
new/usr/src/uts/common/os/taskq.c 1

**
 70955 Sat May 30 10:23:51 2015
new/usr/src/uts/common/os/taskq.c
5881 corrected maxall vs. maxalloc in comments
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28 */

30 /*
31 * Kernel task queues: general-purpose asynchronous task scheduling.
32 *
33 * A common problem in kernel programming is the need to schedule tasks
34 * to be performed later, by another thread. There are several reasons
35 * you may want or need to do this:
36 *
37 * (1) The task isn’t time-critical, but your current code path is.
38 *
39 * (2) The task may require grabbing locks that you already hold.
40 *
41 * (3) The task may need to block (e.g. to wait for memory), but you
42 * cannot block in your current context.
43 *
44 * (4) Your code path can’t complete because of some condition, but you can’t
45 * sleep or fail, so you queue the task for later execution when condition
46 * disappears.
47 *
48 * (5) You just want a simple way to launch multiple tasks in parallel.
49 *
50 * Task queues provide such a facility. In its simplest form (used when
51 * performance is not a critical consideration) a task queue consists of a
52 * single list of tasks, together with one or more threads to service the
53 * list. There are some cases when this simple queue is not sufficient:
54 *
55 * (1) The task queues are very hot and there is a need to avoid data and lock
56 * contention over global resources.
57 *
58 * (2) Some tasks may depend on other tasks to complete, so they can’t be put in
59 * the same list managed by the same thread.
60 *
61 * (3) Some tasks may block for a long time, and this should not block other

new/usr/src/uts/common/os/taskq.c 2

62 * tasks in the queue.
63 *
64 * To provide useful service in such cases we define a "dynamic task queue"
65 * which has an individual thread for each of the tasks. These threads are
66 * dynamically created as they are needed and destroyed when they are not in
67 * use. The API for managing task pools is the same as for managing task queues
68 * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
69 * dynamic task pool behavior is desired.
70 *
71 * Dynamic task queues may also place tasks in the normal queue (called "backing
72 * queue") when task pool runs out of resources. Users of task queues may
73 * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
74 * flags.
75 *
76 * The backing task queue is also used for scheduling internal tasks needed for
77 * dynamic task queue maintenance.
78 *
79 * INTERFACES ==
80 *
81 * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxalloc, flags);
81 * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxall, flags);
82 *
83 * Create a taskq with specified properties.
84 * Possible ’flags’:
85 *
86 * TASKQ_DYNAMIC: Create task pool for task management. If this flag is
87 * specified, ’nthreads’ specifies the maximum number of threads in
88 * the task queue. Task execution order for dynamic task queues is
89 * not predictable.
90 *
91 * If this flag is not specified (default case) a
92 * single-list task queue is created with ’nthreads’ threads
93 * servicing it. Entries in this queue are managed by
94 * taskq_ent_alloc() and taskq_ent_free() which try to keep the
95 * task population between ’minalloc’ and ’maxalloc’, but the
96 * latter limit is only advisory for TQ_SLEEP dispatches and the
97 * former limit is only advisory for TQ_NOALLOC dispatches. If
98 * TASKQ_PREPOPULATE is set in ’flags’, the taskq will be
99 * prepopulated with ’minalloc’ task structures.
100 *
101 * Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
102 * executed in the order they are scheduled if nthreads == 1.
103 * If nthreads > 1, task execution order is not predictable.
104 *
105 * TASKQ_PREPOPULATE: Prepopulate task queue with threads.
106 * Also prepopulate the task queue with ’minalloc’ task structures.
107 *
108 * TASKQ_THREADS_CPU_PCT: This flag specifies that ’nthreads’ should be
109 * interpreted as a percentage of the # of online CPUs on the
110 * system. The taskq subsystem will automatically adjust the
111 * number of threads in the taskq in response to CPU online
112 * and offline events, to keep the ratio. nthreads must be in
113 * the range [0,100].
114 *
115 * The calculation used is:
116 *
117 * MAX((ncpus_online * percentage)/100, 1)
118 *
119 * This flag is not supported for DYNAMIC task queues.
120 * This flag is not compatible with TASKQ_CPR_SAFE.
121 *
122 * TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
123 * use their own protocol for handling CPR issues. This flag is not
124 * supported for DYNAMIC task queues. This flag is not compatible
125 * with TASKQ_THREADS_CPU_PCT.
126 *

