new usr/ src/ uts/comon/ os/taskq.c

R R R R

70955 Sat May 30 10:23:51 2015
new usr/src/uts/comon/os/taskq.c
5881 corrected maxall vs. maxalloc in comments

R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.

23 * Use is subject to license terns.

24 */

26 /*

27 * Copyright 2015 Nexenta Systens, Inc. Al rights reserved.

28 */

30 /

31 Kernel task queues: general -purpose asynchronous task scheduling.
32

33 A conmon problemin kernel programming is the need to schedul e tasks
34 to be perforned | ater, by another thread. There are several reasons
35 you may want or need to do this:

36

37 (1) The task isn't tine-critical, but your current code path is.

38

39 (2) The task may require grabbing | ocks that you al ready hold.

40

41 (3) The task may need to block (e.g. to wait for nenory), but you

42 cannot bl ock in your current context.

43

44 (4) Your code path can’t conplete because of sone condition, but you can't

45 sleep or fail, so you queue the task for |ater execution when condition
di sappears.

47

48 (5) You just want a sinple way to launch nultiple tasks in parallel.

49

50 Task queues provide such a facility. In its sinplest form (used when

performance is not a critical consideration) a task queue consists of a
single list of tasks, together with one or nore threads to service the

53 list. There are some cases when this sinple queue is not sufficient:

54

55 (1) The task queues are very hot and there is a need to avoid data and | ock
56 contention over global resources.

57

58 (2) Sonme tasks may depend on other tasks to conplete, so they can’t be put
59 the sane |ist managed by the sanme thread.

N
o
E N I I I I N S T R I R I N N R I 2

(3) Sonme tasks may block for a long tine, and this should not bl ock other

in

new usr/ src/ uts/comon/ os/taskq.c 2
62 * tasks in the queue.
63 *
64 * To provide useful service in such cases we define a "dynam c task queue"
65 * which has an individual thread for each of the tasks. These threads are
66 * dynamically created as they are needed and destroyed when they are not in
67 * use. The APl for managing task pools is the sane as for managi ng task queues
68 * with the exception of a taskq creation flag TASKQ DYNAM C which tells that
69 * dynam c task pool behavior is desired.
70 *
71 * Dynamic task queues may al so place tasks in the normal queue (called "backing
72 * queue") when task pool runs out of resources. Users of task queues may
73 * disallow such queued scheduling by specifying TQ NOQUEUE i n the dispatch
74 * flags.
75 *
76 * The backing task queue is also used for scheduling internal tasks needed for
77 * dynam c task queue mai ntenance.
78 *
79 * | NTERFACES
80 *
81 * taskq_t *taskq_create(nane, nthreads, pri, mnalloc, maxalloc, flags);
81 * taskq_t *taskq_create(nane, nthreads, pri, minalloc, maxall, flags);
82 *
83 * Create a taskg with specified properties.
84 * Possible "flags’:
85 *
86 * TASKQ DYNAM C. Create task pool for task managenent. If this flag is
87 * specified, 'nthreads’ specifies the maxi mum nunber of threads in
88 * the task queue. Task execution order for dynam c task queues is
89 * not predictable.
90 *
91 * If this flag is not specified (default case) a
92 * single-list task queue is created with 'nthreads’ threads
93 * servicing it. Entries in this queue are managed by
94 = taskqg_ent_alloc() and taskq_ent_free() which try to keep the
95 * task popul ati on between 'mnalloc’ and 'maxalloc’, but the
96 * latter limt is only advisory for TQ SLEEP di spatches and the
97 * former limt is only advisory for TQ NOALLOC di spatches. |f
98 * TASKQ PREPOPULATE is set in 'flags', the taskq w il be
99 * prepopul ated with 'minalloc’ task structures.
100 *
101 ~ Si nce non- DYNAM C t askqs are queues, tasks are guaranteed to be
102 * executed in the order they are scheduled if nthreads == 1
103 * If nthreads > 1, task execution order is not predictable.
104 *
105 * TASKQ PREPOPULATE: Prepopul ate task queue Wlth threads
106 * Al so prepopul ate the task queue with 'mnalloc’ task structures.
107 *
108 * TASKQ THREADS_CPU PCT: This flag specifies that 'nthreads’ should be
109 * interpreted as a percentage of the # of online CPUs on the
110 * system The taskq subsystemwi || autonatically adjust the
111 * nunber of threads in the taskq in response to CPU online
112 * and offline events, to keep the ratio. nthreads nmust be in
113 * the range [0, 100].
114 *
115 * The cal cul ation used is:
116 *
117 * MAX( (ncpus_online * percentage)/ 100, 1)
118 *
119 * This flag is not supported for DYNAM C task queues.
120 * This flag is not conpatible with TASKQ CPR_SAFE.
121 *
122 ~* TASKQ CPR _SAFE: This flag specifies that users of the task queue wll
123 = use their own protocol for handling CPR issues. This flag is not
124 ~* supported for DYNAM C task queues. This flag is not conpatible
125 * wi th TASKQ THREADS CPU_PCT.
126 *



