new usr/ src/ cnd/ ndnpd/ ndnp/ ndnpd_chkpnt . ¢ 1

R R R R

8538 Tue Jun 11 08:49:40 2013
new usr/ src/ cnd/ ndmpd/ ndnp/ ndnpd_chkpnt . ¢
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE]

1/*

2 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. Al rights reserved.
3 * Copyright (c) 2013 by Del phix. Al rights reserved.
4 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
5 #endif /* | codereview */
6 */
8

/

*
9 * BSD 3 O ause License
10 *
11 * Copyright (c) 2007, The Storage Networking |Industry Association.
12 *
13 * Redistribution and use in source and binary forns, with or wthout
14 * nodification, are permitted provided that the follow ng conditions
15 * are net:
16 * - Redistributions of source code nust retain the above copyri ght
17 * notice, this list of conditions and the follow ng disclainer.
18 =
19 * - Redistributions in binary formnmust reproduce the above copyri ght
20 * notice, this list of conditions and the follow ng disclaimer in
21 % t he docunentation and/or other materials provided with the
22 * di stribution.
23 *
24 % - Neither the nane of The Storage Networking |Industry Association (SN A)
25 * nor the names of its contributors nay be used to endorse or pronote
26 * products derived fromthis software without specific prior witten
27 % perm ssi on.
28 *
29 * TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS "AS | S"
30 * AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LI M TED TO, THE
31 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
32 * ARE DI SCLAI MED. I N NO EVENT SHALL THE COPYRI GHT OANER OR CONTRI BUTORS BE
33 * LIABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR
34 * CONSEQUENTI AL DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF
35 * SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR PRCFITS; OR BUSI NESS
36 * | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER I N
37 * CONTRACT, STRICT LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE)
38 * ARISING I N ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN |IF ADVI SED OF THE
39 * PCSSIBILITY OF SUCH DAVAGE.
*

/

42 #include <stdio. h>
43 #include <string. h>
44 #incl ude "ndnpd. h"
45 #include <libzfs. h>

47 typedef struct snap_param {
48 char *snp_nane;

49 bool ean_t snp_f ound;
50 } snap_paramt;

52 static int cleanup_fd = -1;

54 /*

55 * ndnp_has_backup

56 *

57 * Call backup function which | ooks for backup snapshot.

58 * This is a callback function used with zfs_iter_snapshots.
*

new usr/ src/ cnd/ ndmpd/ ndnp/ ndnpd_chkpnt . ¢

60 * Paraneters:

61 * zhp (input) - ZFS handl e pointer

62 * data (output) - 0 - no backup snapshot
63 * 1 - has backup snapshot
64 *

65 * Returns:

66 * 0: on success

67 * -1. otherw se

68

69 static int
70 ndnp_has_backup(zfs_handl e_t *zhp, void *data)
{

71
72 const char *nane;
73 snap_paramt *chp = (snap_paramt *)dat a;
75 nane = zfs_get_name(zhp);
76 if (name == NULL
77 strstr(nane, chp->snp_nane) == NULL) {
78 zfs_cl ose(zhp);
79 return (-1);
80 }
82 chp->snp_found = 1;
83 zfs_cl ose(zhp);
85 return (0);
86 }
88 /*
89 * ndnp_has_backup_snapshot
90 *
91 * Returns TRUE if the volune has an active backup snapshot, otherw se,
92 * returns FALSE.
93 *
94 * Paraneters:
95 * vol nane (input) - nane of the volunme
96 *
97 * Returns:
98 * 0: on success
99 * -1: otherw se
*

101 static int
102 ndnp_has_backup_snapshot (char *vol name, char *jobnane)

104 zfs_handl e_t *zhp;

105 snap_paramt snp;

106 char chnane[ZFS_MAXNAMVELEN] ;

108 (void) mutex_l ock(&zlib_ntx);

109 if ((zhp = zfs_open(zlibh, volname, ZFS TYPE_DATASET)) == 0) {
110 NDMP_LOZ LOG ERR, "Cannot open snapshot %.", vol nane);
111 (voi d) mutex_unl ock(&lib_ntx);

112 return (-1);

113 }

115 snp. snp_found = O;

116 (void) snprintf(chname, ZFS_MAXNAMELEN, " @s", jobnane);

117 snp. snp_nanme = chnare;

119 (void) zfs_iter_snapshots(zhp, ndnp_has_backup, &snp);

120 zfs_cl ose(zhp);

121 (void) nutex_unl ock(&zlib_ntx);

123 return (snp.snp_found);

124 }

new usr/ src/ cnd/ ndmpd/ ndnp/ ndnpd_chkpnt . ¢

NULL) ;

126 /*

127 * ndnp_creat e_snapshot

128 *

129 * This function will parse the path to get the real volunme nane.
130 * It will then create a snapshot based on volunme and job nane.
131 * This function should be called before the NDWP backup is started.
132 *

133 * Paraneters:

134 = vol _narme (i nput) name of the vol ume

135 *

136 * Returns:

137 * 0: on success

138 * -1: otherw se

139

140 int

141 ?dnp_creat e_snapshot (char *vol _nane, char *jnane)

142

143 char vol [ZFS_VAXNAMELEN] ;

145 if (vol_nane == 0 ||

146 get _zfsvol nanme(vol , sizeof (vol), vol_nanme) == -1)
147 return (0);

149 /*

150 * |f there is an old snapshot left fromthe previous
151 * backup it could be stale one and it nust be

152 * renoved before using it.

153 *

154 i f (ndnp_has_backup_snapshot (vol, jnane))

155 (voi d) snapshot destroy(vol jname, B_FALSE, B_TRUE,
157 return (snapshot_create(vol, jnane, B _FALSE, B TRUE));
158 }

160 /*

161 * ndnp_renove_snapshot

162 *

163 * This function will parse the path to get the real volunme nane.
164 * It will then renove the snapshot for that volune and job nane.
165 * This function should be called after NDWP backup is finished.
166 *

167 * Paraneters:

168 * vol _nane (input) - nane of the volume

169 *

170 * Returns:

171~ 0: on success

172 * -1: otherw se

173 */

174 int

175 ?drrp_rermve_snapshot(char *vol _name, char *jnane)

176

177 char vol [ZFS_VAXNAMELEN ;

179 if (vol_nane == 0 ||

180 get _zf svol nanme(vol , sizeof (vol), vol_nanme) == -1)
181 return (0);

183} return (snapshot_destroy(vol, jnane, B_FALSE, B TRUE, NULL));
184

186 /*

187 * Put a hold on snapshot

188 */

189 int

190 snapshot _hol d(char *vol name, char *snapnane, char *jnane, bool ean_t

191 {

recursive)

new usr/ src/ cnd/ ndmpd/ ndnp/ ndnpd_chkpnt . ¢

{

1=0) {

192 zfs_handl e_t *zhp;

193 char *p;

195 if ((zhp = zfs_open(zlibh, vol name, ZFS TYPE_DATASET)) == 0)

196 NDMP_LOG LOG_ERR, "Cannot open volume %.", vol nane);

197 return (-1);

198 }

200 if (cI eanup_fd == -1 && (cleanup_fd = open(ZFS_DEV,

201 O_RDWRI O EXCL)) < 0) {

202 NDVP_LOG(LOG_ERR, "Cannot open dev %l", errno);

203 zfs_cl ose(zhp);

204 return (-1);

205 }

207 p = strchr(snapname, ' @) + 1;

208 i1f (zfs_hold(zhp, p, jname, recursive, cleanup_fd) !=0) {
4 if (zfs_hold(zhp, p,] name, recursive, B_FALSE, cleanup_fd)

209 NDVP_LOG(LOG_ERR, " Cannot hol d snapshot %", p);

210 zfs_cl ose(zhp);

211 return (-1);

212

213 zfs_cl ose(zhp);

214 return (0);

215 }

__unchanged_portion_omtted_

new usr/src/cmd/ zf s/ zfs_main. c 1 new usr/src/cmd/ zf s/ zfs_main. c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 #l ncl ude <| | bzfs h>
161560 Tue Jun 11 08:49:41 2013 61 #include <libzfs_core. h>
new usr/src/cmd/ zf s/ zfs_main. c 62 #include <zfs_prop. h>
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi 63 #include <zfs_del eg. h>
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk> 64 #include <libuutil.h>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con» 65 #include <aclutils.h>
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE] 66 #' ncl ude <d| rect ory h>
1/*
2 * CDDL HEADER START 68 #include "zfs_iter.h"
3 * 69 #include "zfs_util.h"
4 * The contents of this file are subject to the terms of the 70 #include "zfs_conutil.h"
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License. 72 libzfs_handl e_t *g_zfs;
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE 74 static FILE *mttab_file;
9 * or http://ww:.opensol aris.org/os/licensing. 75 static char history_str[H S_MAX_RECORD LEN];
10 * See the License for the specific |anguage governing perm ssions 76 static boolean_t log_history = B_TRUE;
11 * and limtations under the License.
12 * 78 static int zfs_do_clone(int argc, char **argv);
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 static int zfs_do_create(int argc, char **argv);
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 static int zfs_do_destroy(int argc, char **argv);
15 * |f applicable, add the followi ng below this CDDL HEADER, with the 81 static int zfs_do_get(int argc, char **argv);
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 static int zfs_do_inherit(int argc, char **argv);
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 static int zfs_do_list(int argc, char **argv);
18 * 84 static int zfs_do_mount(int argc, char **argv);
19 * CDDL HEADER END 85 static int zfs_do_rename(int argc, char **argv);
20 */ 86 static int zfs_do_rollback(int argc, char **argv);
87 static int zfs_do_set(int argc, char **argv);
22 | * 88 static int zfs_do_upgrade(int argc, char **argv);
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved. 89 static int zfs_do_snapshot (int argc, char **argv);
24 * Copyright 2012 Nexenta Systens, Inc. Al rights reserved. 90 static int zfs_do_unnount(int argc, char **argv);
25 * Copyright (c) 2012 by Del phix. Al rights reserved. 91 static int zfs_do_share(int argc, char **argv);
26 * Copyright 2012 Mlan Jurik. Al rights reserved. 92 static int zfs_do_unshare(int argc, char **argv);
27 * Copyright (c) 2012, Joyent, Inc. Al rights reserved. 93 static int zfs_do_send(int argc, char **argv);
28 * Copyright (c) 2013 Steven Hartland. Al rights reserved. 94 static int zfs_do_receive(int argc, char **argv);
29 #endif /* 1 codereview */ 95 static int zfs_do_pronote(int argc, char **argv);
30 */ 96 static int zfs_do_userspace(int argc, char **argv);
97 static int zfs_do_allowint argc, char **argv);
32 #include <assert. h> 98 static int zfs_do_unallow(int argc, char **argv);
33 #include <ctype. h> 99 static int zfs_do_hold(int argc, char **argv);
34 #include <errno. h> 100 static int zfs_do_holds(int argc, char **argv);
35 #include <libgen. h> 101 static int zfs_do_rel ease(int argc, char **argv);
36 #include <libintl.h> 102 static int zfs_do_diff(int argc, char **argv);
37 #include <libuutil.h>
38 #include <libnvpair.h> 104 /*
39 #include <l ocal e. h> 105 * Enable a reasonable set of defaults for |ibumem debuggi ng on DEBUG bui | ds.
40 #include <stddef.h> 106 */
41 #include <stdio. h>
42 #include <stdlib.h> 108 #i fdef DEBUG
43 #include <strings. h> 109 const char *
44 #incl ude <unistd. h> 110 _unem debug_i nit(void)
45 #include <fcntl. h> 111 {
46 #incl ude <zone. h> 112 return ("default,verbose"); /* $UMEM DEBUG setting */
47 #include <grp.h> 113 }
48 #i ncl ude <pwd. h>
49 #incl ude <signal . h> 115 const char *
50 #include <sys/list.h> 116 _unem | oggi ng_init(void)
51 #include <sys/nkdev. h> 117 {
52 #include <sys/mtent. h> 118 return ("fail,contents"); /* $UVEM LOGG NG setting */
53 #i nclude <sys/mttab. h> 119 }
54 #incl ude <sys/nount.h> 120 #endi f
55 #include <sys/stat.h>
56 #include <sys/fs/zfs.h> 122 typedef enum {
57 #include <sys/types. h> 123 HELP_CLONE,
58 #include <tine.h> 124 HELP_CREATE,

125 HELP_DESTROY,

new usr/src/cmd/ zf s/ zfs_main. c 3 new usr/src/cmd/ zf s/ zfs_main.c
126 HELP_GET, 192 { NULL },
127 HELP_| NHERI T, 193 { "allow, zfs_do_al | ow, HELP_ALLOW 1,
128 HELP_UPGRADE, 194 { NULL },
129 HELP_LI ST, 195 { "unal | ow zfs_do_unal | ow, HELP_UNALLOW 1,
130 HELP_MOUNT, 196 { NULL },
131 HELP_PROMOTE, 197 { "hol d", zfs_do_hol d, HELP_HOLD 1,
132 HELP_RECEI VE, 198 { "hol ds", zfs_do_hol ds HELP_HOLDS 1.
133 HELP_RENAME, 199 { "rel ease" zfs_do_rel ease, HELP_RELEASE 1,
134 HELP_ROLLBACK, 200 { "diff", zfs_do_diff, HELP_DI FF 1,
135 HELP_SEND, 201 };
136 HELP_SET,
137 HELP_SHARE, 203 #defi ne NCOMVAND (sizeof (command_table) / sizeof (command_table[0]))
138 HELP_SNAPSHOT,
139 HELP_UNMOUNT, 205 zfs_command_t *current _conmmand;
140 HELP_UNSHARE,
141 HELP_ALLOW 207 static const char *
142 HELP_UNALLOW 208 get_usage(zfs_hel p_t idx)
143 HELP_USERSPACE, 209 {
144 HELP_ GROUPSPACE, 210 switch (idx) {
145 HELP_HOLD, 211 case HELP_CLONE:
146 HELP_HOLDS, 212 return (gettext("\tclone [-p] [-0 property= =val ue] "
147 HELP_RELEASE, 213 "<snapshot > <fil esysten] vol une>\n"));
148 HELP_DI FF, 214 case HELP_CREATE:
149 } zfs_help_t; 215 return (gettext("\tcreate [-p] [-0 property=val ue]

216 "<filesystemr\n"
151 typedef struct zfs_comand { 217 "\tcreate [-ps] [-b blocksize] [-o0 property=val ue]
152 const char *nane; 218 "-V <size> <volume>\n"));
153 int (*func)(int argc, char **argv); 219 case HELP_DESTROY:
154 zfs_hel p_t usage; 220 return (gettext(" \tdestroy [-fnpRrv] <filesystenvolume>\n"
155 } zfs_comuand_t; 221 "\tdestroy [-dnpRrv]

222 "<fil esysten vol ume>@snap>[%<snap>][,...]1\n"));
157 /* 223 case HELP_CET:
158 * Master command table. Each ZFS command has a nane, associated function, and 224 return (gettext("\tget [-er] [-d max] "
159 * usage nessage. The usage nessages need to be internationalized, so we have 225 "[-o \"all\" | fie [.11 [-t type[,...11 "
160 * to have a function to return the usage nessage based on a conmand i ndex. 226 "[-s source[]]\n
161 * 227 "\t Aralive | property[, 1>
162 * These commands are organi zed according to how they are displayed in the usage 228 "[fil esysten] vol une| snapshot] An"));
163 * nessage. An enpty command (one with a NULL nane) indicates an enpty line in 229 case HELP_I NHERI T:
164 * the generic usage nmessage. 230 return (gettext("\tinherit [-rS§] <pr0perty> "
165 */ 231 "<fil esystenvol une| snapshot> ...\n"));
166 static zfs_command_t command_table[] = { 232 case HELP_UPGRADE:
167 "create", zfs_do_create, HELP_CREATE 1, 233 return (gettext("\tupgrade [-v]\n"
168 "destroy", zfs_do_destroy, HELP_DESTROY }, 234 "\tupgrade [-r] [-V version] <-a | filesystem...>\n"));
169 NULL }, 235 case HELP_LI ST:
170 "snapshot ", zfs_do_snapshot, HELP_SNAPSHOT , 236 return (gettext("\tlist [-rH[-d max] "
171 "rol | back", zfs_do_rol | back, HELP_ROLLBACK , 237 "[-o0 property[,...]] [-t type[, .11 [-s property] \n"
172 "cl one", zfs_do_cl one, HELP_CLONE , 238 "\t [-S pr operty] .
173 " pronot e", zfs_do_pronot e, HELP_PROMOTE , 239 "[fil esysten] vol une| snapshot] An"));
174 "renane", zfs_do_renane, HELP_RENAME s 240 case HELP_MOUNT:
175 NULL }, 241 return (gettext("\tmunt\n"
176 "list" zfs_do_list, HELP_LI ST 1, 242 "\tmount [-vQ [-0 opts] <-a | filesystenr\n"));
177 NULL } 243 case HELP_PROMOTE:
178 "set", zfs_do_set, HELP_SET , 244 return (gettext(\tpronote <clone-filesysten»\n"));
179 "ge t" zfs_do_get, HELP_GET s 245 case HELP_RECEI VI
180 " nherit" zfs_do_inherit, HELP_| NHERI T , 246 return (gettext(\treceive [-vnFu] <filesystenivolune|"
181 "upgr ade", zf s_do_upgr ade, HELP_UPGRADE , 247 "snapshot >\ n"
182 "userspace", zfs_do_userspace, HELP_USERSPACE , 248 "\treceive [-vnFu] [-d | -e] <filesystenr\n"));
183 "groupspace", zfs_do_userspace, HELP_GROUPSPACE , 249 case HELP_RENAME:
184 NULL }, 250 return (gettext("\trenane [-f] <filesystenjvol une|snapshot> "
185 "mount ", zfs_do_nount, HELP_MOUNT , 251 "<fil esysten] vol unme| snapshot >\ n"
186 "unmount ", zfs_do_ unrmunt HELP_UNMOUNT , 252 "\trename [-f] -p <filesystenvolunme> <filesystenjvol une>\n"
187 "share", zfs_do_share, HELP_SHARE , 253 "\trename -r <snapshot> <snapshot>"));
188 "unshare", zfs_do_unshare, HELP_UNSHARE , 254 case HELP_ROLLBACK:
189 NULL }, 255 return (gettext("\trollback [-rRf] <snapshot>\n"));
190 send”, zfs_do_send, HELP_SEND 1, 256 case HELP_SEND:
191 "receive", zfs_do_recei ve, HELP_RECEI VE }, 257 return (gettext("\tsend [-DnPpRv] [-[il] snapshot] "

new usr/src/cmd/ zf s/ zfs_main. c

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

312
313
314 }

316 void

case

case

case

case

case

case

case

case

case

case
case
case

case

}

"<snapshot>\n"));
HELP_SET:
return (gettext("\tset <property=value> "
"<filesysten vol une| snapshot> ...\n"));
HELP_SHARE:
return (gettext("\tshare <-a | filesystenp\n"));
HELP_SNAPSHOT:
return (gettext("\tsnapshot [-r] [-o0 property=val ue]
"<fil esystem@napnane| vol une@napnane> ...\n"));
HELP_UNMOUNT:
return (gettext("\tunmount [-f] "
"<-a | filesysten]nmountpoint>\n"));
HELP_UNSHARE:
return (gettext("\tunshare "
"<-a | filesysten]nountpoint>\n"));
HELP_ALLOW
return (gettext("\tal I ow <fil esystenivol ume>\n"
"\tallow [-I ug]
"<\"everyone\"|user|group>[,
"\t <filesysten]vol une>\n"
"\tallow [-1d] -e <pern] @etnanme>[,...] "
"<fil esystemn vol ume>\ n"
"\tall ow -c <pern| @etnane>[,...] <fil esyst em vol une>\ n"
"\tall ow -s @etnanme <pernj @et nama>[.
"<filesysten]volume>\n"));
HELP_UNALLOW
return (gettext("\tunallow [-rldug]
"<\"everyone\"|user|group>[,...]\n
"\t [<per | @et name>[, <fil esyst en voI une>\ n"
“\tunal low [-rld] —e[<perr’r1@etname>[.11
"<fil esysten vol ume>\ n"

"\tunallow [-r] -c [<pern| @etnanme>[,...]]
"<filesysten vol ume>\n"
“\tunallow [-r] -s @etnanme [<pern| @Getnane>[,...]] "

"<fil esysten]volume>\n"));
HELP_USERSPACE:
return (gettext("\tuserspace [-Hnp] [-o0 field[,...]] "
"[-s field] ...\n\t[-S field] ... "
"[-t type[,...]] <filesysten]snapshot>\n"));
HELP_GROUPSPACE:
return (gettext(" \tgroupspace[Hi np] [ofield[,...]] "

"[-s field] An\t[-S field]
"[-t type[,]] <filesysten] snapshot>\n));
HELP_HOLD:
return (gettext("\thold [-r] <tag> <snapshot> ...\n"));
HELP_HOLDS:
return (gettext(\tholds [-r] <snapshot> ...\n"));
HELP_RELEASE
return (gettext(\trelease [-r] <tag> <snapshot> ...\n"));

HELP_DI FF:
return (gettext("\tdiff [-FH] <snapshot> "
"[snapshot | fil esysteni\n"));

abort();
/* NOTREACHED */

317 nonen(voi d)

318 {
319
320
321 }

23 =

(void) fprintf(stderr,

gettext("internal error: out of nenory\n"));

exit(1);

.] <pern| @etname>[,...]\n"

new usr/src/cnmd/ zf s/ zfs_main. c

324 * Uility funct
325 */

327 void *

328 safe_mal | oc(size_
329 {

330 voi d *da
332 if ((dat
333

335 return (
336 }

338 static char *
339 safe_strdup(char
340 {

341 char *du
343 if (dups
344

346 return (
347 }

349 [*

350 * Callback rout
351 * the propertie
352 */

353 static int

354 usage_prop_ch(in
355 {

356 FILE *fp
358 (void) f
360 if (zfs
361

362 el se

363

365 if (zfs_
366

367 el se

368

370 if (zfs_
371

372 el se

373

375 return (
376 }

378 [*

379 * Display usage
380 * that command.
381 * a conplete us
382 */

383 static void

384 usage(bool ean_t
385 {

386 int i;
387 bool ean
388 FILE *fp =

ion to guarantee malloc() success.

t size)
ta;

a = calloc(1,
nonen() ;

size)) == NULL)

dat a) ;

*str)
pstr = strdup(str);

tr == NULL)
nonmemn() ;

dupstr);

ine that will print out information for each of
S.

t prop, void *cb)

= cb;
printf(fp, "\t%15s ", zfs_prop_to_nane(prop));
_prop_readonl y(prop))
(void) fprintf(fp, " NO "),
(void) fprintf(fp, "YES ")
prop_i nheritabl e(pr op))
(voird) fprintf(fp, " YES ");
(void) fprintf(fp, " NO ");

prop_val ues(prop) == NULL)
(voird) fprintf(fp, "-\n");
(void) fprintf(fp, "%\n", zfs_prop_val ues(prop));

ZPROP_CONT) ;

message. |f we’'re inside a command, display only the usage for
O herwise, iterate over the entire command table and di spl ay
age nessage.

request ed)

_t show properties = B_FALSE;

requested ? stdout stderr;

new usr/src/cmd/ zf s/ zfs_main. c

390

392
393
394

396
397
398
399
400
401
402

404
405
406
407
408
409

411
412
413
414
415
416

418
419
420

422
423

425
426
427

429
430
431
432
433
434
435
436
437
438

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

if (current_conmand == NULL) {

(void) fprintf(fp, gettext("usage: zfs comand args ...\n"));
(void) fprintf(fp,
gettext("where 'command’ is one of the follow ng:\n\n"));

for (i =0; i < NCOWAND, i++) {
if (conmand_table[i].name == NULL)
(void) fprintf(fp, "\n");
el se
(void) fprintf(fp, "%",
get _usage(conmmand_t abl e[i] . usage));

}

(void) fprintf(fp, gettext("\nEach dataset is of the form
" pool /[at aset/] *dat aset [@ane]\n"));
} else {
(void) fprintf(fp, gettext("usage:\n"));
(void) fprintf(fp, "%", get_usage(current_command- >usage));

}

if (current_command != NULL &&
(strcnp(current _command- >nane, "set") == 0 ||
strcnp(current _comand->nane, "get") == 0 |
strcnp(current _conmand- >nane, "i nheri t") =0 ||
strcnp(current _conmand- >nane, "list") == 0))
show_properties = B_TRUE;

if (show_ properties) {
(voi d) fprlntf(fp|
gettext("\nThe foll owing properties are supported:\n"));

(v0|d) fpr|ntf(fp "\n\t%14s % % Y%s\n\n",
ROPERTY", "EDIT*, "INHERI T, "VALUES");

/* Iterate over all properties */
(void) zprop_iter(usage_prop_ch, fp, B _FALSE, B TRUE,
ZFS_TYPE_DATASET) ;

(void) fprintf(fp, "\t%15s ", "userused@ .

(void) fprintf(fp, " NO NO <S|ze>\n")

(void) fprintf(fp, "\t%15s ", "groupused@..");
(void) fprintf(fp, " NO NO <S|ze>\n)

(void) fprintf(fp, "\t%15s ", "userquota@..");
(void) fprintf(fp, "YES NO <size> | none\n")
(void) fprintf(fp, "\t%15s ", "groupquota@..");
(void) fprintf(fp, "YES NO <size> | none\n");
(void) fprintf(fp, "\t%15s ", "witten@snap>");
(void) fprintf(fp, " NO NO <size>\n");

(void) fprintf(fp, gettext("\nSizes are specified in bytes "

"with standard units such as K, M G etc.\n"));
(void) fprintf(fp, gettext("\nUser-defined properties can "
"be specified by using a name containing a colon (:).\n "));
(voi d) fprintf(fp, gettext("\nThe {user|group}{used|quot al@"
"properties nust be appended wi th\
"a user or group specifier of one of these forns:\n"

" POSI X narne (eg: \"matt\")\n"
" PCSI X i d (eg: \"126829\ ")\n"
" SMB nane@lomain (eg: \"matt @un\")\
SMB SI D (eg: \"S-1-234-567- 89\ y\n"));

} else {
(void) fprintf(fp,
gettext("\nFor the property list, run: %\n"),
"zfs set|get");
(void) fprintf(fp,

new usr/src/cnd/ zf s/ zfs_main. c

456
457
458

460
461
462
463
464
465
466

468
469 }

gettext("\nFor the del egated perm ssion list, run: %\n"),
"zfs allow unall ow');

}

/*

* See comments at end of main().

*/

if (getenv("ZFS_ABORT") != NULL) {
(voi d) printf("dunping core by request\n");
abort();

}

exit(requested ? 0 : 2);

471 static int
472 parseprop(nvlist_t *props)

473 {
474
475

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492 }

char *propname = optarg;
char *propval, *strval;

if ((propval = strchr(propnanme, '=
(v0|d) fprintf(stderr, gt
= for -0 optlon\n)

return (-1);

)) == NULL) {
ext("mssing "

t
)

*propval = '\0";
propval ++;
If (nvlist_lookup_string(props, propnanme, &strval) == 0) {
(void) fprintf(stderr, gettext("property "%’ "
"specified multiple tinmes\n"), propnane);
return (-1);

}

if (nvlist_add_string(props, propnane, propval) != 0)
nomen() ;

return (0);

494 static int
495 parse_dept h(char *opt, int *flags)

496 {
497
498

500
501
502
503
504
505
506
507
508
509
510
511
512
513 }

515 #defi ne PROGRESS_DELAY 2

char *tnp;
int depth;

depth = (int)strtol (opt, & np, 0);
if (*tnp) { ,
(void) fprintf(stderr,
gettext("% is not an integer\n"), optarg);
usage(B_FALSE) ;

}
if (depth < 0)
(void) fprintf(stderr,
gettext ("Depth can not be negative.\n"));
usage(B_FALSE) ;

}
*flags | = (ZFS | TER_DEPTH_LI M T| ZFS_| TER_RECURSE) ;
return (depth);

/* seconds */

517 static char *pt_reverse = "\b\b\ b";
518 static time_t pt_begin;

519 static char *pt_header = NULL;

520 static bool ean_t pt_shown;

new usr/src/cmd/ zf s/ zfs_main. c

522 static void

523 start_progress_tiner(void)

524 {

525 pt _begin = time(NULL) + PROGRESS_DELAY;

526 pt _shown = B_FALSE;

527 }

529 static void

530 set_progress_header (char *header)

531 {

532 assert (pt_header == NULL);

533 pt _header = safe_strdup(header);

534 1 f (pt_shown) {

535 (void) printf("%: ", header);

536 (void) fflu h(stdout);

537 }

538 }

540 static void

23% ?pdat e_progress(char *update)

543 if (!pt_shown &% time(NULL) > pt_begin) {

544 int len = strlen(update);

546 (void) printf("%: %%.* pt _header, update, len, |en,
547 pt_reverse);

548 (void) ffl ush(st dout) ;

549 t _shown = B_TRUE;

550 } else |f (pt _shown) {

551 len = strlen(update);

553 (voi d) p f("%%.*s", update, len, len, pt_reverse);
554 (void) ff h(st dout);

555 }

556 }

558 static void

559 finish_progress(char *done)

560 {

561 if (pt_shovm) {

562 (voi d) pl ntf("%\n", done);

563 (void) fflush(stdout);

564 }

565 free(pt_header);

566 pt _header = NULL;

567 }

568 /*

569 * zfs clone [-p] [-0 prop=val ue] <snap> <fs | vol >

570 *

571 * Gven an existing dataset, create a witable copy whose initial contents
572 * are the sanme as the source. The newly created dataset nmintains a
573 * dependency on the original; the original cannot be destroyed so |ong as
574 * the clone exists.

575 *

576 * The '-p’ flag creates all the non-existing ancestors of the target first.
577 */

578 static int

579 zfs_do_cl one(int argc, char **argv)

580 {

581 zfs_handl e_t *zhp = NULL;

582 bool ean_t parents = B_FALSE;

583 nvlist_t *props;

584 int ret = 0;

585 int c;

587 if (nvlist_alloc(&rops, NV_UNI QUE_NAME, 0) != 0)

new usr/src/cnd/ zf s/ zf s_main. c 10
588 nomemn() ;

590 /* check optlons */

591 while ((c = getopt(argc, argv, "o:p")) !=-1) {

592 switch (c) {

593 case '0:

594 if (parseprop(props))

595 return (1);

596 br eak;

597 case 'p’:

598 parents = B TRUE;

599 br eak;

600 case ' ?':

601 (void) fprintf(stderr, gettext("invalid option ’'%’\n"),
602 optopt);

603 got o usage;

604 }

605 }

607 argc -= optind;

608 argv += optind;

610 /* check nunber of argunments */

611 if (argc < 1) {

612 (voi d) fpri ntf(st derr, gettext("m ssing source dataset "
613 "argunment\n"));

614 got o usage;

615 }

616 if (argc < 2) {

617 (void) fprintf (st derr, gettext("m ssing target dataset "
618 "argument\n"));

619 got o usage;

620

621 if (argc > 2) {

622 (void) fprintf(stderr, gettext("too many argunents\n"));
623 got o usage;

624 }

626 /* open the source dataset */

627 if ((zhp = zfs_open(g_zfs, argv[0], ZFS TYPE SNAPSHOT)) == NULL)
628 return (1);

630 if (parents &% zfs_name_valid(argv[1l], ZFS_TYPE_FI LESYSTEM |

631 ZFS TYPE_VOLUME)) {

632 /*

633 * Now create the ancestors of the target dataset. |If the
634 * target already exists and '-p’ option was used we shoul d not
635 * conpl ai n.

636 *

637 f (zfs_dataset_exists(g_zfs, argv[1l], ZFS_TYPE_FILESYSTEM |
638 ZFS_TYPE_VOLUME))

639 return (0);

640 if (zfs_create_ancestors(g_zfs, argv[1l]) != 0)

641 return (1);

642 }

644 /* pass to libzfs */

645 ret = zfs_clone(zhp, argv[1], props);

647 /* create the nountpoint if necessary */

648 if (ret == 0)

649 zfs_handl e_t *cl one;

651 clone = zfs_open(g_zfs, argv[1l], ZFS_TYPE_DATASET);

652 if (clone !'= NULL) {

653 if (zfs_get_type(clone) != ZFS TYPE_VOLUME)

new usr/src/cmd/ zf s/ zfs_main. c

654
655
656
657
658

660
661

663

665
666
667
668
669
670
671

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

691
692
693
694
695
696
697
698
699
700
701

703
704

706
707
708
709
710
711
712
713
714
715
716

718
719

if ((ret = zfs_nount(clone, NULL, 0)) == 0)
ret = zfs_share(cl one);
zfs_cl ose(cl one);

}

zfs_cl ose(zhp);
nvlist_free(props);

return (!lret);

usage:
if (zhp)
zfs_cl ose(zhp);
nvlist_free(props);
usage(B_FALSE) ;
return (-1);
}
/*
* zfs create [-p] [-o0 prop=value] ... fs
* zfs create [-ps] [-b blocksize] [-o0 prop=val ue] -V vol size
*
* Create a new dataset. This command can be used to create filesystens
* and vol unes. Snapshot creation is handl ed by 'zfs snapshot’.
* For volunes, the user nust specify a size to be used.
*
* The '-s’ flag applies only to volunes, and indicates that we should not try
* to set the reservation for this volune. By default we set a reservation
* equal to the size for any volume. For pools wth SPA VERSI ON >=
* SPA_VERSI ON_REFRESERVATI ON, we set a refreservation instead.
*

* The '-p’ flag creates all the non-existing ancestors of the target first.
*/

static int

zfs_do_create(int argc, char **argv)

zfs_type_t type = ZFS TYPE_FI LESYSTEM
zfs_handl e_t *zhp = NULL;
uint64_t vol si ze;

int c;

bool ean_t noreserve = B_FALSE;
bool ean_t bflag = B_FALSE;

bool ean_t parents = B_FALSE;

int ret = 1;

nvlist_t *props;

uint64_t intval;

int canmount = ZFS_CANMOUNT_CFF;

if (nvlist_alloc(&rops, NV_UN QUE_NAME, 0) != 0)

nonmemn() ;

/* check options */

while ((c = getopt(argc, argv, ":V:b:so:p")) !=-1) {
switch (c) {
case 'V :

type = ZFS TYPE_VOLUME;
if (zfs_nicestrtonun(g_zfs, optarg, & ntval) != 0) {
(void) fprintf(stderr, gettext("bad volune "
"size 'U%’: %\n"), optarg,
libzfs_error_description(g_zfs));
goto error;

}

if (nvlist_add_uint64(props,
zfs_prop_to_nanme(ZFS_PROP_VOLSI ZE), intval) != 0)

11

new usr/src/cnd/ zf s/ zfs_main. c 12
720 nomemn() ;
721 vol size = intval;
722 br eak;
723 case 'p’:
724 parents = B _TRUE;
725 break;
726 case 'b’:
727 bflag = B_TRUE;
728 if (zfs_nicestrtonun(g_zfs, optarg, & ntval) != 0) {
729 (void) fprintf(stderr, gettext("bad volune "
730 "bl ock size '%’: 9%\n"), optarg,
731 libzfs_error_description(g_zfs));
732 goto error;
733 }
735 if (nvlist_add_uint64(props,
736 zfs_prop_t o_name(ZFS_PROP_VOLBLOCKSI ZE) ,
737 intval) = 0)
738 nomen() ;
739 br eak;
740 case '0:
741 i f (parseprop(props))
742 goto error;
743 br eak;
744 case 's’:
745 noreserve = B _TRUE;
746 break;
747 case ':’:
748 (void) fprintf(stderr, gettext("m ssing size "
749 "argunment\n"));
750 got o badusage;
751 case ' ?':
752 (void) fprintf(stderr, gettext("invalid option "%’ \n"),
753 optopt);
754 got o badusage;
755 }
756 }
758 if ((bflag || noreserve) && type != ZFS_TYPE_VOLUME)
759 (void) fprintf(stderr, gettext("' -s’ and '-b’ can only be "
760 "used when creating a volune\n"));
761 got o badusage;
762 }
764 argc -= optind;
765 argv += optind;
767 /* check nunber of argunents */
768 if (argc == 0)
769 (void) fprintf(stderr, gettext("m ssing % argunent\n"),
770 zfs_type_to_nanme(type));
771 got o badusage;
772
773 if (argc > 1)
774 (void) fprintf(stderr, gettext("too many argunments\n"));
775 got o badusage;
776 1
778 if (type == ZFS_TYPE_VOLUME && ! noreserve) {
779 zpool _handl e_t *zpool _handl e;
780 nvlist_t *real _props;
781 uint 64_t spa_version;
782 char *p;
783 zfs_prop_t resv_prop;
784 char *strval;
785 char nsg[1024];

new usr/src/cmd/ zf s/ zfs_main. c

787
788
789
790
791
792
793
794
795
796
797
798
799
800

802
803
804
805
806

808
809

811
812
813
814
815
816
817
818
819

821
822
823
824
825
826
827
828
829
830
831
832
833

835
836
837

839
840

842
843
844
845
846
847
848

850
851

if (p=strchr(argv[0], /"))
*p ='\0;

zpool _handl e = zpbol _open(g_zfs, argv[0]);
if (p !'= NULL)
* - /

p="/";
if (zpool _handl e == NULL)
goto error;
spa_version = zpool _get_prop_int(zpool _handl e,
ZPOOL_PROP_VERST ON, "NULL);
zpool _cl ose(zpool _handl e) ;
if (spa_version >= SPA_VERS|I ON_REFRESERVATI ON)
resv_prop = ZFS_PROP_REFRESERVATI ON;
el se
resv_prop = ZFS PROP_RESERVATI ON;

(void) snprintf(nsg, sizeof (nsg),
gettext("cannot create '%’'"), argv[O0]);
if (props & (real _props = zfs_valid_proplist(g_zfs, type,
props, 0, NULL, nsg)) == NULL)
goto error;

vol size = zvol _vol size_to_reservation(vol size, real _props);
nvlist_free(real _props);

if (nvlist_|lookup_string(props, zfs_prop_to_nanme(resv_prop),
&strval) =0
if (nvlist_add_uint64(props,
zfs_prop_to_name(resv_prop), volsize) !=0) {
nvlist_free(props);
nomend() ;

}
if (parents &R zfs_name_valid(argv[0], type)) {
/*

* Now create the ancestors of target dataset. |f the target
* already exists and '-p’ option was used we shoul d not

* conpl ai n.

*

if (zfs_dataset_exists(g_zfs, argv[0], type)) {
ret = 0;
goto error;

if (zfs_create_ancestors(g_zfs, argv[0]) != 0)
goto error;

}

/* pass to libzfs */
if (zfs_create(g_zfs, argv[0], type, props) != 0)
goto error;

if ((zhp = zfs_open(g_zfs, argv[0], ZFS _TYPE_DATASET)) == NULL)
goto error;

ret = 0;

/*

* if the user doesn’t want the dataset autonatically nounted,

* then skip the nount/share step

*

/

if (zfs_prop_valid_for_type(ZFS_PROP_CANMOUNT, type))
canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) ;

/*
* Mount and/or share the new fil esystem as appropriate.

We provide a

13

new usr/src/cmd/ zf s/ zfs_main.c

852
853
854
855
856
857
858
859
860
861
862
863
864
865

867 error:
868
869
870
871

14

* verbose error nessage to let the user know that their filesystem was

* in fact created, even if we failed to nmount or share it.
*
/
if (cannobunt == ZFS CANMOUNT_ON) {
if (zfs_nount(zhp, NULL, 0) !'= 0) {
(void) fprintf(stderr, gettext("filesystem"
"successfully created, but not nounted\n"));

ret = 1;
} else if (zfs_share(zhp) !'=0) {
(void) fprintf(stderr, gettext("filesystem"
"successfully created, but not shared\n"));
ret = 1;

if (zhp)

zfs_cl ose(zhp);
nvlist_free(props);
return (ret);

872 badusage:

873
874
875
876 }
878 /*
879 *
880 *
881 *
882 *
883 *
884 *
885 *
886 *
887 *
888 *
889 *
890

Destroys the given dataset.

and refuse to destroy a dataset that has any dependents.
either be a child, or a clone of a child.

*/

nvlist_free(props);
usage(B_FALSE) ;
return (2);

zfs destroy [-rRf] <fs, vol >
zfs destroy [-rRd] <snap>

-r Recursively destroy all children
-R Recursively destroy all dependents, including clones
-f Force unnmounting of any dependents

-d If we can’t destroy now, mark for deferred destruction

By default, it will unnmount any fil esystens,
A dependent can

891 typedef struct destroy_chdata {

892
893
894
895
896
897
898
899
900
901
902
903

905
906
907
908
909
910

bool ean_t cb_first;

bool ean_t cb_force;

bool ean_t cb_recurse;

bool ean_t cb_error;

bool ean_t cb_docl ones;
zfs_handl e_t *cb_target;

bool ean_t cb_def er _destroy;
bool ean_t cb_verbose;

bool ean_t cb_parsabl e;

bool ean_t cb_dryrun;
nvlist_t *cb_nvl;

nvlist_t *cb_bat chedsnaps;
/* first snap in contiguous run */
char *cb_firstsnap;

/* previous snap in contiguous run */
char *cb_prevsnap;
int64_t cb_snapused;

char *cb_snapspec;

911 } destroy_chdata_t;

913 /*

914 * Check for any dependents based on the

915 */

"-r’ or '-R flags.

916 static int
917 destroy_check_dependent (zfs_handl e_t *zhp, void *data)

new usr/src/cmd/ zf s/ zfs_main. c

918 {

919 destroy_cbdata_t *cbp = data;

920 const char *tname = zfs_get_nane(cbp->cb_target);

921 const char *name = zfs_get_nane(zhp);

923 if (strncnp(tname, name, strlen(tnane)) == 0 &&

924 (nam/e[strl en(tname)] =="/" || nane[strlen(tnane)] =="'@)) {
925 *

926 * This is a direct descendant, not a clone sonmewhere else in
927 * the hierarchy.

928 */

929 if (cbp->cb_recurse)

930 goto out;

932 if (cbp->cb_first) {

933 (void) fprintf(stderr, gettext("cannot destroy '%’': "
934 "% has children\n"),

935 zfs_get _name(cbp->cb_target),

936 zfs_type_to_nane(zfs_get _type(cbp->cb_target)));
937 (void) fprintf(stderr, gettext("use '-r’ to destroy "
938 "the follow ng datasets:\n"));

939 cbp->cb_first = B_FALSE;

940 cbp->cb_error = B_TRUE;

941 }

943 (void) fprintf(stderr, "%\n", zfs_get_nane(zhp));

944 } else {

945 /*

946 * This is a clone. W only want to report this if the '-r’
947 * wasn't specified, or the target is a snapshot.

948 */

949 if (!cbp->cb_recurse &&

950 zfs_get _type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT)

951 goto out;

953 if (cbp->cb_first)

954 (void) fprintf(stderr, gettext("cannot destroy '%’': "
955 "% has dependent clones\n"),

956 zf s_get _name(cbp->cb_target),

957 zfs_type_to_nane(zfs_get _type(cbp->cb_target)));
958 (void) fprintf(stderr, gettext("use '-R to destroy "
959 "the follow ng datasets:\n"));

960 cbp->cb_first = B_FALSE;

961 cbp->cb_error = B_TRUE;

962 cbp->cb_dryrun = B_TRUE;

963 }

965 (void) fprintf(stderr, "%\n", zfs_get_nane(zhp));

966 }

968 out:

969 zfs_cl ose(zhp);

970 return (0);

971 }

973 static int

974 destroy_cal | back(zfs_handl e_t *zhp, void *data)

975 {

976 destroy_chdata_t *cb = data;

977 const char *nane = zfs_get _nane(zhp);

979 if (cb->cb_verbose) {

980 if (cb->cb_parsable) {

981 (void) printf("destroy\t%\n", nane);

982 } else if (cb->cb_dryrun)

983 (void) printf(gettext("would destroy %\n"),

15

new usr/src/cmd/ zf s/ zfs_main. c

984
985
986
987
988
989

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

1019
1020
1021
1022
1023
1024
1025

1027
1028
1029

1031
1032
1033
1034
1035
1036

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

}
/

}
/

16

nane) ;
} else {
(void) printf(gettext("wll destroy %\n"),
) nane) ;

*

* | gnore pools (which we've already flagged as an error before getting
* here).
*/
f (strchr(zfs_get_name(zhp), '/’) == NULL &&
zfs_get _type(zhp) == ZFS_TYPE_FI LESYSTEM {
zfs_cl ose(zhp);
return (0);

}
f (cb->cb_dryrun) {

zfs_cl ose(zhp);
return (0);

*

* W batch up all contiguous snapshots (even of different

* filesystens) and destroy themw th one ioctl. W can't

* sinply do all snap deletions and then all fs deletions,

* because we nust delete a clone before its origin.

*/

f (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) {
fnvlist_add_bool ean(cb->cb_bat chedsnaps, nane);

} else {
int error = zfs_destroy_snaps_nvl (g_zfs,
cb->cb_bat chedsnaps, B_FALSE);
fnvlist_free(cb->cb_batchedsnaps);
cb->cb_bat chedsnaps = fnvlist_alloc();
if (error 1=0 ||
zfs_unmount (zhp, NULL, cb->cb_force ? MS. FORCE : 0) != 0 ||
zfs_destroy(zhp, cb->cb_defer_destroy) != 0) {
zfs_cl ose(zhp);
return (-1);
}
}
zfs_cl ose(zhp);
return (0);
}
static int

destroy_print_cb(zfs_handl e_t *zhp, void *arg)
{

destroy_chdata_t *cb = arg;
const char *nane = zfs_get _nane(zhp);

nt err = 0;

f (nvlist_exists(cb->cb_nvl, nane)) {
if (cb->cb_firstsnap == NULL)
cb->cb_firstsnap = strdup(nane);
if (cb->cb_prevsnap != NULL)
free(cb->cb_prevsnap);
/* this snap continues the current range */
cb->cb_prevsnap = strdup(nane);
if (cb->cb_firstsnap == NULL || cb->cb_prevsnap == NULL)
nonmen() ;
if (cb->cb_verbose) {
if (cb->cb_parsable) {
(void) printf("destroy\t%\n", nane);

new usr/src/cmd/ zf s/ zfs_main. c

1050 } else if (cb->cb_dryrun) {

1051 (void) printf(gettext("would destroy %\n"),
1052 nane) ;

1053 } else {

1054 (void) printf(gettext("wll destroy %\n"),
1055 nane) ;

1056 }

1057 }

1058 } else |f (cb->cb_firstsnap !'= NULL) {

1059 * end of this range */

1060 UI nt64_t used = O;

1061 err = | zc_snaprange_space(cb->cb_firstsnap,
1062 ch->cb_prevsnap, &used);

1063 ch->cb_snapused += used;

1064 free(cb->cb_firstsnap);

1065 cb->cb_firstsnap = NULL;

1066 free(cb->cb_prevsnap);

1067 ch->cb_prevsnap = NULL;

1068 1

1069 zfs_cl ose(zhp);

1070 return (err);

1071 }

1073 static int

1074 ?estroy_pri nt _snapshots(zfs_handl e_t *fs_zhp, destroy_chdata_t *cb)
1075

1076 int err = 0;

1077 assert(cb->cb_firstsnap == NULL);

1078 assert (cb->cb_prevsnap == NULL)

1079 err = zfs_iter_snapshots_: sorted(fs zhp, destroy_print_ch, cb);
1080 if (cb >cb_firstsnap !'= NULL) {

1081 uint64_t used = O;

1082 if (err == 0)

1083 err = | zc_snaprange_space(ch->cb_firstsnap,
1084 ch->cb_prevsnap, &used);

1085 }

1086 cb->cb_snapused += used;

1087 free(cb->cb_firstsnap);

1088 cb->cb_firstsnap = NULL;

1089 free(cb->cb_prevsnap);

1090 cb->cb_prevsnap = NULL;

1091

1092 return (err);

1093 }

1095 static int

1096 snapshot_to_nvl _cb(zfs_handle_t *zhp, void *arg)

1097 {

1098 destroy_cbdata_t *cb = arg;

1099 int err = 0;

1101 /* Check for clones. */

1102 if (!cb->cb_doclones && !cb->cb_defer_destroy) {
1103 cb->cb_target = zhp;

1104 cbh- >cb first = B_TRUE;

1105 err = zfs_iter_dependents(zhp, B_TRUE,
1106 destroy_check_dependent, cb);

1107 }

1109 if (err == 0) {

1110 |f (nvlist_add_bool ean(cb->cb_nvl, zfs_get_nane(zhp)))
1111 nonem() ;

1112 }

1113 zfs_cl ose(zhp);

1114 return (err);

1115 }

17

new usr/src/cnmd/ zf s/ zfs_main. c

1117
1118
1119
1120
1121

1123
1124
1125
1126
1127

1129
1130
1131
1132
1133

1135
1136

1138
1139
1140
1141

1143
1144

static int
gat her _snapshot s(zfs_handl e_t *zhp, void *arg)
{
destroy_chdata_t *cb = arg;
int err = 0;
err = zfs_iter_snapspec(zhp, cb->cb_snapspec, snapshot_to_nvl_cb, cb);
if (err == ENCENT)
err = 0;
if (err 1= 0)
goto out;

if (cb->cb_verbose) {
err = destroy_print_snapshots(zhp, cb);
if (err 1=0)
goto out;

}

if (cb->cb_recurse)
err = zfs_iter_filesystens(zhp, gather_snapshots, cb);

out :
zfs_cl ose(zhp);
return (err);

}

static int
destroy_cl ones(destroy_cbhdata_t *cb)

1145 {

1146
1147
1148
1149
1150
1151
1152
1153
1154

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

nvpair_t *pair;
for (pair = nvlist_next_nvpair(cbh->cb_nvl,
pair !'= NULL;
pair = nvlist_next_nvpair(cb->cb_nvl, pair)) {
zfs_handl e_t *zhp = zfs_open(g_zfs, nvpair_nane(pair),
“ZFS_TYPE_SNAPSHOT) ;
if (zhp !'= NULL)
bool ean_t defer = cb->cb_defer_destroy;
int err = 0;

NULL) ;

/*

* We can’t defer destroy non-snapshots,
* fal se while destroying the clones.

*

/
ch- >cb def er _destroy = B_FALSE;
err = zfs_iter_dependents(zhp, B_FALSE,

destroy_cal | back, cb);
cb->cb_defer_destroy = def er;
zfs_cl ose(zhp);
if (err 1=0)
return (err);

so set it to

}

return (0);
}

static int
zfs_do_destroy(int argc,

{

char **argv)
destroy_cbdata_t cb = { 0 };

int rv = 0;

int err = 0;

int c;

zfs_handl e_t *zhp = NULL;

char *at;

zfs_type_t type = ZFS TYPE_DATASET;

new usr/src/cnd/ zf s/ zfs_main. c 19

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

1218
1219

1221
1222
1223
1224
1225
1226
1227
1228
1229

1231
1232

1234
1235

1237
1238
1239
1240
1241

1243
1244
1245
1246
1247

/* chec
while (

}

argc -=
argv +=

/* chec
if (arg

}
if (arg

}

at = st
if (at

k options */
(c = getopt(argc, argv, "vpndfrR')) !=-1) {
switch (c) {
case 'V’
ch. cb_verbose = B_TRUE;
br eak;
case 'p’:

cb. cb_verbose = B_TRUE;
ch. cb_parsabl e = B_TRUE;

break;

case 'n’:
cb.cb_dryrun = B_TRUE;
br eak;

case 'd':
cb. cb_def er_destroy = B_TRUE;
type = ZFS_TYPE_SNAPSHOT;
break;

case 'f':
cb.cb_force = B_TRUE;
br eak;

case 'r’:
ch.cb_recurse = B_TRUE;
br eak;

case 'R :
ch.cb_recurse = B_TRUE;
ch. cb_docl ones = B_TRUE;
br eak;

case ' ?':

defaul t:
(void) fprintf(stderr, gettext("invalid option ’'%’'\n"),

optopt);

usage(B_FALSE);

}

optind;

optind;

k nunmber of argunents */

Cc ==

(void) fprintf(stderr, gettext("m ssing dataset argument\n"));
usage(B_FALSE) ;

c>1 {
(void) fprintf(stderr, gettext("too many argunments\n"));
usage(B_FALSE);

rchr(argv[0], '@);

1= NULL) {

/* Build the list of snaps to destroy in cb_nvl. */
cb.cb_nvl = fnvlist_alloc();

*at = '\0;

zhp = zfs_open(g_zfs, argv[0],
ZFS _TYPE_FI LESYSTEM | ZFS_TYPE_VOLUME) ;
if (zhp == NULL)
return (1);

cb. cb_snapspec = at + 1;
if (gather_snapshots(zfs_handl e_dup(zhp), &cb) !'= 0 ||
ch.cb_error) {
rv =1,
goto out;

new usr/src/cnd/ zf s/ zfs_main. c 20
1248 }

1250 if (nvlist_enpty(cbh.cb_nvl))

1251 (void) fprintf(stderr, gettext("could not find any "
1252 "snapshots to destroy; check snapshot nanes.\n"));
1253 rv = 1;

1254 goto out;

1255 }

1257 if (cbh.cb_verbose) {

1258 char buf[16];

1259 zfs_ni cenum(cb. cb_snapused, buf, sizeof (buf));

1260 if (cb.cb_parsable)

1261 (void) printf("reclaimt%I|u\n",

1262 cb. cb_snapused) ;

1263 } else if (cb.cb_dryrun) {

1264 (void) printf(gettext("would reclaim%\n"),
1265 buf);

1266 } else {

1267 (void) printf(gettext("wll reclaim%\n"),
1268 buf);

1269 }

1270 }

1272 if (!cb.cb_dryrun) {

1273 if (cb.cb_doclones) {

1274 cb. cb_bat chedsnaps = fnvlist_alloc();

1275 err = destroy_cl ones(&cbh);

1276 if (err ==

1277 err = zfs_destroy_snaps_nvl (g_zfs,
1278 ch. cb_bat chedsnaps, B_FALSE);

1279 }

1280 if (err 1=0) {

1281 rv = 1;

1282 goto out;

1283 }

1284

1285 if (err ==

1286 err = zfs_destroy_snaps_nvl (g_zfs, cb.cb_nvl,
1287 cb. cb_def er_destroy);

1288 }

1289 }

1291 if (err 1=0)

1292 rv = 1;

1293 } else {

1294 /* Open the given dataset */

1295 if ((zhp = zfs_open(g_zfs, argv[0], type)) == NULL)

1296 return (1);

1298 cb.cb_target = zhp;

1300 *

1301 */ Performan explicit check for pools before going any further.
1302 *

1303 if (!cb.cb_recurse && strchr(zfs_get_nane(zhp), '/') == NULL &&
1304 zfs_get type(zhp) == ZFS TYPE FI LESYSTEM {

1305 (void) fprintf(stderr, gettext("cannot destroy '%’': "
1306 "operation does not apply to pools\n"),

1307 zf s_get _name(zhp));

1308 (void) fprintf(stderr, gettext("use 'zfs destroy -r "
1309 "Os' to destroy all datasets in the pool\n"),
1310 zfs_get _nane(zhp));

1311 (void) fprintf(stderr, gettext("use ’'zpool destroy 9%’
1312 "to destroy the pool itself\n"), zfs_get_name(zhp));
1313 rv = 1;

new usr/src/cmd/ zf s/ zfs_main. c 21 new usr/src/cnmd/ zf s/ zfs_main. c 22
1314 goto out; 1380 * -H scripted nbde. Headers are stripped, and fields are separated
1315 } 1381 * by tabs instead of spaces.
1382 * -0 Set of fields to display. One of "nane, property, val ue,
1317 /* 1383 * received, source". Default is "name, property, val ue, source".
1318 * Check for any dependents and/or clones. 1384 * "all" is an alias for all five.
1319 */ 1385 * -s Set of sources to allow. One of
1320 cb.cb_first = B TRUE, 1386 * "l ocal ,defaul t,inherited, received, tenporary, none". Default is
1321 if (!cb.cb_doclones && 1387 * all six.
1322 zfs_iter_dependents(zhp, B_TRUE, destroy_check_dependent, 1388 * -p Di splay values in parsable (literal) format.
1323 &ch) = 0) { 1389 *
1324 rv = 1; 1390 * Prints properties for the given datasets. The user can control which
1325 goto out; 1391 * colums to display as well as which property types to allow
1326 } 1392 */
1328 if (cb.cb_error) { 1394 /*
1329 rv = 1; 1395 * Invoked to display the properties for a single dataset.
1330 goto out; 1396 */
1331 } 1397 static int
1398 get _cal | back(zfs_handl e_t *zhp, void *data)
1333 cbh. cb_bat chedsnaps = fnvlist_alloc(); 1399 {
1334 if (zfs_iter_dependents(zhp, B_FALSE, destroy_call back, 1400 char buf [ZFS_MAXPROPLEN ;
1335 &ch) !'=0) { 1401 char rbuf [ZFS_MAXPROPLEN ;
1336 rv =1; 1402 zprop_source_t sourcetype;
1337 goto out; 1403 char source[ZFS_MAXNAMELEN ;
1338 } 1404 zprop_get _cbdata_t *cbp = data;
1405 nvlist_t *user_props = zfs_get_user_props(zhp);
1340 /* 1406 zprop_list_t *pl = cbp->cb_proplist;
1341 * Do the real thing. The callback will close the 1407 nvlist_t *propval;
1342 * handl e regardl ess of whether it succeeds or not. 1408 char *strval;
1343 */ 1409 char *sourceval ;
1344 err = destroy_cal | back(zhp, &cb); 1410 bool ean_t received = is_recvd_col um(cbp);
1345 zhp = NULL;
1346 if (err == 0) { 1412 for (; pl !'= NULL; pl = pl->pl_next) {
1347 err = zfs_destroy_snaps_nvl (g_zfs, 1413 char *recvdval = NULL;
1348 ch. cb_bat chedsnaps, cb.cb_defer_destroy); 1414 /*
1349 } 1415 * Skip the special fake placeholder. This will also skip over
1350 if (err 1=0) 1416 * the name property when "all’ is specified.
1351 rv = 1; 1417 */
1352 } 1418 if (pl->pl_prop == ZFS _PROP_NAME &&
1419 pl == cbp->cb_proplist)
1354 out: 1420 conti nue;
1355 fnvlist_free(cbh.cb_batchedsnaps);
1356 fnvlist_free(cbh.ch_nvl); 1422 if (pl->pl_prop !'= ZPROP_I NVAL)
1357 if (zhp !'= NULL) 1423 if (zfs_prop_get(zhp, pl->pl_prop, buf,
1358 zfs_cl ose(zhp); 1424 si zeof (buf), &sourcetype, source,
1359 return (rv); 1425 si zeof (source),
1360 } 1426 cbp->cb_literal) !'=0) {
1427 if (pl->pl _all)
1362 static bool ean_t 1428 conti nue;
1363 is_recvd_col um(zprop_get_chdata_t *cbp) 1429 if (!zfs_prop_valid_for_type(pl->pl_prop,
1364 { 1430 ZFS_TYPE_DATASET))
1365 int i; 1431 (void) fprintf(stderr,
1366 zfs_get _colum_t col; 1432 gettext("No such property "9%’\n"),
1433 zfs_prop_to_nane(pl->pl _prop));
1368 for (i =0; i < ZFS_CET_NCOLS && 1434 conti nue;
1369 (col = cbp->cb_colums[i]) != GET_COL_NONE; i ++) 1435 }
1370 if (col == GET_COL_RECVD) 1436 sour cet ype = ZPROP_SRC_NONE;
1371 return (B_TRUE); 1437 (void) strlcpy(buf, "-", sizeof (buf));
1372 return (B_FALSE); 1438 }
1373 }
1440 if (received & (zfs_prop_get_recvd(zhp,
1375 /* 1441 zfs_prop_to_nanme(pl->pl _prop), rbuf, sizeof (rbuf),
1376 * zfs get [-rHp] [-o all | field[,field]...] [-s source[,source]...] 1442 cbp->cb_literal) == 0))
1377 * < all | property[,property]... > < fs | snap | vol > ... 1443 recvdval = rbuf;
1378 *
1379 * -r recurse over any child datasets 1445 zprop_print_one_property(zfs_get_nane(zhp), cbp,

new usr/src/cmd/ zf s/ zfs_main. c 23 new usr/src/cnmd/ zf s/ zfs_main. c
1446 zfs_prop_to_nanme(pl->pl_prop), 1512 {
1447 buf, sourcetype, source, recvdval); 1513 zprop_get _ cbdata t cb={0};
1448 } else if (zfs_prop_userquota(pl - >p| user_prop)) { 1514 int i, c, flags = ZFS_| TER_ ARGS_CAN BE PATHS;
1449 sour cetype = ZPROP_SRC LOCAL; 1515 int types = ZFS TYPE_DATASET;
1516 char *value, *fields;
1451 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop, 1517 int ret = 0;
1452 buf, si zeof (buf) cbp->cb_literal) !=0) { 1518 int limt = 0;
1453 sourcetype = ZPROP SRC_NCN 1519 zprop_list_t fake_name = { 0 };
1454 (void) strlcpy(buf, "-", si zeof (buf));
1455 } 1521 I*
1522 * Set up default colums and sources.
1457 zprop_print_one_property(zfs_get_nane(zhp), cbp, 1523 “f
1458 pl ->pl _user_prop, buf, sourcetype, source, NULL); 1524 ch.cb_sources = ZPR(P SRC_ALL;
1459 } else if (zfs_prop_witten(pl- >p| user_prop)) { 1525 cb.cb_col ums[0] = GET_COL_| ;
1460 sourcetype = ZPROP_SRC LOCAL; 1526 cb.cb_colums[1] = CET CO__PRO:'ERTY
1527 cb. cb_col ums[2] = GET_COL_VALUE;
1462 if (zfs_prop_get_witten(zhp, pl->pl_user_prop, 1528 ch. cb_col ums[3] = GET_COL_SOURCE;
1463 buf, sizeof (buf), cbp->cb_literal) !=0) { 1529 ch.cb_type = ZFS_TYPE_DATASET;
1464 sour cet ype = ZPROP_SRC_NONE;
1465 (void) strlcpy(buf, "-", sizeof (buf)); 1531 /* check options */
1466 } 1532 while ((c —getopt(argc argv, ":d:o:s:rt:Hp")) !'=-1) {
1533 switch (c)
1468 zprop_print_one_property(zfs_get_nane(zhp), cbp, 1534 case 'p’:
1469 pl - >pl _user_prop, buf, sourcetype, source, NULL); 1535 cb.cb_literal = B_TRUE;
1470 } else { 1536 br eak;
1471 if (nvlist_lookup_nvlist(user_props, 1537 case 'd':
1472 pl ->pl _user_prop, &propval) != 0) { 1538 limt = parse_depth(optarg, &flags);
1473 if (pl->pl_all) 1539 br eak;
1474 conti nue; 1540 case 'r’:
1475 sourcetype = ZPROD SRC_NONE; 1541 flags | = ZFS_| TER_RECURSE;
1476 strval ="-"; 1542 break;
1477 } else { 1543 case 'H:
1478 verify(nvlist_| ookup_string(pr opval , 1544 cb. cb_scripted = B_TRUE;
1479 ZPROP_VALUE, &strval) == 0); 1545 br eak;
1480 verify(nvlist_| ookup_stri ng(propval 1546 case ':':
1481 ZPROP_SOURCE, &sourceval) == 0), 1547 (void) fprintf(stderr, gettext("m ssing argunent for "
1548 "'o¢’ option\n"), optopt);
1483 if (strcnp(sourceval, 1549 usage(B_FALSE);
1484 zfs_get nama(zhp)) == 0) { 1550 br eak;
1485 sourcetype = ZPRCP SRC_LOCAL; 1551 case '0':
1486 } else if (strcnp(sourceval, 1552 /*
1487 ZPROP_SOQURCE_VAL_RECVD) == 0) { 1553 * Process the set of colums to display. W zero out
1488 sour cet ype = ZPROP_SRC_RECEI VED; 1554 * the structure to give us a blank slate.
1489 } else { 1555 */
1490 sour cet ype = ZPROP_SRC | NHERI TED, 1556 bzer o(&cb. cb_col ums, sizeof (cb.cb_colums));
1491 (void) strlcpy(source, 1557 0;
1492 sourceval , sizeof (source)); 1558 Wm le (*optarg !'="\0") {
1493 } 1559 static char *col _subopts[] =
1494 } 1560 { "nane", "property", "value", "received",
1561 "source", "all", NULL };
1496 if (received && (zfs_prop_get_recvd(zhp,
1497 pl ->pl _user_prop, rbuf, sizeof (rbuf), 1563 if (i == ZFS_GET_NCOLS) {
1498 cbp->cb_literal) == 0)) 1564 (voi d) fprintf(stderr, gettext(too "
1499 recvdval = rbuf; 1565 "many fi eI ds given to -0
1566 "option\n"));
1501 zprop_print_one_property(zfs_get_nane(zhp), cbp, 1567 usage(B_FALSE) ;
1502 pl - >pl _user_prop, strval, sourcetype, 1568 }
1503 source, recvdval);
1504 } 1570 switch (getsubopt(&optarg, col_subopts,
1505 } 1571 &val ue)) {
1572 case O:
1507 return (0); 1573 cb. cb_col ums[i ++] = GET_COL_NAME;
1508 } 1574 br eak;
1575 case 1:
1510 static int 1576 cb. cb_col ums[i ++] = GET_COL_PROPERTY;
1511 zfs_do_get(int argc, char **argv) 1577 br eak;

25

new usr/src/cmd/ zf s/ zfs_main. c

1578 case 2:

1579 ch. cb_col ums[i ++] = GET_COL_VALUE;
1580 br eak;

1581 case 3:

1582 cbh. cb_col ums[i ++] = GET_COL_RECVD;
1583 flags | = ZFS | TER_ RECVD PROPS;

1584 br eak;

1585 case 4:

1586 cb. cb_col ums[i ++] = GET_COL_SOURCE;
1587 br eak;

1588 case 5:

1589 if (i >0 {

1590 (void) fprintf(stderr,

1591 gettext("\"all\" conflicts "
1592 "wWth specific fields "
1593 "given to -0 option\n"));
1594 usage(B_FALSE);

1595 }

1596 ch. cb_col ums[0] = GET_COL_NAME;
1597 cb. cb_col ums[1] = GET_COL_PROPERTY;
1598 cb. cb_col ums[2] = GET_COL_VALUE;
1599 cb. cb_col umms[3] = GET_COL_RECVD;
1600 cb. cb_col ums[4] = GET_COL_SOURCE;
1601 flags “| = ZFS_I TER_RECVD PROPS;

1602 i ZFS_GET_NCOLS;

1603 br eak

1604 defaul t:

1605 (void) fprintf(stderr,

1606 gettext("invalid colum name "
1607 " os'\n"), value);

1608 usage(B_FALSE) ;

1609 }

1610

1611 br eak;

1613 case 's’:

1614 ch. cb_sources = 0;

1615 V\A"nle(*optarg 1="\0")

1616 static char *source_subopts[] = {

1617 "local", "default", "inherited",
1618 "received", "tenporary", "none",
1619 NULL };

1621 switch (getsubopt (&optarg, source_subopts,
1622 &val ue)) {

1623 case O:

1624 cbh. cb_sources | = ZPROP_SRC LOCAL;
1625 br eak;

1626 case 1:

1627 cbh. cb_sources | = ZPROP_SRC DEFAULT;
1628 br eak;

1629 case 2:

1630 cb. cb_sources | = ZPROP_SRC_| NHERI TED;
1631 br eak;

1632 case 3:

1633 ch. cb_sources | = ZPROP_SRC_RECEI VED;
1634 br eak;

1635 case 4:

1636 ch. cb_sources | = ZPROP_SRC_TEMPORARY;
1637 br eak;

1638 case 5:

1639 cbh. cb_sources | = ZPROP_SRC_NONE;
1640 br eak;

1641 defaul t:

1642 (void) fprintf(stderr,

1643 gettext("invalid source "

new usr/src/cmd/ zf s/ zfs_main.c

1644
1645
1646
1647
1648

1650
1651 t
1652 f

case 't’:

1653 wh

1654
1655

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670

1672
1673
1674
1675
1676
1677
1678
1679

1681
1682
1683
1684
1685 }
1686 }

case ' ?':

1688
1689

argc -= optind;
argv += optind;

1691
1692
1693
1694
1695 }

if (argc(< 1)

1697 fields = argv[O];
1699
1700

1701

if (zprop_get
1=0

1703
1704

argce--;
ar gv++;

1706 /*
1707
1708
1709

(void) fprintf(stderr,

{
void) fprintf(stderr,
"argument\n"));
usage(B_FALSE);

_list(g_zfs,

* As part of zfs_expand_proplist(),
* width for each property.
* need to know the maxi mum nane | ength.

26

"9%’'\n"), value);
usage(B_FALSE) ;

es = 0;

gs & ~ZFS_| TER_PROP_L| STSNAPS;

le (*optarg != 0){

static char *type_subopts[] = { "filesysteni,
"vol ume", "snapshot", "all", NULL };

—~

switch (getsubopt (&optarg,
&val ue))
case O:
types | = ZFS_TYPE_FI LESYSTEM
br eak;

type_subopt s,

case 1:
types | = ZFS_TYPE_VOLUVE;
br eak;

case 2:
types | = ZFS_TYPE_SNAPSHOT
br eak;

case 3:
types = ZFS_TYPE_DATASET,;
br eak;

defaul t:

(void) fprintf(stderr,
gettext("invalid type
val ue) ;

usage(B_FALSE) ;

"o%’\n"),

break;

gettext("invalid option ’'%’\n"),

optopt);

usage(B_FALSE) ;

gettext("m ssing property "

fields, &cb.cb_proplist, ZFS TYPE_DATASET)

usage(B_FALSE) ;

we keep track of the maxi mum col um
"NAME (and ' SOURCE') col ums, we
However, the user likely did

For the

new usr/src/cmd/ zf s/ zfs_main. c

27

1710 * not specify 'nane’ as one of the properties to fetch, so we need to
1711 * make sure we always include at |east this property for

1712 * print_get_headers() to work properly.

1713 *

1714 if (ch. cb propllst I= NULL) {

1715 fake_nane. pl _prop = ZFS_PROP_NAME;

1716 f ake_nane. pl wdth:strlen(gettext(NAME")) ;

1717 f ake_nane. pl _next = cb.ch_proplist;

1718 cb.cb_proplist = &f ake_nane;

1719 }

1721 cb.cb_first = B_TRUE;

1723 /* run for each object */

1724 ret = zfs_for_each(argc, argv, flags, types, NULL,

1725 &cb.cb_proplist, limt, get_callback, &cb);

1727 if (cb.cb_proplist == &f ake_nane)

1728 zprop_free_list(fake_nane.pl_next);

1729 el se

1730 zprop_free_list(cb.cb_proplist);

1732 return (ret);

1733 }

1735 /*

1736 * inherit [-rS] <property> <fs|vol> ...

1737 *

1738 * -r Recurse over all children

1739 * -S Revert to received value, if any

1740 *

1741 * For each dataset specified on the conmand line, inherit the given property
1742 * fromits parent. |Inheriting a property at the pool level will cause it to
1743 * use the default value. The '-r’ flag will recurse over all children, and is
1744 * useful for setting a property on a hierarchy-w de basis, regardl ess of any
1745 * local nodifications for each dataset.

1746 */

1748 typedef struct inherit_cbdata {

1749 const char *cb_propnaneg;

1750 bool ean_t cb_recei ved;

1751 } inherit_cbdata_t;

1753 static int

1754 i{nherit_r ecurse_cb(zfs_handl e_t *zhp, void *data)

1755

1756 inherit_cbdata_t *cb = data;

1757 zfs_prop_t prop = zfs_nane_to_prop(cb->cb_propnane);

1759 /*

1760 * |f we're doing it recursively, then ignore properties that

1761 * are not valid for this type of dataset.

1762 *

1763 if (prop != ZPROP_I NVAL &&

1764 lzfs_prop_valid_for_type(prop, zfs_get_type(zhp)))

1765 return (0);

1767 return (zfs_prop_inherit(zhp, cb->cb_propnanme, cb->cb_received) != 0);
1768 }

1770 static int

1771 inherit_cb(zfs_handl e_t *zhp, void *data)

1772 {

1773 inherit_chdata_t *cb = data;

1775 return (zfs_prop_inherit(zhp, cb->cb_propnane, cb->cb_received) != 0);

new usr/src/cmd/ zf s/ zfs_main.c

1776 }

1778 static int

1779 zfs_do_inherit(int argc,

1780 {
1781
1782
1783
1784
1785
1786
1787

1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

1806
1807

1809
1810
1811
1812
1813
1814
1815
1816
1817

1819
1820
1821

1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841

char **argv)

int c;
zfs_prop_t prop;

inherit_cbdata_t cb = { 0 };
char *propnane;

int ret = 0;

int flags = 0;

bool ean_t received = B_FALSE;

/* check options */

while ((c = getopt(argc, argv, "rS")) !I=-1) {
switch (c)
case 'r’:
flags | = ZFS_| TER_RECURSE;
break;
case 'S :
recei ved = B_TRUE;
break;
case '?':
defaul t:
(void) fprintf(stderr, gettext("invalid option "%’ \n"),
opt opt) ;
usage(B_ FALSE)
}
}

argc -= optind;
argv += optind;

/* check nunber of argunments */
if (argc < 1)
(void) fprintf(stderr,
usage(B_FALSE) ;

gettext("m ssing property argunent\n"));

}

1f (argc < 2)
(void) fprintf(stderr,
usage(B_FALSE) ;

gettext("m ssing dataset argunent\n"));

}

propnanme = argv[O0];

argc--;

ar gv++;

if ((prop = zfs_nanme_to_prop(propnanme)) != ZPROP_INVAL) {

i f (zfs_prop_readonl y(prop))
(void) fprintf(stderr, gettext(
"Us property is read-only\n"),
propnane) ;
return (1);

}
if (!zfs_prop_inheritabl e(prop) & !received)
(voi d) fpri ntf(stderr gettext ("' %’
"be |nher| ted\n"), propnarre);
if (prop == ZFS_PROP._|
prop == ZFS_PROP_ RESERVATI ON ||
prop == ZFS_PROP_REFQUOTA | |
prop == ZFS_PROP_REFRESERVATI ON)
(voi d) fprlntf(stderr gettext("use 'zfs set
"9 =none’ to clear\n"), propnane) ;

property cannot

return (1);

}
if (received && (prop == ZFS PROP_VOLSI ZE ||

28

new usr/src/cmd/ zf s/ zfs_main. c

1842 prop == ZFS_PROP_VERSI ON))

1843 (voi d) fprintf(stderr, gettext("' %’ property cannot
1844 "be reverted to a received value\n"), propnane);
1845 return (1);

1846 }

1847 } else if (!zfs_prop_user(propnane)) {

1848 (void) fprintf(stderr, gettext("invalid property "%’ \n"),
1849 propnane) ;

1850 usage(B_FALSE);

1851 }

1853 cb. cb_propnane = propnang;

1854 cb.cb_received = received,;

1856 if (flags & ZFS | TER RECURSE) {

1857 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
1858 NULL, NULL, O, inherit_recurse_ch, &cb);

1859 } else {

1860 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
1861 NULL, NULL, O, inherit_ch, &cb);

1862 }

1864 return (ret);

1865 }

1867 typedef struct upgrade_cbdata {

1868 ui nt 64_t cb_nunupgr aded;

1869 ui nt 64_t cb_nunsanegr aded;

1870 uint64_t cb_nunfail ed;

1871 uint64_t cb_version;

1872 bool ean_t cbh_newer;

1873 bool ean_t cb_f oundone;

1874 char cb_| astfs[ZFS_MAXNAMELEN] ;

1875 } upgrade_cbdata_t;

1877 static int

1878 sane_pool (zfs_handl e_t *zhp, const char *nane)

1879 {

1880 int lenl = strcspn(nanme, "/ @);

1881 const char *zhnane = zfs get nama(zhp)

1882 int len2 = strcspn(zhnane, "7@);

1884 if (lenl !'= 1en2)

1885 return (B_FALSE);

1886 return (strncnp(nane, zhnama lenl) == 0);

1887 }

1889 static int

1890 ?pgr ade_l i st_cal | back(zfs_handl e_t *zhp, void *data)

1891

1892 upgr ade_cbhdata_t *cb = data;

1893 int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSI ON);

1895 /* list if it's old/ new */

1896 if ((!cb->cb_newer && version < ZPL_VERSION) ||

1897 (cb->cb_newer && version > ZPL_VERSION)) {

1898 char *str;

1899 if (cb->cb_newer) {

1900 str = gettext("The following filesystens are "

1901 "formatted using a newer software version and\n"
1902 "cannot be accessed on the current system\n\n");
1903 } else {

1904 str = gettext("The following filesystens are "

1905 "out of date, and can be upgraded. After being\n"
1906 "upgraded, these filesystens (and any 'zfs send "
1907 "streans generated fromn"

new usr/src/cmd/ zf s/ zfs_main.c

1908 "subsequent snapshots) will no | onger be "
1909 "accessi bl e by ol der software versions.\n\n");
1910 }

1912 if (!cb->cb_foundone) {

1913 (void) puts(str);

1914 (void) pri ntf(gettext(VER FI LESYSTEM n))
1915 (void) prlntf(gettext(TP));
1916 cb->cb_f oundone = B_TRUE;

1917 }

1919 (void) printf("%u %\ n", version, zfs_get_name(zhp));
1920 }

1922 return (0);

1923 }

1925 static int

1926 upgrade_set_cal | back(zfs_handl e_t *zhp, void *data)

1927 {

1928 upgr ade_cbdata_t *cb = data;

1929 int version = zfs _prop_get _int(zhp, ZFS_PROP_VERS| ON);

1930 int needed_spa_version;

1931 int spa_version;

1933 if (zfs_spa_version(zhp, &spa_version) < 0)

1934 return (-1);

1936 needed_spa_version = zfs_spa_versi on_map(cb->cbh_version);

1938 if (needed_spa_version < 0)

1939 return (-1);

1941 if (spa_version < needed_spa_version) {

1942 /* can’'t upgrade */

1943 (void) printf(gettext("%: can not be "

1944 "upgraded; the pool version needs to first "

1945 "be upgraded\nto version %\n\n"),

1946 zfs_get _name(zhp), needed_spa_version);

1947 ch->cb_nunf ai | ed++;

1948 return (0);

1949 }

1951 /* upgrade */

1952 if (version < cb->cb_version) {

1953 char verstr[16];

1954 (voi d) snpri ntf(ver str, sizeof (verstr),

1955 "% | u", cb->cb_version);

1956 if (cb- >;:b _lastfs[0] && I'same _pool (zhp, cb->cb_lastfs)) {
1957

1958 * |f they did "zfs upgrade -a", then we could
1959 * be doing ioctls to different pools. W need
1960 * to log this history once to each pool, and bypass
1961 * the normal history |ogging that happens in main().
1962 */

1963 (void) zpool _l og_history(g_zfs, history_str);
1964 I og_hi story = B_FALSE;

1965 }

1966 if (zfs_prop_set(zhp, "version", verstr) == 0)

1967 cb->cb_nunupgr aded++;

1968 el se

1969 cb->cb_nunf ai | ed++;

1970 (void) strcpy(cb->cb_|lastfs, zfs_get_name(zhp));

1971 } else if (version > ch->cbh_version) {

1972 /* can’t downgrade */

1973 (void) printf(gettext("%: can not be downgraded; "

new usr/src/cnd/ zf s/ zfs_main. c 31

1974
1975
1976
1977
1978
1979
1980
1981

1983
1984
1985
1986
1987
1988
1989

/*

* zfs
* zfs
* zfs

static

zfs_do_

1990 {

1991
1992
1993
1994
1995
1996

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

2026
2027

2029
2030
2031
2032
2033
2034
2035
2036
2037

2039

"it is already at version %\n"),
zfs_get _nanme(zhp), version);
cb->cb_nunf ai | ed++;
} else {
cb->cb_nunsanegr aded++;

}
return (0);

upgr ade

upgrade -v

upgrade [-r] [-V <version>] <-a | filesystenr
int

upgrade(int argc, char **argv)

bool ean_t all = B_FALSE;

bool ean_t showversi ons = B_FALSE;

int ret =

upgrade cbdata t cb={01};

char c;

int flags = ZFS | TER ARGS CAN BE PATHS;

/* check options */
while ((c = getopt(argc,
switch (c) {
case 'r’:
fl ags | = ZFS_I TER_RECURSE;
br eak
case 'v':
shower si ons = B_TRUE;
br eak;
case 'V :
if (zfs_prop_string_to_index(ZFS_PROP_VERSI ON,
optarg, &cb.cb_version) != 0)
(void) fprintf(stderr,
gettext("invalid version %\n"),
usage(B_FALSE) ;

argv, "rvV:a")) !'=-1) {

optarg);

}
br eak;
a':
all = B_TRUE;
break;
case ' ?:
defaul t:
(void) fprintf(stderr,
optopt);
usage(B_FALSE) ;

case

gettext("invalid option '%’'\n"),

}

argc -= optind;
argv += optind;

if ((tall & !'argc) && ((flags & ZFS_| TER RECURSE) |
usage(B_FALSE) ;
if (showersions && (fl ags & ZFS_I TER RECURSE || all ||
ch. cb verS| on || argc))
B_FALSE) ;

ch. cb_version))

if ((all || argc) &&(shovwersmns))
usage(B_FALSE) ;
if (all && argc)

usage(B_FALSE) ;

if (showersions) {

new usr/src/cnd/ zf s/ zf s_main. c 32
2040 /* Show info on avail able versions. */

2041 (voi d) pri ntf(gettext(The following fil esystemversions are "
2042 "supported:\n\n"))

2043 (void) pri ntf(gettext("VER DESCRI PTION\n")) ;

2044 (voi d) [T 1 R e "
2045 Mo \n"

2046 (void) printf(gettext(" 1 Initial ZFS fil esystem version\n"));
2047 (void) printf(gettext(" 2 Enhanced directory entries\n"));
2048 (voi d) printf(gettext(" 3 Case insensitive and filesystem'
2049 ‘user identifier (FUD\N"));

2050 (voi d) pri ntf(gettext(" 4 userquota, groupquota "

2051 "properties\n")

2052 (void) pri ntf(gettext(" 5 Systemattributes\n"));

2053 (voi d) printf(gettext("\nFor nmore information on a particular "
2054 ‘version, including supported releases,\n"));

2055 (v0| d) prl ntf("see the ZFS Adninistration Guide.\n\ n");

2056

2057 }elself(argc|| all) {

2058 /* Upgrade fil esystens */

2059 if (cb.cb_version ==

2060 cb. cb_versi on = ZPL_VERSI ON,

2061 ret = zfs_for_each(ar gc argv, flags, ZFS_TYPE_FI LESYSTEM
2062 NULL, "NULL, 0, upgrade_set cal I back, &chb);

2063 (void) pri ntf(gettext("% lu filesystens upgraded\n"),

2064 cb. cb_nunupgr aded) ;

2065 if (cb.cb_nunmsanegraded) {

2066 (void) printf(gettext("%Ilu filesystens already at
2067 "this version\n"),

2068 cb. cb_nunsanegr aded) ;

2069 }

2070 1f (cb.cb_nunfailed != 0)

2071 ret = 1;

2072 } else {

2073 /* List old-version filesytems */

2074 bool ean_t found;

2075 (void) printf(gettext("This systemis currently running "

2076 "ZFS filesystemversion %lu.\n\n"), ZPL_VERSION);

2078 flags | = ZFS_| TER_RECURSE;

2079 ret = zfs_for_each(0, NULL, flags, ZFS TYPE_FI LESYSTEM

2080 NULL, NULL, 0, upgrade_list_callback, &ch);

2082 found = cb. cb_f oundone;

2083 ch. cb_f oundone = B_FALSE;

2084 cb. cb_newer = B_TRUE;

2086 ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FI LESYSTEM

2087 NULL, NULL, 0, upgrade_list_callback, &ch);

2089 if (!cb.cb_foundone && !found) {

2090 (void) printf(gettext("Al filesystems are "

2091 "formatted with the current version.\n"));

2092 }

2093 }

2095 return (ret);

2096 }

2098 /*

2099 * zfs userspace [-Hnp] [-o field[,...]] [-s field [-s field].

2100 * [-Sfield [-Sfield]...] [-t type[,...]] f|Iesystem| snapshot
2101 * zfs groupspace [-Hnp] [-o field[,...]] [-s field[s field]...]

2102 * -Sfield [-Sfield]...] [-t type[,...]] file system| snapshot
2103 *

2104 * -H Scripted node; elide headers and separate columms by tabs.
2105 * - Translate SID to POSI X | D.

new usr/src/cnd/ zf s/ zfs_main. c 33

2106 * -n Print numeric IDinstead of user/group nane.

2107 * -0 Control which fields to display.

2108 * -p Use exact (parseable) nuneric output.

2109 * -s Speci fy sort colums, descending order.

2110 * -S Speci fy sort colums, ascendi ng order.

2111 * -t Control which object types to display.

2112 *

2113 * Di spl ays space consuned by, and quotas on, each user in the specified
2114 * fil esystemor snapshot.

2115 */

2117 /* us_field_types, us_field_hdr and us_field_names should be kept in sync */
2118 enumus_field_types {

2119 USFI ELD_TYPE

2120 USFI ELD_NAME

2121 USFI ELD_USED,

2122 USFI ELD_QUOTA

2123 };

2124 static char *us_field hdr[] = { ° YPE "NAME', "USED', "QUOTA" };
2125 static char *us_field_nanes[] = { "type", "nane" sed" "quot a"
2126 #define USFI ELD_LAST (sizeof (us f| eld namas) / sizeof (char *))
2128 #define USTYPE_PSX_ GRP (1 << 0)

2129 #define USTYPE_PSX_ USR (1 << 1)

2130 #define USTYPE_SMB_GRP (1 << 2)

2131 #define USTYPE_SMB_USR (1 << 3)

2132 #define USTYPE_ALL™ \

2133 (USTYPE_PSX_GRP | USTYPE PSX USR | USTYPE_SMB GRP | USTYPE SMB USR)
2135 static int us_type_bits[] = {

2136 USTYPE_PSX_GRP

2137 USTYPE_PSX_USR,

2138 USTYPE_SMB_CRP,

2139 USTYPE_SMB_USR,

2140 USTYPE_ALL

2141 };

2142 static char *us type nanmes[] = { "posixgroup", "posxiuser", "smbgroup",
2143 "snbuser", "all" };

2145 typedef struct us_node {

2146 nvlist_t *usn_nvl ;

2147 uu_avl _node_t usn_avl node;

2148 uu_list_node_t usn_listnode;

2149 } us_node_t;

2151 typedef struct us_cbdata {

2152 nvlist_t **cb_nvl p;

2153 uu_avl _pool _t *cb_avl _pool ;

2154 uu_avl _t *cb_avl;

2155 bool ean_t cb_numarne;

2156 bool ean_t cb_ni cenum

2157 bool ean_t cb_si d2posi x;

2158 zf s_user quot a_prop_t cb_prop,

2159 zfs_sort_colum_t *cb_sortcol ;

2160 si ze_t cb_wi dt h[USFI ELD_LAST] ;

2161 } us_cbdata_t;

2163 static boolean_t us_popul ated = B_FALSE;

2165 typedef struct

2166 zfs_sort_colum_t *si_sortcol;

2167 bool ean_t si _numarne;

2168 } us_sort_info_t;

2170 static int

2171 us_field_index(char *field)

new usr/src/cnmd/ zf s/ zfs_main. c

2172 {
2173

2175
2176
2177
2178

2180
2181 }

int i;
(i = 0; i < USFIELD LAST; i++) {
if (strenp(field, us_field_nanmes[i]) == 0)
return (i);
}

return (-1);

2183 static int

2185

2186
2187
2188
2189
2190
2191
2192
2193
2194

2196
2197
2198
2199
2200
2201
2202
2203
2204
2205

2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237

2184 us_conpare(const void *larg,
{

const void *rarg, void *unused)

const us_node_t *I = larg;
const us_node_t *r =rarg;)
us_sort_info_t *si = (us_sort_info_t *)unused;

zfs_sort_colum_t *sortcol = si->si_sortcol;
bool ean_t nummame = si->si _numane;
nvlist_t *Invl =1->usn_nvl;
nvlist_t *rnvl = r->usn_nvl;
int rc = 0;
bool ean_t |vb, rvb;
for (; sortcol !'= NULL; sortcol = sortcol->sc_next) {
char *lvstr = "";
char *rvstr ="";
uint32_t 1v32 = 0;
uint32_t rv32 = 0;
uinté4_t Ived = 0O;
uint64_t rve4 = O;
zfs_prop_t prop = sortcol->sc_prop;

const char *propname = NULL;
bool ean_t reverse = sortcol ->sc_reverse;

switch (prop) {
case ZFS_PROP_TYPE:
propname = "type";
(void) nvlist_|ookup_uint32(lnvl,
(void) nvlist_lookup_uint32(rnvl,
if (rv32 1=1v32)
= (rv32 <1v32) ?21: -1;
break;
case ZFS_PROP_NAME:
propnanme = "nane";
i f (numane) {

(void) nvlist_|ookup_uint64(lnvl,
&l v64);
(void) nvl | st _| ookup_ui nt 64(rnvl,
&rve4
if (rve4 1= | v64)
= (rve4 <|ved4) ? 1 : -
} else {
(void) nvlist_lookup_string(lnvl,
&l vstr);
(void) nvlist_lookup_string(rnvl,
&rvstr);
) rc = strenp(lvstr, rvstr);
break;

case ZFS PROP_USED
case ZFS_PROP_QUOTA:
if (lus popul at ed)

eak
if (prop = ZFS PR(]3 > USED)
propnarre = "used";

pr opnane,
pr opnane,

pr opnane,

propnane,

1

propnane,

pr opnane,

&l v32);
&rv32);

34

new usr/src/cnd/ zf s/ zfs_main. c 35

2238 el se

2239 propnane = "quota";

2240 (void) nvlist_|ookup_uint64(lnvl, propnane, & v64);
2241 (void) nvlist_|ookup_uint64(rnvl, propnane, & v64);
2242 if (rve4 !'= 1v64)

2243 = (rved <|lv64) ? 1 : -1;

2244 br eak;

2245 }

2247 if (rc!=0) {

2248 if (rc <0)

2249 return (reverse ? 1 : -1)

2250 el se

2251 return (reverse ? -1 : 1);

2252 }

2253 }

2255 /*

2256 * If entries still seemto be the same, check if they are of the sane
2257 * type (snbentity is added only if we are doing SIDto POSIX ID
2258 * translation where we can have duplicate type/ name conbi nations).
2259 */

2260 if (nvlist_|lookup_bool ean_val ue(l nvl, "snbentity", & vb) == 0 &&
2261 nvlist_| ookup_bool ean_val ue(rnvl, "snbentity", &vb) == 0 &&
2262 Ivb I'= rvb)

2263 return (Ivb <rvb ? -1 : 1);

2265 return (0);

2266 }

2268 static inline const char *

2269 us_type2str(unsigned field_type)

2270 {

2271 switch (field_type) {

2272 case USTYPE_PSX USR:

2273 return ("POSI X User");

2274 case USTYPE_PSX_GRP:

2275 return ("POSI X G oup");

2276 case USTYPE_SNB_USR:

2277 return ("SMB User");

2278 case USTYPE_SMB_GRP:

2279 return ("SMB G oup");

2280 defaul t:

2281 return ("Undefined");

2282 }

2283 }

2285 static int

2286 userspace_cb(void *arg, const char *domain, uid_t rid, uint64_t space)
2287

2288 us_chdata_t *cb = (us_cbhdata_t *)arg;

2289 zf's_userquota_prop_t prop = ch->cb_prop;

2290 char *name = NULL;

2291 char *propnane;

2292 char sizebuf[32];

2293 us_node_t *node;

2294 uu_avl _pool _t *avl _pool = cb->cb_avl _pool;

2295 uu_avl _t *avl = cb->cb_avl;

2296 uu_avl |ndex _t oidx;

2297 nvlist_t *props;

2298 us_node_t *n;

2299 zfs_sort_colum_t *sortcol = cbh->cb_sortcol;

2300 unsi gned type

2301 const char *typestr;

2302 si ze_t nanel en;

2303 size_t typelen;

new usr/src/cmd/ zf s/ zfs_main.c

2304
2305
2306
2307

2309
2310
2311
2312
2313

2315
2316
2317
2318
2319
2320
2321

2323
2325

2327
2328
2329
2330
2331
2332
2333

2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346

2348
2349
2350
2351
2352
2353

2355
2356
2357
2358
2359
2360
2361

2363
2364
2365
2366
2367

2369

size_t

int typeidx,

us_sort

si zel en;

nanei dx, sizeidx;
_info_t sortinfo = { sortcol, cb->cb_numane };

bool ean_t snbentity = B_FALSE;

if (nvlist_alloc(&props,

nomen() ;

36

NV_UNI QUE_NAME, 0) != 0)

node = safe_mall oc(sizeof (us_node_t));
(node, &node->usn_avl node, avl _pool);

uu_avl

_node_init

node- >usn_nvl =

if (domain !=
/[* S

}

if (cb->cb_sid2posix ||
[* PCSI X or -1

props;

NULL && domai n[0]
S

1= \0) {

char sid[ZFS_MAXNAMELEN + 32];
uid_t id;

ui nt 64_t
int err;
di rector
smbenti t
(void) s

if (prop =

} else {

if (err =

if (prop =

cl asses;
y_error_t e;

y = B_TRUE;

nprintf(sid, sizeof (sid), "%-%", domain, rid);

= ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) {
type = USTYPE_SMB_GRP,
err = sid_to_id(sid, B FALSE, &d);

type = USTYPE_SMB_USR
err = sid_to_id(sid, BTRUE & d);

=0) {
r|d =id;

if (!chb- Sch_si d2posi x) {
e = directory name_fromsid(NULL, sid, &nane,
&cl asses) ;

if (e !=

NULL)
directory_error_free(e);

if (name == NULL)

nane = sid;

?orrain == NULL || domain[0] == '\0') {

ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) {
type = USTYPE_PSX_GRP;
if (!cb->cb_numane) {
struct group *g;

if ((g=

getgrgl d(rid)) !'= NULL)
= g->gr_nane;

type = USTYPE_PSX_ USR
if (!cb->cb_numane)
struct passwd *p;

if ((p=

get pwm d(rid)) !'= NULL)
p- >pw_nane;

new usr/src/cmd/ zf s/ zfs_main. c

2370
2371
2372
2373
2374
2375
2376

2378
2379
2380
2381
2382
2383
2384
2385

2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399

2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431

2433
2434

* Make sure that the type/name conbination is unique when doi ng
* SIDto POSIX ID translation (hence changing the type from SMB to
* POSI X)
*/
if (cb->cb_sid2posix &&
nvl i st_add_bool ean_val ue(props,
nomen() ;

"smbentity", snbentity) != 0)

/* Cal cul ate/update width of TYPE field */
typestr = us_type2str(type);
typelen = strl en(gettext(typestr)
typeidx = us_field_index("type");
if (typelen > cb->ch V\ndth[typel dx])

ch->cb_wi dt h[typei dx] = typel en;
if (nvlist_add_uint32(props, "type", type) != 0)

nonmen();
/* Cal cul ate/update wi dth of NAME field */
if ((cb->cb_numane && cb->cb_sid2posix) || name == NULL) {
if (nvlist_add_uint64(props, "nane", rid) != 0)
none ;
nanmel en = snprintf(NULL, O, "%", rid);
} else {
if (nvlist_add_string(props, "nane", nane) != 0)
none ;

nanel en = strlen(nane);

nanei dx = us_fiel d_i ndex("nane");
if (namal en > ch->cb_w dt h[nanei dx])
cb->cb_wi dt h[namei dx] = nanel en;

*

* Check if this type/name conmbination is in the list and update it;
* otherw se add new node to the |ist.

*
/
if ((n =uu_avl_find(avl, node, &sortinfo, & dx)) == NULL) {
uu_avl _insert(avl, node, idx);
} else {
nvlist_free(props);
free(node);
node = n;
props = node->usn_nvl ;
}

/* Cal cul at e/ update wi dth of USED QUOTA fields */
if (cb->cb_nicenum

zf s_ni cenun(space, sizebuf, sizeof (sizebuf));
el se

(void) snprintf(sizebuf, sizeof (sizebuf), "%Ilu", space);
sizel en = strlen(sizebuf);
if (prop == ZFS_PROP_USERUSED || prop == ZFS_PROP_GROUPUSED) {

propnanme = "used";

if (!'nvlist_exists(props, "quota"))

(void) nvlist_add_uint64(props, "quota", 0);
} else {
p opnama = "quota";
i1f (!'nvlist emsts(props "used"))
(v0| d) nvlist_add_uint64(props, "used", 0);

r
f

si zei dx = us_fiel d_i ndex(propnane);
if (sizelen > cb->cb_width[sizeidx])
cb->cb_wi dt h[si zei dx] = si zel en;

if (nvlist_add_uint64(props, propnane, space) != 0)
nomen() ;

new usr/src/cmd/ zf s/ zfs_main. c

2436 return (0);

2437 }

2439 static void

2440 print_us_node(bool ean_t scripted, boolean_t parsable, int *fields, int
2441 size_t *wi dth, us_node_t *node)

2442 {

2443 nvlist_t *nvl = node->usn_nvl;

2444 char val str[ZFS_MAXNAMVELEN] ;

2445 bool ean_t first = B_TRUE;

2446 int cfield = 0;

2447 int field;

2448 ui nt32_t ustype;

2450 /* Check type */

2451 (void) nvlist_lookup_uint32(nvl, "type", &ustype);

2452 if (! (ustype & types))

2453 turn;

2455 while ((field = fiel ds[cf| el d]) ! = USFI ELD LAST) {

2456 nvpair_t *nvp = NULL

2457 data_type_t type;

2458 uint32_t val 32;

2459 uint64_t val 64;

2460 char *strval = NULL;

2462 while ((nvp = nvlist_next_nvpair(nvl, nvp)) !'= NULL) {
2463 if (strcnp(nvpair_nane(nvp),

2464 us_field_names[field]) == 0)

2465 br eak;

2466 }

2468 type = nvpair_type(nvp);

2469 swtch (type)

2470 case DATA TYPE_UI NT32:

2471 (v0| d) nvpai r _val ue_ui nt 32(nvp, &val 32);
2472 bre

2473 case DATA_ TYPE Ul NT64:

2474 (voi d) nvpair_val ue_ui nt 64(nvp, &val 64);
2475 break;

2476 case DATA_TYPE_STRI NG

2477 (voi d) nvpair_val ue_string(nvp, &strval);
2478 break;

2479 defaul t:

2480 (void) fprintf(stderr, "invalid data type\n");
2481 }

2483 switch (field) {

2484 case USFI ELD _TYPE

2485 strval = (char *)us_type2str(val 32);

2486 br eak;

2487 case USFI ELD_NAME:

2488 if (Type == DATA TYPE_UI NT64) {

2489 (voi d) sprl ntf(valstr, "%Ilu", val64);
2490 strval = valstr;

2491

2492 break;

2493 case USFI ELD_USED:

2494 case USFI ELD_QUOTA:

2495 if (type == DATA TYPE Ul NT64) {

2496 if (parsable) {

2497 (void) sprintf(valstr, "%Iu",
2498 } else {

2499 zf s_ni cenum(val 64, valstr,
2500 si zeof (val st r))

2501 }

types,

val 64);

new usr/src/cmd/ zf s/ zfs_main. c

2502
2503
2504
2505
2506
2507
2508
2509

2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522

2524
2525
2526

2528
2529 }

if (field == USFI ELD_QUCTA &&
strcnp(val str, "0") == 0)
strval = "none";
el se
strval = valstr;
}
br eak;
}
if (Mfirst) {

if (scripted)
(void) printf("\t")

(void) printf(" ");

el se

}

if (scripted)
void) printf("%", strval);

else if (field == USFIELD_TYPE || field == USFI ELD_NAME)
(void) printf("%* width[field], strval);

el se
(void) printf("%s", width[field], strval);

first = B_FALSE;
cfiel d++;

}
(void) printf("\n");

2531 static void
2532 print_us(bool ean_t scripted, boolean_t parsable, int *fields, int types,

2533
2534 {
2535
2536
2537
2538

2540
2541

2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556

2558
2559
2560
2561
2562
2563 }

size_t *width, boolean_t rmode, uu_avl _t *avl)

us_node_t *node;
const char *col;
int cfield = 0;
int field;

if (!scripted) {
bool ean_t first = B_TRUE;

while ((field = f'elds[cfield]) !'= USFI ELD LAST) ({
col = gett ext(us field hdr[fleld]);
if (field == USFIELD TYPE || fiel d == USFI ELD_NAME) {
(void) printf(first ? "%* " %S,
wdth[field], col);
} else {
(void) printf(first 2 "9%s" : " Oo§s",
width[field], col);

}
first = B_FALSE;
cfiel d++;

} %void) printf("\n");

for (node = uu_avl _first(avl); node; node = uu_avl _next(avl, node)) {

print_us_node(scripted, parsable, fields, types, w dth, node);

i f (rmode)
nvlist_free(node->usn_nvl);

2565 static int
2566 zfs_do_userspace(int argc, char **argv)

2567 {

new usr/src/cnmd/ zf s/ zfs_main. c

2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594

2596
2597

2599
2600
2601

2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633

zfs_handl e_t *zhp;
zfs_userquota_prop_t p;
uu_avl _pool _t *avl _pool ;
uu_avl _t *avl _tree;
uu_avl _wal k_t *wal k;
char *delim

char deffie [1] = "type, nange, used, quota";
char *ofiel ;
char *tfiel

int cfield
int fields]|
int i;

bool ean_t scripted = B_|
bool ean_t prtnum = B_FALSE;

bool ean_t parsable = B_FALSE,

bool ean_t si d2posi x = B_FALSE;

int ret = 0;

int c;

zfs_sort_colum_t *sortcol = NULL;

int types = USTYPE_PSX USR | USTYPE_SMB_USR
us_chdata_t cb;

us_node_t *node;

us_node_t *rmmode;

uu_l i st_pool _t *Ilistpool;

uu_list_t *list;

uu_avl _index_t idx = 0;

uu_list_index_t idx2 = 0;

if (argc < 2)
usage(B_FALSE);

if (strcrrp(argv[o]
* Toggl e defaul t group typ */
types = USTYPE_PSX_GRP | USTYPE_SMB_GCRP;

"groupspace") ==

n"), optarg);

whi | e ((c getopt(argc argv, "nHpo:s:S:t:i")) I=-1) {
witch (c) {
case n':
prtnum = B_TRUE;
break;
case 'H:
scripted = B_TRUE;
break;
case 'p':
parsabl e = B_TRUE;
br eak;
case '0':
ofield = optarg;
br eak;
case 's’:
case 'S':
if (zfs_add_sort_col urm(&sortcol optarg,
c =='s’ ? B.FALSE: B TRUE) != 0) {
(v0|d) fprlntf(stderr
gettext("invalid field ' 9%\
usage(B_FALSE) ;
br eak;
case 't’:
tfield = optarg;
break;
case 'i’:
si d2posi x = B_TRUE;
break;
case ':':

(void) fprintf(stderr, gettext("m ssing

argunent for

new usr/src/cmd/ zf s/ zfs_main. c

2634
2635
2636
2637
2638
2639
2640
2641
2642

2644
2645

2647
2648
2649
2650
2651
2652
2653
2654

2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670

2672
2673
2674

2676
2677

2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697

2699

"' o’ option\n"), optopt);
usage(B_FALSE);
br eak;
case ' ?:

(void) fprintf(stderr, gettext("invalid option "%’ \n"),

optopt);
usage(B_FALSE) ;

}

argc -= optind;
argv += optind;

if (argc < 1) {
(void) fprintf(stderr, gettext("m ssing dataset nane\n"));
usage(B_FALSE) ;

}

i1f (argc > 1) {
(void) fprintf(stderr, gettext("too nmany argunents\n"));
usage(B_FALSE) ;

}

/* Use default output fields if not specified using -o */
if (ofield == NULL)
ofield = deffields;
do {
if ((dellm—strchr(ofleld ',7)) !'= NULL)
*delim="\0
if ((f|e|ds[cf|e|d++] = us_field_index(ofield)) == -1) {
(void) fprintf(stderr, gettext("invalid type ' %’
"for -o option\n"), ofield);
return (-1);

}
if (delim!= NULL)
ofield = delim+ 1;
} while (delim!= NULL);
fields[cfield] = USFIELD LAST.

/* Override output types (-t option) */
if (tfield !'= NULL) {

types = 0;
do {
bool ean_t found = B_FALSE;
if ((delim= strchr(tfleld ",7)) = NULL)
*delim= "\0’
for (| = 0; i < sizeof (us_type_bits) / sizeof (int);
++) {
if (strenp(tfield, us_type_nanes[i]) == 0) {

found = B_TRUE;
types | = us_type_bits[i];
br eak;

}
}
if (!found)

"o’ for -t option\n"), tfield);
return (-1);

i}f (delim!= NULL)

tfield = delim+ 1;
} while (delim!= NULL);

if ((zhp = zfs_open(g_zfs, argv[0], ZFS TYPE_DATASET)) == NULL)

{
(void) fprintf(stderr, gettext("invalid type "

new usr/src/cmd/ zf s/ zfs_main.c

2700

2702
2703
2704
2705
2706

2708
2709
2710

2712
2713
2714
2715
2716
2717

2719
2720

2722
2723
2724
2725
2726
2727
2728
2729
2730
2731

2733
2734
2735

2737

2739
2740
2741
2742

2744
2745
2746
2747
2748
2749
2750

2752
2753
2754

2756
2757
2758

2760
2761

2763
2764
2765

return (1);
if ((avl_pool = uu_avl _pool _create("us_avl_pool", sizeof (us_ node t),
offset of (us_node_t, usn_avl node), us_conpare, UU DEFAULT)) == NULL)
nomen() ;
if ((avl_tree = uu_avl _create(avl _pool, NULL, UU DEFAULT)) == NULL)
nomend() ;

/* Always add default sorting colums */
(void) zfs_add_sort_colum(&sortcol, "type", B_FALSE);
(void) zfs_add_sort_col um(&sortcol, "name", B_FALSE);

cb.cb_sortcol = sortcol;

cb. cb_numane = prtnum

cb. cb_ni cenum = ! par sabl e;
cb. cb_avl _pool = avl _pool;
cb.cb_avl = avl _tree;

cb. cb_si d2posi x = si d2posi Xx;

for (i = 0; i < USFIELD_LAST; i++)
cb.cb_width[i] = strlen(gettext(us_field_hdr[i]));
for (p = 0; p < ZFS_NUM USERQUOTA PROPS; p++) {
if (((p == ZFS_PROP_USERUSED || p == ZFS_PROP_USERQUOTA) &&
I(types & (USTYPE _PSX_USR | USTYPE SVB USR))) ||
((p == ZFS_PROP_GROUPUSED || p == ZFS PROP_GROUPQUOTA) &&
I (types & (USTYPE PSX GRP | USTYPE_SMB GRP))))
conti nue;
cb.cb_prop = p;
if ((ret = zfs_userspace(zhp, p, userspace_ch, &cb)) != 0)
return (ret);
}
/* Sort the list */
if ((node = uu_avl _first(avl_tree)) == NULL)
return (0);

us_popul ated = B_TRUE;

listpool = uu_list_pool_create("tnplist", sizeof (us_node_t),
offset of (us_node_t, usn_| i st node), NULL UU_DEFAULT) ;

list = uu_list_creat e(I i stpool, NULL, W DEFAULT)

uu_l i st_node_init(node, &node->usn_listnode, |ist pool);

while (node != NULL) {
rmode = node;
node = uu_avl _next(avl _tree, node);
uu_avl _renove(avl _tree, r mode e);
if (uu_list_find(list, rmode, NULL & dx2) == NULL)
uu_list_insert(list, rr'mode idx2);

}

for (node = uu_list_first(list); node != NULL;
node = uu_list_next(list, node)) {
us_sort_info_t sortinfo = { sortcol, ch.cb_numane };

if (uu_avl _find(avl _tree, node, &sortinfo, & dx) == NULL)
uu_avl _insert(avl _tree, node, idx);

}

uu_list_destroy(list);
uu_l i st _pool destroy(llst pool) ;

/* Print and free node nvlist menmory */
print_us(scripted, parsable, fields, types, cb.cb_wi dth, B TRUE,
cb.cb_avl);

new usr/src/cnd/ zf s/ zfs_main. c 43

2767 zfs_free_sort_col ums(sortcol);

2769 /* Clean up the AVL tree */

2770 if ((walk = uu_avl _wal k_start(cbh.cb_avl, UU WALK ROBUST)) == NULL)
2771 nomen() ;

2773 while ((node = uu_avl_wal k_next (wal k)) 1= NULL) {

2774 uu_avl _renove(ch. cb_avl, node);

2775 free(node);

2776 1

2778 uu_avl _wal k_end(wal k) ;

2779 uu_avl _destroy(avl _tree);

2780 uu_avl _pool _destroy(avl _pool);

2782 return (ret);

2783 }

2785 [*

2786 * list [-r][-d max] [-H [-o0 property[property]...] [-t type[, type]]
2787 * [-s property [-s property]. [-S property [-S property]

2788 * <dat aset> ...

2789 *

2790 * -r Recurse over all children

2791 * -d Linmit recursion by depth.

2792 * -H Scripted node; elide headers and separate columms by tabs
2793 * -0 Control which fields to display.

2794 * -t Control which object types to display.

2795 * -s Speci fy sort colums, descending order.

2796 * -S Speci fy sort colums, ascending order.

2797 *

2798 * When given no argunents, lists all filesystens in the system

2799 * Q herwi se, list the specified datasets, optionally recursing down themif
2800 * '-r’ is specified.

2801 */

2802 typedef struct list_chdata {

2803 bool ean_t cb_first;

2804 bool ean_t cb_scripted;

2805 zprop_list_t *cb_proplist;

2806 } list_cbdata_t;

2808 /*

2809 * Gven a list of colums to display, output appropriate headers for each one.
2810 */

2811 static void

2812 print_header(zprop_list_t *pl)

2813 {

2814 char header buf [ZFS_MAXPROPLEN ;

2815 const char *header;

2816 int i;

2817 bool ean_t first = B _TRUE;

2818 bool ean_t right_justify;

2820 for (; pl !'= NULL; pl = pl->pl_next) {

2821 if (Mfirst) {

2822 (void) printf(" ");

2823 } else {

2824 first = B_FALSE;

2825 }

2827 right_justify = B_FALSE;

2828 if (pl->pl_prop !'= ZPROP_I NVAL) {

2829 header = zfs prop_col umm_nane(pl - >pl _prop);

2830 right justify = zfs_prop_align_right(pl - >p| _prop);
2831 } else {

new usr/src/cnd/ zf s/ zfs_main. c

2832 (i = 0; pl->pl _user_prop[i] '="'\0"; i++
2833 headerbuf[i] = toupper(pl->pl_user_prop[i]);
2834 headerbuf[i] = '\0";

2835 header = header buf;

2836 }

2838 if (pl->pl_next == NULL && !right_justify)

2839 (void) printf("%", header);

2840 else if (rrght_justrfy)

2841 (void) printf("%s", pl->pl_w dth, header);
2842 el se

2843 (void) printf("%*s", pl->pl_w dth, header);
2844 }

2846 (void) printf("\n");

2847 }

2849 [*

2850 * Gven a dataset and a list of fields, print out all the properties according
2851 * to the described |ayout.

2852 */

2853 static void

2854 print_dataset(zfs_handl e_t *zhp, zprop_list_t *pl, boolean_t scripted)
2855 {

2856 bool ean_t first = B_TRUE;

2857 char property[ZFS_MAXPROPLEN] ;

2858 nvlist_t *userprops = zfs_get_user_props(zhp);

2859 nvlist_t *propval;

2860 char *propstr;

2861 bool ean_t right_justify;

2862 int wdth;

2864 for (; pl !'= NULL; pl = pl->pl_next) {

2865 if (Mfirst) {

2866 if (scripted)

2867 (void) printf("\t");

2868 el se

2869 (void) printf(" ");

2870 } else {

2871 first = B_FALSE;

2872 }

2874 if (pl->pl _prop !'= ZPROP_I NVAL) {

2875 i1f (zfs_prop_ get (zhp, pl->pl_prop, property,
2876 si zeof (pr operty) NULL, NULL, 0, B_FALSE) != 0)
2877 propstr = "-'

2878 el se

2879 propstr = property;

2881 right_justify = zfs_prop_align_right(pl->pl_prop);
2882 } else if (zfs_prop_userquota(pl->pl_user_prop)) {

2883 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
2884 property, sizeof (property), B _FALSE) != 0)
2885 propstr = "-";

2886 el se

2887 propstr = property;

2888 right_justify = B _TRUE;

2889 } else if (zfs_prop_witten(pl->pl_user_prop)) {

2890 if (zfs_prop_get_witten(zhp, pl->pl_user_prop,
2891 property, si zeof (pr operty), B_FALSE) != 0)
2892 propstr = "-";

2893 el se

2894 propstr = property;

2895 right_justify = B_TRUE;

2896 } else {

2897 if (nvlist_|lookup_nvlist(userprops,

new usr/src/cmd/ zf s/ zfs_main. c

2898
2899
2900
2901
2902
2903
2904

2906

2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919

2921
2922

2924
2925
2926
2927
2928

}
/*

pl - >pl _user _pr op, &propval) 1= 0)
propstr =
el se
verify(nvlist_| ookup_stri ng(propval
ZPROP_VALUE, &propstr) == 0);
right_justify = B_FALSE,

}
wi dth = pl->pl _wi dth;
/*
* |f this is being called in scripted node, or if this is the
* last colum and it is left-justified, don't include a width
* format specifier.
*
/
if (scripted || (pl- next == NULL && !'right_justify))

(voi d) prlntf("f’/s"
else if (right_justify)
(void) printf("%s",

propstr);

wi dth, propstr);
el se
(void) printf("%*s", width, propstr);

}
(void) printf("\n");

* Generic callback function to list a dataset or snapshot.
*/

static i
l'ist_cal

2929 {

2930

2932
2933
2934
2935
2936

2938

2940
2941

2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958

2960
2961
2962
2963

}

static i
zfs_do_|

{

nt
| back(zfs_handl e_t *zhp, void *data)

list_chdata_t *cbp = data;

if (cbp->cb_first)
if (!cbp->cb_scripted)
print header(cbp >cb_proplist);
cbp->cb_first B_FAL

print_dat aset (zhp, cbp->cb_proplist, cbp->cb_scripted);

return (0);

nt
ist(int argc, char **argv)

int c;
bool ean_t scripted = B_FALSE;
statlc char default_fields[] =

"nane, used, avai I abl e, r ef er enced, nount poi nt";
int types = ZFS TYPE DATASET;
bool ean_t types_specified =
char *fields = NULL;
list_chdata_t cb = { 0 };
char *val ue;
int Iinit =0
int ret =0;
zfs_sort col um_t *sortcol = NULL;

B_FALSE;

int flags = ZFS | TER PROP_LI STSNAPS | ZFS | TER ARGS CAN BE_PATHS;

/* check options */

while ((c = getopt(argc argv,
switch (c) {
case

“rdioirtiHs:SI")) = -1) {

(0]

new usr/src/cnd/ zf s/ zfs_main. c

2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997

2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012

3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029

case

'd

case

case

case

case

case

case

case

"y

g

fields = optarg;
break;
limt = parse_depth(optarg, &flags);
br eak;
flags | = ZFS | TER RECURSE;
br eak;
scripted = B_TRUE;
break;
if (zfs_add_sort_col um(&sortcol, optarg,
B_FALSE) != 0) {
(void) fprintf(stderr,
gettext("invalid property '%’'\n"), optarg);
usage(B_FALSE);
break;
if (zfs_add_sort_colum(&sortcol, optarg,
B TRUE) '= 0
(void) fprintf(stderr,
gettext("invalid property '%’\n"), optarg);

usage(B_FALSE);
break;
iypes = 0;

types_specified = B_TRUE;
flags & ~ZFS_| TER PROP_LI STSNAPS;

while (*optarg !'= "\0") {
static char *type_subopts[] = { "filesystent,
"vol ume", "snapshot", "all", NULL };
switch (getsubopt (&optarg, type_subopts,
&val ue)) {
case O:
types | = ZFS TYPE_FI LESYSTEM
br eak;
case 1:
types | = ZFS_TYPE_VOLUVE;
br eak;
case 2:
types | = ZFS_TYPE_SNAPSHOT;
br eak;
case 3:
types = ZFS TYPE DATASET;
br eak;
defaul t:

(void) fprintf(stderr,
gettext("invalid type "%’\n"),
val ue) ;

usage(B_FALSE);

}

br eak;

(voi d) fpri ntf(stderr
%’ option\n"),

usage(B_FALSE) ;

br eak;

gettext("m ssing argunent for "
optopt);

Vo

tvoi d) fprintf(stderr,
optopt);

gettext("invalid option '%’'\n"),

46

new usr/src/cmd/ zf s/ zfs_main. c

3030 usage(B_FALSE);

3031 }

3032 }

3034 argc -= optind;

3035 argv += optind;

3037 if (fields == NULL)

3038 fields = defaul t_fields;

3040 I*

3041 * |f "-o0 space" and no types were specified, don’t display snapshots.
3042 *

3043 if (strcnp(fields, "space") == 0 && types_specified == B_FALSE)
3044 types & ~ZFS TYPE_ SNAPSHOT

3046 *

3047 * |f the user specifies '-o all’, the zprop_get_list() doesn’t
3048 * nornally include the nanme of the dataset. For 'zfs list’, we always
3049 * want this property to be first.