new/usr/src/uts/common/os/taskq.c 3

127 * The ’pri’ field specifies the default priority for the threads that
128 * service all scheduled tasks.
129 *
130 * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc,
131 * maxalloc, flags);
131 * maxall, flags);
132 *
133 * Like taskq_create(), but takes an instance number (or -1 to indicate
134 * no instance).
135 *
136 * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxalloc, proc,
136 * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxall, proc,
137 * flags);
138 *
139 * Like taskq_create(), but creates the taskq threads in the specified
140 * system process. If proc != &p0, this must be called from a thread
141 * in that process.
142 *
143 * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxalloc, proc,
143 * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxall, proc,
144 * dc, flags);
145 *
146 * Like taskq_create_proc(), but the taskq threads will use the
147 * System Duty Cycle (SDC) scheduling class with a duty cycle of dc.
148 *
149 * void taskq_destroy(tap):
150 *
151 * Waits for any scheduled tasks to complete, then destroys the taskq.
152 * Caller should guarantee that no new tasks are scheduled in the closing
153 * taskq.
154 *
155 * taskqid_t taskq_dispatch(tq, func, arg, flags):
156 *
157 * Dispatches the task "func(arg)" to taskq. The ’flags’ indicates whether
158 * the caller is willing to block for memory. The function returns an
159 * opaque value which is zero iff dispatch fails. If flags is TQ_NOSLEEP
160 * or TQ_NOALLOC and the task can’t be dispatched, taskq_dispatch() fails
161 * and returns (taskqid_t)0.
162 *
163 * ASSUMES: func != NULL.
164 *
165 * Possible flags:
166 * TQ_NOSLEEP: Do not wait for resources; may fail.
167 *
168 * TQ_NOALLOC: Do not allocate memory; may fail. May only be used with
169 * non-dynamic task queues.
170 *
171 * TQ_NOQUEUE: Do not enqueue a task if it can’t dispatch it due to
172 * lack of available resources and fail. If this flag is not
173 * set, and the task pool is exhausted, the task may be scheduled
174 * in the backing queue. This flag may ONLY be used with dynamic
175 * task queues.
176 *
177 * NOTE: This flag should always be used when a task queue is used
178 * for tasks that may depend on each other for completion.
179 * Enqueueing dependent tasks may create deadlocks.
180 *
181 * TQ_SLEEP: May block waiting for resources. May still fail for
182 * dynamic task queues if TQ_NOQUEUE is also specified, otherwise
183 * always succeed.
184 *
185 * TQ_FRONT: Puts the new task at the front of the queue. Be careful.
186 *
187 * NOTE: Dynamic task queues are much more likely to fail in
188 * taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
189 * is important to have backup strategies handling such failures.