new usr/ src/ uts/comon/ os/taskq.c

127
128
129
130
131
131
132
133
134
135
136
136
137
138
139
140
141
142
143
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

B T T T A T T i . A O N

The 'pri’ field specifies the default priority for the threads that
service all schedul ed tasks.
taskq_t *taskq_create_instance(name, instance, nthreads, pri, mnalloc,
maxal | oc, flags);
maxal |, flags);

Li ke taskq_create(),
no instance).

but takes an instance nunber (or -1 to indicate

taskq_t *taskq_create_proc(nane,
taskq_t *taskq_create_proc(nane,
flags);

nt hreads, pri,
nt hreads, pri,

m nal | oc,
m nal | oc,

maxal | oc,
maxal |,

proc,
proc,

Li ke taskq_create(), but creates the taskq threads in the specified
system process. If proc != &0, this nust be called froma thread
in that process.

taskq_t *taskq_create_sysdc(nane, nthreads, mnalloc, maxalloc, proc,
taskq_t *taskq_create_sysdc(nane, nthreads, mnalloc, maxall, proc,
dc, flags);
Li ke taskg_create_proc(), but the taskq threads will use the

System Duty Cycle (SDC) scheduling class with a duty cycle of dc.
voi d taskqg_destroy(tap):

Waits for any schedul ed tasks to conplete, then destroys the taskq.
Cal | er shoul d guarantee that no new tasks are scheduled in the closing
t askq.

taskqid_t taskq_dispatch(tqg, func, arg, flags):

Di spatches the task "func(arg)" to taskq. The ’'flags’ indicates whether
the caller is willing to block for menmory. The function returns an
opaque value which is zero iff dispatch fails. |If flags is TQ NOSLEEP
or TQ NOALLCC and the task can't be dispatched, taskqg_dispatch() fails
and returns (taskqid_t)O0.
ASSUMES: func != NULL.
Possi bl e fl ags:

TQ _NOSLEEP: Do not wait for resources; may fail.
TQ NOALLCC: Do not allocate nmenory;

non-dynanmi c task queues.

may fail. May only be used with

TQ NOQUEUE: Do not enqueue a task if it can’t dispatch it due to
lack of available resources and fail. If this flag is not
set, and the task pool is exhausted, the task may be schedul ed
in the backing queue. This flag may ONLY be used with dynamic
task queues.

NOTE: This flag should al ways be used when a task queue is used
for tasks that may depend on each other for conpletion.
Enqueuei ng dependent tasks may create deadl ocks.

TQ _SLEEP: May bl ock waiting for resources. May still fail for
dynam ¢ task queues if TQ NOQUEUE is al so specified, otherw se
al ways succeed.

TQ_FRONT: Puts the new task at the front of the queue. Be careful.

NOTE: Dynami c task queues are nuch nore likely to fail in

taskq_di spatch() (especially if TQ NOQUEUE was specified), so it
is inmportant to have backup strategies handling such failures.

new usr/ src/ uts/comon/ os/taskq.c 4
190 *

191 * void taskqg_dispatch_ent(tq, func, arg, flags, tgent)

192 *

193 * This is a light-weight formof taskq_dispatch(), that uses a

194 = preal | ocated taskq_ent _t structure for scheduling. As a

195 * result, it does not performallocations and cannot ever fail.