3050 */

3051 if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS TYPE_DATASET)
3052 =0

3053 usage(B_FALSE) ;

3055 ch.cb_scripted = scripted;

3056 cb.cb_first = B_TRUE;

3058 ret = zfs_for_each(argc, argv, flags, types, sortcol, &cbh.cb_proplist,
3059 limt, list_callback, &cb);

3061 zprop_free_list(cb.cb_proplist);

3062 zfs_free_sort_col ums(sortcol);

3064 if (ret == 0 & ch.cb_first && !cb.cb_scripted)

3065 (void) printf(gettext("no datasets available\n"));

3067 return (ret);

3068 }

3070 /*

3071 * zfs renane [-f] <fs | snap | vol> <fs | snap | vol >

3072 * zfs renane [-f] -p <fs | vol> <fs | vol >

3073 * zfs renane -r <snap> <snhap>

3074 *

3075 * Renanes the given dataset to another of the same type.

3076 *

3077 * The '-p’ flag creates all the non-existing ancestors of the target first.
3078 *

3079 /* ARGSUSED */

3080 static int

3081 zfs_do_renane(int argc, char **argv)

3082 {

3083 zfs_handle_t *zhp

3084 int c;

3085 int ret = 0;

3086 bool ean_t recurse = B_FALSE;

3087 bool ean_t parents = B_FALSE;

3088 bool ean_t force_unnmount = B_FALSE;

3090 /* check options */

3091 while ((c = getopt(argc, argv, "prf")) !=-1) {

3092 switch (c) {

3093 case 'p’:

3094 parents = B_TRUE

3095 br eak;

new usr/src/cmd/ zf s/ zfs_main.c

3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108

3110
3111

3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127

3129
3130
8131
3132
3133

3135
3136
3137
3138
3139

3141
3142
3143

3145
3146
3147
3148
3149
3150

3152

3154
3155
3156 }

3158 /
3159
3160
3161

case 'r’:
recurse = B_TRUE;
br eak;

case 'f’:
force_unmount = B_TRUE;
break;

case '?:

defaul t:
(void) fprintf(stderr,

optopt);

usage(B_FALSE) ;

}

argc -= optind;
argv += optind;

/* check nunber of argunments */
if (argc < 1) {
(void) fprintf(stderr,
"argument\n"));
usage(B_FALSE) ;

}

if (argc < 2) {

(void) fprintf(st
"argument\n")

usage(B_FALSE) ;

derr,
)

}

if (argc > 2) {
(void) fprintf(stderr,
usage(B_FALSE) ;

if (recurse & parents) {
(void) fprintf(stderr,
"excl usive\n"));
usage(B_FALSE) ;

if (recurse & strchr(argv[0], '@) ==

(void) fprintf(stderr,

"rename nust be a snapshot\n"));
usage(B_FALSE) ;

if ((zhp = zfs_open(g_zfs, argv[O0],
ZFS TYPE_VOLUME : ZFS TYPE DATASET)) == NULL)
return (1);

/* If we were asked and the name | ooks good,
if (parents && zfs_nane_valid(argv[1],
zfs_create_ancestors(g_zfs, argv[1]) !=

zfs_cl ose(zhp);
return (1);

}

ret = (zfs_renanme(zhp, argv[1l], recurse, force_unnount)

zfs_cl ose(zhp);

return (ret);

*

* zfs pronote <fs>
*

* Pronptes the given clone fs to be the parent

gettext("m ssing source dataset

gettext("m ssing target dataset

) {
gettext("source dataset for

gettext("too many argunents\n"));

recursive

parents ? ZFS TYPE_FI LESYSTEM |

try to create ancestors.
zfs_get _type(zhp)) &&
0 {

1= 0);

48

gettext("invalid option '%’'\n"),

gettext("-p and -r options are nutually "

*/

new usr/src/cmd/ zf s/ zfs_main. c

3162
3163

*/

/*

ARGSUSED */

3164 static int

3165 zfs_do_pronpte(int argc,

3166
3167
3168

3170
3171
3172
3173
3174
3175

3177
3178
3179
3180
3181
3182
3183
3184
3185
3186

3188
3189
3190

3192

3195
3196
3197

3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218

3220
3221
3222
3223
3224
3225

{

* Ok Ok ok % Ok Sk Ok k Ok 3k

Gven a filesystem rollback to a specific snapshot,
since then and making it the active dataset.
the command will conplain unless the '-r’

char **argv)

zfs_handl e_t *zhp;
int ret = 0;

/* check options */
if (argc > 1 & argv[1][0]) {
(void) fprintf(stderr, gettext("invalid option %’ \n"),
argv[1][1]);
usage(B_FALSE) ;

}

/* check nunber of argunents */
if (argc < 2)
(void) fprintf(stderr,
" argument\n"));
usage(B_FALSE) ;

gettext("m ssing clone fil esystent

}

1f (argc > 2) {
(void) fprintf(stderr,
usage(B_FALSE) ;

gettext("too many argunents\n"));

49

}
zhp = zfs open(g zfs, argv[1l], ZFS_TYPE_FILESYSTEM | ZFS TYPE_VOLUME);
if (zhp == NULL
r et urn (1);
ret = (zfs_promote(zhp) != 0);

zfs_cl ose(zhp);
return (ret);

zfs roll back [-rRf] <snapshot>

-r Del ete any intervening snapshots before doing roll back
-R Del ete any snapshots and their clones
-f ignored for backwards conpatability

If nmore recent snapshots exi
flag is given.

typedef struct roll back_cbdata {

}
/*

*
*
*
*

*/

Report any snapshots nore recent than the one specifi ed.

' cb_dependent’ is set,
wi t hout checking the transacti on group.

ui nt 64_t cb_create;
bool ean_t ch_first;

int cb_docl ones;
char *cb_target;
int cb_error;

bool ean_t ch_recurse;
bool ean_t cb_dependent ;

rol | back_chdata_t;

Used when " -r’ i
We reuse this sanme call back for the snapshot dependents -
then this is a dependent and we should report it

speci fi ed.

3226 static int
3227 rol | back_check(zfs_handl e_t *zhp, void *data)

di scardi ng any changes

st,

s
if

new usr/src/cnmd/ zf s/ zfs_main. c

3228
3229

3231
3232
3233
3234

3236
3237
3238
3239
3240

3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252

3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277

3279
3280

3282
3283
3284

3286
3287

{

}

rol | back_chdata_t *cbp = data;

if (cbp->cb_docl ones) {
zfs_cl ose(zhp);
return (0);

}

if (!cbp->cb_dependent) {
if (strcnp(zfs_get_nanme(zhp), cbp->cb_target) !'= 0 &&
zfs_get _type(zhp) == ZFS_TYPE_SNAPSHOT &&
zfs_prop_get _int(zhp, ZFS_PROP_CREATETXG >
cbp->cb_create)

if (cbp->cb_first & !cbp->cb_recurse) {
(void) fprintf(stderr, gettext("cannot
"rollback to "%’: nore recent snapshots
"exist\n"),
cbp->cb_target);
(v0|d) fprlntf(stderr gettext("use
force deletion of the foll owi ng
"snapshot s: \n));
cbp->cb_first
cbp->cb_error

-r' to

l;

}

if (cbp->cb_recurse) {
cbp->cb_dependent = B_TRUE;
if (zfs_iter dependents(zhp, B_TRUE,
rol Tback_check, cbp) != 0) {
zfs_cl ose(zhp)
return (-1);

}
cbp->cb_dependent = B_FALSE;
} else {
(v0|d) fprintf(stderr, "%\n",
zfs_get nar're(zhp))

} else {
if (cbp->cb_first && cbp->cb_recurse) {
(voi d) fprintf(stderr, gettext ("cannot rollback to
'’ : clones of previous snapshots exist\n"),

cbp->cb_target);

(voi d) fprintf(stderr, gettext("use '-R to
"force del etion of the follow ng clones and "
dependents \n"));

cbp->cb_first = 0;

cbp->cb_error 1;

(void) fprintf(stderr, "%\n", zfs_get_nane(zhp));

}

zfs_cl ose(zhp);
return (0);

static int

zfs_do_rol | back(int argc,

3288 {

3289
3290
3291
3292
3293

char **argv)

int ret =0;

int c;

bool ean_t force = B FALSE
rol I back_cbdata t cb = { 0

zfs_handle_t *zhp, *snap;

new usr/src/cnd/ zf s/ zfs_main. c 51 new usr/src/cnd/ zf s/ zf s_main. c 52

3294 char parent name[ZFS_MAXNAMELEN ; 3360 ret = zfs_rollback(zhp, snap, force);
3295 char *delim
3362 out:
3297 /* check options */ 3363 zfs_cl ose(snap);
3298 while ((c = getopt(ar gc, argv, "rRf")) I'=-1) { 3364 zfs_cl ose(zhp);
3299 switch (c)
3300 case 'r’: 3366 if (ret == 0)
3301 ch.cb_recurse = 1; 3367 return (0);
3302 br eak; 3368 el se
3303 case 'R : 3369 return (1);
3304 ch.cb_recurse = 1; 3370 }
3305 cb. cb_docl ones = 1;
3306 br eak; 3372 /[*
3307 case 'f’: 3373 * zfs set property=value { fs | snap | vol }
3308 force = B_TRUE; 3374 *
3309 br eak; 3375 * Sets the given property for all datasets specified on the command |ine.
3310 case '?': 3376 */
3311 (void) fprintf(stderr, gettext("invalid option ’'%’\n"), 3377 typedef struct set_cbdata {
3312 optopt); 3378 char *cb_propnane;
3313 usage(B_FALSE) ; 3379 char *cb_val ue;
3314 } 3380 } set_chdata_t;
3315 }
3382 static int
3317 argc -= optind; 3383 set_cal | back(zfs_handl e_t *zhp, void *data)
3318 argv += optind; 3384 {
3385 set _cbdata_t *cbp = data;
3320 /* check nunber of arguments */
3321 if (argc < 1) 3387 if (zfs_prop_set(zhp, cbp->cb_propnane, chp->cb_value) != 0) {
3322 (voi d) fprl ntf(stderr, gettext("m ssing dataset argunent\n")); 3388 switch (libzfs_errno(g_zfs)) {
3323 usage(B_FALSE); 3389 case EZFS_MOUNTFAI LED:
3324 } 3390 (void) fprintf(stderr, gettext("property may be set
3325 if (argc > 3391 "but unable to renount filesystemn"));
3326 (voi d) fprl ntf(stderr, gettext("too many argunents\n")); 3392 br eak;
3327 usage(B_FALSE) ; 3393 case EZFS_SHARENFSFAI LED:
3328 } 3394 (void) fprintf(stderr, gettext("property may be set
3395 "but unable to reshare filesystemn"));
3330 /* open the snapshot */ 3396 br eak;
3331 if ((snap = zfs_open(g_zfs, argv[0], ZFS _TYPE SNAPSHOT)) == NULL) 3397 }
3332 return (1); 3398 return (1);
3399 }
3334 /* open the parent dataset */ 3400 return (0);
3335 (void) strlcpy(parentnanme, argv[0], sizeof (parentnane)); 3401 }
3336 verify((delim= strrchr(parentnane, ' @)) != NULL);
3337 *delim="\0 3403 static int
3338 if ((zhp = zfs _open(g_zfs, parentnane, ZFS_TYPE_DATASET)) == NULL) { 3404 zfs_do_set(int argc, char **argv)
3339 zfs_cl ose(snap); 3405 {
3340 return (1); 3406 set _cbhdata_t cb;
3341 } 3407 int ret = 0;
3343 /* 3409 /* check for options */
3344 * Check for nore recent snapshots and/or clones based on the presence 3410 if (argc > 1 & argv[1][0] == "-") {
3345 * of '-r’ and '-R . 3411 (voi d) fprlntf(stderr, gettext("invalid option '%’'\n"),
3346 */ 3412 argv[1][1]);
3347 cb.cb_target = argv[O0]; 3413 usage(B_FALSE) ;
3348 ch.cb_create = zfs _prop_get _int(snap, ZFS_PROP_CREATETXQ ; 3414 }
3349 cb.cb_first = B TRUE;
3350 cbh.cbh_error = 0; 3416 /* check nunber of argunents */
3351 if ((ret = zfs iter_children(zhp, rollback_check, &cb)) != 0) 3417 if (argc < 2) {
3352 goto out; 3418 (void) fprintf(stderr, gettext("m ssing property=val ue "
3419 "argunment\n"));
3354 if ((ret = ch.cb_error) = 0) 3420 usage(B_FALSE) ;
3355 goto out; 3421 }
3422 if (argc < 3) {
3357 /* 3423 (void) fprintf(stderr, gettext("mi ssing dataset nanme\n"));
3358 * Rol | back parent to the given snapshot. 3424 usage(B_FALSE) ;

3359 */ 3425 }

new usr/src/cmd/ zf s/ zfs_main. c

3427 /* validate property=val ue argunment */

3428 cb. cb_propnanme = ar gv[l]

3429 if (((cb.cb_value = strchr(cb cb_propnane, '=")) == NULL) ||
3430 (cb.cb_value[1] == "\0"))

3431 (void) fpri ntf(stderr, gettext("m ssing value in "
3432 "property=val ue argunent\n"));

3433 usage(B_FALSE) ;

3434 }

3436 *cb.cb_value = "\0";

3437 cb. cb_val ue++;

3439 if (*cb.cb_propname == '\0") {

3440 (void) fprintf(stderr,

3441 gettext("m ssing property in property=val ue argunent\n"));
3442 usage(B_FALSE) ;

3443 }

3445 ret = zfs_for_each(argc - 2, argv + 2, NULL

3446 ZFS_TYPE_DATASET, NULL, NULL, 0, set caIIback &cb) ;
3448 return (ret);

3449 }

3451 typedef struct snap_chdata {

3452 nvlist_t *sd_nvl;

3453 bool ean_t sd_recursive;

3454 const char *sd_snapnane;

3455 } snap_chdata_t;

3457 static int

3458 zfs_snapshot _cb(zfs_handl e_t *zhp, void *arg)

3459 {

3460 snhap_cbdata_t *sd = arg;

3461 char *nane;

3462 int rv =0;

3463 int error;

3465 error = asprintf(&ane, "%@s", zfs_get_nane(zhp), sd->sd_snapnane);
3466 if (error == -1)

3467 nonmemn() ;

3468 fnvlist_add_bool ean(sd->sd_nvl, nane);

3469 free(nane);

3471 if (sd->sd_recursive)

3472 rv = zfs_iter_filesystens(zhp, zfs_snapshot_ch, sd);
3473 zfs_cl ose(zhp);

3474 return (rv);

3475 }

3477 | *

3478 * zfs snapshot [-r] [-o0 prop=val ue] <f s@nap>

3479

3480 * Creat es a snapshot with the given nane. Wile functionally equivalent to
3481 * 'zfs create’, it is a separate conmand to differentiate intent.
3482 */

3483 static int

3484 zfs_do_snapshot (int argc, char **argv)

3485 {

3486 int ret = 0;

3487 char c;

3488 nvlist_t *props;

3489 snap_chdata t sd = { 0 }

3490 bool ean_t mul tiple_snaps = B_FALSE;

53

new usr/src/cmd/ zf s/ zfs_main. c

3492
3493
3494
3495

3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513

3515
3516

3518
3519
3520
3521
3522

3524
3525
3526
3527
3528

3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541

3543
3544
3545
3546
3547
3548

3550 usage:

3551
3552
3553
3554
3555 }

3557 /*

if (nvllst aIIoc(&props NV_UNI QUE_NAME, 0) != 0)
if (nvl|st alloc(&sd sd_nvl, NV_UNIQUE_NAME, 0) != 0)
nonemn() ;
/* check options */
while ((c = getopt(argc, argv, "ro:")) !=-1) {
switch (c) {
case '0:
i f (parseprop(props))
return (1);
br eak;
case 'r’:
sd. sd_recursive = B_TRUE;
mul ti pl e_snaps = B_TRUE;
br eak;
case ' ?':
(void) fprintf(stderr, gettext("invalid option ’'%’\n"),
optopt);
) got o usage;

}

argc -= optind;
argv += optind;

/* check nunber of argunents */
if (argc <
(v0| d) fprl ntf(stderr,
got o usage;

gettext ("m ssing snapshot argunent\n"));

}

if (argc > 1)
mul tipl e_snaps = B_TRUE;
for (; argc > 0; argc--, argv++) {
char *atp
zfs_handl e_t *zhp;

atp = strchr(argv[O], @)
if (atp == NULL)
goto usage;
*atp = '\0
sd. sd snapnama = atp + 1;
zhp = zfs_open(g_zfs, argv[O]
ZFS_TYPE_FI LESYSTEM | ZFS_TYPE_VOLUME) ;
if (zhp == NULL)
got o usage;
if (zfs_snapshot_cb(zhp, &sd) != 0)

got o usage;

}
ret = zfs_snapshot_nvl (g_zfs, sd.sd_nvl, props);
nvlist_free(sd.sd_nvl);
nvl i st_free(props);
if (ret 1=0 &&rrul i pl e_snaps)

(void) fprintf(stderr, gettext("no snapshots were created\n"));
return (ret !'= 0);

nvlist_free(sd.sd_nvl);
nvlist_free(props);
usage(B_FALSE);

return (-1);

54

new usr/src/cmd/ zf s/ zfs_main. c

3558 * Send a backup streamto stdout.
3559 */

3560 static int

3561 zfs_do_send(int argc, char **argv)

3562 {

3563 char *frommanme = NULL;

3564 char *toname = NULL;

3565 char *cp;

3566 zfs_handl e_t *zhp;

3567 sendflags_t flags = { 0 };

3568 int c, err;

3569 nvl i st_t *dbgnv = NULL

3570 bool ean_t extraver bose = B_FALSE;

3572 /* check optlons */

3573 while ((c = getopt(argc, argv, ":i:l:RDpvnP"))
3574 switch (c) {

3575 case 'i’:

3576 if (fromane)

3577 usage(B_FALSE) ;
3578 fromane = optarg;

3579 br eak;

3580 case "I’

3581 i f (fromane)

3582 usage(B_FALSE);
3583 fromane = optarg;

3584 flags.doall = B_TRUE;
3585 br eak;

3586 case 'R :

3587 flags.replicate = B_TRUE;
3588 break;

3589 case 'p':

3590 flags. props = B_TRUE;
3591 br eak;

3592 case 'P':

3593 fl ags. parsabl e = B_TRUE;
3594 fl ags. verbose = B _TRUE;
3595 br eak;

3596 case 'V’

3597 if (flags.verbose)

3598 extraverbose = B _TRUE;
3599 flags. verbose = B_TRUE;
3600 fl ags. progress = B_TRUE;
3601 break;

3602 case 'D:

3603 flags. dedup = B_TRUE;
3604 br eak;

3605 case 'n’:

3606 flags.dryrun = B_TRUE;
3607 br eak;

3608 case ':’

3609 (v0| d) fpri ntf(stderr gettext ("
3610 "9’ option\n"), optopt);
3611 usage(B_FALSE);

3612 br eak;

3613 case ' ?:

3614 (void) fprintf(stderr, gettext("
3615 opt opt);

3616 usage(B_FALSE);

3617 }

3618 1

3620 argc -= optind;

3621 argv += optind;

3623 /* check nunber of argunents */

55

1= -1) {

m ssing argunment for "

invalid option '%’\n"),

new usr/src/cnd/ zf s/ zf s_main. c 56
3624 if (argc < 1) {

3625 (void) fprintf(stderr, gettext("m ssing snapshot argunent\n"));
3626 usage(B_FALSE) ;

3627 }

3628 if (argc > 1) {

3629 (void) fprintf(stderr, gettext("too nmany argunents\n"));

3630 usage(B_FALSE) ;

3631 }

3633 if (!flags.dryrun & isatty(STDOUT_FILENO) ({

3634 (void) fprintf(stderr,

3635 gettext("Error: Streamcan not be witten to a termnal.\n"
3636 "You nust redirect standard output.\n"));

3637 return (1);

3638 }

3640 cp—strchr(argv[o] @) ;

3641 if (cp == LL) {

3642 (v0|d) fprintf(stderr,

3643 gettext("argument nust be a snapshot\n"));

3644 usage(B_FALSE) ;

3645 }

3646 *ep = '\0

3647 toname = cp +

3648 zhp = zfs open(g zfs, argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
3649 f (zhp == NULL)

3650 ret urn (1);

3652 *

3653 * |f they specified the full path to the snapshot, chop off

3654 * everyt hing except the short name of the snapshot, but special

3655 * case if they specify the origin.

3656 *

3657 if (fromanme &% (cp = strchr(fromane, '@)) !'= NULL) {

3658 char origi n[ZFS_VMAXNAMELEN] ;

3659 zprop_source_t src;

3661 (void) zfs_prop_get(zhp, ZFS_PROP_ORI G N,

3662 origin, sizeof (origin), &src, NULL, 0, B_FALSE);

3664 if (strcnp(origin, fromane) == 0) {

3665 fromane = NULL;

3666 flags. fronorigin = B_TRUE;

3667 } else {

3668 ='\0;

3669 |f (cp 1= fromane & strcnp(argv[0], fromane)) {
3670 (void) fprintf(stderr,

3671 gettext("i ncremental source must be "
3672 "in same filesystemn"));

3673 usage(B_FALSE);

3674 }

3675 fromane = cp + 1;

3676 if (strchr(fromane, '@) || strchr(fromame, '/')) {
3677 (void) fprintf(stderr,

3678 gettext("invalid incremental source\n"));
3679 usage(B_FALSE) ;

3680 }

3681 }

3682 }

3684 if (flags.replicate & fromane == NULL)

3685 flags. doall = B_TRUE;

3687 err = zfs_send(zhp, fromane, tonane, &flags, STDOUT_FILENO, NULL, O,
3688 extraverbose ? &bgnv : NULL);

new usr/src/cmd/ zf s/ zfs_main. c 57 new usr/src/cnd/ zf s/ zfs_main. c

3690 if (extraverbose &% dbgnv != NULL) { 3756 usage(B_FALSE);
3691 /* 3757 }
3692 * dunp_nvlist prints to stdout, but that’s been 3758 if (argc > 1)
3693 * redirected to a file. Mke it print to stderr 3759 (void) fprintf(stderr, gettext("too many arguments\n"));
3694 * instead. 3760 usage(B_FALSE);
3695 */ 3761 }
3696 (voi d) dup2(STDERR_FI LENO, STDOUT_FI LENO);
3697 dunp_nvl i st (dbgnv, 0); 3763 if (isatty(STDIN_FILENO) {
3698 nvlist_free(dbgnv); 3764 (void) fprintf(stderr,
3699 } 3765 gettext("Error: Backup stream can not be read "
3700 zfs_cl ose(zhp); 3766 "froma termnal.\n"
3767 "You nust redirect standard input.\n"));
3702 return (err !'= 0); 3768 return (1);
3703 } 3769 }
3705 /* 3771 err = zfs_receive(g_zfs, argv[0], & lags, STDI N FILENO NULL);
3706 * zfs receive [-vnFu] [-d | -e] <fs@nap>
3707 * 3773 return (err !'= 0);
3708 * Restore a backup stream from stdin. 3774 }
3709 */
3710 static int 3776 [*
3711 zfs_do_receive(int argc, char **argv) 3777 * allow unall ow stuff
3712 { 3778 */
3713 int c, err; 3779 /* copied from zfs/sys/dsl_del eg. h */
3714 recvfl ags_t flags = { 0 }; 3780 #define ZFS DELEG PERM CREATE "create"
3781 #define ZFS_DELEG PERM DESTROY "destroy"
3716 /* check opti ons */ 3782 #define ZFS_DELEG PERM SNAPSHOT "snapshot "
3717 while ((c = getopt(argc, argv, ":denuvF')) !=-1) { 3783 #define ZFS_DELEG PERM ROLLBACK "rol | back"
3718 svutch (c) { 3784 #define ZFS_DELEG PERM CLONE "cl one"
3719 Td' 3785 #define ZFS_DELEG PERM PROMOTE " pronot e"
3720 flags.isprefix = B_TRUE; 3786 #define ZFS_DELEG PERM RENAVE "renane"
3721 br eak; 3787 #define ZFS_DELEG PERM MOUNT " mount "
3722 case 'e’: 3788 #define ZFS DELEG PERM SHARE "share"
3723 flags.isprefix = B_TRUE; 3789 #define ZFS_DELEG PERM SEND "send"
3724 flags.istail = B_TRUE; 3790 #define ZFS_DELEG PERM RECEI VE "receive"
3725 br eak; 3791 #define ZFS_DELEG PERM ALLOW "al | ow'
3726 case '’ 3792 #define ZFS_DELEG PERM USERPROP "user prop"
3727 fI ags.dryrun = B_TRUE; 3793 #define ZFS_DELEG PERM VSCAN "vscan" [* 2?2 */
3728 br eak; 3794 #define ZFS_DELEG PERM USERQUOTA "user quot a"
3729 case 'u’: 3795 #define ZFS_DELEG PERM GROUPQUOTA "groupquot a"
3730 flags. nonount = B_TRUE; 3796 #define ZFS_DELEG PERM USERUSED "userused"
3731 br eak; 3797 #define ZFS_DELEG PERM GROUPUSED "groupused"”
3732 case 'V’ 3798 #define ZFS_DELEG PERM HOLD “hol d"
3733 fl ags. verbose = B_TRUE; 3799 #define ZFS_DELEG PERM RELEASE "rel ease"
3734 br eak; 3800 #define ZFS_DELEG PERM DI FF tdiff"
3735 case 'F :
3736 flags.force = B_TRUE; 3802 #define ZFS_NUM DELEG NOTES ZFS_DELEG NOTE_NONE
3737 break;
3738 case ':’: 3804 static zfs_deleg_permtab_t zfs_deleg_permtbl[] = {
3739 (void) fprintf(stderr, gettext("m ssing argunment for " 3805 ZFS DELEG PERM ALLOW ZFS_DELEG NOTE_ALLOW},
3740 "' 9g’ option\n"), optopt); 3806 ZFS_DELEG PERM CLONE, ZFS_DELEG NOTE_CLONE },
3741 usage(B_FALSE) ; 3807 ZFS_DELEG PERM CREATE, ZFS DELEG NOTE_CREATE },
3742 br eak; 3808 ZFS_DELEG PERM DESTROY, ZFS_DELEG NOTE_DESTROY },
3743 case ' ?': 3809 ZFS_DELEG PERM DI FF, ZFS DELEG NOTE_DI FF},
3744 (void) fprintf(stderr, gettext("invalid option %’ \n"), 3810 ZFS_DELEG PERM HOLD, ZFS_DELEG NOTE_HOLD }
3745 optopt) ; 3811 ZFS_DELEG PERM MOUNT, ZFS DELEG NOTE_MOUNT },
3746 usage(B_FALSE) ; 3812 ZFS_DELEG PERM PROMOTE, ZFS DELEG NOTE_PROMOTE },
3747 } 3813 ZFS_DELEG PERM RECEI VE, ZFS_DELEG NOTE_RECEI VE },
3748 } 3814 ZFS_DELEG PERM RELEASE, ZFS_DELEG NOTE_RELEASE },
3815 ZFS_DELEG PERM RENAME, ZFS DELEG NOTE _RENAME },
3750 argc -= optind; 3816 ZFS_DELEG PERM ROLLBACK, ZFS DELEG NOTE_ROLLBACK },
3751 argv += optind; 3817 ZFS_DELEG PERM SEND, ZFS DELEG NOTE_SEND },
3818 ZFS_DELEG PERM SHARE, ZFS_DELEG NOTE SHARE },
3753 /* check nunber of argunments */ 3819 ZFS_DELEG PERM SNAPSHOT, ZFS_DELEG NOTE_SNAPSHOT },
3754 if (argc < 1)

3755 (void) fprintf(stderr, gettext("m ssing snapshot argunent\n")); 3821 { ZFS_DELEG PERM GROUPQUOTA, ZFS DELEG NOTE_GROUPQUCTA },

new usr/src/cmd/ zf s/ zfs_main. c

59

3822 { ZFS_DELEG PERM GROUPUSED, ZFS DELEG NOTE_GROUPUSED 1},
3823 { ZFS_DELEG PERM USERPROP, ZFS DELEG NOTE USERPROP },
3824 { ZFS DELEG PERM USERQUOTA, ZFS DELEG NOTE USERQUOTA },
3825 { ZFS_DELEG PERM USERUSED, ZFS_DELEG NOTE_USERUSED },
3826 { NULL, ZFS_DELEG NOTE_NONE }

3827 };

3829 /* permission structure */
3830 typedef struct del eg_perm {

3831 zfs_del eg_who_t ype_t dp_who_t ype;
3832 const char *dp_nane;
3833 bool ean_t dp_Il ocal ;
3834 bool ean_t dp_descend;
3835 } deleg_permt;

3837 /* */

3838 typedef struct del eg_perm node {

3839 del eg_perm t dpn_perm
3841 uu_avl _node_t dpn_avl _node;

3842 } del eg_perm node_t;
3844 typedef struct fs_permfs_permt;

3846 /* perm ssions set */
3847 typedef struct who_perm {

3848 zfs_del eg_who_t ype_t who_t ype;

3849 const char *who_nane;

3850 char who_ug_ nane[256] ;
3851 fs_permt *who_fsperm

3853 uu_avl _t *who_del eg_perm avl ;
3854 } who_permt;

3856 /* */

3857 typedef struct who_perm node {

3858 who_perm t who_perm

3859 uu_avl _node_t who_avl _node;

3860 } who_perm node_t;

3862 typedef struct fs_permset fs_permset_t;
3863 /* fs permissions */
3864 struct fs_perm {

3865 const char *f sp_nane;
3867 uu_avl _t *fsp_sc_avl;
3868 uu_avl _t *fsp_uge_avl ;
3870 fs_permset _t *fsp_set;
3871 };

3873 /* */

3874 typedef struct fs_perm node {

3875 fs_permt fspn_fsperm

3876 uu_avl _t *fspn_avl ;

3878 uu_list_node_t fspn_list_node;

3879 } fs_permnode_t;

3881 /* top |level structure */
3882 struct fs_permset {

/*

3883 uu_list_pool _t *fsps_list_pool;

3884 uu_list_t *fsps_list; /* list of fs_perms */
3886 uu_avl _pool _t *fsps_naned_set _avl _pool ;

3887 uu_avl _pool _t *f sps_who_perm avl _pool ;

id*/
user/group nanme */
uplink */

permi ssions */

/* sets,create */
/* user, group, everyone */

/* uplink */

new usr/src/cmd/ zf s/ zfs_main.c

3888 uu_avl _pool _t *f sps_del eg_perm avl
3889 };

3891 static inline const char *

3892 del eg_perm type(zfs_del eg_note_t note)

3893 {

3894 /* subcommands */

3895 switch (note) {

3896 /* SUBCOMMANDS */

3897 /* OTHER */

3898 case ZFS DELEG NOTE_CROUPQUOTA:

3899 case ZFS_DELEG NOTE_GROUPUSED:

3900 case ZFS_DELEG NOTE_USERPROP:

3901 case ZFS_DELEG NOTE_USERQUOTA:

3902 case ZFS_DELEG NOTE_USERUSED:

3903 T* other */

3904 return (gettext("other"));
3905 defaul t:

3906 return (gettext("subcomrand"));
3907 }

3908 }

3910 static int inline

3911 who_t ype2wei ght (zf s_del eg_who_t ype_t who_t ype)
3912 {

3913 int res;

3914 switch (who_type) {

3915 case ZFS DELEG NAMED SET_SETS:
3916 case ZFS_DELEG NAMED_SET:
3917 res = 0;

3918 br eak;

3919 case ZFS_ DELEG CREATE_SETS:
3920 case ZFS_ DELEG CREATE:

3921 res = 1,

3922 break;

3923 case ZFS DELEG USER SETS:
3924 case ZFS DELEG USER:

3925 res = 2;

3926 break;

3927 case ZFS DELEG GROUP_SETS:
3928 case ZFS_DELEG GROUP:

3929 res = 3;

3930 break;

3931 case ZFS_DELEG EVERYONE_SETS:
3932 case ZFS_DELEG EVERYONE:
3933 res = 4;

3934 br eak;

3935 defaul t:

3936 res = -1;

3937 }

3939 return (res);

3940 }

3942 /* ARGSUSED */

3943 static int

3944 who_perm conpar e(const void *larg, const void *rarg,
3945 {

3946 const who_perm node_t *| = larg;
3947 const who_perm node_t *r = rarg;
3948 zfs_del eg_who_type_t Itype = I-

3949 zfs_del eg_\l\lno_type_t rtype = r-
3950 int |weight who_t ype2wei ght (1 type);
3951 int rwei ght = who typeZ\A/el ght(rtype)
3952 int res = Iwmght - rwei ght

3953 if (res == 0)

_pool ;

>who_per m who_t ype;
>who_per m who_t ype;

voi d *unused)

new usr/src/cmd/ zf s/ zfs_main. c

3954 res = strncnp(l->who_per m who_nane, r->who_perm who_nang,
3955 ZFS_MAX_DELEG NAME- 1)

3957 if (res == 0)

3958 return (0);

3959 if (res >0

3960 return (1);

3961 el se

3962 return (-1);

3963 }

3965 /* ARGSUSED */

3966 static int

3967 del eg_perm conpare(const void *larg, const void *rarg, void *unused)
3968 {

3969 const del eg_permnode_t *I = larg;

3970 const del eg_permnode_t *r = rarg;

3971 int res = strncnp(l->dpn_perm dp_nane, r->dpn_perm dp_nane,
3972 ZFS_NMAX_DELEG NAME-1);

3974 if (res == 0)

3975 return (0);

3977 if (res >0)

3978 return (1);

3979 el se

3980 return (-1);

3981 }

3983 static inline void

3984 fs_permset_init(fs_permset_t *fspset)

3985 {

3986 bzero(fspset, sizeof (fs_permset_t));

3988 if ((fspset->fsps_list_pool = uu_list_pool _create("fsps_list_pool",
3989 sizeof (fs_perm. node t) of f set of (fs_perm node_t, fspn_Ilist_node),
3990 NULL, UU _DEFAULT)) == NULL)

3991 nomen’()

3992 if ((fspset->f sps_l ist = uu_list_create(fspset->fsps_list_pool, NULL,
3993 UU_DEFAULT)) == NULL)

3994 nonmen() ;

3996 if ((fspset ->f sps_naned_set _avl _pool = uu_avl _pool _create(

3997 "nanmed_set _avl _pool ", sizeof (who_permnode_t), offsetof(
3998 who_perm node_t, who_avl _node), who_perm conpar e,

3999 UU_DEFAULT)) == NULL)

4000 nonmemn() ;

4002 if ((fspset->fsps_who_permavl_pool = uu_avl_pool _create(

4003 "who_perm avl _pool ", sizeof (who_permnode_t), offsetof(
4004 who_perm | node _t, who_avl _node), who_perm conpare,

4005 UU DEFAULT)) == NULL)

4006 nomemn() ;

4008 if ((fspset->fsps_del eg_permavl_pool = uu_avl_pool _create(

4009 "del eg_perm avl _pool ", sizeof (deleg_permnode_t), offsetof(
4010 del eg_perm node_t, dpn_avl _node), del eg_perm conpare, UU_DEFAULT))
4011 == NULL)

4012 nonmen() ;

4013 }

4015 static inline void fs_permfini(fs_permt *);

4016 static inline void who_permfini(who_permt *);

4018 static inline void
4019 fs_permset _fini(fs_permset_t

*fspset)

61

new usr/src/cnmd/ zf s/ zfs_main. c

4020
4021

4023
4024
4025
4026
4027
4028
4029
4030
4031

4033
4034
4035
4036

4038
4039
4040

{

}

fs_perm node_t

while (node != NULL) {

fs_permnode_t *next_node =
uu_list_next(fspset->fsps_list, node);

fs_permt *fsperm = &node->fspn_fsperm

fs_permfini(fsperm;

uu_list rem:)ve(fspset ->fsps_list,

freee(node);

node = next_node;

*node = uu_list_first(fspset->fsps_list);

node) ;

}

uu_avl _pool _destroy(fspset->fsps_nanmed_set _avl _pool);
uu_avl _pool _dest roy(f spset - >f sps_who_perm avl _pool) ;
uu_avl _pool _dest roy(fspset - >f sps_del eg_perm avl _pool);

static inline void

del eg_perm.ini t(del eg_perm t

4041 {

4042
4043
4044

4046
4047
4048

}

*del eg_perm zfs_del eg_who_type_t type,

const char *nane)

del eg_perm >dp_who_t ype = type;
del eg_per m >dp_nane = nang;

static inline void

who_perm i nit (who_permt

4049 {

4050
4051

4053

4055
4056
4057

4059
4060
4061
4062

4064
4065

4067

4069
4070
4071

4073
4074
4075
4076

4078
4079

4081
4082

}

zfs

*who_perm fs_permt *fsperm
_del eg_who_type_t type, const char *nane)

uu_avl
pool

pool _t *pool ;

= fsperm >fsp_set->fsps_del eg_perm avl _pool ;

bzer o(who_perm sizeof (who_permt));

if ((who_| perm>Wno del eg_perm avl = uu_avl _create(pool, NULL,

UU_DEFAULT)) == NULL)
nonmemn() ;
who_per m >who_t ype = type;
who_per m >who_nane = nane;

who_per m >who_f sperm = fsperm

static inline void
who_perm fini (who_permt *who_perm
4066 {

}

del eg_per m node_t

while (node != NULL) {
del eg_perm node_t *next _node =
uu_avl _next (who_per m >who_del eg_perm avl ,

*node = uu_avl _first(who_perm >who_del eg_perm avl);

node) ;
uu_avl _renove(who_per m >who_del eg_perm avl ,

free(node);
node = next_node;

node) ;

}

uu_avl _destroy(who_per m >who_del eg_perm avl);

static inline void

fs_perminit(fs_permt *fsperm fs_permset_t *fspset,

4083 {

4084
4085

const char *fsnane)

uu_avl
uu_avl

_pool _t
“pool _t

*nset _pool
*who_pool

= fspset->fsps_naned_set _avl _pool ;
= fspset->f sps_who_perm avl _pool ;

new usr/src/cmd/ zf s/ zfs_main. c

4087

4089
4090
4091

4093
4094
4095

4097
4098
4099

4101
4102

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113

4115
4116
4117
4118
4119
4120
4121
4122
4123
4124

4126
4127
4128

4130
4131
4132
4133
4134

4136
4137

4139

4141
4142
4143
4144
4145
4146
4147

4150
4151

}

bzero(fsperm sizeof (fs_permt));
if ((fsperm>fsp_sc_avl = uu_avl_create(nset_pool, NULL, UU DEFAULT))

== NULL)
nonen() ;
if ((fsperm>fsp_uge_avl = uu_avl_create(who_pool, NULL, UU DEFAULT))
== NULL)
nonen() ;

fsperm >fsp_set = fspset;
fsperm >f sp_nanme = fsnane;

static inline void
fs_permfini(fs_permt *fsperm
4103 {

}

who_perm node_t *node = uu_avl _first(fsperm>fsp_sc_avl);
while (node != NULL)
who_per m node_t *next _node = uu_avl _next (fsperm >fsp_sc_avl,
node) ;
who_permt *who_perm = &node- >who_per m
who_perm fi ni (who_pern;
uu_avl _renove(fsperm >fsp_sc_avl, node);
free(node);
node = next_node;

}

node = uu_avl _first(fsperm>fsp_uge_avl);
whil e (node != NULL)
who_per m node_t *next _node = uu_avl _next (fsperm >f sp_uge_avl,
node) ;
who_permt *who_perm = &node- >who_perm
who_perm fi ni (who_pern;
uu_avl _renove(fsperm >fsp_uge_avl, node);
free(node);
node = next_node;

}

uu_avl _destroy(fsperm >fsp_sc_avl);
uu_avl _destroy(fsperm >fsp_uge_avl);

static void inline
set _del eg_perm node(uu_avl _t *avl, del eg_perm node_t *node,

{

zfs_del eg_who_type_t who_type, const char *name, char locality)

uu_avl _index_t idx = 0;

del eg_perm node_t *found_node = NULL;
del eg_perm t *del eg_per m = &node- >dpn_per m

del eg_perm.init(del eg_perm who_type, nane);

if ((found_node = uu_avl _find(avl, node, NULL, & dx))
== NULL)
uu_avl _insert(avl, node, idx);
el se {
node = found node;

del eg_per m = &node- >dpn_per m

switch (locality) {
case ZFS_DELEG LOCAL:

63

new usr/src/cmd/ zf s/ zfs_main.c

4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162 }

del eg_perm >dp_| ocal = B_TRUE;
br eak;
case ZFS_DELEG DESCENDENT:
del eg_per m >dp_descend = B_TRUE;
br eak;
case ZFS_DELEG NA:
br eak;
defaul t:
assert (B_FALSE); /* invalid locality */
}

4164 static inline int
4165 parse_who_per n{who_permt *who_perm nvlist_t *nvl, char locality)

4166 {
4167
4168
4169
4170

4172
4173
4174
4175
4176
4177

4179
4181
4182
4183

4185
4186 }

nvpair_t *nvp = NULL;

fs_permset_t *fspset = who_perm >who_fsperm >fsp_set;
uu_avl _t *avl = who_perm >who_del eg_perm avl ;

zfs_del eg_who_type_t who_type = who_per m >who_t ype;

while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
const char *name = nvpair_nane(nvp);
data_type_t type = nvpair_type(nvp);
uu_avl _pool _t *avl _pool = fspset->fsps_del eg_perm avl _pool ;
del eg_perm node_t *node =
saf e_mal | oc(si zeof (del eg_permnnode_t));

assert (type == DATA TYPE_BOOLEAN);
uu_avl _node_i ni t (node, &node->dpn_avl _node, avl_pool);
set _del eg_per m node(avl, node, who_type, nane, locality);

}

return (0);

4188 static inline int
4189 parse_fs_pern(fs_permt *fsperm nvlist_t *nvl)

4190 {
4191
4192

4194
4195
4196
4197
4198
4199
4200
4201
4202
4203

4205

4207
4208

4210
4211
4212
4213
4214
4215
4216
4217

nvpair_t *nvp = NULL;
fs_permset_t *fspset = fsperm >fsp_set;

while ((nvp = nvlist_next_nvpair(nvl, nvp)) !'= NULL) {
nvlist_t *nvl2 = NULL;
const char *nanme = nvpair_nane(nvp);
uu_avl _t *avl = NULL;
uu_avl _pool _t *avl _pool ;
zfs_del eg_who_type_t permtype = nane[O0];
char permlocality = nane[1];
const char *perm.nanme = name + 3;
bool ean_t is_set = B_TRUE;
who_permt *who_perm = NULL;

assert('$ == name[2]);

if (nvpair_value_nvlist(nvp, &vl2) != 0)
return (-1);

switch (permtype) {

case ZFS DELEG CREATE:

case ZFS DELEG CREATE SETS:
case ZFS_DELEG NAMED_SET:
case ZFS_DELEG NAMED SET_SETS:

avl _pool = fspset->fsps_naned_set_avl _pool ;
avl = fsperm >fsp_sc_avl;
br eak;

new usr/src/cnd/ zf s/ zfs_main. c 65

4218 case ZFS _DELEG USER:

4219 case ZFS DELEG USER SETS:

4220 case ZFS_DELEG GROUP:

4221 case ZFS DELEG GROUP_SETS:

4222 case ZFS DELEG EVERYONE:

4223 case ZFS DELEG_ EVERYCNE SETS:

4224 avl pool = fspset - >f sps_who_per m avl _pool ;
4225 avl f sper m >f sp_uge_avl ;

4226 br eak;

4227 }

4229 if (is_set) {

4230 who_per m node_t *found_node = NULL;
4231 who_per m node_t *node = safe_mal | oc(
4232 si zeof (who_perm node_t));

4233 who_perm = &node- >who_per m

4234 uu_avl _index_t idx = 0;

4236 uu_avl _node_i ni t (node, &node->who_avl _node, avl _pool);
4237 who_perm.init(who_perm fsperm permtype, permnane);

4239 if ((found_node = uu_avl _find(avl, node, NULL, & dx))
4240 == NULL) {

4241 if (avl == fsperm>fsp_uge_avl) {

4242 U|dt rid = 0;

4243 struct passwd *p = NULL;

4244 struct group *g = NULL;

4245 const char *ni ce_name = NULL;

4247 switch (permtype) {

4248 case ZFS DELEG USER SETS:

4249 case ZFS_DELEG USER~

4250 rid = atoi(permnane);

4251 p = getpwiid(rid);

4252 if (p)

4253 ni ce_name = p->pw_nane;
4254 br eak;

4255 case ZFS_DELEG GROUP_SETS:

4256 case ZFS_DELEG GROUP:

4257 ri d = atoi (perm nane) ;

4258 g = getgrgid(rid);

4259 if (9)

4260 ni ce_name = g- >gr_nane;
4261 break;

4262 }

4264 if (nice_name != NULL)

4265 (void) strlcpy(

4266 node- >who_per m who_ug_nane,
4267 ni ce_nane, 256);

4268 }

4270 uu_avl _insert (avl, node, idx);
4271 } else {

4272 node = found_node;

4273 who_perm = &node- >who_per m
4274 }

4275 }

4277 (voi d) parse_who_perm(who_perm nvl2, permlocality);
4278 }

4280 return (0);
4281 }

4283 static inline int

66

new usr/src/cnmd/ zf s/ zfs_main. c

4284 parse_fs_permset(fs_permset_t *fspset, nvlist_t *nvl)

4285 {

4286 nvpair_t *nvp = NULL;

4287 uu_avl _index_t idx = 0;

4289 while ((nvp = nvlist_next_nvpair(nvl, nvp)) !'= NULL) {

4290 nvlist_t *nvl2 = NULL;

4291 const char *fsname = nvpair_nanme(nvp);

4292 data_type_t type = nvpair_type(nvp);

4293 fs_permt *fsperm = NULL;

4294 fs_permnode_t *node = safe_nmalloc(sizeof (fs_permnode_t));
4295 i f (node == NULL)

4296 normen() ;

4298 f sperm = &node- >f spn_f sperm

4300 assert (DATA_TYPE_NVLI ST == type);

4302 uu_l i st_node_init(node, &node->fspn_|ist_node,

4303 fspset->fsps_l|ist_pool);

4305 idx = uu_list_numodes(fspset->fsps_list);

4306 fs_perminit(fsperm fspset, fsnane);

4308 if (nvpair_value_nvlist(nvp, &nvl2) != 0)

4309 return (-1);

4311 (void) parse_fs_pern(fsperm nvl2);

4313 uu_list_insert(fspset->fsps_list, node, idx);

4314 }

4316 return (0);

4317 }

4319 static inline const char *

4320 del eg_perm conment (zfs_del eg_note_t note)

4321 {

4322 const char *str = "";

4324 /* subcomands */

4325 switch (note) {

4326 /* SUBCOMVANDS */

4327 case ZFS DELEG NOTE_ALLOW

4328 str = gettext("Mst also have the pernission that is being"
4329 "\n\t\t\t\tall oned");

4330 br eak;

4331 case ZFS DELEG NOTE CLONE:

4332 str = gettext("Mst also have the 'create’ ability and 'nount’"
4333 "\n\t\t\t\tability in the origin file systent);
4334 br eak;

4335 case ZFS_DELEG NOTE_CREATE:

4336 str = gettext("Mist al so have the 'mount’ ability");
4337 br eak;

4338 case ZFS | DELEG NOTE_DESTROY:

4339 str gettext("Mst also have the ’'nount’ ability");
4340 br eak

4341 case ZFS_| DELEG 5> NOTE_DI FF

4342 str = gettext("Al |l ows | ookup of paths within a dataset;
4343 “\n\t\t\t\tgiven an object number. Ordinary users need this"
4344 "\'n\t\t\t\tin order to use zfs diff");

4345 br eak;

4346 case ZFS | DELEG NOTE_HOLD:

4347 str = gettext("Allows adding a user hold to a snapshot");
4348 br eak

4349 case ZFS_ DELEG NOTE_MOUNT:

new usr/src/cmd/ zf s/ zfs_main. c

4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405

4407
4408

4410
4411
4412
4413
4414
4415

}

struct

* ok Ok Ok

str = gettext("All ows nmount/unmpunt of ZFS datasets");
break
case ZFS_| DELEG NOTE_PROMOTE:
str = gettext(Must al so have the 'nmount’\n\t\t\t\tand"
" "pronote’ ability in the origin file systent);
br eak;
case ZFS_DELEG NOTE_RECEI VE:
str = gettext("Mist also have the 'mount’ and ’'create
"ability");
br eak;
case ZFS | DELEG NOTE_RELEASE:
str = gettext ("Allows rel easing a user hold which\n\t\t\t\t"
"m ght destroy the snapshot");
br eak;
case ZFS | DELEG NOTE_RENAME:
str = gettext("Mst also have the ’nmount’ and 'create
"\n\t\t\t\tability in the new parent");
br eak;
case ZFS_DELEG NOTE_ROLLBACK:
str gettext("");
br eak
case ZFS_ DELEG NOTE SEND
str = gettext("");
br eak;
case ZFS_DELEG NOTE_SHARE:
str = gettext("Allows sharing file systems over NFS or SMB"
"\n\t\t\t\tprotocol s");
br eak;
case ZFS_DELEG NOTE_SNAPSHOT:
str = gettext("");
break

case ZFS_DELEG NOTE_VSCAN:
str = gettext("");
br eak;

/* OTHER */

case ZFS_DELEG NOTE_GROUPQUOTA:
str = gettext("All ows accessing any groupquota@. .
br eak;

case ZFS DELEG NOTE_GROUPUSED:
str = gettext("Allows reading any groupused@..
br eak;

case ZFS | DELEG NOTE_USERPROP:
str = gettext("Allows changing any user property");
br eak;

case ZFS_| DELEG NOTE USERQJOTA‘
str gettext(Al'l ows accessing any userquota@ .
bre

case ZFS | DELEG NOTE_USERUSED:
str = gettext("Allows reading any userused@..
break;
/* other */

property");

property");

property");

defaul t:

}

return (str);

str =

all ow_opts {
bool ean_t | ocal;
bool ean_t descend;
bool ean_t user;
bool ean_t group;
bool ean_t everyone;

property");

new usr/src/cnd/ zf s/ zf s_main. c 68
4416 bool ean_t create;

4417 bool ean_t set;

4418 bool ean_t recursive; /* unallow only */
4419 bool ean_t prt_usage;

4421 bool ean_t prt_perms;

4422 char *who;

4423 char *perns;

4424 const char *dataset;

4425 };

4427 static inline int

4428

4430
4431
4432
4433

4435
4436

prop_cnp(const void *a, const void *b)
4429 {

}

const char *strl = *(const char **)a;
const char *str2 = *(const char **)b;
return (strcnmp(strl, str2));

static void

al | ow_usage(bool ean_t un,

4437 {

4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457

4459
4460
4461
4462
4463
4464
4465
4466

4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478

4480
4481

bool ean_t requested, const char *nsg)

const char *opt_desc[] = {
"-h", gettext("show this help nessage and exit"),
“-1", gettext("set permission |ocally"),
"-d", gettext("set permssion for descents"),
"-u", gettext("set perm ssion for user"),
"-g", gettext("set permssion for group"),
-e", gettext("set perm ssion for everyone")
-c", gettext("set create tinme perm ssron")
-s", gettext("define perm ssion set"),
/* unal | ow onl y */
"-r", gettext("renove perm ssions recursively"),

size_t unal |l ow_size = sizeof (opt_desc) / sizeof (char *);
size_t allowsrze = unal | ow si ze - 2;

const char *props[ZFS_NUM PROPS] ;

int i;

size_t count = O;

FILE *fp = requested ? stdout stderr;

zprop_desc_t pdtbl = zfs_prop_get _ tabl e();
const char *fnt gettext ("% 16s %14s\t°/s\n")

(voi d) fpr ntf(fp, gettext("Usage: %\n"), get_usage(un ? HELP_UNALLOW :

ALLOW) ; ,
(v0|d) fpr ntf(fp, gettext("Options:\n"));
for (int i =0; 1 < (un ? unallow size : allow.size); i++) {

const char *opt = opt _desc[i ++4];
const char *optdsc = opt desc[l]
(void) fprintf(fp, gettext(" % 10s %\n"), opt, optdsc);

}

(void) fprintf(fp, gettext("\nThe follow ng pernmissions are "
"supported:\n\n"));
(void) fprintf(fp, fnt, gettext("NAME"),
gettext ("NOTES"));
for (i = 0; i < ZFS NUM DELEG NOTES; i ++)
const char *permnane = zfs_deleg_permtbl[i].z_perm
zfs_del eg_note_t permnote = zfs_deleg_permtbl[i].z_note;
const char *permtype = del eg_permtype(permnote);
const char *perm comrent = del eg_per m comment (per m note) ;
(void) fprintf(fp, fnt, permname, permtype, permcoment);

gettext ("TYPE"),

}

for (i = 0; i < ZFS_NUM PROPS; i++) {
zprop_desc_t *pd = &pdtbl[i];

new usr/src/cmd/ zf s/ zfs_main. c

4482
4483

4485
4486

4488
4489
4490

4492

4494
4495

4497
4498

4500
4501

4503
4504
4505

}

if (pd->pd_visible != B _TRUE)
cont i nue;

if (pd->pd_attr == PROP_READONLY)
conti nue;

props[count ++] = pd->pd_nane;
}
props[count] = NULL;
gsort(props, count, sizeof (char *), prop_cnp);

for (i =0; i < count; i++)
(void) fprintf(fp, fnt, props[i], gettext("property"), "");

if (msg !'= NULL)
(void) fprintf(fp, gettext("\nzfs: error: %"), nsQ);

exit(requested ? 0 : 2);

static inline const char *
munge_args(int argc, char **argv, boolean_t un, size_t expected_argc,

4506 {

4507
4508
4509
4510
4511
4512
4513

4515
4516

4518
4519

4521
4522
4523
4524

4526
4527
4528

4530
4531
4532
4533
4534

4536
4537
4538
4539

4541
4542
4543
4544
4545
4546
4547

}

char **pernsp)

if (un & argc == expected_argc - 1)
*pernsp = NULL;
else if (argc == expected_argc)
*pernsp = argv[argc - 2];
el se
al | ow_usage(un, B_FALSE,
gettext ("wong nunber of paraneters\n"));

return (argvfargc - 1]);

static void
parse_al l ow args(int argc, char **argv, bool ean_t un, struct allow opts *opts)
4520 {

int uge_sum = opts->user + opts->group + opts->everyone;

int csuge_sum = opts->create + opts->set + uge_sum

int | dcsuge_sum = csuge_sum + opts->l ocal + opts->descend;

int all_sum= un ? | dcsuge_sum + opts->recursive : |dcsuge_sum

if (uge_sum> 1)
al | ow_usage(un, B_FALSE,
gettext("-u, -g, and -e are nutually exclusive\n"));

if (opts->prt_usage)
if (argc == 0 && all_sum == 0)
al | ow_usage(un, B_TRUE, NULL);
el se
usage(B_FALSE) ;

if (opts->set)
if (csuge_sum> 1)
al | ow_usage(un, B_FALSE,
gettext("invalid options combined with -s\n"));

opt s- >dat aset = nunge_args(argc, argv, un, 3, &opts->perns);
if (argv[0][0] !="@)
al | ow_usage(un, B_FALSE,
gettext("invalid set nane: missing '@ prefix\n"));
opts->who = argv[O0];
} else if (opts->create) {
if (ldcsuge_sum > 1)

69

new usr/src/cnd/ zf s/ zfs_main. c

4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568

4570
4571
4572
4573
4574

4576
4577
4578

}

al | ow_usage(un, B_FALSE,
gettext("invalid options conbined with -c\n"));
opt s- >dat aset = nunge_args(argc, argv, un, 2, &opts->perns);
} else if (opts->everyone) {
if (csuge_sum> 1)
al | ow_usage(un, B_FALSE,
gettext("invalid options combined with -e\n"));
opt s- >dat aset = nunge_args(argc, argv, un, 2, &opts->perns);
} else if (uge_sum== 0 && argc > 0 && strcnp(argv[0], "everyone")
== 0) {

opt s->everyone = B_TRUE;

arge--;

ar gv++;

opt s- >dat aset = nunge_args(argc, argv, un, 2, &opts->perns);
} else if (argc == 1 && !un)

opts->prt_perns = B_TRUE;

opt s- >dataset = argv[argc-1];
} else {

opt s- >dat aset = nunge_args(argc, argv, un, 3, &opts->perns);
) opts->who = argv[O0];

if (lopts->local &% !opts->descend) {
opts->l ocal = B_TRUE;
opt s- >descend = B_TRUE;

static void

store_al | ow_pern(zfs_del eg_who_type_t type, boolean_t local, bool ean_t descend,

4579 {

4580
4581
4582
4583
4584
4585
4586
4587

4589
4590
4591
4592

4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613

const char *who, char *perns, nvlist_t *top_nvl)

int i;

char Id[2] ={ "\0", "\0" };
char who_buf [ZFS_MAXNAMELEN+32] ;
char base_type;

char set_type;

nvlist_t *base_nvl = NULL;
nvlist_t *set_nvl = NULL;
nvlist_t *nvl;

if (nvlist_alloc(&ase_nvl, NV_UNIQUE_NAME, 0) != 0)
none ;

if (nvlist_alloc(&set_nvl, NV_UN QUE_NAME, 0) != 0)
nomen() ;

switch (type)

case ZFS DELEG NAMED SET SETS:

case ZFS DELEG NAMED_SET:
set _type = ZFS_DELEG NAMED_SET_SETS;
base_type = ZFS_DELEG NAMED SET;
1d[0] = ZFS_DELEG NA;
br eak;

case ZFS_DELEG CREATE_SETS:

case ZFS_DELEG CREATE:
set _type = ZFS_DELEG CREATE_SETS;
base_type = ZFS_DELEG CREATE;
| d[0] = ZFS DELEG NA
br eak;

case ZFS_DELEG USER SETS:

case ZFS _DELEG USER
set _type = ZFS_DELEG USER _SETS;
base_type = ZFS_DELEG USER;
if (local)

I d[0] = ZFS DELEG LOCAL;

if (descend)

new usr/src/cmd/ zf s/ zfs_main. c 71 new usr/src/cmd/ zf s/ zfs_main.c 72

4614 I d[1] = ZFS_DELEG DESCENDENT; 4680 si zeof (who_buf), "%%$%",
4615 br eak; 4681 set _type, locality, who);
4616 case ZFS _DELEG GROUP_SETS: 4682 el se
4617 case ZFS DELEG GROUP: 4683 (void) snprintf(who_buf,
4618 set _type = ZFS_DELEG GROUP_SETS; 4684 si zeof (who_buf), "°/u:%:$",
4619 base_type = ZFS_DELEG GROUP; 4685 set _type, locali ty);
4620 if (local)
4621 I d[0] = ZFS_DELEG LOCAL; 4687 (void) nvlist_add_nvlist(top_nvl, who_buf,
4622 if (descend) 4688 set_nvl);
4623 I d[1] = ZFS_DELEG DESCENDENT; 4689 }
4624 br eak; 4690 }
4625 case ZFS_| DELEG EVERYONE_SETS: 4691 } else {
4626 case ZFS_DELEG EVERYONE. 4692 for (i =0; i <2; i++) {
4627 set _type = ZFS_DELEG EVERYONE_SETS; 4693 char locality = Id[i];
4628 base type = ZFS DELEG EVERYONE; 4694 if (locality == 0)
4629 if (local) 4695 conti nue;
4630 I d[0] = ZFS_DELEG LOCAL;
4631 if (descend) 4697 if (who != NULL)
4632 1 d[1] = ZFS_DELEG DESCENDENT; 4698 (void) snprintf(who_buf, sizeof (who_buf),
4633 } 4699 "0 % $%", base_type, locality, who);
4700 el se
4635 if (perms != NULL) { 4701 (voi d) snpri nt f (who_buf, sizeof (who_buf),
4636 char *curr = perns 4702 '%€%$", base_type, locality);
4637 char *end = curr + strl en(perns); 4703 (void) nvlist_add_| bool ean(top_nvl, who buf);
4639 while (curr < end) { 4705 if (who !'= NULL)
4640 char *delim= strchr(curr, ’,’); 4706 (void) snprintf(who_buf, sizeof (who_buf),
4641 if (delim== NULL) 4707 "%e%$Ys", set_type, locality, who);
4642 delim = end; 4708 el se
4643 el se 4709 (void) snprintf(who_buf, sizeof (who_buf),
4644 *delim="\0"; 4710 "%e%$", set_type, locality);
4711 (void) nvlist_add_bool ean(top_nvl, who_buf);
4646 if (curr[0] =="@) 4712 }
4647 nvl = set_nvl; 4713 }
4648 el se 4714 }
4649 nvl = base_nvl;
4716 static int
4651 (voi d) nvI i st _add_bool ean(nvl, curr); 4717 construct_fsacl _|ist(boolean_t un, struct allow opts *opts, nvlist_t **nvlp)
4652 if (delim!= end) 4718 {
4653 *delim=","; 4719 if (nvlist_alloc(nvlp, NV_UNIQUE NAME, 0) != 0)
4654 curr = delim+ 1; 4720 nomen() ;
4655 }
4722 if (opts->set)
4657 for (i =0; i <2; i++) { 4723 store_al | ow_per n{ ZFS_DELEG NAMED SET, opts- >l ocal,
4658 char locality = Id[i]; 4724 opt s- >descend, opts->who, opts->perns, *nvlp);
4659 if (locality == 0) 4725 } else if (opts->create) {
4660 conti nue; 4726 store_al | ow_per m(ZFS_DELEG CREATE, opts->local,
4727 opt s->descend, NULL, opts->perns, *nvlp);
4662 if (!nvl | st _enpty(base_nvl)) { 4728 } else if (opts->everyone) {
4663 f (who !'= NULL) 4729 store_al | ow_per m(ZFS_DELEG EVERYONE, opts->|ocal,
4664 (void) snprintf(who_ buf 4730 opt s- >descend, NULL, opts->perns, *nvlp);
4665 si zeof (who_buf), "0 Y% $UE" 4731 } else {
4666 base_type, locality, who); 4732 char *curr = opts->who;
4667 el se 4733 char *end = curr + strlen(curr);
4668 (void) snprintf(who_ buf
4669 si zeof (who_buf), %:%:$", 4735 while (curr < end) {
4670 base_type, locality); 4736 const char *who;
4737 zfs_del eg_who_type_t who_type;
4672 (void) nvlist_add_nvlist(top_nvl, who_buf, 4738 char *endch;
4673 base_nvl); 4739 char *delim= strchr(curr, ’,’);
4674 } 4740 char errbuf[256];
4741 char id[64];
4742 struct passwd *p = NULL;
4677 if (!'nvlist_empty(set_nvl)) { 4743 struct group *g = NULL;
4678 if (who 1= NULL)

4679 (voi d) snprintf(who_buf, 4745 uid_t rid;

new usr/src/cmd/ zf s/ zfs_main. c 73 new usr/src/cmd/ zf s/ zfs_main.c
4746 if (delim== NULL) 4812 curr = delim+ 1;
4747 del i m= end; 4813 }
4748 el se 4814 }
4749 *delim="\0";
4816 return (0);
4751 rid = (uid_t)strtol (curr, &endch, 0); 4817 }
4752 if (opts->user) {
4753 who_type = ZFS_DELEG USER 4819 static void
4754 if (*endch I'="\0 4820 print_set_creat_perns(uu_avl _t *who_avl)
4755 p = getpwnan(curr); 4821 {
4756 el se 4822 const char *sc_title[] = {
4757 p = getpwuiid(rid); 4823 gettext("Perm ssion sets:\n"),
4824 gettext("Create tinme perm ssions:\n"),
4759 if (p!= NULL) 4825 NULL
4760 rid = p->pw_uid,; 4826 };
4761 el se { 4827 const char **title_ptr = sc_title;
4762 (void) snprintf(errbuf, 256, gettext(4828 who_per m node_t *who_node = NULL;
4763 "invalid user %"), curr); 4829 int prev_weight = -1;
4764 al | ow_usage(un, B_TRUE, errbuf);
4765 } 4831 for (who_node = uu_avl _first(who_avl); who_node != NULL;
4766 } else if (opts->group) { 4832 who_node = uu_avl _next (who_avl, who_node)) {
4767 who_type = ZFS_DELEG GROUP; 4833 uu_avl _t *avl = who_node->who_per m who_del eg_perm avl ;
4768 if (*endch !'="\0") 4834 zfs_del eg_who_type_t who_type = who_node- >who_per m who_t ype;
4769 g = getgrnan(curr); 4835 const char *who_name = who_node- >who_per m who_nane;
4770 el se 4836 int weight = who_type2wei ght (who_type);
4771 g = getgrgid(rid); 4837 bool ean_t first = B_TRUE;
4838 del eg_perm node_t *del eg_node;
4773 if (g !'= NULL)
4774 rid = g->gr_gid; 4840 if (prev_weight != weight) {
4775 el se { 4841 (void) printf(*title_ptr++);
4776 (void) snprintf(errbuf, 256, gettext(4842 prev_wel ght = weight;
4777 "invalid group %"), curr); 4843 }
4778 al | ow_usage(un, B_TRUE, errbuf);
4779 } 4845 if (who_name == NULL || strnlen(who_nanme, 1) == 0)
4780 } else { 4846 (void) printf("\t");
4781 if (*endch '="\0") { 4847 el se
4782 p = getpwnan(curr); 4848 (void) printf("\t% ", who_nane);
4783 } else {
4784 p = getpwuid(rid); 4850 for (deleg_node = uu_avl _first(avl); deleg_node != NULL;
4785 } 4851 del eg_node = uu_avl _next (avl, del eg_node)) {
4852 if (first) {
4787 if (p == NULL) 4853 (void) printf("%",
4788 if (*endch !'="\0") { 4854 del eg_node->dpn_per m dp_nane) ;
4789 g = getgrnam(curr); 4855 first = B_FALSE;
4790 } else { 4856 } else
4791 g = getgrgid(rid); 4857 (void) printf(", %",
4792 } 4858 del eg_node- >dpn_per m dp_nane) ;
4859 }
4794 if (p!= NULL) {
4795 who_type = ZFS_DELEG USER 4861 (void) printf("\n");
4796 rid = p->pw_uid; 4862 }
4797 } else if (g !'= NULL) { 4863 }
4798 who_type = ZFS_DELEG GROUP,
4799 rid = g->gr_gid,; 4865 static void inline
4800 } else { 4866 print_uge_del eg_perns(uu_avl _t *who_avl, boolean_t |ocal, boolean_t descend,
4801 (void) snprintf(errbuf, 256, gettext(4867 const char *title)
4802 "invalid user/group %"), curr); 4868 {
4803 al | ow_usage(un, B_TRUE, errbuf); 4869 who_per m node_t *who_node = NULL;
4804 } 4870 bool ean_t prt_title = B_TRUE;
4805 } 4871 uu_avl _wal k_t *wal k;
4807 (void) sprintf(id, "%", rid); 4873 if ((walk = uu_avl _wal k_start(who_avl, UU WALK_ROBUST)) == NULL)
4808 who = id; 4874 nonmemn() ;
4810 store_al | ow_per m(who_type, opts->local, 4876 while ((who_node = uu_avl _wal k_next (wal k)) != NULL) {
4811 opt s- >descend, who, opts->perns, *nvlp); 4877 const char *who_nanme = who_node- >who_per m who_nane;

new usr/src/cmd/ zf s/ zfs_main. c 75 new usr/src/cmd/ zf s/ zfs_main. c
4878 const char *ni ce who_nanme = who_node- >who_per m who_ug_nane; 4944 for (node = uu_list_first(fspset->fsps_list); node != NULL;
4879 uu_avl _t *avl = who_node- >\Aho _perm who_del eg_perm avi ; 4945 node = uu_list_next(fspset->fsps_list, node))
4880 zfs_del eg_who type t who_type = who_node- >\Aho_permwho_type; 4946 uu_avl _t *sc_avl = node->fspn_fspermfsp_sc_avl;
4881 char delim="~ 4947 uu_avl _t *uge_avl = node->fspn_fsperm fsp_uge_avl;
4882 del eg_per m node t *del eg_node; 4948 int left = 0;
4883 bool ean_t prt_who = B_TRUE;
4950 (void) snprintf(buf, ZFS_MAXNAMELEN+32,
4885 for (del eg_node = uu_avl _first(avl); 4951 gettext("---- Permissions on % "),
4886 del eg_node != NULL; 4952 node- >f spn_f sperm f sp_nane) ;
4887 del eg_node = uu_avl _next (avl, deleg_node)) { 4953 (void) printf(dsnane);
4888 if (local != del eg_node->dpn_permdp_|l ocal || 4954 left = 70 - strlen(buf);
4889 descend ! = del eg_node->dpn_per m dp_descend) 4955 while (left-- > 0)
4890 conti nue; 4956 (void) printf("-");
4957 (void) printf("\n");
4892 if (prt_who) {
4893 const char *who = NULL; 4959 print_set_creat_pernms(sc_avl);
4894 if (prt_title) { 4960 print _uge_del eg_per ms(uge_avl, B_TRUE, B_FALSE,
4895 prt_title = B_FALSE; 4961 gettext ("Local perm ssi ons: \ n"));
4896 (void) printf(title); 4962 print_uge_del eg_perns(uge_avl, B_ FALSE B_TRUE,
4897 } 4963 get t ext (" Descendent permi ssions: \n"));
4964 print_uge_del eg_perns(uge_avl, B_TRUE, B_ TRUE
4899 switch (who_type) { 4965 gettext ("Local +Descendent perm ssions:\n"));
4900 case ZFS DELEG USER_SETS: 4966 }
4901 case ZFS_DELEG USER: 4967 }
4902 who = gettext("user");
4903 if (nice_who_nane) 4969 static fs_permset_t fs_permset = { NULL, NULL, NULL, NULL };
4904 who_nane = ni ce_who_nane;
4905 br eak; 4971 struct del eg_perns {
4906 case ZFS_DELEG GROUP_SETS: 4972 bool ean_t un;
4907 case ZFS DELEG GROUP: 4973 nvlist_t *nvl;
4908 who = gettext("group"); 4974 };
4909 if (nice_who_nane)
4910 who_nane = ni ce_who_nane; 4976 static int
4911 br eak; 4977 set_del eg_perns(zfs_handl e_t *zhp, void *data)
4912 case ZFS DELEG EVERYONE SETS: 4978 {
4913 case ZFS_DELEG EVERYONE: 4979 struct del eg_perns *perns = (struct del eg_perns *)data;
4914 who = gettext(everyone") 4980 zfs_type_t zfs_type = zfs_get_type(zhp);
4915 who_name = NUL
4916 } 4982 if (zfs_type != ZFS_TYPE FI LESYSTEM && zfs_type != ZFS TYPE VOLUME)
4983 return (0);
4918 prt_who = B_FALSE;
4919 I f (who_name == NULL) 4985 return (zfs_set_fsacl (zhp, perms->un, pernms->nvl));
4920 (void) printf("\t%", who); 4986 }
4921 el se
4922 (void) printf("\t% %", who, who_nane); 4988 static int
4923 } 4989 {zf s_do_al | ow_unal | ow_i npl (i nt argc, char **argv, bool ean_t un)
4990
4925 (void) printf("%%", delim 4991 zfs_handl e_t *zhp;
4926 del eg_| node >dpn_| perm dp nane) ; 4992 nvlist_t *permnvl = NULL;
4927 delim=","; 4993 nvlist_t *update_permnvl = NULL;
4928 } 4994 int error = 1;
4995 int c;
4930 if (!prt_who) 4996 struct allow opts opts = { 0 };
4931 (voi d) printf("\n");
4932 } 4998 const char *optstr = un ? "ldugecsrh" : "l|dugecsh";
4934 uu_avl _wal k_end(wal k) ; 5000 /* check opts */
4935 } 5001 while ((c = getopt(argc, argv, optstr)) !=-1) {
5002 switch (c) {
4937 static void 5003 case '’
4938 print_fs_perns(fs_permset_t *fspset) 5004 opts. |l ocal = B_TRUE;
4939 { 5005 br eak;
4940 fs_permnode_t *node = NULL; 5006 case 'd’':
4941 char buf [ZFS_MAXNAMELEN+32] ; 5007 opts. descend = B_TRUE;
4942 const char *dsnane = buf; 5008 break;
5009 case 'u’':

new usr/src/cmd/ zf s/ zfs_main. c

5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040

5042
5043

5045
5046

5048
5049
5050
5051
5052
5053
5054

5056
5057

5059
5060
5061
5062
5063

5065
5066
5067
5068
5069
5070

5072
5073
5074
5075

opts.user = B_TRUE;
break;
case 'g’:
opts. group = B_TRUE;
br eak;
case 'e':
opts. everyone = B_TRUE;
br eak;
case 's’:
opts.set = B _TRUE;
break;
case 'c’:
opts.create = B_TRUE;
break;
case 'r’:
opts.recursive = B_TRUE;
br eak;
case ':':
(void) fprintf(stderr, gettext("m ssing argunent for
"'o¢’ option\n"), optopt);
usage(B_FALSE);
break;
case 'h':
opts. prt_usage = B_TRUE;
br eak;
case ' ?':
(void) fprintf(stderr, gettext("invalid option ’'%’\n"
optopt);
) usage(B_FALSE);

}

argc -= optind;
argv += optind;

/* check argunents */
parse_al |l ow_args(argc, argv, un, &opts);

/* try to open the dataset */
if ((zhp = zfs_open(g_zfs, opts.dataset, ZFS TYPE_FI LESYSTEM |
ZFS_TYPE_VOLUME)) == NULL)
(void) fprintf(stderr, "Failed to open dataset: %\n",
opts. dat aset) ;
return (-1);

}

if (zfs_get_fsacl (zhp, &ermnvl) !'= 0)
got o cl eanup2;

fs_permset_init(& s_permset);

if (parse_fs_permset (& s_permset, permnvl) != 0)
(void) fprintf(stderr, "Failed to parse fsacl perm ssions\n");
got o cl eanupl;

}

if (opts.prt_perns)
print_fs_pernms(& s_permset);
el se {
(void) construct_fsacl _list(un, &opts, &update_permnvl);
if (zfs_set_fsacl (zhp, un, update_permnvl) != 0)
got o cl eanupO;

if (un & opts.recursive) {
struct del eg_perns data = { un, update_permnvl };
if (zfs_iter_filesystenms(zhp, set_del eg_perns,
&Jata) != 0)

7

).

new usr/src/cnd/ zf s/ zfs_main. c 78
5076 goto cl eanupO;

5077 }

5078 }

5080 error = 0;

5082 cl eanupO:

5083 nvlist_free(permnvl);

5084 if (update_permnvl != NULL)

5085 nvlist_free(update_permnvl);

5086 cl eanupl:

5087 fs_permset _fini (& s_permset);

5088 cl eanup2:

5089 zfs_cl ose(zhp);

5091 return (error);

5092 }

5094 static int

5095 zfs_do_al l ow(int argc, char **argv)

5096 {

5097 return (zfs_do_all ow unall ow_ i npl (argc, argv, B _FALSE));
5098 }

5100 static int

5101 zfs_do_unal low(int argc, char **argv)

5102 {

5103 return (zfs_do_all ow unall ow_inpl (argc, argv, B TRUE));
5104 }

5106 static int

5107 zfs_do_hold_rele_inpl (int argc, char **argv, bool ean_t hol di ng)
5108 {

5109 int errors = 0;

5110 int i;

5111 const char *tag;

5112 bool ean_t recursive = B_FALSE;

5113 const char *opts = holding ? "rt" : "r"

5114 int c;

5116 /* check options */

5117 while ((c = getopt(argc, argv, opts)) != -1) {

5118 switch (c) {

5119 case 'r’:

5120 recursive = B_TRUE;

5121 br eak;

5122 case ' ?':

5123 (void) fprintf(stderr, gettext("invalid option ’'%’\n"),
5124 optopt);

5125 usage(B_FALSE);

5126 }

5127 1

5129 argc -= optind;

5130 argv += optind;

5132 /* check nunber of argunents */

5133 if (argc < 2)

5134 usage(B_FALSE);

5136 tag = argv[O0];

5137 --argc;

5138 ++ar gv;

5140 if (holding & tag[0] ==".")

5141 /* tags starting with *.’ are reserved for libzfs */

new usr/src/cnd/ zf s/ zfs_main. c 79

5142 (void) fprintf(stderr, gettext("tag may not start with '.’\n"));

5143 usage(B_FALSE) ;

5144 1

5146 for (i =0; i < argc; ++i) {

5147 zfs_handl e_t *zhp;

5148 char parent[ZFS_MAXNAMELEN] ;

5149 const char *delim

5150 char *path = argv[i];

5152 delim= strchr(path, '@);

3153 if (delim== NULL) {

5154 (void) fprintf(stderr,

5155 gettext("' %' is not a snapshot\n"), path);

5156 ++errors;

5157 conti nue;

5158 }

5159 (void) strncpy(parent, path, delim- path);

5160 parent[delim- path] = '\0";

5162 zhp = zfs_open(g_zfs, parent,

5163 ZFS TYPE_FI LESYSTEM | ZFS_TYPE_VOLUME) ;

5164 if (zhp == NOLL) {

5165 ++errors,;

5166 conti nue;

5167 }

5168 if (holding) {

5169 if (zfs_hold(zhp, delimtl, tag, recursive, -1) != 0)
28 if (zfs_hold(zhp, delimtl, tag, recursive,
29 B_FALSE, -1) != 0)

5170 ++errors;

5171 } else {

5172 if (zfs_rel ease(zhp, delimtl, tag, recursive) != 0)

5173 ++errors;

5174 }

5175 zfs_cl ose(zhp);

5176 }

5178 return (errors !'= 0);

5179

____unchanged_portion_onitted_

new usr/ src/ cnd/ zhack/ zhack. ¢

R R R R

12756 Tue Jun 11 08:49:41 2013
new usr/ src/ cnd/ zhack/ zhack. ¢
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRR R
COONOUITAWNROW©O~NOUTSWN

23 * Copyright (c) 2012 by Del phix. Al rights reserved.
24 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
25 #endif /* | codereview */

*

/

28 /*

29 * zhack is a debugging tool that can wite changes to ZFS pool using |ibzpool
30 * for testing purposes. Altering pools with zhack is unsupported and may

31 * result in corrupted pools.

32 */

34 #include <stdio.h>

35 #include <stdlib.h>

36 #include <ctype. h>

37 #include <sys/zfs_context.h>
38 #include <sys/spa. h>

39 #include <sys/spa_inpl.h>

40 #incl ude <sys/dnu. h>

41 #include <sys/zap. h>

42 #include <sys/zfs_znode. h>

43 #incl ude <sys/dsl _synctask. h>
44 #incl ude <sys/vdev. h>

45 #include <sys/fs/zfs.h>

46 #i ncl ude <sys/dnu_obj set. h>
47 #include <sys/dsl _pool.h>

48 #incl ude <sys/zio_checksum h>
49 #incl ude <sys/zi o_conpress. h>
50 #include <sys/zfeature.h>

51 #include <sys/dnu_tx. h>

52 #undef ZFS_MAXNAMELEN

53 #undef verify

54 #include <libzfs. h>

56 extern bool ean_t zfeature_checks_di sabl e;

58 const char cndnane[] = "zhack";
59 libzfs_handle_t *g_zfs;

new usr/ src/ cnd/ zhack/ zhack. ¢

60 static inportargs_t g_inportargs;
61 static char *g_pool;
62 static bool ean_t g_readonly;

64 static void
65 usage(voi d)

66

67 (v0|d) fprintf(stderr,

68 Usage: % [-cC cachefil e] [-d dir] <subcommand> <args> ...\n"
69 "where <subcommand> <args> is one of the follow ng:\n"
70 "\'n", cndnane);

72 (v0|d) fprlntf(stderr

73 feature stat <pool >\ n"

74 " print information about enabl ed features\n"
75 " feature enable [-d desc] <pool > <feature>\n"

76 " add a new enabl ed feature to the pool\n"

77 " -d <desc> sets the feature’ s description\n"
78 " feature ref [-nmd] <pool > <feature>\n"

79 " change the refcount on the given feature\n"
80 " -d decrease instead of increase the refcount\n"
81 " -madd the feature to the | abel if increasing refcount\n"
82 "\ n"

83 " <feature> : should be a feature guid\n");

84 exit(1);

85 }

88 static void

89 fatal (const char *fnt, ...)

90

91 va_list ap;

93 va_start(ap, fnt);

94 (void) fprintf(stderr, "%: ", cndnane);

95 (void) vfprintf(st derr fnm, ap);

96 va_end(ap) ;

97 (void) fprintf(stderr, "\n");

99 exit(1);

100 }

102 /* ARGSUSED */

103 static int

104 space_del ta_cb(dmu_obj ect type t bonustype, void *data,

105 uint64_t *userp, uint64_t *groupp)

106 {

107 /*

108 * Is it avalid type of object to track?

109 */

110 if (bonustype != DMJ OT_ZNODE && bonustype != DMJ_OT_SA)
111 return (ENCENT)

112 (void) fprintf(stderr, "nodifying object that needs user accounting");
113 abort();

114 /* NOTREACHED */

115 }

117 /*

118 * Target is the dataset whose pool we want to open.
119 */

120 static void

121 i nport_pool (const char *target, bool ean_t readonly)

122 {

123 nvlist_t *config;
124 nvlist_t *pools;
125 int error;

new usr/ src/ cnd/ zhack/ zhack. ¢

126
127
128
129
130

132
133
134

148

150
151
152
153
154
155
156

158

159
160
161
162
163
164
165
166
167

169
170

172
173
174

176
177
178
179
180
181

183
184
185
186
187

189
190

char *sepp;

spa_t *spa;
nvpair_t *elem
nvlist_t *props;
const char *nane;

kernel _init(readonly ? FREAD : (FREAD | FWRITE));
g_zfs = libzfs_init();
ASSERT(g_zfs != NULL);

drmu_obj set _regi ster_type(DMJ_OST_ZFS, space_delta_ch);
g_readonly = readonly;

/*
* If we only want readonly access, it’'s OKif we find
* a potentially-active (ie, |nported into the kernel) pool fromthe
* default cachefile.
*
/
if (readonly && spa_open(target, &spa, FTAG == 0) {
spa_cl ose(spa, FTAQ;
return;

}
g_inportargs. uni que = B_TRUE;
g_i nportargs. can_be_active = readonly;
g_pool = strdup(target);
it ((sepp = strpb\rk(g pool, "/@)) != NULL)
p 0’
g_i erort ar gs. pool name = g_pool ;
pool s = zpool _search |nport(g_zfs, &g_i nportargs);

if (nvlist enpty(pool s)) {
if (pools == L || nvlist_next_nvpair(pools, NULL) == NULL) {
if ('g |np0rtargs can_be_active)
g_importargs. can_be_active = B_TRUE
i f (zpool _search_inport(g_. zfs “&g_importargs) != NULL ||
spa_open(target, &spa, FTAG) == 0) {

fatal ("cannot inport "%’ : pool is active; run "

\"zpool export ¥%s\" first\n",
g_pool , g_pool);

}

fatal ("cannot inmport %’ : no such pool available\n", g_pool);

}

el em = nvlist_next_nvpair(pools, NULL);
name = nvpair_nane(el em;
verify(nvpair_val ue_nvli st(el em &config) == 0);

props = NUL
i1 f (readonl y) {
verify(nvlist_alloc(&rops, NV_UNI QUE_NAME, 0) == 0);
verify(nvlist_add_uint 64(props,
zpool _prop_t o_nanme(ZPOOL_PROP_READONLY), 1) == 0);
}

zf eat ure_checks_di sabl e = B_TRUE;
error = spa_i nport (name, confl g, props, ZFS_| MPORT_NORMAL) ;
zfeature checks_di sabl e = B_FALSE;
if (error == EEXI ST)
error = 0;

if (error)
fatal ("can't inport '%’': %", name, strerror(error));

new usr/ src/ cnd/ zhack/ zhack. ¢

191 }
__unchanged_portion_onitted_

new usr/src/cnd/ ztest/ ztest.c

R R R R

159095 Tue Jun 11 08:49:41 2013
new usr/src/cnd/ ztest/ ztest.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»

LR

1/*

NNRNNNNNRE R R R R R R R
OUIRWNROOONOUTAWNROW©O~NOUTSWN

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and |imtations under the License.

file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al

Copyright (c) 2012 by Del phix. Al rights reserved.

Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
* Copyright (c)

*
*
*
*
*
*
*
*
*
*
* \When distributing Covered Code, include this CDDL HEADER i n each
*
*
*
*
*
*
*
*
*
*
*

2013 Steven Hartland. Al rights reserved.

#endif /* | codereview */

*/

The objective of this programis to provide a DMJ ZAP/ SPA stress test
that runs entirely in userland, is easy to use, and easy to extend.

The overall design of the ztest programis as follows:

(1) For each major functional area (e.g. adding vdevs to a pool,
creating and destroying datasets, reading and witing objects, etc)
we have a sinple routine to test that functionality. These
i ndi vidual routines do not have to do anything "stressful".

(2) W turn these sinple functionality tests into a stress test by
running themall in parallel, with as many threads as desired,
and spread across as nany datasets, objects, and vdevs as desired.

(3) Wile all this is happening, we inject faults into the pool to
verify that self-healing data really works.

(4) Every time we open a dataset, we change its checksum and conpression
functions. Thus even individual objects vary fromblock to bl ock
in which checksum they use and whet her they’re conpressed.

(5) To verify that we never |ose on-disk consistency after a crash,
we run the entire test in a child of the main process.
At randomtines, the child self-imoblates with a SI GKILL.
This is the software equivalent of pulling the power cord.
The parent then runs the test again, using the existing
storage pool, as nmany tines as desired. If backwards conpatability
testing Is enabled ztest will sometinmes run the "ol der" version
of ztest after a SIGKILL.

® Ok ok ok Sk Rk Ok O 3k R ok b 3k ok Rk SRk Ok % b % O % Ok % k%

rights reserved.

new usr/src/cnd/ ztest/ ztest.c

*

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

® Ok ok Rk Rk SRk ok % b % Ok b ok b 3k ok k% o F
~

(6) To verify that we don’t have future |eaks or tenporal incursions,
many of the functional tests record the transaction group nunber
as part of their data. When reading old data, they verify that
the transaction group nunber is less than the current, open txg.
If you add a new test, please do this if applicable.

When run with no arguments, ztest runs for about five mnutes and
produces no output If successful. To get alittle bit of information,
specify -V. To get nore information, specify -W, and so on.

To turn this into an overnight stress test, use -T to specify run tine.

You can ask nore nore vdevs [-v], datasets [-d], or threads [-t]
to increase the pool capacity, fanout, and overall stress |evel.

Use the -k option to set the desired frequency of kills.

When ztest invokes itself it passes all relevant information through a
tenporary file which is mmp-ed in the child process. This allows shared
menory to survive the exec syscall. The ztest_shared_hdr_t struct is always
stored at offset 0 of this file and contains information on the size and
nunmber of shared structures in the file. The information stored in this file
must remai n backwards conpatible with ol der versions of ztest so that

ztest can invoke them during backwards conpatibility testing (-B).

ncl ude <sys/zfs_context.h>
ncl ude <sys/spa. h>

ncl ude <sys/dnu. h>

ncl ude <sys/txg. h>

ncl ude <sys/dbuf. h>

ncl ude <sys/zap. h>

ncl ude <sys/dnu_obj set. h>
ncl ude <sys/poll.h>

ncl ude <sys/stat. h>

ncl ude <sys/tinme. h>

ncl ude <sys/wait.h>

ncl ude <sys/ man. h>

ncl ude <sys/resource. h>
ncl ude <sys/ zio. h>

ncl ude <sys/zil.h>

ncl ude <sys/zil _inpl.h>
ncl ude <sys/vdev_i npl . h>
ncl ude <sys/vdev_file.h>
ncl ude <sys/spa_inpl.h>
ncl ude <sys/netasl ab_i npl . h>
ncl ude <sys/dsl _prop. h>
ncl ude <sys/dsl _dat aset. h>
ncl ude <sys/dsl _destroy. h>
ncl ude <sys/dsl _scan. h>
ncl ude <sys/zi o_checksum h>
ncl ude <sys/refcount. h>
ncl ude <sys/ zfeature. h>
ncl ude <sys/dsl _userhol d. h>
ncl ude <stdio. h>

ncl ude <stdi o_ext.h>

ncl ude <stdlib. h>

ncl ude <uni std. h>

ncl ude <signal . h>

ncl ude <umem h>

ncl ude <dl fcn. h>

ncl ude <ctype. h>

ncl ude <mat h. h>

ncl ude <sys/fs/zfs. h>

ncl ude <l ibnvpair.h>

new usr/src/cnd/ ztest/ ztest.c

126 static int ztest_fd_data

=l
127 static int ztest fd_rand

-l

129 typedef struct ztest_shared_hdr {
130

ui nt 64_t zh_hdr_si ze;
131 ui nt 64 _t zh_opts_si ze;
132 ui nt 64_t zh_si ze;
133 ui nt 64_t zh_st at s_si ze;
134 ui nt 64_t zh_stats_count;
135 ui nt 64_t zh_ds_si ze;
136 ui nt 64_t zh_ds_count ;

137 } ztest_shared_hdr _t;
139 static ztest_shared_hdr_t *ztest_shared_hdr;

141 typedef struct ztest_shared_opts {
142 char zo_pool [MAXNAMELEN ;

143 char zo_dir [MAXNAMELEN ;

144 char zo_al t_ztest [MAXNAMVELEN ;
145 char zo_alt_|ibpat h] MAXNAMELEN ;
146 uint64_t zo_vdevs;

147 uint64_t zo_vdevtine;

148 size_t zo_vdev_si ze;

149 int zo_ashift;

150 int zo_mrrors;

151 int zo_raidz;

152 int zo_raidz_parity;

153 int zo_datasets;

154 int zo_threads;

155 uint64_t zo_passtinme;

156 uint64_t zo killrate;

157 int zo_verbose

158 int zo_init;

159 ui nt 64_t zotlme

160 uint64_t zo_maxl oops;

161 uint64_t zo_metasl ab_gang_bang;

162 } ztest_shared_opts_t;

164 static const ztest shared opts t ztest _opts_defaults = {

165 .zo_pool ={ 'z’,7t’, e, s‘,’t‘ N0 },

166 .zo_dir ={ /', 't’, 'm, "p, "\O },

167 .zo_alt_ztest —{ ’\0' 1,

168 .zo_alt_libpath = { "\0" },

169 .zo_vdevs = 5,

170 .zo_ashift = SPA M NBLOCKSHI FT,

171 .zo_mrrors = 2,

172 .zo_raidz = 4,

173 .zo_raidz parltyzl

174 .zo_vdev_si ze = SPA_M NDEVSI ZE,

175 .zo_datasets = 7,

176 .zo_threads = 23,

177 .zo_passtine = 60, /* 60 seconds */
178 .zo_killrate = 70, [* 70%Kkill rate */
179 .zo_verbose = 0,

180 .zo_init =1,

181 .zo_tinme = 300, /* 5 mnutes */

182 .zo_max| oops = 50, /* max | oops during spa_freeze()
183 .zo_net asl ab_gang_bang = 32 << 10

184 };

186 extern uint64_t netasl ab_gang_bang;
187 extern uint64_t metaslab_df _all oc_t hreshol d;

189 static ztest_shared_opts_t *ztest_shared_opts;
190 static ztest_shared_opts_t ztest_opts;

*/

new usr/src/cnd/ ztest/ ztest.c

192 typedef struct ztest_shared_ds {
193 ui nt 64 t zd_seq;
194 } ztest_shared_ds_t;

196 static ztest_shared_ds_t *ztest_shared_ds;
197 #define ZTEST_GET_SHARED DS(d) (&ztest_ “shared _ds[d])

199 #define BT _MAG C
200 #define MAXFAULTS() \

0x123456789abcdef ULL

201 (MAX(zs->zs_mrrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
203 enum ztest _io_type {

204 ZTEST_| O WRI TE_TAG

205 ZTEST_| O WRI TE_PATTERN,
206 ZTEST_| O WRI TE_ZERCES,

207 ZTEST_| O_TRUNCATE,

208 ZTEST_| O_SETATTR,

209 ZTEST_| O_REWRI TE,

210 ZTEST_|1 O_TYPES

211 };

213 typedef struct ztest_block_tag {
214 ui nt 64_t bt _magi c;
215 ui nt 64_t bt _obj set
216 ui nt 64_t bt _obj ect;
217 ui nt 64_t bt _of fset;
218 ui nt 64_t _gen;
219 ui nt 64_t bt _txg;
220 ui nt 64_t bt _crtxg;

221 } ztest_block_tag_t;
223 typedef struct bufwad {

224 ui nt 64_t bw_i ndex;
225 ui nt 64_t bw_t xg;
226 ui nt 64_t bw_dat a;
227 } bufwad_t;

229 [*

230 * XXX -- fix zfs range |ocks to be generic so we can use them here.
231 */

232 typedef enum {

233 RL_READER,

234 RL_WRI TER,

235 RL_APPEND

236 } rl_type_t;
238 typedef struct rll {

239 voi d *ril_witer;
240 int rl|_readers;
241 mut ex_t rll_lock;
242 cond_t ril_cv;

243 } rll_t;

245 typedef struct rl {

246 ui nt 64_t rl _object;
247 ui nt 64_t rl_offset;
248 ui nt 64_t rl_size;

249 rll_t *rl_l ock;
250 } rl_t;

252 #define ZTEST_RANGE_LOCKS 64
253 #define ZTEST_OBJECT_LOCKS 64
255 [*

256 * (bject descriptor. Used as a tenplate for object |ookup/createl/renove.
257 */

new usr/src/cnd/ ztest/ ztest.c

258 typedef struct ztest_od {
259 ui nt 64t od dir;

260
261
262
263
264
265
266
267
268

270
271
272
273
274
275
276
277
278
279
280
281
282
283

285
286
287
288

290
291
292
293
294

296
297
298
299
300

302
303

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ui nt 64_t

od_obj ect ;

dmu_obj ect _type_t od_type;
dmu_obj ect _type_t od_crtype;

ui nt 64_t od_bl ocksi ze;

ui nt 64_t od_cr bl ocksi ze;

ui nt 64_t od_gen;

ui nt 64_t od_crgen;

char od_name[MAXNAMELEN] ;

} ztest_od_t;
/*

* Per-dataset state.
*/

typedef struct ztest_ds {

ztest _shared_ds_t *zd_shared,;

obj set _t *zd_os;

rw ock_t zd_zi | og_| ock;

zilog_t *zd_zi | og;

ztest _od_t *zd_od; /* debugging aid */
char zd_name[MAXNAMELEN] ;

mut ex_t zd_di robj _| ock;

rlil_t zd_obj ect Iock[ZTEST OBJECT_LOCKS] ;
rll_t zd_range_T ock[ZTEST_RANGE_LOCKS] ;

} ztest_ds_t;

/*
* Per-iterat
*

ion state.

typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
typedef struct ztest_info {
ztest _func_t *zi _func; /* test function */
ui nt 64_t zi _iters; /* iterations per execution */
ui nt 64_t *zi _interval; /* execute every <interval > seconds */

} ztest_info_

t;

typedef struct ztest_shared_callstate {

ui nt 64_t zc_count ; /* per-pass count */
ui nt 64_t zc_tine; /* per-pass time */
ui nt64_t zc_next; /* next time to call this function */

} ztest_shared_callstate_t;

static ztest

shared_cal I state_t *ztest_shared_call state;

#define ZTEST GET_SHARED CALLSTATE(c) (&ztest_shared._ cal | stat e[c])

/*
* Not e:
S

ztest _func_t
ztest _func_t
ztest _func_t
ztest_func_t
ztest_func_t
ztest _func_t
ztest _func_t
ztest_func_t
ztest _func_t
ztest _func_t
ztest_func_t
ztest_func_t
ztest_func_t
ztest _func_t
ztest _func_t
ztest_func_t

these aren’t static because we want dladdr() to work.

ztest _dmu_read_wite;
ztest_dmu_write_parallel;

zt est_dmu_obj ect _al | oc free
ztest _dmu_conmi t _cal | backs;

ztest _zap;

ztest _zap_parallel;

ztest_zil _commit;

ztest_zil renDunt

ztest “dmu_read write _zcopy;

zt est _dnmu_obj set _create_destroy;
ztest_dmu_preal | oc;

ztest _fzap;

zt est _dmu_snapshot _creat e_destroy;
zt est _dsl _prop_get _set;

zt est _spa_prop_get _set;

zt est _spa_creat e_destroy;

new usr/src/cnd/ ztest/ ztest.c

324
325
326
327
328
329
330
331
332
333
334
335
336

338
339
340
341
342

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

380

382
383
384
385
386
387

388
389

ztest _func_t ztest_fault_inject;
ztest_func_t ztest_ddt_repair;
ztest_func_t ztest_dnu snapshot hol d;
ztest_func_t ztest_spa_renane;

ztest _func_t ztest_scrub;

ztest_func_t ztest_dsl _dataset_pronote_busy;
ztest_func_t ztest_vdev_attach_detach;
ztest_func_t ztest_vdev_LUN grow h;
ztest _func_t ztest_vdev_add_renove;
ztest_func_t ztest_vdev_aux_add_renove;
ztest_func_t ztest_split_pool ;
ztest_func_t ztest_reguid,;

ztest _func_t ztest_spa_upgrade;

uint64_t zopt_al ways = OULL * NANOSEC; /* all the tine */
uint64_t zopt_incessant = 1ULL * NANOCSEC / 10; /* every 1/10 second */
uint64_t zopt_often = 1ULL * NANCSEC; /* every second */
uint64_t zopt_sonetimes = 10ULL * NANOSEC, /* every 10 seconds */
uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
ztest_info_t ztest_info[] = {
Ztest _dmu_read wite, 1, & opt _al ways ,
ztest _dmu_write_par al | el, 10, &z opt _al ways ,
zt est _dnu_obj ect _al | oc free 1, &z opt _al ways ,
ztest _dnu_conmi t _cal | backs, 1, &zopt _al ways ,
ztest _zap, 30, &zopt _al ways ,
ztest _zap_parallel, 100, &z opt _al ways ,
ztest _split_pool, 1, &z opt _al ways ,
ztest_zi| _comm t, 1, &zopt _i ncessant },
ztest_zil rermunt 1, &zopt _sonetinmes },
zt est _dmu_r ead wrlte _zcopy, 1, &zopt _often ,
zt est_dnmu_obj set _create_destroy, 1, &zopt _often ,
ztest _dsl _prop_get _set, 1, & opt _often ,
zt est _spa_prop_get _set, 1, &zopt _sonetinmes },
#if 0
ztest _dnmu_preall oc, 1, &zopt _sonetines },
#endi f
ztest _f zap, 1, &zopt _sonetinmes },
zt est _dnu_snapshot _cr eat e_destr oy, 1, &z opt _sonetines },
zt est _spa_creat e_destroy, 1, &zopt _sonetines },
ztest _fault_inject, 1, & opt _sonetines },
ztest _ddt_repair, 1, &zopt _sonetinmes },
zt est _dnu_snapshot _hol d, 1, &z opt _sonetines },
zt est _reguid, 1, &zopt _sonetines },
zt est _spa_renane, 1, &zopt _rarely s
zt est _scrub, 1, &zopt _rarely ,
zt est _spa_upgr ade, 1, &zopt _rarely ,
zt est _dsl| _dat aset _pronot e_busy, 1, &zopt _rarely ,
ztest _vdev_attach_det ach, 1, & opt _sonetines },
zt est _vdev_LUN grow h, 1, &z opt _rarely ,
zt est _vdev_add_r enove, 1,
&zt est _opts.zo_vdevtine 1,
zt est _vdev_aux_add_r enpve, 1,
&zt est _opts.zo_vdevtime 1,
B
#def i ne ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
/*
* The following struct is used to hold a |ist of uncalled commt call backs.
* The cal | backs are ordered by txg nunber.
*
/
typedef struct ztest_cb_list

cal Thacks_| ock;
“cal | backs;

mutex_t zcl
list_t zcl
} ztest_cb_list_t;

new usr/src/cnd/ ztest/ ztest.c

391 /*

392 * Stuff we need to share witably between parent and child.
393 */

394 typedef struct ztest_shared {

395

bool ean_t zs_do_init;
396 hrtime_t zs_proc_st art ;
397 hrtime_t zs_proc_stop;
398 hrtime_t zs_thread_start;
399 hrtime_t zs_t hread_st op;
400 hrtime_t zs_thread kill;
401 ui nt 64_t zs_enospc_count
402 ui nt64_t zs_vdev_next _| eaf;
403 ui nt 64_t zs_vdev_aux;
404 ui nt 64_t zs_al | oc;
405 ui nt 64_t zs_space;
406 ui nt 64_t zs_splits;
407 ui nt 64_t zs_mrrors;
408 ui nt 64_t zs_net asl ab_sz;
409 ui nt 64_t zs_met asl ab_df _al | oc_t hreshol d;
410 ui nt 64_t zs_gui d;
411 } ztest_shared_t;
413 #define | D_PARALLEL -1ULL

"Us/ %. % | ua";
"%/ %. %. % | u";

415 static char ztest_dev_tenplate[]
416 static char ztest_aux_tenplate[]
417 ztest_shared_t *ztest_shared;

419 static spa_t *ztest_spa = NULL;
420 static ztest_ds_t *ztest_ds;

422 static nutex_t ztest_vdev_| ock;

424 | *
425 * The ztest _nane_|l ock protects the pool and dataset namespace used by
426 * the individual tests. To nodify the nanespace, consumers must grab
427 * this lock as witer. G abbing the lock as reader will ensure that the
428 * nanespace does not change while the lock is held.
429 */

t

430 static rw ock_t ztest_name_| ock;

432 static bool ean_t ztest_dunp_core = B _TRUE;
433 static bool ean_t ztest_exiting;

435 /* d obal commit callback Iist */
436 static ztest_cb_list_t zcl;

438 enum zt est _obj ect {

439 ZTEST_META DNCDE = 0,
440 ZTEST_DI ROBJ,

441 ZTEST_OBJECTS

442 };

444 static void usage(bool ean_t) __NORETURN,
446 | *

447 * These |ibumem hooks provide a reasonable set of defaults for the allocator’s

448 * debugging facilities.
449 */

450 const char *

451 _unmem debug_ini t()

452 {

453 return ("default,verbose"); /* $UMEM DEBUG setting */
454 }

new usr/src/cnd/ ztest/ ztest.c

456
457

459
460

462
464

466 static void

467 fatal (int do_perror, char *message, ...)

468 {

469 va_list args;

470 int save_errno = errno;

471 char buf [FATAL_MSG SZ7] ;

473 (void) fflush(stdout);

475 va_start(args, nessage)

476 (void) sprintf(buf, "ztest: ");

477 [* LI NTED */

478 (voi d) vsprl ntf(buf + strlen(buf), nmessage, args);

479 va_end(args);

480 if (do_perror) {

481 (voi d) snprl ntf(buf + strlen(buf), FATAL_MSG SZ - strlen(buf),
482 ": 9", strerror(save_errno));

483

484 (v0|d) fprlntf(stderr "o\ n", buf);

485 fatal _nsg = /* to ease debugging */
486 if (ztest_dunp_core)

487 abort ();

488 exit(3);

489 }

491 static int

492 str2shift(const char *buf)

493 {

494 const char *ends = "BKMGTPEZ";

495 int i;

497 if (buf[0] == "\0")

498 ret urn (0);

499 for (i =0; i < strlen(ends) i++) {

500 if (toupper(buf[0]) == ends[i])

501 br eak;

502

503 if (i == strlen(ends)) {

504 (voi d) fprintf(stderr, "ztest: invalid bytes suffix: %\n",
505 buf);

506 usage(B_ FALSE)

507 }

508 if (buf[1] =="'\0" || (toupper(buf[1]) =='B && buf[2] == "'\0")) {
509 return (10*1);

510 }

511 (void) fprintf(stderr, "ztest: invalid bytes suffix: %\n", buf);
512 usage(B_FALSE) ;

513 /* NOTREACHED */

514 }

516 static uint64_t

517 ni cenuntoul | (const char *buf)

518 {

519 char *end;

520 uint64_t val;

const char *
unmem | oggi ng_i nit(voi d)
458 {

}

return ("fail,contents"); /* $UVEM LOGG NG setting */

#def i ne FATAL_MSG_SZ 1024

char *fatal _nmsg;

new usr/src/cnd/ ztest/ ztest.c

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

547
548

550

552
553
554

556
557

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

}

val = strtoull(buf &end, 0);
if (end == buf) {

(void) fprintf(stderr, "ztest: bad nuneric value: %\n", buf);

usage(B FALSE)

} else if (end[0] ==
doubl e fval = strtod(buf, &end) ;
fval *= pow(2, str2shift(end));
if (fval > U NT64

_MAX) {
(v0|d) fprlntf(stderr "ztest: value too large: %\n",

usage(B FALSE)

}
val = (uint64_t)fval;
} else {
int shift = str2shift(end);
if (shift >=64 || (val << shift) >> shift != val)

{
(v0|d) fprlntf(stderr "ztest: value too large: %\n",
buf

usage(B_ FALSE)
}
val <<= shift;

return (val);

static void
usage(bool ean_t requested)
549 {

const ztest_shared_opts_t *zo = &ztest_opts_defaults;
char nice_vdev_size[10];

char ni ce_gang_bang[10] ;

FILE *fp = requested ? stdout : stderr;

ni cenun(zo- >zo_vdev_si ze, nice_vdev_si ze);
ni cenun(zo- >zo_net asl ab_gang_bang, ni ce_gang_bang) ;

(voi d) fprintf(fp, "Usage: %\n"

\t[-v vdevs (default: %1lu)]\n"

"\t[-s size_of _each_vdev (default: %s)]\n"

"\t[-a alignnent_shift (default: %l)] use O for randomn"
"\t -mmrror_copies (default: 9%d)]\n"

\t -r raidz_disks (default: %d)]\n"

t[-Rraidz_parity (default: %d)]\n"

t[-d datasets (default: 9%d)]\n"

t[-t threads (default: %d)]\n"

t[-g gang_bl ock_threshold (default: %)]\n"

t[-1 Init_count (default: %d)] |n|t|aI|ze pool i times\n"
t[-k Kill_percentage (default: %1 u%g]\

t[-p pool _nane (default: %)]\n"

t[-f dir (default: %)] file directory for vdev files\n"
t \/] verbose (use nultiple tinmes for ever nore bl ather)\n"
t use existing pool iInstead of creating new one\n"

t Ttlms(default %Ilu sec)] total run tine\n"

t[-F freezel oops (default: %Ilu)] max |oops in spa_freeze()\n"
t[-P passtine (default: %Ilu sec)] time per pass\n"

t[-B alt_ztest (default: <none>)] alternate ztest path\n"
t[-h] (print help)\n"

El

z0->z0_pool ,
(u_l ongl ong_t) zo- >zo_vdevs, [* -v */
ni ce_vdev_si ze, /* -s *]
zo->zo_ashift, /* -a */
Zo->zo_mirrors, s
z0->zo0_rai dz, /*
z0->zo0_raidz_parity, 0%

-r */
-R */

new usr/src/cnd/ ztest/ ztest.c

588 zo->zo_dat aset s, /* -d */
589 z0->zo_t hreads, /* -t */
590 ni ce_gang_bang, /* -g */
591 zo->zo_init, [* -1 */
592 (qungIongt)zo >zo_killrate, [* -k */
593 z0->z0_pool I* -p */
594 zo->zo_dir, [* -f */
595 (u_l ongl ong_t)zo- >zo_time, [* =T */
596 (u_l ongl ong_t) zo- >zo_nux| oops, I* -F */
597 (u_l ongl ong_t) zo- >zo_passti ne) ;

598 exit(requested ? 0 : 1);

599 }

601 static void

602 process_options(int argc, char **argv)

603 {

604 char *path;

605 ztest _shared_opts_t *zo = &ztest_opts;

607 int opt;

608 uint64_t val ue;

609 char altdir[MAXNAMELEN] = { 0 };

611 bcopy(&zt est_opts_defaults, zo, sizeof (*zo));

613 while ((opt = getopt(argc, argv,

614 "visiarmr: Rd t:gii:kip:f:VET: P:hF:B:")) !'= EOF) {
615 val ue = 0;

616 svutch (opt) {

617 ca A

618 case s’

619 case 'a':

620 case 'm

621 case 'r’:

622 case 'R :

623 case 'd':

624 case 't’:

625 case 'g':

626 case '1':

627 case "k':

628 case 'T':

629 case 'P':

630 case 'F':

631 val ue = ni cenuntoul | (optarg);

632 }

633 svutch (opt) {

634 case :

635 zo->zo_vdevs = val ue;

636 br eak;

637 case 's’:

638 z0->zo_vdev_si ze = MAX(SPA_M NDEVSI ZE, val ue);
639 break;

640 case 'a’:

641 zo->zo_ashift = val ue;

642 br eak;

643 case 'm:

644 zo->zo_mrrors = val ue;

645 br eak;

646 case 'r’:

647 zo->zo_raidz = MAX(1, value);

648 break;

649 case 'R :

650 z0->zo_raidz_parity = M N(MAX(val ue, 1),
651 break;

652 case 'd':

653 zo->zo_dat asets = MAX(1, value);

3);

10

new usr/src/cnd/ ztest/ ztest.c 11 new usr/src/cnd/ ztest/ ztest.c 12

654 br eak; 720 char *bin;
655 case 't': 721 char *ztest;
656 zo->zo_threads = MAX(1, value); 722 char *isa;
657 br eak; 723 int isalen;
658 case 'g':
659 zo->zo_net asl ab_gang_bang = MAX(SPA_M NBLOCKS| ZE << 1, 725 cmd = urmem al | oc(MAXPATHLEN, UMEM NOFAI L) ;
660 val ue) ; 726 real al tdir = umem al | oc(MAXPATHLEN, UVEM_ NOFAI L);
661 br eak;
662 case 'i’: 728 VERI FY(NULL ! = real pat h(get execnane(), cnd));
663 zo->zo_init = val ue; 729 if (0 != access(altdir, F_OK)) {
664 br eak; 730 ztest_dunp_core = B_FALSE;
665 case 'k’ : 731 fatal (B_TRUE, "invalid alternate ztest path: %",
666 zo->zo_killrate = val ue; 732 altdir);
667 br eak; 733 }
668 case 'p’: 734 VERI FY(NULL != real path(altdir, realaltdir));
669 (void) strlcpy(zo->zo_pool, optarg,
670 si zeof (zo->zo_pool)); 736 /*
671 br eak; 737 * 'cmd’ should be of the form "<anything>/usr/bin/<isa> ztest"
672 case 'f’: 738 * W want to extract <isa> to determine if we should use
673 path = real path(optarg, NULL); 739 * 32 or 64 bit binaries.
674 if (path == NULL) { 740 */
675 (void) fprintf(stderr, "error: %: %\n", 741 bin = strstr(cnmd, "/usr/bin/");
676 optarg, strerror(errno)); 742 ztest = strstr(bin, "/ztest");
677 usage(B_FALSE) ; 743 isa = bin + 9;
678 } else { 744 isalen = ztest - isa;
679 (void) strlcpy(zo->zo_dir, path, 745 (voi d) snpri ntf(zo— >zo_al t_ztest, si zeof (zo->zo_alt_ztest),
680 si zeof (zo->zo_dir)); 746 "Os/ usr/bin/%*s/ztest", realaltdir, isalen, isa);
681 } 747 (void) snprintf(zo- >zo al t_ i bpath, sizeof (zo->zo_alt_libpath),
682 br eak; 748 "Us/usr/lib/%*s", realaltdir, isalen, isa);
683 case 'V :
684 z0->z0_ver bose++; 750 if (0 !'= access(zo->zo_alt_ztest, X OK)) {
685 break; 751 zt est _dunp_ core = B_FALSE;
686 case 'E: 752 fatal (B_TRUE, "invalid alternate ztest: 9",
687 zo->zo_init = 0; 753 zo->zo_alt_ztest);
688 br eak; 754 } elseif (0 != access(zo- >zo_al t_libpath, X OK)) {
689 case 'T': 755 ztest _dunp_core = B FALSE;
690 zo->zo_time = val ue; 756 fatal (B_TRUE, "invalid alternate lib directory %",
691 br eak; 757 zo->zo_alt_libpath);
692 case 'P': 758 }
693 z0->zo_passtime = MAX(1, value);
694 br eak; 760 unem free(crmd, MAXPATHLEN);
695 case 'F: 761 unem free(real al tdir, MAXPATHLEN);
696 zo->zo_mexl oops = MAX(1, val ue); 762 }
697 break; 763 }
698 case 'B':
699 (void) strlcpy(altdir, optarg, sizeof (altdir)); 765 static void
700 br eak; 766 ztest_Kkill (ztest_shared_t *zs)
701 case 'h': 767 {
702 usage(B_TRUE) ; 768 zs->zs_al l oc = netasl ab_cl ass_get _al | oc(spa_normal _cl ass(ztest_spa));
703 br eak; 769 zs->zs_space = netasl ab_cl ass_get _space(spa_normal _cl ass(ztest_spa));
704 case '?': 770 (void) kill(getpid(), SIGKILL);
705 defaul t: 771 }
706 usage(B_FALSE) ;
707 br eak; 773 static uint64_t
708 } 774 ztest_randon{uint64_t range)
709 } 775 {

776 uint64_t r;
711 z0->zo_raidz_parity = M N(zo->zo_raidz_parity, zo->zo_raidz - 1);

778 ASSERT3S(ztest _fd_rand, >=, 0);
713 zo->zo_vdevtine =
714 (zo->zo_vdevs > 0 ? zo->zo_tine * NANOSEC / zo->zo_vdevs : 780 if (range == 0)
715 Ul NT64_MAX >> 2); 781 return (0);
717 if (strlen(altdir) > 0) { 783 if (read(ztest fd rand, &, sizeof (r)) != sizeof (r))
718 char *cnd; 784 fatal (T, Tshort read from /dev/urandoni);

719 char *realaltdir;

new usr/src/cnd/ ztest/ ztest.c

786
787 }

789 [*

return (r %range);

ARGSUSED */

790 static void

791 ztest

792 {
793
794 }

_record_enospc(const char *s)

zt est _shar ed- >zs_enospc_count ++;

796 static uint64_t
797 ztest_get_ashift(void)

798
799
800
801
802 }

if (ztest_opts.zo_ashift == 0)
return (SPA_M NBLOCKSHI FT + ztest_randon(3));
return (ztest_opts.zo_ashift);

804 static nvlist_t *

805 make_vdev_fil e(char *path, char *aux, char *pool,

806 {
807
808
809

811
812

814
815

817
818
819
820
821
822
823
824
825
826
827
828
829

831
832
833
834
835
836
837
838

840
841
842
843

845
846 }

size_t size, uint64_t ashift)
char pat hbuf [MAXPATHLEN] ;

uint64_t vdev;

nvlist_t *file;

if (ashift == 0)
ashift = ztest_get_ashift();

if (path == NULL) {
path = pat hbuf;

if (aux != NULL) {
vdev = ztest_shared->zs_vdev_aux;
(void) snprintf(path, sizeof (pathbuf)
ztest _aux_tenpl ate, ztest_opts. ZO_dI r,
pool == NULL ? ztest_opts.zo_pool : pool ,
aux, vdev);
} else {
vdev = ztest_shared->zs_vdev_next _| eaf ++;
(void) snprintf(path, sizeof (pathbuf),
ztest _dev_tenplate, ztest_opts.zo_dir,

848 static nvlist_t *

pool == NULL ? ztest_opts.zo_pool : pool, vdev);
}
}
if (size !=0) {
int fd = pen(path O RDWR | O CREAT | O TRUNC, 0666);
if (fd ==
fat al (1, "can't open %", path);
if (ftruncate(fd, size) !=0)
fatal (1, "can't ftruncate %", path);
(void) close(fd);
}
VERI FY(nvlist_alloc(& ile, NV_UNI QUE_NAME, 0) == 0);
VERI FY(nvlist_add_string(file, ZPOOL_CONFI G TYPE, VDEV_TYPE_FILE) == 0);
VERI FY(nvlist_add_string(file, ZPOOL_CONFI G PATH, path) == O)
VERI FY(nvlist_add_ui nt64(file, ZPOOL_CONFI G ASHI FT, ashift) == 0);
return (file);
849 make_vdev_rai dz(char *path, char *aux, char *pool, size_t size,

850
851 {

uint64_t ashift, int r)

13

new usr/src/cnd/ ztest/ ztest.c

852
853

855
856
857

859
860

862
863
864
865
866
867
868

870
871

873

875
876

878
879
880

}

nvlist_t *raidz, **child;
int c;
if (r <2
return (make_vdev_file(path, aux, pool, size, ashift));
child = unemal l oc(r * sizeof (nvlist_t *), UVEMNOFAIL);
for (c 0; ¢c <r;

C++)
Chl Id[c] = nmake_vdev_file(path, aux, pool, size, ashift);
VERI FY(nvlist_alloc(é&raidz,
VERI FY(nvlist_add_string(raidz,
VDEV_TYPE_RAI D7) == 0);
VERI FY(nvl i st _add_ui nt 64(r ai dz, ZPOO__CO\IFI G_NPARI TY,
zt est opts zo_raidz_pari ty) ==
VERI FY(nvlist_add_nvlist_array(raidz,
child, r) == 10);

NV_UNI QUE_NAME, 0) == 0);
ZPOOL_CONFI G_TYPE,

ZPCO__OCNFI G_CHI LDREN,
for (c =0; ¢ <r; c++)

nvlist_free(child[c]);
umrem free(child, r * sizeof (nvlist_t *));

return (raidz);

static nvlist_t *

make_vdev_m rror(char *path, char *aux, char *pool,

size_t size,

uint64_t ashift, int r, int

881 {

882
883

885
886

888

890
891

893
894
895
896
897

899
900

904
905

907
908
909

}

nvliist_t *mrror, **child;
int c;
if (m< 1)
return (make_vdev_raidz(path, aux, pool, size, ashift, r));
child = unemal l oc(m* sizeof (nvlist_t *), UMEM NOFAIL);

for (c = 0; c <m c++)
child[c] = make_vdev_raidz(path, aux, pool, size,

NV_UNI QUE_NAME, 0) ==
ZPOOL_CONFI G_TYPE,

ashift, r);

VERI FY(nvlist_alloc(&rrror,

VERI FY(nvlist_add_stri ng(m' rror,
VDEV_TYPE_M RROR) == 0);

VERI FY(nvl i st add nvlist array(m rror,
child, m == 0);

ZPOOL_CONFI G_CHI LDREN,
for (c = 0; c < m c++)

nvlist_free(child[c]);
unem free(child, m* sizeof (nvlist_t *));

return (mrror);

static nvlist_t *

make_vdev_root (char *path, char *aux, char *pool,

int

910 {

911
912

914
916

size_t size,
log, int r, int m int t)

nvlist_t *root,
int c;

ASSERT(t > 0);
child = unemal l oc(t * sizeof (nvlist_t *), UVEMNOFAIL);

**chil d;

14

uint64_t ashift,

new usr/src/cnd/ ztest/ztest.c 15
918 for (c =0; c <t; c++) {

919 chil d[c] = make_vdev_m rror(path, aux, pool, size, ashift,
920

921 VERI FY(nvI i st_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG
922 log) == 0);

923 }

925 VERI FY(nvlist_alloc(& oot, NV_UNIQUE NAME, 0) == 0);

926 VERI FY(nvlist_add_string(root, ZPOOL_CONFI G TYPE VDEV TYPE_ROOT) == 0);
927 VERI FY(nvlist_add_nvli st_array(root aux ? aux : ZPOOL_CONFI G_CHI LDREN,
928 child, t) == 0);

930 for (c = 0; c <t; c++)

931 nvlist_free(child[c]);

933 umem free(child, t * sizeof (nvlist_t *));

935 return (root);

936 }

938 /*

939 * Find a random spa version. Returns back a random spa version in the
940 * range [initial_version, SPA VERSI ON FEATURES] .

