621         qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
 622         qp->nq_nentry = nentry;
 623 
 624         qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
 625         qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
 626 
 627         qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
 628         qp->nq_next_cmd = 0;
 629 
 630         *nqp = qp;
 631         return (DDI_SUCCESS);
 632 
 633 fail:
 634         nvme_free_qpair(qp);
 635         *nqp = NULL;
 636 
 637         return (DDI_FAILURE);
 638 }
 639 
 640 static nvme_cmd_t *
 641 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
 642 {
 643         nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
 644 
 645         if (cmd == NULL)
 646                 return (cmd);
 647 
 648         bzero(cmd, sizeof (nvme_cmd_t));
 649 
 650         cmd->nc_nvme = nvme;
 651 
 652         mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
 653             DDI_INTR_PRI(nvme->n_intr_pri));
 654         cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
 655 
 656         return (cmd);
 657 }
 658 
 659 static void
 660 nvme_free_cmd(nvme_cmd_t *cmd)
 661 {
 662         if (cmd->nc_dma) {
 663                 nvme_free_dma(cmd->nc_dma);
 664                 cmd->nc_dma = NULL;
 665         }
 666 
 667         cv_destroy(&cmd->nc_cv);
 668         mutex_destroy(&cmd->nc_mutex);
 669 
 670         kmem_cache_free(nvme_cmd_cache, cmd);
 671 }
 672 
 673 static int
 674 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 675 {
 676         nvme_reg_sqtdbl_t tail = { 0 };
 677 
 678         mutex_enter(&qp->nq_mutex);
 679 
 680         if (qp->nq_active_cmds == qp->nq_nentry) {
 681                 mutex_exit(&qp->nq_mutex);
 682                 return (DDI_FAILURE);
 683         }
 684 
 685         cmd->nc_completed = B_FALSE;
 686 
 687         /*
 688          * Try to insert the cmd into the active cmd array at the nq_next_cmd
 689          * slot. If the slot is already occupied advance to the next slot and
 690          * try again. This can happen for long running commands like async event
 691          * requests.
 692          */
 693         while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
 694                 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 695         qp->nq_cmd[qp->nq_next_cmd] = cmd;
 696 
 697         qp->nq_active_cmds++;
 698 
 699         cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
 700         bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
 701         (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
 702             sizeof (nvme_sqe_t) * qp->nq_sqtail,
 703             sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
 704         qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 705 
 706         tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
 707         nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
 708 
 709         mutex_exit(&qp->nq_mutex);
 710         return (DDI_SUCCESS);
 711 }
 712 
 713 static nvme_cmd_t *
 714 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
 715 {
 716         nvme_reg_cqhdbl_t head = { 0 };
 717 
 718         nvme_cqe_t *cqe;
 719         nvme_cmd_t *cmd;
 720 
 721         (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
 722             sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
 723 
 724         cqe = &qp->nq_cq[qp->nq_cqhead];
 725 
 726         /* Check phase tag of CQE. Hardware inverts it for new entries. */
 727         if (cqe->cqe_sf.sf_p == qp->nq_phase)
 728                 return (NULL);
 729 
 730         ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
 731         ASSERT(cqe->cqe_cid < qp->nq_nentry);
 732 
 733         mutex_enter(&qp->nq_mutex);
 734         cmd = qp->nq_cmd[cqe->cqe_cid];
 735         qp->nq_cmd[cqe->cqe_cid] = NULL;
 736         qp->nq_active_cmds--;
 737         mutex_exit(&qp->nq_mutex);
 738 
 739         ASSERT(cmd != NULL);
 740         ASSERT(cmd->nc_nvme == nvme);
 741         ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
 742         ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
 743         bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
 744 
 745         qp->nq_sqhead = cqe->cqe_sqhd;
 746 
 747         head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
 748 
 749         /* Toggle phase on wrap-around. */
 750         if (qp->nq_cqhead == 0)
 751                 qp->nq_phase = qp->nq_phase ? 0 : 1;
 752 
 753         nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
 754 
 755         return (cmd);
 756 }
 757 
 758 static int
 759 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
 760 {
 761         nvme_cqe_t *cqe = &cmd->nc_cqe;
 762 
 763         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
 764             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
 765             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
 766             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
 767             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
 768 
 769         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
 770 
 771         if (cmd->nc_nvme->n_strict_version) {
 772                 cmd->nc_nvme->n_dead = B_TRUE;
 773                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
 774         }
 775 
 776         return (EIO);
 777 }
 778 
 779 static int
 780 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
 781 {
 782         nvme_cqe_t *cqe = &cmd->nc_cqe;
 783 
 784         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
 785             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
 786             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
 787             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
 788             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
 789         if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
 790                 cmd->nc_nvme->n_dead = B_TRUE;
 791                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
 792         }
 793 
 794         return (EIO);
 795 }
 796 
 797 static int
 798 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
 799 {
 800         nvme_cqe_t *cqe = &cmd->nc_cqe;
 801 
 802         switch (cqe->cqe_sf.sf_sc) {
 803         case NVME_CQE_SC_INT_NVM_WRITE:
 804                 /* write fail */
 805                 /* TODO: post ereport */
 806                 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
 807                 return (EIO);
 808 
 809         case NVME_CQE_SC_INT_NVM_READ:
 810                 /* read fail */
 811                 /* TODO: post ereport */
 812                 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
 813                 return (EIO);
 814 
 815         default:
 816                 return (nvme_check_unknown_cmd_status(cmd));
 817         }
 818 }
 819 
 820 static int
 821 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
 822 {
 823         nvme_cqe_t *cqe = &cmd->nc_cqe;
 824 
 825         switch (cqe->cqe_sf.sf_sc) {
 826         case NVME_CQE_SC_GEN_SUCCESS:
 827                 return (0);
 828 
 829         /*
 830          * Errors indicating a bug in the driver should cause a panic.
 831          */
 832         case NVME_CQE_SC_GEN_INV_OPC:
 833                 /* Invalid Command Opcode */
 834                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 835                     "invalid opcode in cmd %p", (void *)cmd);
 836                 return (0);
 837 
 838         case NVME_CQE_SC_GEN_INV_FLD:
 839                 /* Invalid Field in Command */
 840                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 841                     "invalid field in cmd %p", (void *)cmd);
 842                 return (0);
 843 
 844         case NVME_CQE_SC_GEN_ID_CNFL:
 845                 /* Command ID Conflict */
 846                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 847                     "cmd ID conflict in cmd %p", (void *)cmd);
 848                 return (0);
 849 
 850         case NVME_CQE_SC_GEN_INV_NS:
 851                 /* Invalid Namespace or Format */
 852                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 853                     "invalid NS/format in cmd %p", (void *)cmd);
 854                 return (0);
 855 
 856         case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
 857                 /* LBA Out Of Range */
 858                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 859                     "LBA out of range in cmd %p", (void *)cmd);
 860                 return (0);
 861 
 862         /*
 863          * Non-fatal errors, handle gracefully.
 864          */
 865         case NVME_CQE_SC_GEN_DATA_XFR_ERR:
 866                 /* Data Transfer Error (DMA) */
 867                 /* TODO: post ereport */
 868                 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
 869                 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
 870                 return (EIO);
 871 
 872         case NVME_CQE_SC_GEN_INTERNAL_ERR:
 873                 /*
 874                  * Internal Error. The spec (v1.0, section 4.5.1.2) says
 875                  * detailed error information is returned as async event,
 876                  * so we pretty much ignore the error here and handle it
 877                  * in the async event handler.
 878                  */
 879                 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
 880                 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
 881                 return (EIO);
 882 
 883         case NVME_CQE_SC_GEN_ABORT_REQUEST:
 884                 /*
 885                  * Command Abort Requested. This normally happens only when a
 886                  * command times out.