196 * Not e espem ally that it cannot be used wi th TASKQ DYNAM C

197 * taskgs. The nenory for the tgent nust not be nodified or used

198 * until the function (func) is called. (However, func itself

199 * may safely nodify or free this nenory, once it is called.)

200 * Note that the taskq framework will NOT free this nenory.

201 *

202 * void taskq_wait(tq):

203 *

204 * Waits for all previously schedul ed tasks to conplete.

205 *

206 * NOTE: It does not stop any new task di spatches.

207 * Do NOT call taskg_wait() froma task: it will cause deadl ock.
208 *

209 * void taskqg_suspend(tq)

210 *

211 * Suspend all task execution. Tasks already scheduled for a dynam c task
212 * queue will still be executed, but all new schedul ed tasks wll be

213 * suspended until taskq_resune() is called.

214 *

215 * int taskq_suspended(tq)

216 *

217 * Returns 1 if taskq is suspended and O otherwise. It is intended to
218 * ASSERT that the task queue is suspended.

219 *

220 * void taskqg_resune(tq)

221 *

222 * Resume task queue execution.

223 *

224 * int taskq_nenber(tq, thread)

225 *

226 * Returns 1 if "thread’ belongs to taskq 'tq" and O otherw se. The

227 * intended use is to ASSERT that a given function is called in taskq

228 * context only.

229 *

230 * systemtaskq

231 *

232 * G obal systemwi de dynamic task queue for conmon uses. |t may be used by
233 * any subsystem that needs to schedul e tasks and does not need to nmanage
234 * its own task queues. It is initialized quite early during system boot.
235 *

236 * | MPLEMENTATI ON

237 *

238 * This is schematic representation of the task queue structures.

239 *

240 * taskq

241 * R +

242 * | tqg_lock | +---< taskqg_ent_free()

243 ¢ e +

244 * | | | tgent t gent

245 * R + | e + R +

246 * | tg_freelist |-->] tgent_next |--> . ->| tgent_next |

247 * L T T e T + Foeemaiaaas +

248 x| [ | | |

249 * R + R + R +

250 * | tg_task | |

251 * | R >t askq_ent _al | oc()

Y A e N e +
253 * | | | tgent tgent |
254 % | Ao + R A R + R R + |
255 * | | | | func, arg | | func, arg | |



new usr/ src/ uts/comon/ os/taskq.c

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

B I T T S

n

|

|
Fommmeme e aaaa + |

|

|

+

TQ APPEND( )
taskq_thread()----- +

| tg_buckets |--4------- > [ NULL ] (for regular task queues)

I DYNAM C TASK QUEUES:
+-> taskq_bucket [ nCPU|

t askq_bucket _di spat ch()
N

+--->| tgbucket_| ock | |

| tgbucket_freelist |-->| tgent

t gbucket _| ock |

taskq_di spatch()--+--->|
TQ HASH()

Task queues use tq_task field to link new entry in the queue. The queue is a
circular doubly-linked list. Entries are put in the end of the list with

TQ APPEND() and processed fromthe front of the list by taskg_thread() in

FI FO order. Task queue entries are cached in the free list nmanaged by
taskq_ent _alloc() and taskq_ent_free() functions.

Al'l threads used by task queues mark t_taskq field of the thread to
point to the task queue.

Taskg Thread Management ------------mommmm e

Taskq's non-dynamic threads are managed with several variables and flags:

* tq_nthreads - The nunber of threads in taskqg_thread() for the
taskq.

* tg_active - The nunber of threads not waiting on a CVin
taskqg_thread(); includes newy created threads

not yet counted in tq_nthreads.

* tq_nthreads_target
- The nunber of threads desired for the taskq.

* tg_flags & TASKQ CHANG NG
- Indicates that tq_nthreads != tq_nthreads_target.

* tq_flags & TASKQ THREAD CREATED
- Indicates that a thread is being created in the taskq.

During creation, tg_nthreads and tqg_active are set to 0, and
tg_nthreads_target is set to the nunber of threads desired. The

new usr/ src/ uts/comon/ os/taskq.c 6
322 * TASKQ CHANGI NG flag is set, and taskq_thread_create() is called to

323 * create the first thread. taskq thread_create() increnents tq_active,

324 * sets TASKQ THREAD CREATED, and creates the new thread.