941 */

942 static uint64_t

943 ztest_random spa_version(uint64_t initial_version)

944 {

945 uint64_t version = initial_version;

947 if (version <= SPA_VERSI ON BEFORE_FEATURES) {

948 version = version +

949 zt est _random(SPA_VERSI ON_BEFORE_FEATURES - version + 1);
950 }

952 if (version > SPA VERSI ON BEFORE FEATURES)

953 version = SPA VERSI ON_FEATURES;

955 ASSERT(SPA_VERSI ON_| S_SUPPORTED(ver si on)) ;

956 return (version);

957 }

959 static int

960 ztest_random bl ocksi ze(voi d)

961 {

962 return (1 << (SPA_M NBLOCKSHI FT +

963 zt est _randon{ SPA_MAXBLOCKSHI FT - SPA_M NBLOCKSHI FT + 1)));
964 }

966 static int

967 ztest_random.i bshift(void)

968 {

969 return (DN_M N_| NDBLKSHI FT +

970 zt est _randon{ DN_MAX_| NDBLKSHI FT - DN_M N_I NDBLKSHI FT + 1))
971 }

973 static uint64_t

974 ztest_random vdev_top(spa_t *spa, bool ean_t |og_ok)

975 {

976 uint64_t top;

977 vdev_t *rvd = spa->spa_root_vdev;

978 vdev_t *tvd;

980 ASSERT(spa_confi g_hel d(spa, SCL_ALL, RWREADER) != 0);

982 do {

983 top = ztest_randon(rvd->vdev_children);

new usr/src/cnd/ ztest/ ztest.c 16

984

tvd = rvd->vdev_child[top];

985 } while (tvd->vdev_ishole || (tvd- Svdev_i sl og &% !log_ok) ||
986 tvd->vdev_mg == NULL || tvd->vdev_ng->ng_class == NULL);
988 return (top);
989 }
991 static uint64_t
992 ztest_randomdsl _prop(zfs_prop_t prop)
993 {
994 uint64_t val ue;
996 do {
997 val ue = zfs_prop_random val ue(prop, ztest_randon(-1ULL));
998 } while (prop == ZFS PROP_CHECKSUM && val ue == ZI O CHECKSUM OFF)
1000 return (val ue);
1001 }
1003 static int
1004 ztest_dsl _prop_set_ui nt64(char *osnane, zfs_prop_t prop, uint64_t val ue,
1005 bool ean_t inherit)
1006 {
1007 const char *propnane = zfs_prop_to_nane(prop);
1008 const char *val nang;
1009 char set poi nt [MAXPATHLEN ;
1010 uint64_t curval;
1011 int error;
1013 error = dsl _prop_set_i nt(osname pr opnane,
1014 (i nherlt ? ZPROP_SRC NONE : ZPROP_SRC LOCAL), val ue);
1016 if (error == ENOSPC) {
1017 zt est _record_enospc(FTAG ;
1018 return (error);
1019 1
1020 ASSERTO(error);
1022 VERI FYO(ds| _prop_get _i nt eger (osnanme, propnanme, &curval, setpoint));
1024 if (ztest_opts.zo_verbose >= 6)
1025 VERI FY(zfs_prop_i ndex_to_string(prop, curval, &alnanme) == 0);
1026 (void) printf("% % = % at '%’'\n",
1027 osnane, propnane, val nane, setpoint);
1028 }
1030 return (error);
1031 }
1033 static int
1034 ztest_spa_prop_set_ui nt 64(zpool _prop_t prop, uint64_t val ue)
1035 {
1036 spa_t *spa = ztest_spa;
1037 nvlist_t *props = NULL;
1038 int error;
1040 VERI FY(nvlist_alloc(&props, NV_UNI QUE NAME, 0) == 0);
1041 VERI FY(nvlist_add_ui nt 64(props, zpool _prop_to_nanme(prop), value) == 0);
1043 error = spa_prop_set(spa, props);
1045 nvlist_free(props);
1047 if (error == ENOSPC) {
1048 zt est _record_enospc(FTAG ;
1049 return (error);

new usr/src/cnd/ ztest/ ztest.c

1050 }

1051 ASSERTO(error)

1053 return (error);

1054 }

1056 static void

1057 ztest_rll_init(rll_t *rll)

1058 {

1059 ril->rll_witer = NULL;

1060 rll->rll_readers = 0;

1061 VERIFY(_nutex_in|t(&r >rll_lock, USYNC THREAD, NULL) == 0);
1062 VERI FY(cond_init (& I1->rll_cv, USYNC THREAD, NULL) == 0);
1063 }

1065 static void

1066 ztest_rll _destroy(rll_t *rll)

1067 {

1068 ASSERT(rll->rll_witer == NULu

1069 ASSERT(rl1->rll _readers == 0);

1070 VERI FY(_nut ex destroy(&rll—>r|| _lock) == 0)

1071 VERI FY(cond_destroy(&l1->rll_cv) == 0)

1072 }

1074 static void

1075 ztest_rll _lock(rll_t *rll, rl_type_t type)

1076 {

1077 VERI FY(nut ex_l ock(& Il ->rll_l ock) == 0)

1079 if (type == RL_READER) {

1080 while (rll->rl1_witer !'= NULL)

1081 (void) cond wait(&II->11_cv, &ll->rll_lock)
1082 rll->rll_readers++

1083 } else {

1084 while (rll->rll_witer !'= NULL || rll->rll_readers)
1085 (void) cond_wait(&Ill->rll_cv, &IlI->rll_Iock)
1086 ril->rll_witer = curthread

1087 }

1089 VERI FY(mut ex_unl ock(& I1->rll_l ock) == 0)

1090 }

1092 static void

1093 ztest_rll_unlock(rll_t *rll)

1094 {

1095 VERI FY(mutex_| ock(& I 1->rll_lock) == 0)

1097 if (rll->rll_witer) {

1098 ASSERT(rl1->rll_readers == 0)

1099 ril->rll_witer = NULL

1100 } else {

1101 ASSERT(rll->rll_readers != 0)

1102 ASSERT(rll->rll_witer == NULL)

1103 rll->rll_readers--

1104 }

1106 if (rll->rll_witer == NULL && rll->rll_readers == 0)

1107 VERI FY(cond_| broadcast(&rll->rl| “cv) == 0)

1109 VERI FY(mut ex_unl ock(& I1->rll_l ock) == 0)

1110 }

1112 static void

1113 ztest_object_| ock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1114 {

1115 rll_t *rll = &d->zd_obj ect_| ock[obj ect & (ZTEST_OBJECT_LOCKS -

Nl

new usr/src/cnd/ ztest/ ztest.c

nl;

:O);

1117 ztest_rll_lock(rll, type)

1118 }

1120 static void

1121 ztest_obj ect_unl ock(ztest_ds_t *zd, uint64_t object)

1122 {

1123 rll_t *rll = &zd->zd_obj ect _| ock[object & (ZTEST_OBJECT_LOCKS -
1125 ztest_rll _unlock(rll);

1126 }

1128 static rl_t *

1129 ztest_range_| ock(ztest_ds_t *zd, uint64_t object, uint64_t offset
1130 uint64_t size, rl_type_t type)

1131 {

1132 uint64_t hash = object " (offset % (ZTEST_RANGE_LOCKS + 1));
1133 rll_t *rll = &zd->zd_range_| ock[hash & (ZTEST_RANGE_LOCKS - 1)];
1134 rl_t *rl;

1136 rl = umem.al | oc(sizeof (*rl), UVEM NOFAI L)

1137 rl->rl_object = object;

1138 rl->rl_offset = offset

1139 rl->rl_size = size

1140 rl->rl_lock =rll;

1142 ztest_rll_lock(rll, type)

1144 return (rl);

1145 }

1147 static void

1148 ztest_range_unl ock(rl _t *rl)

1149 {

1150 rll_t *rll =rl->rl_lock

1152 ztest _rll _unlock(rll);

1154 urem free(rl, sizeof (*rl));

1155 }

1157 static void

1158 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1159 {

1160 zd->zd_os = os

1161 zd->zd_zil og = dnu_obj set _zil (0s);

1162 zd->zd_shared =

1163 drmu_obj set _nane(os, zd->zd_nane)

1165 if (zd->zd_shared != NULL)

1166 zd->zd_shared- >zd_seq =

1168 VERI FY(rw ock_i nit (&d->zd_zil og_| ock, USYNC_THREAD, NULL) == 0)
1169 VERI FY(_nut ex_i ni t (&d->zd_di robj _| ock, USYNC_THREAD, NULL)
1171 for (int | =0; | < ZTEST_OBJECT_LOCKS; | ++)

1172 ztest _rll _init(&d->zd_obj ect Iock[l])

1174 (int I =0; | < ZTEST_RANGE_LOCKS; | ++)

1175 ztest _rll_init(&d->zd _range_l| ock[1]);

1176 }

1178 static void

1179 ztest_zd_fini (ztest_ds_t *zd)

1180 {

1181 VERI FY(_nut ex_dest r oy(&zd- >zd_di robj _| ock) == 0)

new usr/src/cnd/ ztest/ ztest.c

1183 for (int I =0; | < ZTEST_OBJECT_LOCKS; | ++)

1184 ztest _rll _destroy(&zd->zd obJect _lock[I]);

1186 (int I =0; | < ZTEST_RANGE_LOCKS; | ++)

1187 ztest _rll _destroy(&zd->zd_range_l ock[I]);

1188 }

1190 #define TXG M GHTWAIT (ztest_randon(10) == 0 ? TXG NOMIT : TXG WAIT)
1192 static uint64_t

1193 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1194 {

1195 uint64_t txg

1196 int error;

1198 /*

1199 * Attenpt to assign tx to some transaction group

1200 */

1201 error = dnu_tx_assign(tx, txg_how;

1202 if (error) {

1203 if (error == ERESTART) {

1204 ASSERT(t xg_how == TXG NOMI T)

1205 dmu_t x_wai t (t x)

1206 } else {

1207 ASSERT3U(error, ==, ENGCSPC);

1208 zt est _record_enospc(tag)

1209 }

1210 dmu_t x abort(tx)

1211 return (0

1212 }

1213 txg = dnu_t x_get _txg(tx);

1214 ASSERT(txg != 0);

1215 return (txg);

1216 }

1218 static void

1219 ztest_pattern_set(void *buf, uint64_t size, uint64_t val ue)

1220 {

1221 uint64 t *ip =

1222 uint64_t *ip_ end = (U|nt64 t *)((uintptr_t)buf + (uintptr_t)size);
1224 whi | e (|p < ip_end)

1225 *i p++ = val ue;

1226 }

1228 static bool ean_t

1229 ztest_pattern_match(void *buf, uint64_t size, uint64_t val ue)
1230 {

1231 uint64_t *ip = buf;

1232 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1233 uinte4_t diff = 0;

1235 while (ip < ip_end)

1236 diff |= (value - *ip++)

1238 return (diff == 0)

1239 }

1241 static void

1242 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object
1243 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1244 {

1245 bt - >bt _magi ¢ = BT_MAG C;

1246 bt - >bt _obj set = dmu_obj set _i d(0s)

1247 bt - >bt _obj ect = obj ect;

new usr/src/cnd/ ztest/ ztest.c

1248 bt - >bt _of f set = of f set

1249 bt - >bt _gen = gen

1250 bt->bt_txg = txg

1251 bt->bt_crtxg = crtxg

1252 }

1254 static void

1255 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object
1256 uint64_t offset, uint64_t gen, ui nt 64 _t txg, U|nt64_t crtxg)
1257 {

1258 ASSERT(bt - >bt _magi c == BT_MAGI O);

1259 ASSERT(bt - >bt _obj set == dnu ob]set _id(os))

1260 ASSERT(bt - >bt _obj ect == obj ect);

1261 ASSERT(bt - >bt _of fset == offset);

1262 ASSERT(bt - >bt _gen <= gen)

1263 ASSERT(bt - >bt _t xg <= t xg)

1264 ASSERT(bt - >bt _crtxg == crtxg)

1265 }

1267 static ztest_block_tag_ t *

1268 ztest_bt_bonus(dmu_buf _t *db)

1269 {

1270 drmu_obj ect _info_t doi

1271 ztest _bl ock_tag_t *bt

1273 dmu_obj ect _i nfo_from db(db, &doi);

1274 ASSERT3U(doi . doi _bonus_si ze, <=, db- >db size)

1275 ASSERT3LKd0| doi _bonus_si ze, >=, sizeof (* bt))

1276 bt = (void *)((char *)db- >db data + doi . d0|_bonus_size - sizeof (*bt))
1278 return (bt);

1279 }

1281 /*

1282 * ZIL | oggi ng ops

1283 */

1285 #define Irz_type | r_nmode

1286 #define |rz_bl ocksize Ir_uid

1287 #define lrz_ibshift Ir_gid

1288 #define |rz_bonustype I r_rdev

1289 #define |Irz_bonuslen Ir_crtine[1]

1291 static void

1292 ztest_log_create(ztest_ds_t *zd, dnu_tx_t *tx, Ir_create_t *Ir)
1293 {

1294 char *name = (void *)(lr + 1); /* nanme follows Ir
1295 size_t nanesize = strlen(nane) + 1

1296 itx_t *itx;

1298 if (zil_replaying(zd->zd_zilog, tx))

1299 return;

1301 itx = zil_itx_create(TX_CREATE, sizeof (*Ir) + nanesize)
1302 bcopy(& r->lr_common + 1, &tx->itx_|Ir + 1,

1303 sizeof (*Ir) + nanesize - sizeof (Ir_t))

1305 zil _itx_assign(zd->zd_zilog, itx, tx);

1306 }

1308 static void

1309 ztest_l og_renove(ztest_ds_t *zd, dmu_tx_t *tx, Ir_renove_t *lr, uint64_t object)
1310 {

1311 char *nane (v0|d *)(lr + 1); /* nanme follows Ir
1312 size_t nanesize = strlen(nane) + 1;

1313 itx_t *itx;

*/

*/

new usr/src/cnd/ ztest/ ztest.c

1315
1316

1318
1319
1320

1322
1323
1324

1326
1327

}

if (zil_replaying(zd->zd_zilog, tx))
return;

itx = zil _itx_create(TX_REMOVE, sizeof (*Ir) + nanesize);
bcopy(& r->Ir_conmon + I, &itx->itx_Ir + 1,
sizeof (*Ir) + nanesize - sizeof (Ir_t));

itx->itx_oid = object;
zi |l _itx_assign(zd->zd_zilog, itx, tx);

static void

zt est

1328 {

1329
1330

1332
1333

1335
1336

1338
1339

1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1353
1354

1356
1357

1359
1360

}

_log_wite(ztest_ds_t *zd, dmu_tx_t *tx, lr_wite_t *Ir)

itx_t *itx;
itx_w_state_t wite_state = ztest_randon{ WR_NUM STATES);

if (zil_replaying(zd->zd_zilog, tx))
return;

if (Ir->lr_length >ZIL_I\/AX LOG_DATA)
wite_state = WR | NDI RECT;

reat e(TX_WRI TE,
) + (wite_state == WR COPIED ? Ir->Ir_length : 0));

if (wite_state == R _COPI ED &&
dmu_r ead(zd- >zd os, Ir->r_foid, Ir->r_offset, Ir->r_length,
((Ir_wite_t *)<x >itx_|Ir) + 1, DMJ_READ NOPREFETCH) 1= 0)
zi |l _itx_destroy(itx);
itx = zil_itx_create(TX_WRI TE, sizeof (*Ir));
wite_state = WR_NEED COPY;

Itx->tx_private = zd

itx->tx_w_state = V\.flte state;

itx-> tx_sync = (ztest randon(B) == 0);

itx->itx_sod += (wite_state == WR_ NEED COPY ? Ir->lr_length : 0);

bcopy(& r->lr_common + 1, & tx->itx_Ir + 1,
sizeof (*Tr) - si zeof (Ir_t));

zi |l _itx_assign(zd->zd_zilog, itx, tx);

static void

zt est

1361 {

1362

1364
1365

1367
1368
1369

1371
1372
1373

1375
1376

}

_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, Ir_truncate_t *Ir)

itx_t *itx;

if (zil_replaying(zd->zd_zilog, tx))
return;

itx = zil_itx_create(TX_TRUNCATE, sizeof (*Ir));
bcopy(& r->lr_common + 1, &tx->itx_|Ir + 1,
sizeof (*Ir) sizeof (lr_t));

itx->itx_sync = B_FALSE;
zi |l _itx_assign(zd->zd_zilog, itx, tx);

static void

zt est

1377 {

1378

_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *Ir)

itx_t *itx;

new usr/src/cnd/ ztest/ztest.c 22
1380 if (zil_replaying(zd->zd_zilog, tx))

1381 return;

1383 itx = zil_itx_create(TX_SETATTR, sizeof (*Ir));

1384 bcopy(& r=>Ir_common + 1, & tx->itx_Ir + 1,

1385 sizeof (*Tr) - si zeof (Ir_t));

1387 itx->itx_sync = B_FALSE;

1388 zil _itx a55|gn(zd ->zd_zilog, itx, tx);

1389 }

1391 /*

1392 * ZIL replay ops

1393 */

1394 static int

1395 {zt est_replay_create(ztest_ds_t *zd, Ir_create_t *Ir, bool ean_t byteswap)
1396

1397 char *name = (void *)(Ir + 1); /* nanme follows Ir */
1398 obj set _t *os = zd->zd_os;

1399 ztest _block_tag_t *bbt;

1400 dnu_buf _t *db;

1401 dmu_tx_t *tx;

1402 uint64_t txg;

1403 int error = 0;

1405 if (byteswap)

1406 byt eswap_ui nt64_array(lr, sizeof (*Ir));

1408 ASSERT(| r->lr _doid == ZTEST_DI ROBJ);

1409 ASSERT(nane[0] != '\0");

1411 tx = dmu_tx_create(os);

1413 dmu_t x_hol d_zap(tx, lr->lr_doid, B_TRUE, nane);

1415 if (Ir->rz_type == DMJ OT_ZAP_OTHER)

1416 drmu_t X_ hold _zap(tx, DMJ_NEW OBJECT, B TRUE, NULL)
1417 } else {

1418 drmu_t x_hol d_bonus(tx, DMJ_NEW OBJECT);

1419 }

1421 txg = ztest_tx_assign(tx, TXGWAIT, FTAQ;

1422 if (txg == 0)

1423 return (ENOSPC);

1425 ASSERT(drmu_obj set _zil (o0s)->zl _replay == !llr->lr_foid);
1427 if (lr->lrz_type ——DNUOTZAPOTHER) {

1428 if (Ir->r_foid == 0) {

1429 lr->lr f0| d = zap_create(os,

1430 Ir=>lrz_type, |r->lrz_bonustype,

1431 I r->lrz_bonuslen, tx);

1432 } else {

1433 error = zap_create_clain(os, Ir->lr_foid,
1434 Ir->rz_type, Ir->lrz_bonustype,

1435 I r->lrz_bonuslen, tx);

1436

1437 } else {

1438 if (Ir->r_foid == {

1439 Ir->r_foid = dmu_obj ect _al | oc(os,

1440 lr->lrz_type, 0, Ir->lrz_bonustype,
1441 I r->lrz_bonuslen, tx);

1442 } else {

1443 error = dmu_object_clain{os, Ir->lr_foid,
1444 lr->lrz_type, 0, lr->lrz_bonustype,
1445 Ir->lrz_bonuslen, tx);

new usr/src/cnd/ ztest/ztest.c 23
1446 }

1447 }

1449 if (error) {

1450 ASSERT3U(error, ==, EEXIST);

1451 ASSERT(zd->zd_zi | og- >zl _repl ay);

1452 dmu_t x_commi t (tx);

1453 return (error);

1454 }

1456 ASSERT(Ir->Ir_foid !'= 0)

1458 if (Ir->rz_type != DMJ_OT_ZAP_OTHER)

1459 VERI FY3U(0, ==, dnu_obj ect_set_bl ocksi ze(os, Ir->lr_foid,
1460 Ir->lrz_blocksize, Ir->lrz_ibshift, tx));

1462 VERI FY3U(0, ==, dnu_bonus_hold(os, Ir->lr_foid, FTAG &db));

1463 bbt = ztest bt _bonus(db);

1464 drmu_buf _wi IT_dirty(db, tx);

1465 ztest _bt_generate(bbt, os, Ir->r_foid, -1ULL, Ir->lr_gen, txg, txg);
1466 dmu_buf _rel e(db, FTAG) ;

1468 VERI FY3U(0, ==, zap_add(os, Ir->lIr_doid, nanme, sizeof (uint64_t), 1,
1469 &r->r_foid, tx));

1471 (void) ztest_log_create(zd, tx, Ir);

1473 dmu_t x_commi t (tx);

1475 return (0);

1476 }

1478 static int

1479 ztest _replay_renove(ztest_ds_t *zd, Ir_renpve_t *Ir, bool ean_t byteswap)
1480 {

1481 char *narre:(vmd*)(lr + 1); /* nane follows Ir */
1482 obj set _t *os = zd->zd_os;

1483 dmu_obj ect _info_t doi;

1484 dmu_tx_t *tx;

1485 uint64_t obj ect t xg;

1487 if (byteswap)

1488 byt eswap_ui nt64_array(lr, sizeof (*Ir));

1490 ASSERT(Ir->lr_doid == ZTEST_DI ROBJ) ;

1491 ASSERT(nane[0] != '\0");

1493 VERI FY3UY(0, ==,

1494 zap_| ookup(os Ir->lr_doid, name, sizeof (object), 1, &object));
1495 ASSERT(obj ect !'= 0);

1497 zt est _obj ect _| ock(zd, object, RL_WRI TER);

1499 VERI FY3U(0, ==, dnmu_obj ect _info(os, object, &doi));

1501 tx = dnmu_tx_create(os);

1503 dmu_t x_hol d_zap(tx, Ir->lr_doid, B FALSE, nane);

1504 dmu_t x_hol d_free(tx, object, 0, DMJ OBJECT_END);

1506 txg = ztest_tx_assign(tx, TXGWAIT, FTAG;

1507 if (txg == 0)

1508 zt est _obj ect _unl ock(zd, object);

1509 return (ENOSPC);

1510 1

new usr/src/cnd/ ztest/ ztest.c

1512 if (doi.doi_type == DMJ_OT_ZAP_OTHER) {

1513 VERI FY3U(0, ==, zap_destroy(os, object, tx));
1514 } else {

1515 VERI FY3U(0, ==, dnu_object_free(os, object, tx));
1516

1518 VERI FY3U(0, ==, zap_renove(os, Ir->lr_doid, nane, tx));
1520 (void) ztest_log_remove(zd, tx, Ir, object);

1522 drmu_t x_commi t (tx);

1524 zt est _obj ect _unl ock(zd, object);

1526 return (0);

1527 }

1529 static int

1530 ztest_replay_wite(ztest_ds_t *zd, Ir_wite_t *Ir, bool ean_t byteswap)
1531 {

1532 obj set _t *os = zd->zd_os;

1533 void *data = Ir + 1; /* data follows Ir */
1534 uint64_t offset, |ength;

1535 ztest _block_tag_t *bt = data;

1536 ztest _block_tag_t *bbt;

1537 ui nt 64_t gen, txg, Irtxg, crtxg;

1538 drmu_obj ect _info_t doi;

1539 dmu_tx_t *tx;

1540 drmu_buf _t *db

1541 arc_buf _t *abuf = NULL;

1542 rl_t *rl;

1544 if (byteswap)

1545 byt eswap_uint64_array(lr, sizeof (*Ir));

1547 of fset = Ir->lr_offset;

1548 length = Ir->lr_length;

1550 /* 1If it’s a dmu_sync() block, wite the whole block */
1551 if (lr->lr commnlrcreclen == sizeof (lr_wite_t)) {
1552 uint 64_t bl ocksi ze = BP GET_LSIZE(& r->Ir_bl kptr);
1553 if (length < blocksize) {

1554 of fset -= offset % bl ocksi ze;

1555 I ength = bl ocksi ze;

1556 }

1557 }

1559 if (bt->bt_magic == BSWAP_64(BT_MAG Q))

1560 byt eswap_ui nt 64_array(bt, sizeof (*bt));

1562 if (bt->bt_magic != BT_MAG Q)

1563 bt = NULL;

1565 ztest _object _l ock(zd, Ir->lr_foid, RL_READER);

1566 rl = ztest_range_|l ock(zd, Ir->lr_foid, offset, length, RL_WRITER);
1568 VERI FY3U(0, ==, dmu_bonus_hold(os, Ir->lr_foid, FTAG &db));
1570 dmu_obj ect _i nfo_from db(db, &doi);

1572 bbt = ztest_bt _bonus(db);

1573 ASSERTSU(bbt >bt _magic, ==, BT_MAG O);

1574 gen = bbt->bt_gen;

1575 crtxg = bbt—>bt _crtxag;

1576 lrtxg = lr->r_common.lrc_txg;

new usr/src/cnd/ ztest/ ztest.c 25

1578
1580

1582
1583
1584

1586
1587
1588
1589
1590
1591
1592
1593
1594

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

1608
1609
1610
1611
1612
1613
1614

1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626

1628
1629
1630
1631
1632
1633

1635
1636
1637
1638
1639
1640

1642

tx = dnu_tx_create(os);
dmu_tx_hold_wite(tx, Ir->r_foid, offset, length);

if (ztest_random(8) == 0 && Iength == doi . doi _data_bl ock_si ze &&
P2PHASE(of f set , Iengt h) ==
abuf = dn'u_request_arcbuf(db | ength);

txg = zt est tx_assign(tx, TXGWAIT, FTAG;
if (txg == 0

|f (abuf != NULL)

dmu_r et urn_ar cbuf (abuf);

dmu_buf _rele(db, FTAQ;

ztest _range_unl ock(rl);

zt est _obj ect _unl ock(zd, lr->r_foid);
) return (ENGSPC);

if (bt != NULL) {
/*

* Usually, verify the old data before witing new data --
* but not always, because we also want to verify correct
* behavi or when the data was not recently read Into cache.
*
/

ASSERT(of f set % doi . doi _dat a_bl ock_si ze == 0);
if (ztest_randon(4) != 0) {

int prefetch = ztest_random(2) ?

DMU_READ PREFETCH : DMJ_READ NO PREFETCH;
ztest _block_tag_t rbt;

VERI FY(dnu_read(os, Ir->r_foid, offset,
si zeof (rbt), &rbt prefetch) == 0);
if (rbt.bt_magic == BT _MAG O
ztest_bt_verify(&bt, os, lr->lr_foid,
of fset, gen, txg, crtxg);

/*
* Wites can appear to be newer than the bonus buffer because
* the ztest_get_data() callback does a dnu_read() of the
* open-context data, which may be different than the data
* as it was when the wite was generat ed.
*
/
if (zd->zd_zilog->zl _replay) {
ztest _bt_verify(bt, os, Ir->r_foid, offset,
MAX(gen, bt->bt_gen), MAX(txg, |rtxg),
bt - >bt _crtxg);
}

/*

* Set the bt's gen/txg to the bonus buffer’s gen/txg
* so that all of the usual ASSERTs will work.

*/

ztest _bt_generate(bt, os, Ir->lr_foid, offset, gen, txg, crtxg);

}

if (abuf == NULL) {

dnu_wite(os, Ir->r_foid, offset, length, data, tx);
} else {

bcopy(data, abuf->b_data, |ength);

dmu_assi gn_ar cbuf (db, offset, abuf, tx);

}

(void) ztest_log wite(zd, tx, Ir);

new usr/src/cnd/ ztest/ ztest.c

1644 dmu_buf _rel e(db, FTAG;

1646 dmu_t x_commi t (tx);

1648 ztest _range_unl ock(rl);

1649 zt est _obj ect _unl ock(zd, Ir->Ir_foid);

1651 return (0);

1652 }

1654 static int

1655 ztest_replay_truncate(ztest_ds_t *zd, Ir_truncate_t *Ir, bool ean_t byteswap)
1656 {

1657 obj set _t *os = zd->zd_os;

1658 dmu_t x_t *tx;

1659 uint64_t txg;

1660 rl_t *rl;

1662 if (byteswap)

1663 byt eswap_uint64_array(lr, sizeof (*Ir));

1665 ztest _obj ect _| ock(zd, Ir->Ir_foid, RL_READER);

1666 rl = ztest_range_l ock(zd, Ir->lr_foid, Ir->lr_offset, Ir->r_length,
1667 RL_WRI TER) ;

1669 tx = dnu_tx_create(os);

1671 dmu_tx_hol d_free(tx, Ir->lr_foid, Ir->lr_offset, Ir->lr_length);
1673 txg = zt est _tx_assign(tx, TXGWAIT, FTAG;

1674 if (txg == 0)

1675 zt est _range_unl ock(rl);

1676 ztest _obj ect _unl ock(zd, Ir->lr_foid);

1677 return (ENCSPC);

1678 }

1680 VERI FY(drmu_free_range(os, Ir->r_foid, Ir->lr_offset,

1681 Ir->lr_length, tx) == 0);

1683 (void) ztest_log_truncate(zd, tx, Ir);

1685 dmu_t x_commi t (tx);

1687 zt est _range_unl ock(rl);

1688 zt est _obj ect _unl ock(zd, Ir->Ir_foid);

1690 return (0);

1691 }

1693 static int

1694 ztest_replay_setattr(ztest_ds_t *zd, Ir_setattr_t *lr, bool ean_t byteswap)
1695 {

1696 obj set _t *os = zd->zd_os;

1697 dmu_t x_t *tx;

1698 dmu_buf _t *db;

1699 ztest _block_tag_t *bbt;

1700 uint64_t txg, lrtxg, crtxg;

1702 if (byteswap)

1703 byt eswap_ui nt64_array(lr, sizeof (*Ir));

1705 zt est _obj ect | ock(zd, Ir->r_foid, RL_WRI TER);

1707 VERI FY3U(0, ==, dmu_bonus_hold(os, Ir->lr_foid, FTAG &db));
1709 tx = dmu_tx_create(os);

new usr/src/cnd/ ztest/ ztest.c

1710

1712
1713
1714
1715
1716
1717

1719
1720
1721
1722

1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

1738
1739
1740
1741
1742

1744

1746
1747
1748
1749

1751
1753
1755
1757
1759

1761
1762

1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775

zil

_repl

dmu_t x_hol d_bonus(tx, Ir->lr_foid);

txg = zt est tx_assign(tx, TXGWAIT, FTAG;

if (txg ==0) T
dnu buf _rel e(db, FTAQ;
ztest _obj ect _unl ock(zd, Ir->lr_foid);
return (ENCSPC);
}
bbt = ztest bt _bonus(db);
ASSERTSU(bbt >bt _magic, ==, BT_MAG O);
crtxg = bbt->bt_crtxg;
Irtxg = Ir->r_common.|rc_txg;

if (zd->zd_zil og->zl _replay) {
ASSERT(Ir->lr_size !
ASSERT(| r->|r_node !
ASSERT(Irtxg !'= 0);
} else {

0);

* Randomly change the size and increnent the generation.
*/

Ir->lr_size = (ztest_randon(db->db_size / sizeof (*bbt))
si zeof (*bbt);
Ir->lr_npde = bbt->bt_gen + 1;
ASSERT(l rtxg == 0);
}

*

27

+ 1) *

* Verify that the current bonus buffer is not newer than our txg.
S

ztest _bt_verify(bbt, os, Ir->r_foid, -1ULL, Ir->Ir_node,
MAX(txg, lrtxg), crtxg);

drmu_buf _will _dirty(db, tx);

ASSERT3U(I r->lr_size, >=, sizeof (*bbt));

ASSERT3U(| r->lr_size, <=, db->db_size);

VERI FYO(dnu_set _bonus(db, Ir->lr_size, tx));

bbt = ztest_bt_bonus(db);

ztest _bt_generate(bbt, os, Ir->r_foid, -1ULL, Ir->lr_node, txg,
drmu_buf _rel e(db, FTAQ;

(void) ztest_log_setattr(zd, tx, Ir);

drmu_t x_commi t (tx);

ztest _obj ect _unl ock(zd, Ir->lr_foid);

return (0);

ay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
N

ULL, /* 0 no such transaction type */
ztest _replay_create, | * TX_CREATE */
NULL, /* TX_MKDIR */
NULL, [* TX_MKXATTR */
NULL, [* TX_SYMLINK */
ztest _repl ay_renove, /* TX_REMOVE */
NULL, /* TX_RMDIR */
NULL, [* TX_LINK */
NULL, [* TX_RENAME */
ztest _replay_wite, /* TX_WRITE */
ztest _replay_truncate, /* TX_TRUNCATE */

crtxg);

new usr/src/cnd/ ztest/ ztest.c

1776 ztest _replay_setattr, [* TX_SETATTR */
1777 NULL, /* TX_ACL */

1778 NULL, /* TX_CREATE_ACL */
1779 NULL, /* TX_CREATE_ATTR */
1780 NULL, /* TX_CREATE_ACL_ATTR */
1781 NULL, /* TX_MKDI R_ACL */
1782 NULL, /* TX_MKDI R_ATTR */
1783 NULL, /* TX_MKDI R_ACL_ATTR */
1784 NULL, [* TX_WRITE2 */
1785 };

1787 | *

1788 * ZIL get_data call backs

1789 */

1791 static void

1792 ztest_get_done(zgd_t *zgd, int error)

1793 {

1794 ztest_ds_t *zd = zgd->zgd_private;

1795 uint64_t object = zgd->zgd_rl->rl_object;
1797 if (zgd- >zgd db)

1798 dmu_buf _rel e(zgd->zgd_db, zgd);

1800 zt est _range_unl ock(zgd->zgd_rl);

1801 zt est _obj ect _unl ock(zd, object);

1803 if (error == 0 & zgd->zgd_bp)

1804 zil add bl ock(zgd->zgd_zil og, zgd->zgd_bp);
1806 urem free(zgd, sizeof (*zgd));

1807 }

1809 static int

1810 ztest_get_data(void *arg, Ir_wite_t *Ir, char *buf, zio_t *zio)
1811 {

1812 ztest_ds_t *zd = arg;

1813 obj set _t *os = zd->zd_os;

1814 uint64_t object = Ilr->lr_foid;

1815 uint64_t offset = Ir->lr_offset;

1816 uint64_t size = Ir->lr_|ength;

1817 bl kptr_t *bp = & r->Ir_bl kptr;

1818 uint64_t txg = lr->lr_common.lrc_txg;

1819 uint64_t crtxg;

1820 dmu_obj ect _info_t doi;

1821 drmu_buf _t *db;

1822 zgd_t *zgd;

1823 int error;

1825 ztest _obj ect _| ock(zd, object, RL_READER);
1826 error = dnu_bonus_hol d(os, object, FTAG &db);
1827 if (error) {

1828 zt est _obj ect _unl ock(zd, object);
1829 return (error);

1830 }

1832 crtxg = ztest_bt_bonus(db)->bt_crtxg;

1834 if (crtxg 0 || crtxg > txg) {

1835 drmu buf rel e(db, FTAG);

1836 zt est _obj ect _unl ock(zd, object);
1837 return (ENCENT);

1838 }

1840 drmu_obj ect _i nfo_from db(db, &doi);

1841 dmu_buf _rele(db, FTAG;

new usr/src/cnd/ ztest/ ztest.c

1842 db = NULL;

1844 zgd = umem zal | oc(si zeof (*zgd), UVEM NOFAIL);

1845 zgd->zgd_zil og = zd->zd_zil og;

1846 zgd->zgd_private = zd;

1848 if (buf != NULL) { /* imediate wite */

1849 zgd->zgd_rl = ztest_range_l ock(zd, object, offset, size,
1850 RL_READER) ;

1852 error = dmu_read(os, object, offset, size, buf,
1853 DMU_READ NO PREFETCH) ;

1854 ASSERT(error == 0);

1855 } else {

1856 size = doi.doi _data_bl ock_si ze;

1857 if (1SP2(size)) {

1858 of fset = P2ALI G\N(of f set, size);

1859 } else {

1860 ASSERT(of fset < size);

1861 offset = 0;

1862 }

1864 zgd->zgd_rl = ztest_range_|l ock(zd, object, offset, size,
1865 RL_READER) ;

1867 error = dnu_buf_hol d(os, object, offset, zgd, &db,
1868 DMU_READ NO PREFETCH) ;

1870 if (error == 0) {

1871 bl kptr_t *obp = dmu_buf _get _bl kptr(db);
1872 if (obp) {

1873 ASSERT(BP_I S _HOLE(bp))

1874 *bp = *obp;

1875 }

1877 zgd- >zgd_db = db;

1878 zgd->zgd_bp = bp;

1880 ASSERT(db- >db_of fset == offset);

1881 ASSERT(db->db_si ze == si ze);

1883 error = dnu_sync(zio, Ir->lr_conmmon.|rc_txg,
1884 zt est _get _done, zgd);

1886 if (error == 0)

1887 return (0);

1888 }

1889 1

1891 ztest _get_done(zgd, error);

1893 return (error);

1894 }

1896 static void *

1897 ztest_lr_alloc(size_t lrsize, char *nane)

1898 {

1899 char *Ir;

1900 size_t nanesize = nanme ? strlen(name) + 1 : O;

1902 I'r = umem zal l oc(l rsize + nanmesize, UMEM NOFAIL);

1904 if (name)

1905 bcopy(nanme, |Ir + |lrsize, nanesize);

1907 return (Ir);

29

new usr/src/cnd/ ztest/ ztest.c

1908 }

1910 void

1911 ztest_lr_free(void *Ir, size_t Irsize, char *nane)

1912 {

1913 size_t nanesize = nane ? strlen(nane) + 1 : O;

1915 unem free(lr, Irsize + nanesize);

1916 }

1918 /*

1919 */ Lookup a bunch of objects. Returns the nunber of objects not found.
1920 *

1921 static int

1922 ztest_l ookup(ztest_ds_t *zd, ztest_od_t *od, int count)

1923 {

1924 int mssing = 0;

1925 int error;

1927 ASSERT(_nmut ex_hel d(&zd- >zd_di robj _| ock));

1929 for (int i =0; i < count; i++ od++) {

1930 od- >od_obj ect = 0;

1931 error = zap_|l ookup(zd->zd_os, od->od_dir, od->od_nane,
1932 si zeof (uint64_t), 1, &od->od_object);

1933 if (error)

1934 ASSERT(error == ENCENT);

1935 ASSERT(od- >od_obj ect == 0);

1936 m SSi ng++;

1937 } else {

1938 dmu_buf _t *db;

1939 ztest _block_tag_t *bbt;

1940 dmu_obj ect _info_t doi;

1942 ASSERT(od- >od_obj ect != 0);

1943 ASSERT(m ssing == 0); /* there should be no gaps */
1945 zt est _obj ect _| ock(zd, od->od_object, RL_READER);
1946 VERI FY3U(0, ==, dnu_bonus_hol d(zd->zd_os,
1947 od- >od_obj ect, FTAG &db));

1948 dmu_obj ect _i nfo_from db(db, &doi);

1949 bbt = ztest_bt_bonus(db);

1950 ASSERT3U(bbt - >bt _magi ¢, ==, BT_MAG O);
1951 od->od_t ype = doi . doi _type;

1952 od- >od_bl ocksi ze = doi . doi _dat a_bl ock_si ze;
1953 od- >od_gen = bbt->bt_gen;

1954 dmu_buf _rel e(db, FTAG;

1955 zt est _obj ect _unl ock(zd, od->od_object);
1956 }

1957 }

1959 return (mssing);

1960 }

1962 static int

1963 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)

1964 {

1965 int mssing = 0;

1967 ASSERT(_nut ex_hel d(&d- >zd_di r obj _| ock));

1969 for (int i =0; i < count; i++ od++) {

1970 if (mssing)

1971 od- >od_obj ect = 0;

1972 m ssi ng++;

1973 conti nue;

new usr/src/cnd/ ztest/ ztest.c

1974 }

1976 Ir_create_t *Ir = ztest_lr_alloc(sizeof (*Ir), od->od_nane);
1978 Ir->lr_doid = od->od_dir;

1979 lr->lr_foid = 0O; /* 0 to allocate, > 0 to claim?*/
1980 Ir->lrz_type = od->od_crtype;

1981 I r->lrz_bl ocksi ze = od->od_cr bl ocksi ze;

1982 Ir->lrz_ibshift = ztest_random.i bshift();

1983 I r->lrz_bonustype = DMJ OT_Ul NT64_OTHER,

1984 Ir->lrz_bonusl en = dmu_bonus_nax();

1985 Ir->lr_gen = od->od_crgen;

1986 Ir->lr_crtime[0] = tine(NULL);

1988 if (ztest_replay_create(zd, Ir, B FALSE) != 0) {
1989 ASSERT(m ssing == 0);

1990 od- >od_obj ect = 0;

1991 m ssi ng++;

1992 } else {

1993 od->od_object = Ir->lr_foid;

1994 od- >od_type = od->od_crtype;

1995 od- >od_bl ocksi ze = od->od_cr bl ocksi ze;
1996 od- >od_gen = od->od_crgen;

1997 ASSERT(od- >od_obj ect != 0);

1998 }

2000 ztest _Ir_free(lr, sizeof (*Ir), od->od_nane);
2001 }

2003 return (mssing);

2004

2006 static int

2007 ztest_renove(ztest_ds_t *zd, ztest_od_t *od, int count)

2008 {

2009 int mssing = 0;

2010 int error;

2012 ASSERT(_nut ex_hel d(&d- >zd_di robj _| ock));

2014 od += count - 1;

2016 for (int i =count - 1; i >=0; i--, od--) {

2017 if (mssing) {

2018 m ssi ng++;

2019 conti nue;

2020 }

2022 *

2023 * No object was found.

2024 */

2025 if (od->od_object == 0)

2026 conti nue;

2028 Ir_remove_t *Ir = ztest_|r_alloc(sizeof (*Ir), od->od_nane);
2030 Ir->lr_doid = od->od_dir;

2032 if ((error = ztest_replay_renove(zd, Ir, B _FALSE)) != 0) {
2033 ASSERT3U(error, ==, ENGOSPC);

2034 m ssi ng++;

2035 } else {

2036 od- >od_obj ect = 0;

2037 }

2038 ztest _Ir_free(lr, sizeof (*Ir), od->od_nane);
2039 }

new usr/src/cnd/ ztest/ ztest.c

2041
2042 }

return (mssing);

2044 static int
2045 ztest _wite(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,

2046
2047 {
2048
2049

2051
2053
2054
2055
2056
2057
2059
2061
2063

2065
2066 }

voi d *dat a)

Ir_wite_t *Ir;
int error;

Ir = ztest_Ir_alloc(sizeof (*Ir) + size, NULL);
Ir->lr_foid = object;

Ir->r_offset = offset;

Ir->lr_length = size;

Ir->lr_blkoff = 0;

BP_ZEROQ(& r->lr_bl kptr);

bcopy(data, Ir + 1, size);

error = ztest_replay_wite(zd, Ir, B FALSE);
ztest _Ir_free(lr, sizeof (*Ir) + size, NULL);

return (error);

2068 static int
2069 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset,

2070 {
2071
2072
2074
2076
2077
2078
2080
2082

2084
2085 }

Ir_truncate_t *Ir;
int error;

Ir = ztest_lr_alloc(sizeof (*Ir), NULL);
Ir->lr_foid = object;

Ir->lr_offset = offset;

Ir->lr_length = size;

error = ztest_replay_truncate(zd, Ir, B FALSE);
ztest _|r_free(lr, sizeof (*Ir), NULL);

return (error);

2087 static int
2088 ztest_setattr(ztest_ds_t *zd, uint64_t object)

2089 {
2090
2091
2093
2095
2096
2097
2099
2101

2103
2104 }

Ir_setattr_t *Ir;
int error;

Ir = ztest_Ir_alloc(sizeof (*Ir), NULL);

Ir->lr_foid = object;
lr->lr_size = 0;
Ir->lr_node = 0;

error = ztest_replay_setattr(zd, Ir, B FALSE);
ztest _Ir_free(lr, sizeof (*Ir), NULL);

return (error);

32

uint64_t size)

new usr/src/cnd/ ztest/ ztest.c

33

2106 static void

2107 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2108 {

2109 obj set _t *os = zd->zd_os;

2110 dmu_tx_t *tx;

2111 uint64_t txg;

2112 rl_t *rl;

2114 t xg_wai t _synced(dmu_obj set _pool (os), 0);

2116 zt est _obj ect _| ock(zd, object, RL_READER);

2117 rl = ztest_range_l ock(zd, object, offset, size, RL_WRI TER);
2119 tx = dnmu_tx_create(os);

2121 dmu_t x_hold_wite(tx, object, offset, size);

2123 txg = ztest_tx_assign(tx, TXGWAIT, FTAQ;

2125 if (txg !'=0) {

2126 dnu_preal | oc(os, object, offset, size, tx);

2127 drmu_t x_commi t (tx);

2128 txg_wai t _synced(dnu_obj set _pool (0s), txg);

2129 } else {

2130 (void) dnu_free_l ong_range(os, object, offset, size);
2131 }

2133 ztest _range_unl ock(rl);

2134 zt est _obj ect _unl ock(zd, object);

2135 }

2137 static void

2138 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)

2139 {

2140 int err;

2141 ztest _block_tag_t wbt;

2142 drmu_obj ect _info_t doi;

2143 enum ztest _io_type io_type;

2144 ui nt 64_t bl ocksi ze;

2145 voi d *dat a;

2147 VERI FY(dnmu_obj ect _i nf o(zd- >zd_os, object, &doi) == 0);

2148 bl ocksi ze = doi . doi _data_bl ock_si ze;

2149 data = unem al | oc(bl ocksi ze, UVEM NOFAI L) ;

2151 /*

2152 * Pick an i/o type at random biased toward witing block tags.
2153 *

2154 io_type = ztest_randon(ZTEST | O_TYPES) ;

2155 if (ztest_random(2) ==

2156 io_type = ZTEST_I O WRI TE_TAG

2158 (void) rw_rdl ock(&zd->zd_zil og_l ock);

2160 switch (io_type) {

2162 case ZTEST | O WRI TE_TAG

2163 ztest _bt_generat e(&nwt, zd->zd_os, object, offset, 0, 0, 0);
2164 (void) ztest_write(zd, object, offset, sizeof (wbt),
2165 br eak;

2167 case ZTEST_| O WRI TE_PATTERN:

2168 (void) nenset(data, 'a + (object + offset) %5, blocksize);
2169 if (ztest_random(2) == 0) {

2170 /*

2171 * |Induce fletcher2 collisions to ensure that

new usr/src/cnd/ zt est/ ztest.c

2172
2173
2174
2175
2176
2177
2178
2179

2181
2182
2183
2184

2186
2187
2188

2190
2191
2192

2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205

2207
2208

2210
2211
2212

2214

2216
2217

2219
2220
2221
2222
2223
2224

}

/*
* Initialize an object description tenplate.
*/

* zio_ddt_col lision() detects and resolves them
* when using fletcher2-verify for deduplication.
*

/
((uint64_t *)data)[0] "= 1ULL << 63;
((uint64_t *)data)[4] ~= 1ULL << 63;

(void) ztest_write(zd, object, offset, blocksize, data);
br eak;

case ZTEST_| O WRI TE_ZERCES:
bzero(data, bl ocksize);
(void) ztest_wite(zd, object, offset, blocksize, data);
br eak;

case ZTEST_| O TRUNCATE:
(void) ztest_truncate(zd, object, offset, blocksize);
br eak;

case ZTEST_| O SETATTR:
(v0| d) ztest_setattr(zd, object);
br eak;

case ZTEST | O REWRI TE:

(voi d) rw_rdl ock(&ztest_name_| ock) ;

err = ztest_dsl _prop_set_uint 64(zd->zd_nang,
ZFS_PROP_CHECKSUM spa_dedup_ checksun(ztest _spa),
B FALSE);

VER FY(err == 0 || err == ENGSPC) ;

err = ztest dsl prop set _uint 64(zd >zd_nane,
ZFS_PROP_COVPRESSI ON;-
zt est _random dsl _prop(ZFS_PROP_COVPRESSI ON) ,
B FALSE);

VERI FY(err == 0 || err == ENOSPO);

(void) rw_unl ock(&ztest_nane_| ock);

VERI FYO(dnu_r ead(zd- >zd_os, object, offset, blocksize, data,
DMJU_READ NO PREFETCH));

(void) ztest_wite(zd, object, offset, blocksize, data);
br eak;

}

(void) rw_unl ock(&zd->zd_zil og_| ock);

umem free(data, bl ocksize);

static void
ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,

2225 {

2226
2227

2229
2230
2231

2233
2234
2235

2237

drmu_obj ect _type_t type, uint64_t blocksize, uint64_t gen)

od->od_dir = ZTEST_DI ROBJ;
od- >od_obj ect = 0;

od->od_crtype = type;

od- >od_cr bl ocksi ze = bl ocksi ze ? bl ocksi ze : ztest_random bl ocksi ze();
od->od_crgen = gen;

od->od_t ype = DMJ_OT_NONE;

od- >od_bl ocksi ze = 0;

od->o0d_gen = O;

(void) snprintf(od->o0d_nane, sizeof (od->od_nane), "%(%I1d)[%]u]",

new usr/src/cnd/ ztest/ztest.c 35
2238 tag, (int64_t)id, index);
2239 }
2241 [*
2242 * Lookup or create the objects for a test using the od tenplate.
2243 * |f the objects do not all exist, or if "remove is specified,
2244 * renpbve any existing objects and create new ones. O herwi se,
2245 * use the existing objects.
2246 */
2247 static int
2248 ztest_object _init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t renove)
2249 {
2250 int count = size / sizeof (*od);
2251 int rv = 0;
2253 VERI FY(nut ex_| ock(&zd->zd_dirobj _| ock) == 0);
2254 if ((ztest_l ookup(zd, od, count) !'= 0 || renove) &&
2255 (ztest_renove(zd, od, count) !=0 ||
2256 ztest _create(zd, od, count) != 0))
2257 rv = -1;
2258 zd->zd_od = od;
2259 VER!I FY(nut ex_unl ock(&d->zd_dirobj _| ock) == 0);
2261 return (rv);
2262 }
2264 /* ARGSUSED */
2265 void
2266 ztest_zil_commt(ztest_ds_t *zd, uint64_t id)
2267 {
2268 zilog_t *zilog = zd->zd_zil og;
2270 (void) rw_rdl ock(&zd->zd_zil og_| ock);
2272 zil _commit(zilog, ztest_randon(ZTEST_OBJECTS));
2274 /*
2275 * Renenber the conmitted values in zd, which is in parent/child
2276 * shared nenory If we die, the next iteration of ztest_run()
2277 * will verify that the log really does contain this record.
2278 */
2279 nmut ex_ent er (&zi | og- >zl _| ock);
2280 ASSERT(zd- >zd_shared ! = NULL);
2281 ASSERT3U(zd- >zd_shar ed- >zd_seq, <=, zilog->zl_commt_lr_seq);
2282 zd->zd_shared->zd_seq = zilog->zl _conmt_Ir_seq;
2283 mut ex_exi t (&zi | og- >zl _| ock);
2285 (void) rw_unl ock(&zd->zd_zil og_I ock);
2286 }
2288 [*
2289 * This function is designed to simulate the operations that occur during a
2290 * nount/unnount operation. W hold the dataset across these operations in an
2291 */attenpt to expose any inplicit assunptions about ZIL nanagenent.
2292 *
2293 /* ARGSUSED */
2294 void
2295 ztest_zil _renount(ztest_ds_t *zd, uint64_t id)
2296 {
2297 obj set _t *os = zd->zd_os;
2299 /*
2300 * We grab the zd_dirobj_lock to ensure that no other thread is
2301 * updating the zil (i.e. adding in-menory |og records) and the
2302 * zd_zilog_lock to block any 1/0
*

2303

/

new usr/src/cnd/ ztest/ztest.c 36
2304 VERI FYO(mut ex_| ock(&zd- >zd_di robj _I| ock));

2305 (void) rw wlock(&d->zd_zil og_l ock);

2307 | * zfsvfs_teardown() */

2308 zi | _cl ose(zd->zd_zil og);

2310 /* zfsvfs_setup()

2311 VERI FY(zi |l _open(os, ztest_get_data) == zd->zd_zil og);

2312 zil _replay(os, zd, ztest_replay_vector);

2314 (void) rw_unl ock(&zd->zd_zil og_I ock);

2315 VERI FY(nut ex_unl ock(&d- >zd_di robj _| ock) == 0);

2316 }

2318 /*

2319 * Verify that we can’'t destroy an active pool, create an existing pool,
2320 * or create a pool with a bad vdev spec.

2321 */

2322 /* ARGSUSED */

2323 void

2324 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)

2325 {

2326 ztest _shared_opts_t *zo = &ztest_opts;

2327 spa_t *spa;

2328 nvlist_t *nvroot;

2330 /*

2331 * Attenpt to create using a bad file.

2332 */

2333 nvroot = make_vdev_root ("/dev/bogus", NULL, NULL, O, O, O, O, O, 1);
2334 VERI FY3U(ENCENT, ==,

2335 spa_create(" ztest _bad_file", nvroot, NULL, NULL));

2336 nvlist_free(nvroot);

2338 /*

2339 * Attenpt to create using a bad mrror.

2340 */

2341 nvroot = meke_vdev_root ("/dev/bogus", NULL, NULL, O, O, O, 0, 2, 1);
2342 VERI FY3U(ENCENT, ==,

2343 spa_create(" ztest _bad_mrror", nvroot, NULL, NULL));

2344 nvlist_free(nvroot);

2346 /*

2347 * Attenpt to create an existing pool. It shouldn’t matter
2348 * what’s in the nvroot; we should fail w th EEXI ST.

2349 */

2350 (void) rw_rdl ock(&ztest_nane_| ock);

2351 nvroot = make_vdev_root("/dev/bogus", NULL, NuULL, O, 0, 0, 0, 0, 1);
2352 VERI FY3U(EEXI ST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2353 nvlist_free(nvroot);

2354 VERI FY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG);

2355 VERI FY3U(EBUSY, ==, spa_destroy(zo->zo_pool));

2356 spa_cl ose(spa, FTAQ;

2358 (void) rw_unl ock(&ztest_nane_| ock);

2359 }

2361 /* ARGSUSED */

2362 void

2363 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)

2364 {

2365 spa_t *spa;

2366 uint64_t initial_version = SPA VERSI ON_I NI Tl AL;

2367 uint 64_t version, newersion;

2368 nvlist_t *nvroot, *props;

2369 char *nane;

new usr/src/cnd/ ztest/ ztest.c

2371
2372

2374
2375
2376
2377

2379
2380

2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397

2399
2400
2401
2402
2403
2404
2405

2407
2408
2409
2410
2411
2412

2414
2415
2416

2418
2419
2420
2421

2423
2424
2425
2426
2427

2429
2430
2431 }

VERI FYO(mut ex_| ock(&zt est _vdev_l ock));
name = knmem asprintf("%_upgrade", ztest_opts.zo_pool);

/*
* Clean up from previous runs.
*/

(voi d) spa_destroy(nane);

nvroot = make_vdev_root (NULL, NULL, nane, ztest_opts.zo_vdev_size, O,
0, ztest_opts.zo_raidz, ztest_opts.zo_mrrors, 1);

/*
* If we’'re configuring a RAIDZ device then nmake sure that the
* the initial version is capable of supporting that feature.
*
/
switch (ztest_opts.zo_raidz_parity) {
case O:
case 1:
initial_version = SPA VERSI ON_I NI Tl AL;
br eak;
case 2:
initial_version = SPA_VERSI ON_RAI DZ2;
br eak;
case 3:
initial_version = SPA VERSI ON_RAI DZ3;
br eak;
}
/*

* Create a pool with a spa version that can be upgraded. Pick
* a value between initial_version and SPA VERSI ON_BEFORE_FEATURES.

*

do {
version = ztest_random spa_version(initial_version);
} while (version > SPA VERS|I ON_BEFORE_FEATURES) ;

props = fnvlist_alloc();
fnvlist_add_ui nt 64(props,

zpool _prop_t o_nanme(ZPOOL_PROP_VERSI ON), version);
VERI FYO(spa_cr eat e(nane, nvroot, props, NULL));
fnvlist_free(nvroot);
fnvlist_free(props);

VERI FYO(spa_open(nanme, &spa, FTAG);
VERI FY3U(spa_version(spa), ==, version);
newersi on = ztest_random spa_version(version + 1);

if (ztest_opts.zo_verbose >= 4) {
(void) printf("upgrading spa version from%Ilu to %Iu\n",
(u_l onglong_t)version, (u_longlong_t)newersion);

}

spa_upgrade(spa, newersion);

VERI FY3U(spa_version(spa), >, version);

VERI FY3U(spa_version(spa), ==, fnvlist_| ookup_uint64(spa->spa_config,
zpool _prop_to name(ZPOO. PROP_VERSI ON))) ;

spa_cl ose(spa, FTAQ;

strfree(nane);
VERI FYO(mut ex_unl ock(&zt est _vdev_| ock));

2433 static vdev_t *

2434 vdev_| ookup_by_pat h(vdev_t *vd,

2435 {

const char *path)

37

new usr/src/cnd/ ztest/ ztest.c

2436 vdev_t *mvd;

2438 if (vd->vdev_path !'= NULL && strcnp(path, vd->vdev_path) == 0)
2439 return (vd);

2441 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

2442 if ((mvd = vdev_I| ookup_by_pat h(vd->vdev_child[c], path)) !=
2443 NULL)

2444 return (nvd);

2446 return (NULL);

2447 }

2449 [*

2450 * Find the first avail able hol e which can be used as a top-Ilevel.
2451 */

2452 int

2453 find_vdev_hol e(spa_t *spa)

2454 {

2455 vdev_t *rvd = spa->spa_root_vdev;

2456 int c;

2458 ASSERT(spa_config_hel d(spa, SCL_VDEV, RW READER) == SCL_VDEV);
2460 (c = 0; c < rvd->vdev_children; c++)

2461 vdev_t *cvd = rvd->vdev_child[c];

2463 if (cvd->vdev_ishol e)

2464 br eak;

2465

2466 return (c);

2467 }

2469 [*

2470 * Verify that vdev_add() works as expected.

2471 */

2472 | * ARGSUSED */

2473 void

2474 ztest_vdev_add_renove(ztest_ds_t *zd, uint64_t id)

2475 {

2476 ztest _shared_t *zs = ztest_shared;

2477 spa_t *spa = ztest_spa;

2478 uint64_t | eaves;

2479 uint64_t guid;

2480 nvlist_t *nvroot;

2481 int error;

2483 VERI FY(nut ex_| ock(&zt est _vdev_l ock) == 0);

2484 | eaves = MAX(zs->zs_nirrors + zs->zs spl|ts 1) * ztest_opts.zo_raidz;
2486 spa_config_enter(spa, SCL_VDEV, FTAG RW READER);

2488 zt est _shared->zs_vdev_next _| eaf = find_vdev_hol e(spa) * |eaves;
2490 /*

2491 * |f we have slogs then renove them 1/4 of the tine.

2492 */

2493 if (spa_has_slogs(spa) && ztest_random(4) == 0) {

2494 /*

2495 * Gab the guid fromthe head of the |og class rotor.
2496 */

2497 guid = spa_l og_cl ass(spa) - >nt_r ot or - >ng_vd- >vdev_gui d;
2499 spa_config_exit(spa, SCL_VDEV, FTAG;

2501 /*

38

new usr/src/cnd/ ztest/ztest.c 39 new usr/src/cnd/ ztest/ztest.c 40
2502 * W have to grab the zs_nane_lock as witer to 2568 */
2503 * prevent a race between renopving a slog (dmu_objset_find) 2569 gui d = sav->sav_vdevs[ztest_randon(sav->sav_count)]->vdev_gui d;
2504 * and destroying a dataset. Renpving the slog wll 2570 } else {
2505 * grab a reference on the dataset which may cause 2571 /*
2506 * dnu_obj set _destroy() to fail w th EBUSY thus 2572 * Find an unused device we can add.
2507 * | eaving the dataset in an inconsistent state. 2573 */
2508 */ 2574 zs->zs_vdev_aux = 0;
2509 VERI FY(rW wr | ock(&zt est _name_| ock) == 0); 2575 for (;5) {
2510 error = spa_vdev_renove(spa, guid, B FALSE) 2576 char pat h[MAXPATHLEN] ;
2511 VERI FY(rw_unl ock(&zt est _name_I oc) == 0); 2577 int c;
2578 (void) snprintf(path, sizeof (path), ztest_aux_tenplate,
2513 if (error &% error != EEXI ST) 2579 ztest _opts.zo_dir, ztest_opts.zo_pool, aux,
2514 fatal (0, "spa_vdev_renove() = %", error); 2580 zs->zs_vdev_aux);
2515 } else { 2581 for (c = 0; c < sav->sav_count; c++)
2516 spa_config_exit(spa, SCL_VDEV, FTAQ; 2582 if (strcnp(sav->sav vdevs[c] >vdev_pat h,
2583 pat h) == 0)
2518 /* 2584 eak'
2519 * Make 1/4 of the devices be | og devices. 2585 if (c == sav->sav_count &&
2520 */ 2586 vdev_| ookup_by_pat h(rvd, path) == NULL)
2521 nvroot = make_vdev_root (NULL, NULL, NULL, 2587 br eak;
2522 ztest _opts.zo_vdev_si ze, 0, 2588 zs—>zs_vdev_aux++;
2523 ztest_random(4) == 0, ztest_opts.zo_raidz, 2589 }
2524 zs->zs_mrrors, 1); 2590 }
2526 error = spa_vdev_add(spa, nvroot); 2592 spa_config_exit(spa, SCL_VDEV, FTAG;
2527 nvlist_free(nvroot);
2594 if (guid == 0) {
2529 if (error == ENOSPQ) 2595 /*
2530 zt est _record_enospc("spa_vdev_add"); 2596 * Add a new devi ce.
2531 else if (error != 0) 2597 */
2532 fatal (0, "spa_vdev_add() = %", error); 2598 nvlist_t *nvroot = make_vdev_root (NULL, aux, NULL,
2533 } 2599 (ztest _opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2600 error = spa_vdev_add(spa, nvroot);
2535 VERI FY(mut ex_unl ock(&t est _vdev_| ock) == 0); 2601 if (error !'=0)
2536 } 2602 fatal (0, "spa_vdev_add(%) = %", nvroot, error);
2603 nvlist_free(nvroot);
2538 /* 2604 } else {
2539 * Verify that adding/renpving aux devices (l2arc, hot spare) works as expected. 2605 /*
2540 */ 2606 * Renove an existing device. Sonetines, dirty its
2541 /* ARGSUSED */ 2607 * vdev state first to make sure we handl e renoval
2542 void 2608 * of devices that have pending state changes.
2543 ztest_vdev_aux_add_renove(ztest_ds_t *zd, uint64_t id) 2609 i
2544 { 2610 if (ztest_random(2) == 0)
2545 ztest _shared_t *zs = ztest_shared; 2611 (void) vdev_online(spa, guid, 0, NULL);
2546 spa_t *spa = ztest_spa;
2547 vdev_t *rvd = spa->spa_root_vdev; 2613 error = spa_vdev_renove(spa, guid, B_FALSE);
2548 spa_aux_vdev_t *sav; 2614 if (error '=0 && error != EBUS
2549 char *aux; 2615 fatal (0, "spa_vdev_remove(%Ilu) = %", guid, error);
2550 uint64_t guid = O; 2616 }
2551 int error;
2618 VERI FY(mut ex_unl ock(&t est _vdev_| ock) == 0);
2553 if (ztest randorr(2) ==0) { 2619 }
2554 sav = &spa- >spa spares;
2555 aux = ZPOOL_CONFI G_SPARES; 2621 /*
2556 } else { 2622 * split a pool if it has mirror tlvdevs
2557 sav = &spa->spa_| 2cache; 2623 */
2558 aux = ZPOOL_CONFI G_L2CACHE; 2624 /* ARGSUSED */
2559 } 2625 void
2626 ztest_split_pool (ztest_ds_t *zd, uint64_t id)
2561 VERI FY(nut ex_| ock(&zt est _vdev_| ock) == 0); 2627 {
2628 ztest _shared_t *zs = ztest_shared;
2563 spa_config_enter(spa, SCL_VDEV, FTAG RW READER); 2629 spa_t *spa = ztest_spa;
2630 vdev_t *rvd = spa->spa_root_vdev;
2565 if (sav->sav_count != 0 && ztest_randon(4) == 0) { 2631 nvliist_t *tree, **child, *config, *split, **schild,
2566 /& 2632 uint_t c, children, schildren = 0, lastlogid = O;
2567 * Pick a random device to renpve. 2633 int error = 0;

new usr/src/cnd/ ztest/ ztest.c 41

2635

2637
2638
2639
2640
2641

2643
2644

2646

2648
2649
2650
2651
2652

2654
2655

2657
2658
2659
2660
2661

2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679

2681
2682
2683
2684
2685
2686

2688
2689

2691
2692
2693
2694

2696

2698
2699

VERI FY(nut ex_| ock(&zt est _vdev_l ock) == 0);

/* ensure we have a useable config; mirrors of raidz aren’'t supported */

if (zs->zs_mrrors < 3 || ztest_opts.zo_raidz > 1)
VERI FY(nut ex_unl ock(&t est _vdev_| ock) == 0);
return;

}

/* clean up the old pool, if any */

(void) spa_destroy("splitp");
spa_config_enter(spa, SCL_VDEV, FTAG RW READER);

/* generate a config fromthe existing config */

mut ex_ent er (&spa- >spa_props_|I ock);

VERI FY(nvlist_Il ookup_nvli st (spa->spa_config, ZPOOL_CONFI G VDEV_TREE,
&ree) == 0);

mut ex_exi t (&spa->spa_props_| ock);

VERI FY(nvlist_| ookup_nvlist_array(tree, ZPOOL_CONFI G CHI LDREN, &child,
&children) == 0);

schild = mall oc(rvd->vdev_children * sizeof (nvlist_t *));
for (c = 0; c < children; c++)

vdev_t *tvd = rvd->vdev_child[c];

nvlist_t **nchild;

uint_t nchildren;

if (tvd->vdev_islog || tvd->vdev_ops == &dev_hol e_ops) {

VERI FY(nvI i'st_alloc(&schild[schildren], NV_UNI QUE_NAMNE,
0) == 0);

VERI FY(nvlist_add_string(schild[schildr en]
ZPOOL_CONFI G TYPE, VDEV_TYPE HOLE) =

VERI FY(nvTi st _add_ui nt 64(schil d[SChI | dr en]
ZPOOL CO\IFIG TS HOLE, 1) == 0);

if (lastlogid == 0)

lastl ogid = schildren;
++schi |l dren;
cont i nue;

}
lastlogid = 0;
VERI FY(nvl i st _I ookup_nvlist_array(child[c],
ZPOOL_CONFI G CHI LDREN, &nthiid, &nmchildren) == 0);
) VERI FY(nvlist_dup(nthild[0], &schild[schildrent++], 0) == 0);

/* OK, create a config that can be used to split */

VERI FY(nvlist_alloc(&split, NV_UNIQUE NAME, 0) == 0);

VERI FY(nvl i st _add_stri ng(spl it, ZPOOL_CONFI G TYPE
VDEV_TYPE_ROCT) ==

VERI FY(nvlist_add_nvli st array(spl it, ZPOOL_CONFI G CHI LDREN, schild,
lastlogid !=0 ? lastlogid : sch||dren) == 0);

VERI FY(nvlist_alloc(&onfig, NV_UNIQUE NAME, 0) == 0);

VERI FY(nvlist_add_nvlist(config, ZPOOL_CONFI G VDEV_TREE, split) == 0);

(c = 0; c < schildren; c++)
nvlist_free(schild[c]);
free(schild);
nvlist_free(split);

spa_config_exit(spa, SCL_VDEV, FTAG;

(void) rw wlock(&ztest_nane_| ock);
error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);

new usr/src/cnd/ ztest/ ztest.c

2700 (void) rw_unl ock(&ztest_nane_| ock);

2702 nvlist_free(config);

2704 if (error == 0) {

2705 (void) printf("successful split - results:\n");
2706 nmut ex_ent er (&spa_nanmespace_| ock) ;
2707 show_pool _stats(spa);

2708 show_pool _st at s(spa_| i ookup(spI itp"));
2709 mut ex_exi t (&pa_nanespace_| ock) ;

2710 ++zs->zs_splits;

2711 --2S->ZS_MTrrors;

2712 }

2713 VERI FY(nut ex_unl ock(&zt est _vdev_| ock) == 0);
2715 }

2717 | *

2718 * Verify that we can attach and detach devices.

2719 */

2720 /* ARGSUSED */

2721 void

2722 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2723 {

2724 ztest _shared_t *zs = ztest_shared;

2725 spa_t *spa = ztest_spa;

2726 spa_aux_vdev_t *sav &spa- >spa_spar es;

2727 vdev_t *rvd = spa- >spa root _vdev;

2728 vdev_t *ol dvd, *newd, *pvd;

2729 nvlist_t *root;

2730 uint64_t | eaves;

2731 uint64_t |eaf, top

2732 ui nt 64_t ashift = ztest _get_ashift();

2733 uint 64_t ol dguid, pgui d;

2734 size_t ol dsize, newsize;

2735 char “ol dpat h[NAXPATHLEN] newpat h[MAXPATHLEN] ;
2736 repl aci ng;

2737 | nt ol dvd_has_si blings = B_FALSE;

2738 int newd_is_spare = B_FALSE;

2739 int oldvd_is_log;

2740 int error, expected_error;

2742 VERI FY(nut ex_| ock(&zt est _vdev_| ock) == 0);
2743 | eaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2745 spa_config_enter(spa, SCL_VDEV, FTAG RW READER);
2747 I*

2748 * Decide whether to do an attach or a repl ace.
2749 */

2750 replacing = ztest_random 2);

2752 *

2753 * Pick a randomtop-|evel vdev.

2754 */

2755 top = ztest_random vdev_top(spa, B TRUE);
2757 /*

2758 * Pick a randomleaf withinit.

2759 */

2760 | eaf = ztest_randon(l eaves);

2762 /*

2763 * Locate this vdev.

2764 */

2765 ol dvd = rvd->vdev_child[top];

new usr/src/cnd/ ztest/ ztest.c

2766
2767
2768
2769
2770
2771
2772
2773
2774
2775

2777
2778
2779
2780
2781
2782
2783
2784
2785

2787
2788
2789
2790
2791
2792

2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805

2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822

2824
2825
2826
2827
2828
2829
2830
2831

if (zs->zs_mrrors >= 1) {
ASSERT(ol dvd- >vdev_ops == &vdev_mirror_ops);
ASSERT(ol dvd- >vdev_children >= zs->zs_mirrors);
ol dvd = ol dvd->vdev_child[leaf / ztest_opts.zo_raidz];

}

if (ztest_opts.zo_raidz > 1) {
ASSERT(ol dvd- >vdev_ops == &vdev rai dz_ops);
ASSERT(oI dvd- >vdev_chi | dren == Ztest_opts. zo_rai dz);
ol dvd = ol dvd->vdev_chi | d[| eaf % ztest_opts.zo_rai dz]

}
/*
* If we're already doing an attach or replace, oldvd may be a
* mirror vdev -- in which case, pick a random child.
*
/

whi | e (ol dvd->vdev_children != 0)
ol dvd_has_si blings = B_TRUE;
ASSERT(ol dvd->vdev_chil dren >= 2);

ol dvd = ol dvd->vdev_chi | d[zt est _r andon{ ol dvd- >vdev_chi |l dren)];

}

ol dgui d = ol dvd->vdev_gui d;
ol dsi ze = vdev_get _m n_asi ze(ol dvd);
ol dvd_i s_l og = ol dvd- >vdev_t op->vdev_i sl og;
(void) strcpy(ol dpath, ol dvd->vdev_path);
pvd = ol dvd- >vdev_parent;
pgui d = pvd- >vdev_gui d;
*
* |f oldvd has siblings, then half of the tine, detach it.
*
/
if (oldvd_has_siblings & ztest_randonm(2) == 0) {
spa_config_exit(spa, SCL_VDEV, FTAG;
error = spa_vdev_detach(spa, ol dguid, pguid, B _FALSE);
if (error =0 & error != ENCDEV && error != EBUSY &&
error | = ENOTSUP)
fatal (0, "detach (%) returned %", ol dpath, error);
VERI FY(mut ex_unl ock(&t est _vdev_| ock) == 0);
return;

}

/*
* For the new vdev, choose with equal probability between the two

* standard paths (ending in either "a or 'b’) or a random hot spare.
*

if (sav->sav_count != 0 & ztest_randon(3) ==
newd = sav->sav_vdevs|[ztest_randon(sav->sav_count)];
newd_i s_spare = B_TRUE;
(voi d) strcpy(newpath, newd->vdev_path);

} else {

(void) snprintf(newath, sizeof (newpath), ztest_dev_tenplate,

ztest _opts.zo_dir, ztest_opts.zo_pool,

top * leaves + leaf);

if (ztest_randon(2) == 0)
newpat h[strlen(newpath) - 1] ="'b’;
newd = vdev_| ookup_by_pat h(rvd, newpath);

}
if (newd) {
newsi ze = vdev_get _mi n_asi ze(newd);
} else {
/*
* Mak newsize a little bigger or snaller than ol dsize.
* |If it’s smaller, the attach should fail.
* I f |t s larger, and we’'re doing a repl ace,
*

we shoul d get dynam' c LUN growth when we’re done.

new usr/src/cnd/ ztest/ ztest.c

2832
2833
2834

2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860

2862

2864
2865
2866
2867
2868

2870
2872

2874
2875
2876
2877
2878
2879
2880
2881

2883
2884
2885
2886
2887

2889
2890
2891
2892
2893
2894
2895

2897

*/
newsi ze = 10 * oldsize / (9 + ztest_randon(3));

* ok % ok F ok

If newd is already part of the pool, it should fail with EBUSY.

* If newd is too small, it should fail wth EOVERFLOW
*
/
if (pvd->vdev_ops != &dev_nirror_ops &&
pvd- >vdev_ops ! = &dev_root_ops && (!replacing ||
pvd- >vdev_ops == &vdev_repl aci ng_ops ||
pvd- >vdev_ops == &vdev _sSpare_ops))
expected_error = ENOTSUP;
else if (newd_is_spare & (!replacing || oldvd_is_log))
expected error = ENOTSUP;
else if (newd == ol dvd)
expected_error = replacing ? 0 : EBUSY;
f (vdev_I| ookup_by_| path(rvd newpat h) != NULL)
expected_error = EBUSY;
f (newsi ze < ol dsize)
expect ed_error = EOVERFLOW
f (ashift > ol dvd->vdev_t op->vdev_ashift)
expected_error = EDOM

el se

el se

el se

el se
expected_error = O;

spa_config_exit(spa, SCL_VDEV, FTAG;
*

* Build the nvlist describing newpath.
&/

root = make_vdev_root (newpath, NULL, NULL, newd == NULL ? newsize :

ashift, 0, 0, 0, 1);
error = spa_vdev_attach(spa, ol dguid, root, replacing);

nvlist_free(root);

/*
* |f our parent was the replacing vdev, but the replace conpleted,
* then instead of failing with ENOTSUP we may either succeed,
* fail with ENODEV, or fail with EOVERFLOW
*/
f (expected_error == ENOTSUP &&
(error == 0 || error == ENODEV || error == EOVERFLOW)
expected_error = error;
/*

* | f sonmeone grew the LUN, the replacenent may be too small.
<]

if (error == EOVERFLOW || error == EBUSY)
expected_error = error;

/* XXX wor kar ound 6690467 */
if (error !'= expected_error &% expected_error != EBUSY) {
fatal (0, "attach (% %lu, % %lu, %) "
"returned %l, expected %",
ol dpath, (longlong_t)oldsize, newpath,
(longl ong_t)newsi ze, replacing, error, expected_error);

}
VERI FY(nut ex_unl ock(&zt est _vdev_l ock) == 0);

44

If pvd is not a mrror or root, the attach should fail w th ENOTSUP,
unless it’s a replace; in that case any non-replacing parent is OK

new usr/src/cnd/ ztest/ ztest.c

2898 }

2900 /*

2901 * Call back function which expands the physical size of the vdev.

2902

2903 vdev_t *

2904 grow vdev(vdev_t *vd, void *arg)

2905 {

2906 spa_t *spa = vd->vdev_spa;

2907 sl ze_t *newsize = arg;

2908 size_t fsize;

2909 int fd;

2911 ASSERT(spa_config_hel d(spa, SCL_STATE, RW READER) == SCL_STATE);
2912 ASSERT(vd- >vdev_ops->vdev_op_| eaf);

2914 if ((fd = open(vd->vdev_path, O RDWR)) == -1)

2915 return (vd);

2917 fsize = I seek(fd, 0, SEEK END);

2918 (void) ftruncate(fd, *newsize);

2920 if (ztest_opts.zo_verbose >= 6) {

2921 (void) printf("% grewfrom%u to %u bytes\n",

2922 vd- >vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2923 }

2924 (void) close(fd);

2925 return (NULL);

2926 }

2928 [*

2929 * Call back function which expands a given vdev by calling vdev_online().
2930 *

2931 /* ARGSUSED */

2932 vdev_t *

2933 online_vdev(vdev_t *vd, void *arg)

2934 {

2935 spa_t *spa = vd->vdev_spa;

2936 vdev_t *tvd = vd->vdev_top;

2937 uint64_t guid = vd->vdev_gui d;

2938 uint64_t generation = spa->spa_config_generation + 1;

2939 vdev_state_t newstate = VDEV_STATE_ UNKNOMW;

2940 int error;

2942 ASSERT(spa_confi g_hel d(spa, SCL_STATE, RW READER) == SCL_STATE);
2943 ASSERT(vd- >vdev_ops->vdev_op_| eaf);

2945 /* Calling vdev_online will initialize the new netaslabs */
2946 spa_config_exit(spa, SCL_STATE, spa);

2947 error = vdev_online(spa, guid, ZFS ONLI NE_EXPAND, &newstate);
2948 spa_config_enter(spa, SCL_STATE, spa, RW READER);

2950 /*

2951 * |If vdev_online returned an error or the underlying vdev_open
2952 * failed then we abort the expand. The only way to know that
2953 * vdev_open fails is by checking the returned newstate.

2954 */

2955 if (error || newstate != VDEV_STATE_HEALTHY) {

2956 if (ztest_opts.zo_verbose >= 5)

2957 (void) printf("Unable to expand vdev, state %I u,
2958 "error %\ n", (u_longlong_t)newstate, error);
2959 }

2960 return (vd);

2961 }

2962 ASSERT3U(newst ate, ==, VDEV_STATE HEALTHY);

45

new usr/src/cnd/ ztest/ ztest.c

2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983

2985
2986
2987
2988
2989
2990
2991
2992
2993

2995
2996
2997
2998
2999
3000

3002
3003
3004
3005
3006
3007
3008

3010
3011
3012
3013
3014
3015

3017
3018
3019
3020
3021
3022
3023

3025
3026

3028

/*

* Since we dropped the |l ock we need to ensure that we're
* still talking to the original vdev. It’s possible this
* vdev may have been detached/repl aced while we were

* trying to online it.
*/
if

(generation ! = spa->spa_config_generation) {
if (ztest_opts.zo_verbose >= 5)

(void) printf("vdev configuration has changed,

"guid %lu, state %Ilu, expected gen
"got gen %Ilu\n",

(u_l ongl ong_t) gui d,

(u_l ongl ong_t)tvd->vdev_state,

(u_l ongl ong_t) generati on,

(u_l ongl ong_t) spa- >spa_confi g_gener at

Eeturn (vd);

}
return (NULL);

Traverse the vdev tree calling the supplied function.
We continue to walk the tree until we either have wal ked all

If a NULL cal |l back is passed, then we just return back the fir
| eaf vdev we encounter.

/
vdev_t

*

*
*
*
* children or we receive a non-NULL return fromthe call back.
*
*
*

vdev_wal k_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), voi
2994 {

}
| *

if (vd->vdev_ops->vdev_op_l eaf) {
if (func == NULL
return (vd);
el se
return (func(vd, arg));

}

for (uint_t ¢ = 0; ¢ < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if ((cvd = vdev_wal k_tree(cvd, func, arg)) != NUL
return (cvd);

}
return (NULL);

* Verify that dynamic LUN growth works as expected.
*/

/* ARGSUSED */

voi d

ztest _vdev_LUN growt h(ztest _ds_t *zd, uint64_t id)
3016 {

spa_t *spa = ztest_spa;

vdev_t *vd, *tvd;

met asl ab_cl ass_t *nt;

met asl ab_group_t *ng;

size_t psize, newsize;

uint64_t top;

uint64_t ol d_cl ass_space, new_cl ass_space, ol d_ns_count,

VERI FY(nut ex_| ock(&zt est _vdev_l ock) == 0);
spa_config_enter(spa, SCL_STATE, spa, RW READER);

top = ztest_random vdev_top(spa, B TRUE);

% | u,

ion);

st

d *arg)

L)

new_ns_count ;

new usr/src/cnd/ ztest/ ztest.c 47

3030
3031
3032
3033
3034

3036
3037
3038
3039
3040
3041
3042

3044

3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058

3060
3061
3062
3063

3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080

3082

3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095

tvd = spa->spa_root_vdev->vdev_chil d[top];
my = tvd->vdev_ny;
nc = ng- >ngy_cl ass;
ol d_ms_count = tvd->vdev_ns_count;
ol d_cl ass_space = netasl ab_cl ass_get _space(nt);
/*
* Determine the size of the first |eaf vdev associated with
* our top-level device.
*/

vd = vdev_wal k_tree(tvd, NULL, NULL);
ASSERT3P(vd, !'=, NULL);
ASSERT(vd- >vdev_ops- >vdev_op_| eaf);

psi ze = vd->vdev_psi ze;

/*

* W only try to expand the vdev if it’s healthy, less than 4x its
* original size, and it has a valid psize.

|f (tvd->vdev_state != VDEV_STATE HEALTHY ||

psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
spa_conf 1 g_exit(spa, SCL_STATE, spa);
VERI FY(mut ex_unl ock(&t est _vdev_| ock) == 0);
return;

}

ASSERT(psi ze > 0);

newsi ze = psize + psize / 8;
ASSERT3U(newsi ze, >, psize);

if (ztest_opts.zo_verbose >= 6) {
(void) printf("Expanding LUN % from%u to % u\n",
vd- >vdev_path, (ulong_t)psize, (ulong_t)newsize);

}

/*
* Gowing the vdev is a two step process:
* 1). expand the physical size (i.e. relabel)
* 2). online the vdev to create the new netasl abs
*
/
if (vdev_wal k_tree(tvd, grow vdev, &newsize) != NULL ||
vdev_wal k_tree(tvd, online_vdev, NULL) != NULL ||
tvd->vdev_state ! = VDEV_STATE HEALTHY) {
if (ztest_opts.zo_verbose >= 5) {
(void) printf("Could not expand LUN because "
"the vdev configuration changed.\n");

}

spa_config_exit(spa, SCL_STATE, spa);

VERI FY(mut ex_unl ock(&t est _! vdev Iock) == 0);
return;

}
spa_config_exit(spa, SCL_STATE, spa);

/*

* Expanding the LUN will update the config asynchronously,
* thus we nust wait for the async thread to conplete any
* pending tasks before proceedi ng.

*/

for (535) {
bool ean_t done;
nmut ex_ent er (&spa- >spa_async_| ock) ;

done = (spa->spa_async_thread == NULL && !spa->spa_async_t asks);
mut ex_exi t (&spa- >spa_async_| ock);
if (done)

br eak;

new usr/src/cnd/ zt est/ ztest.c

3096 t xg_wai t _synced(spa_get _dsl (spa), 0);

3097 (void) poli(NULL, 0, 100);

3098 }

3100 spa_config_enter(spa, SCL_STATE, spa, RW READER);

3102 tvd = spa->spa_root_vdev->vdev_chil d[top];

3103 new_ns_count = tvd->vdev_ns_count;

3104 new_cl ass_space = netasl ab_cl ass_get _space(nt);

3106 if (tvd->vdev_nmg !'= ng || ng->ng_class != nt) {

3107 if (ztest_opts.zo_verbose >= 5) {

3108 (voi d) printf("Could not verify LUN expansion due to "
3109 "I ntervening vdev offline or renmove.\n");
3110 }

3111 spa_config_exit(spa, SCL_STATE, spa);

3112 VERI FY(mut ex_unl ock(&t est _vdev Iock) == 0);

3113 return;

3114 1

3116 I

3117 * Make sure we were able to grow the vdev.

3118 */

3119 if (new_ms_count <= ol d_ns_count)

3120 fatal (0, "LUN expansion failed: ms_count %lu <= %I|u\n",
3121 ol d_ms_count, new_nms_count);

3123 /*

3124 * Make sure we were able to grow the pool .

3125 */

3126 if (new_class_space <= ol d_cl ass_space)

3127 fatal (O, "LUN expansion failed: class_space %lu <= %lu\n",
3128 ol d_cl ass_space, new cl ass_space);

3130 if (ztest_opts.zo_verbose >= 5) {

3131 char ol dnunbuf[6], newnunbuf[6];

3133 ni cenun(ol d_cl ass_space, ol dnunbuf);

3134 ni cenunm(new_cl ass_space, newnunbuf);

3135 (void) printf("% grewfrom% to %\n",

3136 spa- >spa_nane, ol dnunbuf, newnunbuf);

3137 }

3139 spa_config_exit(spa, SCL_STATE, spa);

3140 VERI FY(nut ex_unl ock(&t est vdev Iock) == 0);

3141 }

3143 /*

3144 */Veri fy that dmu_obj set _{create, destroy, open, cl ose} work as expected.
3145 *

3146 /* ARGSUSED */

3147 static void

3148 {ztest_obj set _create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3149

3150 /*

3151 * Create the objects cormobn to all ztest datasets.

3152 */

3153 VERI FY(zap_create_clai mos, ZTEST_DI ROBJ,

3154 DMJ_OT_ZAP_OTHER, DMJ OT_NONE, 0, tx) == 0);

3155 }

3157 static int

3158 ztest_dataset _create(char *dsnane)

3159 {

3160 uint64_t zilset = ztest_randon(100);

3161 int err = dmu_obj set_create(dsname, DMJ_OST_OTHER, O,

new usr/src/cnd/ ztest/ ztest.c 49

3162

3164
3165

3167
3168
3169
3170
3171 }

3173 /*

zt est _obj set _create_ch, NULL);
if (err || zilset < 80)
return (err);

if (ztest_opts.zo_verbose >= 6)
(void) printf("Setting dataset % to sync always\n", dsnane);
return (ztest_dsl _prop_set_uint64(dsname, ZFS PROP_SYNC,
ZFS_SYNC_ALWAYS, B_FALSE));

ARGSUSED */

3174 static int
3175 ztest_obj set_destroy_cb(const char *nanme, void *arg)

3176 {
3177
3178
3179

3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192

3194
3195
3196
3197
3198
3199
3200
3201
3202
3203 }

obj set _t *os;
dmu_obj ect _info_t doi;
int error;

/*
* Verify that the dataset contains a directory object.
*/

VERI FYO(dnu_obj set _own(nanme, DMJ OST_OTHER, B_TRUE, FTAG &os));
error = dnu_obj ect _i nfo(os, ZTEST_DI ROBJ, &doi);
if (error !'= ENCENT)
/* We coul d have crashed in the middle of destroying it */
ASSERTO(error);
ASSERT3U(doi . doi _type, ==, DMU_OT_ZAP_OTHER);
ASSERT3S(doi . doi _physi cal _bl ocks_512, >=, 0);

}
drmu_obj set _di sown(os, FTAG;

/*
* Destroy the dataset.
*
/
if (strchr(name, '@) != NULL) {
VERI FYO(dsl _destroy_snapshot (nane, B FALSE));

} else {
VERI FYO(dsl _destroy_head(nane));

}
return (0);

3205 static bool ean_t
3206 ztest_snapshot _create(char *osnane, uint64_t id)

3207 {
3208
3209

3211

3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223 }

char snapnanme[MAXNAMVELEN ;
int error;

(void) snprintf(snapnane, sizeof (snapnane), "%Ilu", (u_longlong_t)id);

error = dnu_obj set _snapshot _one(osnane, snapnane);
if (error == ENOSPC)
ztest _record_enospc(FTAG ;

return (B_FALSE);
}
if (error =0 & error != EEXI ST)
fatal (0, "ztest_snapshot_create(%@s) = %", osnane,
snapname, error);

}
return (B_TRUE);

3225 static bool ean_t
3226 ztest_snapshot _destroy(char *osnane, uint64_t id)

3227 {

new usr/src/cnd/ ztest/ztest.c 50
3228 char snapnanme[MAXNAMVELEN ;

3229 int error;

3231 (void) snprintf(snapnane, MAXNAMELEN, "% @4 | u", osnane,

3232 (u_longlong_t)id);

3234 error = dsl_destroy_snapshot (snapnane, B_FALSE);

3235 if (error =0 & error != ENCENT)

3236 fatal (0, "ztest_snapshot_destroy(%) = %", snapnane, error);
3237 return (B_TRUE);

3238 }

3240 /* ARGSUSED */

3241 void

3242 ztest_dnmu_obj set _create_destroy(ztest_ds_t *zd, uint64_t id)

3243 {

3244 ztest _ds_t zdtnp;

3245 int iters;

3246 int error;

3247 obj set _t *os, *o0s2;

3248 char name[MAXNAMVELEN] ;

3249 zilog_t *zil og;

3251 (void) rw_rdl ock(&ztest_name_| ock);

3253 (void) snprintf(name, MAXNAMELEN, "9%s/tenp_%Iu",

3254 ztest _opts.zo_pool, (u_longlong_t)id);

3256 /*

3257 * |f this dataset exists froma previous run, process its replay |og
3258 * half of the tine. |If we don't replay it, then dnu_obj set_destroy()
3259 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3260 *

3261 if (ztest_random(2) == 0 &&

3262 drmu_obj set _own(nane, DMJ OST_OTHER, B _FALSE, FTAG &os) == 0) {
3263 ztest _zd_init(&dtnp, NULL, os);

3264 zil _replay(os, &dtnp, ztest_replay_vector);

3265 ztest _zd_fini (&zdtnp);

3266 drmu_obj set _di sown(os, FTAQ;

3267 }

3269 /*

3270 * There nmay be an old instance of the dataset we're about to

3271 * create lying around froma previous run. |If so, destroy it

3272 * and all of its snapshots.

3273 */

3274 (void) dnu_objset_find(name, ztest_objset_destroy_cb, NULL,

3275 DS _FI ND CHI LDREN | DS_FI ND_SNAPSHOTS)

3277 /*

3278 * Verify that the destroyed dataset is no longer in the nanmespace.
3279 */

3280 VERI FY3U(ENCENT, ==, dnu_obj set_own(nane, DMJ OST_OTHER, B_TRUE,
3281 FTAG &0s));

3283 /*

3284 * Verify that we can create a new dat aset.

3285 */

3286 error = ztest_dataset_create(nane);

3287 if (error) {

3288 if (error == ENOSPC) {

3289 zt est _record_enospc(FTAG ;

3290 (void) rw_unl ock(&ztest_nane_| ock);

3291 return;

3292 }

3293 fatal (0O, "dnmu_objset_create(%) = %", nane, error);

new usr/src/cnd/ ztest/ ztest.c

3294
3296
3298

3300
3301
3302
3303

3305
3306
3307
3308
3309
3310
3311
3312
3313
3314

3316
3317
3318
3319
3320

3322
3323
3324
3325
3326

3328
3329
3330
3331
3332

3334
3335
3336

3338
3339

3341
3342
3343
3344
3345

3347
3348
3349
3350
3351

3353
3354
3355
3356
3357

3359

}

/*
* Verify that dmu_snapshot _{create, destroy, open, cl ose} work as expected.
*/

voi d

}
VERI FYO(dnu_obj set _own(nanme, DMJ OST_OTHER, B_FALSE, FTAG &os));
ztest _zd_init(&dtnp, NULL, os);

/*
* Open the intent log for it.
*/

zilog = zil _open(os, ztest_get_data);

/*
* Put sonme objects in there, do alittle I/Oto them
* and randomy take a couple of snapshots al ong the way.
*/
iters = ztest_random5);
for (int i =0; i <iters; i++) {

zt est _dmu_obj ect _al | oc_free(&zdtnp, id);

if (ztest_randonm(iters) == 0)

(voi d) ztest_snapshot_create(nanme, i);

}
/*
* Verify that we cannot create an existing dataset.
*/

VERI FY3U(EEXI ST, ==,
drmu_obj set _creat e(nane, DMJ _OST_OTHER, 0, NULL, NULL));

*

* Verify that we can hold an objset that is al so owned.
*
/

VERI FY3U(0, ==, dmu_obj set_hol d(name, FTAG &0s2));

dmu_obj set _rel e(0s2, FTAQ;

/*

* Verify that we cannot own an objset that is already owned.
*

VERI FY3U(EBUSY, ==
dmu_obj set _own(nane, DMJ OST_OTHER, B_FALSE, FTAG &0s2));

zil _close(zilog);
dmu_obj set _di sown(os, FTAG;
zt est _zd_fi ni (&zdt np);

(void) rw_unl ock(&ztest_name_| ock);

zt est _dmu_snapshot _create_destroy(ztest_ds_t *zd, uint64_t id)
3346 {

}

/*
* O eanup non-standard snapshots and cl ones.
*/

voi d

(void) rw_rdl ock(&ztest_nane_| ock);

(voi d) ztest_snapshot_destroy(zd->zd_nane, id);
(voi d) ztest_snapshot_create(zd->zd_nane, id);
(void) rw_unl ock(&ztest_nane_| ock);

zt est _dsl _dat aset _cl eanup(char *osnane, uint64_t id)
3358 {

char snaplname[MAXNAMVELEN] ;

new usr/src/cnd/ ztest/ ztest.c

3360
3361
3362
3363
3364

3366
3367
3368
3369
3370

3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387

3389
3390
3391
3392
3393

3395
3396
3397
3398
3399
3400
3401
3402

3404
3406

3408
3409
3410
3411
3412

3414
3415
3416
3417
3418
3419
3420
3421

3423
3424
3425

}

/*
* Verify dsl_dataset _pronote handl es EBUSY
*/

voi d

char cl onelname[MAXNANVELEN] ;
char snap2nanme[MAXNAMELEN ;
char cl one2nane[MVAXNAMELEN ;
char snap3name[MAXNAMVELEN] ;
int error;

(void) snprintf(snaplname, MAXNAMELEN, "% @1_%I|u", osname, id);
(void) snprintf(clonelname, MAXNAMELEN, "%/cl1_%I|u", osnane, id);
(void) snprintf(snap2name, MAXNAMELEN, "% @2_%I|u", clonelnane, id);
(void) snprintf(clone2name, MAXNAMELEN, "%/c2_%I|u", osnane, id);
(void) snprintf(snap3name, MAXNAMELEN, "% @3_%Iu", clonelnane, id);

error = dsl _destroy_head(cl one2nane);
if (error &% error !'= ENOENT

fatal (O, "dsl_destroy_head(%) = %", clone2nane, error);
error = dsl_destroy_snapshot (snap3nane, B_FALSE);
if (error & error != ENCENT)

fatal (O, "dsl_destroy_snapshot (%) = %", snap3nane, error);
error = dsl_destroy_snapshot (snap2nane, B_FALSE);
if (error & error != ENCENT)

fatal (0, "dsl_destroy_snapshot (%) = %", snap2nane, error);
error = dsl _destroy_head(cl onelnane);
if (error & error != ENOCENT)

fatal (0, "dsl_destroy_head(%) = %", clonelnane, error);
error = dsl _destroy_snapshot (snaplnane, B_FALSE);
if (error & error != ENCENT)

fatal (O, "dsl_destroy_snapshot (%) = %", snaplnane, error);

zt est _dsl _dat aset _pronote_busy(ztest_ds_t *zd, uint64_t id)
3394 {

obj set _t *os;

char snaplname[MAXNAVELEN] ;
char cl onelname[MAXNAVELEN] ;
char snap2nanme[MAXNAMELEN ;
char cl one2nane[MVAXNAMVELEN ;
char snap3name[MAXNAVELEN] ;
char *osnanme = zd->zd_nane;
int error;

(void) rw_rdl ock(&ztest_name_| ock);
zt est _dsl _dat aset _cl eanup(osnane, id);

(void) snprintf(snaplname, MAXNAMVELEN, "% @1_%I|u", osname, id);
(void) snprintf(clonelname, MAXNAMELEN, "%s/cl_%I|u", osnane, id);
(void) snprintf(snap2name, MAXNAMELEN, "% @2_%I|u", clonelnane, id);
(void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%I|u", osnane, id);
(void) snprintf(snap3name, MAXNAMELEN, "%@3_%I|u", clonelnane, id);

error = dnu_obj set _snapshot _one(osnane, strchr(snaplname, '@) + 1);
if (error & error != EEXIST) {

if (error == ENOSPQ)
ztest _record_enospc(FTAG ;
goto out;
}
fatal (0, "dnu_take_snapshot (%) = %", snaplnane, error);
}
error = dnu_obj set _cl one(cl onelnane, snaplnane);
if (error)

if (error == ENOSPC) {

new usr/src/cnd/ ztest/ ztest.c

3426 zt est _record_enospc(FTAG ;

3427 goto out;

3428

3429 fatal (0, "dnu_objset_create(%) = %", clonelnanme, error);
3430 }

3432 error = dnu_obj set _snapshot _one(cl onelnane, strchr(snap2nanme, '@) + 1);
3433 if (error & error != EEXI ST) {

3434 if (error == ENOSPC) {

3435 zt est _record_enospc(FTAG ;

3436 goto out;

3437 }

3438 fatal (0, "dnu_open_snapshot(%) = %", snap2nanme, error);
3439 }

3441 error = dnu_obj set _snapshot _one(cl onelnane, strchr(snap3nanme, '@) + 1);
3442 if (error & error != EEXI ST)

3443 if (error == ENOSPC)

3444 zt est _record_enospc(FTAG ;

3445 goto out;

3446

3447 fatal (O, "dnu_open_snapshot (%) = %", snap3nane, error);
3448 1

3450 error = dnu_obj set _cl one(cl one2nanme, snap3nane);

3451 if (error)

3452 if (error == ENOSPC) {

3453 ztest _record_enospc(FTAG ;

3454 goto out;

3455

3456 fatal (O, "dnu_objset_create(%) = %", clone2nane, error);
3457 1

3459 error = dnu_obj set _own(snap2nane, DMJ_OST_ANY, B TRUE, FTAG &os);
3460 if (error)

3461 fatal (0O, "dnu_objset_own(%) = %", snap2nane, error);
3462 error = dsl_dataset _pronot e(cl one2nane, NUL)

3463 if (error |= EBUS

3464 fatal (O, "dsl_dataset_pronote(%), %, not EBUSY", clone2nane,
3465 error);

3466 drmu_obj set _di sown(os FTAG ;

3468 out:

3469 zt est _dsl _dat aset _cl eanup(osnane, id);

3471 (void) rw_unl ock(&ztest_nane_| ock);

3472 }

3474 | *

3475 * Verify that dmu_object_{alloc,free} work as expected.

3476 */

3477 void

3478 {zt est _dmu_object _alloc_free(ztest_ds_t *zd, uint64_t id)

3479

3480 ztest_od_t od[4];

3481 int batchsize = sizeof (od) / sizeof (o0d[0]);

3483 (int b = 0; b < batchsize; b++)

3484 ztest_od_init(&d[b], id, FTAG b, DMJ_OT_U NT64_OTHER, 0, 0);
3486 I*

3487 * Destroy the previous batch of objects, create a new batch,

3488 * and do sone |/ O on the new objects.

3489 */

3490 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)

3491 return;

53

new usr/src/cnd/ ztest/ztest.c 54
3493 whil e (ztest_random(4 * batchsize) != 0)

3494 ztest _io(zd, od[ztest_randon(batchsize)].od_object,

3495 zt est _randon(ZTEST_RANGE_LOCKS) << SPA_ NAXBLCX:KSHI FT);
3496

3498

3499 * Verify that dmu_{read,wite} work as expected.

3500 */

3501

3502 ztest_dnu_read_wite(ztest_ds_t *zd, uint64_t id)

3503 {

3504 obj set _t *os = zd->zd_os;

3505 ztest_od_t od[2]

3506 dmu_tx_t *tx;

3507 int i, freelt error;

3508 ui nt 64_t n, s, t xg;

3509 bufwadt *packbuf, *bigbuf, *pack, *bigH, *bigT,

3510 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;

3511 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3512 uint64_t regions = 997;

3513 ui nt 64_ _t stride = 123456789ULL;

3514 uint64_t width = 40;

3515 int free_percent = 5;

3517 /*

3518 * This test uses two objects, packobj and bigobj, that are always
3519 * updated together (i.e. in the sane tx) so that their contents are
3520 * in sync and can be conpared. Their contents relate to each other
3521 * in a sinple way: packobj is a dense array of 'bufwad structures,
3522 * while bigobj is a sparse array of the same bufwads. Specifically,
3523 * for any index n, there are three bufwads that should be identical:
3524 ki

3525 * packobj, at offset n * sizeof (bufwad_t)

3526 * bi gobj, at the head of the nth chunk

3527 * bigobj, at the tail of the nth chunk

3528 *

3529 * The chunk size is arbitrary. It doesn't have to be a power of two,
3530 * and it doesn’'t have any relation to the object bl ocksize.

3531 * The only requirenent is that it can hold at |east two bufwads.
3532 ta

3533 * Normally, we wite the bufwad to each of these |ocations.

3534 * However, free_percent of the time we instead wite zeroes to

3535 * packobj and performa dmu_free_range() on bigobj. By conparing
3536 * bigobj to packobj, we can verify that the DMJis correctly

3537 * tracking which parts of an object are allocated and free,

3538 * and that the contents of the allocated bl ocks are correct.

3539 */

3541 /*

3542 * Read the directory info. |If it's the first time, set things up.
3543 */

3544 ztest_od_init(&od[0], id, FTAG 0, DMJ OT_U NT64_OTHER, 0, chunksize);
3545 ztest_od_init(&od[1], id, FTAG 1, DMJ OT_U NT64_OTHER, 0, chunksize);
3547 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)

3548 return;

3550 bi gobj = od[0] . od_obj ect;

3551 packobj = od[1].od_object;

3552 chunksi ze = od[0] . od_gen;

3553 ASSERT(chunksi ze == od[1] . od_gen);

3555 /*

3556 * Prefetch a random chunk of the big object.

3557 * Qur aimhere is to get some async reads in flight

new usr/src/cnd/ ztest/ ztest.c

3558
3559
3560
3561
3562
3563

3565
3566
3567
3568
3569

3571
3572

3574
3575

3577
3578

3580
3581
3582
3583
3584

3586
3587
3588
3589
3590
3591
3592
3593
3594

3596
3597
3598
3599

3601

3603
3604
3605
3606

3608
3609
3610
3611
3612
3613

3615
3616

3618
3619

3621
3622
3623

* for blocks that we may free bel ow;, the DMJU shoul d
* handle this race correctly.
*

n = ztest_randon(regions) * stride + ztest_randonm(w dth);
s =1 + ztest_random(2 * width -

drmu_prefetch(os, bigobj, n * chunk5|ze s * chunksi ze);
/*

55

* Pick a randomindex and conpute the offsets into packobj and bigobj.

n
S

ztest _randon(regions) * stride + ztest_random(w dth);
1 + ztest_randomwidth - 1);

packoff = n * sizeof (bufwad_t);
packsi ze = s * sizeof (bufwad_t);

bi gof f = n * chunksi ze;
bi gsi ze = s * chunksi ze;

packbuf = unmem al | oc(packsi ze, UMEM NOFAIL);
bi gbuf = urmem al | oc(bi gsi ze, UMEM NOFAI L) ;

/*

* free_percent of the time, free a range of bigobj rather than
* overwiting it.

*/

freeit = (ztest_random(100) < free_percent);

*

* Read the current contents of our objects.

*/

error = dnu_read(os, packobj, packof f, packsize, packbuf,
DNU READ_PREFET!

ASSERTO(error);

error = dnu read(os bi gobj, bigoff, bigsize, bigbuf,
DNU READ_PREFETCH) ;

ASSERTO(error);

/E Get a tx for the nods to both packobj and bi gobj .
tx/= dmu_t x_create(os);
dmu_t x_hold_wite(tx, packobj, packoff, packsize);
if (freeit)

dnmu_t x_hol d_free(tx, bigobj, bigoff, bigsize);
ol se dmu_t x_hol d_write(tx, bigobj, bigoff, bigsize);

txg = zt est _t x_assign(tx, TXGMGHTWAIT, FTAQ;

if (txg =
umem free(packbuf, packsize);
urmem f ree(bi gbuf, bigsize);
return;

}

dmu_obj ect _set _checksun{ os, bi gobj,

(enum zi o_checksum zt est _random dsl| _pr op(ZFS_PROP_CHECKSUM), tX);

drmu_obj ect _set _conpress(os, bigobj,
(enum zi o_conpress) zt est _random dsl| _pr op(ZFS_PROP_COWPRESSI ON) ,

/*
* For each index fromn to n + s, verify that the existing bufwad
* in packobj matches the bufwads at the head and tail of the

tx);

new usr/src/cnd/ ztest/ztest.c 56
3624 * correspondi ng chunk in bigobj. Then update all three bufwads
3625 * with the new values we want to wite out.

3626 */

3627 for (i =0; i <s; i++) {

3628 /* LINTED */

3629 pack = (bufwad t *)((char *)packbuf + i * sizeof (bufwad_t));
3630 [* LINTED */

3631 bigH = (buf\/\ad t *)((char *)bigbuf + i * chunksize);

3632 [* LINTED */

3633 bi gT = (bufwad_t *)((char *)bigH + chunksize) - 1;

3635 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);

3636 ASSERT((ui ntptr_t)bigT - (uintptr_t)bigbuf < bigsize);

3638 if (pack->bw_txg > txg)

3639 fatal (0, "future leak: got %I|x, open txg is %Ix",
3640 pack- >bw_t xg, txg);

3642 if (pack->bw data != 0 && pack->bw index !'=n + i)

3643 fatal (0, "wong index: got %I|x, wanted %1 x+% | x",
3644 pack- >bw_i ndex, n, 1);

3646 if (bcnp(pack, bigH sizeof (bufwad_t)) != 0)

3647 fatal (0, "pack/bigH msmatch in %/ %", pack, bigH;
3649 if (bcrp(pack, bigT, sizeof (bufwad_t)) != 0)

3650 fatal (0, "pack/bigT msmatch in %/ %", pack, bigT);
3652 if (freeit) {

3653 bzero(pack, sizeof (bufwad_t));

3654 } else {

3655 pack->bw_index = n + i;

3656 pack->bw_txg = txg;

3657 pack->bw data = 1 + ztest_randon(-2ULL);

3658 }

3659 *bi gH = *pack;

3660 *bi gT = *pack;

3661 }

3663 /*

3664 * We've verified all the old bufwads, and made new ones.

