
new/usr/src/man/man1m/boot.1m 1

**
 46017 Sat Jun 13 11:58:36 2015
new/usr/src/man/man1m/boot.1m
2056 update boot(1m) for right location of the GRUB menu
**

1 ’\" te
2 .\" Copyright 2015 Nexenta Systems Inc.
3 .\" Copyright (c) 2008 Sun Microsystems, Inc. All Rights Reserved
4 .\" Copyright 1989 AT&T
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" See the License for the specific language governing permissions and limitati
7 .\" fields enclosed by brackets "[]" replaced with your own identifying informat
8 .TH BOOT 1M "Jun 7, 2015"
8 .TH BOOT 1M "Jan 14, 2015"
9 .SH NAME

10 boot \- start the system kernel or a standalone program
11 .SH SYNOPSIS
12 .SS "SPARC"
13 .LP
14 .nf
15 \fBboot\fR [\fIOBP\fR \fInames\fR] [\fIfile\fR] [\fB-aLV\fR] [\fB-F\fR \fIobject
16 [\fB-Z\fR \fIdataset\fR] [\fIboot-flags\fR] [\fB\(mi\(mi\fR] [\fIclient-pro
17 .fi

19 .SS "x86"
20 .LP
21 .nf
22 \fBkernel$\fR \fB/platform/i86pc/kernel/$ISADIR/unix\fR [\fIboot-args\fR]
23 [\fB-B\fR \fIprop\fR=\fIval\fR [,\fIval\fR...]]
24 .fi

26 .SH DESCRIPTION
27 .LP
28 Bootstrapping is the process of loading and executing a standalone program. For
29 the purpose of this discussion, bootstrapping means the process of loading and
30 executing the bootable operating system. Typically, the standalone program is
31 the operating system kernel (see \fBkernel\fR(1M)), but any standalone program
32 can be booted instead. On a SPARC-based system, the diagnostic monitor for a
33 machine is a good example of a standalone program other than the operating
34 system that can be booted.
35 .sp
36 .LP
37 If the standalone is identified as a dynamically-linked executable, \fBboot\fR
38 will load the interpreter (linker/loader) as indicated by the executable format
39 and then transfer control to the interpreter. If the standalone is
40 statically-linked, it will jump directly to the standalone.
41 .sp
42 .LP
43 Once the kernel is loaded, it starts the UNIX system, mounts the necessary file
44 systems (see \fBvfstab\fR(4)), and runs \fB/sbin/init\fR to bring the system to
45 the "initdefault" state specified in \fB/etc/inittab\fR. See \fBinittab\fR(4).
46 .SS "SPARC Bootstrap Procedure"
47 .LP
48 On SPARC based systems, the bootstrap procedure on most machines consists of
49 the following basic phases.
50 .sp
51 .LP
52 After the machine is turned on, the system firmware (in PROM) executes power-on
53 self-test (POST). The form and scope of these tests depends on the version of
54 the firmware in your system.
55 .sp
56 .LP
57 After the tests have been completed successfully, the firmware attempts to
58 autoboot if the appropriate flag has been set in the non-volatile storage area
59 used by the firmware. The name of the file to load, and the device to load it
60 from can also be manipulated.

new/usr/src/man/man1m/boot.1m 2

61 .sp
62 .LP
63 These flags and names can be set using the \fBeeprom\fR(1M) command from the
64 shell, or by using \fBPROM\fR commands from the \fBok\fR prompt after the
65 system has been halted.
66 .sp
67 .LP
68 The second level program is either a fileystem-specific boot block (when
69 booting from a disk), or \fBinetboot\fR or \fBwanboot\fR (when booting across
70 the network).
71 .sp
72 .LP
73 Network Booting
74 .sp
75 .LP
76 Network booting occurs in two steps: the client first obtains an IP address and
77 any other parameters necessary to permit it to load the second-stage booter.
78 The second-stage booter in turn loads the boot archive from the boot device.
79 .sp
80 .LP
81 An IP address can be obtained in one of three ways: RARP, DHCP, or manual
82 configuration, depending on the functions available in and configuration of the
83 PROM. Machines of the \fBsun4u\fR and \fBsun4v\fR kernel architectures have
84 DHCP-capable PROMs.
85 .sp
86 .LP
87 The boot command syntax for specifying the two methods of network booting are:
88 .sp
89 .in +2
90 .nf
91 boot net:rarp
92 boot net:dhcp
93 .fi
94 .in -2
95 .sp

97 .sp
98 .LP
99 The command:
100 .sp
101 .in +2
102 .nf
103 boot net
104 .fi
105 .in -2
106 .sp

108 .sp
109 .LP
110 without a \fBrarp\fR or \fBdhcp\fR specifier, invokes the default method for
111 network booting over the network interface for which \fBnet\fR is an alias.
112 .sp
113 .LP
114 The sequence of events for network booting using RARP/\fBbootparams\fR is
115 described in the following paragraphs. The sequence for DHCP follows the
116 RARP/\fBbootparams\fR description.
117 .sp
118 .LP
119 When booting over the network using RARP/\fBbootparams\fR, the PROM begins by
120 broadcasting a reverse ARP request until it receives a reply. When a reply is
121 received, the PROM then broadcasts a TFTP request to fetch the first block of
122 \fBinetboot\fR. Subsequent requests will be sent to the server that initially
123 answered the first block request. After loading, \fBinetboot\fR will also use
124 reverse ARP to fetch its IP address, then broadcast \fBbootparams\fR RPC calls
125 (see \fBbootparams\fR(4)) to locate configuration information and its root file
126 system. \fBinetboot\fR then loads the boot archive by means of NFS and

new/usr/src/man/man1m/boot.1m 3

127 transfers control to that archive.
128 .sp
129 .LP
130 When booting over the network using DHCP, the PROM broadcasts the hardware
131 address and kernel architecture and requests an IP address, boot parameters,
132 and network configuration information. After a DHCP server responds and is
133 selected (from among potentially multiple servers), that server sends to the
134 client an IP address and all other information needed to boot the client. After
135 receipt of this information, the client PROM examines the name of the file to
136 be loaded, and will behave in one of two ways, depending on whether the file’s
137 name appears to be an HTTP URL. If it does not, the PROM downloads
138 \fBinetboot\fR, loads that file into memory, and executes it. \fBinetboot\fR
139 loads the boot archive, which takes over the machine and releases
140 \fBinetboot\fR. Startup scripts then initiate the DHCP agent (see
141 \fBdhcpagent\fR(1M)), which implements further DHCP activities.
142 .sp
143 .LP
144 If the file to be loaded is an HTTP URL, the PROM will use HTTP to load the
145 referenced file. If the client has been configured with an HMAC SHA-1 key, it
146 will check the integrity of the loaded file before proceeding to execute it.
147 The file is expected to be the \fBwanboot\fR binary. The WAN boot process can
148 be configured to use either DHCP or NVRAM properties to discover the install
149 server and router and the proxies needed to connect to it. When \fBwanboot\fR
150 begins executing, it determines whether sufficient information is available to
151 it to allow it to proceed. If any necessary information is missing, it will
152 either exit with an appropriate error or bring up a command interpreter and
153 prompt for further configuration information. Once \fBwanboot\fR has obtained
154 the necessary information, it loads the boot loader into memory by means of
155 HTTP. If an encryption key has been installed on the client, \fBwanboot\fR will
156 verify the boot loader’s signature and its accompanying hash. Presence of an
157 encryption key but no hashing key is an error.
158 .sp
159 .LP
160 The \fBwanboot\fR boot loader can communicate with the client using either HTTP
161 or secure HTTP. If the former, and if the client has been configured with an
162 HMAC SHA-1 key, the boot loader will perform an integrity check of the root
163 file system. Once the root file system has been loaded into memory (and
164 possibly had an integrity check performed), the boot archive is transferred
165 from the server. If provided with a \fBboot_logger\fR URL by means of the
166 \fBwanboot.conf\fR(4) file, \fBwanboot\fR will periodically log its progress.
167 .sp
168 .LP
169 Not all PROMs are capable of consuming URLs. You can determine whether a client
170 is so capable using the \fBlist-security-keys\fR OBP command (see
171 \fBmonitor\fR(1M)).
172 .sp
173 .LP
174 WAN booting is not currently available on the x86 platform.
175 .sp
176 .LP
177 The \fBwanboot\fR Command Line
178 .sp
179 .LP
180 When the client program is \fBwanboot\fR, it accepts \fBclient-program-args\fR
181 of the form:
182 .sp
183 .in +2
184 .nf
185 boot ... -o \fIopt1\fR[,\fIopt2\fR[,...]]
186 .fi
187 .in -2
188 .sp