new/usr/src/uts/common/os/taskq.c 4

190 *
191 * void taskq_dispatch_ent(tq, func, arg, flags, tqent)
192 *
193 * This is a light-weight form of taskq_dispatch(), that uses a
194 * preallocated taskq_ent_t structure for scheduling. As a
195 * result, it does not perform allocations and cannot ever fail.
196 * Note especially that it cannot be used with TASKQ_DYNAMIC
197 * taskqs. The memory for the tqent must not be modified or used
198 * until the function (func) is called. (However, func itself
199 * may safely modify or free this memory, once it is called.)
200 * Note that the taskq framework will NOT free this memory.
201 *
202 * void taskq_wait(tq):
203 *
204 * Waits for all previously scheduled tasks to complete.
205 *
206 * NOTE: It does not stop any new task dispatches.
207 * Do NOT call taskq_wait() from a task: it will cause deadlock.
208 *
209 * void taskq_suspend(tq)
210 *
211 * Suspend all task execution. Tasks already scheduled for a dynamic task
212 * queue will still be executed, but all new scheduled tasks will be
213 * suspended until taskq_resume() is called.
214 *
215 * int taskq_suspended(tq)
216 *
217 * Returns 1 if taskq is suspended and 0 otherwise. It is intended to
218 * ASSERT that the task queue is suspended.
219 *
220 * void taskq_resume(tq)
221 *
222 * Resume task queue execution.
223 *
224 * int taskq_member(tq, thread)
225 *
226 * Returns 1 if ’thread’ belongs to taskq ’tq’ and 0 otherwise. The
227 * intended use is to ASSERT that a given function is called in taskq
228 * context only.
229 *
230 * system_taskq
231 *
232 * Global system-wide dynamic task queue for common uses. It may be used by
233 * any subsystem that needs to schedule tasks and does not need to manage
234 * its own task queues. It is initialized quite early during system boot.
235 *
236 * IMPLEMENTATION ==
237 *
238 * This is schematic representation of the task queue structures.
239 *
240 * taskq:
241 * +-------------+
242 * | tq_lock | +---< taskq_ent_free()
243 * +-------------+ |
244 * |... | | tqent: tqent:
245 * +-------------+ | +------------+ +------------+
246 * | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
247 * +-------------+ +------------+ +------------+
248 * |... | | ... | | ... |
249 * +-------------+ +------------+ +------------+
250 * | tq_task | |
251 * | | +-------------->taskq_ent_alloc()
252 * +--+
253 * | | | tqent tqent |
254 * | +---------------------+ +--> +------------+ +--> +------------+ |
255 * | | ... | | | func, arg | | | func, arg | |

new/usr/src/uts/common/os/taskq.c 5

256 * +>+---------------------+ <---|-+ +------------+ <---|-+ +------------+ |
257 * | tq_taskq.tqent_next | ----+ | | tqent_next | --->+ | | tqent_next |--+
258 * +---------------------+ | +------------+ ^ | +------------+
259 * +-| tq_task.tqent_prev | +--| tqent_prev | | +--| tqent_prev | ^
260 * | +---------------------+ +------------+ | +------------+ |
261 * | |... | | ... | | | ... | |
262 * | +---------------------+ +------------+ | +------------+ |
263 * | ^ | |
264 * | | | |
265 * +--------------------------------------+--------------+ TQ_APPEND() -+
266 * | | |
267 * |... | taskq_thread()-----+
268 * +-------------+
269 * | tq_buckets |--+-------> [NULL] (for regular task queues)
270 * +-------------+ |
271 * | DYNAMIC TASK QUEUES:
272 * |
273 * +-> taskq_bucket[nCPU] taskq_bucket_dispatch()
274 * +-------------------+ ^
275 * +--->| tqbucket_lock | |
276 * | +-------------------+ +--------+ +--------+
277 * | | tqbucket_freelist |-->| tqent |-->...| tqent | ^
278 * | +-------------------+<--+--------+<--...+--------+ |
279 * | | ... | | thread | | thread | |
280 * | +-------------------+ +--------+ +--------+ |
281 * | +-------------------+ |
282 * taskq_dispatch()--+--->| tqbucket_lock | TQ_APPEND()------+
283 * TQ_HASH() | +-------------------+ +--------+ +--------+
284 * | | tqbucket_freelist |-->| tqent |-->...| tqent |
285 * | +-------------------+<--+--------+<--...+--------+
286 * | | ... | | thread | | thread |
287 * | +-------------------+ +--------+ +--------+
288 * +---> ...
289 *
290 *
291 * Task queues use tq_task field to link new entry in the queue. The queue is a
292 * circular doubly-linked list. Entries are put in the end of the list with
293 * TQ_APPEND() and processed from the front of the list by taskq_thread() in
294 * FIFO order. Task queue entries are cached in the free list managed by
295 * taskq_ent_alloc() and taskq_ent_free() functions.
296 *
297 * All threads used by task queues mark t_taskq field of the thread to
298 * point to the task queue.
299 *
300 * Taskq Thread Management ---
301 *
302 * Taskq’s non-dynamic threads are managed with several variables and flags:
303 *
304 * * tq_nthreads - The number of threads in taskq_thread() for the
305 * taskq.
306 *
307 * * tq_active - The number of threads not waiting on a CV in
308 * taskq_thread(); includes newly created threads
309 * not yet counted in tq_nthreads.
310 *
311 * * tq_nthreads_target
312 * - The number of threads desired for the taskq.
313 *
314 * * tq_flags & TASKQ_CHANGING
315 * - Indicates that tq_nthreads != tq_nthreads_target.
316 *
317 * * tq_flags & TASKQ_THREAD_CREATED
318 * - Indicates that a thread is being created in the taskq.
319 *
320 * During creation, tq_nthreads and tq_active are set to 0, and
321 * tq_nthreads_target is set to the number of threads desired. The