3665 * Now write them out.

3666 */

3667 dmu_write(os, packobj, packoff, packsize, packbuf, tx);

3669 if (freeit) {

3670 if (ztest_opts.zo_verbose >= 7) {

3671 (void) printf(" freelng of fset %Ix size %Ix"

3672 " txg %Ix

3673 (u_l ongl ong_1 t)bl goff,

3674 (u_l ongl ong_t) bi gsi ze,

3675 (u_l ongl ong_t)txg);

3676 }

3677 VERI FY(0 == dnu_free_range(os, bigobj, bigoff, bigsize, tx));
3678 } else {

3679 if (ztest_opts.zo_verbose >=7) {

3680 (void) printf("witing offset %1x size %I x"

3681 " txg %I1x\n",

3682 (u_l ongl ong_t) bi gof f,

3683 (u_l ongl ong_t) bi gsi ze,

3684 (u_l ongl ong_t)txg);

3685 }

3686 dnu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);

3687 }

3689 drmu_t x_commi t (tx);

new usr/src/cnd/ ztest/ ztest.c

3691 /*

3692 * Sanity check the stuff we just wote.

3693 */

3694 {

3695 voi d *packcheck = unem al | oc(packsize, UVEM NOFAIL);

3696 voi d *bi gcheck = umem al | oc(bi gsi ze, UNEM NOFAI L) ;

3698 VERI FY(0 == dmu_read(os, packobj, packoff,

3699 packsi ze, packcheck, DMJ_READ PREFEl’CH))

3700 VERI FY(0 == dmu_read(os, bigobj, bigoff,

3701 bi gsi ze, bi gcheck, DWJ | READ PREFETCH));

3703 ASSERT(bcnp(packbuf, packcheck, packsize) == 0);

3704 ASSERT(bcnp(bi gbuf, bi gcheck, bigsize) == 0);

3706 unem f ree(packcheck, packsize);

3707 urrem f r ee(bi gcheck, bigsize);

3708 1

3710 unem f ree(packbuf, packsize);

3711 urrem f ree(bi gbuf, bigsize);

3712 }

3714 void

3715 conpar e_and_updat e_pbbuf s(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3716 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)

3717 {

3718 uinté4_t i;

3719 buf wad_t *pack;

3720 buf wad_t *bi gH;

3721 buf wad_t *bigT;

3723 /*

3724 * For each index fromn to n + s, verify that the existing bufwad
3725 * in packobj matches the bufwads at the head and tail of the
3726 * correspondi ng chunk in bigobj. Then update all three bufwads
3727 * with the new values we want to wite out.

3728 */

3729 for (i =0; i <s; i++) {

3730 /* LINTED */

3731 pack = (bufwad t *)((char *)packbuf + i * sizeof (bufwad_t));
3732 /* LI NTED

3733 bigH = (bufwad t *)((char *)bigbuf + i * chunksize);

3734 [* LINTED */

3735 bi gT = (bufwad_t *)((char *)bigH + chunksize) - 1;

3737 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3738 ASSERT((ui ntptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3740 if (pack->bw_txg > txg)

3741 fatal (0, "future |eak: got %I1x, open txg is %]Ix",
3742 pack- >bw_t xg, txg);

3744 if (pack->bw data != 0 && pack->bw_ index !'=n + i)

3745 fatal (0, "wong index: got %I|x, wanted %1 x+% | x",
3746 pack->bw_i ndex, n, i);

3748 if (bcrmp(pack, bigH sizeof (bufwad_t)) != 0)

3749 fatal (0, "pack/bigH msmatch in %/ %", pack, bigH);
3751 if (bcnp(pack, bigT, sizeof (bufwad_t)) != 0)

3752 fatal (0, "pack/bigT msmatch in %/ %", pack, bigT);
3754 pack->bw index = n + i;

3755 pack->bw_t xg = txg,

57

58

new usr/src/cnd/ ztest/ztest.c

3756 pack->bw data = 1 + ztest_random(-2ULL);

3758 *bi gH = *pack;

3759 *bi gT = *pack;

3760 }

3761 }

3763 void

3764 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)

3765 {

3766 obj set _t *os = zd->zd_os;

3767 ztest_od_t od[2];

3768 dmu_tx_t *tx;

3769 uint64_t i;

3770 int error;

3771 uint64_t n, a;

3772 buf wad_t packbuf *bi gbuf ;

3773 ui nt 64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;

3774 uint64_t bl ocksi ze = ztest_random bl ocksi ze();

3775 ui nt64_t chunksi ze = bl ocksi ze;

3776 uint64_t regions = 997;

3777 uint64_t stride = 123456789ULL;

3778 uint64_t width = 9;

3779 dnu_buf _t *bonus_db;

3780 arc_buf _t **bi gbuf _. arcbufs

3781 dmu_obj ect _info_t doi;

3783 /*

3784 * This test uses two Obj ects, packobj and bigobj, that are always
3785 * updat ed together (i. in the same tx) so that their contents are
3786 * in sync and can be corrpared Their contents relate to each other
3787 * in a sinple way: packobj is a dense array of 'bufwad structures,
3788 * while bigobj is a sparse array of the same bufwads. Specifically,
3789 * for any index n, there are three bufwads that should be identical:
3790 *

3791 * packobj, at offset n * sizeof (bufwad_t)

3792 kd bi gobj, at the head of the nth chunk

3793 * bi gobj, at the tail of the nth chunk

3794 *

3795 * The chunk size is set equal to bigobj block size so that

3796 * dmu_assi gn_arcbuf () can be tested for object updates.

3797 */

3799 *

3800 */Read the directory info. |If it’s the first time, set things up.
3801 *

3802 ztest_od_init(&d[0], id, FTAG 0, DMJ OT_U NT64_OTHER, bl ocksize, 0);
3803 ztest_od_init(&d[1], id, FTAG 1, DMJ OT_U NT64_OTHER, 0, chunksize);
3805 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)

3806 return;

3808 bi gobj = od[0]. od_obj ect;

3809 packobj = od[1].od_object;

3810 bl ocksi ze = od[0] . od_bl ocksi ze;

3811 chunksi ze = bl ocksi ze;

3812 ASSERT(chunksi ze == od[1] . od_gen);

3814 VERI FY(dnu_obj ect _i nf o(os, bigobj, &doi) == 0);

3815 VERI FY(| SP2(doi . d0| dat a_bl ock_si ze));

3816 VERI FY(chunksi ze == doi . doi _data_bl ock_si ze);

3817 VERI FY(chunksi ze >= 2 * sizeof (bufwad_t));

3819 /*

3820 * Pick a randomindex and conpute the offsets into packobj and bigobj.
3821 */

new usr/src/cnd/ ztest/ ztest.c 59

3822
3823

3825
3826

3828
3829

3831
3832

3834
3836

3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849

3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867

3869
3870
3871
3872

3874
3875

3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

ztes
1 +

n
s
packof f

packsi ze

bi gof f =
bi gsi ze

packbuf
bi gbuf =

t_random(regions) * stride + ztest_randomwi dth);
ztest _random(width - 1);

=n * sizeof (bufwad_t);
= s * sizeof (bufwad_t);
n * chunksi ze;
= s * chunksi ze;

= unmem zal | oc(packsi ze, UMEM NOFAIL);
umem zal | oc(bi gsi ze, UMEM NOFAIL);

VERI FY3U(0, ==, dnu_bonus_hol d(os, bigobj, FTAG &bonus_db));

bi gbuf _a
/

rcbufs = umem zalloc(2 * s * sizeof (arc_buf_t *), UVEM NOFAIL);

test zcopy for DB_UNCACHED dbufs.

test zcopy to already referenced dbufs.
test zcopy to dirty dbuf in the sane txg.
test zcopy to dbuf dirty in previous txg.
test zcopy when dbuf is no |onger dirty.
test zcopy when it can’'t be done.

one nobre zcopy wite.

=1
o
=}

OO WNEFLO

Initeration 5 (i == 5) use archufs

* that don’t match bigob] blksz to test

* dnu_assign_arcbuf () when it can’t directly
* assign an archuf to a dbuf.

*

/

for (i =0; j <s; j++) {
if (i '=5)
bi gbuf _arcbufs[j] =
dmu_r equest _ar cbuf (bonus_db, chunksi ze);
} else {
bi gbuf _arcbufs[2 * j] =
dmu_r equest arcbuf(bonus db, chunksize / 2);
bi gbuf _arcbufs[2 * | + 1] =
dmu_r equest _ar cbuf (bonus_db, chunksize / 2);
}
}
/*

* Get a tx for the nmods to both packobj and bigobj.
*

/
tx = dmu_t x_create(os);

dmu_t x_hol d_write(tx, packobj, packoff, packsize);
dmu_tx_hol d_write(tx, bigobj, bigoff, bigsize);

txg = ztest_tx_assign(tx, TXG M GHTWAI T, FTAG;
if (txg == 0) {
unem f r ee(packbuf, packsize);
umem f r ee(bi gbuf, bigsize);
for (j =0;] <s; j++) {
if (i !'= 5) {
dmu_r et ur n_ar cbuf (bi gbuf _arcbufs[j]);
} else {
drmu_r et ur n_ar cbuf (
bi gbuf _arcbufs[2 * j]);
dmu_r et ur n_ar cbuf (

new usr/src/cnd/ zt est/ ztest.c

3888
3889
3890
3891
3892
3893
3894

3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910

3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937

3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953

60

bi gbuf _arcbufs[2 * j + 1]);
}

unem free(bi gbuf _arcbufs, 2 * s * sizeof (arc_buf_t *));
dmu_buf _rel e(bonus_db, FTAG;

return;
}
/*
* 50% of the tine don't read objects in the 1st iteration to
* test dnmu_assign_arcbuf() for the case when there're no
* existing dbufs for the specified offsets.
*
if (i '=0 || ztest_random(2) != 0) {

error = dmu_read(os, packobj, packoff,
packsi ze, packbuf, DMJ READ PREFETCH);

ASSERTO(error);

error = dmu_read(os, bi gobJ bi gof f, bi gsi ze,
bi gbuf, DMJ_READ PREI CH);

ASSERTO(error);

}
conpar e_and_updat e_pbbuf s(s, packbuf, bigbuf, bigsize,
n, chunksize, txg);

/*
* W've verified all the old bufwads, and made new ones.
* Now wite themout.
*/
dnmu_write(os, packobj, packoff, packsize, packbuf, tx);
if (ztest_opts.zo_verbose >= 7)
(void) printf("witing offset %I1x size %I x"
" txg %Ix\n",
(u_l ongl ong_t) bi gof f,
(u_l ongl ong_t) bi gsi ze,
(u_longlong_t)txg);

}
for (off = bigoff, j =0; j <s; j++, off += chunksize) {
dmu_buf _t *dbt;
if (i '=5)
bcopy((caddr _t)bigbuf + (off - bigoff),
bi gbuf _arcbufs[j]->b_data, chunksize);

} else {
bcopy((caddr_t)bi gbuf + (off - bigoff),
bi gbuf _arcbufs[2 * j]->b_data,
chunksi ze / 2);
bcopy((caddr_t) bi gbuf + (off - bigoff) +
chunksi ze / 2,
bi gbuf_arcbufs[Z * j + 1]->b_data,
chunksi ze / 2);
}
if (i ==

) {
VERI FY(dmu_buf _hol d(os, bigobj, off,
FTAG &dbt, DMJ_READ NO PREFETC}D = 0);

}
if (i '=5)
dmu_assi gn_ar cbuf (bonus_db, off,
bi gbuf _arcbufs[j], tx);
} else {
drmu_assi gn_ar cbuf (bonus_db, off,
bi gbuf _arcbufs[2 * j], tx);
drmu_assi gn_ar cbuf (bonus_db,
of f + chunksize / 2,
bi gbuf _arcbufs[2 * j + 1], tx);

oo
if (i ==1) {

new usr/src/cnd/ ztest/ ztest.c 61

3954 dmu_buf _rel e(dbt, FTAG;

3955 }

3956

3957 dnmu_t x_commi t (tx);

3959 /*

3960 * Sanity check the stuff we just wote.

3961 */

3962 {

3963 voi d *packcheck = umem al | oc(packsi ze, UVEM NOFAIL);
3964 voi d *bi gcheck = unem al | oc(bi gsi ze, UVEM NOFAIL);
3966 VERI FY(0 == dnu_read(os, packobj, packoff,
3967 packsi ze, packcheck, DMJ_READ_PREFETCH));
3968 VERI FY(0 == dnu_read(os, bigobj, bigoff,

3969 bi gsi ze, bi gcheck, DMJ_READ PREFETCH));
3971 ASSERT(bcnp(packbuf, packcheck, packsize) == 0);
3972 ASSERT(bcnp(bi gbuf, bi gcheck, bigsize) == 0);
3974 umem f ree(packcheck, packsize);

3975 urmem f ree(bi gcheck, bigsize);

3976 }

3977 if (i ==2) {

3978 t xg_wai t _open(dmu_obj set _pool (os), 0);

3979 } elseif (i == 3) {

3980 tXxg_wai t _synced(dnmu_obj set _pool (0s), 0);

3981 }

3982 }

3984 drmu_buf _rel e(bonus_db, FTAG;

3985 unmem f r ee(packbuf, packsize);

3986 unem f ree(bi gbuf, bigsize);

3987 unmem f ree(bi gbuf _arcbufs, 2 * s * sizeof (arc_buf_t *));

3988 }

3990 /* ARGSUSED */

3991 void

3992 ztest_dnu_wite_parallel (ztest_ds_t *zd, uint64_t id)

3993 {

3994 ztest_od_t od[1];

3995 uint64_t offset = (1ULL << (ztest_randon(20) + 43)) +

3996 (ztest_random(ZTEST_RANCE_LOCKS) << SPA_MAXBLOCKSHI FT) ;
3998 /*

3999 * Have nultiple threads wite to |arge offsets in an object
4000 * to verify that parallel wites to an object -- even to the
4001 * sane blocks within the object -- doesn’'t cause any trouble.
4002 *

4003 ztest_od_init(&d[0], |D_PARALLEL, FTAG 0, DMJ_OT_UINT64_OTHER, 0, 0);
4005 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)

4006 return;

4008 whil e (ztest_randon(10) != 0)

4009 ztest_io(zd, od[0].od_object, offset);

4010 }

4012 void

4013 ztest _dnu_preal | oc(ztest_ds_t *zd, uint64_t id)

4014 {

4015 ztest_od_t od[1];

4016 uint64_t offset = (1ULL << (ztest_randon(4) + SPA MAXBLOCKSHI FT)) +
4017 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHI FT) ;
4018 uint64_t count = ztest_randon(20) + 1;

4019 uint64_t bl ocksi ze = ztest_random bl ocksi ze();

new usr/src/cnd/ ztest/ztest.c 62
4020 voi d *dat a;

4022 ztest_od_init(&d[0], id, FTAG 0, DMJ OT_U NT64_OTHER, bl ocksize, 0);
4024 if (ztest_object_init(zd, od, sizeof (od), !ztest_randonm(2)) != 0)
4025 return;

4027 if (ztest_truncate(zd, od[O0].od_object, offset, count * bl ocksize) != 0)
4028 return;

4030 ztest _preal l oc(zd, od[O0].od_object, offset, count * blocksize);
4032 data = unmem zal | oc(bl ocksi ze, UMEM NOFAIL);

4034 whil e (ztest_randon(count) != 0) {

4035 uint64_t randoff = offset + (ztest_randon{count) * bl ocksize);
4036 if (ztest_wite(zd, od[0].od_object, randoff, blocksize,
4037 data) != 0)

4038 break;

4039 while (ztest_randon(4) != 0)

4040 ztest _io(zd, od[O0].od_object, randoff);

4041 }

4043 umem free(data, bl ocksize);

4044 }

4046 [*

4047 * Verify that zap_{create, destroy, add, renove, update} work as expect ed.
4048 */

4049 #define ZTEST_ZAP_M N_|I NTS 1

4050 #define ZTEST ZAP_MAX_|I NTS 4

4051 #define ZTEST_ZAP_MAX_PROPS 1000

4053 voi d

4054 ztest_zap(ztest_ds_t *zd, uint64_t id)

4055 {

4056 obj set _t *os = zd->zd_os;

4057 ztest_od_t od[1];

4058 uint64_t object;

4059 uint64_t txg, |ast_txg;

4060 ui nt 64_t val ue[ZTEST_ZAP_MAX_I NTS] ;

4061 uint64_t zl_ints, zl_intsize, prop;

4062 int i, ints;

4063 dmu_t x_t *tx;

4064 char propnange[100], txgnane[100];

4065 int error;

4066 char *hc[2] ={ "s.acl.h", ".s.open.h.hyLZI g" };

4068 ztest _od_init(&d[0], id, FTAG 0, DMJ OT_ZAP OTHER 0, 0);

4070 if (ztest_object_init(zd, od, sizeof (od), !ztest_randonm(2)) != 0)
4071 return;

4073 obj ect = od[0].od_object;

4075 /*

4076 * CGenerate a known hash collision, and verify that

4077 * we can | ookup and renove both entries.

4078 */

4079 tx = dnu_tx_create(os);

4080 drmu_t x_hol d_zap(tx, object, B TRUE, NULL);

4081 txg = ztest_tx_assign(tx, TXG M GHTWAI T, FTAG;

4082 if (txg == 0)

4083 return;

4084 for (i =0; i <2; i++) {

4085 value[i] =1i;

new usr/src/cnd/ ztest/ ztest.c

4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100

4102
4103
4104
4105

4107
4108
4109
4110
4111

4113
4114
4115
4116
4117
4118
4119

4121
4122

4124
4125

4127
4128

4130
4131

4133
4134
4135
4136
4137
4138

4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151

VERI FY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
1, &valuel[i], tx));

%or (i =0; i <2, i++)

VERI FY3U(EEXI ST, ==, zap_add(os, object, hc[i],
sizeof (uint64_t), 1, &aluel[i], tx));
VERI FY3U(0, ==
zap_l ength(os, object, hc[i], &zl _intsize, &l _ints));
ASSERT3U(z| _i ntsi ze, ==, sizeof (uint64_t));
ASSERT3U(zl _ints, ==, 1);
for (i =0; i <2; i++4)
VERI FY3U(0, ==, zap_renpve(os, object, hc[i], tx));

drmu_t x_commi t (tx);

/*

* Cenerate a buch of randomentries.

*/

ints = MAX(ZTEST_ZAP_M N_I NTS, object % ZTEST_ZAP_MAX_I NTS) ;

prop = ztest_random(ZTEST_ZAP_NMAX_PROPS) ;

(void) sprintf(propname, "prop_%Ilu", (u_longlong_t)prop);
(void) sprintf(txgname, "txg_%Ilu", (u_longlong_t)prop);
bzero(val ue, sizeof (value));

last_txg = 0;

*

* |f these zap entries already exist, validate their contents.
*/

error = zap_|l ength(os, object, txgnane, &I _intsize, &I _ints);
if (error ==

ASSERT3U(z| _i ntsi ze, ==, sizeof (uint64_t));

ASSERT3U(zl _ints, ==, 1);

VERI FY(zap_| ookup(os, object, txgnane, zl_intsize,
zl _ints, & ast_txg) == 0);

VERI FY(zap_| engt h(os, object, propnanme, &zI_intsize,

&l _ints) == 0);
ASSERT3U(z| _i ntsi ze, ==, sizeof (uint64_t));
ASSERT3U(zl _ints, ==, ints);
VERI FY(zap_| ookup(os, object, propnane, zl_intsize,
zl _ints, value) == 0);
for (i =0; i <ints; i++) {
ASSERT3U(val ue[i], ==, last_txg + object + i);
} else {
ASSERT3U(error, ==, ENCENT);
}
/*
* Atomically update two entries in our zap object.
* The first is naned txg_%1u, and contains the txg
* in which the property was |ast updated. The second
* is named prop_%lu, and the nth elenent of its value
*

shoul d be txg + object + n.

/

tx = dmu_t x_create(os);

dmu_t x_hol d_zap(tx, object, B TRUE, NULL);

txg = ztest_tx_assign(tx, TXG M GHTWAI T, FTAQG;
if (txg == 0)

return;

*

63

new usr/src/cnd/ ztest/ ztest.c

4153 if (last_txg > txg)

4154 fatal (0, "zap future leak: old %lu new %1u", last_txg, txg);
4156 for (i =0; i <ints; i++)

4157 value[i] = txg + object + i;

4159 VERI FY3U(0, ==, zap_update(os, object, txgnane, sizeof (uint64_t),
4160 1, & xg, tx));

4161 VERI FY3U(0, ==, zap_update(os, object, propnanme, sizeof (uint64_t),
4162 ints, value, tx));

4164 dmu_t x_commi t (tx);

4166 I*

4167 * Renpve a random pair of entries.

4168 */

4169 prop = ztest_random(ZTEST_ZAP_NMAX_PROPS) ;

4170 (void) sprintf(propname, "prop_%Ilu", (u_longlong_t)prop);

4171 (void) sprintf(txgname, "txg_%Ilu", (u_longlong_t)prop);

4173 error = zap_|l ength(os, object, txgnane, &I _intsize, &I _ints);
4175 if (error == ENCENT)

4176 return;

4178 ASSERTO(error);

4180 tx = dnu_tx_create(os);

4181 dmu_t x_hol d_zap(tx, object, B TRUE, NULL);

4182 txg = ztest_tx_assign(tx, TXG M GHTWAI T, FTAQG;

4183 if (txg == 0)

4184 return;

4185 VERI FY3U(0, ==, zap_renpve(os, object, txgnanme, tx));

4186 VERI FY3U(0, ==, zap_renove(os, object, propnanme, tx));

4187 drmu_t x_commi t (tx);

4188 }

4190 /*

4191 * Testcase to test the upgrading of a mcrozap to fatzap.

4192 */

4193 void

4194 ztest_fzap(ztest_ds_t *zd, uint64_t id)

4195 {

4196 obj set _t *os = zd->zd_os;

4197 ztest_od_t od[1];

4198 uint64_t object, txg;

4200 ztest _od_init(&d[0], id, FTAG 0, DMJ OT_ZAP OTHER 0, 0);
4202 if (ztest_object_init(zd, od, sizeof (od), !ztest_randonm(2)) != 0)
4203 return;

4205 obj ect = od[0].od_object;

4207 /*

4208 * Add entries to this ZAP and nmake sure it spills over

4209 * and gets upgraded to a fatzap. Al so, since we are adding
4210 * 2050 entries we should see ptrtbhl growth and | eaf-block split.
4211 */

4212 for (int i =0; i < 2050; i++) {

4213 char name[MAXNAMELEN] ;

4214 uint64_t value =i;

4215 dmu_t x_t *tx;

4216 int error;

new usr/src/cnd/ ztest/ ztest.c

65

4218 (void) snprintf(name, sizeof (nanme), "fzap-%Ilu-%Iu",
4219 id, value);

4221 tx = drmu_tx_create(os);

4222 dnu_t x_hol d_zap(tx, object, B _TRUE, nane);

4223 txg = ztest_tx_assign(tx, TXG M GHTWAI T, FTAG;
4224 if (txg == 0)

4225 return

4226 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4227 &val ue, tx);

4228 ASSERT(error == 0 || error == EEXI ST);

4229 dmu_t x_commi t (tx);

4230 }

4231 }

4233 /* ARGSUSED */

4234 void

4235 ztest _zap_parallel (ztest_ds_t *zd, uint64_t id)

4236 {

4237 obj set _t *os = zd->zd_os;

4238 ztest_od_t od[1];

4239 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4240 dmu_t x_t *tx;

4241 int i, nanelen, error;

4242 int mcro = ztest_random 2);

4243 char nane[20], string_val ue[20];

4244 voi d *dat a;

4246 ztest_od_init(&d[0], |D_PARALLEL, FTAG micro, DMJ OT_ZAP_OTHER, 0, 0);
4248 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4249 return;

4251 obj ect = od[0].od_object;

4253 I*

4254 * Generate a random nanme of the form’xxx..... * where each
4255 * x is a random printable character and the dots are dots.
4256 * There are 94 such characters, and the name | ength goes from
4257 * 6 to 20, so there are 9473 * 15 = 12,458, 760 possi bl e nanes.
4258 */

4259 nanel en = ztest_randon(si zeof (nane) - 5) + 5 + 1;

4261 for (i =0; i <3; i+4)

4262 nane[i] ='!’ + ztest_randon('~ - !’ + 1);

4263 for (; i < nanelen - 1; i++)

4264 nane[i] ="'.";

4265 name[i] = "'\0";

4267 if ((nanelen & 1) || micro) {

4268 wsi ze = sizeof (txg);

4269 we = 1;

4270 data = &t xg;

4271 } else {

4272 wsize = 1;

4273 wc = nanel en;

4274 data = string_val ue;

4275 }

4277 count = -1ULL;

4278 VERI FYO(zap_count (0s, object, &count));

4279 ASSERT(count != -1ULL)

4281 /*

4282 * Select an operation: |ength, |ookup, add, update, renove.
4283 */

new usr/src/cnd/ ztest/ ztest.c

4284

4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297

4299

4301
4302
4303
4304
4305
4306
4307
4308
4309

4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321

4323
4324
4325
4326

4328
4329
4330

4332
4333
4334
4335
4336

4338
4339
4340

4342
4343
4344
4345
4346
4347
4348
4349

i = ztest_random(5);
if (i >=2) {
tx = drmu_tx_create(os);
dnu_t x_hol d_zap(tx, object, B _TRUE, NULL);
txg = ztest_tx_assign(tx, TXG M GHTWAI T, FTAG;
if (txg == 0)
return;
bcopy(nane, string_value, nanelen);
} else {
tx = NULL;
txg = 0;
bzero(string_val ue, nanel en);
}
switch (i) {
case O:
error = zap_l ength(os, object, nane, &Il _wsize, &I _wc);
if (error ==
ASSERT3U(wsi ze, ==, zl _wsize);
ASSERT3U(wc, ==, zl_wc);
} else {
ASSERT3U(error, ==, ENOENT);
}
br eak;
case 1:
error = zap_| ookup(os, object, name, wsize, wc, data);
if (error == 0)
if (data == string_val ue &&
bcnp(nanme, data, nanelen) != 0)
fatal (0, "nane "%’ !=val % len %",
nane, data, nanelen);
} else {
ASSERT3U(error, ==, ENOENT);
br eak;
case 2:
error = zap_add(os, object, nane, wsize, wc, data, tx);
ASSERT(error == || error == EEXIST);
br eak;
case 3:
VERI FY(zap_updat e(os, object, nanme, wsize, wc, data, tx)
br eak;
case 4:
error = zap_renove(os, object, nanme, tx);
ASSERT(error == 0 || error == ENCENT);
br eak;
}
if (tx !'= NULL)
drmu_t x_commi t (tx);
}
/*
* Commit cal |l back data.
*
/
typedef struct ztest_cb_data {
list_node_t zcd_node;
ui nt 64_t zcd_t xg;
i nt zcd_expected_err;
bool ean_t zcd_added;

66

0);

new usr/src/cnd/ ztest/ztest.c 67 new usr/src/cnd/ ztest/ztest.c
4350 bool ean_t zcd_cal | ed; 4416 * cal |l back has been registered but not called, then we assume there is an
4351 spa_t *zcd_spa; 4417 * inpl enentation bug.
4352 } ztest_cb_data_t; 4418 */
4419 #define ZTEST_COWM T_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
4354 /* This is the actual commit callback function */
4355 static void 4421 | *
4356 ztest_commit_cal | back(void *arg, int error) 4422 * Commit call back test.
4357 { 4423 */
4358 ztest _cb_data_t *data = arg; 4424 void
4359 uint64_t synced_t xg; 4425 ztest _dnmu_commit _cal | backs(ztest_ds_t *zd, uint64_t id)
4426 {
4361 VERI FY(data != NULL); 4427 obj set _t *os = zd->zd_os;
4362 VERI FY3S(dat a- >zcd_expected_err, ==, error); 4428 ztest_od_t od[1];
4363 VERI FY(! dat a- >zcd_cal | ed) ; 4429 drmu_t x_t *tx;
4430 ztest_cb_data_t *cb_data[3], *tnp_cb;
4365 synced_t xg = spa_l ast _synced_t xg(dat a- >zcd_spa) ; 4431 uint64_t ol d_txg, txg;
4366 if (data->zcd_txg > synced_txg) 4432 int i, error;
4367 fatal (O, "commit callback of txg % PRIu64 " called prematurely"
4368 ", last synced txg = % PRIu64 "\n", data->zcd_txg, 4434 ztest_od_init(&d[0], id, FTAG 0, DMJ OT_U NT64_OTHER, 0, 0);
4369 synced_t xg) ;
4436 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4371 dat a->zcd_cal | ed = B_TRUE; 4437 return;
4373 if (error == ECANCELED) { 4439 tx = dmu_t x_create(os);
4374 ASSERTO(dat a- >zcd_t xg) ;
4375 ASSERT(! dat a- >zcd_added) ; 4441 cb_data[0] = ztest_create_cbh_data(os, 0);
4442 drmu_t x_cal | back_regi ster(tx, ztest_commt_callback, cb_data[O0]);
4377 /*
4378 * The private call back data shoul d be destroyed here, but 4444 dmu_tx_hold_wite(tx, od[0].od_object, 0, sizeof (uint64_t));
4379 * since we are going to check the zcd_called field after
4380 * drmu_tx_abort(), we will destroy it there. 4446 /* Every once in a while, abort the transaction on purpose */
4381 */ 4447 if (ztest_randon(100) == 0)
4382 return; 4448 error = -1;
4383 }
4450 if (lerror)
4385 /* Was this callback added to the gl obal callback list? */ 4451 error = dmu_t x_assign(tx, TXG NOWAIT);
4386 if (!data->zcd_added)
4387 goto out; 4453 txg = error ? 0 : dnu_tx_get_txg(tx);
4389 ASSERT3U(dat a- >zcd_txg, !=, 0); 4455 cb_data[0] ->zcd_txg = txg;
4456 cb_data[1] = ztest_create_cb_data(os, txg);
4391 /* Renopbve our callback fromthe list */ 4457 dmu_t x_cal | back_register(tx, ztest_conmt_callback, cb_data[1]);
4392 (void) mutex_l ock(&zcl.zcl _call backs_I ock);
4393 I'ist_renove(&zcl.zcl _call backs, data); 4459 if (error) {
4394 (voi d) mutex_unl ock(&zcl.zcl _call backs_I ock); 4460 /*
4461 * It’s not a strict requirement to call the registered
4396 out: 4462 * cal | backs frominside dmu_tx_abort(), but that's what
4397 umrem free(data, sizeof (ztest_cb_data_t)); 4463 * it’s supposed to happen in the current inplenmentation
4398 } 4464 * so we wll check for that.
4465 */
4400 /* Allocate and initialize callback data structure */ 4466 for (i =0; i < 2; i++)
4401 static ztest_cb_data_t * 4467 cb_data[i]->zcd_expected_err = ECANCELED;
4402 ztest_create_cb_data(objset_t *os, uint64_t txg) 4468 VERI FY(!cb_data[i]->zcd_call ed);
4403 { 4469 }
4404 ztest _cb_data_t *cb_dat a;
4471 drmu_t x_abort (tx);
4406 cb_data = unem zal | oc(sizeof (ztest_cb_data_t), UVEM NOFAIL);
4473 for (i =0; i < 2; i++)
4408 cb_dat a- >zcd_t xg = txg; 4474 VERI FY(cb_data[i]->zcd_cal |l ed);
4409 cb_dat a- >zcd_spa = dnu_obj set _spa(o0s); 4475 umem free(cb_data[i], sizeof (ztest_cb_data_t));
4476 }
4411 return (cb_data);
4412 } 4478 return;
4479 }
4414 | *
4415 * If a nunber of txgs equal to this threshold have been created after a commit 4481 cb_data[2] = ztest_create_cb_data(os, txg);

new usr/src/cnd/ ztest/ztest.c 69
4482 dmu_t x_cal | back_register(tx, ztest_conmmt_callback, cb_data[2]);

4484 /*

4485 */Read exi sting data to make sure there isn't a future |eak.

4486 *

4487 VERI FY(0 == dnmu_read(os, od[O0].od_object, 0, sizeof (uint64_t),

4488 &ol d_t xg, DMU_READ_PREFETCH));

4490 if (old_txg > txg)

4491 fatal (O, "future | eak: got % PRIu64 ", open txg is % PRI u64,
4492 ol d_txg, txg);

4494 dmu_write(os, od[O].od_object, O, sizeof (uint64_t), & xg, tx);

4496 (void) mutex_l ock(&zcl.zcl _call backs_I ock);

4498 /*

4499 * Since commit callbacks don't have any ordering requirement and since
4500 * it is theoretically possible for a conmt callback to be called
4501 * after an arbitrary anpunt of time has el apsed since its txg has been
4502 * synced, it is difficult to reliably determ ne whether a commt

4503 * cal | back hasn’t been called due to high |oad or due to a flawed
4504 * i npl enent ati on.

4505 *

4506 * In practice, we will assume that if after a certain nunber of txgs a
4507 * conmit call back hasn’t been called, then nost likely there's an
4508 * inplenentation bug..

4509 */

4510 trrp_cb l'ist head(&zcl zcl _cal | backs);

4511 if (tmp_cb !'= NULL

4512 t mp_cb->zcd txg > txg - ZTEST_COWM T_CALLBACK_ THRESH)

4513 fatal (0, "Conmmit callback threshol d exceeded, ol dest txg: %
4514 PRI u64 ", open txg: % PRIu64 "\n", tr'rp_cb- >zcd_t xg, txg);
4515 }

4517 I*

4518 * Let’s find the place to insert our callbacks.

4519 *

4520 * Even though the list is ordered by txg, it is possible for the
4521 * insertion point to not be the end because our txg may already be
4522 * quiescing at this point and other callbacks in the open txg

4523 * (fromother objsets) may have sneaked in.

4524 */

4525 rrp cb = list_tail (&zcl.zcl_call backs);

4526 whilTe (tmp_cb !'= NULL && tnp_ch- >zcdtxg>txg)

4527 tmp_cb = list_prev(&zcl.zcl _call backs, tnp_cb);

4529 /* Add the 3 callbacks to the list */

4530 for (i =0; i < 3; i++4)

4531 if (trrp_cb == NULL)

4532 l'ist_insert_head(&zcl.zcl_callbacks, cb_data[i]);

4533 el se

4534 list_insert_after(&zcl.zcl_callbacks, tnp_ch,

4535 cb_data[i]);

4537 cb_data[i]->zcd_added = B_TRUE;

4538 VERI FY(! cb_dat afi] - >zcd cal | ed)

4540 tnmp_cb = cb_datalil];

4541

4543 (voi d) mutex_unl ock(&zcl.zcl _call backs_I ock);

4545 drmu_t x_commi t (tx);

4546 }

new usr/src/cnd/ ztest/ ztest.c

4548 | * ARGSUSED */

70

4549 void

4550 ztest_dsl _prop_get_set(ztest_ds_t *zd, uint64_t id)

4551 {

4552 zfs propt propllst[] = {

4553 PROP_CHECKSUM

4554 ZFS_PR(P_COVPRESSI ON,

4555 ZFS_PROP_COPI ES,

4556 ZFS_PROP_DEDUP

4557 };

4559 (void) rw_rdl ock(&ztest_nane_| ock);

4561 for (int p =0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4562 (voi d) ztest_dsl _prop_set_uint 64(zd->zd_nane, proplist[p],
4563 zt est _random dsl| _prop(proplist[p]), (int)ztest_randon(2));
4565 (void) rw_unl ock(&ztest_name_| ock);

4566 }

4568 /* ARGSUSED */

4569 void

4570 ztest_spa_prop_get _set(ztest_ds_t *zd, uint64_t id)

4571 {

4572 nvlist_t *props = NULL;

4574 (void) rw_rdl ock(&ztest_nane_| ock);

4576 (voi d) zt est _spa_prop_set _ui nt 64(ZPOOL_PROP_DEDUPDI TTO,

4577 Zl O_DEDUPDI TTO M N + ztest _randon(Zl O DEDUPDI TTO M N));

4579 VERI FYO(spa_prop_get (ztest_spa, &props));

4581 if (ztest_opts.zo_verbose >= 6)

4582 dunmp_nvlist(props, 4);

4584 nvlist_free(props);

4586 (void) rw_unl ock(&ztest_nane_| ock);

4587 }

4589 static int
4590 user_rel ease_one(const char *snapnanme, const char *hol dnane)

4591 {

4592 nvlist_t *snaps, *holds;

4593 int error;

4595 snaps = fnvlist_alloc();

4596 holds = fnvlist_alloc();

4597 fnvlist_add_bool ean(hol ds, hol dnane);

4598 fnvlist_add_nvlist(snaps, snapname, hol ds);
4599 fnvli st “free(hol ds);

4600 error dsl _dat aset _user_rel ease(snaps, NULL);
4601 fnvli st_f ree(snaps);

4602 return (error);

4603 }

4605 /*

4606 * Test snapshot hol d/rel ease and deferred destroy.
4607 */

4608 void

4609 ztest_dnmu_snapshot _hol d(ztest _ds_t *zd, uint64_t id)
4610 {

4611 int error;

4612 obj set _t *os = zd->zd_os;

4613 obj set _t *origin;

new usr/src/cnd/ ztest/ ztest.c 71

4614
4615
4616
4617
4618
4619

4621
4623

4625
4626
4627
4628
4629

4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642

4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655

4657
4658
4659
4660
4661
4662
4663
4664

4666
4667
4668
4669
4670

4672
4673
4674

4676
4677
4678

char
char
char
char
char

snapnane[100] ;

ful | nane[100] ;

cl onenane[100] ;
tag[100] ;

osname[MAXNAMVELEN ;

nvlist_t *hol ds;

(void) rw_rdl ock(&ztest_nane_| ock);

drmu_obj set _nane(os,

osnane) ;

(void) snprintf(snapnanme, sizeof (snapnane), "shl % Iu", id);
(void) snprintf(fullname, sizeof (fullnane), "% @6", osnane, snapnane);
(void) snpri ntf(cl onenane, sizeof (clonenane),
"Us/chl_%I|u", osnane, id);
(void) snprintf(tag, si zeof (tag), "tag_%Ilu", id);

/*

* Clean up from any previous run.
*

error = dsl _destroy_head(cl onenane);
if (error !'= ENCENT
ASSERTO(error);
error = user_rel ease_one(ful I nanme, tag);

if (error !'= ESRCH && error ! = ENCENT)

error

ASSERTO(error);
= dsl _destroy_snapshot (ful | nane, B_FALSE);

if (error !'= ENCENT)

/*

* Create snapshot,

ASSERTO(error);

clone it, mark snap for deferred destroy,

* destroy clone, verify snap was al so destroyed.
*/

error = dnu_obj set _snapshot _one(osnane, snapnane);
if (error) {
if (error == ENOSPC)
zt est _record_enospc("dnu_obj set _snapshot");
goto out;
}
fatal (0, "dnmu_objset_snapshot (%) = %", fullnanme, error);
}
error = dnu_obj set _cl one(cl onenane, fullnane);
if (error)
if (error == ENOSPC) {
zt est _record_enospc("dnu_obj set _cl one");
goto out;
fatal (0, "dnu_objset_clone(%) = %", clonenane, error);
}
error = dsl_destroy_snapshot (ful |l nane, B _TRUE);
if (error) {
fatal (0, "dsl_destroy_snapshot (%, B TRUE) = %",
full nane, error);
}
error = dsl _destroy_head(cl onenane);
if (error)
fatal (0O, "dsl _destroy_head(%) = %", clonenane, error);
error = dnu_obj set _hol d(ful | nane, FTAG &origin);

if (error !'= ENCENT

)
fatal (O, "dnu_objset_hold(%) = %", fullnanme, error);

new usr/src/cnd/ ztest/ ztest.c

72

error);

4680 /*

4681 * Create snapshot, add tenporary hold, verify that we can't

4682 * destroy a held snapshot, mark for deferred destroy,

4683 * rel ease hold, verify snapshot was destroyed.

4684 */

4685 error = dnu_obj set _snapshot _one(osnane, snapnane);

4686 if (error) {

4687 if (error == ENOSPC)

4688 zt est _record_enospc("dnu_obj set _snapshot");

4689 goto out;

4690 }

4691 fatal (0, "dmu_objset_snapshot (%) = %", fullnanme, error);

4692 }

4694 holds = fnvlist_alloc();

4695 fnvlist_add_string(holds, fullnanme, tag);

4696 error = dsl _dataset_user_hol d(holds, O, NULL)

4697 fnvlist_free(holds);

4699 if (error)

4700 fatal (0, "dsl_dataset_user_hold(%)", fullnane, tag);

4702 error = dsl_destroy_snapshot (ful |l name, B _FALSE);

4703 if (error != EBUSY)

4704 fatal (0, "dsl_destroy_snapshot (%, B _FALSE) = %",

4705 full nane, error);

4706 }

4708 error = dsl_destroy_snapshot (ful | nane, B_TRUE);

4709 if (error) {

4710 fatal (O, "dsl_destroy_snapshot (%, B TRUE) = %",

4711 full nane, error);

4712 }

4714 error = user_rel ease_one(fullnane, tag);

4715 if (error)

4716 fatal (0, "user_rel ease_one(%, %) = %", fullnanme, tag,
25 fatal (0, "user_rel ease_one(%)", fullname, tag);

4718 VERI FY3U(dnu_obj set _hol d(ful | name, FTAG &origin), == ENCENT);

4720 out:

4721 (void) rw_unl ock(&ztest_name_| ock);

4722 }

__unchanged_portion_onitted_

new usr/src/lib/libzfs/comon/libzfs.h 1

R R R R

26978 Tue Jun 11 08:49:42 2013
new usr/src/lib/libzfs/comon/libzfs.h
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRR R
COONOUITAWNROW©O~NOUTSWN

Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

Copyright (c) 2012 by Del phix. Al rights reserved.

Copyright (c) 2012, Joyent, Inc. Al rights reserved.

27 * Copyright (c) 2013 Steven Hartland. Al rights reserved.

28 #endit /* | codereview */

29 */

N
N
* ok Kk ok X

31 #ifndef _LIBZFS_H
32 #define _LIBZFS_H

34 #include <assert.h>

35 #include <libnvpair.h>
36 #include <sys/mttab. h>
37 #include <sys/param h>
38 #include <sys/types. h>
39 #include <sys/varargs. h>
40 #include <sys/fs/zfs. h>
41 #include <sys/avl.h>

42 #include <ucred. h>

44 #ifdef __cplusplus
45 extern "C' {
46 #endi f

48 | *
49 * M scel | aneous ZFS constants
*/

MAXNAMELEN
MAXNAMVELEN
MAXPATHLEN
MAXPATHLEN

51 #define ZFS_MAXNAMELEN
52 #define ZPOOL_NMAXNAMELEN
53 #define ZFS_MAXPROPLEN
54 #define ZPOOL_MAXPROPLEN

56 /*
57 * libzfs errors
*/

59 typedef enum zfs_error {

new usr/src/lib/libzfs/comon/libzfs.h

60 EZFS_SUCCESS = 0, /* no error -- success */

61 EZFS _NOVEM = 2000, /* out of nenory */

62 EZFS_BADPROP, /* invalid property value */

63 EZFS_PROPREADONLY, /* cannot set readonly property */

64 EZFS_PROPTYPE, /* property does not apply to dataset type */
65 EZFS_PROPNONI NHERI T, /* property is not inheritable */

66 EZFS_PROPSPACE, /* bad quota or reservation */

67 EZFS_BADTYPE, /* dataset is not of appropriate type */
68 EZFS_BUSY, /* pool or dataset is busy */

69 EZFS_EXI STS, /* pool or dataset already exists */

70 EZFS_NOENT, /* no such pool or dataset */

71 EZFS BADSTREAM /* bad backup stream */

72 EZFS_DSREADONLY, /* dataset is readonly */

73 EZFS VOLTOOBI G, /* volunme is too large for 32-bit system*/
74 EZFS | NVAL| DNANE, /* invalid dataset nane */

75 EZFS_BADRESTORE, /* unable to restore to destination */

76 EZFS_BADBACKUP, /* backup failed */

77 EZFS BADTARGET, /* bad attach/detach/replace target */

78 EZFS_NODEVI CE, /* no such device in pool */

79 EZFS_BADDEV, /* invalid device to add */

80 EZFS_NOREPLI CAS, /* no valid replicas */

81 EZFS_RES| LVERI NG, /* currently resilvering */

82 EZFS BADVERSI ON, /* unsupported version */

83 EZFS POOLUNAVAI L, /* pool is currently unavailable */

84 EZFS_DEVOVERFLOW /* too many devices in one vdev */

85 EZFS_BADPATH, /* must be an absolute path */

86 EZFS CROSSTARGET, /* renane or clone across pool or dataset */
87 EZFS_ZONED, /* used inproperly in local zone */

88 EZFS_MOUNTFAI LED, /* failed to nount dataset */

89 EZFS_UMOUNTFAI LED, /* failed to unmount dataset */

90 EZFS UNSHARENFSFAI LED, /* unshare(1M failed */

91 EZFS_SHARENFSFAI LED, /* share(1M failed */

92 EZFS_PERM /* perm ssion denied */

93 EZFS_NGSPC, /* out of space */

94 EZFS FAULT, /* bad address */

95 EZFS |1 O /* 1/Oerror */

96 EZFS | NTR, /* signal received */

97 EZFS_| SSPARE, /* device is a hot spare */

98 EZFS | NVALCONFI G, /* invalid vdev configuration */

99 EZFS RECURSI VE, /* recursive dependency */

100 EZFS_NOHI STORY, /* no history object */

101 EZFS_POOLPROPS, /* couldn’t retrieve pool props */

102 EZFS_POOL_NOTSUP, /* ops not supported for this type of pool */
103 EZFS POOL_| NVALARG, /* invalid argument for this pool operation */
104 EZFS_NAMETOOLONG, /* dataset nanme is too |long */

105 EZFS_OPENFAI LED, /* open of device failed */

106 EZFS_NOCAP, /* couldn’t get capacity */

107 EZFS_LABELFAI LED, /* wite of label failed */

108 EZFS_BADWHO, /* invalid perm ssion who */

109 EZFS_BADPERM /* invalid perm ssion */

110 EZFS_BADPERVSET, /* invalid perm ssion set name */

111 EZFS_NODELEGATI ON, /* del egated administration is disabled */
112 EZFS_UNSHARESMBFAI LED, /* failed to unshare over smb */

113 EZFS_SHARESMBFAI LED, /* failed to share over snb */

114 EZFS_BADCACHE, /* bad cache file */

115 EZFS | SL2CACHE, /* device is for the level 2 ARC */

116 EZFS_VDEVNOTSUP, /* unsupported vdev type */

117 EZFS_NOTSUP, /* ops not supported on this dataset */
118 EZFS_ACTI VE_SPARE, /* pool has active shared spare devices */
119 EZFS_UNPLAYED_ L OGS, /* 1 og device has unplayed | ogs */

120 EZFS REFTAG RELE, /* snapshot rel ease: tag not found */

121 EZFS REFTAG HOLD, /* snapshot hold: tag already exists */
122 EZFS_TAGTOOLONG, /* snapshot hold/rele: tag too long */

123 EZFS_PI PEFAI LED, /* pipe create failed */

124 EZFS THREADCREATEFAI LED, /* thread create failed */

125 EZFS_POSTSPLI T_ONLINE, /* onlining a disk after splitting it */

new usr/src/lib/libzfs/comon/libzfs.h

126 EZFS_SCRUBBI NG, /* currently scrubbing */
127 EZFS _NO_SCRUB, /* no active scrub */

128 EZFS Dl FF, /* general failure of zfs diff */
129 EZFS_DI FFDATA, /* bad zfs diff data */
130 EZFS_POOLREADONLY, /* pool is in read-only node */
131 EZFS_UNKNOWWN

132 } zfs_error_t;

134 /*

135 * The follow ng data structures are all part

136 * of the zfs_allowt data structure which is

137 * used for printing "allow perm ssions.

138 * It is a linked list of zfs_allow t’'s which

139 * then contain avl tree’'s for user/group/sets/...

140 * and each one of the entries in those trees have

141 * avl tree’'s for the perm ssions they belong to and

142 * whether they are |ocal, descendent or |ocal +descendent
143 * perm ssions. The AVL trees are used primarily for

144 * sorting purposes, but also so that we can quickly find
145 * a given user and or perm ssion.

146 */

147 typedef struct zfs_perm node {

148 avl _node_t z_node;

149 char z pnarre[NAXPATHLEN]

150 } zfs_perm node_t;

152 typedef struct zfs_all ow node {

153 avl _node_t z_node;

154 char z_key[MAXPATHLEN] ; /* nane, such as joe */

155 avl _tree_t z_| ocal descend /* | ocal +descendent perns */
156 avl _tree_t z_local; /* local perm ssions */

157 avl tree t z descend /* descendent perm ssions */

158 } zfs_allow node_t;

160 typedef struct zfs_all ow{

161 struct zfs_allow *z_next;
162 char z_set point]| WPATHLEM
163 avl tree_t z_sets;

164 avl _tree_t z_crperns;
165 avl _tree_t z_user;

166 avl _tree_t z_group;

167 avl _tree_t z_everyone;
168 } zfs_allow.t;

170 /*

171 * Basic handl e types

172 */

173 typedef struct zfs_handl e zfs_handl e_t;
174 typedef struct zpool _handl e zpool _handle_t;
175 typedef struct |ibzfs_handle |ibzfs_handle_t;

177 | *
178 * Library initialization
179 */

180 extern I bzfs_handl e_t *libzfs_init(void);
181 extern void libzfs_fini(libzfs_handle_t *);

183 extern |ibzfs_handl e_t *zpool _get_handl e(zpool _handle_t *);
184 extern |libzfs_handl e_t *zfs_get_handl e(zfs_handle_t *);

186 extern void libzfs_print_on_error(libzfs_handle_t *, boolean_t);

188 extern void zfs_save_argunments(int argc, char **, char *, int);
189 extern int zpool _l og_history(libzfs_handle_t *, const char *);

191 extern int libzfs_errno(libzfs_handle_t *);

new usr/src/lib/libzfs/comon/libzfs.h

192 extern const char *libzfs_error_action(libzfs_handle_t *);
193 extern const char *libzfs_error_description(libzfs_handle
194 extern void |ibzfs_mttab_init(Tibzfs_handle_t *);

195 extern void |ibzfs_mttab _fini(libzfs_ handl e_t

.t “)3

196 extern void |ibzfs_mttab_cache(libzfs handle t *: bool ean_t);
t %

197 extern int |ibzfs_mttab _find(libzfs_handl e , const char *,
198 struct mttab *);

199 extern void |ibzfs_mttab_add(libzfs_handle_t *, const char *,
200 const char *, const char *

201 extern void libzfs_mttab rem)ve(l i bzfs_handle_t *, const char *);
203 /*

204 * Basic handle functions

205 */

206 extern zpool _handl e_t *zpool _open(libzfs_handle_t *, const
207 extern zpool _handl e_t *zpool _open_canfail (Iibzfs_handl e_t
208 extern void zpool _close(zpool _handle_t *);

209 extern const char *zpool _get _nane(zpool _handle_t *);

210 extern int zpool _get_state(zpool _handle_t *);

char *);
*, const char *);

211 extern char *zpool _state_to nams(vdev state_t, vdev_aux_t);

212 extern void zpool free_handles(libzfs_handle_ t *)

214 | *

215 * Iterate over all active pools in the system

216 *

217 typedef int (*zpool _iter_f)(zpool handle_t *, void *);

218 extern int zpool _iter(l | zfs_handle_t *, zpool _iter_f, voi
220 /[*

221 * Functions to create and destroy pools

222 */

d*);

223 extern int zpool _create(libzfs_handle_t *, const char *, nvlist_t *,

224 nvlist_t *, nvlist_t *);
225 extern int zpool destroy(zpool handl e_t *, const char *);
226 extern int zpool _add(zpool _handl e_t *, nvlist_t *);

228 typedef struct splitflags {

229 /* do not split, but return the config that would
230 int dryrun : 1;

232 /* after splitting, inmport the pool */

233 int import : 1;

234 } splitflags_t;

236 /*

237 * Functions to mani pul ate pool and vdev state

238 */

239 extern int zpool _scan(zpool _handle_t *, pool_scan_func_t);
240 extern int zpool _clear(zpool _handle_t *, const char *, nvl
241 extern int zpool _regui d(zpool _handle_t *);

242 extern int zpool _reopen(zpool _handle_t *);

244 extern int zpool _vdev_online(zpool _handle_t *, const char
245 vdev_state_t *);

246 extern int zpool _vdev_offline(zpool _handle_t *, const char
247 extern int zpool _vdev_attach(zpool _handle_t *, const char
248 const char *, nvlist_t *, int);

249 extern int zpool _vdev_detach(zpool _handle_t *, const char
250 extern int zpool _vdev_renpve(zpool _handle_t *, const char
251 extern int zpool _vdev_split(zpool _handle_t *, char *, nvli
252 splitflags_t);

254 extern int zpool _vdev_faul t(zpool _handle_t *
255 extern int zpool _vdev_degrade(zpool _handle_t *, uint 64_ ,
256 extern int zpool _vdev_cl ear(zpool _handle_t *, uint64_t);

be split off */

ist_t *);

* int,

*, bool ean_t);
*

*);
*);

st_t **, nvlist_t

, uint64_t, vdev_aux_t);

vdev_aux_t);

*
’

new usr/src/lib/libzfs/comon/libzfs.h 5 new usr/src/lib/libzfs/comon/libzfs.h

258 extern nvlist_t *zpool _find_vdev(zpool _handle_t *, const char *, boolean_t *, 324 ZPOOL_STATUS_OFFLI NE_DEV, /* device online */
259 bool ean_t *, bool ean_t *); 325 ZPOOL_STATUS_REMOVED_DEV, /* renoved device */
260 extern nvlist_t *zpool _find_vdev_by_physpat h(zpool _handle_t *, const char *,
261 bool ean_t *, bool ean_t *, boolean_t *); 327 g
262 extern int zpool _| abel _di sk(libzfs_handle_t *, zpool _handle_t *, char *); 328 * Finally, the follow ng indicates a heal thy pool.
329 */
264 | * 330 ZPOOL_STATUS_OK
265 */Functi ons to manage pool properties 331 } zpool _status_t;
266 *
267 extern int zpool _set_prop(zpool _handle_t *, const char *, const char *); 333 extern zpool _status_t zpool _get_status(zpool _handle_t *, char **);
268 extern int zpool _get_prop(zpool _handle_t *, zpool _prop_t, char *, 334 extern zpool _status_t zpool _inport_status(nvlist_t *, char **);
269 size_t proplen, zprop_source_t *); 335 extern void zpool _dunp_ddt (const ddt_stat_t *dds, const ddt_histogramt *ddh);
270 extern uint64_t zpool _get _prop_int(zpool _handl e_t *, zpool _prop_t,
271 zprop_source_t *); 337 /*
338 * Statistics and configuration functions.
273 extern const char *zpool _prop_to_nane(zpool _prop_t); 339 */
274 extern const char *zpool _prop_val ues(zpool _prop_t); 340 extern nvlist_t *zpool _get_config(zpool _handle_t *, nvlist_t **);
341 extern nvlist_t *zpool _get_features(zpool handle_t *);
276 | * 342 extern int zpool _refresh_stats(zpool _handle_t *, boolean_t *);
277 */ Pool health statistics. 343 extern int zpool _get_errlog(zpool _handle_t *, nvlist_t **);
278 *
279 typedef enum{ 345 /*
280 I* 346 * Inport and export functions
281 * The following correspond to faults as defined in the (fault.fs.zfs.*) 347 */
282 * event nanespace. Each is associated with a correspondi ng nmessage |D. 348 extern int zpool _export(zpool _handle_t *, boolean_t, const char *);
283 */ 349 extern int zpool _export force(zpool handle_t *, const char *);
284 ZPOOL_STATUS_CORRUPT_CACHE, [* corrupt /kernel/drv/zpool.cache */ 350 extern int zpool _inmport(libzfs_handle_t *, “nvlist_t *, const char *,
285 ZPOOL_STATUS_M SSI NG DEV_R, /* mssing device with replicas */ 351 char *altroot);
286 ZPOOL_STATUS_M SSI NG_DEV_NR, /* mssing device with no replicas */ 352 extern int zpool |nport _props(libzfs_handle_t *, nvlist_t *, const char *,
287 ZPOOL_STATUS_CORRUPT_LABEL_R, /* bad device |abel with replicas */ 353 nvlist_t *, int);
288 ZPOOL_STATUS_CORRUPT_LABEL_NR, /* bad device |abel with no replicas */ 354 extern void zpool _print_unsup_feat(nvlist_t *config);
289 ZPOOL_STATUS_BAD GUI D_SUM /* sum of device guids didn't match */
290 ZPOOL_STATUS_CORRUPT_POOL, /* pool metadata is corrupted */ 356 /*
291 ZPOOL_STATUS_CORRUPT_DATA, /* data errors in user (neta)data */ 357 * Search for pools to inport
292 ZPOOL_STATUS_FAI LI NG_DEV, /* device experiencing errors */ 358 */
293 ZPOOL_STATUS_VERS| ON_NEVER, /* newer on-disk version */
294 ZPOOL_STATUS_HOSTI D_M SMATCH, /* last accessed by another system */ 360 typedef struct inportargs {
295 ZPOOL_STATUS | O_FAI LURE_WAI T, /* failed 1/O, failnode 'wait’ */ 361 char **path; /* a list of paths to search &Y
296 ZPOOL_STATUS_| O FAI LURE_CONTI NUE, /* failed I/O failnode 'continue */ 362 int paths; /* nunber of paths to search */
297 ZPOOL_STATUS_BAD_LOG /* cannot read | og chain(s) */ 363 char *pool naneg; /* nanme of a pool to find */
364 uint64_t guid; /* guid of a pool to find =)
299 /* 365 char *cachefile; /* cachefile to use for inport */
300 * |f the pool has unsupported features but can still be opened in 366 int can_be_active : 1; /* can the pool be active? */
301 * read-only node, its status is ZPOOL_STATUS UNSUP_FEAT_ WRITE. If the 367 int unique : 1; /* does ' pool name’ al ready exist? */
302 * pool has unsupported features but cannot be opened at all, its 368 int exists : 1; /* set on return if pool already exists */
303 */stat us is ZPOOL_STATUS UNSUP_FEAT_READ. 369 } inportargs_t;
304 *
305 ZPOOL_STATUS_UNSUP_FEAT_READ, /* unsupported features for read */ 371 extern nvlist_t *zpool _search_inport(libzfs_handle_t *, inportargs_t *);
306 ZPOOL_STATUS_UNSUP_FEAT_WRI TE, /* unsupported features for wite */
373 /* legacy pool search routines */
308 /* 374 extern nvlist_t *zpool _find_inmport(libzfs_handle_t *, int, char **);
309 * These faults have no corresponding nessage ID. At the time we are 375 extern nvlist_t *zpool _find_inport_cached(libzfs_handle_t *, const char *,
310 * checking the status, the original reason for the FVMA fault (1/0 or 376 char *, uint64_t);
311 * checksum errors) has been |ost.
312 */ 378 [*
313 ZPOOL_STATUS_FAULTED DEV_R, /* faulted device with replicas */ 379 * M scel |l aneous pool functions
314 ZPOOL_STATUS_FAULTED_DEV_NR, /* faulted device with no replicas */ 380 */
381 struct zfs_cnd;
316 /*
317 * The following are not faults per se, but still an error possibly 383 extern const char *zfs_history_event _nanes[];
318 * requiring adm nistrative attention. There is no corresponding
319 * message |ID. 385 extern char *zpool _vdev_nane(libzfs_handle_t *, zpool _handle_t *, nvlist_t *,
320 */ 386 bool ean_t verbose);
321 ZPOOL_STATUS_VERSI ON_OLDER, /* ol der |egacy on-disk version */ 387 extern int zpool _upgrade(zpool _handle_t *, uint64_t);
322 ZPOOL_STATUS_FEAT DI SABLED, /* supported features are disabled */ 388 extern int zpool _get_history(zpool _handle_t *, nvlist_t **);

323 ZPOOL_STATUS_RESI LVERI NG, /* device being resilvered */ 389 extern int zpool _history unpack(char *, uinté4_t, uint64_t *,

new usr/src/lib/libzfs/comon/libzfs.h

390
391
392
393
394
395
396

398
399
400
401
402
403
404
405
406
407

409
410
411
412

414
415
416
417
418
419
420

422
423

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

452
453
454
455

nvlist_t *** uint_t *);

extern void zpool _obj _to_path(zpool _handle_t *, uint64_t, uint64_t, char *,
size_t len);

extern int zfs_ioctl (libzfs_handle_t *, int, struct zfs_cnd *);

extern int zpool _get_physpath(zpool _handle_t *, char *, size_t);

extern void zpool _expl ai n_recover (libzfs_handle_t *, const char *, int,
nvlist_t *);

/*

* Basic handl e mani pul ati ons. These functions do not create or destroy the
* underlying datasets, only the references to them

*/

extern zfs_handl e_t *zfs_open(libzfs_handle_t *, const char *, int);
extern zfs_handle_t *zfs_handl e_dup(zfs_handle_t *);

extern void zfs_close(zfs_handle_t *);

extern zfs_type_t zfs_get_type(const zfs_handle_t *);

extern const char *zfs_get_nane(const zfs_handle_t *)

extern zpool _handl e_t *zfs_get _pool _handl e(const zf s_handl e_t *);

/*
* Property nmanagenent functions.
* and are found in sys/fs/zfs.h.
*/

Sone functions are shared with the kernel,

/*
* zfs dataset property nanagenment
*/

extern const char *zfs_prop_default_string(zfs_prop_t);
extern uint64_t zfs_prop_defaul t _nuneric(zfs_prop_t);
extern const char *zfs_prop_col um_nanme(zfs_prop_t);
extern bool ean_t zfs_prop_align_right(zfs_prop_t);

extern nvlist_t *zfs_valid_proplist(libzfs_handle_t *, zfs_type_t,
nvlist_t *, uint64_t, zfs_handle_t *, const char *);

extern const char *zfs_prop_to_nane(zfs_prop_t);

extern int zfs_prop_set(zfs_handle_t *, const char *, const char *);

extern int zfs_prop_get(zfs_handle_t *, zfs_prop_t, char *, size_t,
zprop_source_t *, char *, size_t, boolean_t);

extern int zfs_prop_get_recvd(zfs_handle_t *, const char *, char *, size_t,
bool ean_t);

extern int zfs_prop_get_nuneric(zfs_handle_t *, zfs_prop_t, uint64_t *,
zprop_source_t *, char *, size_t);

extern int zfs_prop_get_userquota_int(zfs_handle_t *zhp, const char *propnane,
uint64_t *propval ue);

extern int zfs_prop_get_userquota(zfs_handl e_t *zhp, const char *propnane,
char *propbuf, int proplen, boolean_t literal);

extern int zfs_prop_get_witten_int(zfs_handle_t *zhp, const char *propnane,
ui nt64_t *propval ue);

extern int zfs_prop_get_witten(zfs_handle_t *zhp, const char *propnaneg,
char *propbuf, int proplen, boolean_t literal);

extern int zfs_prop_get_feature(zfs_handl e_t *zhp, const char *propnane,
char *buf, size_t len);

extern uint64_t zfs_prop_get_int(zfs_handle_t *, zfs_prop_t);

extern int zfs_prop_inherit(zfs_handle_t *, const char *, boolean_t);

extern const char *zfs_prop_val ues(zfs_prop_t);

extern int zfs_prop_is_string(zfs_prop_t prop);

extern nvlist_t *zfs_get_user_props(zfs_handle_t *);

extern nvlist_t *zfs_get_recvd_props(zfs_handle_t *);

extern nvlist_t *zfs_get_clones_nvl (zfs_handle_t *);

typedef struct zprop_list {
int pl _prop;
char *pl _user _prop;
struct zprop_list *pl_next;

new usr/src/lib/libzfs/comon/libzfs.h

456
457
458
459
460

462
463

465
466

468
469
470

472
473

475
476
477
478
479
480
481
482
483
484

486
487
488
489
490
491
492
493

495

497
498
499
500
501
502
503
504

506
507
508
509
510
511
512
513
514
515
516
517
518

520
521

bool ean_t pl _all;

size_t pl _wi dt h;
size_t pl _recvd_wi dt h;
bool ean_t pl _fixed;

} zprop_list_t;

extern int zfs_expand_proplist(zfs_handle_t *, zprop_list_t **, boolean_t);

extern void zfs_prune_proplist(zfs_handl e_t uint8_t *);
#defi ne ZFS_MOUNTPO NT_NONE "none"
#defi ne ZFS_MOUNTPO NT_LEGACY "l egacy"
#defi ne ZFS_FEATURE_DI SABLED "di sabl ed"
#def i ne ZFS_FEATURE_ENABLED "enabl ed"
#def i ne ZFS_FEATURE_ACTI VE "active"
#defi ne ZFS_UNSUPPORTED_| NACTI VE "i nactive"
#def i ne ZFS_UNSUPPORTED_READONLY "readonl y"
/*

* zpool property nanagenent

*

/

extern int zpool _expand_proplist(zpool handle_t *, zprop_list_t **);

extern int zpool _prop_get_feature(zpool _handle_t *, const char *, char *,
size_t);

extern const char *zpool _prop_default_string(zpool _prop_t);

extern uint64_t zpool _prop_default_nuneric(zpool _prop_t);

extern const char *zpool _prop_col um_nane(zpool _prop_t);

extern bool ean_t zpool _prop_align_right(zpool _prop_t);

/*

* Functions shared by zfs and zpool property managenent.

*/

extern int zprop_iter(zprop_func func, void *cb, boolean_t show all,

bool ean_t ordered, zfs_type_t type);

extern int zprop_get_list(libzfs_handle_t *, char *, zprop_list_t **,
zfs_type_t);

extern void zprop_free_list(zprop_list_t *);

#define ZFS GET_NCOLS 5

typedef enum {
GET_COL_NONE,
GET_COL_NAME,
GET_COL_PROPERTY,
GET_COL_VALUE,
GET_COL_RECVD,
GET_COL_SOURCE

} zfs_get_colum_t;

/*

* Functions for printing zfs or zpool properties
*

typedef struct zprop_get_cbdata {

int cb_sources;
zfs_get_colum_t cb_col ums[ZFS_GET_NCOLS] ;
int cb_colw dths[ZFS_GET_NCOLS + 1];
bool ean_t cb_scri pt ed;
boolean_t cb_literal;
bool ean_t cb_first;
zprop_list_t *cb_proplist;
zfs_type_t cb_type;
} zprop_get_chdata_t;

void zprop_print_one_property(const char *, zprop_get_chdata_t *,
const char *, const char *, zprop_source_t, const char *,

new usr/src/lib/libzfs/comon/libzfs.h

522 const char *);

524 | *

525 * Iterator functions.

526 *

527 typedef int (*zfs_iter_f)(zfs_handle_t *, void *);

528 extern int zfs_iter_root(libzfs_handle_t *, zfs_iter_f, void *);

529 extern int zfs_iter_children(zfs_handle_t *, zfs_ iter_f, void *);

530 extern int zfs_iter_dependents(zfs_handle_t *, bool ean_t, zfs_iter_f, void *);
531 extern int zfs_iter_filesystens(zfs_handle *, zfs_iter_f, void *);

532 extern int zfs_iter_snapshots(zfs_handl e_t *, zfs_iter_f, void *);

533 extern int zfs_iter_snapshots_sorted(zfs_handle_t *, zfs_iter_f, void *);
534 extern int zfs_iter_snapspec(zfs_handl e_t *, const char *, zfs_| iter _f, void *);
536 typedef struct get_all_cb {

537 zfs_handl e_t **cb_handl es;

538 size_t cb_al |l oc;

539 size_t cb_used;

540 booI ean_t cb_verbose;

541 (*cb_getone) (zfs_handle_t *, void *);

542 } get_ aII cbt

544 void |ibzfs_add_handl e(get _all _cb_t *, zfs_handle_t *);

545 int |ibzfs_dataset_cnp(const void *, const void *);

547 | *

548 * Functions to create and destroy datasets.

549 */

550 extern int zfs creat e(libzfs_handle_t *, const char *, zfs_type_t,

551 nvlist_t *);

552 extern int zfs_create_ancestors(libzfs_handle_t *, const char *);

553 extern int zfs_destroy(zfs_handle t *, bool ean_t);

554 extern int zfs_destroy_snaps(zfs_handle_t *, char *, boolean_t);

555 extern int zfs_destroy snaps_nvl (libzfs_handle_t *, nvlist_t *, boolean_t);
556 extern int zfs_clone(zfs_handle t *, const char *, nvlist_t *);

557 extern int zfs_snapshot(Tibzfs handle_t *, const char *, boolean_t, nvlist_t *);
558 extern int zfs_snapshot_nvl (libzfs_handle_t *hdl, nvlist_t *snaps,

559 nvlist_t *props);

560 extern int zfs_roll back(zfs_handl e t *, zfs_handle_t *, boolean_t);

561 extern int zfs_renane(zfs_handle_t *, const char *, bool ean_t, bool ean _t);

563 typedef struct sendflags {

564 /* print informational nmessages (ie, -v
565 bool ean_t verbose;

567 /* recursive send (ie, -R

568 bool ean_t replicate;

570 /* for increnentals, do all

571 bool ean_t doal | ;

573 /* if dataset is a clone, do increnental
574 bool ean_t fronorigin;

576 /* do deduplication */

577 bool ean_t dedup;

579 /* send properties (ie, -p)

580 bool ean_t props;

582 /* do not send (no-op, ie. -n) */

583 bool ean_t dryrun;

585 /* parsabl e verbose output (ie. -P)

586 bool ean_t parsabl e;

was specified) */

intermedi ate snapshots */

fromits origin */

new usr/src/lib/libzfs/comon/libzfs.h

588 /* show progress (ie. -v)
589 bool ean_t progress;

590 } sendflags_t;
592 typedef boolean_t (snapfilter_cb_t)(zfs_handle_t *, void *);
594 extern int zfs_send(zfs_handle_t *, const
595 sendflags_t *, int, snapfilter_cb_t,

char *,
void *,

const char *,
nvlist_t **);

597 extern int zfs_pronote(zfs_handle_t *);

598 extern int zfs_hol d(zfs_handle_t *, const char *, const char *,
599 bool ean_t, int);

600 extern int zfs _hold_nvl (zfs_handle_t *, int, nvlist_t *);

27 bool ean_t, “bool ean_t, int);

601 extern int zfs _rel ease(zfs handle t *, const char *,
602 extern int zfs_get_hol ds(zfs_ handle_t *, nvlist_t **
603 extern uint64_t zvol _vol size_to_reservation(uint64._t,

const char *,
nvlist_t *);

605 typedef int (*zfs_userspace_cb_t)(void *arg, const char *domain,

606 uid_t rid, uint64_t space);
608 extern int zfs_userspace(zfs_handle_t *, zfs_userquota_prop_t,
609 zfs_userspace_cb_t, void *);

611 extern int zfs_get_fsacl(zfs_handle_t *,
612 extern int zfs_set_fsacl (zfs_handle_t *,

nvlist_t **);
bool ean_t, nvlist_t *);

614 typedef struct recvflags {

615 /* print informational messages (ie, -v was specified)

616 bool ean_t verbose;

618 /* the destination is a prefix, not the exact fs (ie, -d) */
619 bool ean_t isprefix;

621 /*

622 * Only the tail of the sent snapshot path is appended to the
623 * destination to determine the received snapshot nane (ie, -e).
624 */

625 bool ean_t istail;

627 /* do not actually do the recv, just check if it would work (ie,
628 bool ean_t dryrun;

630 /* rollback/destroy filesystenms as necessary (eg, -F) */

631 bool ean_t force;

633 /* set "canmount=off" on all nodified filesystenms */

634 bool ean_t cannount of f;

636 /* byteswap flag is used internally; callers need not specify */
637 bool ean_t byt eswap;

639 /* do not nount file systenms as they are extracted (private) */
640 bool ean_t nonount;

641 } recvflags_t;
__unchanged_ portl on_om tted_

-n)

10

bool ean_t);

*/

new usr/src/lib/libzfs/comon/libzfs_dataset.c

R R R R

111346 Tue Jun 11 08:49:42 2013
new usr/src/lib/libzfs/comon/libzfs_dataset.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRR R
COONOUITAWNROW©O~NOUTSWN

22 | *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2012 by Del phix. Al rights reserved.
25 * Copyright (c) 2012 DEY Storage Systens, Inc. Al rights reserved.
26 * Copyright 2012 Nexenta Systems, Inc. Al rights reserved.
27 * Oopyright (c) 2013 Martin Matuska. All rights reserved.
28 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
29 #endif /* | codereview */
*
/

32 #include <ctype. h>

33 #include <errno. h>

34 #include <libintl.h>
35 #include <math. h>

36 #include <stdio.h>

37 #include <stdlib. h>

38 #include <strings.h>
39 #include <unistd. h>

40 #incl ude <stddef.h>

41 #include <zone. h>

42 #include <fcntl. h>

43 #include <sys/mtent. h>
44 #incl ude <sys/nmount. h>
45 #include <priv. h>

46 #i ncl ude <pwd. h>

47 #include <grp. h>

48 #incl ude <stddef.h>

49 #incl ude <ucred. h>

50 #include <idmap. h>

51 #include <aclutils.h>
52 #include <directory. h>

54 #incl ude <sys/dnode. h>
55 #incl ude <sys/spa. h>
56 #include <sys/zap. h>
57 #include <libzfs.h>

59 #i

ncl ude "zfs_nanecheck. h"

new usr/src/lib/libzfs/common/libzfs_dataset.c 2

60
61

#i ncl ude "zfs_prop. h"
#include "libzfs_inpl.h

62 #include "zfs_del eg. h"

64 static int userquota_propnanme_decode(const char *propnane, boolean_t zoned,

65 zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ri dp);
67 /*

68 * Gven a single type (not a mask of types), return the type in a human

69 * readable form

70 */

71 const char *

72 zfs_type_to_nanme(zfs_type_t type)

73 {

74 switch (type) {

75 case ZFS_TYPE_FI LESYSTEM

76 return (dgettext(TEXT_DOVAIN, "filesystent));

77 case ZFS_TYPE_SNAPSHOT:

78 return (dgettext (TEXT_DOVAIN, "snapshot"));

79 case ZFS_TYPE VOLUME:

80 return (dgettext(TEXT_DOVAIN, "volune"));

81 }

83 return (NULL);

84 }

86 /*

87 * Gven a path and nask of ZFS types, return a string describing this dataset.
88 * This is used when we fail to open a dataset and we cannot get an exact type.
89 * W guess what the type woul d have been based on the path and the mask of
90 * acceptable types.

91 */

92 static const char *

93 path_to_str(const char *path, int types)

94 {

95 I *

96 */V\hen given a single type, always report the exact type.

97 *

98 if (types == ZFS_TYPE_SNAPSHOT)

99 return (dgettext(TEXT_DOMAIN, "snapshot"));

100 if (types == ZFS TYPE_FI LESYSTEM

101 return (dgettext(TEXT_DOVAIN, "filesystent));

102 if (types == ZFS_TYPE_VOLUME)

103 return (dgettext(TEXT_DOVAIN, "volune"));

105 /*

106 * The user is requesting nore than one type of dataset. |If this is the
107 * case, consult the path itself. |If we're |looking for a snapshot, and
108 *a' '@ is found, then report it as "snapshot". Ctherw se, renove the
109 * snapshot attribute and try again.

110 */

111 if (types & ZFS TYPE SNAPSHOT) {

112 if (strchr(path, '@) !'= NULL)

113 return (dgettext(TEXT_DOVAIN, "snapshot"));

114 return (path_to_str(path, types & ~ZFS_TYPE_SNAPSHQT));

115 }

117 /*

118 * The user has requested either filesystens or volumes.

119 * W have no way of know ng a prlorl Wnat type this would be, so always
120 * report it as "filesystenf or "volume", our two primtive types.

121 */

122 if (types & ZFS_TYPE_FI LESYSTEM

123 return (dgettext(TEXT_DOVAIN, "filesystent));

125 assert (types & ZFS_TYPE_VOLUVE);

new usr/src/lib/libzfs/comon/libzfs_dataset.c

126 return (dgettext(TEXT_DOVAIN, "volune"));
127 }

129 /*

130 * Validate a ZFS path. This is used even before trying to open the dataset,
131 * provide a nore neaningful error nessage. We call zfs_error_aux() to

132 * explain exactly why the nane was not valid.
*/

133

134 int

135 zfs_validate_nanme(libzfs_handl e_t *hdl, const char *path, int type,

136 bool ean_t nodi fyi ng)

137 {

138 namecheck_err_t why;

139 char what ;

141 (oid) zfs_prop_get_table();

142 i f (dataset_nanmecheck(path, &why, &what) != 0) {

143 if (hdl !'= NULL) {

144 switch (why) {

145 case NAME_ERR _TOOLONG

146 zf's _error _aux(hdl, dgettext(TEXT_DOVAI N,
147 namalstoolong))

148 br eak;

150 case NAME_ERR_LEADI NG_SLASH:

151 zfs_error_aux(hdl, dgettext (TEXT_DOVAI N,
152 "| eadi ng sl ash in name' "))

153 br eak;

155 case NAME_ERR_EMPTY_COVPONENT:

156 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
157 "enpty conponent in nane"));

158 br eak;

160 case NAME_ERR TRAI LI NG_SLASH:

161 zfs_error_aux(hdl, dget t ext (TEXT_DOVAI N,
162 “"traiTing slash in name"));

163 br eak;

165 case NAMVE_ERR | NVALCHAR:

166 zfs_error_aux(hdl,

167 dgettext (TEXT_DOMAIN, "invalid character
168 "o’ in nane"), what);

169 br eak;

171 case NAME_ERR_MULTI PLE_AT:

172 zfs_error_aux(hdl, dgettext(TEXT_DOVAIN,
173 "multiple '@ delimters in nane"));
174 br eak;

176 case NAME_ERR NOLETTER

177 zf's _error _aux(hdl, dgettext(TEXT_DOVAI N,
178 "pool doesn’t begin with a letter"));
179 br eak;

181 case NAME_ERR RESERVED:

182 zfs _error _aux(hdl, dgettext(TEXT_DOVAI N,
183 "nane is reserved"));

184 br eak;

186 case NAMVE_ERR DI SKLI KE:

187 zfs_error_aux(hdl, dgettext(TEXT_DOVAIN,
188 "reserved di sk name"));

189 br eak;

190 }

191 }

to

new usr/src/lib/libzfs/comon/libzfs_dataset.c

193 return (0);

194 }

196 if ('(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@) != NULL) {
197 (hdl T= NULL)

198 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

199 "snapshot del imter @ in filesystemnane"));
200 return (0);

201 }

203 if (type == ZFS_TYPE_SNAPSHOT && strchr(path, '@) == NULL) {
204 if (hdl "'= NULL)

205 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

206 "mssing '@ delimter in snapshot nane"));
207 return (0);

208 }

210 if (modifying & strchr(path, '%) != NULL) {

211 if (hdl !'= NULL)

212 zfs _error _aux(hdl, dgettext(TEXT_ DO\/AI N,

213 “invalid character % in nang' "), T%);

214 return (0);

215 }

217 return (-1);

218 }

220 int

221 zfs_nane_val i d(const char *name, zfs_type_t type)

222 {

223 if (type == ZFS TYPE POOL)

224 return (zpool _nane_val i d(NULL, B_FALSE, nane));

225 return (zfs_validate_name(NULL, nane, type, B_FALSE));

226 }

228 | *

229 * This function takes the raw DSL properties, and filters out the user-defined

230 * properties into a separate nvlist.
231 */

232 static nvlist_t *

233 process_user_props(zfs_handle_t *zhp, nvlist_t *props)

234 {

235 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

236 nvpair_t *elem

237 nvlist_t *propval;

238 nvlist_t *nvl;

240 if (nvlist_alloc(&vl, NV_UNIQUE_NAME, 0) != 0) {

241 (void) no_nenory(hdl);

242 return (NULL);

243 }

245 el em = NULL;

246 while ((el em= nvlist_next_nvpair(props, el en')) 1= NULL) {
247 if (!zfs_prop_ —user (nvpai r_name(el em))

248 conti nue;

250 verify(nvpair_value_nvlist(elem &propval) == 0);
251 if (nvlist_add_nvlist(nvl, nvpair_nane(elen), propval)
252 nvlist_free(nvl);

253 (void) no_nenory(hdl);

254 return (NULL);

255 }

256 1

new usr/src/lib/libzfs/comon/libzfs_dataset.c 5 new usr/src/lib/libzfs/comon/libzfs_dataset.c
258 return (nvl); 324 | *
259 } 325 * UWility function to gather stats (objset and zpl) for the given object.
326 */
261 static zpool _handle_t * 327 static int
262 zpool _add_handl e(zfs_handl e_t *zhp, const char *pool _nane) 328 get_stats_ioctl (zfs_handl e_t *zhp, zfs_cnd_t *zc)
263 { 329 {
264 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl; 330 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;
265 zpool _handl e_t *zph;
332 (void) strlcpy(zc->zc_nanme, zhp->zfs_nanme, sizeof (zc->zc_nane));
267 if ((zph = zpool _open_canfail (hdl, pool _nane)) != NULL) {
268 if (hdl->l1bzfs_pool _handl es != NULL) 334 while (ioctl (hdl->libzfs_fd, ZFS | OC_OBJSET_STATS, zc) != 0) {
269 zph->zpool _next = hdl->libzfs_pool _handl es; 335 if (errno == ENOMEM {
270 hdl - >l i bzf s_pool _handl es = zph; 336 if (zcnmd_expand_dst_nvlist(hdl, zc) !'=0) {
271 } 337 return (-1);
272 return (zph); 338 }
273 } 339 } else {
340 return (-1);
275 static zpool _handle_t * 341 }
276 zpool _find_handl e(zfs_handl e_t *zhp, const char *pool _nane, int |en) 342 }
277 { 343 return (0);
278 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl; 344 }
279 zpool _handl e_t *zph = hdl ->li bzfs_pool _handl es;
346 /*
281 while ((zph !'= NULL) && 347 * Wility function to get the received properties of the given object.
282 (strncnmp(pool _nane, zpool _get_name(zph), len) !'= 0)) 348 */
283 zph = zph->zpool _next; 349 static int
284 return (zph); 350 get_recvd_props_ioctl (zfs_handl e_t *zhp)
285 } 351 {
352 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;
287 | * 353 nvlist_t *recvdprops;
288 * Returns a handle to the pool that contains the provided dataset. 354 zfs_cmd_t zc = { 0 };
289 * If a handle to that pool already exists then that handle is returned. 355 int err;
290 * Oherwise, a new handle is created and added to the list of handl es.
291 */ 357 if (zcmd_all oc_dst_nvlist(hdl, &c, 0) != 0)
292 static zpool _handle_t * 358 return (-1);
293 zpool _handl e(zfs_handl e_t *zhp)
294 { 360 (void) strlcpy(zc.zc_name, zhp->zfs_nane, sizeof (zc.zc_nane));
295 char *pool _nane;
296 int len; 362 while (ioctl(hdl->libzfs_fd, ZFS_|OC_OBJSET_RECVD_PROPS, &zc) != 0) {
297 zpool _handl e_t *zph; 363 if (errno == ENOVEM {
364 if (zcmd_expand_dst_nvlist(hdl, &c) != 0) {
299 len = strcspn(zhp->zfs_name, "/ @) + 1; 365 return (-1);
300 pool _name = zfs_all oc(zhp->zfs_hdl, |en); 366
301 (void) strlcpy(pool _nanme, zhp->zfs_nane, |en); 367 } else {
368 zcmd_free_nvlists(&zc);
303 zph = zpool _find_handl e(zhp, pool _nane, |en); 369 return (-1);
304 if (zph == NULL) 370 }
305 zph = zpool _add_handl e(zhp, pool _nane); 371 }
307 free(pool _nane); 373 err = zcmd_read_dst _nvlist(zhp->zfs_hdl, &zc, & ecvdprops);
308 return (zph); 374 zcemd_free_nvlists(&zc);
309 } 375 if (err 1= 0)
376 return (-1);
311 void
312 zpool _free_handl es(libzfs_handl e_t *hdl) 378 nvlist_free(zhp->zfs_recvd_props);
313 { 379 zhp->zfs_recvd_props = recvdprops;
314 zpool _handl e_t *next, *zph = hdl->libzfs_pool _handl es;
381 return (0);
316 while (zph !'= NULL) { 382 }
317 next = zph->zpool _next;
318 zpool _cl ose(zph); 384 static int
319 zph = next; 385 put_stats_zhdl (zfs_handle_t *zhp, zfs_cnd_t *zc)
320 } 386 {
321 hdl - >l i bzf s_pool _handl es = NULL; 387 nvlist_t *allprops, *userprops;
322 }
389 zhp->zfs_dnustats = zc->zc_obj set_stats; /* structure assignment */

new usr/src/lib/libzfs/comon/libzfs_dataset.c

391 if (zcmd_read_dst_nvlist(zhp->zfs_hdl, zc, &allprops) != 0) {
392 return (-1);

393 }

395 /*

396 * XXX Why do we store the user props separately, in addition to
397 * storing themin zfs_props?

398 *

399 if ((userprops = process_user_props(zhp, allprops)) == NULL) {
400 nvlist_free(all props);

401 return (-1);

402 }

404 nvlist_free(zhp->zfs_props);

405 nvlist_free(zhp->zfs_user_props);

407 zhp->zfs_props = all props;

408 zhp->zf s_user _props = user props;

410 return (0);

411 }

413 static int

414 get _stats(zfs_handle_t *zhp)

415 {

416 int rc = 0;

417 zfs_cmd_t zc = { 0 };

419 if (zcmd_all oc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
420 return (-1);

421 if (get_: stats |octl(zhp, &c) = 0)

422 rc = -1;

423 else if (put_stats_zhdl (zhp, &zc) != 0)

424 rc = -1;

425 zcnd_free nvI i sts(&zc);

426 return (rc);

427 }

429 | *

430 */Refresh the properties currently stored in the handle.

431 *

432 void

433 zfs_refresh_properties(zfs_handl e_t *zhp)

434

435 (voi d) get_stats(zhp);

436 }

438 [*

439 * Makes a handle fromthe given dataset name. Used by zfs_open() and
440 * zfs_iter_* to create child handles on the fly.

441 */

442 static int

443 ?ake_dataset_handl e_common(zfs_handl e_t *zhp, zfs_cmd_t *zc)
444

445 if (put_stats_zhdl (zhp, zc) != 0)

446 return (-1);

448 /*

449 * W' ve nanaged to open the dataset and gather statistics. Deternine
450 * the high-level type.

451 */

452 if (zhp->zfs_dnustats.dds_type == DMJ_OST_ZVQL)

453 zhp->zfs_head_type = ZFS_ TYPE VOLUME;

454 el se if (zhp->zfs_dnustats.dds_type == DMJ_OST_ZFS)
455 zhp->zfs_head_t ype = ZFS_TYPE_FI LESYSTEM

new usr/src/lib/libzfs/comon/libzfs_dataset.c

456 el se

457 abort();

459 if (zhp->zfs_dnustats.dds_i s_snapshot)

460 zhp->zfs_type = ZFS_TYPE_ SNAPSHOT

461 el se if (zhp->zfs_dnustats.dds_type == DMJ_OST_zVQL)
462 zhp->zfs_type = ZFS_TYPE_ VOLUME;

463 else if (zhp->zfs_dnustats.dds_type == DMJ_OST_ZFS)
464 zhp->zfs_type = ZFS_TYPE_FI LESYSTEM

465 el se

466 abort(); /* we shoul d never see any other types */
468 if ((zhp->zpool _hdl = zpool _handl e(zhp)) == NULL)
469 return (-1);

471 return (0);

472 }

474 zfs_handle_t *
475 make_dat aset _handl e(li bzfs

_handl e_t *hdl, const char *path)

476 {

477 zfs_cmd_t zc = { 0 };

479 zfs_handl e_t *zhp = calloc(sizeof (zfs_handle_t), 1);
481 if (zhp == NULL)

482 return (NULL);

484 zhp->zfs_hdl = hdl;

485 (void) strl cpy(zhp >zfs_name, path, sizeof (zhp->zfs_nane));
486 if (zcnd_alloc_dst_nvlist(hdl, &c, 0) != 0)

487 free(zhp);

488 return (I\ULL);

489 }

490 1f (get_stats_ioctl(zhp, &zc) == -1) {

491 zcmd_free_nvlists(&zc);

492 free(zhp);

493 return (NULL);

494 }

495 i f (make_dat aset _handl e_common(zhp, &zc) == -1) {
496 free(zhp);

497 zhp = NULL;

498 }

499 zcmd_free_nvlists(&zc);

500 return (zhp);

501 }

503 zfs_handle_t *
504 make_dat aset _handl e_zc(li bz
505 {

fs_handl e_t

*hdl, zfs_cnd_t *zc)

506 zfs_handl e_t *zhp = calloc(sizeof (zfs_handle_t), 1);
508 if (zhp == NULL)

509 return (NULL)

511 zhp->zfs_hdl = hdl;

512 (void) strlcpy(zhp->zfs_nane, zc->zc_nane, sizeof (zhp->zfs_nane));
513 if (make_dataset _handl e_comon(zhp, zc) == -1) {

514 free(zhp);

515 return (NULL);

516 1

517 return (zhp);

518 }

520 zfs_handle_t *
521 zfs_handl e_dup(zfs_handl e_t

*zhp_ori g)

new usr/src/lib/libzfs/comon/libzfs_dataset.c

522 {

523 zfs_handl e_t *zhp = cal |l oc(sizeof (zfs_handle_t), 1);
525 if (zhp = ULL)

526 ret urn (NULL);

528 zhp->zfs_hdl = zhp_orig->zfs_hdl;

529 zhp->zpool _hdl = zhp_ori g->zpool _hdl ;

530 (void) strlcpy(zhp->zfs_nanme, zhp_orig->zfs_nane,
531 si zeof (zhp->zfs_nane));

532 zhp->zfs_type = zhp_orig->zfs_type;

533 zhp->zfs_head_type = zhp_ori g->zfs_head_type;

534 zhp->zfs_dnustats = zhp_ori g->zfs_dnustats;

535 if (zhp_orig->zfs_props != NULL) {

536 if (nvlist_dup(zhp_orig->zfs_props, &zhp->zfs_props, 0)
537 (void) no_nenory(zhp->zfs_hdl);
538 zfs_cl ose(zhp);

539 return (NULL);

540 }

541 }

542 if (zhp_orig->zfs_user_props != NULL) {

543 if (nvlist_dup(zhp_orig->zfs_user_props,
544 & hp->zfs_user_props, 0) != 0)

545 (voi d) no_nemory(zhp->zfs_hdl);
546 zfs_cl ose(zhp);

547 return (NULL);

548 }

549 }

550 if (zhp_orig->zfs_recvd_props != NULL)

551 if (nvlist_dup(zhp_orig->zfs_recvd_props,
552 & hp->zfs_recvd_props, 0)) {

553 (void) no_menory(zhp->zfs_hdl);
554 zfs_cl ose(zhp);

555 return (NULL);

556 }

557 1

558 zhp->zfs_mtcheck = zhp_ori g->zfs_mnt check;

559 if (zhp_orig->zfs_mtopts != NULL) {

560 zhp->zfs_mtopts = zfs_strdup(zhp_orig->zfs_hdl,
561 zhp_ori g->zfs_mtopts);

562 }

563 zhp->zfs_props_table = zhp_ori g->zfs_props_tabl e;
564 return (zhp);

565 }

567 [*

568 * Opens the given snapshot, filesystem or vol une. The ' types’

569 * argument is a mask of acceptable types. The function will print an
570 * appropriate error nmessage and return NULL if it can’t be opened.
571 */

572 zfs_handle_t *

573 zfs_open(libzfs_handle_t *hdl, const char *path, int types)

574 {

575 zfs_handle_t *zhp;

576 char errbuf[1024];

578 (void) snprintf(errbuf, sizeof (errbuf),

579 dget t ext (TEXT_DOVAI N, "cannot open '%’'"), path);

581 /*

582 * Validate the nane before we even try to open it.

583 */

584 if (!zfs_validate_nane(hdl, path, ZFS_TYPE_DATASET, B _FALSE)) {
585 zfs _error _aux(hdl, dgettext(TEXT DOMAI N,

586 “invalid dataset name'

"))
587 (void) zfs_error(hdl, EZFS_ | NVALI DNAME, errbuf);

1= 0) {

new usr/src/lib/libzfs/comon/libzfs_dataset.c

588 return (NULL);

589 1

591 /*

592 * Try to get stats for the dataset, which will tell us if it exists.
593 */

594 errno = 0;

595 if ((zhp = make_dataset _handl e(hdl, path)) == NULL) {
596 (void) zfs_standard_error(hdl, errno, errbuf);
597 return (NULL);

598 1

600 if (!(types & zhp->zfs_type)) {

601 (void) zfs error(hdl, EZFS_BADTYPE, errbuf);
602 zfs_cl ose(zhp);

603 return (NULL);

604 }

606 return (zhp);

607 }

609 /*

610 * Release a ZFS handle. Nothing to do but free the associated nenory.
611 */

612 void

613 zfs_cl ose(zfs_handl e_t *zhp)

614 {

615 if (zhp->zfs_mtopts)

616 free(zhp->zfs_mtopts);

617 nvlist_free(zhp->zfs_props);

618 nvlist_free(zhp->zfs_user_props);

619 nvlist_free(zhp->zfs_recvd_props);

620 free(zhp);

621 }

623 typedef struct mmttab_node {
624 struct mttab ntn_nt;
625 avl _node_t ntn_node;
626 } mttab_node_t;

628 static int
629 |ibzfs_mttab_cache_conpare(const void *argl, const void *arg2)

630 {

631 const mttab_node_t *nmtnl = argl;

632 const mmttab_node_t *mtn2 = arg2;

633 int rv;

635 rv = strenp(ntnl->nmtn_nt.mt_special, nmn2->ntn_nt.mt_special);
637 if (rv == 0)

638 return (0);

639 return (rv >0 ? 1: -1);

640 }

642 void

643 |ibzfs_mttab_init(libzfs_handle_t *hdl)

644 {

645 assert (avl _numodes(&hdl ->li bzfs_mttab_cache) == 0);

646 avl _create(&hdl ->libzfs_mttab_cache, |ibzfs_mttab_cache_conpare,
647 si zeof (mttab_node_t), offsetof(mttab_node_t, ntn_node));
648 }

650 void

651 |ibzfs_mttab_update(libzfs_handle_t *hdl)

652 {

653 struct mttab entry;

10

new usr/src/lib/libzfs/comon/libzfs_dataset.c

655 rewi nd(hdl ->libzfs_mttab);

656 while (getmtent (hdl->libzfs_mttab, &entry) == 0) {

657 mttab_node_t *ntn;

659 if (strcnp(entry. mt_fstype, MNTTYPE_ZFS) != 0)

660 conti nue;

661 nmn = zfs_all oc(hdl, S|ze0f (mttab_node_t));

662 ntn->nmtn_nt. mt_special = zfs_strdup(hdl, entry.mmt_special);
663 mn->ntn_nt.mt_nmountp = zfs_strdup(hdl, entry.mt_nountp);
664 nmn->mtn_nt.mt_fstype = zfs_strdup(hdl, entry. rmt_fstype);
665 ntn->ntn_nt.mt_mtopts = zfs strdup(hdl entry. mt_mtopts);
666 avl _add(&hdl - >l T bzfs_mttab_cache, ntn);

667 }

668 }

670 void

671 |ibzfs_mttab_fini(libzfs_handle_t *hdl)

672 {

673 voi d *cookie = NULL;

674 mttab_node_t *ntn;

676 while (nmn = avl _destroy_nodes(&hdl ->libzfs_mttab_cache, &cookie)) {
677 free(mn->ntn_nt.mt_special);

678 free(ntn->ntn_nt. mt_nountp);

679 free(nmtn->ntn_nt.mt_fstype);

680 free(nmn->ntn_nt.mt_mmtopts);

681 free(ntn);

682 }

683 avl _destroy(&hdl ->libzfs_mttab_cache);

684 }

686 void

687 |ibzfs_mttab_cache(libzfs_handl e_t *hdl, bool ean_t enable)

688 {

689 hdl - >l i bzfs_mttab_enabl e = enabl e;

690 }

692 int

693 libzfs_mttab_find(libzfs_handle_t *hdl, const char *fsnane,

694 struct nmttab *entry)

695 {

696 mttab_node_t find;

697 mttab_node_t *ntn;

699 if (!'hdl->libzfs_mttab_enable) {

700 struct mttab srch = { 0

702 if (avl_numodes(&hdl ->libzfs_mttab_cache))

703 i bzfs_mmttab_fini (hdl);

704 rewi nd(hdl ->li bzfs_mttab);

705 srch. mt _special = (char *)fsnane;

706 srch. mt _fstype = MNTTYPE_ZFS;

707 if (getmtany(hdl->libzfs_mttab, entry, &srch) == 0)
708 return (0);

709 el se

710 return (ENOCENT);

711 }

713 if (avl_numodes(&hdl ->libzfs_mttab_cache) == 0)

714 li bzfs_mttab_update(hdl);

716 find. mn_nt.mt_special = (char *)fsnane;

717 mn = avl_find(&hdl->libzfs_mttab_cache, &find, NULL);

718 if (mn) {

719 *entry = nmtn->ntn_nt;

11

new usr/src/lib/libzfs/comon/libzfs_dataset.c

720 return (0);

721 1

722 return (ENCENT);

723 }

725 void

726 libzfs_mttab_add(libzfs_handle_t *hdl, const char *special,
727 const char *mountp, const char *mtopts)

728 {

729 mttab_node_t *ntn;

731 if (avl nurmodes(&hdl >| i bzfs_mttab_cache) == 0)
732 return;

733 ntn = zfs_alloc(hdl, sizeof (mttab_node_t));

734 mn->mtn_nt.mt_special = zfs_strdup(hdl, special);
735 ntn->ntn_nt.mt_nountp = zfs_strdup(hdl, nountp);
736 ntn->ntn_nt.mt_fstype = zfs_strdup(hdl, MNTTYPE_ZFS);
737 ntn->mtn_nt.mt_mtopts = zfs strdup(hdl mt opt s) ;
738 avl _add(&hdl ->I Thzfs_mttab_cache, ntn);

739 }

741 void

742 1ibzfs_mttab_renove(libzfs_handle_t *hdl, const char *fsnane)
743 {

744 mttab_node_t find;

745 mttab_node_t *ret;

747 find.mn_nt.mt_special = (char *)fsnang;

748 if (ret = avl_find(&hdl->libzfs_mttab_cache, (void *)& ind, NULL)) {
749 avl _renove(&hdl ->libzfs_mttab_cache, ret);
750 free(ret->ntn_nt.mt_special);

751 free(ret->ntn_nt. mt_nountp);

752 free(ret->ntn_nt.mt_fstype);

753 free(ret->ntn_nt.mt_mtopts);

754 free(ret);

755 1

756 }

758 int

759 zfs_spa_version(zfs_handle_t *zhp, int *spa_version)

760 {

761 zpool _handl e_t *zpool _handl e = zhp->zpool _hdl ;

763 if (zpool_handl e == NULL)

764 return (-1);

766 *spa_version = zpool _get_prop_i nt(zpool _handl e,

767 ZPOOL_PROP_VERSI ON, NULL);

768 return (0);

769 }

771 | *

772 * The choice of reservation property depends on the SPA version.
773 */

774 static int

775 zfs_which_resv_prop(zfs_handle_t *zhp, zfs_prop_t *resv_prop)
776 {

777 int spa_version;

779 if (zfs_spa_version(zhp, &spa_version) < 0)

780 return (-1);

782 if (spa_version >= SPA_VERS|I ON_REFRESERVATI ON)

783 *resv_prop = ZFS_PROP_REFRESERVATI ON;

784 el se

785 *resv_prop = ZFS_PROP_RESERVATI ON;

12

new usr/src/lib/libzfs/comon/libzfs_dataset.c 13 new usr/src/lib/libzfs/comon/libzfs_dataset.c 14
852 */
787 return (0); 853 if (type == ZFS_TYPE_SNAPSHQOT)
788 } 854 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
855 "this property can not be nodified for snapshots"));
790 /* 856 (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf);
791 * Gven an nvlist of properties to set, validates that they are correct, and 857 goto error;
792 * parses any nuneric properties (index, boolean, etc) if they are specified as 858 }
793 * strings.
794 */ 860 if (prop == ZPROP_I NVAL && zfs_prop_userquot a(propnane)) {
795 nvlist_t * 861 zfs _userquota_prop_t uqtype;
796 zfs_valid_proplist(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl, 862 char newpr opname[128] ;
797 uint64_t zoned, zfs_handle_t *zhp, const char *errbuf) 863 char domai n[128] ;
798 { 864 uint64_t rid;
799 nvpair_t *elem 865 uint64_t valary[3];
800 uint64_t intval;
801 char *strval ; 867 i f (userquota_propnane_decode(propnane, zoned,
802 zfs_prop_t prop; 868 &uqt ype, domain, sizeof (domain), &id) !'=0) {
803 nvliist_t *ret; 869 zfs_er ror_aux(hdl
804 int chosen_normal = -1; 870 dget t ext (TEXT_DO\/AI N,
805 int chosen_utf = -1; 871 "'’ has an invalid user/group nane"),
872 propnane) ;
807 if (nvliist_alloc(&et, NV_UNI QUE_NAME, 0) != 0) { 873 (void) zfs error(hdl EZFS BADPROP, errbuf);
808 (void) no_nenory(hdl); 874 goto error;
809 return (NULL); 875 }
810 }
877 if (ugtype != ZFS_PROP_USERQUOTA &&
812 /* 878 uqgtype ! = ZFS_PROP_GROUPQUOTA) {
813 * Make sure this property is valid and applies to this type. 879 zfs_error_aux(hdl,
814 */ 880 dget t ext (TEXT_DO\/AI N, ""9%’ is readonly"),
881 propnane) ;
816 el em = NULL; 882 (void) zfs_error(hdl, EZFS_PROPREADONLY,
817 while ((elem= nvlist_next nvpal r(nvl, elem) != NULL) { 883 errbuf);
818 const char *propname = nvpair_nane(el em; 884) goto error;
885
820 prop = zfs_nanme_to prop(pr opnane) ;
821 if (prop == ZPROP_TNVAL && zfs_prop_user (propname)) { 887 if (nvpair_type(elen) == DATA_TYPE_STRING {
822 /* 888 (voi d) nvpair_val ue_ stri ng(el em &strval);
823 * This is a user property: nmake sure it's a 889 if (strcnp(strval, "none") == 0) {
824 * string, and that it’s less than ZAP_MAXNAMELEN. 890 intval = O;
825 */ 891 } else if (zfs_nicestrtonun{hdl,
826 if (nvpair_type(elen) != DATA TYPE_STRING { 892 strval, & ntval) !'= 0) {
827 zfs_error_aux(hdl, dgettext(TEXT_DOVAIN, 893 (void) zfs_error(hdl,
828 "'’ nust be a string"), propnane); 894 EZFS_BADPROP, errbuf);
829 (void) zfs_error(hdl, EZFS_BADPROP, errbuf); 895 goto error;
830 goto error; 896 }
831 } 897 } else if (nvpair_type(elem ==
898 DATA_TYPE_Ul NT64)
833 if (strlen(nvpair_nanme(elem) >= ZAP_NMAXNAMELEN) { 899 (void) nvpair_val ue_uint64(elem & ntval);
834 zfs_error_aux(hdl, dgettext (TEXT_DOMAI N, 900 if (intval == 0)
835 "property name '%’ is too long"), 901 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
836 propnane) ; 902 "use 'none’ to disable "
837 (void) zfs_error(hdl, EZFS_BADPROP, errbuf); 903 "user quot a/ gr oupquot a"));
838 goto error; 904 goto error;
839 } 905
906 } else {
841 (void) nvpair_value_string(elem &strval); 907 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
842 if (nvlist_add_string(ret, propnane, strval) != 0) { 908 "'’ nust be a nunber"), propnane);
843 (void) no_renory(hdl); 909 (void) zfs_error(hdl, EZFS BADPROP, errbuf);
844 goto error; 910 goto error;
845 } 911 }
846 cont i nue;
847 } 913 /*
914 * Encode the prop name as
849 /& 915 * user quot a@hex-ri d>-domain, to make it easy
850 * Currently, only user properties can be nodified on 916 * for the kernel to decode.
851 * snapshots. 917 */

new usr/src/lib/libzfs/comon/libzfs_dataset.c 15

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

938
939
940
941
942
943

945
946
947
948
949
950
951

953
954
955
956
957
958
959
960

962
963
964

966
967
968
969
970
971
972

974
975
976
977
978
979
980
981
982
983

(void) snpri ntf(newpropnane si zeof (newpropnane),
"Us% | x- %", zfs_userquota_prop_prefi xes[uqtype]
(1 ongl ong_: t)r| d, domain);

val ary[0] = uqtype;
valary[1] = rid;
valary[2] = intval;

if (nvlist_add_uint64_array(ret, newpropnane,
valary, 3) !=0)
(void) no_nenory(hdl);
goto error;

continue
} else if (prop == ZPROP_I NVAL && zfs_prop_witten(propnane)) {
zfs_error aux(hdl dgettext(TEXT DOMAI N,
s s readonly),

propnane) ;
(void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf);
goto error;

}

if (prop == ZPROP_I NVAL) {
zfs _error _aux(hdl, dgettext (TEXT_DOMAI N,
"invalid pr operty 9%’ "), propnane);
(void) zfs_error(hdl, EZFS BADPROP, errbuf);
goto error;

}

if (!zfs_prop_valid_for_type(prop, type)) {
zfs_error_aux(hdl,
dgettext(TEXT DOVAIN, "' %' does not "
"apply to datasets of this type"), propnane);
(void) zfs_error(hdl, EZFS PROPTYPE, errbuf);
goto error;

}

if (zfs_prop_readonly(prop) &&
(!zfs_prop_setonce(prop) || zhp !'= NULL)) {
zfs_error_aux(hdl,
dgettext (TEXT_DOVAIN, "’ 9%’ is readonly"),

propnane) ;
(void) zfs error(hdl EZFS_PROPREADONLY, errbuf);
goto error;

}

if (zprop_parse_value(hdl, elem prop, type, ret,
&strval, & ntval, errbuf) 1= 0)
goto error;

*

* Perform sonme additional checks for specific properties.
*/

switch (prop) {
case ZFS_PROP_VERSI ON:
{

int version;

if (zhp == NULL)
br eak;
version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
if (intval < version)
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"Can not downgrade; already at version %"),
version);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;

new usr/src/lib/libzfs/comon/libzfs_dataset.c 16
984 br eak;
985 }
987 case ZFS_PROP_RECORDSI ZE:
988 case ZFS_PROP_VOLBLOCKSI ZE:
989 7* must be power of two within SPA {M N, MAX} BLOCKSI ZE */
990 if (intval < SPA M NBLOCKSI ZE ||
991 intval > SPA_MAXBLOCKSI ZE || !ISP2(intval)) {
992 zfs_error_aux(hdl, dgettext(TEXT_DOVAIN,
993 "'’ nust be power of 2 from % "
994 "to %k"), propnang,
995 (ui nt _t) SPA_M NBLOCKSI ZE,
996 (ui nt _t) SPA_MAXBLOCKSI ZE >> 10);
997 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
998 goto error;
999 }
1000 br eak;
1002 case ZFS_PROP_M.SLABEL:
1003 {
1004 /*
1005 * Verify the nlslabel string and convert to
1006 * internal hex |abel string.
1007 */
1009 m | abel _t *new_sl;
1010 char *hex = NULL; /* internal |abel string */
1012 /* Default value is already OK */
1013 if (strcasecnp(strval, ZFS M. SLABEL_DEFAULT) == 0)
1014 br eak;
1016 /* Verify the Iabel can be converted to binary form*/
1017 if (((new_sl = mlabel _alloc(MAC_ LABEL)) == NULL) ||
1018 (str_to_label(strval, &iew sl, MAC LABEL,
1019 L_NO_CORRECTI ON, NULL) == -1)) {
1020 got o badl abel
1021 }
1023 /* Now translate to hex internal |abel string */
1024 if (label _to_str(new.sl, &hex, M. NTERNAL,
1025 DEF_NAMES) != 0) {
1026 if (hex)
1027 free(hex);
1028 got o badl abel ;
1029 }
1030 m | abel _free(new_sl);
1032 /* |If string is already in internal form we' re done. */
1033 if (strcnp(strval, hex) == 0) {
1034 free(hex);
1035 br eak;
1036 }
1038 /* Replace the label string with the internal form */
1039 (void) nvlist_renove(ret, zfs_prop_to_name(prop),
1040 DATA TYPE_STRI NG) ;
1041 verify(nvlist_add_string(ret, zfs_prop_to_nane(prop),
1042 hex) == 0);
1043 free(hex);
1045 br eak;
1047 badl abel :
1048 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
1049 "invalid nmslabel "% "), strval);

new usr/src/lib/libzfs/comon/libzfs_dataset.c 17

1050
1051
1052

1054

1056
1057
1058

1060
1061
1062

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1084

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

(void) zfs_error(hdl, EZFS BADPROP, errbuf);
m | abel _free(new sl); [* OKif null */
goto error;

}
case ZFS_PROP_MOUNTPO NT:
{
nanmecheck_err_t why;

if (strcnp(strval, ZFS MOUNTPO NT_NONE) == 0 ||
strcnp(strval, ZFS_MOUNTPO NT_LEGACY) == 0)
br eak;

i f (nmount poi nt _namecheck(strval, &why)) {
switch (why) {
case NAME_ERR_LEADI NG_SLASH:
zfs_error_aux(hdl,
dget t ext (TEXT_DOVAI N,
"'’ must be an absolute path, "
none’, or 'legacy’"), propnane);
br eak;
case NAME ERR TOOLONG
zfs_error_aux(hdl,
dget t ext (TEXT_DOVAI N,
"conponent of "%’ is too long"),

propnane) ;
br eak;
}
(void) zfs_error(hdl, EZFS BADPROP, errbuf);
goto error;
}
}
[* FALLTHRU*/

case ZFS_PROP_SHARESMB:
case ZFS_PROP_SHARENFS:

/_*

* For the nountpoint and sharenfs or sharesnb

* properties, check if it can be set in a

* gl obal / non- gl obal zone based on

* the zoned property val ue:

*

* gl obal zone non- gl obal zone
K o e m e m m e m e m i —— -
* zoned=on nmount poi nt (no) nmount poi nt (yes)
* sharenfs (no) sharenfs (no)

* sharesnb (no) sharesmb (no)

*

* zoned=of f nmount poi nt (yes) N A

* sharenfs (yes)

* sharesnb (yes)

*/

if (zoned)

{
if (getzoneid() == GLOBAL_ZONEI D)
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
" 96’ “cannot be set on °
"dataset in a non-global zone"),
propnane) ;
(void) zfs error(hdl EZFS_ZONED,
errbuf);
got o error;
} else if (prop == ZFS_PROP_SHARENFS | |
prop == ZFS | PROP > SHARESVB)
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1145
1146
1147
1148

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

1176
1177
1178
1179
1180
1181

18

"%’ cannot be set in "
"a non-gl obal zone"), propnane);
(void) zfs_error(hdl, EZFS_ZONED,
errbuf);
goto error;

} else if (getzoneid() != GLOBAL_ZONEID) {
/*

* |f zoned property is 'off’, this nmust be in
* a global zone. If not, something is wong.
*

/

zfs_error_aux(hdl, dgettext(TEXT_DOVAI N
"' 9’ cannot be set while dataset "
"zoned' property is set"), propnane);
(void) zfs_error(hdl, EZFS_ZONED, errbuf);
goto error

}

/*
* At this point, it is legitimte to set the
* property. Now we want to make sure that the
* property value is valid if it is sharenfs.
*/

if ((prop == ZFS_PROP_SHARENFS | |
prop == ZFS_PROP_SHARESMB) &&
strcnp(strval, "on") !'= 0 &&
strenp(strval, "off") 1= 0) {
zfs_share_proto_t proto;

if (prop == ZFS_PROP_SHARESMB)
pr oto = PROTO_SMB;

el se
proto = PROTO_NFS;

Mist be an valid sharing protocol
option string so init the |ibshare
in order to enable the parser and
then parse the options. W use the
control APl since we don’t care about
the current configuration and don't
want the overhead of |loading it

until we actually do sonething.