190 .sp
191 .LP
192 where each option may be an action:

new/usr/src/man/man1m/boot.1m 4

193 .sp
194 .ne 2
195 .na
196 \fB\fBdhcp\fR\fR
197 .ad
198 .sp .6
199 .RS 4n
200 Require \fBwanboot\fR to obtain configuration parameters by means of DHCP.
201 .RE

203 .sp
204 .ne 2
205 .na
206 \fB\fBprompt\fR\fR
207 .ad
208 .sp .6
209 .RS 4n
210 Cause \fBwanboot\fR to enter its command interpreter.
211 .RE

213 .sp
214 .ne 2
215 .na
216 \fB\fI<cmd>\fR\fR
217 .ad
218 .sp .6
219 .RS 4n
220 One of the interpreter commands listed below.
221 .RE

223 .sp
224 .LP
225 \&...or an assignment, using the interpreter’s parameter names listed below.
226 .sp
227 .LP
228 The \fBwanboot\fR Command Interpreter
229 .sp
230 .LP
231 The \fBwanboot\fR command interpreter is invoked by supplying a
232 \fBclient-program-args\fR of "\fB-o prompt\fR" when booting. Input consists of
233 single commands or assignments, or a comma-separated list of commands or
234 assignments. The configuration parameters are:
235 .sp
236 .ne 2
237 .na
238 \fB\fBhost-ip\fR\fR
239 .ad
240 .sp .6
241 .RS 4n
242 IP address of the client (in dotted-decimal notation)
243 .RE

245 .sp
246 .ne 2
247 .na
248 \fB\fBrouter-ip\fR\fR
249 .ad
250 .sp .6
251 .RS 4n
252 IP address of the default router (in dotted-decimal notation)
253 .RE

255 .sp
256 .ne 2
257 .na
258 \fB\fBsubnet-mask\fR\fR

new/usr/src/man/man1m/boot.1m 5

259 .ad
260 .sp .6
261 .RS 4n
262 subnet mask (in dotted-decimal notation)
263 .RE

265 .sp
266 .ne 2
267 .na
268 \fB\fBclient-id\fR\fR
269 .ad
270 .sp .6
271 .RS 4n
272 DHCP client identifier (a quoted ASCII string or hex ASCII)
273 .RE

275 .sp
276 .ne 2
277 .na
278 \fB\fBhostname\fR\fR
279 .ad
280 .sp .6
281 .RS 4n
282 hostname to request in DHCP transactions (ASCII)
283 .RE

285 .sp
286 .ne 2
287 .na
288 \fB\fBhttp-proxy\fR\fR
289 .ad
290 .sp .6
291 .RS 4n
292 HTTP proxy server specification (IPADDR[:PORT])
293 .RE

295 .sp
296 .LP
297 The key names are:
298 .sp
299 .ne 2
300 .na
301 \fB\fB3des\fR\fR
302 .ad
303 .sp .6
304 .RS 4n
305 the triple DES encryption key (48 hex ASCII characters)
306 .RE

308 .sp
309 .ne 2
310 .na
311 \fB\fBaes\fR\fR
312 .ad
313 .sp .6
314 .RS 4n
315 the AES encryption key (32 hex ASCII characters)
316 .RE

318 .sp
319 .ne 2
320 .na
321 \fB\fBsha1\fR\fR
322 .ad
323 .sp .6
324 .RS 4n

new/usr/src/man/man1m/boot.1m 6

325 the HMAC SHA-1 signature key (40 hex ASCII characters)
326 .RE

328 .sp
329 .LP
330 Finally, the URL or the WAN boot CGI is referred to by means of:
331 .sp
332 .ne 2
333 .na
334 \fB\fBbootserver\fR\fR
335 .ad
336 .sp .6
337 .RS 4n
338 URL of WAN boot’s CGI (the equivalent of OBP’s \fBfile\fR parameter)
339 .RE

341 .sp
342 .LP
343 The interpreter accepts the following commands:
344 .sp
345 .ne 2
346 .na
347 \fB\fBhelp\fR\fR
348 .ad
349 .sp .6
350 .RS 4n
351 Print a brief description of the available commands
352 .RE

354 .sp
355 .ne 2
356 .na
357 \fB\fB\fIvar\fR=\fIval\fR\fR\fR
358 .ad
359 .sp .6
360 .RS 4n
361 Assign \fIval\fR to \fIvar\fR, where \fIvar\fR is one of the configuration
362 parameter names, the key names, or \fBbootserver\fR.
363 .RE

365 .sp
366 .ne 2
367 .na
368 \fB\fB\fIvar\fR=\fR\fR
369 .ad
370 .sp .6
371 .RS 4n
372 Unset parameter \fIvar\fR.
373 .RE

375 .sp
376 .ne 2
377 .na
378 \fB\fBlist\fR\fR
379 .ad
380 .sp .6
381 .RS 4n
382 List all parameters and their values (key values retrieved by means of OBP are
383 never shown).
384 .RE

386 .sp
387 .ne 2
388 .na
389 \fB\fBprompt\fR\fR
390 .ad

new/usr/src/man/man1m/boot.1m 7

391 .sp .6
392 .RS 4n
393 Prompt for values for unset parameters. The name of each parameter and its
394 current value (if any) is printed, and the user can accept this value (press
395 Return) or enter a new value.
396 .RE

398 .sp
399 .ne 2
400 .na
401 \fB\fBgo\fR\fR
402 .ad
403 .sp .6
404 .RS 4n
405 Once the user is satisfied that all values have been entered, leave the
406 interpreter and continue booting.
407 .RE

409 .sp
410 .ne 2
411 .na
412 \fB\fBexit\fR\fR
413 .ad
414 .sp .6
415 .RS 4n
416 Quit the boot interpreter and return to OBP’s \fBok\fR prompt.
417 .RE