new/usr/src/uts/common/os/taskq.c 6

322 * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to
323 * create the first thread. taskq_thread_create() increments tq_active,
324 * sets TASKQ_THREAD_CREATED, and creates the new thread.
325 *
326 * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED
327 * flag, and increments tq_nthreads. It stores the new value of
328 * tq_nthreads as its "thread_id", and stores its thread pointer in the
329 * tq_threadlist at the (thread_id - 1). We keep the thread_id space
330 * densely packed by requiring that only the largest thread_id can exit during
331 * normal adjustment. The exception is during the destruction of the
332 * taskq; once tq_nthreads_target is set to zero, no new threads will be created
333 * for the taskq queue, so every thread can exit without any ordering being
334 * necessary.
335 *
336 * Threads will only process work if their thread id is <= tq_nthreads_target.
337 *
338 * When TASKQ_CHANGING is set, threads will check the current thread target
339 * whenever they wake up, and do whatever they can to apply its effects.
340 *
341 * TASKQ_THREAD_CPU_PCT --
342 *
343 * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested
344 * percentage in tq_threads_ncpus_pct, start them off with the correct thread
345 * target, and add them to the taskq_cpupct_list for later adjustment.
346 *
347 * We register taskq_cpu_setup() to be called whenever a CPU changes state. It
348 * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target
349 * if need be, and wakes up all of the threads to process the change.
350 *
351 * Dynamic Task Queues Implementation --
352 *
353 * For a dynamic task queues there is a 1-to-1 mapping between a thread and
354 * taskq_ent_structure. Each entry is serviced by its own thread and each thread
355 * is controlled by a single entry.
356 *
357 * Entries are distributed over a set of buckets. To avoid using modulo
358 * arithmetics the number of buckets is 2^n and is determined as the nearest
359 * power of two roundown of the number of CPUs in the system. Tunable
360 * variable ’taskq_maxbuckets’ limits the maximum number of buckets. Each entry
361 * is attached to a bucket for its lifetime and can’t migrate to other buckets.
362 *
363 * Entries that have scheduled tasks are not placed in any list. The dispatch
364 * function sets their "func" and "arg" fields and signals the corresponding
365 * thread to execute the task. Once the thread executes the task it clears the
366 * "func" field and places an entry on the bucket cache of free entries pointed
367 * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
368 * field equal to NULL. The free list is a circular doubly-linked list identical
369 * in structure to the tq_task list above, but entries are taken from it in LIFO
370 * order - the last freed entry is the first to be allocated. The
371 * taskq_bucket_dispatch() function gets the most recently used entry from the
372 * free list, sets its "func" and "arg" fields and signals a worker thread.
373 *
374 * After executing each task a per-entry thread taskq_d_thread() places its
375 * entry on the bucket free list and goes to a timed sleep. If it wakes up
376 * without getting new task it removes the entry from the free list and destroys
377 * itself. The thread sleep time is controlled by a tunable variable
378 * ‘taskq_thread_timeout’.
379 *
380 * There are various statistics kept in the bucket which allows for later
381 * analysis of taskq usage patterns. Also, a global copy of taskq creation and
382 * death statistics is kept in the global taskq data structure. Since thread
383 * creation and death happen rarely, updating such global data does not present
384 * a performance problem.
385 *
386 * NOTE: Threads are not bound to any CPU and there is absolutely no association
387 * between the bucket and actual thread CPU, so buckets are used only to