/

if (zfs_init_libshare(hdl,
SA TNIT_CONTROL_API) = SA OK) {
/*
* An error occurred so we can't do
* anyt hing
S

* ok % ok % ok * ok F ok

zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"’ o8’ cannot be set: problem™"
"in share initialization")

propnane) ;
(void) zfs error(hdl EZFS_BADPROP,
errbuf);
goto error;
}
if (zfs_parse_options(strval, proto) != SA OK) {
/

There was an error in parsing so
deal with it by issuing an error
message and | eaving after

uninitializing the the libshare

* ok ok ok %

new usr/src/lib/libzfs/comon/libzfs_dataset.c 19 new usr/src/lib/libzfs/comon/libzfs_dataset.c 20
1182 * interface. 1248 }
1183 */ 1249 br eak;
1184 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N, 1250 }
1185 "’ 9%’ cannot be set to invalid " 1251 }
1186 "options"), propnane); 1252 }
1187 (void) zfs_error(hdl, EZFS_BADPROP,
1188 errbuf); 1254 I*
1189 zfs_uninit_libshare(hdl); 1255 * |If nornalization was chosen, but no UTF8 choi ce was nade,
1190 goto error; 1256 * enforce rejection of non-UTF8 nanes.
1191 } 1257 *
1192 zfs_uninit_libshare(hdl); 1258 * If nornulization was chosen, but rejecting non-UTF8 nanes
1193 } 1259 * was explicitly not chosen, it is an error.
1260 *
1195 br eak; 1261 if (chosen_normal > 0 && chosen_utf < 0) {
1196 case ZFS PROP_UTF8ONLY: 1262 if (nvlist_add_uint64(ret,
1197 chosen_utf = (int)intval; 1263 zfs_prop_to_nane(ZFS_PROP_UTF8ONLY), 1) != 0) {
1198 br eak; 1264 (void) no_menory(hdl);
1199 case ZFS_PROP_NORMALI ZE: 1265 goto error;
1200 chosen_normal = (int)intval; 1266 }
1201 br eak; 1267 } else if (chosen_normal > 0 & chosen_utf == 0) {
1202 } 1268 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
1269 "' 9%’ must be set 'on’ if nornalization chosen"),
1204 /* 1270 zfs_prop_to_name(ZFS_PROP_UTF8ONLY)) ;
1205 * For changes to existing volunes, we have sonme additional 1271 (void) zfs_error(hdl, EZFS BADPROP, errbuf);
1206 * checks to enforce. 1272 goto error;
1207 */ 1273 }
1208 if (type == ZFS_TYPE_VOLUME && zhp != NULL) { 1274 return (ret);
1209 uint64_t volsize = zfs_prop_get_int(zhp,
1210 ZFS_PROP_VOLSI ZE) ; 1276 error:
1211 uint64_t bl ocksize = zfs_prop_get_int(zhp, 1277 nvlist_free(ret);
1212 ZFS_PROP_VOLBLOCKSI ZE) ; 1278 return (NULL);
1213 char buf[64]; 1279 }
1215 switch (prop) { 1281 int
1216 case ZFS_PROP_RESERVATI ON: 1282 zfs_add_synthetic_resv(zfs_handle_t *zhp, nvlist_t *nvl)
1217 case ZFS_PROP_REFRESERVATI ON: 1283 {
1218 if (intval > volsize) { 1284 uint64_t ol d_vol si ze;
1219 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N, 1285 ui nt 64_t new vol si ze;
1220 "'%’ is greater than current " 1286 uint64_t ol d_reservation;
1221 "vol ume size"), propnane); 1287 uint64_t new reservation;
1222 (void) zfs_error(hdl, EZFS_BADPRCP, 1288 zfs_prop_t resv_prop;
1223 errbuf); 1289 nvlist_t *props;
1224 goto error;
1225 } 1291 /*
1226 br eak; 1292 * If this is an existing volume, and soneone is setting the volsize,
1293 * make sure that it matches the reservation, or add it if necessary.
1228 case ZFS_PROP_VOLSI ZE: 1294 */
1229 if (intval % blocksize !=0) { 1295 ol d_vol size = zfs_prop_get _i nt (zhp, ZFS PROP_VOLSI ZE) ;
1230 zf s_ni cenun(bl ocksi ze, buf, 1296 if (zfs_which_resv_prop(zhp, & esv_prop) < 0)
1231 si zeof (buf)); 1297 return (-1);
1232 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N, 1298 old_reservation = zfs_prop_get_int(zhp, resv_prop);
1233 "'%’ must be a multiple of "
1234 "vol ume bl ock size (%)"), 1300 props = fnvlist_alloc();
1235 propnane, buf); 1301 fnvlist_add_uint64(props, zfs_prop_to_nanme(ZFS_PROP_VOLBLOCKSI ZE),
1236 (void) zfs_error(hdl, EZFS BADPROP, 1302 zfs_prop_get _int (zhp, ZFS_PROP_VOLBLOCKSI ZE));
1237 errbuf);
1238 goto error; 1304 if ((zvol _volsize_to_reservation(old_volsize, props) !=
1239 } 1305 ol d_reservation) || nvlist_exists(nvl,
1306 zfs_prop_to_nanme(resv_prop))) {
1241 if (intval == 0) { 1307 fnvlist_free(props);
1242 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N, 1308 return (0);
1243 "' o8’ cannot be zero"), 1309 }
1244 propnane) ; 1310 if (nvlist_|lookup_uinté4(nvl, zfs_prop_to_nanme(ZFS_PROP_VOLSI ZE),
1245 (void) zfs_error(hdl, EZFS_BADPROP, 1311 &new_vol size) != 0)
1246 errbuf); 1312 fnvlist_free(props);
1247 goto error; 1313 return (-1);

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1314
1315
1316

1318
1319
1320
1321
1322
1323
1324

1326
1327
1328
1329
1330

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

1347
1348
1349
1350
1351
1352

1354
1355
1356
1357
1358

1360
1361
1362

1364
1365
1366

1368
1369
1370
1371
1372
1373

1375
1376
1377
1378
1379

}

voi d
zfs_setprop_error(libzfs_handle_t *hdl,

{

new_reservation = zvol _vol size_to_reservation(new_vol si ze, props);

fnvlist_free(props);

if (nvlist_add_uint64(nvI
new reservation) !=
“(voi d) no_mem)ry(zhp->zfs_hdl);
return (-1);

zfs_prop_to_nanme(resv_prop),

}
return (1);

zfs_prop_t prop, int err,
char *errbuf)

switch (err) {
case ENGSPC:
*

* For quotas and reservations, ENGCSPC indicates
* something different; setting a quota or reservation
* doesn’t use any di sk space.
*
/
switch (prop) {
case ZFS_PROP_QUOTA:
case ZFS_PROP_ REFQJOTA
zfs _error _aux(hdl,
"size is less than current used or
"reserved space"));
(void) zfs_error(hdl,
break;

dget t ext (TEXT_DOMAI N,

EZFS PROPSPACE, errbuf);

case ZFS_PROP_RESERVATI ON
case ZFS_PROP_REFRESERVATI ON:
zfs _error _aux(hdl, dgettext(TEXT_DOVAI N,
"size is great er than avail abl e space"))
(void) zfs_error(hdl, EZFS_PROPSPACE, errbuf)

break;
defaul t:
(void) zfs_standard_error(hdl, err, errbuf);
break;
}
br eak;
case EBUSY:
(void) zfs_standard_error(hdl, EBUSY, errbuf);
br eak;
case EROFS:
(void) zfs_error(hdl, EZFS_DSREADONLY, errbuf);
br eak;

case ENOTSUP:

zfs _error _aux(hdl, dgettext (TEXT_DOVAI N

"pool and or dat aset nust be upgraded to set this "

"property or value"));
(void) zfs_error(hdl, EZFS BADVERSI ON, errbuf);
br eak;

case ERANGE:
if (prop == ZFS_PROP_COWPRESSI ON)
(v0| d) zfs_error _aux(hdl,
"property setting is not allowed on "

"boot abl e dat asets"));

dget t ext (TEXT_DOVAI N,

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1380
1381
1382
1383
1384

1386
1387
1388
1389
1390
1391
1392

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

1410
1411
1412
1413
1414

1416
1417
1418
1419
1420
1421
1422
1423
1424

1426
1427
1428

1430
1431
1432
1433
1434

1436
1437
1438

1440
1441

1443
1445

#i f def

#endi f

}
/*

(void) zfs_error(hdl,
} else {
(void) zfs_standard_error(hdl, err, errbuf);

EZFS_NOTSUP, errbuf);

}
br eak;
case EI NVAL:
if (prop == ZPROP_I NVAL) {
(v0| d) zfs_error(hdl, EZFS BADPROP, errbuf);
} else {
(void) zfs_standard_error(hdl, err, errbuf);
}
br eak;

case EOVERFLOW
*

* This platformcan’t address a volune this big.
*
/

I LP32
- if (prop == ZFS_PROP_VOLSI ZE) {
(void) zfs_error(hdl, EZFS VOLTOOBI G errbuf);
break;
}
/* FALLTHROUGH */
defaul t:
(void) zfs_standard_error(hdl, err, errbuf);
}

* Gven a property nane and val ue, set the property for the given dataset.
*/

int

zfs_prop_set(zfs_handl e_t *zhp, const char *propnanme, const char *propval)
1415 {

zfs_cmd_t zc = { 0 };

int ret =-1;

prop_changel i st_t *cl = NULL;

char errbuf[1024];

l'i bzfs_handl e_t *hdl = zhp->zfs_hdl
nvlist_t *nvl = NULL, *real props;
zfs_prop_t prop;

bool ean_t do_prefix = B_TRUE;

int added_resv;

(void) snprintf(errbuf, sizeof (errbuf),
dgett ext (TEXT_DOVAI N, "cannot set property for "% "),
zhp->zfs_nane) ;

if (nvlist_alloc(&wvl, NV_UNIQUE NAME, 0) '= 0 ||
nvlist_add_string(nvl, propnane, propval) != 0) {
(voi d) no_nenory(hdl);
goto error;

}
if ((realprops = zfs_valid_proplist(hdl, zhp->zfs_type, nvl,
zfs_prop_get _int(zhp, ZFS_PROP_ZONED), zhp, errbuf)) == NULL)
goto error;

nvlist_free(nvl);
nvl = real props;

prop = zfs_nane_t o_prop(propnane);

if (prop == ZFS_PROP_VOLSI ZE) {

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1446
1447
1448

1450
1451

1453
1454
1455
1456
1457
1458
1459

1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

1474
1475

1477
1478
1479
1480

1482
1483

1485

1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

1509
1510
1511

if ((added_resv = zfs_add_synthetic_resv(zhp, nvl)) == -1)
goto error;
}
if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL)
goto error;

if (prop == ZFS_PROP_MOUNTPO NT && changel i st _haszonedchild(cl)) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"child dataset with inherited nountpoint is used "
"in a non-gl obal zone"));
ret = zfs_error(hdl, EZFS_ZONED, errbuf);

goto error;
}
/*
* We don’t want to unnmount & renount the dataset when changi ng
* jts cannmount property to 'on’ or 'noauto’. W only use
* the changelist logic to unnmount when setting cannmount =of f.
*
/
if (prop == ZFS_PROP_CANMOUNT) {
uint64_t idx;
int err = zprop_string_to_index(prop, propval, & dx,
ZFS_TYPE_DATASET) ;
if (err == 0 && idx != ZFS_CANMOUNT_OFF)
do_prefix = B_FALSE;
}
if (do_prefix &k (ret = changelist_prefix(cl)) != 0)
goto error;
/*

* Execute the corresponding ioctl() to set this property.
*/
(void) strlcpy(zc.zc_nanme, zhp->zfs_nane, sizeof (zc.zc_nane));

if (zemd_write_src_nvlist(hdl, &c, nvl) != 0)
goto error;

ret = zfs_ioctl (hdl, ZFS_|IOC_SET_PROP, &zc);

if (ret '=0) {
zfs_setprop_error(hdl, prop, errno, errbuf);
if (added_resv && errno == ENOSPC
/* clean up the vol size property we tried to set */
uint64_t ol d_vol size = zfs_prop_get_int(zhp,
ZFS_PROP_VOLSI ZE) ;
nvlist_free(nvl);
zend_free_nvlists(&zc);
if (nvlist_alloc(&wvl, NV_UNI QUE_NAME, 0) != 0)
goto error;
if (nvlist_add_uint64(nvl,
zfs_prop_t o_nanme(ZFS_PROP_VOLSI ZE) ,

ol d_vol size) = 0)
goto error;
if (zemd_wite_src_nvlist(hdl, &c, nvl) != 0)
goto error;

(void) zfs_ioctl(hdl, ZFS_|OC SET_PRCP, &zc);

} else {
if (do_prefix)
ret = changelist_postfix(cl);

/*
* Refresh the statistics so the new property val ue
* is reflected.

23

new usr/src/lib/libzfs/comon/libzfs_dataset.c 24
1512 */

1513 if (ret == 0)

1514 (voi d) get_stats(zhp);

I5iI5] }

1517 error:

1518 nvlist_free(nvl);

1519 zend_free_nvlists(&zc);

1520 if (cl)

1521 changel i st_free(cl);

1522 return (ret);

1523 }

1525 /*

1526 * Gven a property, inherit the value fromthe parent dataset, or if received
1527 * is TRUE, revert to the received value, if any.

1528 */

1529 int

1530 zfs_prop_inherit(zfs_handle_t *zhp, const char *propnane, bool ean_t received)
1531 {

1532 zfs_cmd_t zc = { 0 };

1533 int ret;

1534 prop_changel ist_t *cl;

1i585] l'ibzfs_handl e_t *hdl = zhp->zfs_hdl;

1536 char errbuf[1024];

1537 zfs_prop_t prop;

1539 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,

1540 "cannot inherit % for '%’'"), propnane, zhp->zfs_nane);

1542 zc.zc_cooki e = received,

1543 if ((prop = zfs_name_to_prop(propnane)) == ZPROP_I NVAL) {

1544 /*

1545 * For user properties, the ambunt of work we have to do is very
1546 * small, so just do it here.

1547 */

1548 if (!zfs_prop_user(propnane)) {

1549 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

1550 "invalid property"));

1551 return (zfs_error(hdl, EZFS_BADPROP, errbuf));

1552 }

1554 (void) strlcpy(zc.zc_nanme, zhp->zfs_nane, sizeof (zc.zc_nane));
1555 (void) strlcpy(zc.zc_value, propnane, sizeof (zc.zc_value));
1557 if (zfs_ioctl(zhp->zfs_hdl, ZFS_|OC_| NHERI T_PROP, &zc) != 0)
1558 return (zfs_standard_error(hdl, errno, errbuf));
1560 return (0);

1561 }

1563 /*

1564 * Verify that this property is inheritable.

1565 */

1566 if (zfs_prop_readonly(prop))

1567 return (zfs_error(hdl, EZFS_PROPREADONLY, errbuf));

1569 if (!zfs_prop_inheritabl e(prop) & !received)

1570 return (zfs_error(hdl, EZFS_PROPNONI NHERI T, errbuf));

1572 /*

1573 * Check to see if the value applies to this type

1574 */

1575 if (!zfs_prop_valid_for_type(prop, zhp->zfs_type))

1576 return (zfs_error(hdl, EZFS_PROPTYPE, errbuf));

new usr/src/lib/libzfs/comon/libzfs_dataset.c 25 new usr/src/lib/libzfs/comon/libzfs_dataset.c 26

1578 /* 1644 zhp >zfs_props_tabl e[prop] == B_TRUE);
1579 * Nornalize the nane, to get rid of shorthand abbreviations. 1645 val ue = zfs ~Prop_ def aul t _nuneri c(prop);
1580 */ 1646 *source = "";
1581 propnane = zfs_prop_to_nanme(prop); 1647 }
1582 (void) strlcpy(zc.zc_nanme, zhp->zfs_nanme, sizeof (zc.zc_nane));
1583 (void) strlcpy(zc.zc_val ue, propnane, sizeof (zc.zc_value)); 1649 return (value);
1650 }
1585 if (prop == ZFS_PROP_MOUNTPO NT && get zonei d() == GLOBAL_ZONEI D &&
1586 zfs_pr op get _int (zhp, ZFS_PROP_ZONED)) { 1652 static char *
1587 zfs _error _aux(hdl, dgettext(TEXT DOMVAI N, 1653 get prop_string(zfs_handl e_t *zhp, zfs_prop_t prop, char **source)
1588 "dataset is used in a non- gl obal zone")); 1654 {
1589 return (zfs_error(hdl, EZFS ZONED, errbuf)); 1655 nvlist_t *nv;
1590 } 1656 char *val ue;
1592 I* 1658 *source = NULL;
1593 * Determ ne datasets which will be affected by this change, if any. 1659 if (nvlist_lookup_nvlist(zhp->zfs_props,
1594 */ 1660 zfs_prop_to_nanme(prop), &nv) == 0) {
1595 if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) 1661 verify(nvlist_I ookup_string(nv, ZPROP_VALUE, &value) == 0);
1596 return (-1); 1662 (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source);
1663 } else {
1598 if (prop == ZFS_PROP_MOUNTPO NT && changel i st _haszonedchild(cl)) { 1664 veri fy(1 zhp->zfs_props_table ||
1599 zfs _error _aux(hdl, dgettext(TEXT_DOVAIN, 1665 zhp- >zfs _props_tabl e[prop] == B_TRUE);
1600 “child dataset with inherited mount point is used " 1666 if ((value (char *)zfs_prop_default_string(prop)) == NULL)
1601 "in a non-gl obal zone")); 1667 value = "";
1602 ret = zfs_error(hdl, EZFS_. ZCNED errbuf); 1668 *source = "";
1603 goto error; 1669 }
1604 }
1671 return (val ue);
1606 if ((ret = changelist_prefix(cl)) !=0) 1672 }
1607 goto error;
1674 static bool ean_t
1609 if ((ret = zfs_ioctl (zhp->zfs_hdl, ZFS I1OC I NHERI T_PROP, &zc)) != 0) { 1675 zfs_is_recvd_props_node(zfs_handl e_t *zhp)
1610 return (zfs_standard error(hdl errno, errbuf)); 1676 {
1611 } else { 1677 return (zhp->zfs_props == zhp->zfs_recvd_props);
1678 }
1613 if ((ret = changelist_postfix(cl)) !'= 0)
1614 goto error; 1680 static void
1681 zfs_set_recvd_props_node(zfs_handle_t *zhp, uint64_t *cookie)
1616 /* 1682 {
1617 * Refresh the statistics so the new property is reflected. 1683 *cookie = (uint64_t)(uintptr_t)zhp->zfs_props;
1618 */ 1684 zhp->zfs_props = zhp->zfs_recvd_props;
1619 (voi d) get_stats(zhp); 1685 }
1620 }
1687 static void
1622 error: 1688 zfs_unset_recvd_props_node(zfs_handl e_t *zhp, uint64_t *cookie)
1623 changel i st_free(cl); 1689 {
1624 return (ret); 1690 zhp->zfs_props = (nvlist_t *)(uintptr_t)*cookie;
1625 } 1691 *cookie = 0;
1692 }
1627 /*
1628 * True DSL properties are stored in an nvlist. The follow ng two functions 1694 /*
1629 * extract them appropriately. 1695 * Internal function for getting a nuneric property. Both zfs_prop_get() and
1630 */ 1696 * zfs_prop_get_int() are built using this interface.
1631 static uint64_t 1697 *
1632 getprop_ui nt64(zfs_handl e_t *zhp, zfs_prop_t prop, char **source) 1698 * Certain properties can be overridden using 'mount -o'. In this case, scan
1633 { 1699 * the contents of the /etc/mttab entry, searching for the appropriate options.
1634 nvlist_t *nv; 1700 * If they differ fromthe on-disk values, report the current values and mark
1635 ui nt64_t val ue; 1701 * the source "tenporary".
1702 */
1637 *source = NULL; 1703 static int
1638 if (nvlist Iookup nvl i st (zhp->zfs_props, 1704 get_nuneric_property(zfs_handle_t *zhp, zfs_prop_t prop, zprop_source_t *src,
1639 zfs_prop_to_name(prop), &iv) == 0) { 1705 char **source, uint64_t *val)
1640 verify(nvlist_| ookup_ui nt 64(nv, ZPROP_VALUE, &value) == 0); 1706 {
1641 (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); 1707 zfs_cmd_t zc = { O }
1642 } else { 1708 nvlist_t *zplprops = NULL;

1643 verify(!zhp->zfs_props_table || 1709 struct mttab mt;

new usr/src/lib/libzfs/comon/libzfs_dataset.c 27

1710
1711
1712

1714

1716
1717
1718
1719
1720

1722
1723
1724
1725

1727
1728
1729
1730

1732
1733
1734
1735

1737
1738
1739
1740

1742
1743
1744
1745

1747
1748
1749
1750
1751

1753
1754
1755
1756
1757
1758
1759
1760
1761

1763
1764
1765
1766
1767
1768

1770
1771

1773
1774
1775

char *mtopt _on = NULL;
char *mmtopt _of f = NULL;
bool ean_t received = zfs_is_recvd_props_node(zhp);

*source = NULL;

switch (prop) {

case ZFS_PROP_ATI ME:
mt opt _on = MNTOPT_ATI ME;
mt opt _of f = MNTOPT_NQCATI ME;
br eak;

case ZFS_PROP_DEVI CES:
mt opt _on = MNTOPT_DEVI CES;
mt opt _of f = MNTOPT_NODEVI CES;
br eak;

case ZFS_PROP_EXEC:
mmt opt_on = MNTOPT_EXEC;
mtopt _of f = MNTOPT_NOEXEC,
br eak;

case ZFS PROP_READONLY:
mt opt_on = MNTOPT_RQ,
mt opt _of f = MNTOPT_RW
br eak;

case ZFS_PROP_SETU D:
mt opt _on = MNTOPT_SETUI D
mt opt _of f = MNTOPT_NOSETUI D,
br eak;

case ZFS _PROP_XATTR:
mt opt _on = MNTOPT_XATTR;
mt opt _of f = MNTOPT_NOXATTR;
br eak;

case ZFS_PROP_NBMAND:
mt opt _on = MNTOPT_NBMAND;
mt opt _of f = MNTOPT_NONBMAND;
br eak;
}
/*
* Because | ooking up the nount options is potentially expensive
* (iterating over all of /etc/mttab), we defer its calculation until
* we're | ooking up a property which requires its presence.
*

/
if (!zhp->zfs_mmtcheck &&
(mtopt_on !'= NULL || prop == ZFS_PROP_MOUNTED)) ({
I bzfs_handl e_t *hdl = zhp->zfs_hdl;
struct mttab entry;

if (libzfs_mttab_find(hdl, zhp->zfs_nane, &entry) == 0) {
zhp->zfs_mmtopts = zfs_strdup(hdl,
entry. mt_mtopts);
if (zhp->zfs_mmtopts == NULL)
return (-1);

}
zhp->zfs_mt check = B_TRUE;
if (zhp->zfs_mtopts == NULL)

mt. mt_mtopts = "";
el se

new usr/src/lib/libzfs/comon/libzfs_dataset.c 28
1776 mt. mt_mmtopts = zhp->zfs_mtopts;

1778 switch (prop) {

1779 case ZFS_PROP_ATI ME:

1780 case ZFS_PROP_DEVI CES:

1781 case ZFS_PROP_EXEC:

1782 case ZFS PROP_READONLY:

1783 case ZFS PROP_SETUI D:

1784 case ZFS PROP_XATTR:

1785 case ZFS_PROP_NBMAND:

1786 *val = getprop_uint64(zhp, prop, source);

1788 if (received)

1789 break;

1791 if (hasmtopt (&mt, mtopt_on) && !*val) {

1792 *val = B_TRUE;

1793 if (src)

1794 *src = ZPROP_SRC_TEMPORARY;

1795 } else if (hasmtopt(&mt, mmtopt_off) && *val) {

1796 *val = B_FALSE;

1797 if (src)

1798 *src = ZPROP_SRC_TEMPORARY;

1799 }

1800 br eak;

1802 case ZFS_PROP_CANMOUNT:

1803 case ZFS_PROP_VOLS| ZE:

1804 case ZFS_PROP_QUOTA:

1805 case ZFS_PROP_REFQUOTA:

1806 case ZFS_PROP_RESERVATI ON:

1807 case ZFS_PROP_REFRESERVATI ON:

1808 *val = getprop_uint64(zhp, prop, source);

1810 if (*source == NULL)

1811 /* not default, nust be |ocal */

1812 *source = zhp->zfs_nane;

1813

1814 br eak;

1816 case ZFS_PROP_MOUNTED:

1817 *val = (zhp->zfs_mmtopts != NULL);

1818 br eak;

1820 case ZFS_PROP_NUMCLONES:

1821 *val = zhp->zfs_dnustats.dds_num cl ones;

1822 br eak;

1824 case ZFS_PROP_VERSI ON:

1825 case ZFS_PROP_NORVALI ZE:

1826 case ZFS_PROP_UTF8ONLY:

1827 case ZFS_PROP_CASE:

1828 if (!zfs_prop_valid_for_type(prop, zhp->zfs_head_type) ||
1829 zend_al | oc_dst _nvlist(zhp->zfs_hdl, &c, 0) = 0)
1830 return (-1);

1831 voi d) strlcpy(zc.zc_nanme, zhp->zfs_nane, sizeof (zc.zc_nane));
1832 if (zfs_ioctl(zhp->zFs_hdl, ZFS | OC_OBISET ZPLPROPS, &zc)) {
1833 zend_free_nvlists(&zc);

1834 return (-1);

1835 }

1836 1f (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &zplprops) !'= 0 ||
1837 nvl i st_| ookup_ui nt 64(zpl props, zfs_prop_to_nanme(prop),
1838 val) !'= 0)

1839 zcmd_free_nvlists(&zc);

1840 return (-1);

1841 }

new usr/src/lib/libzfs/comon/libzfs_dataset.c 29 new usr/src/lib/libzfs/comon/libzfs_dataset.c
1842 if (zplprops)
1843 nvlist_free(zpl props); 1909 if (zhp->zfs_recvd_props == NULL)
1844 zend_free_nvlists(&zc); 1910 if (get_recvd_props_ioctl(zhp) = 0)
1845 br eak; 1911 return (-1);
1847 defaul t: 1913 prop = zfs_nane_t o_prop(propnane);
1848 switch (zfs_prop_get type(prop)) {
1849 case PROP_TYPE_ NUMBER: 1915 if (prop !'= ZPROP_I NVAL) {
1850 case PROP_TYPE_| NDEX: 1916 uint 64_t cooki e;
1851 *val = getprop_uint64(zhp, prop, source); 1917 if (!'nvlist_exists(zhp->zfs_recvd_props, propnane))
1852 /* 1918 return (-1);
1853 * |f we tried to use a default value for a 1919 zfs_set_recvd_props_node(zhp, &cookie);
1854 * readonly property, it neans that it was not 1920 err = zfs_prop_get(zhp, prop| propbuf, proplen,
1855 * present. 1921 NULL, NULL, O, literal);
1856 */ 1922 zfs_unset _r ecvd_props_rmde(zhp, &cooki e) ;
1857 if (zfs_prop_readonl y(prop) && 1923 } else {
1858 *source !'= NULL & (*source)[0] == "\0") { 1924 nvlist_t *propval;
1859 *source = NULL; 1925 char *recvdval ;
1860 } 1926 if (nvlist_lookup_nvlist(zhp->zfs_recvd_props,
1861 br eak; 1927 propnane, &propval) !'= 0)
1928 return (-1);
1863 case PROP_TYPE_STRI NG 1929 verify(nvlist_|I ookup string(propval, ZPROP_VALUE,
1864 defaul t: 1930 & ecvdval) == 0);
1865 zfs _error _aux(zhp->zfs_hdl, dgettext(TEXT_DCNN N, 1931 (void) strlcpy(pr opbuf recvdval, proplen);
1866 "cannot get non- numeri c property")); 1932 }
1867 return (zfs_error(zhp->zfs_hdl, EZFS_BADPRG’,
1868 dgettext (TEXT_DOVAI N, "i nt er nal error"))); 1934 return (err == 0 ? 0 : -1);
1869 } 1935 }
1870 }
1937 static int
1872 return (0); 1938 get_cl ones_string(zfs_handle_t *zhp, char *propbuf, size_t proplen)
1873 } 1939 {
1940 nvlist_t *val ue;
1875 /* 1941 nvpair_t *pair;
1876 * Calcul ate the source type, given the raw source string.
1877 */ 1943 val ue = zfs_get_clones_nvl (zhp);
1878 static void 1944 if (value == NULL)
1879 get _source(zfs_handl e_t *zhp, zprop_source_t *srctype, char *source, 1945 return (-1);
1880 char *statbuf, size_t statlen)
1881 { 1947 propbuf[O] ="\0;
1882 if (statbuf == NULL || *srctype == ZPROP_SRC_TEMPORARY) 1948 for (pair = nvlist_next_nvpair(value, NULL); pair != NULL;
1883 return; 1949 pair = nvlist_next_nvpair(value, pair)) {
1950 if (propbuf[0] !="'\0")
1885 if (source == NULL) { 1951 (void) strlcat(propbuf, ",", proplen);
1886 *srctype = ZPROP_SRC_NONE; 1952 (void) strlcat(propbuf, nvpair_name(pair), proplen);
1887 } else if (source[0] =="'\0") { 1953 }
1888 *srctype = ZPROP_SRC DEFAULT,;
1889 } else if (strstr(source, ZPROP_SOURCE VAL_RECVD) != NULL) { 1955 return (0);
1890 *srctype = ZPROP_SRC_RECEI VED; 1956 }
1891 } else {
1892 if (strcnp(source, zhp->zfs_nanme) == 0) { 1958 struct get_clones_arg {
1893 *srctype = ZPROP_SRC_LOCAL; 1959 ui nt 64_t nuncl ones;
1894 } else { 1960 nvlist_t *val ue;
1895 (void) strlcpy(statbuf, source, statlen); 1961 const char *origin;
1896 *srctype = ZPROP_SRC_| NHERI TED; 1962 char buf [ZFS_MAXNAMELEN] ;
1897 } 1963 };
1898 1
1965 int
1900 } 1966 get _cl ones_cbh(zfs_handl e_t *zhp, void *arg)
1967 {
1902 int 1968 struct get_clones_arg *gca = arg;
1903 zfs_prop_get_recvd(zfs_handl e_t *zhp, const char *propnane, char *propbuf,
1904 size_t proplen, boolean_t literal) 1970 if (gca->nunclones == 0)
1905 { 1971 zfs_cl ose(zhp);
1906 zfs_prop_t prop; 1972 return (0);
1907 int err = 0; 1973 }

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1975 if (zfs_prop_get (zhp, ZFS_PROP_ORIA N, gca->buf, sizeof (gca->buf),
1976 NULL, NULL, 0, B_TRUE) != 0)

1977 goto out;

1978 if (strcnp(gca >buf gca->origin) == 0) {

1979 fnvlist_add_bool ean(gca- >va| ue, zfs_get_nanme(zhp));
1980 gca- >nuncl ones- - ;

1981 }

1983 out:

1984 (void) zfs_iter_children(zhp, get_clones_cb, gca);

1985 zfs_cl ose(zhp);

1986 return (0);

1987 }

1989 nvlist_t *

1990 zfs_get_clones_nvl (zfs_handl e_t *zhp)

1991 {

1992 nvlist_t *nv, *value;

1994 if (nvlist_lookup_nvlist(zhp->zfs_props,

1995 zfs_prop_t o_nane(ZFS_PROP_CLONES), &nv) != 0) {

1996 struct get_clones_arg gca;

1998 /*

1999 * if this is a snapshot, then the kernel wasn’'t able
2000 * to get the clones. Do it by slowy iterating.
2001 */

2002 if (zhp->zfs_type = ZFS TYPE_SNAPSHOT)

2003 return (NULL

2004 if (nvlist_alloc(&nv, NV UNI QUE_NAME, 0) !'= 0)

2005 return (NULL);

2006 if (nvlist_alloc(&alue, NV_UNI QUE_NAME, 0) != 0) {
2007 nvlist_free(nv);

2008 return (NULL);

2009 }

2011 gca. nuntl ones = zfs_prop_get_int(zhp, ZFS_PROP_NUMCLONES);
2012 gca. val ue = val ue;

2013 gca.origin = zhp->zfs_naneg;

2015 if (gca.nuntlones != 0) {

2016 zfs_handl e_t *root;

2017 char pool [ZFS_VAXNAMELEN] ;

2018 char *cp = pool;

2020 /* get the pool nane */

2021 (void) strlcpy(pool, zhp- >zfs_nane, sizeof (pool));
2022 (voi d) strsep(&cp, g

2023 root = zfs_open(zhp- >zfs hdl, pool,

2024 ZFS_TYPE_FILESYSTEM

2026 (voi d) get_clones_ch(root, &gca);

2027 }

2029 if (gca.nunctlones != 0 |

2030 nvlist_add_nvlist(nv, ZPROP_VALUE, value) != 0 ||
2031 nvlist_add_nvlist(zhp->zfs_props

2032 zfs_prop_to_nanme(ZFS_PROP_CLONES), nv) != 0) {
2033 nvlist_free(nv);

2034 nvlist_free(val ue)

2035 return (NULL);

2036

2037 nvlist_free(nv);

2038 nvlist_free(val ue);

2039 verify(0 == nvlist_lookup_nvlist(zhp->zfs_props

31

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2040
2041

2043

2045
2046

2048
2049
2050
2051
2052
2053
2054
2055
2056
2057

bl T SN
-~

zfs_prop_get (zfs_handl e_t *zhp,

2058 {

2059
2060
2061
2062
2063

2065
2066
2067
2068
2069

2071
2072

2074
2075

2077
2078
2079
2080
2081
2082
2083
2084
2085
2086

2088
2089
2090
2091
2092
2093
2094

2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

zfs_prop_to_nanme(ZFS_PROP_CLONES), &nv));

}

verify(nvlist_|lookup_nvlist(nv, ZPROP_VALUE, &value) == 0);

return (value);

Retrieve a property fromthe given object. |If
nunbers are |left as exact values. O herwi se,
hunman- readabl e form

"literal’ is specified, then
nunbers are converted to a

Returns 0 on success, or -1 on error.

t

zfs_prop_t prop, char *propbuf, size_t
*statbuf, size_t statlen, bool ean_t

propl en,
zprop_source_t *src, char literal)
char *source = NULL;

uint64_t val;

char *str;
const char

bool ean_t

*strval ;
received = zfs_is_recvd_props_node(zhp);

/*
* Check to see if this property applies to our object
*/
if (!zfs_prop_valid_for_type(prop,
return (-1);

zhp->zfs_type))

if (received & zfs_prop_readonl y(prop))
return (-1);

if (src)
*src = ZPROP_SRC_NONE;

switch (prop) {
case ZFS_PROP_CREATI ON:
/*
* 'creation’ is atine_t stored in the statistics. W convert
* this into a string unless 'literal’ is specified.
*/
{
val = getprop_uint 64(zhp,
time_t time = (tine_t)val;
struct tmt;

prop, &source);

if (literal |]
localtine_r(&inme, &) == NULL ||
strftime(propbuf, proplen, "% % % %: %M %",
&) == 0)

(void) snprintf(propbuf, proplen,

"% lu", val);

}
br eak;
case ZFS_PROP_MOUNTPO NT:
*

~

Getting the precise nountpoint can be tricky.

*
*
* - for 'none’ or 'legacy’, return those val ues.

* - for inherited nountpoints, we want to take everything

* after our ancestor and append it to the inherited val ue.
*

*

*

If the pool has an alternate root,
root to any values we return.

we want to prepend that

32

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2106
2108

2110
2111
2112
2113

2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128

2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140

2142
2143
2144
2145
2146
2147
2148
2149

2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

2163

2165
2166
2167
2168
2169
2170
2171

*/
str = getprop_string(zhp, prop, &source);

if (str[0] =="/")
char buf [MAXPATHLEN] ;
char *root = buf;
const char *rel path;

/
If we inherit the nountpoint, even froma dataset

the dataset we inherit from |f source is
ZPROP_SOURCE_VAL_RECVD, the received val ue i s not
* inherited.

*/
if (strcnp(source, ZPROP_SOURCE VAL_RECVD) == 0) {
relpath = "";
} else {
rel path = zhp->zfs_nane + strlen(source);
if (relpath[0] == "/")
rel pat h++;
}
if ((zpool get prop(zhp >zpool _hdl,
ZPOCL LTROOT, buf IVAXPATHLEN NULL)) ||
(strcnp(root o) == 0))
root[0] = '\0’;

/*

* Special case an alternate root of '/'. This wll
* avoid having nultiple | eading slashes in the

* pount poi nt pat h.

*

if (strcnp(root, "/") == 0)
r oot ++;

/*

* |f the mountpoint is '/’ then skip over this

* if we are obtaining either an alternate root or
* an inherited nountpoint.

*

if (str[1] =="'\0" && (root[0] !="\0" ||
relpath[0] !'="\0"))
str++;
if (relpath[0] == "\0")
(void) snprintf(propbuf, proplen, "%%",
root, str);
el se

(void) snprintf(propbuf, propl en, "%%Y%%",
@ ? """,

root, str, relpath[0] ==
rel path);
} else {
/* 'legacy’ or 'none’ */
(void) strlcpy(propbuf, str, proplen);
}

br eak;
case ZFS_PROP_ORI G N

(void) strl cpy(pr opbuf, getprop_string(zhp, prop, &source),
propl en);

33

*
*
* with a received value, the source will be the path of
*
*

* If there is no parent at all, return failure to indicate that

* it doesn't apply to this dataset.
*/

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2172
2173
2174

2176
2177
2178
2179

2181
2182
2183
2184

2186
2187

2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207

2209
2210
2211
2212
2213
2214
2215
2216

2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233

2235
2236
2237

if (propbuf[0] == "'\0")
return (—1)
br eak;

case ZFS_PROP_CLONES:
if (get_clones_string(zhp, propbuf, proplen) != 0)
return (-1);
br eak;

case ZFS_PROP_QUOTA:

case ZFS_PROP_REFQUOTA:

case ZFS_PROP_RESERVATI ON:
case ZFS PROP_REFRESERVATI ON:

if (get_nuneric_property(zhp, prop, src, &source, &al) != 0)
return (-1);

/*
* |f quota or reservation is 0O, we translate this into 'none’
* (unless literal is set), and indicate that it’'s the default
* value. Oherwise, we print the nunber nicely and indicate
* that its set locally.
*
/
if (val == 0) {
i f (I iteral)
(void) strlcpy(propbuf, "0", proplen);
el se
(void) strlcpy(propbuf, "none", proplen);
} else {
if (literal)
(void) snprintf(propbuf, proplen, "%Iu",
(u_l ongl ong_t)val);
el se
zfs_ni cenun{val, propbuf, proplen);
}
br eak;

case ZFS_PROP_REFRATI O
case ZFS_PROP_COVPRESSRATI O
if (get_numeric_property(zhp, prop, src, &source, &al) != 0)
return (-1);
(void) snpri ntf(propbuf proplen, "%l u. %2l ux",
(u_l ongl ong_t) (val i 100),
(u_l ongl ong_t)(val % 100));
br eak;

case ZFS_PROP_TYPE:
switch (zhp->zfs_type) {
case ZFS_TYPE_FI LESYSTEM

str = "filesystent;
br eak;
case ZFS_TYPE_VO_UIVE:
str = "vol une";
br eak;
case ZFS_TYPE_SNAPSHOT:
str = "snapshot"”;
break;
def aul t
abort();

}
(void) snprintf(propbuf, proplen, "%", str);
br eak;

case ZFS_PROP_MOUNTED:
/ *

* The 'nmounted’ property is a pseudo-property that described

new usr/src/lib/libzfs/comon/libzfs_dataset.c 35

2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249

2251
2252
2253
2254
2255
2256
2257
2258

2260
2261
2262
2263

2265
2266

2268
2269
2270

2272
2273
2274
2275
2276

2278
2279
2280
2281
2282

2284
2285
2286
2287
2288
2289
2290
2291

2293
2294
2295
2296

2298
2299
2300
2301
2302
2303

*
*
*
*

if
if
el

br

whether the filesystemis currently nounted. Even though
it’s a bool ean value, the typical val ues of on and "of f"
/don t make sense, so we translate to "yes" and '
(get _nuneric property(zhp|
src, &source, &al) !=0)
return (-1);
(val)
(void) strlcpy(propbuf,

ZFS_PROP_MOUNTED,

"yes", proplen);

propl en);

se
(void) strlcpy(propbuf, "no",
eak;

case ZFS_PROP_NAME:
/ *

*
*
*
*

(void) strlcpy(propbuf,
br eak;

The 'nane’ property is a pseudo-property derived fromthe
dataset nane. It is presented as a real property to sinplify
consumers.

/

zhp->zfs_nane, proplen);

case ZFS_PROP_M._SLABEL:
{

}
br

m | abel _t
char *ascii

*new_s|l = NULL;
= NULL; /* human readabl e | abel */

(void) strlcpy(propbuf,

getprop_string(zhp, prop, &source), proplen);
if (literal || (strcasecnp(propbuf,
ZFS_M.SLABEL_DEFAULT) == 0))

br eak;

Try to translate the internal hex string to
human-readabl e output. |If there are any
probl ems just use the hex string.

/

* ok ok ok 3k

if (str_to_label (propbuf, &uew sl, MAC LABEL,
L_NO _CORRECTI ON, NULL) == -1) {
m | abel _free(new_sl);
break;
}
if (label _to_str(new.sl, &ascii, M LABEL,
DEF_NAMES) != 0) {
if (ascii)
free(ascii);
m | abel _free(new_sl);
break;
}
m | abel _free(new_sl);
(void) strlcpy(propbuf, ascii, proplen);

free(ascii);

eak;

case ZFS_PROP_GUI D:
/ *

*
*
*
*

QUI Ds are stored as nunbers, but they are identifiers.

We don’t want themto be pretty printed, because pretty
printing mangles the IDinto a truncated and usel ess val ue.
/

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2304
2305
2306
2307

2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320

2322
2323
2324
2325

2327
2328
2329
2330
2331
2332
2333
2334

2336
2337
2338
2339

2341

2343
2344 }

2346 /
2347
2348
2349
2350

if (get_nuneric_property(zhp, prop, src,
return (-1);
(voi d) snprlntf(propbuf proplen, "%Ilu",

br eak;

defaul t:
switch (zfs_prop_get type(prop)) {
case PROP_TYPE_NUMBER:

&sour ce,

&val)

1= 0)

(u_longlong_t)val);

i (get_nuneric property(zhp, prop, src,
&source, &al) !
return (-1);
if (literal)
(void) snprintf(propbuf, proplen, "%Iu",
(u_l ongl ong_t)val);
el se
zfs_ni cenun{val, propbuf, proplen)
br eak;
case PROP_TYPE STRI NG
(void) strlcpy(propbuf,
get prop_ strlng(zhp, prop, &source), proplen);
br eak
case PROP_TYPE_I NDEX:
it (get_nuneric property(zhp, prop, src,
&source, &val) != 0)
return (-1);
if (zfs_prop_index_to_string(prop, val, &strval)

return (-1);

(void) strlcpy(pr opbuf strval,
br eak;
defaul t:
abort();
}
}
get _source(zhp, src, source, statbuf, statlen);

return (0);

*

* Uility function to get the given nuneric property
* the given property is the appropriate type;
* hard-coded property types.
*

/

2351 uint64_t

2352 zfs_prop_get
{

2353

2354 char *source;

2355 uint64_t val;

2357 (voi d) get_nuneric_property(zhp, prop, NULL, &source,
2359 return (val);

2360 }

2362 int

2363 zfs_prop_set_int(zfs_handle_t *zhp, zfs_prop_t prop,
2364 {

2365 char buf[64];

2367 (void) snprintf(buf, sizeof (buf), "%Iu"

2368 return (zfs_prop_set(zhp, zfs_prop_to nama(prop)

2369 }

_int(zfs_handl e_t *zhp, zfs_prop_t prop)

propl en);

&val)

uint64_t val)

(longl ong_t)val);

buf));

1= 0)

Does no validation that
shoul d only be used with

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2371 /
2372
2373
2374 i

*
* Simlar to zfs_prop_get(), but returns the value as an integer.
*/
nt
2375 zfs_prop_get _nuneric(zfs_handl e_t *zhp, zfs_prop_t prop, uint64_t

*val ue,

2376 zprop_source_t *src, char *statbuf, size_t statlen)

2377 {

2378 char *source;

2380 I*

2381 * Check to see if this property applies to our object

2382 *

2383 if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) {

2384 return (zfs_error_fmt(zhp- >zfs hdl, EZFS_PROPTYPE,
2385 dget t ext (TEXT_DOMAI N, "cannot get property 9%’ "),
2386 zfs_prop_to_nane(prop)));

2387 }

2389 if (src)

2390 *src = ZPROP_SRC_NONE;

2392 if (get_nuneric_property(zhp, prop, src, &source, value) != 0)
2393 return (-1);

2395 get _source(zhp, src, source, statbuf, statlen);

2397 return (0);

2398 }

2400 static int

2401 idmap_id_to_nuneric_donain_rid(uid_t id, boolean_t isuser,

2402 char **donminp, idmap_rid_t *ridp)

2403 {

2404 i dmap_get _handl e_t *get_hdl = NULL;

2405 i dmap_stat status;

2406 int err = ElI NVAL;

2408 if (idmap_get_create(&get_hdl) != | DVAP_SUCCESS)

2409 goto out;

2411 if (isuser) {

2412 err = idmap_get _si dbyui d(get _hdl, id,

2413 | DMAP_REQ FLG USE CACHE, domminp, ridp, &status);
2414 } else {

2415 err = idnmap_get _si dbygi d(get_hdl, id,

2416 | DMAP_REQ FLG USE_CACHE, dommi np, ridp, &status);
2417 1

2418 if (err == | DVAP_SUCCESS &&

2419 |drmp get _mappi ngs(get _hdl) == | DMAP_SUCCESS &&

2420 status == | DMAP_SUCCESS)

2421 err = 0;

2422 el se

2423 err = ElI NVAL;

2424 out:

2425 if (get_hdl)

2426 i dmap_get _destroy(get_hdl);

2427 return (err);

2428 }

2430 /*

2431 * convert the propnane into paraneters needed by kernel

2432 * EQ: userquota@hrens -> ZFS_ PROP_USEI A """, 126829

2433 * EQg: userused@mtt @omain -> ZFS PRCP USERUSED, "S-1-123-456", 789
2434 */

2435 static int

37

new usr/src/lib/libzfs/common/libzfs_dataset.c

2436 userquot a_propnane_decode(const char *propnane, bool ean_t zoned,

2437 zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t
2438 {

2439 zfs_userquota_prop_t type;

2440 char *cp, *end,

2441 char *nunericsid = NULL;

2442 bool ean_t isuser;

2444 domain[0] = '\0";

2446 /* Figure out the property type ({user|group}{quotalspace}) */
2447 for (type = 0; type < ZFS_NUM USERQUOTA_PROPS; type++) {
2448 if (strncrrp(propname “zfs_userquot a_prop_ preflxes[type]
2449 strlen(zfs_userquota_prop_prefixes[type])) == 0)
2450 br eak;

2451 1

2452 if (type == ZFS_NUM USERQUOTA_ PROPS)

2453 return (EINVAL);

2454 *typep = type,;

2456 i suser = (type == ZFS_PROP_USERQUOTA | |

2457 type == ZFS_PROP_USERUSED) ;

2459 cp = strchr(propnane, '@) + 1;

2461 if (strchr(cp, '@)) {

2462 /*

2463 * It'’s a SID nane (eg "user @onai n") that needs to be
2464 * turned into S-1-donainl D-RID.

2465 */

2466 directory_error_t e;

2467 if (zoned && getzonei d() == GLOBAL_ZONEI D)

2468 return (ENCENT

2469 if (isuser) {

2470 e = directory_sid_fromuser_nanme(NULL,
2471 cp, &nunericsid);

2472 } else {

2473 e = directory_sid_fromgroup_name(NULL,
2474 cp, &nunericsid);

2475 }

2476 if (e != NULL) {

2477 directory_error_free(e);

2478 return (ENCENT);

2479 }

2480 1f (numericsid == NULL)

2481 return (ENCENT);

2482 cp = nunericsid,

2483 /* will be further decoded bel ow */

2484 }

2486 if (strncnp(cp "S-1-", 4) == 0) {

2487 *1t's a numeric SID (eg "S-1-234-567-89") */
2488 (v0| d) strlcpy(domain, cp, domainlen);

2489 cp = strrchr(donain, ’-’);

2490 *cp = '\0";

2491 cp++;

2493 errno = 0;

2494 *ridp = strtoull (cp, &end, 10);

2495 if (numericsid)

2496 free(nunericsid);

2497 nunmericsid = NULL;

2498 }

2499 1f (errno!=0 || *end !="\0")

2500 return (ElINVAL);

2501 } else if (lisdigit(*cp)) {

*ridp)

new usr/src/lib/libzfs/comon/libzfs_dataset.c 39 new usr/src/lib/libzfs/common/libzfs_dataset.c 40
2502 /*
2503 * It’s a user/group nane (eg "user") that needs to be 2569 int
2504 * turned into a uid/gid 2570 zfs_prop_get _userquota_int(zfs_handl e_t *zhp, const char *propnane,
2505 */ 2571 ui nt64_t *propval ue)
2506 if (zoned && getzoneid() == GLOBAL_ZONEI D) 2572 {
2507 return (ENCENT); 2573 zfs_userquota_prop_t type;
2508 if (isuser) {
2509 struct passwd *pw; 2575 return (zfs_prop_get_userquota_comon(zhp, propnane, propval ue,
2510 pw = get pwnan{cp); 2576 &t ype));
2511 if (pw == NULL) 2577 }
2512 return (ENOENT);
2513 *ridp = pw >pw_ui d; 2579 int
2514 } else { 2580 zfs_prop_get _userquota(zfs_handl e_t *zhp, const char *propnane,
2515 struct group *gr; 2581 char *propbuf, int proplen, boolean_t literal)
2516 gr = getgrnan(cp); 2582 {
2517 if (gr == NULL) 2583 int err;
2518 return (ENCENT); 2584 ui nt64_t propval ue;
2519 *ridp = gr->gr_gid, 2585 zfs_userquota_prop_t type;
2520 }
2521 } else { 2587 err = zfs_prop_get _userquota_comon(zhp, propnanme, &propval ue,
2522 /* 1t's a user/group |ID (eg "12345"). */ 2588 & ype);
2523 uid_t id = strtoul (cp, &end, 10);
2524 idmap_rid_t rid; 2590 if (err)
2525 char *mapdomai n; 2591 return (err);
2527 if (*end !'="\0") 2593 if (literal) {
2528 return (EINVAL); 2594 (voi d) snpri ntf(propbuf proplen, "% Il u", propval ue);
2529 if (id> MAXUD { 2595 } else if (propvalue == 0 &&
2530 /* 1t’s an epheneral ID. */ 2596 (type == ZFS_ PROD USERQJOTA || type == ZFS_PROP_GROUPQUOTA)) {
2531 if (idmap_id_to_nuneric_donmin_rid(id, isuser, 2597 (void) strlcpy(propbuf, "none", proplen);
2532 &mapdomain, & id) != 0) 2598 } else {
2533 return (ENOENT); 2599 zf s_ni cenun(propval ue, propbuf, proplen);
2534 (v0| d) st rl cpy(donmain, mapdorral n, domainlen); 2600 }
2535 *ridp = rid,; 2601 return (0);
2536 } else { 2602 }
2537 *ridp =
2538 } 2604 int
2539 } 2605 zfs_prop_get_witten_int(zfs_handle_t *zhp, const char *propnane,
2606 uint64_t *propval ue)
2541 ASSERT3P(numeri csid, ==, NULL); 2607 {
2542 return (0); 2608 int err;
2543 } 2609 zfs_cmd_t zc = { 0 };
2610 const char *snapnane;
2545 static int
2546 zfs_prop_get _userquota_comon(zfs_handl e_t *zhp, const char *propnane, 2612 (void) strlcpy(zc.zc_name, zhp->zfs_nane, sizeof (zc.zc_nane));
2547 uint64_t *propval ue, zfs_userquota_prop_t *typep)
2548 { 2614 snapname = strchr(propnane, ' @) + 1;
2549 int err; 2615 if (strchr(snapnane, '’
2550 zfs_cmd_t zc = { 0 }; 2616 (void) strlcpy(zc.zc_value, snapnane, sizeof (zc.zc_value));
2617 } else {
2552 (void) strlcpy(zc.zc_nanme, zhp->zfs_nane, sizeof (zc.zc_nane)); 2618 /* snapname is the short nane, append it to zhp's fsnanme */
2619 char *cp;
2554 err = userquot a_propnane_decode(propnane,
2555 zfs_prop_get _int(zhp, ZFS_PROP_ZONED), 2621 (void) strlcpy(zc.zc_value, zhp->zfs_nane,
2556 typep, zc.zc_value, sizeof (zc.zc_value), &zc.zc_guid); 2622 si zeof (zc.zc_value));
2557 zc.zc_obj set _type = *typep; 2623 cp = strchr(zc.zc_value, '@);
2558 if (err) 2624 if (cp !'= NULL)
2559 return (err); 2625 *cp = '\0";
2626 (void) strlcat(zc.zc_value, "@, sizeof (zc.zc_value));
2561 err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS | OC USERSPACE ONE, &zc); 2627 (void) strlcat(zc.zc_value, snapnane, sizeof (zc.zc_value));
2562 if (err) 2628 1
2563 return (err);
2630 err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_| OC_SPACE_WRI TTEN, &zc);
2565 *propval ue = zc. zc_cooki e; 2631 if (err)
2566 return (0); 2632 return (err);
2567 }

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2634 *propval ue = zc. zc_cooki €;

2635 return (0);

2636 }

2638 int

2639 zfs_prop_get_witten(zfs_handl e_t *zhp, const char *propnane,

2640 char *propbuf, int proplen, boolean_t literal)

2641 {

2642 int err;

2643 uint64_t propval ue;

2645 err = zfs_prop_get_witten_int(zhp, propnane, &propval ue);
2647 if (err)

2648 return (err);

2650 if (literal) {

2651 (void) snprintf(propbuf, proplen, "%Iu", propval ue);
2652 } else {

2653 zf s_ni cenun(propval ue, propbuf, proplen);

2654 }

2655 return (0);

2656 }

2658 /*

2659 * Returns the nane of the given zfs handle.

2660 */

2661 const char *

2662 zfs_get _name(const zfs_handl e_t *zhp)

2663 {

2664 return (zhp->zfs_nane);

2665 }

2667 [*

2668 * Returns the type of the given zfs handle.

2669 */

2670 zfs_type_t

2671 zfs_get _type(const zfs_handle_t *zhp)

2672 {

2673 return (zhp->zfs_type);

2674 }

2676 [*

2677 * |s one dataset name a child dataset of another?

2678 *

2679 * Needs to handl e these cases:

2680 * Dataset 1 "al f oo" "al f oo" "al f oo" "al f oo"
2681 * Dataset 2 "alfo" "al foobar" "al bar/ baz" "al f oo/ bar"
2682 * Descendant? No. No. No. Yes.
2683 */

2684 static bool ean_t

2685 i s_descendant (const char *dsl, const char *ds2)

2686 {

2687 size_t dllen = strlen(dsl);

2689 /* ds2 can’t be a descendant if it’'s smaller */

2690 if (strlen(ds2) < dilen)

2691 return (B_FALSE);

2693 /* otherw se, conpare strings and verify that there’s a '/’ char */
2694 return (ds2[dllen] == "'/’ && (strncnp(dsl, ds2, dllen) == 0));
2695 }

2697 [*

2698 * Gven a conplete nane, return just the portion that refers to the parent.
2699 * WII return -1 if there is no parent (path is just the name of the

new usr/src/lib/libzfs/common/libzfs_dataset.c

2700 * pool).

2701 */

2702 static int

2703 ?arent_nama(const char *path, char *buf, size_t buflen)

2704

2705 char *sl ashp;

2707 (void) strlcpy(buf, path, buflen);

2709 if ((slashp = str chr(buf "/7)) == NULL)

2710 return (-

2711 *slashp = "\0";

2713 return (0);

2714 }

2716 [*

2717 * If accept_ancestor is false, then check to make sure that the given path has
2718 * a parent, and that it exists. |f accept_ancestor is true, then find the
2719 * closest existing ancestor for the given path. |In prefixlen return the
2720 * length of already existing prefix of the given path. W also fetch the
2721 * 'zoned' property, which is used to validate property settings when creating
2722 * new datasets.

2723 *

2724 static int

2725 check_parents(libzfs_handl e_t *hdl, const char *path, uint64_t *zoned,
2726 bool ean_t accept_ancestor, int *prefixlen)

2727 {

2728 zfs_cmd_t zc = { 0 };

2729 char parent[ZFS_ MAXNANELENJ

2730 char *sl ash;

2731 zf s_handl e_t *zhp;

2732 char errbuf[1024];

2733 uint64_t is_zoned;

2735 (void) snprintf(errbuf, sizeof (errbuf),

2736 dgettext (TEXT_DOVAI N, "cannot create '%’"), path);

2738 /* get parent, and check to see if this is just a pool */

2739 if (parent_nanme(path, parent, sizeof (parent)) != 0) {

2740 zfs _error _aux(hdl, dgettext(TEXT DOVAI N,

2741 "m ssing dataset nanme"

2742 return (zfs_error(hdl, EZFS_| I NVALI DNAME, errbuf));

2743 1

2745 /* check to see if the pool exists */

2746 if ((slash = strchr(parent, '/')) == NULL)

2747 slash = parent + strlen(parent);

2748 (void) strncpy(zc.zc_nane, parent slash - parent);

2749 zc. zc_nane[sl ash - parent] ='\0

2750 if (ioctl(hdl->libzfs_fd, ZFS_ IG? OBJSET_STATS, &zc) != 0 &&
2751 errno == ENCENT) {

2752 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

2753 "no such pool '%’'"), zc.zc_nane);

2754 return (zfs_error(hdl, EZFS _NCENT, errbuf));

2755 }

2757 /* check to see if the parent dataset exists */

2758 while ((zhp = make_dataset _handl e(hdl, parent)) == NULL) {

2759 if (errno == ENCENT && accept_ancestor) {

2760 /*

2761 * Go deeper to find an ancestor, give up on top |evel.
2762 */

2763 if (parent_nanme(parent, parent, sizeof (parent))
2764 zfs_error_aux(hdl, dgettext (TEXT_DOMAI N,
2765 "no such pool '%’'"), zc.zc_nane);

new usr/

2766
2767
2768
2769
2770
2771
2772
2773
2774

2776
2777
2778

2780
2781
2782
2783
2784
2785

2787
2788
2789
2790
2791
2792
2793
2794

2796
2797
2798
2799
2800 }

2802 /*
2803 *
2804 */

src/lib/libzfs/comon/libzfs_dataset.c
return (zfs_error(hdl, EZFS_NCENT, errbuf));

}
} else if (errno == ENCENT) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"parent does not exist"));
return (zfs_error(hdl, EZFS_NCENT, errbuf));
} else
return (zfs_standard_error(hdl, errno, errbuf));

}

is_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
if (zoned != NULL)
*zoned = I s_zoned;

/* we are in a non-global zone, but parent is in the global zone */
if (getzoneid() != GLOBAL_ZONEID && !is_zoned) {

(void) zfs_standard_error(hdl, EPERM errbuf);

zfs_cl ose(zhp);

return (-1);

}

/* make sure parent is a filesystem*/
if (zfs_get_type(zhp) != ZFS_TYPE_FI LESYSTEM ({
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"parent is not a filesystent));
(void) zfs_error(hdl, EZFS BADTYPE, errbuf);
zfs_cl ose(zhp);
return (-1);

}

zfs_cl ose(zhp);
if (prefixlen !'= NULL)

*prefixlen = strlen(parent);
return (0);

Fi nds whether the dataset of the given type(s) exists.

2805 bool ean_t
2806 zfs_dataset _exists(libzfs_handle_t *hdl, const char *path, zfs_type_t types)

2807 {

2808 zfs_handl e_t *zhp;

2810 if (!zfs_validate_nanme(hdl, path, types, B_FALSE))
2811 return (B_FALSE);

2813 I*

2814 * Try to get stats for the dataset, which will tell us if it exists.
2815 */

2816 if ((zhp = make_dat aset _handl e(hdl, path)) != NULL) {
2817 int ds_type = zhp->zfs_type;

2819 zfs_cl ose(zhp);

2820 if (types & ds_type)

2821 return (B_TRUE);

2822 1

2823 return (B_FALSE);

2824 }

2826 /*

2827 * Gven a path to "target’, create all the ancestors between
2828 * the prefixlen portion of the path, and the target itself.
2829 * Fail if the initial prefixlen-ancestor does not already exist.
2830 */

2831 int

new usr/src/lib/libzfs/common/libzfs_dataset.c 44

2832 create_parents(libzfs_handle_t *hdl, char *target, int prefixlen)

2833 {

2834
2835
2836

2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850

2852
2853
2854
2855
2856
2857

2859

2861
2862
2863
2864
2865
2866

2868
2869
2870
2871
2872

2874
2875
2876
2877
2878

2880
2881
2882
2883

2885
2886
2887
2888

2890
2891

2893
2895

2896
2897

zfs_handle_t *h;
char *cp;
const char *opnane;

/* make sure prefix exists */
cp = target + prefixlen
if (*cpl!="1")

assert(strchr(cp, '/') == NULL);

h = zfs_open(hdl, target, ZFS TYPE_FI LESYSTEM ;
} else {

*Cp = ';

h = zfs_open(hdl, target, ZFS_TYPE_FI LESYSTEM ;

*cp =/

}

if (h == NULL)
return (-1);

zfs_cl ose(h);

/*
* Attenpt to create, nount, and share any ancestor fil esystens,
* up to the prefixlen-1ong one.
*/
for (cp = target + prefixlen + 1;
cp = strchr(cp, '/"); *cp ="'/, cp++) {

*cp = '\0’;

h = make_dat aset _handl e(hdl, target);

if (h) {
/* it already exists, nothing to do here */
zfs_close(h);

conti nue;
}
if (zfs_create(hdl, target, ZFS TYPE_FI LESYSTEM
NULL) !'= 0) {
opnanme = dgettext(TEXT_DOVAIN, "create");
goto ancestorerr;
}

h = zfs_open(hdl, target, ZFS_TYPE_FI LESYSTEM ;
if (h == NULL)
opnane = dgettext (TEXT_DOVAI N, "open");
goto ancestorerr;

}

if (zfs_rmount(h, NULL, 0) != 0) {
opnane = dgettext (TEXT_DOVAIN, "mount");
goto ancestorerr;

}

if (zfs_share(h) !'= 0)
opnane = dgettext (TEXT_DOMAI N, “"share");
goto ancestorerr;

}
; zfs_cl ose(h);
return (0);

ancestorerr:

zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"failed to % ancestor '%’'"), opnane, target);

new usr/src/lib/libzfs/comon/libzfs_dataset.c

45

2898 return (-1);

2899 }

2901 /*

2902 * Creates non-existing ancestors of the given path.

2903 */

2904 int

2905 {zfs_creat e_ancestors(libzfs_handle_t *hdl, const char *path)

2906

2907 int prefix;

2908 char *pat h_copy;

2909 int rc;

2911 if (check_| parents(hdl path, NULL, B_TRUE, &prefix) != 0)

2912 return (-

2914 if ((path_copy = strdup(path)) != NULL) {

2915 rc = create_parents(hdl, path_copy, prefix);

2916 free(pat h_copy);

2917 }

2918 if (path_copy == NULL || rc != 0)

2919 return (-1);

2921 return (0);

2922 }

2924 | *

2925 * Create a new filesystemor vol une.

2926 */

2927 int

2928 zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type,

2929 nvlist_t *props)

2930 {

2931 int ret;

2932 uint64_t size = 0;

2933 uint64_t bl ocksize = zfs_prop_defaul t _nuneric(ZFS_PROP_VOLBLOCKSI ZE) ;
2934 char errbuf[1024];

2935 uint64_t zoned;

2936 drmu_obj set _type_t ost;

2938 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,

2939 "cannot create '%’'"), path);

2941 /* validate the path, taking care to note the extended error nessage */
2942 if (!zfs_validate_nanme(hdl, path, type, B_TRUE))

2943 return (zfs_error(hdl, EZFS | NVALI DNAME, errbuf));

2945 /* validate parents exist */

2946 if (check_parents(hdl, path, &zoned, B_FALSE, NULL) != 0)

2947 return (-1);

2949 /*

2950 * The failure npdes when creating a dataset of a different type over
2951 * one that already exists is a little strange. |In particular, if you
2952 * try to create a dataset on top of an existing dataset, the ioctl()
2953 * will return ENCENT, not EEXI ST. To prevent this from happening, we
2954 * first try to see if the dataset exists.

2955 */

2956 if (zfs_dataset_exists(hdl, path, ZFS_TYPE_DATASET)) {

2957 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

2958 "dat aset al ready exists"));

2959 return (zfs_error(hdl, EZFS EXISTS, errbuf));

2960 }

2962 if (type == ZFS TYPE_VOLUME)

2963 ost = DMJ_OST_zVQL;

new usr/src/lib/libzfs/comon/libzfs_dataset.c 46
2964 el se

2965 ost = DMJ_OST_ZFS

2967 if (props & (props = zfs val id_proplist(hdl, type, props,

2968 zoned, NULL, errbuf)) == 0)

2969 return (-1);

2971 if (type == ZFS_TYPE_VOLUME) {

2972 /*

2973 * |If we are creating a volune, the size and bl ock size nust
2974 * satisfy a fewrestraints. First, the blocksize nust be a
2975 * valid block size between SPA {M N MAX} BLOCKSI ZE. Second, the
2976 * vol si ze nust be a multiple of the block size, and cannot be
2977 * zero.

2978 */

2979 if (props == NULL || nvlist_| ookup_ui nt64(props,

2980 zfs_prop_to_nanme(ZFS_PROP_VOLSI ZE), &size) != 0) {

2981 nvlist_free(props);

2982 zfs_error_aux(hdl, dgettext(TEXT DOMAI N,

2983 "m ssing volune size"));

2984 return (zfs_error(hdl, EZFS_BADPROP, errbuf));

2985 }

2987 if ((ret = nvlist_|ookup_uint64(props,

2988 zfs_prop_to_nanme(ZFS_PROP_VOLBLOCKSI ZE) ,

2989 &bl ocksi ze)) !'= 0) {

2990 if (ret == ENCENT)

2991 bl ocksi ze = zfs_prop_defaul t _numeri c(

2992 ZFS_PROP_VOLBLOCKSI ZE) ;

2993 } else {

2994 nvlist_free(props);

2995 zfs_error_aux(hdl, dgettext (TEXT DO\/AI N,

2996 "m ssing volune bl ock size"

2997 return (zfs_error(hdl, EZFS_ BADPRCP errbuf));
2998 }

2999 }

3001 if (size == {

3002 nvlist_free(props);

3003 zfs _error _aux(hdl, dgettext(TEXT DOMAI N,

3004 "vol ume size cannot be zero' "))

3005 return (zfs_error(hdl, EZFS_ BADPR(P errbuf));

3006 }

3008 if (size %blocksize !=0) {

3009 nvlist_free(props);

3010 zfs _error _aux(hdl, dgettext(TEXT_DOVAI N,

3011 "vol ume size nust be a mul ti pl e of vol une bl ock "
3012 "size"));

3013 return (zfs_ error(hdl EZFS BADPROP, errbuf));

3014 }

3015 }

3017 /* create the dataset */

3018 ret = |lzc_create(path, ost, props);

3019 nvlist_free(props);

3021 /* check for failure */

3022 if (ret 1= 0)

3023 char parent[ZFS_MAXNAMELEN] ;

3024 (voi d) parent_nane(path, parent, sizeof (parent));

3026 switch (errno) {

3027 case ENOCENT:

3028 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

3029 "no such parent "%’'"), parent);

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3030

3032
3033
3034
3035

3037
3038
3039
3040
3041
3042

3044

3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064

3066
3067

3069
3070
3071
3072
3073
3074
3075

3077
3079

3081
3082
3083
3084
3085

3087
3088
3089
3090
3091
3092
3093

3095

return (zfs_error(hdl, EZFS_NCENT, errbuf));

case EI NVAL:
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"parent "%’ is not a filesystent), parent);
return (zfs_error(hdl, EZFS_BADTYPE, errbuf));

case EDOM
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"vol ume bl ock size nust be power of 2 from"
"% to k"),
(ui nt _t) SPA_M NBLOCKSI ZE,
(ui nt _t) SPA_MAXBLOCKSI ZE >> 10);

return (zfs_error(hdl, EZFS_BADPROP, errbuf));

case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"pool nust be upgraded to set this "
"property or value"));

return (zfs_error(hdl, EZi:S_BAD\/ERSI ON, errbuf));

#ifdef _ILP32

#endi f

* ok kb 3k
-

i nt

case EOVERFLOW
*

* This platformcan’t address a volune this big.
*/

if (type == ZFS_TYPE_VOLUVE)
return (zfs_error(hdl, EZFS_ VOLTOOBI G

errbuf));
/* FALLTHROUGH */
defaul t:
return (zfs_standard_error(hdl, errno, errbuf));
}
}
return (0);

Destroys the given dataset. The caller nust make sure that the filesystem
isn"t mounted, and that there are no active dependents. If the file system
does not exist this function does not hing.

zfs_destroy(zfs_handle_t *zhp, boolean_t defer)
3076 {

zfs_cmd_t zc = { 0 };

(void) strlcpy(zc.zc_nanme, zhp->zfs_nanme, sizeof (zc.zc_nane));

if (ZFS_I'S VOLUME(zhp)) {

zc. zc_obj set _type = DMJ_OST_zZVQ,;

} else {

}

zc.zc_obj set _type = DMJ_OST_ZFS;

zc.zc_defer_destroy = defer;
if (zfs_ioctl(zhp->zfs_hdl, ZFS_| OC_DESTROY, &zc) != 0 &&

}

errno ! = ENCENT)
return (zfs_standard_error_fnt(zhp->zfs_hdl, errno,
dget t ext (TEXT_DOVAI N, "cannot destroy '%’'"),
zhp->zfs_nane));

renove_nount poi nt (zhp) ;

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3097 return (0);
3098 }
3100 struct destroydata {
3101 nvlist_t *nvl;
3102 const char *snapnane;
3103 };
3105 static int
3106 zfs_check_snap_cb(zfs_handl e_t *zhp, void *arg)
3107 {
3108 struct destroydata *dd = arg;
28 zfs_handl e_t *szhp;
3109 char nane[ZFS_MAXNAMELEN ;
3110 int rv =0;
3112 (void) snprintf(name, sizeof (nane),
3113 "%s@s", zhp->zfs_nane, dd->snapnane);
3115 if (lzc_exists(nane))
35 szhp = make_dat aset _handl e(zhp->zfs_hdl, nane);
36 if (szhp) {
3116 verify(nvlist_add_bool ean(dd->nvl, nane) == 0);
38 zfs_cl ose(szhp);
39 }
3118 rv = zfs_iter_filesystems(zhp, zfs_check_snap_cb, dd);
3119 zfs_cl ose(zhp);
3120 return (rv);
3121 }
3123 /*
3124 * Destroys all snapshots with the given nane in zhp & descendants.
3125 */
3126 int
3127 zfs_destroy_snaps(zfs_handl e_t *zhp, char *snapnane, bool ean_t defer)
3128
3129 int ret;
3130 struct destroydata dd = { 0 };
3132 dd. snapnane = snapnane;
3133 verify(nvlist_alloc(&d. nvl, NV_UNI QUE_NAME, 0) == 0);
3134 (void) zfs_check_snap_cb(zfs_handl e_dup(zhp), &dd);
3136 if (nvlist_enmpty(dd.nvl)) {
59 if (nvlist_next_nvpair(dd.nvl, NULL) == NULL)
3137 ret = zfs_standard_error_fnt(zhp->zfs_hdl, ENCENT,
3138 dget t ext (TEXT_DOVAI N, "cannot destroy '%@s' "),
3139 zhp->zfs_name, snapnane);
3140 } else {
3141 ret = zfs_destroy_snaps_nvl (zhp->zfs_hdl, dd.nvl, defer);
3142
3143 nvlist_free(dd.nvl);
3144 return (ret);
3145 }
3147 | *
3148 * Destroys all the snapshots named in the nvlist.
3149 */
3150 int
3151 zfs_destroy_snaps_nvl (libzfs_handle_t *hdl, nvlist_t *snaps, boolean_t defer)
3152
3153 int ret;
3154 nvlist_t *errlist;

48

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3156

3158
3159

3161

84
3162
3163
3164

3166
3167
3168
3169
3170
3171
3172
3173

3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

3187
3188 }

ret = |zc_destroy_snaps(snaps, defer, &errlist);

if (ret == 0)
return (0);

if (nvlist_enmpty(errlist))
if (nvlist_next_nvpair(errl
13

rr

{

ist, NULL) == NULL) {

char errbuf[1024

(void) snprintf(errbuf, sizeof (errbuf),
dget t ext (TEXT_DOVAI N, "cannot destroy snapshots"));

ret = zfs_standard_error(hdl, ret, errbuf);

}
for (nvpair_t *pair = nvlist_next_nvpair(errlist, NULL);
pair !'= NULL; pair = nvlist_next_nvpair(errlist, pair)) {
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf),
dget t ext (TEXT_DOVAI N, "cannot destroy snapshot 9%"),
nvpai r_nanme(pair));

switch (fnvpair_value_int32(pair)) {
case EEXI ST:
zfs_error_aux(hdl,

dgettext(TEXT DOMAI N, "snapshot is cloned"));

ret = zfs_error(hdl, EZFS EXI STS, errbuf);

br eak;
defaul t:

ret = zfs_standard_error(hdl, errno, errbuf);
) br eak;

}

return (ret);

__unchanged_portion_onitted_

4079 static int
4080 zfs_hol d_one(zfs_handl e_t *zhp, void *arg)

4081 {
4082
1006
4083
4084

4086
4087

4089
1013
1014
4090
1016
1017

4092
4093
4094
4095
4096 }

4098 int

struct holdarg *ha = arg;
zfs_handl e_t *szhp;

char narre[ZFS MAXNAMELEN] ;
int rv = 0;

(void) snprintf(name, sizeof (nane),
"% @s", zhp->zfs_name, ha->snapnane);

if (lzc_exists(nane))

szhp = nmaeke_dat aset _handl e(zhp->zfs_hdl, nane);

if (szhp) {
fnvlist_add_string(ha->nvl, nane, ha->tag);
zfs_cl ose(szhp);

}

if (ha->recursive)

rv = zfs_iter_fil esystens(zhp, zfs_hold_one, ha);
zfs_cl ose(zhp);
return (rv);

4099 zfs_hol d(zfs_handl e_t *zhp, const char *snapnane, const char *tag,

4100
1027
4101 {
4102

bool ean_t recursive, int cleanup_fd)
bool ean_t recursive, bool ean_t enoent_ok, int cleanup_fd)

int ret;

new usr/src/lib/libzfs/comon/libzfs_dataset.c

4103 struct hol darg ha;

1031 nvlist_t *errors;

1032 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

1033 char errbuf[1024];

1034 nvpair_t *elem

4105 ha.nvl = fnvlist_alloc();

4106 ha. snapnane = snapnane;

4107 ha.tag = tag;

4108 ha.recursive = recursive;

4109 (void) zfs_hol d_one(zfs_handl e_dup(zhp), &ha);

4111 if (nvlist_empty(ha.nvl)) {

4112 char errbuf[1024];

1042 if (nvlist_next_nvpair(ha.nvl, NULL) == NULL) {

4114 fnvlist_free(ha.nvl);

4115 ret = ENOENT;

1045 if (!enoent_ok) {

4116 (void) snprintf(errbuf, sizeof (errbuf),

4117 dget t ext (TEXT_DOVAI N,

4118 "cannot hol d snapshot '%@s'"),

4119 zhp->zf s_nanme, snapnane);

4120 (void) zfs_standard_error(zhp->zfs_hdl, ret, errbuf);
1050 (void) zfs_standard_error(hdl, ret, errbuf);
1051

4121 return (ret);

4122 1

4124 ret = zfs_hold_nvl (zhp, cleanup_fd, ha.nvl);

1055 ret = lzc_hold(ha.nvl, cleanup_fd, &errors);

4125 fnvlist_free(ha.nvl);

4127 return (ret);

4128

4130 int

4131 zfs_hol d_nvl (zfs_handl e_t *zhp, int cleanup_fd, nvlist_t *holds)
4132 {

4133 int ret;

4134 nvlist_t *errors;

4135 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

4136 char errbuf[1024];

4137 nvpair_t *elem

4139 errors = NULL;

4140 ret = lzc_hold(holds, cleanup_fd, &errors);

4142 if (ret == 0) {

4143 /* There may be errors even in the success case. */
4144 fnvliist_free(errors);

1058 if (ret == 0)

4145 return (0);

4146 }

4147 #endif /* | codereview */

4149 if (nvlist_enpty(errors))

1060 if (nvlist_next_nvpair(errors, NULL) == NULL) {

4150 /* no hol d-specific errors */

4151 (void) snprintf(errbuf, sizeof (errbuf),

4152 dget t ext (TEXT_DOVAI N, "cannot hol d"));

4153 switch (ret) {

4154 case ENOTSUP:

4155 zfs_error_aux(hdl, dgettext (TEXT_DOVAI N,
4156 "pool nust be upgraded"));

4157 (void) zfs_error(hdl, EZFS_ BADVERSI ON, errbuf);

new usr/src/lib/libzfs/comon/libzfs_dataset.c 51

4158 br eak;

4159 case EI NVAL:

4160 (void) zfs_error(hdl, EZFS BADTYPE, errbuf);
4161 br eak;

4162 defaul t:

4163 (void) zfs_standard_error(hdl, ret, errbuf);
4164 }

4165 }

4167 for (elem= nvlist_next_nvpair(errors, NULL);

4168 el em ! = NULL;

4169 el em = nvlist_next_nvpair(errors, elem) {

4170 (void) snprintf(errbuf, sizeof (errbuf),

4171 dgettext (TEXT_

4172 "cannot hol d snapshot "%’ "), nvpair_nanme(elem);
4173 switch (fnvpair_value_int32(elem) {

4174 case E2BI G

4175 /*

4176 * Tenporary tags wind up having the ds object id
4177 * prepended. So even if we passed the length check
4178 * above, it’'s still possible for the tag to wind
4179 * up being slightly too Iong.

4180 *

4181 (void) zfs_error(hdl, EZFS TAGIOOLONG errbuf);
4182 br eak;

4183 case EI NVAL:

4184 (void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
4185 br eak;

4186 case EEXI ST:

4187 (void) zfs_error(hdl, EZFS _REFTAG HOLD, errbuf);
4188 break;

1100 case ENCENT:

1101 i f (enoent_ok)

1102 return (ENCENT);

1103 /* FALLTHROUGH */

4189 defaul t:

4190 (void) zfs_standard_error(hdl,

4191 fnvpair_value_int32(el en), errbuf);

4192 }

4193 1

4195 fnvlist_free(errors);

4196 return (ret);

4197 }

1114 struct rel easearg {

1115 nvlist_t *nvl;

1116 const char *snapnane;

1117 const char *tag;

1118 bool ean_t recursive;

1119 };

4199 static int

4200 zfs_rel ease_one(zfs_handle_t *zhp, void *arg)

4201 {

4202 struct holdarg *ha = arg;

1125 zfs_handl e_t *szhp;

4203 char nane[ZFS MAXNAMELEN] ;

4204 int rv =0;

4206 (void) snprintf(name, sizeof (nane),

4207 "Us@6", zhp->zfs_name, ha->snapnane);

4209 if (lzc_exists(name)) {

1132 szhp = make_dat aset _handl e(zhp->zfs_hdl, nane);

1133 if (szhp) {

new usr/src/lib/libzfs/comon/libzfs_dataset.c

4210 nvlist_t *holds = fnvlist_alloc();

4211 fnvlist_add_bool ean(hol ds, ha- >t ag);

4212 fnvlist_add_nvlist(ha- >nvI name, hol ds);

4213 fnvlist_free(hol ds);

1137 zfs_cl ose(szhp);

4214 1

4216 if (ha->recursive)

4217 rv = zfs_iter_filesystens(zhp, zfs_rel ease_one, ha);
4218 zfs_cl ose(zhp);

4219 return (rv);

4220 }

4222 int

4223 zfs_rel ease(zfs_handl e_t *zhp, const char *snapnane, const char *tag,
4224 bool ean_t recursive)

4225 {

4226 int ret;

4227 struct holdarg ha;

4228 nvlist_t *errors = NULL;

1152 nvlist_t *errors;

4229 nvpair_t *elem

4230 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

4231 char errbuf[1024];

4233 ha.nvl = fnvlist_alloc();

4234 ha. snapnanme = snapnane;

4235 ha.tag = ;

4236 ha.recursive = recursive;

4237 (void) zfs_rel ease_one(zfs_handl e_dup(zhp), &ha);

4239 if (nvlist_enmpty(ha.nvl)) {

1163 if (nvlist_next_nvpair(ha.nvl, NULL) == NULL) {

4240 fnvlist_free(ha.nvl);

4241 ret = ENCENT,;

4242 (void) snprintf(errbuf, sizeof (errbuf),

4243 dget t ext (TEXT_DOMAI N,

4244 "cannot rel ease hold from snapshot '%@s’ "),
4245 zhp->zf s_name, snapnane);

4246 (void) zfs standard error(hdl ret, errbuf);
4247 return (ret);

4248 }

4250 ret = lzc_release(ha.nvl, &errors);

4251 fnvlist_free(ha.nvl);

4253 if (ret == 0) {

4254 /* There may be errors even in the success case. */
4255 fnvlist_free(errors);

1177 if (ret ==

4256 return (0);

4257 1

4258 #endif /* | codereview */

4260 if (nvlist_empty(errors)) {

1179 if (nvlist_next_nvpair(errors, NULL) == NULL) {

4261 /* no hold-specific errors */

4262 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAIN,
4263 "cannot rel ease"));

4264 switch (errno) {

4265 case ENOTSUP:

4266 zf s_error _aux(hdl, dgettext(TEXT_DOVAI N,
4267 "pool mnust be upgraded"));

4268 (v0| d) zfs_error(hdl, EZFS_ BADVERSI ON, errbuf);
4269 br eak;

4270 defaul t:

new usr/src/lib/libzfs/comon/libzfs_dataset.c 53

4271 (void) zfs_standard_error_fnt(hdl, errno, errbuf);
4272 }

4273 }

4275 for (elem = nvlist_next_nvpair(errors, NULL);

4276 el em ! = NULL;

4277 elem = nvlist_next_nvpair(errors, elem) {

4278 (void) snprintf(errbuf, sizeof (errbuf),

4279 dget t ext (TEXT_DOVAI N,

4280 "cannot rel ease hold from snapshot %’ "),

4281 nvpai r_nane(el en));

4282 switch (fnvpair_value_int32(elen) {

4283 case ESRCH:

4284 (void) zfs_error(hdl, EZFS_REFTAG RELE, errbuf);
4285 break;

4286 case EI NVAL:

4287 (void) zfs_error(hdl, EZFS BADTYPE, errbuf);
4288 break;

4289 defaul t:

4290 (void) zfs_standard_error_fnt(hdl,

4291 fnvpair_value_int32(elen), errbuf);

4292 }

4293 1

4295 fnvlist_free(errors);

4296 return (ret);

4297 }

__unchanged_portion_onitted_

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

R R R R

84531 Tue Jun 11 08:49:42 2013
new usr/src/lib/libzfs/comon/libzfs_sendrecv.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi

ed by: Steven Hartland <steven. hartland@ul tipl ay. co. uk>

Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»

LR

Submi tt
17+
2 *
3 *
4 *
5 *
6 *
7 *
8 *
9 *

10 *
11 =
12 *
13 =
14 =
15 =
16 *
17 *
18 *
19 *
20 *
22 | *
23 *
24 *
25 *
26 *

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and |imtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

Copyright (c) 2012 by Del phix. Al rights reserved.
Copyright (c) 2012, Joyent, Inc. Al rights reserved.
Copyright (c) 2013 Steven Hartland. Al rights reserved.

27 #endif /* ! codereview */
28 */

30 #i
31 #i
32 #i
33 #i
34 #i
35 #i
36 #i
37 #i
38 #i
39 #i
40 #i
41 #i
42 #i
43 #i

45 #i

47 #i
48 #i
49 #i
50 #i
51 #i
52 #i
53 #i

55 /*

ncl ude <assert. h>
ncl ude <ctype. h>
ncl ude <errno. h>
ncl ude <libintl.h>
ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <strings. h>
ncl ude <uni std. h>
ncl ude <stddef. h>
nclude <fcntl. h>
ncl ude <sys/nmount.h>
ncl ude <pt hread. h>
ncl ude <umem h>
ncl ude <tinme. h>

ncl ude <libzfs. h>

ncl ude "zfs_nanecheck. h"

ncl ude "zfs_prop. h"

ncl ude "zfs_fletcher.h"

ncl ude "libzfs_inpl.h"

ncl ude <sha2. h>

ncl ude <sys/zi o_checksum h>
ncl ude <sys/ddt. h>

in libzfs_dataset.c */

56 extern void zfs_setprop_error(libzfs_handle_t *, zfs_prop_t, int, char *);

58 st

atic int zfs_receive_inpl(libzfs_handle_t *, const char *, recvflags_t *,
int, const char *, nvlist_t *, avl_tree_t *, char **, int, uint64_t *);

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

63 typedef struct dedup_arg {

64 in i nputfd;

65 int out put f d;

66 l'i bzfs_handl e_t *dedup_hdl;

67 } dedup_arg_t;

69 typedef struct progress_arg {

70 zfs_handl e_t *pa_zhp;

71 int pa_fd;

72 bool ean_t pa_parsabl e;

73 } progress_arg_t;

75 typedef struct dataref {

76 uint64_t ref_guid;

77 uint64_t ref_object;

78 uint64_t ref_offset;

79 } dataref_t;

81 typedef struct dedup_entry {

82 struct dedup_entry *dde_next ;
83 zi o_cksumt dde_chksum

84 ui nt64_t dde_prop;

85 dataref _t dde_ref;

86 } dedup_entry_t;

88 #define MAX_DDT_PHYSMEM PERCENT 20
89 #define SMALLEST_POSSI BLE_MAX_DDT_MB

91 typedef struct dedup_table {

92 dedup_entry_t **dedup_hash_array;
93 unem cache_t *ddecache;

94 ui nt 64_t

95 ui nt 64t

96 ui nt 64_t ddt _count;

97 int nunhashbi ts;

98 bool ean_t ddt _full;

99 } dedup_table_t;
101 static int
102 hi gh_order_bit(uint64_t n)
103 {
104 int count;
106 for (count = 0; n !'= 0; count++)
107 n >>= 1;
108 return (count);
109 }
111 static size_t
112 ssread(void *buf, size_t len, FILE *stream
113 {
114 size_t outlen;
116 if ((outlen = fread(buf, len, 1, stream)
117 return (0);
119 return (outlen);
120 }
122 static void

123 ddt _hash_append(|i bzfs_handl e_t *hdl, dedup_table_t
124 zio_cksumt *cs, uint64_t prop, dataref_t *dr)
125 {

static const zio_cksumt zero_cksum= { 0 };

dedup_entry_t

max_ddt _si ze; /* max dedup table size in bytes */
cur_ddt_size; /* current dedup table size in bytes */

**ddepp,

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 3 new usr/src/lib/libzfs/comon/libzfs_sendrecv.c
126 dedup_entry_t *dde; 192 * for each one. But instead of having the ioctl send the output to the
193 * the output fd specified by the caller of zfs_send()), the
128 if (ddt->cur_ddt_size >= ddt->max_ddt_size) { 194 * joctl is told to direct the output to a pipe, which is read by the
129 if (ddt->ddt_full == B FALSE) { 195 * alternate thread running TH S function. This function does the
130 zfs _error _aux(hdl, dget t ext (TEXT_DOVAI N, 196 * dedup’ing by:
131 "Dedup table full. Deduplication will continue " 197 * 1. building a dedup table (the DDT)
132 "with existing table entries")); 198 * 2. doing checksuns on each data block and inserting a record in the DDT
133 ddt->ddt _full = B_TRUE; 199 * 3. looking for matching checksuns, and
134 } 200 * 4. sending a DRR WRI TE_BYREF record instead of a wite record whenever
135 return; 201 * a duplicate block is found.
136 } 202 * The output of this function then goes to the output fd requested
203 * by the caller of zfs_send().
138 if ((dde = umem cache_al | oc(ddt->ddecache, UMEM DEFAULT)) 204 *
139 I'= NULL) { 205 static void *
140 assert (*ddepp == NULL); 206 cksunmer (void *arg)
141 dde- >dde_next = NULL; 207 {
142 dde- >dde_chksum = *cs; 208 dedup_arg_t *dda = arg;
143 dde- >dde_prop = prop; 209 char *buf = nall oc(1<<20);
144 dde- >dde_ref = *dr; 210 drmu_r epl ay_r ecord_t thedrr
145 *ddepp = dde; 211 dmu_replay_record_t *drr = & hedrr;
146 ddt - >cur _ddt _si ze += sizeof (dedup_entry_t); 212 struct drr_begin *drrb = & hedrr.drr_u.drr_begin;
147 ddt - >ddt _count ++; 213 struct drr_end *drre = & hedrr.drr_u.drr_end;
148 } 214 struct drr_object *drro = & hedrr.drr_u.drr_object;
149 } 215 struct drr_wite *drrw = &hedrr.drr_u.drr_wite;
216 struct drr_spill *drrs = &hedrr.drr_u.drr_spill;
151 /* 217 FI LE *of p;
152 * Using the specified dedup table, do a | ookup for an entry with 218 int outfd;
153 * the checksumcs. |If found, return the block’s reference info 219 dmu_replay_record_t wbr_drr = {0};
154 * in *dr. Oherwise, insert a newentry in the dedup table, using 220 struct drr_wite_byref *wbr_drrr = &wbr_drr.drr_u.drr_wite_byref;
155 * the reference infornation specified by *dr 221 dedup_t abl e_t ddt;
156 * 222 zi o_cksumt stream cksum
157 * return value: true - entry was found 223 uint64_t physmem = sysconf (_SC_PHYS_PAGES) * sysconf (_SC PAGESI ZE) ;
158 */ false - entry was not found 224 ui nt 64_t nunbuckets;
159 *
160 static bool ean_t 226 ddt . max_ddt _si ze =
161 ddt_update(libzfs_handle_t *hdl, dedup_table_t *ddt, zio_cksumt *cs, 227 MAX((physmem * MAX_DDT_PHYSMEM PERCENT) / 100,
162 uint64_t prop, dataref_t *dr) 228 SMALLEST POSSI BLE_MAX_DDT_MB<<20) ;
163 {
164 ui nt 32_t hashcode; 230 nunbuckets = ddt. max_ddt _si ze/ (si zeof (dedup_entry_t));
165 dedup_entry_t **ddepp;
232 /*
167 hashcode = BF64_CET(cs->zc_word[0], O, ddt->nunmhashbits); 233 * nunbuckets nust be a power of 2. |Increase nunber to
234 * a power of 2 if necessary.
169 for (ddepp = &(ddt->dedup_hash_array[hashcode]); *ddepp != NULL; 235 *
170 ddepp = &((*ddepp)->dde_next)) { 236 if (!1SP2(nunbuckets))
171 1 f (ZI O CHECKSUM EQUAL(((*ddepp) - >dde_chksum), *cs) && 237 nunbuckets = 1 << hi gh_order_bit (nunbuckets);
172 (*ddepp) - >dde_prop == prop)
173 *dr = (*ddepp) - >dde_ref; 239 ddt . dedup_hash_array = call oc(nunbuckets, si zeof (dedup_entry_t *));
174 return (B_TRUE); 240 ddt . ddecache = unem cache_create("dde", sizeof (dedup_entry_t)
175 } 241 NULL, NULL, NULL, NULL, NULL, 0);
176 } 242 ddt.cur_ddt_size = numbuckets * sizeof (dedup_entry_t *);
177 ddt _hash_append(hdl, ddt, ddepp, cs, prop, dr); 243 ddt.nunhashblts = h| gh_order _bi t (nunbuckets) - 1;
178 return (B_FALSE); 244 ddt.ddt_ful | = B_FALSE
179 }
246 /* Initialize the wite-by-reference block. */
181 static int 247 wbr _drr.drr_type = DRR VWRI TE_BYREF;
182 cksum and_write(const void *buf, uint64_t len, zio_cksumt *zc, int outfd) 248 wbr _drr.drr_payl oadl en = 0;
183 {
184 fletcher_4 increnmental _native(buf, len, zc); 250 outfd = dda->out putfd;
185 return (wite(outfd, buf, len)); 251 of p = fdopen(dda->i nputfd, "r");
186 } 252 whil e (ssread(drr, sizeof (dmu_| repl ay_record_t), ofp) !'=0) {
188 /* 254 switch (drr—>drr _type) {
189 * This function is started in a separate thread when the dedup option 255 case DRR_BEG
190 * has been requested. The main send thread determines the list of 256 {
191 * snapshots to be included in the send stream and nakes the ioctl calls 257 int fflags;

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

258

260
261
262
263
264

266
267
268
269
270
271

273
274
275
276
277
278
279
280
281
282
283
284
285

287
288
289
290
291
292
293
294
295
296
297

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

316
317
318
319
320
321
322
323

ZlI O_SET_CHECKSUM &st ream cksum 0, 0, 0, 0);

/* set the DEDUP feature flag for this stream*/
fflags = DMJ_CGET_FEATUREFLAGS(drr b->drr_versi oni nfo);
fflags | = (DMU_BACKUP_FEATURE_DEDUP |
DMJ_BACKUP_FEATURE_DEDUPPROPS) ;
DMJ_SET_FEATUREFLAGS(drrb->drr_versioni nfo, fflags);

if (cksumand_wite(drr, sizeof (dnmu_replay_record_t),
&stream cksum outfd) == -1)
goto out;
i f (DMJU_CET_STREAM HDRTYPE(drrb->drr_versioninfo) ==
DMJ_COVPOUNDSTREAM && drr->drr_payl oadl en != 0) {
int sz = drr->drr_payl oadl en;

if (sz > 1<<20) {
free(buf);
buf = mali oc(sz);

}
(oi d) ssread(buf, sz, ofp);
if (ferror(stdln))
perror("fread");
if (cksumand_wite(buf, sz, &streamcksum
outfd) == -1)
goto out;

break;

}
case DRR_END:
{

/* use the recal cul ated checksum */
Z|I O_SET_CHECKSUM &dr r e->drr_checksum
stream cksum zc_word[0], stream cksum zc_word[1],
stream cksum zc_word[2], stream cksum zc_word[3]);
if ((mwite(outfd, drr,
sizeof (dmu_replay_record_t))) == -1)
goto out;
break;

}
case DRR _OBJECT:

if (cksumand_wite(drr, SI zeof (dmu_replay_record_t),
&stream cksum outfd) == -1)
goto out;
if (drro->drr_bonuslen > 0) {
(voi d) ssread(buf

P2ROUNDUP((ui nt 64_t)drro->drr_bonusl en, 8),

of p);
if (cksumand_write(buf,

P2ROUNDUP((ui nt 64 t)drro >drr_bonusl en, 8),
-1)

&stream cksum outfd) ==
goto out;

break;

}
case DRR _SPILL:

if (cksumand_wite(drr, sizeof (dnu_replay_record_t),
&stream cksum outfd) == -1)
goto out;
(void) ssread(buf, drrs->drr_length, ofp);
if (cksumand_wite(buf, drrs->drr_Ilength,
&stream cksum outfd) == -1)

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

324
325
326

328
329
330
331
332
333
334

336
337
338

340

342
343
344
345

347
348
349
350
351

353
354
355
356
357
358
359
360
361
362
363
364
365
366

368
369
370

372
373
374
375
376
377
378
379
380
381
382
383
384

386
387
388
389

goto out;
break;

}
case DRR_FREEOBJECTS:

if (cksumand_wite(drr, sizeof (dnu_replay_record_t),
&stream cksum outfd) == -1)
goto out;
br eak;

}
case DRR WRI TE:
! dat aref _t dat ar ef ;
(void) ssread(buf, drrw >drr_|length, ofp);

/*

* Use the existing checksumif it’s dedup-capable,
* el se calculate a SHA256 checksum for it.

*/

if (ZI O_CHECKSUM EQUAL(drrw >drr_key. ddk_cksum
zero_cksunm ||
! DRR_| S_DEDUP_CAPABLE(dr rw>drr _checksunf | ags)) {
SHA256_CTX ctx;
zi o_cksum t tn'psha256;

SHA2561 ni t (&ct x) ;
SHA256Updat e(&ct x, buf, drrw >drr_I| ength);
SHA256FI nal (& npsha256, &ctx);
drrw>drr_key. ddk_cksum zc Word[O]
BE_64(t npsha256. zc_word[0]) ;
drrw >drr_key. ddk_cksum zc word[l] =
BE_64(t npsha256. zc_word[1]) ;
drrw>drr_key. ddk_cksum zc Word[2]
BE_64(t npsha256. zc_word[2]) ;
drrw >drr_key. ddk_cksum zc word[3] =
BE_64(t npsha256. zc word[3]);
drrw>drr_checksuntype = ZI O_ CHECKSUM SHA256;
drrw>drr_checksunflags = DRR_CHECKSUM DEDUP,

}

dataref.ref_guid = drrw >drr_togui d;
dat aref . ref _obj ect drrw >drr_obj ect;
dat aref . ref _of f set drrw>drr_of f set;

i f (ddt_updat e(dda- >dedup_hdl, &ddt,
&drrw >drr _key. ddk_cksum drrw >drr_key. ddk_prop,
&dataref)) {
/* block already present in stream*/
wbr _drrr->drr_object = drrw >drr_obj ect;
wbr _drrr->drr_of fset drrw >drr_of f set;
wbr _drrr->drr_l ength drrw >drr_| ength;
wbr _drrr->drr_toguid drrw >drr_t ogui d;
wbr _drrr->drr_refguid = dataref.ref_guid;
wbr_drrr->drr_refobject =
dat aref . ref _obj ect;
wor _drrr->drr_refoffset
“dataref.ref_offset;

wbr _drrr->drr_checksuntype =
drrw >drr_checksunt ype;

wbr _drrr->drr_checksunflags =
drrw >drr_checksunt ype;

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 7 new usr/src/lib/libzfs/comon/libzfs_sendrecv.c
390 wbr _drrr->drr_key. ddk_cksum = 456 return (-1);
391 drrw >drr_key. ddk_cksum 457 el se
392 wbr _drrr->drr_key. ddk_prop = 458 return (0);
393 drrw>drr_key. ddk_prop; 459 }
395 if (cksumand_wite(&br_drr, 461 /*
396 sizeof (dnu_replay_record_t), &stream cksum 462 * Gven the GUI D of a snapshot, find its containing fil esystem and
397 outfd) == -1) 463 * (optionally) name.
398 goto out; 464 */
399 } else { 465 static nvlist_t *
400 /* bl ock not previously seen */ 466 fsavl _find(avl _tree_t *avl, uint64_t snapguid, char **snapnane)
401 if (cksumand_wite(drr, 467 {
402 si zeof (dmu_replay_record_t), &streamcksum 468 fsavl _node_t fn_find;
403 outfd) == -1) 469 fsavl _node_t *fn;
404 goto out;
405 if (cksumand_write(buf, 471 fn_find. fn_guid = snapgui d;
406 drrw>drr_| ength,
407 &stream cksum outfd) == -1) 473 fn = avl _find(avl, & n_find, NULL);
408 goto out; 474 if (fn) {
409 } 475 if (snapnane)
410 br eak; 476 *snapnanme = fn->fn_snapnang;
411 } 477 return (fn->fn_nvfs);
478 }
413 case DRR _FREE: 479 return (NULL);
414 { 480 }
415 if (cksumand_wite(drr, sizeof (dnmu_replay_record_t),
416 &stream cksum outfd) == -1) 482 static void
417 goto out; 483 fsavl _destroy(avl _tree_t *avl)
418 br eak; 484 {
419 } 485 fsavl _node_t *fn;
486 voi d *cooki e;
421 defaul t:
422 (void) printf("INVALID record type Ox%\n", 488 if (avl == NULL)
423 drr->drr_type); 489 return;
424 /* shoul d never happen, so assert */
425 assert (B_FALSE); 491 cooki e = NULL;
426 } 492 while ((fn = avl _destroy_nodes(avl, &cookie)) != NULL)
427 } 493 free(fn);
428 out: 494 avl _destroy(avl);
429 umem cache_dest roy(ddt. ddecache); 495 free(avl);
430 free(ddt.dedup_hash_array); 496 }
431 free(buf);
432 (void) fclose(ofp); 498 [*
499 * Gven an nvlist, produce an avl tree of snapshots, ordered by guid
434 return (NULL); 500 */
435 } 501 static avl _tree_t *
502 fsavl _create(nvlist_t *fss)
437 | * 503 {
438 * Routines for dealing with the AVL tree of fs-nvlists 504 avl _tree_t *fsavl;
439 */ 505 nvpair_t *fsel em = NULL;
440 typedef struct fsavl_node {
441 avl _node_t fn_node; 507 if ((fsavl = malloc(sizeof (avl_tree_t))) == NULL)
442 nvlist_t *fn_nvfs; 508 return (NULL);
443 char *fn_snapnane;
444 uint64_t fn_guid; 510 avl _create(fsavl, fsavl_conpare, sizeof (fsavl_node_t),
445 } fsavl _node_t; 511 of f set of (f savl _node_t, fn_node));
447 static int 513 while ((fselem = nvlist_next_nvpair(fss, fselem) !'= NULL) {
448 fsavl _conpare(const void *argl, const void *arg2) 514 nvlist_t *nvfs, *snaps;
449 { 515 nvpair_t *snapel em = NULL;
450 const fsavl_node_t *fnl = argl;
451 const fsavl_node_t *fn2 = arg2; 517 VERI FY(O0 == nvpair_value_nvlist(fselem &nvfs));
518 VERI FY(O0 == nvlist_l ookup_nvlist(nvfs, "snaps", &snaps));
453 if (fnl->fn_guid > fn2->fn_guid)
454 return (+1); 520 while ((snapel em =
455 else if (fnl->fn_guid < fn2->fn_guid) 521 nvlist_next_nvpair(snaps, snapelem)) != NULL) {

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

522
523

525
526
527
528
529
530
531
532

534
535
536
537
538
539
540
541
542
543

545
546

548
549
550
55118
552
553
554
555
556
557
558

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

}

/*
* Routi

*

t ypedef

fsavl _node_t *fn;
uint64_t guid;

VERI FY(0 == nvpair_val ue_ui nt 64(snapel em &guid));
if ((fn = malloc(sizeof (fsavl_node_t))) == NULL) {
fsavl _destroy(fsavl);
return (NULL);

}

fn->n_nvfs = nvfs;

fn->f n_snapnane = nvpai r _nanme(snapel enm;
fn->fn_guid = guid;

/*

* Note: if there are nultiple snaps with the
* same GQUID, we ignore all but one.

*

/
if (avl _find(fsavl, fn, NULL) == NULL)
avl _add(fsavl, fn);
el se
free(fn);

}

return (fsavl);

nes for dealing with the giant nvlist of fs-nvlists, etc.

struct send_data {

uint64_t parent_fromsnap_guid;
nvlist_t *parent_snaps;
nvlist_t *fss;

nvlist_t *snapprops;

const char *fronsnap;

const char *tosnap;

bool ean_t recursive;

/
The header nvlist is of the follow ng format:

"tosnap" -> string
"fromsnap" -> string (if increnental)
"fss" ->

id->{

“nane" -> string (full name; for debuggi ng)
"parentfromsnap” -> nunber (guid of fronsnap in parent)

"props" -> { nane -> value (only if set here) }
"snaps" -> { nane (lastnanme) -> nunber (guid) }
"snapprops" -> { nane (lastnane) -> { name -> value } }

"origin" -> nunber (guid) (if clone)
"sent" -> bool ean (not on-disk)
}

}

® ok % ok ko ok ok ko 3k ok ok kb k ok kb ¥ ok

}

*

582 } send_data_t;

584 static void send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv);

586 static int
587 send_iterate_snap(zfs_handle_t *zhp, void *arg)

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 10

588
589
590
591
592

594

596
597
598
599
600
601
602
603
604
605

607
608
609
610

612
613
614

616
617

619

621
622
623
624

626
627
628
629
630
631
632
633
634
635
636

638
639
640

642
643
644
645
646
647
648
649
650
651
652
653

{

}

send_data_t *sd = arg;

uint64_t guid = zhp->zfs_dnustats. dds_gui d;
char *snapnane;

nvlist_t *nv;

snapnane = strrchr(zhp->zfs_nane, ' @) +1;
VERI FY(0 == nvlist_add_ui nt 64(sd- >parent_snaps, snapnane, guid));
/*

* NB: if there is no fronsnap here (it’s a newWwy created fs in
* an increnental replication), we will substitute the tosnap.
*
if ((sd->fromsnap && strcnp(snapnane, sd->fronsnap) == 0) ||
(sd->parent _fronsnap_guid == 0 &% sd->tosnap &&
strcnp(snapnane, sd->tosnap) == 0)) {
sd- >parent _fromsnap_guid = guid;

}

VERI FY(0 == nvlist_alloc(&wv, NV_UNI QUE_NAME, 0));
send_iterate prop(zh nv);

VERI FY(0 == nvli st add nvl i st (sd- >snapprops, snapnanme, nv));
nvlist_free(nv);

zfs_cl ose(zhp);
return (0);

static void
send_i terate_prop(zfs_handle_t *zhp, nvlist_t *nv)
618 {

nvpair_t *el em = NULL;

while ((el em= nvlist_next_nvpair(zhp->zfs_props, elem) != NULL) {
char *propname = nvpalr_nane(el em;
zfs_prop_t prop = zfs_nanme_to_prop(propnane);
nvlist_t *propnv;
if (!zfs_prop_user(propnane)) {
/*
* Realistically, this should never happen. However,
* we want the ability to add DSL properties without
* needing to nmake inconpatible version changes. W
* need to ignore unknown properties to allow ol der
* software to still send datasets containing these
* properties, with the unknown properties elided.
*/
if (prop == ZPROP_I NVAL)
continue;

if (zfs_prop_readonly(prop))

conti nue;
}

veri fy(nvpal r_value_nvlist(elem &propnv) == 0);

if (prop == ZFS PROP_QUOTA || prop == ZFS_PROP_ RESERVATI ON |

prop == ZFS_PROP_REFQUOTA | |
prop == ZFS_PROP_REFRESERVATI ON) {

char *source;

ui nt64_t val ue;

verify(nvli st i ookup_ui nt 64(propnv,

ZPROP_VALUE, &val ue) == 0);
if (zhp->zfs_type == ZFS_TYPE SNAPSHOT)
cont i nue;
/*
* May have no source before SPA VERSI ON RECVD PROPS,

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 11 new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 12

654 * but is still nodifiable. 720 VERI FY(0 == nvlist_add_nvlist(nvfs, "props", nv));
655 */ 721 nvlist_free(nv);
656 if (nvlist_lookup_string(propnv,
657 ZPROP_SOURCE, ~&source) == 0) { 723 /* iterate over snaps, and set sd->parent_fronsnap_guid */
658 if ((strcnp(source, zhp->zfs_nane) != 0) && 724 sd- >parent _fronmsnap_guid = 0;
659 (strcmp(source, 725 VERI FY(0 == nvlist_alloc(&sd->parent_snaps, NV_UN QUE_NAME, 0));
660 ZPROP_SOURCE_VAL_RECVD) != 0)) 726 VERI FY(0 == nvlist_al | oc(&sd- >snapprops, NV_UNTQUE NANE, 0));
661 conti nue; 727 (void) zfs_iter_snapshots(zhp, send_iterate_snap, sd);
662 } 728 VERI FY(0 == nvlist_add_nvlist(nvfs, "snaps", sd- >parent_snaps));
663 } else { 729 VERI FY(0 == nvlist_add_nvlist(nvfs, "snapprops", sd->snapprops));
664 char *source; 730 nvlist_free(sd->parent_snaps);
665 if (nvlist_lookup_string(propnv, 731 nvlist_free(sd->snapprops);
666 ZPROP_SOURCE, &source) != 0)
667 conti nue; 733 /* add this fs to nvlist */
668 if ((strcnp(source, zhp->zfs_nane) != 0) && 734 (void) snprintf(guidstring, sizeof (guidstring),
669 (strcnp(source, ZPROP_SOURCE_VAL_RECVD) != 0)) 735 "0x% | x", (longlong_t)guid);
670 conti nue; 736 VERI FY(0 == nvlist_add_nvli st (sd >fss, guidstring, nvfs));
671 } 737 nvlist_free(nvfs);
673 if (zfs_prop_user(propnane) || 739 /* iterate over children */
674 zfs pr op_get _type(prop) == PROP_TYPE_STRING { 740 if (sd->recursive)
675 char *val ue; 741 rv = zfs_iter_fil esystens(zhp, send_iterate_fs, sd);
676 verify(nvlist_|ookup_stri ng(pr opnv,
677 ZPROP_ VALUE &val ue) == 0); 743 sd->parent _fronsnap_guid = parent _fronsnap_gui d_save;
678 VERI FY(O0 == nvlist_add_stri ng(nv propnane, value));
679 } else { 745 zfs_cl ose(zhp);
680 ui nt64_t val ue; 746 return (rv);
681 verify(nvlist i ookup_ui nt 64(propnv, 747 }
682 ZPROP_VALUE, &value) == 0);
683 VERI FY(O0 == nvlist_add_ui nt64(nv, propnane, value)); 749 static int
684 } 750 gather_nvlist(libzfs_handle_t *hdl, const char *fsname, const char *fromsnap,
685 } 751 const char *tosnap, boolean_t recursive, nvlist_t **nvlp, avl_tree_t **avlp)
686 } 752 {
753 zfs_handl e_t *zhp;
688 /* 754 send_data_t sd = { 0 };
689 * recursively generate nvlists describing datasets. See comrent 755 int error;
690 * for the data structure send_data_t above for description of contents
691 * of the nvlist. 757 zhp = zfs_open(hdl, fsnanme, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
692 */ 758 if (zhp == NULL)
693 static int 759 return (EZFS_BADTYPE);
694 send_iterate_fs(zfs_handle_t *zhp, void *arg)
695 { 761 VERI FY(0 == nvlist_alloc(&sd.fss, NV_UNI QUE _NAME, 0));
696 send_data_t *sd = arg; 762 sd. fromsnap = fronsnap;
697 nvlist_t *nvfs, *nv; 763 sd.tosnap = tosnap;
698 int rv = 0; 764 sd. recursive = recursive;
699 uint64_t parent_fromsnap_gui d_save = sd->parent_fronsnap_gui d;
700 uint64_t guid = zhp->zfs_dnustats. dds_gui d; 766 if ((error = send_iterate_fs(zhp, &sd)) !'= 0) {
701 char quidstring[64]; 767 nvlist_free(sd.fss);
768 if (avlip !'= NULL)
703 VERI FY(0 == nvlist_alloc(&vfs, NV_UNI QUE_NAME, 0)); 769 *avl p = NULL;
704 VERI FY(0 nvlist_add_string(nvfs, "nane", zhp->zfs_nane)); 770 *nvlp = NULL;
705 VERI FY(0 == nvlist_add_ui nt64(nvfs, "parentfronmsnap”, 771 return (error);
706 sd- >parent _fronsnap_gui d)); 772 }
708 if (zhp->zfs_dnustats.dds_origin[0]) { 774 if (avlp !'= NULL && (*avlp = fsavl _create(sd.fss)) == NULL) {
709 zfs_handle_t *origin = zfs_open(zhp->zfs_hdl, 775 nvlist_free(sd.fss);
710 zhp->zfs_dnustats. dds_origin, ZFS TYPE SNAPSHOT) 776 *nvlp = NULL;
711 if (origin == NULL) 777 return (EZFS_NOMVEM ;
712 return (-1); 778 }
713 VERI FY(0 == nvlist_add_uint64(nvfs, "origin",
714 origin- >zfs _dnust at's. dds_gui d)) 780 *nvlp = sd.fss;
715 } 781 return (0);
782 }
717 /* iterate _over props */
718 VERI FY(0 == nvlist_alloc(&v, NV_UNI QUE NANME, 0)); 784 | *

719 send_iterate_prop(zhp, nv); 785 * Routines specific to "zfs send"

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

786 */

787 typedef struct send_dunp_data {

788 /* these are all just the short snapnane (the part after
789 const char *fronsnap;

790 const char *tosnap;

791 char prevsnap[ZFS_VMAXNAMELEN ;

792 uint64_t prevsnap_obj;

793 bool ean_t seenfrom seento, replicate, doall, fronorigin;
794 bool ean_t verbose, dryrun, parsable, progress;
795 int outfd;

796 bool ean_t err;

797 nvlist_t *fss;

798 nvlist_t *snaphol ds;

799 #endif /* ! codereview */

800 avl _tree_t *fsavl;

801 snapfilter_cb_t *filter_cb;

802 void *filter_cb_arg;

803 nvlist_t *debugnv;

804 char hol dt ag[ZFS_MAXNAMELEN ;

805 int cleanup_fd;

806 uint64_t size;

807 } send_dunp_data_t;

809 static int
810 estimate_ioctl (zfs_handle_t *zhp, uint64_t fronmsnap_obj,

811 bool ean_t fronorigin, uint64_t *sizep)

812 {

813 zfs_cmd_t zc = { 0 };

814 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

816 assert (zhp->zfs type == ZFS_TYPE_SNAPSHOQT) ;

817 assert(fromsnap_obj == 0 || !fronorigin);

819 (void) strlcpy(zc.zc_nanme, zhp->zfs_nanme, sizeof (zc.zc_nane));
820 zc.zc_obj = fronorigin;

821 zc.zc_sendobj = zfs_prop_get _int(zhp, ZFS_PROP_OBJSETID);

822 zc.zc_fronob] = frorrsnap obj;

823 zc.zc_guid = /* estimate flag */

825 if (zfs_ioctl(zhp->zfs_hdl, ZFS | OC SEND, &zc) != 0) {

826 char errbuf[1024];

827 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
828 "war ni ng: cannot estimate space for '9%’'"),

830 switch (errno) {

831 case EXDEV:

832 zfs _error _aux(hdl, dgettext(TEXT_DOVAIN,

833 "not an earlier snapshot fromthe sanme fs
834 return (zfs_error(hdl, EZFS_CROSSTARCET, errb
836 case ENOCENT:

837 if (zfs_dataset_exists(hdl, zc.zc_nane,

838 ZFS_TYPE_SNAPSHOT))

839 zfs_error_aux(hdl, dgettext(TEXT_DOVAIN,
840 "incremental source (@®) does not
841 zc.zc_val ue);

842 }

843 return (zfs_error(hdl, EZFS_NCENT, errbuf));
845 case EDQUOT:

846 case EFBI G

847 case EI O

848 case ENOLI NK:

849 case ENGCSPC:

850 case ENOSTR:

851 case ENXI O

13

zhp->zf s_nane) ;

it’s not

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

852 case EPI PE:

853 case ERANGE:

854 case EFAULT:

855 case ERCFS:

856 zfs_error_aux(hdl, strerror(errno));

857 return (zfs_error(hdl, EZFS_| BADBACKUP errbuf));
859 defaul t:

860 return (zfs_standard_error(hdl, errno, errbuf));
861 }

862 1

864 *sizep = zc.zc_objset_type;

866 return (0);

867 }

869 /*

870 * Dunps a backup of the given snapshot (incremental fromfromsnap if
871 * NULL) to the file descriptor specified by outfd.

