1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
  14  * Copyright 2016 Joyent, Inc.
  15  */
  16 
  17 /*
  18  * i40e - Intel 10/40 Gb Ethernet driver
  19  *
  20  * The i40e driver is the main software device driver for the Intel 40 Gb family
  21  * of devices. Note that these devices come in many flavors with both 40 GbE
  22  * ports and 10 GbE ports. This device is the successor to the 82599 family of
  23  * devices (ixgbe).
  24  *
  25  * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE
  26  * devices defined in the XL710 controller (previously known as Fortville) are a
  27  * rather different beast and have a small switch embedded inside of them. In
  28  * addition, the way that most of the programming is done has been overhauled.
  29  * As opposed to just using PCIe memory mapped registers, it also has an
  30  * administrative queue which is used to communicate with firmware running on
  31  * the chip.
  32  *
  33  * Each physical function in the hardware shows up as a device that this driver
  34  * will bind to. The hardware splits many resources evenly across all of the
  35  * physical functions present on the device, while other resources are instead
  36  * shared across the entire card and its up to the device driver to
  37  * intelligently partition them.
  38  *
  39  * ------------
  40  * Organization
  41  * ------------
  42  *
  43  * This driver is made up of several files which have their own theory
  44  * statements spread across them. We'll touch on the high level purpose of each
  45  * file here, and then we'll get into more discussion on how the device is
  46  * generally modelled with respect to the interfaces in illumos.
  47  *
  48  * i40e_gld.c: This file contains all of the bindings to MAC and the networking
  49  *             stack.
  50  *
  51  * i40e_intr.c: This file contains all of the interrupt service routines and
  52  *              contains logic to enable and disable interrupts on the hardware.
  53  *              It also contains the logic to map hardware resources such as the
  54  *              rings to and from interrupts and controls their ability to fire.
  55  *
  56  *              There is a big theory statement on interrupts present there.
  57  *
  58  * i40e_main.c: The file that you're currently in. It interfaces with the
  59  *              traditional OS DDI interfaces and is in charge of configuring
  60  *              the device.
  61  *
  62  * i40e_osdep.[ch]: These files contain interfaces and definitions needed to
  63  *                  work with Intel's common code for the device.
  64  *
  65  * i40e_stats.c: This file contains the general work and logic around our
  66  *               kstats. A theory statement on their organization and use of the
  67  *               hardware exists there.
  68  *
  69  * i40e_sw.h: This header file contains all of the primary structure definitions
  70  *            and constants that are used across the entire driver.
  71  *
  72  * i40e_transceiver.c: This file contains all of the logic for sending and
  73  *                     receiving data. It contains all of the ring and DMA
  74  *                     allocation logic, as well as, the actual interfaces to
  75  *                     send and receive data.
  76  *
  77  *                     A big theory statement on ring management, descriptors,
  78  *                     and how it ties into the OS is present there.
  79  *
  80  * --------------
  81  * General Design
  82  * --------------
  83  *
  84  * Before we go too far into the general way we've laid out data structures and
  85  * the like, it's worth taking some time to explain how the hardware is
  86  * organized. This organization informs a lot of how we do things at this time
  87  * in the driver.
  88  *
  89  * Each physical device consists of a number of one or more ports, which are
  90  * considered physical functions in the PCI sense and thus each get enumerated
  91  * by the system, resulting in an instance being created and attached to. While
  92  * there are many resources that are unique to each physical function eg.
  93  * instance of the device, there are many that are shared across all of them.
  94  * Several resources have an amount reserved for each Virtual Station Interface
  95  * (VSI) and then a static pool of resources, available for all functions on the
  96  * card.
  97  *
  98  * The most important resource in hardware are its transmit and receive queue
  99  * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3
 100  * parlance. There are a set number of these on each device; however, they are
 101  * statically partitioned among all of the different physical functions.
 102  *
 103  * 'Fortville' (the code name for this device family) is basically a switch. To
 104  * map MAC addresses and other things to queues, we end up having to create
 105  * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct
 106  * traffic to a queue. A VSI owns a collection of queues and has a series of
 107  * forwarding rules that point to it. One way to think of this is to treat it
 108  * like MAC does a VNIC. When MAC refers to a group, a collection of rings and
 109  * classification resources, that is a VSI in i40e.
 110  *
 111  * The sets of VSIs is shared across the entire device, though there may be some
 112  * amount that are reserved to each PF. Because the GLDv3 does not let us change
 113  * the number of groups dynamically, we instead statically divide this amount
 114  * evenly between all the functions that exist. In addition, we have the same
 115  * problem with the mac address forwarding rules. There are a static number that
 116  * exist shared across all the functions.
 117  *
 118  * To handle both of these resources, what we end up doing is going through and
 119  * determining which functions belong to the same device. Nominally one might do
 120  * this by having a nexus driver; however, a prime requirement for a nexus
 121  * driver is identifying the various children and activating them. While it is
 122  * possible to get this information from NVRAM, we would end up duplicating a
 123  * lot of the PCI enumeration logic. Really, at the end of the day, the device
 124  * doesn't give us the traditional identification properties we want from a
 125  * nexus driver.
 126  *
 127  * Instead, we rely on some properties that are guaranteed to be unique. While
 128  * it might be tempting to leverage the PBA or serial number of the device from
 129  * NVRAM, there is nothing that says that two devices can't be mis-programmed to
 130  * have the same values in NVRAM. Instead, we uniquely identify a group of
 131  * functions based on their parent in the /devices tree, their PCI bus and PCI
 132  * function identifiers. Using either on their own may not be sufficient.
 133  *
 134  * For each unique PCI device that we encounter, we'll create a i40e_device_t.
 135  * From there, because we don't have a good way to tell the GLDv3 about sharing
 136  * resources between everything, we'll end up just dividing the resources
 137  * evenly between all of the functions. Longer term, if we don't have to declare
 138  * to the GLDv3 that these resources are shared, then we'll maintain a pool and
 139  * hae each PF allocate from the pool in the device, thus if only two of four
 140  * ports are being used, for example, then all of the resources can still be
 141  * used.
 142  *
 143  * -------------------------------------------
 144  * Transmit and Receive Queue Pair Allocations
 145  * -------------------------------------------
 146  *
 147  * NVRAM ends up assigning each PF its own share of the transmit and receive LAN
 148  * queue pairs, we have no way of modifying it, only observing it. From there,
 149  * it's up to us to map these queues to VSIs and VFs. Since we don't support any
 150  * VFs at this time, we only focus on assignments to VSIs.
 151  *
 152  * At the moment, we used a static mapping of transmit/receive queue pairs to a
 153  * given VSI (eg. rings to a group). Though in the fullness of time, we want to
 154  * make this something which is fully dynamic and take advantage of documented,
 155  * but not yet available functionality for adding filters based on VXLAN and
 156  * other encapsulation technologies.
 157  *
 158  * -------------------------------------
 159  * Broadcast, Multicast, and Promiscuous
 160  * -------------------------------------
 161  *
 162  * As part of the GLDv3, we need to make sure that we can handle receiving
 163  * broadcast and multicast traffic. As well as enabling promiscuous mode when
 164  * requested. GLDv3 requires that all broadcast and multicast traffic be
 165  * retrieved by the default group, eg. the first one. This is the same thing as
 166  * the default VSI.
 167  *
 168  * To receieve broadcast traffic, we enable it through the admin queue, rather
 169  * than use one of our filters for it. For multicast traffic, we reserve a
 170  * certain number of the hash filters and assign them to a given PF. When we
 171  * exceed those, we then switch to using promicuous mode for multicast traffic.
 172  *
 173  * More specifically, once we exceed the number of filters (indicated because
 174  * the i40e_t`i40e_resources.ifr_nmcastfilt ==
 175  * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle
 176  * promiscuous mode. If promiscuous mode is toggled then we keep track of the
 177  * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count.
 178  * That will stay enabled until that count reaches zero indicating that we have
 179  * only added multicast addresses that we have a corresponding entry for.
 180  *
 181  * Because MAC itself wants to toggle promiscuous mode, which includes both
 182  * unicast and multicast traffic, we go through and keep track of that
 183  * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on
 184  * member.
 185  *
 186  * --------------
 187  * VSI Management
 188  * --------------
 189  *
 190  * At this time, we currently only support a single MAC group, and thus a single
 191  * VSI. This VSI is considered the default VSI and should be the only one that
 192  * exists after a reset. Currently it is stored as the member
 193  * i40e_t`i40e_vsi_id. While this works for the moment and for an initial
 194  * driver, it's not sufficient for the longer-term path of the driver. Instead,
 195  * we'll want to actually have a unique i40e_vsi_t structure which is used
 196  * everywhere. Note that this means that every place that uses the
 197  * i40e_t`i40e_vsi_id will need to be refactored.
 198  *
 199  * ----------------
 200  * Structure Layout
 201  * ----------------
 202  *
 203  * The following images relates the core data structures together. The primary
 204  * structure in the system is the i40e_t. It itself contains multiple rings,
 205  * i40e_trqpair_t's which contain the various transmit and receive data. The
 206  * receive data is stored outside of the i40e_trqpair_t and instead in the
 207  * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps
 208  * track of per-physical device state. Finally, for every active descriptor,
 209  * there is a corresponding control block, which is where the
 210  * i40e_rx_control_block_t and the i40e_tx_control_block_t come from.
 211  *
 212  *   +-----------------------+       +-----------------------+
 213  *   | Global i40e_t list    |       | Global Device list    |
 214  *   |                       |    +--|                       |
 215  *   | i40e_glist            |    |  | i40e_dlist            |
 216  *   +-----------------------+    |  +-----------------------+
 217  *       |                        v
 218  *       |      +------------------------+      +-----------------------+
 219  *       |      | Device-wide Structure  |----->| Device-wide Structure |--> ...
 220  *       |      | i40e_device_t          |      | i40e_device_t         |
 221  *       |      |                        |      +-----------------------+
 222  *       |      | dev_info_t *     ------+--> Parent in devices tree.
 223  *       |      | uint_t           ------+--> PCI bus number
 224  *       |      | uint_t           ------+--> PCI device number
 225  *       |      | uint_t           ------+--> Number of functions
 226  *       |      | i40e_switch_rsrcs_t ---+--> Captured total switch resources
 227  *       |      | list_t           ------+-------------+
 228  *       |      +------------------------+             |
 229  *       |                           ^                 |
 230  *       |                           +--------+        |
 231  *       |                                    |        v
 232  *       |  +---------------------------+     |   +-------------------+
 233  *       +->| GLDv3 Device, per PF      |-----|-->| GLDv3 Device (PF) |--> ...
 234  *          | i40e_t                    |     |   | i40e_t            |
 235  *          | **Primary Structure**     |     |   +-------------------+
 236  *          |                           |     |
 237  *          | i40e_device_t *         --+-----+
 238  *          | i40e_state_t            --+---> Device State
 239  *          | i40e_hw_t               --+---> Intel common code structure
 240  *          | mac_handle_t            --+---> GLDv3 handle to MAC
 241  *          | ddi_periodic_t          --+---> Link activity timer
 242  *          | int (vsi_id)            --+---> VSI ID, main identifier
 243  *          | i40e_func_rsrc_t        --+---> Available hardware resources
 244  *          | i40e_switch_rsrc_t *    --+---> Switch resource snapshot
 245  *          | i40e_sdu                --+---> Current MTU
 246  *          | i40e_frame_max          --+---> Current HW frame size
 247  *          | i40e_uaddr_t *          --+---> Array of assigned unicast MACs
 248  *          | i40e_maddr_t *          --+---> Array of assigned multicast MACs
 249  *          | i40e_mcast_promisccount --+---> Active multicast state
 250  *          | i40e_promisc_on         --+---> Current promiscuous mode state
 251  *          | int                     --+---> Number of transmit/receive pairs
 252  *          | kstat_t *               --+---> PF kstats
 253  *          | kstat_t *               --+---> VSI kstats
 254  *          | i40e_pf_stats_t         --+---> PF kstat backing data
 255  *          | i40e_vsi_stats_t        --+---> VSI kstat backing data
 256  *          | i40e_trqpair_t *        --+---------+
 257  *          +---------------------------+         |
 258  *                                                |
 259  *                                                v
 260  *  +-------------------------------+       +-----------------------------+
 261  *  | Transmit/Receive Queue Pair   |-------| Transmit/Receive Queue Pair |->...