325 *

326 * Each thread starts in taskg_thread(), clears the TASKQ THREAD CREATED

327 * flag, and increnents tq_nthreads It stores the new val ue of

328 * tg_nthreads as its "thread_id", and stores its thread pointer in the

329 * tqg_threadlist at the (thread id - 1). We keep the thread_id space

330 * densely packed by requiring that only the largest thread_id can exit during
331 * normal adjustment. The exception is during the destruction of the

332 * taskq; once tq_nthreads_target is set to zero, no new threads will be created
333 * for the taskg queue, so every thread can exit w thout any ordering being

334 * necessary.

335 *

336 * Threads will only process work if their thread id is <= tqg_nthreads_target.
337 *

338 * WWen TASKQ CHANG NG is set, threads will check the current thread target

339 * whenever they wake up, and do whatever they can to apply its effects.

340 *

341 * TASKQ THREAD CPU PCT === - - - = s m e e o m e ot e e et e i oo e
342 *

343 * Wen a taskq is created with TASKQ THREAD CPU PCT, we store their requested
344 * percentage in tq_threads_ncpus_pct, start themoff with the correct thread
345 * target, and add themto the taskq_cpupct_list for later adjustnent.

346 *

347 * W register taskq_cpu_setup() to be called whenever a CPU changes state. It
348 * wal ks the list of TASKQ THREAD CPU PCT taskqgs, adjusts their nthread_target
349 * if need be, and wakes up all of the threads to process the change.

350 *

351 * Dynamic Task Queues Inplementati on ----------mmmmm
352 *

353 * For a dynamic task queues there is a 1-to-1 mapping between a thread and

354 * taskq_ent_structure. Each entry is serviced by its own thread and each thread
355 * is controlled by a single entry.

356 *

357 * Entries are distributed over a set of buckets. To avoid using nodul o

358 * arithmetics the nunmber of buckets is 2"n and is determ ned as the nearest

359 * power of two roundown of the number of CPUs in the system Tunable

360 * variable 'taskq_naxbuckets’ limts the maxi mum nunmber of buckets. Each entry
361 * is attached to a bucket for its lifetine and can’'t migrate to other buckets.
362 *

363 * Entries that have schedul ed tasks are not placed in any list. The dispatch
364 * function sets their "func" and "arg" fields and signals the corresponding
365 * thread to execute the task. Once the thread executes the task it clears the
366 * "func" field and places an entry on the bucket cache of free entries pointed
367 * by "tgbucket_freelist" field. ALL entries on the free list should have "func"
368 * field equal to NULL. The free list is a circular doubly-linked |ist identical
369 * in structure to the tq_task list above, but entries are taken fromit in LIFO
370 * order - the last freed entry is the first to be allocated. The

371 * taskq_bucket_di spatch() function gets the nost recently used entry fromthe
372 * free list, sets its "func" and "arg" fields and signals a worker thread.

373 *

374 * After executing each task a per-entry thread taskg_d_thread() places its

375 * entry on the bucket free list and goes to a timed sleep. If it wakes up

376 * without getting new task it renoves the entry fromthe free Iist and destroys
377 * itself. The thread sleep tine is controlled by a tunable variable

378 * ‘taskq_thread_tineout’.

379 *

380 * There are various statistics kept in the bucket which allows for later

381 * analysis of taskq usage patterns. Al so, a global copy of taskg creation and
382 * death statistics is kept in the global taskq data structure. Since thread
383 * creation and death happen rarely, updating such gl obal data does not present
384 * a perfornmance problem

385 *

386 * NOTE: Threads are not bound to any CPU and there is absolutely no association
387 * bet ween the bucket and actual thread CPU, so buckets are used only to



new usr/ src/ uts/comon/ os/taskq.c 7

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

B I T T S

SUSPEND/ RESUME i npl enent ati on

LOCKS and LOCK Hi erarchy

split resources and reduce resource contention. Having threads attached
to the CPU denoted by a bucket may reduce nunber of tinmes the job
swi tches between CPUs.

Current algorithmcreates a thread whenever a bucket has no free

entries. It would be nice to know how many threads are in the running
state and don’t create threads if all CPUs are busy with existing
tasks, but it is unclear how such strategy can be inpl emented.