 887                  */
 888                 /* TODO: post ereport or change blkdev to handle this? */
 889                 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
 890                 return (ECANCELED);
 891 
 892         case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
 893                 /* Command Aborted due to Power Loss Notification */
 894                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
 895                 cmd->nc_nvme->n_dead = B_TRUE;
 896                 return (EIO);
 897 
 898         case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
 899                 /* Command Aborted due to SQ Deletion */
 900                 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
 901                 return (EIO);
 902 
 903         case NVME_CQE_SC_GEN_NVM_CAP_EXC:
 904                 /* Capacity Exceeded */
 905                 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
 906                 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
 907                 return (EIO);
 908 
 909         case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
 910                 /* Namespace Not Ready */
 911                 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
 912                 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
 913                 return (EIO);
 914 
 915         default:
 916                 return (nvme_check_unknown_cmd_status(cmd));
 917         }
 918 }
 919 
 920 static int
 921 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
 922 {
 923         nvme_cqe_t *cqe = &cmd->nc_cqe;
 924 
 925         switch (cqe->cqe_sf.sf_sc) {
 926         case NVME_CQE_SC_SPC_INV_CQ:
 927                 /* Completion Queue Invalid */
 928                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
 929                 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
 930                 return (EINVAL);
 931 
 932         case NVME_CQE_SC_SPC_INV_QID:
 933                 /* Invalid Queue Identifier */
 934                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
 935                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
 936                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
 937                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
 938                 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
 939                 return (EINVAL);
 940 
 941         case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
 942                 /* Max Queue Size Exceeded */
 943                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
 944                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
 945                 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
 946                 return (EINVAL);
 947 
 948         case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
 949                 /* Abort Command Limit Exceeded */
 950                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
 951                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 952                     "abort command limit exceeded in cmd %p", (void *)cmd);
 953                 return (0);
 954 
 955         case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
 956                 /* Async Event Request Limit Exceeded */
 957                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
 958                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 959                     "async event request limit exceeded in cmd %p",
 960                     (void *)cmd);
 961                 return (0);
 962 
 963         case NVME_CQE_SC_SPC_INV_INT_VECT:
 964                 /* Invalid Interrupt Vector */
 965                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
 966                 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
 967                 return (EINVAL);
 968 
 969         case NVME_CQE_SC_SPC_INV_LOG_PAGE:
 970                 /* Invalid Log Page */
 971                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
 972                 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
 973                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
 974                 return (EINVAL);
 975 
 976         case NVME_CQE_SC_SPC_INV_FORMAT:
 977                 /* Invalid Format */
 978                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
 979                 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
 980                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
 981                 return (EINVAL);
 982 
 983         case NVME_CQE_SC_SPC_INV_Q_DEL:
 984                 /* Invalid Queue Deletion */
 985                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
 986                 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
 987                 return (EINVAL);
 988 
 989         case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
 990                 /* Conflicting Attributes */
 991                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
 992                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
 993                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
 994                 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
 995                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
 996                 return (EINVAL);
 997 
 998         case NVME_CQE_SC_SPC_NVM_INV_PROT:
 999                 /* Invalid Protection Information */
1000                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1001                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1002                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1003                 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1004                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1005                 return (EINVAL);
1006 
1007         case NVME_CQE_SC_SPC_NVM_READONLY:
1008                 /* Write to Read Only Range */
1009                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1010                 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1011                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1012                 return (EROFS);
1013 
1014         default:
1015                 return (nvme_check_unknown_cmd_status(cmd));
1016         }
1017 }
1018 
1019 static inline int
1020 nvme_check_cmd_status(nvme_cmd_t *cmd)
1021 {
1022         nvme_cqe_t *cqe = &cmd->nc_cqe;
1023 
1024         /* take a shortcut if everything is alright */
1025         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1026             cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1027                 return (0);
1028 
1029         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1030                 return (nvme_check_generic_cmd_status(cmd));
1031         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1032                 return (nvme_check_specific_cmd_status(cmd));
1033         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1034                 return (nvme_check_integrity_cmd_status(cmd));
1035         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1036                 return (nvme_check_vendor_cmd_status(cmd));
1037 
1038         return (nvme_check_unknown_cmd_status(cmd));
1039 }
1040 
1041 /*
1042  * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1043  *
1044  * This functions takes care of cleaning up aborted commands. The command
1045  * status is checked to catch any fatal errors.
1046  */
1047 static void
1048 nvme_abort_cmd_cb(void *arg)
1049 {
1050         nvme_cmd_t *cmd = arg;
1051 
1052         /*
1053          * Grab the command mutex. Once we have it we hold the last reference
1054          * to the command and can safely free it.
1055          */
1056         mutex_enter(&cmd->nc_mutex);
1057         (void) nvme_check_cmd_status(cmd);
1058         mutex_exit(&cmd->nc_mutex);
1059 
1060         nvme_free_cmd(cmd);
1061 }
1062 
1063 static void
1064 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1065 {
1066         nvme_t *nvme = abort_cmd->nc_nvme;
1067         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1068         nvme_abort_cmd_t ac = { 0 };
1069 
1070         sema_p(&nvme->n_abort_sema);
1071 
1072         ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1073         ac.b.ac_sqid = abort_cmd->nc_sqid;
1074 
1075         /*
1076          * Drop the mutex of the aborted command. From this point on
1077          * we must assume that the abort callback has freed the command.
1078          */
1079         mutex_exit(&abort_cmd->nc_mutex);
1080 
1081         cmd->nc_sqid = 0;
1082         cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1083         cmd->nc_callback = nvme_wakeup_cmd;
1084         cmd->nc_sqe.sqe_cdw10 = ac.r;
1085 
1086         /*
1087          * Send the ABORT to the hardware. The ABORT command will return _after_
1088          * the aborted command has completed (aborted or otherwise).
1089          */
1090         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1091                 sema_v(&nvme->n_abort_sema);
1092                 dev_err(nvme->n_dip, CE_WARN,
1093                     "!nvme_admin_cmd failed for ABORT");
1094                 atomic_inc_32(&nvme->n_abort_failed);
1095                 return;
1096         }
1097         sema_v(&nvme->n_abort_sema);
1098 
1099         if (nvme_check_cmd_status(cmd)) {
1100                 dev_err(nvme->n_dip, CE_WARN,
1101                     "!ABORT failed with sct = %x, sc = %x",
1102                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1103                 atomic_inc_32(&nvme->n_abort_failed);
1104         } else {
1105                 atomic_inc_32(&nvme->n_cmd_aborted);
1106         }
1107 
1108         nvme_free_cmd(cmd);
1109 }
1110 
1111 /*
1112  * nvme_wait_cmd -- wait for command completion or timeout
1113  *
1114  * Returns B_TRUE if the command completed normally.
1115  *
1116  * Returns B_FALSE if the command timed out and an abort was attempted. The
1117  * command mutex will be dropped and the command must be considered freed. The
1118  * freeing of the command is normally done by the abort command callback.
1119  *
1120  * In case of a serious error or a timeout of the abort command the hardware
1121  * will be declared dead and FMA will be notified.
1122  */
1123 static boolean_t
1124 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1125 {
1126         clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1127         nvme_t *nvme = cmd->nc_nvme;
1128         nvme_reg_csts_t csts;
1129 
1130         ASSERT(mutex_owned(&cmd->nc_mutex));
1131 
1132         while (!cmd->nc_completed) {
1133                 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1134                         break;
1135         }
1136 
1137         if (cmd->nc_completed)
1138                 return (B_TRUE);
1139 
1140         /*
1141          * The command timed out. Change the callback to the cleanup function.
1142          */
1143         cmd->nc_callback = nvme_abort_cmd_cb;
1144 
1145         /*
1146          * Check controller for fatal status, any errors associated with the
1147          * register or DMA handle, or for a double timeout (abort command timed
1148          * out). If necessary log a warning and call FMA.
1149          */
1150         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1151         dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1152             "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1153         atomic_inc_32(&nvme->n_cmd_timeout);
1154 
1155         if (csts.b.csts_cfs ||
1156             nvme_check_regs_hdl(nvme) ||
1157             nvme_check_dma_hdl(cmd->nc_dma) ||
1158             cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1159                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1160                 nvme->n_dead = B_TRUE;
1161                 mutex_exit(&cmd->nc_mutex);
1162         } else {
1163                 /*
1164                  * Try to abort the command. The command mutex is released by
1165                  * nvme_abort_cmd().
1166                  * If the abort succeeds it will have freed the aborted command.
1167                  * If the abort fails for other reasons we must assume that the
1168                  * command may complete at any time, and the callback will free
1169                  * it for us.
1170                  */
1171                 nvme_abort_cmd(cmd);
1172         }
1173 
1174         return (B_FALSE);
1175 }
1176 
1177 static void
1178 nvme_wakeup_cmd(void *arg)
1179 {
1180         nvme_cmd_t *cmd = arg;
1181 
1182         mutex_enter(&cmd->nc_mutex);
1183         /*
1184          * There is a slight chance that this command completed shortly after
1185          * the timeout was hit in nvme_wait_cmd() but before the callback was
1186          * changed. Catch that case here and clean up accordingly.