 262  *  | i40e_trqpair_t                |       | i40e_trqpair_t              |
 263  *  + Ring Data Structure           |       +-----------------------------+
 264  *  |                               |
 265  *  | mac_ring_handle_t             +--> MAC RX ring handle
 266  *  | mac_ring_handle_t             +--> MAC TX ring handle
 267  *  | i40e_rxq_stat_t             --+--> RX Queue stats
 268  *  | i40e_txq_stat_t             --+--> TX Queue stats
 269  *  | uint32_t (tx ring size)       +--> TX Ring Size
 270  *  | uint32_t (tx free list size)  +--> TX Free List Size
 271  *  | i40e_dma_buffer_t     --------+--> TX Descriptor ring DMA
 272  *  | i40e_tx_desc_t *      --------+--> TX descriptor ring
 273  *  | volatile unt32_t *            +--> TX Write back head
 274  *  | uint32_t               -------+--> TX ring head
 275  *  | uint32_t               -------+--> TX ring tail
 276  *  | uint32_t               -------+--> Num TX desc free
 277  *  | i40e_tx_control_block_t *   --+--> TX control block array  ---+
 278  *  | i40e_tx_control_block_t **  --+--> TCB work list          ----+
 279  *  | i40e_tx_control_block_t **  --+--> TCB free list           ---+
 280  *  | uint32_t               -------+--> Free TCB count             |
 281  *  | i40e_rx_data_t *       -------+--+                            v
 282  *  +-------------------------------+  |          +---------------------------+
 283  *                                     |          | Per-TX Frame Metadata     |
 284  *                                     |          | i40e_tx_control_block_t   |
 285  *                +--------------------+          |                           |
 286  *                |           mblk to transmit <--+---      mblk_t *          |
 287  *                |           type of transmit <--+---      i40e_tx_type_t    |
 288  *                |              TX DMA handle <--+---      ddi_dma_handle_t  |
 289  *                v              TX DMA buffer <--+---      i40e_dma_buffer_t |
 290  *    +------------------------------+            +---------------------------+
 291  *    | Core Receive Data            |
 292  *    | i40e_rx_data_t               |
 293  *    |                              |
 294  *    | i40e_dma_buffer_t          --+--> RX descriptor DMA Data
 295  *    | i40e_rx_desc_t             --+--> RX descriptor ring
 296  *    | uint32_t                   --+--> Next free desc.
 297  *    | i40e_rx_control_block_t *  --+--> RX Control Block Array  ---+
 298  *    | i40e_rx_control_block_t ** --+--> RCB work list           ---+
 299  *    | i40e_rx_control_block_t ** --+--> RCB free list           ---+
 300  *    +------------------------------+                               |
 301  *                ^                                                  |
 302  *                |     +---------------------------+                |
 303  *                |     | Per-RX Frame Metadata     |<---------------+
 304  *                |     | i40e_rx_control_block_t   |
 305  *                |     |                           |
 306  *                |     | mblk_t *              ----+--> Received mblk_t data
 307  *                |     | uint32_t              ----+--> Reference count
 308  *                |     | i40e_dma_buffer_t     ----+--> Receive data DMA info
 309  *                |     | frtn_t                ----+--> mblk free function info
 310  *                +-----+-- i40e_rx_data_t *        |
 311  *                      +---------------------------+
 312  *
 313  * -------------
 314  * Lock Ordering
 315  * -------------
 316  *
 317  * In order to ensure that we don't deadlock, the following represents the
 318  * lock order being used. When grabbing locks, follow the following order. Lower
 319  * numbers are more important. Thus, the i40e_glock which is number 0, must be
 320  * taken before any other locks in the driver. On the other hand, the
 321  * i40e_t`i40e_stat_lock, has the highest number because it's the least
 322  * important lock. Note, that just because one lock is higher than another does
 323  * not mean that all intermediary locks are required.
 324  *
 325  * 0) i40e_glock
 326  * 1) i40e_t`i40e_general_lock
 327  *
 328  * 2) i40e_trqpair_t`itrq_rx_lock
 329  * 3) i40e_trqpair_t`itrq_tx_lock
 330  * 4) i40e_t`i40e_rx_pending_lock
 331  * 5) i40e_trqpair_t`itrq_tcb_lock
 332  *
 333  * 6) i40e_t`i40e_stat_lock
 334  *
 335  * Rules and expectations:
 336  *
 337  * 1) A thread holding locks belong to one PF should not hold locks belonging to
 338  * a second. If for some reason this becomes necessary, locks should be grabbed
 339  * based on the list order in the i40e_device_t, which implies that the
 340  * i40e_glock is held.
 341  *
 342  * 2) When grabbing locks between multiple transmit and receive queues, the
 343  * locks for the lowest number transmit/receive queue should be grabbed first.
 344  *
 345  * 3) When grabbing both the transmit and receive lock for a given queue, always
 346  * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock.
 347  *
 348  * 4) The following pairs of locks are not expected to be held at the same time:
 349  *
 350  * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock
 351  *
 352  * -----------
 353  * Future Work
 354  * -----------
 355  *
 356  * At the moment the i40e_t driver is rather bare bones, allowing us to start
 357  * getting data flowing and folks using it while we develop additional features.
 358  * While bugs have been filed to cover this future work, the following gives an
 359  * overview of expected work:
 360  *
 361  *  o TSO support
 362  *  o RSS / multiple ring support
 363  *  o Multiple group support
 364  *  o DMA binding and breaking up the locking in ring recycling.
 365  *  o Enhanced detection of device errors
 366  *  o Participation in IRM
 367  *  o FMA device reset
 368  *  o Stall detection, temperature error detection, etc.
 369  *  o More dynamic resource pools
 370  */
 371 
 372 #include "i40e_sw.h"
 373 
 374 static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.0";
 375 
 376 /*
 377  * The i40e_glock primarily protects the lists below and the i40e_device_t
 378  * structures.
 379  */
 380 static kmutex_t i40e_glock;
 381 static list_t i40e_glist;
 382 static list_t i40e_dlist;
 383 
 384 /*
 385  * Access attributes for register mapping.
 386  */
 387 static ddi_device_acc_attr_t i40e_regs_acc_attr = {
 388         DDI_DEVICE_ATTR_V1,
 389         DDI_STRUCTURE_LE_ACC,
 390         DDI_STRICTORDER_ACC,
 391         DDI_FLAGERR_ACC
 392 };
 393 
 394 /*
 395  * Logging function for this driver.
 396  */
 397 static void
 398 i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt,
 399     va_list ap)
 400 {
 401         char buf[1024];
 402 
 403         (void) vsnprintf(buf, sizeof (buf), fmt, ap);
 404 
 405         if (i40e == NULL) {
 406                 cmn_err(level, (console) ? "%s: %s" : "!%s: %s",
 407                     I40E_MODULE_NAME, buf);
 408         } else {
 409                 dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s",
 410                     buf);
 411         }
 412 }
 413 
 414 /*
 415  * Because there's the stupid trailing-comma problem with the C preprocessor
 416  * and variable arguments, I need to instantiate these.  Pardon the redundant
 417  * code.
 418  */
 419 /*PRINTFLIKE2*/
 420 void
 421 i40e_error(i40e_t *i40e, const char *fmt, ...)
 422 {
 423         va_list ap;
 424 
 425         va_start(ap, fmt);
 426         i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap);
 427         va_end(ap);
 428 }
 429 
 430 /*PRINTFLIKE2*/
 431 void
 432 i40e_log(i40e_t *i40e, const char *fmt, ...)
 433 {
 434         va_list ap;
 435 
 436         va_start(ap, fmt);
 437         i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap);
 438         va_end(ap);
 439 }
 440 
 441 /*PRINTFLIKE2*/
 442 void
 443 i40e_notice(i40e_t *i40e, const char *fmt, ...)
 444 {
 445         va_list ap;
 446 
 447         va_start(ap, fmt);
 448         i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap);
 449         va_end(ap);
 450 }
 451 
 452 static void
 453 i40e_device_rele(i40e_t *i40e)
 454 {
 455         i40e_device_t *idp = i40e->i40e_device;
 456 
 457         if (idp == NULL)
 458                 return;
 459 
 460         mutex_enter(&i40e_glock);
 461         VERIFY(idp->id_nreg > 0);
 462         list_remove(&idp->id_i40e_list, i40e);
 463         idp->id_nreg--;
 464         if (idp->id_nreg == 0) {
 465                 list_remove(&i40e_dlist, idp);
 466                 list_destroy(&idp->id_i40e_list);
 467                 kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) *
 468                     idp->id_rsrcs_alloc);
 469                 kmem_free(idp, sizeof (i40e_device_t));
 470         }
 471         i40e->i40e_device = NULL;
 472         mutex_exit(&i40e_glock);
 473 }
 474 
 475 static i40e_device_t *
 476 i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device)
 477 {
 478         i40e_device_t *idp;
 479         mutex_enter(&i40e_glock);
 480         for (idp = list_head(&i40e_dlist); idp != NULL;
 481             idp = list_next(&i40e_dlist, idp)) {
 482                 if (idp->id_parent == parent && idp->id_pci_bus == bus &&
 483                     idp->id_pci_device == device) {
 484                         break;
 485                 }
 486         }
 487 
 488         if (idp != NULL) {
 489                 VERIFY(idp->id_nreg < idp->id_nfuncs);
 490                 idp->id_nreg++;
 491         } else {
 492                 i40e_hw_t *hw = &i40e->i40e_hw_space;
 493                 ASSERT(hw->num_ports > 0);
 494                 ASSERT(hw->num_partitions > 0);
 495 
 496                 /*
 497                  * The Intel common code doesn't exactly keep the number of PCI
 498                  * functions. But it calculates it during discovery of
 499                  * partitions and ports. So what we do is undo the calculation
 500                  * that it does originally, as functions are evenly spread
 501                  * across ports in the rare case of partitions.
 502                  */
 503                 idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP);
 504                 idp->id_parent = parent;
 505                 idp->id_pci_bus = bus;
 506                 idp->id_pci_device = device;
 507                 idp->id_nfuncs = hw->num_ports * hw->num_partitions;
 508                 idp->id_nreg = 1;
 509                 idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc;
 510                 idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual;
 511                 idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) *
 512                     idp->id_rsrcs_alloc, KM_SLEEP);
 513                 bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs,
 514                     sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc);
 515                 list_create(&idp->id_i40e_list, sizeof (i40e_t),
 516                     offsetof(i40e_t, i40e_dlink));
 517 
 518                 list_insert_tail(&i40e_dlist, idp);
 519         }
 520 
 521         list_insert_tail(&idp->id_i40e_list, i40e);
 522         mutex_exit(&i40e_glock);
 523 
 524         return (idp);
 525 }
 526 
 527 static void
 528 i40e_link_state_set(i40e_t *i40e, link_state_t state)
 529 {
 530         if (i40e->i40e_link_state == state)
 531                 return;
 532 
 533         i40e->i40e_link_state = state;
 534         mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state);
 535 }
 536 
 537 /*
 538  * This is a basic link check routine. Mostly we're using this just to see
 539  * if we can get any accurate information about the state of the link being
 540  * up or down, as well as updating the link state, speed, etc. information.
 541  */
 542 void
 543 i40e_link_check(i40e_t *i40e)
 544 {
 545         i40e_hw_t *hw = &i40e->i40e_hw_space;
 546         boolean_t ls;
 547         int ret;
 548 
 549         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
 550 
 551         hw->phy.get_link_info = B_TRUE;
 552         if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) {
 553                 i40e->i40e_s_link_status_errs++;
 554                 i40e->i40e_s_link_status_lasterr = ret;
 555                 return;
 556         }
 557 
 558         /*
 559          * Firmware abstracts all of the mac and phy information for us, so we
 560          * can use i40e_get_link_status to determine the current state.
 561          */
 562         if (ls == B_TRUE) {
 563                 enum i40e_aq_link_speed speed;
 564 
 565                 speed = i40e_get_link_speed(hw);
 566 
 567                 /*
 568                  * Translate from an i40e value to a value in Mbits/s.
 569                  */
 570                 switch (speed) {
 571                 case I40E_LINK_SPEED_100MB:
 572                         i40e->i40e_link_speed = 100;
 573                         break;
 574                 case I40E_LINK_SPEED_1GB:
 575                         i40e->i40e_link_speed = 1000;
 576                         break;
 577                 case I40E_LINK_SPEED_10GB:
 578                         i40e->i40e_link_speed = 10000;
 579                         break;
 580                 case I40E_LINK_SPEED_20GB:
 581                         i40e->i40e_link_speed = 20000;
 582                         break;
 583                 case I40E_LINK_SPEED_40GB:
 584                         i40e->i40e_link_speed = 40000;
 585                         break;
 586                 default:
 587                         i40e->i40e_link_speed = 0;
 588                         break;
 589                 }
 590 
 591                 /*
 592                  * At this time, hardware does not support half-duplex
 593                  * operation, hence why we don't ask the hardware about our
 594                  * current speed.