Currently buckets are created statically as an array attached to task
queue. On sonme systemw th nCPUs < nax_ncpus it nmay waste system
nenory. One solution may be allocation of buckets when they are first
touched, but it is not clear how useful it is.

Before executing a task taskq_thread() (executing non-dynanic task
queues) obtains taskq's thread | ock as a reader. The taskqg_suspend()
function gets the same lock as a witer blocking all non-dynam c task
execution. The taskq_resune() function releases the |l ock all ow ng
taskqg_thread to continue execution.

For dynam c task queues, each bucket is nmarked as TQBUCKET_SUSPEND by
taskqg_suspend() function. After that taskq_bucket_dispatch() always
fails, so that taskq_dispatch() will either enqueue tasks for a
suspended backi ng queue or fail if TQ NOQUEUE is specified in dispatch
flags.
NOTE: taskq_suspend() does not imediately block any tasks al ready
schedul ed for dynami c task queues. It only suspends new tasks
schedul ed after taskq_suspend() was call ed.

taskqg_nenber () function works by conparing a thread t_taskq pointer with
the passed thread pointer.

There are three | ocks used in task queues:

1) The taskqg_t’'s tqg_lock, protecting global task queue state.
2) Each per-CPU bucket has a | ock for bucket managenent.
3) The gl obal taskq_cpupct_Il ock, which protects the list of
TASKQ THREADS_CPU_PCT t askgs.
IILCEoth (1) and (2) are needed, tq_l ock should be taken *after* the bucket

I f

both (1) and (3) are needed, tq_lock should be taken *after*

taskqg_cpupct _| ock.

DEBUG FACI LI TIES == - === - === m - m o mm mm e e o e e e e e e e

For DEBUG kernels it
taskq_di spatch() function when it
taskq_dnt bf and taskq_snt bf tunables control

is possible to induce randomfailures to
is given TQ NOSLEEP argunent. The val ue of
the nean tine between induced

failures for dynanmic and static task queues respectively.

Setting TASKQ STATISTIC to O will

di sabl e per-bucket statistics.

TUNABLES - - = - = = = = %« % o m m o m ot m ot o e et e e e e eoaooas

system taskq_si ze - Size of the global systemtaskq.
This value is nultiplied by nCPUs to determ ne

actual size.

new usr/ src/ uts/comon/ os/taskq.c 8
454 = Default val ue: 64
455 *
456 * taskqg_mi ni mum_nt hr eads_max
457 * - Mnimumsize of the thread list for a taskgq.
458 = Useful for testing different thread pool
459 * sizes by overwiting tq_nthreads_target.
460 *
461 * taskqg_t hread_ti meout - Maximumidle tine for taskg_d_thread()
462 * Default value: 5 minutes
463 *
464 * t askq_maxbucket s - Maxi mum nunber of buckets in any task queue
465 * Defaul t val ue: 128
466 *
467 * t askq_sear ch_depth - Maxi mum # of buckets searched for a free entry
468 * Default value: 4
469 *
470 * taskqg_dnt bf - Mean tine between induced dispatch failures
471 * for dynamic task queues.
472 * Default value: U NT_MAX (no induced failures)
473 %
474 = taskqg_snt bf - Mean tine between induced dispatch failures
475 * for static task queues.
476 * Default value: U NT_MAX (no induced failures)
477 *
478 * CONDITIONAL conmpil ati On =----cmmmm i
479 *
480 * TASKQ STATISTIC - If set will enable bucket statistic (default).
481 *
482 */
484 #incl ude <sys/taskq_i npl.h>
485 #i ncl ude <sys/thread. h>
486 #i nclude <sys/proc. h>
487 #incl ude <sys/knmem h>
488 #i ncl ude <sys/vmem h>
489 #incl ude <sys/callb. h>
490 #i ncl ude <sys/cl ass. h>
491 #incl ude <sys/systm h>
492 #include <sys/cmm_err. h>
493 #i ncl ude <sys/debug. h>
494 #incl ude <sys/vnsystm h> /* For throttlefree */
495 #i ncl ude <sys/sysmacros. h>
496 #i ncl ude <sys/cpuvar. h>
497 #incl ude <sys/cpupart.h>
498 #i ncl ude <sys/sdt.h>
499 #incl ude <sys/sysdc. h>
500 #include <sys/note.h>
502 static kmem cache_t *taskq_ent_cache, *taskq_cache;
504 /*
505 * Pseudo instance nunbers for taskqgs without explicitly provided instance.
506 */
507 static vmemt *taskq_id_arena;
509 /* dobal systemtask queue for common use */
510 taskqg_t *systemtaskq;
512 /*
513 * Maxi mum nunber of entries in global systemtaskq is
514 * system taskq_size * nmax_ncpus
515 */
516 #define SYSTEM TASKQ S| ZE 64
517 int systemtaskq_size = SYSTEM TASKQ S| ZE;
519 /*