419 .sp
420 .LP
421 Any of these assignments or commands can be passed on the command line as part
422 of the \fB-o\fR options, subject to the OBP limit of 128 bytes for boot
423 arguments. For example, \fB-o\fR \fBlist,go\fR would simply list current
424 (default) values of the parameters and then continue booting.
425 .SS "iSCSI Boot"
426 .LP
427 iSCSI boot is currently supported only on x86. The host being booted must be
428 equipped with NIC(s) capable of iBFT (iSCSI Boot Firmware Table) or have the
429 mainboard’s BIOS be iBFT-capable. iBFT, defined in the Advanced Configuration
430 and Power Interface (ACPI) 3.0b specification, specifies a block of information
431 that contains various parameters that are useful to the iSCSI Boot process.
432 .sp
433 .LP
434 Firmware implementing iBFT presents an iSCSI disk in the BIOS during startup as
435 a bootable device by establishing the connection to the iSCSI target. The rest
436 of the process of iSCSI booting is the same as booting from a local disk.
437 .sp
438 .LP
439 To configure the iBFT properly, users need to refer to the documentation from
440 their hardware vendors.
441 .SS "Booting from Disk"
442 .LP
443 When booting from disk, the OpenBoot PROM firmware reads the boot blocks from
444 blocks 1 to 15 of the partition specified as the boot device. This standalone
445 booter usually contains a file system-specific reader capable of reading the
446 boot archive.
447 .sp
448 .LP
449 If the pathname to the standalone is relative (does not begin with a slash),
450 the second level boot will look for the standalone in a platform-dependent
451 search path. This path is guaranteed to contain
452 \fB/platform/\fR\fIplatform-name\fR. Many SPARC platforms next search the
453 platform-specific path entry \fB/platform/\fR\fIhardware-class-name\fR. See
454 \fBfilesystem\fR(5). If the pathname is absolute, \fBboot\fR will use the
455 specified path. The \fBboot\fR program then loads the standalone at the
456 appropriate address, and then transfers control.

new/usr/src/man/man1m/boot.1m 8

457 .sp
458 .LP
459 Once the boot archive has been transferred from the boot device, Solaris can
460 initialize and take over control of the machine. This process is further
461 described in the "Boot Archive Phase," below, and is identical on all
462 platforms.
463 .sp
464 .LP
465 If the filename is not given on the command line or otherwise specified, for
466 example, by the \fBboot-file\fR NVRAM variable, \fBboot\fR chooses an
467 appropriate default file to load based on what software is installed on the
468 system and the capabilities of the hardware and firmware.
469 .sp
470 .LP
471 The path to the kernel must not contain any whitespace.
472 .SS "Booting from ZFS"
473 .LP
474 Booting from ZFS differs from booting from UFS in that, with ZFS, a device
475 specifier identifies a storage pool, not a single root file system. A storage
476 pool can contain multiple bootable datasets (that is, root file systems).
477 Therefore, when booting from ZFS, it is not sufficient to specify a boot
478 device. One must also identify a root file system within the pool that was
479 identified by the boot device. By default, the dataset selected for booting is
480 the one identified by the pool’s \fBbootfs\fR property. This default selection
481 can be overridden by specifying an alternate bootable dataset with the \fB-Z\fR
482 option.
483 .SS "Boot Archive Phase"
484 .LP
485 The boot archive contains a file system image that is mounted using an
486 in-memory disk. The image is self-describing, specifically containing a file
487 system reader in the boot block. This file system reader mounts and opens the
488 RAM disk image, then reads and executes the kernel contained within it. By
489 default, this kernel is in:
490 .sp
491 .in +2
492 .nf
493 /platform/‘uname -i‘/kernel/unix
494 .fi
495 .in -2
496 .sp

498 .sp
499 .LP
500 If booting from ZFS, the pathnames of both the archive and the kernel file are
501 resolved in the root file system (that is, dataset) selected for booting as
502 described in the previous section.
503 .sp
504 .LP
505 The initialization of the kernel continues by loading necessary drivers and
506 modules from the in-memory filesystem until I/O can be turned on and the root
507 filesystem mounted. Once the root filesystem is mounted, the in-memory
508 filesystem is no longer needed and is discarded.
509 .SS "OpenBoot PROM \fBboot\fR Command Behavior"
510 .LP
511 The OpenBoot \fBboot\fR command takes arguments of the following form:
512 .sp
513 .in +2
514 .nf
515 ok boot [\fIdevice-specifier\fR] [\fIarguments\fR]
516 .fi
517 .in -2
518 .sp

520 .sp
521 .LP
522 The default \fBboot\fR command has no arguments:

new/usr/src/man/man1m/boot.1m 9

523 .sp
524 .in +2
525 .nf
526 ok boot
527 .fi
528 .in -2
529 .sp

531 .sp
532 .LP
533 If no \fIdevice-specifier\fR is given on the \fBboot\fR command line, OpenBoot
534 typically uses the \fIboot-device\fR or \fIdiag-device\fR \fBNVRAM\fR variable.
535 If no optional \fIarguments\fR are given on the command line, OpenBoot
536 typically uses the \fIboot-file\fR or \fIdiag-file\fR \fBNVRAM\fR variable as
537 default \fBboot\fR arguments. (If the system is in diagnostics mode,
538 \fIdiag-device\fR and \fIdiag-file\fR are used instead of \fIboot-device\fR and
539 \fIboot-file\fR).
540 .sp
541 .LP
542 \fIarguments\fR may include more than one string. All \fIargument\fR strings
543 are passed to the secondary booter; they are not interpreted by OpenBoot.
544 .sp
545 .LP
546 If any \fIarguments\fR are specified on the \fBboot\fR command line, then
547 neither the \fIboot-file\fR nor the \fIdiag-file\fR \fBNVRAM\fR variable is
548 used. The contents of the \fBNVRAM\fR variables are not merged with command
549 line arguments. For example, the command:
550 .sp
551 .in +2
552 .nf
553 ok \fBboot\fR \fB-s\fR
554 .fi
555 .in -2
556 .sp

558 .sp
559 .LP
560 ignores the settings in both \fIboot-file\fR and \fIdiag-file\fR; it interprets
561 the string \fB"-s"\fR as \fIarguments\fR. \fBboot\fR will not use the contents
562 of \fIboot-file\fR or \fIdiag-file\fR.
563 .sp
564 .LP
565 With older PROMs, the command:
566 .sp
567 .in +2
568 .nf
569 ok \fBboot net\fR
570 .fi
571 .in -2
572 .sp

574 .sp
575 .LP
576 took no arguments, using instead the settings in \fIboot-file\fR or
577 \fIdiag-file\fR (if set) as the default file name and arguments to pass to
578 boot. In most cases, it is best to allow the \fBboot\fR command to choose an
579 appropriate default based upon the system type, system hardware and firmware,
580 and upon what is installed on the root file system. Changing \fIboot-file\fR or
581 \fIdiag-file\fR can generate unexpected results in certain circumstances.
582 .sp
583 .LP
584 This behavior is found on most OpenBoot 2.x and 3.x based systems. Note that
585 differences may occur on some platforms.
586 .sp
587 .LP
588 The command:

new/usr/src/man/man1m/boot.1m 10

589 .sp
590 .LP
591 ok \fBboot cdrom\fR
592 .sp
593 .LP
594 \&...also normally takes no arguments. Accordingly, if \fIboot-file\fR is set
595 to the 64-bit kernel filename and you attempt to boot the installation CD or
596 DVD with \fBboot cdrom\fR, boot will fail if the installation media contains
597 only a 32-bit kernel.
598 .sp
599 .LP
600 Because the contents of \fIboot-file\fR or \fIdiag-file\fR can be ignored
601 depending on the form of the \fBboot\fR command used, reliance upon
602 \fIboot-file\fR should be discouraged for most production systems.
603 .sp
604 .LP
605 When executing a WAN boot from a local (CD or DVD) copy of wanboot, one must
606 use:
607 .sp
608 .LP
609 ok \fBboot cdrom -F wanboot - install\fR
610 .sp
611 .LP
612 Modern PROMs have enhanced the network boot support package to support the
613 following syntax for arguments to be processed by the package:
614 .sp
615 .LP
616 [\fIprotocol\fR,] [\fIkey\fR=\fIvalue\fR,]*
617 .sp
618 .LP
619 All arguments are optional and can appear in any order. Commas are required
620 unless the argument is at the end of the list. If specified, an argument takes
621 precedence over any default values, or, if booting using DHCP, over
622 configuration information provided by a DHCP server for those parameters.
623 .sp
624 .LP
625 \fIprotocol\fR, above, specifies the address discovery protocol to be used.
626 .sp
627 .LP
628 Configuration parameters, listed below, are specified as \fIkey\fR=\fIvalue\fR
629 attribute pairs.
630 .sp
631 .ne 2
632 .na
633 \fB\fBtftp-server\fR\fR
634 .ad
635 .sp .6
636 .RS 4n
637 IP address of the TFTP server
638 .RE