 595                  */
 596                 i40e->i40e_link_duplex = LINK_DUPLEX_FULL;
 597                 i40e_link_state_set(i40e, LINK_STATE_UP);
 598         } else {
 599                 i40e->i40e_link_speed = 0;
 600                 i40e->i40e_link_duplex = 0;
 601                 i40e_link_state_set(i40e, LINK_STATE_DOWN);
 602         }
 603 }
 604 
 605 static void
 606 i40e_rem_intrs(i40e_t *i40e)
 607 {
 608         int i, rc;
 609 
 610         for (i = 0; i < i40e->i40e_intr_count; i++) {
 611                 rc = ddi_intr_free(i40e->i40e_intr_handles[i]);
 612                 if (rc != DDI_SUCCESS) {
 613                         i40e_log(i40e, "failed to free interrupt %d: %d",
 614                             i, rc);
 615                 }
 616         }
 617 
 618         kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size);
 619         i40e->i40e_intr_handles = NULL;
 620 }
 621 
 622 static void
 623 i40e_rem_intr_handlers(i40e_t *i40e)
 624 {
 625         int i, rc;
 626 
 627         for (i = 0; i < i40e->i40e_intr_count; i++) {
 628                 rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]);
 629                 if (rc != DDI_SUCCESS) {
 630                         i40e_log(i40e, "failed to remove interrupt %d: %d",
 631                             i, rc);
 632                 }
 633         }
 634 }
 635 
 636 /*
 637  * illumos Fault Management Architecture (FMA) support.
 638  */
 639 
 640 int
 641 i40e_check_acc_handle(ddi_acc_handle_t handle)
 642 {
 643         ddi_fm_error_t de;
 644 
 645         ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
 646         ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
 647         return (de.fme_status);
 648 }
 649 
 650 int
 651 i40e_check_dma_handle(ddi_dma_handle_t handle)
 652 {
 653         ddi_fm_error_t de;
 654 
 655         ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
 656         return (de.fme_status);
 657 }
 658 
 659 /*
 660  * Fault service error handling callback function.
 661  */
 662 /* ARGSUSED */
 663 static int
 664 i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
 665 {
 666         pci_ereport_post(dip, err, NULL);
 667         return (err->fme_status);
 668 }
 669 
 670 static void
 671 i40e_fm_init(i40e_t *i40e)
 672 {
 673         ddi_iblock_cookie_t iblk;
 674 
 675         i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY,
 676             i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable",
 677             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
 678             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
 679 
 680         if (i40e->i40e_fm_capabilities < 0) {
 681                 i40e->i40e_fm_capabilities = 0;
 682         } else if (i40e->i40e_fm_capabilities > 0xf) {
 683                 i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE |
 684                     DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE |
 685                     DDI_FM_ERRCB_CAPABLE;
 686         }
 687 
 688         /*
 689          * Only register with IO Fault Services if we have some capability
 690          */
 691         if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
 692                 i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
 693         } else {
 694                 i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
 695         }
 696 
 697         if (i40e->i40e_fm_capabilities) {
 698                 ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk);
 699 
 700                 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
 701                     DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
 702                         pci_ereport_setup(i40e->i40e_dip);
 703                 }
 704 
 705                 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
 706                         ddi_fm_handler_register(i40e->i40e_dip,
 707                             i40e_fm_error_cb, (void*)i40e);
 708                 }
 709         }
 710 
 711         if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
 712                 i40e_init_dma_attrs(i40e, B_TRUE);
 713         } else {
 714                 i40e_init_dma_attrs(i40e, B_FALSE);
 715         }
 716 }
 717 
 718 static void
 719 i40e_fm_fini(i40e_t *i40e)
 720 {
 721         if (i40e->i40e_fm_capabilities) {
 722 
 723                 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
 724                     DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
 725                         pci_ereport_teardown(i40e->i40e_dip);
 726 
 727                 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
 728                         ddi_fm_handler_unregister(i40e->i40e_dip);
 729 
 730                 ddi_fm_fini(i40e->i40e_dip);
 731         }
 732 }
 733 
 734 void
 735 i40e_fm_ereport(i40e_t *i40e, char *detail)
 736 {
 737         uint64_t ena;
 738         char buf[FM_MAX_CLASS];
 739 
 740         (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
 741         ena = fm_ena_generate(0, FM_ENA_FMT1);
 742         if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) {
 743                 ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP,
 744                     FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
 745         }
 746 }
 747 
 748 /*
 749  * Here we're trying to get the ID of the default VSI. In general, when we come
 750  * through and look at this shortly after attach, we expect there to only be a
 751  * single element present, which is the default VSI. Importantly, each PF seems
 752  * to not see any other devices, in part because of the simple switch mode that
 753  * we're using. If for some reason, we see more artifact, we'll need to revisit
 754  * what we're doing here.
 755  */
 756 static int
 757 i40e_get_vsi_id(i40e_t *i40e)
 758 {
 759         i40e_hw_t *hw = &i40e->i40e_hw_space;
 760         struct i40e_aqc_get_switch_config_resp *sw_config;
 761         uint8_t aq_buf[I40E_AQ_LARGE_BUF];
 762         uint16_t next = 0;
 763         int rc;
 764 
 765         /* LINTED: E_BAD_PTR_CAST_ALIGN */
 766         sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
 767         rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
 768             NULL);
 769         if (rc != I40E_SUCCESS) {
 770                 i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
 771                     rc, hw->aq.asq_last_status);
 772                 return (-1);
 773         }
 774 
 775         if (LE_16(sw_config->header.num_reported) != 1) {
 776                 i40e_error(i40e, "encountered multiple (%d) switching units "
 777                     "during attach, not proceeding",
 778                     LE_16(sw_config->header.num_reported));
 779                 return (-1);
 780         }
 781 
 782         return (sw_config->element[0].seid);
 783 }
 784 
 785 /*
 786  * We need to fill the i40e_hw_t structure with the capabilities of this PF. We
 787  * must also provide the memory for it; however, we don't need to keep it around
 788  * to the call to the common code. It takes it and parses it into an internal
 789  * structure.
 790  */
 791 static boolean_t
 792 i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw)
 793 {
 794         struct i40e_aqc_list_capabilities_element_resp *buf;
 795         int rc;
 796         size_t len;
 797         uint16_t needed;
 798         int nelems = I40E_HW_CAP_DEFAULT;
 799 
 800         len = nelems * sizeof (*buf);
 801 
 802         for (;;) {
 803                 ASSERT(len > 0);
 804                 buf = kmem_alloc(len, KM_SLEEP);
 805                 rc = i40e_aq_discover_capabilities(hw, buf, len,
 806                     &needed, i40e_aqc_opc_list_func_capabilities, NULL);
 807                 kmem_free(buf, len);
 808 
 809                 if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM &&
 810                     nelems == I40E_HW_CAP_DEFAULT) {
 811                         if (nelems == needed) {
 812                                 i40e_error(i40e, "Capability discovery failed "
 813                                     "due to byzantine common code");
 814                                 return (B_FALSE);
 815                         }
 816                         len = needed;
 817                         continue;
 818                 } else if (rc != I40E_SUCCESS ||
 819                     hw->aq.asq_last_status != I40E_AQ_RC_OK) {
 820                         i40e_error(i40e, "Capability discovery failed: %d", rc);
 821                         return (B_FALSE);
 822                 }
 823 
 824                 break;
 825         }
 826 
 827         return (B_TRUE);
 828 }
 829 
 830 /*
 831  * Obtain the switch's capabilities as seen by this PF and keep it around for
 832  * our later use.
 833  */
 834 static boolean_t
 835 i40e_get_switch_resources(i40e_t *i40e)
 836 {
 837         i40e_hw_t *hw = &i40e->i40e_hw_space;
 838         uint8_t cnt = 2;
 839         uint8_t act;
 840         size_t size;
 841         i40e_switch_rsrc_t *buf;
 842 
 843         for (;;) {
 844                 enum i40e_status_code ret;
 845                 size = cnt * sizeof (i40e_switch_rsrc_t);
 846                 ASSERT(size > 0);
 847                 if (size > UINT16_MAX)
 848                         return (B_FALSE);
 849                 buf = kmem_alloc(size, KM_SLEEP);
 850 
 851                 ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf,
 852                     cnt, NULL);
 853                 if (ret == I40E_ERR_ADMIN_QUEUE_ERROR &&
 854                     hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) {
 855                         kmem_free(buf, size);
 856                         cnt += I40E_SWITCH_CAP_DEFAULT;
 857                         continue;
 858                 } else if (ret != I40E_SUCCESS) {
 859                         kmem_free(buf, size);
 860                         i40e_error(i40e,
 861                             "failed to retrieve switch statistics: %d", ret);
 862                         return (B_FALSE);
 863                 }
 864 
 865                 break;
 866         }
 867 
 868         i40e->i40e_switch_rsrc_alloc = cnt;
 869         i40e->i40e_switch_rsrc_actual = act;
 870         i40e->i40e_switch_rsrcs = buf;
 871 
 872         return (B_TRUE);
 873 }
 874 
 875 static void
 876 i40e_cleanup_resources(i40e_t *i40e)
 877 {
 878         if (i40e->i40e_uaddrs != NULL) {
 879                 kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) *
 880                     i40e->i40e_resources.ifr_nmacfilt);
 881                 i40e->i40e_uaddrs = NULL;
 882         }
 883 
 884         if (i40e->i40e_maddrs != NULL) {
 885                 kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) *
 886                     i40e->i40e_resources.ifr_nmcastfilt);
 887                 i40e->i40e_maddrs = NULL;
 888         }
 889 
 890         if (i40e->i40e_switch_rsrcs != NULL) {
 891                 size_t sz = sizeof (i40e_switch_rsrc_t) *
 892                     i40e->i40e_switch_rsrc_alloc;
 893                 ASSERT(sz > 0);
 894                 kmem_free(i40e->i40e_switch_rsrcs, sz);
 895                 i40e->i40e_switch_rsrcs = NULL;
 896         }
 897 
 898         if (i40e->i40e_device != NULL)
 899                 i40e_device_rele(i40e);
 900 }
 901 
 902 static boolean_t
 903 i40e_get_available_resources(i40e_t *i40e)
 904 {
 905         dev_info_t *parent;
 906         uint16_t bus, device, func;
 907         uint_t nregs;
 908         int *regs, i;
 909         i40e_device_t *idp;
 910         i40e_hw_t *hw = &i40e->i40e_hw_space;
 911 
 912         parent = ddi_get_parent(i40e->i40e_dip);
 913 
 914         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg",
 915             &regs, &nregs) != DDI_PROP_SUCCESS) {
 916                 return (B_FALSE);
 917         }
 918 
 919         if (nregs < 1) {
 920                 ddi_prop_free(regs);
 921                 return (B_FALSE);
 922         }
 923 
 924         bus = PCI_REG_BUS_G(regs[0]);
 925         device = PCI_REG_DEV_G(regs[0]);
 926         func = PCI_REG_FUNC_G(regs[0]);
 927         ddi_prop_free(regs);
 928 
 929         i40e->i40e_hw_space.bus.func = func;
 930         i40e->i40e_hw_space.bus.device = device;
 931 
 932         if (i40e_get_switch_resources(i40e) == B_FALSE) {
 933                 return (B_FALSE);
 934         }
 935 
 936         /*
 937          * To calculate the total amount of a resource we have available, we
 938          * need to add how many our i40e_t thinks it has guaranteed, if any, and
 939          * then we need to go through and divide the number of available on the
 940          * device, which was snapshotted before anyone should have allocated
 941          * anything, and use that to derive how many are available from the
 942          * pool. Longer term, we may want to turn this into something that's
 943          * more of a pool-like resource that everything can share (though that
 944          * may require some more assistance from MAC).
 945          *
 946          * Though for transmit and receive queue pairs, we just have to ask
 947          * firmware instead.