872 */

873 static int

874 dunp_ioctl (zfs_handle_t *zhp, const char *fromsnap, uint64_t fromsnap_obj,

875 (bool ean_t fronorigin, int outfd, nvlist_t *debugnv)

876

877 zfs_cmd_t zc = { 0 };

878 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

879 nvlist_t *thisdbg;

881 assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT) ;

882 assert(fromsnap_ob; == 0 || !fronorigin);

884 (void) strl cpy(zc zc_name, zhp->zfs_nane, sizeof (zc.zc_nane));
885 zc.zc_cookie = outfd;

886 zc.zc_obj = fronorigin;

887 zc.zc_sendobj = zfs_prop_get _int(zhp, ZFS_PROP_OBJSETID);

888 zc.zc_fromob] = fromsnap_obj;

890 VERI FY(0 == nvlist_alloc(& hisdbg, NV_UN QUE_NAME, 0));

891 if (fromsnap & fromsnap[0] !='\0") {

892 VERI FY(0 == nvlist_add_string(thisdbg,

893 "fromsnap", fronsnap));

894 }

896 if (zfs_ioctl(zhp->zfs_hdl, ZFS_ | OC SEND, &zc) != 0) {

897 char errbuf[1024];

898 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
899 "war ni ng: cannot send '%’"), zhp->zfs_nane);

901 VERI FY(0 == nvlist_add_ui nt 64(thisdbg, "error", errno));
902 if (debugnv) {

903 VERI FY(0 == nvlist_add_nvli st (debugnv,

904 zhp->zfs_nane, thisdbg));

905 }

906 nvlist_free(thisdbg);

908 switch (errno) {

909 case EXDEV:

910 zfs _error _aux(hdl, dgettext(TEXT_DOVAIN,

911 "not an earlier snapshot fromthe sane fs"));
912 return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));
914 case ENCENT:

915 if (zfs_dataset_exists(hdl, zc.zc_nane,

916 ZFS_TYPE_SNAPSHOT))

917 zfs_error_aux(hdl,

dget t ext (TEXT_DOVAI N,

14

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

918
919
920
921

923
924
925
926
927
928
929
930
931
932
933
934
935

937
938
939
940

942
943
944

946
947

949

"incremental source (@®) does not exist"),
zc.zc_val ue);
}
return (zfs_error(hdl, EZFS_NCENT, errbuf));
case E :
case EFBI G
case EI O
case ENOLI NK:
case ENGOSPC:
case ENOSTR:
case ENXI O
case EPI PE:
case ERANGE:
case EFAULT:
case EROFS:
zfs_error_aux(hdl,
return (zfs_error(hdl,

strerror(errno));
EZFS_ BADBACKUP errbuf));

defaul t:

return (zfs_standard_error(hdl, errno, errbuf));
}

}

if (debugnv)
VERI FY(0 == nvlist_add_nvli st (debugnv,
nvlist_free(thisdbg);

zhp->zfs_nane,

return (0);
}

static void
gat her _hol ds(zfs_handl e_t *zhp, send_dunp_data_t *sdd)

static int
hol d_f or _send(zfs_handl e_t *zhp, send_dunp_data_t *sdd)
{

zfs_handl e_t
int error =0
char *thi ssnap;

*pzhp;

assert (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) ;

if (sdd->dryrun)
return (0);

zfs_send() only sets snapholds for sends that need them
zfs_send() only opens a cleanup_fd for sends that need it,
e.g. replication and doall.

S
-~

i f (sdd->snaphol ds == NULL)

return;
if (sdd->cleanup_fd == -1)
return (0);

fnvlist_add_string(sdd->snaphol ds, zhp->zfs_nane,
thissnap = strchr(zhp->zfs_nanme, '@) + 1;

*(thi ssnap - 1) ='\0";
pzhp = zfs open(zhp >zfs_hdl,
*(thissnap - 1) @;

/

sdd- >hol dt ag) ;

zhp->zfs_nanme, ZFS_TYPE_DATASET);

s K if the parent no |onger exists. The send code will

*

* ot

* handl e that error.
*/

f

(pzhp) {

15

t hi sdbg));

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

60
962 }

error = zfs_hol d(pzhp, thissnap, sdd->hol dtag,
B_FALSE, B TRUE, sdd->cl eanup_fd);
zfs_close(pzhp)
}

return (error);

__unchanged_portion_omtted_

1011 static int
1012 dunp_snapshot (zfs_handl e_t *zhp, void *arg)

1013 {
1014
1015
1016

1017
1018
1019
1020

1022

send_dunp_data_t *sdd = arg;
progress_arg_t pa ={ 0 };
pthread_t tid;

char *thissnap;

int err;

bool ean_t isfromsnap, istosnap, fronorigin;
bool ean_t exclude = B_FALSE;

err = 0;

1023 #endif /* | codereview */

1024
1025
1026

1028
1029
122
123
1030
1031
1032
126
127
128
129
130
1033
1034
132
1035

1037
1038
1039
1040

1042
1043
1044

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

1057
1058

thissnap = strchr(zhp->zfs_nanme, '@) + 1;
isfromsnap = (sdd->fronsnap != NULL &&
strcnp(sdd->fronmsnap, thissnap) == 0);

if (!sdd->seenfrom & i sfromsnap) {
gather hol ds(zhp, sdd);
err = hold_for send(zhp, sdd) ;
if (err == 0) {
sdd- >seenfrom = B_TRUE;
(voi d) strcpy(sdd->prevsnap, thissnap);
sdd- >prevsnap_obj = zfs_prop_get |nt(zhp ZFS_PROP_OBJSETI D) ;
sdd- >prevsnap_ob] = zfs_prop_get_int(zhp,
ZFS_PROP_OBJSETI D) ;
} else if (err == ENCENT) {
err = 0;

}

zfs_cl ose(zhp);
return (0);
return (err);

}
if (sdd->seento || !sdd->seenfron) {
zfs_cl ose(zhp);
return (0);
}
i stosnap = (strcnp(sdd->tosnap, thissnap) == 0);
if (istosnap)

sdd- >seento = B_TRUE;

if (!sdd->doall && !isfromsnap && !istosnap) {
if (sdd->replicate) {

char *snapnane;

nvlist_t *snapprops;

/*
* Filter out all internediate snapshots except origin
* snapshots needed to replicate clones.
*

/

nvlist_t *nvfs = fsavl _find(sdd->fsavl,
zhp->zfs_dnust ats. dds_gui d, &snapnane);

VERI FY(0 == nvlist_|l ookup_nvlist(nvfs,
"snapprops", &snapprops));

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 17

1059 VERI FY(0 == nvlist_| ookup_nvli st (snapprops,
1060 t hi ssnap, &snapprops));
1061 exclude = !'nvlist_exists(snapprops, "is_clone_origin");
1062 } else {
1063 exclude = B_TRUE;
1064 }
1065 }
1067 /*
1068 * |f afilter function exists, call it to determ ne whether
1069 * this snapshot will be sent.
1070 */
1071 if (exclude || (sdd->filter_cb !'= NULL &&
1072 sdd->filter_cb(zhp, sdd->filter_cb_arg) == B_FALSE)) {
1073 *
1074 * This snapshot is filtered out. Don't send it, and don’t
1075 * set prevsnap_obj, so it will be as if this snapshot didn't
1076 * exist, and the next accepted snapshot will be sent as
1077 * an increnental fromthe | ast accepted one, or as the
1078 * first (and full) snapshot in the case of a replication,
1079 * non-increnental send.
1080 */
1081 zfs_cl ose(zhp);
1082 return (0);
1083 }
1085 gat her _hol ds(zhp, sdd);
183 err = hold_for_send(zhp, sdd);
184 if (err) {
185 if (err == ENCENT)
186 err = 0;
187 zfs_cl ose(zhp);
188 return (err);
189 }
1086 fronorigin = sdd->prevsnap[0] == "\0" &&
1087 (sdd->fronorigin || sdd->replicate);
1089 if (sdd->verbose) {
1090 uint64_t size;
1091 err = estimate_ioctl(zhp, sdd->prevsnap_obj,
1092 fronorigin, &size);
1094 if (sdd->parsable) {
1095 if (sdd->prevsnap[0] !="'\0")
1096 (void) fprintf(stderr, "increnental\t%\t%",
1097 sdd- >prevsnap, zhp->zfs_nane);
1098 } else {
1099 (void) fprintf(stderr, "full\t%",
1100 zhp->zfs_nane) ;
1101 }
1102 } else {
1103 (void) fprintf(stderr, dgettext(TEXT_DOVAIN,
1104 "send from@s to %"),
1105 sdd- >prevsnap, zhp->zfs_nane);
1106 }
1107 if (err == 0) {
1108 if (sdd->parsable) {
1109 (void) fprintf(stderr, "\t%Ilu\n",
1110 (1l ongl ong_t)si ze);
1111 } else {
1112 char buf[16];
1113 zfs_ni cenun(si ze, buf, sizeof (buf));
1114 (void) fprintf(stderr, dgettext(TEXT_DOVAI N,
1115 " estimated size is %\n"), buf);

1116 }

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

1117 sdd- >si ze += si ze;
1118 } else {
1119 (void) fprintf(stderr, "\n");
1120 }
1121 }
1123 if (!sdd->dryrun) {
1124 /*
1125 * |f progress reporting is requested, spawn a new thread to
1126 * poll ZFS_| OC_SEND PROGRESS at a regular interval.
1127 */
1128 if (sdd->progress) {
1129 pa. pa_zhp = zhp;
1130 pa. pa_fd = sdd->outfd;
1131 pa. pa_par sabl e = sdd- >parsabl e;
1133 if (err = pthread_create(&tid, NULL,
1134 send_progress_thread, &pa)) {
1135 zfs_cl ose(zhp);
1136 return (err);
1137 }
1138 }
1140 err = dunp_ioctl (zhp, sdd->prevsnap, sdd->prevsnap_obj,
1141 fronorigin, sdd->outfd, sdd->debugnv);
1143 if (sdd->progress) {
1144 (void) pthread_cancel (tid);
1145 (void) pthread_join(tid, NULL);
1146 }
1147 1
1149 (void) strcpy(sdd->prevsnap, thissnap);
1150 sdd- >prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID);
1151 zfs_cl ose(zhp);
1152 return (err);
1153 }
__unchanged_portion_omtted_
1325 /*
1326 * Cenerate a send streamfor the dataset identified by the argunment zhp.
1327 *
1328 * The content of the send streamis the snapshot identified by
1329 * 'tosnap’. Increnmental streans are requested in two ways:
1330 * - fromthe snapshot identified by "fromsnap" (if non-null) or
1331 * - fromthe origin of the dataset identified by zhp, which nust
1332 * be a clone. In this case, "fronsnap" is null and "fronorigin"
1333 * is TRUE.
1334 *
1335 * The send streamis recursive (i.e. dunps a hierarchy of snapshots) and
1336 * uses a special header (with a hdrtype field of DMJ_COVPOUNDSTREAM
1337 * if "replicate" is set. |If "doall" is set, dunp all the internediate
1338 * snapshots. The DMJ_COVPOUNDSTREAM header is used in the "doall"
1339 * case too. If "props" is set, send properties.
1340 */
1341 int
1342 zfs_send(zfs_handl e_t *zhp, const char *fronsnap, const char *tosnap,
1343 sendflags_t *flags, int outfd, snapfilter_cb_t filter_func,
1344 void *cb_arg, nvlist_t **debugnvp)
1345 {
1346 char errbuf[1024];
1347 send_dunp_data_t sdd = { 0 };
1348 int err = 0;
1349 nvlist_t *fss = NULL;
1350 avl _tree_t *fsavl = NULL;
1351 static uint64_t hol dseq;

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

1352
1353

458
1354
1355
1356

1358
1359

1361
1362
1363
1364
1365

1367
1368
1369
1370
1371
1372
1373

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393

1395
1396
1397
1398
1399

1401
1402

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413

1415
1416

int spa_version;
pthread_t tid = 0;
pthread_t tid;

int pipefd[2];
dedup_arg_t dda = { 0 };
int featureflags = 0;

(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N
"cannot send '%’ "), zhp->zfs_nane);

if (fromsnap & fromsnap[0] == '\0")
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT DOVAI N,
"zero-length incremental source"));
return (zfs_error(zhp->zfs_hdl, EZFS_ NCENT errbuf));
}

if (zhp->zfs_type == ZFS_TYPE_FI LESYSTEM ({
uint64_t version;
version = zfs_pr op_get _int(zhp, ZFS PROP_VERSI ON);
if (version >= ZPL_VERSI ON_SA) {
featureflags | = DMJ_BACKUP_FEATURE_SA SPI LL;
}

}

if (flags->dedup && !flags->dryrun) {
featureflags | = (DMJ_BACKUP_FEATURE DEDUP |
DMJ_BACKUP_FEATURE DEDUPPROPS) ;
if (err = pipe(pipefd)) {
zfs_error_aux(zhp->zfs_hdl, strerror(errno));
return (zfs_error(zhp->zfs_hdl, EZFS_PI PEFAI LED
errbuf));

}

dda. outputfd = outfd;

dda.inputfd = pipefd[1];

dda. dedup hdl = zhp- >zfs hdl ;

if (err = pthread_ create(&tld NULL, cksunmer, &dda)) {
(voi d) close(pipefd[0]);
(void) close(pipefd[1]);
zfs_error_aux(zhp->zfs_hdl, strerror(errno));
return (zfs_error(zhp- Szfs. hdl,

EZFS_THREADCREATEFAI LED, errbuf))

}

if (flags->replicate || flags->doall || flags->props) {
dnu_replay_record_t drr = { 0 };
char *packbuf = NULL;
size_t buflen = 0;
zio_cksumt zc = { 0 };

if (flags->replicate || flags->props) {
nvlist_t *hdrnv;

VERI FY(O0 == nvlist_alloc(&drnv, NV_UNI QUE_NAME, 0))
if (fronsnap) {
VERI FY(0 == nvlist_add_string(hdrnv,
"fromsnap", fronsnap));

}
VERI FY(0 == nvlist_add_string(hdrnv, "tosnap", tosnap));
i

if (!flags- >rep||cate) Kt
VERI FY(0 == nvlist_add_bool ean(hdrnv,
"not_recursive"));

}

err = gather_nvlist(zhp->zfs_hdl, zhp->zfs_nane,
fronsnap, tosnap, flags->replicate, & ss, & savl);

19

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

531

532

533
1427
1428

536

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442

1444
1445
1446
1447
1448
1449
1450

559

560
1451
1452
1453

1455
1456
1457
1458
1459
1460

571

572
1461
1462
1463

1465
1466
1467

1469
1470
1471
1472

584
1473

if (err)
goto err_out;
VERI FY(O == nvlist_add_nvlist(hdrnv, "fss", fss));
err = nvlist_pack(hdrnv, &packbuf, &buflen,
NV_ENCODE_XDR, 0);
i f (debugnvp)
*debugnvp = hdrnv;
el se
nvlist_free(hdrnv);

{
fsavl _destroy(fsavl);
nvlist_free(fss);
goto stderr_out;

if (!flags->dryrun) {

/* wite first begin record */

drr.drr_type = DRR BEG N,

drr.drr_u.drr_begin.drr_magi c = DMJ_BACKUP_MAG C,

DMJ_SET_STREAM HDRTYPE(drr. drr_u. drr_begin.
drr_versi oni nfo, DMJ_COVPOUNDSTREAM) ;

DMJ_SET_FEATUREFLAGS(dr r.drr_u.drr_begin.
drr_versioninfo, featureflags);

(void) snprintf(drr.drr_u.drr_begin.drr_tonane,
si zeof (drr.drr_u.drr_begin.drr_tonane),
"Us@s", zhp->zfs_nane, tosnap);

drr.drr_payl oadl en = buflen;

err = cksumand_wite(&rr, sizeof (drr), &zc, outfd);

/* wite header nvlist */

if (err I'= -1 & packbuf != NULL) {
err = cksum and_write(packbuf, buflen, &zc,
outfd);
}
fr ee(packbuf)
if (e ==

fsavl _destroy(fsavl);
nvlist_free(fss);

err = errno;

goto stderr_out;

/* write end record */
bzero(&drr, sizeof (drr));
drr.drr_type = DRR_END;
drr.drr_u.drr_end. drr_checksum = zc;
err = wite(outfd, &drr, sizeof (drr));
if (err == -1) {

fsavl _destroy(fsavl);

nvlist_free(fss);

err = errno;

goto stderr_out;

err = 0;

}

/* dunp each stream */
sdd. fronsnap = fronsnap;
sdd. tosnap = tosnap;
if (tid!=0)
if (flags->dedup)
sdd. outfd = pipefd[0];

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 21

1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516

621
1517
1518
1519
1520

624

625
1521
1522
1523

Al525]
1526

1528
629
630

1529

1530

1531

1532

1533

1534

els

sdd.
sdd.
sdd.
sdd.
sdd.
sdd.
sdd.
sdd.
sdd.
sdd.
sdd.

if

*
*
*
*
*

i f

#endi f /* |

} el

#endi f /* |

i f
if

e
sdd. outfd = outfd;

replicate = flags->replicate;

doal | = flags->doall;

fronorigin = flags->fronorigin;

fss = fss;

fsavl = fsavl;

verbose = fl ags->verbose;

parsabl e = fl ags->parsabl e;
progress = flags->progress;
dryrun = flags->dryrun;

filter_cb = filter_func;
filter_cb_arg = cb_arg;
(debugnvp)

sdd. debugnv = *debugnvp;

Some flags require that we place user holds on the datasets that are
bei ng sent so they don’t get destroyed during the send. W can skip
this step if the pool is inported read-only since the datasets cannot
be destroyed.

(!'flags->dryrun && !zpool _get _prop_int(zfs_get_pool _handl e(zhp),
ZPOOL_PROP_READONLY, NULL) &&
zfs_spa_version(zhp, &spa_version) == 0 &&
spa_versi on >= SPA_VERSI ON USERREFS &&
(flags->doal | || fTags->replicate)) {
++hol dseq;
(voi d) snprl ntf (sdd. hol dt ag, sizeof (sdd.holdtag),
end-%d- % | u", getpi d(), (u | ongl ong_ t)hol dseq);
sdd. cl eanup_fd = open(ZFS EXCL)
if (sdd.cleanup_fd < 0) {
err = errno;
goto stderr_out;

}

sdd. snaphol ds
coderevi ew */
se {

sdd. cl eanup_fd = -1,

sdd. snaphol ds = NULL;
coderevi ew */

= fnvlist_alloc();

(flags->verbose || sdd.snapholds != NULL) {
(flags->verbose) {
/*

* Do a verbose no-op dry run to get all the verbose output
* or to gather snapshot hold s before generating any data,
* then do a non-verbose real run to generate the streans.
* before generating any data. Then do a non-verbose real
*/run to generate the streans.

*

sdd. dryrun = B_TRUE;
err = dunp_filesystens(zhp, &sdd);

if (err 1=0)
goto stderr_out;

if (fl ags->verbose) {
sdd. dryrun = fl ags- >dryrun
sdd. verbose = B_FALS
if (flags- >parsab| e) {
(void) fprintf(stderr, "size\t%Ilu\n",
(1 ongl ong_t) sdd. si ze);
} else {
char buf[16];

zf s_ni cenun(sdd. si ze, buf, sizeof (buf));

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

1535
1536
1537
1538

1540
1541
1542
1543
1544

1546
1547
1548

1550
1551
1552
1553

1555
1556
1557

1559
1560
1561

1563
1564
1565
1566

1568
1569
1570

1572
1573
1574
1575

641
1576

643
1577

1579
1580
1581
1582

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

(void) fprintf(stderr, dgettext(TEXT DOVAI N,
"total estimated size is %\n"), buf);

/* Ensure no snaps found is treated as an error. */
if (!sdd.seento) {

err = ENOCENT;

goto err_out;

/* Skip the second run if dryrun was requested. */
if (flags->dryrun)
goto err_out;

if (sdd.snapholds !'= NULL) {
err = zfs_hol d_nvl (zhp, sdd.cleanup_fd, sdd.snapholds);
if (err 1= 0)
goto stderr_out;

fnvlist_free(sdd. snaphol ds);
sdd. snaphol ds = NULL;
}

sdd. dryrun = B_FALSE;
sdd. verbose = B_FALSE;

}

/* 1 codereview */
err = dunp_fil esystens(zhp, &sdd);
fsavl _destroy(fsavl);
nvlist_free(fss);

/* Ensure no snaps found is treated as an error. */
if (err == 0 & !sdd. seento)
err = ENOENT;

if (tid!=0) {
if (err 1= 0)
(void) pthread_cancel (tid);
(void) pthread_join(tid, NULL);
if (flags->dedup) {

(void) close(pipefd[0]);

(void) pthread_join(tid, NULL);
}
if (sdd.cl eanup_fd I=-1) {

VERI FY(0 == cl ose(sdd cl eanup_fd));
) sdd. cl eanup_fd =

if (!flags->dryrun & (flags->replicate || flags->doall ||
flags->props)) {
/*

* wite final end record. NB: want to do this even if
* there was sone error, because it mght not be totally
* failed.
*/
dnu_replay_record_t drr = { 0 };
drr_drr_type = DRR_END;
if (wite(outfd, &drr, sizeof (drr)) == -1) {
return (zfs_ st andard_error (zhp->zfs_hdl,
errno, errbuf));

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 23

1599 return (err || sdd.err);
1601 stderr_out:
1602 err = zfs_standard_error(zhp->zfs_hdl, err, errbuf);
1603 err_out:
1604 fsavl _destroy(fsavl);
1605 nvlist_free(fss);
1606 fnvlist_free(sdd. snaphol ds);
1608 #endif /* ! codereview */
1609 if (sdd.cleanup_fd !=-1)
1610 VERI FY(0 == cl ose(sdd. cl eanup_fd));
1611 if (tid!=0) {
671 if (flags->dedup) {
1612 (void) pthread_cancel (tid);
1613 (void) pthread_join(tid, NULL);
1614 (void) close(pipefd0]);
1615
1616 return (err);
1617 }

__unchanged_portion_omtted_

new usr/src/lib/libzfs_core/common/libzfs_core.c 1

R R R R

17104 Tue Jun 11 08:49:42 2013
new usr/src/lib/libzfs_core/common/libzfs_core.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRR R
COONOUITAWNROW©O~NOUTSWN

23 * Copyright (c) 2012 by Del phix. Al rights reserved.
24 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
25 #endif /* | codereview */

*

/

26
28 /*
29 * LibZFS Core (lzc) is intended to replace nost functionality in |ibzfs.
30 * It has the followi ng characteristics:
31 *
32 * - Thread Safe. |ibzfs_core is accessible concurrently frommltiple
33 * threads. This is acconplished primrily by avoiding gl obal data
34 * (e.g. caching). Since it's thread saf e, there is no reason for a
35 * process to have nultiple |ibzfs "instances" Therefore, we store
36 * our few pieces of data (e.g. the file descri ptor) in global
37 * variables. The fd is reference-counted so that the |ibzfs_core
38 * library can be "initialized" nultiple times (e.g. by different
39 * consunmers within the sane process).
40 *
41 * - Committed Interface. The libzfs_core interface will be commtted,
42 * therefore consuners can conpile against it and be confident that
43 * their code will continue to work on future releases of this code.
44 * Currently, the interface is Evolving (not Conmitted), but we intend
45 * to commit to it once it is nore conplete and we determine that it
46 * neets the needs of all consumers.
47 *
48 * - Programatic Error Handling. |ibzfs_core comrunicates errors with
49 * defined error nunbers, and doesn't print anything to stdout/stderr.
50 *
51 * - Thin Layer. libzfs_core is a thin layer, marshaling argunments
52 * to/fromthe kernel ioctls. There is generally a 1:1 correspondence
53 * between libzfs_core functions and ioctls to /dev/zfs.
54 *
55 * - Clear Atomicity. Because |libzfs_core functions are generally 1:1
56 * with kernel ioctls, and kernel ioctls are general atomc, each
57 * libzfs_core function is atomic. For exanple, creating mul ti ple

*

*

snapshots with a single call to | zc_snapshot() is atomc -- it
can’t fail with only sone of the requested snapshots created, even

new usr/src/lib/libzfs_core/common/libzfs_core.c

in the event of power |oss or system crash.

- Continued |ibzfs Support. Some higher-level operations (e.g.
support for "zfs send -R') are too conplicated to fit the scope of
l'i bzfs_core. This functionality will continue to live in |ibzfs.
Wiere appropriate, |ibzfs will use the underlying atonic operations
of libzfs_core. For exanple, libzfs nay inplenment "zfs send -R |

zfs receive" by using individual "send one snapshot", renane,

destroy, and "receive one snapshot" operations in |ibzfs_core.

/ sbin/zfs and /zbin/zpool will link wth both |ibzfs and

l'i bzfs_core. Oher consunmers should aimto use only |ibzfs_core,
; since that will be the supported, stable interface going forwards.

I N

#i ncl ude <libzfs_core. h>
#i ncl ude <ctype. h>

#i ncl ude <uni std. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <errno. h>
#include <fcntl.h>

#i ncl ude <pt hread. h>

#i ncl ude <sys/nvpair. h>
#i ncl ude <sys/param h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

86 #include <sys/zfs_ioctl.h>

88 static int g_fd;

89 static pthread_nutex_t g_lock = PTHREAD_MUTEX_| NI Tl ALI ZER;
90 static Int g_refcount;

92 int

93 libzfs_core_init(void)

94 {

95 (void) pthread_mutex_| ock(&g_| ock);
96 if (g_refcount == 0

97 g_fd = open("/dev/zfs", O RDWR);
98 if (g_fd < 0)

99 (voi d) pthread_nut ex_unl ock(&g_l ock);
100 return (errno);

101 }

102

103 g_ref count ++;

104 (voi d) pthread_nut ex_unl ock(&g_l ock);
105 return (0);

106 }

108 voi d

109 |ibzfs_core_fini(void)

110

111 (voi d) pthread_nutex_| ock(&g_l ock);
112 ASSERT3S(g_refcount, >, 0);

113 g_refcount--;

114 if (g_ refcount == 0)

115 (voi d) cI ose(g_fd);

116 (voi d) pthread_mutex_unl ock(&g I ock) ;
117 }

119 static int

120 | zc_ioctl (zfs_ioc_t ioc, const char *nane,
121 nvlist_t *source, nvlist_t **resultp)

122 {

123 zfs_cmd_t zc = { 0 };

124 int error = 0;

125 char *packed;

new usr/src/lib/libzfs_core/common/libzfs_core.c

126 size_t size;

128 ASSERT3S(g_refcount, >, 0);

130 (void) strlcpy(zc.zc_narme, nane, sizeof (zc.zc_nane));
132 packed = fnvlist pack(source &si ze);

133 zc.zc_nvlist_src (ui nt64 t)(w ntptr_t) packed;

134 zc.zc_nvlist_src_size = size

136 if (resultp !'= NULL) {

137 *resul tp = NULL;

138 zc.zc_nvlist_dst_size = MAX(size * 2, 128 * 1024);
139 zc.zc_nvlist_dst = (uint64_t)(uintptr_t)

140 mal | oc(zc. zc_nvlist_dst_si ze);

141 if (zc.zc_nvlist_dst == NULL) {

142 error = ENOVEM

143 goto out;

144 }

145 }

147 while (ioctl(g_fd, ioc, &c) != 0)

148 if (errno == ENOVEM && resultp !'= NULL) {

149 free((void *)(uintptr_t)zc.zc_nvlist_dst);
150 zc. zc_nvlist_dst_size *= 2;

151 zc. zc_nvlist_dst -(U|nt64t)(U|ntptr _t)
152 mal | oc(zc. zc_nvlist_dst_size);

153 if (zc.zc_nvlist_dst == NULL) {

154 error = ENOVEM

155 goto out;

156

157 } else {

158 error = errno;

159 br eak;

160 }

161

162 if (zc.zc_nvlist_dst_filled) {

163 *resultp = fnvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst,
164 zc. zc_nvlist_dst_size);

165 }

167 out:

168 fnvlist_pack_free(packed, size);

169 free((void *)(uintptr_t)zc.zc_nvlist_dst);

170 return (error);

171 }

173 int

174 I{zc_cr eate(const char *fsnane, dnu_objset_type_t type, nvlist_t *props)
175

176 int error;

177 nvlist_t *args = fnvlist aIIoc()

178 fnvlist_add_int32(args, "type", type);

179 if (props !'= NULL)

180 fnvlist_add_nvlist(args, "props", props);

181 error = | zc_ioctl (ZFS_| OC_CREATE, fsnane, args, NULL)
182 nvli st_f ree(args);

183 return (error);

184 }

186 int

187 | zc_cl one(const char *fsnanme, const char *origin,

188 nvlist_t *props)

189 {

190 int error;

191 nvlist_t *args = fnvlist_alloc();

new usr/src/lib/libzfs_core/ common/libzfs_core.c

192
193
194

230

232
233
234
235

237
238

240
241

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

B A

o~

fnvlist_add_string(args, "origin", origin);
if (props != NULL)

fnvlist add nvlist(args, "props", props);
error = |l zc_ioctl (ZFS_|I OC_CLONE, fsnanme, args, NULL);

nvl i st_free(args);
return (error);

Creat es snapshots.

The

They nust all

The
are

The
The

The

keys in the snaps nvlist are the snapshots to be created.
be in the same pool.

props nvli st
support ed.

is properties to set. Currently only user
{ user:prop_nane -> string value }

properties

returned results nvlist will have an entry for each snapshot that failed.
value will be the (int32) error code.

return value will be 0 if all snapshots were created, otherwise it will

be the errno of a (unspecified) snapshot that fail ed.

_snapshot (nvlist_t *snaps,

nvlist_t *props, nvlist_t **errlist)
nvpair_t
nvlist_t
int error

char pool [MAXNAI\/ELEN]

*el em
*ar gs;

*errlist = NULL;

/* determ ne the pool nane */

el em = nvlist_next _nvpair(snaps,

if (elem == NULL)
return (0);

(void) strlcpy(pool,

pool [strcspn(pool ,

NULL) ;

nvpair_ nane(el en),
@)l =\0;

args = fnvlist_alloc();

si zeof (pool));

fnvlist_add_nvlist(args, "snaps", snaps);
if (props != NULL)
fnvlist_add_nvlist(args, "props", props);
error = |zc_ioctl (ZFS_| OC_SNAPSHOT, pool, args, errlist);

nvlist_free(args);

return (error);

Destroys snapshots.

The

They nust all

Snapshots that do not exist will

I f

" defer’

keys in the snaps nvlist are the snapshots to be destroyed.
be in the same pool.

be silently ignored.

is not set, and a snapshot has user holds or clones, the

destroy operation will fail and none of the snapshots will be
dest royed.
If "defer’ is set, and a snapshot has user holds or clones, it will be

mar ked for deferred destruction,

and will be destroyed when the |ast hold

or clone is renoved/ destroyed.

new usr/src/lib/libzfs_core/common/libzfs_core.c

258
259
260

*

* The return value will be ENCENT if none of the snapshots existed.

*

261 #endif /* ! codereview */

262
263
264
24
265
266
267
268
269
270
271 |
272 |
273 {
274
275
276
277

279
280
281
282
283
284

286
287
288
289

291
292

294
295 }

339 /
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

* The return value will be 0 if all snapshots were destroyed (or marked for
later destruction if 'defer’ is set) or didn't exist to begin with and

at | east one snapshot was destroyed.

later destruction if 'defer’ is set) or didn't exist to begin wth.

*
*
*
*
* Otherwise the return value will be the errno of a (unspecified) snapshot
* that failed, no snapshots will be destroyed, and the errlist wll have an
* entry for each snapshot that failed. The value in the errlist will be

* the (int32) error code.

*/

nt

zc_destroy_snaps(nvlist_t *snaps, boolean_t defer, nvlist_t **errlist)

nvpair_t *elem
nvlist_t *args;

int error;

char pool [MAXNAMVELEN] ;

/* determ ne the pool nanme */
el em = nvlist_next _nvpair(snaps, NULL);
if (el em== NULL)
return (0);
(void) strlcpy(pool, nvpair_nanme(el em, sizeof (pool));
pool [strcspn(pool, "/@)] = '\0";

args = fnvlist_alloc();
fnvlist_add_nvlist(args, "snaps", snaps);
if (defer)

fnvlist_add_bool ean(args, "defer");

error = |zc_ioctl(ZFS_| OC_DESTROY_SNAPS, pool, args, errlist);
nvlist_free(args);

return (error);
unchanged_portion_omtted_

Create "user holds" on snapshots.
t he snapshot can not be destroyed.
by | zc_destroy_snaps(defer=B_TRUE).)

If there is a hold on a snapshot,

The keys in the nvlist are snapshot nanes.
The snapshots nust all be in the same pool.
The value is the name of the hold (string type).

If cleanup_fd is not -1, it nmust be the result of open("/dev/zfs", O EXCL).

*
*
*
*
*
*
*
*
*
*
* In this case, when the cleanup_fd is closed (including on process

* termination), the holds will be released. If the systemis shut down
* uncleanly, the holds will be rel eased when the pool is next opened

* or inported.

*

*

*

*

*

*

*

*

*

*

Hol ds for snapshots which don't exist will be skipped and have an entry
added to errlist, but will not cause an overall failure, except in the

case that all hol ds where ski pped.

The return value will be ENCENT if none of the snapshots for the requested

hol ds exi sted.

The return value will be 0 if the nvl holds was enpty or all holds, for
snapshots that existed, were succesfully created and at |east one hold

(However, it can be marked for deletion

new usr/src/lib/libzfs_core/common/libzfs_core.c

363
364
365
366
367
368
369
115
116
117
118
119
370
371
372
373
374
375
376
377

379
380
381
382
383
384

386
387
388
389

391
392
393
394

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
156
157
158
159

*
*
*
*
*
*
*
*
*
*
*
*
*
n
z

[
|
{

® Ok ok ok Sk Rk O Sk O 3k b R b Sk ok ok ok Ok % b % bk ok 3k

was created.

Gt herwi se the return value will be the errno of a (unspecified) hold that
failed and no holds will be created.

In all cases the errlist will have an entry for each hold that failed
(nanme = snapshot), with its value being the error code (int32).

The return value will be O if all holds were created. Gtherw se the return
value will be the errno of a (unspecified) hold that failed, no holds will
be created, and the errlist will have an entry for each hold that

failed (nane = snapshot). The value in the errlist will be the error
code (int32).

/

t

c_hold(nvlist_t *holds, int cleanup_fd, nvlist_t **errlist)

char pool [MAXNAMVELEN] ;
nvlist_t *args;
nvpair_t *elem

int error;

/* determ ne the pool name */
el em = nvlist_next_nvpair(holds, NULL);
if (elem== NULL)
return (0);
(void) strlcpy(pool, nvpair_nanme(elem, sizeof (pool));
pool [strcspn(pool, "/@)] ="'\0";

args = fnvlist_alloc();
fnvlist_add_nvlist(args, "holds", holds);
if (cleanup_fd !'= -1)
fnvlist_add_int32(args, "cleanup_fd", cleanup_fd);

error = |lzc_ioctl (ZFS_ | OC_HOLD, pool, args, errlist);
nvlist_free(args);
return (error);

Rel ease "user hol ds" on snapshots. |If the snapshot has been nmarked for
deferred destroy (by |zc_destroy_snaps(defer=B TRUE)), it does not have
any clones, and all the user holds are renpved, then the snapshot will be
destroyed.

The keys in the nvlist are snapshot nanes.
The snapshots nust all be in the same pool.
The value is a nvlist whose keys are the holds to renove.

Hol ds which failed to rel ease because they didn't exist will have an entry
added to errlist, but will not cause an overall failure, except in the
case that all rel eases where skipped.

The return value will be ENCENT if none of the specified holds existed.

The return value will be O if the nvl holds was enpty or all holds that
exi sted, were successfully renoved and at |east one hold was renpved.

Gt herwi se the return value will be the errno of a (unspecified) hold that
failed to rel ease and no holds will be rel eased.

In all cases the errlist will
to rel ease.

The return value will be O if all holds were renoved.

O herwise the return value will be the errno of a (unspecified) rel ease
that failed, no holds will be released, and the errlist will have an
entry for each snapshot that has failed rel eases (nane = snapshot).

have an entry for each hold that failed to

new usr/src/lib/libzfs_core/common/libzfs_core.c

160 * The value in the errlist will be the error code (int32) of a failed rel ease.

420 */

421 int

422 1 zc_rel ease(nvlist_t *holds, nvlist_t **errlist)

423 {

424 char pool [MVAXNAMELEN ;

425 nvpair_t *elem

427 /* determ ne the pool nane */

428 el em = nvlist_next_nvpair(holds, NULL);

429 if (elem == NULL)

430 return (0);

431 (void) strlcpy(pool, nvpair_nanme(elem, sizeof (pool));
432 pool [strcspn(pool, "/@)] ="'\0";

434 return (lzc_ioctl(ZFS_| OC_RELEASE, pool, holds, errlist));
435 }

____unchanged_portion_onitted_

new usr

*ok ok ok ok ok Kk

/'src/uts/ common/ fs/zfs/dsl _destroy.c

R R R R

25808 Tue Jun 11 08:49:43 2013

new usr

3740 Poor ZFS send /

Submi tt

/'src/uts/ comon/fs/zfs/dsl _destroy.c
recei ve performance due to snapshot hold /
ed by: Steven Hartland <steven. hartland@ul tipl ay. co. uk>

rel ease processi

Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»

*kok ok ok ok k

1/*

Kk khkhkkhkkhkhkhkhkhkhkkkkkkkkkkhkk kX hkkkkhkkkhkkkkkk k%

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and |imtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END
/

* Copyright (c) 2013 by Del phix. Al
* Copyright (c) 2013 Steven Hartland. All
#endif /* | codereview */
*
/

NNRNNNNNRE R R R R R R R
OUIRWNROOONOUTAWNROW©O~NOUTSWN

* Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al
rights reserved.
rights reserved.

rights reserved.

28 #i
29 #i
30 #i
31 #i
32 #i
33 #i
34 #i
35 #i
36 #i
37 #i
38 #i
39 #i
40 #i
41 #i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

43 typedef

<sys/ zfs_context. h>
<sys/ dsl _userhol d. h>
<sys/ dsl _dat aset. h>
<sys/dsl _synct ask. h>
<sys/dmu_t x. h>
<sys/ dsl _pool . h>
<sys/dsl _dir.h>
<sys/dmu_traverse. h>
<sys/ dsl _scan. h>
<sys/ dmu_obj set . h>
<sys/ zap. h>

<sys/ zfeature. h>
<sys/zfs_ioctl.h>
<sys/ dsl _del eg. h>

struct dmu_snapshots_destroy_arg {
nvlist_t *dsda_snaps;

nvlist_t *dsda_successful _snaps;
bool ean_t dsda_defer;

nvlist_t *dsda_errlist;

48 } dmu_snapshots_destroy_arg_t;

50 /*

51 * ds nust be owned.
52 =/
53 static int

54 dsl _destroy_snapshot _check_i npl (dsl _dat aset _t *ds,

bool ean_t defer)

55)

56 if (!dsl_dataset_is_snapshot(ds))
57 return (SET_ERROR(EINVAL));
59 if (dsl_dataset_l ong_hel d(ds))

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

60

112

114
115
116
117
118

120
121
122
123
124
125

/*
* Only
* NOTE:
*/

return (SET_ERROR(EBUSY));

al l ow deferred destroy on pools that support it.
deferred destroy is only supported on snapshots.

if (defer) {

}
/

*

if (spa_version(ds->ds_dir->dd_pool ->dp_spa) <
SPA_VERSI ON_USERREFS)
return (SET_ERROR(ENOTSUP)) ;
return (0);

* If this snapshot has an el evated user reference count,
* we can’'t destroy it yet.

*

if (ds->ds_userrefs > 0

*
* Can't
S

return (SET_ERROR(EBUSY));

del ete a branch point.

if (ds->ds_phys->ds_numchildren > 1)

return (

}

return (SET_ERROR(EEXI ST));
0);

static int

dsl _destroy_snapshot _check(void *arg, dnu_tx_t *tx)
dmu_snapshots_destroy_arg_t *dsda = arg;
dsl _pool _t *dp = dnu_tx_pool (tx);

nvpal r_t

*pair;

int error =

0;

if (!dmu_tx_is_syncing(tx))
return (0);

for (pai
pair

r

dsl _i
error = dsl _dataset_hol d(dp,

| *

* |f the snapshot does not exist,

nvl i st_next_nvpair (dsda- >dsda_snaps, NULL);
NULL; pair = nvlist_next_nvpair (dsda- >dsda_snaps,
dat aset _t *ds;

nvpai r_nane(pair),
FTAG &ds);

silently ignore it

*/(it’s "al ready destroyed").

if (error == ENCENT)

conti nue;

if (error == 0)

}

error = dsl _destroy_snapshot _check_i npl (ds,
dsda- >dsda_defer);
dsl _dataset _rel e(ds, FTAQ;

if (error == 0)

{
fnvlist_add_bool ean(dsda- >dsda_successf ul _snaps,
nvpai r_name(pair));

} else {

fnvlist_add_int32(dsda->dsda_errlist,
nvpai r_nanme(pair), error);

pair)) {

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

126 }

127

129 pair = nvlist_next_nvpair(dsda->dsda_errlist, NULL);

130 i1f (pair !'= NULL)

131 return (fnvpair_value_int32(pair));

133 if (nvlist_enmpty(dsda->dsda_successful _snaps))

134 return (SET_ERROR(ENCENT));

136 #endif /* ! codereview */

137 return (0);

138 }

140 struct process_old_arg {

141 dsl _dat aset _t *ds;

142 dsl _dataset _t *ds_prev;

143 boolean_t after_branch_point;

144 zio_t *pio;

145 uint64_t used, conp, unconp;

146 };

148 static int

149 process_ol d_cb(void *arg, const blkptr_t *bp, dnmu_tx_t *tx)

150 {

151 struct process_old_arg *poa = arg;

152 dsl _pool _t *dp = poa->ds->ds_di r->dd_pool ;

154 if (bp->blk_birth <= poa->ds->ds_phys->ds_prev_snap_txg) {
155 dsl _deadl i st _i nsert (&poa- >ds- >ds_deadl i st, bp, tx);
156 if (poa->ds_prev && ! poa->after_branch_point &&
157 bp->bl k_birth >

158 poa- >ds_pr ev- >ds_phys->ds_prev_snap_t xg) {
159 poa- >ds_pr ev- >ds_phys- >ds_uni que_bytes +=
160 bp_get _dsi ze_sync(dp->dp_spa, bp);
161

162 } else {

163 poa->used += bp_get_dsi ze_sync(dp->dp_spa, bp);
164 poa- >conp += BP_CET_PSI ZE(bp) ;

165 poa->unconp += BP_GET_UCSI ZE(b)

166 dsl _free_sync(poa->pi 0, dp, tx->tx_txg, bp);
167 }

168 return (0);

169 }

171 static void

172 process_ol d_deadl i st (dsl _dataset _t *ds, dsl_dataset_t *ds_prev,
173 dsl _dataset _t *ds_next, bool ean_t after_branch_point, dmu_tx_t *tx)
174 {

175 struct process_old_arg poa = { 0 };

176 dsl _pool _t *dp = ds->ds_dir->dd pool

177 obj set _t “*nmos = dp->dp_met a_obj set ;

178 uint64_t deadlist_obj;

180 ASSERT(ds- >ds_deadl i st.dl _ol dfnt);

181 ASSERT(ds_next - >ds_deadl i st.dl _ol dfnt);

183 poa.ds = ds;

184 poa.ds_prev = ds_prev;

185 poa. after _branch_point = after_branch_point;

186 poa. pi 0 = zi o_root (dp->dp_spa, NULL, NULL, Zl O FLAG MUSTSUCCEED):
187 VERI FYO(bpobj _i t er at e(&ds_next - >ds deadl i st.dl _bpobj,
188 process_ ol d_cb, &poa, tx));

189 VERI FYO(zi 0_wai t (poa. pi 0));

190 ASSERT3U(poa. used, ==, ds- >ds_phys->ds_uni que_bytes);

new usr/src/uts/comron/fs/zfs/dsl _destroy.c 4
192 /* change snapused */

193 dsl _dir_di duse_space(ds->ds_dir, DD USED SNAP,

194 - poa. used, -poa.conp, -poa.unconp, tx);

196 /* swap next’'s deadlist to our deadlist */

197 dsl _deadl i st _cl ose(&ds->ds_deadl i st);

198 dsl _deadl i st cI ose(&ds_next - >ds deadi i st);

199 deadl i st _obj = ds->ds_phys- >ds _deadl i st Obj;

200 ds- >ds_phys->ds_deadl| i st _obj = ds next—>ds _phys->ds_deadl i st _obj ;

201 ds_next->ds_phys->ds_deadl i st _obj = deadlist_obj;

202 dsl_deadl i st_open(&ds- >ds_dead| i st, nos, ds->ds_phys->ds_deadlist_obj);
203 dsl| _deadl| i st _open(&ds_next - >ds deadllst nos,

204 “ds_next->ds_phys->ds_deadl i st _obj);

205 }

207 static void

208 dsl
209 {
210
211
212

214
215
216
217
218
219
220

222
223
224
225

227
228
229
230
231
232
233
234
235
236
237 }

239 void
240 dsl
241 {
242
243
244
245
246
247

249
250
251

253
254
255
256
257

_dataset _renpve_cl ones_key(dsl _dataset_t *ds, uint64_t mntxg, dmu_tx_t *tx)

obj set _t *npbs = ds->ds_dir->dd_pool - >dp_net a_obj set ;
zap_cursor_t zc;
zap_attribute_t za;

/*
* If it is the old version, dd_clones doesn’t exist so we can't
* find the clones, but dsl_deadlist_renpve_key() is a no-op so it
* doesn’t matter.
=
if (ds->ds_dir->dd_phys->dd_cl ones == 0)

return;

for (zap_cursor_init(&zc, nos, ds- >ds di r->dd_phys->dd_cl ones) ;
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
dsl _dataset _t *cl one;

VERI FYO(ds| _dat aset _hol d_obj (ds->ds_di r->dd_pool ,
za.za_first_integer, FTAG &clone));
if (clone->ds_dir->dd orlgi n_txg > mntxg) {
dsl _deadl i st_renove_key(&cl one->ds_deadl i st,
m nt xg, tx);
dsl _dat aset _renove_cl ones_key(cl one, m ntxg, tx);

}
dsl _dat aset _rel e(cl one, FTAQ;

}
zap_cursor _fini (&zc);

_destroy_snapshot _sync_i npl (dsl _dataset _t *ds, bool ean_t defer, dmu_tx_t *tx)

int err;

int after_branch_point = FALSE;

dsl _pool _t *dp = ds->ds_dir->dd_pool ;
obj set _t *npbs = dp->dp_neta_obj set;
dsl _dataset _t *ds_prev = NULL;
uint64_t obj;

ASSERT(RRW WRI TE_HELD(&dp- >dp_confi g_rw ock));
ASSERT3U(ds- >ds phys >ds_bp. bl k_birth, <=, tx->tx_txg);
ASSERT(r ef count _i s_zer o(&ls- >ds Ionghol ds))

if (defer &&

(ds->ds_userrefs > 0 || ds->ds_phys->ds_numchildren > 1))
ASSERT(spa_ver si on(dp->dp_spa) >= SPA VERS|I ON_USERREFS) ;
drmu_buf _wi Il _dirty(ds->ds dbuf tx);
ds->ds_phys->ds_flags | = DS FLAG DEFER DESTROY;

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

258
259
260

276

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

294
295
296

298
299
300

302

304
305
306
307
308
309
310

312
313
314
315
316
317
318
319
320
321
322
323

spa_history_log_internal _ds(ds, "defer_destroy", tx, "");
return;

}
ASSERT3U(ds- >ds_phys->ds_num chil dren, <= 1);

/* We need to log before renoving it fromthe namespace. */
spa_history_l og_internal _ds(ds, "destroy", tx, "");

dsl _scan_ds_destroyed(ds, tx);
obj = ds->ds_object;

if (ds->ds_phys->ds_prev_snap_obj != 0) {
ASSERT3P(ds->ds_prev, ==, NULL);
VERI FYO(dsl| _dat aset _hol d_obj (dp,
ds->ds_phys- >ds_prev_snap_obj, FTAG &ds_prev));
after_branch_point =
(ds_prev->ds_phys->ds_next _snap_obj != obj);

dmu_buf _wi Il _dirty(ds_prev->ds_dbuf, tx);
if (after_branch_point &&
ds_prev->ds_phys->ds_next _clones_obj != 0) {
dsl _dat aset _renove_from next _cl ones(ds_prev, obj,
i f (ds->ds_phys->ds_next_snap_obj != 0) {
VERI FYO(zap_add_i nt (nos,
ds_prev->ds_phys->ds_next _cl ones_obj,
ds- >ds_phys->ds_next _snap_obj, tx));

}

1f (lafter_branch_point) {
ds_prev->ds_phys->ds_next _snap_obj =
ds- >ds_phys- >ds_next _snap_obj ;

}

dsl _dataset _t *ds_next;
ui nt64_t ol d_uni que;
uint64_t used = 0, conp = 0, unconp =

VERI FYO(ds| _dat aset _hol d_obj (dp,
ds- >ds_phys->ds_next _snap_obj, FTAG &ds_next));
ASSERT3U(ds_next - >ds_phys- >ds_prev_snap_obj, ==, obj);

ol d_uni que = ds_next->ds_phys->ds_uni que_byt es;

drmu_buf _wi Il _di rty(ds_next->ds_dbuf, tx);

ds_next - >ds_phys->ds_prev_snap_obj =
ds->ds_phys->ds_prev_snap_obj ;

ds_next - >ds_phys->ds_prev_snap_txg =
ds- >ds_phys->ds_prev_snap_t xg;

ASSERT3U(ds- >ds_phys->ds_prev_snap_txg, ==,
ds_prev ? ds_prev->ds_phys->ds_creati on _txg : 0);

if (ds_next->ds_deadlist.dl _oldfnt) {
process_ol d_deadl i st (ds, ds_prev, ds_next,
after_branch_point, tx);
} else {
/* Adjust prev’s unique space. */
if (ds_prev && !after_branch_point) {
dsl _deadl i st _space_range(&ds_next - >ds_deadl i st
ds_prev->ds_phys->ds_prev_snap_t xg,
ds- >ds_phys->ds_prev_snap_t xg,
&used, &conp, &unconp);
ds_prev->ds_phys->ds_uni que_bytes += used;

tx);

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

325
326
327
328
329
330

332
333
334
335
336
337

339
340
341
342
343
344
345
346

348
349
350

352
353

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

374
375
376
377
378
379
380

382
383
384
385
386
387
388
389

/* Adj ust snapused. */

dsl _deadl i st _space_range(&Js_next - >ds_deadl i st
ds->ds_phys->ds_prev_snap_t xg, U NT64_MAX,
&used, &conp, &unconp);

dsl _dir_diduse _space(ds- >ds dir, DD_USED_SNAP,
“-used, -conp, -unconp, tx);

/* Move blocks to be freed to pool’s free list. */

dsl _deadl i st _nove_bpobj (&ds_next - >ds_deadl i st
&dp->dp_free_bpobj, ds->ds_phys->ds_prev_: snap txg,
tx);

dsl _di r_di duse_space(t x->t x_pool ->dp_free_dir,
DD _USED HEAD, used, conp, unconp, tx);

/* Merge our deadlist into next’'s and free it. */
dsl _deadl i st _mer ge(&s_next - >ds_deadl i st,
ds- >ds_phys- >ds_deadl i st _obj, tx);

}

dsl _deadl i st _cl ose(&ds->ds_deadl i st);

dsl _deadl i st _free(nos, ds->ds_phys->ds_deadlist_obj, tx);
dmu_buf _wi || —dirty(ds->ds_dbuf, tx);
ds->ds_phys->ds_deadl i st_obj = 0;

/* Col |l apse range in clone heads */
dsl _dat aset _renpve_cl ones_key(ds,
“ds->ds_phys->ds_creation_txg, tx);

if (dsl_dataset_is_snapshot (ds_next)) {
dsl _dataset _t *ds_nextnext;

/*

* Update next’s unique to include bl ocks which
* were previously shared by only this snapshot
* and it. Those blocks will be born after the
* prev snap and before this snap, and will have
* died after the next snap and before the one

* after that (ie. be on the snap after next’'s

* deadlist).

*

/

VERI FYO(dsl| _dat aset _hol d_obj (dp,

ds_next - >ds_phys->ds_next _snap_obj, FTAG &ds_nextnext));

dsl _deadl i st _space_range(&s_next next - >ds_deadl i st
ds- >ds_phys->ds_prev_snap_t xg,
ds- >ds_phys->ds_creation_t xg,
&used, &conp, &unconp);

ds_next - >ds _phys->ds_uni que_bytes += used;

dsl_dat aset _rel e(ds_next next, FTAQ;

ASSERT3P(ds_next - >ds_prev, ==, NULL);

/* Col |l apse range | n this head. */
dsl _dataset _t *hds
VERI FYO(dsl _dat aset _hol d_obj (dp,
ds->ds_di r->dd_phys->dd_head_dat aset _obj, FTAG &hds));
dsl _deadl i st_renmove_key(&hds->ds_deadl i st,
ds- >ds_phys->ds_creation_txg, tx);
dsl _dat aset _rel e(hds, FTAQ;

} else {
ASSERT3P(ds_next ->ds_prev, ==, ds);
dsl _dat aset _rel e(ds_next->ds_prev, ds_next);
ds_next->ds_prev = NULL;
if (ds_prev)
VERI FYO(dsl _dat aset _hol d_obj (dp,
ds- >ds_phys->ds_prev_snap_obj,
ds_next, &ds_next->ds_prev));

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

390
392

394
395
396
397
398
399
400
401
402

404
405
406
407
408
409
410
411

413
414
415
416
417
418
419
420

422
423
424
425
426
427
428
429
430

432
433
434
435
436
437

439

441
442

444

446
447
448
449
450
451
452
453
454
455

}
dsl _dat aset _recal c_head_uni q(ds_next);

/*

* Reduce the anpunt of our unconsuned refreservation
* being charged to our parent by the amount of

* new uni que data we have gai ned.

*

if (old_unique < ds_next->ds_reserved) {
int64_t nrsdelta;
ui nt 64_t new_ uni que =
ds_next - >ds_phys- >ds_uni que_byt es;

ASSERT(ol d_uni que <= new_uni que) ;
nrsdelta = M N(new_uni que - ol d_uni que,
ds_next - >ds_reserved - ol d_uni que);
dsl _dir_di duse_space(ds->ds_dir,
“DD _USED REFRSRV, -nrsdelta, 0, 0, tx);
}

dsl _dat aset _rel e(ds_next, FTAG;
/*

* This nust be done after the dsl_traverse(),
* re-open the objset.
*

/

because it wll

if (ds->ds_objset) {
dnu_obj set _evi ct(ds >ds _obj set);
ds->ds_obj set =

}

/* renpve from snapshot nanespace */
dsl _dataset _t *ds_head;
ASSERT(ds- >ds_phys- >ds_snapnanes_zapobj == 0);
VERI FYO(ds| _dat aset _hol d_obj (dp,
ds->ds_dir->dd_phys- >dd head_dat aset _obj, FTAG &ds_head));
VERI FYO(dsl _dat aset _get _snapnane(ds));
#i f def ZFS_DEBUG
{

uint64_t val;

err = dsl _dataset _snap_| ookup(ds_head,
ds- >ds_snapnane, &val);

ASSERTO(err);

ASSERT3U(val , ==, obj);

#endi f
VERI FYO(ds| _dat aset _snap_r enove(ds_head, ds->ds_snapnane, tx));
dsl _dat aset _rel e(ds_head, FTAG;

if (ds_prev !'= NULL)
dsl _dataset _rel e(ds_prev, FTAQ;

spa_prop_cl ear _boot f s(dp->dp_spa, ds->ds_object, tx);
if (ds->ds_phys->ds_next_cl ones_obj != 0) {

uint64_t count;
ASSERTO(zap_count (nos,

ds- >ds_phys- >ds_next _cl ones_obj, &count) && count == 0);

VERI FYO(dmu_obj ect _free(nos,
ds- >ds_phys- >ds_next _cl ones_obj, tx));

}
i1 f (ds->ds_phys->ds_props_obj != 0)

VERI FYO(zap_destroy(nos, ds->ds_phys->ds_props_obj, tx));

if (ds->ds_phys->ds_userrefs_obj != 0)

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

456
457
458
459
460 }

VERI FYO(zap_dest roy(nos, ds->ds_phys->ds_userrefs_obj, tx));
dsl _dir_rel e(ds->ds_dir, ds);
ds->ds_dir = NULL;
VERI FYO(dnu_obj ect_free(nos, obj, tx));

462 static void
463 dsl| _destroy_snapshot _sync(void *arg, dmu_tx_t *tx)

464 {

465 dmu_snapshots_destroy_arg_t *dsda = arg;

466 dsl _pool _t *dp = dnu_t x_pool (tx);

467 nvpair_t *pair;

469 for (pair = nvlist_next_nvpair(dsda->dsda_successful _snaps, NULL);
470 pair != NULL;

471 pair = nvlist_next_nvpair(dsda->dsda_successful _snaps, pair)) {
472 dsl _dat aset _t *ds;

474 VERI FYO(dsl _dat aset _hol d(dp, nvpair_nanme(pair), FTAG &ds));
476 dsl _destroy_snapshot_sync_i npl (ds, dsda->dsda_defer, tx);
477 dsl _dataset_rel e(ds, FTAQ;

478 1

479 }

481 | *

482 * The semantics of this function are described in the coment above

483 * |zc_destroy_snaps(). To summari ze:

484 *

485 * The snapshots nmust all be in the same pool.

486 *

487 * Snapshots that don't exist will be silently ignored (considered to be
488 * "already del eted").

489 *

490 * On success, all snaps will be destroyed and this will return O.

491 * On failure, no snaps will be destroyed, the errlist will be filled in,
492 * and this will return an errno.

493 */

494 int

495 dsl _destroy_snapshots_nvl (nvlist_t *snaps, bool ean_t defer,

496 nvlist_t *errlist)

497 {

498 drmu_snapshots_destroy_arg_t dsda;

499 int error;

500 nvpair_t *pair;

502 pair = nvlist_next_nvpair(snaps, NULL);

503 1 f (pair == NULL)

504 return (0);

506 dsda. dsda_snaps = snaps;

507 dsda. dsda_successful _snaps = fnvlist_alloc();

508 dsda. dsda_def er = defer;

509 dsda. dsda_errlist = errlist;

511 error = dsl_sync_task(nvpair_nane(pair),

512 dsl _destroy_snapshot _check, dsl_destroy_snapshot_sync,

513 &dsda, 0);

514 fnvlist_free(dsda. dsda_successful _snaps);

516 return (error);

517 }

519 int

520 dsl _destroy_snapshot (const char *nane, bool ean_t defer)

521 {

new usr/src/uts/comon/fs/zfs/dsl _destroy.c 9

522
523
524

526
527
528
529
530
531 }

int error;
nvliist_t *nvl = fnvlist_alloc();
nvliist_t *errlist = fnvlist_alloc();

fnvli st_add bool ean(nvl, nane);

error = dsl_destroy_. snapshots nvl (nvl, defer,
fnvlist_free(errlist);

fnvlist_free(nvl);

return (error);

errlist);

533 struct killarg {

534
535
536 };

dsl _dat aset _t *ds;
dmu_t x_t *tx;

538 /* ARGSUSED */
539 static int

540 kill _blkptr(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
541{ const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
542

543 struct killarg *ka = arg;

544 dmu_tx_t *tx = ka->tx;

546 if (bp == NULL)

547 return (0);

549 if (zb->zb_level == ZB ZIL_LEVEL) {

550 ASSERT(zilog != NULL);

551 /*

552 * It’s a block in the intent log. It has no
558 * accounting, so just free it.

554

555 dsI _free(ka->tx->tx_pool, ka->tx->tx_txg, bp);
556 } else {

557 ASSERT(zi | og == NULL);

558 ASSERT3U(bp- >b|k bi rth >, ka->ds- >ds_phys->ds_prev_snap_t xg) ;
559 (void) dsl_dataset_bl ock ki l'l (ka->ds, bp, tx, B_FALSE);
560 }

562 return (0);

563 }

565 static void
566 ol d_synchronous_dat aset _destroy(dsl _dataset _t *ds, dmu_tx_t *tx)

567 {
568

570
571
572
573
574
575
576
577
578
579
580
581
582
583 }

struct killarg ka;

/*

* Free everything that we point to (that’'s born after
* the previous snapshot, if we are a clone)

*

* NB: this should be very quick, because we already
* freed all the objects in open context.

*/

ka.ds = ds

ka.tx =

VERI FYO(traverse dat aset (ds,
ds- >ds_phys->ds_prev_snap_t xg, TRAVERSE_POCST,
kill_blkptr, &ka));
ASSERT(! DS_UNIQUE_I S AOCURATE(ds) || ds->ds_phys->ds_uni que_bytes == 0);

585 typedef struct dsl_destroy_head_arg {

586
587 } dsl

const char *ddha_nane;

_destroy_head_arg_t;

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

10

589 int

590 dsl _destroy_head_check_i npl (dsl _dataset _t *ds, int expected_hol ds)
591 {

592 int error;

593 uint64_t count;

594 obj set _t *nps;

596 if (dsl_dataset_is_snapshot (ds))

597 return (SET_ERROR(EI NVAL));

599 if (refcount_count(&ds->ds_| onghol ds) != expected_hol ds)
600 return (SET_ERROR(EBUSY));

602 nmos = ds->ds_di r->dd_pool - >dp_net a_obj set ;

604 /*

605 * Can’'t delete a head dataset if there are snapshots of it.
606 * (Except if the only snapshots are fromthe branch we cl oned
607 * from)

608 *

609 if (ds->ds_prev != NULL &&

610 ds->ds_prev->ds_phys->ds_next _snap_obj == ds->ds_obj ect)
611 return (SET_ERROR(EBUSY));

613 /*

614 * Can’'t delete if there are children of this fs.

615 */

616 error = zap_count (nos,

617 ds- >ds_di r->dd_phys->dd_chi | d_di r _zapobj, &count);

618 if (error 1= 0)

619 return (error);

620 if (count !'=10

621 return (SET_ERROR(EEXI ST));

623 if (dsl_dir_is_clone(ds->ds_dir) &% DS IS | DEFER . DESTROY(ds- >ds_prev) &&
624 ds->ds_prev- >ds_phys- >ds _num_ children == 2 &&

625 ds->ds_prev->ds_userrefs == 0) {

626 /* W need to renpve the origin snapshot as well. */
627 if (!refcount_is_zero(&ds->ds_prev->ds_| onghol ds))
628 return (SET_ERROR(EBUSY));

629 }

630 return (0);

631 }

633 static int

634 dsl _destroy_head_check(void *arg, dmu_tx_t *tx)

635 {

636 dsl _destroy_head_arg_t *ddha = arg;

637 dsl _pool _t *dp = dnu_tx_pool (tx);

638 dsl _dataset _t *ds;

639 int error;

641 error = dsl_dataset_hol d(dp, ddha->ddha_nane, FTAG &ds);
642 if (error 1= 0)

643 return (error);

645 error = dsl_destroy_head_check_i npl (ds, 0);

646 dsl _dataset _rel e(ds, FTAQ;

647 return (error);

648 }

650 static void

651 dsl _dir_destroy_sync(uint64_t ddobj, dmu_tx_t *tx)

652 {

653 dsl _dir_t *dd;

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

654
655
656

658
660
662

664
665
666
667
668

670
671
672
673

675
676
677
678
679

681
682
683

685
686

}

voi d
dsl

687 {

688
689
690
691

693
694
695
696
697

699
700

702
703
704
705

707

dsl _pool _t *dp = dnu_tx_pool (tx);
obj set _t *npbs = dp->dp_neta_obj set;
dd_used_t t;

ASSERT(RRW WRI TE_HELD(&mu_t x_pool (t x) - >dp_confi g_rw ock));
VERI FYO(ds! _dir_hol d_obj (dp, ddobj, NULL, FTAG &dd));
ASSERTO(dd- >dd_phys- >dd_head_dat aset _obj) ;

/*

* Renpve our reservation. The inpl() routine avoids setting the

* actual property, which would require the (already destroyed) ds.
*/

dsl _dir_set_reservation_sync_inpl (dd, 0, tx);

ASSERTO(dd- >dd_phys->dd_used_bytes);
ASSERTO(dd- >dd_phys- >dd_r eserved) ;
for (t = 0; t < DD USED NUM t ++)
ASSERTO(dd->dd_phys->dd_used_br eakdown[t]);

VERI FYO(zap_dest roy(nos, dd->dd_phys->dd_chil d_dir_zapobj, tx));
VERI FYO(zap_dest roy(nos, dd->dd_phys->dd_props_zapobj, tx));

VERI FYO(ds| _del eg_dest roy(nos, dd->dd_phys->dd_del eg_zapobj, tx));
VERI FYO(zap_r emove(nos,

dd- >dd_par ent - >dd phys >dd_chi | d_di r_zapobj, dd->dd_nynane, tx));

dsl _dir_rele(dd, FTAG;
VERI FYO(dnu_obj ect free(nos, ddobj, tx));

_destroy_head_sync_i npl (dsl _dataset _t *ds, dmu_tx_t *tx)

dsl _pool _t *dp = dmu_t x_pool (tx);
obj set _t *npbs = dp->dp_net a_obj set;
uint64_t obj, ddobj, prevobj = 0;
bool ean_t rnori gin;

ASSERT3U(ds- >ds_phys->ds_num children, <=, 1);
ASSERT(ds->ds_prev == NULL

ds- >ds_prev->ds_phys- >ds_next_snap_obj != ds->ds_object);
ASSERT3U(ds- >ds_phys->ds_bp. bl k_birth, <=, tx->tx_txg);
ASSERT(RRW VWRI TE_HELD(&p- >dp_confi g_rw ock));

/* We need to | og before renovi ng it fromthe nanespace. */
spa_history_l og_internal _ds(ds, "destroy", tx, "");

rnmorigin = (dsl _dir_is_clone(ds->ds_dir) &&
DS_| S_DEFER_DESTROY(ds->ds_prev) &&
ds->ds_prev->ds_phys->ds_numchildren == 2 &&
ds->ds_prev->ds_userrefs == 0);

/* Renpve our reservation */
if (ds->ds_reserved != 0)
dsl _dat aset _set _refreservati on_sync_i npl (ds,
(ZPROP SRC NONE | ZPROP_SRC LOCAL | ZPROP_SRC RECEI VED),
0, tx);
ASSERTO(ds->ds_reserved);
}

dsl _scan_ds_destroyed(ds, tx);
obj = ds->ds_object;

if (ds->ds_phys->ds_prev_snap_obj != 0) {

11

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

720
721
722
723

725
726
727
728
729

731
732
733

735
736
737

739
740
741
742
743
744
745
746
747

749

751
752
753
754
755
756
757
758

762
763

765
766
767
768
769
770
771
772
773

775
776
777

779
780

782
783
784
785

/* This is a clone */
ASSERT(ds->ds_prev != NULL);

ASSERT3U(ds- >ds_pr ev->ds_phys->ds_next_snap_obj, !=, obj);

ASSERTO(ds- >ds_phys- >ds_next _snap_obj) ;
dmu_buf _wi Il _dirty(ds->ds_prev->ds_dbuf, tx);

i f (ds->ds_prev->ds_phys->ds_next_cl ones _obj 1'=0) {
dsl_dat aset _rermove_f rom next _cl ones(ds->ds_prev,
“obj, tx);

}

ASSERT3U(ds- >ds_prev->ds_phys->ds_num children, >, 1);
ds->ds_prev->ds_phys->ds_num chil dren--;

}

zfeature_info_t *async_destroy =
&spa_f eat ur e_t abl e[SPA_FEATURE_ASYNC_DESTROY] ;
obj set _t *os;

/*
* Destroy the deadlist. Unless it’'s a clone, the
* deadlist should be enpty. (If it's a clone, it’s
* safe to ignore the deadlist contents.)
*
/
dsl _deadl i st _cl ose(&ds->ds_deadl i st);
dsl _deadl i st _free(nos, ds->ds_phys- >ds _deadlist_obj, tx);
dru_buf _wi || _dirty(ds->ds dbuf tx);
ds->ds_phys->ds_deadl i st_obj = 0;

VERI FYO(dnu_obj set _from ds(ds, &os));

if (!spa_feature_is_enabl ed(dp->dp_spa, async_destroy)) {
ol d_synchronous_dat aset _destroy(ds, tx);

} else {
/*

* Move the bptree into the pool’s list of trees to
* clean up and update space accounting information.
*/

uint64_t used, conp, unconp;
zi | _destroy_sync(dmu_objset _zil (os), tx);

if (!spa_feature_is_active(dp->dp_spa, async_destroy)) {
dsl _scan_t *scn = dp->dp_scan;

spa_feature_i ncr(dp->dp_spa, async_destroy, tx);
dp->dp_bptree_obj = bptree_alloc(nps, tx);
VERI FYO(zap_add(nos,
DMJ_POOL_DI RECTORY_OBJECT,
DMJ_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
&dp->dp_bptree_obj, tx));
ASSERT(! scn- >scn_async_dest r oyi ng);
scn->scn_async_destroyi ng = B_TRUE;

}

used = ds->ds_dir->dd_phys->dd_used_byt es;

conp = ds->ds_dir->dd_phys->dd_conpressed_byt es;
unconp = ds->ds_dir->dd_phys->dd_unconpr essed_| byt es;

ASSERT(! DS_UNI QUE_| S_ACCURATE(ds) ||
ds- >ds_phys- >ds_uni que_bytes == used);

bptree_add(nos, dp->dp_bptree_obj,
&ds- >ds_phys->ds_bp, ds->ds_phys->ds_prev_snap_t xg,
used, conp, unconp, tx);

dsl _di r_di duse_space(ds->ds_dir, DD USED HEAD,

12

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

786 -used, -conp, -unconp, tx);

787 dsl _dir_di duse _space(dp->dp_ free dir, DD_USED_HEAD,
788 “used, conp, unconp, tx);

789 }

791 if (ds->ds_prev != NULL) {

792 if (spa_version(dp->dp_spa) >= SPA VERSI ON_DI R_CLONES) {
793 VERI FYO(zap_r enpve_i nt (nos,

794 ds->ds_prev->ds_dir- >dd _phys->dd_cl ones,
795 ds->ds_obj ect, tx));

796 }

797 prevobj = ds->ds_prev->ds_obj ect;

798 dsl _dataset _rel e(ds->ds_prev, ds);

799 ds->ds_prev = NULL;

800 }

802 /*

803 * This nust be done after the dsl_traverse(), because it wll
804 * re-open the objset.

805 */

806 if (ds- >ds _objset) {

807 dru_obj set _evi ct (ds->ds_obj set);

808 ds->ds_obj set = NULL;

809 }

811 /* Erase the link in the dir */

812 drmu_buf _wi || _dirty(ds->ds_dir->dd_dbuf, tx);

813 ds->ds d|r >dd_phys->dd_head_dat aset Obj = 0;

814 ddobj = ds->ds_dir->dd_obj ect;

815 ASSERT(ds- >ds_phys- >ds_snapnames_zapobj 1= 0);

816 VERI FYO(zap_dest roy(nos, ds->ds_phys->ds_snapnanmes_zapobj, tx));
818 spa_prop_cl ear _boot f s(dp->dp_spa, ds->ds_object, tx);

820 ASSERTO(ds- >ds_phys- >ds_next _cl ones_obj) ;

821 ASSERTO(ds- >ds_phys->ds_props_obj);

822 ASSERTO(ds- >ds_phys- >ds_userrefs Obj)

823 dsl _dir_rel e(ds->ds_dir, ds);

824 ds->ds_dir = NULL;

825 VERI FYO(dnu_obj ect_free(nmos, obj, tx));

827 dsl _dir_destroy_sync(ddobj, tx);

829 if (rmorigin) {

830 dsl _dat aset _t *prev;

831 VERI FYO(ds| _dat aset _hol d_obj (dp, prevobj, FTAG &prev));
832 ds| _destroy_snapshot _sync_i npl (prev, B FALSE, tx);
833 dsl _dataset_rel e(prev, FTAQ;

834

835 }

837 static void
838 dsl _destroy_head_sync(void *arg, dmu_tx_t *tx)

839 {

840 dsl _destroy_head_arg_t *ddha = arg;

841 dsl _pool _t *dp = dnu _tx_pool (tx);

842 dsl _dat aset _t *ds

844 VERI FYO(ds| _dat aset _hol d(dp, ddha->ddha_nane, FTAG &ds));
845 dsl _destroy_head_sync_i npl (ds, tx);

846 dsl _dat aset _rel e(ds, FTAQ;

847 }

849 static void
850 dsl _destroy_head_begi n_sync(void *arg, dmu_tx_t *tx)
851 {

13

new usr/src/uts/comon/fs/zfs/dsl _destroy.c 14
852 dsl _destroy_head_arg_t *ddha = arg;

853 dsl _pool _t *dp = dnu_t x_pool (tx);

854 dsl _dat aset _t *ds;

856 VERI FYO(ds| _dat aset _hol d(dp, ddha->ddha_nane, FTAG &ds));
858 /* Mark it as inconsistent on-disk, in case we crash */

859 drmu_buf _wi Il _dirty(ds->ds dbuf tx);

860 ds->ds_phys->ds_flags | = DS FLAG | NCONS| STENT;

862 spa_history_log_internal _ds(ds, "destroy begin", tx, "");
863 dsl _dat aset _rel e(ds, FTAQ;

864 }

866 int

867 dsl _destroy_head(const char *nane)

868

869 dsl _destroy_head_arg_t ddha;

870 int error;

871 spa_t *spa

872 bool ean_t i senabl ed;

874 #ifdef _KERNEL

875 zf s_destroy_unnount _ori gi n(nane) ;

876 #endi f

878 error = spa_open(nane, &spa, FTAG;

879 if (error 1= 0)

880 return (error);

881 i senabl ed = spa_feature_i s_enabl ed(spa,

882 &spa_f eat ure_t abl e[SPA_FEATURE . ASYNC > DESTROY]) ;

883 spa_cl ose(spa, FTAG;

885 ddha. ddha_nanme = nane;

887 if (!isenabled) {

888 obj set _t *os;

890 error = dsl_sync_task(nanme, dsl_destroy_head_check,
891 dsl _destroy_head_begi n_sync, &ddha, 0);

892 if (error 1= 0)

893 return (error);

895 *

896 * Head deletion is processed in one txg on old pools;
897 * renpve the objects fromopen context so that the txg sync
898 * is not too |ong.

899 */

900 error = dmu_obj set _own(nane, DMJ OST_ANY, B _FALSE, FTAG &o0s);
901 if (error == 0) {

902 uint64_t prev_snap_txg =

903 dmu_obj set ds(os) >ds phys >ds_prev_snap_t xg;
904 for (U|nt64t obj = 0; error == 0;

905 error = dnu_obj ect_next(os &Ob], FALSE,
906 prev_snap_t xg))

907 (void) dmu_free_object(os, obj);

908 /* sync out all frees */

909 t xg_wai t _synced(dnu_obj set _pool (os), 0);

910 dmu_obj set _di sown(os, FTAG;

911 }

912 1

914 return (dsl_sync_task(nanme, dsl|_destroy_head_check,

915 dsl _destroy_head_sync, &ddha, 0));

916 }

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

918 /*

919 * Note, this function is used as the callback for dmu_objset_find().
920 * always return O so that we will continue to find and process

921 * inconsistent datasets, even if we encounter an error trying to
922 * process one of them

923 */

924 /* ARGSUSED */

925 int

926 dsl _destroy_i nconsi stent(const char *dsnanme, void *arg)

927 {

928 obj set _t *os;

930 if (dnu_objset_hol d(dsnane, FTAG &os) == 0) {

931 bool ean_t inconsi stent DS | S_| NCONSI STENT(drmu_obj set _ds(0s));
932 dmu_obj set _rel e(os, FTAG)

933 if (inconsistent)

934 (voi d) dsl_destroy_head(dsnane);

935 }

936 return (0);

937 }

15

new usr/src/uts/comon/fs/zfs/dsl_pool.c

R R R R

29777 Tue Jun 11 08:49:43 2013
new usr/src/uts/comon/fs/zfs/dsl_pool.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and |imtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END
/

* Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
* Copyright (c) 2013 by Del phix. Al rights reserved.
* Copyright (c) 2013 Steven Hartland. Al rights reserved.
#endif /* | codereview */
*
/

NNRNNNNNRE R R R R R R R
OUIRWNROOONOUTAWNROW©O~NOUTSWN

28 #include <sys/dsl _pool . h>

29 #include <sys/dsl _dataset. h>
30 #include <sys/dsl _prop. h>

31 #include <sys/dsl _dir.h>

32 #include <sys/dsl_synctask. h>
33 #include <sys/dsl_scan. h>

34 #include <sys/dnode. h>

35 #include <sys/dnu_tx. h>

36 #i nclude <sys/dnu_obj set. h>
37 #include <sys/arc. h>

38 #include <sys/zap. h>

39 #include <sys/zio.h>

40 #include <sys/zfs_context.h>
41 #include <sys/fs/zfs.h>

42 #include <sys/zfs_znode. h>

43 #incl ude <sys/spa_inpl.h>

44 #incl ude <sys/dsl _deadlist.h>
45 #incl ude <sys/bptree. h>

46 #include <sys/zfeature. h>

47 #include <sys/zil _inpl.h>

48 #incl ude <sys/dsl _userhol d. h>

50 int zfs_no_wite_throttle = O;

51 int zfs_wite_limt_shift = 3; /* 1/8th of physical menory */
52 int zfs_txg_synctime_ns = 1000; /* target mllisecs to sync a txg */
54 uint64_t zfs wite_limt_mn = 32 << 20; /* minwite limt is 32MB */
55 uint64_t zfs wite_limt_nax = 0; /* max data payl oad per txg */
56 uint64_t zfs wite limt_inflated = 0O;

57 uint64_t zfs_wite_linit_override = 0;

59 knutex_t zfs_wite_limt_|ock;

new usr/src/uts/comon/fs/zfs/dsl_pool.c

61 static pgent_t ol d_physmem = O;

63 hrtine_t zfs_throttle_delay = MSEC2ZNSEC(10);
64 hrtine_t zfs_throttle_resolution = MSEC2NSEC(10) ;

66 int

67 dsl _pool _open_speci al _dir(dsl_pool _t *dp, const char *nane, dsl_dir_t **ddp)
68 {

69 uint64_t obj;

70 int err;

72 err = zap_| ookup(dp->dp_net a_obj set,

73 dp->dp_r oot _di r->dd_phys->dd_chi | d_di r_zapobj,
74 name, sizeof (obj), 1, &obj);

75 if (err)

76 return (err);

78 return (dsl_dir_hol d_obj (dp, obj, nane, dp, ddp));
79 }

81 static dsl_pool _t *
82 dsl _pool _open_i npl (spa_t *spa, uint64_t txg)
{

83
84 dsl _pool _t *dp;
85 bl kptr_t *bp = spa_get_rootbl kptr(spa);
87 dp = knem zal | oc(si zeof (dsl_pool _t), KM SLEEP);
88 dp->dp_spa = spa;
89 dp->dp_neta_rootbp = *bp;
90 rrw_init(&dp->dp_config_rw ock, B_TRUE);
91 dp->dp_wite_limt = zfs_wite_limt_mn;
92 txg_init(dp, txg);
94 txg_list_create(&p->dp_dirty_datasets,
95 of f set of (dsl _dataset _t, ds_dirty_link));
96 txg_list_create(&p->dp_dirty_zil ogs,
97 offsetof (zilog_t, zl_dirty_link));
98 txg_list_create(&p->dp_dirty dirs,
99 of fsetof (dsl _dir_t, dd_dirty_link));
100 txg_list_create(&p->dp_sync_t asks,
101 of fset of (dsl _sync_task_t, dst_node));
103 mut ex_i ni t (&p->dp_l ock, NULL, MJUTEX DEFAULT, NULL);
105 dp->dp_vnrel e_taskq = taskq_create("zfs_vn_rele_taskq", 1, mnclsyspri,
106 1, 4, 0);
108 return (dp);
109 }
111 int
112 dsl _pool _init(spa_t *spa, uint64_t txg, dsl_pool _t **dpp)
113 {
114 int err;
115 dsl _pool _t *dp = dsl _pool _open_i npl (spa, txg);
117 err = dmu_obj set _open_i npl (spa, NULL, &dp->dp_neta_r oot bp,
118 &dp- >dp_net a_obj set) ;
119 if (err 1= 0)
120 dsl _pool _cl ose(dp);
121 el se
122 *dpp = dp;
124 return (err);

125 }

new usr/src/uts/comon/fs/zfs/dsl_pool.c

127 int

128 dsl _pool _open(dsl _pool _t *dp)

129 {

130 int err;

131 dsl _dir_t *dd;

132 dsl _dataset _t *ds;

133 uint64_t obj;

135 rrw_ ent er (&p->dp_config_rw ock, RWWR TER, FTAG;

136 err = zap_| ookup(dp->dp_neta Obj set, DMJ_POOL_DI RECTCRY OBJECT,
137 DMJ_POOL_ROOT_DATASET, si zeof (UI nt64_t), 1,

138 &dp->dp_root _dir_obj);

139 if (err)

140 goto out;

142 err = dsl _dir_hol d_obj (dp, dp->dp_root_dir_obj,

143 NULL, dp, &dp->dp_root_dir);

144 if (err)

145 goto out;

147 err = dsl _pool _open_speci al _dir(dp, MOS_D R NAME, &dp->dp_nos_dir);
148 if (err)

149 goto out;

151 if (spa_version(dp->dp_spa) >= SPA VERSION.ORIG@ N {

152 err = dsl _pool _open_speci al _dir(dp, ORI G N_D R NAME, &dd);
153 if (err)

154 goto out;

155 err = dsl_dat aset _hol d_obj (dp, dd->dd_phys->dd_head_dat aset _obj ,
156 FTAG &ds)

157 if (err == 0) {

158 err = dsl _dataset _hol d_obj (dp,

159 ds- >ds_phys->ds_prev_snap_obj, dp,

160 &dp- >dp_ori gi n_snap) ;

161 dsl _dat aset _rel e(ds, FTAQ;

162 }

163 dsl _dir_rele(dd, dp);

164 if (err)

165 goto out;

166 }

168 if (spa_version(dp->dp_spa) >= SPA VERSI ON_DEADLI STS) {

169 err = dsl _pool _open_speci al _dir(dp, FREE_DI R_NAME,

170 &dp->dp_free_dir);

171 if (err)

172 goto out;

174 err = zap_l ookup(dp->dp_neta_obj set, DMJ POOL_DI RECTORY_OBJECT,
175 DMJ_POOL_FREE_BPOBJ, sizeof (ui nt 64 1), 1, &obj);
176 if (err)

177 goto out;

178 VERI FYO(bpobj _open(&p->dp_f ree_bpobj ,

179 dp- >dp_net a_obj set, obj));

180 }

182 if (spa_feature_is_active(dp->dp_spa,

183 &spa_ feature t abl e[SPA_FEATURE_ASYNC DESTROY])) {

184 err = zap_| ookup(dp->dp_net a_obj set, DMJ_POOL_DI RECTORY_OBJECT,
185 DMJ_POOL_BPTREE_OBJ, sizeof (ui nt 64_t), 1,

186 &dp->dp_bptree_obj);

187 if (err 1=0)

188 goto out;

189 }

191 if (spa_feature_is_active(dp->dp_spa,

new usr/src/uts/comon/fs/zfs/dsl_pool.c

192 &spa_ feature t abl e[SPA_FEATURE_EMPTY_BPOBJ])) {

193 err = zap_| ookup(dp->dp_neta_obj set, DMJ_POOL_DI RECTORY_OBJECT,
194 DMJ_PCOL_EMPTY_BPOBJ, si zeof (UI nt64_t), 1,

195 &dp->dp_enpt y_bpobj) ;

196 if (err 1=0)

197 goto out;

198 }

200 err = zap_| ookup(dp->dp_neta_obj set, DMJ_POOL_DI RECTORY_OBJECT,
201 DMJ_POOL_TMP_USERREFS, si zeof (UI nt64_t), 1,

202 &dp- >dp trrp userrefs Obj)

203 if (err == NT)

204 err = O

205 if (err)

206 goto out;

208 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);

210 out:

211 rrw_exit(&p->dp_config_rw ock, FTAQ;

212 return (err);

213 }

215 void

216 dsl _pool _cl ose(dsl _pool _t *dp)

217 {

218 /* drop our references from dsl_pool _open() */

220 /*

221 * Since we held the origin_snap from"syncing" context (which
222 * includes pool -opening context), it actually only got a "ref"
223 * and not a hold, so just drop that here.

224 *

225 if (dp->dp_origin_snap)

226 dsl _dat aset _rel e(dp->dp_ori gi n_snap, dp);

227 if (dp->dp_nos_dir)

228 dsl_dir_rel e(dp->dp_nos_dir, dp);

229 if (dp->dp_free_dir)

230 dsl_dir _rele(dp->dp_free_dir, dp);

231 if (dp->dp_root_dir)

232 dsl _dir_rel e(dp->dp_root _dir, dp);

234 bpobj _cl ose(&dp- >dp_free_bpobj);

236 /* undo the dmu_objset_open_inpl (nos) from dsl _pool _open() */
237 if (dp->dp_neta_objset)

238 dnu_obj set _evi ct (dp- >dp_net a_obj set) ;

240 txg_list_destroy(&dp->dp_dirty_datasets);

241 txg_list_destroy(&dp->dp_dirty_zil ogs);

242 txg_list_destroy(&dp->dp_sync_tasks);

243 txg_list_destroy(&p->dp_dirty_dirs);

245 arc_flush(dp->dp_spa);

246 txg_fini(dp);

247 dsl _scan_f 1 ni (dp);

248 rrw_destroy(&dp->dp_config_rw ock);

249 nut ex_dest r oy (&dp->dp_| ock) ;

250 taskqg_destroy(dp->dp_vnrel e_taskq);

251 if (dp->dp_bl kstats)

252 kmem free(dp->dp_bl kstats, sizeof (zfs_all_blkstats_t));
253) kmem free(dp, sizeof (dsl_pool_t));

254

256 dsl _pool _t *
257 dsl _pool _create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)

new usr/src/uts/comon/fs/zfs/dsl_pool.c

258
259
260
261
262
263
264

266

268
269
270

272
273
274
275

277
278

280
281
282
283

285
286
287
288

290
291
292
293
294
295

297
298
299
300
301
302
303

305
306

308
309

311
312
313
314
315
316
317
318

320
322

{

#i f def
#endi f

int err;

dsl _pool _t *dp = dsl _pool _open_i npl (spa, txg);
dmu_tx_t *tx = dnu_tx_create_assi gned(dp, txg);
obj set _t *os;

dsl _dataset _t *ds;

uint64_t obj;

rrw_enter (&dp->dp_config_rw ock, RWWRI TER, FTAG;

/* create and open the MOS (et a- obj set) */
dp- >dp_net a_obj set dmu_obj set _create_i npl (spa,
NULL, &dp->dp_ rreta root bp, DMJ_OST_META, tx);

I* create the pool directory */

err = zap_create_cl ai n{dp->dp_net a_obj set, DMJ POOL_DI RECTORY_OBJECT,
DMU_OT_OBJECT DI RECTORY, DMJ_OT_NONE, 0, tX);

ASSERTO(err) ;

/* Initialize scan structures */
VERI FYO(dsl _scan_init(dp, txg));

/* create and open the root dir */
dp- >dp_r oot _di r _obj dsl _dir_create_sync(dp, NULL, NULL, tx);
VERI FYO(dsl| _di r hoI d Obj (dp, dp->dp_root_dir_obj,

NULL, dp, &dp->dp_root_dir));

/* create and open the neta-objset dir */
(void) dsl_dir_create_sync(dp, dp- >dp root _dir,
VERI FYO(dsT_pool _open_speci al _di r (dp,

MOS_DI R_NAME, &dp->dp_nos_dir));

MOS_DI R_NAME, tx);

if (spa_version(spa) >= SPA_VERSI ON_DEADLI STS) {
/* create and open the free dir */
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
FREE_DI R_NAME, tx);
VERI FYO(dsl _pool open_speci al _dir(dp,
FREE_DI R_NANMVE, &dp->dp_free_dir));

/* create and open the free_bplist */
obj = bpobj _al |l oc(dp->dp_net a_obj set, SPA MAXBLOCKSI ZE, tXx);
VERI FY(zap_add(dp->dp_net a_obj set, DMJ_POOL_DI RECTORY_OBJECT,
DMJ_PCOL_FREE_BPOBJ,
VERI FYO(bpobj _open(&dp- >dp free_bpobj,
) dp- >dp_net a_obj set, obj));

if (spa_version(spa) >= SPA VERSI ON_DSL_SCRUB)
dsl _pool _create_origin(dp, tx);

/* create the root dataset */
obj = dsl _dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
/* create the root objset */
VERI FYO(ds| _dat aset _hol d_obj (dp, obj, FTAG &ds));
os = dnu_obj set _create_i npl (dp->dp_spa, ds,
dsl _dat aset _get _bl kptr(ds), DMJ OST_ZFS, tx);

_KERNEL

zfs_create_fs(os, kcred, zplprops, tx);

dsl _dat aset _rel e(ds, FTAQ;
dmu_t x_conmi t (tx);

rrw_exit(&dp->dp_config_rw ock, FTAQ;

si zeof (U|nt64 t), 1, &obj, tx) == 0);

new usr/src/uts/comon/fs/zfs/dsl_pool.c

324 return (dp);

325 }

327 I|*

328 * Account for the neta-objset space in its placeholder dsl_dir.
329 */

330 void

331 dsl _pool _nos_di duse_space(dsl _pool _t *dp,

332 int64_t used, int64_t conp, int64_t unconp)

333 {

334 ASSERT3U(conp, ==, unconp); /* it’'s all netadata */

335 nmut ex_ent er (&dp- >dp_| ock) ;

336 dp >dp_nos_used_del ta += used;

337 dp- >dp_nps_conpressed_del ta += conp;

338 dp- >dp_nos_unconpressed_del ta += unconp;

339 mut ex_exi t (&p- >dp_| ock);

340 }

342 static int

343 deadl i st _enqueue_cb(void *arg, const bl kptr_t *bp, dmu_tx_t *tx)
344 {

345 dsl _deadlist_t *dl = arg;

346 dsl “deadl i st _insert(dl, bp, tx);

347 return (0);

348 }

350 void

351 dsl _pool _sync(dsl _pool _t *dp, uint64_t txg)

352 {

353 zio_t *zio;

354 drmu_t x_t *tx;

355 dsl _dir_t *dd;

356 dsl _dat aset _t *ds;

357 obj set _t *npbs = dp->dp_neta_obj set;

358 hrtime_t start, wite_tine;

359 uint64_t data_witten;

360 int err;

361 list_t synced_datasets;

363 list_create(&ynced_datasets, sizeof (dsl_dataset_t),
364 of f set of (dsl _dataset _t, ds_synced_link));

366 /*

367 * W need to copy dp_space_towite() before doing

368 * dsl _sync_task_sync(), because

369 * dsl _dat aset _snapshot_reserve_space() wll increase
370 * dp_space_towite but not actually wite anything.

371 */

372 data_witten = dp->dp_space_towite[txg & TXG MASK];

374 tx = dnu_t x_create_assi gned(dp, txg);

376 dp- >dp_read_overhead = 0;

377 start = gethrtime();

379 zio = zio root(dp >dp_spa, NULL, NULL, ZI O FLAG MJSTSUCCEED);
380 while (ds = txg_list_renmve(&dp->dp_ dlrty datasets, txg)) {
381 /*

382 * W nust not sync any non- MOS datasets tw ce, because
383 * we may have taken a snapshot of them However, we
384 * may sync newl y-created datasets on pass 2.
385 */

386 ASSERT(!li st_Iink_active(&ds->ds_synced_|ink));
387 list_insert_tail (&synced dat asets, ds);

388 dsl _dataset _sync(ds, zio, tx);

389 }

new usr/src/uts/ comon/fs/zfs/dsl_pool.c 7

390
391

393
394
395

397
398
399
400
401
402
403

405
406
407
408
409
410
411
412
413
414
415
416
417
418

420
421
422
423
424
425
426
427
428
429
430
431
432
433

435
436
437
438

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

DTRACE -_PROBE(pool _sync__1set up) ;

err =

wite

zi o_wait(zio);

time = gethrtime() - start;

ASSERT(err == 0);
DTRACE_PROBE(pooI _sync__2root zi0);

/*
* After the data bl ocks have been witten (ensured by the zio_wait()
* above), update the user/group space accounting.
*/
for (ds = list_head(&synced_dat asets); ds;
ds = list_next(&synced_datasets, ds)
drmu_obj set _do_user quot a_updat es(ds->ds_obj set, tx);
/*
* Sync the datasets again to push out the changes due to
* userspace updates. This nmust be done before we process the
* sync tasks, so that any snapshots will have the correct
* user accounting informati on (and we won't get confused
* about which blocks are part of the snapshot).
*
/
zio = zio root(dp >dp_spa, NULL, NULL, ZI O FLAG MJSTSUCCEED);
while (ds = txg_|ist_renove(&dp->dp_ dlrty datasets, txg)) {
ASSERT(list_link_active(&ds->ds_synced_li nk))
dmu_buf _rel e(ds->ds_dbuf, ds);
dsl _dat aset _sync(ds, zio, tx);
err = zio_wait(zio);
/*
* Now that the datasets have been conpletely synced, we can
* clean up our in-nenory structures accunul ated while syncing:
*
* - nove dead bl ocks fromthe pending deadlist to the on-disk deadli st
* - release hold fromdsl_dataset_dirty()
*
while (ds = list_renpve_head(&synced_datasets)) {
obj set_t *os = ds->ds_obj set;
bplist_iterate(&dIs->ds_pendi ng_deadl i st,
deadl i st _enqueue_cb, &ds->ds_deadlist, tx);
ASSERT(! dmu_obj set _is_dirty(os, txg));
dnu_buf _rel e(ds->ds_dbuf, ds);
}
start = gethrtime();
while (dd = txg_list_remve(&Jp->dp_dirty_dirs, txg))
dsl _dir_sync(dd, tx);
wite_time += gethrtime() - start;
/*
* The MOS's space is accounted for in the pool/$MOS
* (dp_nos_dir). W can't nodify the nbs while we’re syncing
* it, so we remenber the deltas and apply them here.
*/
if (dp->dp_nos_used_delta != 0 || dp->dp_nps_conpressed_delta != 0 ||
dp- >dp_nos_unconpressed_delta != 0) {
dsl _di r_di duse_space(dp->dp_nps_dir, DD_USED_HEAD,
dp->dp_nos_used_del t a,
dp- >dp_nos_conpressed_del t a,
dp- >dp_nos_unconpressed_del ta, tx);
dp- >dp_nos_used_delta = 0;
dp->dp_nos_conpressed_delta = O;
dp- >dp_nos_unconpressed_delta = O;
}

new usr/src/uts/comon/fs/zfs/dsl_pool.c 8
456 start = gethrtime();
457 if (li st _head(&ms->0s_dirty_dnodes[txg & TXG MASK]) != NULL ||
458 I'i st _head(&mos- >0s “free_dnodes[txg & TXG MASK]) != NULL)
459 zio = zio_root (dp->dp_ spa, NULL, NULL, ZI O FLAG MJSTSUCCEED);
460 dnu_obj set _sync(nos, zio, tx);
461 err = zio_walt(zio);
462 ASSERT(err == 0);
463 dprintf bp(&dp >dp neta_rootbp, "neta objset rootbp is %", "");
464 spa_set _root bl kpt r (dp- >dp_spa, &dp->dp_neta_root bp);
465 }
466 wite_ tinme += gethrtime() - start;
467 DTRACE_PROBE2(pool _sync__4i o, hrtlrre t, wite_tineg,
468 hrtime_t, dp->dp_read overhead)
469 wite_tinme -= dp->dp_read_overhead;
471 /*
472 * 1 f owe m)dify a dataset in the same txg that we want to destroy it,
473 * its dsl_dir’s dd_dbuf will be dirty, and thus have a hold on it.
474 * dsl _dir_destroy_check() will fail if there are unexpected hol ds.
475 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
476 * and cleari ng the hold on it) before we process the sync_tasks.
477 * The MOS data dirtied by the sync_tasks will be synced on the next
478 * pass.
479 */
480 DTRACE_PROBE(pool _sync__3t ask);
481 if (!txg_list_enpty(&dp->dp_sync_tasks, txg)) {
482 dsl _sync_task_t *dst;
483 /*
484 * No nore sync tasks should have been added while we
485 * were syncing.
486 */
487 ASSERT(spa_ sync_| pass(dp->dp_spa) == 1);
488 whil e (dst txg_list_renove(&dp- >dp sync_t asks, txg))
489 dsl_sync_task_sync(dst tx);
490 }
492 dmu_t x_commi t (tx);
494 dp->dp_space_towite[txg & TXG MASK] = O;
495 ASSERT(dp- >dp_t enpreserved[txg & TXG NASK] == 0);
497 /*
498 * If the wite limt max has not been explicitly set, set it
499 * to a fraction of avail abl e physical menory (default 1/8th).
500 * Note that we nust inflate the limt because the spa
501 * inflates wite sizes to account for data replication.
502 * Check this each sync phase to catch changing menory size.
503 */
504 if (physnmem!= ol d_physmem && zfs_wite_|imt_shift) {
505 mutex_enter(&fs_wite_limt_|ock);
506 ol d_physnem = physnem
507 zfs_wite_limt_nmax pt ob(physmem >> zfs ertellm't_shift;
508 zfs_wite_linit mflated—NAX(zfs wite |inmit_mn,
509 spa_get _asi ze(dp->dp_spa, zfs_wite_linmt_max));
510 mut ex_exit(&fs_wite_limt_|ock);
511 }
513 /*
514 * Attenpt to keep the sync tinme consistent by adjusting the
515 * anount of wite traffic allowed into each transaction group.
516 * Wi ght the throughput cal culation towards the current val ue:
517 * thru = 3/4 old_thru + 1/4 new_thru
518 *
519 * Note: wite_time is in nanosecs while dp_throughput is expressed in
520 * bytes per mllisecond.
*

521

new usr/src/uts/comon/fs/zfs/dsl_pool.c 9 new usr/src/uts/comon/fs/zfs/dsl_pool.c 10
522 ASSERT(zfs_wite_limt_mn > 0); 588 dsl _pool _tenpreserve_space(dsl _pool _t *dp, uint64_t space, dmu_tx_t *tx)
523 if (data_witten > zfs_wite_limt_nmn/ 8 & 589 {

524 wite_tinme > MSEC2NSEC(1)) { 590 uint64_t reserved = O;
525 uint64_t throughput = data_witten / NSEC2ZMSEC(write_tine); 591 uint64_t wite_limt = (zfs_wite_limt_override ?
592 zfs_wite_limt_override : dp->dp_wite_limt);
527 if (dp->dp_throughput)
528 dp- >dp_t hroughput = throughput / 4 + 594 if (zfs_no_wite_throttle) {
529 3 * dp->dp_t hroughput / 4; 595 atom c_add_64(&dp- >dp_t enpreserved[tx- >t x_txg & TXG MASK],
530 el se 596 space) ;
531 dp- >dp_t hroughput = throughput; 597 return (0);
532 dp->dp_wite_limt = MN(zfs_wite_limt_inflated, 598 }
533 MAX(zfs_wite_limt_mn,
534 dp->dp_t hroughput * zfs_txg_synctine_ns)); 600 /*
535 } 601 * Check to see if we have exceeded the maxi mum all owed | O for
536 } 602 * this transaction group. W can do this w thout |ocks since
603 * alittle slop here is ok. Note that we do the reserved check
538 void 604 * with only half the requested reserve: this is because the
539 dsl _pool _sync_done(dsl _pool _t *dp, uint64_t txg) 605 * reserve requests are worst-case, and we really don’t want to
540 { 606 * throttle based of f of worst-case estimtes.
541 zilog_t *zilog; 607 */
542 dsl _dataset _t *ds; 608 if (wite_limt > 0) {
609 reserved = dp->dp_space_towite[tXx->tXx_txg & TXG MASK]
544 while (zilog = txg_list_renmove(&dp->dp_dirty_zilogs, txg)) { 610 + dp->dp_tenpreserved[tx->tx_txg & TXG MASK] / 2;
545 ds = dmu_obj set _ds(zil og->zl _os);
546 zil _clean(zilog, txg); 612 if (reserved & reserved > wite_limt)
547 ASSERT(! dmu_obj set _is_dirty(zilog->zl _os, txg)); 613 return (SET_ERROR(ERESTART));
548 dmu_buf _rel e(ds->ds_dbuf, zilog); 614 }
549 }
550) ASSERT(! dmu_obj set _i s_dirty(dp->dp_neta_obj set, txg)); 616 atomi c_add_64(&p->dp_t enpreserved[tx->tx_txg & TXG MASK], space);
551
618 /*
553 /* 619 * If this transaction group is over 7/8ths capacity, delay
554 * TRUE if the current thread is the tx_sync_thread or if we 620 * the caller 1 clock tick. This will slow down the "fill"
555 * are being called from SPA context during pool initialization. 621 * rate until the sync process can catch up with us.
556 */ 622 *
557 int 623 if (reserved & reserved > (wite_limt - (wite_limt >> 3))) {
558 dsl _pool _sync_cont ext (dsl _pool _t *dp) 624 txg_del ay(dp, tx->tx_txg, zfs_throttle_delay,
559 { 625 zfs_throttle_resolution);
560 return (curthread == dp->dp_tx.tx_sync_thread || 626 }
561 spa_is_initializing(dp->dp_spa));
562 } 628 return (0);
629 }
564 uint64_t
565 dsl _pool _adj ust edsi ze(dsl _pool _t *dp, bool ean_t netfree) 631 void
566 { 632 dsl _pool _tenpreserve_cl ear(dsl _pool _t *dp, int64_t space, dmu_tx_t *tx)
567 uint64_t space, resv; 633 {
634 ASSERT(dp- >dp_t enpreserved[t x- >t x_t xg & TXG MASK] >= space);
569 I* 635 at omi c_add_64(&p->dp_t enpreserved[tx->tx_txg & TXG MASK], -space);
570 * Reserve about 1.6% (1/64), or at |least 32MB, for allocation 636 }
571 * efficiency.
572 * XXX The intent log is not accounted for, so it must fit 638 void
573 * within this slop. 639 dsl _pool _nmenory_pressure(dsl _pool _t *dp)
574 * 640 {
575 * If we're trying to assess whether it’s OKto do a free, 641 uint64_t space_i nuse = 0;
576 * cut the reservation in half to allow forward progress 642 int i;
577 * (e.g. nake it possible to rm(1l) files froma full pool)
578 * 644 if (dp->dp_wite_ limt == zfs_wite_limt_mn)
579 space = spa_get_dspace(dp->dp_spa); 645 return;
580 resv = MAX(space >> 6, SPA M NDEVSI ZE >> 1);
581 if (netfree) 647 for (i =0; i < TXGSIZE, i++)
582 resv >>= 1; 648 space_i nuse += dp->dp_space_towite[i];
649 space_i nuse += dp->dp_tenpreserved[i];
584 return (space - resv); 650 }
585 } 651 dp->dp_wite_limt = MAX(zfs_wite limt_mn,
652 M N(dp->dp_write_limt, space_inuse / 4));
587 int 653 }

new usr/src/uts/comon/fs/zfs/dsl_pool.c 11 new usr/src/uts/comon/ fs/zfs/dsl_pool.c
720 ds- >ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
655 voi d 721 }
656 ?sl _pool _wi | luse_space(dsl _pool _t *dp, int64_t space, dmu_tx_t *tx) 722 }
657
658 if (space > 0) { 724 ASSERT3U(ds- >ds_di r- >dd_phys- >dd_ori gl n_obj, ==, prev->ds_object);
659 mut ex_ent er (&Jp- >dp_| ock) ; 725 ASSERT3U(ds- >ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
660 dp->dp_space_towite[tx->tx_txg & TXG MASK] += space;
661 mut ex_exi t (& p- >dp_| ock); 727 if (prev->ds_phys->ds_next_clones_obj == 0) {
662 } 728 drmu_buf _wi | | _dirty(prev->ds dbuf tx);
663 } 729 prev->ds_phys->ds_next_cl ones Obj =
730 zap_cr eat e(dp- >dp_net a_obj set,
665 /* ARGSUSED */ 731 DMJ_OT_NEXT_CLONES, DMJ_OT_NCNE, 0, tx);
666 static int 732 }
667 upgrade_cl ones_cb(dsl _pool _t *dp, dsl_dataset_t *hds, void *arg) 733 VERI FYO(zap_add_i nt (dp- >dp_net a_obj set,
668 { 734 prev->ds_phys->ds_next _cl ones_obj, ds->ds_object, tx));
669 dmu_tx_t *tx = arg;
670 dsl _dataset _t *ds, *prev = NULL; 736 dsl _dataset _rel e(ds, FTAQ;
671 int err; 737 if (prev !'= dp->dp_origi n_snap)
738 dsl _dataset_rel e(prev, FTAQ;
673 err = dsl _dataset _hol d_obj (dp, hds->ds_object, FTAG &ds); 739 return (0);
674 if (err) 740 }
675 return (err);
742 void
677 whi | e (ds->ds_phys->ds_prev_snap_obj != 0) { 743 dsl _pool _upgrade_cl ones(dsl _pool _t *dp, dmu_tx_t *tx)
678 err = dsl _dataset _hol d_obj (dp, ds->ds_phys->ds_prev_snap_obj, 744 {
679 FTAG &prev); 745 ASSERT(dnu_t x_i s_synci ng(tx));
680 if (err) { 746 ASSERT(dp->dp_origin_snap != NULL)
681 dsl _dat aset _rel e(ds, FTAQ;
682 return (err); 748 VERI FYO(dnu_obj set _fi nd_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cbh,
683 } 749 tx, DS_FI ND_CHI LDREN));
750 }
685 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
686 br eak; 752 | * ARGSUSED */
687 dsl _dat aset rel e(ds, FTAG; 753 static int
688 ds = prev; 754 upgrade_dir_cl ones_cb(dsl _pool _t *dp, dsl_dataset_t *ds, void *arg)
689 prev = NULL; 755 {
690 } 756 dmu_tx_t *tx = arg;
757 obj set _t *npbs = dp->dp_neta_obj set;
692 if (prev == NULL) {
693 prev = dp->dp_ori gi n_snap; 759 if (ds->ds_dir->dd_phys->dd_origin_obj !'= 0) {
760 dsl_dataset _t *origin;
695 /*
696 * The $ORIGA N can't have any data, or the accounting 762 VERI FYO(dsl _dat aset _hol d_obj (dp,
697 * will be wong. 763 ds->ds_di r- >dd_phys->dd_ori gi n_obj, FTAG &origin));
698 */
699 ASSERTO(pr ev- >ds_phys->ds_bp. bl k_birth); 765 if (origin->ds_dir->dd_phys->dd_cl ones == 0) {
766 dmu_buf _wi Il _dirty(origin->ds_dir->dd_dbuf, tx);
701 /* The origin doesn’'t get attached to itself */ 767 ori gi n->ds_dir->dd_phys->dd_cl ones = zap_creat e(nos,
702 if (ds->ds_object == prev->ds_object) { 768 DMJ_OT_DSL_CLONES, DMJ_OT_NONE, 0, tx);
703 dsl _dataset _rel e(ds, FTAQ; 769 }
704 return (0);
705 } 771 VERI FYO(zap_add_i nt (dp- >dp_net a_obj set,
772 ori gi n->ds_di r->dd_phys->dd_cl ones, ds->ds_object, tx));
707 dnu_buf _wi Il _dirty(ds->ds_dbuf, tx);
708 ds->ds_phys- >ds_prev_snap_obj = prev->ds_object; 774 dsl _dataset _rele(origin, FTAG;
709 ds- >ds_phys->ds_prev_snap_t xg = prev->ds_phys->ds_creation_txg; 775 }
776 return (0);
711 dnu_buf _wi Il _dirty(ds->ds_dir->dd_dbuf, tx); 777 }
712 ds->ds_di r->dd_phys->dd_origi n_obj = prev->ds_object;
779 void
714 drmu_buf _wi Il _dirty(prev->ds_dbuf, tx); 780 dsl _pool _upgrade_dir_cl ones(dsl _pool _t *dp, dnmu_tx_t *tx)
715 prev->ds_phys->ds_num chi | dren++; 781 {
782 ASSERT(drmu_t x_i s_synci ng(tx));
717 if (ds->ds_phys->ds_next _snap_ obj == 0) { 783 uint64_t obj;
718 ASSERT(ds->ds_prev == MJLL)
719 VERI FYO(dsl| _dat aset _hol d ob] (dp, 785 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_D R NAME, tx);

new usr/src/uts/comon/fs/zfs/dsl_pool.c

786 VERI FYO(ds| _pool _open_speci al _di r (dp,

787 FREE_DI R_NAME, &dp->dp_free_ dir));

789 /*

790 * We can’t use bpobj_alloc(), because spa_version() still

791 * returns the old version, and we need a new version bpobj wth
792 * subobj support. So cal i drmu_obj ect _alloc() directly.

793 */

794 obj = dmu_obj ect_al | oc(dp->dp_neta_obj set, DMJ_OT_BPOBJ,

795 SPA_MAXBLOCKSI ZE, DMJ_OT_BPOBJ_HDR, si zeof (bpobj _phys t), tx);
796 VERI FYO(zap_add(dp- >dp nmet a_obj set, DMJU_POOL_DI RECTORY_OBJECT,
797 DMJ_POOL_FREE_BPOBJ, si zeof (UI nt64_t), 1, &bj, tx));

798 VERI FYO(bpobj _open(&dp- >dp free_bpobj, dp- >dp net a Obj set, obj));
800 VERI FYO(dnu_obj set _find_dp(dp, dp->dp_root_dir_obj,

801 upgrade_di r_cl ones_cb, tx, DS_FI ND_CH LDREN));

802 }

804 void

805 dsl _pool _create_origin(dsl _pool _t *dp, dnmu_tx_t *tx)

806 {

807 uint64_t dsobj;

808 dsl _dat aset _t *ds;

810 ASSERT(dmu_t x_i s_synci ng(tx));

811 ASSERT(dp->dp_origi n_snap == NULL);

812 ASSERT(rrw_hel d(&p->dp_config_rw ock, RWWRI TER)) ;

814 /* createthe origin dir, ds, & snap-ds */

815 dsobj = dsl _dataset create sync(dp >dp_root_dir, ORI G N_D R _NAME,
816 NULL, 0, kcred, tx);

817 VERI FYO(dsI dat aset _hol d _obj (dp, dsobj, FTAG &ds));

818 dsl _dat aset _snapshot _sync_i npl (ds, ORI G N_DIR_NAME, tx);

819 VERI FYO(ds| _dat aset _hol d_obj (dp, ds->ds_phys->ds_prev_snap_obj,
820 dp, &dp->dp_origin_snap));

821 dsl _dat aset _rel e(ds, FTAQ;

822 }

824 taskq_t *

825 dsl _pool _vnrel e_taskq(dsl _pool _t *dp)

826 {

827 return (dp->dp_vnrel e_taskq);

828 }

830 /*

831 * \Walk through the pool-wi de zap object of tenporary snapshot user holds
832 * and rel ease them

833 */

834 void

835 dsl _pool _cl ean_tnp_userrefs(dsl _pool _t *dp)

836 {

837 zap_attribute_t za;

838 zap_cursor_t zc;

839 obj set _t *npbs = dp->dp_neta_obj set;

840 ui nt64_t zapobj = dp->dp_tnp_userrefs_obj;

841 nvlist_t *hol ds;

842 #endif /* | codereview */

844 if (zapobj == 0)

845 ret urn;

846 ASSERT(spa_ver si on(dp- >dp_spa) >= SPA_VERSI ON_USERREFS) ;

848 holds = fnvlist_alloc();

850 #endif /* | codereview */

851 for (zap_cursor_init(&zc, nos, zapobj);

13

new usr/src/uts/comon/fs/zfs/dsl_pool.c

852
853
854
855

24

857
858
859
860
861
862
863
864
865
866
867

29

30
868
869
870
871
872
873

875
876
877
878
879

#end

}
/*

zap_cursor_retrieve(&c, &a) == 0
zap_cursor _advance(&zc)) {

char *htag;

nvlist_t *tags;

uint64_t dsobj ;

htag = strchr(za.za_nane,

*htag = "\0’;

++ht ag;

if (nvlist_lookup_nvlist(holds,
tags = fnvlist_alloc();
fnvlist_add_bool ean(tags, htag);
fnvlist_add_nvlist(holds, za.za_nane,
fnvlist_free(tags);

} else {
fnvlist_add_bool ean(t ags,

Ty
za.za_nane, &tags) != 0)
tags);

ht ag) ;

dsobj = strtonum(za.za_name, NULL);
dsl _dat aset _user _rel ease trrp(dp, dsob], ht ag) ;

}
dsl| _dat aset _user_rel ease_tnp(dp, holds);
fnvlist_free(holds);
if /* 1 codereview */
zap_cursor _fini(&zc);

* Create the pool-wide zap object for storing tenporary snapshot holds.
*/

voi d
dsl

880 {

881

883
884

886
887
888

890
891
892

894
895
896
897

899
900

902
903
904
905
906
907
908
909
910
911
912
913

}

st at
dsl

_pool _user_hol d_rel e_i npl (dsl _pool _t *dp,

_pool _user_hol d_create_obj (dsl _pool _t *dp, dmu_tx_t *tx)

obj set _t *npbs = dp->dp_neta_obj set;
ASSERT(dp->dp_t np_userrefs_obj == 0);
ASSERT(dmu_t x_i s_synci ng(tx));

dp->dp_tnp_userrefs_obj = zap_create_|ink(nps, DMJ OT_USERREFS,
DMJ_POOL_DI RECTORY_OBJECT, DMJ_POOL_TMP_USERREFS, tX);

icint

uint64_t dsobj,
const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t hol ding)
obj set _t *nps = dp->dp_neta_obj set;

ui nt64_t zapobj = dp->dp_tnp_userrefs_obj;

char *nane;

int error;

ASSERT(spa_versi on(dp->dp_spa) >= SPA_VERSI ON_USERREFS) ;
ASSERT(dnmu_t x_i s_synci ng(tx));

/*
* |f the pool was created prior to SPA VERSI ON_USERREFS, the
* zap object for tenporary holds might not exist yet.
*
/

if (zapobj == 0) {
if (holding) {
dsl _pool _user_hol d_creat e_obj (dp, tx);
zapobj = dp->dp_tnp_userrefs_obj;
} else {
return (SET_ERROR(ENCENT));
}

14

new usr/src/uts/ comon/fs/zfs/dsl_pool.c 15

915
916
917
918
919
920

922
923

925
926
927
928
929
930

}
/*

*

S
i nt

name = knmem asprintf("%I|x-%", (u_longlong_t)dsobj, tag);
if (hol ding)

error = zap_add(nos, zapobj, nane, 8, 1, &ow, tx);
el se

error = zap_renove(nos, zapobj, nane, tx);
strfree(nane);

return (error);

Add a tenporary hold for the given dataset object and tag.

dsl _pool _user_hol d(dsl _pool _t *dp, uint64_t dsobj, const char *tag,

931 {

932
933

935
936
937
938
939
940
941
942
943
944

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

}
| *

*

*/

i nt

uint64_t now, dmu_tx_t *tx)

return (dsl_pool _user_hold_rel e_inpl(dp, dsobj, tag, now, tx, B TRUE));

Rel ease a tenporary hold for the given dataset object and tag.

dsl _pool _user_rel ease(dsl _pool _t *dp, uint64_t dsobj, const char *tag,

{

® Ok ok ok F Rk Ok Ok R b Sk OF 3k R R b R Sk ok ok %k OF % b % ok 3k Ok % F %

dmu_tx_t *tx)

return (dsl_pool _user_hold_rele_inpl(dp, dsobj, tag, NULL,
tx, B_FALSE));

DSL Pool Configuration Lock

The dp_config_rw ock protects agai nst changes to DSL state (e.g. dataset

creation / destruction / renane / property setting). It nmust be held for
read to hold a dataset or dsl _dir. 1.e. you nust call

dsl _pool _config_enter() or dsl_pool _hold() before calling

dsl _{dataset,dir}_hold{_obj}. 1In nost circunstances, the dp_config_rw ock

must be held continuously until all datasets and dsl_dirs are rel eased.