640 .sp
641 .ne 2
642 .na
643 \fB\fBfile\fR\fR
644 .ad
645 .sp .6
646 .RS 4n
647 file to download using TFTP or URL for WAN boot
648 .RE

650 .sp
651 .ne 2
652 .na
653 \fB\fBhost-ip\fR\fR
654 .ad

new/usr/src/man/man1m/boot.1m 11

655 .sp .6
656 .RS 4n
657 IP address of the client (in dotted-decimal notation)
658 .RE

660 .sp
661 .ne 2
662 .na
663 \fB\fBrouter-ip\fR\fR
664 .ad
665 .sp .6
666 .RS 4n
667 IP address of the default router
668 .RE

670 .sp
671 .ne 2
672 .na
673 \fB\fBsubnet-mask\fR\fR
674 .ad
675 .sp .6
676 .RS 4n
677 subnet mask (in dotted-decimal notation)
678 .RE

680 .sp
681 .ne 2
682 .na
683 \fB\fBclient-id\fR\fR
684 .ad
685 .sp .6
686 .RS 4n
687 DHCP client identifier
688 .RE

690 .sp
691 .ne 2
692 .na
693 \fB\fBhostname\fR\fR
694 .ad
695 .sp .6
696 .RS 4n
697 hostname to use in DHCP transactions
698 .RE

700 .sp
701 .ne 2
702 .na
703 \fB\fBhttp-proxy\fR\fR
704 .ad
705 .sp .6
706 .RS 4n
707 HTTP proxy server specification (IPADDR[:PORT])
708 .RE

710 .sp
711 .ne 2
712 .na
713 \fB\fBtftp-retries\fR\fR
714 .ad
715 .sp .6
716 .RS 4n
717 maximum number of TFTP retries
718 .RE

720 .sp

new/usr/src/man/man1m/boot.1m 12

721 .ne 2
722 .na
723 \fB\fBdhcp-retries\fR\fR
724 .ad
725 .sp .6
726 .RS 4n
727 maximum number of DHCP retries
728 .RE

730 .sp
731 .LP
732 The list of arguments to be processed by the network boot support package is
733 specified in one of two ways:
734 .RS +4
735 .TP
736 .ie t \(bu
737 .el o
738 As arguments passed to the package’s \fBopen\fR method, or
739 .RE
740 .RS +4
741 .TP
742 .ie t \(bu
743 .el o
744 arguments listed in the NVRAM variable \fBnetwork-boot-arguments\fR.
745 .RE
746 .sp
747 .LP
748 Arguments specified in \fBnetwork-boot-arguments\fR will be processed only if
749 there are no arguments passed to the package’s \fBopen\fR method.
750 .sp
751 .LP
752 Argument Values
753 .sp
754 .LP
755 \fIprotocol\fR specifies the address discovery protocol to be used. If present,
756 the possible values are \fBrarp\fR or \fBdhcp\fR.
757 .sp
758 .LP
759 If other configuration parameters are specified in the new syntax and style
760 specified by this document, absence of the \fIprotocol\fR parameter implies
761 manual configuration.
762 .sp
763 .LP
764 If no other configuration parameters are specified, or if those arguments are
765 specified in the positional parameter syntax currently supported, the absence
766 of the \fIprotocol\fR parameter causes the network boot support package to use
767 the platform-specific default address discovery protocol.
768 .sp
769 .LP
770 Manual configuration requires that the client be provided its IP address, the
771 name of the boot file, and the address of the server providing the boot file
772 image. Depending on the network configuration, it might be required that
773 \fBsubnet-mask\fR and \fBrouter-ip\fR also be specified.
774 .sp
775 .LP
776 If the \fIprotocol\fR argument is not specified, the network boot support
777 package uses the platform-specific default address discovery protocol.
778 .sp
779 .LP
780 \fBtftp-server\fR is the IP address (in standard IPv4 dotted-decimal notation)
781 of the TFTP server that provides the file to download if using TFTP.
782 .sp
783 .LP
784 When using DHCP, the value, if specified, overrides the value of the TFTP
785 server specified in the DHCP response.
786 .sp

new/usr/src/man/man1m/boot.1m 13

787 .LP
788 The TFTP RRQ is unicast to the server if one is specified as an argument or in
789 the DHCP response. Otherwise, the TFTP RRQ is broadcast.
790 .sp
791 .LP
792 \fIfile\fR specifies the file to be loaded by TFTP from the TFTP server, or the
793 URL if using HTTP. The use of HTTP is triggered if the file name is a URL, that
794 is, the file name starts with \fBhttp:\fR (case-insensitive).
795 .sp
796 .LP
797 When using RARP and TFTP, the default file name is the ASCII hexadecimal
798 representation of the IP address of the client, as documented in a preceding
799 section of this document.
800 .sp
801 .LP
802 When using DHCP, this argument, if specified, overrides the name of the boot
803 file specified in the DHCP response.
804 .sp
805 .LP
806 When using DHCP and TFTP, the default file name is constructed from the root
807 node’s \fBname\fR property, with commas (,) replaced by periods (.).
808 .sp
809 .LP
810 When specified on the command line, the filename must not contain slashes
811 (\fB/\fR).
812 .sp
813 .LP
814 The format of URLs is described in RFC 2396. The HTTP server must be specified
815 as an IP address (in standard IPv4 dotted-decimal notation). The optional port
816 number is specified in decimal. If a port is not specified, port 80 (decimal)
817 is implied.
818 .sp
819 .LP
820 The URL presented must be "safe-encoded", that is, the package does not apply
821 escape encodings to the URL presented. URLs containing commas must be presented
822 as a quoted string. Quoting URLs is optional otherwise.
823 .sp
824 .LP
825 \fBhost-ip\fR specifies the IP address (in standard IPv4 dotted-decimal
826 notation) of the client, the system being booted. If using RARP as the address
827 discovery protocol, specifying this argument makes use of RARP unnecessary.
828 .sp
829 .LP
830 If DHCP is used, specifying the \fBhost-ip\fR argument causes the client to
831 follow the steps required of a client with an "Externally Configured Network
832 Address", as specified in RFC 2131.
833 .sp
834 .LP
835 \fBrouter-ip\fR is the IP address (in standard IPv4 dotted-decimal notation) of
836 a router on a directly connected network. The router will be used as the first
837 hop for communications spanning networks. If this argument is supplied, the
838 router specified here takes precedence over the preferred router specified in
839 the DHCP response.
840 .sp
841 .LP
842 \fBsubnet-mask\fR (specified in standard IPv4 dotted-decimal notation) is the
843 subnet mask on the client’s network. If the subnet mask is not provided (either
844 by means of this argument or in the DHCP response), the default mask
845 appropriate to the network class (Class A, B, or C) of the address assigned to
846 the booting client will be assumed.
847 .sp
848 .LP
849 \fBclient-id\fR specifies the unique identifier for the client. The DHCP client
850 identifier is derived from this value. Client identifiers can be specified as:
851 .RS +4
852 .TP