 948          */
 949         idp = i40e_device_find(i40e, parent, bus, device);
 950         i40e->i40e_device = idp;
 951         i40e->i40e_resources.ifr_nvsis = 0;
 952         i40e->i40e_resources.ifr_nvsis_used = 0;
 953         i40e->i40e_resources.ifr_nmacfilt = 0;
 954         i40e->i40e_resources.ifr_nmacfilt_used = 0;
 955         i40e->i40e_resources.ifr_nmcastfilt = 0;
 956         i40e->i40e_resources.ifr_nmcastfilt_used = 0;
 957 
 958         for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) {
 959                 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
 960 
 961                 switch (srp->resource_type) {
 962                 case I40E_AQ_RESOURCE_TYPE_VSI:
 963                         i40e->i40e_resources.ifr_nvsis +=
 964                             LE_16(srp->guaranteed);
 965                         i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used);
 966                         break;
 967                 case I40E_AQ_RESOURCE_TYPE_MACADDR:
 968                         i40e->i40e_resources.ifr_nmacfilt +=
 969                             LE_16(srp->guaranteed);
 970                         i40e->i40e_resources.ifr_nmacfilt_used =
 971                             LE_16(srp->used);
 972                         break;
 973                 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
 974                         i40e->i40e_resources.ifr_nmcastfilt +=
 975                             LE_16(srp->guaranteed);
 976                         i40e->i40e_resources.ifr_nmcastfilt_used =
 977                             LE_16(srp->used);
 978                         break;
 979                 default:
 980                         break;
 981                 }
 982         }
 983 
 984         for (i = 0; i < idp->id_rsrcs_act; i++) {
 985                 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
 986                 switch (srp->resource_type) {
 987                 case I40E_AQ_RESOURCE_TYPE_VSI:
 988                         i40e->i40e_resources.ifr_nvsis +=
 989                             LE_16(srp->total_unalloced) / idp->id_nfuncs;
 990                         break;
 991                 case I40E_AQ_RESOURCE_TYPE_MACADDR:
 992                         i40e->i40e_resources.ifr_nmacfilt +=
 993                             LE_16(srp->total_unalloced) / idp->id_nfuncs;
 994                         break;
 995                 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
 996                         i40e->i40e_resources.ifr_nmcastfilt +=
 997                             LE_16(srp->total_unalloced) / idp->id_nfuncs;
 998                 default:
 999                         break;
1000                 }
1001         }
1002 
1003         i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp;
1004         i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp;
1005 
1006         i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) *
1007             i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP);
1008         i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) *
1009             i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP);
1010 
1011         /*
1012          * Initialize these as multicast addresses to indicate it's invalid for
1013          * sanity purposes. Think of it like 0xdeadbeef.
1014          */
1015         for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++)
1016                 i40e->i40e_uaddrs[i].iua_mac[0] = 0x01;
1017 
1018         return (B_TRUE);
1019 }
1020 
1021 static boolean_t
1022 i40e_enable_interrupts(i40e_t *i40e)
1023 {
1024         int i, rc;
1025 
1026         if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1027                 rc = ddi_intr_block_enable(i40e->i40e_intr_handles,
1028                     i40e->i40e_intr_count);
1029                 if (rc != DDI_SUCCESS) {
1030                         i40e_error(i40e, "Interrupt block-enable failed: %d",
1031                             rc);
1032                         return (B_FALSE);
1033                 }
1034         } else {
1035                 for (i = 0; i < i40e->i40e_intr_count; i++) {
1036                         rc = ddi_intr_enable(i40e->i40e_intr_handles[i]);
1037                         if (rc != DDI_SUCCESS) {
1038                                 i40e_error(i40e,
1039                                     "Failed to enable interrupt %d: %d", i, rc);
1040                                 while (--i >= 0) {
1041                                         (void) ddi_intr_disable(
1042                                             i40e->i40e_intr_handles[i]);
1043                                 }
1044                                 return (B_FALSE);
1045                         }
1046                 }
1047         }
1048 
1049         return (B_TRUE);
1050 }
1051 
1052 static boolean_t
1053 i40e_disable_interrupts(i40e_t *i40e)
1054 {
1055         int i, rc;
1056 
1057         if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1058                 rc = ddi_intr_block_disable(i40e->i40e_intr_handles,
1059                     i40e->i40e_intr_count);
1060                 if (rc != DDI_SUCCESS) {
1061                         i40e_error(i40e,
1062                             "Interrupt block-disabled failed: %d", rc);
1063                         return (B_FALSE);
1064                 }
1065         } else {
1066                 for (i = 0; i < i40e->i40e_intr_count; i++) {
1067                         rc = ddi_intr_disable(i40e->i40e_intr_handles[i]);
1068                         if (rc != DDI_SUCCESS) {
1069                                 i40e_error(i40e,
1070                                     "Failed to disable interrupt %d: %d",
1071                                     i, rc);
1072                                 return (B_FALSE);
1073                         }
1074                 }
1075         }
1076 
1077         return (B_TRUE);
1078 }
1079 
1080 /*
1081  * Free receive & transmit rings.
1082  */
1083 static void
1084 i40e_free_trqpairs(i40e_t *i40e)
1085 {
1086         int i;
1087         i40e_trqpair_t *itrq;
1088 
1089         if (i40e->i40e_trqpairs != NULL) {
1090                 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1091                         itrq = &i40e->i40e_trqpairs[i];
1092                         mutex_destroy(&itrq->itrq_rx_lock);
1093                         mutex_destroy(&itrq->itrq_tx_lock);
1094                         mutex_destroy(&itrq->itrq_tcb_lock);
1095 
1096                         /*
1097                          * Should have already been cleaned up by start/stop,
1098                          * etc.
1099                          */
1100                         ASSERT(itrq->itrq_txkstat == NULL);
1101                         ASSERT(itrq->itrq_rxkstat == NULL);
1102                 }
1103 
1104                 kmem_free(i40e->i40e_trqpairs,
1105                     sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs);
1106                 i40e->i40e_trqpairs = NULL;
1107         }
1108 
1109         cv_destroy(&i40e->i40e_rx_pending_cv);
1110         mutex_destroy(&i40e->i40e_rx_pending_lock);
1111         mutex_destroy(&i40e->i40e_general_lock);
1112 }
1113 
1114 /*
1115  * Allocate transmit and receive rings, as well as other data structures that we
1116  * need.
1117  */
1118 static boolean_t
1119 i40e_alloc_trqpairs(i40e_t *i40e)
1120 {
1121         int i;
1122         void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri);
1123 
1124         /*
1125          * Now that we have the priority for the interrupts, initialize
1126          * all relevant locks.
1127          */
1128         mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri);
1129         mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri);
1130         cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL);
1131 
1132         i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) *
1133             i40e->i40e_num_trqpairs, KM_SLEEP);
1134         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1135                 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
1136 
1137                 itrq->itrq_i40e = i40e;
1138                 mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri);
1139                 mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri);
1140                 mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri);
1141                 itrq->itrq_index = i;
1142         }
1143 
1144         return (B_TRUE);
1145 }
1146 
1147 
1148 
1149 /*
1150  * Unless a .conf file already overrode i40e_t structure values, they will
1151  * be 0, and need to be set in conjunction with the now-available HW report.
1152  *
1153  * However, at the moment, we cap all of these resources as we only support a
1154  * single receive ring and a single group.
1155  */
1156 /* ARGSUSED */
1157 static void
1158 i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw)
1159 {
1160         if (i40e->i40e_num_trqpairs == 0) {
1161                 i40e->i40e_num_trqpairs = I40E_TRQPAIR_MAX;
1162         }
1163 
1164         if (i40e->i40e_num_rx_groups == 0) {
1165                 i40e->i40e_num_rx_groups = I40E_GROUP_MAX;
1166         }
1167 }
1168 
1169 /*
1170  * Free any resources required by, or setup by, the Intel common code.
1171  */
1172 static void
1173 i40e_common_code_fini(i40e_t *i40e)
1174 {
1175         i40e_hw_t *hw = &i40e->i40e_hw_space;
1176         int rc;
1177 
1178         rc = i40e_shutdown_lan_hmc(hw);
1179         if (rc != I40E_SUCCESS)
1180                 i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc);
1181 
1182         rc = i40e_shutdown_adminq(hw);
1183         if (rc != I40E_SUCCESS)
1184                 i40e_error(i40e, "failed to shutdown admin queue: %d", rc);
1185 }
1186 
1187 /*
1188  * Initialize and call Intel common-code routines, includes some setup
1189  * the common code expects from the driver.  Also prints on failure, so
1190  * the caller doesn't have to.
1191  */
1192 static boolean_t
1193 i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw)
1194 {
1195         int rc;
1196 
1197         i40e_clear_hw(hw);
1198         rc = i40e_pf_reset(hw);
1199         if (rc != 0) {
1200                 i40e_error(i40e, "failed to reset hardware: %d", rc);
1201                 i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE);
1202                 return (B_FALSE);
1203         }
1204 
1205         rc = i40e_init_shared_code(hw);
1206         if (rc != 0) {
1207                 i40e_error(i40e, "failed to initialize i40e core: %d", rc);
1208                 return (B_FALSE);
1209         }
1210 
1211         hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE;
1212         hw->aq.num_asq_entries =  I40E_DEF_ADMINQ_SIZE;
1213         hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ;
1214         hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ;
1215 
1216         rc = i40e_init_adminq(hw);
1217         if (rc != 0) {
1218                 i40e_error(i40e, "failed to initialize firmware admin queue: "
1219                     "%d, potential firmware version mismatch", rc);
1220                 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
1221                 return (B_FALSE);
1222         }
1223 
1224         if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1225             hw->aq.api_min_ver > I40E_FW_API_VERSION_MINOR) {
1226                 i40e_notice(i40e, "The driver for the device detected a newer "
1227                     "version of the NVM image (%d.%d) than expected (%d.%d).\n"
1228                     "Please install the most recent version of the network "
1229                     "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver,
1230                     I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR);
1231         } else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
1232             hw->aq.api_min_ver < (I40E_FW_API_VERSION_MINOR - 1)) {
1233                 i40e_notice(i40e, "The driver for the device detected an older"
1234                     " version of the NVM image (%d.%d) than expected (%d.%d)."
1235                     "\nPlease update the NVM image.\n",
1236                     hw->aq.api_maj_ver, hw->aq.api_min_ver,
1237                     I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR - 1);
1238         }
1239 
1240         i40e_clear_pxe_mode(hw);
1241 
1242         /*
1243          * We need to call this so that the common code can discover
1244          * capabilities of the hardware, which it uses throughout the rest.
1245          */
1246         if (!i40e_get_hw_capabilities(i40e, hw)) {
1247                 i40e_error(i40e, "failed to obtain hardware capabilities");
1248                 return (B_FALSE);
1249         }
1250 
1251         if (i40e_get_available_resources(i40e) == B_FALSE) {
1252                 i40e_error(i40e, "failed to obtain hardware resources");
1253                 return (B_FALSE);
1254         }
1255 
1256         i40e_hw_to_instance(i40e, hw);
1257 
1258         rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
1259             hw->func_caps.num_rx_qp, 0, 0);
1260         if (rc != 0) {
1261                 i40e_error(i40e, "failed to initialize hardware memory cache: "
1262                     "%d", rc);
1263                 return (B_FALSE);
1264         }
1265 
1266         rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
1267         if (rc != 0) {
1268                 i40e_error(i40e, "failed to configure hardware memory cache: "
1269                     "%d", rc);
1270                 return (B_FALSE);
1271         }
1272 
1273         (void) i40e_aq_stop_lldp(hw, TRUE, NULL);
1274 
1275         rc = i40e_get_mac_addr(hw, hw->mac.addr);
1276         if (rc != I40E_SUCCESS) {
1277                 i40e_error(i40e, "failed to retrieve hardware mac address: %d",
1278                     rc);
1279                 return (B_FALSE);
1280         }
1281 
1282         rc = i40e_validate_mac_addr(hw->mac.addr);
1283         if (rc != 0) {
1284                 i40e_error(i40e, "failed to validate internal mac address: "
1285                     "%d", rc);
1286                 return (B_FALSE);
1287         }
1288         bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
1289         if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) !=
1290             I40E_SUCCESS) {
1291                 i40e_error(i40e, "failed to retrieve port mac address: %d",
1292                     rc);
1293                 return (B_FALSE);
1294         }
1295 
1296         /*
1297          * We need to obtain the Virtual Station ID (VSI) before we can
1298          * perform other operations on the device.