1187          */
1188         if (cmd->nc_callback == nvme_abort_cmd_cb) {
1189                 mutex_exit(&cmd->nc_mutex);
1190                 nvme_abort_cmd_cb(cmd);
1191                 return;
1192         }
1193 
1194         cmd->nc_completed = B_TRUE;
1195         cv_signal(&cmd->nc_cv);
1196         mutex_exit(&cmd->nc_mutex);
1197 }
1198 
1199 static void
1200 nvme_async_event_task(void *arg)
1201 {
1202         nvme_cmd_t *cmd = arg;
1203         nvme_t *nvme = cmd->nc_nvme;
1204         nvme_error_log_entry_t *error_log = NULL;
1205         nvme_health_log_t *health_log = NULL;
1206         nvme_async_event_t event;
1207         int ret;
1208 
1209         /*
1210          * Check for errors associated with the async request itself. The only
1211          * command-specific error is "async event limit exceeded", which
1212          * indicates a programming error in the driver and causes a panic in
1213          * nvme_check_cmd_status().
1214          *
1215          * Other possible errors are various scenarios where the async request
1216          * was aborted, or internal errors in the device. Internal errors are
1217          * reported to FMA, the command aborts need no special handling here.
1218          */
1219         if (nvme_check_cmd_status(cmd)) {
1220                 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1221                     "!async event request returned failure, sct = %x, "
1222                     "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1223                     cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1224                     cmd->nc_cqe.cqe_sf.sf_m);
1225 
1226                 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1227                     cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1228                         cmd->nc_nvme->n_dead = B_TRUE;
1229                         ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1230                             DDI_SERVICE_LOST);
1231                 }
1232                 nvme_free_cmd(cmd);
1233                 return;
1234         }
1235 
1236 
1237         event.r = cmd->nc_cqe.cqe_dw0;
1238 
1239         /* Clear CQE and re-submit the async request. */
1240         bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1241         ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1242 
1243         if (ret != DDI_SUCCESS) {
1244                 dev_err(nvme->n_dip, CE_WARN,
1245                     "!failed to resubmit async event request");
1246                 atomic_inc_32(&nvme->n_async_resubmit_failed);
1247                 nvme_free_cmd(cmd);
1248         }
1249 
1250         switch (event.b.ae_type) {
1251         case NVME_ASYNC_TYPE_ERROR:
1252                 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1253                         error_log = (nvme_error_log_entry_t *)
1254                             nvme_get_logpage(nvme, event.b.ae_logpage);
1255                 } else {
1256                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1257                             "async event reply: %d", event.b.ae_logpage);
1258                         atomic_inc_32(&nvme->n_wrong_logpage);
1259                 }
1260 
1261                 switch (event.b.ae_info) {
1262                 case NVME_ASYNC_ERROR_INV_SQ:
1263                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1264                             "invalid submission queue");
1265                         return;
1266 
1267                 case NVME_ASYNC_ERROR_INV_DBL:
1268                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1269                             "invalid doorbell write value");
1270                         return;
1271 
1272                 case NVME_ASYNC_ERROR_DIAGFAIL:
1273                         dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1274                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1275                         nvme->n_dead = B_TRUE;
1276                         atomic_inc_32(&nvme->n_diagfail_event);
1277                         break;
1278 
1279                 case NVME_ASYNC_ERROR_PERSISTENT:
1280                         dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1281                             "device error");
1282                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1283                         nvme->n_dead = B_TRUE;
1284                         atomic_inc_32(&nvme->n_persistent_event);
1285                         break;
1286 
1287                 case NVME_ASYNC_ERROR_TRANSIENT:
1288                         dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1289                             "device error");
1290                         /* TODO: send ereport */
1291                         atomic_inc_32(&nvme->n_transient_event);
1292                         break;
1293 
1294                 case NVME_ASYNC_ERROR_FW_LOAD:
1295                         dev_err(nvme->n_dip, CE_WARN,
1296                             "!firmware image load error");
1297                         atomic_inc_32(&nvme->n_fw_load_event);
1298                         break;
1299                 }
1300                 break;
1301 
1302         case NVME_ASYNC_TYPE_HEALTH:
1303                 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1304                         health_log = (nvme_health_log_t *)
1305                             nvme_get_logpage(nvme, event.b.ae_logpage, -1);
1306                 } else {
1307                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1308                             "async event reply: %d", event.b.ae_logpage);
1309                         atomic_inc_32(&nvme->n_wrong_logpage);
1310                 }
1311 
1312                 switch (event.b.ae_info) {
1313                 case NVME_ASYNC_HEALTH_RELIABILITY:
1314                         dev_err(nvme->n_dip, CE_WARN,
1315                             "!device reliability compromised");
1316                         /* TODO: send ereport */
1317                         atomic_inc_32(&nvme->n_reliability_event);
1318                         break;
1319 
1320                 case NVME_ASYNC_HEALTH_TEMPERATURE:
1321                         dev_err(nvme->n_dip, CE_WARN,
1322                             "!temperature above threshold");
1323                         /* TODO: send ereport */
1324                         atomic_inc_32(&nvme->n_temperature_event);
1325                         break;
1326 
1327                 case NVME_ASYNC_HEALTH_SPARE:
1328                         dev_err(nvme->n_dip, CE_WARN,
1329                             "!spare space below threshold");
1330                         /* TODO: send ereport */
1331                         atomic_inc_32(&nvme->n_spare_event);
1332                         break;
1333                 }
1334                 break;
1335 
1336         case NVME_ASYNC_TYPE_VENDOR:
1337                 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1338                     "received, info = %x, logpage = %x", event.b.ae_info,
1339                     event.b.ae_logpage);
1340                 atomic_inc_32(&nvme->n_vendor_event);
1341                 break;
1342 
1343         default:
1344                 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1345                     "type = %x, info = %x, logpage = %x", event.b.ae_type,
1346                     event.b.ae_info, event.b.ae_logpage);
1347                 atomic_inc_32(&nvme->n_unknown_event);
1348                 break;
1349         }
1350 
1351         if (error_log)
1352                 kmem_free(error_log, sizeof (nvme_error_log_entry_t) *
1353                     nvme->n_error_log_len);
1354 
1355         if (health_log)
1356                 kmem_free(health_log, sizeof (nvme_health_log_t));
1357 }
1358 
1359 static int
1360 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1361 {
1362         int ret;
1363 
1364         mutex_enter(&cmd->nc_mutex);
1365         ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1366 
1367         if (ret != DDI_SUCCESS) {
1368                 mutex_exit(&cmd->nc_mutex);
1369                 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1370                     "!nvme_submit_cmd failed");
1371                 atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1372                 nvme_free_cmd(cmd);
1373                 return (DDI_FAILURE);
1374         }
1375 
1376         if (nvme_wait_cmd(cmd, sec) == B_FALSE) {
1377                 /*
1378                  * The command timed out. An abort command was posted that
1379                  * will take care of the cleanup.
1380                  */
1381                 return (DDI_FAILURE);
1382         }
1383         mutex_exit(&cmd->nc_mutex);
1384 
1385         return (DDI_SUCCESS);
1386 }
1387 
1388 static int
1389 nvme_async_event(nvme_t *nvme)
1390 {
1391         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1392         int ret;
1393 
1394         cmd->nc_sqid = 0;
1395         cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1396         cmd->nc_callback = nvme_async_event_task;
1397 
1398         ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1399 
1400         if (ret != DDI_SUCCESS) {
1401                 dev_err(nvme->n_dip, CE_WARN,
1402                     "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1403                 nvme_free_cmd(cmd);
1404                 return (DDI_FAILURE);
1405         }
1406 
1407         return (DDI_SUCCESS);
1408 }
1409 
1410 static void *
1411 nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...)