new/usr/src/man/man1m/boot.1m 14

853 .ie t \(bu
854 .el o
855 The ASCII hexadecimal representation of the identifier, or
856 .RE
857 .RS +4
858 .TP
859 .ie t \(bu
860 .el o
861 a quoted string
862 .RE
863 .sp
864 .LP
865 Thus, \fBclient-id="openboot"\fR and \fBclient-id=6f70656e626f6f74\fR both
866 represent a DHCP client identifier of 6F70656E626F6F74.
867 .sp
868 .LP
869 Identifiers specified on the command line must must not include slash (\fB/\fR)
870 or spaces.
871 .sp
872 .LP
873 The maximum length of the DHCP client identifier is 32 bytes, or 64 characters
874 representing 32 bytes if using the ASCII hexadecimal form. If the latter form
875 is used, the number of characters in the identifier must be an even number.
876 Valid characters are 0-9, a-f, and A-F.
877 .sp
878 .LP
879 For correct identification of clients, the client identifier must be unique
880 among the client identifiers used on the subnet to which the client is
881 attached. System administrators are responsible for choosing identifiers that
882 meet this requirement.
883 .sp
884 .LP
885 Specifying a client identifier on a command line takes precedence over any
886 other DHCP mechanism of specifying identifiers.
887 .sp
888 .LP
889 \fBhostname\fR (specified as a string) specifies the hostname to be used in
890 DHCP transactions. The name might or might not be qualified with the local
891 domain name. The maximum length of the hostname is 255 characters.
892 .LP
893 Note -
894 .sp
895 .RS 2
896 The \fBhostname\fR parameter can be used in service environments that require
897 that the client provide the desired hostname to the DHCP server. Clients
898 provide the desired hostname to the DHCP server, which can then register the
899 hostname and IP address assigned to the client with DNS.
900 .RE
901 .sp
902 .LP
903 \fBhttp-proxy\fR is specified in the following standard notation for a host:
904 .sp
905 .in +2
906 .nf
907 \fIhost\fR [":"" \fIport\fR]
908 .fi
909 .in -2
910 .sp

912 .sp
913 .LP
914 \&...where \fIhost\fR is specified as an IP ddress (in standard IPv4
915 dotted-decimal notation) and the optional \fIport\fR is specified in decimal.
916 If a port is not specified, port 8080 (decimal) is implied.
917 .sp
918 .LP

new/usr/src/man/man1m/boot.1m 15

919 \fBtftp-retries\fR is the maximum number of retries (specified in decimal)
920 attempted before the TFTP process is determined to have failed. Defaults to
921 using infinite retries.
922 .sp
923 .LP
924 \fBdhcp-retries\fR is the maximum number of retries (specified in decimal)
925 attempted before the DHCP process is determined to have failed. Defaults to of
926 using infinite retries.
927 .SS "x86 Bootstrap Procedure"
928 .LP
929 On x86 based systems, the bootstrapping process consists of two conceptually
930 distinct phases, kernel loading and kernel initialization. Kernel loading is
931 implemented in GRUB (GRand Unified Bootloader) using the BIOS ROM on the system
932 board, and BIOS extensions in ROMs on peripheral boards. The BIOS loads GRUB,
933 starting with the first physical sector from a hard disk, DVD, or CD. If
934 supported by the ROM on the network adapter, the BIOS can also download the
935 \fBpxegrub\fR binary from a network boot server. Once GRUB is located, it
936 executes a command in a menu to load the \fBunix\fR kernel and a
937 pre-constructed boot archive containing kernel modules and data.
938 .sp
939 .LP
940 If the device identified by GRUB as the boot device contains a ZFS storage
941 pool, the \fBmenu.lst\fR file used to create the GRUB menu will be found in the
942 dataset at the root of the pool’s dataset hierarchy. This is the dataset with
943 the same name as the pool itself. There is always exactly one such dataset in a
944 pool, and so this dataset is well-suited for pool-wide data such as the
945 \fBmenu.lst\fR file. After the system is booted, this dataset is mounted at
946 /\fIpoolname\fR in the root file system.
947 .sp
948 .LP
949 There can be multiple bootable datasets (that is, root file systems) within a
950 pool. By default, the file system in which file name entries in a
951 \fBmenu.lst\fR file are resolved is the one identified by the pool’s
952 \fBbootfs\fR property (see \fBzpool\fR(1M)). However, a \fBmenu.lst\fR entry
953 can contain a \fBbootfs\fR command, which specifies an alternate dataset in the
954 pool. In this way, the \fBmenu.lst\fR file can contain entries for multiple
955 root file systems within the pool.
956 .sp
957 .LP
958 Kernel initialization starts when GRUB finishes loading the boot archive and
959 hands control over to the \fBunix\fR binary. At this point, GRUB becomes
960 inactive and no more I/O occurs with the boot device. The Unix operating system
961 initializes, links in the necessary modules from the boot archive and mounts
962 the root file system on the real root device. At this point, the kernel regains
963 storage I/O, mounts additional file systems (see \fBvfstab\fR(4)), and starts
964 various operating system services (see \fBsmf\fR(5)).
965 .SS "Failsafe Mode"
966 .LP
967 A requirement of booting from a root filesystem image built into a boot archive
968 then remounting root onto the actual root device is that the contents of the
969 boot archive and the root filesystem must be consistent. Otherwise, the proper
970 operation and integrity of the machine cannot be guaranteed.
971 .sp
972 .LP
973 The term "consistent" means that all files and modules in the root filesystem
974 are also present in the boot archive and have identical contents. Since the
975 boot strategy requires first reading and mounting the boot archive as the
976 first-stage root image, all unloadable kernel modules and initialization
977 derived from the contents of the boot archive are required to match the real
978 root filesystem. Without such consistency, it is possible that the system could
979 be running with a kernel module or parameter setting applied to the root device
980 before reboot, but not yet updated in the root archive. This inconsistency
981 could result in system instability or data loss.
982 .sp
983 .LP
984 Once the root filesystem is mounted, and before relinquishing the in-memory

new/usr/src/man/man1m/boot.1m 16

985 filesystem, Solaris performs a consistency verification against the two file
986 systems. If an inconsistency is detected, Solaris suspends the normal boot
987 sequence and falls back to failsafe mode. Correcting this state requires the
988 administrator take one of two steps. The recommended procedure is to reboot to
989 the failsafe archive and rebuild the boot archive. This ensures that a known
990 kernel is booted and functioning for the archive rebuild process.
991 Alternatively, the administrator can elect to clear the inconsistent boot
992 archive service state and continue system bring-up if the inconsistency is such
993 that correct system operation will not be impaired. See \fBsvcadm\fR(1M).
994 .sp
995 .LP
996 If the boot archive service is cleared and system bring-up is continued (the
997 second alternative above), the system may be running with unloadable kernel
998 drivers or other modules that are out-of-date with respect to the root
999 filesystem. As such, correct system operation may be compromised.