new/usr/src/uts/common/os/taskq.c 7

388 * split resources and reduce resource contention. Having threads attached
389 * to the CPU denoted by a bucket may reduce number of times the job
390 * switches between CPUs.
391 *
392 * Current algorithm creates a thread whenever a bucket has no free
393 * entries. It would be nice to know how many threads are in the running
394 * state and don’t create threads if all CPUs are busy with existing
395 * tasks, but it is unclear how such strategy can be implemented.
396 *
397 * Currently buckets are created statically as an array attached to task
398 * queue. On some system with nCPUs < max_ncpus it may waste system
399 * memory. One solution may be allocation of buckets when they are first
400 * touched, but it is not clear how useful it is.
401 *
402 * SUSPEND/RESUME implementation ---
403 *
404 * Before executing a task taskq_thread() (executing non-dynamic task
405 * queues) obtains taskq’s thread lock as a reader. The taskq_suspend()
406 * function gets the same lock as a writer blocking all non-dynamic task
407 * execution. The taskq_resume() function releases the lock allowing
408 * taskq_thread to continue execution.
409 *
410 * For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
411 * taskq_suspend() function. After that taskq_bucket_dispatch() always
412 * fails, so that taskq_dispatch() will either enqueue tasks for a
413 * suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
414 * flags.
415 *
416 * NOTE: taskq_suspend() does not immediately block any tasks already
417 * scheduled for dynamic task queues. It only suspends new tasks
418 * scheduled after taskq_suspend() was called.
419 *
420 * taskq_member() function works by comparing a thread t_taskq pointer with
421 * the passed thread pointer.
422 *
423 * LOCKS and LOCK Hierarchy --
424 *
425 * There are three locks used in task queues:
426 *
427 * 1) The taskq_t’s tq_lock, protecting global task queue state.
428 *
429 * 2) Each per-CPU bucket has a lock for bucket management.
430 *
431 * 3) The global taskq_cpupct_lock, which protects the list of
432 * TASKQ_THREADS_CPU_PCT taskqs.
433 *
434 * If both (1) and (2) are needed, tq_lock should be taken *after* the bucket
435 * lock.
436 *
437 * If both (1) and (3) are needed, tq_lock should be taken *after*
438 * taskq_cpupct_lock.
439 *
440 * DEBUG FACILITIES --
441 *
442 * For DEBUG kernels it is possible to induce random failures to
443 * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
444 * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
445 * failures for dynamic and static task queues respectively.
446 *
447 * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
448 *
449 * TUNABLES --
450 *
451 * system_taskq_size - Size of the global system_taskq.
452 * This value is multiplied by nCPUs to determine
453 * actual size.

new/usr/src/uts/common/os/taskq.c 8

454 * Default value: 64
455 *
456 * taskq_minimum_nthreads_max
457 * - Minimum size of the thread list for a taskq.
458 * Useful for testing different thread pool
459 * sizes by overwriting tq_nthreads_target.
460 *
461 * taskq_thread_timeout - Maximum idle time for taskq_d_thread()
462 * Default value: 5 minutes
463 *
464 * taskq_maxbuckets - Maximum number of buckets in any task queue
465 * Default value: 128
466 *
467 * taskq_search_depth - Maximum # of buckets searched for a free entry
468 * Default value: 4
469 *
470 * taskq_dmtbf - Mean time between induced dispatch failures
471 * for dynamic task queues.
472 * Default value: UINT_MAX (no induced failures)
473 *
474 * taskq_smtbf - Mean time between induced dispatch failures
475 * for static task queues.
476 * Default value: UINT_MAX (no induced failures)
477 *
478 * CONDITIONAL compilation ---
479 *
480 * TASKQ_STATISTIC - If set will enable bucket statistic (default).
481 *
482 */