1299          */
1300         i40e->i40e_vsi_id = i40e_get_vsi_id(i40e);
1301         if (i40e->i40e_vsi_id == -1) {
1302                 i40e_error(i40e, "failed to obtain VSI ID");
1303                 return (B_FALSE);
1304         }
1305 
1306         return (B_TRUE);
1307 }
1308 
1309 static void
1310 i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e)
1311 {
1312         int rc;
1313 
1314         if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR)
1315                 (void) i40e_disable_interrupts(i40e);
1316 
1317         if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) &&
1318             i40e->i40e_periodic_id != 0) {
1319                 ddi_periodic_delete(i40e->i40e_periodic_id);
1320                 i40e->i40e_periodic_id = 0;
1321         }
1322 
1323         if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) {
1324                 rc = mac_unregister(i40e->i40e_mac_hdl);
1325                 if (rc != 0) {
1326                         i40e_error(i40e, "failed to unregister from mac: %d",
1327                             rc);
1328                 }
1329         }
1330 
1331         if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) {
1332                 i40e_stats_fini(i40e);
1333         }
1334 
1335         if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR)
1336                 i40e_rem_intr_handlers(i40e);
1337 
1338         if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS)
1339                 i40e_free_trqpairs(i40e);
1340 
1341         if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR)
1342                 i40e_rem_intrs(i40e);
1343 
1344         if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE)
1345                 i40e_common_code_fini(i40e);
1346 
1347         i40e_cleanup_resources(i40e);
1348 
1349         if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS)
1350                 (void) ddi_prop_remove_all(devinfo);
1351 
1352         if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP &&
1353             i40e->i40e_osdep_space.ios_reg_handle != NULL) {
1354                 ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle);
1355                 i40e->i40e_osdep_space.ios_reg_handle = NULL;
1356         }
1357 
1358         if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) &&
1359             i40e->i40e_osdep_space.ios_cfg_handle != NULL) {
1360                 pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle);
1361                 i40e->i40e_osdep_space.ios_cfg_handle = NULL;
1362         }
1363 
1364         if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT)
1365                 i40e_fm_fini(i40e);
1366 
1367         kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ);
1368         kmem_free(i40e, sizeof (i40e_t));
1369 
1370         ddi_set_driver_private(devinfo, NULL);
1371 }
1372 
1373 static boolean_t
1374 i40e_final_init(i40e_t *i40e)
1375 {
1376         i40e_hw_t *hw = &i40e->i40e_hw_space;
1377         struct i40e_osdep *osdep = OS_DEP(hw);
1378         uint8_t pbanum[I40E_PBANUM_STRLEN];
1379         enum i40e_status_code irc;
1380         char buf[I40E_DDI_PROP_LEN];
1381 
1382         pbanum[0] = '\0';
1383         irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum));
1384         if (irc != I40E_SUCCESS) {
1385                 i40e_log(i40e, "failed to read PBA string: %d", irc);
1386         } else {
1387                 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1388                     "printed-board-assembly", (char *)pbanum);
1389         }
1390 
1391 #ifdef  DEBUG
1392         ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver,
1393             hw->aq.fw_min_ver) < sizeof (buf));
1394         ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf));
1395         ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver,
1396             hw->aq.api_min_ver) < sizeof (buf));
1397 #endif
1398 
1399         (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver,
1400             hw->aq.fw_min_ver);
1401         (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1402             "firmware-version", buf);
1403         (void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build);
1404         (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1405             "firmware-build", buf);
1406         (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver,
1407             hw->aq.api_min_ver);
1408         (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1409             "api-version", buf);
1410 
1411         if (!i40e_set_hw_bus_info(hw))
1412                 return (B_FALSE);
1413 
1414         if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) {
1415                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
1416                 return (B_FALSE);
1417         }
1418 
1419         return (B_TRUE);
1420 }
1421 
1422 static boolean_t
1423 i40e_identify_hardware(i40e_t *i40e)
1424 {
1425         i40e_hw_t *hw = &i40e->i40e_hw_space;
1426         struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1427 
1428         hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID);
1429         hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID);
1430         hw->revision_id = pci_config_get8(osdep->ios_cfg_handle,
1431             PCI_CONF_REVID);
1432         hw->subsystem_device_id =
1433             pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID);
1434         hw->subsystem_vendor_id =
1435             pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID);
1436 
1437         /*
1438          * Note that we set the hardware's bus information later on, in
1439          * i40e_get_available_resources(). The common code doesn't seem to
1440          * require that it be set in any ways, it seems to be mostly for
1441          * book-keeping.
1442          */
1443 
1444         /* Call common code to set the MAC type for this adapter. */
1445         if (i40e_set_mac_type(hw) != I40E_SUCCESS)
1446                 return (B_FALSE);
1447 
1448         return (B_TRUE);
1449 }
1450 
1451 static boolean_t
1452 i40e_regs_map(i40e_t *i40e)
1453 {
1454         dev_info_t *devinfo = i40e->i40e_dip;
1455         i40e_hw_t *hw = &i40e->i40e_hw_space;
1456         struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1457         off_t memsize;
1458         int ret;
1459 
1460         if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) !=
1461             DDI_SUCCESS) {
1462                 i40e_error(i40e, "Used invalid register set to map PCIe regs");
1463                 return (B_FALSE);
1464         }
1465 
1466         if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET,
1467             (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr,
1468             &osdep->ios_reg_handle)) != DDI_SUCCESS) {
1469                 i40e_error(i40e, "failed to map device registers: %d", ret);
1470                 return (B_FALSE);
1471         }
1472 
1473         osdep->ios_reg_size = memsize;
1474         return (B_TRUE);
1475 }
1476 
1477 /*
1478  * Update parameters required when a new MTU has been configured.  Calculate the
1479  * maximum frame size, as well as, size our DMA buffers which we size in
1480  * increments of 1K.
1481  */
1482 void
1483 i40e_update_mtu(i40e_t *i40e)
1484 {
1485         uint32_t rx, tx;
1486 
1487         i40e->i40e_frame_max = i40e->i40e_sdu +
1488             sizeof (struct ether_vlan_header) + ETHERFCSL;
1489 
1490         rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT;
1491         i40e->i40e_rx_buf_size = ((rx >> 10) +
1492             ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1493 
1494         tx = i40e->i40e_frame_max;
1495         i40e->i40e_tx_buf_size = ((tx >> 10) +
1496             ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1497 }
1498 
1499 static int
1500 i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def)
1501 {
1502         int val;
1503 
1504         val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS,
1505             prop, def);
1506         if (val > max)
1507                 val = max;
1508         if (val < min)
1509                 val = min;
1510         return (val);
1511 }
1512 
1513 static void
1514 i40e_init_properties(i40e_t *i40e)
1515 {
1516         i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu",
1517             I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU);
1518 
1519         i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force",
1520             I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE);
1521 
1522         i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable",
1523             B_FALSE, B_TRUE, B_TRUE);
1524 
1525         i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size",
1526             I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE,
1527             I40E_DEF_TX_RING_SIZE);
1528         if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) {
1529                 i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size,
1530                     I40E_DESC_ALIGN);
1531         }
1532 
1533         i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold",
1534             I40E_MIN_TX_BLOCK_THRESH,
1535             i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE,
1536             I40E_DEF_TX_BLOCK_THRESH);
1537 
1538         i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size",
1539             I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE,
1540             I40E_DEF_RX_RING_SIZE);
1541         if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) {
1542                 i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size,
1543                     I40E_DESC_ALIGN);
1544         }
1545 
1546         i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr",
1547             I40E_MIN_RX_LIMIT_PER_INTR, I40E_MAX_RX_LIMIT_PER_INTR,
1548             I40E_DEF_RX_LIMIT_PER_INTR);
1549 
1550         i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable",
1551             B_FALSE, B_TRUE, B_TRUE);
1552 
1553         i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable",
1554             B_FALSE, B_TRUE, B_TRUE);
1555 
1556         i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold",
1557             I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH,
1558             I40E_DEF_RX_DMA_THRESH);
1559 
1560         i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold",
1561             I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH,
1562             I40E_DEF_TX_DMA_THRESH);
1563 
1564         i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle",
1565             I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR);
1566 
1567         i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle",
1568             I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR);
1569 
1570         i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle",
1571             I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR);
1572 
1573         if (!i40e->i40e_mr_enable) {
1574                 i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1575                 i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1576         }
1577 
1578         i40e_update_mtu(i40e);
1579 }
1580 
1581 /*
1582  * There are a few constraints on interrupts that we're currently imposing, some
1583  * of which are restrictions from hardware. For a fuller treatment, see
1584  * i40e_intr.c.
1585  *
1586  * Currently, to use MSI-X we require two interrupts be available though in
1587  * theory we should participate in IRM and happily use more interrupts.
1588  *
1589  * Hardware only supports a single MSI being programmed and therefore if we
1590  * don't have MSI-X interrupts available at this time, then we ratchet down the
1591  * number of rings and groups available. Obviously, we only bother with a single
1592  * fixed interrupt.
1593  */
1594 static boolean_t
1595 i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type)
1596 {
1597         int request, count, actual, rc, min;
1598 
1599         switch (intr_type) {
1600         case DDI_INTR_TYPE_FIXED:
1601         case DDI_INTR_TYPE_MSI:
1602                 request = 1;
1603                 min = 1;
1604                 break;
1605         case DDI_INTR_TYPE_MSIX:
1606                 /*
1607                  * At the moment, we always request two MSI-X while we still
1608                  * only support a single interrupt. The upper bound on what's
1609                  * supported by a given device is defined by MSI_X_PF_N in
1610                  * GLPCI_CNF2. When we evolve, we should read it to determine
1611                  * what the real max is.
1612                  */
1613                 ASSERT(i40e->i40e_num_trqpairs == 1);
1614                 request = 2;
1615                 min = 2;
1616                 break;
1617         default:
1618                 panic("bad interrupt type passed to i40e_alloc_intr_handles: "
1619                     "%d", intr_type);
1620                 return (B_FALSE);
1621         }
1622 
1623         rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
1624         if (rc != DDI_SUCCESS || count < min) {
1625                 i40e_log(i40e, "Get interrupt number failed, "
1626                     "returned %d, count %d", rc, count);
1627                 return (B_FALSE);
1628         }
1629 
1630         rc = ddi_intr_get_navail(devinfo, intr_type, &count);
1631         if (rc != DDI_SUCCESS || count < min) {
1632                 i40e_log(i40e, "Get AVAILABLE interrupt number failed, "
1633                     "returned %d, count %d", rc, count);
1634                 return (B_FALSE);
1635         }
1636 
1637         actual = 0;
1638         i40e->i40e_intr_count = 0;
1639         i40e->i40e_intr_count_max = 0;
1640         i40e->i40e_intr_count_min = 0;
1641 
1642         i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t);
1643         ASSERT(i40e->i40e_intr_size != 0);
1644         i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP);
1645 
1646         rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0,
1647             min(request, count), &actual, DDI_INTR_ALLOC_NORMAL);
1648         if (rc != DDI_SUCCESS) {
1649                 i40e_log(i40e, "Interrupt allocation failed with %d.", rc);
1650                 goto alloc_handle_fail;
1651         }
1652 
1653         i40e->i40e_intr_count = actual;
1654         i40e->i40e_intr_count_max = request;
1655         i40e->i40e_intr_count_min = min;
1656 
1657         if (actual < min) {
1658                 i40e_log(i40e, "actual (%d) is less than minimum (%d).",
1659                     actual, min);
1660                 goto alloc_handle_fail;
1661         }
1662 
1663         /*
1664          * Record the priority and capabilities for our first vector.  Once
1665          * we have it, that's our priority until detach time.  Even if we
1666          * eventually participate in IRM, our priority shouldn't change.
1667          */
1668         rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri);
1669         if (rc != DDI_SUCCESS) {
1670                 i40e_log(i40e,
1671                     "Getting interrupt priority failed with %d.", rc);
1672                 goto alloc_handle_fail;
1673         }
1674 
1675         rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap);
1676         if (rc != DDI_SUCCESS) {
1677                 i40e_log(i40e,
1678                     "Getting interrupt capabilities failed with %d.", rc);
1679                 goto alloc_handle_fail;
1680         }
1681 
1682         i40e->i40e_intr_type = intr_type;
1683         return (B_TRUE);
1684 
1685 alloc_handle_fail:
1686 
1687         i40e_rem_intrs(i40e);
1688         return (B_FALSE);
1689 }
1690 
1691 static boolean_t
1692 i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo)
1693 {
1694         int intr_types, rc;
1695 
1696         rc = ddi_intr_get_supported_types(devinfo, &intr_types);
1697         if (rc != DDI_SUCCESS) {
1698                 i40e_error(i40e, "failed to get supported interrupt types: %d",
1699                     rc);
1700                 return (B_FALSE);
1701         }
1702 
1703         i40e->i40e_intr_type = 0;
1704 
1705         if ((intr_types & DDI_INTR_TYPE_MSIX) &&
1706             i40e->i40e_intr_force <= I40E_INTR_MSIX) {
1707                 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSIX))
1708                         return (B_TRUE);
1709         }
1710 
1711         /*
1712          * We only use multiple transmit/receive pairs when MSI-X interrupts are
1713          * available due to the fact that the device basically only supports a
1714          * single MSI interrupt.
1715          */
1716         i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1717         i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1718 
1719         if ((intr_types & DDI_INTR_TYPE_MSI) &&
1720             (i40e->i40e_intr_force <= I40E_INTR_MSI)) {
1721                 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI))
1722                         return (B_TRUE);
1723         }
1724 
1725         if (intr_types & DDI_INTR_TYPE_FIXED) {
1726                 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED))
1727                         return (B_TRUE);
1728         }
1729 
1730         return (B_FALSE);
1731 }
1732 
1733 /*
1734  * Map different interrupts to MSI-X vectors.