1000 .sp
1001 .LP
1002 To ensure that the boot archive is consistent, the normal system shutdown
1003 process, as initiated by \fBreboot\fR(1M) and \fBshutdown\fR(1M), checks for
1004 and applies updates to the boot archive at the conclusion of the
1005 \fBumountall\fR(1M) milestone.
1006 .sp
1007 .LP
1008 An update to any kernel file, driver, module or driver configuration file that
1009 needs to be included in the boot archive after the \fBumountall\fR service is
1010 complete will result in a failed boot archive consistency check during the next
1011 boot. To avoid this, it is recommended to always shut down a machine cleanly.
1012 .sp
1013 .LP
1014 If an update is required to the kernel after completion of the \fBumountall\fR
1015 service, the administrator may elect to rebuild the archive by invoking:
1016 .sp
1017 .in +2
1018 .nf
1019 # \fBbootadm update-archive\fR
1020 .fi
1021 .in -2
1022 .sp

1024 .SS "Failsafe Boot Archive"
1025 .LP
1026 The failsafe archive can be used to boot the machine at any time for
1027 maintenance or troubleshooting. The failsafe boot archive is installed on the
1028 machine, sourced from the miniroot archive. Booting the failsafe archive causes
1029 the machine to boot using the in-memory filesystem as the root device.
1030 .SS "SPARC"
1031 .LP
1032 The SPARC failsafe archive is:
1033 .sp
1034 .in +2
1035 .nf
1036 /platform/‘uname -i‘/failsafe
1037 .fi
1038 .in -2
1039 .sp

1041 .sp
1042 .LP
1043 \&...and can be booted as follows:
1044 .sp
1045 .in +2
1046 .nf
1047 ok \fBboot [\fIdevice-specifier\fR] -F failsafe\fR
1048 .fi
1049 .in -2
1050 .sp

new/usr/src/man/man1m/boot.1m 17

1052 .sp
1053 .LP
1054 If a user wishes to boot a failsafe archive from a particular ZFS bootable
1055 dataset, this can be done as follows:
1056 .sp
1057 .in +2
1058 .nf
1059 ok \fBboot [\fIdevice-specifier\fR] -Z \fIdataset\fR -F failsafe\fR
1060 .fi
1061 .in -2
1062 .sp

1064 .SS "x86"
1065 .LP
1066 The x86 failsafe archive is:
1067 .sp
1068 .in +2
1069 .nf
1070 /boot/x86.miniroot-safe
1071 .fi
1072 .in -2
1073 .sp

1075 .sp
1076 .LP
1077 \&...and can be booted by selecting the \fBSolaris failsafe\fR item from the
1078 GRUB menu.
1079 .SH OPTIONS
1080 .SS "SPARC"
1081 .LP
1082 The following SPARC options are supported:
1083 .sp
1084 .ne 2
1085 .na
1086 \fB\fB-a\fR\fR
1087 .ad
1088 .sp .6
1089 .RS 4n
1090 The boot program interprets this flag to mean \fBask me\fR, and so it prompts
1091 for the name of the standalone. The \fB\&’\fR\fB-a\fR\fB\&’\fR flag is then
1092 passed to the standalone program.
1093 .RE

1095 .sp
1096 .ne 2
1097 .na
1098 \fB\fB-D\fR \fIdefault-file\fR\fR
1099 .ad
1100 .sp .6
1101 .RS 4n
1102 Explicitly specify the \fIdefault-file\fR. On some systems, \fBboot\fR chooses
1103 a dynamic default file, used when none is otherwise specified. This option
1104 allows the \fIdefault-file\fR to be explicitly set and can be useful when
1105 booting \fBkmdb\fR(1) since, by default, \fBkmdb\fR loads the default-file as
1106 exported by the \fBboot\fR program.
1107 .RE

1109 .sp
1110 .ne 2
1111 .na
1112 \fB\fB-F\fR \fIobject\fR\fR
1113 .ad
1114 .sp .6
1115 .RS 4n
1116 Boot using the named object. The object must be either an ELF executable or

new/usr/src/man/man1m/boot.1m 18

1117 bootable object containing a boot block. The primary use is to boot the
1118 failsafe or \fBwanboot\fR boot archive.
1119 .RE

1121 .sp
1122 .ne 2
1123 .na
1124 \fB\fB-L\fR\fR
1125 .ad
1126 .sp .6
1127 .RS 4n
1128 List the bootable datasets within a ZFS pool. You can select one of the
1129 bootable datasets in the list, after which detailed instructions for booting
1130 that dataset are displayed. Boot the selected dataset by following the
1131 instructions. This option is supported only when the boot device contains a ZFS
1132 storage pool.
1133 .RE

1135 .sp
1136 .ne 2
1137 .na
1138 \fB\fB-V\fR\fR
1139 .ad
1140 .sp .6
1141 .RS 4n
1142 Display verbose debugging information.
1143 .RE

1145 .sp
1146 .ne 2
1147 .na
1148 \fB\fIboot-flags\fR\fR
1149 .ad
1150 .sp .6
1151 .RS 4n
1152 The boot program passes all \fIboot-flags\fR to \fBfile\fR. They are not
1153 interpreted by \fBboot\fR. See the \fBkernel\fR(1M) and \fBkmdb\fR(1) manual
1154 pages for information about the options available with the default standalone
1155 program.
1156 .RE

1158 .sp
1159 .ne 2
1160 .na
1161 \fB\fIclient-program-args\fR\fR
1162 .ad
1163 .sp .6
1164 .RS 4n
1165 The \fBboot\fR program passes all \fIclient-program-args\fR to \fIfile\fR. They
1166 are not interpreted by \fBboot\fR.
1167 .RE

1169 .sp
1170 .ne 2
1171 .na
1172 \fB\fIfile\fR\fR
1173 .ad
1174 .sp .6
1175 .RS 4n
1176 Name of a standalone program to \fBboot\fR. If a filename is not explicitly
1177 specified, either on the \fBboot\fR command line or in the \fIboot-file\fR
1178 NVRAM variable, \fBboot\fR chooses an appropriate default filename.
1179 .RE

1181 .sp
1182 .ne 2

new/usr/src/man/man1m/boot.1m 19

1183 .na
1184 \fB\fIOBP\fR \fInames\fR\fR
1185 .ad
1186 .sp .6
1187 .RS 4n
1188 Specify the open boot prom designations. For example, on Desktop SPARC based
1189 systems, the designation \fB/sbus/esp@0,800000/sd@3,0:a\fR indicates a
1190 \fBSCSI\fR disk (sd) at target 3, lun0 on the \fBSCSI\fR bus, with the esp host
1191 adapter plugged into slot 0.
1192 .RE

1194 .sp
1195 .ne 2
1196 .na
1197 \fB\fB-Z\fR \fIdataset\fR\fR
1198 .ad
1199 .sp .6
1200 .RS 4n
1201 Boot from the root file system in the specified ZFS dataset.
1202 .RE

1204 .SS "x86"
1205 .LP
1206 The following x86 options are supported:
1207 .sp
1208 .ne 2
1209 .na
1210 \fB\fB-B\fR \fIprop\fR=\fIval\fR...\fR
1211 .ad
1212 .sp .6
1213 .RS 4n
1214 One or more property-value pairs to be passed to the kernel. Multiple
1215 property-value pairs must be separated by a comma. Use of this option is the
1216 equivalent of the command: \fBeeprom\fR \fIprop\fR=\fIval\fR. See
1217 \fBeeprom\fR(1M) for available properties and valid values.
1218 .sp
1219 If the root file system corresponding to this menu entry is a ZFS dataset, the
1220 menu entry needs the following option added:
1221 .sp
1222 .in +2
1223 .nf
1224 -B $ZFS-BOOTFS
1225 .fi
1226 .in -2
1227 .sp

1229 .RE

1231 .sp
1232 .ne 2
1233 .na
1234 \fB\fIboot-args\fR\fR
1235 .ad
1236 .sp .6
1237 .RS 4n
1238 The boot program passes all \fIboot-args\fR to \fBfile\fR. They are not
1239 interpreted by \fBboot\fR. See \fBkernel\fR(1M) and \fBkmdb\fR(1) for
1240 information about the options available with the kernel.
1241 .RE