The only exception to this rule is that if a "long hold" is placed on
a dataset, then the dp_config_rw ock nay be dropped while the dataset
is still held. The long hold will prevent the dataset from being
destroyed -- the destroy will fail with EBUSY. A long hold can be
obt ai ned by calling dsl_dataset_long_hold(), or by "owning" a dataset
(by calling dsl_{dataset, objset}_{try}own{_obj}).

Legi ti mate | ong-hol ders (including owners) should be |ong-running, cancel able

tasks that should cause "zfs destroy" to fail. This includes
consunmers (i.e. a ZPL fil esystem bei ng mounted or ZVOL bei ng open),
"zfs send", and "zfs diff". There are several other |ong-hol ders whose

uses are suboptimal (e.g. "zfs pronote", and zil_suspend()).

The usual formula for |ong-holding would be:
dsl _pool _hol d()
dsl _dat aset _hol d()
... performchecks ...
dsl _dat aset _| ong_hol d()
dsl _pool _rele()
perform | ong-running task ...
dsl _dataset _l ong_rel e()
dsl _dataset _rel e()

Note that when the long hold is released, the dataset is still held but
the pool is not held. The dataset may change arbitrarily during this tine

new usr/src/uts/ comon/fs/zfs/dsl_pool.c 16
981 * (e.g. it could be destroyed). Therefore you shouldn’t do anything to the
982 * dataset except release it.

983 *

984 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
985 * or nodifying operations.

986 *

987 * Modifying operations should generally use dsl_sync_task(). The synctask
988 * infrastructure enforces proper |ocking strategy with respect to the

989 * dp_config_rw ock. See the comment above dsl_sync_task() for details.

990 *

991 * Read-only operations will manually hold the pool, then the dataset, obtain
992 * information fromthe dataset, then rel ease the pool and dataset.

993 * dnu_objset_{hold,rele}() are convenience routines that also do the pool
994 * hold/rele.

995 */

997 int

998 dsl _pool _hol d(const char *nane, void *tag, dsl_pool _t **dp)

999 {

1000 spa_t *spa;

1001 int error;

1003 error = spa_open(nane, &spa, tag);

1004 if (error == 0) {

1005 *dp = spa_get_dsl (spa);

1006 dsl _pool _config_enter(*dp, tag);

1007 }

1008 return (error);

1009 }

1011 void

1012 dsl _pool _rel e(dsl _pool _t *dp, void *tag)

1013

1014 dsl _pool _config_exit(dp, tag);

1015 spa_cl ose(dp->dp_spa, tag);

1016 }

1018 voi d

1019 dsl _pool _config_enter(dsl _pool _t *dp, void *tag)

1020 {

1021 /*

1022 * W& use a "reentrant” reader-witer |ock, but not reentrantly.

1023 *

1024 * The rrwlock can (with the track_all flag) track all reading threads,

1025 * which is very useful for debugging which code path failed to rel ease

1026 * the lock, and for verifying that the *current* thread does hold

1027 * the | ock.

1028 *

1029 * (Unlike a rw ock, which knows that N threads hold it for

1030 * read, but not *which* threads, so rw_hel d(RW READER) returns TRUE

1031 * if any thread holds it for read, even if this thread doesn't).

1032 */

1033 ASSERT(! rrw_hel d(&p->dp_confi g_rw ock, RW READER));

1034 rrw_enter (& p->dp_config_rw ock, RWREADER, tag);

1035 }

1037 void

1038 dsl _pool _config_exit(dsl_pool _t *dp, void *tag)

1039 {

1040 rrw_exit(&dp->dp_config_rw ock, tag);

1041 }

1043 bool ean_t

1044 dsl _pool _config_hel d(dsl _pool _t *dp)

1045 {

1046 return (RRWLOCK_HELD(&dp- >dp_config_rw ock));

new usr/src/uts/comon/fs/zfs/dsl_pool.c

1047 }

17

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c

R R R R

17638 Tue Jun 11 08:49:43 2013
new usr/src/uts/comon/fs/zfs/dsl_userhold.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and |imtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END
/

* Copyright (c) 2013 by Del phix. Al rights reserved.
* Copyright (c) 2013 Steven Hartland. Al rights reserved.
#endif /* | codereview */
*
/

NNRNNNNNRE R R R R R R R
OUIRWNROOONOUTAWNROW©O~NOUTSWN

28 #include <sys/zfs_context.h>
29 #include <sys/dsl _userhol d. h>
30 #include <sys/dsl _dataset. h>
31 #include <sys/dsl_destroy. h>
32 #include <sys/dsl_synctask. h>
33 #include <sys/dnu_tx. h>

34 #include <sys/zfs_onexit.h>
35 #include <sys/dsl _pool . h>

36 #include <sys/dsl_dir.h>

37 #include <sys/zfs_ioctl.h>

38 #include <sys/zap. h>

40 typedef struct dsl_dataset_user_hold_arg {

41 nvlist_t *dduha_hol ds;

42 nvlist_t *dduha_chkhol ds;
43 #endif /* | codereview */

44 nvlist_t *dduha_errlist;
45 m nor _t dduha_m nor;

46 } dsl_dataset_user_hold_arg_t;

48 [*
49 * If you add new checks here, you may need to add additional checks to the
50 * "tenporary" case in snapshot check() in dmu_obj set.c.

51 */

52 int

53 dsl _dat aset _user _hol d_check_one(dsl _dataset _t *ds, const char *htag,
54 bool ean_t tenphold, dmu_tx_t *tx)

55 {

56 dsl _pool _t *dp = dnu_tx_pool (tx);

57 obj set _t *npbs = dp->dp_net a_obj set;

58 int error = 0;

* Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

new usr/src/uts/ comon/fs/zfs/dsl _userhold.c 2
60 ASSERT(dsl _pool _config_hel d(dp));
62 #endif /* | codereview */
63 if (strlen(htag) > MAXNAMELEN)
64 return (SET_ERROR(E2BI Q);
24 return (E2BI G ;
65 /* Tenphol ds have a nore restricted length */
66 if (tenmphold && strlen(htag) + MAX_TAG PREFI X_LEN >= MAXNAMELEN)
67 return (SET_ERROR(E2BI Q));
27 return (E2BI G ;
69 /* tags nmust be unique (if ds already exists) */
70 if (ds !'= NULL && ds->ds_phys->ds_userrefs_obj != 0) {
30 if (ds !'= NULL) {
31 mut ex_ent er (&ds- >ds_| ock) ;
32 if (ds->ds_phys->ds_userrefs_obj !'= 0) {
71 uint64_t val ue;
73 #endif /* | codereview */
74 error = zap_l ookup(nos, ds->ds_phys->ds_userrefs_obj,
75 htag, 8, 1, &value);
76 if (error == 0
77 error = SET_ERROR(EEXI ST) ;
78 else if (error == ENCENT)
79 error = 0;
80 }
34 mut ex_exi t (&ds->ds_| ock) ;
85] }
82 return (error);
83 }
85 static int
86 dsl| _dat aset_user_hol d_check(void *arg, dnu_tx_t *tx)
87
88 dsl _dat aset _user_hold_arg_t *dduha = arg;
89 dsl _pool _t *dp = dnu_tx_pool (tx);
45 nvpair_t *pair;
46 int rv = 0;
91 if (spa_version(dp->dp_spa) < SPA VERSI ON_USERREFS)
92 return (SET_ERROR(ENOTSUP));
94 if (!dmu_tx_is_syncing(tx))
95 return (0);
97 (nvpair_t *pair = nvlist_next_nvpair(dduha->dduha_hol ds, NULL);
98 pair !'= NULL; pair = nvlist_next_nvpair(dduha->dduha_hol ds, pair)) {
99 dsl _dat aset _t *ds;
51 for (pair = nvlist_next_nvpair(dduha->dduha_hol ds, NULL); pair != NULL;
52 pair = nvlist_next_nvpair (dduha- >dduha_hol ds, pair)) {
100 int error = 0;
101 char *htag, *naneg;
54 dsl _dat aset _t *ds;
55 char *htag;
103 /* nust be a snapshot */
104 name = nvpair_nane(pair);
105 if (strchr(name, '@) == NULL)
58 if (strchr(nvpair _name(pair), @) == NULL)
106 error = SET_ERROR(EI NVA)
108 if (error ==
109 error = nvpair_value_string(pair, &htag);
111 if (error == 0)

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c 3 new usr/src/uts/comon/ fs/zfs/dsl _userhold.c

112 error = dsl_dataset_hol d(dp, name, FTAG &ds); 164 VERI FYO(zap_add(nps, zapobj, htag, 8, 1, &ow, tx));
63 if (error == 0) { 166 if (mnor I'=0) {
64 error = dsl_dataset_hol d(dp, 167 char name[MAXNAMELEN] ;
65 nvpai r_nanme(pair), FTAG &ds); 168 nvlist_t *tags;
66 }
114 i1f (error == 0) { 170 #endif /* ! codereview */
115 error dsl _dat aset _user _hol d_check_one(ds, htag, 171 VERI FYO(dsl _pool _user_hol d(dp, ds->ds_obj ect,
116 dduha >dduha_minor !'= 0, tx); 172 htag, now, tX));
117 dsl _dataset _rel e(ds, FTAG; 173 (void) snpri ntf(narre si zeof (nane), "%Ix",
118 } 174 (u_l ongl ong_t) ds->ds_obj ect);
120 if (error == 0) { 176 if (nvlist_lookup_nvlist(tnmpholds, name, &tags) != 0) {
121 fnvlist_add_string(dduha->dduha_chkhol ds, nane, htag); 177 tags = fnvlist_alloc();
122 } else { 178 fnvlist_add_bool ean(tags, htag);
123 /* 179 fnvlist_add_nvlist(tnpholds, name, tags);
124 * We register ENOCENT errors so they can be correctly 180 fnvlist_free(tags);
125 * reported if needed, such as when all holds fail. 181 } else {
126 */ 182 fnvlist_add_bool ean(tags, htag);
127 fnvlist_add_i nt 32(dduha- >dduha_errlist, name, error); 183 }
128 if (error !'= ENCENT) 108 dsl _regi ster_onexit_hol d_cl eanup(ds, htag, mnor);
129 return (error); 184 }
73 if (error !:O) {
74 = err 186 spa_history_l og_i nternal _ds(ds, "hold", tx,
75 fnvI i st add i nt 32(dduha- >dduha_errli st, 187 "tag=% tenp=%l refs=%Iu",
76 nvpai r_nane(pair), error); 188 htag, minor != 0, ds->ds_userrefs);
130 } 189 }
131 }
191 typedef struct zfs_hold_cl eanup_arg {
133 /* Return ENCENT if no holds would be created. */ 192 char zhca_spanane[MAXNAMELEN] ;
134 if (nvlist_enpty(dduha->dduha_chkhol ds)) 193 uint64_t zhca_spa_l oad_gui d;
135 return (SET_ERROR(ENCENT)); 194 nvlist_t *zhca_holds;
195 } zfs_hol d_cl eanup_arg_t;
137 return (0);
79 return (rv); 197 static void
138 } 198 dsl _dat aset _user_rel ease_onexit(void *arg)
199
200 zfs_hol d_cl eanup_arg_t *ca = arg;
141 static void 201 spa_t *spa;
142 dsl _dataset _user _hol d_sync_one_i npl (nvlist_t *tnpholds, dsl_dataset_t *ds, 202 int error;
143 “const char *htag, minor_t mnor, uint64_t now, dnmu_tx_t *tx)
82 void 204 error = spa_open(ca->zhca_spanane, &spa, FTAQ;
83 dsl _dat aset _user _hol d_sync_one(dsl _dataset_t *ds, const char *htag, 205 if (error '=0) {
84 mnor_t mnor, uint64_t now, dmu_tx_t *tx) 206 zfs_dbgnmsg("coul dn’t rel ease hol ds on pool =% "
144 { 207 "because pool is no |onger |oaded",
145 dsl _pool _t *dp = ds->ds_dir->dd_pool; 208 ca->zhca_spanane) ;
146 objset _t *nos = dp->dp_| nmet a_obj set ; 209 return;
147 ui nt 64_t zapobj ; 210 }
211 if (spa_l oad_guid(spa) != ca->zhca_spa_|l oad_guid) {
149 ASSERT(RRW WRI TE_HELD(&p- >dp_confi g_rw ock)); 212 zf s_dbgmsg("couldn’t rel ease holds on pool =% "
213 "because pool is no |onger |oaded (guid doesn't match)"
90 mut ex_ent er (&ds- >ds_| ock) ; 214 ca->zhca_spanane) ;
151 i f (ds->ds_phys->ds userrefs _obj ==10) { 215 spa_cl ose(spa, FTAQ;
152 /* 216 return;
153 * This is the first user hold for this dataset. Create 217 }
154 * the userrefs zap object.
155 */ 219 (voi d) dsl_dataset_user_rel ease_t np(spa_get _dsl (spa), ca->zhca_hol ds);
156 dmu_buf _wi Il _dirty(ds->ds_dbuf, tx); 220 fnvlist_free(ca->zhca_hol ds);
157 zapobj = ds->ds_phys->ds_userrefs_obj = 221 kmem free(ca, sizeof (zfs_hold_cleanup_arg_t));
158 zap_create(nos, DMJ_OT_USERREFS, DMJ OT_NONE, 0, tx); 222 spa_cl ose(spa, FTAQ;
159 } else { 223 }
160 zapobj = ds->ds_phys->ds_userrefs_obj;
161 } 225 static void
162 ds->ds_userref s++; 226 dsl _onexit_hol d_cl eanup(spa_t *spa, nvlist_t *holds, mnor_t mnor)
103 mut ex_exi t (&ds->ds_I| ock) ; 227 {

228 zfs_hol d_cl eanup_arg_t *ca;

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c 5

230 if (mnor == 0 || nvlist_enpty(holds)) {

231 fnvlist_free(holds);

232 return;

233 }

235 ASSERT(spa != NULL);

236 ca = kmem al | oc(si zeof (*ca), KM SLEEP);

238 (void) strlcpy(ca->zhca_spanane, spa_nane(spa),

239 si zeof (ca->zhca spanarre))

240 ca->zhca_spa_| Ioad _gui d = spa_| | oad _gui d(spa);

241 ca->zhca_hol ds = hol ds

242 VERI FYO(zf s_onexi t_add_cb(m nor,

243 dsl _dat aset _user _rel ease_onexit, ca, NULL));

244 }

246 void

247 dsl _dat aset _user_hol d_sync_one(dsl _dataset _t *ds, const char *htag,
248 mnor_t mnor, uint64_t now, dmu_tx_t *tx)

249 {

250 nvlist_t *tnphol ds;

252 if (mnor !'=0)

253 tnphol ds = fnvlist_alloc();

254 el se

255 t nphol ds = NULL;

256 dsl _dat aset _user_hol d_sync_one_i npl (tnphol ds, ds, htag, minor, now, tx);
257) dsl —onexi t _hol d_cl eanup(dsT_dat aset _get _spa(ds), tphol ds, m nor);
258

260 #endif /* ! codereview */
261 static void
262 dsl _dataset _user_hol d_sync(void *arg, dmu_tx_t *tx)

263 {

264 dsl _dat aset _user_hold_arg_t *dduha = arg;

265 dsl _pool _t *dp = dmu_tx_pool (tx);

266 nvlist_t *t nphol ds;

116 nvpair_t *pair;

267 uint64_t now = gethrestinme_sec();

269 i f (dduha->dduha_m nor != 0)

270 tnphol ds = fnvlist_alloc();

271 el se

272 t nphol ds = NULL;

273 (nvpair_t pal r = nvlist_next_nvpair(dduha->dduha_chkhol ds, NULL);
274 pair !'= NULL

275 pair = nvli st_next _nvpai r (dduha- >dduha_chkhol ds, pair)) {

119 for (pair = nvlist_next_nvpair(dduha->dduha_hol ds, NULL); pair != NULL;
120 pair = nvlist_next_nvpair (dduha- >dduha_hol ds, pair)) {

276 dsl _dataset _t *ds;

278 #endif /* | codereview */

279 VERI FYO(ds| _dat aset _hol d(dp, nvpair_nane(pair), FTAG &ds));
280 dsl _dat aset _user _hol d_sync_one_i npl (t nphol ds, ds,

281 fnvpair _val ue_string(pair), dduha->dduha_m nor, now, tx);
122 dsl _dat aset _user _hol d_sync_ one(ds fnvpair_val ue_ stri ng(pai r)
123 “dduha- >dduha_ni nor, " now, tXx);

282 dsl _dat aset _rel e(ds, FTAG) ;

283 }

284 dsl _onexi t _hol d_cl eanup(dp->dp_spa, tnpholds, dduha->dduha_m nor);
285 #endif /* | codereview */

286 }

288 /*

289

* The full semantics of this function are described in the coment above

new usr/src/uts/comon/ fs/zfs/dsl_userhold.c 6
290 * lzc_hold().

291 *

292 * To summarize:

293 #endlf /* 1 codereview */

294 holds is nvl of snapnane -> hol dnane

295 * errlist will be filled in with snapnanme -> error

126 * if cleanup_minor is not 0, the holds will be tenporary, cleaned up

127 * when the process exits.

296 *

297 * The snaphosts nust all be in the sane pool .

298 *

299 * Holds for snapshots that don't exist will be skipped.

300 *

301 * If none of the snapshots for requested hol ds exi st then ENOENT will be
302 * returned.

303 *

304 * |f cleanup_minor is not O, the holds will be tenporary, which will be cleaned
305 * up when the process exits.

306 *

307 * On success all the holds, for snapshots that existed, will be created and 0
308 * will be returned.

309 *

310 * On failure no holds will be created, the errlist will be filled in,

311 * and an errno will returned.

312 *

313 * In all cases the errlist will contain entries for holds where the snapshot
314 * didn't exist.

129 * if any fails, all will fail.

315 */

316 int

317 dsl _dataset _user_hold(nvlist_t *holds, mnor_t cleanup_minor, nvlist_t *errlist)
318 {

319 dsl dataset _user _hol d_arg_t dduha;

320 nvpair_t *pair;

321 int ret;

322 #endif /* | codereview */

324 pair = nvlist_next_nvpair(holds, NULL);

325 I f (pair == NULL)

326 return (0);

328 dduba. dduha_hol ds = hol ds;

329 dduha. dduha_chkhol ds = fnvlist_alloc();

330 #endif /* ! codereview */

331 dduba. dduha_errlist = errlist;

332 dduha. dduha_m nor = cl eanup_mi nor;

334 ret = dsl_sync_task(nvpair_nanme(pair), dsl_dataset_user_hol d_check,
335 dsl _dat aset _user _hol d_sync, &dduha, fnvlist_num pairs(holds));
336 fnvlist_free(dduha. dduha_chkhol ds);

338 return (ret);

136 return (dsl_sync_task(nvpair_name(pair), dsl_dataset_user_hol d_check,
137) dsl _dat aset _user _hol d_sync, &dduha, fnvlist_num pairs(hol ds)));
339

341 typedef int (dsl_holdfunc_t)(dsl_pool _t *dp, const char *nanme, void *tag,
342 dsl _dataset _t **dsp);

344 #endif /* | codereview */

345 typedef struct dsl_dataset _user_rel ease_arg {

346 dsl _hol df unc_t *ddur a_hol df unc;

347 #endif /* | codereview */

348 nvlist_t *ddura_hol ds;

349 nvlist_t *ddura_todel ete;

350 nvlist_t *ddura_errlist;

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c

351 nvlist_t *ddura_chkhol ds;

352 #endif /* | codereview */

353 } dsl_dataset_user_release_arg_t;

355 /* Place a dataset hold on the snapshot identified by passed dsobj string */
356 static int

357 dsl _dat aset _hol d_obj _string(dsl _pool _t *dp, const char *dsobj, void *tag,
358 dsl _dataset _t **dsp)

359 {

360 return (dsl_dataset_hol d_obj (dp, strtonun(dsobj, NULL), tag, dsp));
361 }

363 #endif /* ! codereview */

364 static int

365 dsl _dat aset _user_rel ease_check_one(dsl _dat aset _user_rel ease_arg_t *ddura,
366 dsl _dataset _t *ds, nvlist_t *holds, const char *snapnane)

140 dsl _dat aset _user _rel ease_check_one(dsl _dataset_t *ds,

141 nvlist_t *holds, boolean_t *todelete)

367 {

368 uint64_t zapobj;

369 nvlist_t *hol ds_f ound;

370 obj set _t *nps;

371 i nt nunmhol ds;

144 nvpair_t *pair;

145 obj set _t *npbs = ds->ds_dir->dd_pool - >dp_net a_obj set ;

146 int error;

147 int numholds = 0O;

149 *todel ete = B_FALSE;

373 if (!dsl_dataset_is_snapshot(ds))

374 return (SET_ERROR(EI NVAL));

376 if (nvlist_enmpty(holds))

377 return (0);

379 nunhol ds = 0;

380 nos = ds->ds_di r->dd_pool - >dp_net a_obj set;

381 #endif /* | codereview */

382 zapobj = ds->ds_phys->ds_userrefs_obj;

383 hol ds_found = fnvlist_alloc();

154 if (zapobj == 0)

155 return (SET_ERROR(ESRCH));

385 for (nvpair_t *pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
157 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;

386 pair = nvlist_next_nvpair(holds, pair)) {

159 /* Make sure the hold exists */

387 uint64_t tnp;

388 int error;

389 const char *hol dname = nvpair_nanme(pair);

391 if (zapobj !'=0)

392 error = zap_| ookup(nos, zapobj, holdnarme, 8, 1, &t np);
393 el se

394 error = SET_ERROR(ENCENT) ;

396 /*

397 * Non-existent holds are put on the errlist, but don't
398 * cause an overall failure.

399 */

400 if (error == ENCENT) {

401 if (ddura->ddura_errlist !'= NULL) {

402 char *errtag = knem asprintf (" %#%",
403 snapnane, hol dnane);

404 fnvlist_add_int32(ddura->ddura_errlist, errtag,

new usr/src/uts/comon/ fs/zfs/dsl_userhold.c

1, &nm);

405 ENCENT) ;

406 strfree(errtag);

407

408 conti nue;

409 }

411 if (error 1= 0)

412 fnvlist_free(hol ds_found);

161 error = zap_| ookup(nos, zapobj, nvpair_nane(pair), 8,
162 if (error == ENCENT)

163 error = SET_ERROR(ESRCH) ;

164 if (error 1= 0)

413 return (error);

414 }

416 fnvlist_add_bool ean(hol ds_f ound, hol dnane) ;
417 #endif /* | codereview */

418 nunhol ds++;

419 1

421 if (DS_| S_DEFER DESTROY(ds) && ds->ds_phys->ds_numchildren == 1 &&
422 ds->ds_userrefs == nunhol ds) {

423 /* we need to destroy the snapshot as well */
424 if (dsl_dataset_| ong_hel d(ds))

425 fnvlist_free(hol ds_found);

426 return (SET_ERROR(EBUSY));

427 }

428 fnvlist_add_bool ean(ddur a- >ddur a_t odel et e, snapnane);
429 }

430 #endif /* ! codereview */

432 if (nunmholds !'= 0) {

433 fnvlist_add_nvlist(ddura->ddura_chkhol ds, snapnane,
434 hol ds_f ound) ;

166 if (dsl_dataset_| ong_hel d(ds))

167 return (SET_ERROR(EBUSY));

168 *todel ete = B_TRUE;

435 }

436 fnvlist_free(hol ds_found);

438 #endif /* | codereview */

439 return (0);

440 }

442 static int

443 dsl| _dat aset _user _rel ease_check(void *arg, dmu_tx_t *tx)

444 {

445 dsl _dat aset _user _rel ease_arg_t *ddura;

446 dsl _hol df unc_t *hol df unc;

447 dsl _pool _t *dp;

170 dsl| _dat aset _user_rel ease_arg_t *ddura = arg;

171 dsl _pool _t *dp = dnu_t x_pool (tx);

172 nvpair_t *pair;

173 int rv =0;

449 if ('dmu_tx_is_syncing(tx))

450 return (0);

452 dp = dmu_t x_pool (tx);

454 ASSERT(RRW VRI TE_HELD(&p- >dp_confi g_rw ock));

456 ddura = arg;

457 hol df unc = ddur a- >ddur a_hol df unc;

459 for (nvpair_t *pair = nvlist_next_nvpair(ddura->ddura_holds,

NULL) ;

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c 9
460 pair !'= NULL; pair = nvlist_next_nvpair (ddura->ddura_hol ds, pai r)) {
178 for (pair = nvlist_next_nvpair(ddura->ddura_hol ds, NULL); pair != NULL
179 pair = nvlist_next_nvpair(ddura->ddura_holds, pair)) {

180 const char *nane = nvpair_nane(pair);

461 int error;

462 dsl _dataset _t *ds;

463 nvlist_t *hol ds;

464 const char *snapname = nvpair_nanme(pair);

465 #endif /* | codereview */

467 error = nvpair_value_nvlist(pair, &holds);

468 if (error 1= 0)

469 error = (SET_ERROR(EINVAL));

470 el se

471 error = hol df unc(dp, snapnane, FTAG &ds);

184 return (SET_ERROR(EI NVAL));

186 error = dsl _dataset_hol d(dp, nane, FTAG &ds);

472 if (error == 0) {

473 error = dsl_dataset _user_rel ease_check_one(ddura, ds,
474 hol ds, snapnane);

188 bool ean_t del et ene;

189 error = dsl _dataset _user_rel ease_check_one(ds,
190 hol ds, &del etene);

191 if (error == 0 && del etene) {

192 fnvlist_add_bool ean(ddur a- >ddur a_t odel et e,
193 nane) ;

194 }

475 dsl _dataset _rel e(ds, FTAQ;

476 }

477 1f (error 1= 0)

478 if (ddura->ddura_errlist !'= NULL) {

479 fnvlist_add_i nt32(ddura->ddura_errlist,
480 snapnane, error);

200 name, error);

481 }

482 /*

483 * Non-exi stent snapshots are put on the errlist,
484 * but don’t cause an overall failure.

485 */

486 if (error !'= ENCENT)

487 return (error);

202 rv = error;

488 }

489 }

491 /* Return ENCENT if none of the holds existed. */

492 if (nvlist_enpty(ddura->ddura_chkhol ds))

493 return (SET_ERROR(ENCENT));

495 return (0);

205 return (rv);

496 }

498 static void

499 dsl| _dat aset _user _rel ease_sync_one(dsl _dataset_t *ds, nvlist_t *holds,
500 dmu_t x_t *tx)

501 {

502 dsl _pool _t *dp = ds->ds_dir->dd_pool;

503 obj set _t *nps = dp->dp_net a_obj set;

505 for (nvpair_t *pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
506 pair = nvlist_next_nvpair(holds, pair)) {

214 uint64_t zapobj ;

507 int error;

508 const char *hol dname = nvpair_name(pair);

10

new usr/src/uts/comon/ fs/zfs/dsl_userhold.c
510 /* Renove tenporary hold if one exists. */
511 error = dsl _pool _user_rel ease(dp, ds->ds_object, hol dnane, tx);
512 VERI FY(error == 0 || error == ENCENT);
216 nvpair_t *pair;
514 VERI FY;);zap renove(nos, ds->ds_phys->ds_userrefs_obj, hol dnang,
515 t
218 for (pair = nvlist_next_nvpair(holds, I\ULL) pair !'= NULL;
219 pair = nvlist_next_nvpair(holds, pair))
516 ds->ds_userrefs--;
221 error dsl _pool _user_rel ease(dp, ds->ds_object,
222 nvpal r_name(pair), tx);
223 VERI FY(error == 0 || error == ENOENT);
224 zapobj = ds->ds_phys->ds_userref S_Obj,
225 VERI FYO(zap_r enove(nos, zapobj, nvpair_name(pair), tx));
518 spa_history_log_internal _ds(ds, "rel ease", tx,
519 "tag=% refs=%1d", holdnane, (longlong_t)ds->ds_userrefs);
228 "tag=% refs=%1d", nvpair_nane(pair),
229 (longl ong_t)ds->ds_userrefs);
520 }
521 }

523 static void

dur a_chkhol ds, NULL);

NULL); pair !'= NULL;
pair)) {
pair), FTAG &ds));
name)) {
=1 &&

B _FALSE, tx);

he comment above

524 dsl _dat aset _user_rel ease_sync(void *arg, dmu_tx_t *tx)
525 {

526 dsl _dat aset _user _rel ease _arg_ t *ddura = arg;

527 dsl “hol df unc_t *hol df unc” = ddur a- >ddur a_hol df unc;
528 #endif /* | codereview */

529 dsl _pool _t *dp = dnu_t x_pool (tx);

237 nvpalr_t *pair;

531 ASSERT(RRW WRI TE_HELD(&dp- >dp_confi g_rw ock));
533 for (nvpair_t *pair = nvI i st _next_nvpair (ddura->d
534 pair !'= NULL; pair = nvlist_next_nvpair(ddura->ddura_chkhol ds,
535 pair)) {

239 for (pair = nvlist_next_nvpair(ddura->ddura_hol ds,
240 pair = nvlist_next_nvpair(ddura->ddura_hol ds,
536 dsl _dataset _t *ds;

537 const char *nane = nvpair_nane(pair);

539 VERI FYO(hol df unc(dp, nane, FTAG &ds));
540 #endif /* | codereview */

242 VERI FYO(dsl _dat aset _hol d(dp, nvpair_name(
542 dsl _dat aset _user_rel ease_sync_one(ds,

543 fnvpair_value_nvlist(pair), tx);

544 if (nvlist_exists(ddura->ddura_todelete,
245 if (nvlist_exists(ddura->ddura_todelete,
246 nvpai r_nanme(pair)))

545 ASSERT(ds->ds_userrefs == 0 &&
546 ds->ds_phys->ds_num chil dren
547 DS_| S_DEFER DESTROY(ds));

548 dsl _destroy_snapshot _sync_li r’r’pl (ds,
549 }

550 dsl _dataset _rel e(ds, FTAQ;

551 }

552 }

554 [*

555 * The full semantics of this function are described in t
556 * |zc_rel ease().

557 *

558 * To summari ze:

new usr/src/uts/ comon/fs/zfs/dsl _userhold.c 11

559
560

*
*

Rel eases hol ds specified in the nvl holds.

561 #endlf /* 1 codereview */

562 holds is nvl of snapnane -> { holdnane, ... }

563 * errlist will be filled in with snapname -> error

564 *

565 * If tnpdp is not NULL the nanmes for holds should be the dsobj’s of snapshots,
566 * otherw se they should be the names of shapshots.

567 *

568 * As a rel ease nmay cause snapshots to be destroyed this trys to ensure they
569 * aren’t nounted.

570 *

571 * The rel ease of non-existent holds are skipped.

572 *

573 * At least one hold nmust have been released for the this function to succeed
574 * and return O.

257 * if any fails, all wll fail.

575 */

576 static int

577 dsl _dataset _user_rel ease_inpl (nvlist_t *holds, nvlist_t *errlist,

578 dsl _pool _t *tnpdp)

259 int

260 dsl _dataset _user_rel ease(nvlist_t *holds, nvlist_t *errlist)

579 {

580 dsl _dat aset _user_rel ease_arg_t ddura;

581 nvpair_t *pair;

582 char *pool ;

583 #endif /* | codereview */

584 int error;

586 pair = nvlist_next_nvpair(holds, NULL);

587 i f (pair == NULL)

588 return (0);

590 /*

591 * The rel ease may cause snapshots to be destroyed; make sure they
592 * are not nounted.

264 ddur a. ddur a_hol ds = hol ds;

265 ddura. ddura_errlist = errlist;

266 ddura. ddura_todel ete = fnvlist_alloc();

268 error = dsl _sync_task(nvpair_nanme(pair), dsl_dataset_user_rel ease_check,
269 dsl _dat aset _user _rel ease_sync, &ddura, fnvlist_num pairs(holds));
270 fnvlist_free(ddura.ddura_todel ete);

271 return (error);

272 }

274 typedef struct dsl_dataset _user_rel ease_tnp_arg {

275 uint64_t ddurta_dsobj;

276 nvlist_t *ddurta_hol ds;

277 bool ean_t ddurta_del et ene;

278 } dsl _dataset_user_release_tnp_arg_t;

280 static int

281 dsl _dat aset _user_rel ease_tnp_check(void *arg, dmu_tx_t *tx)

282 {

283 dsl _dat aset _user _rel ease_tnp_arg_t *ddurta = arg;

284 dsl _pool _t *dp = dnu_tx_pool (tx);

285 dsl _dat aset _t *ds;

286 int error;

288 if (!'dmu_tx_is_syncing(tx))

289 return (0);

291 error = dsl _dataset _hol d_obj (dp, ddurta->ddurta_dsobj, FTAG &ds);
292 if (error)

new usr/src/uts/comon/fs/zfs/dsl

_userhold. c

ddurt a->ddurta_dsobj, FTAG &ds));

ddurta->ddurta_hol ds, tx);

X);

hol d.

ing. */

pair != NULL;

const char *htag)

npdp,

*/

293 return (error);

295 error = dsl_dataset user_rel ease_check_one(ds,

296 ddurta->ddurta_hol ds, &ddurta->ddurta_del etene);
297 dsl _dat aset _rel e(ds, FTAQ;

298 return (error);

299 }

301 static void

302 dsl _dat aset _user_rel ease_tnp_sync(void *arg, dmu_tx_t *tx)
303 {

304 dsl _dat aset _user _release_tnp_arg_t *ddurta = arg;
305 dsl _pool _t *dp = dnu_tx_pool (tx);

306 dsl _dat aset _t *ds;

308 VERI FYO(ds| _dat aset _hol d_obj (dp,

309 dsl _dat aset _user_rel ease_sync_one(ds,

310 i f (ddurta->ddurta_del et ene)

311 ASSERT(ds->ds_userrefs == 0 &&

312 ds->ds_phys->ds_num | Chl ldren == 1 &&
313 DS_| S_DEFER _DESTROY(ds));

314 ds| _destroy_snapshot _sync_ |erI(ds B_FALSE, t
315 1

316 dsl _dat aset _rel e(ds, FTAQ;

317 }

319 /*

320 * Called at spa_load tine to release a stale tenmporary user
321 * Also called by the onexit code.

593 */

594 if (tnpdp I'= NULL)

595 * Tenporary holds are specified by dsobj str
596 ddur a. ddur a_hol df unc = dsl _dat aset _hol d_obj _string;
597 pool = spa_nane(tnpdp->dp_spa);

598 #ifdef _KERNEL

599 dsl _pool conflg enter (tnpdp, FTAQ;

600 for (pair = nvlist_next_nvpair(hol ds NULL) ;
601 pair = nvlist_next_nvpair(holds, pair)) {
323 void

324 dsl _dat aset _user_rel ease_t np(dsl _pool _t *dp, uint64_t dsobj,
325 {

326 dsl _dat aset _user_rel ease_tnp_arg_t ddurta;

602 dsl _dataset _t *ds;

328 int error;

604 error = dsl_dataset_hol d_obj _string(t
605 nvpai r_nanme(pair), FTAG &ds);
330 #ifdef _KERNEL

331 /* Make sure it is not nmounted. */

332 dsl _pool _config_enter(dp, FTAG;

333 error = dsl _dataset_hol d_obj (dp, dsobj, FTAG &ds);
606 if (error == 0)

607 char name[MAXNAMVELEN] ;

608 dsl _dat aset _nanme(ds, nane);
609 dsl _dat aset _rel e(ds, FTAQ;
338 dsl _pool _config_exit(dp, FTAQ;

610 zf s_unnmount _snap(nane) ;

611 }

612

613 dsl _pool _config_exit(tnpdp, FTAG;

614 #endi f

615 #endif /* ! codereview */

616 } else {

617 /* Non-tenporary holds are specified by name.
618 ddur a. ddur a_hol df unc = dsl _dat aset _hol d;

619 pool = nvpair_nane(pair);

12

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c
620 #ifdef _KERNEL
621 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
622 pair = nvlist_next_nvpair(holds, pair)) {
623 zf s_unnount _snap(nvpai r narre(pal r));
340 dsl _pool _config_exit(dp, FTAQ;
624 }
625 #endi f
626
628 ddur a. ddur a_hol ds = hol ds;
629 ddura. ddura_errlist = errlist;
630 ddura. ddura_todel ete = fnvlist_alloc();
631 ddur a. ddura_chkhol ds = fnvlist_alloc();
632 #endif /* ! codereview */
634 error = dsl_sync_task(pool, dsl_dataset_user_rel ease_check,
635 dsl _dat aset _user _rel ease_sync, &ddura,
636 fnvlist_num pairs(holds));
637 fnvlist_free(ddura.ddura t odel et e);
638 fnvlist_free(ddura.ddura_chkhol ds);
640 return (error);
343 ddurta. ddurta_dsobj = dsobj;
344 ddurta. ddurta_hol ds = fnvlist_all oc();
345 fnvlist_add_bool ean(ddurt a. ddurt a_hol ds htag);
347 (voi d) dsl_sync_t ask(spa_nanme(dp->dp_spa),
348 dsl _dat aset _user _rel ease_t np_check,
349 dsl _dat aset _user _rel ease_t np_sync, &ddurta, 1);
350 fnvlist_free(ddurta.ddurta_hol ds);
641 }
643 /[*
644 * holds is nvl of snapnane -> { holdnane, ... }
645 * errlist will be filled in with snapname -> error
646 */
647 int
648 dsl _dataset_user_rel ease(nvlist_t *holds, nvlist_t *errlist)
353 typedef struct zfs_hol d_cleanup_arg {
354 char zhca_spanane[MVAXNAMELEN ;
355 uint64_t zhca_spa_l oad_gui d;
356 uint64_t zhca_dsobj;
357 char zhca_ht ag] MVAXNAMELEN] ;
358 } zfs_hold_cl eanup_arg_t;
360 static void
361 dsl _dataset_user_rel ease_onexit(void *arg)
649 {
650 return (dsl_dataset_user_rel ease_inpl (holds, errlist, NULL));
363 zfs_hol d_cl eanup_arg_t *ca = arg;
364 spa_t *spa;
365 int error;
367 error = spa_open(ca->zhca_spanane, &spa, FTAQ;
368 if (error = 0)
369 zfs dbgmsg(couldn’t release hold on pool =% ds=%lu tag=% "
370 "because pool is no |onger |oaded"
371 ca->zhca_spanane, ca->zhca_dsobj, ca- >zhca_ht ag) ;
372 return;
373 }
374 if (spa_l oad_guid(spa) != ca->zhca_spa_|l oad_guid) {
375 zfs_dbgnmsg("coul dn’t rel ease hold on pool =% ds=%1u tag=%
376 "because pool is no longer |oaded (guid doesn’t nmatch)"
377 ca->zhca_spanane, ca->zhca_dsobj, ca->zhca_htag);
378 spa_cl ose(spa, FTAQ;

379

return;

13

new usr/src/uts/comon/ fs/zfs/dsl_userhold.c

380 }

382 dsl _dat aset _user _rel ease_t np(spa_get _dsl (spa),

383 ca->zhca dSOb] ca->zhca_htag);

384 kmem free(ca, si zeof (zfs_hold_cieanup_arg_t));

385 spa_cl ose(spa, FTAQ;

651 }

653 /*

654 * holds is nvl of snapdsobj -> { holdnanme, ... }

655 */

656 #endif /* ! codereview */

657 void

658 dsl _dat aset _user_rel ease_t np(struct dsl_pool *dp, nvlist_t *hol ds)
388 dsl _regi ster_onexit_hol d_cl eanup(dsl _dataset _t *ds, const char *htag,
389 m nor_t mnor)

659 {

660 ASSERT(dp != NULL);

661 (voi d) dsl_dataset_user_rel ease_i npl (hol ds, NULL, dp

391 zfs_hold_cleanup_arg_t *ca = knem al | oc(si zeof (* ca) "KM A SLEEP) ;
392 spa_t *spa = dsl_dataset_get_spa(ds);

393 (void) strlcpy(ca->zhca_spanane, spa_nane(spa),

394 si zeof (ca->zhca_spanane));

395 ca->zhca_spa_|l oad_gui d = spa_| oad_gui d(spa);

396 ca->zhca_dsobj = ds->ds_obj ect;

397 (void) strlcpy(ca->zhca_htag, htag, sizeof (ca->zhca_htag));
398 VERI FYO(zf s_onexi t _add_cb(m nor,

399) dsl _dat aset _user_rel ease_onexit, ca, NULL));

662

__unchanged_portion_om tted_

new usr/src/uts/comon/ fs/zfs/sys/dsl _dataset.h 1 new usr/src/uts/comon/ fs/zfs/sys/dsl _dataset.h 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 * DS FLAG UNl QJE AC&JRATE |S Set If dS Unl que byt es has been COfreCI|y
10207 Tue Jun 11 08:49: 43 2013 61 * calculated for head datasets (starting with SPA VERSI ON_UN QUE_ACCURATE,
new usr/src/uts/comon/ fs/zfs/sys/dsl _dataset.h 62 * refquotal/refreservations).
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi 63 *
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk> 64 #define DS_FLAG UNI QUE_ACCURATE (1ULL<<2)
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE] 66 /*
1/* 67 * DS_FLAG DEFER DESTROY is set after 'zfs destroy -d has been cal l ed
2 * CDDL HEADER START 68 * on a dataset. This allows the dataset to be destroyed using ’'zfs rel ease’.
3 * 69 */
4 * The contents of this file are subject to the terms of the 70 #define DS_FLAG DEFER DESTROY (1ULL<<3)
5 * Common Devel opnent and Distribution License (the "License"). 71 #define DS_|I S DEFER DESTROY(ds) \
6 * You may not use this file except in conpliance with the License. 72 ((ds)->ds_phys->ds_flags & DS_FLAG DEFER _DESTROY)
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE 74 | *
9 * or http://ww. opensol aris.org/os/licensing. 75 * DS FLAG ClI _DATASET is set if the dataset contains a file system whose
10 * See the License for the specific |anguage governing perm ssions 76 * name | ookups shoul d be perforned case-insensitively.
11 * and limtations under the License. 77 */
12 * 78 #define DS_FLAG Cl _DATASET (1ULL<<16)
13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 #define DS_CREATE_FLAG NODI RTY (1ULL<<24)
15 * |f applicable, add the followi ng below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 typedef struct dsl_dataset phys {
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 uint64_t ds_dir_obj; /* DMJ_OT_DSL_DIR */
18 * 84 uint64_t ds_prev_snap_obj; /* DMJU_OT_DSL_DATASET */
19 * CDDL HEADER END 85 ui nt64_t ds_prev_snap_t xg;
20 */ 86 uint64_t ds_next_snap_obj; /* DMJ_OT_DSL_DATASET */
21 /* 87 ui nt 64_t ds_snapnanes_zapobj ; /* DMJU_OT_DSL_DS SNAP_MAP O for snaps */
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved. 88 uint64_t ds_numchildren; /* cl one/snap children; ==0 for head */
23 * Copyright (c) 2012 by Del phix. Al rights reserved. 89 uint64_t ds_creation_tine; /* seconds since 1970 */
24 * Copyright (c) 2012, Joyent, Inc. Al rights reserved. 90 uint64_t ds_creation_txg;
25 * Copyright (c) 2013 Steven Hartland. Al ri ghts reserved. 91 uint64_t ds_deadlist_obj; /* DMJ_OT_DEADLI ST */
26 #endif /* | codereview */ 92 /*
27 x| 93 * ds_referenced_bytes, ds_conpressed_bytes, and ds_unconpressed_bytes
94 * include al | blocks referenced by this dat aset, including those
29 #ifndef _SYS DSL_DATASET_H 95 * shared with any other datasets.
30 #define _SYS DSL_DATASET H 96 */
97 uint64_t ds_referenced_bytes;
32 #include <sys/dnu. h> 98 uint64_t ds_conpressed_bytes;
33 #include <sys/spa. h> 99 ui nt 64_t ds_unconpr essed_bytes;
34 #include <sys/txg.h> 100 uint64_t ds_uni que_bytes; /* only relevant to snapshots */
35 #include <sys/zio.h> 101 *
36 #include <sys/bplist.h> 102 * The ds_fsid_guid is a 56-bit 1D that can change to avoid
37 #include <sys/dsl_synctask. h> 103 * collisions. The ds_guid is a 64-bit ID that will never
38 #include <sys/zfs_context.h> 104 * change, so there is a snall probability that it will collide.
39 #include <sys/dsl_deadlist.h> 105 */
40 #incl ude <sys/refcount. h> 106 uint64_t ds_fsid_guid,
107 uint64_t ds_guid;
42 #ifdef __cplusplus 108 uint64_t ds_fl ags; /* DS_FLAG * */
43 extern "C' { 109 bl kptr_t ds_bp;
44 #endi f 110 ui nt64_t ds_next _cl ones_obj; /* DMJ_OT_DSL_CLONES */
111 uint64_t ds_props_obj; /* DMJ_OT_DSL_PROPS for snaps */
46 struct dsl_dataset; 112 uint64_t ds_userrefs_obj /* DMJ_OT_USERREFS */
47 struct dsl _dir; 113 uint64_t ds_pad[5]; 7* pad out to 320 bytes for good measure */
48 struct dsl _pool ; 114 } dsl _dat aset_phys_t;
50 #define DS_FLAG | NCONSI STENT (1ULL<<0) 116 typedef struct dsl_dataset {
51 #define DS_I S_| NCONSI STENT(ds) \ 117 /* I'mut able: */
52 ((ds)->ds_phys->ds_fl ags & DS_FLAG_| NCONSI STENT) 118 struct dsl _dir *ds_dir;
53 /* 119 dsl _dat aset _phys_t *ds_phys;
54 * Note: nopronpote can not yet be set, but we want support for it in this 120 drmu_buf _t *ds_dbuf;
55 * on-disk version, so that we don’'t need to upgrade for it later. 121 ui nt64_t ds_obj ect;
56 */ 122 uint64_t ds_fsid_guid,;
57 #define DS_FLAG NOPROMVOTE (1ULL<<1)
124 /* only used in syncing context, only valid for non-snapshots: */
59 /* 125 struct dsl_dataset *ds_prey;

new usr/src/ uts/ comon/fs/zfs/sys/dsl _dat

127
128
129

131
132
133

135
136
137
138
139
140
141
142

144
145
146
147
148
149
150

152
153

155
156

158
159

161
162

164
165
166
168
169
170

171
172

174
175

177
178

180
181
182
183
184
185
186
187
188
189
190
191

/* has internal |ocking: */
dsl _deadlist_t ds_deadli st;

aset. h

bplist_t ds_pending_deadlist;

/* protected by |ock on pool’

txg_node_t ds_dirty_link;
l'ist_node_t ds_synced_|ink;

/*

s dp_dirty_datasets list

*/

* ds_phys->ds_<accounting> is also protected by ds_I ock.

* Protected by ds_I ock:
*/

kmut ex_t ds_| ock;

obj set _t *ds_obj set;
uint64_t ds_userrefs;
voi d *ds_owner;

/*

* Long holds prevent the ds from being destroyed;

they allow the

* ds to remain held even after dropping the dp_config_rw ock.

* Owning counts as a |ong hol d.

* dsl _pool _hol d() for detai
*

/
refcount _t ds_| onghol ds;

/* no locking; only for maki
uint64_t ds_trysnap_txg;

/* for objset_open() */
kmut ex_t ds_openi ng_| ock;

Is.

ng guesses */

uint64_t ds_reserved; /* cached refreservation */
ui nt64_t ds_quot a; /* cached refquota */

kmut ex_t ds_sendstream | ock;
list_t ds_sendstreans;

/* Protected by ds_| ock; keep at end of struct for

char ds_snapnanme[MAXNAMELEN ;

} dsl _dataset _t;
/*

See the comrents above

better locality */

* The max length of a tenporary tag prefix is the nunber of hex digits

* required to express U NT64_MAX pl
S
#defi ne MAX_TAG PREFI X_LEN 17

#defi ne dsl _dataset i s_snapshot (ds)

us one for the hyphen.

\

((ds)->ds_phys->ds_numchildren != 0)

#define DS_UNI QUE_| S_ACCURATE(ds)
(((ds)->ds_phys->ds_flags &

i nt dsl_dataset_hol d(struct dsl _pool
dsl _dat aset _t **ds

int dsl _dataset _hol d_obj (st ruct dsl
dsl _dat aset _t **);

voi d dsT_dat aset _rel e(dsl _dat aset _t

int dsl_dataset_own(struct dsl_pool
void *tag, dsl_dataset_t **dsp);

\
DS_FLAG_UN QUE_ACCURATE)

1= 0)

*dp, const char *nane, void *tag,

_pool *dp, uint64_t dsobj,

*ds, void *tag);
*dp, const char *nane,

int dsl_dataset_own_obj (struct dsl_pool *dp, uint64_t dsobj,

void *tag, dsl_dataset_t **dsp)

voi d dsl _dat aset _di sown(dsl _dat aset;

voi d dsl _dat aset _nane(dsl _dat aset _t
bool ean_t dsl _dat aset _tryown(dsl _dat

t *ds, void *tag);
*ds, char *nane);
aset _t *ds, void *tag);

void *tag,

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h

25

26
192
193
194
195
196
197
198
199
200
201
202
203

205
206

220

222
223
224
225
226
227
228
229
230
231
232
233

237
238
239
240
241
242
243

245
246
247
248

250
251
252
253
254
255

voi d dsl _register_onexit_hol d_cl eanup(dsl _dataset_t *ds, const char *htag,
m nor_t mnor);
uint64_t dsl_dataset_create_sync(dsl _dir_t *pds, const char *Iastnane,
dsl _dataset _t *origin, uint64_t flags, cred_t *, dnu_tx_t *);
uint64_t dsl_dataset_create_sync_dd(dsl _dir_t *dd, dsl_dataset_t *origin,
uint64_t flags, dmu_tx_t *tx);
int dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors);
int dsl_dataset_pronpote(const char *name, char *conflsnap);
int dsl_dataset_cl one_swap(dsl _dataset_t *cl one, dsl_dataset_t *origin_head,
bool ean_t force);
int dsl_dataset_renane_snapshot (const char *fsnaneg,
const char *ol dsnapnane, const char *newsnapnanme, bool ean_t recursive);
i nt dsl_dataset_snapshot_tnp(const char *fsnanme, const char *snapnane,
m nor _t cl eanup_m nor, const char *htag);

bl kptr_t *dsl _dataset_get_bl kptr(dsl _dataset _t *ds);
voi d dsl _dataset_set_bl kptr(dsl _dataset_t *ds, bl kptr t *bp, dmu_tx_t *tx);

spa_t *dsl _dataset _get_spa(dsl _dataset_t *ds);
bool ean_t dsl _dataset _nodified_since_| ast snap(dsl _dataset_t *ds);
voi d dsl _dataset_sync(dsl _dataset_t *os, zio_t *zio, dmu_tx_t *tx);

voi d dsl _dat aset_bl ock_born(dsl _dataset_t *ds, const bl kptr_t *bp,
dmu_tx_t *tx);

int dsl _dataset bl ock _kill(dsl_dataset_t *ds, const blkptr_t *bp,
dmu_tx_t *tx, boolean_t async);

bool ean_t dsl dat aset bl ock freeabl e(dsl _dataset_t *ds, const blkptr_t *bp,
uint64_t blk_birth);

ui nt 64_t dsl_dataset_prev_snap_txg(dsl_dataset_t *ds);

voi d dsl _dataset_dirty(dsl _dataset_t *ds, dmu_tx_t *tx);

voi d dsl _dataset _stats(dsl _dataset_t *os, nvlist_t *nv);

voi d dsl _dat aset fast_stat(dsl _dataset _t *ds, dmu_objset_stats_t *stat);

voi d dsl _dat aset _space(dsl _dataset _t *ds,
uint64_t *refdbytesp, uint64_t *avail bytesp,
ui nt64_t *usedobjsp, uint64_t *avail objsp);

uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds);

int dsl_dataset_space_witten(dsl _dataset_t *ol dsnap, dsl_dataset_t *new,
uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp);

int dsl_dataset_space_woul dfree(dsl _dataset_t *firstsnap, dsl_dataset_t *I|ast,
uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp);

bool ean_t dsl_dataset_is_dirty(dsl_dataset_t *ds);

int dsl_dsobj_to_dsnane(char *pnane, uint64_t obj, char *buf);

int dsl_dataset_check_quot a(dsl_dat aset _t *ds, boolean_t check_quota,
uint64_t asize, uint64_t inflight, uint64_t *used,
uint64_t *ref rsrv)

int dsl_dataset_set_r efquot a(const char *dsname, zprop_source_t source,
uint64_t quota);

int dsl_dataset_set_refreservati on(const char *dsnane, zprop_source_t source,
uint64_t reservation);

bool ean_t dsl _dataset_is_before(dsl _dataset _t *later, dsl_dataset_t *earlier);
voi d dsT_dat aset | ong_hol d(ds| _dataset _t *ds, void *tag);

voi d dsl _dataset_| ong_rel e(dsl _dataset_t *ds, void *tag);

bool ean_t dsl _dataset _| ong_hel d(dsl _dataset _t *ds);

int dsl_dataset_cl one_swap_check_i npl (dsl _dataset _t *cl one,
dsl _dataset _t *origin_head, boolean_t force);

voi d dsT_dataset _cl one_swap_sync_i npl (dsl _dat aset _t *cl one,
dsl _dataset _t *origin_head, dmu_tx_t *tx);

int dsl _dat aset _snapshot _check_i npl (ds| _dat aset _t *ds, const char *snapnane,
dmu_tx_t *tx);

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h

256 voi d dsl _dataset_snapshot _sync_i npl (dsl _dataset _t *ds, const char *snapnane,
257 dmu_tx_t *tx);

259 void dsl _dataset_renpve_from next _cl ones(dsl _dataset_t *ds, uint64_t obj,

260 dmu_tx_t *tx);

261 voi d dsl _dataset_recal c_head_uni q(dsl _dataset _t *ds);

262 int dsl_dataset_get_snapnane(dsl _dataset_t *ds);

263 int dsl_dataset_snap_| ookup(dsl _dataset_t *ds, const char *nane,

264 uint64_t *val ue);

265 int dsl_dataset_snap_renpove(dsl _dataset_t *ds, const char *name, dmu_tx_t *tx);
266 voi d dsl _dataset_set_refreservation_sync_i npl (dsl _dataset_t *ds,

267 zprop_source_t source, uint64_t value, dnu_tx_t *tx);

268 int dsl_dataset_roll back(const char *fsnane);

270 #ifdef ZFS_DEBUG

271 #define dprintf_ds(ds, fnt, ...) do { \

272 if (zfs_flags & ZFS DEBUG DPRI NTF) { \

273 char *__ds_nane = knem al | oc(MAXNAMELEN, KM SLEEP); \
274 dsl _dat aset _nane(ds, __ds_nane); \

275 dprintf("ds=% " fnmt, __ds_nane, _ VA ARGS); \
276 kmem free(__ds_name, MAXNAMELEN); \

277 \

278 _NOTE(CONSTCOND) } while (0)

279 t#el se

280 #define dprintf_ds(dd, fnt, ...)

281 #endif

283 #ifdef __cplusplus
284 }
__unchanged_portion_omtted_

new usr/src/uts/comon/ fs/zfs/sys/dsl _userhold.h

R R R R

1886 Tue Jun 11 08:49:43 2013
new usr/src/uts/comon/ fs/zfs/sys/dsl _userhold.h
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»

LR

2 /*

3 * CDDL HEADER START

4 *

5 * The contents of this file are subject to the terns of the

6 * Common Devel opnent and Distribution License (the "License").

7 * You may not use this file except in conpliance with the License.

8 *

9 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 * or http://ww. opensol aris.org/os/licensing.

11 * See the License for the specific |anguage governing perm ssions

12 * and limtations under the License.

13 =

14 * \WWen distributing Covered Code, include this CDDL HEADER i n each

15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 * If applicable, add the followi ng below this CDDL HEADER, wth the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [nane of copyright owner]

19 =

20 * CDDL HEADER END

21/

22 /*

23 * Copyright (c) 2005, 2010, O acle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2012 by Del phix. Al rights reserved.

25 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.

26 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
27 #endif /* | codereview */
28 =/

30 #ifndef _SYS DSL_USERHOLD H
31 #define _SYS DSL_USERHOLD H

33 #include <sys/nvpair.h>
34 #include <sys/types. h>

36 #ifdef _ cplusplus
37 extern "C' {
38 #endi f

40 struct dsl _pool;
41 struct dsl_dataset;
42 struct dnu_tx;

44 int dsl_dataset _user_hold(nvlist_t *holds, mnor_t cleanup_m nor,

45 nvliist_t *errlist);

46 int dsl_dataset_user_rel ease(nvlist_t *holds, nvlist_t *errlist);

47 int dsl_dataset_get_hol ds(const char *dsname, nvlist_t *nvl);

48 voi d dsl _dataset _user_rel ease_tnp(struct dsl_pool *dp, nvlist_t *holds);

26 void dsl _dataset _user_rel ease_tnp(struct dsl_pool *dp, uint64_t dsobj,

27 const char *htag);

49 int dsl_dataset _user_hol d_check_one(struct dsl_dataset *ds, const char *htag,

50 bool ean_t tenphold, struct dnu_tx *tx);
51 void dsl _dataset _user_hol d_sync_one(struct dsl_dataset *ds, const char *htag,
52 mnor_t mnor, uint64_t now, struct dnu_tx *tx);

54 #ifdef __cplusplus
55 }
____unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

R R R R

143944 Tue Jun 11 08:49:44 2013
new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@mul tipl ay. co. uk>
Revi ewed by: Matthew Ahrens <mahrens@lel phi x. con»
IR EEEEEEEEEEE SRS RS RS SRS RS RS EEEEEERREEREERREEREEEEEEEEESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRR R
COONOUITAWNROW©O~NOUTSWN

22 | *

23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Portions Copyright 2011 Martin Matuska

25 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

26 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.

27 * Copyright (c) 2013 by Del phix. Al rights reserved.

28 * Copyright (c) 2013 by Saso Kiselkov. Al rights reserved.

29 * Copyright (c) 2013 Steven Hartland. All rights reserved.
30 #endif /* | codereview */

31 */
33 /*
34 * ZFS ioctls.
35 *
36 * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage
37 * pools and filesystens, e.g. with /sbin/zfs and /sbin/zpool.
38 *
39 * There are two ways that we handle ioctls: the | egacy way where al nost
40 * all of the logic is in the ioctl callback, and the new way where nost
41 * of the nmarshalling is handled in the comon entry point, zfsdev_ioctl().
42 *
43 * Non-legacy ioctls should be registered by calling
44 * zfs_ioctl _register() fromzfs_ioctl_init(). The ioctl is invoked
45 * fromuserland by lzc_ioctl ().
46 *
47 * The registration argunents are as follows:
48 *
49 * const char *name
50 * The nane of the ioctl. This is used for history logging. |If the
51 * ioctl returns successfully (the callback returns 0), and allow_| og
52 = is true, then a history log entry will be recorded with the input &
53 * output nvlists. The log entry can be printed with "zpool history -i".
54 *
55 * zfs_ ioc_t ioc
56 * The ioctl request number, which userland will pass to ioctl(2).
B = The ioctl nunbers can change fromrel ease to rel ease, because
*
*

the caller (libzfs) nust be matched to the kernel.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

zfs_secpolicy_func_t *secpolicy
This function will be called before the zfs_ioc_func_t, to
determine if this operation is permtted. It should return EPERM
on failure, and O on success. Checks include determning if the
dataset is visible in this zone, and if the user has either all
zfs privileges in the zone (SYS_MOUNT), or has been granted pernission
to do this operation on this dataset with "zfs allow'.

zfs_i oc_nanecheck_t namecheck
This specifies what to expect in the zfs_cnd_t:zc_name -- a pool
nanme, a dataset name, or nothing. |If the nane is not well-forned,
the ioctl will fail and the callback will not be called.
Therefore, the callback can assune that the name is well-fornmed
(e.g. is null-term nated, doesn’'t have nore than one ' @ character,
doesn’t have invalid characters).

zfs_i oc_pool check_t pool _check

This specifies requirenents on the pool state. |f the pool does
not meet them (is suspended or is readonly), the ioctl will fail
and the callback will not be called. |If any checks are specified

(i.e. it is not POOL_CHECK NONE), nanmecheck nust not be NO _NAME.
Mil ti pl e checks can be or-ed together (e.g. POOL_CHECK SUSPENDED |
POOL_CHECK_READONLY) .

bool ean_t snush_out nvl i st
If smush_outnvlist is true, then the output is presuned to be a
list of errors, and it will be "snmushed" down to fit into the
caller’s buffer, by renopving some entries and replacing themwith a
single "N _MORE_ERRORS' entry indicating how nany were renpved. See
nvlist_snush() for details. |If smush_outnvlist is false, and the
outnvlist does not fit into the userland-provided buffer, then the
ioctl will fail wth ENOVEM

zfs_ioc_func_t *func
The cal | back function that will performthe operation.

The cal | back should return O on success, or an error nunber on
failure. |If the function fails, the userland ioctl will return -1,
and errno will be set to the callback’s return value. The call back
will be called with the follow ng argunents:

const char *nane
The nane of the pool or dataset to operate on, from
zfs_cmd_t:zc_name. The 'nanecheck’ argunent specifies the
expected type (pool, dataset, or none).

nvlist_t *innvl
The input nvlist, deserialized fromzfs_cmd_t:zc_nvlist_src. O
NULL if no input nvlist was provided. Changes to this nvlist are
ignored. If the input nvlist could not be deserialized, the
ioctl will fail and the callback will not be called.

nvlist_t *outnvl
The output nvlist, initially enpty. The callback can fill it in,
and it will be returned to userland by serializing it into
zfs_cmd_t:zc_nvlist_dst. If it is non-enpty, and serialization
fails (e.g. because the caller didn't supply a | arge enough
buffer), then the overall ioctl will fail. See the
"snush_nvlist’ argunment above for additional behaviors.

There are two typical uses of the output nvlist:

- To return state, e.g. property values. In this case,
smush_outnvlist should be false. |If the buffer was not |arge
enough, the caller will reallocate a |arger buffer and try
the ioctl again.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 3 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
126 * - To return multiple errors froman ioctl which nakes on-di sk 192 extern void zfs_fini(void);
127 * changes. In this case, snush_outnvlist should be true.
128 * loctls which nake on-di sk nodifications should generally not 194 1di_ident_t zfs_li = NULL;
129 ~ use the outnvl if they succeed, because the caller can not 195 dev_info_t *zfs_dip;
130 * di stingui sh between the operation failing, and
131 * deserialization failing. 197 uint _t zfs_fsyncer_key;
132 */ 198 extern uint_t rrw_tsd_key;
199 static uint_t zfs_allow | og_key;
134 #include <sys/types. h>
135 #i ncl ude <sys/param h> 201 typedef int zfs_ioc_legacy_func_t(zfs_cnd_t *);
136 #i nclude <sys/errno.h> 202 typedef int zfs_ioc_func_t(const char *, nvlist_t *, nvlist_t *);
137 #incl ude <sys/uio. h> 203 typedef int zfs_secpolicy _func_t(zfs_cnd_t *, nvlist_t *, cred_t *);
138 #incl ude <sys/buf. h>
139 #i ncl ude <sys/nodctl.h> 205 typedef enum {
140 #i ncl ude <sys/open. h> 206 NO_NAME,
141 #include <sys/file.h> 207 POOL_NAME,
142 #incl ude <sys/knem h> 208 DATASET_NAME
143 #i ncl ude <sys/conf. h> 209 } zfs_ioc_nanmecheck_t;
144 #include <sys/cmm_err. h>
145 #incl ude <sys/stat.h> 211 typedef enum {
146 #include <sys/zfs_ioctl.h> 212 POOL_CHECK_NONE =1<<0,
147 #incl ude <sys/zfs_vfsops. h> 213 POOL_CHECK_SUSPENDED =1 << 1,
148 #i ncl ude <sys/zfs_znode. h> 214 POOL_CHECK_READONLY =1 << 2,
149 #incl ude <sys/zap. h> 215 } zfs_ioc_pool check_t;
150 #i ncl ude <sys/spa. h>
151 #include <sys/spa_inpl.h> 217 typedef struct zfs_ioc_vec {
152 #incl ude <sys/vdev. h> 218 zfs_ioc_|l egacy_func_t *zvec_| egacy_func;
153 #include <sys/priv_inpl.h> 219 zfs_ioc_func_t *zvec_func;
154 #incl ude <sys/dnu. h> 220 zfs_secpolicy_func_t *zvec_secpolicy;
155 #include <sys/dsl _dir.h> 221 zfs_i oc_nanmecheck_t zvec_nanecheck;
156 #i ncl ude <sys/dsl _dat aset. h> 222 bool ean_t zvec_al | ow_| og;
157 #i ncl ude <sys/dsl _prop. h> 223 zfs_i oc_pool check_t zvec_pool _check;
158 #incl ude <sys/dsl _del eg. h> 224 bool ean_t zvec_snmush_out nvli st;
159 #incl ude <sys/dnu_obj set. h> 225 const char *zvec_nane;
160 #i ncl ude <sys/dmu_i npl . h> 226 } zfs_ioc_vec_t;
161 #include <sys/dnu_t x. h>
162 #i ncl ude <sys/ddi.h> 228 /* This array is indexed by zfs_userquota_prop_t */
163 #i ncl ude <sys/sunddi.h> 229 static const char *userquota_perns[] = {
164 #i ncl ude <sys/sunl di.h> 230 ZFS_DELEG _PERM USERUSED,
165 #i ncl ude <sys/policy. h> 231 ZFS_DELEG_PERM USERQUOTA,
166 #i ncl ude <sys/zone. h> 232 ZFS_DELEG_PERM GROUPUSED,
167 #include <sys/nvpair.h> 233 ZFS_DELEG_PERM GROUPQUOTA,
168 #i ncl ude <sys/ pat hname. h> 234 };
169 #incl ude <sys/nmount.h>
170 #i ncl ude <sys/sdt.h> 236 static int zfs_ioc_userspace_upgrade(zfs_cnd_t *zc);
171 #include <sys/fs/zfs.h> 237 static int zfs_check_settabl e(const char *nane, nvpair_t *property,
172 #include <sys/zfs_ctldir.h> 238 cred_t *cr);
173 #i ncl ude <sys/zfs_dir.h> 239 static int zfs_check_cl earabl e(char *dataset, nvlist_t *props,
174 #include <sys/zfs_onexit.h> 240 nvlist_t **errors);
175 #incl ude <sys/zvol.h> 241 static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *,
176 #incl ude <sys/dsl _scan. h> 242 bool ean_t *);
177 #incl ude <sharefs/share. h> 243 int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *);
178 #incl ude <sys/dnu_obj set. h> 244 static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp);
179 #incl ude <sys/dnu_send. h>
180 #i nclude <sys/dsl _destroy. h> 246 static int zfs_prop_activate_feature(spa_t *spa, zfeature_info_t *feature);
181 #i ncl ude <sys/dsl _userhol d. h>
182 #i ncl ude <sys/ zfeature. h> 248 /* _NOTE(PRI NTFLIKE(4)) - this is printf-like, but lint is too whiney */
249 void
184 #include "zfs_nanecheck. h" 250 __dprintf(const char *file, const char *func, int line, const char *fnt, ...)
185 #i nclude "zfs_prop. h" 251 {
186 #i ncl ude "zfs_del eg. h" 252 const char *newfile;
187 #include "zfs_conutil.h" 253 char buf[512];
254 va_list adx;
189 extern struct nodlfs zfs_nodl fs;
256 /*
191 extern void zfs_init(void); 257 * Get rid of annoying "../comon/" prefix to fil enane.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

258
259
260
261
262
263
264

266
267
268

270
271
272
273
274
275
276
277
278
279
280
281
282

284
285

287
288

290
291

293

295
296

298
299
300
301
302
303

305

307
308

}

*/
newfile = strrchr(file, '/");
if (newfile !'= NULL)
newfile = newfile + 1; /* Get rid of leading / */
} else {
newfile = file;
}

va_start(adx, fnt);
(void) vsnprintf(buf, sizeof (buf), fnt, adx);
va_end(adx) ;

/
To get this data, use the zfs-dprintf probe as so:
dtrace -q -n ’zfs-dprintf \

/stringof (arg0) == "dbuf.c"/ \
printf("%: %", stringof(argl), stringof(arg3))}’
file name
function nane
Ii ne nunber
nessage

ar go
argl
ar g2
* arg3
*/
DTRACE_PROBE4(zfs__dprintf,

char *, newfile, char *, func, int, line, char *, buf);

o
i n=

static void
hi story_str_free(char *buf)

}

kmem free(buf, H S_MAX_RECORD_LEN);

static char *
hi story_str_get(zfs_cnd_t *zc)
292 {

}

310 /

311
312
313
314
315
316

318
319
320
321
322
323

char *buf;

if (zc->zc_history == NULL)
return (NULL);

buf = kmem al | oc(H S_MAX_RECORD_LEN, KM SLEEP);
if (copyinstr((void *)(uintptr_t)zc->zc_history,
buf, H 'S MAX_RECORD LEN, NULL) != 0) {
history_str_free(buf);
) return (NULL);

buf [H'S_MAX_RECORD LEN -1] = '\0’;

return (buf);

* Check to see if the naned dataset is currently defined as bootable
/

static bool ean_t
zfs_i s_bootfs(const char *nane)

{

obj set _t *os;

if (dmu_objset_hol d(name, FTAG &os) == 0) {
bool ean_t ret;
ret = (dnu_objset_id(os) == spa_bootfs(dmu_objset_spa(os)));
drmu_obj set _rel e(os, FTAQ;
return (ret);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

324
325

327
328
329
330
331
332
333

335

337
338
339
340
341
342
343
344
345

347
348
349
350
351
352
353

355
356

358
359

361
362
363
364
365
366
367
368
369
370
371

373
374

376
377

379
380

382
383
384
385
386
387
388

}
/| *

return (B_FALSE);

* zfs_earlier_version
*

*

*/

Return non-zero if the spa version is |less than requested version.

static int
zfs_earlier_version(const char *nane, int version)
334 {

}
| *

spa_t *spa;
if (spa_open(nane, &spa, FTAG == 0) {
if (spa_version(spa) < version) {
spa_cl ose(spa, FTAQ;
return (1);
}
spa_cl ose(spa, FTAGQ;

}
return (0);

* zpl _earlier_version
*

* Return TRUE if the ZPL version is |less than requested version.

*/

static bool ean_t
zpl _earlier_version(const char *nanme, int version)
354 {

}

obj set _t *os;
bool ean_t rc = B_TRUE;

if (dmu_objset_hol d(name, FTAG &os) == 0) {
uint64_t zpl version;

if (dmu_objset_type(os) !'= DMJ OST_ZFS) {
drmu_obj set _rel e(os, FTAQ;
return (B_TRUE);

/* XXX readi ng from non-owned objset */

if (zfs_get_zpl prop(os, ZFS_PROP_VERSI ON, &zplversion) ==
rc = zplversion < version;

dmu_obj set _rel e(os, FTAQ;

return (rc);

static void
zfs_log_history(zfs_cmd_t *zc)
375 {

spa_t *spa;
char *buf;

if ((buf = history_str_get(zc)) == NULL)
return;

if (spa_open(zc->zc_nane, &spa, FTAQ == {
if (spa_version(spa) >= SPA VERSI ON_ZPOOL_HI STORY)
(voi d) spa_history_log(spa, buf);
spa_cl ose(spa, FTAG;

}
history_str_free(buf);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

390 /*

391 * Policy for top-level read operations (list pools). Requires no privileges,
392 * and can be used in the local zone, as there is no associated dataset.
393 */

394 /* ARGSUSED */

395 static int

396 zfs_secpolicy_none(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

397 {

398 return (0);

399 }

401 /*

402 * Policy for dataset read operations (list children, get statistics). Requires
403 * no privileges, but nust be visible in the |ocal zone.

404 */

405 /* ARGSUSED */

406 static int

407 zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)

408 {

409 if (I NGLOBALZONE(curproc) ||

410 zone_dat aset _vi si bl e(zc->zc_nane, NULL))

411 return (0);

413 return (SET_ERROR(ENCENT)) ;

414 }

416 static int

417 zfs_dozonecheck_i npl (const char *dataset, uint64_t zoned, cred_t *cr)
418 {

419 int witable = 1;

421 I*

422 * The dataset nust be visible by this zone -- check this first
423 * so they don't see EPERM on sonething they shoul dn’t know about.
424 */

425 if (!1NGLOBALZONE(curproc) &&

426 | zone_dat aset _vi si bl e(dataset, &witable))

427 return (SET_ERROR(ENCENT));

429 if (1 NGLOBALZONE(curproc)) {

430 1*

431 * |f the fs is zoned, only root can access it fromthe
432 * gl obal zone.

433 */

434 if (secpolicy_zfs(cr) && zoned)

435 return (SET_ERROR(EPERM));

436 } else {

437 I*

438 * |If we are in a local zone, the 'zoned property nmust be set.
439 */

440 if (!zoned)

441 return (SET_ERROR(EPERM) ;

443 /* must be witable by this zone */

444 if (!witable)

445 return (SET_ERROR(EPERM) ;

446 }

447 return (0);

448 }

450 static int

451 zfs_dozonecheck(const char *dataset, cred_t *cr)

452 {

453 uint64_t zoned;

455 if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL))

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

456 return (SET_ERROR(ENCENT));

458 return (zfs_dozonecheck_i npl (dataset, zoned, cr));

459 }

461 static int

462 zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr)
463 {

464 ui nt64_t zoned,;

466 if (dsl_prop_get_int_ds(ds, "zoned", &zoned))

467 return (SET_ERROR(ENCENT));

469 return (zfs_dozonecheck_i npl (dataset, zoned, cr));

470 }

472 static int

473 zfs_secpolicy_wite_pernms_ds(const char *nanme, dsl_dataset_t *ds,

474 const char *perm cred_t *cr)

475 {

476 int error;

478 error = zfs_dozonecheck_ds(nane, ds, cr);

479 if (error ==

480 error = secpolicy_zfs(cr);

481 if (error !'=0)

482 error = dsl _del eg_access_i npl (ds, perm cr);
483 }

484 return (error);

485 }

487 static int

488 zfs_secpolicy_wite_perms(const char *nane, const char *perm cred_t *cr)
489 {

490 int error;

491 dsl _dat aset _t *ds;

492 dsl _pool _t *dp;

494 error = dsl _pool _hol d(nane, FTAG &dp);

495 if (error 1= 0)

496 return (error);

498 error = dsl _dataset _hol d(dp, nane, FTAG &ds);

499 if (error 1=0

500 dsl _pool _rel e(dp, FTAG;

501 return (error);

502 }

504 error = zfs_secpolicy_wite_perns_ds(nane, ds, perm cr);
506 dsl _dataset _rel e(ds, FTAQ;

507 dsl _pool _rel e(dp, FTAG;

508 return (error);

509 }

511 /*

512 * Policy for setting the security |abel property.

513 *

514 * Returns O for success, non-zero for access and other errors.
515

516 static int

517 zfs_set_sl abel _policy(const char *name, char *strval, cred_t *cr)
518 {

519 char ds_hexs| [MAXNAMELEN] ;

520 bsl abel _t ds_sl, new_sl;

521 bool ean_t new _default = FALSE;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

522 ui nt 64_t zoned;

523 i nt needed_priv = -1;

524 int error;

526 /* First get the existing dataset |abel. */

527 error = dsl _prop_get(nane, zfs_prop_to_nanme(ZFS_PROP_M.SLABEL),
528 1, sizeof (ds_hexsl), &ds_hexsl, NULL);

529 if (error '=0)

530 return (SET_ERROR(EPERM);

532 if (strcasecnp(strval, ZFS_MSLABEL_DEFAULT) == 0)

533 new_default = TRUE;

535 /* The | abel nust be translatable */

536 if (!'new default &% (hexstr_to_label (strval, &ew sl) != 0))
537 return (SET_ERROR(EINVAL));

539 /*

540 * In a non-global zone, disallow attenpts to set a | abel that
541 * doesn’t match that of the zone; otherw se no other checks
542 * are needed.

543 */

544 if (!1NGLOBALZONE(curproc)) {

545 if (new_default || !blequal (&ew sl, CR SL(CRED())))
546 return (SET_ERROR(EPERM));

547 return (0);

548 }

550 /*

551 * For gl obal -zone datasets (i.e., those whose zoned property is
552 * "of f*, verify that the specified new label is valid for the
553 * gl obal zone.

554 */

555 if (dsl_prop_get_integer(nane,

556 zfs_prop_to_nane(ZFS_PROP_ZONED), &zoned, NULL))

557 return (SET_ERROR(EPERM);

558 if (!zoned) {

559 if (zfs_check_gl obal _| abel (nane, strval) != 0)

560 return (SET_ERROR(EPERM) ;

561 }

563 /*

564 * | f the existing dataset |abel is nondefault, check if the
565 * dataset is nounted (|abel cannot be changed while nounted).
566 * Get the zfsvfs; if there isn't one, then the dataset isn't
567 * mounted (or isn't a dataset, doesn't exist,

568 */

569 if (strcasecnp(ds_hexsl, ZFS_MSLABEL_DEFAULT) != 0) {

570 obj set _t *os;

571 static char *setsl_tag = "setsl _tag";

573 /*

574 * Try to own the dataset; abort if there is any error,
575 */(e.g., al ready nounted, in use, or other error).
576 *

577 error drmu_obj set _own(nanme, DMJ_OST_ZFS, B_TRUE,

578 setsl _tag, &os);

579 if (error 1=0)

580 return (SET_ERROR(EPERM));

582 drmu_obj set _di sown(os, setsl_tag);

584 if (new default) {

585 needed_priv = PRI V_FI LE_DOANNGRADE_SL;

586 got o out _check;

587 }

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

589 if (hexstr_to_label (strval, &new sl) != 0)
590 return (SET_ERROR(EPERM)

592 if (blstrictdon(&ds_ sI &new sl))

593 needed_priv = PRI V_FTLE DOWNGRADE_SL;
594 else if (blstrictdom(&ew sl, &ds_sl))

595 needed_priv = PRIV_ Fi LE_UPGRADE_SL;
596 } else {

597 /* dataset currently has a default |abel */
598 if (!'new default)

599 needed priv = PRI V_FI LE_UPGRADE SL;
600 }

602 out _check:

603 if (needed_priv != -1)

604 return (PRI V_POLICY(cr, needed_priv, B_FALSE, EPERM NULL));
605 return (0);

606 }

608 static int

609 zfs_secpolicy_setprop(const char *dsnane, zfs_prop_t prop, nvpair_t *propval,

610 cred_t *cr)

611 {

612 char *strval;

614 /*

615 * Check perm ssions for special properties.

616 */

617 switch (prop) {

618 case ZFS_PROP_ZONED:

619 I*

620 * Disallow setting of 'zoned” fromw thin a |ocal zone.
621 */

622 if (! NGLOBALZONE(curproc))

623 return (SET_ERROR(EPERM);

624 br eak;

626 case ZFS_PROP_

627 it (T NGLCBALZCNE(cur proc)) {

628 ui nt64_t zoned;

629 char set point[NAXNAIVELEN] ;

630 /*

631 * Unprivileged users are allowed to nodify the
632 * quota on things *under* (ie. contained by)
633 * the thing they own.

634 */

635 if (dsl_prop_get_integer(dsnane, "zoned", &zoned,
636 setpoint))

637 return (SET_ERROR(EPERM) ;

638 if (!zoned || strlen(dsnanme) <= strlen(setpoint))
639 return (SET_ERROR(EPERM));

640 }

641 br eak;

643 case ZFS_PROP_M.SLABEL:

644 if (!is_system|abel ed())

645 return (SET_ERROR(EPERV);

647 if (nvpair_value_string(propval, &strval) == 0) {

648 int err;

650 err = zfs_set_sl abel _policy(dsname, strval, CRED());
651 if (err 1= 0)

652 return (err);

653 }

10

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 11
654 br eak;
655 1
657 return (zfs_secpolicy_wite_perns(dsname, zfs_prop_to_name(prop), cr));
658 }

660 /* ARGSUSED */

661 static int

662 zfs_secpolicy_set_fsacl (zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
663 {

664 int error;

666 error = zfs_dozonecheck(zc->zc_nane, cr);

667 if (error 1= 0)

668 return (error);

670 /*

671 * permission to set permssions will be evaluated later in
672 * dsl _del eg_can_al | ow()

673 */

674 return (0);

675 }

677 /* ARGSUSED */
678 static int
679 zfs_secpolicy_rollback(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)

680 {

681 return (zfs_secpolicy_wite_perns(zc->zc_nane,
682 ZFS_DELEG PERM ROLLBACK, cr));

683 }

685 /* ARGSUSED */
686 static int
687 zfs_secpolicy_send(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

688 {

689 dsl _pool _t *dp;

690 dsl _dat aset _t *ds;

691 char *cp;

692 int error;

694 /*

695 * Generate the current snapshot name fromthe given objsetid,
696 * use that nane for the secpolicy/zone checks.

697 */

698 cp = strchr(zc->zc_nane, ' @);

699 if (cp == NULL)

700 return (SET_ERROR(EI NVAL));

701 error = dsl_pool _hol d(zc->zc_nane, FTAG &dp);

702 if (error 1= 0)

703 return (error);

705 error = dsl _dataset _hol d_obj (dp, zc->zc_sendobj, FTAG &ds);
706 if (error 1= 0)

707 dsl _pool _rel e(dp, FTAG;

708 return (error);

709 }

711 dsl _dat aset _nanme(ds, zc->zc_nane);

713 error = zfs_secpolicy_wite_perns_ds(zc->zc_nane, ds,
714 ZFS_DELEG PERM SEND, cr);

715 dsl _dataset _rel e(ds, FTAQ;

716 dsl _pool _rel e(dp, FTAG;

718 return (error);

719 }

then

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

721 |/ * ARGSUSED */

722 static int

723 zfs_secpolicy_send_new zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
724 {

725 return (zfs_secpolicy_wite_perns(zc->zc_nang,
726 ZFS_DELEG PERM SEND, cr));
727 }

729 /* ARGSUSED */

730 static int

731 zfs_secpolicy_del eg_share(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
732 {

733 vnode_t *vp;

734 int error;

736 if ((error = | ookupnane(zc->zc_val ue, U O SYSSPACE,
737 NO FOLLOW NULL, &p)) !'= 0)

738 return (error);

740 /* Now make sure mmtpnt and dataset are ZFS */

742 if (vp->v_vfsp->vfs_fstype ! = zfsfstype ||

743 (strcmp((char *)refstr_val ue(vp->v_vfsp->vfs_resource),
744 zc->zc_nane) != 0)) {

745 VN_RELE(vp) ;

746 return (SET_ERROR(EPERM));

747 1

749 VN_RELE(vp);

750 return (dsl_del eg_access(zc->zc_nane,

751 ZFS_DELEG PERM SHARE, cr));

752 }

754 int

755 zfs_secpolicy_share(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
756 {

757 if (! NGLOBALZONE(curproc))

758 return (SET_ERROR(EPERM));

760 if (secpolicy_nfs(cr) == 0) {

761 return (0);

762 } else {

763 return (zfs_secpolicy_del eg_share(zc, innvl, cr));
764 }

765 }

767 int

768 zfs_secpolicy_snb_acl (zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
769 {

770 if (! NGLOBALZONE(curproc))

771 return (SET_ERROR(EPERM));

773 if (secpolicy_snb(cr) == 0) {

774 return (0);

775 } else {

776 return (zfs_secpolicy_del eg_share(zc, innvl, cr));
777 }

778 }

780 static int

781 zfs_get _parent(const char *datasetnanme, char *parent, int parentsize)
782 {

783 char *cp;

785 /*

12

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

786 * Renpve the @l a or /bla fromthe end of the nanme to get the parent.
787 */

788 (void) strncpy(parent, datasetnane, parentsize);

789 cp = strrchr(parent, ' @);

790 if (cp !'= NULL)

791 cp[0] = "\0";

792 } else {

793 cp = strrchr(parent, '/");

794 if (cp == NULL)

795 return (SET_ERROR(ENCENT));

796 cp[0] ="'\0";

797 }

799 return (0);

800 }

802 int

803 zfs_secpolicy_destroy_perns(const char *nane, cred_t *cr)

804 {

805 int error;

807 if ((error = zfs_secpolicy_wite_perns(nang,

808 ZFS DELEG PERM MOUNT, “cr)) !'= 0)

809 return (error);

811 return (zfs_secpolicy_wite_perns(name, ZFS_DELEG PERM DESTROY, cr));
812 }

814 /* ARGSUSED */

815 static int

816 zfs_secpolicy_destroy(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
817 {

818 return (zfs_secpolicy_destroy_perns(zc->zc_nanme, cr));

819 }

821 /*

822 * Destroying snapshots with del egated pernissions requires

823 * descendant nount and destroy permi ssions.

824 */

825 /* ARGSUSED */

826 static int

827 zfs_secpolicy_destroy_snaps(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
828 {

829 nvlist_t *snaps;

830 nvpair_t *pair, *nextpair;

831 int error = 0;

833 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)

834 return (SET_ERROR(EINVAL));

835 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
836 pair = nextpair) {

837 dsl _pool _t *dp;

838 dsl _dat aset _t *ds;

840 error = dsl_pool _hol d(nvpair_nanme(pair), FTAG &dp);
841 if (error 1= 0)

842 break;

843 nextpair = nvlist_next_nvpair(snaps, pair);

844 error = dsl_dataset_hol d(dp, nvpair_nanme(pair), FTAG &ds);
845 if (error == 0)

846 dsl _dat aset _rel e(ds, FTAQ;

847 dsl _pool _rel e(dp, FTAG;

849 if (error == 0) {

850 error = zfs_secpolicy_destroy_perns(nvpair_nanme(pair),
851 cr);

13

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

868
869

871
872
873
874
875

877
878
879

881
882
883

885
886
887

889
890
891

893
894
895

897
898

900
901
902
903
904
905

907
908
909
910
911
912
913

915
916
917

14

} else if (error == ENCENT) {
/*
* |gnore any snapshots that don’t exist (we consider
* them "already destroyed"). Renpbve the nane fromthe
* nvl here in case the snapshot is created between
* now and when we try to destroy it (in which case
* we don’t want to destroy it since we haven't
* checked for pernission).
*/
fnvlist_renove_nvpair(snaps, pair);
error = 0;
}
if (error 1= 0)
break;
}
return (error);
}
int
char *to, cred_t *cr)

zfs_secpol i cy_renanme_perns(const char *from const
{

char par ent name[MAXNAMVELEN] ;
int error;
if ((error = zfs_secpolicy_wite_pernms(from
ZFS_DELEG PERM RENAME, cr)) T= 0)
return (error);
if ((error = zfs_secpolicy_wite_pernms(from
ZFS_DELEG PERM MOUNT, “cr)) !'= 0)
return (error);
if ((error = zfs_get_parent(to, parentnang,
si zeof (parentnane))) != 0)
return (error);
if ((error = zfs_secpolicy_wite_perns(parentnang,
ZFS_DELEG PERM CREATE, cr)) T= 0)
return (error);
if ((error = zfs_secpolicy_wite_perns(parentnang,
ZFS_DELEG PERM MOUNT, “cr)) !'= 0)
return (error);
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_rename_perns(zc->zc_nane, zc->zc_value, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_pronote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
dsl _pool _t *dp;
dsl _dat aset _t *cl one;
int error;
error = zfs_secpolicy_wite_perns(zc->zc_nane,
ZFS _DELEG PERM PROMOTE, cr);
if (error 1= 0)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

918 return (error);

920 error = dsl_pool _hol d(zc->zc_nane, FTAG &dp);

921 if (error = 0)

922 return (error);

924 error = dsl_dataset _hol d(dp, zc->zc_nane, FTAG &clone);
926 if (error == 0) {

927 char parent name[MAXNAMELEN] ;

928 dsl _dataset _t *origin = NULL;

929 dsl _dir_t *dd;

930 dd = clone->ds_dir;

932 error = dsl_dataset_hol d_obj (dd->dd_pool ,

933 dd- >dd_phys->dd_ori gi n_obj, FTAG &origin);
934 if (error '=0

935 dsl _dat aset _rel e(cl one, FTAG;

936 dsl _pool _rel e(dp, FTAGQ;

937 return (error);

938 }

940 error = zfs_secpolicy_wite_perns_ds(zc->zc_nang,
941 ZFS_DELEG PERM MOUNT, cr);

943 dsl _dat aset _nane(origin, parentnane);

944 if (error == 0)

945 error = zfs_secpolicy_wite_perms_ds(parentnane,
946 ZFS_DELEG_PERM PROMOTE, cr);

947 }

948 dsl _dat aset _rel e(cl one, FTAQ;

949 dsl _dataset _rele(origin, FTAG;

950 }

951 dsl _pool _rel e(dp, FTAG;

952 return (error);

953 }

955 /* ARGSUSED */

956 static int

957 zfs_secpolicy_recv(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
958 {

959 int error;

961 if ((error = zfs_secpolicy _wite_perns(zc->zc_naneg,
962 ZFS_DELEG PERM RECEI VE, cr)) != 0)

963 return (error);

965 if ((error = zfs_secpolicy wite_perns(zc->zc_naneg,
966 ZFS_DELEG PERM MOUNT, “cr)) != 0)

967 return (error);

969 return (zfs_secpolicy_wite_perns(zc->zc_nang,

970 ZFS_DELEG PERM CREATE, cr));

971 }

973 int

974 zfs_secpolicy_snapshot _perns(const char *nanme, cred_t *cr)
975 {

976 return (zfs_secpolicy_wite_perns(nane,

977 ZFS_DELEG PERM SNAPSHOT, cr));

978 }

980 /*

981 * Check for permission to create each snapshot in the nvlist.
982 */

983 /* ARGSUSED */

15

origin,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

984 static int
985 zfs_secpolicy_snapshot(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

986 {
987
988
989

991
992
993
994
995
996

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009 }

1011 /*

nvlist_t *snaps;
int error = 0;
nvpair_t *pair;

if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
return (SET_ERROR(EI NVAL));
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;

pair = nvlist_next_nvpair(snaps, pair)) {
char *nane = nvpair_nane(pair);
char *atp = strchr(nanme, '@);

if (atp == NULL) {
error = SET_ERROR(ElI NVAL) ;

br eak;
}
*atp = '\0";
error = zfs_secpolicy_snapshot _perns(nane, cr);
*atp = ' @,
if (error 1= 0)
break;

}
return (error);

ARGSUSED */

1012 static int
1013 zfs_secpolicy_log_history(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

1014 {
1015
1016
1017
1018
1019
1020
1021
1022 }

/*
* Even root nust have a proper TSD so that we know what pool
* to log to.
*/
if (tsd_get(zfs_allow |og_key) == NULL)
return (SET_ Em«}«EPERM)
return (0);

1024 static int
1025 zfs_secpolicy_create_clone(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

1026 {
1027
1028
1029

1031
1032
1033

1035
1036
1037
1038

1040
1041
1042

1044
1045
1046 }

1048 /*

char par ent name[MAXNAMVELEN] ;
int error;
char *origin;

if ((error = zfs_get_parent(zc->zc_nane, parentnane,
si zeof (parentnane))) != 0)
return (error);

if (nvlist Iookup string(innvl, "origin", &origin) == 0 &&
(error = zfs_secpolicy_ wite perms(orlgln
ZFS_DELEG PERM CLONE, cr)) != 0)
return (error);

if ((error = zfs_secpolicy_wite_pe
ZFS_DELEG PERM CREATE, cr)) !=
return (error);

r ms(par ent nane,
0)

return (zfs_secpolicy_wite_perns(parentnang,
ZFS_DELEG PERM MOUNT, cr));

1049 * Policy for pool operations - create/destroy pools, add vdevs, etc.

16

Requi res

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 17

1050 * SYS_CONFIG privilege, which is not available in a |ocal zone.
1051 */

1052 /* ARGSUSED */

1053 static int

1054 zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1055 {

1056 if (secpolicy_sys_config(cr, B_FALSE) != 0)

1057 return (SET_ERROR(EPERV));

1059 return (0);

1060 }

1062 /*

1063 * Policy for object to nanme | ookups.

1064 */

1065 /* ARGSUSED */

1066 static int

1067 zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1068 {

1069 int error;

1071 if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0)
1072 return (0);

1074 error = zfs_secpolicy_wite_perns(zc->zc_nane, ZFS DELEG PERM DI FF, cr);
1075 return (error);

1076 }

1078 /*

1079 * Policy for fault injection. Requires all privileges.

1080 */

1081 /* ARGSUSED */

1082 static int

1083 zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1084 {

1085 return (secpolicy_zinject(cr));

1086 }

1088 /* ARGSUSED */

1089 static int

1090 zfs_secpolicy_inherit_prop(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1091 {

1092 zfs_prop_t prop = zfs_nane_to_prop(zc->zc_val ue);

1094 if (prop == ZPROP_INVAL) {

1095 if (!zfs_prop_user(zc->zc_val ue))

1096 return (SET_ERROR(EI NVAL));

1097 return (zfs_secpolicy_wite_perms(zc->zc_nane,
1098 ZFS DELEG PERM USERPROP, cr))

1099 } else {

1100 return (zfs_secpolicy_setprop(zc->zc_nane, prop,
1101 NULL, cr));

1102 }

1103 }

1105 static int

1106 zfs_secpolicy_userspace_one(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1107 {

1108 int err = zfs_secpolicy_read(zc, innvl, cr);

1109 if (err)

1110 return (err);

1112 if (zc->zc_objset_type >= ZFS_NUM USERQUOTA_PROPS)

1113 return (SET_ERROR(EI NVAL));

1115 if (zc->zc_value[0] == 0) {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

1130
1131
1132 }

/*
* They are asking about a posix uid/gid. If it's
* thenmself, allowit.
*
/

if (zc->zc_objset_type == ZFS_PROP_USERUSED | |
zc->zc_obj set _type == ZFS_PROP_USERQUOTA) {
if (zc->zc_guid == crgetuid(cr))

return (0);
} else {

if (groupnenber(zc->zc_guid,

return (0);

}

cr))

return (zfs_secpolicy_wite_perns(zc->zc_nane,

user quot a_per ns[zc- >zc_obj set _t ype],

1134 static int

1135 zfs_secpolicy_userspace_nmany(zfs_cnd_t *zc,

1136 {
1137
1138
1139

1141
1142

1144
1145
1146 }

1148 /*

int err = zfs_secpolicy_read(zc,
if (err)
return (err);

nvlist_t

innvl, cr);

cr));

*innvl,

if (zc->zc_objset_type >= ZFS_NUM USERQUOTA_PROPS)

return (SET_ERROR(EI NVAL));

return (zfs_secpolicy_wite_pernms(zc->zc_nane,

user quot a_per ns[zc- >zc_obj set _type],

ARGSUSED */

1149 static int

1150 zfs_secpolicy_userspace_upgrade(zfs_cnd_t

1151 {
1152
1153
1154 }

1156 /*

*zc,

nvlist_t *innvl,

cr));

cred_t

return (zfs_secpolicy_setprop(zc->zc_nane, ZFS_PROP_VERSI ON,

NULL, cr));

ARGSUSED */

1157 static int

1158 zfs_secpolicy_hol d(zfs_cnd_t *zc,

1159 {
1160
1161
1162

1164
1165
1166

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180 }

nvlist_t *i

nvpair_t *pair;
nvlist_t *holds;
int error;

error = nvlist_lookup_nvlist(innvl,
if (error = 0)
return (SET_ERROR(EI NVAL));

for (pair = nvlist_next_nvpair(holds,
pair = nvlist_next_nvpair(holds,
char fsnanme[MAXNAMELEN ;

error = dmu_f sname(nvpair_nanme(pair),

if (error 1= 0)
return (error);

nnvl ,

hol ds",

NULL) ;
pair))

cred_t *cr)

&hol ds) ;

pair !'= NULL;

f snane) ;

error = zfs_secpolicy_wite_perns(fsnane,

ZFS DELEG PERM HOLD, cr);
if (error 1= 0)
return (error);

}
return (0);

cred_t *cr)

*cr)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 19

1182 /*

ARGSUSED */

1183 static int
1184 zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)

1185 {

1186 nvpair_t *pair;

1187 int error;

1189 for (pair = nvlist_next_nvpair(innvl, NULL); pair !'= NULL;
1190 pair = nvlist_next_nvpair(innvl, pair)) {

1191 char fsname[MAXNAMELEN] ;

1192 error = dmu_f sname(nvpair_nane(pair), fsnane);
1193 if (error 1= 0)

1194 return (error);

1195 error = zfs_secpolicy_wite_perns(fsnang,

1196 ZFS DELEG PERM RELEASE, cr);

1197 if (error 1=0)

1198 return (error);

1199 }

1200 return (0);

1201 }

1203 /*

1204 * Policy for allow ng tenporary snapshots to be taken or rel eased
1205 */

1206 static int

1207 zfs_secpolicy_tnp_snapshot(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)
1208 {

1209 /*

1210 * A tenporary snapshot is the sane as a snapshot,

1211 * hold, destroy and release all rolled into one.

1212 * Delegated diff alone is sufficient that we allow this.
1213 */

1214 int error;

1216 if ((error = zfs_secpolicy_wite_perns(zc->zc_naneg,

1217 ZFS DELEG PERM DI FF, cr)) == 0)

1218 return (0);

1220 error = zfs_secpol icy_snapshot _perns(zc->zc_nane, cr);
1221 if (error == 0)

1222 error = zfs_secpolicy_hold(zc, innvl, cr);

1223 if (error == 0)

1224 error = zfs_secpolicy_rel ease(zc, innvl, cr);
1225 if (error == 0

1226 error = zfs_secpolicy_destroy(zc, innvl, cr);
1227 return (error);

1228 }

1230 /*

1231 */Retur ns the nvlist as specified by the user in the zfs_cnd_t.
1232

1233 static int

1234 get _nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp)
1235 {

1236 char *packed;

1237 int error;

1238 nvlist_t *list = NULL;

1240 /*

1241 * Read in and unpack the user-supplied nvlist.

1242 */

1243 if (size == 0)

1244 return (SET_ERROR(EINVAL));

1246 packed = kmem al | oc(si ze, KM SLEEP);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1248 if ((error = ddi _copyin((void *)(uintptr_t)nvl, packed, size,
1249 iflag)) !'=0) {

1250 kmem f ree(packed, size);

1251 return (error);

1252 }

1254 if ((error = nvlist_unpack(packed, size, &ist, 0)) !=0) {
1255 kmem free(packed, size);

1256 return (error);

1257 }

1259 kmem f ree(packed, size);

1261 *nvp = list;

1262 return (0);

1263 }

1265 /*

1266 * Reduce the size of this nvlist until it can be serialized in 'max’ bytes.
1267 * Entries will be renoved fromthe end of the nvlist, and one int32 entry
1268 * named "N_MORE_ERRORS" wi || be added indicating how many entries were
1269 * renoved.

1270 */

1271 static int

1272 nvlist_snmush(nvlist_t *errors, size_t max)

1273 {

1274 size_t size;

1276 size = fnvlist_size(errors);

1278 if (size > max)

1279 nvpair_t *nore_errors;

1280 int n=0;

1282 if (max < 1024)

1283 return (SET_ERROR(ENOVEM)) ;

1285 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0);
1286 nmore_errors = nvlist_prev_nvpair(errors, NULL);
1288 do {

1289 nvpair_t *pair = nvlist_prev_nvpair(errors,
1290 nore_errors);

1291 fnvlist_renpve_nvpair(errors, pair);

1292 n++;

1293 size = fnvlist_size(errors);

1294 } while (size > max);

1296 fnvlist_renpbve_nvpair(errors, nore_errors);

1297 fnvlist_add_int32(errors, ZPROP_N_MORE_ERROCRS, n);
1298 ASSERT3U(f nvl i st_size(errors), <= max);

1299 }

1301 return (0);

1302 }

1304 static int

1305 put _nvlist(zfs_cnd_t *zc, nvlist_t *nvl)

1306 {

1307 char *packed = NULL;

1308 int error = 0;

1309 size_t size;

1311 size = fnvlist_size(nvl);

1313 if (size > zc->zc_nvlist_dst_size) {

20

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 21 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 22
1314 error = SET_ERROR(ENOVEM ; 1380 return (error);
1315 } else { 1381 }
1316 packed = fnvlist_pack(nvl, &size);
1317 i1 f (ddi _copyout (packed, (void *)(uintptr_t)zc->zc_nvlist_dst, 1383 static void
1318 size, zc->zc_iflags) != 0) 1384 zfsvfs_rel e(zfsvfs_t *zfsvfs, void *tag)
1319 error = SET_ERROR(EFAULT); 1385 {
1320 fnvlist_pack_free(packed, size); 1386 rrw_exit(&fsvfs->z_teardown_| ock, tag);
1321 }
1388 if (zfsvfs->z_vfs) {
1323 zc->zc_nvlist_dst_size = size; 1389 VFS_RELE(zf svfs->z_vfs);
1324 zc->zc_nvlist_dst_filled = B_TRUE; 1390 } else {
1325 return (error); 1391 dmu_obj set _di sown(zf svfs->z_os, zfsvfs);
1326 } 1392 zfsvfs_free(zfsvfs);
1393 }
1328 static int 1394 }
1329 getzfsvfs(const char *dsname, zfsvfs_t **zfvp)
1330 { 1396 static int
1331 obj set _t *os; 1397 zfs_ioc_pool _create(zfs_cmd_t *zc)
1332 int error; 1398 {
1399 int error;
1334 error = dnu_obj set _hol d(dsnanme, FTAG &os); 1400 nvlist_t *config, *props = NULL;
1335 if (error 1= 0) 1401 nvlist_t *rootprops = NULL;
1336 return (error); 1402 nvlist_t *zplprops = NULL;
1337 if (dmu_objset_type(os) != DMJ_OST_ZFS) {
1338 dnu_obj set _rel e(os, FTAQ; 1404 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1339 return (SET_ERROR(EINVAL)); 1405 zc->zc_iflags, &config))
1340 } 1406 return (error);
1342 nmut ex_ent er (&os->0s_user _ptr _| ock); 1408 if (zc->zc_nvlist_src_size !'= 0 & (error =
1343 *zfvp = dnu_obj set _get _user(o0s); 1409 get _nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1344 if (*zfvp) { 1410 zc->zc_iflags, &props))) {
1345 VFS_HOLD((*zfvp)->z_vfs); 1411 nvlist_free(config);
1346 } else { 1412 return (error);
1347 error = SET_ERROR(ESRCH); 1413 }
1348 }
1349 mut ex_exi t (&os->0s_user _ptr_| ock); 1415 if (props) {
1350 dmu_obj set _rel e(os, FTAG; 1416 nvlist_t *nvl = NULL;
1351 return (error); 1417 uint64_t version = SPA_VERSI ON
1352 }
1419 (void) nvlist_| ookup_ui nt 64(props,
1354 /* 1420 zpool _prop_t o_nane(ZPOOL_PROP_VERSI ON), &version);
1355 * Find a zfsvfs_t for a nmounted filesystem or create our own, in which 1421 if (!SPA_VERSI ON_I'S SUPPORTED(version)) {
1356 * case its z_vfs will be NULL, and it will be opened as the owner. 1422 error = SET_ERROR(EI NVAL) ;
1357 * If "witer’ is set, the z_teardown_lock will be held for RWWRI TER, 1423 got o pool _props_bad;
1358 * which prevents all vnode ops fromrunning. 1424 }
1359 */ 1425 (void) nvlist_|ookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl);
1360 static int 1426 if (nvl) {
1361 zfsvfs_hol d(const char *nane, void *tag, zfsvfs_t **zfvp, boolean_t witer) 1427 error = nvlist_dup(nvl, &rootprops, KM SLEEP);
1362 { 1428 if (error 1= 0)
1363 int error = 0; 1429 nvlist_free(config);
1430 nvlist_free(props);
1365 if (getzfsvfs(name, zfvp) != 0) 1431 return (error);
1366 error = zfsvfs_create(name, zfvp); 1432 }
1367 if (error == 0) { 1433 (void) nvlist_renove_all (props, ZPOOL_ROOTFS_PROPS);
1368 rrw_enter (& *zfvp)->z_teardown_| ock, (witer) ? RWWR TER : 1434 }
1369 RW READER, tag); 1435 VERI FY(nvlist_all oc(&pl props, NV_UNI QUE_NAME, KM SLEEP) == 0);
1370 if ((*zfvp)->z_unnmounted) { 1436 error = zfs_fill _zpl props_root(version, rootprops,
1371 /* 1437 zpl props, NULL);
1372 * XXX we coul d probably try again, since the unnmounting 1438 if (error 1=0)
1373 * thread should be just about to disassociate the 1439 got o pool _props_bad;
1374 * objset fromthe zfsvfs. 1440 }
1375 */
1376 rrw_exit (& *zfvp)->z_teardown_| ock, tag); 1442 error = spa_create(zc->zc_nane, config, props, zplprops);
1377 return (SET_ERROR(EBUSY));
1378 } 1444 /*
1379 } 1445 * Set the remmining root properties

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 23

1446
1447
1448
1449

*
/
if (lerror & (error = zfs_set_prop_nvlist(zc->zc_naneg,
ZPROP_SRC LOCAL, rootprops, NULL)) != 0)
(voi d) spa_destroy(zc->zc_nane);

1451 pool _props_bad:

1452
1453
1454
1455

1457
1458 }

nvlist_free(rootprops);
nvlist_free(zpl props);
nvlist_free(config);
nvlist_free(props);

return (error);

1460 static int
1461 zfs_ioc_pool _destroy(zfs_cnd_t *zc)

1462 {
1463
1464
1465
1466
1467
1468
1469 }

int error;
zfs_l og_hi story(zc);
error = spa_destroy(zc->zc_nane);
if (error == 0
zvol _renove_m nors(zc->zc_nane);
return (error);

1471 static int
1472 zfs_ioc_pool _inmport(zfs_cmd_t *zc)

1473 {
1474
1475
1476

1478
1479
1480

1482
1483
1484
1485
1486
1487

1489
1490
1491
1492
1493

1495
1496

1498
1499
1500
1502

1504
1505

1507
1508 }

nvlist_t *config, *props = NULL;
uint64_t guid;
int error;

if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)) != 0)
return (error);

if (zc->zc_nvlist_src_size !'= 0 & (error =
get _nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
nvlist_free(config);
return (error);

}

if (nvlist_lookup_uint64(config, ZPOOL_CONFIG POOL_GUI D, &guid) !'= 0 ||
guid != zc->zc_guid
error = SET_ERROR(ElI NVAL) ;
el se
error = spa_inport(zc->zc_nane, config, props, zc->zc_cookie);

if (zc->zc_nvlist_dst !'=0) {
int err;

if ((err = put_nvlist(zc, config)) != 0)
error = err;

}

nvlist_free(config);

if (props)
nvlist_free(props);

return (error);

1510 static int
1511 zfs_i oc_pool _export(zfs_cmd_t *zc)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1512 {
1513
1514
1515

1517
1518
1519
1520
1521
1522 }

int error;
bool ean_t force = (bool ean_t)zc->zc_cooki €;
bool ean_t hardforce = (bool ean_t)zc->zc_guid;

zfs_l og_hi story(zc);
error = spa_export(zc->zc_nanme, NULL, force, hardforce);
if (error == 0)
zvol _renmpve_m nors(zc->zc_nane);
return (error);

1524 static int
1525 zfs_i oc_pool _configs(zfs_cnd_t *zc)

1526 {
1527
1528

1530
1531

1533
1535

1537
1538 }
/

1540
1541
1542
1543
1544
1545
1546
1547
1548

* Ok Ok ok % Ok k%

*/

nvlist_t *configs;
int error;

if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL)
return (SET_ERROR(EEXI ST));

error = put_nvlist(zc, configs);
nvlist_free(configs);

return (error);

i nputs:
zc_nane

nanme of the pool

out put s:
zc_cooki e real errno
zc_nvlist_dst

zc_nvlist_dst_size

config nvlist
size of config nvlist

1549 static int
1550 zfs_ioc_pool _stats(zfs_cnmd_t *zc)

1551 {
1552
1553
1554

1556
1557

1559
1560
1561

1563
1564
1565
1566
1567
1568
1569
1570
1571

1573
1574 }

1576 /
1577

*

nvlist_t *config;
int error;
int ret = 0;

error = spa_get_stats(zc->zc_nane, &config, zc->zc_val ue,
si zeof (zc->zc_value));

if (config !'= NULL)
ret = put_nvlist(zc, config);
nvlist_free(config);

/*
* The config may be present even if ’error’ is non-zero.
* In this case we return success, and preserve the real errno
* in 'zc_cookie'.
*/
zc->zc_cookie = error;
} else {
ret = error;
}

return (ret);

* Try to inport the given pool, returning pool stats as appropriate so that

24

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 25 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 26

1578 * user | and knows which devices are avail able and overall pool health. 1644 spa_t *spa;
1579 */ 1645 int error;
1580 static int
1581 zfs_ioc_pool _tryinport(zfs_cnd_t *zc) 1647 if ((error = spa_open(zc->zc_nanme, &spa, FTAG) != 0)
1582 { 1648 return (error);
1583 nvlist_t *tryconfig, *config;
1584 int error; 1650 if (zc->zc_cookie < spa_version(spa) ||
1651 | SPA_VERSI ON_| S_SUPPORTED(zc- >zc_cooki e)) {
1586 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1652 spa_cl ose(spa, FTAQ;
1587 zc->zc_iflags, &ryconfig)) != 0) 1653 return (SET_ERROR(EI NVAL));
1588 return (error); 1654 }
1590 config = spa_tryinport(tryconfig); 1656 spa_upgr ade(spa, zc->zc_cookie);
1657 spa_cl ose(spa, FTAQ;
1592 nvlist_free(tryconfig);
1659 return (error);
1594 if (config == NULL) 1660 }
1595 return (SET_ERROR(EI NVAL));
1662 static int
1597 error = put_nvlist(zc, config); 1663 zfs_i oc_pool _get_history(zfs_cnd_t *zc)
1598 nvlist_free(config); 1664 {
1665 spa_t *spa;
1600 return (error); 1666 char *hi st _buf;
1601 } 1667 uint64_t size;
1668 int error;
1603 /*
1604 * inputs: 1670 if ((size = zc->zc_history_len) == 0)
1605 * zc_nane name of the pool 1671 return (SET_ERROR(EINVAL));
1606 * zc_cookie scan func (pool _scan_func_t)
1607 */ 1673 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1608 static int 1674 return (error);
1609 zfs_ioc_pool _scan(zfs_cnd_t *zc)
1610 { 1676 if (spa_version(spa) < SPA_VERSI ON_ZPOOL_HI STCRY) {
1611 spa_t *spa; 1677 spa_cl ose(spa, FTAQ;
1612 int error; 1678 return (SET_ERROR(ENOTSUP)) ;
1679 1
1614 if ((error = spa_open(zc->zc_nanme, &spa, FTAG) != 0)
1615 return (error); 1681 hi st _buf = kmem al | oc(size, KM SLEEP);
1682 if ((error = spa_history_get(spa, &zc->zc_history_of fset,
1617 if (zc->zc_cooki e == POOL_SCAN_NONE) 1683 & c->zc_history_len, hist_buf)) == 0) {
1618 error = spa_scan_stop(spa); 1684 error = ddi _copyout (hi st _buf,
1619 el se 1685 (void *)(uintptr_t)zc->zc_history,
1620 error = spa_scan(spa, zc->zc_cookie); 1686 zc->zc_history_len, zc->zc_iflags);
1687 1
1622 spa_cl ose(spa, FTAQ;
1689 spa_cl ose(spa, FTAQ;
1624 return (error); 1690 kmem free(hi st _buf, size);
1625 } 1691 return (error);
1692 }
1627 static int
1628 zfs_ioc_pool _freeze(zfs_cnd_t *zc) 1694 static int
1629 { 1695 zfs_ioc_pool _reguid(zfs_cnmd_t *zc)
1630 spa_t *spa; 1696 {
1631 int error; 1697 spa_t *spa;
1698 int error;
1633 error = spa_open(zc->zc_nane, &spa, FTAG;
1634 if (error == 0) { 1700 error = spa_open(zc->zc_nane, &spa, FTAG;
1635 spa_freeze(spa); 1701 if (error == 0) {
1636 spa_cl ose(spa, FTAQ; 1702 error = spa_change_gui d(spa);
1637 } 1703 spa_cl ose(spa, FTAGQ;
1638 return (error); 1704
1639 } 1705 return (error);
1706 }

1641 static int
1642 zfs_ioc_pool _upgrade(zfs_cnd_t *zc) 1708 static int
1643 { 1709 zfs_ioc_dsobj_to_dsname(zfs_cnd_t *zc)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1710 {

1711 return (dsl_dsobj_to_dsname(zc->zc_nane, zc->zc_obj, zc->zc_val ue))
1712 }

1714 /*

1715 * inputs:

1716 * zc_nane name of filesystem
1717 * zc_obj object to find
1718 *

1719 * outputs:

1720 * zc_val ue nane of object
1721 */

1722 static int
1723 zfs_ioc_obj_to_path(zfs_cmd_t *zc)

1724 {

1725 obj set _t *os;

1726 int error;

1728 /* XXX reading from objset not owned */
1729 if ((error = dmu_objset_hol d(zc->zc_nane, FTAG &os)) != 0)
1730 return (error);

1731 if (dmu_objset_type(os) != DMJ_OST_ZFS) {
1732 dmu_obj set _rel e(os, FTAQ;

1733 return (SET_ERROR(EINVAL));

1734

1735 error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_val ue,
1736 si zeof (zc->zc_value));

1737 dmu_obj set _rel e(os, FTAG;

1739 return (error);

1740 }

1742 | *

1743 * inputs:

1744 * zc_nane name of filesystem

1745 * zc_obj object to find

1746 *

1747 * outputs:

1748 * zc_stat stats on obj ect

1749 * zc_val ue path to object

1750 */

1751 static int
1752 zfs_ioc_obj_to_stats(zfs_cnd_t *zc)

1753 {

1754 obj set _t *os;

1755 int error;

1757 /* XXX reading from objset not owned */

1758 if ((error = dmu_objset_hol d(zc->zc_nane, FTAG &os)) != 0)
1759 return (error);

1760 if (dmu_objset_type(os) !'= DMJ OST_ZFS) {

1761 dmu_obj set _rel e(os, FTAQ;

1762 return (SET_ERROR(EINVAL));

1763

1764 error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_val ue,
1765 si zeof (zc->zc_value));

1766 dmu_obj set _rel e(os, FTAG;

1768 return (error);

1769 }

1771 static int

1772 zfs_ioc_vdev_add(zfs_cnd_t *zc)
1773 {

1774 spa_t *spa;

1775 int error;

27

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1776 nvlist_t *config, **|2cache, **spares;

1777 uint_t nl2cache = 0, nspares = O;

1779 error = spa_open(zc->zc_nanme, &spa, FTAG;

1780 if (error 1= 0)

1781 return (error);

1783 error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1784 zc->zc_iflags, &config);

1785 (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFI G L2CACHE,
1786 &l 2cache, &nl 2cache);

1788 (void) nvlist_|lookup_nvlist_array(config, ZPOOL_CONFI G _SPARES,
1789 &spares, &nspares);

1791 /*

1792 * A root pool wth concatenated devices is not supported.
1793 * Thus, can not add a device to a root pool.