1412 {
1413         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1414         void *buf = NULL;
1415         nvme_getlogpage_t getlogpage = { 0 };
1416         size_t bufsize;
1417         va_list ap;
1418 
1419         va_start(ap, logpage);
1420 
1421         cmd->nc_sqid = 0;
1422         cmd->nc_callback = nvme_wakeup_cmd;
1423         cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1424 
1425         getlogpage.b.lp_lid = logpage;
1426 
1427         switch (logpage) {
1428         case NVME_LOGPAGE_ERROR:
1429                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1430                 bufsize = nvme->n_error_log_len *
1431                     sizeof (nvme_error_log_entry_t);
1432                 break;
1433 
1434         case NVME_LOGPAGE_HEALTH:
1435                 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1436                 bufsize = sizeof (nvme_health_log_t);
1437                 break;
1438 
1439         case NVME_LOGPAGE_FWSLOT:
1440                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1441                 bufsize = sizeof (nvme_fwslot_log_t);
1442                 break;
1443 
1444         default:
1445                 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1446                     logpage);
1447                 atomic_inc_32(&nvme->n_unknown_logpage);
1448                 goto fail;
1449         }
1450 
1451         va_end(ap);
1452 
1453         getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1;
1454 
1455         cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1456 
1457         if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1458             DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1459                 dev_err(nvme->n_dip, CE_WARN,
1460                     "!nvme_zalloc_dma failed for GET LOG PAGE");
1461                 goto fail;
1462         }
1463 
1464         if (cmd->nc_dma->nd_ncookie > 2) {
1465                 dev_err(nvme->n_dip, CE_WARN,
1466                     "!too many DMA cookies for GET LOG PAGE");
1467                 atomic_inc_32(&nvme->n_too_many_cookies);
1468                 goto fail;
1469         }
1470 
1471         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1472         if (cmd->nc_dma->nd_ncookie > 1) {
1473                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1474                     &cmd->nc_dma->nd_cookie);
1475                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1476                     cmd->nc_dma->nd_cookie.dmac_laddress;
1477         }
1478 
1479         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1480                 dev_err(nvme->n_dip, CE_WARN,
1481                     "!nvme_admin_cmd failed for GET LOG PAGE");
1482                 return (NULL);
1483         }
1484 
1485         if (nvme_check_cmd_status(cmd)) {
1486                 dev_err(nvme->n_dip, CE_WARN,
1487                     "!GET LOG PAGE failed with sct = %x, sc = %x",
1488                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1489                 goto fail;
1490         }
1491 
1492         buf = kmem_alloc(bufsize, KM_SLEEP);
1493         bcopy(cmd->nc_dma->nd_memp, buf, bufsize);
1494 
1495 fail:
1496         nvme_free_cmd(cmd);
1497 
1498         return (buf);
1499 }
1500 
1501 static void *
1502 nvme_identify(nvme_t *nvme, uint32_t nsid)
1503 {
1504         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1505         void *buf = NULL;
1506 
1507         cmd->nc_sqid = 0;
1508         cmd->nc_callback = nvme_wakeup_cmd;
1509         cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1510         cmd->nc_sqe.sqe_nsid = nsid;
1511         cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1512 
1513         if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1514             &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1515                 dev_err(nvme->n_dip, CE_WARN,
1516                     "!nvme_zalloc_dma failed for IDENTIFY");
1517                 goto fail;
1518         }
1519 
1520         if (cmd->nc_dma->nd_ncookie > 2) {
1521                 dev_err(nvme->n_dip, CE_WARN,
1522                     "!too many DMA cookies for IDENTIFY");
1523                 atomic_inc_32(&nvme->n_too_many_cookies);
1524                 goto fail;
1525         }
1526 
1527         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1528         if (cmd->nc_dma->nd_ncookie > 1) {
1529                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1530                     &cmd->nc_dma->nd_cookie);
1531                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1532                     cmd->nc_dma->nd_cookie.dmac_laddress;
1533         }
1534 
1535         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1536                 dev_err(nvme->n_dip, CE_WARN,
1537                     "!nvme_admin_cmd failed for IDENTIFY");
1538                 return (NULL);
1539         }
1540 
1541         if (nvme_check_cmd_status(cmd)) {
1542                 dev_err(nvme->n_dip, CE_WARN,
1543                     "!IDENTIFY failed with sct = %x, sc = %x",
1544                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1545                 goto fail;
1546         }
1547 
1548         buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1549         bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1550 
1551 fail:
1552         nvme_free_cmd(cmd);
1553 
1554         return (buf);
1555 }
1556 
1557 static int
1558 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1559 {
1560         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1561         nvme_nqueue_t nq = { 0 };
1562 
1563         nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1;
1564 
1565         cmd->nc_sqid = 0;
1566         cmd->nc_callback = nvme_wakeup_cmd;
1567         cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1568         cmd->nc_sqe.sqe_cdw10 = NVME_FEAT_NQUEUES;
1569         cmd->nc_sqe.sqe_cdw11 = nq.r;
1570 
1571         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1572                 dev_err(nvme->n_dip, CE_WARN,
1573                     "!nvme_admin_cmd failed for SET FEATURES (NQUEUES)");
1574                 return (0);
1575         }
1576 
1577         if (nvme_check_cmd_status(cmd)) {
1578                 dev_err(nvme->n_dip, CE_WARN,
1579                     "!SET FEATURES (NQUEUES) failed with sct = %x, sc = %x",
1580                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1581                 nvme_free_cmd(cmd);
1582                 return (0);
1583         }
1584 
1585         nq.r = cmd->nc_cqe.cqe_dw0;
1586         nvme_free_cmd(cmd);
1587 
1588         /*
1589          * Always use the same number of submission and completion queues, and
1590          * never use more than the requested number of queues.
1591          */
1592         return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1));
1593 }
1594 
1595 static int
1596 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1597 {
1598         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1599         nvme_create_queue_dw10_t dw10 = { 0 };
1600         nvme_create_cq_dw11_t c_dw11 = { 0 };
1601         nvme_create_sq_dw11_t s_dw11 = { 0 };
1602 
1603         dw10.b.q_qid = idx;
1604         dw10.b.q_qsize = qp->nq_nentry - 1;
1605 
1606         c_dw11.b.cq_pc = 1;
1607         c_dw11.b.cq_ien = 1;
1608         c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1609 
1610         cmd->nc_sqid = 0;
1611         cmd->nc_callback = nvme_wakeup_cmd;
1612         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1613         cmd->nc_sqe.sqe_cdw10 = dw10.r;
1614         cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1615         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1616 
1617         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1618                 dev_err(nvme->n_dip, CE_WARN,
1619                     "!nvme_admin_cmd failed for CREATE CQUEUE");
1620                 return (DDI_FAILURE);
1621         }
1622 
1623         if (nvme_check_cmd_status(cmd)) {
1624                 dev_err(nvme->n_dip, CE_WARN,
1625                     "!CREATE CQUEUE failed with sct = %x, sc = %x",
1626                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1627                 nvme_free_cmd(cmd);
1628                 return (DDI_FAILURE);
1629         }
1630 
1631         nvme_free_cmd(cmd);
1632 
1633         s_dw11.b.sq_pc = 1;
1634         s_dw11.b.sq_cqid = idx;
1635 
1636         cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1637         cmd->nc_sqid = 0;
1638         cmd->nc_callback = nvme_wakeup_cmd;
1639         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
1640         cmd->nc_sqe.sqe_cdw10 = dw10.r;
1641         cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
1642         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
1643 
1644         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1645                 dev_err(nvme->n_dip, CE_WARN,
1646                     "!nvme_admin_cmd failed for CREATE SQUEUE");
1647                 return (DDI_FAILURE);
1648         }
1649 
1650         if (nvme_check_cmd_status(cmd)) {
1651                 dev_err(nvme->n_dip, CE_WARN,
1652                     "!CREATE SQUEUE failed with sct = %x, sc = %x",
1653                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1654                 nvme_free_cmd(cmd);
1655                 return (DDI_FAILURE);
1656         }
1657 
1658         nvme_free_cmd(cmd);
1659 
1660         return (DDI_SUCCESS);
1661 }
1662 
1663 static boolean_t
1664 nvme_reset(nvme_t *nvme, boolean_t quiesce)
1665 {
1666         nvme_reg_csts_t csts;
1667         int i;
1668 
1669         nvme_put32(nvme, NVME_REG_CC, 0);
1670 
1671         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1672         if (csts.b.csts_rdy == 1) {
1673                 nvme_put32(nvme, NVME_REG_CC, 0);
1674                 for (i = 0; i != nvme->n_timeout * 10; i++) {
1675                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1676                         if (csts.b.csts_rdy == 0)
1677                                 break;
1678 
1679                         if (quiesce)
1680                                 drv_usecwait(50000);
1681                         else
1682                                 delay(drv_usectohz(50000));
1683                 }
1684         }
1685 
1686         nvme_put32(nvme, NVME_REG_AQA, 0);
1687         nvme_put32(nvme, NVME_REG_ASQ, 0);
1688         nvme_put32(nvme, NVME_REG_ACQ, 0);
1689 
1690         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1691         return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
1692 }
1693 
1694 static void
1695 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
1696 {
1697         nvme_reg_cc_t cc;
1698         nvme_reg_csts_t csts;
1699         int i;
1700 
1701         ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
1702 
1703         cc.r = nvme_get32(nvme, NVME_REG_CC);
1704         cc.b.cc_shn = mode & 0x3;
1705         nvme_put32(nvme, NVME_REG_CC, cc.r);