1243 .sp
1244 .ne 2
1245 .na
1246 \fB\fB/platform/i86pc/kernel/$ISADIR/unix\fR\fR
1247 .ad
1248 .sp .6

new/usr/src/man/man1m/boot.1m 20

1249 .RS 4n
1250 Name of the kernel to boot. When using the \fBkernel$\fR token, \fB$ISADIR\fR
1251 expands to \fBamd64\fR on 64-bit machines, and a null string on other machines.
1252 As a result of this dereferencing, this path expands to the proper kernel for
1253 the machine.
1254 .RE

1256 .SH X86 BOOT SEQUENCE DETAILS
1257 .LP
1258 After a PC-compatible machine is turned on, the system firmware in the \fBBIOS
1259 ROM\fR executes a power-on self test (POST), runs \fBBIOS\fR extensions in
1260 peripheral board \fBROMs,\fR and invokes software interrupt INT 19h, Bootstrap.
1261 The INT 19h handler typically performs the standard PC-compatible boot, which
1262 consists of trying to read the first physical sector from the first diskette
1263 drive, or, if that fails, from the first hard disk. The processor then jumps to
1264 the first byte of the sector image in memory.
1265 .SH X86 PRIMARY BOOT
1266 .LP
1267 The first sector on a floppy disk contains the master boot block (GRUB
1268 \fBstage1\fR). The stage 1 is responsible for loading GRUB \fBstage2\fR. Now
1269 GRUB is fully functional. It reads and executes the menu file
1270 \fB/boot/grub/menu.lst\fR. A similar sequence occurs for DVD or CD boot, but
1271 the master boot block location and contents are dictated by the El Torito
1272 specification. The El Torito boot also leads to \fBstrap.com\fR, which in turn
1273 loads \fBboot.bin\fR.
1274 .sp
1275 .LP
1267 The first sector on a hard disk contains the master boot block, which contains
1268 the master boot program and the \fBFDISK\fR table, named for the \fBPC\fR
1269 program that maintains it. The master boot finds the active partition in the
1270 \fBFDISK\fR table, loads its first sector (GRUB \fBstage1\fR), and jumps to its
1271 first byte in memory. This completes the standard PC-compatible hard disk boot
1272 sequence. If GRUB \fBstage1\fR is installed on the master boot block (see the
1273 \fB-m\fR option of \fBinstallgrub\fR(1M)), then \fBstage2\fR is loaded directly
1274 from the Solaris partition regardless of the active partition.
1275 .sp
1276 .LP
1277 A similar sequence occurs for DVD or CD boot, but the master boot block location
1278 and contents are dictated by the El Torito specification. The El Torito boot
1279 will then continue in the same way as with the hard disk.
1280 .sp
1281 .LP
1282 Floppy booting is not longer supported. Booting from USB devices follows the
1283 same procedure as with hard disks.
1284 .sp
1285 .LP
1286 An x86 \fBFDISK\fR partition for the Solaris software begins with a
1287 one-cylinder boot slice, which contains GRUB \fBstage1\fR in the first sector,
1288 the standard Solaris disk label and volume table of contents (VTOC) in the
1289 second and third sectors, and GRUB \fBstage2\fR in the fiftieth and subsequent
1290 sectors. The area from sector 4 to 49 might contain boot blocks for older
1291 versions of Solaris. This makes it possible for multiple Solaris releases on
1292 the same FDISK to coexist. When the \fBFDISK\fR partition for the Solaris
1293 software is the active partition, the master boot program (\fBmboot\fR) reads
1294 the partition boot program in the first sector into memory and jumps to it. It
1295 in turn reads GRUB \fBstage2\fR program into memory and jumps to it. Once the
1296 GRUB menu is displayed, the user can choose to boot an operating system on a
1297 different partition, a different disk, or possibly from the network.
1298 .sp
1299 .LP
1300 The behavior is slightly different when a disk is using \fBEFI\fR
1301 partitioning. In that case the GRUB \fBstage1\fR is always installed
1302 in the first sector of the disk, and it always loads \fBstage2\fR from
1303 the partition specified at GRUB installation time. This only works on
1304 partitions containing a ZFS root pool.
1305 .sp

new/usr/src/man/man1m/boot.1m 21

1306 .LP
1307 For network booting, the supported method is Intel’s Preboot eXecution
1308 Environment (PXE) standard. When booting from the network using PXE, the system
1309 or network adapter BIOS uses DHCP to locate a network bootstrap program
1310 (\fBpxegrub\fR) on a boot server and reads it using Trivial File Transfer
1311 Protocol (TFTP). The BIOS executes the \fBpxegrub\fR by jumping to its first
1312 byte in memory. The \fBpxegrub\fR program downloads a menu file and presents
1313 the entries to user.
1314 .SH X86 KERNEL STARTUP
1315 .LP
1316 The kernel startup process is independent of the kernel loading process. During
1317 kernel startup, console I/O goes to the device specified by the \fBconsole\fR
1318 property.
1319 .sp
1320 .LP
1321 When booting from UFS, the root device is specified by the \fBbootpath\fR
1322 property, and the root file system type is specified by the \fBfstype\fR
1323 property. These properties should be setup by the Solaris Install/Upgrade
1324 process in \fB/boot/solaris/bootenv.rc\fR and can be overridden with the
1325 \fB-B\fR option, described above (see the \fBeeprom\fR(1M) man page).
1326 .sp
1327 .LP
1328 When booting from ZFS, the root device is specified by a boot parameter
1329 specified by the \fB-B\fR \fB$ZFS-BOOTFS\fR parameter on either the
1330 \fBkernel\fR or \fBmodule\fR line in the GRUB menu entry. This value (as with
1331 all parameters specified by the \fB-B\fR option) is passed by GRUB to the
1332 kernel.
1333 .sp
1334 .LP
1335 If the console properties are not present, console I/O defaults to \fBscreen\fR
1336 and \fBkeyboard\fR. The root device defaults to \fBramdisk\fR and the file
1337 system defaults to \fBufs\fR.
1338 .SH EXAMPLES
1339 .SS "SPARC"
1340 .LP
1341 \fBExample 1 \fRTo Boot the Default Kernel In Single-User Interactive Mode
1342 .sp
1343 .LP
1344 To boot the default kernel in single-user interactive mode, respond to the
1345 \fBok\fR prompt with one of the following:

1347 .sp
1348 .in +2
1349 .nf
1350 \fBboot\fR \fB\fR\fB-as\fR

1352 \fBboot\fR \fBdisk3\fR \fB-as\fR
1353 .fi
1354 .in -2
1355 .sp

1357 .LP
1358 \fBExample 2 \fRNetwork Booting with WAN Boot-Capable PROMs
1359 .sp
1360 .LP
1361 To illustrate some of the subtle repercussions of various boot command line
1362 invocations, assume that the \fBnetwork-boot-arguments\fR are set and that
1363 \fBnet\fR is devaliased as shown in the commands below.

1365 .sp
1366 .LP
1367 In the following command, device arguments in the device alias are processed by
1368 the device driver. The network boot support package processes arguments in
1369 \fBnetwork-boot-arguments\fR.

1371 .sp

new/usr/src/man/man1m/boot.1m 22

1372 .in +2
1373 .nf
1374 \fBboot net\fR
1375 .fi
1376 .in -2
1377 .sp

1379 .sp
1380 .LP
1381 The command below results in no device arguments. The network boot support
1382 package processes arguments in \fBnetwork-boot-arguments\fR.

1384 .sp
1385 .in +2
1386 .nf
1387 \fBboot net:\fR
1388 .fi
1389 .in -2
1390 .sp

1392 .sp
1393 .LP
1394 The command below results in no device arguments. \fBrarp\fR is the only
1395 network boot support package argument. \fBnetwork-boot-arguments\fR is ignored.