1735  */
1736 static boolean_t
1737 i40e_map_intrs_to_vectors(i40e_t *i40e)
1738 {
1739         if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
1740                 return (B_TRUE);
1741         }
1742 
1743         /*
1744          * At the moment, we only have one queue and one interrupt thus both are
1745          * on that one interrupt. However, longer term we need to go back to
1746          * using the ixgbe style map of queues to vectors or walk the linked
1747          * list from the device to know what to go handle. Therefore for the
1748          * moment, since we need to map our single set of rings to the one
1749          * I/O interrupt that exists for MSI-X.
1750          */
1751         ASSERT(i40e->i40e_intr_count == 2);
1752         ASSERT(i40e->i40e_num_trqpairs == 1);
1753 
1754         i40e->i40e_trqpairs[0].itrq_rx_intrvec = 1;
1755         i40e->i40e_trqpairs[0].itrq_tx_intrvec = 1;
1756 
1757         return (B_TRUE);
1758 }
1759 
1760 static boolean_t
1761 i40e_add_intr_handlers(i40e_t *i40e)
1762 {
1763         int rc, vector;
1764 
1765         switch (i40e->i40e_intr_type) {
1766         case DDI_INTR_TYPE_MSIX:
1767                 for (vector = 0; vector < i40e->i40e_intr_count; vector++) {
1768                         rc = ddi_intr_add_handler(
1769                             i40e->i40e_intr_handles[vector],
1770                             (ddi_intr_handler_t *)i40e_intr_msix, i40e,
1771                             (void *)(uintptr_t)vector);
1772                         if (rc != DDI_SUCCESS) {
1773                                 i40e_log(i40e, "Add interrupt handler (MSI-X) "
1774                                     "failed: return %d, vector %d", rc, vector);
1775                                 for (vector--; vector >= 0; vector--) {
1776                                         (void) ddi_intr_remove_handler(
1777                                             i40e->i40e_intr_handles[vector]);
1778                                 }
1779                                 return (B_FALSE);
1780                         }
1781                 }
1782                 break;
1783         case DDI_INTR_TYPE_MSI:
1784                 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1785                     (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL);
1786                 if (rc != DDI_SUCCESS) {
1787                         i40e_log(i40e, "Add interrupt handler (MSI) failed: "
1788                             "return %d", rc);
1789                         return (B_FALSE);
1790                 }
1791                 break;
1792         case DDI_INTR_TYPE_FIXED:
1793                 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1794                     (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL);
1795                 if (rc != DDI_SUCCESS) {
1796                         i40e_log(i40e, "Add interrupt handler (legacy) failed:"
1797                             " return %d", rc);
1798                         return (B_FALSE);
1799                 }
1800                 break;
1801         default:
1802                 /* Cast to pacify lint */
1803                 panic("i40e_intr_type %p contains an unknown type: %d",
1804                     (void *)i40e, i40e->i40e_intr_type);
1805         }
1806 
1807         return (B_TRUE);
1808 }
1809 
1810 /*
1811  * Perform periodic checks. Longer term, we should be thinking about additional
1812  * things here:
1813  *
1814  * o Stall Detection
1815  * o Temperature sensor detection
1816  * o Device resetting
1817  * o Statistics updating to avoid wraparound
1818  */
1819 static void
1820 i40e_timer(void *arg)
1821 {
1822         i40e_t *i40e = arg;
1823 
1824         mutex_enter(&i40e->i40e_general_lock);
1825         i40e_link_check(i40e);
1826         mutex_exit(&i40e->i40e_general_lock);
1827 }
1828 
1829 /*
1830  * Get the hardware state, and scribble away anything that needs scribbling.
1831  */
1832 static void
1833 i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw)
1834 {
1835         int rc;
1836 
1837         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
1838 
1839         (void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
1840         i40e_link_check(i40e);
1841 
1842         /*
1843          * Try and determine our PHY. Note that we may have to retry to and
1844          * delay to detect fiber correctly.
1845          */
1846         rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy,
1847             NULL);
1848         if (rc == I40E_ERR_UNKNOWN_PHY) {
1849                 i40e_msec_delay(200);
1850                 rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE,
1851                     &i40e->i40e_phy, NULL);
1852         }
1853 
1854         if (rc != I40E_SUCCESS) {
1855                 if (rc == I40E_ERR_UNKNOWN_PHY) {
1856                         i40e_error(i40e, "encountered unknown PHY type, "
1857                             "not attaching.");
1858                 } else {
1859                         i40e_error(i40e, "error getting physical capabilities: "
1860                             "%d, %d", rc, hw->aq.asq_last_status);
1861                 }
1862         }
1863 
1864         rc = i40e_update_link_info(hw);
1865         if (rc != I40E_SUCCESS) {
1866                 i40e_error(i40e, "failed to update link information: %d", rc);
1867         }
1868 
1869         /*
1870          * In general, we don't want to mask off (as in stop from being a cause)
1871          * any of the interrupts that the phy might be able to generate.
1872          */
1873         rc = i40e_aq_set_phy_int_mask(hw, 0, NULL);
1874         if (rc != I40E_SUCCESS) {
1875                 i40e_error(i40e, "failed to update phy link mask: %d", rc);
1876         }
1877 }
1878 
1879 /*
1880  * Go through and re-initialize any existing filters that we may have set up for
1881  * this device. Note that we would only expect them to exist if hardware had
1882  * already been initialized and we had just reset it. While we're not
1883  * implementing this yet, we're keeping this around for when we add reset
1884  * capabilities, so this isn't forgotten.
1885  */
1886 /* ARGSUSED */
1887 static void
1888 i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw)
1889 {
1890 }
1891 
1892 /*
1893  * Configure the hardware for the Virtual Station Interface (VSI).  Currently
1894  * we only support one, but in the future we could instantiate more than one
1895  * per attach-point.
1896  */
1897 static boolean_t
1898 i40e_config_vsi(i40e_t *i40e, i40e_hw_t *hw)
1899 {
1900         struct i40e_vsi_context context;
1901         int err;
1902 
1903         bzero(&context, sizeof (struct i40e_vsi_context));
1904         context.seid = i40e->i40e_vsi_id;
1905         context.pf_num = hw->pf_id;
1906         err = i40e_aq_get_vsi_params(hw, &context, NULL);
1907         if (err != I40E_SUCCESS) {
1908                 i40e_error(i40e, "get VSI params failed with %d", err);
1909                 return (B_FALSE);
1910         }
1911 
1912         /*
1913          * Set the queue and traffic class bits.  Keep it simple for now.
1914          */
1915         context.info.valid_sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1916         context.info.mapping_flags = I40E_AQ_VSI_QUE_MAP_CONTIG;
1917         context.info.queue_mapping[0] = I40E_ASSIGN_ALL_QUEUES;
1918         context.info.tc_mapping[0] = I40E_TRAFFIC_CLASS_NO_QUEUES;
1919 
1920         context.info.valid_sections |= I40E_AQ_VSI_PROP_VLAN_VALID;
1921         context.info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
1922             I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
1923 
1924         context.flags = LE16_TO_CPU(I40E_AQ_VSI_TYPE_PF);
1925 
1926         i40e->i40e_vsi_stat_id = LE16_TO_CPU(context.info.stat_counter_idx);
1927         if (i40e_stat_vsi_init(i40e) == B_FALSE)
1928                 return (B_FALSE);
1929 
1930         err = i40e_aq_update_vsi_params(hw, &context, NULL);
1931         if (err != I40E_SUCCESS) {
1932                 i40e_error(i40e, "Update VSI params failed with %d", err);
1933                 return (B_FALSE);
1934         }
1935 
1936 
1937         return (B_TRUE);
1938 }
1939 
1940 /*
1941  * Wrapper to kick the chipset on.
1942  */
1943 static boolean_t
1944 i40e_chip_start(i40e_t *i40e)
1945 {
1946         i40e_hw_t *hw = &i40e->i40e_hw_space;
1947         struct i40e_filter_control_settings filter;
1948         int rc;
1949 
1950         if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) ||
1951             (hw->aq.fw_maj_ver < 4)) {
1952                 i40e_msec_delay(75);
1953                 if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) !=
1954                     I40E_SUCCESS) {
1955                         i40e_error(i40e, "failed to restart link: admin queue "
1956                             "error: %d", hw->aq.asq_last_status);
1957                         return (B_FALSE);
1958                 }
1959         }
1960 
1961         /* Determine hardware state */
1962         i40e_get_hw_state(i40e, hw);
1963 
1964         /* Initialize mac addresses. */
1965         i40e_init_macaddrs(i40e, hw);
1966 
1967         /*
1968          * Set up the filter control.
1969          */
1970         bzero(&filter, sizeof (filter));
1971         filter.enable_ethtype = TRUE;
1972         filter.enable_macvlan = TRUE;
1973 
1974         rc = i40e_set_filter_control(hw, &filter);
1975         if (rc != I40E_SUCCESS) {
1976                 i40e_error(i40e, "i40e_set_filter_control() returned %d", rc);
1977                 return (B_FALSE);
1978         }
1979 
1980         i40e_intr_chip_init(i40e);
1981 
1982         if (!i40e_config_vsi(i40e, hw))
1983                 return (B_FALSE);
1984 
1985         i40e_flush(hw);
1986 
1987         return (B_TRUE);
1988 }
1989 
1990 /*
1991  * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information.
1992  */
1993 static void
1994 i40e_shutdown_rx_rings(i40e_t *i40e)
1995 {
1996         int i;
1997         uint32_t reg;
1998 
1999         i40e_hw_t *hw = &i40e->i40e_hw_space;
2000 
2001         /*
2002          * Step 1. The interrupt linked list (see i40e_intr.c for more
2003          * information) should have already been cleared before calling this
2004          * function.
2005          */
2006 #ifdef  DEBUG
2007         if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2008                 for (i = 1; i < i40e->i40e_intr_count; i++) {
2009                         reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2010                         VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2011                 }
2012         } else {
2013                 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2014                 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2015         }
2016 
2017 #endif  /* DEBUG */
2018 
2019         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2020                 /*
2021                  * Step 1. Request the queue by clearing QENA_REQ. It may not be
2022                  * set due to unwinding from failures and a partially enabled
2023                  * ring set.
2024                  */
2025                 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2026                 if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK))
2027                         continue;
2028                 VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) ==
2029                     I40E_QRX_ENA_QENA_REQ_MASK);
2030                 reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
2031                 I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2032         }
2033 
2034         /*
2035          * Step 2. Wait for the disable to take, by having QENA_STAT in the FPM
2036          * be cleared. Note that we could still receive data in the queue during
2037          * this time. We don't actually wait for this now and instead defer this
2038          * to i40e_shutdown_rings_wait(), after we've interleaved disabling the
2039          * TX queues as well.
2040          */
2041 }
2042 
2043 static void
2044 i40e_shutdown_tx_rings(i40e_t *i40e)
2045 {
2046         int i;
2047         uint32_t reg;
2048 
2049         i40e_hw_t *hw = &i40e->i40e_hw_space;
2050 
2051         /*
2052          * Step 1. The interrupt linked list should already have been cleared.
2053          */
2054 #ifdef DEBUG
2055         if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2056                 for (i = 1; i < i40e->i40e_intr_count; i++) {
2057                         reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2058                         VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2059                 }
2060         } else {
2061                 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2062                 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2063 
2064         }
2065 #endif  /* DEBUG */
2066 
2067         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2068                 /*
2069                  * Step 2. Set the SET_QDIS flag for every queue.
2070                  */
2071                 i40e_pre_tx_queue_cfg(hw, i, B_FALSE);
2072         }
2073 
2074         /*
2075          * Step 3. Wait at least 400 usec (can be done once for all queues).
2076          */
2077         drv_usecwait(500);
2078 
2079         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2080                 /*
2081                  * Step 4. Clear the QENA_REQ flag which tells hardware to
2082                  * quiesce. If QENA_REQ is not already set then that means that
2083                  * we likely already tried to disable this queue.
2084                  */
2085                 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2086                 if (!(reg & I40E_QTX_ENA_QENA_REQ_MASK))
2087                         continue;
2088                 reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2089                 I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2090         }
2091 
2092         /*
2093          * Step 5. Wait for all drains to finish. This will be done by the
2094          * hardware removing the QENA_STAT flag from the queue. Rather than
2095          * waiting here, we interleave it with all the others in
2096          * i40e_shutdown_rings_wait().
2097          */
2098 }
2099 
2100 /*
2101  * Wait for all the rings to be shut down. e.g. Steps 2 and 5 from the above
2102  * functions.