1706 
1707         for (i = 0; i != 10; i++) {
1708                 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1709                 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
1710                         break;
1711 
1712                 if (quiesce)
1713                         drv_usecwait(100000);
1714                 else
1715                         delay(drv_usectohz(100000));
1716         }
1717 }
1718 
1719 
1720 static void
1721 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
1722 {
1723         char model[sizeof (nvme->n_idctl->id_model) + 1];
1724         char serial[sizeof (nvme->n_idctl->id_serial) + 1];
1725 
1726         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1727         bcopy(nvme->n_idctl->id_serial, serial,
1728             sizeof (nvme->n_idctl->id_serial));
1729 
1730         model[sizeof (nvme->n_idctl->id_model)] = '\0';
1731         serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
1732 
1733         (void) snprintf(nvme->n_ns[nsid - 1].ns_devid,
1734             sizeof (nvme->n_ns[0].ns_devid), "%4X-%s-%s-%X",
1735             nvme->n_idctl->id_vid, model, serial, nsid);
1736 }
1737 
1738 static int
1739 nvme_init(nvme_t *nvme)
1740 {
1741         nvme_reg_cc_t cc = { 0 };
1742         nvme_reg_aqa_t aqa = { 0 };
1743         nvme_reg_asq_t asq = { 0 };
1744         nvme_reg_acq_t acq = { 0 };
1745         nvme_reg_cap_t cap;
1746         nvme_reg_vs_t vs;
1747         nvme_reg_csts_t csts;
1748         int i = 0;
1749         int nqueues;
1750         char model[sizeof (nvme->n_idctl->id_model) + 1];
1751         char *vendor, *product;
1752 
1753         /* Check controller version */
1754         vs.r = nvme_get32(nvme, NVME_REG_VS);
1755         dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
1756             vs.b.vs_mjr, vs.b.vs_mnr);
1757 
1758         if (nvme_version_major < vs.b.vs_mjr ||
1759             (nvme_version_major == vs.b.vs_mjr &&
1760             nvme_version_minor < vs.b.vs_mnr)) {
1761                 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
1762                     nvme_version_major, nvme_version_minor);
1763                 if (nvme->n_strict_version)
1764                         goto fail;
1765         }
1766 
1767         /* retrieve controller configuration */
1768         cap.r = nvme_get64(nvme, NVME_REG_CAP);
1769 
1770         if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
1771                 dev_err(nvme->n_dip, CE_WARN,
1772                     "!NVM command set not supported by hardware");
1773                 goto fail;
1774         }
1775 
1776         nvme->n_nssr_supported = cap.b.cap_nssrs;
1777         nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
1778         nvme->n_timeout = cap.b.cap_to;
1779         nvme->n_arbitration_mechanisms = cap.b.cap_ams;
1780         nvme->n_cont_queues_reqd = cap.b.cap_cqr;
1781         nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
1782 
1783         /*
1784          * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
1785          * the base page size of 4k (1<<12), so add 12 here to get the real
1786          * page size value.
1787          */
1788         nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
1789             cap.b.cap_mpsmax + 12);
1790         nvme->n_pagesize = 1UL << (nvme->n_pageshift);
1791 
1792         /*
1793          * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
1794          */
1795         nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
1796         nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1797 
1798         /*
1799          * Set up PRP DMA to transfer 1 page-aligned page at a time.
1800          * Maxxfer may be increased after we identified the controller limits.
1801          */
1802         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
1803         nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1804         nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
1805         nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
1806 
1807         /*
1808          * Reset controller if it's still in ready state.
1809          */
1810         if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
1811                 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
1812                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1813                 nvme->n_dead = B_TRUE;
1814                 goto fail;
1815         }
1816 
1817         /*
1818          * Create the admin queue pair.
1819          */
1820         if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
1821             != DDI_SUCCESS) {
1822                 dev_err(nvme->n_dip, CE_WARN,
1823                     "!unable to allocate admin qpair");
1824                 goto fail;
1825         }
1826         nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
1827         nvme->n_ioq[0] = nvme->n_adminq;
1828 
1829         nvme->n_progress |= NVME_ADMIN_QUEUE;
1830 
1831         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1832             "admin-queue-len", nvme->n_admin_queue_len);
1833 
1834         aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
1835         asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
1836         acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
1837 
1838         ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
1839         ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
1840 
1841         nvme_put32(nvme, NVME_REG_AQA, aqa.r);
1842         nvme_put64(nvme, NVME_REG_ASQ, asq);
1843         nvme_put64(nvme, NVME_REG_ACQ, acq);
1844 
1845         cc.b.cc_ams = 0;        /* use Round-Robin arbitration */
1846         cc.b.cc_css = 0;        /* use NVM command set */
1847         cc.b.cc_mps = nvme->n_pageshift - 12;
1848         cc.b.cc_shn = 0;        /* no shutdown in progress */
1849         cc.b.cc_en = 1;         /* enable controller */
1850         cc.b.cc_iosqes = 6;     /* submission queue entry is 2^6 bytes long */
1851         cc.b.cc_iocqes = 4;     /* completion queue entry is 2^4 bytes long */
1852 
1853         nvme_put32(nvme, NVME_REG_CC, cc.r);
1854 
1855         /*
1856          * Wait for the controller to become ready.
1857          */
1858         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1859         if (csts.b.csts_rdy == 0) {
1860                 for (i = 0; i != nvme->n_timeout * 10; i++) {
1861                         delay(drv_usectohz(50000));
1862                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1863 
1864                         if (csts.b.csts_cfs == 1) {
1865                                 dev_err(nvme->n_dip, CE_WARN,
1866                                     "!controller fatal status at init");
1867                                 ddi_fm_service_impact(nvme->n_dip,
1868                                     DDI_SERVICE_LOST);
1869                                 nvme->n_dead = B_TRUE;
1870                                 goto fail;
1871                         }
1872 
1873                         if (csts.b.csts_rdy == 1)
1874                                 break;
1875                 }
1876         }
1877 
1878         if (csts.b.csts_rdy == 0) {
1879                 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
1880                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1881                 nvme->n_dead = B_TRUE;
1882                 goto fail;
1883         }
1884 
1885         /*
1886          * Assume an abort command limit of 1. We'll destroy and re-init
1887          * that later when we know the true abort command limit.
1888          */
1889         sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
1890 
1891         /*
1892          * Setup initial interrupt for admin queue.
1893          */
1894         if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
1895             != DDI_SUCCESS) &&
1896             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
1897             != DDI_SUCCESS) &&
1898             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
1899             != DDI_SUCCESS)) {
1900                 dev_err(nvme->n_dip, CE_WARN,
1901                     "!failed to setup initial interrupt");
1902                 goto fail;
1903         }
1904 
1905         /*
1906          * Post an asynchronous event command to catch errors.
1907          */
1908         if (nvme_async_event(nvme) != DDI_SUCCESS) {
1909                 dev_err(nvme->n_dip, CE_WARN,
1910                     "!failed to post async event");
1911                 goto fail;
1912         }
1913 
1914         /*
1915          * Identify Controller
1916          */
1917         nvme->n_idctl = nvme_identify(nvme, 0);
1918         if (nvme->n_idctl == NULL) {
1919                 dev_err(nvme->n_dip, CE_WARN,
1920                     "!failed to identify controller");
1921                 goto fail;
1922         }
1923 
1924         /*
1925          * Get Vendor & Product ID
1926          */
1927         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1928         model[sizeof (nvme->n_idctl->id_model)] = '\0';
1929         sata_split_model(model, &vendor, &product);
1930 
1931         if (vendor == NULL)
1932                 nvme->n_vendor = strdup("NVMe");
1933         else
1934                 nvme->n_vendor = strdup(vendor);
1935 
1936         nvme->n_product = strdup(product);
1937 
1938         /*
1939          * Get controller limits.
1940          */
1941         nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
1942             MIN(nvme->n_admin_queue_len / 10,
1943             MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
1944 
1945         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1946             "async-event-limit", nvme->n_async_event_limit);
1947 
1948         nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
1949 
1950         /*
1951          * Reinitialize the semaphore with the true abort command limit
1952          * supported by the hardware. It's not necessary to disable interrupts
1953          * as only command aborts use the semaphore, and no commands are
1954          * executed or aborted while we're here.
1955          */
1956         sema_destroy(&nvme->n_abort_sema);
1957         sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
1958             SEMA_DRIVER, NULL);
1959 
1960         nvme->n_progress |= NVME_CTRL_LIMITS;
1961 
1962         if (nvme->n_idctl->id_mdts == 0)
1963                 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
1964         else
1965                 nvme->n_max_data_transfer_size =
1966                     1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
1967 
1968         nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
1969 
1970         /*
1971          * Limit n_max_data_transfer_size to what we can handle in one PRP.
1972          * Chained PRPs are currently unsupported.
1973          *
1974          * This is a no-op on hardware which doesn't support a transfer size
1975          * big enough to require chained PRPs.