1794 *

1795 * Intent |og device can not be added to a rootpool because
1796 * during mountroot, zil is replayed, a seperated |og device
1797 * can not be accessed during the nmountroot tinme.

1798 *

1799 */I 2cache and spare devices are ok to be added to a root pool .
1800 *

1801 if (spa_bootfs(spa) !'= 0 & nl2cache == 0 && nspares == 0) {
1802 nvlist_free(config);

1803 spa_cl ose(spa, FTAQ;

1804 return (SET_ERROR(EDOM);

1805 }

1807 if (error == 0) {

1808 error = spa_vdev_add(spa, config);

1809 nvlist_free(config);

1810 }

1811 spa_cl ose(spa, FTAQ;

1812 return (error);

1813 }

1815 /*

1816 * inputs:

1817 * zc_nane name of the pool

1818 * zc_nvlist_conf nvlist of devices to renove

1819 * zc_cookie to stop the renpve?

1820 */

1821 static int
1822 zfs_ioc_vdev_renpve(zfs_cnd_t *zc)

1823 {

1824 spa_t *spa;

1825 int error;

1827 error = spa_open(zc->zc_nane, &spa, FTAG);

1828 if (error 1= 0)

1829 return (error);

1830 error = spa_vdev_renove(spa, zc->zc_guid, B _FALSE);
1831 spa_cl ose(spa, FTAQ;

1832 return (error);

1833 }

1835 static int
1836 zfs_ioc_vdev_set_state(zfs_cnd_t *zc)

1837 {

1838 spa_t *spa;

1839 int error;

1840 vdev_state_t newstate = VDEV_STATE_UNKNOM;

28

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1842 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1843 return (error);

1844 switch (zc->zc_cookie) {

1845 case VDEV_STATE_ONLI NE:

1846 error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
1847 br eak;

1849 case VDEV_STATE_OFFLI NE:

1850 error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
1851 br eak;

1853 case VDEV_STATE_FAULTED:

1854 if (zc->zc_obj !'= VDEV_AUX ERR EXCEEDED &&

1855 zc->zc_obj = VDEV_AUX_EXTERNAL)

1856 zc->zc_obj = VDEV_AUX_ERR EXCEEDED,

1858 error = vdev_fault(spa, zc->zc_guid, zc->zc_obj);
1859 br eak;

1861 case VDEV_STATE_DEGRADED:

1862 if (zc->zc_obj != VDEV_AUX ERR EXCEEDED &&

1863 zc->zc_obj = VDEV_AUX_EXTERNAL)

1864 zc->zc_obj = VDEV_AUX_ERR EXCEEDED;

1866 error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj);
1867 br eak;

1869 defaul t:

1870 error = SET_ERROR(ElI NVAL) ;

1871

1872 zc->zc_cooki e = newst at e;

1873 spa_cl ose(spa, FTAQ;

1874 return (error);

1875 }

1877 static int

1878 zfs_ioc_vdev_attach(zfs_cnmd_t *zc)

1879 {

1880 spa_t *spa;

1881 int replacing = zc->zc_cooki e;

1882 nvlist_t *config;

1883 int error;

1885 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1886 return (error);

1888 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1889 zc->zc_iflags, &onfig)) == 0) {

1890 error = spa_vdev_attach(spa, zc->zc_guid, config, replacing);
1891 nvlist_free(config);

1892 }

1894 spa_cl ose(spa, FTAQ;

1895 return (error);

1896 }

1898 static int

1899 zfs_ioc_vdev_detach(zfs_cnd_t *zc)

1900 {

1901 spa_t *spa;

1902 int error;

1904 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1905 return (error);

1907 error = spa_vdev_detach(spa, zc->zc_guid, 0, B FALSE);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1909 spa_cl ose(spa, FTAQ;

1910 return (error);

1911 }

1913 static int

1914 zfs_ioc_vdev_split(zfs_cnd_t *zc)

1915 {

1916 spa_t *spa;

1917 nvlist_t *config, *props = NULL;

1918 int error;

1919 bool ean_t exp = !!(zc->zc_cooki e & ZPOOL_EXPORT_AFTER SPLIT);
1921 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1922 return (error);

1924 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1925 zc->zc_iflags, &config))

1926 spa_cl ose(spa, FTAG;

1927 return (error);

1928 }

1930 if (zc->zc_nvlist_src_size !=0 & (error =
1931 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1932 zc->zc_iflags, &props))) {

1933 spa_cl ose(spa, FTAGQ;

1934 nvlist_free(config);

1935 return (error);

1936 }

1938 error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp);
1940 spa_cl ose(spa, FTAQ;

1942 nvlist_free(config);

1943 nvlist_free(props);

1945 return (error);

1946 }

1948 static int

1949 zfs_ioc_vdev_setpath(zfs_cnmd_t *zc)

1950 {

1951 spa_t *spa;

1952 char *path = zc->zc_val ue;

1953 uint64_t guid = zc->zc_guid;

1954 int error;

1956 error = spa_open(zc->zc_nanme, &spa, FTAG;
1957 if (error = 0)

1958 return (error);

1960 error = spa_vdev_setpat h(spa, guid, path);
1961 spa_cl ose(spa, FTAQ;

1962 return (error);

1963 }

1965 static int

1966 zfs_ioc_vdev_setfru(zfs_cnd_t *zc)

1967 {

1968 spa_t *spa;

1969 char *fru = zc->zc_val ue;

1970 uint64_t guid = zc->zc_guid;

1971 int error;

1973 error = spa_open(zc->zc_nane, &spa, FTAG;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 31 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 32
1974 if (error 1= 0) 2040 * inputs:
1975 return (error); 2041 * zc_nane nanme of filesystem
2042 * zc_nvlist_dst_size size of buffer for property nvlist
1977 error = spa_vdev_setfru(spa, guid, fru); 2043 *
1978 spa_cl ose(spa, FTAQ; 2044 * outputs:
1979 return (error); 2045 * zc_nvlist_dst recei ved property nvlist
1980 } 2046 * zc_nvlist_dst_size size of received property nvlist
2047 *
1982 static int 2048 * Gets received properties (distinct fromlocal properties on or after
1983 zfs_ioc_objset_stats_inpl (zfs_cnd_t *zc, objset_t *os) 2049 * SPA VERSI ON_RECVD PROPS) for callers who want to differentiate received from
1984 { 2050 * local property values.
1985 int error = 0; 2051 */
1986 nvlist_t *nv; 2052 static int
2053 zfs_ioc_objset_recvd_props(zfs_cmd_t *zc)
1988 drmu_obj set _fast _stat (os, &zc->zc_objset_stats); 2054 {
2055 int error = 0;
1990 if (zc->zc_nvlist_dst !'=0 & 2056 nvlist_t *nv;
1991 (error = dsl_prop_get_all (os, &iv)) == 0) {
1992 dmu_obj set _stats(os, nv); 2058 /*
1993 /* 2059 * Wthout this check, we would return local property values if the
1994 * NB: zvol _get_stats() will read the objset contents, 2060 * caller has not al ready received properties on or after
1995 * which we aren’t supposed to do with a 2061 * SPA_VERSI ON_RECVD_PROPS.
1996 * DS_MODE_USER hol d, because it could be 2062 */
1997 * inconsistent. So this is a bit of a workaround... 2063 if (!dsl_prop_get_hasrecvd(zc->zc_nane))
1998 */ XXX reading wi th out owning 2064 return (SET_ERROR(ENOTSUP));
1999 *
2000 if (!zc->zc_objset_stats.dds_inconsistent & 2066 if (zc->zc_nvlist_dst !'=0 &&
2001 drmu_obj set type(os) == DMU_OST_ZVQL) { 2067 (error = dsl _prop_get_received(zc->zc_nane, &nv)) == 0) {
2002 error = zvol get st ats(os, nv); 2068 error = put_nvlist(zc, nv);
2003 if (error == EIO) 2069 nvlist_free(nv);
2004 return (error); 2070 }
2005 VERI FYO(error);
2006 } 2072 return (error);
2007 error = put_nvlist(zc, nv); 2073 }
2008 nvlist_free(nv);
2009 } 2075 static int
2076 nvl _add_zpl prop(objset _t *os, nvlist_t *props, zfs_prop_t prop)
2011 return (error); 2077 {
2012 } 2078 uint64_t val ue;
2079 int error;
2014 /*
2015 * inputs: 2081 /*
2016 * zc_nane name of filesystem 2082 * zfs_get _zplprop() will either find a value or give us
2017 * zc_nvlist_dst_size size of buffer for property nvlist 2083 * the default value (if there is one).
2018 * 2084 i
2019 * outputs: 2085 if ((error = zfs_get_zpl prop(os, prop, &alue)) != 0)
2020 * zc_objset_stats stats 2086 return (error);
2021 * zc_nvlist_dst property nvli st 2087 VERI FY(nvlist_add_ui nt 64(props, zfs_prop_to_nanme(prop), value) == 0);
2022 * zc_nvlist_dst_size size of property nvlist 2088 return (0);
2023 */ 2089 }
2024 static int
2025 zfs_ioc_objset_stats(zfs_cnd_t *zc) 2091 /*
2026 { 2092 * inputs:
2027 obj set _t *os; 2093 * zc_nane name of filesystem
2028 int error; 2094 * zc_nvlist_dst_size size of buffer for zpl property nvlist
2095 *
2030 error = dnu_obj set _hol d(zc->zc_nane, FTAG &o0s); 2096 * outputs:
2031 if (error == 0) { 2097 * zc_nvlist_dst zpl property nvlist
2032 error = zfs_ioc_objset_stats_inpl(zc, os); 2098 * zc_nvlist_dst_size size of zpl property nvlist
2033 dnmu_obj set _rel e(os, FTAQ; 2099 */
2034 } 2100 static int
2101 zfs_ioc_objset_zpl props(zfs_cnd_t *zc)
2036 return (error); 2102 {
2037 } 2103 obj set _t *os;
2104 int err;
2039 /*

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2106 /* XXX readi ng w thout owning */

2107 if (err = dmu_objset_hol d(zc->zc_nane, FTAG &os))

2108 return (err);

2110 dmu_obj set _fast_stat(os, &zc->zc_objset_stats);

2112 /*

2113 * NB: nvl_add_zplprop() will read the objset contents,
2114 * which we aren’t supposed to do with a DS _MODE_USER
2115 * hol d, because it could be inconsistent.

2116 */

2117 if (zc->zc_nvlist_dst != NULL &&

2118 lzc->zc_obj set _stats.dds_i nconsi stent &&

2119 drmu_obj set _type(os) == DMJ_OST_ZFS) {

2120 nvlist_t *nv;

2122 VERI FY(nvlist_alloc(&wv, NV_UNI QUE_NAME, KM SLEEP) == 3
2123 if ((err = nvl_add_zpl prop(os, nv, ZFS PROP_VERSION)) == 0 &&
2124 (err = nvl _add_zpl prop(os, nv, ZFS PROP_NORMALI ZE)) ==
2125 (err = nvl _add_zpl prop(os, nv, ZFS PROP_ UTFBO\ILY)) ==
2126 (err = nvl _add_zpl prop(os, nv, ZFS PROP_CASE)) == 0)
2127 err = put_nvlist(zc, nv);

2128 nvlist_free(nv);

2129 } else {

2130 err = SET_ERROR(ENCENT) ;

2131

2132 drmu_obj set _rel e(os, FTAG;

2133 return (err);

2134 }

2136 static bool ean_t

2137 dat aset _nane_hi dden(const char *nane)

2138 {

2139 /*

2140 * Skip over datasets that are not visible in this zone,
2141 * internal datasets (which have a $ in their nane), and
2142 * tenporary datasets (which have a %in their nane).
2143 */

2144 if (strchr(nane, '$) != NULL)

2145 return (B_TRUE);

2146 if (strchr(name, %) = NULL)

2147 return (B_TRUE);

2148 if (!1NGLOBALZONE(cur pr oc) && !zone_dat aset _vi si bl e(nanme, NULL))
2149 return (B_TRUE);

2150 return (B_FALSE);

2151 }

2153 /*

2154 * inputs:

2155 * zc_nane name of filesystem

2156 * zc_cookie zap cursor

2157 * zc_nvlist_dst_size size of buffer for property nvlist

2158 *

2159 * outputs:

2160 * zc_nane name of next filesystem

2161 * zc_cookie zap cursor

2162 * zc_objset_stats stats

2163 * zc_nvlist_dst property nvlist

2164 * zc_nvlist_dst_size size of property nvlist

2165 */

2166 static int

2167 zfs_ioc_dataset |ist_next(zfs_cnd_t *zc)

2168 {

2169 obj set _t *os;

2170 int error;

2171 char *p;

33

0 &&

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2172 size_t orig_len = strlen(zc->zc_nane);

2174 top:

2175 if (error = dnmu_obj set _hol d(zc->zc_name, FTAG &os)) {

2176 if (error == ENCENT)

2177 error = SET_ERROR(ESRCH);

2178 return (error);

2179 }

2181 p = strrchr(zc->zc_nanme, '/");

2182 if (p == NULL || p[1] !'='\0")

2183 (void) strlcat(zc->zc_nane, "/", sizeof (zc->zc_nane));
2184 p = zc->zc_nane + strlen(zc->zc_nane);

2186 do {

2187 error = dmu_dir_list_next(os,

2188 si zeof (zc->zc_nane) (p - zc->zc_nane), p,

2189 NULL, &zc->zc_cookie);

2190 if (error == EN(ENT)

2191 error SET_ERROR(ESRCH) ;

2192 } while (error == 0 && dat aset _nane_hi dden(zc >zc_nane));

2193 drmu_obj set _rel e(os, FTAG;

2195 /*

2196 * |f it's an internal dataset (ie. with a’'$ in its name),
2197 * don't try to get stats for it, otherwise we'll return ENCENT.
2198 */

2199 if (error == 0 && strchr(zc->zc_name, '$') == NULL) {

2200 error = zfs_ioc_obj set stats(zc) /* fill in the stats */
2201 if (error == ENCENT) {

2202 /* W lost a race with destroy, get the next one.
2203 zc->zc_nane[orig_len] ='\0";

2204 goto top;

2205 }

2206

2207 return (error);

2208 }

2210 /*

2211 * inputs:

2212 * zc_nanme name of filesystem

2213 * zc_cookie zap cursor

2214 * zc_nvlist_dst_size size of buffer for property nvlist

2215 *

2216 * outputs:

2217 * zc_nane name of next snapshot

2218 * zc_objset_stats stats

2219 * zc_nvlist_dst property nvli st

2220 * zc_nvlist_dst_size size of property nvlist

2221 */

2222 static int

2223 zfs_ioc_snapshot _|ist_next(zfs_cmd_t *zc)

2224 {

2225 obj set _t *os;

2226 int error;

2228 error = dnu_obj set _hol d(zc->zc_nane, FTAG &o0s);

2229 if (error '=0)

2230 return (error == ENOENT ? ESRCH : error);

2231 }

2233 /*

2234 * A dataset name of maxi num|ength cannot have any snapshots,
2235 * so exit immediately.

2236 */

2237 if (strlcat(zc->zc_nane, "@, sizeof (zc->zc_nane)) >= MAXNAMELEN) {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2238 dnu_obj set _rel e(os, FTAQ;

2239 return (SET_ERROR(ESRCH));

2240 }

2242 error = dnu_snapshot _| i st _next (os,

2243 S|zeof (zc->zc_nanme) - strlen(zc->zc_name),

2244 zc->zc_nanme + strlen(zc->zc_nane), &zc- >zc_obj, &zc->zc_cooki e,
2245 NULL) ;

2247 if (error == 0)

2248 dsl _dat aset _t *ds;

2249 dsl _pool _t *dp = os->o0s_dsl _dataset->ds_dir->dd_pool ;
2251 error = dsl _dataset_hol d_obj (dp, zc->zc_obj, FTAG &ds);
2252 if (error == 0)

2253 obj set _t *ossnap;

2255 error = drmu_obj set _fromds(ds, &ossnap);
2256 if (error ==

2257 error = zfs_ioc_objset_stats_inpl (zc, ossnap);
2258 dsl _dataset _rel e(ds, FTAQ;

2259 }

2260 } else if (error == ENCENT) {

2261 error = SET_ERROR(ESRCH);

2262 }

2264 drmu_obj set _rel e(os, FTAG;

2265 /* Tf we failed, undo t he @that we tacked on to zc_nanme */
2266 if (error = 0)

2267 *strchr(zc->zc_nane, '@) ='\0";

2268 return (error);

2269 }

2271 static int

2272 zfs_prop_set _userquota(const char *dsname, nvpair_t *pair)

2273 {

2274 const char *propnanme = nvpair_nanme(pair);

2275 uint64_t *val ary;

2276 unsi gned int vallen;

2277 const char *domai n;

2278 char *dash;

2279 zfs_userquota_prop_t type;

2280 uint64_t rid;

2281 uint64_t quota;

2282 zfsvfs_t *zfsvfs;

2283 int err;

2285 if (nvpair_type(pair) == DATA TYPE_NVLI ST) {

2286 nvlist_t *attrs

2287 VERI FY(nvpai r_val ue_nvlist(pair, &ttrs) == 0);
2288 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,

2289 &pair) !'= 0)

2290 return (SET_ERROR(ElI NVAL))

2291 }

2293 /*

2294 * A correctly constructed propnane is encoded as

2295 * userquot a@ri d>- <domai n>.

2296 */

2297 if ((dash = strchr(propnanme, '-’)) == NULL ||

2298 nvpair_val ue_uint64_array(pair, &alary, &allen) !'=0 ||
2299 vallen !'= 3)

2300 return (SET_ERROR(EINVAL));

2302 domai n = dash + 1;

2303 type = valary[0];

35

36

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2304 rid = valary[1];

2305 quota = val ary[2] ;

2307 err = zfsvfs_hol d(dsnane, FTAG &zfsvfs, B _FALSE);

2308 if (err == 0)

2309 err = zfs_set_userquota(zfsvfs, type, domain, rid, quota);
2310 zfsvfs_rel e(zfsvfs, FTAQ;

2311 }

2313 return (err);

2314 }

2316 /*

2317 * If the naned property is one that has a special function to set its val ue,
2318 * return O on success and a positive error code on failure; otherwise if it is
2319 * not one of the special properties handled by this function, return -1.
2320 *

2321 * XXX: It would be better for callers of the property interface if we handl ed
2322 * these special cases in dsl_prop.c (in the dsl |layer).

2323 *

2324 static int

2325 zfs_prop_set_speci al (const char *dsnanme, zprop_source_t source,

2326 nvpair_t *pair)

2327 {

2328 const char *propnanme = nvpair_nanme(pair);

2329 zfs_prop_t prop = zfs_nanme_to_prop(propnane);

2330 uint64_t intval;

2331 int err;

2333 if (prop == ZPROP_I NVAL) {

2334 if (zfs_prop_userquota(propnane))

2335 return (zfs_prop_set_userquota(dsnane, pair));
2336 return (-1);

2337 }

2339 if (nvpair_type(pair) == DATA _TYPE_NVLI ST) {

2340 nvlist_t *attrs

2341 VERI FY(nvpai r_val ue_nvlist(pair, &ttrs) =

2342 VERI FY(nvli st _| ookup_nvpair(attrs, ZPROP_ VALUE

2343 &pair) == 0)

2344 }

2346 if (zfs_prop_get_type(prop) == PROP_TYPE_STRI NG

2347 return (-1);

2349 VERI FY(0 == nvpair_val ue_uint64(pair, & ntval));

2351 switch (prop) {

2352 case ZFS_PROP_QUOTA:

2353 err = dsl _dir_set_quota(dsnane, source, intval);

2354 br eak;

2355 case ZFS_| PRCP REFQUOTA:

2356 err = dsl _dataset_set_refquota(dsnane, source, intval);
2357 br eak

2358 case ZFS | PRCP RESERVATI ON:

2359 err = dsl _dir_set_reservation(dsname, source, intval);
2360 br eak;

2361 case ZFS_| PRCP REFRESERVATI ON:

2362 err = dsl _dataset_set_refreservation(dsname, source, intval);
2363 br eak;

2364 case ZFS PROP_VOLSI ZE:

2365 err = zvol _set_vol si ze(dsnane, intval);

2366 br eak;

2367 case ZFS_PROP_VERSI ON:

2368

2369 zfsvfs_t *zfsvfs;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 37 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 38
2436 int
2371 if ((err = zfsvfs_hol d(dsnane, FTAG &zfsvfs, B TRUE)) != 0) 2437 zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl,
2372 br eak; 2438 nvliist_t *errlist)
2439 {
2374 err = zfs_set_version(zfsvfs, intval); 2440 nvpair_t *pair;
2375 zfsvfs_rele(zfsvfs, FTAQ; 2441 nvpair_t *propval ;
2442 int rv = 0;
2377 if (err == 0 & intval >= ZPL_VERSI ON_USERSPACE) { 2443 uint64_t intval;
2378 zfs_cmd_t *zc; 2444 char *strval;
2445 nvlist_t *genericnvl = fnvlist_alloc();
2380 zc = knmem zal | oc(sizeof (zfs_cnd_t), KM SLEEP); 2446 nvliist_t *retrynvl = fnvlist_alloc();
2381 (v0| d) strcpy(zc >zc_nane, dsnane);
2382 (void) zfs_ioc_userspace_ upgrade(zc) 2448 retry:
2383 kmem free(zc, sizeof (zfs_cmd_t)); 2449 pair = NULL;
2384 1 2450 while ((pair = nvlist_next_nvpair(nvl, pair)) !'= NULL) {
2385 br eak; 2451 const char *propname = nvpair_name(pair);
2386 } 2452 zfs_prop_t prop = zfs_name_to_prop(propnane);
2387 case ZFS_PROP_COWPRESSI ON: 2453 int err = 0;
2388 {
2389 if (intval == ZI O COWRESS LZ4) { 2455 /* decode the property value */
2390 zfeature info_t *feature = 2456 propval = pair;
2391 &spa_f eat ure_t abl e[SPA_FEATURE LZ4 COVPRESS] ; 2457 1f (nvpair_t ype(pair) == DATA TYPE_NVLI ST) {
2392 spa_t *spa; 2458 nvlist_t *attrs;
2459 attrs = fnvpair_val ue_nvlist(pair);
2394 if ((err = spa_open(dsnane, &spa, FTAG) != 0) 2460 if (nvlist Iookup nvpair(attrs, ZPROP_VALUE,
2395 return (err); 2461 &pr opval) I=
2462 err SEr_ERROR(El NVAL) ;
2397 /* 2463 }
2398 * Setting the LZ4 conpression algorithmactivates
2399 * the feature. 2465 /* Validate val ue type */
2400 */ 2466 if (err == 0 && prop == ZPROP_I NVAL) {
2401 if (!spa_feature_is_active(spa, feature)) { 2467 if (zfs_ prop user(pr opnare)) {
2402 if ((err = zfs_prop_activate_feature(spa, 2468 f (nvpair type(pr opval) !'= DATA TYPE_STRI NG
2403 feature)) !'=0) { 2469 err RROR(El NVAL) ;
2404 spa_cl ose(spa, FTAQ; 2470 } else if (zfs_prop_ userquot a(propnane)) {
2405 return (err); 2471 if (nvpair_type(propval) =
2406 } 2472 DATA TYPE Ul NT64_ARRAY)
2407 } 2473 err = SET_ERROR(EI NVAL);
2474 } else {
2409 spa_cl ose(spa, FTAQ; 2475 err = SET_ERROR(EI NVAL) ;
2410 } 2476 }
2411 /* 2477 } elseif (err == {
2412 * W still want the default set action to be performed in the 2478 if (nvpair_type(propval) == DATA_TYPE_STRI NG
2413 * caller, we only perforned zfeature settings here. 2479 if (zfs_prop_ get _type(prop) != PROP_TYPE_STRI NG
2414 */ 2480 err = ERROR(El NVAL) ;
2415 err = -1; 2481 } else if (nvpair type(propval) == DATA _TYPE_UI NT64) {
2416 br eak; 2482 const char *unused;
2417 1
2484 intval = fnvpair_val ue_ui nt64(propval);
2419 defaul t:
2420 err = -1; 2486 switch (zfs_prop_ get type(prop)) {
2421 } 2487 case PROP_TYPE_NUVBI
2488 break;
2423 return (err); 2489 case PRCP_TYPE_STRI NG
2424 } 2490 err = SET_ERROR(EI NVAL) ;
2491 br eak;
2426 | * 2492 case PROP_TYPE_I| NDEX:
2427 * This function is best effort. If it fails to set any of the given properties, 2493 if (zfs_prop_index_to_string(prop,
2428 * it continues to set as many as it can and returns the last error 2494 intval, &unused) !'= 0
2429 * encountered. If the caller provides a non-NULL errlist, it will be filled in 2495 err = SET_ERROR(EI NVAL) ;
2430 * with the list of nanes of all the properties that failed along with the 2496 br eak;
2431 * corresponding error nunbers. 2497 defaul t:
2432 * 2498 cmm_err (CE_PANI C,
2433 * |f every property is set successfully, zero is returned and errlist is not 2499 "unknown property type");
2434 * npodifie 2500 }
2435 */ 2501 } else {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2502 er
2503 }
2504 }

2506 /* Validate perms
2507 if (err == 0)
2508 err = zfs

2510 if (err == 0) {

2511 err = zfs_|
2512 if (err ==
2513 /*
2514 *

2515 *
*/

2516

2517 er
2518 } else if
2519 /
2520 *
2521 *
2522 *
2523 *
2524 er
2525 }

2526 }

2528 if (err 1'=0) {
2529 f errlis
2530 fn
2531 rv =err
2532 }

2533 }

0
(

2535 if (nvl !'=retrynvl && !nv
2536 nvl = retrynvl
2537 goto retry

2538 }

2540 if (!'nvlist_enpty(genericn
2541 dsl _props_set (dsnane
2542 *
2543 * |f this fails,
2544 * can, so try set
2545 */

2546 pair = NULL;

2547 while ((pair = nv
2548 const char
2549

2551 propva
2552 i f (nvpalr
2553 nvl
2554 at
2555 pr
2556

2557 }

2559 if (nvpair
2560 st
2561 er
2562

2563 } else {
2564 in
2565 er
2566

2567 }

_check_settabl e(dsnane, pair,

(err
*

int err = 0;

39
r = SET_ERROR(El NVAL);

sions */

CREI()) ;

source, pair);

prop_set _speci al (dsnane

-1) {

For better performance we build up a list of

properties to set in a single transaction

r = nvlist_add_nvpair(genericnvl, pair)
1= 0 & nvl !'=retrynvl) {

This nmay be a spurious error caused by

recei ving quota and reservati on out of order.
Try again in a second pass
/

r = nvlist_add_nvpair(retrynvl, pair)

t I'= NULL

)
vlist_add_int32(errlist, propnane, err)

list_empty(retrynvl)) {

vl) &&

source, genericnvl) !'=0) {
we still want to set as many properties as we
ting themindividually

i st_next_nvpair(genericnvl, pair))
*propnane = nvpair nane(palr)

= NULL) {

= pair;
type(palr) == DATA TYPE_NVLI ST) {
i st _t *attrs;
trs = fnvpalr_value_nvlist(pair)
opval = fnvlist_|ookup_nvpair(attrs,
ZPROP_VALUE) ;

_type(propval) == DATA_TYPE_STRING {

rval = fnvpair_val ue_string(propval);

r = dsl _prop_set_string(dsname, propnang,
source, strval)

tval = fnvpair_val ue_ui nt 64(propval);
r = dsl _prop_set_int(dsnanme, propnane,
intval)

source,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2569 1= 0)
2570 if (errlist !'= NULL)

2571 fnvlist_add_int32(errlist
2572 err);

2573 }

2574 r
2575 }

2576 }

2577
2578
2579

if (err

vV = err;

nvlist_free(genericnvl);
nvlist_free(retrynvl);

2581
2582 }

return (rv)

2584 [*
2585 * Check that al
2586 */

2587 static int

2588 zfs_check_userprops(const char *fsname

the properties are valid user properties

nvlist_t *nvl)

2589 {

2590 nvpair_t *pair = NULL;

2591 int error = 0;

2593 while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
2594 const char *propnanme = nvpair_nane(pair)

2595 char *val str

2597 if (!zfs_prop_user(propnane) |

2598 nvpai r_type(pair) != DATA TYPE_STRI NG

2599 return (SET_ERROR(ElI NVAL));

2601 if (error = zfs_secpolicy_wite_perns(fsnang,
2602 ZFS_DELEG PERM USERPROP, CRED()))

2603 “return (error);

2605 if (strlen(propnanme) >= ZAP_MAXNAMELEN)

2606 return (SET_ERROR(ENAVETOOLONG)) ;

2608 VERI FY(nvpair_val ue_string(pair, &alstr) == 0)
2609 if (strlen(valstr) >= ZAP_MAXVALUELEN)

2610 return (E2BlI G ;

2611 1

2612 return (0);

2613 }

2615 static void

2616 props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops)
2617 {

2618 nvpair_t *pair

2620 VERI FY(nvlist_all oc(newprops, NV_UNI QUE_NAME, KM SLEEP) ==
2622 pair = NULL;

2623 while ((pair = nvlist_next_nvpair(props, pair)) != NULL) {
2624 1f (nvlist_exists(skipped, nvpair_nane(pair)))
2625 continue

2627 VERI FY(nvli st _add_nvpair (*newprops, pair) == 0)
2628

2629 }

2631 static int

2632 cl ear _recei ved_props(const char *dsnane, nvlist_t *props,

2633 nvlist_t *skipped)

pr opnane

0)

40

41

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2634 {

2635 int err = 0;

2636 nvlist_t *cleared_props = NULL;

2637 pr ops_ski p(props, skipped, &cleared_props);

2638 f (!nvl | st _enpty(cl eared_props)) {

2639

2640 * Acts on local properties until the dataset has received
2641 */pr operties at |east once on or after SPA_VERSI ON_RECVD_PROPS.
2642 *

2643 zprop_source_t flags = (ZPROP_SRC_NONE |

2644 (dsl _prop_get hasrecvd(dsnarre) ? ZPROP_SRC_RECEI VED : ;
2645 err = zfs_set_prop_nvlist(dsnane, flags, cleared_props, NULL);
2646

2647 nvlist_free(cl eared_props);

2648 return (err);

2649 }

2651 /*

2652 * inputs:

2653 * zc_nanme name of filesystem

2654 * zc_val ue name of property to set

2655 * zc_nvlist_src{_size} nvlist of properties to apply

2656 * zc_cookie recei ved properties flag

2657 *

2658 * outputs:

2659 * zc_nvlist_dst{_size} error for each unapplied received property

2660 */

2661 static int

2662 zfs_ioc_set_prop(zfs_cml_t *zc)

2663 {

2664 nvlist_t *nvl;

2665 bool ean_t received = zc- >zc_cooki e;

2666 zpr op source_t source = (received P ZPROP_SRC_RECEI VED :

2667 ZPROP_SRC_LOCAL) ;

2668 nvlist_t ¥errors;

2669 int error;

2671 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2672 zc->zc_iflags, &nvl)) !'= 0)

2673 return (error);

2675 if (received) {

2676 nvlist_t *origprops;

2678 if (dsl_prop_get_received(zc->zc_nane, &origprops) == 0) {
2679 (voi d) clear_received_props(zc->zc_nane,

2680 origprops, nvl);

2681 nvlist_free(origprops);

2682 }

2684 error = dsl _prop_set_hasrecvd(zc->zc_nane);

2685 }

2687 errors = fnvlist_alloc();

2688 if (error == 0)

2689 error = zfs_set_prop_nvlist(zc->zc_nane, source, nvl, errors);
2691 if (zc->zc_nvlist_dst !'= NULL & errors != NULL) {

2692 (void) put_nvlist(zc, errors);

2693 }

2695 nvlist_free(errors);

2696 nvlist_free(nvl);

2697 return (error);

2698 }

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 42
2700 /*

2701 * inputs:

2702 * zc_name name of filesystem

2703 * zc_val ue name of property to inherit

2704 * zc_cookie revert to received value if TRUE

2705 *

2706 * outputs: none

2707 */

2708 static int

2709 zfs_ioc_inherit_prop(zfs_cnd_t *zc)

2710 {

2711 const char *pr opnams = zc->zc_val ue;

2712 zfs_prop_t prop = zfs_name_to prop(propnane)

2713 bool ean_t received = zc->zc_cooki e;

2714 zprop_source_t source = (received

2715 ? ZPROP_SRC_NONE /* revert to received value, if any */
2716 : ZPROP_SRC_| NHERI TED) ; /* explicitly inherit */

2718 if (received) {

2719 nvlist_t *dummy;

2720 nvpair_t *pair;

2721 zprop_type_t type;

2722 int err;

2724 /*

2725 * zfs_prop_set_special () expects properties in the formof an
2726 * nvpalr with type info.

2727 */

2728 if (pr op = ZPROP_| NVAL)

2729 (I zfs_prop_user (propnane))

2730 return (SET_ERROR(EI NVAL));

2732 pe = PR’(JD TYPE_STRI NG

2733 } else |f (prop ZFS_PROP_VOLSI ZE | |

2734 prop == ZFS PRCP VERSI ON)

2735 return (SET_ERROR(ElI NVAL));

2736 } else {

2737 type = zfs_prop_get_type(prop);

2738 }

2740 VERI FY(nvl i st_all oc(&ummy, NV_UNI QUE_NAME, KM SLEEP) == 0)
2742 switch (type) {

2743 case PROP_TYPE_STRI NG

2744 VERI FY(O == nvlist_add_string(dummy, propnane, ""));
2745 br eak;

2746 case PROP_TYPE_NUMBER:

2747 case PROP_TYPE_| NDEX:

2748 VERI FY(0 == nvlist_add_ui nt 64(dumy, propnane, 0));
2749 br eak;

2750 defaul t:

2751 nvlist_free(dummy);

2752 return (SET_ERROR(EI NVAL));

2753 }

2755 pair = nvlist_next_nvpair(dummy, NULL);

2756 err = zfs_prop_set_special (zc->zc_nane, source, pair);

2757 nvlist_free(dumy);

2758 if (err 1= -1)

2759 return (err); /* special property already handled */
2760 } else {

2761 /*

2762 * Only check this in the non-received case. W want to allow
2763 * 'inherit -S to revert non-inheritable properties |ike quota
2764 * and reservation to the received or default val ues even though
2765 * they are not considered inheritable.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2766 */

2767 if (prop !'= ZPROP_INVAL && !zfs_prop_inheritabl e(prop))
2768 return (SET_ERROR(ElI NVAL));

2769 }

2771 /* property nane has been validated by zfs_secpolicy_inherit_prop() */
2772 return (dsl_prop_inherit(zc->zc_nane, zc->zc_val ue, source));
2773 }

2775 static int

2776 zfs_ioc_pool _set_props(zfs_cnd_t *zc)

2777 {

2778 nvlist_t *props;

2779 spa_t *spa;

2780 int error;

2781 nvpair_t *pair;

2783 if (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2784 zc->zc_ifl ags, &props))

2785 return (error);

2787 /*

2788 * If the only property is the configfile, then just do a spa_l ookup()
2789 * to handle the faulted case.

2790 */

2791 pair = nvlist_next_nvpair(props, NULL);

2792 if (pair != NULL & strcnp(nvpair nama(pair),

2793 zpool _prop_t o_nane(ZPOOL_PROP_CACHEFI LE)) == 0 &&

2794 nvlist_next_nvpair(props, pair) == NULL) {

2795 nmut ex_ent er (&spa_nanespace_| ock) ;

2796 if ((spa = spa_l ookup(zc->zc_nane)) != NULL) {

2797 spa_configfil e_set(spa, props, B _FALSE);

2798 spa_config_sync(spa, B_FALSE, B_TRUE);

2799

2800 mut ex_exi t (&pa_nanmespace_| ock) ;

2801 if (spa != NULL)

2802 nvlist_free(props);

2803 return (0);

2804 }

2805 }

2807 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0) {

2808 nvlist_free(props);

2809 return (error);

2810 }

2812 error = spa_prop_set(spa, props);

2814 nvlist_free(props);

2815 spa_cl ose(spa, FTAQ;

2817 return (error);

2818 }

2820 static int

2821 zfs_ioc_pool _get _props(zfs_cnd_t *zc)

2822 {

2823 spa_t *spa;

2824 int error;

2825 nvlist_t *nvp = NULL;

2827 if ((error = spa_open(zc->zc_nanme, &spa, FTAG) != 0) {

2828 /*

2829 * If the pool is faulted, there may be properties we can still
2830 * get (such as altroot and cachefile), so attenpt to get them
2831 * anyway.

43

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2832 */

2833 mut ex_ent er (&spa_nanmespace_| ock) ;

2834 if ((spa = spa_|l | ookup(zc->zc_nane)) != NULL)
2835 error = spa_prop_ get(spa &nvp) ;

2836 mut ex_exi t (&spa_nanmespace_| ock) ;

2837 } else {

2838 error = spa_prop_get(spa, &nvp);

2839 spa_cl ose(spa, FTAQ;

2840 }

2842 if (error == 0 && zc->zc_nvlist_dst !'= NULL)

2843 error = put_nvlist(zc, nvp);

2844 el se

2845 error = SET_ERROR(EFAULT) ;

2847 nvlist_free(nvp);

2848 return (error);

2849 }

2851 /*

2852 * inputs:

2853 * zc_nane name of filesystem

2854 * zc_nvlist_src{_size} nvlist of del egated perm ssions

2855 * zc_perm.action all ow/ unal | ow fl ag

2856 *

2857 * outputs: none

2858 */

2859 static int

2860 zfs_ioc_set_fsacl (zfs_cmd_t *zc)

2861 {

2862 int error;

2863 nvlist_t *fsaclnv = NULL;

2865 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2866 zc->zc_iflags, & saclnv)) !'= 0)

2867 return (error);

2869 /*

2870 * Verify nvlist is constructed correctly

2871 *

2872 if ((error = zfs_deleg_verify_nvlist(fsaclnv)) !=0) {
2873 nvlist_free(fsaclnv);

2874 return (SET_ERROR(EI NVAL));

2875 1

2877 /*

2878 * |f we don't have PRI V_SYS_MOUNT, then validate
2879 * that user is allowed to hand out each perm ssion in
2880 * the nvlist(s)

2881 */

2883 error = secpolicy_zfs(CRED());

2884 if (error 1=0) {

2885 if (zc->zc_permaction == B_FALSE) {

2886 error = dsl_del eg_can_al | om zc->zc_nane,
2887 fsacl nv, CREI));

2888 } else {

2889 error = dsl_del eg_can_unal | owm zc- >zc_nane,
2890 fsacl nv, CRED());

2891 }

2892 1

2894 if (error == 0)

2895 error = dsl _del eg_set(zc->zc_nane, fsaclnv, zc->zc_permaction);
2897 nvlist_free(fsaclnv);

44

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2898 return (error);

2899 }

2901 /*

2902 * inputs:

2903 * zc_nane name of filesystem

2904 *

2905 * outputs:

2906 * zc_nvlist_src{_size} nvlist of del egated perm ssions

2907 */

2908 static int

2909 zfs_ioc_get_fsacl (zfs_cnd_t *zc)

2910 {

2911 nvlist_t *nvp;

2912 int error;

2914 if ((error = dsl_del eg_get(zc->zc_nanme, &nvp)) == 0) {
2915 error = put_nvlist(zc, nvp);

2916 nvlist_free(nvp);

2917 }

2919 return (error);

2920 }

2922 [*

2923 * Search the vfs list for a specified resource. Returns a pointer to it
2924 * or NULL if no suitable entry is found. The caller of this routine
2925 * is responsible for releasing the returned vfs pointer.

2926 */

2927 static vfs_t *

2928 zfs_get _vfs(const char *resource)

2929 {

2930 struct vfs *vfsp;

2931 struct vfs *vfs_found = NULL;

2933 vfs_list_read_| ock();

2934 vfsp = rootvfs;

2935 do {

2936 if (strcrnp(refstr_val ue(vfsp->vfs_resource), resource) ==
2937 VFS_HOLD(vf sp) ;

2938 vfs_found = vfsp;

2939 br eak;

2940

2941 sp = vfsp->vfs_next;

2942 } while (vfsp 1= rootvfs);

2943 vfs_list_unlock();

2944 return (vfs_found);

2945 }

2947 |* ARGSUSED */

2948 static void

2949 zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
2950 {

2951 zfs_creat_t *zct = arg;

2953 zfs_create_fs(os, cr, zct->zct_zpl props, tx);

2954 }

2956 #define ZFS_PROP_UNDEFI NED ((uint64_t)-1)

2958 /*

2959 * inputs:

2960 * createprops l'ist of properties requested by creator
2961 * default_zpl ver zpl version to use if unspecified in createprops
2962 * fuids_ok fuids allowed in this version of the spa?
2963 * os parent objset pointer (NULL if root fs)

0) {

45

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 46
2964 *

2965 * outputs:

2966 * zpl props val ues for the zplprops we attach to the master node object
2967 * is_ci true if requested file systemw |l be purely case-insensitive
2968 *

2969 * Deternine the settings for utf8only, normalization and

2970 * casesensitivity. Specific values nmay have been requested by the
2971 * creator and/or we can inherit values fromthe parent dataset. |If
2972 * the file systemis of too early a vintage, a creator can not

2973 * request settings for these properties, even if the requested

2974 * setting is the default value. W don’ t actually want to create dsl
2975 * properties for these, so renpbve themfromthe source nvlist after
2976 * processing.

2977 */

2978 static int

2979 zfs_fill_zpl props_inpl (objset_t *os, uint64_t zplver,

2980 “bool ean_t fui ds_ok, bool ean_t sa_ok, nvlist_t *createprops,

2981 nvlist_t *zplprops, boolean_t *is ci)

2982

2983 uint64_t sense = ZFS_ PROP_UNDEFI NED;

2984 uint64_t norm = ZFS PROP_UNDEFI NED;

2985 uint64_t u8 = ZFS PROP_UNDEFI NED;

2987 ASSERT(zpl props != NULL);

2989 /*

2990 * Pull out creator prop choices, if any.

2991 *

2992 if (createprops) {

2993 (void) nvlist_|ookup_uint64(createprops,

2994 zfs_prop_to_name(ZFS_PROP_VERSI ON), &zpl ver);
2995 (void) nvlist_| ookup_ui nt 64(createprops,

2996 zfs_prop_t o_name(ZFS_PROP_NORMALI ZE), &norm;
2997 (void) nvlist_renove_all (createprops,

2998 zfs_prop_ to_name(ZFS_PROP_NORMALI ZE)) ;

2999 (voi d) nvlist_| ookup_ui nt64(creat eprops,

3000 zfs_prop_t o_nanme(ZFS_PROP_UTF8ONLY), &u8);

3001 (void) nvlist_renove_all (createprops,

3002 zfs_prop_t o_name(ZFS_PROP_UTF8ONLY)) ;

3003 (void) nvlist_| ookup_ui nt 64(createprops,

3004 zfs_prop_t o_name(ZFS_PROP_CASE), &sense);

3005 (void) nvlist_renove_all (createprops,

3006 zfs_prop_t o_name(ZFS_PROP_CASE)) ;

3007 1

3009 /*

3010 * |f the zpl version requested is whacky or the file system
3011 * or pool Is version is too "young" to support normalization
3012 * and the creator tried to set a value for one of the props,
3013 * error out.

3014 */

3015 if ((zplver < ZPL_VERSION INITIAL || zplver > ZPL_VERSION) ||
3016 (zpl ver >= ZPL_VERSI ON_FUI D && ! fui ds_ok) |

3017 (zpl ver >= ZPL_VERSI ON_SA && !sa_ok)]|

3018 (zpl ver < ZPL_VERSI ON_NORVAL| ZATI ON &&

3019 (norm ! = ZFS PROP_UNDEFI NED || u8 != ZFS_PROP_UNDEFI NED |
3020 sense ! = ZFS_PROP_UNDEFI NED)))

3021 return (SET_ERROR(ENOTSUP));

3023 /*

3024 * Put the version in the zpl props

3025 */

3026 VERI FY(nvl i st_add_ui nt 64(zpl props,

3027 zfs_prop_t o_nane(ZFS_PROP_VERSI ON), zplver) == 0);

3029 if (norm == ZFS_PROP_UNDEFI NED)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 47 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 48
3030 VERI FY(zf s_get _zpl prop(os, ZFS_PROP_NORMAL| ZE, &norm) == 0); 3096 zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops,
3031 VERI FY(nvl i st_add_ui nt 64(zpl props, 3097 nvlist_t *zplprops, boolean_t *is_ci)
3032 zfs_prop_t o_name(ZFS_PROP_NORMALI ZE), norn) == 0); 3098 {
3099 bool ean_t fui ds_ok;
3034 /* 3100 bool ean_t sa_ok;
3035 * |If we’'re nornalizing, nanes nust always be valid UTF-8 strings. 3101 uint64_t zplver = ZPL_VERSI O\,
3036 */ 3102 int error;
3037 if (norm
3038 u8 = 1; 3104 zplver = zfs_zpl _version_map(spa_vers);
3039 if (u8 == ZFS_PROP_UNDEFI NED) 3105 fuids_ok = (zplver >= ZPL_VERS|I ON_FUI D) ;
3040 VERI FY(zfs_get _zpl prop(os, ZFS PROP_UTF8ONLY, &u8) == 0); 3106 sa_ok = (zplver >= ZPL_VERSI ON_SA);
3041 VERI FY(nvlist_add_ui nt 64(zpl props,
3042 zfs_prop_to_nanme(ZFS_PROP_UTF8ONLY), u8) == 0); 3108 error = zfs_fill_zpl props_i mpl (NULL, zplver, fuids_ok, sa_ok,
3109 createprops, zplprops, is_ci);
3044 if (sense == ZFS_PROP_UNDEFI NED) 3110 return (error);
3045 VERI FY(zfs_get _zpl prop(os, ZFS PROP_CASE, &sense) == 0); 3111 }
3046 VERI FY(nvl i st_add_ui nt 64(zpl props,
3047 zfs_prop_t o_nane(ZFS_PROP_CASE), sense) == 0); 3113 /*
3114 * innvl: {
3049 if (is_ci) 3115 * "type" -> dmu_objset_type_t (int32)
3050 *I's_ci = (sense == ZFS_CASE_| NSENSI Tl VE) ; 3116 * (optional) "props" -> { prop -> value }
3117 *
3052 return (0); 3118 *
3053 } 3119 * outnvl: propnane -> error code (int32)
3120 *
3055 static int 3121 static int
3056 zfs_fill_zpl props(const char *dataset, nvlist_t *createprops, 3122 zfs_ioc_create(const char *fsnane, nvlist_t *innvl, nvlist_t *outnvl)
3057 nvlist_t *zpl props, boolean_t *is_ci) 3123 {
3058 { 3124 int error = 0;
3059 bool ean_t fuids_ok, sa_ok; 3125 zfs_creat_t zct = { 0 };
3060 uint64_t zplver = ZPL_VERSI O\, 3126 nvlist_t *nvprops = NULL;
3061 obj set _t *os = NULL; 3127 voi d (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dnu_tx_t *tx);
3062 char parent name[MAXNAVELEN] ; 3128 int32_t type32;
3063 char *cp; 3129 dmu_obj set _type_t type;
3064 spa_t *spa; 3130 bool ean_t is_insensitive = B_FALSE;
3065 uint64_t spa_vers;
3066 int error; 3132 if (nvlist_lookup_int32(innvl, "type", & ype32) != 0)
3133 return (SET_ERROR(EI NVAL));
3068 (void) strlcpy(parentnanme, dataset, sizeof (parentnane)); 3134 type = type32;
3069 cp = strrchr(parentnane, '/’); 3135 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops);
3070 ASSERT(cp != NULL);
3071 cp[0] ="'\0"; 3137 switch (type) {
3138 case DMJ_OST_ZFS:
3073 if ((error = spa_open(dataset, &spa, FTAG) != 0) 3139 cbfunc = zfs_create_cb;
3074 return (error); 3140 br eak;
3076 spa_vers = spa_version(spa); 3142 case DMJ OST_zVOL:
3077 spa_cl ose(spa, FTAQ; 3143 cbfunc = zvol _create_cb;
3144 br eak;
3079 zplver = zfs_zpl _version_map(spa_vers);
3080 fuids_ok = (zplver >= ZPL_VERSI ON_FUl D); 3146 defaul t:
3081 sa_ok = (zplver >= ZPL_VERSI ON_SA); 3147 cbfunc = NULL;
3148 br eak;
3083 /* 3149 }
3084 * Open parent object set so we can inherit zplprop val ues. 3150 if (strchr(fsname, ' @) ||
3085 * 3151 strchr(fsnane, '%))
3086 if ((error = dmu_objset_hol d(parent nane, FTAG &os)) != 0) 3152 return (SET_ERROR(EI NVAL));
3087 return (error);
3154 zct.zct_props = nvprops;
3089 error = zfs_fill_zplprops_inpl (os, zplver, fuids_ok, sa_ok, createprops,
3090 zpl props, is_ci); 3156 if (cbfunc == NULL)
3091 dmu_obj set _rel e(os, FTAG; 3157 return (SET_ERROR(EI NVAL));
3092 return (error);
3093 } 3159 if (type == DMJ_OST_ZVOQOL)
3160 uint64_t vol size, vol bl ocksi ze;
3095 static int

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3162 if (nvprops == NULL)

3163 return (SET_ERROR(ElI NVAL));

3164 if (nvlist_l ookup_uint64(nvprops,

3165 zfs_prop_to_nanme(ZFS_PROP_VOLSI ZE), &volsize) != 0)
3166 return (SET_ERROR(EI NVAL));

3168 if ((error = nvlist_lookup_uint64(nvprops,
3169 zfs_prop_t o_name(ZFS_PROP_VOLBLOCKSI ZE),
3170 &vol bl ocksize)) !'= 0 & error != ENGENT)
3171 return (SET_ERROR(EI NVAL));

3173 if (error !=0)

3174 vol bl ocksi ze = zfs_prop_defaul t _numeri c(
3175 ZFS_PROP_VOLBLOCKSI ZE) ;

3177 if ((error = zvol _check_vol bl ocksi ze(

3178 vol bl ocksize)) !'= 0 ||

3179 (error = zvol _check_vol si ze(vol si ze,
3180 vol bl ocksi ze)) != 0)

3181 return (error);

3182 } else if (type == DMJ_OST_ZFS) {

3183 int error;

3185 /*

3186 * We have to have nornalization and

3187 * case-folding flags correct when we do the
3188 * file systemcreation, so go figure them out
3189 * now.

3190 *

3191 VERI FY(nvlist_alloc(&ct.zct_zpl props,

3192 NV_UNI QUE_NAME, KM SLEEP) == 0);

3193 error = zfs_fill sz props(fsnanme, nvprops,
3194 zct. zct zpl props, & s_insensitive);

3195 if (error '=0) {

3196 nvlist_free(zct.zct_zpl props);

3197 return (error);

3198 }

3199 }

3201 error = dnu_obj set _create(fsnane, type,

3202 is |nsen5|t|ve ? DS _FLAG ClI _DATASET : 0, cbfunc, &zct);
3203 nvlist_free(zct.zct_zpl props);

3205 /*

3206 * |t would be nice to do this atomcally.

3207 */

3208 if (error == 0) {

3209 error = zfs_set_prop_nvlist(fsnane, ZPROP_SRC LOCAL,
3210 nvprops, outnvl);

3211 if (error 1= 0)

3212 (voi d) dsl_destroy_head(fsnane);
3213 }

3214 return (error);

3215 }

3217 /*

3218 * innvl: {

3219 * "origin" -> nane of origin snapshot

3220 * (optional) "props" -> { prop -> value }

3221 *

3222 *

3223 * outnvl: propnane -> error code (int32)

3224 */

3225 static int
3226 zfs_ioc_clone(const char *fsnane, nvlist_t *innvl,
3227 {

nvlist_t *outnvl)

49

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3228 int error = 0;

3229 nvlist_t *nvprops = NULL;

3230 char *origi n_naneg;

3232 if (nvlist_| ookup string(i nnvI orl gin", &origin_nane) != 0)
3233 return (SET_ERROR(EI NV,

3234 (void) nvlist_lookup_nvlist(i nnvI "props", &nvprops);
3236 if (strchr(fsname, ' @) ||

3237 strchr(fsnane, ' %

3238 return (SET_ERROR(EI NVAL));

3240 if (dataset_nanecheck(origin_name, NULL, NULL) != 0)

3241 return (SET_ERROR(EI AL)),

3242 error = dnu_obj set _cl one(fsnane, origin_nane);

3243 if (error 1= 0)

3244 return (error);

3246 /*

3247 * |t would be nice to do this atomcally.

3248 *

3249 if (error == 0) {

3250 error = zfs_set_prop_nvlist(fsnane, ZPROP_SRC LOCAL,
3251 nvprops, outnvl);

3252 if (error 1=0

3253 (voi d) dsl_destroy_head(fsnane);

3254 }

3255 return (error);

3256 }

3258 /*

3259 * innvl:

3260 * "snaps" -> { snapshotl, snapshot2 }

3261 * (optional) "props" -> { prop -> value (string) }

3262 *

3263 *

3264 * outnvl: snapshot -> error code (int32)

3265 */

3266 static int

3267 zfs_i oc_snapshot (const char *pool nane, nvlist_t *innvl, nvlist_t *outnvl)
3268 {

3269 nvlist_t *snaps;

3270 nvlist_t *props = NULL;

3271 int error, poollen;

3272 nvpair_t *pair;

3274 (void) nvlist_|lookup_nvlist(innvl, "props", &props);

3275 if ((error = zfs_check_userprops(pool nane, props)) != 0)
3276 return (error);

3278 if (!'nvlist_enpty(props) &&

3279 zfs_earlier_version(pool nane, SPA VERS|I ON_SNAP_PROPS))
3280 return (SET_ERROR(ENOTSUP)) ;

3282 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3283 return (SET_ERROR(EI NVAL));

3284 pool I en = strlen(pool nane);

3285 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3286 pair = nvlist_next_nvpair(snaps, pair)) {

3287 const char *name = nvpair_nanme(pair);

3288 const char *cp = strchr(nanme, '@);

3290 /*

3291 * The snap nane nust contain an @ and the part after it
3292 * contain only valid characters.

3293 */

nmust

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3294 if (cp == NULL || snapshot_namecheck(cp + 1, NULL, NULL) != 0)
3295 return (SET_ERROR(EI NVAL));

3297 /*

3298 * The snap nust be in the specified pool.

3299 */

3300 if (strncnp(nane, pool name, poollen) =0 ||

3301 (nane[poollen] !'="'/" &% nanme[poollen] !'="@))

3302 return (SET_ERROR(EXDEV));

3304 /* This nust be the only snap of this fs. */

3305 for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair);
3306 pair2 !'= NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) {
3307 if (strncnp(nanme, nvpair_name(pair2), cp - nane + 1)
3308 ==0) {

3309 return (SET_ERROR(EXDEV));

3310 }

3311 }

3312 1

3314 error = dsl _dataset_snapshot (snaps, props, outnvl);

3315 return (error);

3316 }

3318 /*

3319 * innvl: "nessage" -> string

3320 */

3321 /* ARGSUSED */

3322 static int

3323 zfs_ioc_|l og_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl)
3324 {

3325 char *nessage;

3326 spa_t *spa;

3327 int error;

3328 char *pool naneg;

3330 /*

3331 * The poolnane in the ioctl is not set, we get it fromthe TSD,
3332 * which was set at the end of the last successful ioctl that allows
3333 * | ogging. The secpolicy func already checked that it is set.
3334 * Only one log ioctl is allowed after each successful ioctl, so
3335 * we clear the TSD here.

3336 *

3337 pool nanme = tsd_get(zfs_all ow_| og_key);

3338 (void) tsd_set(zfs_allow_|og_key, NULL);

3339 error = spa_open(pool nane, &spa, FTAG;

3340 strfree(pool nane);

3341 if (error 1= 0)

3342 return (error);

3344 if (nvlist_lookup_string(innvl, "nessage", &message) != 0) {
3345 spa_cl ose(spa, FTAQ;

3346 return (SET_ERROR(EINVAL));

3347 }

3349 if (spa_version(spa) < SPA_VERSI ON_ZPOOL_HI STCRY) {

3350 spa_cl ose(spa, FTAQ;

3351 return (SET_ERROR(ENOTSUP));

3352 }

3354 error = spa_history_|l og(spa, nessage);

3355 spa_cl ose(spa, FTAQ;

3356 return (error);

3357 }

3359 /*

51

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3360 * The dp_config_rw ock nust not be held when calling this, because the
3361 * unnount nmay need to wite out data.

3362 *

3363 * This function is best-effort. Callers nust deal gracefully if it
3364 * remmins nounted (or is remounted after this call).

3365 */

3366 void

3367 zfs_unnount _snap(const char *snapnane)

3368 {

3369 vfs_t *vfsp;

3370 zfsvfs_t *zfsvfs;

3372 if (strchr(snapname, ' @) == NULL)

3373 return;

3375 vfsp = zfs_get_vfs(snapnane);

3376 if (vfsp == NULL)

3377 return;

3379 zfsvfs = vfsp->vfs_data;

3380 ASSERT(! dsl _pool _confi g_hel d(dmu_obj set _pool (zfsvfs->z_os)));
3382 if (vn_vfsw ock(vfsp->vfs_vnodecovered) != 0) {

3383 VFS_RELE(vfsp);

3384 return;

3385 }

3386 VFS_RELE(vfsp);

3388 *

3389 * Always force the unnmount for snapshots.

3390 */

3391 (voi d) dounnount (vfsp, MS_FORCE, kcred);

3392 }

3394 /* ARGSUSED */

3395 static int

3396 {zfs_unnDunt_snap_cb(const char *snapnane, void *arg)

3397

3398 zf s_unnmount _snap(snapnane) ;

3399 return (0);

3400 }

3402 /*

3403 * When a clone is destroyed, its origin may al so need to be destroyed,
3404 * in which case it nust be unmounted. This routine will do that unmount
3405 * if necessary.

3406 *

3407 void

3408 zfs_destroy_unnount _ori gi n(const char *fsnane)

3409 {

3410 int error;

3411 obj set _t *os;

3412 dsl _dat aset _t *ds;

3414 error = dnu_obj set _hol d(fsnanme, FTAG &os);

3415 if (error 1= 0)

3416 return;

3417 ds = dnu_obj set _ds(os);

3418 if (dsl_dir_is_clone(ds->ds_dir) &% DS | S DEFER DESTROY(ds->ds_prev)) {
3419 char ori gi nname[MAXNAMELEN] ;

3420 dsl _dat aset _nanme(ds->ds_prev, origi nnane);

3421 dmu_obj set _rel e(os, FTAQ;

3422 zf s_unnmount _snap(ori gi nnane) ;

3423 } else {

3424 dmu_obj set _rel e(os, FTAQ;

3425 }

52

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3426 }

3428 /*
3429
3430
3431
3432
3433
3434
3435 *

E

3436 */

innvl:

"snaps" -> { snapshotl, snapshot2 }
(optional bool ean) "defer"

outnvl: snapshot -> error code (int32)

3437 static int
3438 zfs_ioc_destroy_snaps(const char *pool name, nvlist_t *innvl, nvlist_t *outnvl)

3439 {
3440
3441
3442
3443

3445
3446
3447

3449
3450
3451
3452

3454
3455
3456
3457
3458
3459

3461
3462

3464
3465 }
/

3467
3468
3469
3470
3471
3472
3473

L

3474 */

int poollen;
nvlist_t *snaps;
nvpair_t *pair;
bool ean_t defer;

if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
return (SET_ERROR(EINVAL));
defer = nvlist_exists(innvl, "defer");

pool I en = strlen(pool nane);
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
pair = nvlist_next_nvpair(snaps, pair)) {
const char *name = nvpair_nanme(pair);
* The snap nust be in the specified pool.
*/
if (strncnp(nanme, pool nane, poollen) !'= 0 ||
(name[poollen] != "'/’ &% nane[poollen] '="@))
return (SET_ERROR(EXDEV));

zf s_unnmount _snap(nane) ;

}

return (dsl_destroy_snapshots_nvl (snaps, defer, outnvl));

inputs:

zc_nane nane of dataset to destroy
zc_obj set _type type of objset

zc_def er _destroy mark for deferred destroy
out put s: none

3475 static int
3476 zfs_ioc_destroy(zfs_cnmd_t *zc)

3477 {
3478
3479
3480

3482
3483
3484
3485
3486
3487
3488
3489 }

3491 /*

int err;
if (strchr(zc->zc_nane, ' @) && zc->zc_objset_type == DMJ_OST_ZFS)
zf s_unnmount _snap(zc- >zc_nane) ;

if (strchr(zc->zc_nane, '@))
| err = dsl _destroy_snapshot (zc->zc_nane, zc->zc_defer_destroy);
el se
err = dsl _destroy_head(zc->zc_nane);
if (zc->zc_objset_type == DMJ_OST_ZVOL && err == 0)
(void) zvol _renpve_nmi nor(zc->zc_nane);
return (err);

53

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

0) {

54

recent snapshot)

error = dsl_dataset_roll back(zc->zc_nane);

zZc->zc_nane) ;

resune_err;

at

"% @s", fsname, snapnane);

CONULL) 1= 0 |

- zc->zc_nane + 1))

3492 * inputs:

3493 * zc_nane name of dataset to rollback (to nost
3494 *

3495 * outputs: none

3496 */

3497 static int

3498 zfs_ioc_rollback(zfs_cmd_t *zc)

3499 {

3500 zfsvfs_t *zfsvfs;

3501 int error;

3503 if (getzfsvfs(zc->zc_nanme, &zfsvfs) ==

3504 error = zfs_suspend_fs(zfsvfs);

3505 if (error == 0) {

3506 int resunme_err;

3508

3509 resume_err = zfs_resunme_fs(zfsvfs,
3510 error = error ? error

3511 }

3512 VFS_RELE(zf svfs->z_vfs);

3513 } else {

3514 error = dsl_dataset_rol | back(zc->zc_nane);
3515 }

3516 return (error);

3517 }

3519 static int

3520 Eecursive_unm)unt(const char *fsnane, void *arg)

3521

3522 const char *snapnane = arg;

3523 char ful | nane[MAXNAMELEN ;

3525 (void) snprintf(fullnanme, sizeof (fullnane),
3526 zf s_unmount _snap(ful | nane) ;

3527 return (0);

3528 }

3530 /*

3531 * inputs:

3532 * zc_nane ol d nane of dataset

3533 * zc_val ue new nane of dataset

3534 * zc_cookie recursive flag (only valid for snapshots)
3535 *

3536 * outputs: none

3537 */

3538 static int

3539 zfs_ioc_renane(zfs_cnd_t *zc)

3540 {

3541 bool ean_t recursive = zc->zc_cookie & 1;

3542 char *at;

3544 zc->zc_val ue[si zeof (zc->zc_value) - 1]

3545 if (dataset_nanecheck(zc->zc_val ue, NULL

3546 strchr(zc->zc_value, "%))

3547 return (SET_ERROR(EI NVAL));

3549 at = strchr(zc->zc_name, '@);

3550 if (at !'= NULL)

3551 /* snaps nust be in sane fs */

3552 if (strncnp(zc->zc_nane, zc->zc_val ue,
3553 return (SET_ERROR(EXDERV));
3554 *at = '\0";

3555 if (zc->zc_objset_type == DMJ_OST_ZFS)
3556 int error = dnu_objset_find(zc->zc_nane,
3557 recursi ve_unnount,

at + 1,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3558 recursive ? DS_FIND CH LDREN : 0);

3559 if (error = 0)

3560 return (error);

3561 }

3562 return (dsl_dataset_renanme_snapshot (zc->zc_nane,

3563 at + 1, strchr(zc->zc_value, '@) + 1, recursive));
3564 } else {

3565 if (zc->zc_objset_type == DMJ_OST_ZVQL)

3566 (void) zvol _renpve_m nor (zc->zc_nane);

3567 return (dsl_dir_renanme(zc->zc_nane, zc->zc_value));
3568 1

3569

3571 static int

3572 zfs_check_settabl e(const char *dsname, nvpair_t *pair, cred_t *cr)
3573 {

3574 const char *propnanme = nvpair_nanme(pair);

3575 bool ean_t issnap = (strchr(dsname, '@) != NULL);

3576 zfs_prop_t prop = zfs_nane_to_prop(propnane);

3577 uint64_t intval

3578 int err;

3580 if (prop == ZPROP_I NVAL)

3581 if (zfs_prop_user(propnane))

3582 if (err = zfs_secpolicy_wite_perns(dsnang,
3583 ZFS_DELEG_PERM USERPROP, cr))

3584 return (err);

3585 return (0);

3586 }

3588 if (lissnap && zfs_prop_userquota(propnane)) {

3589 const char *perm = NULL;

3590 const char *uqg_prefix =

3591 zfs_user quot a_prop_prefi xes[ZFS_PROP_USERQUOTA| ;
3592 const char *gq_prefix =

3593 zfs_userquot a_prop_prefixes[ZFS_PROP_GROUPQUOTA] ;
3595 if (strncnp(propnanme, uqg_prefix,

3596 strlen(uqg_prefix)) == 0) {

3597 perm = ZFS DELEG PERM USERQUOTA;

3598 } else if (strncnp(propnane, gq_prefix,

3599 strlen(gg_prefix)) == 0

3600 perm = ZFS _DELEG PERM GROUPQUOTA;
3601 } else {

3602 /* USERUSED and GROUPUSED are read-only */
3603 return (SET_ERROR(EI NVAL));

3604 }

3606 if (err = zfs_secpolicy_wite_perns(dsnane, perm cr))
3607 return (err);

3608 return (0);

3609 }

3611 return (SET_ERROR(EINVAL));

3612 }

3614 if (issnap)

3615 return (SET_ERROR(EINVAL));

3617 if (nvpair_type(pair) == DATA _TYPE_NVLI ST) {

3618 /*

3619 * dsl _prop_get_all _inmpl () returns properties in this
3620 * format.

3621 */

3622 nvlist_t *attrs;

3623 VERI FY(nvpair_value_nvlist(pair, &ttrs) == 0)

55

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3624
3625
3626

3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645

3647
3648
3649
3650

3652
3653
3654
3655
3656

3658
3659

3661
3662
3663
3664
3665
3666

3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680

3682
3683
3684
3685

3687
3688
3689

VERI FY(nvlist_| ookup_nvpair(attrs, ZPROP_VALUE,
&pair) == 0);
}

/*
* Check that this value is valid for this pool version
*
/
switch (prop) {
case ZFS_PROP_COVPRESSI ON:
/*
* |f the user specified gzip conpression, make sure
* the SPA supports it. We ignore any errors here since
* we'll catch themlater.
*
/
if (nvpair_type(pair) == DATA TYPE U NT64 &&
nvpai r_val ue_uint64(pair, & ntval) == 0) {
if (intval >= ZI O COWPRESS ZIP_1 &&
intval <= ZI O COWRESS_GZI P_9 &&
zfs_earlier_version(dsnang,
SPA_VERSI ON_GZI P_COWPRESSI ON)) {
return (SET_ERROR(ENOTSUP));
}

if (intval == ZI O COWPRESS_ZLE &&
zfs_earlier_version(dsnane,
SPA_VERSI ON_ZLE_COVPRESSI ON))
return (SET_ERROR(ENOTSUP)) ;

if (intval == ZI O COWRESS_LZ74) {
zfeature_info_t *feature =
&spa_feature_tabl e[
SPA FEATURE_LZ4 COVPRESS] ;
spa_t *spa;

if ((err = spa_open(dsnane, &spa, FTAG) != 0)
return (err);

if (!spa_feature_is_enabl ed(spa, feature)) {
spa_cl ose(spa, FTAQ;
return (SET_ERROR(ENOTSUP));

}
spa_cl ose(spa, FTAQ;

-

* ok kR Ok Ok
-~

If this is a bootable dataset then
verify that the conpression algorithm
is supported for booting. W nust return
sonet hi ng ot her than ENOTSUP since it
inplies a downrev pool version.

if (zfs_is_bootfs(dsnanme) &&
! BOOTFS_COVPRESS_VALI D(intval)) {
return (SET_ERROR(ERANCE)) ;

}
br eak;

case ZFS PROP_COPI ES:
if (zfs_earlier_version(dsnane, SPA VERSI ON_DI TTO BLOCKS))
return (SET_ERROR(ENOTSUP)) ;
br eak;

case ZFS_PROP_DEDUP:
if (zfs_earlier_version(dsname, SPA VERSI ON_DEDUP))
return (SET_ERROR(ENCTSUP));

56

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3690 br eak;

3692 case ZFS_PROP_SHARESMB:

3693 if (zpl_earlier_version(dsnane, ZPL_VERS|I ON_FU D))
3694 return (SET_ERROR(ENCTSUP)) ;

3695 br eak;

3697 case ZFS_PROP_ACLI NHERI T:

3698 if (nvpal r_type(pair) == DATA_TYPE_U NT64 &&

3699 nvpai r_val ue_ui nt 64(pair, & ntval) == 0) {
3700 if (intval == ZFS_ ACL _PASSTHROUGH X &&
3701 zfs_earlier_version(dsnane,

3702 SPA_VERS| ON_PASSTHROUGH_X))

3703 return (SET_ERROR(ENOTSUP));

3704 }

3705 br eak;

3706 }

3708 return (zfs_secpolicy_setprop(dsnanme, prop, pair, CRED()));
3709 }

3711 /*

3712 * Checks for a race condition to make sure we don’t increment a feature flag
3713 * nmultiple tines.

3714 */

3715 static int

3716 zfs_prop_activate_feature_check(void *arg, dmu_tx_t *tx)

3717 {

3718 spa_t *spa = dmu_t x_pool (tx)->dp_spa;

3719 zfeature_info_t *feature = arg;

3721 if (!spa_feature_is_active(spa, feature))
3722 return (0);

3723 el se

3724 return (SET_ERROR(EBUSY));

3725 }

3727 I|*

3728 * The cal |l back i nvoked on feature activation in the sync task caused by
3729 * zfs_prop_activate_feature.

3730 */

3731 static void

3732 zfs_prop_activate_feature_sync(void *arg, dmu_tx_t *tx)

3733 {

3734 spa_t *spa = dnu_t x_pool (tx)->dp_spa;
3735 zfeature_info_t *feature = arg;

3737 spa_feature_incr(spa, feature, tx);
3738 }

3740 /*

3741 * Activates a feature on a pool in response to a property setting. This
3742 * creates a new sync task which nodifies the pool to reflect the feature
3743 * as being active.

3744 */

3745 static int

3746 zfs_prop_activate_feature(spa_t *spa, zfeature_info_t *feature)

3747 {

3748 int err;

3750 /* EBUSY here indicates that the feature is already active */

3751 err = dsl _sync_t ask(spa_nane(spa),

3752 zfs_prop_activate_feature_check, zfs_prop_activate_feature_sync,
3753 feature, 2);

3755 if (err 1= 0 & err != EBUSY)

57

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 58
3756 return (err);

3757 el se

3758 return (0);

3759 }

3761 /*

3762 * Renoves properties fromthe given props list that fail perm ssion checks
3763 * needed to clear themand to restore themin case of a receive error. For each
3764 * property, make sure we have both set and inherit permnissions.

3765 *

3766 * Returns the first error encountered if any perm ssion checks fail. If the
3767 * caller provides a non-NULL errlist, it also gives the conplete |list of nanes
3768 * of all the properties that failed a permnission check along with the

3769 * corresponding error nunbers. The caller is responsible for freeing the

3770 * returned errlist.

3771 *

3772 * |f every property checks out successfully, zero is returned and the |ist

3773 * pointed at by errlist is NULL.
3774 */
3775 static int

3776 zfs_check_cl earabl e(char *dataset, nvlist_t *props, nvlist_t **errlist)

3777 {

3778 zfs_cmd_t *zc;

3779 nvpair_t *pair, *next_pair;

3780 nvlist_t *errors

3781 int err, rv = 0;

3783 if (props == NULL)

3784 return (0);

3786 VERI FY(nvlist_alloc(&errors, NV_UN QUE_NAME, KM SLEEP) == 0);
3788 zc = kmem al | oc(sizeof (zfs_cnd_t), KM SLEEP);

3789 (void) strcpy(zc->zc_nane, dataset);

3790 pair = nvlist_next_nvpair(props, NULL);

3791 while (pair != NULL)

3792 next _pair = nvlist_next_nvpair(props, pair);

3794 (void) strcpy(zc->zc_value, nvpair_name(pair));

3795 if ((err = zfs_check “settabl e(dataset, pair, CRE))) !'=0|]|
3796 (err = zfs_secpolicy_inheri t_prop(zc, NULL, CRED())) != 0) {
3797 VERI FY(nvl i st _renmpve_nvpair(props, pair) == 0);
3798 VERI FY(nvlist_add_int32(errors,

3799 zc->zc_value, err) == 0);

3800 }

3801 pair = next_pair;

3802 }

3803 kmem free(zc, sizeof (zfs_cnd_t));

3805 if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) {
3806 nvlist_free(errors);

3807 errors = NULL;

3808 } else {

3809 VERI FY(nvpair_val ue_i nt32(pair, &v) == 0);

3810 }

3812 if (errlist == NULL)

3813 nvlist_free(errors);

3814 el se

3815 *errlist = errors;

3817 return (rv);

3818 }

3820 static bool ean_t
3821 propval _equal s(nvpair_t *pl, nvpair_t *p2)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3822 {

3823 if (nvpair_type(pl) == DATA_TYPE_NVLI ST) {

3824 /*"dsl _prop_get _all _inpl () format */

3825 nvlist_t *attrs;

3826 VERI FY(nvpai r val ue_nvl i st(pl, &attrs) == 0);
3827 VERI FY(nvl i st _| ookup_nvpair(attrs, ZPROP_VALUE,
3828 &pl) == 0);

3829 }

3831 if (nvpair_type(p2) == DATA_TYPE_NVLI ST) {

3832 nvlist_t *attrs;

3833 VERI FY(nvpai r_val ue_nvlist(p2, &attrs) == 0);
3834 VERI FY(nvlist_| ookup_nvpair(attrs, ZPROP_VALUE,
3835 &p2) == 0);

3836 }

3838 if (nvpair_type(pl) != nvpair_type(p2))

3839 return (B_FALSE);

3841 if (nvpair type(pl) == DATA TYPE_STRING {

3842 char *val strl *val str2;

3844 VERI FY(nvpai r _val ue_string(pl, (char **)&valstrl) ==
3845 VERI FY(nvpair_val ue_string(p2, (char **)&val str2)
3846 return (strcnp(valstrl, valstr2) == 0);

3847 } else {

3848 uint64_t intvall, intval2;

3850 VERI FY(nvpai r_val ue_ui nt 64(pl, & ntvall) == 0);
3851 VERI FY(nvpai r_val ue_ui nt 64(p2, & ntval2) == 0);
3852 return (intvall == intval 2);

3853 1

3854 }

3856 /*

3857 * Renove properties fromprops if they are not going to change
3858 * by conparison with origprops). Renbve themfromori gprops as wel |,
3859 * do not need to clear or restore properties that won't change.
3860 */

3861 static void

3862 props_reduce(nvlist_t *props, nvlist_t *origprops)

3863 {

3864 nvpair_t *pair, *next_pair;

3866 if (origprops == NULL)

3867 return; /* all props need to be received */
3869 pair = nvlist_next_nvpair(props, NULL);

3870 while (pair !'= NULL) {

3871 const char *propname = nvpair_name(pair);

3872 nvpair_t *match;

3874 next _pair = nvlist_next_nvpair(props, pair);
3876 if ((nvlist_lookup_nvpair(origprops, propnane,
3877 &match) !'= 0) || !propval _equal s(pair, match))
3878 goto next; /* need to set received value */
3880 /* don’t clear the existing received value */
3881 (void) nvlist_renove_nvpair(origprops, nmatch);
3882 /* don’t bother receiving the property */

3883 (void) nvlist_renpve_nvpair(props, pair);

3884 next:

3885 pair = next_pair;

3886 1

3887 }

0);

== 0);

(as determ ned

since we

59

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3889 #ifdef DEBUG

3890 static boolean_t zfs_ioc_recv_inject_err;

3891 #endi f

3893 /*

3894 * inputs:

3895 * zc_name name of containing fil esystem

3896 * zc_nvlist_src{_size} nvlist of properties to apply

3897 * zc_val ue name of snapshot to create

3898 * zc_string nane of clone origin (if DRR_FLAG CLONE)
3899 * zc_cookie file descriptor to recv from

3900 * zc_begin_record the BEG N record of the stream (not byteswapped)
3901 * zc_gui force flag

3902 * zc_cleanup_fd cl eanup-on-exit file descriptor

3903 * zc_action_handle handl e for this guid/ds mapping (or zero on first call)
3904 *

3905 * outputs:

3906 * zc_cookie nunber of bytes read

3907 * zc_nvlist_dst{_size} error for each unapplied received property
3908 * zc_obj zprop_errflags_t

3909 * zc_action_handle handl e for this guid/ ds mappi ng

3910 */

3911 static int

3912 zfs_ioc_recv(zfs_cnd_t *zc)

3913 {

3914 file_t *fp;

3915 dnu_recv_cookie_t drc

3916 boolean_t force = (bool ean_t)zc->zc_gui d;

3917 int fd;

3918 int error = 0;

3919 int props_error = 0;

3920 nvlist_t *errors;

3921 of fset _t off;

3922 nvlist_t *props = NULL; /* sent properties */

3923 nvlist_t *ori gprops = NULL; /* existing properties */
3924 char *origin = NULL;

3925 char *tosnap;

3926 char tof s[ZFS_VMAXNAMELEN ;

3927 bool ean_t first_recvd_props = B_FALSE;

3929 if (dataset_nanecheck(zc->zc_value, NULL, NULL) !'= 0 ||
3930 strchr(zc->zc_value, ' @) == NULL ||

3931 strchr(zc->zc_value, '%))

3932 return (SET_ERROR(EINVAL));

3934 (void) strcpy(tofs, zc->zc_value);

3935 tosnap = strchr(tofs, '@);

3936 *tosnap++ = '\0";

3938 if (zc->zc_nvlist_src !'= NULL &&

3939 (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
3940 zc->zc_iflags, &props)) != 0)

3941 return (error);

3943 fd = zc->zc_cooki e;

3944 fp = getf(fd);

3945 if (fp == NULL) {

3946 nvlist_free(props);

3947 return (SET_ERROR(EBADF));

3948 1

3950 VERI FY(nvlist_alloc(&errors, NV_UNI QUE_NAME, KM SLEEP) == 0);
3952 if (zc->zc_string[O0])

3953 origin = zc->zc_string;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 61

3955
3956
3957
3958

3960
3961
3962
3963
3964
3965
3966
3967
3968
3969

3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990

3992
3993
3994
3995
3996
3997
3998

4000
4001

4003
4004
4005
4006
4007

4009
4010
4011
4012
4013
4014
4015
4016
4017

4019

error = dnu_recv_begin(tofs, tosnap,
&zc->zc_begin_record, force, origin, &drc);
if (error = 0)
goto out;

Set properties before we receive the streamso that they are applied
to the new data. Note that we nust call dmu_recv_strean() if
dmu_r ecv_begi n() succeeds.

* ok ko

*
/
if (props != NULL && !drc.drc_news)
if (spa_version(dsl_dataset_
SPA_VERSI ON_ RECVD_PROPS
1 dsl _prop_get _hasrecvd(tofs))
first_recvd_props = B _TRUE;

{
et_spa(drc.drc_ds)) >=
&&

If new received properties are supplied, they are to
conpl etely replace the existing received properties, so stash
away the existing ones.

EE N
-

if (dsl_prop_get_received(tofs, &origprops) == 0) {
nvlist_t *errlist = NULL;
/*
* Don't bother witing a property if its value won't
change (and avoi d the unnecessary security checks).

*

*

* The first receive after SPA VERSI ON_ RECVD PROPS is a
* special case where we blow away all |ocal properties
* regardl ess.

*

if (!first_recvd_props)
props_reduce(props, origprops);

if (zfs_check_clearabl e(tofs, origprops, &errlist) != 0)
(void) nvlist_nerge(errors, errlist, 0);

nvlist _free(errlist);

if (clear_received_props(tofs, origprops,
first_recvd_props ? NULL : props) != 0)
zc->zc_obj | = ZPROP_ERR NOCLEAR;
} else {
zc->zc_obj | = ZPROP_ERR NOCLEAR;
}

if (props != NULL)
props_error = dsl_prop_set_hasrecvd(tofs);

if (props_error == 0) {
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEI VED,
props, errors);

}
}
if (zc->zc_nvlist_dst_size !=0 &&
(nvlist_smush(errors, zc->zc_nvlist_dst_size) !=0 ||
put _nvlist(zc, errors) !=0)) {
/*
* Caller made zc->zc_nvlist_dst |ess than the m ni mum expected
* size or supplied an invalid address.
*/
props_error = SET_ERROR(ElI NVAL) ;
}

off = fp->f_offset;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4020
4021

4023
4024

4026
4027
4028

4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043

4045
4046
4047

4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068

4070
4071
4072
4073

4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085

#i f def

#endi f

62

error = dnu_recv_strean(&drc, fp->f_vnode, &off, zc->zc_cleanup_fd,
&zc->zc_action_handl e);

if (error == 0) {
zfsvfs_t *zfsvfs = NULL;

if (getzfsvfs(tofs, &fsvfs) == 0) {
/* online recv */
int end_err;

error = zfs_suspend_fs(zfsvfs);
*

* |f the suspend fails, then the recv_end will
* likely also fail, and clean up after itself.
*
/
end_err = dmu_recv_end(&drc);
if (error == 0)
error = zfs_resune_fs(zfsvfs, tofs);
error = error ? error end_err;
VFS_RELE(zf svfs->z_vfs);
} else {
error = dmu_recv_end(&drc);
}

}

zc->zc_cookie = off - fp->f_offset;
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
fp->f_offset = off;

DEBUG
if (zfs_ioc_recv_inject_err) {
zfs_ioc_recv_inject_err = B_FALSE;
error = 1;
/*
* On error, restore the original props.
*/

if (error '=0 & props != NULL && !drc.drc_newfs) {
if (clear_received_props(tofs, props, NULL) != 0) {
*
* We failed to clear the received properties.
* Since we nay have left a $recvd value on the
* system we can't clear the $hasrecvd fl ag.
*/

zc->zc_obj | = ZPROP_ERR NORESTORE;
} else if (first_recvd_props)

dsl _prop_unset _hasrecvd(tofs);
}

if (origprops == NULL && !drc.drc_newfs)
/* W failed to stash the original properties. */
zc->zc_obj | = ZPROP_ERR_NORESTORE;

-

* ok kb % ok
-

dsl _props_set() will not convert RECEIVED to LOCAL on or
after SPA VERSI ON_RECVD PROPS, so we need to specify LOCAL
explictly if we're restoring |ocal properties cleared in the
first newstyle receive.

if (origprops !'= NULL &&
zfs_set_prop_nvlist(tofs, (first_recvd_props ?
ZPROP_SRC_LOCAL : ZPROP_SRC _RECEI VED),
origprops, NULL) != 0) {
/*

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 63 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 64
4086 * W stashed the original properties but failed to 4152 error = dsl_dataset_hol d_obj (dp, zc->zc_sendobj, FTAG &tosnap);
4087 * restore them 4153 if (error 1= 0)
4088 */ 4154 dsl _pool _rel e(dp, FTAG;
4089 zc->zc_obj | = ZPROP_ERR NORESTORE; 4155 return (error);
4090 } 4156 }
4091 }
4092 out: 4158 if (zc->zc_fromobj = 0) {
4093 nvlist_free(props); 4159 error = dsl_dataset_hol d_obj (dp, zc->zc_fronobj,
4094 nvlist_free(origprops); 4160 FTAG &fromsnap);
4095 nvlist_free(errors); 4161 if (error '=0) {
4096 rel easef (fd); 4162 dsl _dat aset _rel e(tosnap, FTAG;
4163 dsl _pool _rel e(dp, FTAG;
4098 if (error == 0) 4164 return (error);
4099 error = props_error; 4165 }
4166 }
4101 return (error);
4102 } 4168 error = dnu_send_esti nate(tosnap, fromsnap,
4169 &zc->zc_obj set _type);
4104 | *
4105 * inputs: 4171 if (fromsnap != NULL)
4106 * zc_nane nane of snapshot to send 4172 dsl _dat aset _rel e(fromsnap, FTAQ;
4107 * zc_cookie file descriptor to send streamto 4173 dsl _dat aset _rel e(tosnap, FTAQ;
4108 * zc_obj fronorigin flag (nutually exclusive with zc_fronobj) 4174 dsl _pool _rel e(dp, FTAQ;
4109 * zc_sendobj obj setid of snapshot to send 4175 } else {
4110 * zc_fronobj obj setid of incremental fronsnap (nay be zero) 4176 file_t *fp = getf(zc->zc_cookie);
4111 * zc_guid if set, estimate size of streamonly. zc_cookie is ignored. 4177 if (fp == NULL
4112 * out put size in zc_objset_type. 4178 return (SET_ERROR(EBADF));
4113 *
4114 * outputs: none 4180 off = fp->f_offset;
4115 * 4181 error = dnu_send_obj (zc->zc_nane, zc->zc_sendobj,
4116 static int 4182 zc->zc_fronmobj, zc->zc_cookie, fp->f_vnode, &off);
4117 zfs_ioc_send(zfs_cnd_t *zc)
4118 { 4184 i f (VOP_SEEK(fp->f_vnode, fp->f_offset, &ff, NULL) == 0)
4119 int error; 4185 fp->f_offset = off;
4120 of fset _t off; 4186 rel easef (zc->zc_cooki e);
4121 bool ean_t estimate = (zc->zc_guid != 0); 4187 }
4188 return (error);
4123 if (zc->zc_obj !'=0) { 4189 }
4124 dsl _pool _t *dp;
4125 dsl _dat aset _t *tosnap; 4191 /*
4192 * inputs:
4127 error = dsl_pool _hol d(zc->zc_nanme, FTAG &dp); 4193 * zc_nane nane of snapshot on which to report progress
4128 if (error 1= 0) 4194 * zc_cooki e file descriptor of send stream
4129 return (error); 4195 *
4196 * outputs:
4131 error = dsl_dataset_hol d_obj (dp, zc->zc_sendobj, FTAG &tosnap); 4197 * zc_cookie nunber of bytes witten in send streamthus far
4132 if (error '=0) { 4198 */
4133 dsl _pool _rel e(dp, FTAQ; 4199 static int
4134 return (error); 4200 zfs_ioc_send_progress(zfs_cnd_t *zc)
4135 } 4201 {
4202 dsl _pool _t *dp;
4137 if (dsl_dir_is_clone(tosnap->ds_dir)) 4203 dsl _dataset _t *ds;
4138 zc->zc_fronmobj = tosnap->ds_dir->dd_phys->dd_origi n_obj ; 4204 dmu_sendarg_t *dsp = NULL;
4139 dsl _dataset _rel e(tosnap, FTAQ; 4205 int error;
4140 dsl _pool _rel e(dp, FTAG;
4141 } 4207 error = dsl_pool _hol d(zc->zc_nane, FTAG &dp);
4208 if (error 1= 0)
4143 if (estimate) { 4209 return (error);
4144 dsl _pool _t *dp;
4145 dsl _dat aset _t *tosnap; 4211 error = dsl _dataset _hol d(dp, zc->zc_nane, FTAG &ds);
4146 dsl _dataset _t *fromsnap = NULL; 4212 if (error 1= 0)
4213 dsl _pool _rel e(dp, FTAG;
4148 error = dsl_pool _hol d(zc->zc_name, FTAG &dp); 4214 return (error);
4149 if (error 1= 0) 4215 }
4150 return (error);
4217 mut ex_ent er (&ds- >ds_sendstream | ock) ;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230

4232
4233
4234
4235

4237
4238
4239
4240
4241 }

4243 static i

4244 zfs_ioc_|

4245 {
4246

4248
4249

4251
4252

4254
4255 }

4257 static i
4258 zfs_ioc
4259 {

4260

4261 }

4263 static i

4264 zfs_ioc_|

4265 {
4266
4267

4269
4270

4272

4274
4275 }

4277 static
4278 zfs_ioc
4279 {

4280

4281

4282

*

* |terate over all

* |f there’s one which matches the specified file descriptor
*

*

and

stream was started by the current process, return the progress of

that stream
*/
for (dsp = list_head(&ds->ds_sendstreans); dsp != NULL;

dsp = |ist_next(&ds->ds_sendstreans, dsp)) {

if (dsp->dsa_outfd == zc->zc_cookie &&
dsp- >dsa_proc == curproc)

) br eak;

if (dsp !'= NULL)

zc->zc_cooki e = *(dsp->dsa_off);
el se

error = SET_ERROR(ENCENT) ;
mut ex_exi t (&ds->ds_sendst ream | ock) ;
dsl _dat aset _rel e(ds, FTAG;
dsl _pool _rele(dp, FTAG;
return (error);

nt
inject_fault(zfs_cmd_t *zc)

int id, error;

error = zio_inject_fault(zc->zc_nane,
&zc->zc_inject_record);

(int)zc->zc_guid, &d,
if (error == 0)

zc->zc_guid = (uint64_t)id;
return (error);

nt

_clear_fault(zfs_cnmd_t *zc)

return (zio_clear_fault((int)zc->zc_guid));

nt

inject_list_next(zfs_cnd_t *zc)

int id = (int)zc->zc_guid;

int error;

error = zio_inject_list_next(& d, zc->zc_nane, sizeof (zc->zc_nane),
&zc->zc_inject_record);

zc->zc_guid = id;

return (error);

int

_error_log(zfs_cnd_t *zc)

spa_t *spa;

int error;

size_t count = (size_t)zc->zc_nvlist_dst_size;

65

the send streans currently active on this dataset.

the

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4284 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)

4285 return (error);

4287 error = spa get _errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
4288 &count

4289 if (error == 0)

4290 zc->zc_nvlist_dst_size = count;

4291 el se

4292 zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);
4294 spa_cl ose(spa, FTAQ;

4296 return (error);

4297 }

4299 static int

4300 zfs_ioc_clear(zfs_cnd_t *zc)

4301 {

4302 spa_t *spa;

4303 vdev_t *vd;

4304 int error;

4306 I*

4307 * On zpool clear we also fix up mssing slogs

4308 */

4309 nmut ex_ent er (&spa_nanespace_| ock) ;

4310 spa = spa_l ookup(zc->zc_nane) ;

4311 if (spa == NULL)

4312 rTut ex_exit(&spa_| namaspace I ock) ;

4313 return (SET_ERROR(EIQ));

4314 1

4315 if (spa_get_log_state(spa) == SPA LOG M SSI NG

4316 /* we need to | et spa_open/spa_|l oad clear the chains */
4317 spa_set _|l og_state(spa, SPA _LOG CLEAR);

4318

4319 spa->spa_| ast _open_failed = 0;

4320 mut ex_exi t (&spa_nanmespace_| ock);

4322 if (zc->zc_cookie & ZPOOL_NO_REW ND)

4323 error = spa_open(zc->zc_nane, &spa, FTAG;

4324 } else {

4325 nvlist_t *policy;

4326 nvlist_t *config = NULL;

4328 if (zc->zc_nvlist_src == NULL

4329 return (SET_ERROR(EI NVAL));

4331 if ((error = get_nvlist(zc->zc_nvlist_src,

4332 zc->zc_nvl | st_src_size, zc->zc_iflags, &poli cy)) == 0)
4333 error = spa_open_rew nd(zc->zc_name, &spa, AG,
4334 policy, &config);

4335 if (config !'= NULL) {

4336 int err;

4338 if ((err = put_nvlist(zc, config)) !'= 0)
4339 error = err;

4340 nvlist_free(config);

4341 }

4342 nvlist_free(policy);

4343 }

4344 1

4346 if (error = 0)

4347 return (error);

4349 spa_vdev_state_enter(spa, SCL_NONE);

{

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 67

4351 if (zc->zc_guid == 0) {

4352 vd = N ;

4353 } else {

4354 vd = spa_| ookup_by_gui d(spa, zc->zc_guid, B TRUE);
4355 if (vd == NULL) {

4356 (void) spa_vdev_state_exit(spa, NULL, ENCDEV);
4357 spa_cl ose(spa, FTAQ;

4358 return (SET_ERROR(ENODEV));

4359 }

4360 1

4362 vdev_cl ear (spa, vd);

4364 (void) spa_vdev_state_exit(spa, NULL, 0);

4366 /*

4367 * Resune any suspended |/GCs.

4368 */

4369 if (zio_resume(spa) != 0)

4370 error = SET_ERROR(EIO;

4372 spa_cl ose(spa, FTAQ;

4374 return (error);

4375 }

4377 static int

4378 zfs_i oc_pool _reopen(zfs_cnd_t *zc)

4379 {

4380 spa_t *spa;

4381 int error;

4383 error = spa_open(zc->zc_nanme, &spa, FTAG;

4384 if (error 1= 0)

4385 return (error);

4387 spa_vdev_state_enter(spa, SCL_NONE);

4389 /*

4390 * |f aresilver is already in progress then set the
4391 * spa_scrub_reopen flag to B_TRUE so that we don’t restart
4392 * the scan as a side effect of the reopen. Otherw se, let
4393 * vdev_open() decided if a resilver is required.
4394 */

4395 spa- >spa_scrub_reopen = dsl_scan_resilvering(spa->spa_dsl _pool);
4396 vdev_r eopen(spa- >spa_r oot _vdev);

4397 spa- >spa_scrub_reopen = B_FALSE;

4399 (void) spa_vdev_state_exit(spa, NULL, 0);

4400 spa_cl ose(spa, FTAQ;

4401 return (0);

4402 }

4403 /*

4404 * inputs:

4405 * zc_nane nanme of filesystem

4406 * zc_val ue nanme of origin snapshot

4407 *

4408 * outputs:

4409 * zc_string name of conflicting snapshot, if there is one
4410 */

4411 static int

4412 zfs_ioc_pronote(zfs_cnd_t *zc)

4413 {

4414 char *cp;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

all the origin fs’s snapshots, but

zc->zc_val ue, zc->zc_guid, &zc->zc_cookie);

really an nvlist)

4416 /*

4417 * We don’t need to unnount

4418 * it’s easier.

4419 */

4420 cp = strchr(zc->zc_value, '@);

4421 if (cp)

4422 *cp = '\0";

4423 (voi d) dnu_objset_find(zc->zc_val ue,

4424 zfs_unnmount _snap_cb, NULL, DS_FI ND_SNAPSHOTS) ;
4425 return (dsl_dataset_pronote(zc->zc_nane, zc->zc_string));
4426 }

4428 [*

4429 * Retrieve a single {user|group}{used|quota}@.. property.
4430 *

4431 * inputs:

4432 * zc_nane nane of filesystem

4433 * zc_objset_type zfs_userquota_prop_t

4434 * zc_val ue domai n name (eg. "S-1-234-567-89")

4435 * zc_guid RI DU D G D

4436 *

4437 * outputs:

4438 * zc_cookie property val ue

4439 */

4440 static int

4441 zfs_ioc_userspace_one(zfs_cnd_t *zc)

4442 {

4443 zfsvfs_t *zfsvfs;

4444 int error;

4446 if (zc->zc_objset_type >= ZFS_NUM USERQUOTA_ PROPS)
4447 return (SET_ERROR(EI NVAL));

4449 error = zfsvfs_hol d(zc->zc_nane, FTAG &zfsvfs, B _FALSE);
4450 if (error 1= 0)

4451 return (error);

4453 error = zfs_userspace_one(zfsvfs,

4454 zc->zc_obj set _type,

4455 zfsvfs_rel e(zfsvfs, FTAG;

4457 return (error);

4458 }

4460 /*

4461 * inputs:

4462 * zc_nane name of fil esystem

4463 * zc_cooki e zap cursor

4464 * zc_objset _type zfs_userquota_prop_t

4465 * zc_nvlist_dst[_size] buffer to fill (not

4466 *

4467 * outputs:

4468 * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t)
4469 * zc_cookie zap cursor

4470 */

4471 static int

4472 zfs_ioc_userspace_nmany(zfs_cnd_t *zc)

4473 {

4474 zfsvfs_t *zfsvfs;

4475 int bufsize = zc->zc_nvlist_dst_size;

4477 if (bufsize <= 0)

4478 return (SET_ERROR(ENOVEM)) ;

4480 int error = zfsvfs_hol d(zc->zc_nane, FTAG &zfsvfs, B_FALSE);
4481 if (error 1= 0)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 69 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 70
4482 return (error); 4548 int (*znfsexport _fs)(void *arg);
4549 int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t);
4484 voi d *buf = kmem_ al | oc(bufsize, KM SLEEP); 4550 int (*zsnbexport_fs)(void *arg, boolean_t add_share);
4486 error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, 4552 int zfs_nfsshare_inited;
4487 buf, &zc->zc_nvlist_dst_size); 4553 int zfs_snbshare_inited;
4489 if (error == 0) { 4555 ddi _npdhandl e_t nfs_nod;
4490 error = xcopyout (buf, 4556 ddi _nodhandl e_t sharefs_nod;
4491 (void *)(uintptr_t)zc->zc_nvlist_dst, 4557 ddi _nodhandl e_t snbsrv_nod;
4492 zc->zc_nvlist_dst_size); 4558 kmutex_t zfs_share_l ock;
4493 }
4494 kmem f ree(buf, bufsize); 4560 static int
4495 zfsvfs_rel e(zfsvfs, FTAG; 4561 zfs_init_sharefs()
4562 {
4497 return (error); 4563 int error;
4498 }
4565 ASSERT(MUTEX_HELD(&f s_share_| ock));
4500 /* 4566 /* Both NFS and SMB shares al so require sharetab support. */
4501 * inputs: 4567 if (sharefs_npd == NULL && ((sharef s_nod =
4502 * zc_nane name of fil esystem 4568 ddi _nodopen("fs/sharefs"
4503 * 4569 KRTLD_MODE_FI RST, &error)) == NULL)) {
4504 * outputs: 4570 return (SET_ ERR(P(E YS)) ;
4505 * none 4571 }
4506 */ 4572 if (zshare_fs == NULL && ((zshare_fs =
4507 static int 4573 (int (*)(enum sharefs_sys_op, share_t *, uint32_t))
4508 zfs_i oc_userspace_upgrade(zfs_cnd_t *zc) 4574 ddi _nodsyn(sharefs_nod, "sharefs_inpl", &error)) == NULL)) {
4509 { 4575 return (SET_ERROR(ENOSYS));
4510 obj set _t *os; 4576 }
4511 int error = 0; 4577 return (0);
4512 zfsvfs_t *zfsvfs; 4578 }
4514 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { 4580 static int
4515 if (!dmu_ ob] set userused _enabl ed(zf svfs->z_os)) { 4581 zfs_ioc_share(zfs_cnd_t *zc)
4516 /* 4582 {
4517 * |f userused is not enabled, it may be because the 4583 int error;
4518 * objset needs to be closed & reopened (to grow the 4584 int opcode;
4519 * obj set_phys_t). Suspend/resune the fs will do that.
4520 */ 4586 switch (zc->zc_share.z_sharetype) {
4521 error = zfs_suspend_fs(zfsvfs); 4587 case ZFS_SHARE_NFS:
4522 if (error == 0) 4588 case ZFS_UNSHARE_NFS:
4523 error = zfs_resune_fs(zfsvfs, zc->zc_nane); 4589 if (zfs_nfsshare_inited == 0)
4524 1 4590 mut ex_ent er(&zfs share_| ock);
4525 i1f (error == 0) 4591 if (nfs_nod == NULL & ((nfs_| rmd = ddi _nodopen("fs/nfs"
4526 error = dmu_obj set _user space_upgr ade(zfsvfs->z_os); 4592 KRTLD MODE _FI RST, &error)) == NULL)) {
4527 VFS_RELE(zf svfs->z_vfs); 4593 mut ex_exi t (&fs_share_| ock)
4528 } else { 4594 return (SET_ERROR(ENOSYS));
4529 /* XXX kind of reading contents w thout owning */ 4595 }
4530 error = dmu_obj set _hol d(zc->zc_nane, FTAG &os); 4596 if (znfsexport_fs == NULL &&
4531 if (error 1= 0) 4597 ((znfsexport_fs = (int (*)(void *))
4532 return (error); 4598 ddi _nodsyn(nfs_nod,
4599 "nfs_export"”, &error)) == NULL)) {
4534 error = dmu_obj set _user space_upgrade(o0s); 4600 mut ex_exi t (&fs_share_| ock);
4535 dnu_obj set _rel e(os, FTAQ; 4601 return (SET_ERROR(ENCSYS));
4536 } 4602
4603 error = zfs_init_sharefs();
4538 return (error); 4604 if (error '=0)
4539 } 4605 mut ex_exi t (&fs_share_| ock);
4606 return (SET_ERROR(ENOSYS));
4541 | * 4607 }
4542 * \W don’t want to have a hard dependency 4608 zfs_nfsshare_inited = 1;
4543 * agai nst sone special synbols in sharefs 4609 mut ex_exit (&zfs_ share Iock)
4544 * nfs, and snbsrv. Determine themif needed when 4610 }
4545 * the first file systemis shared. 4611 br eak;
4546 * Neither sharefs, nfs or snbsrv are unl oadabl e nodul es. 4612 case ZFS_SHARE_SMB:
4547 */ 4613 case ZFS_UNSHARE_SMB:

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639

4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658

4660
4661
4662

4664
4665
4666
4667
4668
4669

4671
4673 }

4675 ace_t full _access[] =

4676
4677 };

4679 /*

if (zfs_snbshare_inited == 0) {
mut ex_ent er (&f s_share_| ock) ;
if (smbsrv_nmpd == NULL && ((snbsrv_nod =
ddi _nodopen("drv/snbsrv",
KRTLD_MODE_FI RST, &error)) == NULL)) {
mut ex_exi t (&fs_share_| ock);
return (SET_ERROR(ENCSYS));

}
if (zsnbexport_fs == NULL && ((zsnbexport_fs =
(int (*)(void *, bool ean_t))ddi _nodsyn{snbsrv_nod,
"snb_server_share", &error)) == NULL)) {
mut ex_exi t (&fs_share_| ock);
return (SET_ERROR(ENOSYS));

error = zfs_init_sharefs();

if (error 1= 0)
mut ex_exi t (&fs_share_| ock);
return (SET_ERROR(ENOSYS));

}
zfs_snbshare_inited = 1;
nut ex_exi t (&fs_share_| ock);

br eak;
defaul t:

}

switch (zc->zc_share.z_sharetype) {
case ZFS_SHARE_NFS:
case ZFS_UNSHARE_NFS:
if (error =
znfsexport _fs((void *)
(uintptr_t)zc->zc_share. z_exportdata))
return (error);

return (SET_ERROR(EINVAL));

br eak;
case ZFS SHARE SMB
case ZFS_UNSHARE_SMB:
if (error = zsnbexport_fs((void *)
(uintptr_t)zc->zc_share. z_exportdata,
zc->zc_share. z_sharetype == ZFS_SHARE_SMB ?
B _TRUE: B FALSE)) {
return (error);

br eak;

}

opcode = (zc->zc_share.z_sharetype == ZFS SHARE NFS ||
zc->zc_share. z_sharetype == ZFS SHARE SMB) ?

SHAREFS _ADD : SHAREFS_ REMOVE;
/*
* Add or renpve share from sharetab
*/

error = zshare_fs(opcode,
(void *)(uintptr_t)zc->zc_share. z_sharedat a,
zc->zc_share. z_shar enax) ;

return (error);

{
{(Uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, O}

71

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4680 * inputs:

4681 * zc_nane nanme of containing fil esystem

4682 * zc_obj obj ect # beyond which we want next in-use object #
4683 *

4684 * outputs:

4685 * zc_obj next in-use object #

4686 */

4687 static int

4688 zfs_ioc_next_obj (zfs_cmd_t *zc)

4689 {

4690 obj set _t *os = NULL;

4691 int error;

4693 error = dnu_obj set _hol d(zc->zc_nane, FTAG &o0s);
4694 if (error 1= 0)

4695 return (error);

4697 error = dnu_obj ect _next (os, &zc->zc_obj, B_FALSE,
4698 0s->0s_dsl _dat aset - >ds_phys->ds_prev_snap_t xg) ;
4700 dmu_obj set _rel e(os, FTAG;

4701 return (error);

4702 }

4704 [*

4705 * inputs:

4706 * zc_nane name of filesystem

4707 * zc_val ue prefix name for snapshot

4708 * zc_cl eanup_fd cl eanup-on-exit file descriptor for calling process
4709 *

4710 * outputs:

4711 * zc_val ue short name of new snapshot

4712 */

4713 static int

4714 zfs_ioc_tnp_snapshot (zfs_cnd_t *zc)

4715 {

4716 char *snap_nane;

4717 char *hol d_nane;

4718 int error;

4719 m nor_t mnor;

4721 error = zfs_onexit_fd_hol d(zc->zc_cl eanup_fd, &nminor);
4722 if (error 1= 0)

4723 return (error);

4725 snap_nanme = kmem asprintf("%-%16l1x", zc->zc_val ue,
4726 (u_l onglong_t)ddi _get_| bolt64());

4727 hol d_nane = kmem asprintf("%8s", zc->zc_value);

4729 error = dsl_dataset_snapshot_tnp(zc->zc_nane, snap_nanme, m nor,
4730 hol d_nan®) ;

4731 if (error == 0)

4732 (void) strcpy(zc->zc_val ue, snap_nane);

4733 strfree(snap_nane);

4734 strfree(hol d_nane);

4735 zfs_onexit_fd_rel e(zc->zc_cl eanup_fd);

4736 return (error);

4737 }

4739 [*

4740 * inputs:

4741 * zc_name name of "to" snapshot

4742 * zc_val ue name of "front' snapshot

4743 * zc_cooki e file descriptor to wite diff data on
4744 *

4745 * outputs:

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 73 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4746 * dnu_diff_record_t's to the file descriptor 4812 if (vp->v_vfsp->vfs_fstype != zfsfstype ||
4747 */ 4813 (strcmp((char *)refstr_val ue(vp->v_vfsp->vfs_resource),
4748 static int 4814 zc->zc_nane) = 0))
4749 zfs_ioc_diff(zfs_cnd_t *zc) 4815 VN_RELE(vp);
4750 { 4816 return (SET_ERROR(EI NVAL));
4751 file t *fp; 4817 1
4752 of fset _t off;
4753 int error; 4819 dzp = VIQZ(vp);
4820 zfsvfs = dzp->z_zfsvfs;
4755 fp = getf(zc->zc_cookie); 4821 ZFS_ENTER(zf svfs);
4756 if (fp == NU
4757 return (SET_ERROR(EBADF)); 4823 /*
4824 * Create share dir if its mssing.
4759 of f = fp->f_offset; 4825 */
4826 mut ex_ent er (&zf svfs->z_| ock);
4761 error = dnu_diff(zc->zc_name, zc->zc_value, fp->f_vnode, &off); 4827 if (zfsvfs->z_shares_dir == 0)
4828 dmu_tx_t *tx;
4763 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
4764 fp->f_offset = off; 4830 tx = dnu_t x_create(zfsvfs->z_os);
4765 rel easef (zc->zc_cooki e); 4831 dmu_t x_hol d_zap(tx, MASTER NODE_OBJ, TRUE,
4832 ZFS_SHARES DI R) ;
4767 return (error); 4833 drmu_t x_hol d_zap(tx, DMJ_NEW OBJECT, FALSE, NULL);
4768 } 4834 error = dmu_tx_assign(tx, TXG WAIT);
4835 if (error 1=0)
4770 | * 4836 dmu_t x_abort (tx);
4771 * Renpve all ACL files in shares dir 4837 } else {
4772 */ 4838 error = zfs_create_share_dir(zfsvfs, tx);
4773 static int 4839 dmu_t x_commi t (tx);
4774 zfs_snb_acl _purge(znode_t *dzp) 4840 }
4775 { 4841 if (error 1= 0)
4776 zap_cursor _t zc; 4842 mut ex_exi t (&zf svfs->z_| ock);
4777 zap_attribute_t zap; 4843 VN_RELE(vp) ;
4778 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4844 ZFS_EXI T(zf svfs);
4779 int error; 4845 return (error);
4846 }
4781 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); 4847 }
4782 (error = zap_cursor_retrieve(&c, &zap)) == 0; 4848 mut ex_exi t (&zfsvfs->z_| ock);
4783 zap_cursor_advance(&zc)) {
4784 if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_nane, kcred, 4850 ASSERT(zf svfs->z_shares_dir);
4785 NULL, 0)) != 0) 4851 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) != 0)
4786 br eak; 4852 VN_RELE(vp);
4787 } 4853 ZFS_EXI T(zf svfs);
4788 zap_cursor _fini (&zc); 4854 return (error);
4789 return (error); 4855 }
4790 }
4857 switch (zc->zc_cookie) {
4792 static int 4858 case ZFS SMB_ACL_ADD:
4793 zfs_ioc_snb_acl (zfs_cnd_t *zc) 4859 vattr.va_nmask = AT_MODE| AT_Ul D| AT_G D| AT_TYPE;
4794 { 4860 vattr.va_type = VRE
4795 vnode_t *vp; 4861 vattr.va_node = S | FREG 0777;
4796 znode_t *dzp; 4862 vattr.va_uid = 0;
4797 vnode_t *resourcevp = NULL; 4863 vattr.va_gid = O;
4798 znode_t *sharedir;
4799 zfsvfs_t *zfsvfs; 4865 vsec. vsa_mask = VSA ACE;
4800 nvlist_t *nvlist; 4866 vsec.vsa_acl entp = & ul |l _access;
4801 char *src, *target; 4867 vsec.vsa_acl entsz = sizeof (full_access);
4802 vattr_t vattr; 4868 vsec.vsa_aclcnt = 1;
4803 vsecattr_t vsec;
4804 int error = 0; 4870 error = VOP_CREATE(ZTOV(sharedir), zc->zc_string,
4871 &vattr, EXCL, 0O, & esourcevp, kcred, 0, NULL, &vsec);
4806 if ((error = |ookupnanme(zc->zc_val ue, U O SYSSPACE, 4872 if (resourcevp)
4807 NO FOLLOW NULL, &vp)) !'= 0) 4873 VN_RELE(r esour cevp) ;
4808 return (error); 4874 br eak;
4810 /* Now nmake sure mmtpnt and dataset are ZFS */ 4876 case ZFS_SMB_A J

RE|
4877 error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 75 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
4878 NULL, 0); 4944 error = zfs_onexit_fd_hol d(cl eanup_fd, &m nor);
4879 br eak; 4945 if (error 1= 0)
4946 return (error);
4881 case ZFS_SMB_ACL_RENAME: 4947 }
4882 if ((error = get_nvlist(zc->zc_nvlist_src,
4883 zc->zc_nvlist_src_size, zc->zc_iflags, &vlist)) !'=0) { 4949 error = dsl_dataset _user_hol d(holds, mnor, errlist);
4884 VN_RELE(vp) ; 4950 if (minor '= 0)
4885 ZFS_EXI T(zf svfs); 4951 zfs_onexit_fd_rel e(cl eanup_fd);
4886 return (error); 4952 return (error);
4887 } 4953 }
4888 1f (nvlist_|lookup_string(nvlist, ZFS SMB_ACL_SRC, &src) ||
4889 nvlist_| ookup_string(nvlist, ZFS SMB_ACL_TARGET, 4955 [*
4890 &arget)) { 4956 * innvl is not used.
4891 VN_RELE(vp) ; 4957 *
4892 VN_RELE(ZTOV(sharedir)); 4958 * outnvl: {
4893 ZFS_EXI T(zf svfs); 4959 * hol dnanme -> tinme added (uint64 seconds since epoch)
4894 nvlist_free(nvlist); 4960 * -
4895 return (error); 4961 * }
4896 1 4962 */
4897 error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target, 4963 /* ARGSUSED */
4898 kcred, NULL, 0); 4964 static int
4899 nvlist_free(nvlist); 4965 zfs_ioc_get _hol ds(const char *snapname, nvlist_t *args, nvlist_t *outnvl)
4900 br eak; 4966 {
4967 return (dsl_dataset_get_hol ds(snapnane, outnvl));
4902 case ZFS_SMB_ACL_PURGE: 4968 }
4903 error = zfs_snb_acl _purge(sharedir);
4904 br eak; 4970 /[*
4971 * innvl: {
4906 defaul t: 4972 * snapnanme -> { holdnarme, ... }
4907 error = SET_ERROR(EI NVAL) ; 4973 * C
4908 br eak; 4974 * }
4909 } 4975 *
4976 * outnvl: {
4911 VN_RELE(vp) ; 4977 * snapnanme -> error value (int32)
4912 VN_RELE(ZTOV(sharedir)); 4978 * o
4979 * }
4914 ZFS_EXI T(zfsvfs); 4980 */
4981 /* ARGSUSED */
4916 return (error); 4982 static int
4917 } 4983 zfs_ioc_rel ease(const char *pool, nvlist_t *holds, nvlist_t *errlist)
4984 {
4919 /* 29 nvpair_t *pair;
4920 * innvl: {
4921 * "hol ds" -> { snapnane -> hol dnane (string), ... } 31 /*
4922 * (optional) "cleanup_fd" -> fd (int32) 32 * The rel ease may cause the snapshot to be destroyed; make sure it
4923 * 33 * is not nounted.
4924 * 34 */
4925 * outnvl: { 35 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
4926 * snapname -> error value (int32) 36 pair = nvlist_next_nvpair(holds, pair))
4927 * L 37 zf s_unnmount _snap(nvpai r _nanme(pair));
4928 * }
4929 */ 4985 return (dsl_dataset_user_rel ease(holds, errlist));
4930 /* ARGSUSED */ 4986 }
4931 static int ______unchanged_portion_omtted_
4932 zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist)
4933 {
4934 nvlist_t *holds;
4935 int cleanup_fd = -1;
4936 int error;
4937 mnor_t mnor = 0;
4939 error = nvlist_lookup_nvlist(args, "holds", &holds);
4940 if (error = 0)
4941 return (SET_ERROR(EI NVAL));
4943 if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) {

