new usr/ src/ man/ man3c/ rw ock. 3c 1

R R R R

6960 Thu Dec 19 21:34:34 2013

new usr/src/ man/ man3c/ rw ock. 3c

4327

rwl ock(3c): Formatting issues and typos

R R R R R R

©CONOOOUTAWNE

"\" te
.\" Copyright (c) 1998 Sun M crosystens, Inc. Al Rights Reserved

.\" The contents of this file are subject to the terns of the Common Devel opnent
.\" You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE or http:
.\" When distributing Covered Code, include this CDDL HEADER in each file and in
. TH RWLCCK 3C "Dec 19, 2013"

. TH RALOCK 3C "May 14, 1998"

. SH NAME
rwl ock,
rw_trvalock,
. SH SYNOPSI S
.LP

. nf

cc -nt [\fiflag\fR ..] \fifile\fR ..

rw ock_init, rw ock_destroy, rw.rdlock, rwwlock, rwtryrdlock,
rw_unlock \- multiple readers, single witer |ocks

[\fllibrary\fR ..]

#i ncl ude <synch. h>

\fBint\fR\fBrwl ock_init\fR(\fBrw ock_t *\fRflIrwp\fR \fBint\fR\fltype\fR \f
\fBint\fR\fBrw ock_init\fR(\fBrw ock_t *\fRfIrWwp\fR \fBint\fR\fltype\fR \f
fi
.LP
. nf

\;Bi nt\fR \fBrw ock_destroy\fR(\fBrwl ock_t *\fRflrwp\fR);
i

.LP
. nf
\fBint\fR \fBrw_ rdl ock\f R(\ fBrwl ock_t *\fRflrw p\fR);
fi

.LP
. nf
\fBint\fR\fBrw wlock\fR(\fBrw ock_t *\fRflrwp\fR);
i

.LP
. nf
\fBint\fR \fBrw unl ock\fR(\fBrw ock_t *\fRflrwp\fR);
i

.LP
. nf
\fBint\fR\fBrw_ tryrdl ock\fR(\fBrw ock_t *\fRflrwp\fR);
fi

.LP
. nf
\fBint\fR\fBrw_ trywlock\fR(\fBrw ock_t *\fRflrwp\fR);
Cfi

. SH DESCRI PTI ON

.sp

.LP

Many threads can have sinultaneous read-only access to data, while only one
thread can have write access at any given tinme. Miltiple read access with
single wite access is controlled by |ocks, which are generally used to protect
data that is frequently searched.

.sp

.LP

Readers/writer |ocks can synchronize threads in this process and other

new usr/ src/ man/ man3c/ rw ock. 3c

120
121
122

processes if they are allocated in w
cooperating processes (see \fBmap\f R(2)),
pur pose.

.sp

.LP

Additionally, readers/witer |ocks nmust be initialized prior to use.

The readers/witer lock pointed to by \flrwp\fRis

\fBrw ock_init()\fR The readers/witer |ock pointed to by \flIrmMp\fRis
initialized by \fBrwock_init()\fR A readers/witer |ock is capable of having
several types of behavior, which is specified by \fltype\fR \flarg\fRis
several types of behavior, which is specified by \fBtype\fR \flarg\fRis
currently not used, although a future type may define new behavior paraneters
by way of \flarg\fR

.sp

.LP

The \fltype\fR argunent can be one of the follow ng:

.sp

.ne 2

table menory and shared anobng
and are initialized for this

. ha
\ f B\ f BUSYNC_PROCESS\fR \fR

. al
. RS 18n

The readers/writer |ock can synchronize threads in this process and ot her
processes. The readers/witer |ock should be initialized by only one process.
\flarg\fR is ignored. A readers/witer lock initialized with this type, nust be
allocated in nmenory shared between processses, i.e. either in Sys V shared
menory (see \fBshnmop\fR(2)) or in nmenory napped to a file (see \fBmmap\fR(2)).
It isillegal toinitialize the object this way and to not allocate it in such
shared menory.

.RE

.sp
.ne 2

.na
\ f B\ f BUSYNC THREAD\f R \ f R

.ad

. RS 18n

The readers/witer |ock can synchronize
\flarg\fR is ignored.

. RE

threads in this process, only.

.sp
. LP

Additionally, readers/witer |ocks can be initialized by allocation in zeroed
nenmory. A \fltype\fR of \fBUSYNC THREAD\fR is assunmed in this case. Miultiple
menory. A \fBtype\fR of \ f BUSYNC_THREAD\fR i s assuned in this case. Miltiple

threads nust not sinultaneously initialize the sane readers/witer lock. And a
readers/witer |lock nmust not be re-initialized while in use by other threads.
.sp

.LP

The following are default readers/witer lock initialization (intra-process):
.sp

Lin +2

. nf

rwl ock_t rw p;

rwlock_init(&w p, NULL, NULL);

or
.sp
.in +2
. nf

new usr/ src/ man/ man3c/ rw ock. 3c

123

rw ock_init(& w p, USYNC_THREAD, NULL);

124 . fi

125

127
128
129
130
131
132
133

134 .