1976          */
1977         nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
1978             (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
1979 
1980         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
1981 
1982         /*
1983          * Make sure the minimum/maximum queue entry sizes are not
1984          * larger/smaller than the default.
1985          */
1986 
1987         if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
1988             ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
1989             ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
1990             ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
1991                 goto fail;
1992 
1993         /*
1994          * Check for the presence of a Volatile Write Cache. If present,
1995          * enable it by default.
1996          */
1997         if (nvme->n_idctl->id_vwc.vwc_present == 0) {
1998                 nvme->n_volatile_write_cache_enabled = B_FALSE;
1999                 nvme_bd_ops.o_sync_cache = NULL;
2000         } else {
2001                 /*
2002                  * TODO: send SET FEATURES to enable VWC
2003                  * (have no hardware to test this)
2004                  */
2005                 nvme->n_volatile_write_cache_enabled = B_FALSE;
2006                 nvme_bd_ops.o_sync_cache = NULL;
2007         }
2008 
2009         /*
2010          * Grab a copy of all mandatory log pages.
2011          *
2012          * TODO: should go away once user space tool exists to print logs
2013          */
2014         nvme->n_error_log = (nvme_error_log_entry_t *)
2015             nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR);
2016         nvme->n_health_log = (nvme_health_log_t *)
2017             nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1);
2018         nvme->n_fwslot_log = (nvme_fwslot_log_t *)
2019             nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT);
2020 
2021         /*
2022          * Identify Namespaces
2023          */
2024         nvme->n_namespace_count = nvme->n_idctl->id_nn;
2025         nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2026             nvme->n_namespace_count, KM_SLEEP);
2027 
2028         for (i = 0; i != nvme->n_namespace_count; i++) {
2029                 nvme_identify_nsid_t *idns;
2030                 int last_rp;
2031 
2032                 nvme->n_ns[i].ns_nvme = nvme;
2033                 nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1);
2034 
2035                 if (idns == NULL) {
2036                         dev_err(nvme->n_dip, CE_WARN,
2037                             "!failed to identify namespace %d", i + 1);
2038                         goto fail;
2039                 }
2040 
2041                 nvme->n_ns[i].ns_id = i + 1;
2042                 nvme->n_ns[i].ns_block_count = idns->id_nsize;
2043                 nvme->n_ns[i].ns_block_size =
2044                     1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2045                 nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size;
2046 
2047                 nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id);
2048 
2049                 /*
2050                  * Find the LBA format with no metadata and the best relative
2051                  * performance. A value of 3 means "degraded", 0 is best.
2052                  */
2053                 last_rp = 3;
2054                 for (int j = 0; j <= idns->id_nlbaf; j++) {
2055                         if (idns->id_lbaf[j].lbaf_lbads == 0)
2056                                 break;
2057                         if (idns->id_lbaf[j].lbaf_ms != 0)
2058                                 continue;
2059                         if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2060                                 continue;
2061                         last_rp = idns->id_lbaf[j].lbaf_rp;
2062                         nvme->n_ns[i].ns_best_block_size =
2063                             1 << idns->id_lbaf[j].lbaf_lbads;
2064                 }
2065 
2066                 /*
2067                  * We currently don't support namespaces that use either:
2068                  * - thin provisioning
2069                  * - protection information
2070                  */
2071                 if (idns->id_nsfeat.f_thin ||
2072                     idns->id_dps.dp_pinfo) {
2073                         dev_err(nvme->n_dip, CE_WARN,
2074                             "!ignoring namespace %d, unsupported features: "
2075                             "thin = %d, pinfo = %d", i + 1,
2076                             idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2077                         nvme->n_ns[i].ns_ignore = B_TRUE;
2078                 }
2079         }
2080 
2081         /*
2082          * Try to set up MSI/MSI-X interrupts.
2083          */
2084         if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2085             != 0) {
2086                 nvme_release_interrupts(nvme);
2087 
2088                 nqueues = MIN(UINT16_MAX, ncpus);
2089 
2090                 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2091                     nqueues) != DDI_SUCCESS) &&
2092                     (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2093                     nqueues) != DDI_SUCCESS)) {
2094                         dev_err(nvme->n_dip, CE_WARN,
2095                             "!failed to setup MSI/MSI-X interrupts");
2096                         goto fail;
2097                 }
2098         }
2099 
2100         nqueues = nvme->n_intr_cnt;
2101 
2102         /*
2103          * Create I/O queue pairs.
2104          */
2105         nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2106         if (nvme->n_ioq_count == 0) {
2107                 dev_err(nvme->n_dip, CE_WARN,
2108                     "!failed to set number of I/O queues to %d", nqueues);
2109                 goto fail;
2110         }
2111 
2112         /*
2113          * Reallocate I/O queue array
2114          */
2115         kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2116         nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2117             (nvme->n_ioq_count + 1), KM_SLEEP);
2118         nvme->n_ioq[0] = nvme->n_adminq;
2119 
2120         /*
2121          * If we got less queues than we asked for we might as well give
2122          * some of the interrupt vectors back to the system.
2123          */
2124         if (nvme->n_ioq_count < nqueues) {
2125                 nvme_release_interrupts(nvme);
2126 
2127                 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2128                     nvme->n_ioq_count) != DDI_SUCCESS) {
2129                         dev_err(nvme->n_dip, CE_WARN,
2130                             "!failed to reduce number of interrupts");
2131                         goto fail;
2132                 }
2133         }
2134 
2135         /*
2136          * Alloc & register I/O queue pairs
2137          */
2138         nvme->n_io_queue_len =
2139             MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2140         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2141             nvme->n_io_queue_len);
2142 
2143         for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2144                 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2145                     &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2146                         dev_err(nvme->n_dip, CE_WARN,
2147                             "!unable to allocate I/O qpair %d", i);
2148                         goto fail;
2149                 }
2150 
2151                 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2152                     != DDI_SUCCESS) {
2153                         dev_err(nvme->n_dip, CE_WARN,
2154                             "!unable to create I/O qpair %d", i);
2155                         goto fail;
2156                 }
2157         }
2158 
2159         /*
2160          * Post more asynchronous events commands to reduce event reporting
2161          * latency as suggested by the spec.
2162          */
2163         for (i = 1; i != nvme->n_async_event_limit; i++) {
2164                 if (nvme_async_event(nvme) != DDI_SUCCESS) {
2165                         dev_err(nvme->n_dip, CE_WARN,
2166                             "!failed to post async event %d", i);
2167                         goto fail;
2168                 }
2169         }
2170 
2171         return (DDI_SUCCESS);
2172 
2173 fail:
2174         (void) nvme_reset(nvme, B_FALSE);
2175         return (DDI_FAILURE);
2176 }
2177 
2178 static uint_t
2179 nvme_intr(caddr_t arg1, caddr_t arg2)
2180 {
2181         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2182         nvme_t *nvme = (nvme_t *)arg1;
2183         int inum = (int)(uintptr_t)arg2;
2184         int ccnt = 0;
2185         int qnum;
2186         nvme_cmd_t *cmd;
2187 
2188         if (inum >= nvme->n_intr_cnt)
2189                 return (DDI_INTR_UNCLAIMED);
2190 
2191         /*
2192          * The interrupt vector a queue uses is calculated as queue_idx %
2193          * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2194          * in steps of n_intr_cnt to process all queues using this vector.