2103  */
2104 static boolean_t
2105 i40e_shutdown_rings_wait(i40e_t *i40e)
2106 {
2107         int i, try;
2108         i40e_hw_t *hw = &i40e->i40e_hw_space;
2109 
2110         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2111                 uint32_t reg;
2112 
2113                 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2114                         reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2115                         if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
2116                                 break;
2117                         i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2118                 }
2119 
2120                 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) {
2121                         i40e_error(i40e, "timed out disabling rx queue %d",
2122                             i);
2123                         return (B_FALSE);
2124                 }
2125 
2126                 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2127                         reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2128                         if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
2129                                 break;
2130                         i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2131                 }
2132 
2133                 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) {
2134                         i40e_error(i40e, "timed out disabling tx queue %d",
2135                             i);
2136                         return (B_FALSE);
2137                 }
2138         }
2139 
2140         return (B_TRUE);
2141 }
2142 
2143 static boolean_t
2144 i40e_shutdown_rings(i40e_t *i40e)
2145 {
2146         i40e_shutdown_rx_rings(i40e);
2147         i40e_shutdown_tx_rings(i40e);
2148         return (i40e_shutdown_rings_wait(i40e));
2149 }
2150 
2151 static void
2152 i40e_setup_rx_descs(i40e_trqpair_t *itrq)
2153 {
2154         int i;
2155         i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2156 
2157         for (i = 0; i < rxd->rxd_ring_size; i++) {
2158                 i40e_rx_control_block_t *rcb;
2159                 i40e_rx_desc_t *rdesc;
2160 
2161                 rcb = rxd->rxd_work_list[i];
2162                 rdesc = &rxd->rxd_desc_ring[i];
2163 
2164                 rdesc->read.pkt_addr =
2165                     CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address);
2166                 rdesc->read.hdr_addr = 0;
2167         }
2168 }
2169 
2170 static boolean_t
2171 i40e_setup_rx_hmc(i40e_trqpair_t *itrq)
2172 {
2173         i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2174         i40e_t *i40e = itrq->itrq_i40e;
2175         i40e_hw_t *hw = &i40e->i40e_hw_space;
2176 
2177         struct i40e_hmc_obj_rxq rctx;
2178         int err;
2179 
2180         bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq));
2181         rctx.base = rxd->rxd_desc_area.dmab_dma_address /
2182             I40E_HMC_RX_CTX_UNIT;
2183         rctx.qlen = rxd->rxd_ring_size;
2184         VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN);
2185         VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX);
2186         rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT;
2187         rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
2188         rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT;
2189         rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE;
2190         rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE;
2191         rctx.fc_ena = I40E_HMC_RX_FC_DISABLE;
2192         rctx.l2tsel = I40E_HMC_RX_L2TAGORDER;
2193         rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2194         rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2195         rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP;
2196         rctx.rxmax = i40e->i40e_frame_max;
2197         rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2198         rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2199         rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE;
2200         rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE;
2201         rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR;
2202 
2203         /*
2204          * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2.
2205          */
2206         rctx.prefena = I40E_HMC_RX_PREFENA;
2207 
2208         err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index);
2209         if (err != I40E_SUCCESS) {
2210                 i40e_error(i40e, "failed to clear rx queue %d context: %d",
2211                     itrq->itrq_index, err);
2212                 return (B_FALSE);
2213         }
2214 
2215         err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx);
2216         if (err != I40E_SUCCESS) {
2217                 i40e_error(i40e, "failed to set rx queue %d context: %d",
2218                     itrq->itrq_index, err);
2219                 return (B_FALSE);
2220         }
2221 
2222         return (B_TRUE);
2223 }
2224 
2225 /*
2226  * Take care of setting up the descriptor rings and actually programming the
2227  * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the
2228  * rx rings.
2229  */
2230 static boolean_t
2231 i40e_setup_rx_rings(i40e_t *i40e)
2232 {
2233         int i;
2234         i40e_hw_t *hw = &i40e->i40e_hw_space;
2235 
2236         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2237                 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2238                 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2239                 uint32_t reg;
2240 
2241                 /*
2242                  * Step 1. Program all receive ring descriptors.
2243                  */
2244                 i40e_setup_rx_descs(itrq);
2245 
2246                 /*
2247                  * Step 2. Program the queue's FPM/HMC context.
2248                  */
2249                 if (i40e_setup_rx_hmc(itrq) == B_FALSE)
2250                         return (B_FALSE);
2251 
2252                 /*
2253                  * Step 3. Clear the queue's tail pointer and set it to the end
2254                  * of the space.
2255                  */
2256                 I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), 0);
2257                 I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), rxd->rxd_ring_size - 1);
2258 
2259                 /*
2260                  * Step 4. Enable the queue via the QENA_REQ.
2261                  */
2262                 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2263                 VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK |
2264                     I40E_QRX_ENA_QENA_STAT_MASK));
2265                 reg |= I40E_QRX_ENA_QENA_REQ_MASK;
2266                 I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2267         }
2268 
2269         /*
2270          * Note, we wait for every queue to be enabled before we start checking.
2271          * This will hopefully cause most queues to be enabled at this point.
2272          */
2273         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2274                 uint32_t j, reg;
2275 
2276                 /*
2277                  * Step 5. Verify that QENA_STAT has been set. It's promised
2278                  * that this should occur within about 10 us, but like other
2279                  * systems, we give the card a bit more time.
2280                  */
2281                 for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2282                         reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2283 
2284                         if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
2285                                 break;
2286                         i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2287                 }
2288 
2289                 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) {
2290                         i40e_error(i40e, "failed to enable rx queue %d, timed "
2291                             "out.", i);
2292                         return (B_FALSE);
2293                 }
2294         }
2295 
2296         return (B_TRUE);
2297 }
2298 
2299 static boolean_t
2300 i40e_setup_tx_hmc(i40e_trqpair_t *itrq)
2301 {
2302         i40e_t *i40e = itrq->itrq_i40e;
2303         i40e_hw_t *hw = &i40e->i40e_hw_space;
2304 
2305         struct i40e_hmc_obj_txq tctx;
2306         struct i40e_vsi_context context;
2307         int err;
2308 
2309         bzero(&tctx, sizeof (struct i40e_hmc_obj_txq));
2310         tctx.new_context = I40E_HMC_TX_NEW_CONTEXT;
2311         tctx.base = itrq->itrq_desc_area.dmab_dma_address /
2312             I40E_HMC_TX_CTX_UNIT;
2313         tctx.fc_ena = I40E_HMC_TX_FC_DISABLE;
2314         tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE;
2315         tctx.fd_ena = I40E_HMC_TX_FD_DISABLE;
2316         tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE;
2317         tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE;
2318         tctx.qlen = itrq->itrq_tx_ring_size;
2319         tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2320         tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE;
2321         tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2322         tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address +
2323             sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size;
2324 
2325         /*
2326          * This field isn't actually documented, like crc, but it suggests that
2327          * it should be zeroed. We leave both of these here because of that for
2328          * now. We should check with Intel on why these are here even.
2329          */
2330         tctx.crc = 0;
2331         tctx.rdylist_act = 0;
2332 
2333         /*
2334          * We're supposed to assign the rdylist field with the value of the
2335          * traffic class index for the first device. We query the VSI parameters
2336          * again to get what the handle is. Note that every queue is always
2337          * assigned to traffic class zero, because we don't actually use them.
2338          */
2339         bzero(&context, sizeof (struct i40e_vsi_context));
2340         context.seid = i40e->i40e_vsi_id;
2341         context.pf_num = hw->pf_id;
2342         err = i40e_aq_get_vsi_params(hw, &context, NULL);
2343         if (err != I40E_SUCCESS) {
2344                 i40e_error(i40e, "get VSI params failed with %d", err);
2345                 return (B_FALSE);
2346         }
2347         tctx.rdylist = LE_16(context.info.qs_handle[0]);
2348 
2349         err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index);
2350         if (err != I40E_SUCCESS) {
2351                 i40e_error(i40e, "failed to clear tx queue %d context: %d",
2352                     itrq->itrq_index, err);
2353                 return (B_FALSE);
2354         }
2355 
2356         err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx);
2357         if (err != I40E_SUCCESS) {
2358                 i40e_error(i40e, "failed to set tx queue %d context: %d",
2359                     itrq->itrq_index, err);
2360                 return (B_FALSE);
2361         }
2362 
2363         return (B_TRUE);
2364 }
2365 
2366 /*
2367  * Take care of setting up the descriptor rings and actually programming the
2368  * device. See 8.4.3.1.1 for what we need to do here.
2369  */
2370 static boolean_t
2371 i40e_setup_tx_rings(i40e_t *i40e)
2372 {
2373         int i;
2374         i40e_hw_t *hw = &i40e->i40e_hw_space;
2375 
2376         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2377                 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2378                 uint32_t reg;
2379 
2380                 /*
2381                  * Step 1. Clear the queue disable flag and verify that the
2382                  * index is set correctly.
2383                  */
2384                 i40e_pre_tx_queue_cfg(hw, i, B_TRUE);
2385 
2386                 /*
2387                  * Step 2. Prepare the queue's FPM/HMC context.
2388                  */
2389                 if (i40e_setup_tx_hmc(itrq) == B_FALSE)
2390                         return (B_FALSE);
2391 
2392                 /*
2393                  * Step 3. Verify that it's clear that this PF owns this queue.
2394                  */
2395                 reg = I40E_QTX_CTL_PF_QUEUE;
2396                 reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2397                     I40E_QTX_CTL_PF_INDX_MASK;
2398                 I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg);
2399                 i40e_flush(hw);
2400 
2401                 /*
2402                  * Step 4. Set the QENA_REQ flag.
2403                  */
2404                 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2405                 VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK |
2406                     I40E_QTX_ENA_QENA_STAT_MASK));
2407                 reg |= I40E_QTX_ENA_QENA_REQ_MASK;
2408                 I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2409         }
2410 
2411         /*
2412          * Note, we wait for every queue to be enabled before we start checking.
2413          * This will hopefully cause most queues to be enabled at this point.
2414          */
2415         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2416                 uint32_t j, reg;
2417 
2418                 /*
2419                  * Step 5. Verify that QENA_STAT has been set. It's promised
2420                  * that this should occur within about 10 us, but like BSD,
2421                  * we'll try for up to 100 ms for this queue.
2422                  */
2423                 for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2424                         reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2425 
2426                         if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
2427                                 break;
2428                         i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2429                 }
2430 
2431                 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) {
2432                         i40e_error(i40e, "failed to enable tx queue %d, timed "
2433                             "out", i);
2434                         return (B_FALSE);
2435                 }
2436         }
2437 
2438         return (B_TRUE);
2439 }
2440 
2441 void
2442 i40e_stop(i40e_t *i40e, boolean_t free_allocations)
2443 {
2444         int i;
2445 
2446         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2447 
2448         /*
2449          * Shutdown and drain the tx and rx pipeline. We do this using the
2450          * following steps.
2451          *
2452          * 1) Shutdown interrupts to all the queues (trying to keep the admin
2453          *    queue alive).
2454          *
2455          * 2) Remove all of the interrupt tx and rx causes by setting the
2456          *    interrupt linked lists to zero.
2457          *
2458          * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should
2459          *    wait for all the queues to be disabled, once we reach that point
2460          *    it should be safe to free associated data.
2461          *
2462          * 4) Wait 50ms after all that is done. This ensures that the rings are
2463          *    ready for programming again and we don't have to think about this
2464          *    in other parts of the driver.
2465          *
2466          * 5) Disable remaining chip interrupts, (admin queue, etc.)
2467          *
2468          * 6) Verify that FM is happy with all the register accesses we
2469          *    performed.
2470          */
2471         i40e_intr_io_disable_all(i40e);
2472         i40e_intr_io_clear_cause(i40e);
2473 
2474         if (i40e_shutdown_rings(i40e) == B_FALSE) {
2475                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2476         }
2477 
2478         delay(50 * drv_usectohz(1000));
2479 
2480         i40e_intr_chip_fini(i40e);
2481 
2482         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2483                 mutex_enter(&i40e->i40e_trqpairs[i].itrq_rx_lock);
2484                 mutex_enter(&i40e->i40e_trqpairs[i].itrq_tx_lock);
2485         }
2486 
2487         /*
2488          * We should consider refactoring this to be part of the ring start /
2489          * stop routines at some point.