135
137

138 .

139
140
141
142

.in -2

.sp
.LP
or
.sp
.in +2
. nf
rw ock_t
fi
.in -2

rwip = DEFAULTRWCCK;

.sp
LP

The following is a custonized readers/witer |ock
(inter-process):

.sp

Lin +2

initialization

143 .n

144

f
rw ock_init(& w p, USYNC_PROCESS, NULL);

145 . fi

146 .

148
149
150
151
152
153
154
155
156
157
158
159
160
161
161
162
163
164
165
166
167
168
169
170
171
172
173
173
174
175
176
177
178
179
180
181
181
182
183
184
185

in-2

.sp

.LP

Any state associated with the readers/witer

destroyed by

is not rel eased.

.sp

. LP

\fBrw_rdlock()\fR gets a read lock on the readers/witer |ock pointed to by

\flrwip\fR If the readers/witer lock is currently locked for witing, the

calling thread blocks until the wite lock is freed. Miultiple threads may

simul taneously hold a read lock on a readers/witer |ock.

.sp

.LP

\fBrw_ tryrdlock()\fR tries to get a read |ock on the readers/witer

\fBrw tryrdlock()\fR trys to get a read |ock on the readers/witer

to by \flrwwp\fR If the readers/witer lock is locked for witing, it

an error; otherwise, the read lock is acquired.

.sp

. LP

\ f Brw_wr | ock(

\flrwip\fR |

witing, the ca

freed. At any gi

readers/writer

.sp

. LP

\fBrw_trywl ock()

\fBrw_trywl ock()
|
n

retur

\fR gets a wite lock on the readers/witer |ock pointed to by

I\ f

f the readers/witer lock is currently |ocked for reading or
calling thread blocks until all the read and wite |ocks are
iven time, only one thread may have a wite lock on a

|

ock.

Rtries to get a wite lock on the readers/witer |ock
trys to get a wite lock on the readers/witer |ock
\fR If the readers/witer lock is currently |ocked for
t returns an error.

pointed to by \f
reading or writi
.sp

. LP

\fBrw_unl ock()\fR unl ocks a readers/witer lock pointed to by
the readers/witer lock is | ocked and the calling thread holds the |ock for
either reading or witing. One of the other threads that is waiting for the
readers/witer lock to be freed will be unbl ocked, provided there are other
readers/witer lock to be freed will be unbl ocked, provided there is other
wai ting threads. |If the calling thread does not hold the |ock for either
reading or witing, no error status is returned, and the progran s behavi or
unknown.

. SH RETURN VALUES

\ f
\ f
rwp
g, |

lock pointed to by \flrwp\fR are
\fBrw ock_destroy()\fR and the readers/witer |ock storage space

| ock pointed
I ock pointed

ns

\flIrwp\fR if

is

new usr/src/ man/ man3c/ rw ock. 3c

186
187
188
189
190
191
192
193
194
195

.sp
.LP

If successful, these functions return \fBO\fR Otherw se, a non-zero value is
returned to indicate the error.

. SH ERRORS

.sp

.LP

The \fBrwl ock_init()\fR function wll
.sp

.ne 2

fail if:

196 .na

197
198
199
200
200
201

203
204
205
206
207
208
209
210
211
212
212

\fB\f BEI N\VAL\fR \ f R
.ad

. RS 11n
\fltype\fR
\fBtype\fR
.RE

.sp

.LP
The \fBrw_tryrdlock()\fR or \fBrw_ trywlock()\fR functions wll

.sp
.ne 2

fail if:

.na

\fB\f BEBUSY\ fR \ fR

.ad

. RS 10n

The readers/witer lock pointed to by \flrw p\fR was al ready | ocked.
The reader or witer |lock pointed to by \flrwi p\fR was al ready | ocked.

213 .RE

215
216
217
218
219
220
221
222
223
224
225

227

228 .

229
230
231

233
234
235
236
237
238
239
240

.sp
.LP

These functions may fail if:
.sp

.ne 2

.na
\fB\f BEFAULT\fR \fR
.ad
RS 1

\fIrV\A p\fR or \flarg\fR points to an illegal address.
RE

. SH ATTRI BUTES

sp

.LP

See \fBattributes\fR(5) for descriptions of the follow ng attributes:

.sp

.sp
. TS
box;
c| c
.

ATTRI BUTE TYPE ATTRI BUTE VALUE

M- Level MT- Saf e

241 . TE

243
244
245
246
247
248
249

. SH SEE ALSO
.sp

. LP

\ f Brmap\ f R(2),
. SH NOTES

.sp

. LP

\fBattributes\fR(5)

new usr/ src/ man/ man3c/ rw ock. 3c

250
251
252
253
254
255
256
257
258
259

These interfaces al so available by way of:

.sp

. LP

\ f B#i ncl ude\f R \ f B<t hread. h>\fR

.sp

.LP

If multiple threads are waiting for a readers/witer |ock, the acquisition
order is random by default. However, some inplenentations may bias acquisition
order to avoid depriving witers. The current inplenmentation favors witers
over readers.