new usr/ src/ uts/comon/ os/taskq.c

520 * Mninmumsize for tg_nthreads_nmex; useful for those who want to play around
521 * with increasing a taskq' s tq_nthreads_target.

522 */

523 int taskg_m ni mumnthreads_max = 1;

525 /| *

526 * W& want to ensure that when taskg_create() returns, there is at |east
527 * one thread ready to handl e requests. To guarantee this, we have to wait
528 * for the second thread, since the first one cannot process requests until
529 * the second thread has been created.

530 */

531 #define TASKQ CREATE_ACTI VE_THREADS 2

533 /* Maxi mum percentage all owed for TASKQ THREADS CPU _PCT */
534 #defi ne TASKQ CPUPCT_NMAX_PERCENT 1000
535 int taskq_cpupct_nmax_percent = TASKQ CPUPCT_MAX_ PERCENT;

537 | *

538 * Dynam c task queue threads that don’t get any work within
539 * taskqg_thread_tineout destroy thensel ves

540 *

541 #define TASKQ THREAD TI MEQUT (60 * 5)

542 int taskq_thread_tineout = TASKQ THREAD TI MEQOUT;

544 #define TASKQ MAXBUCKETS 128
545 int taskqg_maxbuckets = TASKQ MAXBUCKETS;

547 | *

548 * When a bucket has no available entries another buckets are tried.

549 * taskq_search_depth paranmeter limts the anpunt of buckets that we search
550 * before failing. This is nostly useful in systems with many CPUs where we nay
551 * spend too nuch tinme scanning busy buckets.

552 *

553 #define TASKQ SEARCH DEPTH 4

554 int taskq_search_depth = TASKQ SEARCH DEPTH;

556 /*

557 * Hashing function: mx various bits of x. May be pretty nuch anything.
558 */

559 #define TQ HASH(X) ((x) " ((x) >> 11) ~ ((x) >> 17) ~ ((x) *~ 27))

561 /*

562 * W do not create any new threads when the systemis |ow on nmenory and start
563 * throttling nmenory allocations. The followi ng macro tries to estimte such
564 * condition.

565 */

566 #define ENOUGH MEMORY() (freemem > throttlefree)

568 /*

569 * Static functions.

570 */

571 static taskq_t *taskq_create_common(const char *, int, int, pri_t, int,

572 int, proc_t *, uint_t, uint_t);

573 static void taskqg_thread(void *);

574 static void taskg_d_thread(taskg_ent_t *);

575 static void taskq_bucket _extend(void *);

576 static int taskqg_constructor(void *, void *, int);

577 static void taskg_destructor(void *, void *);

578 static int taskg_ent_constructor(void *, void *, int);

579 static void taskq_ent_destructor(void *, void *);

580 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);

581 static void taskq_ent_free(taskq_t *, taskg_ent_t *);

582 static int taskg_ent_exists(taskq_t *, task_func_t, void *);
583 static taskq_ent_t *taskq_bucket _di spatch(taskqg_bucket_t *, task_func_t,

584 void *);

new usr/ src/ uts/comon/ os/taskq.c

586 /*

587 * Task queues kstats.

588 */

589 struct taskg_kstat {

590 kst at _named_t tq_pid;

591 kst at _named_t tq_t asks;
592 kst at _naned_t t q_execut ed;
593 kstat _named_t t q_maxt asks;
594 kst at _named_t tg_totaltime
595 kst at _named_t tq_nall oc;
596 kst at _named_t tq_nactive;
597 kstat _named_t tq_pri;

598 kstat _nanmed_t tq_nt hr eads;

599 } taskg_kstat = {

__unchanged_portion_onitted_

10