2490          */
2491         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2492                 i40e_stats_trqpair_fini(&i40e->i40e_trqpairs[i]);
2493         }
2494 
2495         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
2496             DDI_FM_OK) {
2497                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2498         }
2499 
2500         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2501                 i40e_tx_cleanup_ring(&i40e->i40e_trqpairs[i]);
2502         }
2503 
2504         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2505                 mutex_exit(&i40e->i40e_trqpairs[i].itrq_rx_lock);
2506                 mutex_exit(&i40e->i40e_trqpairs[i].itrq_tx_lock);
2507         }
2508 
2509         i40e_stat_vsi_fini(i40e);
2510 
2511         i40e->i40e_link_speed = 0;
2512         i40e->i40e_link_duplex = 0;
2513         i40e_link_state_set(i40e, LINK_STATE_UNKNOWN);
2514 
2515         if (free_allocations) {
2516                 i40e_free_ring_mem(i40e, B_FALSE);
2517         }
2518 }
2519 
2520 boolean_t
2521 i40e_start(i40e_t *i40e, boolean_t alloc)
2522 {
2523         i40e_hw_t *hw = &i40e->i40e_hw_space;
2524         boolean_t rc = B_TRUE;
2525         int i, err;
2526 
2527         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2528 
2529         if (alloc) {
2530                 if (i40e_alloc_ring_mem(i40e) == B_FALSE) {
2531                         i40e_error(i40e,
2532                             "Failed to allocate ring memory");
2533                         return (B_FALSE);
2534                 }
2535         }
2536 
2537         /*
2538          * This should get refactored to be part of ring start and stop at
2539          * some point, along with most of the logic here.
2540          */
2541         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2542                 if (i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i]) ==
2543                     B_FALSE) {
2544                         int j;
2545 
2546                         for (j = 0; j < i; j++) {
2547                                 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[j];
2548                                 i40e_stats_trqpair_fini(itrq);
2549                         }
2550                         return (B_FALSE);
2551                 }
2552         }
2553 
2554         if (!i40e_chip_start(i40e)) {
2555                 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
2556                 rc = B_FALSE;
2557                 goto done;
2558         }
2559 
2560         if (i40e_setup_rx_rings(i40e) == B_FALSE) {
2561                 rc = B_FALSE;
2562                 goto done;
2563         }
2564 
2565         if (i40e_setup_tx_rings(i40e) == B_FALSE) {
2566                 rc = B_FALSE;
2567                 goto done;
2568         }
2569 
2570         /*
2571          * Enable broadcast traffic; however, do not enable multicast traffic.
2572          * That's handle exclusively through MAC's mc_multicst routines.
2573          */
2574         err = i40e_aq_set_vsi_broadcast(hw, i40e->i40e_vsi_id, B_TRUE, NULL);
2575         if (err != I40E_SUCCESS) {
2576                 i40e_error(i40e, "failed to set default VSI: %d", err);
2577                 rc = B_FALSE;
2578                 goto done;
2579         }
2580 
2581         err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0, NULL);
2582         if (err != I40E_SUCCESS) {
2583                 i40e_error(i40e, "failed to set MAC config: %d", err);
2584                 rc = B_FALSE;
2585                 goto done;
2586         }
2587 
2588         /*
2589          * Finally, make sure that we're happy from an FM perspective.
2590          */
2591         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
2592             DDI_FM_OK) {
2593                 rc = B_FALSE;
2594                 goto done;
2595         }
2596 
2597         /* Clear state bits prior to final interrupt enabling. */
2598         atomic_and_32(&i40e->i40e_state,
2599             ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP));
2600 
2601         i40e_intr_io_enable_all(i40e);
2602 
2603 done:
2604         if (rc == B_FALSE) {
2605                 i40e_stop(i40e, B_FALSE);
2606                 if (alloc == B_TRUE) {
2607                         i40e_free_ring_mem(i40e, B_TRUE);
2608                 }
2609                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2610         }
2611 
2612         return (rc);
2613 }
2614 
2615 /*
2616  * We may have loaned up descriptors to the stack. As such, if we still have
2617  * them outstanding, then we will not continue with detach.
2618  */
2619 static boolean_t
2620 i40e_drain_rx(i40e_t *i40e)
2621 {
2622         mutex_enter(&i40e->i40e_rx_pending_lock);
2623         while (i40e->i40e_rx_pending > 0) {
2624                 if (cv_reltimedwait(&i40e->i40e_rx_pending_cv,
2625                     &i40e->i40e_rx_pending_lock,
2626                     drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) {
2627                         mutex_exit(&i40e->i40e_rx_pending_lock);
2628                         return (B_FALSE);
2629                 }
2630         }
2631         mutex_exit(&i40e->i40e_rx_pending_lock);
2632 
2633         return (B_TRUE);
2634 }
2635 
2636 static int
2637 i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2638 {
2639         i40e_t *i40e;
2640         struct i40e_osdep *osdep;
2641         i40e_hw_t *hw;
2642         int instance;
2643 
2644         if (cmd != DDI_ATTACH)
2645                 return (DDI_FAILURE);
2646 
2647         instance = ddi_get_instance(devinfo);
2648         i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP);
2649 
2650         i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP);
2651         i40e->i40e_instance = instance;
2652         i40e->i40e_dip = devinfo;
2653 
2654         hw = &i40e->i40e_hw_space;
2655         osdep = &i40e->i40e_osdep_space;
2656         hw->back = osdep;
2657         osdep->ios_i40e = i40e;
2658 
2659         ddi_set_driver_private(devinfo, i40e);
2660 
2661         i40e_fm_init(i40e);
2662         i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT;
2663 
2664         if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) {
2665                 i40e_error(i40e, "Failed to map PCI configurations.");
2666                 goto attach_fail;
2667         }
2668         i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG;
2669 
2670         if (!i40e_identify_hardware(i40e)) {
2671                 i40e_error(i40e, "Failed to identify hardware");
2672                 goto attach_fail;
2673         }
2674 
2675         if (!i40e_regs_map(i40e)) {
2676                 i40e_error(i40e, "Failed to map device registers.");
2677                 goto attach_fail;
2678         }
2679         i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP;
2680 
2681         i40e_init_properties(i40e);
2682         i40e->i40e_attach_progress |= I40E_ATTACH_PROPS;
2683 
2684         if (!i40e_common_code_init(i40e, hw))
2685                 goto attach_fail;
2686         i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE;
2687 
2688         /*
2689          * When we participate in IRM, we should make sure that we register
2690          * ourselves with it before callbacks.
2691          */
2692         if (!i40e_alloc_intrs(i40e, devinfo)) {
2693                 i40e_error(i40e, "Failed to allocate interrupts.");
2694                 goto attach_fail;
2695         }
2696         i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR;
2697 
2698         if (!i40e_alloc_trqpairs(i40e)) {
2699                 i40e_error(i40e,
2700                     "Failed to allocate receive & transmit rings.");
2701                 goto attach_fail;
2702         }
2703         i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS;
2704 
2705         if (!i40e_map_intrs_to_vectors(i40e)) {
2706                 i40e_error(i40e, "Failed to map interrupts to vectors.");
2707                 goto attach_fail;
2708         }
2709 
2710         if (!i40e_add_intr_handlers(i40e)) {
2711                 i40e_error(i40e, "Failed to add the interrupt handlers.");
2712                 goto attach_fail;
2713         }
2714         i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR;
2715 
2716         if (!i40e_final_init(i40e)) {
2717                 i40e_error(i40e, "Final initialization failed.");
2718                 goto attach_fail;
2719         }
2720         i40e->i40e_attach_progress |= I40E_ATTACH_INIT;
2721 
2722         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
2723             DDI_FM_OK) {
2724                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2725                 goto attach_fail;
2726         }
2727 
2728         if (!i40e_stats_init(i40e)) {
2729                 i40e_error(i40e, "Stats initialization failed.");
2730                 goto attach_fail;
2731         }
2732         i40e->i40e_attach_progress |= I40E_ATTACH_STATS;
2733 
2734         if (!i40e_register_mac(i40e)) {
2735                 i40e_error(i40e, "Failed to register to MAC/GLDv3");
2736                 goto attach_fail;
2737         }
2738         i40e->i40e_attach_progress |= I40E_ATTACH_MAC;
2739 
2740         i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e,
2741             I40E_CYCLIC_PERIOD, DDI_IPL_0);
2742         if (i40e->i40e_periodic_id == 0) {
2743                 i40e_error(i40e, "Failed to add the link-check timer");
2744                 goto attach_fail;
2745         }
2746         i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER;
2747 
2748         if (!i40e_enable_interrupts(i40e)) {
2749                 i40e_error(i40e, "Failed to enable DDI interrupts");
2750                 goto attach_fail;
2751         }
2752         i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR;
2753 
2754         atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED);
2755 
2756         mutex_enter(&i40e_glock);
2757         list_insert_tail(&i40e_glist, i40e);
2758         mutex_exit(&i40e_glock);
2759 
2760         return (DDI_SUCCESS);
2761 
2762 attach_fail:
2763         i40e_unconfigure(devinfo, i40e);
2764         return (DDI_FAILURE);
2765 }
2766 
2767 static int
2768 i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2769 {
2770         i40e_t *i40e;
2771 
2772         if (cmd != DDI_DETACH)
2773                 return (DDI_FAILURE);
2774 
2775         i40e = (i40e_t *)ddi_get_driver_private(devinfo);
2776         if (i40e == NULL) {
2777                 i40e_log(NULL, "i40e_detach() called with no i40e pointer!");
2778                 return (DDI_FAILURE);
2779         }
2780 
2781         if (i40e_drain_rx(i40e) == B_FALSE) {
2782                 i40e_log(i40e, "timed out draining DMA resources, %d buffers "
2783                     "remain", i40e->i40e_rx_pending);
2784                 return (DDI_FAILURE);
2785         }
2786 
2787         mutex_enter(&i40e_glock);
2788         list_remove(&i40e_glist, i40e);
2789         mutex_exit(&i40e_glock);
2790 
2791         i40e_unconfigure(devinfo, i40e);
2792 
2793         return (DDI_SUCCESS);
2794 }
2795 
2796 static struct cb_ops i40e_cb_ops = {
2797         nulldev,                /* cb_open */
2798         nulldev,                /* cb_close */
2799         nodev,                  /* cb_strategy */
2800         nodev,                  /* cb_print */
2801         nodev,                  /* cb_dump */
2802         nodev,                  /* cb_read */
2803         nodev,                  /* cb_write */
2804         nodev,                  /* cb_ioctl */
2805         nodev,                  /* cb_devmap */
2806         nodev,                  /* cb_mmap */
2807         nodev,                  /* cb_segmap */
2808         nochpoll,               /* cb_chpoll */
2809         ddi_prop_op,            /* cb_prop_op */
2810         NULL,                   /* cb_stream */
2811         D_MP | D_HOTPLUG,       /* cb_flag */
2812         CB_REV,                 /* cb_rev */
2813         nodev,                  /* cb_aread */
2814         nodev                   /* cb_awrite */
2815 };
2816 
2817 static struct dev_ops i40e_dev_ops = {
2818         DEVO_REV,               /* devo_rev */
2819         0,                      /* devo_refcnt */
2820         NULL,                   /* devo_getinfo */
2821         nulldev,                /* devo_identify */
2822         nulldev,                /* devo_probe */
2823         i40e_attach,            /* devo_attach */
2824         i40e_detach,            /* devo_detach */
2825         nodev,                  /* devo_reset */
2826         &i40e_cb_ops,               /* devo_cb_ops */
2827         NULL,                   /* devo_bus_ops */
2828         ddi_power,              /* devo_power */
2829         ddi_quiesce_not_supported /* devo_quiesce */
2830 };
2831 
2832 static struct modldrv i40e_modldrv = {
2833         &mod_driverops,
2834         i40e_ident,
2835         &i40e_dev_ops
2836 };
2837 
2838 static struct modlinkage i40e_modlinkage = {
2839         MODREV_1,
2840         { &i40e_modldrv, NULL }
2841 };
2842 
2843 /*
2844  * Module Initialization Functions.
2845  */
2846 int
2847 _init(void)
2848 {
2849         int status;
2850 
2851         list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink));
2852         list_create(&i40e_dlist, sizeof (i40e_device_t),
2853             offsetof(i40e_device_t, id_link));
2854         mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL);
2855         mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME);
2856 
2857         status = mod_install(&i40e_modlinkage);
2858         if (status != DDI_SUCCESS) {
2859                 mac_fini_ops(&i40e_dev_ops);
2860                 mutex_destroy(&i40e_glock);
2861                 list_destroy(&i40e_dlist);
2862                 list_destroy(&i40e_glist);
2863         }
2864 
2865         return (status);
2866 }
2867 
2868 int
2869 _info(struct modinfo *modinfop)
2870 {
2871         return (mod_info(&i40e_modlinkage, modinfop));
2872 }
2873 
2874 int
2875 _fini(void)
2876 {
2877         int status;
2878 
2879         status = mod_remove(&i40e_modlinkage);
2880         if (status == DDI_SUCCESS) {
2881                 mac_fini_ops(&i40e_dev_ops);
2882                 mutex_destroy(&i40e_glock);
2883                 list_destroy(&i40e_dlist);
2884                 list_destroy(&i40e_glist);
2885         }
2886 
2887         return (status);
2888 }