484 #include <sys/taskq_impl.h>
485 #include <sys/thread.h>
486 #include <sys/proc.h>
487 #include <sys/kmem.h>
488 #include <sys/vmem.h>
489 #include <sys/callb.h>
490 #include <sys/class.h>
491 #include <sys/systm.h>
492 #include <sys/cmn_err.h>
493 #include <sys/debug.h>
494 #include <sys/vmsystm.h> /* For throttlefree */
495 #include <sys/sysmacros.h>
496 #include <sys/cpuvar.h>
497 #include <sys/cpupart.h>
498 #include <sys/sdt.h>
499 #include <sys/sysdc.h>
500 #include <sys/note.h>

502 static kmem_cache_t *taskq_ent_cache, *taskq_cache;

504 /*
505 * Pseudo instance numbers for taskqs without explicitly provided instance.
506 */
507 static vmem_t *taskq_id_arena;

509 /* Global system task queue for common use */
510 taskq_t *system_taskq;

512 /*
513 * Maximum number of entries in global system taskq is
514 * system_taskq_size * max_ncpus
515 */
516 #define SYSTEM_TASKQ_SIZE 64
517 int system_taskq_size = SYSTEM_TASKQ_SIZE;

519 /*

new/usr/src/uts/common/os/taskq.c 9

520 * Minimum size for tq_nthreads_max; useful for those who want to play around
521 * with increasing a taskq’s tq_nthreads_target.
522 */
523 int taskq_minimum_nthreads_max = 1;

525 /*
526 * We want to ensure that when taskq_create() returns, there is at least
527 * one thread ready to handle requests. To guarantee this, we have to wait
528 * for the second thread, since the first one cannot process requests until
529 * the second thread has been created.
530 */
531 #define TASKQ_CREATE_ACTIVE_THREADS 2

533 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */
534 #define TASKQ_CPUPCT_MAX_PERCENT 1000
535 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT;

537 /*
538 * Dynamic task queue threads that don’t get any work within
539 * taskq_thread_timeout destroy themselves
540 */
541 #define TASKQ_THREAD_TIMEOUT (60 * 5)
542 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;

544 #define TASKQ_MAXBUCKETS 128
545 int taskq_maxbuckets = TASKQ_MAXBUCKETS;

547 /*
548 * When a bucket has no available entries another buckets are tried.
549 * taskq_search_depth parameter limits the amount of buckets that we search
550 * before failing. This is mostly useful in systems with many CPUs where we may
551 * spend too much time scanning busy buckets.
552 */
553 #define TASKQ_SEARCH_DEPTH 4
554 int taskq_search_depth = TASKQ_SEARCH_DEPTH;

556 /*
557 * Hashing function: mix various bits of x. May be pretty much anything.
558 */
559 #define TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))

561 /*
562 * We do not create any new threads when the system is low on memory and start
563 * throttling memory allocations. The following macro tries to estimate such
564 * condition.
565 */
566 #define ENOUGH_MEMORY() (freemem > throttlefree)

568 /*
569 * Static functions.
570 */
571 static taskq_t *taskq_create_common(const char *, int, int, pri_t, int,
572 int, proc_t *, uint_t, uint_t);
573 static void taskq_thread(void *);
574 static void taskq_d_thread(taskq_ent_t *);
575 static void taskq_bucket_extend(void *);
576 static int taskq_constructor(void *, void *, int);
577 static void taskq_destructor(void *, void *);
578 static int taskq_ent_constructor(void *, void *, int);
579 static void taskq_ent_destructor(void *, void *);
580 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
581 static void taskq_ent_free(taskq_t *, taskq_ent_t *);
582 static int taskq_ent_exists(taskq_t *, task_func_t, void *);
583 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t,
584 void *);

new/usr/src/uts/common/os/taskq.c 10

586 /*
587 * Task queues kstats.
588 */
589 struct taskq_kstat {
590 kstat_named_t tq_pid;
591 kstat_named_t tq_tasks;
592 kstat_named_t tq_executed;
593 kstat_named_t tq_maxtasks;
594 kstat_named_t tq_totaltime;
595 kstat_named_t tq_nalloc;
596 kstat_named_t tq_nactive;
597 kstat_named_t tq_pri;
598 kstat_named_t tq_nthreads;
599 } taskq_kstat = {

______unchanged_portion_omitted_