1397 .sp
1398 .in +2
1399 .nf
1400 \fBboot net:rarp\fR
1401 .fi
1402 .in -2
1403 .sp

1405 .sp
1406 .LP
1407 In the command below, the specified device arguments are honored. The network
1408 boot support package processes arguments in \fBnetwork-boot-arguments\fR.

1410 .sp
1411 .in +2
1412 .nf
1413 \fBboot net:speed=100,duplex=full\fR
1414 .fi
1415 .in -2
1416 .sp

1418 .LP
1419 \fBExample 3 \fRUsing \fBwanboot\fR with Older PROMs
1420 .sp
1421 .LP
1422 The command below results in the \fBwanboot\fR binary being loaded from DVD or
1423 CD, at which time \fBwanboot\fR will perform DHCP and then drop into its
1424 command interpreter to allow the user to enter keys and any other necessary
1425 configuration.

1427 .sp
1428 .in +2
1429 .nf
1430 \fBboot cdrom -F wanboot -o dhcp,prompt\fR
1431 .fi
1432 .in -2
1433 .sp

1435 .SS "x86 (32-bit)"
1436 .LP
1437 \fBExample 4 \fRTo Boot the Default Kernel In 32-bit Single-User Interactive

new/usr/src/man/man1m/boot.1m 23

1438 Mode
1439 .sp
1440 .LP
1441 To boot the default kernel in single-user interactive mode, edit the GRUB
1442 kernel command line to read:

1444 .sp
1445 .in +2
1446 .nf
1447 kernel /platform/i86pc/kernel/unix -as
1448 .fi
1449 .in -2
1450 .sp

1452 .SS "x86 (64-bit Only)"
1453 .LP
1454 \fBExample 5 \fRTo Boot the Default Kernel In 64-bit Single-User Interactive
1455 Mode
1456 .sp
1457 .LP
1458 To boot the default kernel in single-user interactive mode, edit the GRUB
1459 kernel command line to read:

1461 .sp
1462 .in +2
1463 .nf
1464 kernel /platform/i86pc/kernel/amd64/unix -as
1465 .fi
1466 .in -2
1467 .sp

1469 .LP
1470 \fBExample 6 \fRSwitching Between 32-bit and 64-bit Kernels on 64-bit x86
1471 Platform
1472 .sp
1473 .LP
1474 To be able to boot both 32-bit and 64-bit kernels, add entries for both kernels
1475 to \fB/boot/grub/menu.lst\fR, and use the \fBset-menu\fR subcommand of
1476 \fBbootadm\fR(1M) to switch. See \fBbootadm\fR(1M) for an example of the
1477 \fBbootadm set-menu\fR.

1479 .SH FILES
1480 .ne 2
1481 .na
1482 \fB\fB/platform/\fR\fIplatform-name\fR\fB/ufsboot\fR\fR
1483 .ad
1484 .sp .6
1485 .RS 4n
1486 Second-level program to boot from a disk, DVD, or CD
1487 .RE

1489 .sp
1490 .ne 2
1491 .na
1482 \fB\fB/etc/inittab\fR\fR
1483 .ad
1484 .sp .6
1485 .RS 4n
1486 Table in which the \fBinitdefault\fR state is specified
1487 .RE

1489 .sp
1490 .ne 2
1491 .na
1492 \fB\fB/sbin/init\fR\fR
1493 .ad

new/usr/src/man/man1m/boot.1m 24

1494 .sp .6
1495 .RS 4n
1496 Program that brings the system to the \fBinitdefault\fR state
1497 .RE

1499 .SS "64-bit SPARC Only"
1500 .ne 2
1501 .na
1502 \fB\fB/platform/\fR\fIplatform-name\fR\fB/kernel/sparcv9/unix\fR\fR
1503 .ad
1504 .sp .6
1505 .RS 4n
1506 Default program to boot system.
1507 .RE

1509 .SS "x86 Only"
1510 .ne 2
1511 .na
1512 \fB\fB/boot\fR\fR
1513 .ad
1514 .sp .6
1515 .RS 4n
1516 Directory containing boot-related files.
1517 .RE

1519 .sp
1520 .ne 2
1521 .na
1522 \fB\fB/rpool/boot/grub/menu.lst\fR\fR
1532 \fB\fB/boot/grub/menu.lst\fR\fR
1523 .ad
1524 .sp .6
1525 .RS 4n
1526 Menu of bootable operating systems displayed by GRUB.
1527 .sp
1528 \fBNote:\fR this file is located on the root ZFS pool. While many installs
1529 often name their root zpool ’rpool’, this is not required and the
1530 /rpool in the path above should be substituted with the name of
1531 the root pool of your current system.
1532 .RE

1534 .sp
1535 .ne 2
1536 .na
1537 \fB\fB/platform/i86pc/kernel/unix\fR\fR
1538 .ad
1539 .sp .6
1540 .RS 4n
1541 32-bit kernel.
1542 .RE

1544 .SS "64-bit x86 Only"
1545 .ne 2
1546 .na
1547 \fB\fB/platform/i86pc/kernel/amd64/unix\fR\fR
1548 .ad
1549 .sp .6
1550 .RS 4n
1551 64-bit kernel.
1552 .RE

1554 .SH SEE ALSO
1555 .LP
1556 \fBkmdb\fR(1), \fBuname\fR(1), \fBbootadm\fR(1M), \fBeeprom\fR(1M),
1557 \fBinit\fR(1M), \fBinstallboot\fR(1M), \fBkernel\fR(1M), \fBmonitor\fR(1M),
1558 \fBshutdown\fR(1M), \fBsvcadm\fR(1M), \fBumountall\fR(1M), \fBzpool\fR(1M),

new/usr/src/man/man1m/boot.1m 25

1559 \fBuadmin\fR(2), \fBbootparams\fR(4), \fBinittab\fR(4), \fBvfstab\fR(4),
1560 \fBwanboot.conf\fR(4), \fBfilesystem\fR(5)
1561 .sp
1562 .LP
1563 RFC 903, \fIA Reverse Address Resolution Protocol\fR,
1564 \fBhttp://www.ietf.org/rfc/rfc903.txt\fR
1565 .sp
1566 .LP
1567 RFC 2131, \fIDynamic Host Configuration Protocol\fR,
1568 \fBhttp://www.ietf.org/rfc/rfc2131.txt\fR
1569 .sp
1570 .LP
1571 RFC 2132, \fIDHCP Options and BOOTP Vendor Extensions\fR,
1572 \fBhttp://www.ietf.org/rfc/rfc2132.txt\fR
1573 .sp
1574 .LP
1575 RFC 2396, \fIUniform Resource Identifiers (URI): Generic Syntax\fR,
1576 \fBhttp://www.ietf.org/rfc/rfc2396.txt\fR
1577 .sp
1578 .LP
1579 \fI\fR
1580 .sp
1581 .LP
1582 \fISun Hardware Platform Guide\fR
1583 .sp
1584 .LP
1585 \fIOpenBoot Command Reference Manual\fR
1586 .SH WARNINGS
1587 .LP
1588 The \fBboot\fR utility is unable to determine which files can be used as
1589 bootable programs. If the booting of a file that is not bootable is requested,
1590 the \fBboot\fR utility loads it and branches to it. What happens after that is
1591 unpredictable.
1592 .SH NOTES
1593 .LP
1594 \fIplatform-name\fR can be found using the \fB-i\fR option of \fBuname\fR(1).
1595 \fIhardware-class-name\fR can be found using the \fB-m\fR option of
1596 \fBuname\fR(1).
1597 .sp
1598 .LP
1599 The current release of the Solaris operating system does not support machines
1600 running an UltraSPARC-I CPU.