2195          */
2196         for (qnum = inum;
2197             qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2198             qnum += nvme->n_intr_cnt) {
2199                 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2200                         taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2201                             cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2202                         ccnt++;
2203                 }
2204         }
2205 
2206         return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2207 }
2208 
2209 static void
2210 nvme_release_interrupts(nvme_t *nvme)
2211 {
2212         int i;
2213 
2214         for (i = 0; i < nvme->n_intr_cnt; i++) {
2215                 if (nvme->n_inth[i] == NULL)
2216                         break;
2217 
2218                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2219                         (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2220                 else
2221                         (void) ddi_intr_disable(nvme->n_inth[i]);
2222 
2223                 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2224                 (void) ddi_intr_free(nvme->n_inth[i]);
2225         }
2226 
2227         kmem_free(nvme->n_inth, nvme->n_inth_sz);
2228         nvme->n_inth = NULL;
2229         nvme->n_inth_sz = 0;
2230 
2231         nvme->n_progress &= ~NVME_INTERRUPTS;
2232 }
2233 
2234 static int
2235 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2236 {
2237         int nintrs, navail, count;
2238         int ret;
2239         int i;
2240 
2241         if (nvme->n_intr_types == 0) {
2242                 ret = ddi_intr_get_supported_types(nvme->n_dip,
2243                     &nvme->n_intr_types);
2244                 if (ret != DDI_SUCCESS) {
2245                         dev_err(nvme->n_dip, CE_WARN,
2246                             "!%s: ddi_intr_get_supported types failed",
2247                             __func__);
2248                         return (ret);
2249                 }
2250         }
2251 
2252         if ((nvme->n_intr_types & intr_type) == 0)
2253                 return (DDI_FAILURE);
2254 
2255         ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2256         if (ret != DDI_SUCCESS) {
2257                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2258                     __func__);
2259                 return (ret);
2260         }
2261 
2262         ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2263         if (ret != DDI_SUCCESS) {
2264                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2265                     __func__);
2266                 return (ret);
2267         }
2268 
2269         /* We want at most one interrupt per queue pair. */
2270         if (navail > nqpairs)
2271                 navail = nqpairs;
2272 
2273         nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2274         nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2275 
2276         ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2277             &count, 0);
2278         if (ret != DDI_SUCCESS) {
2279                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2280                     __func__);
2281                 goto fail;
2282         }
2283 
2284         nvme->n_intr_cnt = count;
2285 
2286         ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2287         if (ret != DDI_SUCCESS) {
2288                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2289                     __func__);
2290                 goto fail;
2291         }
2292 
2293         for (i = 0; i < count; i++) {
2294                 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2295                     (void *)nvme, (void *)(uintptr_t)i);
2296                 if (ret != DDI_SUCCESS) {
2297                         dev_err(nvme->n_dip, CE_WARN,
2298                             "!%s: ddi_intr_add_handler failed", __func__);
2299                         goto fail;
2300                 }
2301         }
2302 
2303         (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2304 
2305         for (i = 0; i < count; i++) {
2306                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2307                         ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2308                 else
2309                         ret = ddi_intr_enable(nvme->n_inth[i]);
2310 
2311                 if (ret != DDI_SUCCESS) {
2312                         dev_err(nvme->n_dip, CE_WARN,
2313                             "!%s: enabling interrupt %d failed", __func__, i);
2314                         goto fail;
2315                 }
2316         }
2317 
2318         nvme->n_intr_type = intr_type;
2319 
2320         nvme->n_progress |= NVME_INTERRUPTS;
2321 
2322         return (DDI_SUCCESS);
2323 
2324 fail:
2325         nvme_release_interrupts(nvme);
2326 
2327         return (ret);
2328 }
2329 
2330 static int
2331 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2332 {
2333         _NOTE(ARGUNUSED(arg));
2334 
2335         pci_ereport_post(dip, fm_error, NULL);
2336         return (fm_error->fme_status);
2337 }
2338 
2339 static int
2340 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2341 {
2342         nvme_t *nvme;
2343         int instance;
2344         int nregs;
2345         off_t regsize;
2346         int i;
2347         char name[32];
2348 
2349         if (cmd != DDI_ATTACH)
2350                 return (DDI_FAILURE);
2351 
2352         instance = ddi_get_instance(dip);
2353 
2354         if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2355                 return (DDI_FAILURE);
2356 
2357         nvme = ddi_get_soft_state(nvme_state, instance);
2358         ddi_set_driver_private(dip, nvme);
2359         nvme->n_dip = dip;
2360 
2361         nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2362             DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2363         nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2364             dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2365             B_TRUE : B_FALSE;
2366         nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2367             DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2368         nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2369             DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2370         nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2371             DDI_PROP_DONTPASS, "async-event-limit",
2372             NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2373 
2374         if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2375                 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2376         else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2377                 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2378 
2379         if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2380                 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2381 
2382         if (nvme->n_async_event_limit < 1)
2383                 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2384 
2385         nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2386         nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2387         nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2388         nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2389 
2390         /*
2391          * Setup FMA support.
2392          */
2393         nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2394             DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2395             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2396             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2397 
2398         ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2399 
2400         if (nvme->n_fm_cap) {
2401                 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2402                         nvme->n_reg_acc_attr.devacc_attr_access =
2403                             DDI_FLAGERR_ACC;
2404 
2405                 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2406                         nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2407                         nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2408                 }
2409 
2410                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2411                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2412                         pci_ereport_setup(dip);
2413 
2414                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2415                         ddi_fm_handler_register(dip, nvme_fm_errcb,
2416                             (void *)nvme);
2417         }
2418 
2419         nvme->n_progress |= NVME_FMA_INIT;
2420 
2421         /*
2422          * The spec defines several register sets. Only the controller
2423          * registers (set 1) are currently used.
2424          */
2425         if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2426             nregs < 2 ||
2427             ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2428                 goto fail;
2429 
2430         if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2431             &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2432                 dev_err(dip, CE_WARN, "!failed to map regset 1");
2433                 goto fail;
2434         }
2435 
2436         nvme->n_progress |= NVME_REGS_MAPPED;
2437 
2438         /*
2439          * Create taskq for command completion.
2440          */
2441         (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2442             ddi_driver_name(dip), ddi_get_instance(dip));
2443         nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2444             TASKQ_DEFAULTPRI, 0);
2445         if (nvme->n_cmd_taskq == NULL) {
2446                 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2447                 goto fail;
2448         }
2449 
2450 
2451         if (nvme_init(nvme) != DDI_SUCCESS)
2452                 goto fail;
2453 
2454         /*
2455          * Attach the blkdev driver for each namespace.
2456          */
2457         for (i = 0; i != nvme->n_namespace_count; i++) {
2458                 if (nvme->n_ns[i].ns_ignore)
2459                         continue;
2460 
2461                 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2462                     &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2463 
2464                 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2465                         dev_err(dip, CE_WARN,
2466                             "!failed to get blkdev handle for namespace %d", i);
2467                         goto fail;
2468                 }
2469 
2470                 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2471                     != DDI_SUCCESS) {
2472                         dev_err(dip, CE_WARN,
2473                             "!failed to attach blkdev handle for namespace %d",
2474                             i);
2475                         goto fail;
2476                 }
2477         }
2478 
2479         return (DDI_SUCCESS);
2480 
2481 fail:
2482         /* attach successful anyway so that FMA can retire the device */
2483         if (nvme->n_dead)
2484                 return (DDI_SUCCESS);
2485 
2486         (void) nvme_detach(dip, DDI_DETACH);
2487 
2488         return (DDI_FAILURE);
2489 }
2490 
2491 static int
2492 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2493 {
2494         int instance, i;
2495         nvme_t *nvme;
2496 
2497         if (cmd != DDI_DETACH)
2498                 return (DDI_FAILURE);
2499 
2500         instance = ddi_get_instance(dip);
2501 
2502         nvme = ddi_get_soft_state(nvme_state, instance);
2503 
2504         if (nvme == NULL)
2505                 return (DDI_FAILURE);
2506 
2507         if (nvme->n_ns) {
2508                 for (i = 0; i != nvme->n_namespace_count; i++) {
2509                         if (nvme->n_ns[i].ns_bd_hdl) {
2510                                 (void) bd_detach_handle(
2511                                     nvme->n_ns[i].ns_bd_hdl);
2512                                 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
2513                         }
2514 
2515                         if (nvme->n_ns[i].ns_idns)
2516                                 kmem_free(nvme->n_ns[i].ns_idns,
2517                                     sizeof (nvme_identify_nsid_t));
2518                 }
2519 
2520                 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
2521                     nvme->n_namespace_count);
2522         }
2523 
2524         if (nvme->n_progress & NVME_INTERRUPTS)
2525                 nvme_release_interrupts(nvme);
2526 
2527         if (nvme->n_cmd_taskq)
2528                 ddi_taskq_wait(nvme->n_cmd_taskq);
2529 
2530         if (nvme->n_ioq_count > 0) {
2531                 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2532                         if (nvme->n_ioq[i] != NULL) {
2533                                 /* TODO: send destroy queue commands */
2534                                 nvme_free_qpair(nvme->n_ioq[i]);
2535                         }
2536                 }
2537 
2538                 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
2539                     (nvme->n_ioq_count + 1));
2540         }
2541 
2542         if (nvme->n_progress & NVME_REGS_MAPPED) {
2543                 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
2544                 (void) nvme_reset(nvme, B_FALSE);
2545         }
2546 
2547         if (nvme->n_cmd_taskq)
2548                 ddi_taskq_destroy(nvme->n_cmd_taskq);
2549 
2550         if (nvme->n_progress & NVME_CTRL_LIMITS)
2551                 sema_destroy(&nvme->n_abort_sema);
2552 
2553         if (nvme->n_progress & NVME_ADMIN_QUEUE)
2554                 nvme_free_qpair(nvme->n_adminq);
2555 
2556         if (nvme->n_idctl)
2557                 kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t));
2558 
2559         if (nvme->n_progress & NVME_REGS_MAPPED)
2560                 ddi_regs_map_free(&nvme->n_regh);
2561 
2562         if (nvme->n_progress & NVME_FMA_INIT) {
2563                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2564                         ddi_fm_handler_unregister(nvme->n_dip);
2565 
2566                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2567                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2568                         pci_ereport_teardown(nvme->n_dip);
2569 
2570                 ddi_fm_fini(nvme->n_dip);
2571         }
2572 
2573         if (nvme->n_vendor != NULL)
2574                 strfree(nvme->n_vendor);
2575 
2576         if (nvme->n_product != NULL)
2577                 strfree(nvme->n_product);
2578 
2579         ddi_soft_state_free(nvme_state, instance);
2580 
2581         return (DDI_SUCCESS);
2582 }
2583 
2584 static int
2585 nvme_quiesce(dev_info_t *dip)
2586 {
2587         int instance;
2588         nvme_t *nvme;
2589 
2590         instance = ddi_get_instance(dip);
2591 
2592         nvme = ddi_get_soft_state(nvme_state, instance);
2593 
2594         if (nvme == NULL)
2595                 return (DDI_FAILURE);
2596 
2597         nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
2598 
2599         (void) nvme_reset(nvme, B_TRUE);
2600 
2601         return (DDI_FAILURE);
2602 }
2603 
2604 static int
2605 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
2606 {
2607         nvme_t *nvme = cmd->nc_nvme;
2608         int nprp_page, nprp;
2609         uint64_t *prp;
2610 
2611         if (xfer->x_ndmac == 0)
2612                 return (DDI_FAILURE);
2613 
2614         cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
2615         ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2616 
2617         if (xfer->x_ndmac == 1) {
2618                 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
2619                 return (DDI_SUCCESS);
2620         } else if (xfer->x_ndmac == 2) {
2621                 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
2622                 return (DDI_SUCCESS);
2623         }
2624 
2625         xfer->x_ndmac--;
2626 
2627         nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
2628         ASSERT(nprp_page > 0);
2629         nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
2630 
2631         /*
2632          * We currently don't support chained PRPs and set up our DMA
2633          * attributes to reflect that. If we still get an I/O request
2634          * that needs a chained PRP something is very wrong.
2635          */
2636         VERIFY(nprp == 1);
2637 
2638         if (nvme_zalloc_dma(nvme, nvme->n_pagesize * nprp, DDI_DMA_READ,
2639             &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2640                 dev_err(nvme->n_dip, CE_WARN, "!%s: nvme_zalloc_dma failed",
2641                     __func__);
2642                 return (DDI_FAILURE);
2643         }
2644 
2645         cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
2646         ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, &cmd->nc_dma->nd_cookie);
2647 
2648         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2649         for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
2650             xfer->x_ndmac > 0;
2651             prp++, xfer->x_ndmac--) {
2652                 *prp = xfer->x_dmac.dmac_laddress;
2653                 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2654         }
2655 
2656         (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
2657             DDI_DMA_SYNC_FORDEV);
2658         return (DDI_SUCCESS);
2659 }
2660 
2661 static nvme_cmd_t *
2662 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
2663 {
2664         nvme_t *nvme = ns->ns_nvme;
2665         nvme_cmd_t *cmd;
2666 
2667         /*
2668          * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
2669          */
2670         cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
2671             KM_NOSLEEP : KM_SLEEP);
2672 
2673         if (cmd == NULL)
2674                 return (NULL);
2675 
2676         cmd->nc_sqe.sqe_opc = opc;
2677         cmd->nc_callback = nvme_bd_xfer_done;
2678         cmd->nc_xfer = xfer;
2679 
2680         switch (opc) {
2681         case NVME_OPC_NVM_WRITE:
2682         case NVME_OPC_NVM_READ:
2683                 VERIFY(xfer->x_nblks <= 0x10000);
2684 
2685                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
2686 
2687                 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
2688                 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
2689                 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
2690 
2691                 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
2692                         goto fail;
2693                 break;
2694 
2695         case NVME_OPC_NVM_FLUSH:
2696                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
2697                 break;
2698 
2699         default:
2700                 goto fail;
2701         }
2702 
2703         return (cmd);
2704 
2705 fail:
2706         nvme_free_cmd(cmd);
2707         return (NULL);
2708 }
2709 
2710 static void
2711 nvme_bd_xfer_done(void *arg)
2712 {
2713         nvme_cmd_t *cmd = arg;
2714         bd_xfer_t *xfer = cmd->nc_xfer;
2715         int error = 0;
2716 
2717         error = nvme_check_cmd_status(cmd);
2718         nvme_free_cmd(cmd);
2719 
2720         bd_xfer_done(xfer, error);
2721 }
2722 
2723 static void
2724 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
2725 {
2726         nvme_namespace_t *ns = arg;
2727         nvme_t *nvme = ns->ns_nvme;
2728 
2729         /*
2730          * blkdev maintains one queue size per instance (namespace),
2731          * but all namespace share the I/O queues.
2732          * TODO: need to figure out a sane default, or use per-NS I/O queues,
2733          * or change blkdev to handle EAGAIN
2734          */
2735         drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
2736             / nvme->n_namespace_count;
2737 
2738         /*
2739          * d_maxxfer is not set, which means the value is taken from the DMA
2740          * attributes specified to bd_alloc_handle.
2741          */
2742 
2743         drive->d_removable = B_FALSE;
2744         drive->d_hotpluggable = B_FALSE;
2745 
2746         drive->d_target = ns->ns_id;
2747         drive->d_lun = 0;
2748 
2749         drive->d_model = nvme->n_idctl->id_model;
2750         drive->d_model_len = sizeof (nvme->n_idctl->id_model);
2751         drive->d_vendor = nvme->n_vendor;
2752         drive->d_vendor_len = strlen(nvme->n_vendor);
2753         drive->d_product = nvme->n_product;
2754         drive->d_product_len = strlen(nvme->n_product);
2755         drive->d_serial = nvme->n_idctl->id_serial;
2756         drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
2757         drive->d_revision = nvme->n_idctl->id_fwrev;
2758         drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
2759 }
2760 
2761 static int
2762 nvme_bd_mediainfo(void *arg, bd_media_t *media)
2763 {
2764         nvme_namespace_t *ns = arg;
2765 
2766         media->m_nblks = ns->ns_block_count;
2767         media->m_blksize = ns->ns_block_size;
2768         media->m_readonly = B_FALSE;
2769         media->m_solidstate = B_TRUE;
2770 
2771         media->m_pblksize = ns->ns_best_block_size;
2772 
2773         return (0);
2774 }
2775 
2776 static int
2777 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
2778 {
2779         nvme_t *nvme = ns->ns_nvme;
2780         nvme_cmd_t *cmd;
2781 
2782         if (nvme->n_dead)
2783                 return (EIO);
2784 
2785         /* No polling for now */
2786         if (xfer->x_flags & BD_XFER_POLL)
2787                 return (EIO);
2788 
2789         cmd = nvme_create_nvm_cmd(ns, opc, xfer);
2790         if (cmd == NULL)
2791                 return (ENOMEM);
2792 
2793         cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
2794         ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
2795 
2796         if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd)
2797             != DDI_SUCCESS)
2798                 return (EAGAIN);
2799 
2800         return (0);
2801 }
2802 
2803 static int
2804 nvme_bd_read(void *arg, bd_xfer_t *xfer)
2805 {
2806         nvme_namespace_t *ns = arg;
2807 
2808         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
2809 }
2810 
2811 static int
2812 nvme_bd_write(void *arg, bd_xfer_t *xfer)
2813 {
2814         nvme_namespace_t *ns = arg;
2815 
2816         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
2817 }
2818 
2819 static int
2820 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
2821 {
2822         nvme_namespace_t *ns = arg;
2823 
2824         if (ns->ns_nvme->n_dead)
2825                 return (EIO);
2826 
2827         /*
2828          * If the volatile write cache isn't enabled the FLUSH command is a
2829          * no-op, so we can take a shortcut here.
2830          */
2831         if (ns->ns_nvme->n_volatile_write_cache_enabled == B_FALSE) {
2832                 bd_xfer_done(xfer, ENOTSUP);
2833                 return (0);
2834         }
2835 
2836         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
2837 }
2838 
2839 static int
2840 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
2841 {
2842         nvme_namespace_t *ns = arg;
2843 
2844         return (ddi_devid_init(devinfo, DEVID_ENCAP, strlen(ns->ns_devid),
2845             ns->ns_devid, devid));
2846 }